Сеник Никита Николаевич

Усреднение периодических и локально периодических эллиптических операторов

01.01.03 — «Математическая физика»

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Работа выполнена в Санкт-Петербургском государственном университете.

Научный руководитель: Суслина Татьяна Александровна,

доктор физико-математических наук, доцент, профессор кафедры высшей математики и математической физики Санкт-Петербургского государственного университета

Официальные оппоненты: Борисов Денис Иванович,

доктор физико-математических наук, профессор, ведущий научный сотрудник Института математики с вычислительным центром Уфимского научного центра РАН

Смышляев Валерий Павлович,

кандидат физико-математических наук, профессор Университетского колледжа

Лондона

Ведущая организация: Институт проблем машиноведения РАН

Защита состоится «29» марта 2018 г. в 17 часов на заседании диссертационного совета д 212.232.24 при Санкт-Петербургском государственном университете по адресу: Санкт-Петербург, Средний пр., д. 41/43, ауд. 304.

С диссертацией можно ознакомиться в Научной библиотеке им. М. Горького СПбГУ и на сайте https://disser.spbu.ru.

Автореферат разослан «___» ____ 2018 г.

Ученый секретарь диссертационного совета, д. ф.-м. н.

A

Аксёнова Елена Валентиновна

Общая характеристика работы

Актуальность темы. Вопросы, которые сейчас относят к теории усреднения, в науке возникли достаточно давно и ставились еще в работах С. Д. Пуассона, Дж. К. Максвелла, Р. Клаузиуса и Дж. В. Рэлея. Однако прошло немало времени, прежде чем появились очертания математически строгой теории. Самые первые шаги в этом направлении были сделаны в середине 60-х годов прошлого века, когда В. А. Марченко и Е. Я. Хруслов рассмотрели модельную задачу с мелкозернистой границей, а С. Спаньоло и Э. де Джорджи ввели понятие *G*-сходимости. В дальнейшем данная тематика интенсивно разрабатывалась и расширялась, значительный вклад в ее развитие внесли многие математики, среди которых Н. С. Бахвалов, Ж.-Л. Лионс, Ф. Мюра, Л. Тартар, В. В. Жиков, О. А. Олейник и др.

Один из наиболее важных разделов теории усреднения изучает поведение решений дифференциальных уравнений с быстро осциллирующими коэффициентами. Такие уравнения описывают различные физические процессы в сильно неоднородных средах. С математической точки зрения удобнее рассматривать не одну задачу, а целое семейство, которое параметризовано величиной, характеризующей степень неоднородности среды. Часто оказывается, что чем более неоднородной является среда, тем сильнее протекающий в ней процесс походит на аналогичный процесс в однородной «эффективной» среде. Это выражается в том, что последовательность решений исходного семейства уравнений сходится к решению задачи с медленно меняющимися (или даже постоянными) коэффициентами.

Интерес представляет не только доказательство самой сходимости, но и нахождение соответствующей скорости. *Операторные оценки погрешности* позволяют достичь обеих целей сразу: с одной стороны, установить самый сильный тип операторной сходимости, а с другой — определить ее скорость.

Внимание к результатам подобного рода привлекла работа М. III. Бирмана и Т. А. Суслиной¹, и с того времени данное направление активно развивается². Сейчас уже достаточно хорошо изучены задачи усреднения для эллиптических операторов второго порядка, коэффициенты которых периодичны по каждой переменной. Помимо скорости сходимо-

¹ *M. Birman, T. Suslina*, in Systems, Approximations, Singular Integral Operators, and Related Topics, A. A. Borichev and N. K. Nikolski, eds., Birkhäuser, Basel, 2001, pp. 71–107.

² В. В. Жиков, С. Е. Пастухова, УМН, 71 (2016), № 3, с. 27–122.

сти резольвенты (через которую решение исходной задачи выражается) в равномерной операторной топологии на L_2 , была найдена поправка, улучшающая сходимость, а также получено приближение к резольвенте по «энергетической» операторной норме.

Об операторных приближениях и оценках погрешности для более общих задач, в которых коэффициенты периодичны относительно решетки неполного ранга или локально периодичны, известно намного меньше. Именно таким вопросам и посвящена данная работа.

Степень разработанности темы исследования. Задача усреднения для простейшего оператора с коэффициентами, периодическими лишь по некоторым переменным, была рассмотрена в статье Т. А. Суслиной³. Скалярный эллиптический оператор второго порядка действовал в многомерном цилиндре $\mathbb{R}^{d_1} \times \mathbb{T}^{d_2}$, а его коэффициенты предполагались периодическими быстро осциллирующими вдоль оси цилиндра и достаточно гладкими медленно меняющимися — на сечении. Для резольвенты была установлена сходимость по операторной норме на пространстве L_2 и получена оценка скорости сходимости — но только при условии, что матрица старших коэффициентов имеет блочно-диагональную структуру. Как показано в одной из последующих работ⁴, аналогичный результат справедлив и в случае, когда вместо тора \mathbb{T}^{d_2} — пространство \mathbb{R}^{d_2} .

Позднее С. Е. Пастухова с Р. Н. Тихомировым⁵ и Д. И. Борисов⁶ обратились к эллиптическим операторам второго порядка (как скалярным, так и некоторым матричным) в пространстве \mathbb{R}^d с достаточно регулярными локально периодическими коэффициентами. В своих статьях они не только доказали сходимость резольвенты по операторной норме на L_2 , но также нашли приближение к ней по операторной норме из L_2 в H^1 .

Цель диссертационной работы — получить операторные приближения для резольвенты эллиптических операторов с быстро осциллирующими периодическими или локально периодическими коэффициентами.

Приведем результаты, которые выносятся на защиту.

Во-первых, была изучена периодическая задача усреднения для матричного сильно эллиптического оператора в \mathbb{R}^d , старшая часть которого задается выражением — $\operatorname{div} A(x_1/\varepsilon, x_2) \nabla$. Здесь $x = x_1 \oplus x_2 \in \mathbb{R}^d$ и функция A является периодической по первому аргументу и липшицевой — по вто-

³ Т.А. Суслина, Алгебра и анализ, 16 (2004), № 1, с. 269–292.

⁴ R. Bunoiu, G. Cardone, T. Suslina, Math. Meth. Appl. Sci., 34 (2011), no. 9, pp. 1075-1096.

⁵ С. Е Пастухова, Р. Н. Тихомиров, Докл. РАН, 415 (2007), № 3, с. 304–309.

⁶ Д.И. Борисов, Алгебра и анализ, 20 (2008), № 2, с. 19–42.

рому. Оператор также может включать младшие члены с коэффициентами из довольно общих классов мультипликаторов между пространствами Соболева. Не исключен полностью периодический случай, когда $x=x_1$. Для резольвенты при $\varepsilon \to 0$ найдены два старших члена в приближении по операторной норме на L_2 , а также старший член в приближении по операторной норме из L_2 в H^1 . Каждое приближение сопровождается точной по порядку оценкой погрешности.

Во-вторых, была изучена локально периодическая задача усреднения для матричного сильно эллиптического оператора $-\operatorname{div} A(x,x/\varepsilon) \nabla$ в \mathbb{R}^d . Функция A здесь предполагается гёльдеровой по первому аргументу с показателем $s \in [0,1]$ и периодической — по второму. Для резольвенты при $\varepsilon \to 0$ найдены два старших члена в приближении по операторной норме на L_2 , а также старший член в приближении по операторной норме из L_2 в H^r , где $r \in (0,1)$, если s < 1, и $r \in (0,1]$, если s = 1. При s > 0 установлены оценки соответствующих погрешностей; они зависят от гладкости функции A и являются точными по порядку, когда s = 1.

Данные **результаты являются новыми**. Прежде подобные приближения доказывались только при значительно более сильных ограничениях на коэффициенты. Так, условие полуограниченности оператора сейчас заменяется на условие слабой коэрцитивности, что позволяет рассмотреть не только самосопряженные операторы, но и m-секториальные. Ослабляется также требование к гладкости коэффициентов по «медленной» переменной, и вместо липшицевости теперь достаточно гёльдеровости. Наиболее тонким результатом является двухчленное приближение для резольвенты в операторной топологии на пространстве L_2 , которое было известно ранее лишь в полностью периодическом случае.

Методика исследования. Идеи, используемые для изучения общих периодических операторов, с одной стороны, и локально периодических операторов с липшицевыми по «медленной» переменной коэффициентами — с другой, во многом похожи. Процесс усреднения строится вокруг специального операторного тождества, включающего резольвенты исходного и эффективного операторов, а также некоторый корректор. Обосновать сходимость резольвенты удается благодаря тому, что старшие вклады в тождестве сокращаются, а скорость сходимости получается, если аккуратно оценить оставшиеся слагаемые. Отметим, что подобная «операторная» точка зрения вообще была характерна для абстрактного теоретико-операторного подхода М. Ш. Бирмана и Т. А. Суслиной; в то же время использование конкретного первого приближения сближает

проводимые здесь рассуждения с подходами Ж. Гризо и В. В. Жикова и С. Е. Пастуховой.

С помощью сглаживания функции A приближение для локально периодического оператора с «гёльдеровыми» коэффициентами сводится к такому же вопросу для оператора с «липшицевыми» коэффициентами. Это позволяет далее применить уже известные оценки и получить искомые результаты. Однако постоянные в оценках ранее зависели от липшицевой полунормы функции A, поэтому недостаток гладкости сейчас приходится компенсировать величиной погрешности.

Теоретическая и практическая значимость. Предложенный подход в дальнейшем может быть использован для изучения других задач теории усреднения, а полученные результаты могут оказаться полезными при исследовании физических процессов в сильно неоднородных средах.

Достоверность результатов обеспечивается строгими математическими доказательствами.

Личный вклад. Все результаты получены соискателем лично.

Апробация работы. Результаты по теме диссертации докладывались на семинаре кафедры Высшей математики и математической физики СПбГУ, на семинаре по математической физике ПОМИ им. В. А. Стеклова РАН, а также на международных конференциях International Conference on Differential and Functional Differential Equations (Москва, Россия, 2014 и 2017 гг.), St. Petersburg Conference in Spectral Theory (Санкт-Петербург, Россия, 2012, 2015 и 2017 гг.), Days on Diffraction (Санкт-Петербург, Россия, 2013, 2015 и 2017 гг.), Trilateral German–Russian–Ukrainian Summer School: Spectral Theory, Differential Equations and Probability (Майнц, Германия, 2016 г.), Mathematical Methods for Spectral Problems: Applications to Waveguides, Periodic Media and Metamaterials (Хельсинки, Финляндия, 2013 г.), Trilateral French–German–Russian Workshop: Asymptotic Analysis and Spectral Theory on Non-Compact Structures (Майнц, Германия, 2012 г.).

Публикации. Основные результаты по теме диссертации изложены в 6 публикациях, из которых 4 ([A1], [A2], [A3] и [A4]) — в рецензируемых научных изданиях, рекомендованных ВАК РФ и входящих в списки РИНЦ, Web of Science и Scopus; 1 ([A5]) — в трудах конференции, входящих в списки РИНЦ, Web of Science и Scopus; и 1 ([A6]) — в электронном журнале.

Объем и структура работы. Диссертация состоит из введения, предварительных сведений, трех глав, разделенных на две части, и заключения. Ее полный объем составляет 144 страницы. Библиография содержит 55 наименований.

Содержание работы

Работа разделена на две части. Первая, к которой относится глава 1, посвящена усреднению периодических операторов. Во второй части задача усреднения ставится для локально периодических операторов: в главе 2 рассматривается случай s=1, в главе 3 — случай $s\in[0,1)$.

Часть І. Усреднение периодических операторов

Через $d_1>0$ мы будем обозначать число «периодических», а через $d_2\geqslant 0$ — число «непериодических» направлений в \mathbb{R}^d . Соответственно, переменная $x\in\mathbb{R}^d$ представляется прямой суммой $x_1\oplus x_2$ с $x_1\in\mathbb{R}^{d_1}$ и $x_2\in\mathbb{R}^{d_2}$. За периодическую структуру в пространстве отвечает решетка \mathbb{Z}^{d_1} с элементарной ячейкой $\mathbb{Q}=[-1/2,1/2]^{d_1}$. Удобно считать, что эта решетка действует на всём \mathbb{R}^d , и тогда фундаментальным множеством для нее будет $\mathcal{F}=\mathbb{Q}\times\mathbb{R}^{d_2}$. Подчеркнем, что не исключается полностью периодический случай, когда $d_2=0$ и ранг решетки максимален.

Рассмотрим оператор $\mathcal{A}^{\varepsilon}$ с периодическими относительно \mathbb{Z}^{d_1} коэффициентами, который действует между комплексным пространством Соболева $H^1(\mathbb{R}^d)^n$ и двойственным к нему пространством $H^{-1}(\mathbb{R}^d)^n$ согласно формуле

$$\mathcal{A}^{\varepsilon} = -\operatorname{div} A(x_1/\varepsilon, x_2) \nabla + a_1^*(x_1/\varepsilon, x_2) \nabla + \operatorname{div} a_2(x_1/\varepsilon, x_2) + q(x_1/\varepsilon, x_2).$$

Функция $A\colon \mathbb{R}^d \to \mathbf{B}(\mathbb{C}^{d\times n})$ равномерно ограничена и имеет равномерно ограниченную производную по «непериодической» переменной x_2 , иначе говоря $A\in C^{0,1}(\bar{\mathbb{R}}^{d_2};L_\infty(\mathbb{R}^{d_1}))$. Далее, функции $a_1,a_2\colon \mathbb{R}^d \to \mathbf{B}(\mathbb{C}^n,\mathbb{C}^{d\times n})$ принадлежат пространству мультипликаторов $\mathbf{M}(H^1(\mathcal{F}),L_2(\mathcal{F}))$ вместе с $\nabla_{x_2}a_1$ и $\nabla_{x_2}a_2$, а распределение $q\in (C^\infty(\mathcal{F})^*)^{n\times n}$ таково, что q и $\nabla_{x_2}q$ содержатся в $\mathbf{M}(H^1(\mathcal{F}),H^1(\mathcal{F})^*)$. Мы также предполагаем, что старшая часть оператора \mathcal{A}^ε удовлетворяет на $H^1(\mathbb{R}^d)^n$ неравенству типа Гординга, притом равномерно по ε из некоторого интервала $\mathscr{E}=(0,\varepsilon_0]$, а младшие члены в определенном смысле ей подчинены. Благодаря этому сам оператор \mathcal{A}^ε оказывается слабо коэрцитивным: найдутся такие постоянные $c_*>0$ и $C_b\geqslant 0$, что для всех $\varepsilon\in \mathscr{E}$ и $u\in H^1(\mathbb{R}^d)^n$ будет выполнено

$$\operatorname{Re}(\mathcal{A}^{\varepsilon}u, u)_{\mathbb{R}^{d}} + C_{\flat} \|u\|_{2, \mathbb{R}^{d}}^{2} \ge c_{*} \|\nabla u\|_{2, \mathbb{R}^{d}}^{2}.$$

Поскольку $\mathcal{A}^{\varepsilon}$ еще и равномерно ограничен по $\varepsilon>0$, то он m-секториален, а отвечающий ему сектор, который обозначим символом \mathcal{S} , не зависит

от ε . Тем самым при $\mu \notin \mathcal{S}$ оператор $\mathcal{A}^{\varepsilon}$ – μ обратим, а обратный равномерно ограничен.

Для краткости все дальнейшие построения мы будем проводить, считая, что младшие члены оператора равны нулю; приведенные ниже утверждения для $\mathcal{A}^{\varepsilon}$ останутся верными и в общем случае, но «предельные» операторы будут иметь более сложный вид.

Чтобы сформулировать результаты первой части, необходимо при всех $x_2 \in \mathbb{R}^{d_2}$ и $\xi \in \mathbb{C}^{d \times n}$ ввести вспомогательную функцию $N_\xi(\cdot, x_2)$ — периодическое векторное решение задачи

$$-\operatorname{div}_{x_1} A(\cdot, x_2) (\nabla_{x_1} N_{\xi}(\cdot, x_2) + \xi) = 0, \qquad \int_{\mathbb{G}} N_{\xi}(\cdot, x_2) dx_1 = 0,$$

на ячейке $\mathbb Q$ (мы отождествляем d_1 -мерный оператор ∇_{x_1} с d-мерным оператором $\nabla_{x_1} \oplus 0$; точно так же понимается и div_{x_1}). Слабое решение такой задачи существует и единственно благодаря коэрцитивности оператора $\mathcal A^{\varepsilon}$. Отображение $\xi \mapsto N_{\xi}$, очевидно, линейно, поэтому соотношением $N(x)\xi = N_{\xi}(x)$ по семейству $\{N_{\xi}\}_{\xi \in \mathbb C^{d \times n}}$ задается функция N. Для нас важно, что она, как и A, является липшицевой по «непериодической» переменной.

Эффективный оператор \mathcal{A}^0 действует в той же паре пространств, что и исходный, и имеет вид

$$\mathcal{A}^0 = -\operatorname{div} A^0(x_2) \nabla,$$

где

$$A^{0}(x_{2}) = \int_{\mathbb{Q}} A(y_{1}, x_{2}) \left(I + \nabla_{y_{1}} N(y_{1}, x_{2}) \right) dy_{1}.$$

Поскольку функции A и N липшицевы по x_2 , то липшицев и коэффициент A^0 , так что эффективный оператор непрерывно переводит $H^2(\mathbb{R}^d)^n$ в $L_2(\mathbb{R}^d)^n$. Кроме того, он m-секториален, и несложно понять, что в качестве сектора можно взять \mathcal{S} .

Первый результат касается сходимости $(\mathcal{A}^{\varepsilon} - \mu)^{-1}$ и $\nabla_{x_2} (\mathcal{A}^{\varepsilon} - \mu)^{-1}$.

Теорема 1. Пусть $\mu \notin \operatorname{spec} \mathcal{A}^0$. Тогда существует такая окрестность нуля $\mathscr{C}_{\mu} \subset \mathscr{C}$, что при всех $\varepsilon \in \mathscr{C}_{\mu}$ и $f \in L_2(\mathbb{R}^d)^n$

$$\begin{split} &\|(\mathcal{A}^{\varepsilon}-\mu)^{-1}f-(\mathcal{A}^{0}-\mu)^{-1}f\|_{2,\mathbb{R}^{d}}\leqslant C\varepsilon\|f\|_{2,\mathbb{R}^{d}},\\ &\|\nabla_{x_{2}}((\mathcal{A}^{\varepsilon}-\mu)^{-1}f-(\mathcal{A}^{0}-\mu)^{-1}f)\|_{2,\mathbb{R}^{d}}\leqslant C\varepsilon\|f\|_{2,\mathbb{R}^{d}}. \end{split}$$

Оценки точны по порядку, а постоянная С явно контролируется через $n, d, \mu, c_*, C_\flat, \|A\|_{C^{0,1}}$ и расстояние от μ до spec A^0 , а интервал \mathcal{E}_μ — еще и через ε_0 . В частности, если дополнительно $\mu \notin \mathcal{S}$, то $\mathcal{E}_\mu = \mathcal{E}$.

Перейдем к описанию корректоров. Традиционный для теории усреднения корректор не всегда годится для наших целей. Его место займет оператор $\mathcal{K}^{\varepsilon}_{\mu}$, отображающий $L_2(\mathbb{R}^d)^n$ в $H^1(\mathbb{R}^d)^n$ по формуле

$$\mathcal{K}^{\varepsilon}_{\mu} = N(x_1/\varepsilon, x_2) \nabla (\mathcal{A}^0 - \mu)^{-1} \mathcal{P}^{\varepsilon}.$$

Он отличается от традиционного корректора дополнительным сглаживанием $\mathcal{P}^{\varepsilon}$, которое представляет собой псевдодифференциальный оператор с символом $\mathbb{1}_{\varepsilon^{-1}\mathbb{Q}^*}$, где $\mathbb{1}_{\varepsilon^{-1}\mathbb{Q}^*}$ есть характеристическая функция множества $\varepsilon^{-1}\mathbb{Q}^*$ — гомотетичного растяжения ячейки Вигнера–Зейтца двойственной решетки:

$$\mathcal{P}^{\varepsilon} = \left(\mathcal{F} \otimes \mathcal{I}\right)^{*} \mathbb{1}_{\varepsilon^{-1} \hat{\mathbb{O}}^{*}} \left(\mathcal{F} \otimes \mathcal{I}\right)$$

(здесь \mathcal{F} — преобразование Фурье в \mathbb{R}^{d_1}). Сглаживание может быть и другим: подойдет, например, сглаживание по Стеклову, см. п. 1.6.4 диссертации. Впрочем, иногда удается обойтись и вовсе без него и использовать традиционный корректор — некоторые достаточные условия приводятся в п. 1.6.5 диссертации.

Теорема 2. Пусть $\mu \notin \operatorname{spec} A^0$. Тогда при всех $\varepsilon \in \mathscr{C}_{\mu}$ и $f \in L_2(\mathbb{R}^d)^n$

$$\|\nabla_{x_1}((\mathcal{A}^\varepsilon-\mu)^{-1}f-(\mathcal{A}^0-\mu)^{-1}f-\varepsilon\mathcal{K}^\varepsilon_\mu f)\|_{2,\mathbb{R}^d}\leq C\varepsilon\|f\|_{2,\mathbb{R}^d}.$$

Оценка точна по порядку, а постоянная C явно контролируется через n, d, μ , c_* , C_{\flat} , $\|A\|_{C^{0,1}}$ и расстояние от μ до spec \mathcal{A}^0 .

Заметим, что из-за быстро осциллирующей функции $x\mapsto N(x_1/\varepsilon,x_2)$ в корректоре норма слагаемого $\varepsilon \nabla_{x_1} \mathcal{K}^\varepsilon_\mu$ является величиной порядка 1. Таким образом, избавиться от $\mathcal{K}^\varepsilon_\mu$ в оценке, вообще говоря, нельзя. Необходимое и достаточное для этого условие обсуждается в п. 1.6.6 диссертации. В то же время норма композиции дробной производной $(-\Delta_{x_1})^{r/2}$ с оператором $\varepsilon \mathcal{K}^\varepsilon_\mu$ убывает как ε^{1-r} , а потому $(-\Delta_{x_1})^{r/2}(\mathcal{A}^\varepsilon-\mu)^{-1}$ всегда сходится.

Следствие 3. Пусть $\mu \notin \operatorname{spec} A^0$. Тогда если $r \in (0,1)$, то при всех $\varepsilon \in \mathscr{C}_{\mu}$ и $f \in L_2(\mathbb{R}^d)^n$

$$\|(-\Delta_{x_1})^{r/2}((\mathcal{A}^{\varepsilon}-\mu)^{-1}f-(\mathcal{A}^0-\mu)^{-1}f)\|_{2,\mathbb{R}^d}\leq C\varepsilon^{1-r}\|f\|_{2,\mathbb{R}^d}.$$

Постоянная C явно контролируется через r, n, d, μ , c_* , C_b , $||A||_{C^{0,1}}$ u расстояние от μ до spec \mathcal{A}^0 .

Вернемся к приближению для резольвенты оператора $\mathcal{A}^{\varepsilon}$. В самой первой теореме был выписан старший член, и сейчас мы займемся следующим. Он также называется корректором, но существенно отличается от $\mathcal{K}^{\varepsilon}_{\mu}$ и имеет более сложную структуру.

Через $(\mathcal{A}^{\varepsilon} - \mu)^+$ обозначим оператор, сопряженный к $\mathcal{A}^{\varepsilon} - \mu$. Оба оператора устроены одинаково, а кроме того, удовлетворяют одним условиям, поэтому $(\mathcal{A}^{\varepsilon})^+$ можно было бы рассматривать параллельно с $\mathcal{A}^{\varepsilon}$: определить функцию N^+ , эффективный коэффициент $(A^0)^+$ и т. д. Введем дифференциальный оператор \mathcal{L} из $H^2(\mathbb{R}^d)^n$ в $H^{-1}(\mathbb{R}^d)^n$ с символом

$$k \mapsto \mathcal{L}(k) = (ik + \nabla_{x_2})^* \int_{\mathbb{S}} N^+(y_1, \cdot)^* (ik + \nabla_{x_2})^* A(y_1, \cdot) (I + \nabla_{y_1} N(y_1, \cdot)) dy_1 (ik + \nabla_{x_2}),$$

где $k \in \mathbb{R}^{d_1}$ (d_1 -мерный вектор k и d_2 -мерный оператор ∇_{x_2} отождествляются с $k \oplus 0$ и $0 \oplus \nabla_{x_2}$ соответственно), и положим

$$\mathcal{L}_{\mu} = (\mathcal{A}^0 - \mu)^{-1} \mathcal{L} (\mathcal{A}^0 - \mu)^{-1}.$$

Тогда искомый корректор $\mathcal{C}^{\varepsilon}_{\mu}$ будет даваться равенством

$$\mathcal{C}^{\varepsilon}_{\mu} = (\mathcal{K}^{\varepsilon}_{\mu} - \mathcal{L}_{\mu}) + ((\mathcal{K}^{\varepsilon}_{\mu})^{+} - \mathcal{L}^{+}_{\mu})^{*}$$

на пространстве $L_2(\mathbb{R}^d)^n$.

Теорема 4. Пусть $\mu \notin \operatorname{spec} A^0$. Тогда при всех $\varepsilon \in \mathscr{E}_{\mu}$ и $f \in L_2(\mathbb{R}^d)^n$

$$\|(\mathcal{A}^\varepsilon-\mu)^{-1}f-(\mathcal{A}^0-\mu)^{-1}f-\varepsilon \mathcal{C}^\varepsilon_\mu f\|_{2,\mathbb{R}^d}\leq C\varepsilon^2\|f\|_{2,\mathbb{R}^d}.$$

Оценка точна по порядку, а постоянная C явно контролируется через n, d, μ , c_* , C_{\flat} , $\|A\|_{C^{0,1}}$ и расстояние от μ до spec \mathcal{A}^0 .

В теореме 2 вместо корректора $\mathcal{K}^{\varepsilon}_{\mu}$ также можно было использовать $\mathcal{C}^{\varepsilon}_{\mu}$, поэтому с помощью интерполяции получаем более точное приближение для композиции дробной производной $(-\Delta)^{r/2}$ и резольвенты $(\mathcal{A}^{\varepsilon}-\mu)^{-1}$.

Следствие 5. Пусть $\mu \notin \operatorname{spec} A^0$. Тогда если $r \in (0,1]$, то при всех $\varepsilon \in \mathscr{E}_{\mu}$ и $f \in L_2(\mathbb{R}^d)^n$

$$\|(-\Delta)^{r/2}((\mathcal{A}^\varepsilon-\mu)^{-1}f-(\mathcal{A}^0-\mu)^{-1}f-\varepsilon\mathcal{C}_\mu^\varepsilon f)\|_{2,\mathbb{R}^d}\leq C\varepsilon^{2-r}\|f\|_{2,\mathbb{R}^d}.$$

Постоянная C явно контролируется через n, d, μ , c_* , $C_{\rm b}$, $\|A\|_{C^{0,1}}$ и расстояние от μ до spec \mathcal{A}^0 .

Здесь никак не затрагивались периодические операторы с гёльдеровыми по переменной x_2 коэффициентами, хотя все результаты в той или иной степени переносятся и на них. Некоторые специфичные детали могут быть найдены в п. 3.5.4 из второй части диссертации.

Часть II. Усреднение локально периодических операторов

Во второй части мы продолжаем изучение задачи усреднения для сильно эллиптических операторов. До сих пор коэффициенты операторов зависели от «медленной» переменной x_2 и «быстрой» переменной x_1/ε . Эти переменные принадлежали взаимно ортогональным пространствам и в данном смысле были разделены. Сейчас мы отказываемся от подобного разделения и берем x и x/ε в качестве «медленной» и «быстрой» переменной соответственно. Получающиеся операторы перестают быть периодическими и становятся локально периодическими.

Положим $\mathbb{Q} = [-1/2, 1/2]^d$. Пусть $A : \mathbb{R}^d \times \mathbb{R}^d \to \mathbf{B}(\mathbb{C}^{d \times n})$ — равномерно ограниченная функция, гёльдеровая по первому аргументу с показателем $s \in [0,1]$ (то есть $A \in C^{0,s}(\bar{\mathbb{R}}^d; L_\infty(\mathbb{Q}))$) и периодическая — по второму; эти условия мы будем подразумевать без каких-либо оговорок. Отметим, что не исключается ни случай s = 0, когда A лишь равномерно непрерывна, ни случай s = 1, когда A уже липшицева.

Рассмотрим ограниченный оператор $\mathcal{A}^{\varepsilon}$, который действует между $H^1(\mathbb{R}^d)^n$ и $H^{-1}(\mathbb{R}^d)^n$ и дается выражением

$$\mathcal{A}^{\varepsilon} = -\operatorname{div} A(x, x/\varepsilon) \nabla.$$

Предположим, что $\mathcal{A}^{\varepsilon}$ равномерно коэрцитивен по ε из некоторого интервала $\mathscr{E}=(0,\varepsilon_0]$, — иначе говоря, существуют постоянные $c_*>0$ и $C_\flat>0$, такие что

$$\operatorname{Re}(\mathcal{A}^{\varepsilon}u, u)_{\mathbb{R}^{d}} + C_{\flat} \|u\|_{2, \mathbb{R}^{d}}^{2} \ge c_{*} \|\nabla u\|_{2, \mathbb{R}^{d}}^{2}$$

при всех $u \in H^1(\mathbb{R}^d)^n$ и $\varepsilon \in \mathscr{C}$. Оператор $\mathcal{A}^{\varepsilon}$ тогда оказывается m-секториальным, поэтому если μ находится вне соответствующего сектора \mathcal{S} , то определена и равномерно ограничена резольвента $(\mathcal{A}^{\varepsilon} - \mu)^{-1}$.

Как и в первой части, «предельные» операторы вводятся посредством вспомогательной функции. Пусть $N_{\xi}(x,\cdot)$ при $x\in\mathbb{R}^d$ и $\xi\in\mathbb{C}^{d\times n}$ — периодическое векторное решение задачи

$$-\operatorname{div}_y A(x,\cdot) \left(\nabla_y N_\xi(x,\cdot) + \xi\right) = 0, \qquad \int_{\mathfrak{Q}} N_\xi(x,y) \, dy = 0,$$

на ячейке $\mathbb Q$ (она понимается в слабом смысле). Из равномерной коэрцитивности оператора $\mathcal A^{\varepsilon}$ вытекает, что задача однозначно разрешима, и, таким образом, $N_{\xi}(x,\cdot)$ корректно определено. Как видно, отображение $\xi\mapsto N_{\xi}$ линейно по ξ , стало быть сводится к оператору умножения на

функцию, которую мы обозначим через N. Легко понять, что N имеет ту же самую гладкость по первому аргументу, что и A.

Эффективный оператор \mathcal{A}^0 отображает $H^1(\mathbb{R}^d)^n$ в $H^{-1}(\mathbb{R}^d)^n$ по формуле

$$\mathcal{A}^0 = -\operatorname{div} A^0(x) \nabla,$$

в которой

$$A^{0}(x) = \int_{\mathbb{R}} A(x, y) \left(I + \nabla_{y} N(x, y) \right) dy.$$

Из свойств функций A и N следует, что $A^0 \in C^{0,s}(\mathbb{R}^d)$. Выясняется также, что оператор \mathcal{A}^0 сильно эллиптичен, а значит, m-секториален, причем его сектор может быть выбран равным сектору \mathcal{S} .

Теорема 6. Пусть $\mu \notin \operatorname{spec} \mathcal{A}^0$. Тогда если s = 0, то $(\mathcal{A}^{\varepsilon} - \mu)^{-1}$ при $\varepsilon \to 0$ сходится по операторной норме в L_2 к $(\mathcal{A}^0 - \mu)^{-1}$. Если же $s \in (0,1]$, то найдется такая окрестность нуля $\mathscr{E}_{\mu} \subset \mathscr{E}$, что для всех $\varepsilon \in \mathscr{E}_{\mu}$ и $f \in L_2(\mathbb{R}^d)^n$

$$\|(\mathcal{A}^{\varepsilon} - \mu)^{-1} f - (\mathcal{A}^{0} - \mu)^{-1} f\|_{2,\mathbb{R}^{d}} \le C \varepsilon^{s} \|f\|_{2,\mathbb{R}^{d}}.$$

Постоянная C явно контролируется через $s, n, d, \mu, c_*, C_\flat, \|A\|_{C^{0,s}}$, расстояние от μ до $\operatorname{spec} A^0$, а интервал \mathcal{E}_μ — еще и через ε_0 . В частности, если дополнительно $\mu \notin \mathcal{S}$, то $\mathcal{E}_\mu = \mathcal{E}$.

Следующий результат касается приближения резольвенты в классе Соболева $H^s(\mathbb{R}^d)^n$, поэтому мы будем считать, что $s \neq 0$. В качестве традиционного корректора выступит оператор $\mathcal{K}^\varepsilon_u$, заданный равенством

$$\mathcal{K}^{\varepsilon}_{\mu}f(x) = \int_{\mathbb{R}} N(x + \varepsilon z, x/\varepsilon) \nabla (\mathcal{A}^{0} - \mu)^{-1} f(x + \varepsilon z) dz.$$

Он непрерывно переводит $L_2(\mathbb{R}^d)^n$ в $H^1(\mathbb{R}^d)^n$, если s=1. Чтобы и при s<1 $\mathcal{K}^\varepsilon_\mu$ был непрерывен в паре пространств $L_2(\mathbb{R}^d)^n$ и $H^s(\mathbb{R}^d)^n$, нужно дополнительно предположить, что дробная производная

$$D_x^s A(x, y) = \left(\int_{\mathbb{R}^d} |h|^{-d-2s} |A(x+h, y) - A(x, y)|^2 dh \right)^{1/2}$$

равномерно ограничена (об этом условии см. в § 3.1 диссертации).

Теорема 7. Пусть $\mu \notin \operatorname{spec} A^0$, u пусть $s \in (0,1)$ u $D_x^s A \in L_\infty(\mathbb{R}^d \times \mathbb{Q})$ или s = 1. Тогда при всех $\varepsilon \in \mathscr{C}_u$ u $f \in L_2(\mathbb{R}^d)^n$

$$\|(-\Delta)^{s/2}((\mathcal{A}^\varepsilon-\mu)^{-1}f-(\mathcal{A}^0-\mu)^{-1}f-\varepsilon\mathcal{K}^\varepsilon_\mu f)\|_{2,\mathbb{R}^d}\leq C\varepsilon^s\|f\|_{2,\mathbb{R}^d}.$$

Постоянная C явно контролируется через $s, n, d, \mu, c_*, C_\flat, \|A\|_{C^{0,s}}$, расстояние от μ до spec A^0 , a npu s < 1 — еще u через $\|D_x^s A\|_{L_\infty}$.

Отметим, что в корректор $\mathcal{K}^{\varepsilon}_{\mu}$ входит быстро осциллирующая функция $x\mapsto N(x+\varepsilon z,x/\varepsilon)$, так что операторная норма $(-\Delta)^{s/2}\mathcal{K}^{\varepsilon}_{\mu}$ на пространстве L_2 неограниченно растет, когда $\varepsilon\to 0$. Однако если s<1, то благодаря множителю ε слагаемое с корректором всё же оказывается мало; последняя теорема тогда влечет за собой сходимость композиции $(-\Delta)^{s/2}(\mathcal{A}^{\varepsilon}-\mu)^{-1}$. Мы доказываем подобный результат для $(-\Delta)^{r/2}(\mathcal{A}^{\varepsilon}-\mu)^{-1}$ при любых $r\in (0,1)$ и даже с меньшими требованиями на коэффициенты. Ниже через $\alpha \wedge \beta$ обозначяется наименьшее из чисел α и β .

Теорема 8. Пусть $\mu \notin \operatorname{spec} A^0$. Тогда если s = 0 и $r \in (0,1)$, то при $\varepsilon \to 0$ $(-\Delta)^{r/2} (A^{\varepsilon} - \mu)^{-1}$ сходится по операторной норме в L_2 к $(-\Delta)^{r/2} (A^0 - \mu)^{-1}$. Если же $s \in (0,1]$ и $r \in (0,1)$, то для всех $\varepsilon \in \mathscr{E}_{\mu}$ и $f \in L_2(\mathbb{R}^d)^n$

$$\|(-\Delta)^{r/2}((\mathcal{A}^\varepsilon-\mu)^{-1}f-(\mathcal{A}^0-\mu)^{-1}f)\|_{2,\mathbb{R}^d}\leq C\varepsilon^{s\wedge(1-r)}\|f\|_{2,\mathbb{R}^d}.$$

Постоянная C явно контролируется через s, r, n, d, μ , c_* , C_{\flat} , $\|A\|_{C^{0,s}}$ u расстояние от μ ∂o spec A^0 .

Подчеркнем, что в наших условиях образ корректора $\mathcal{K}^{\varepsilon}_{\mu}$ попадает лишь в $H^{s}(\mathbb{R}^{d})^{n}$, а значит, использовать этот оператор в приближении для композиции $(-\Delta)^{r/2}(\mathcal{A}^{\varepsilon}-\mu)^{-1}$ при r>s заведомо нельзя.

Теперь мы уточним аппроксимацию из теоремы 6 за счет еще одного корректора. Корректор такого типа уже встречался в первой части, однако сейчас он будет устроен сложнее.

Пусть $(\mathcal{A}^{\varepsilon} - \mu)^+$ — сопряженный к $\mathcal{A}^{\varepsilon} - \mu$ оператор. Для него аналогичным образом строятся такие же объекты, как и для $\mathcal{A}^{\varepsilon} - \mu$, — их мы станем помечать символом «+». Предположим, что или s=1/2 и $D_x^{1/2}A \in \mathcal{E}_{\infty}(\mathbb{R}^d \times \mathbb{Q})$, или s>1/2. В таком случае, согласно утверждениям о повышении гладкости, $(\mathcal{A}^0 - \mu)^{-1}$ будет непрерывно отображать $L_2(\mathbb{R}^d)^n$ в $H^{3/2}(\mathbb{R}^d)^n$. Кроме того, будет корректно определен и ограничен дифференциальный оператор третьего порядка

$$\mathcal{L} = \operatorname{div} \int_{\Theta} N^{+}(\cdot, y)^{*} \operatorname{div}_{x} A(\cdot, y) \left(I + \nabla_{y} N(\cdot, y) \right) dy \nabla,$$

действующий из $H^{3/2}(\mathbb{R}^d)^n$ в $H^{-3/2}(\mathbb{R}^d)^n$. Отсюда видно, что композиция

$$\mathcal{L}_{\mu} = (\mathcal{A}^{0} - \mu)^{-1} \mathcal{L} (\mathcal{A}^{0} - \mu)^{-1}$$

окажется непрерывной в пространстве $L_2(\mathbb{R}^d)^n$. Далее, пусть

$$M_{\varepsilon}(x) = \varepsilon^{-1} \int_{\mathbb{Q}} (I + \nabla_y N^+(x, x/\varepsilon + z))^* \Delta_{\varepsilon z} A(x, x/\varepsilon + z) \left(I + \nabla_y N(x, x/\varepsilon + z)\right) dz,$$

где $\Delta_h A(x, y) = A(x + h, y) - A(x, y)$, и пусть

$$\mathcal{M}^{\varepsilon} = -\operatorname{div} M_{\varepsilon} \nabla.$$

Зададим с помощью $\mathcal{M}^{\varepsilon}$ ограниченный в $L_2(\mathbb{R}^d)^n$ оператор

$$\mathcal{M}^\varepsilon_\mu = (\mathcal{A}^0 - \mu)^{-1} \mathcal{M}^\varepsilon (\mathcal{A}^0 - \mu)^{-1}.$$

Тогда искомый корректор будет иметь вид

$$\mathcal{C}^{\varepsilon}_{\mu} = (\mathcal{K}^{\varepsilon}_{\mu} - \mathcal{L}_{\mu}) - \mathcal{M}^{\varepsilon}_{\mu} + ((\mathcal{K}^{\varepsilon}_{\mu})^{+} - \mathcal{L}^{+}_{\mu})^{*}.$$

Теорема 9. Пусть $\mu \notin \operatorname{spec} A^0$, и пусть s = 1/2 и $D_x^{1/2} A \in L_\infty(\mathbb{R}^d \times \mathbb{Q})$ или $s \in (1/2, 1]$. Тогда при всех $\varepsilon \in \mathscr{C}_\mu$ и $f \in L_2(\mathbb{R}^d)^n$

$$\|(\mathcal{A}^{\varepsilon} - \mu)^{-1} f - (\mathcal{A}^{0} - \mu)^{-1} f - \varepsilon C_{\mu}^{\varepsilon} f\|_{2,\mathbb{R}^{d}} \leq C \varepsilon^{2s/(2-s)} \|f\|_{2,\mathbb{R}^{d}}.$$

Постоянная C явно контролируется через s, n, d, μ , c_* , C_b , $\|A\|_{C^{0,s}}$, расстояние от μ до spec A^0 , a если s=1/2, — то еще u через $\|D_x^{1/2}A\|_{L_\infty}$.

Интерполяция дает следующий результат.

Следствие 10. Пусть $\mu \notin \operatorname{spec} A^0$, u пусть $s \in [1/2,1)$ u $D_x^s A \in L_\infty(\mathbb{R}^d \times \mathbb{Q})$ или s = 1. Тогда если $r \in (0,s]$, то при всех $\varepsilon \in \mathscr{C}_\mu$ u $f \in L_2(\mathbb{R}^d)^n$

$$\|(-\Delta)^{r/2}((\mathcal{A}_{\mu}^{\varepsilon})^{-1}f-(\mathcal{A}_{\mu}^{0})^{-1}f-\varepsilon\mathcal{C}_{\mu}^{\varepsilon}f)\|_{2,\mathbb{R}^{d}}\leq C\varepsilon^{s(2-r)/(2-s)}\|f\|_{2,\mathbb{R}^{d}}.$$

Постоянная C явно контролируется через s, n, d, μ , c_* , C_{\flat} , $\|A\|_{C^{0,s}}$, расстояние от μ до spec A^0 , a если s < 1, — то еще u через $\|D_x^s A\|_{L_{\infty}}$.

Мы видим, что в $\mathcal{C}^{\varepsilon}_{\mu}$, по сравнению с таким же корректором из первой части, появился новый член $\mathcal{M}^{\varepsilon}_{\mu}$. Можно показать, что избавиться от него, сохранив порядок погрешности, вообще говоря, нельзя — см. п. 2.6.4 диссертации. Тем самым данный член оказывается своего рода особенностью непериодических задач.

С другой стороны, если от $\mathcal{C}^{\varepsilon}_{\mu}$ в теореме 9 оставить лишь $\mathcal{M}^{\varepsilon}_{\mu}$, то погрешность станет порядка $\varepsilon^{1\wedge 2s/(2-s)}$. Выясняется, что аналогичный результат справедлив для любых $s\in(0,1)$, причем без дополнительных условий на дробную производную D^s_xA . Помимо прочего, это наводит на мысль, что $\mathcal{M}^{\varepsilon}_{\mu}$ при s<2/3 играет ведущую роль в корректоре $\mathcal{C}^{\varepsilon}_{\mu}$.

Теорема 11. Пусть $\mu \notin \operatorname{spec} A^0$, и пусть $s \in (0,1)$. Тогда при всех $\varepsilon \in \mathscr{E}_{\mu}$ и $f \in L_2(\mathbb{R}^d)^n$

$$\|(\mathcal{A}^{\varepsilon} - \mu)^{-1} f - (\mathcal{A}^{0} - \mu)^{-1} f + \varepsilon \mathcal{M}_{\mu}^{\varepsilon} f\|_{2,\mathbb{R}^{d}} \leq C \varepsilon^{1 \wedge 2s/(2-s)} \|f\|_{2,\mathbb{R}^{d}}.$$

Постоянная С явно контролируется через s, n, d, μ , c_* , C_b , $||A||_{C^{0,s}}$ u расстояние от μ ∂o spec A^0 .

С помощью интерполяции приходим к еще одному утверждению.

Следствие 12. Пусть $\mu \notin \operatorname{spec} A^0$, и пусть $s \in (0,1)$. Тогда если $r \in (0,1)$, то при всех $\varepsilon \in \mathcal{E}_u$ и $f \in L_2(\mathbb{R}^d)^n$

$$\|(-\Delta)^{r/2}((\mathcal{A}_{\mu}^{\varepsilon})^{-1}f-(\mathcal{A}_{\mu}^{0})^{-1}f+\varepsilon\mathcal{M}_{\mu}^{\varepsilon}f)\|_{2,\mathbb{R}^{d}}\leq C\varepsilon^{(1-r)(1\wedge2s/(2-s))}\|f\|_{2,\mathbb{R}^{d}}.$$

Постоянная C явно контролируется через s, n, d, μ, c_*, C_b , $||A||_{C^{0,s}}$ и расстояние от μ до spec A^0 .

Публикации автора в научных журналах, рекомендованных ВАК

- [А1] *Сеник Н. Н.* Усреднение периодического эллиптического оператора в полосе при различных граничных условиях // *Алгебра и анализ.* 2013. Т. 25, № 4. С. 182–259.
- [А2] Сеник Н. Н. Об усреднении несамосопряженных периодических эллиптических операторов в бесконечном цилиндре // Функц. анализ и его прил. 2016. Т. 50, \mathbb{N}_2 1. С. 85–89.
- [A3] *Senik N. N.* Homogenization for non-self-adjoint periodic elliptic operators on an infinite cylinder // *SIAM J. Math. Anal.* 2017. Vol. 49, no. 2. Pp. 874–898.
- [А4] Сеник Н. Н. Об усреднении несамосопряженных локально периодических эллиптических операторов // Функц. анализ и его прил. 2017. Т. 51, \mathbb{N}_2 2. С. 92–96.

Публикации автора в иных научных изданиях

- [A5] *Senik N. N.* On homogenization for periodic elliptic second order differential operators in a strip // Proceedings of the International Conference Days on Diffraction. 2012. Pp. 215–220.
- [A6] *Senik N. N.* Homogenization for non-self-adjoint locally periodic elliptic operators. 2017. arXiv: 1703.02023 [math.AP].