ОТЗЫВ

члена диссертационного совета на диссертацию Каменского Михаила Александровича «Электрохимические свойства катодных материалов на основе оксидов марганца для водных цинк-ионных аккумуляторов», представленную на соискание ученой степени кандидата химических наук по научной специальности 1.4.6. Электрохимия.

Актуальность темы исследования обусловлена важностью решения как практической задачи по разработке новых катодных материалов для водных цинк-ионных аккумуляторов, так и необходимостью развития фундаментальных знаний о механизме электрохимических превращений с участием диоксида марганца в качестве катодного материала.

В целом, исследуемая в диссертационной работе система является сложной для установления механизма процессов ввиду присутствия в растворах несколько различных сортов ионов (Zn^{2+} , Mn^{2+} , H^+) и их возможного участия в реакциях интеркаляции в ходе заряд-разрядных процессов в цинк-ионных аккумуляторах. Поэтому вторая часть задач исследования особенно важна для понимания роли конкретного иона в общей электрохимической реакции, установления механизма процессов, и является ключевой для улучшения имеющихся и разработки новых композитных катодных материалов для водных цинковых аккумуляторов.

Научная новизна работы заключается в разработках методов получения новых композитных материалов на основе диоксида марганца, исследовании зависимости их функциональных свойств от метода синтеза и модификации материала. Автором были апробированы два основных метода синтеза диоксида марганца. Была осуществлена модификация электродного материала проводящим полимером поли(3,4-этилендиокситиофеном) различными способами, в том числе электрохимическое осаждение полимера на приготовленный электрод или создание покрытия на зернах при диспергировании оксидного материала в водной дисперсии полимера PEDOT:PSS под действием ультразвука.

В работе впервые показано, что в водных растворах изученных электролитов не происходит обратимой интеркаляции ионов Zn^{2+} в $LiMn_2O_4$, в то же время возможна обратимая интеркаляция ионов Li^+ из смешанных растворов. Также методами электрохимического и микрогравиметрического анализов было установлено участие конкретных катионов в электрохимических процессах, имеющих место в системе $Zn//MnO_2$ с водным слабокислым электролитом: определена роль ионов Mn^{2+} , используемых как добавка к соли цинка, а также установлено влияние ионов H_3O^+ на электрохимическую реакцию. Полученные результаты по исследованию механизма представляют существенную **теоретическую значимость** исследования.

Практическая значимость результатов работы заключается в предложенных составах электродных материалов для цинк-ионных аккумуляторов, которые демонстрируют конкурентные функциональные характеристики. Предложены методы получения композитных материалов с проводящими полимерами, которые могут найти применение при разработках других электродных материалов.

Степень обоснованности научных положений и выводов. Научные положения, вынесенные на защиту, а также основные выводы в диссертационном исследовании Каменского М.А. логически обоснованы. Достаточно ясно сформулированы практическая и фундаментальная цели работы, обозначены и обоснованы решаемые научные задачи исследования, включающие в себя синтетические аспекты и исследования роли катионного и анионного состава водных цинк-содержащих электролитов на электрохимические свойства системы Zn//MnO₂.

Степень достоверности и апробации научных результатов

Достоверность полученных результатов и сделанных выводов сомнений не вызывает. Они обеспечиваются использованием большого комплекса современных физико-химических методов исследования материалов, в том числе выполненных на современном оборудовании Научного Парка СПбГУ: рентгеновская дифракция, сканирующая электронная микроскопия, рентгеновская фотоэлектронная спектроскопия, рентгеновский флуоресцентный анализ, а также ряд электрохимических методов: циклическая вольтамперометрия, спектроскопия электрохимического импеданса и электрохимическая кварцевая микрогравиметрия. Широкий ассортимент применяемых физико-химических методов представляется необходимым для всестороннего достоверного исследования и сравнительного анализа материалов. Кроме того, полученные данные согласованы с представлеными в мировой литературе по данной теме. Публикации результатов представлены в 4 научных статьях в международных рецензируемых журналах, реферируемых в базах данных Scopus, Web of Science и РИНЦ, а также представлены в 7 докладах на российских и международных конференциях.

Вопросы и замечания по диссертационной работе

Работа хорошо составлена и оформлена и у меня не возникло существенных замечаний, отмечу следующие:

- 1. Почему в качестве объекта был выбран именно δ -MnO₂? Другие структуры оксида марганца не рассматривались и по каким причинам?
- 2. Создание покрытия на основе PEDOT:PSS на поверхности MnO₂ позволяет заметно улучшить максимальную удельную емкость материала за счет улучшенного электронно-ионного контакта и «защитного слоя», подавляющего процессы растворения. Какие толщины покрытия в этом случае следует считать оптимальными ?
- 3. Введено представление о динамической буферности системы как основе работоспособности цинк ионного аккумулятора, в чем она заключается?
- 4. Установлено формирование фазы основной соли цинка, обозначенной как ZHS (стр. 107), как она влияет на заряд-разрядные процессы с участием оксида марганца?
- 5. В тексте работы встречаются опечатки (например, «на ряду с» на стр. 4), некоторые терминологические неточности (например, термин «удельная емкость»: имеется в виду «гравиметрическая удельная емкость», «более быстрые кинетически побочные реакции», стр.4 ,)? Автор одновременно использует в тексте термины «степень кристалличности.» и «степень аморфности» оксида и прочие технические недочеты.

Замечания носят частный характер и не умаляют значимости полученных результатов. Поэтому, я считаю, что диссертация Каменского Михаила Александровича на тему «Электрохимические свойства катодных материалов на основе оксидов марганца для водных цинк-ионных аккумуляторов» соответствует основным требованиям, установленным Приказом от 19.11.2021 №11181/1 «О порядке присуждения ученых степеней в Санкт-Петербургском государственном университете», соискатель Каменский Михаил Александрович заслуживает присуждения ученой степени кандидата химических наук по специальности 1.4.6. Электрохимия. Нарушения пунктов 9 и 11 указанного Порядка в диссертации не установлены.

Член диссертационного совета

доктор химических наук (специальность 02.00.02 — Аналитическая химия), старший научный сотрудник, профессор с возложением обязанностей заведующего Кафедрой аналитической химии Института химии Федерального государственного бюджетного образовательного учреждения высшего образования «Санкт-Петербургский государственный университет»

Ермаков Сергей Сергеевич
__01.04.2025____

Адрес места работы: 199034, Санкт-Петербург, Университетская наб., д. 7/9