отзыв

> официального оппонента,
> доктора физ.-матем. наук Чхетиани Отто Гурамовича
> на диссертацию Костенко Марии Михайловны
> «Ренормгруппа и аномальный скейлинг в моделях турбулентного переноса сжимаемой жидкостью», представленную на соискание ученой степени кандидата

> физико-математических наук по специальности
01.04.02 - теоретическая физика.

Диссертация Костенко M.M. посвящена проблеме аномального скейлинга в задачах турбулентного переноса пассивного скалярного (температура, концентрация примеси) и векторного (магнитного) полей. Исследован ряд моделей турбулентного переноса, описываемых стохастическими дифференциальными уравнениями. Основной метод исследования - теоретико-полевая ренормализационная группа и операторное разложение.

Описание развитой турбулентности с теоретической точки зрения до сих пор остаётся незавершенной проблемой. Фактически, существующие результаты получены в рамках феноменологических моделей, не являющихся приближениями определенного порядка в систематической теории возмущений по малому параметру для каких-либо микроскопических динамических моделей. Однако, для модели Обухова-Крейчнана был достигнут заметный успех. В рассмотрении Обухова-Крейчнана поле скорости имело простые заданные статистические свойства, но при этом поведение скалярного поля (температуры среды или плотности примеси), переносимого таким полем скорости, оказалось нетривиальным и, в то же время, доступным аналитическому исследованию. В частности, была построена систематическая теория возмущений для аномальных показателей, аналогичная известному эпсилон-разложению в теории фазовых переходов второго рода.

К сожалению, применение методов, применённых к модели Крейчнана, невозможно для более сложных реалистичных моделей. В то же время, для описания реальной физической картины необходимо учесть ненулевое время корреляции поля скоростей, анизотропию, сжимаемость и др. Представленная диссертация как раз посвящена исследованиям в этом направлении. Поэтому актуальность, новизна и ценность данной работы не вызывает сомнений.

Диссертация состоит из введения, 4 глав, заключения и списка литературы. Объем диссертации составляет 159 страниц.

Во введении отмечена актуальность работы, степень разработанности темы исследования, цели исследования, а также методология и методы исследования, научная и практическая ценность, научная новизна, приведены список школ и конференций, на которых состоялась апробация полученных результатов, список публикаций автора, краткое содержание работы, а также сформулированы три основных положения, выносимые на защиту. Стоит отметить детальность обзора. Нет необходимости излагать содержание диссертационной работы по главам, так как это хорошо сделано в самой диссертации, а краткое содержание ясно изложено в автореферате соискателя.

В диссертации последовательно проведён теоретико-полевой ренормгрупповой анализ для стохастического уравнения Навье-Стокса, уравнения для переноса пассивного скалярного поля, пассивного векторного (магнитного) поля. Систематически используется квантово-полевой вариант ренормгруппы, имеющий надежную основу в виде функциональных методов, диаграммной теории возмущений и теории перенормировок. В последней главе диссертационной работы автор приводит исследование тех же уравнений вблизи исключительной размерности пространства $d=4$, что позволяет обнаружить другой возможный режим скейлингового поведения и исследовать его устойчивость.

Из результатов, полученных автором, можно выделить подтверждение гипотезы Колмогорова о локальном восстановлении изотропии и при действии крупномасштабной анизотропной накачки. При этом можно отметить заметные различия для поведения магнитного поля по сравнению с ранее рассматриваемым пассивным векторным полем в модели Крейчнана.

Также отмечено, что структурные функции в кинематической МГД постановке представляют собой суперпозицию постоянного члена и степенных поправок, что актуально при анализе данных экспериментов.

Процедура вычисления критических показателей для корреляционных функций, содержащих составные операторы, требует применения не только ренормализационной группы, но также и операторного разложения. При этом аномальные показатели отождествляются с критическими размерностями некоторых составных полей (операторов в квантово-полевой терминологии). Данный метод позволяет исследовать асимптотическое поведение в так называемом инерционном интервале, ограниченном интегральным и диссипационным масштабами турбулентности, и получить явные выражения для соответствующих аномальных показателей в главном приближении ренормгруппы, а в некоторых случаях точно.

Представленное исследование представляют большой интерес с теоретической точки зрения (применение методов квантовой теории поля к задачам статистической физики), а кроме того, его результаты, полученные для более реальных условий, должны стимулировать проведение экспериментов по более аккуратному измерению аномальных показателей.

К недостаткам диссертации следует отнести следующие.

1. К сожалению, в работе слабо обсуждается сравнение полученных результатов с экспериментом .
2. Также стоило бы обсудить вопрос о достаточности уровня точности. Для сравнения полученных результатов с экспериментами (из-за не малой величины параметра разложения) кажется необходимым учитывать старшие приближения ренормгрупповой теории возмущений. Но это, скорее, пожелание на будущее.
3. Во введении упоминается турбулентность с нарушенной зеркальной симметрией, являющейся естественной средой для многих магнитогидродинамических систем и геофизических систем. Для таких моделей имеются результаты по аномальному скейлингу, а в диссертации не проведено исследование подобной модели.. Это также можно считать пожеланием на будущее.
4. Дополнительно отметим, что сжимаемость среды, реальная или эффективная, способствует такому явлению, как стохастическая кластеризация, известному для пассивной примеси, магнитного поля, волновых систем. В упрощенном представлении это явление может интерпретироваться как подавление диффузии. Стоило бы отметить, что первые результаты в этом направлении были получены в Ленинграде (Н.А. Силантьев, 1990). Моменты магнитного поля в кинематической постановке могут расти. Не отмечается исключение подобных эффектов в рассматриваемых задачах или их возможное влияние на результаты.

Отмеченные недостатки не влияют на общую высокую положительную оценку работы.

Оценивая работу в целом, отметим следующее.
Диссертация выполнена на высоком научном уровне и является законченной научно-исследовательской работой, являющейся новым важным шагом в теоретических исследованиях развитой турбулентности. В диссертации решены важные научные задачи. Полученные результаты представляются достоверными и могут найти научно-практическое применение в исследованиях неравновесных плазменно-гидродинамических систем в геофизике и астрофизике. Содержание диссертации соответствует всем требования ВАК, предъявляемым к кандидатским диссертациям.

Работа хорошо оформлена. Автореферат соответствует содержанию диссертации. Хотелось бы отметить добротное и качественное изложение и «читабельность» всего текста в целом. Опубликованные в ведущих научных журналах результаты M.M. Костенко и, докладывавшиеся также на российских и международных конференциях, достаточно полно отражают материал, изложенный в диссертации.

Все сказанное позволяет заключить, что диссертационная работа «РЕНОРМГРУППА И АНОМАЛЬНЫЙ СКЕЙЛИНГ В МОДЕЛЯХ ТУРБУЛЕНТНОГО ПЕРЕНОСА СЖИМАЕМОЙ ЖИДКОСТЬЮ» представляет собой законченную научно-исследовательскую работу и отвечает всем требованиям, предъявляемым к кандидатским диссертациям по специальности 01.04.02 - теоретическая физика, а ее автор, Костенко Мария Михайловна, безусловно заслуживает присуждения ученой степени кандидата физикоматематических наук.

Официальный оппонент
Чхетиани Отто Гурамович
доктор физико-математических наук
шифр специальности оппонента - 01.04.02 «теоретическая физика»
Заместитель директора по наукеไ Заведующий лабораторией геофизической гидродинамики

Федеральное государственное бюджетное образовательное учреждение науки Института физики атмосферы им. A.M. Обухова РАН

119017, Москва, Пыжевский пер., д. 3
Рабочий телефон 8 (495) 9518480
E-mail: lgg@ifaran.ru
14 мая 2018 года

Подпись О.Г. Чхетиани заверяю
Ученый секретарь ИФА им. A.M. OбуzоваРА
Канд. геогр. наук

