САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

На правах рукописи

АВДОНЦЕВА Маргарита Сергеевна

КРИСТАЛЛОХИМИЯ МИНЕРАЛОВ И НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ С АНТИПЕРОВСКИТОВЫМИ СТРУКТУРАМИ

Специальность 25.00.05 – минералогия, кристаллография

Автореферат диссертации на соискание учёной степени кандидата геолого-минералогических наук

Санкт-Петербург 2017 Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Санкт-Петербургский государственный университет»

Научный руководитель:	Кривовичев Сергей Владимирович, член-корреспондент РАН, доктор геолого-минералогических наук, профессор, Санкт-Петербургский государственный университет, г. Санкт-Петербург
Официальные оппоненты:	Лапшин Андрей Евгеньевич, доктор химических наук, Институт химии силикатов им. И.В. Гребенщикова РАН, г. Санкт-Петербург
	Селиванова Екатерина Андреевна, кандидат геолого-минералогических наук, Геологический институт Кольского

Ведущая организация: Институт геологии Коми НЦ УрО РАН, г. Сыктывкар

научного центра РАН, г. Апатиты

Защита состоится «25» мая 2017 года в 15.00 на заседании диссертационного совета Д 212.232.25, по защите докторских и кандидатских диссертаций при Санкт-Петербургском государственном университете по адресу: 199188, Санкт-Петербург, 10 линия В.О., д. 33-35, Институт наук о Земле, ауд. 74.

e-mail: e.badanina@spbu.ru

С диссертацией можно ознакомиться в Научной библиотеке имени А.М. Горького Санкт-Петербургского государственного университета (Санкт-Петербург, Университетская наб., 7/9). Автореферат и диссертация размещены на сайте <u>https://disser.spbu.ru/disser/soiskatelyu-uchjonoj-stepeni/dis-list/details/14/1304.html</u>

Автореферат разослан «__»____ 2017 года

Ученый секретарь Диссертационного совета кандидат геол.-мин. наук

Е.В.Баданина

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Минералы и соединения с антиперовскитовым типом структур (т.е. октаэдрическими перовскитовыми мотивами, у которых в центрах октаэдров находятся анионы, а в вершинах – катионы) вызывают большой интерес в связи с их обнаружением в целом ряде уникальных геохимических обстановок (пирометаморфические породы, соляные озера, щелочные комплексы и др.), а также с такими интересными свойствами. как сверхпроводимость, физическими гигантское магнетосопротивление, магнитокалорический эффект и т.п. Исследование этих минералов и соединений интересно в контексте структурной минералогии и описательной кристаллохимии, так как часто выделение в структуре комплексов анионоцентрированных полиэдров позволяет более отчетливо соотнести физические свойства соединения (тепловое расширение, спайность и др.) с его структурой, что выражается понятием «кристаллохимической эффективности» описания структуры (Кривовичев, Филатов, 2001).

Цель работы

Целью данной работы являлось изучение термического поведения (фазовых переходов и теплового расширения), а также кристаллохимических особенностей минералов и неорганических соединений с антиперовскитовыми структурами.

<u>Для достижения этих целей были поставлены следующие</u> задачи:

1. Изучение термического поведения когаркоита Na₃(SO₄)F методами терморентгенографии и рентгеноструктурного анализа при комнатной и при повышенной температурах.

2. Детальное исследование термического поведения накафита Na₂Ca(PO₄)F методом порошковой терморентгенографии и методом Ритвельда.

3. Исследование поведения структуры нефедовита Na₅Ca₄(PO₄)₄F в зависимости от температуры методами терморентгенографии и рентгеноструктурного анализа.

4. Изучение кристаллохимических особенностей натрофосфата Na₇(PO₄)₂F(H₂O)₁₉ и его синтетического аналога.

Методы исследования

В процессе исследований использовались следующие методы:

1. Метод монокристального рентгеноструктурного анализа (дифрактометры Bruker KAPPA APEX DUO, Agilent Technologies Excalibur Eos, Agilent Technologies Supernova, система Oxford Cobra Plus с температурным диапазоном 80-500 К).

- 2. Рентгенофазовый анализ (порошковые дифрактометры Bruker «D2 Phaser»).
- 3. Метод терморентгенографии (порошковый дифрактометр RigakuUltimaIV с высоко- и низкотемпературной приставками).
- 4. Метод электронного микрозондового анализа (электроннозондовый микроанализатор MS-46 Cameca).

Научная новизна

Впервые обнаружены и изучены полиморфные переходы в структурах когаркоита и накафита. Методами рентгеноструктурного анализа (когаркоит) и методом Ритвельда (накафит) решены и уточнены кристаллические структуры высокотемпературных модификаций этих сравнительный соединений. Проведен анализ высоко-И низкотемпературных модификаций с точки зрения кристаллохимических особенностей и структурной сложности. Впервые изучены особенности поведения кристаллической структуры нефедовита при изменении температуры, а также показана возможность описания кристаллической структуры минерала на основе анионоцентрированных комплексов. Уточнена кристаллическая структура натрофосфата и его синтетического аналога при комнатной и низкой температурах, в результате чего удалось выявить ряд дополнительных позиций водорода и уточнить схему водородных связей. Показано, что натрофосфат и его синтетический аналог являются структурно весьма сложными.

Практическая значимость

Полученные результаты могут быть интересны с точки зрения дальнейшего изучения термического поведения и других физических свойств минералов с антиперовскитовыми структурами. Обнаружение фазового перехода в накафите позволяет объяснить широкую распространенность полисинтетического двойникования в кристаллах этого минерала.

Защищаемые положения

1. Высокотемпературный полиморфный переход в кристаллической структуре синтетического аналога когаркоита $Na_3(SO_4)F$ происходит при температуре 112.5±12.5 °C и принадлежит к типу «порядок-беспорядок»; при повышении температуры антиперовскитовый каркас $[FNa_3]^{2+}$, образованный объединением октаэдров $[FNa_6]^{5+}$, сохраняет свою структуру, тогда как тетраэдры $(SO_4)^{2-}$ разупорядочиваются, в связи с чем симметрия повышается с моноклинной до тригональной, тогда как структурная сложность понижается с 5.347 до 3.441 бит/атом и с 577.528 до 154.830 бит/ячейку.

2. Высокотемпературный переход в кристаллической структуре накафита $Na_2Ca(PO_4)F$ происходит при температуре 330–360 °C и относится к типу «порядок-беспорядок»; при повышении температуры наблюдается разупорядочение катионов Ca^{2+} и Na^+ с образованием смешанной позиции Ca/Na, в связи с чем симметрия кристаллической структуры повышается от моноклинной до ромбической, тогда как сложность понижается с 4.170 до 2.725 бит/атом и с 300.235 до 98.117 бит/ячейку.

3. Анизотропия теплового расширения нефедовита $Na_5Ca_4(PO_4)_4F$ определяется присутствием в его кристаллической структуре сравнительно прочных цепочек $[FCa_4Na]^{8+}$ из октаэдров $[FNa_2Ca_4]^{9+}$, геометрические параметры которых при повышении температуры остаются практически постоянными, тогда как тетраэдры $(PO_4)^{3-}$ претерпевают вращение вокруг направления [110].

Кристаллическая структура природного 4. И синтетического натрофосфатов является весьма сложной (более 2600 бит/ячейку) и изолированные супероктаэдрические комплексы содержит Na₆F(H₃O,H₂O) представляющие собой объединение шести октаэдров [NaF(OH₂)₅] через общий атом фтора, в связи с чем натрофосфат можно рассматривать прекурсор для образования минералов как с антиперовскитовыми структурами основе фторцентрированных на октаэдров.

Апробация работы и публикации

Основные результаты диссертационной работы обсуждались и докладывались на следующих конференциях: Международном Симпозиуме по реакционной способности твердых тел (ISRS-18, г. Санкт – Петербург, 2014), Федоровских сессиях 2014 и 2016 годов (г. Санкт-Петербург), 21-м Конгрессе Международной Минералогической ассоциации (IMA 2014, г. Йоханнесбург, ЮАР), Международном совещании «Кристаллохимия, рентгенография и спектроскопия минералов - 2014» (Екатеринбург, 2014) и 8-й Европейской конференции по минералогии и спектроскопии (ЕСМS 2015, г. Рим, Италия).

По теме диссертации опубликовано 8 работ, включая 2 статьи и тезисы 6 докладов на российских и международных конференциях.

Работа выполнена при финансовой поддержке грантов СПбГУ (3.37.222.2015, 3.38.243.2015), а также стипендии Президента РФ (2015-2016 гг.) и грантов Президента РФ для молодых кандидатов наук.

Объём и структура работы

Работа состоит из 4 глав, введения и заключения. Во введении представлены общие данные по содержанию работы. В главе 1 приведен литературный обзор по кристаллохимии минералов с антиперовскитовыми структурами, а также данные об их генезисе и

возможности применения в различных технологических процессах. Главы 2 – 4 посвящены изложению экспериментальных данных, а именно результатам изучения термического поведения минералов с антиперовскитовыми структурами И ИХ синтетических аналогов (синтетический аналог когаркоита, накафит, нефедовит), уточнению кристаллической структуры натрофосфата и его синтетического аналога. В заключении кратко описаны основные результаты работы. Общий объем работы составляет 134 страницы, в том числе 38 рисунков и 27 таблиц. Список цитируемых источников включает 111 наименований.

Благодарности

Автор благодарен научному руководителю Сергею Владимировичу Кривовичеву за помощь на всех этапах выполнения работы, всем сотрудникам Ресурсного Центра «Рентгенодифракционные исследования», сотрудникам кафедры кристаллографии метолы Института Наук о Земле СПбГУ. Особая благодарность М.Г. Кржижановской, А.А. Золотареву, С.Н. Бритвину, Д.В. Спиридоновой, а также В.Н. Яковенчуку и И.В. Пекову за предоставленные образцы природных соединений.

СОДЕРЖАНИЕ РАБОТЫ (в связи с защищаемыми положениями)

1. Высокотемпературный полиморфный переход в кристаллической структуре синтетического аналога когаркоита $Na_3(SO_4)F$ происходит при температуре 112.5 ± 12.5 °C и принадлежит к типу «порядок-беспорядок»; при повышении температуры антиперовскитовый каркас $[FNa_3]^{2+}$, образованный объединением октаэдров $[FNa_6]^{5+}$, сохраняет свою структуру, тогда как тетраэдры $(SO_4)^{2-}$ разупорядочиваются, в связи с чем симметрия повышается с моноклинной до тригональной, тогда как сложность понижается с 5.347 до 3.441 бит/атом и с 577.528 до 154.830 бит/ячейку.

Кристаллы синтетического аналога когаркоита были выращены при комнатной температуре методом испарения из водного раствора Na_2SO_4 и NaF (соотношение 1:1).

Полученные кристаллы исследовались методом терморентгенографии (дифрактометр RigakuUltimaIV, диапазон съемки 25–700 °C), а также методом рентгеноструктурного анализа при комнатной температуре и при 150 °C (монокристальный дифрактометр Bruker KAPPA APEX DUO, Мо*К*α-излучение, плоский детектор CCD).

Рентгенограмма синтетического аналога когаркоита резко меняется в температурном диапазоне между 100 и 125 °C. На рис. 1 показано изменение объема элементарной ячейки при изменении температуры Полученные данные позволяют предположить, что фазовый переход в когаркоите происходит примерно при 112.5 ± 12.5 °C.

Рисунок 1. Зависимость объема элементарной ячейки когаркоита от температуры. Уточнение кристаллической структуры низкотемпературной $(\alpha - Na_3(SO_4)F)$ модификации согласуется полученными с ранее данными (Fanfani et al., Кристаллическая 1980). структура моноклинная (пр. гр. Р2₁/*m*) и содержит тринадцать независимых позиций Na (КЧ =

6–8) и шесть позиций S. Структура может быть описана в терминах антиперовскитовых мотивов (Krivovichev, 2008): в ее основе лежат триплеты, состоящие из F-центрированных октаэдров $[FNa_6]^{5+}$, объединенных через общие грани. Соединяясь через вершины, триплеты образуют трехмерный каркас. Тетраэдры SO₄ полностью упорядочены и располагаются в полостях каркаса.

В кристаллической структуре высокотемпературной модификации (β-Na₃(SO₄)F), решенной и уточненной по данным, полученным при 150 °C (пр. гр. *R-3m*) также имеет место антиперовскитовый октаэдрический каркас, содержащий две независимые позиции Na. В отличие от α-фазы, в β-фазе наблюдается полное разупорядочение тетраэдров SO₄, которое отражается в увеличении количества неполнозаселенных позиций О вокруг S.

Анализ полученных для обеих модификаций коэффициентов теплового расширения показывает, что структуры обеих модификаций расширяются анизотропно. Наиболее интенсивное расширение наблюдается в направлении, параллельном триплетам анионоцентированных октаэдров.

Кристаллографические данные и параметры уточнения кристаллической структуры синтетического когаркоита при комнатной температуре и при 150 °С представлены в таблице 1, коэффициенты теплового расширения в таблице 2, изображение структур обеих фаз, а также фигуры коэффициентов теплового расширения на рисунке 2.

7

Рисунок 2. Кристаллические структуры α– (а; проекция на плоскость (010)) и β– Na₃(SO₄)F (б; проекция на плоскость (110)) в сопоставлении с фигурами коэффициентов теплового расширения.

Параметры структурной сложности полиморфов Na₃(SO₄)F были рассчитаны с помощью формулы Шеннона в расчете на атом (I_G) и в расчете на элементарную ячейку ($I_{G,total}$). Анализ этих данных (табл. 3) показывает, что высокотемпературная модификация структурно более простая, чем низкотемпературная, что хорошо согласуется с общим правилом для неорганических соединений (Krivovichev, 2013).

Температура, °С	20	150
Сингония	Монокл.	Тригон.
a (Å)	18.064(3)	6.939(9)
$b(\text{\AA})$	6.9578(12)	=a
<i>c</i> (Å)	11.446(2)	24.58(4)
β (°)	107.711(4)	90
$V(\text{\AA}^3)$	1370.5(4)	1024.96(3)
Пр. гр.	$P2_{1}/m$	<i>R</i> -3 <i>m</i>
Ζ	12	9
$R_1 (F_{\rm o} \ge 4 \mathrm{s}_F)$	0.058	0.041
$wR_2(F_o \ge 4s_F)$	0.164	0.112
S	1.073	1.056
$ ho_{ m {\tiny Muh}}, ho_{ m {\tiny Makc}}, e/{ m \AA}^3$	-0.654,0.154	-0.350, 0.517

Таблица 1. Кристаллографические данные и параметры уточнения структур α и β – фаз синтетического аналога когаркоита

	α-Na ₃ (SO ₄)F	β–Na ₃ (SO ₄)F
	20–150°C	150–600 °C
α_{\min}	16 (α ₂)	29 (a _a)
α_{med}	23 (a ₁)	
α_{max}	38 (a ₃)	59 (a _c)
μ∠(c α3)	-70.0°	
$\alpha_{\rm V}$	77	117

Таблица 2. Коэффициенты теплового расширения синтетического когаркоита

Таблица 3. Параметры структурной сложности для полиморфов Na₃SO₄F

Полиморф	Пр.гр.	v [атом]	$I_{ m G}$ [бит/атом	I _{G,total} [бит/яч.]
α (20 °C)	$P2_{1}/m$	108	5.347	577.528
β (150 °C)	<i>R</i> -3 <i>m</i>	45	3.441	154.830

2. Высокотемпературный переход в кристаллической структуре накафита $Na_2Ca(PO_4)F$ происходит при температуре 330–360 °C и относится к типу «порядок-беспорядок»; при повышении температуры наблюдается разупорядочение катионов Ca^{2+} и Na^+ с образованием смешанной позиции Ca/Na, в связи с чем симметрия кристаллической структуры повышается от моноклинной до ромбической, тогда как сложность понижается с 4.170 до 2.725 бит/атом и с 300.235 до 98.117 бит/ячейку.

Образец накафита был отобран из гидротермальной микроклинопектолито-содалитовой жилы из ийолит-уртитов г. Коашва, Кольский полуостров, Россия (образец из коллекции В.Н. Яковенчука). Для структурных исследований использовался метод терморентгенографии (дифрактометр RigakuUltimaIV, температурный диапазон съемки 30–600 °C), а для уточнения структуры высокотемпературной фазы – метод Ритвельда (съемка при 400 °C, скорость сканирования 0.5°2Ө в минуту, диапазон углов 2Ө 10–100 °C). Анализ данных терморентгенографии показал, что в температурном диапазоне 330–360 °C часть рефлексов на дифрактограмме теряет свою интенсивность и исчезает, что позволило предположить наличие в минерале полиморфного перехода (рис. 3).

т. °С Рисунок З. Дифракционная
 картина накафита при
 разных температурах (для
 удобства восприятия фон
 на рисунке отсутствует).

Кристаллическая структура низкотемпературной модификации накафита моноклинная (пр. гр. $P2_1/c$, a = 13.3185(14), b =7.0964(8), c = 10.6490(11)Å, $\beta = 113.526(1)^\circ$, V =

922.81(17) Å³) и содержит две независимые позиции Са и четыре позиции Na. В основе структуры лежат F-центрированные октаэдры $[FNa_4Ca_2]^{7+}$, которые, объединяясь через общие грани, образуют цепочки вдоль направления [001] (Krivovichev et al., 2007).

Для уточнения высокотемпературной модификации накафита (табл. 4) использовалась полученная ранее структурная псевдоромбическая модель, (Sokolova, Hawthorne, 2001), которая была проверена на отсутствующие элементы симметрии с помощью программы PLATON (Speck, высокотемпературная модификация 2003). Новая имеет ромбическую симметрию (Pnma). Eë топология аналогична низкотемпературной, но в отличие от последней, в ней присутствует одна полностью заселенная позиция Na и одна позиция, статистически заселенная Na и Ca (рис. 4).

Анализ главных коэффициентов тензора теплового расширения для обеих модификаций показал, что структура накафита расширяется наиболее интенсивно в направлении, параллельном цепочкам анионоцентрированных октаэдров. Такое поведение структуры минерала может быть объяснено тем, что анионоцентрированные октаэдры (FM₆) (M = Na, Ca) объединяются по граням, образуя при этом короткий контакт F-F. Таким образом, несмотря на удобство описания структуры на основе анионоцентрированных блоков, цепочки фторцентрированных октаэдров в накафите не являются наиболее прочными структурными единицами (рис. 5).

Расчет структурной сложности для обеих модификаций накафита также, как и в случае синтетического аналога когаркоита, показал, что

высокотемпературная модификация является структурно более простой, чем низкотемпературная (табл. 5).

 · · · · · · · · · · · · · · · · · · ·			
Формула	Na ₂ CaPO ₄ F	$V, Å^3$	474.62(1)
Сингония	Ромбич.	$D_{\rm calc,}$, г/см 3	2.80
Пр. гр.	Pnma	R_{wP}	6.05
T (°C)	400	R _p	4.11
Ζ	4	R _{exp}	1.66
<i>a</i> (Å)	5.4123(1)	S	3.64
<i>b</i> (Å)	7.1196(1)	R _B	2.47
<i>c</i> (Å)	12.3171(1)	V, Å ³	474.62(1)

Таблица	4.	Кристаллогра	рические	данные	И	параметры	уточнения
высокоте	мпе	ратурной модис	фикации н	акафита 1	мет	одом Ритвелн	ьда

Рисунок 4. Кристаллические структуры низкотемпературной модификации накафита (а) в проекции на плоскость (010) и высокотемпературной модификации (б) в проекции на плоскость (100).

Рисунок 5. Соотношение элементарных ячеек моноклинного (mono) и ромбического (ortho) полиморфов накафита в сопоставлении с фигурами коэффициентов тензора теплового расширения для обеих модификаций.

Таблица 5. Параметры структурной сложности для двух полиморфов накафита Na₂CaPO₄F

T, ℃	Пр.гр.	v [атом]	<i>I</i> _G [бит/атом]	$I_{ m G,total}$ [бит/яч]
20	$P2_{1}/c$	72	4.170	300.235
400	Pnma	36	2.725	98.117

3. Анизотропия теплового расширения нефедовита $Na_5Ca_4(PO_4)_4F$ определяется присутствием в его кристаллической структуре сравнительно прочных цепочек $[FCa_4Na]^{8+}$ из октаэдров $[FNa_2Ca_4]^{9+}$, геометрические параметры которых при повышении температуры остаются практически постоянными, тогда как тетраэдры $(PO_4)^{3-}$ претерпевают вращение вокруг направления [110].

Образец нефедовита, отобранный на Коашвинском месторождении (Кольский полуостров, Россия) исследовался методом терморентгенографии (дифрактометр RigakuUltimaIV) в температурном диапазоне 30–600 °C, а также методом рентгеноструктурного анализа при -173 °C, 20 °C, и 150 °C.

В основе структуры нефедовита можно выделить цепочки вершинносвязанных F-центрированных октаэдров $[FCa_4Na_2]^{9+}$, вытянутые вдоль направления [001]. Тетраэдры PO₄ и катионы Na2 располагаются в пустотах между цепочками (рис. 6). Исследование методом терморентгенографии показало, что параметр *a* в структуре нефедовита меняется достаточно интенсивно, в то время как параметр *c* остается практически неизменным.

Рисунок 6. Кристаллическая структура нефедовита: (а) проекция на плоскость (010); (б) проекция на плоскость (001).

Термическое расширение нефедовита имеет анизотропный характер, причем анизотропия увеличивается с температурой. Наиболее сильное термическое расширение наблюдается в направлении. перпендикулярном цепочкам анионоцентрированных октаэдров, в то время как вдоль цепочек термическое расширение практически

отсутствует (рис. 7).

Рисунок 7. Зависимость параметров элементарной ячейки нефедовита от температуры и фигура коэффициентов тензора теплового расширения.

Механизм поведения кристаллической структуры нефедовита с изменением температуры был проанализирован по ланным. полученным методом рентгеноструктурного анализа (табл. 6) и представлен может быть виле в следующей схемы. С увеличением PO_4 температуры тетраэдры поворачиваются вокруг направления [110], стремясь выровнять одно из своих

ребер (O2-O3) в направлении, параллельном оси *с.* Анализ расстояний и углов связей в структуре нефедовита при разных температурах показал, что с увеличением температуры длина связи F–M (M = Ca, Na) внутри анионоцентрированного октаэдра остается практически неизменной, в то время как расстояние между цепочками меняется значительно (длина связи Ca - Ca между двумя цепочками 4.512 Å при -173 °C, 4.537 Å при 150 °C).

кристаллической структуры нефедовита						
Температура, °С	-173	20	150			
<i>a</i> (Å)	11.5927(2)	11.6582(2)	11.6944(3)			
<i>c</i> (Å)	5.4002(1)	5.4111(1)	5.4095(3)			
$V(\text{\AA}^3)$	725.74(2)	735.45(3)	739.81(5)			
Пр. гр.	<i>I</i> -4	<i>I</i> -4	<i>I</i> -4			
Ζ	2	2	2			
Всего рефлексов	1640	1651	1664			
Незав. Рефлексов	787	800	840			
Рефлексы $ F_{\rm o} \ge 4\sigma_F$	775	780	822			
$R_{\rm int}$	0.0278	0.0240	0.0213			
R_{σ}	0.0370	0.0356	0.0306			
$R_1 (F_{\rm o} \ge 4\sigma_F)$	0.0227	0.0230	0.0233			
$wR_2(F_o \ge 4\sigma_F)$	0.0564	0.0520	0.0587			
S	1.069	1.045	1.069			
$ ho_{ m Muh}, ho_{ m Makc},e/{ m \AA}^3$	0.35/-0.37	0.25/-0.34	0.34/-0.32			

Таблица 6. Кристаллографические данные и параметры уточнения кристаллической структуры нефедовита

Таким образом, при повышении температуры в кристаллической структуре нефедовита происходит разворот фосфатных тетраэдров, тогда как катионные мотивы остаются практически неизменными.

4. Кристаллическая структура природного и синтетического натрофосфатов является весьма сложной (более 2600 бит/ячейку) и содержит изолированные супероктаэдрические комплексы Na₆F(H₃O,H₂O) представляющие собой объединение шести октаэдров [NaF(OH₂)₅] через общий атом фтора, в связи с чем натрофосфат можно рассматривать как прекурсор для образования минералов с антиперовскитовыми структурами на основе фторцентрированных октаэдров.

Образец натрофосфата был взят из Коашвинского месторождения (микроклино-пектолито-содалито-эгириновая жила). Синтетический аналог натрофосфата получен из водного раствора Na₃PO₄ и NaF (соотношение 1:1) путем выпаривания при комнатной температуре. Полученные образцы исследовались методом рентгеноструктурного анализа при комнатной температуре, а также при -173 °C для уточнения позиций атомов водорода.

Натрофосфат кубический, пространственная группа *Fd*-3*c*, синтетический аналог натрофосфата: a = 28.1150(12) Å, V = 22224(3) Å³ ($R_1 = 0.044, 20$ °C), a = 27.9777(7) Å, V = 21899.6 (10) Å³ (- 173 °C, $R_1 = 0.043$); натрофосфат: a = 27.6241(10) Å, V = 21079.7 (10) Å³(- 173 °C, $R_1 = 0.028$).

В структуре присутствует две независимые позиции Na и одна позиция (A), статистически заселенная Na и H_2O . Позиция A имеет тетраэдрическую координацию. В структуре природного и синтетического натрофосфата нами было уточнено 7 и 6 позиций водорода, соответственно.

В основе структуры лежат изолированные супероктаэдрические поликатионные комплексы, состоящие из шести октаэдров NaF(OH₂)₅, объединяющихся через общие кислородные вершины и сходящиеся в общей F-вершине (рис. 8а, в).

натрофосфата Структура может быть рассмотрена через анионоцентрированные комплексы, полной хотя в мере антиперовскитовой структура не является. В ней можно выделить изолированные фтор-центрированные октаэдры (FNa₆), окруженные молекулами H₂O, которые через водородные связи соединяют октаэдры и тетраэдры в трехмерный каркас (рис. 8б, г).

Расчет структурной сложности в расчете на атом (I_G) и в расчете на элементарную ячейку $(I_{G,total})$ приведен в таблице 7. Согласно классификации, предложенной С.В. Кривовичевым (Krivovichev, 2013), обе структуры являются весьма сложными.

Таблица 7. Параметры структурной сложности для натрофосфата и его синтетического аналога (- 173 °С).

материал	v [атом]	<i>I</i> _G [бит/атом]	<i>I</i> _{G,total} [бит/яч]
природный	664	3.917	2600.990
синтетический	616	3.819	2352.383

Рисунок 8. Структура натрофосфата (проекция на плоскость (001)), представленная в катионоцентрированных (а) и анионоцентрированных (б) полиэдрах. Полиэдры в структуре натрофосфата (в). Супероктаэдрический комплекс в структуре синтетического натрофосфата (г).

Выводы

В ходе проведенных исследований природных и синтетических соединений с антиперовскитовыми структурами были получены следующие результаты:

1. Установлен и изучен фазовый переход в синтетическом аналоге когаркоита, Na₃SO₄F. При комнатной температуре когаркоит моноклинный, $P2_1/m$, a = 18.064(3) Å, b = 6.9578(12) Å, c = 11.446(2) Å, $\beta = 107.711(4)^\circ$, V = 1370.5(4) Å³. В температурном диапазоне 112.5 ± 12.5 °C происходит полиморфный переход, в результате которого когаркоит становится тригональным, *R*-3*m*, a = 6.939(9) Å, c = 24.58(4) Å, V = 1024.96(3) Å³. Фазовый переход в структуре относится к типу «порядок-беспорядок» и связан с разупорядочением тетраэдров SO₄ при увеличении температуры. Термическое расширение обеих структур анизотропно, и

анизотропия возрастает с увеличением температуры. Наиболее интенсивно структура расширяется в направлении параллельном анионоцентрированным триплетам.

2. Установлен и изучен фазовый переход в минерале накафите, Na₂CaPO₄F. При комнатной температуре минерал моноклинный, P2₁/c, a = 13.3185(14), b = 7.0964(8), c = 10.6490(11) Å, $\beta = 113.526(1)^{\circ}$, V =922.81(17) Å³. В температурном диапазоне 330-360 °C кристаллическая структура накафита переходит из моноклинной в ромбическую, пр. гр. *Pnma*, a = 5.4123(1), b = 7.1196(1), c = 12.3171(1) Å, V = 474.62(1) Å³. Kak и в случае когаркоита, полиморфный переход в структуре накафита имеет характер «порядок-беспорядок» и связан с разупорядочением Са/Na. расширение обеих накафита Термическое фаз анизотропно, И анизотропия возрастает увеличением температуры. Наиболее с интенсивно структура расширяется в направлении параллельном цепочкам анионоцентрированных октаэдров. Наличие такого фазового накафита структуре может стать объяснением перехода в полисинтетического двойникования, которое является типичным для кристаллов минерала. Для высоко- и низкотемпературных модификаций когаркоита и накафита с помощью формулы Шеннона в расчете на атом (I_G) и в расчете на элементарную ячейку (I_{G,total}) были рассчитаны параметры структурной сложности. Как оказалось, высокотемпературные фазы структурно более простые, чем низкотемпературные и уменьшение структурной сложности с увеличением температуры связано с увеличением конфигурационной и колебательной энтропии.

3. Изучен механизм поведения кристаллической структуры минерала нефедовита $Na_5Ca_4(PO_4)_4F$ при изменении температуры. Наиболее интенсивно структура нефедовита расширяется в направлении, перпендикулярном цепочкам аниноноцентрированных октаэдров, тогда как вдоль цепочек термическое расширение практически отсутствует. Анализ углов и расстояний в структуре при различных температурах показал, что тетраэдры PO_4 в структуре поворачиваются, в то время как цепочки анионоцентрированных комплексов остаются практически неподвижными.

4. Уточнены структуры натрофосфата и его синтетического аналога. Показано, что структура натрофосфата может быть описана через анионоцентрированные супероктаэдрические комплексы. Расчет параметров структурной сложности для природного и синтетического образцов показал, что структуры обоих соединений можно отнести к весьма сложным.

17

Публикации по теме диссертации

Статьи:

- <u>Avdontceva M.S.</u>, Zolotarev A.A., Krivovichev S.V. Order-disorder phase transition in the antiperovskite-type structure of synthetic kogarkoite, Na₃SO₄F // Journal of Solid State Chemistry – 2015 - Vol. 231 - P. 42-46.
- <u>Avdontceva</u> <u>M.S.</u>, Krzhizhanovskaya M.G., Krivovichev S.V., Yakovenchuk V. N. High-temperature order-disorder phase transition in nacaphite, Na₂CaPO₄F // Physics and Chemistry of Minerals – 2015 - Vol. 42 - P. 671-676.

Тезисы докладов:

- <u>Avdontceva M.S.</u>, Zolotarev A.A, Krivovichev S.V. Superoctahedral Fcentered clusters in the crystal structure of natrophosphate. // Материалы Международной конференции «International Symposium on the reactivity of Solids», ISRS - 18. St.Petersburg, Russia, 9-13 June. – 2014. P. 247.
- <u>Avdontceva</u> <u>M.S.</u>, Zolotarev A.A., Krzhizhanovskaya M.G., Krivovichev S.V. Order-disorder high-temperature phase transition in kogarkoite // Abstracts of the «21st General meeting of the International Mineralogical Assotiation», Johannesburg, Republic of South Africa, 1-5 September. – 2014. - P. 330.
- Авдонцева М.С., Кривовичев С.В., Яковенчук В.Н. Уточнение кристаллической структуры нефедовита // Материалы конференции «Федоровская Сессия-2014», Санкт-Петербург, Россия, 7-9 октября. – 2014. - С. 3.
- Avdontceva M.S., Krzhizhanovskaya M.G., Zolotarev A.A, Krivovichev S.V., Yakovenchuk V.N. High-temperature phase transition in the minerals with antiperovskite structures // Abstracts of the «XVIII International conference on crystal chemistry, X-ray diffraction and spectroscopic studies of minerals», Yekaterinburg, Russia, 13-15 October. – 2014. - P. 3.
- <u>Avdontceva</u> <u>M.S.</u>, Krzhizhanovskaya M.G., Zolotarev A.A, Krivovichev S.V., Yakovenchuk V.N. Order-disorder phase transitions in the minerals with antiperovskite structures // Peridico di Mineralogia . ECMS 2015, P. 25-26.
- Авдонцева М.С., Кржижановская М.Г., Кривовичев С.В., Яковенчук В.Н. Термическое поведение нефедовита Na₅Ca₄(PO₄)₄F // Материалы конференции «Федоровская Сессия-2016», Санкт-Петербург, Россия, 11-12 октября. –2016. - С. 3.