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Introduction

The relevance of the topic

The two simplest of the existing nuclear models assume diametrically opposite

approaches to the description of the structure of the nucleus and the properties of

nuclear matter. On the one hand, a good description of such collective properties

of the nucleus as, for example, the binding energy, is given by the droplet model,

which assumes a strong interaction between the nucleons composing the nucleus.

On the other hand– the simplest microscopic model of the nucleus, assuming

the motion of non-interacting nucleons in a self-consistent nuclear field. This

model was constructed by analogy with the Bohr model of the atom and can

satisfactorily describe some properties of low-lying states, explain the appearance

of magic numbers, etc.

Attempts to improve both models, endowing one with elements of the other,

often lead to an increasing number of parameters requiring additional definition

(as, for example, shell corrections in the drop model) or lead to significant com-

plications of calculations when trying to describe a wide class of phenomena as-

sociated with the appearance of multiparticle configurations. As follows directly

from the shell model, the two-particle forces must lead to local correlations in the

distribution of nucleons that are not accounted for by the central field approxi-

mation.

One of the formal possibilities to take into account the action of residual

forces is to divide the considered nuclear system into a set of clusters – interact-

ing objects whose internal structure is neglected, which leads to the possibility

of explaining and predicting a number of phenomena in the physics of the nu-

cleus. The importance of considering cluster degrees of freedom in describing the

structure of nuclei is demonstrated by the fact that one of the first models of the

nucleus assumed a quasicrystalline structure, where α-particles were considered

as constituent elements (the very first model of this kind appeared before the

discovery of the neutron!). The reason for the appearance of such a model was

both data on the α-decay of heavy elements and purely energetic, based on the

analysis of binding energies of the light nuclei known at that time, considerations.
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Indeed, the α-particle is a very stable nucleus due to the simple configuration of its

constituent nucleons – they are in the same spatial state but in different spin and

charge states. The α-particle has large nucleon binding energies and the energy

of the first excited state. All this makes the α-particle an ideal candidate for the

role of a structureless cluster. In addition, the increased stability of self-conjugate

nuclei (i.e., nuclei in which the number of protons is even and equal to the number

of neutrons) is also observed.

Thus, the assumption that it is possible (and even necessary) to take into

account the α-cluster component when discussing the structure of the nucleus

led Wheeler in 1937 to the creation of one of the first cluster models. The fact

that larger structures than nucleons were used in the description of nuclei was re-

flected in the title of the paper, indicating a molecular-like description: Molecular

Viewpoints in Nuclear Structure [1]. Since it was already clear at that time

that the Pauli principle does not allow the presence of α-particles in the high-

density region at the center of the nucleus, where the antisymmetrization effects

lead to the nucleons, in general, occupying a certain state in accordance with

the nuclear shell model, a mechanism was needed to circumvent this condition.

According to Wheeler’s proposal, α-particles in the nucleus can be considered as

quasi-stable formations, i.e., there is a high probability of finding a group of nu-

cleons localized in some region of space and sufficiently distant from other such

groups. In this model, an important notion of bonding between α-particles was in-

troduced. In the simplest case, if one considers a fixed arrangement of α-particles

in space, the number of bonds is the number of shortest distances between α-

particles along which their interaction takes place. The model seemed promising

and soon, in collaboration with Teller, it was extended to describe the rotational

properties of nuclei [2]. Further, an contribution from of neutron excess (defi-

ciency) was proposed. The model was proposed by Hafstad and Teller and was

already called The Alpha-Particle Model of the Nucleus [3]. Figure 1 shows

a plot of the bonding energy versus bond number obtained in [3]. The calculations

were performed by the authors for the nuclei known at that time, and the geomet-

rical structure was determined from the conditions of close-packing of α-particles,

which, in the first approximation, corresponded to a quasi-crystalline structure
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Figure 1. Binding energy of self-conjugated nuclei from work [3].

based on tetrahedrons. Further this question will be considered in more detail.

The success of the development of the shell model, and especially the emer-

gence of the generalized nuclear model, led to a decline in interest in cluster models

for some time.

The second period of increased interest in the α-cluster model began after

1960. It was at this time that a number of classical experiments important for

understanding the internal structure of the nucleus were performed, the construc-

tion of effective “cluster” theories began, and approaches to resolving the contra-

dictions of the cluster and shell approaches were outlined.

To date, as the atomic nucleus (and especially the properties of light nuclei)

is being studied, interest in the cluster model has gradually revived again, at this

time not as a basic model, but as a model to describe some set of phenomena not

explained by the shell approach. For example – we can consider self-conjugated

nuclei or nuclei containing α-particle as a well-formed cluster (lithium nuclei, halo

nuclei, rotational bands in some nuclei). But by far the most promising was the

attempt to search for and describe within the framework of this model a variant

of quasimolecular states. In the most general case, such states are understood
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as systems consisting of atomic nuclei interacting by means of nuclear forces,

but with relatively low energy, so that the interaction process does not affect

the internal structure of these nuclei and, consequently, they can be assumed to

be structureless. In addition to predicting new, often rather unusual, states, this

point of view allows to simplify considerably the process of microscopic description

of the system, since it contains a relatively small number of constituent elements.

Obviously, in this approach the α-particle is the first and most optimal building

block of the cluster model – large values of the binding energy and the first

excited level, as well as zero spin and isospin. The mechanism of formation of

such constituent clusters, similar to the one described in Wheeler’s work [1], is

based on the idea of spin-dependent attractive forces between nucleons. As a

result, Wheeler’s pioneering work led to the creation of the effective theory of the

Resonating Group Method [4]. Other theories that emerged at that time include

the Generator Coordinate Method [5] and the Orthogonality Condition Method

[6].

Since this paper is devoted specifically to the experimental study of cluster

degrees of freedom, we will mention only the simplest variants of the models,

which are convenient to use in planning the experiment, as well as for obtaining

systematics. From this point of view, the currently existing α-cluster models can

be conditionally divided into two large groups.

The first is when one α-particle (more rarely, two) interacts with a core, which

is also considered to be structureless, or the α-particle itself is a core (lithium,

halo nuclei).

The second, when the whole nucleus is considered to consist of α-particles –

the maximal α-particle model.

A good illustration of such approaches is the Ikeda diagram [7] – the sys-

tematics of admissible cluster states, which plays a central role in the considered

approach to the description of the structure of the nucleus (see Fig. 2).

From the point of view of the cluster model, each element of the Ikeda di-

agram must correspond to a state in the level spectrum of the corresponding

self-conjugate nuclei (the so-called threshold rule). The first “diagonal” of the

diagram corresponds to the ground states of nuclei with no cluster characteristics
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1
2

Figure 2. 1. Ikeda diagram [7] (modified to take into account currently known data), 2. Citation
of work [7] by year [8]

in the first approximation, the second to states of the form “cor+α-particle”, the

third to “cor+2α-particles”, etc. The topmost line thus corresponds to the state

where the whole nucleus is split into α-particles. In addition, the diagram may

contain more complex states, such as 12C+16O, corresponding to heavier clusters.

The numbers under each element correspond to the reaction threshold for that

partition, that is, they indicate the approximate position of the level in the spec-

trum of excited states. The Ikeda model developed in the mid-sixties turned out

to be such a convenient method of working with cluster states that, as can be seen

from the figure 2, even today it is, if not the main, then extremely important

apparatus for working with the cluster approximation, especially in the case of

experimental work.

Recently, it has been possible to extend the approach discussed above to

nuclei with neutron excess. In the works of von Oertzen [9, 10], the “extended

Ikeda diagram” was proposed. It is based on a similar principle and includes

states corresponding to the structure “cor+α-particle+covalent neutrons”. Such

configurations, strongly separated in energy space, are called molecular in the

modern literature. As follows from this approximation, the excitation energy

with increasing complexity of the configuration grows very rapidly, so that in the

experiment we usually see only the most “simple” states corresponding to the

excitation of one or two clusters, i.e., belonging to the theories of the first group.
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The most successful and simple description of such states is obtained in the

framework of the potential model. This model was developed by B. Buck [11–13]

on the basis of the work on the introduction of the convolution potential for

self-conjugate nuclei [14], which had a great influence on the development of the

physics of the study of cluster states. The model was based on the introduction

of an optical potential that reproduced the cluster states as levels of the corre-

sponding rotational bands. The resulting wave functions of the states under con-

sideration are similar to those computed in the framework of methods using group

theory [11], and the application of a simple relation to exclude forbidden states

reduces the calculations to the solution of the Schrödinger equation for bound and

quasi-bound states. The model gives an intuitive picture of the relative motion

of the cluster-core system and does not require cumbersome calculations (e.g.,

work [13]). Advantages of this approach include the possibility of systematizing

(or unifying) the cluster-core potential, and thus the ability to compute features

such as decay widths, decay intensities, or using the potential to reproduce the

angular distributions of nuclear reactions. Inversely, it is possible to apply the

potential extracted from experimental data to determine approximate positions

of cluster states.

Another variant of considering “one-particle” cluster states was proposed by

Horiuchi and Ikeda [15,16]. This approach was very different from the “potential”

approach discussed above, although it was originally applied to the same 16O and
20Ne nuclei that had always been considered key to cluster computing. The model

introduced the notion of inverse doublet for negative and positive parity states.

In spite of the fact that a similar doublet appeared in the previous model, here

its nature was different, the two types of states in the rotational bands appeared

as a consequence of tunneling of the α-particle “through” the nucleus, which led

to a split in energy depending on the parity of the state. Initially, this model

proved to be of little use. Despite its good qualitative description and simplicity

of application (the WKB method could be used to construct wave functions), the

model was used only to describe the parity splitting in the 16O and 20Ne nuclei.

The discovery of similar doublets in heavy nuclei and the systematics of the “strain

potential” have revived interest in this model.
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Since both models play a key role in the presented thesis, they will be dis-

cussed in more detail below.

Of course, there are many models based on more complex theories, but in this

paper we will only mention the description within the framework of the Antisym-

metrized Molecular Dynamics (AMD) [17] approach, with the results of which we

will compare the obtained data. In spite of the fact that in this model the degrees

of freedom of the nucleons in the nucleus are considered independently, without

assuming the presence of clustering, this approach is particularly popular for the

description of cluster degrees of freedom. This is made possible by incorporat-

ing the Bloch-Brink cluster wave function from the above-mentioned Coordinate

Generator method into the AMD model space.

1 2 3

4 5 6
Figure 3. The types of systems considered in this paper (see text for explanation).

The figure 3 schematically shows the types of systems considered in this paper

that exhibit clustering. 1) A system of bound (or weakly bound) clusters, usually

α-particles (Chapters 1, 5), 2) A cluster (usually a α-particle) in the nucleus-core

field (Chapters 1, 3, 4, 5), 3) Heavy clusters forming a binary system (Chapters 4,

6, 7), 4) Clusters (α-particles) that can be considered, as correlations in systems

of nucleons weakly interacting with other nucleons (Chapter 3), 5) similar to the

previous point, but nucleons form orbitals (π, σ), by analogy with electrons in

molecules (Chapter 3), 6) a nucleus being a core in a halo-nucleus system (Chapter

3). The methods of investigation of such systems are described in Chapters 1 and

2.
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One of the problems of further development of this field is a significant deficit

of experimental data and new interpretations for the existing ones. It is to the

solution of this problem that the present work is mainly devoted. Nuclei belonging

to the light and medium mass groups, including those with significant neutron

excess, have been studied experimentally. The figure 4 shows the nuclei and

clusters studied in this work.

4He 5He 7He6He 8He

10Be

22Ne

32S

40Ca

8Be 9Be 12Be11Be

15C 16C14C13C12C

16O 17O 18O

20Ne21Ne

24Mg25Mg 26Mg

36Ar

41Ca

28Si

8Be

4He

12C

16O

14C

33S 34S

37Ar 38Ar 39Ar 40Ar

42Ca

40Ar

29Si 30Si

Z

N

Figure 4. Isotopes studied in this paper. Isotopes whose cluster characteristics were investigated
in the considered experiments are marked in red. The clusters under consideration are highlighted
in blue.

Also, our results are examined in the framework of clustering approaches in

order to understand how well they can be described. The good agreement of

theoretical results with experimental results can be considered as an additional

argument in favor of the cluster nature of the observed phenomena.

To date, there is a considerable number of reviews on the problem of clustering

in nuclei. Let us mention here the most recent ones [18–22]. The fundamental

monograph containing theoretical approaches to the cluster description of the

structure of the nucleus and to date is the work [23].

It should not be assumed that the main field of application of the considered

approaches belongs to low energies. The currently actively developing experimen-

tal methods at high energies develop similar approaches. Thus, in the paper [24]

the flight of heavy clusters in unstable states at energies of the order of A GeV is

considered, a problem similar to the one solved in this paper for low energies. We

should also mention the BECQUEREL [25] experiment, which studies fragmenta-

tion into α-clusters at relativistic energies. The cluster structure as a correlation
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of α-particles as 8Be resulting from fragmentation of 16O, 22Ne, 28Si nuclei is also

considered at relativistic energies [26], as in this paper.

Finally, significant progress has been made in the study of nuclear matter frag-

mentation in relativistic ion collisions at the NICA/Nuclotron collider in the study

of processes important from the point of view of high-energy astrophysics [27].

The relevance of this research is also confirmed by the large number of in-

ternational conferences and annual reviews devoted to the topic discussed in this

paper. The interest in this topic is growing every year, which can be seen, among

other things, from the growth of references to Ikeda’s work (Fig. 2), which is fun-

damental in this issue. At the same time, it should be noted that most of such

works are theoretical in nature and are related to the reinterpretation of previ-

ously obtained results, including for simpler variants of the cluster approximation.

Thus, there is a significant shortage of experimental data that could confirm (or

refute) the predictions of the currently existing models.

One of the factors determining the considerable interest in new experimental

data in this field is, among others, the possibility of transition from the description

of finite nuclei studied in the laboratory to the description of such objects as

neutron stars [28]. This, in turn, requires the study of possible correlations in

neutron systems, in order to adequately account for them in the equation of state

of nuclear matter [29]. However, to date, the question of correlations has not been

completely resolved. Recent experiments in this field have actually repeated the

result of the present work [30].

Another example is the advances in the AMD approach. A recent review

devoted to the problems of clusters in light nuclei [31] suggests a scheme for

augmenting AMD with methods from quantum chromodynamics and artificial

intelligence to solve the problems at hand. And, it is worth noting that the re-

view focuses specifically on experimental work in this area. Examples of problems

(including those solved in this work) are: ambiguity of determination of angular

momenta of states, difficulties of studying high-spin states in light nuclei, dif-

ficulties of work at low energies. As can be seen, the above problems refer us

specifically to the problems of experimental investigation.

In another review of AMD modeling [32], not only is there a significant deficit
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of experimental values for beryllium isotopes, but also a figure for the 22Ne nucleus,

which has predictions almost twenty years old and was last updated with our

results.

Below, this state of affairs will be illustrated by the example of the 18O nucleus,

for which, to date, there are diametrically opposite (!) experimental results, as

pointed out in the review on the history of clusters [33]. In addition, the possibility

of studying the properties (including cluster properties) of nuclei near the stability

boundary has been obtained relatively recently, so that any new experimental

result in this area can be useful both for developing theoretical approaches and

for planning new experiments.

The importance of studying the cluster structure of nuclei from the point of

view of astrophysics is well illustrated in the review [34].

The goal of this series of works is to:

1. Experimental study of cluster degrees of freedom in self-conjugated and

neutron-excess nuclei.

2. Description of the experimental results obtained within the framework of the

cluster model to obtain the necessary systematics.

3. Experimental study of rotational bands of cluster nature in nuclei. The anal-

ysis of high-spin states in nuclei of light and medium mass groups detected

in our experiments.

4. Experimental study of neutron-excess isotopes near the neutron stability

boundary, study of the influence of neutron excess on clustering in nuclei.

5. Consideration of possible exotic states due to clustering.

6. Experimental study of the emission of heavy clusters of beryllium and carbon.

7. Study of the influence of cluster transfer in reactions with heavy ions.

8. Obtaining systematics for the description within the two-particle model of

low-energy interaction of heavy ions, important from the point of view of

astrophysics.
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Structure of the work.

The dissertation consists of Introduction, 7 chapters, Conclusion and Ap-

pendix. The full volume of the dissertation is 233 pages, including 79 figures

and 30 tables. The bibliography contains 317 titles. The Introduction briefly

formulates the purpose of the presented cycle of work and the relevance of this

research, the main results. The provisions of the defense are indicated and the list

of conferences at which the main results obtained in the work were highlighted.

In Chapter 1, the main provisions of the α-particle model, taking into account

the known, to date, experimental data, used in the work to prepare for the execu-

tion of the experiment, or in its analysis. In addition, the main types of reactions

used in this work are listed, and their characteristic features are indicated with

respect to the goals and objectives of this work. It is shown that the results ob-

tained agree well both with calculations based on other models and with existing

experimental results.

Chapter 2 briefly reviews the main methods of experimental study of the

properties of nuclei used in this work. The main characteristics of the experimental

setups used are given.

Chapter 3 summarizes the main results of the spectroscopy study of the nu-

clei indicated in the figure 4. In addition, for 6He and 8He nuclei the obtained

cluster momentum distributions are indicated and the research setup is given.

The procedure for obtaining experimental results is briefly described. The results

for resonant scattering of α-particles and heavy clusters in the inverse geometry

method with a thick target are discussed.

Chapter 4 summarizes the results of the study of quasi-elastic transfer of

α-particles in reactions with oxygen, neon, boron, and nitrogen nuclei.

In Chapter 5, the results of the experiment with the flight of heavy clusters

in the form of 12C* and 8Be nuclei are discussed. It is shown how this result can

be interpreted in the framework of the occurrence of Bose-Einstein condensates

in the nuclei.

In Chapter 6 we present a systematics for nuclei of intermediate mass group,

in the framework of the cluster approach. The case of elastic scattering of 12C+16O

nuclei is considered, pointing out the main difficulties in studying the quasi-
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molecular states arising in such a heavy system.

In Chapter 7, the case of the potential model is considered and compared with

experiment, based on which a description of the resonance-like structure arising at

the excitation function is given. Finally, a systematics for other reaction variants

important from an astrophysical point of view is given.

The Conclusion summarizes the main results and acknowledgments.

The Appendix contains a list of the author’s publications related to the topic

of the dissertation.

Theoretical and practical significance

In the present work, cluster states in nuclei have been investigated. A dis-

tinctive feature of this topic is the possibility of applying the results obtained in a

wide variety of fields of research on the atomic nucleus and elementary particles.

This, in turn, determines the significance, both from a practical and theoretical

point of view, of the results of the work performed. Let us enumerate the main

points.

In this work, we studied the cluster properties of nuclei using the method

of inverse geometry. This method is currently undergoing rapid development,

since it makes it possible to study nuclear exotics near and even beyond the

stability boundary. Thus, the results of work with such systems are very useful

for scientific groups engaged in the experimental study of the properties of nuclei.

In particular, the methods developed in our work allow us to greatly simplify the

study of reactions at low energies, coming close to the energies typical of stellar

nucleosynthesis. Such works are very important from the point of view of modern

astrophysics. In addition, the evaluation of the obtained cross sections for ion

fusion in the low energy region will allow us to better understand the mechanisms

of reactions occurring in stars.

In our work on the study of neutron-excess nuclei, a new method of charge

collection time registration was applied to identify the decay products. A distinc-

tive feature of this method is the undemanding nature of the detector parameters,

which allows us to significantly reduce the cost of the work. The separation of

flying particles is carried out without the use of the ∆E part, which will avoid

the use of an expensive thin detector or a gas system that adversely affects the
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vacuum. It was shown to be possible to separate 4He and 6He nuclei.

The practical usefulness can also include the methods we are developing for

analyzing the nuclear fusion cross section in the low energy region. The small

number of free parameters and the absence of the need to solve the Schrödinger

equation allow us to work with a large amount of experimental data at once. This

allows us to find universal regularities important for extrapolation of cross section

values to the low energy region.

The experimental results obtained in this work are of interest for the work

of international scientific groups. They are included in databases and have been

independently verified. The theoretical approaches used allow a simple and fast

evaluation of the effect of the first approximation. Despite the use of low energies

in this work, the results of the present work, as indicated above, can be used in

modern facilities for studying the behavior of superband nuclear matter in heavy

ion collisions.

Methodology and Research Methods

In this work, the most modern equipment for conducting experiments was

used. In particular, these are magnetic spectrometers, systems of particle identi-

fication by time of charge collection and methods of inverse geometry and thick

target. The potential model, the tunneling model, and the calculation of reac-

tion parameters within the framework of the Born distorted-wave approximation

were used to process the data obtained. Given the importance of these techniques

for understanding the results obtained, the theoretical approaches used are dis-

cussed in more detail in Chapter 1, and the experimental methods are discussed

in Chapter 2.

Reliability and Evaluation of results

The reliability of the obtained results is due to their reproducibility in exper-

iments performed in other scientific groups, as well as agreement with theoretical

calculations performed by other authors based on the information presented in

the articles with the materials of this dissertation.

The experiments described in the present work were performed by us at LNL

(Legnaro, Italy), HMI (Berlin, Germany), GSI (Darmstadt, Germany), JYFL (Jy-

vaskyla, Finland), the Cyclotron Laboratory of the University of Warsaw (War-
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saw, Poland), and at the gas pedal of the National Laboratory of Nazarbayev

University (Astana, Kazakhstan).

The main results of this work were obtained for the first time. A number of

results were later used by various international research groups.

The results obtained in this work were published in international scientific

journals. The Appendix contains the main list of publications on this thesis in

journals and proceedings of international conferences – 44 titles.

Of the main works on the topic of the dissertation, 15 works were published in

journals from the HAC list, 27 works are contained in the scientometric databases

Scopus and Web of Science.. The experimental results obtained were indexed in

EXFOR and XUNDL–international databases of experimental results in nuclear

physics.

The results of the work were presented at international conferences on nuclear

physics:

– NUCLEUS 2005 (St. Petersburg, Russia)

– NUCLEUS 2006 (Sarov, Russia)

– NUCLEUS 2007 (Moscow, Russia)

– NUCLEUS 2009 (Cheboksary, Russia)

– NUCLEUS 2010 (St. Petersburg, Russia)

– NUCLEUS 2011 (Sarov, Russia)

– NUCLEUS 2012 (Voronezh, Russia)

– NUCLEUS 2015 (St. Petersburg, Russia)

– NUCLEUS 2017 (Alma-ata, Kazakhstan)

– NUCLEUS 2020 (St. Petersburg, Russia)

– NUCLEUS 2021 (St. Petersburg, Russia)

– NUCLEUS 2022 (Moscow, Russia)

– 4th International Conference on Exotic Nuclei and Atomic Masses 2004

(Pine Mountain, USA)

– 5th Conference on Nuclear and Particle physics 2005 (Cairo, Egypt)

– Sandanski Coordination Meeting on Nuclear Science 2005 (Albena, Bul-

garia)

– Current Problems in Nuclear Physics and Atomic Energy 2006 (Kyiv,



18

Ukraine)

– Exon 2004 (St. Petersburg, Russia)

– 7th Conference on Nuclear and Particle Physics 2009 (Sharm El-Sheikh,

Egypt)

They were also reported at seminars at St. Petersburg University (St. Petersburg,

Russia), Heavy Ion Institute (GSI) (Darmstadt, Germany), Hahn-Meitner Insti-

tute (HMI) (Berlin, Germany) and Nazarbayev University (Astana, Kazakhstan).

Thesis defense key points

1. The momentum distributions of clusters in 6He and 8He halo nuclei are ob-

tained.

2. A number of new cluster states in neutron-deficient isotopes of beryllium,

carbon, oxygen, and neon, as well as in self-conjugated argon and calcium

nuclei belonging to rotational bands have been discovered.

3. On the basis of the maximal α-cluster model we consider ways of describing

exotic states of nuclear matter – chain configurations and Bose-Einstein con-

densate. This result allows us to explain some regularities of heavy cluster

departure, which we found in the experiment.

4. A systematics for rotational bands with the α+cor structure is proposed.

5. New data on the molecular states arising in the interaction reactions 12C+14C,
12C+16O.

6. New data on quasi-elastic cluster transfer in reactions with carbon, oxygen,

neon, boron, and nitrogen nuclei are obtained.

7. Systematics of data for heavy ion fusions important from the point of view

of astrophysics is proposed.

Main scientific results

The materials of the dissertation are a generalization of the author’s work on

the topic of the research topic. The results presented in the thesis were obtained by

the author personally, or in co-authorship with direct participation. The author
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has made a significant contribution both in setting the problems solved in the

work, and in conducting experiments, performing processing and analysis of the

experimental data and preparation of research results for publication in scientific

publications.

1. The states in neutron-excess nuclei of beryllium, carbon, neon, and magne-

sium have been studied. The results obtained allowed us to detect a number

of new states with cluster structure, as well as high-spin states belonging

to rotational bands. In the works [35–39] the problem formulation, data

processing and preparation of publications were carried out by the author

personally. In [40], the author analyzed the data on the reaction 12C+14C.

In [41–45], the author’s contribution to data processing and analysis is 60%.

2. For helium isotopes the momentum distribution in cluster knockout reactions

was obtained. Conclusions about the possible configuration of valence neu-

trons and the possibility of the formation of exotic neutron clusters have been

drawn. Calculations for the momentum distribution of clusters in the con-

sidered nuclei and obtaining the experimental distribution in the work [46]

were performed personally by the author.

3. The case of α-particle clusters – 12C* and 8Be – flying out of the nucleus is

considered. A decrease in the energy carried away from the nucleus in this

case was found, which allowed us to conclude further on the possible Bose-

Einstein condensation of these nuclei. Calculations of the energy balance for

the departing clusters 12C and 12C* and obtaining experimental values for

them in the work [47] were performed personally by the author.

4. A systematics of reactions important from the point of view of astrophysics

in the framework of the potential model has been carried out. A satisfactory

description of the excitation function for fusion reactions in the case of one

free parameter has been obtained. The author’s personal contribution to the

work [48–50] is at least 80%. In the work [51], the author performed data

processing within the framework of the optical model.

5. The elastic and inelastic scattering reactions of heavy ions – carbon, oxygen,

boron, nitrogen, and neon – are considered. The importance of considering
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resonance states and cluster transfer is shown. The contribution to exper-

imental data acquisition and information processing in the work [52] is at

least 60%. The author’s contribution to the problem formulation, experi-

mental data acquisition and results in the paper [53] at least 80%.

6. A systematics for the predictions of the cluster model is obtained, allowing

simple estimates for nuclei in exotic states. The author’s contribution to the

work [54–60] is at least 80%.

7. systematics within a potential model for rotational bands is obtained. The

author’s contribution [61–63] is at least 80%. The work [64,65] was completed

in its entirety by the author. In [66], the processing of experimental data and

characterization of cluster excited states were performed by the author.
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Chapter 1. Methods of description and study of cluster states

In this chapter, we briefly review the main approaches that allow us to es-

timate, to a first approximation, the possible effect of the manifestation of the

cluster structure of the nucleus and the experimental methods used in this work

to study the cluster degrees of freedom in nuclei. Conventionally, they can be

divided into two groups – spectroscopic and those related to the study of nuclear

reactions.

From a historical point of view, one of the first and most important reasons

for the development of a model of the cluster structure of the nucleus (in this

case – α-cluster structure) is the result of the study of the natural α-radioactivity

of heavy nuclei. After Rutherford established that α-particles correspond to 4He

nuclei, and Gamow constructed a theory of α-decay, a legitimate question arose

about the presence of “ready” α-particles in the nucleus. Despite the existence of

much more accurate models, the experimental study of α-radioactivity is still an

urgent task and provides new information on the properties and structure of heavy

nuclei from the cluster point of view. In this case, the nuclear wave function is

considered as the sum of the “shell” part for the residual nucleus and the “cluster”

part for the escaping α-particle:

Ψ = Ψ(shell) + Ψ(cluster), (1)

where the cluster wave function can be written as the antisymmetrized product

of the internal wave functions (of the residual nucleus Φc and the α-particle Φα)

and the wave function of their relative motion ϕ:

Ψ(cluster) = A[Φc(ξc)Φα(ξα)ϕ(R)]. (2)

Assuming that the decay can be described using the Gamow wave function,

the α-particle is well described by the oscillatory wave function for the 1s state,

and the basis for the shell states is reproduced by diagonalizing the corresponding

Hamiltonian. In this model, the decay width and the probability of forming a

α-particle can be calculated. For most heavy nuclei, this value lies in the range

0.3-0.6 [67].
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Another important way to directly observe the cluster structure is to study

the α-particle knockout reaction from the nucleus, e.g. (p, α). It is not difficult

to extend this model to the case of choosing an arbitrary cluster. At energies

when the contribution from compound-nucleus formation no longer prevails, the

analysis of direct processes allows one to draw important conclusions about the

probability of cluster formation.

Although, as indicated in the Introduction, the cluster model originally con-

sidered primarily light nuclei, experimental confirmation of the large clustering

contribution for them proved to be a much more difficult task than for heavy nu-

clei, remaining for a long time a concept rather related to energetic considerations

than to the manifestation in reactions. The reaction leading to the 8Be residual

nucleus can perhaps be considered an exception. The reaction 7Li(p, α)α studied

by Rutherford unambiguously pointed to the prevailing character of the cluster

structure of this nucleus.

The next important evidence of the cluster nature of light nuclei was the

experimental confirmation of the assumption made by Hoyle about the existence

in the 12C nucleus of a level near the threshold of the collapse into three α-particles.

Despite the considerable time that has elapsed since the discovery of the Hoyle

state and its enormous importance for astrophysical models, its structure is still

an object of study, including experimental research.

The further history of the study of α-cluster states was mainly connected

with the Ikeda diagram (see Fig. 2) and later with the molecular states from the

extended diagram proposed by von Oertzen. From the experimental point of view,

there was a significant complication of the equipment used, the interaction energies

increased (although not very significantly compared to other areas of nuclear

physics), the kinematics became more complicated, and the need to register three-

particle states became more frequent. However, the general principles remained

the same. Let us briefly consider the main provisions.

1.1. Model of binding α-particles

In this section we will consider a variant of the “maximal” α-particle model,

when the whole nucleus is split into a system of interacting α-particles, taking
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into account the condition of “virtuality” of their existence in the nucleus. The

first result – the calculation of the binding energy of nuclei as a function of the

number of bonds is shown in Fig. 1. As can be seen, there is good agreement with

experimental data for the nuclei known at that time. Thus, we reproduce the

fragmentation energy corresponding to the topmost states of the Ikeda diagram.

The success of the model led to attempts to more consistently conceptualize the

notion of “configuration” (i.e., mutual arrangement in space) for the α-particles

in the nucleus, since this is how the notion of “bonding” can be defined.

1.1.1. Geometric model

Let us restrict ourselves to the consideration of self-conjugate nuclei. The

simplest configuration of the 8Be nucleus is two α-particles. Given that the nucleus

is unbound and exhibits good rotational properties (ground state band), consistent

with the assumption of a α-particle structure, this structure seems self-evident. A

configuration corresponding to an equilateral triangle has been proposed for the
12C nucleus, 16O – a tetrahedron. Further addition of α-particles corresponded to

the construction of a quasi-crystalline structure based on tetrahedrons. A similar

model for the description of liquid properties was, in due time, developed by

Bernal [68]. Two points should be noted:

1) Tetrahedrons do not allow to continuously “cover” the whole three-

dimensional space.

2) For some nuclei, the number of bonds was smaller than that obtained by

adding a “tetrahedrally packed” α-particle.

Thus, the geometrical structure obtained within the limit model allowed cer-

tain discrepancies, depending on the conditions underlying the construction of

configurations. For example, for the 28Si nucleus, two configurations with differ-

ent types of symmetry can be assumed. The basic geometrical structures used at

an early stage were considered by Hafstad and Teller [3]. Later, similar structures

were obtained by Brink [5]. The interaction potential of α-particles in the consid-

ered works was chosen in the Van der Waals form, i.e., repulsion at small distances

and attraction at large distances. Its depth was determined from agreement with

experimental data. This is a typical potential for molecular interactions.

Hodgson formulated the fundamental questions of the α-cluster model as fol-
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lows [67]:

1) Is there evidence for the presence of α-clusters in the nucleus?

2) If such clusters do exist, how long do they live?

3) What is their distribution in the nucleus?

4) What are their energy and direction of motion?

5) Are they different from free α-particles?

6) What is the probability that a given nucleon will form part of a α-particle?

7) How do the answers to these questions depend on the size of the nucleus,

its shape, and its excitation energy?

To present the state of the art for the model under consideration, we ask two

questions.

1) What can be a general algorithm for constructing spatial configurations?

2) For what values of mass numbers can we continue to construct such con-

figurations, for example, for self-conjugate nuclei?

Note that the very assumption of the existence of “virtual” clusters does not

impose any restrictions on their mutual arrangement. Moreover, even extend-

ing our approach to construct the corresponding wave functions [5], we cannot

reach an unambiguous conclusion. As stated above, several attempts have been

made to point the way to an algorithm for constructing spatial configurations

on the basis of general reasoning (Poling, Bernal). However, the result has been

rather ambiguous. A possible reason for this is too “classical” consideration of

such a quantum problem. Therefore, in our consideration we will not rely on

quasi-classical analogies from other areas of physics, but will construct the algo-

rithm only on the basis of the problem of minimization of the potential energy of

interacting particles [54].

Consider a three-dimensional grid of small (compared to the size of the α-

particle) step, place a α-particle in some cell and set some sufficiently smooth

molecular interaction potential (e.g., the Lennard-Jones potential) so that the

minimum occurs at a distance of the order of 3 fermi. Let’s add a second α-

particle. For their interaction energy to be minimized, the second particle must

be placed in a position with a minimum value of the potential. We continue

adding α-particles by calculating the value of the potential at each node of the
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Figure 5. 3 α-particles, 3 bonds, 4 α-particles, 6 bonds, 7 α-particles, 16 bonds, 13 α-particles,
42 bonds [54].

grid and placing a new α-particle there. Thus, for step i, the effective potential

for particle i+1, will be:

V i =
i∑︂

j=1

V (ri+1 − rj). (3)

As we have shown in [55, 57], correcting for tcorehe impossibility of tight

packing within tetrahedral configurations, we will obtain approximately the same

configurations for a wide class of molecular potentials (Ali-Bodmer, Lennard-

Jones, Morse, Yukawa with repulsive core). For 3, 4, 7, and 13 α-particles, we

have the configurations shown in the Figure 5.

The answer to the question of the limit of applicability should, in our opinion,

be decided primarily by the constraints on the fit to the experimental data. From

the point of view of theory, to date, a number of works have been done, the authors

of which, in the framework of the quantum-mechanical approach, have tried to

determine the limits of applicability of the maximal α-particle model (e.g., [69–

73]). It is generally assumed that for light nuclei where the LS coupling scheme

applies, the model under consideration works well, while in the region A¿40, where

the jj coupling scheme becomes important, limitations arise, depending on the

type of calculations.

Therefore, in this paper we propose to use the “toy” model we proposed

in [56]. Consider the nucleus as a set of protons and neutrons with random

coordinate values within a sphere of radius 1.2A
1
3 fermi. Restricting ourselves to

self-conjugate nuclei, we assign a spin projection to each nucleon such that the

total spin of the nucleus is 0. What will be the rms radius of a random correlation

of the form (p ↑ p ↓ n ↑ n ↓)? This problem is not difficult to solve by Monte
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Figure 6. Probability distribution of the mean-square radii of random correlations of the form
(p ↑ p ↓ n ↑ n ↓) in self-conjugate nuclei [59].

Carlo method and the graph of the dependence of the conditional probability on

the correlation radius is shown in the Figure 6. As can be seen, in all cases the

probability for the rms radius of the “antisymmetrized four nucleons” has a sharp

peak in the region of 1.8 fm, so that even for a hypothetical 164Pb nucleus the

probability of finding four particles in the desired charge-spin state is quite large.

The correlation radius is close to the value of the radius of the α-particle.

Thus, if we assume that the clustering-inducing correlation of four nucleons

has an interaction radius of the order of 3 fm, then the cluster structure should

indeed be observed in light nuclei, and gradually decrease due to “widening”, as

can be seen in the figure. If for the case of independent motion in the 12C nucleus

only 7% of the nucleons in the required spin-isospin state are located at a distance

greater than the correlation distance, then in the 80Zn nucleus the fraction of such

nucleons is already 23%. The data obtained can be considered as a “lower bound”

for the degree of correlation of nucleons in the nucleus.

Of course, such a simplified model gives only an approximate solution, so it

is necessary to compare the predictions of the considered α-particle model with

experimental data.

As it is supposed, at present we can consider self-conjugated nuclei up to

values Z=52. The above described model of the formation of α-particle nuclei
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Figure 7. Experimental and theoretical binding energies of nuclei as functions of the number of
α-particles [54].

allows us to construct, in general, systems of unlimited size. At the same time,

the obtained binding energy, in the case of a number of short-range potentials,

turns out to be approximately the same. The binding energy of the nucleus in

the framework of the considered model can be estimated by the formula [54]:

EB = F0(6Nα + nα) + C. (4)

Here F0 – defines the interaction energy (a fitting parameter of the model), nα –

the number of bonds between α-particles, Nα – the number of α-particles in the

nucleus, and C – the Coulomb energy.

C =
3

5

e2Z(Z − 1)

r0A1/3
, (5)

here r0=1.2 fm.

Table 1 shows the values calculated from the geometric theory of the bonding

number and extracted from the formula (4) by substituting the experimental

values. In Figure 7, the results presented above are summarized as a plot of the

dependence of binding energy on the number of α-particles. As can be seen, there

is good agreement between theory and experiment in the whole range of nuclei

considered. Subsequently, similar results were later obtained in [74].

The disadvantage of this approach is the problem of choosing the “bond
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Table 1. Comparison of the number of connections obtained within the geometric model with
experimental data [54].

Nucleus Number of Binding energy Number of bonds Number of bonds
α-particles MeV exp. theor.

12C 3 92.1 3.00 3
16O 4 127.6 5.69 6
20Ne 5 160.7 8.14 9
24Mg 6 197.2 11.54 12
28Si 7 236.5 15.74 16
32S 8 271.8 19.33 19
36Ar 9 306.7 23.04 23
40Ca 10 342.1 27.06 27
44Ti 11 375.5 30.84 31
48Cr 12 411.5 35.36 36
52Fe 13 447.7 40.09 42
56Ni 14 484.0 45.01 45
60Zn 15 515.0 49.01 49
64Ge 16 545.9 53.15 53
68Se 17 576.4 57.37 57
72Kr 18 607.1 61.79 61
76Sr 19 638.1 66.42 66
80Zr 20 669.8 71.36 71

length”. For the tetrahedral approximation, the value of F0 is of the order of

4.8 MeV [54]. As mentioned above, due to the impossibility of tight packing of

the tetrahedral character, the distance between α-particles is not discrete, as we

have shown in [54].

Thus, to estimate the binding energy of nuclei heavier than 52Fe it is neces-

sary to change the calculation procedure by excluding the number of bonds from

the (4) formula. This can be done by calculating the binding energy by direct

enumeration of α-particles, summing their interactions (by analogy with the for-

mula (3)). In this case, a weak dependence of the binding energy of nuclei on

the type of potential [55, 57] is observed. Since the discrepancies between the

experimental and theoretical values are very small, a plot of the dependence of

the specific binding energy of α-particles should be used. Figure 8 shows the cor-

responding dependence on the number of α-particles in the nucleus for different

types of potential.

This result shows that, as it was suggested earlier, a satisfactory description

can be achieved using almost any molecular-type potential after an appropriate fit-
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Figure 8. The binding energy per α-particle from the number of α-particles in the nucleus for
different potentials [54].

ting of the parameters. For calculations of the binding energy from the α-particle

coordinates obtained in the model under consideration, the repulsive cor is taken

into account automatically, so that the class of potentials under consideration can

be extended. Thus, for example, the Yukawa potential [56] gives the best result

when fitting to all available experimental data:

V (r) = −V0 exp(−γr)/r, (6)

when V0=106.7 MeV, and the parameter γ is equal to the inverse of the π0 wave-

length lumped meson. Since in this case we are no longer bound to calculate the

Coulomb energy of the nucleus as a whole, we can introduce the Coulomb potential

for each particle separately. For the calculations we have used the potential [55]:

VC(r) = 4e2erf(0.6r)/r. (7)

Of course, this “classical” approach to such an essentially quantum object

as the nucleus requires a little more justification than simply stating that the

results obtained coincide with experimental data. Certainly we think of the α-

particle correlation as a quantum-mechanical particle and should use the system

of Hartree-Fock equations to explain the behavior of such a system. But if we

take into account that such a correlation is not a “real” particle, but only a math-
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ematical concept – the center of mass of a system consisting of two protons and

two neutrons (bound by a strong interaction), the picture changes dramatically.

The average momenta of such α-particle correlation are rather small compared

to the momenta of the nucleons “composing” the particle. Thus, the problem is

reduced to the classical version.

As a conclusion, we note the following interesting features. When analyzing

the number of bonds in Table 1, we see that the largest errors are obtained for 20Ne

and 52Fe nuclei. In the former case, as shown in [75,76], one can assume a structure

other than tetrahedral. On the other hand, when describing the binding energy

by the molecular potential, the largest errors occur in the description of 32S and
56Ni nuclei, which is quite natural. In this case, a new α-particle is added “over

the top” of the closed configuration (see Figure 5), which should underestimate

the binding energy compared to the more symmetric distribution.

It is not difficult to extend the formula (4) to the case of neutron-excess nuclei,

as shown in our work [54]. However, a more consistent approach is the introduction

of covalent bonds and the corresponding extension of the Ikeda diagram. An

interesting consequence of the considered model may be an attempt to estimate

the binding energies of nuclei with excess neutrons in the region of superheavy

nuclei [54]. In this case, at a certain number of α-particles, an increase in the

number of “short” bonds is observed, which corresponds to the filling of a new

“envelope”. This occurs for the number of α-particles Nα=60-62 [58] (Z=120-

122). Of course, such a nucleus is not bound, but it can be stabilized by an

appropriate neutron excess, so that the mass number (from extrapolation of the

neutron number to a given charge region) will be of the order of 310. It should be

noted that some time ago statements were made about the discovery of superheavy

nuclei with charge Z=120 [77]. At the same time, we do not observe any increase

in the binding energy for fullerene-like nuclei [54], which may be an inaccuracy of

the model under consideration.

So, we have performed systematics based on the early work of Wheeler, Teller

and Hafstad. How realistic is the model discussed above and are its results applica-

ble? Strangely enough, the present results show a very high degree of applicability

of such a simple geometrical approach, at least for light nuclei. Recent studies,
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Figure 9. Cluster states in the 14C nucleus obtained in [80]. The valence neutron density
distribution is also shown.

both theoretical and experimental, show the need to take into account the tetra-

hedral character for the 16O nucleus( [78] and references in this paper). Similar

results are obtained for the carbon [79] nuclei. Figure 9 from the [80] paper shows

the spatial distribution of α-particles for the 14C nucleus.

Next, we will look at some other implications of this model.

1.1.2. Chain configurations

In 1956 Morinaga suggested [81], on the possibility of the existence of so-

called chain configurations. Based on the α-cluster model, he suggested that at a

certain excitation energy in nuclei, α-particles can line up in a line, so that a very

highly deformed nucleus is obtained – a chain configuration, since it corresponds

to minimization of the Coulomb repulsion between the fragments that make up

the chain. The first structure we can thus construct is the 8Be nucleus.

The mechanism of origin of such configurations can be roughly described as

breaking a number of bonds so that the α-particles in the line remain bound.

It is not difficult to see that for 12C one bond must thus be broken, for 16O

– 3 bonds, etc. From here it is not difficult to calculate the excitation energy

required to create such a configuration, and, as is obvious, the 0+ state for it

lies under the threshold of fragmentation into α-particles. Although this model
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is rather approximate, Morinaga concluded that, at least for 12C and 16O nuclei,

such states do not exist. Subsequently, a number of papers on the quasi-molecular

structure of nuclei were published, confirming Morinaga’s assumption about the

possibility of such configurations, but they were supposed to be searched for above

the fragmentation threshold (i.e., above the top row of the Ikeda diagram). In

addition to quasi-molecular methods, there are at least two approaches to date

that allow us to conclude that chain configurations are admissible. First, is the

description of the nucleon system in the framework of a deformed oscillatory

pit [82]. Second, an unexpectedly good fit with the cluster model was obtained

by analyzing the energy surface in the framework of the liquid drop model. In

particular, it was shown in [83] that for 20Ne and 24Mg nuclei there is a minimum

corresponding to such a degree of deformation that the state can be considered as

a chain state. This approach is usually cited in reviews on chain configurations as

justification for their existence. Given that the model includes shell corrections,

the coincidence of the predictions of highly deformed states with the oscillatory

approximation is not surprising.

Let us consider the situation from the position of the α-cluster model [56]. To

calculate the energy, instead of the bond-breaking method proposed by Morinaga,

we used the direct method with fixed coordinates. Consider a chain of α-particles

interacting with each other by means of potentials (6) and (7). This will allow us

to calculate the binding energy of this system Eb. Then, the required excitation

energy E∗ to produce the chain configuration can be calculated by knowing the

fragmentation energy Efr of the nucleus into α-particles (as is clear, in this case

all bonds are broken). In other words:

E∗ = Efr − Eb. (8)

Since in this approach we are no longer bound by the need to calculate the

number of broken bonds and the fragmentation energy is taken from experimental

data, the only parameter of the model is the radius of the α-particle Rα, which we

have chosen to be 1.52 fm. This value is close to the available experimental data

and determines the position of α-particles in the chain at dense “linear” packing.

This, in turn, allows us to calculate the binding energy of the chain configuration
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by summing the nuclear (6) and Coulomb (7) potentials for all α-particles, and

from the formula (8) obtain the excitation energy and the moment of inertia of

the Θ chain configuration. Two quantities – E∗ and Θ, completely determine the

position of the rotational band levels. Table 2 lists the excitation energies ob-

tained from this approach, together with the energies from the work [83] obtained

from the microscopic-macroscopic approach, for the minima on the energy surface

corresponding to states with deformation close to chain states. Also in the table

are the values of the energies of fragmentations of nuclei into α-particles.

Table 2. Excitation energies obtained for states with ω-typeNα:Nα:1 deformation in the framework
of the α-bound particle model [56] and in the liquid drop [83] model. The fragmentation energy
Efr is indicated.

Nucleus Number Model of binding Liquid drop Efr

α-particles α-particles (MeV) model (MeV) (MeV)
12C 3 3.0 1.0 7.27
16O 4 8.98 9.0 14.44
20Ne 5 12.99 13.0 19.17
24Mg 6 21.87 20.0 28.48

Since the chain configuration rotates around its center of mass and consists

of spinless particles, it is invariant with respect to reflection, so that the rota-

tional band will contain only states with even values of angular momenta and

with positive parity. Strictly speaking, the moment of inertia of such a band is

not necessarily a constant value; moreover, as will be discussed below, it can both

increase and decrease with increasing angular momentum. In addition, as the ex-

citation energy increases, the contribution from vibrational degrees of freedom [84]

must be taken into account. But in this case we will assume, as a simplification,

that the moment of inertia of the rotational band of the chain configuration is

constant. In the classical approximation, it is easy to calculate it by the formula:

Θ =
N∑︂
i=1

Mαa
2
i +

2

5
MαR

2
α, (9)

here N is the number of α-particles, Mα is the mass of α-particle and ai is the

distance from α-particle to the center of mass of the chain configuration. Because

of the small radius of the α-particle, the second term is usually neglected. The

excitation energies for the rotational band levels are calculated by the formula:
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Figure 10. Theoretical (circles) and experimental (lines) energies for the rotational bands of the
chain configurations of 12C, 16O, 20Ne, and 24Mg nuclei [56]. The lower levels marked with dashed
lines correspond to the head levels of the rotational bands, the upper levels correspond to the
fragmentation energies.

EJ =
J(J + 1)ℏ2

2Θ
+ E∗. (10)

The resulting levels for the nuclei from Table 2 are shown in Figure 10, where

the upper states correspond to the upper states of the Ikeda diagram (Figure 2).

The states below the fragmentation energy are considered because we cannot ac-

curately estimate the maximum angular momentum in the system in this simple

model. An approximate estimate can be obtained from the following considera-

tions. We define the angular frequency of the rotating deformed nucleus as:

ω =
ℏ(J(J + 1))1/2

Θ
. (11)

Let us assume that the adiobaticity conditions are satisfied and in this model

ωrot ≪ ωosc. As was shown in [85], the maximum angular momentum of the

hyperdeformed core 152Dy is of the order of 100. According to the calculations

performed in [86], this value is in good agreement with the predictions based on

the liquid drop model. Assuming that the nuclear radius is proportional to A1/3

and calculating the corresponding radius for chain configurations, we can obtain

that for the nuclei 12C, 16O,20Ne, at the corresponding strains, the maximum

angular momentum will be of the order of 3.5 and 7, respectively. More accurate

calculations within such a simplified model are inadmissible.

As can be seen from Figure 10, in agreement with Morinaga’s conclusions,
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there are no levels corresponding to 0+ states of the chain configurations for the
12C and 16O nuclei. For the 12C nucleus, agreement is observed for the 2+ states,

which must be recognized as coincidental since the 2+ structure at 4.44 MeV is

well studied, and it is shown to be well described by a shape close to a right

triangle [87]. In addition, as seen in Table 2, there is poor agreement between the

predictions of the cluster model and the liquid drop model for the 12C nucleus.

Thus, we can consider that if chain states exist in the 12C nucleus, they lie well

above the fragmentation energy.

Similarly, for 16O nuclei, no states corresponding to 0+ states of chain config-

urations are observed. As can be seen, such a level would have to have an energy

on the order of 9 MeV. This energy region in this nucleus is quite well investigated

and it appears that even a strong overlap with the 2− level with energy 8.87 MeV

could not mask the corresponding 0+ state. Of the levels claiming to be higher

spin states, there are only the rather low-lying 9.84 MeV 2+ and 11.09 MeV 4+

states with relatively small widths.

Much more interesting, from the point of view of the model under considera-

tion, is the comparison for the known levels of the 20Ne nucleus. As can be seen

from Table 2, the results of the excitation energy estimation for the core level

of the strongly deformed state for the cluster model and the liquid drop model

almost coincide. This core is characterized by a significant number (at least 7)

of rotational bands of different structure. The initial and most reliable distribu-

tion of levels over the bands was performed in [88] (5 bands), further work was

continued in [89]. The levels shown in Figure 10 are not reliably assigned to any

rotational bands (see Table 20.20 in [89]). A list of levels with widths is given in

Table 3.

Table 3. Proposed K+
8 rotational band in the 20Ne nucleus [56].

J E∗ Γ
(MeV) (keV)

0 13.22 40
2 13.53/13.57 61/12
4 14.27 92
6 15.35 -
8 16.75 160
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Figure 11. Rotational bands of the 20Ne nucleus. The dotted line shows the predicted chain
state [56].

For the level corresponding to the state with angular momentum J=2, there

are two possible candidates, differing slightly in energy. A comparison of this

band with the reference data from the work [89] is presented in Figure 11.

As a conclusion on this issue, we note that in the literature the 24Mg nucleus is

usually used to illustrate the possibility of describing chain states in the framework

of the liquid drop model (see paper [18], Figure 6). It can be seen from Table 2

that the predictions of the cluster and droplet models are still close and that the

head level of such a state should be nearly 7-8 MeV below the α-particle collapse

threshold. Nevertheless, the energy of this level is already large enough to allow

unambiguous comparisons with the available experimental data (EXFOR data

end at excitation energies on the order of 17 MeV). A similar situation with the
16O nucleus was considered in [90].

1.1.3. Bose-Einstein condensate in nuclei

So far we have considered approximations with a sufficiently strong “classi-

cal” component. Now we assume a transition to essentially quantum phenomena,

which requires sufficient justification. Although this section is included as applica-

tions of the limit α-particle model, it differs significantly from the approximations

considered earlier. Although the formula (4) includes the binding energy of the α-

particle (6 bonds analogous to inter α-particle bonds), nevertheless, as indicated,

such α-particles are virtual and this summand could, in principle, be replaced

by some fitting quantity. However, such an approach at this stage would lead to

unnecessary complication that has no connection with the fundamental processes.



37

This is described in detail in [91].

In this case, although we break the nucleus into its constituent α-particles,

but the latter are already analogs of free particles, and a phenomenon similar to

Bose-Einstein condensation [91] is realized, accompanied not only by a change in

the internal structure of the nucleus, but also in its size. From the perspective

of quantum mechanics, the phenomenon itself, as well as the rationale for its

possibility in nuclei, is detailed in the articles [92–94].

Let us first consider some experimental corollaries. They are usually related

to the already mentioned above phenomenon of the increase of the nucleus size at

the corresponding phase transition.

For example, when studying the scattering of α-particles on the 12C nucleus,

the condensation phenomenon leads to the appearance of a structure associated

with the Airy minimum in the picture of the angular distribution [95]. Another

manifestation of condensation was found in our experiment to study the levels of

the 40Ca [63] nucleus. When studying the evaporation spectra of the 12C∗ nucleus

in the 0+2 state, we found an underestimation of the average energy carried away

by such a nucleus from the compound [47] nucleus (these experiments will be

discussed below). The explanation was obtained exactly in the framework of

the condensation phenomenon approach, when a “loose” nucleus with a large

radius has a higher probability of passing under the Coulomb barrier at a given

energy [96]. A number of other important manifestations of the phenomenon of

Bose-Einstein condensation in nuclei can be found in the review [97].

Since it is assumed that it is not possible to find any other explanation for

the observed phenomena, we need methods to describe condensation in nuclei.

One of the most interesting proposed methods in this direction is the approach

developed in [94] by Yamada and Schuck. The condensate behavior was analyzed

on the basis of the Gross-Pitaevskii and Hill-Wheeler equations. This approach

has great generality, but is associated with significant computational difficulties.

Therefore, in the works [59, 60] we developed a different approach based on the

reduction of the problem to the problem of particle motion in some mean field,

with the subsequent solution of the Schrödinger equation.

Let us consider the nucleus as a system of interacting α-particles. In the
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simplest case of a 8Be nucleus (two α-particles), there is a resonance with energy

E∗=92 keV. The magnitude of the de Broglie wavelength, in this case, becomes

very large and thus we can require a large (compared to the size of the nucleus)

wavelength of the constituent particles. On the other hand, the approximate

distance between these clusters can be estimated from the dependence of the

rotational band levels on the angular momentum. Calculating the moment of

inertia of such a two-cluster configuration, one can obtain that the average density

of the 8Be nucleus roughly corresponds to one third of the average observed density

for most nuclei. Knowing the nucleon density distribution in the nucleus (from

electron scattering data), one can estimate the energy at which a cluster state close

in properties to Bose-Einstein condensation arises. And vice versa – at a known

energy of occurrence of the cluster condensate, one can estimate the corresponding

density. Note that the obtained result agrees well with Brink [5]’s prediction about

the occurrence of clustering when the nuclear density decreases approximately

threefold from the central one. As is well known, the dependence of nuclear

density on radius is described by a function with “diffusion” at the boundary,

and, figuratively speaking, light nuclei consist solely of “surfaces”. Thus, one can

justify the nuclear matter→α-cluster transition in light nuclei.

Let the function ρ0(r) → ρ(E, r) specify the distribution of the nucleon den-

sity in the nucleus and be some function of the excitation energy. We calculate the

function ρ(r) corresponding to a threefold lower nucleon density (assuming the

number of particles is conserved). Then, based on the convolution equation [98],

we can calculate the distribution of the cluster density in such a nucleus.

ρ(r) =

∫︂
ρcl(r

′)ρα(r − r′)d3r′. (12)

Here, ρcl(r
′) is the cluster density distribution, ρα(r) is the nucleon density distri-

bution in the α-particle. This distribution was taken from scattering work in the

form of the Fermi distribution:

ρα(r) = (1 + wr2/c)/

(︃
1 + exp

r − c

a

)︃
. (13)

The constants were chosen according to the work [11] as c=1.01 fm, a=0.372 fm,

w=0.445 fm. The result is to obtain the cluster density for the ground state
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of the nucleus and for the excited state corresponding to 1/3 of the density. It

should be noted that the cluster density distribution, in this case, is not a “final”

solution of the problem. For example, for a number of nuclei, the solution of such

a problem leads to the appearance of negative densities at the Satchler-Love [98]

transformation and it should be considered as intermediate, passing directly to

the potential. For this purpose, the obtained value of the cluster density should

be substituted into the convolution equation defining the interaction potential:

V (r) =

∫︂
ρcl(r

′)Vα(r − r′)d3r′. (14)

Here Vα(r) – specifies the interaction potential between α-particles. In this case,

the Yamada-Schuck potential from the paper [94] was used. This potential belongs

to the class of soft-core potentials and was found from fulfillment of two conditions:

1) A sufficiently fast decreasing wave function at zero. This is an analogue of

the antisymmetrization condition.

2) The ground state, for the interaction of two α-particles, should correspond

with high accuracy to the case of the 8Be nucleus (reproducing the experimentally

known width and energy of the resonance).

The obtained one-particle potential can be used to find the states correspond-

ing to the cluster phase transition under the assumption of independent motion of

the α-particle in the mean field V (r). Substituting it into the Schrödinger equa-

tion, we have the value of the single-particle state energy ESch, so that the phase

transition energy for a nucleus consisting of Nα α-particles can be calculated in

the form [59]:

EBEC = ESch(Nα − 1). (15)

This result allows us to plot the density dependence of the phase transition

energy. As mentioned above, we must take into account that in the 8Be nucleus the

averaged density is about three times smaller than the density at the center of the

middle mass group nuclei, as well as the positions of the experimentally observed

cluster states in the 12C and 16O nuclei. The result is presented in Figure 12.

It shows the dependence of the single-particle energy, obtained from the solution

of the Schrödinger equation with the potential found above, as a function of the
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Figure 12. Energies for cluster states [59].

nuclear matter density for the three nuclei. The dotted line shows the value of the

density corresponding to one third of the mean nuclear density. As can be seen,

the excitation energy decreases monotonically with increasing nuclear density.

Table 4 shows the values of the obtained energies of transitions to the con-

densed state (measured from the threshold of disintegration into constituent clus-

ters), as well as the values of the root-mean-square radii of such nuclear systems.

Table 4. Energies and root-mean-square radii of light nuclei during the transition to the Bose-
Einstein condensation state [59].

Number of Energy above threshold RMS radii
α-particles (MeV) (fm)

2 0.092 2.9
3 0.38 3.5
4 0.76 3.8
4 1.4 4.1
6 3.6 4.3
7 6.4 4.7

Figure 13 shows the behavior of the obtained excitation energies and the

values of the root-mean-square radii of the ground and excited states for nuclei

with different masses. It should be noted that the radii increase significantly

during the phase transition, which is in good agreement with the assumption of

the occurrence of a Bose-Einstein condensate in the nuclear system.
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Figure 13. Excitation energy values (left) and comparison of the radii of the ground and excited
states (right) of nuclei [59].

Assuming that the considered phase transition leads to a significant contri-

bution of the cluster configuration to the wave function of the nucleus, one can

expect a significant contribution of decay channels with cluster escape, as well as

the appearance of rotational bands.

In this chapter, the case of the maximal α-particle model has been considered.

It has been shown that the interpretation proposed in [3] continues to hold for all

nuclei known to date [54,55,57].

It has been shown that the cluster model gives good agreement with calcu-

lations based on the drop model with Nilsson-Strutinsky corrections for strongly

deformed states of the 20Ne nucleus [56, 60]. Candidates for such states from the

available experimental data are proposed. The possibility of existence of sub-

threshold chain states is shown [56].

It was shown that in the framework of the limit cluster model, by analogy

with the shell model, a transition to the description of the nucleus as a system

of α-particles moving in some mean field is possible [59]. The results of this

approach coincide with the results of calculations based on the Hill-Wheeler and

Gross-Pitaevskii equations [59].

1.2. Two-particle model

As it was pointed out in the previous section, in spite of the considerable

simplicity of the maximal α-cluster model, there are some difficulties associated
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with the transition to the quantum mechanical description. Moreover, such a

transition can take place directly only in the case of exotic states of the nucleus,

such as Bose-Einstein condensation. However, this is not a serious problem, since

a number of other approaches have been developed, among which, recently, the

AMD method has been emphasized.

At the same time, the approach in which the system is split into two parts

– a cluster (not necessarily a α-particle) and a cor, proved to be not only a clear

and simple model, but also allowed quantitative evaluations in the framework of

quantum mechanical calculations. As stated in the introduction, such a partition-

ing of the system is necessary to reduce the variables and to reduce the problem

to the easily solvable case of two-particle interaction.

Let us consider the most typical examples.

1) Helium isotopes. In this case, the α-particle plays the role of a core.

Moreover, despite the fact that the excess neutrons do not agree well with the

concept of a structureless, well-localized cluster, nevertheless this is also a variant

of the cluster degree of freedom, which allows one to reduce the number of variables

to solve structural problems very effectively. For example, for the 6He nucleus, the

problem reduces to three-body instead of six-body. And, in spite of the fact that

stochastic methods currently allow to work with systems of 6 or more particles,

this transition significantly simplifies the description of the system.

2) The 6Li and 7Li nuclei. These nuclei turned out to be very convenient

to consider as a α-particle plus a deuteron or, respectively, a triton. Owing to

the low energy of collapse into these components, the use of these nuclei in the

transmission reaction opened a new chapter in the study of α-particle states in

heavier nuclei.

3) The 8Be nucleus. This is the first unstable self-conjugate nucleus. It

exists only as a resonance with energy 92 keV, decaying into two α-particles.

Nevertheless, this is one of the most important cases of clustering, allowing us

to study this phenomenon effectively. This nucleus has already been mentioned

in the section on chain configurations and Bose-Einstein condensation. It is also

necessary to note important corollaries such as:

- The presence of a rotational band, which allows us to estimate the distance
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between the α-particles composing the nucleus, and to use this value as a measure

of clustering [18,41,59]. This point will be described in more detail below.

- Information on resonance states has contributed to the emergence of α-α in-

teraction potentials that greatly facilitate the description of cluster degrees of free-

dom within the potential model [99–103]. One of such potentials was used above

in the description of the α-particle condensate in nuclei, the Yamada-Schuck [94]

potential.

- Because of the above properties, an important indicator of the cluster con-

tent in the excited states of nuclei is the departure of the 8Be nucleus in reactions

proceeding through compound-nucleus [47] formation. The experiment performed

by us will be described in the corresponding section.

- This nucleus proved to be crucial for checking the position of a number of

exact quantum mechanical models that do not contain clustering explicitly [17].

4) The 12C and 16O nuclei. At first glance, reducing these nuclei to the two-

particle version contradicts the previously discussed models with a “geometric”

approach. However, especially for the oxygen nuclei, this approach has greatly

clarified their structure, resulting in the confirmation of the correctness of the

geometric approaches [104].

5) The 20Ne and 44Ti nuclei. These nuclei are “canonical” in describing the

cluster degrees of freedom within the potential model. Populating two protons

and two neutrons in a new shell above the magic number promotes clustering on

the one hand, making “pure” shell calculations difficult on the other [76]. For

a long time, this approach was the only way to describe the rotational bands in

these nuclei arising from the α-particle transfer.

1.2.1. Tunneling

A number of the examples discussed above are united by the appearance of

well-structured rotational bands. This is not the only manifestation of the cluster

nature of these nuclei, but it is one of the most obvious and well describable.

To explain the appearance of rotational bands in the 16O nucleus, the manifes-

tation of the cluster structure of this nucleus in the form of 12C+α was considered

in [15]. Such a structure leads to a noticeable octupole deformation. The latter

can have a minus or plus sign, but energetically these states are degenerate. Then
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the new state can be described as their superposition in the form Ψ±=⟨12C⊗α⟩ ±
⟨α⊗12C⟩. The plus corresponds to even and the minus to odd states. If the Hamil-

tonian of the H system allows mixing between them (the possibility of a tunnel

transition between these two deformations), then the splitting ∆E=⟨Ψ−HΨ−⟩-
⟨Ψ+HΨ+⟩ will occur between the states with positive and negative parity. This

will cause the band with even values of states to be lower than the band with odd

values.

E+(J) = E0 − ∆E
2 + ℏ2J(J+1)

2Θ+ K=0+,

E−(J) = E0 +
∆E
2 + ℏ2J(J+1)

2Θ− K=0−.
(16)

At the same time, their moments of inertia Θ+ and Θ− almost the same.

The model turned out to be very successful in terms of a visual explanation

of the phenomenon, but unfortunately it was difficult to parameterize, taking into

account that for heavier nuclei the splitting value turns out to be a function of

the spin of the state (or excitation energy). Below we will consider in detail the

contribution of such a mechanism in the case of the 40Ca nucleus.

1.2.2. Potential model in an elastic channel

Much more successful, from this point of view, was the potential model in

which the cluster was in the core field.

The basic ideas for this approach are the results obtained from resonance

scattering, namely, the observation of sufficiently narrow resonance states form-

ing one or more rotational bands with approximately linear dependence of the

excitation energy on the square of the angular momentum. As in the case of

the quasi-classical approximation for a deformed nucleus, the level system of the

rotational band can be described, in the first approximation, by the formula (10),

so that the problem is reduced to the determination of the excitation energy of

the head level E∗ and the moment of inertia.

For the moment of inertia, it is easiest to consider the case of two spherical

nuclei – cluster A1 and core A2, so that the formula (9) can be rewritten as:

Θ = N0

[︃
2

5
(A

5/3
1 + A

5/3
2 ) + [A1A2/(A1 + A2)](A

1/3
1 + A

1/3
2 )2

]︃
· r20, (17)
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where N0 is a parameter and r0 ∼1.3 fm. In particular, in the work [105], a

value of 0.0104 ·10−42MeV·c2 was chosen for N0. In the following, when analyzing

our results, we will use a simplified version of this formula as a criterion for the

possibility of a cluster description of the bands.

For the case of heavy clusters, in the considered phenomenological approxi-

mation, the excitation energy for the head level can be chosen as E∗ = EB +EC ,

where EB is the binding energy for the considered cluster-core system, and EC is

the Coulomb interaction, which is a correction for the threshold state in the Ikeda

diagram. It can be chosen in the form [105]:

EC = 1.21Z1Z2[r0(A1 + A2)](A
1/3
1 + A

1/3
2 ) + 0.5]−1. (18)

In spite of the fact that this approach, as will be shown below, allows us

to describe the rotational states for “good” cluster nuclei quite accurately, it

has significant disadvantages inherent in all phenomenological approaches – poor

definition of the limits of applicability of the approach and difficulty of including

the obtained results in the quantum-mechanical description of the structure of

the nucleus.

The simplest variant of the extension of this problem is the quantum-

mechanical solution for the system of two bodies interacting by means of some

potential. Let us briefly consider the main provisions of the potential model.

As mentioned in the introduction, the main contribution to its development was

made by Bak [11–13] on the basis of analyzing the applicability of the convolution

potential for cluster states [14]. As usual, in the quantum mechanical two-body

problem, the Hamiltonian is divided into parts corresponding to the relative mo-

tion and the motion of the center of mass. For the problem of relative motion of

the cluster with mass A1 and the core with mass A2, the Schrödinger equation

must be solved:

Ĥψ(r) =

[︃
ℏ2

2µ
∇2 + V (r)

]︃
ψ(r) = Eψ(r), (19)

where µ = A1A2

A1+A2
is the reduced mass, and V (r) is the interaction potential of

the cluster and the core. Further, the problem is reduced to solving the radial

equation:
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[︃
−ℏ2

2µ

d2

dr2
+

ℏ2L(L+ 1)

2µr2
+ V (r)

]︃
φnL(r) = EnLφnL(r) (20)

and the potential is taken as the sum of the nuclear and Coulomb interactions:

V (r) = VN(r) + VC(r). (21)

The Coulomb term, unless otherwise specified, is written as:

VC(r) =

⎧⎪⎨⎪⎩
Z1Z2e

2

2RC

[︃
3−

(︂
r
RC

)︂2]︃
r ≤ RC ;

Z1Z2e
2

r r > RC .

(22)

Another variant of the notation, via the error function erf(ar)/r, was used by us,

as mentioned above, in the calculations of the condensation state.

Thus, the problem is, for the most part, reduced to the choice of the nuclear

potential VN . In describing the maximal α-cluster model, we have used set of the

molecular potentials, which is consistent with the main idea of the cluster [18] ap-

proach. This type of potential can be roughly divided into attractive and repulsive

regions. The latter, in our case, corresponds to the Pauli principle by preventing

a strong cluster-core overlap when cluster destruction will occur due to antisym-

metrization. This approach has also been implemented when trying to describe

the α-α interaction [103]. There have been more or less successful attempts at a

general description of cluster-core type systems with an impermeable wall [106]

(as a variant, with a soft core, when the wave function decreases rapidly enough

at zero [94]). On the other hand, for the case of nuclear interactions, it would have

been preferable to go to well-established optical potentials, such as Woods-Saxon.

However, a serious problem in this case was the presence of so-called unphysical

states in such potentials. This was especially important when directly solving

the equation (20) with a sufficiently deep potential. Of the resulting spectrum

of bound states, only some corresponded to the experimentally observed levels.

The rest appeared to be forbidden due to the Pauli principle. The problem was

solved by introducing a condition on the number of nodes, which can be found

from Wildermuth’s formula [11]:
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2N + L ≥
nc∑︂
j=1

(2nj + lj). (23)

Here N and L are the principal quantum number and orbital momentum of the

cluster, and n and l are the corresponding quantum numbers of the nucleons in

the cluster containing nc nucleons. Usually, for calculations of the main rotational

bands in this formula, the number of nodes of the ground state wave function is

chosen so that the equality is satisfied. This approach allows one to exclude

unphysical states, but imposes a number of requirements.

(1) As shown by Ohkubo in [107], the formula (23) is applicable only if, if the con-

dition of strong overlap with the oscillatory wave functions uNL(r) is satisfied for

the wave functions of the forbidden states φNL(r), i.e., the value ⟨φNL(r)|uNL(r)⟩2

is close enough to unity. In particular, it is shown in [107] that the potential pro-

posed by Pilt [108] and well describing the level distribution for the 44Ti nucleus

does not possess such a condition.

2) In the case of sufficiently heavy clusters, it is sometimes difficult to calculate

the right-hand side of the formula (23), not to mention the fact that it has only

the character of a restriction. Moreover, the problem of cluster selection is not

always self-evident. This problem was successfully solved by Buck [109].

It should be noted that such an approach is valid only in the case of the

local potential model under consideration. The microscopic approach within the

resonating group method or algebraic approaches may yield a different number

of nodes. Thus, for example, for the case α+12C in the orthogonal conditions

method and the resonating groups method, the head state of the rotational band

K = 0+ (at an excitation energy of 6. 6 MeV) is described by a wave function

with three nodes (2N + L=6) [110], while the potential model and the model

based on SU(3) symmetry assume 4 nodes (2N + L=8) [111].

Hence, one of the central problems of this approach is the choice of potential.

We mainly use form factors for potentials of the following kind:

-Woods-Saxon WS.

f(r) =
1(︁

1 + exp
(︁
r−R
a

)︁)︁ (24)
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-Square Woods-Saxon WS2.

f(r) =
1(︁

1 + exp
(︁
r−R
a

)︁)︁2 (25)

-Potential developed by the Oxford group cosh.

f(r) =
1 + cosh(R/a)

cosh(r/a) + cosh(R/a)
(26)

-Combination WS +WS3.

f(r) =
x

1 + exp
(︁
r−R
a

)︁ + 1− x[︁
1 + exp

(︁
r−R
3a

)︁]︁3 (27)

-Potentials of single F1

f(r) =

∫︂
ρcl(r

′)Vα(r − r′)d3r′ (28)

or double F2 folding.

f(r) =

∫︂ ∫︂
ρcl(1)(r1)ρcl(2)(r2)Vα(s)d

3s (29)

here s = |r+ r1 − r2|.
All the above potentials will be further considered in a more general case,

when describing reactions in the framework of the optical model. In this case, we

add an imaginary part to the interaction potential, usually in the form WS, so

that the total interaction potential can be written as:

U(r) = −V (r) + iW (r), (30)

where V (r) = V · f1(r) and W (r) = W · f2(r), V,W are the depths of the real and

imaginary parts, and f1,2 are the form factors of the real and imaginary parts,

respectively. This approach allows us to successfully describe the angular distri-

bution of elastic scattering of particles and ions, and the permeability coefficient

calculated for a given potential allows us to calculate the fusion cross section.

The following criteria for “successful” application of the selected potential

can be specified:
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1) Describe the distribution of rotational band levels.

2) Reproduce the widths of the resonance states.

3) Reproduce the intensities of electromagnetic transitions between states.

4) The potential can be used as a real part in describing the angular distri-

bution of elastic scattering of a nucleus-cluster on a nucleus-core to determine

the cross section (or correctly reproduce phase shifts) or to describe reactions

with particle redistribution (e.g., to determine the permeability coefficient in the

Hauser-Feshbach model).

In some cases, the problems may be supplemented by requirements to repro-

duce the mean radius or momentum distribution.

In part, such problems for the “canonical” nuclei 20Ne and 44Ti, as well as for
8Be, were solved by Buck in [76,101,112].

In addition, the rotational bands can be analyzed in the framework of

form [113] isomerism, in analogy to the states found in the actinide region. Such

predictions, obtained for a number of self-conjugated nuclei in the p and sd shell

region, allow one to link low-lying low-spin states whose cluster structure is es-

tablished, for example, from the study of transfer reaction or elastic scattering

mechanisms and high-spin states found from the study of γ spectra.

Further extensions of the model are usually associated with group theory

calculations. One of the main reasons for the necessity of such an extension is the

difficulty (or impossibility) of describing the experimentally observed phenomenon

of fragmentation of cluster states, when several closely spaced states with the same

spin are observed. Within the potential model the description of this phenomenon

can be given only qualitatively, while the group approach for light nuclei allows a

detailed comparison for most levels. The basis for this approach is the idea of the

formation of molecular states arising from the interaction of nuclei, so that some

similarity between rotational and vibrational states should be observed, as is the

case in two-atomic molecules. By introducing the vibrational quantum number n0

as an additional degree of freedom, along with the angular momentum, a relatively

simple formula for describing the spectrum of excited states [114] (an extension

of the formula (10)) can be obtained:
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EL,n0
= −D + A

(︃
n0 +

1

2

)︃
−B

(︃
n0 +

1

2

)︃2

+ CL(L+ 1), (31)

where A,B,C,D are the fitting parameters. The number of fitting parameters

can be reduced within an anharmonic vibration-rotation model approach that

takes into account the quadrupole nature of the vibration component, as was

done in [115].

All this convincingly shows the importance of taking into account the cluster

states for the above nuclei. It should be noted that even for them the problem is

far from being solved [116,117]!

Another significant gap in the description of the cluster degrees of freedom is

the weak study (both experimental and theoretical) of light nuclei with neutron

excess. It is to fill this gap that Chapter 3 is devoted.

The potential model can be extended to the inelastic channel. In this case,

the problem is reduced to the calculation of the reaction cross section using the

formula:

σ(E) =
π

k2

∑︂
L

(2L+ 1)(1− |η(E)|2), (32)

where η(E) – is defined in terms of the phase shift for a given potential. In

the most general case, this approach requires the imaginary part of the potential

or the imposition of boundary conditions on the wave function used. To date,

this method has worked well when used in conjunction with the coupled channel

method. Nevertheless, this variant already implies a departure from the clustering

ideas considered in this paper, so the variant with cross-section computation based

on (32) will be considered in the last chapter as an analog of the cluster case for

the potential model. In this case (32) can be rewritten as:

σ(E) =
π

k2

∑︂
L

(2L+ 1)TL, (33)

where Tl is the permeability coefficient for partial wave L at energy E. The

simplest but very useful case of the potential is the rectangular pit model. Let us

consider only the case of a pit of radius R, where the potential outside is defined

only by the sum of the Coulomb (22) and centrifugal VL = L(L + 1)ℏ2/(2µR2)
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potentials. In this case, the permeability coefficient is written in the form:

PL(kR) =
1

FL(kR)2 +GL(kR)2
. (34)

here Fl and Gl are regular and irregular Coulomb wave functions, respectively.

This quantity is often encountered in nuclear reaction physics. In Chapter 7, an

extension of this model to the complex potential and the description of fusion

reactions will be discussed.

1.3. Reactions

Below is a brief overview of the main reaction types used in this work.

1.3.1. Elastic scattering

The simplest reaction to infer a significant contribution of the α-cluster state

is the elastic scattering of α-particles. In this case, information on the properties

of the levels can be extracted from the phase analysis of the angular distribution.

Unfortunately, such a procedure becomes rather complicated as the level density

grows, especially given our increased interest in levels with large reduced widths,

i.e., with a high contribution from configurations of the —α⊗Cor⟩ form.

Nevertheless, it was the resonance scattering experiments that provided initial

insights into the manifestation of α-cluster states. For this purpose, measurements

of the energy dependence of the elastic scattering cross section of α-particles were

carried out, and the excitation function had to be known in a sufficiently wide

range but with a small energy step. Then, if the energy of the α-particle-target

system corresponded to some level of the constituent nucleus, a significant in-

crease in the cross section, of the order of several barns, was observed. Significant

progress in the study of this reaction has been made since the advent of tandems

– optimal gas pedals for studying excitation functions with good accuracy. How-

ever, if the range of energies is too large and there are no accurate predictions for

the positions of the relevant levels, the work of scanning the relevant region re-

quires a Herculean effort. This is evident from the results obtained in the study of

the spectra of 16O and 20Ne nuclei at the University of Madison-Wisconsin under

the direction of Prof. Richards [118–121].
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The quantum description of the scattering of a zero-spin particle is well un-

derstood and described in the relevant sections of scattering theory. For simplicity

we will restrict ourselves to the case of spinless particles. Consider a system of

two interacting particles described by the Schrödinger equation (19). At a large

distance from the scattering center and under the condition of spherical symmetry

of the potential and its boundedness in space, the solution can be written as a

superposition of the incident plane wave and the scattered spherical wave:

ψ = eikz + f(θ)
eikr

r
. (35)

Here k =
√
2µE/ℏ, and f(θ) is the scattering amplitude. In the case of elastic

scattering, it can be shown that the following equality holds for the cross section

magnitude:

dσ

dΩ
= |f(θ)|2. (36)

By passing to the radial wave φ(r) functions for the Schrödinger equation and

using the spherical wave decomposition of the incident plane wave from (35),

we can obtain an expression for the scattering amplitude (the Faxen-Holtsmark

formula):

f(θ) =
1

2ik

∑︂
L

(2L+ 1)(exp(2iδL)− 1)PL(cosθ). (37)

where δL is the magnitude of the phase shift and PL(cosθ) is a Legendre polynomial

of order L.

Consider an isolated level in the nucleus excited by interaction with a beam

particle. Then, the excitation energy can be written as:

E∗ = E + S, (38)

where E is the channel energy equal to the energy of the colliding particle in the

center-of-mass system, and S is the binding energy of the particle in the compound

nucleus. By analogy with an oscillator with friction, the amplitude of oscillations

of which, under the action of a forcing force, depends on the frequency of its

influence on the oscillator, we can rewrite the expression for the wave function of
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a decaying quantum system:

ψ ∼ exp(−iEt/ℏ) exp(−Γt/(2ℏ)). (39)

This gives an exponential decay of the quantity ||ψl|2 with lifetime τ = ℏ/Γ. Such
a state can be constructed as a superposition of states with a small difference in

energy:

ψ ∼
∫︂ +∞

−∞
A(E) exp(−iEt/ℏ)dE, (40)

where A(E) denotes the amplitude of states with energy E. Since the cross section

is proportional to the square of the amplitude, after the Fourier transform, we can

write:

σ ∼ 1

(E − E0)2 +
1
4Γ

2
. (41)

The proportionality factor can be determined from a phase space analysis for

the reaction under consideration [122], so that, for a reaction in which x denotes

the input channel and y denotes the output channel, we have:

σxy =
π

k2
(2Lx + 1)

ΓxΓy

(E − E0)2 +
1
4Γ

2
, (42)

which is a variant of the Breit-Wigner formula for spinless particles.

Taking into account the phase shift value introduced earlier in (37), the elastic

scattering cross section from formula (36) can be written as:

σL(E) =
4π

k2
(2L+ 1) sin2 δL, (43)

In this case, the Breit-Wigner cross section is reproduced when the equality

tan δL = Γ/(2(E0 − E) is satisfied. It follows that at the resonance energy, i.e.,

when (E0 − E)=0, the phase shift is δL = 1
2π.

More generally, in order to reproduce the behavior of the cross section be-

tween two resonances, both resonance scattering (βL) and potential scattering

(scattering on a rigid sphere) processes ϕL are taken into account in the phase

shift. Then δL = βL − ϕL and the resonance condition:
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βL = arctan
Γ

2(E0 − E)
(44)

and the elastic interaction cross section can be written as:

σL(E) =
4π

k2
(2L+ 1)

⃓⃓⃓⃓ 1
2Γ

E0 − E − 1
2 iΓ

− exp(iϕL) sin(ϕL))

⃓⃓⃓⃓2
. (45)

Analysis of the scattering of α-particles on the basis of this theory led to some

curious conclusions. It turned out that levels with a significant contribution of

states with the α⊗Cor structure are very common in nuclei. This result was some-

what unexpected, since there were difficulties in explaining it in the framework of

the shell model. The continued search for similar states at higher excitation en-

ergies or in heavier nuclei was hampered by the imperfection of the experimental

procedure. Indeed, it was necessary to scan a very large area with a small step,

and a considerable time was required to set the appropriate statistics.

As can be seen from the formulas (36) and (37), the differential cross section

for elastic scattering includes the square of the Legendre polynomial. Thus, the

maximum of the cross section will be observed at angles 0◦ and 180◦. However,

there is interference with the potential scattering discussed above, which nega-

tively affects the observation of resonances. Assuming that the potential scat-

tering has a smooth dependence on the angular momentum, and that the even

and odd Legendre polynomials have different signs when scattering by 180◦ and

the same when scattering by 0◦, we obtain that the potential scattering is large

under 0◦and small under 180◦. Thus, with backward scattering we have optimal

conditions for studying resonances.

The Inverse Geometry and Thick Target Method (IGTT) is devoid of the

above disadvantages (the need to scan a wide energy region with a small step and

the unattainability of the angle 180◦). In this case, a beam of heavy ions from

the gas pedal enters a scattering chamber filled with gas containing light nuclei

(hydrogen, helium). At the same time, the beam energy, taking into account

losses in the thin entrance window and gas pressure, is chosen so that the beam

stops completely in the chamber. In the case of interaction of beam particles with

a gas target, light recoil nuclei with a much longer range can be registered by
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Figure 14. Inverse geometry method with a thick target
.

detectors located on the chamber wall, including at an angle of 0◦, corresponding

to an angle of 180◦ for the “usual” geometry. Another important advantage of this

scheme is the possibility of scanning a large range of energies (from the energy

that the beam has immediately after passing the window to zero) in “one pass”,

i.e., without changing the energy of the accelerated ions. This makes it possible

to use a cyclotron with a sufficiently high beam intensity as a gas pedal. It

should also be noted the possibility of working with heavy ions, experiments with

which are difficult in the case of direct geometry (gases or radioactive isotopes).

The disadvantages of the method include the difficulty of obtaining the angular

distribution in a fairly wide range of angles due to the problem of determining the

point at which the interaction of the beam ion with the nucleus of the gas target

occurred and, as a consequence, the “integrity” of the cross section, which grows

rapidly with increasing angle, as well as the difficulty of separating the elastic and

inelastic components.

A schematic diagram illustrating such an approach is shown in Figure 14.

The yield function for the reaction under consideration for the energy range

E = (E1 − E2) will be described as [123]:

Y (E) = I(E)

∫︂ E+∆E/2

E−∆E/2

σ(Ei)

ϵ(Ei)
dEi, (46)
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where ∆E is the energy channel width, I(E) is the number of beam particles, and

ϵ(E) is the beam braking cross section in the gas target.

This method was very effective in studying the resonance scattering of α-

particles on both self-conjugated nuclei and neutron-excess nuclei with excitation

of levels having α-cluster nature. Figure 15 shows an example of the excitation

function we obtained for the scattering of α-particles on such nuclei. The ex-

periment was performed on a DC-60 cyclotron (Astana, Kazakhstan). The time-

of-flight separation method was used as an identification method. A detailed

description of the performed work is presented in the article [124]. Comparison

of the results obtained by us with abstracts shows high efficiency of the method.

These results are important not only for the study of cluster degrees of freedom,

but also for nuclear astrophysics problems.

1 2

Figure 15. 1. Time-span spectrum for the products of the interaction of the 15N nucleus with α-
particles. 2. The elastic scattering excitation function of α+ 15N obtained in this work (red line).
A comparison with the results obtained in the traditional geometry (blue line) [124] is shown.

Finally, it is possible to study the manifestation of cluster configurations

formed by the scattering of heavier ions, where a significant number of molec-

ular resonances can be observed. This is the case, for example, in the systems
12C+12C, 16O+12C, 16O+16O, 24Mg+24Mg, 28Si+28Si [125]. But the currently avail-

able experimental data for these nuclei are scarce enough that the corresponding

rotational bands cannot be clearly distinguished. Despite the importance of the

problem – determination of molecular states in the heavy ion system – to date

there is no approach that allows one to unambiguously distinguish such states

in experiment. Thus, for the most interesting from this point of view system
16O+12C, about half a dozen states that can be considered as quasi-molecular are

known so far. The main experimental approaches here can be considered to be:
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1) Analysis of the angular distribution for energies corresponding to a resonance-

like change of the cross section with energy. It is assumed that in this case the

summation in the formula (37) is dominated by the summand for the angular

momentum L, so that the contribution |PL(cos θ)|2 in the angular distribution

will be significant. Obviously, this method requires an angular distribution in the

maximum available angular range and performs poorly both at very low energies

(because of the significant Coulomb contribution) and at very high energies (be-

cause of the very high level density and strong oscillations). Further this approach

will be analyzed in more detail.

2) Analysis of the oscillations of the merger cross section, with assignment of

angular momenta to the peaks, according to the assumption of a linear dependence

of the excitation energy as a function of L(L + 1). A significant disadvantage of

this approach is the considerable ambiguity in determining the magnitude of the

angular momentum of the system. It is sometimes assumed that it is close to

the grazing angular momentum at a given energy, which can be used as a first

approximation.

3) The angular correlation method for three particles in the output channel. The

reaction used in this case has the form A(B,C+D)E, where C+D is the system

under study, in which molecular resonances are assumed to exist. The cross

section of such a reaction also has a dependence |PL(cos θ)|2. The advantage of this
method is the very high selectivity of the response to the states under study, as well

as the possibility to work without changing the beam energy. The disadvantage

of this approach is the strong contribution of the continuous spectrum to the

oscillatory spectrum, which often leads to ambiguity in the determination of the

angular momentum.

1.3.2. Transfer reactions

The resonance scattering method discussed above has limited sensitivity at

low energies due to the strong influence of Coulomb scattering. Since the elastic

scattering amplitude is a coherent sum of the Coulomb and resonance contri-

butions, there are difficulties in observing resonance peaks in the near-threshold

region. On the other hand, the transmission reaction allows one to populate both

bound and resonant states, the cross sections for which will be proportional to
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the spectroscopic factor.

Let us make a more detailed comparison of these methods. The width Γ

that can be obtained in the case of elastic resonance scattering described above

is related to the value of the reduced width γ2 as follows:

Γ = 2kRPL(kR)γ
2, (47)

here k is the wave vector, and R is the channel radius, and the value of PL(kR)

is determined from the expression (34). In this case, the spectroscopic particle

transmission factor can be determined from the DWBA description of the angular

distribution of the transmission response, as the ratio of the experimental cross

section to the theoretical cross section:

S =

(︃
dσ

dΩ

)︃
exp

/︄(︃
dσ

dΩ

)︃
DWBA

. (48)

Then the relation between the obtained spectroscopic factor and the value of the

reduced width is defined as:

γ2 =
3ℏ2

2µR2
S. (49)

Thus, transfer reactions can be useful for studying states in the neighborhood

of the threshold where the observed value of Γ is very small but the value of γ2 is

large.

Consider a reaction in which the nucleus c2 interacts with the nucleus a1,

consisting of the core c1 and the particle t. In the reaction under consideration, t

is transferred to the nucleus c2, forming the nucleus a2.

(c1 + t)⏞ ⏟⏟ ⏞
a1

+c2 → c1 + (c2 + t)⏞ ⏟⏟ ⏞
a2

. (50)

The differential cross section for this process can be written as:

dσ

dΩ
=

mimf

(2πℏ2)2
kf
ki

1

(2a1 + 1)(2c2 + 1)

∑︂
α1,α2,γ1,γ2

|Tα1,α2,γ1,γ2|2, (51)

where m1,m2 are the reduced masses of the nuclei in the input and output chan-



59

nels, ki,kf are their wave numbers, a1, c2 are the spin values of the corresponding

nuclei, and α1,α2,γ1,γ2 are the corresponding spin components. The amplitude of

Tα1,α2,γ1,γ2 can be written within the DWBA approximation:

Tα1,α2,γ1,γ2 = ⟨χ−
f,c1,γ1,a2,α2

|∆V |χ+
i,a1,α1,c2,γ2

⟩, (52)

where χ−
f (rf) and χ+

i (ri) are distorted waves, with an expression of the form

|a1α1⟩ giving the full wave function for the a1 nucleus (for others – analogously).

Interaction can be described in two ways, POST and PRIOR:

∆V POST = Vc1t + Vc1c2 − UOPT
c1a2

,

∆V PRIOR = Vc2t + Vc1c2 − UOPT
c2a1

.
(53)

In this case, UOPT
c1a2

and UOPT
c2a1

are the potentials (optical and Coulomb) used in

the calculation of distorted waves χf and χi. Vc1t , for example, describes the

interaction between the core c1 and the transmitted particle t, with the Coulomb

potential taken into account in describing all interactions.

From the perspective, considered in the present work, of the problem of study-

ing cluster states in nuclei, the transfer reactions with lithium ions play a special

role for this type of reactions. Like deuterons, the work with which led to the de-

velopment of the theory of transfer reactions, lithium nuclei are relatively weakly

bound, and, as indicated by theoretical and experimental studies, they have a pro-

nounced quasi-molecular structure. Thus, lithium isotopes with mass numbers 6

and 7, can be represented as: 6Li=α+d, 7Li=α+ t. This structure leads to an in-

creased probability of transfer of the α-cluster in reactions (6Li,d),(7Li,t), as is the

case for reactions of the type (d, p),(d, n). This leads to preferential populating of

those states of the nucleus-product that possess a cluster structure. In this case,

the formulas considered above (on the example of the reaction 12C(6Li,d)16O) can

be rewritten in the following form. The contributions to the potential describing

the transfer for the POST and PRIOR cases will be Vαd and Vα12C , respectively.

Then the transition amplitude can be written in the form:

T =

∫︂
χ∗
d16O(kd, r)⟨φdφ16O|V |φ6Liφ12C⟩χ12C6Li(k6Li, r)dr. (54)
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The expression in angle brackets describes the form factor for this reaction.

The reaction with α transfer is also possible for heavier nuclei. This process

is related not only to the molecular states discussed above, but also to the man-

ifestation of the α-cluster structure of these nuclei. To make this approach more

explicit, we can consider the resonance scattering process of nuclei of the form

(A+two protons and two neutrons)+(A). The first nucleus can be considered as

having the structure (A+ α), so that the α-particle can be transmitted to the

second nucleus, introducing distortions in the elastic scattering amplitude due to

the indistinguishability of the output channels.

Of course, the class of transfer reactions (pickup) of the α-particle is much

broader than mentioned above. Let us mention here only our work on the study

of the transition from collective to single-particle degrees of freedom in stron-

tium [126]

In the present work, this type of reaction was used to study the states in

neutron-deficient isotopes of beryllium and carbon, as well as to study the contri-

bution from elastic cluster transfer in heavy ion scattering.

1.3.3. Quasi-free scattering

The third type of reaction used in this paper is the knockout reaction. Com-

pared to two-particle reactions, this type of reaction leads to the appearance of

three particles in the exit channel, which leads to a significant complication of

the description of kinematics, when instead of two independent variables (energy

in the center-of-mass system and angle) there are five variables. In this case, a

different choice of a set of such variables is possible, for example, the total energy

in the center-of-mass system, three angles in the center-of-mass system determin-

ing the direction of two departing particles, and the energy in the center-of-mass

system of one of the particles.

In the case when the relative energies of the colliding particle and the target

greatly exceed the binding energy of the constituent elements (beam or target), we

can neglect this binding and consider the collision as quasi-free. Let us consider

the case when the colliding particle is considered as a structureless object a,

and the target consists of a weakly bound core b and a particle x (or a group

of particles). The reverse case (weakly coupled beam particles and structureless
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target particles) can be described within the framework of the inverse kinematics

discussed above.

a

b
x

x(b)

c {QFS = a} 

d {QFS = x(b)}

e {QFS = b(x)}1

2

Figure 16. Diagram of a reaction with a three-particle state in the output channel. The products
in the output channels for quasi-free scattering QFS are indicated

.

In general, the interaction of such systems leads to a three-particle state in the

output channel – particles c, d, e, which can be viewed as a two-particle interaction

of particle a with core b or particle x. Figure 16 shows the general case of the

diagram for a three-particle reaction. In the case of quasi-free scattering, we have

particles a, b and x in the exit channel, as shown in Figure 16 on the right. Such

a process, in the simplest case, can be described by plane waves in the Born

approximation, where all particles are treated as free except for the initial bound

state bx, whose wave function we can describe as ψ(rb−rx). Thus, the problem is

reduced to the computation of the amplitudes of the processes occurring in vertices

1-2. In the case of the lower vertex (1), we need to extract the factor corresponding

to the Fourier transform of the above wave function for the bound state bx, since it

is this quantity that determines the transferred momentum at scattering b, so that

ψ(pb) =
∫︁ ∫︁

exp(ipbr)ψ(r)dr. The opposite vertex corresponds to the amplitude

of the Born approximation for the reaction a + x(b) → a + b(x). Then, in the

simplest case, for the magnitude of the cross section, we can write:

dσ = K

(︄
T cm
i

T cm
f

)︄ 1
2 (︃

dσ

dΩ

)︃
cm

|ψ(pb)|2 × vol. (55)

Here K is the kinematic factor, which includes the necessary constants, the spec-

troscopic reaction factor, and the masses. The relative kinetic energies can be

written as T cm
f = µcd(vc − vd)

2/2 and T cm
i = µab(va − vb)

2/2 for the case of

scattering on a light fragment, vol is the phase space element.

We used this type of reaction when studying the nuclei of 6He and 8He.
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1.3.4. Processes of decay of an excited system

Except for the α-decay process mentioned in the introduction, the methods

of studying cluster degrees of freedom discussed above assume the presence of a

cluster in the input channel of the reaction. At the same time, the presence of clus-

tering processes in light nuclei can also be inferred from the processes associated

with the decay of the resulting compound system. This is especially true for nuclei

with neutron excess, when certain excited levels can be considered as molecular

states. In most cases, the evidence of such states is not the decay into the corre-

sponding clusters, but the correspondence of the obtained data (binding energies,

level scheme, angular distribution of reaction products, etc.) to the calculations

performed under the assumption of clustering, especially if the obtained results

contradict the calculations based on the single-particle model. Effective methods

for studying such states are, for example, multinucleon transfer reactions, heavy

ion fusion reactions with the formation of high-spin states followed by γ-decay

(excitation of rotational bands), and cluster knockout reactions. These types of

reactions will be used in the analysis of heavy cluster departure.
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Chapter 2. Experimental methods

Let us briefly review the experimental methods that were used in our experi-

ments. As can be seen from the models described above, we need to carry out the

registration and determination of the charges and masses of nuclei, starting from

α-particles, in a wide range of angles, at relatively low energies. With the excep-

tion of the work on helium isotopes (this experimental setup will be described in

the corresponding chapter), such registration has mainly been carried out by the

∆E − E technique. In this case, the particle is registered by two detectors: a

thin detector in which it loses a small fraction of energy ∆E and a thick detector

in which the particle completely loses the remaining energy E, so that the total

energy is Etot = ∆E + E. From the Bethe-Bloch law we know that in this case

for nuclei with charge Z and mass A the condition:

∆E

∆X
∼ Z2A

E
, (56)

where ∆X is the thickness of the thin detector. Then the registered nuclei with

a given value of Z2A appear to be located on a hyperbola in the coordinates

E on the ordinate scale and ∆E on the abscissa scale. As can be seen, the

energy of the detected particle must be at least as large as the loss in a thin

detector, which imposes severe limitations due to the complexity and cost of very

thin silicon detectors. For example, a silicon ∆E detector with a thickness of

20 µm completely stops α-particles with energies on the order of 4 MeV. For this

reason, we used such ∆E detectors only in the case of α-particles of sufficiently

high energies (when studying nuclei heavier than 32S). To cover the largest area,

we used the ISIS [127] setup (thickness of ∆E and E parts 130 µm and 1 mm,

respectively, for 40,42Ca nuclei).

To record heavy ions and α-particles of low and intermediate energies, we

used ICARE [128] gas telescope systems and position-sensitive assemblies based

on proportional counters [129]. In the latter case, each assembly was a gas ∆E

part and 10 PIN diodes for the E part. The sensing area was 18 cm2. The

thickness of the sensitive layer of PIN-diodes was 380 µm, which made it possible

to measure the spectra of particles with maximum energies: p – 7 MeV, d – 9
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.

Figure 17. Lock diagram of the experimental setup
.
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MeV, t – 11 MeV, 3He – 25 MeV, α – 28 MeV.

The gas ∆E part was a proportional chamber, with a single high impedance

electrode (33 kOhm) at the center of the chamber, which allowed us to obtain

the magnitude of the charged particle energy loss in the gas and the X coordinate

values. The depth of the chamber was 1 cm. The entrance window of the chamber

was Mylar, 2µm thick (with wire amplification). The detector was filled with a

gas mixture of Ar+10% CH4 at a pressure of 400 mbar. Thus, labeling the signals

from both ends of the electrode as A1 and A2, the loss and coordinate information

can be obtained as:

∆E = C ∗ (A1 + A2), (57)

X = l ∗ A1 − A2

A1 + A2
. (58)

Here C is the normalization constant, which is found during detector calibration,

and l is the electrode length (12 cm). The resolution for α-particles at maximum

energy was 70 keV and 65 keV for the E and ∆E parts, respectively.

Another variant, used for registration of low-energy charged particles, rep-

resented the detector inclusion according to the scheme of analysis of charge

collection time in the semiconductor detector Tch [130]. In this case, event se-

lection was performed on a two-dimensional plot of E vs Tch. In contrast to

gas telescopes, this method was able to confidently separate α-particles and 6He

nuclei. Figure 17 shows an example of the general scheme we used for experi-

ments on 18O, 22Ne, and 26Mg nuclei. The circuit shows the preamplifiers for the

position-sensitive part of the proportional cameras (P1–P4), the preamplifiers for

the detectors turned on in the charge collection time analysis mode, (P5,P10) with

the amplifiers of the corresponding time filters (TFA1–TFA4), and the electronic

logic circuits. Figure 18 shows an example of detector assembly operation for the

position-sensitive detector (PropCounter) when 11B nuclei are registered. In Fig-

ure 19, we present two-dimensional spectra obtained by studying the contribution

of the cluster configuration of the 6He⊗Kor species in the 26Mg nucleus, and the

level groups corresponding to the excited states of the 20Ne nucleus are clearly
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.

Figure 18. Registration of 11B nuclei by the ∆E − E gas telescope
. .

Figure 19. Left is a two-dimensional spectrum of detectors operating in charge time collection
analysis mode. The spectra of α-particles and 6He are shown, on the right the spectrum of the
14C(12C, 6He)20Ne

reaction.

visible.

In addition, we used a Q3D [131] magnetic spectrometer consisting of a

quadrupole and three dipoles to study the neutron-depleted isotopes of beryllium

and carbon. The angular axeptance of the setup was ±3◦. Particle registration,

similar to the previous setup, was carried out by gas wire chambers operating in

the ∆E-detector mode. The E-detector was designed as a scintillation counter.

The TOF -information was obtained from the start signal from this detector and

the stop signal from the gas pedal high frequency generator.

The data were processed in the ROOT [132] package.
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Chapter 3. Spectroscopy of light neutron-rich nuclei

3.1. Isotopes of helium

One of the most impressive discoveries in nuclear physics at the end of the last

century was the discovery of halo nuclei, where one or two particles are removed

from the core – the strongly bound core of the nucleus. In the context of the

question of the α-cluster structure of the nucleus, the 6He and 8He nuclei are of

particular interest. Their structure is not only the simplest variant of the cluster

degree of freedom, but also an important source of information about the nuclear

forces. The need for an experimental study of the properties of these nuclei is due,

among other things, to the ambiguity and complexity of theoretical predictions.

One of the most interesting questions in this field is the question of the “geometric”

arrangement of excess neutrons [133]

3.1.1. Aims and Methods of the Study

A quasi-free proton scattering experiment on 6He and 8He nuclei was per-

formed to study the (p, pn), (p, pα), and (p, p 6He) [46] processes. The study

was carried out with relativistic 6He and 8He beams in inverse kinematics. The

work was performed at the Institute for Heavy Ion Research (GSI), Darmstadt,

Germany. After fragmentation of a 18O beam with energies of 820 MeV/A and

730 MeV/A on a beryllium target, secondary beams of 6He and 8He with ener-

gies of 717 and 671 MeV, respectively, were selected by an analyzing magnet and

directed onto a proton target. The experimental setup is shown in Figure 20.

The secondary beam was passed through two scintillators (S1,S2) to analyze

the δE loss and time-of-flight. The beam position was determined by position-

sensitive proportional counters (p1,p2), and the polar and azimuthal angle of the

fragment by counters (p3,p4). Protons scattered at an angle larger than 70◦ were

then selected by δE and time-of-flight (p5,p6) into the first hodoscope. The frag-

ments were analyzed by the ALADIN magnetic spectrometer and fell into the

second yearoscope.

The processing of the obtained information was based on the kinematics of

quasi-free scattering described in the first chapter, when the conservation law is
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Figure 20. Experimental setup.

satisfied:

p0 + P = Q+ q0 + q1, (59)

where p0 = (p0, ω0) and q0 = (q0, E0) are the momentum of the particle (proton)

before and after scattering, respectively. P = (P, ωP ) and Q = (Q0, EQ) are

the initial and final momentum of the helium nucleus and q1 = (q1, E1) – the

momentum of the cluster knocked out of the nucleus, as shown in Figure 21.

In the momentum approximation, the condition pe = P −Q = q0 + q1 − p0 is

satisfied for the reaction (59), as seen in Figure 21. The redispersed and knocked-

out particles (q0 and q1) must be strictly correlated. Consider the correlation

between the polar angles of the particles involved in the reaction. This correlation

is similar to the elastic scattering correlation, but is distorted, as mentioned above,

by the motion of the cluster inside the nucleus. The correlation between their

azimuthal angles will be more characteristic.

From the conservation law for point 2 in Figure 21 we can find that

p0 + p1 = q0 + q1. In the laboratory system (—p0—=0), so the angle between

the momentum vector q1 and q0 ×P , which is perpendicular to the plane of reac-

tion, will be defined as:
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cos θ = n̂0 · n̂1, (60)

here

n̂0 =
P × q0
|p× q0|

(61)

n̂1 =
q1
|q1|

. (62)

From the expression p1 = q0 + q1 we obtain that:

cos θ =
(p1 − q0)

|q1|
· P × q0
|p× q0|

=
p1(P × q0)

|q1||P × q0|
=
p1n̂1
|q1|

=
Qtr

|q1|
. (63)

Thus, for the value Qtr we have:

Qtr = |q1| cos θ = |q1|n̂0 · n̂1 =
q1(P × q0)

|P × q0|
. (64)

Let us choose the beam direction along the z axis, so that P = (0, 0, Pz). Then:

Qtr =
1

|p||q0| sin(ˆ︂Pq0)
⃓⃓⃓⃓
⃓⃓⃓⃓qx1 qy1 qz1

px py pz

qx0 qy0 qz0

⃓⃓⃓⃓
⃓⃓⃓⃓

=
qy1p

zqx0 − qy0p
zqx1

|p||q0| sin( ˆ︁pq0) =
qy1q

x
0 − qy0q

x
1

|q0| sin θ
. (65)

Let us introduce the notation: θ1 = ( ˆ︁zq1), φ1 = (ˆ︂xq1), φ0 = (ˆ︂xq0). Then:
qx1 = |q1| sin θ1 cosφ1,

qy1 = |q1| sin θ1 sinφ1,
(66)

qx0 = |q0| sin θ0 cosφ0,

qy0 = |q0| sin θ0 sinφ0.
(67)

And finally for the value Qtr we have:
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Figure 21. Feynman diagram for quasi-free scattering.

Qtr = |q1|(sin θ1 sinφ1 cosφ0 − sinφ0 sin θ1 cosφ1) =

= |q1| sin θ1 sin(φ1 − φ0), (68)

cos θ =
(q1(q0 ×P))

|q1||q0 ×P|
= sinϑc sin(φc − φp) =

Qtr

q1
, (69)

here Qtr is the component of the cluster momentum in the nucleus perpendicular

to the reaction plane, ϑc is the polar angle of the knocked-out cluster, φp and φc

are the azimuthal angles for the scattered proton and cluster, respectively.

The scattered particle in this reaction is the proton, and the cluster can be

the α-particle (for 6He or 8He beams) or 6He (for 8He beam). Figure 22 shows

an example for the correlation between the angles of the scattered proton and

α-particle in the p+6He reaction. Panel 1 shows the correlation between the polar

angles ϑp and ϑα, resembling the shape of a butterfly, while panel 2 shows the

correlation between the azimuthal angles φp and φα. The first panel clearly shows

the separation of events into two distinct groups – weak correlations (bottom

group) and strong correlations (top group). In the second panel, this fact appears

in the form of a homogeneous distribution for the poorly correlated events, while

the events with strong correlation are concentrated at the angle φp − φα ≈ 180◦.

Having obtained the data on the distribution of Qtr value based on the for-

mula (69), we can make a comparison with the model calculations based on the
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Figure 22. Correlation between the angles of a scattered particle and a cluster.

cluster wave function representation [134, 135]. Figure 23, shows the momentum

distribution for clusters of different types:

1) The case of α-cluster knockout from the 6He nucleus.

2) The case of knocking out a α-cluster from the 8He nucleus.

3) The case of knocking out the 6He cluster from the 8He nucleus.

The obtained distributions can be analyzed in the framework of the potential

model under the two-particle approximation. As has been shown in [136–138], the

theoretical and experimental study for 6He and 8He nuclei applies, at least in a

first approximation, the approaches used in the transfer reaction when the nucleus

is split into a cluster and a cor interacting by means of a two-particle optical

potential. The choice of a particular type of potential is certainly a problem

for such exotic nuclei [139], but it has been shown that the problems involved in

obtaining the momentum distribution of clusters in a nucleus are not too sensitive

to the form of the potential as long as the binding energy is not too small. For

the distributions we have considered, the binding energies are:
6He=α+2n binding energy S2n=-0.975 MeV
8He=α+4n binding energy S4n=-3.1 MeV
8He=6H+2n binding energy S2n=-2.125 MeV

In [46], the simplest case of a rectangular potential well was used to analyze

the momentum distribution. At the same time, with a slight complication of

calculations, it is acceptable to use the Woods-Saxon potential (24)WS, which, at
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the same time, allows one to avoid possible artifacts, to use the obtained potentials

for transmission reactions with exotic nuclei, and to apply known systematics.

We choose a Woods-Saxon potential (24), in the form V0 ·f(r) with diffusivity

a=0.65 fm, radius [138] R=1.25A1/3 (A-core mass), and vary the depth until the

indicated binding energies are reached. In addition, the constraints imposed by

the condition (23) must be considered. The value of 2N + L was 2 for the first

and third distributions and 3 for the second. The calculations were performed

by the analytical solution of the Schrödinger equation with a given potential and

subsequent integration by the Fox-Goodwin method [140]. As a result, the depths

of the potentials were:
6He=α+2n, V0=65.39 MeV
8He=α+4n, V0=118.03 MeV.
8He=6H+2n V0=53.77 MeV

The momentum distribution was obtained from the Fourier transform of the

wave functions found with the above parameters and the results for the rectangular

well and the potential WS coincide. Note that such an approach cannot well

describe the distribution far away from zero [46], as can be seen from the presented

Figures 23. The red line shows the expected distribution of the corresponding

cluster (α-particle or 6He). As can be seen, we describe the distributions well

when a dineutron is considered as a cluster, but poorly for the case 8He=α+4n

(blue line). Lowering the binding energy to a value of 8 MeV, we obtain the depth

of potential as above, V0=118.03 MeV. As can be seen from the Figure, in this

case a much better agreement with the experimental resolution is obtained (red

line). This suggests either the possibility of the existence of resonance at 5 MeV

energy in a four-neutron (tetraneutron) system, or it is a reflection of the strong

internal correlation of four neutrons in the 8He wave function.

The case of a four-neutron cluster has been repeatedly considered in the

literature [141–143] as well as the existence of heavier neutron clusters [144].

The present result can be considered as an indirect indication of this possibility.

However, so far there is no unambiguous confirmation of this extremely interesting

fact. Recent work has confirmed the resonant character of this phenomenon [30].

To test these assumptions, one could use the d(8He,4n)6Li reaction proposed
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in [139], using the potentials given here to describe the bound states. In any case,

to date, the study of the properties of helium isotopes is one of the most rapidly

developing areas of nuclear physics, which is greatly facilitated by studies with

radioactive beams.
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Figure 23. Distribution of transverse momenta of clusters in the reaction of their knockout ( [46],
see description in text). 1) Knocking out a α-particle from 6He. 2) Knocking out a α-particle
from 8He. 3) Knocking 6He out of 8He.

3.1.2. Results obtained.

The main result of this work can be considered as:

- Proof of the dominance of the quasi-free scattering mechanism due to the

independence of the fragment momentum distribution from the beam energy.

- For the first time the momentum distribution of complex clusters inside 6He

and 8He nuclei was measured.

- The dominant contribution of the 6He+2n configuration in the 8He nucleus

was shown.

- An estimate of the detachment energy of the α-particle from 8He indicates

either a resonance in the tetraneutron system or a correlation of valence neutrons

in the 8He wave function.

3.2. Beryllium isotopes

In the Introduction it has already been pointed out how important, from the

point of view of studying cluster degrees of freedom, is the 8Be nucleus. Hence a

natural question immediately arises – whether the manifestation of cluster prop-

erties is preserved with increasing number of excess neutrons or not. To answer
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Figure 24. Density distribution in beryllium isotopes within the AMD model [153]. The first
column gives the total density of nucleons, the second - the density distribution of protons, the
third - neutrons.

this question, we have performed a series of experiments [41, 42, 44, 45]. In this

chapter, we will only consider the structure of beryllium isotopes.

Neutron-excess isotopes of beryllium are of extreme interest from the position

of studying their properties – both α-cluster and quasi-molecular, where the added

neutrons end up on the corresponding covalent molecular orbitals [145]. As stated

above, in the ground state 8Be – are two α-particles 3-4 fm apart. Given the rms

radius for the α-particles, it is clear from the formula (13) that they are almost

touching each other. This agrees well with the density distribution in the 8Be

nucleus obtained in the framework of the GFMC (Green’s function Monte Carlo

calculation) [146] model.

For the ground state of the 9Be nucleus, calculations performed also on the

basis of the two-center model [147], AMD [148], and the coordinate generator

method [149], predict the appearance of a potential energy minimum for the

distance between α-particles of the order of 3.0-3.4 fm, in agreement with the

properties known from experiment. An estimate of the moment of inertia of the

rotational band of the ground state (K=3/2−) gives a similar value. All this

makes the 9Be nucleus an excellent example of a stable nuclear molecule.

Cluster and molecular properties are also demonstrated by heavier isotopes
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Figure 25. Graph of the dependence of the separation energy of the α-particle for beryllium
isotopes.

(A=10-12) [150–152]. Theoretical calculations within the AMD approach from

the paper [153] are presented in Figure 24. As can be seen, throughout the mass

range, beryllium retains pronounced signs of octupole deformation, which should

result in well-fragmented band(s). However, information on these is incomplete.

There is no clear understanding of the structure of the different states – estimating

the degree of single-particle contributions and core excitation, and there is ambi-

guity in assigning spin values to some states. For example, there is ambiguity in

determining the spin of low-lying states in the 11Be nucleus at excitation energies

of 3.41, 3.89, and 3.96 MeV. The latter state is especially important because it is

considered as the head state for the molecular rotational bandKπ=3/2− [145,150],

while an estimate of 5/2− [154] is found in the literature. All this suggests the

urgent need for additional experimental studies.

Figure 25 presents a plot of the detachment energy of the α-particle as a

function of mass number for the currently known beryllium isotopes. The excess

neutrons shown in the plot are for illustrative purposes only and do not charac-

terize their orbitals.
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The graph clearly shows a kink at the point corresponding to the 10Be nucleus.

This again indicates the preference for studying multineutron transfer when 9Be

is used as the target nucleus.

3.2.1. Aims and Methods of the Study

In our study of the structure of neutron-excess beryllium isotopes, we used the

one-, two-, and three-neutron transfer reactions of the 9Be target. Additionally,

the one and two neutron transfer reactions of the 10Be target were studied. This

allowed the structure of 10Be, 11Be, and 12Be nuclei to be studied.

The measurements were carried out using the Q3D magnetic spectrometer of

the Hahn-Meitner Institute (HMI), Berlin, Germany. The beam energy was 15-30

MeV/A. The reactions studied were:
9Be(14N,13N)10Be at an energy of 217.9 MeV.
9Be(13C,11C)11Be at energy 379 MeV.
9Be(15N,12N)12Be at an energy of 240 MeV.
10Be(14N,13N)11Be at energy 217.9 MeV.
10Be(14N,12N)11Be at an energy of 216 MeV.

A BeO target was used as the 10Be target.

In the above reactions, we can, to a first approximation, consider the target as

a core for the neutron configurations of the final states. However, we can expect

certain differences in the final result, due to the fact that the 9Be nucleus has a

much more pronounced 2α configuration, while the states of the heavier isotopes

are more complex (see Figure 24, 25).

The above differences can be clearly seen when comparing the experimental

spectra obtained. Figure 26 shows the spectra for the transfer of one, two, and

three neutrons to the 9Be nucleus. The departing particles were recorded in the

range 2.0◦-5.9◦. As a result, the spectra identified [42]:
10Be: 8 states up to excitation energies of 15. 34 MeV.
11Be: 15 states up to excitation energies of 25.0 MeV.
12Be: 7 states between 5.5 and 21.7 MeV (low-lying levels did not seen in the

focal plane).

As expected, most of our observed states exhibited a linear dependence of the

excitation energy on the value of J(J + 1), a manifestation of the basic property
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Figure 26. Spectrum of transfer of one, two and three neutrons to the 9Be nucleus [42].
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Figure 27. Spectrum of transfer of one and two neutrons to the 10Be nucleus [42].

of rotational bands. Such states are shaded in Figure 26. Some of the angular

momenta have been assigned only estimatively based on the above dependence.

The remaining spins were assigned according to the referential sources [155].

We were able to identify the following spin bands:
10Be Kπ=1− : Ex=0.25[J(J+1)-1· 2]+5.96 MeV
11Be Kπ=3

2

−
: Ex=0.23[J(J+1)-35 ·

5
2 ]+3.96 MeV

12Be Kπ=0+ : Ex=0.21[J(J+1)]+6.4 MeV

As is clear from the formula (16), the multiplier in front of the square brackets

is inversely proportional to the moment of inertia of the rotating configuration.

Assuming that, analogous to 8Be, there are two α-particles rotating, and the

neutrons are distributed as shown in Figure 24, we can estimate the distance

between the α-particles to be on the order of 5 fm! Such a large distance implies

very little overlap of α-particles, and such bands are almost purely molecular.

Let us compare the results obtained with the spectrum from the experiment

for the 10Be target (Figure 27). Because of the strong background from the oxy-

gen present in the target, it is difficult to estimate the contributions from weakly

manifested states. Only the contributions from 0.32 and 1.78 MeV and the dou-

blet of 2.7 and 3.4 MeV in the 11Be nucleus and 2.1, 4.56, and 5.7 MeV in the
12Be nucleus were significant. All these states are cor 10Be + neutrons, with no

formation of levels belonging to the rotational band.

The states of the 11Be nucleus can be considered as single-particle states,

with a neutron in the 1p1/2, 1d5/2, and 1d3/2 orbitals, as well as in the 30%-
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filled 1p3/2 occupancy of the 1p3/2 nucleus 10Be in the ground state due to mixing

configurations. In the 12Be core, similar states can populate in 10Be(t, p) [156,157].

They have the structure (1p1/2)−1(sd)1 and (sd)1.

As mentioned above, there is uncertainty with the identification of the spins

of some low-lying states of the 11Be nucleus. Thus, the state with energy 3.96

MeV, when analyzing the 10Be(t, p) reaction, was assigned spin 3/2− due to the

very characteristic shape of the angular distribution obtained in the experiment

for the transfer process with l=0. Thus, based on DWBA analysis, the angular

spins 3/2−, 3/2+, and 3/2−, respectively [158], were obtained for the low-lying

states 3.41, 3.89, and 3.96 MeV.

At the same time, for the (d, 2p) and (t,3He) reactions, the 3.89/3.96 MeV

state was assigned spin 5/2− [159, 160] when analyzing the unresolved

3.89/3.96 MeV doublet. In the work [154], the following spins were assigned to the

states considered: 3.41, 3.89, and 3.96 MeV – 3/2−, 3/2+, and 5/2−, respectively.

This work was based on shell calculations.

To clarify this issue, we performed an angular distribution experiment. The

reaction was chosen so that the shape of the distribution would be most sensitive

to the determined spins. For this purpose, we used the reactions 9Be(16O,14O) to

study the transfer of two neutrons and 13C(12C,14O) to study the pickup of two

protons. Their distinguishing feature is that the transfer is 0+ → 0+, so that the

transferred momentum did not distort the angular distribution. Figure 28 shows

the resulting angular distributions.

Comparison of the calculations for different angular momenta clearly indicates

that the 3.96 MeV state has negative parity. Considering the referential data, our

result supports the assumption of spin 3/2− for this state. The two-proton pickup

reaction actively populates states with energies of 0.32, 2.7, and 3.9 MeV. All these

states have similar distributions (see Figure 28, right side). Thus, the 3.9 MeV

level must have negative parity and spin 5/2− is confirmed for it (instead of the

3.96 MeV state). The 3.41 MeV state is unpopulated (and very weakly populated

in two-neutron transfer), which does not allow us to draw conclusions about its

properties. However, since it is actively populated in single neutron transfer, we

can conclude that it is a 3/2+ level.
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Figure 28. Angular distribution obtained in the reaction 9Be(16O,14O) (left) and in the reaction
13C(12C,14O) (right).

3.2.2. Results obtained

So, the 3.41, 3.89, and 3.96 MeV states were shown to have spins 3/2+, 5/2−,

and 3/2−, respectively.

A summary Table 5 for the spin bands of the beryllium isotopes is presented

below. As expected, according to Figure 24, each isotope corresponds to a low-

lying rotational band, and the nuclei 10Be,11Be, and 12Be, also have molecular

bands.

3.3. Carbon isotopes

The carbon nucleus was listed among the nuclei exhibiting significant cluster

properties in the introduction to this chapter because of two well-known facts

related to its structure:

1) The existence of states well described by group-theoretic approaches, where

the nucleus is viewed as an equilateral triangle with α-particles at its vertices [79].

2) The famous “Hoyl’s” 0+ state at an excitation energy of 7.65 MeV. Accord-

ing to the modern interpretation, it is considered as a pure cluster state, when the

three constituent α-particles are in a state close to the Bose-Einstein condensate

state.
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Table 5. Characteristics of rotational bands of beryllium isotopes.

Isotope Kπ Ex ℏ2/(2Θ) Estimation of the distance between
(MeV) (MeV) α-particles (fm.)

Molecular bands
10Be 1− 5.96 0.25 5.16
11Be 3/2− 3.96 0.23 5.16
12Be 0+ (6.4) 0.21 5.16

Low-laying (cluster) bands
8Be 0+ 0.0 0.56 3.5
9Be 3/2− 0.0 0.55 3.22
9Be 1/2+ 1.67 0.39 4.16
10Be 0+ 0.0 0.48 3.3
11Be 1/2+ 0.0 0.43 3.34
11Be 1/2− 0.32 0.58 2.56
12Be 0+ 0.0 0.21 4.18

And to date, the study of the spectrum of states of the 12C nucleus remains

an extremely urgent task. It is mainly connected with the search for high-spin

states and explanation of their structure. In this sense, the carbon nucleus is very

similar to the beryllium nucleus considered in the previous paragraph. But there

is a significant difference.

While beryllium isotopes even with a large neutron excess retain the main

features of cluster states, carbon nuclei, from a pronounced clustering pass to a

shape close to spherical with a neutron “skin”.

Nevertheless, as can be seen from Figure 9, at least for theoretical reasons,

for the isotope 14C can still be considered a cluster structure, if not fundamental,

at least important. It too contains rotational bands and admits a structure of the

form α+10Be [18].

3.3.1. Aims and Methods of the Study

The goal of our experiment was to study the carbon isotope with an even

larger neutron excess – 16C. To do this, the reaction 13C(12C,9C)16C was studied.

Using the 13C nucleus as a target for the three neutron transfer allowed to populate

the 16C states with one hole in the 1p1/2 shell, and three neutrons located in the

(sd) shell. In addition, 13C has a deformed cor as a 12C nucleus, which allows

us to study the effect of cluster structure in the 16C nucleus at high excitation

energies. Like other neutron excess nuclei, the 16C nucleus also has molecular
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states, however, they are located too high.

This experiment was performed using the Q3D magnetic spectrometer of the

Hahn-Meitner Institute in Berlin. The 12C beam energy was 230.7 MeV, the

thickness of the 13C target was 260 µg/cm2, and the enrichment was 95%. In

order to remove the background, additional measurements were performed with
12C foil with a thickness of 200 µg/cm2. This reaction was also used to calibrate

and test the system.

Figure 29 shows the spectrum obtained from the experiment [43].

This resulted in the discovery of 14 previously unobserved states listed in

Table 6. The spins and parities of the new states were assigned based on analysis

within the coupled channel method and the random phase [161] method.

.

Table 6. 16C core levels detected in the experiment performed [43,45].

Jπ Excitation energy Γ Jπ Excitation energy Γ
(MeV) (keV) (MeV) (keV)

(3−) 7.74 200 (3−) 11.85 220
(5−) 8.92 100 - 12.54 200
(4+) 9.1 50 (5−) 13.12 400
(4−) 9.42 100 - 14.26 200
(3−) 9.98 120 - 14.9 300
(2−) 10.39 150 - 16.44 150
(1−) 11.08 100 - 17.4 200

Most of the currently known levels of the 16C nucleus have been studied

in the two-neutron transfer reaction t+14C, which predominantly results in the

occupation of states with positive parity. In this work, we studied the three-

neutron transfer reaction to a nucleus with a hole in a 1p1/2 shell. Let us consider

possible configurations for the 16C excited levels.

In principle, shell closure with 1p1/2 state filling and configurations of the

form (2p − 0h) are possible. However, a configuration with three transferred

nucleons filling the sd shell is more likely, so that the state can be described as

(sd)3(1p1/2)
−1. From the point of view of the shell model, the states (1d5/2)

3 and

(1d5/2)
2(2s1/2)

1 will populate there most intensively.

Another important factor determining the settlement probability is the large

difference between the input and output angular momenta due to the high value of
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Figure 29. The spectrum of 14C, 15C, and 16C obtained in this experiment [43].
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theQ-reaction (-39.5 MeV). This leads to an increase in the population probability

of high-spin states. The spectrum in Figure 29 shows that the most intensively

populated states are 5−, (3p− 1h) and 4+, (2p− 0h).

3.3.2. Results obtained

The data obtained indirectly confirm the currently existing systematics for

light nuclei [18]. The states considered are predominantly of single-particle rather

than cluster nature. Nevertheless, as the excitation energy increases, we can ex-

pect the populating of more exotic configurations (e.g., with one or two holes in

the 1p3/2 and 1p1/2 shells), the populating of high-lying states (e.g., 1d3/2 and

1f7/2), and finally proton excitations. The latter can lead to the manifestation

of α-cluster states. The threshold for their manifestation is not too high and is

of the order of 14 MeV, but it is not possible to conclude about the presence

of such states in the spectrum. At the same time, these neutron-excess carbon

isotopes are of special interest from the point of view of cluster degrees of free-

dom. Detailed calculations in terms of molecular orbitals predict a very high

probability of the appearance of a linear configuration, for nuclei with molecular

orbitals: 16C
(︁
(3/2−π )

2(1/2)0σ)
2
)︁
[162]. Given the importance of considering molecu-

lar orbitals, the information obtained can be used in comparison with theoretical

approaches, for example AMD. This will make it possible to identify low-lying

levels at the base of quasi-molecular rotational bands in this nucleus.

3.4. Oxygen isotopes

As mentioned in the Introduction and the first chapter, the 16O nucleus can

be represented as four α-particles (tetrahedral structure), which is reflected in

the properties of some excited states (group theory approach to the problem).

Another way of solving the problem of describing the spectrum of excited states

is to use the potential model. It can be said that the potential model was devel-

oped and tested just on the nuclei 16O and 20Ne. Unlike neon, the 16O nucleus

is twice magic, so that the rotational band starts from the head level Kπ=0+ at

energy 6.05 MeV. In the “classical” reaction for cluster bands (6Li,d), the popu-

lation of states with negative and positive parity occurs, albeit in a significantly

non-uniform [163]. This has led to a discussion of the possible nonα-particle na-
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ture of states with negative parity. Despite the low population intensity of such

states in [164], their α-particle structure was concluded to be consistent with the

predictions of [15] theory. On the other hand, the cluster hypothesis was tested

within the [165] potential model, which showed that states with negative parity

require a significantly different kind of potential! While for positive parity the

potential turned out to be very close (virtually equivalent) to the potential for

the convolution of the α-particle and the density distribution in the 12C nucleus

(formula (28)), the potential for reproducing negative parity states turned out to

be closer to the Woods-Saxon potential, with a flat “bottom”. In [55] we showed

that the potential for positive parity states can also be well reproduced within

the limit α-cluster model.

One could have assumed that this behavior of the potential is either a symp-

tom of a poor manifestation of the cluster properties of states with negative parity,

or at least may require the introduction of an angular momentum-dependent pa-

rameter. However, the problem was solved in the framework of a simple potential

model using the WS +WS3 potential (formula (27)).

Experimental confirmation of the cluster nature of the band can be obtained

by using a reaction sensitive to the population of α-cluster states – the α-particle

transfer reaction. In spite of the fact that the reaction (6Li,d) was used to prove

the cluster nature of the rotational bands, the levels with negative parity are

populated rather weakly [163]. A different situation is observed for the α-particle

transfer in the (12C,8Be) [166] reaction. We used this result further to analyze

the spectrum of 18O and to discuss the states of the 40Ca nucleus. The rotational

band levels are summarized in Table 7. As can be seen, the population is quite

active for negative parity, and this reaction shows better selectivity to cluster

states, especially in the high spin region.

Despite the fact that in the case of the 16O nucleus the band has an excited

state as its head level, the doublet considered above can be described in terms of

a potential model.

Assuming that the 16O nucleus has a well-observed doublet of rotational

bands, the question arises as to the behavior of the isotopes – will the added

neutrons preserve the cluster structure, as they do in beryllium isotopes, or will
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Table 7. rotational doublet 16O [155].

Jπ Excitation Energy Γ Jπ Excitation Energy Γ
(MeV) (keV) (MeV) (keV)

0+ 6.05 67 ps 1− 9.6 420
2+ 6.92 4.7 fs 3− 11.6 800
4+ 10.36 26 5− 14.7 670
6+ 16.3 420 7− 20.9 900
(8+) 21.7 -

Figure 30. Structure of rotational bands of the 18O [167] nucleus.
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Figure 31. Structure of 18O nucleus states. Thresholds for the emergence of structures with
different configurations are shown. The beam energy is 44 MeV [40].

they destroy it, as they do in carbon isotopes? In terms of cluster structure and

covalently bound neutrons, we can expect the following picture for the rotational

band structure of the 18O nucleus (see Figure 30 from the paper [167]). A band of

single-particle states is shown on the left, a α-cluster doublet in the center, and

a molecular doublet on the right. All these states were observed experimentally.

Thus, in the 18O nucleus, the cluster degrees of freedom are fully manifested.

3.4.1. Aims and Methods of the Study

The experimental data obtained in our experiments to study the 12C+14C

reaction are summarized below.

Our experiment was performed at the cyclotron of the University of Jyvaskyla,

Finland. A 12C beam with an energy of 41-46 MeV was incident on a 14C target.

Figure 31 shows the spectrum from the 14C(12C,8Be)18O reaction. The nuclei were

registered by two groups of gas detectors (see Chapter 2), coincidences between

neighboring PIN diodes registering α-particles allowed 8Be to be registered. Fur-

ther selection was performed by imposing appropriate kinematic conditions using

the invariant mass method.

As can be seen, there is active population of states associated with the spin

alignment of two valence neutrons – 0+ – 0.0 MeV, 2+ – 1.98 MeV, 4+ – 3.56 MeV.

These states correspond to the 16O⊗2n structure in Figure 30 when two neutrons
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are arranged in a d5/2 shell, which admits a maximum spin of 4. Further, the

0+2 -based doublet states with energy 3.64 MeV are clearly visible. In Figure 30,

its structure is labeled as 14C⊗α. The populated states for this cluster band are

2+ – 5.26 MeV, 4+ – 7.512 MeV, 6+ – 11.7 MeV for the even-numbered band, and

1− – 7.512 MeV for the odd-numbered band. The literature [167, 168] indicates

that there is uncertainty with the value of the state energy 8+ – 17.6-18.06 MeV.

Based on our results, it can be assumed that the second value is correct, since the

17 MeV region is still accessible in our experiment and no significantly populated

states are found there. On the other hand, there are indications of a relatively

low intensity of the corresponding peak, which is similar to the situation with the
16O nucleus.

The analysis of the 8Be yield from the reaction for different energies shows that

the excitation cross section of the rotational band states is almost independent of

the beam energy, while significant oscillations are observed for the single-particle

states.

3.4.2. Results obtained

The characteristics of the doublet levels, supplemented with data from the

work [167] are summarized in Table 8.

Table 8. Rotational doublet in nucleus of 18O [167].

Jπ E exc. Γ Presence Jπ E exc. Γ Presence
(MeV) (keV) in this work (MeV) (keV) in this work

0+ 3.64 - yes 1− 8.04 <10 no
2+ 5.26 - yes (3)− 9.71 15 no
4+ 7.12 <10 yes (5)− 13.6 22 no
6+ 11.7 19 yes (7)− 18.6 100 no
(8+) 18.1 80 no

According to the data presented in the [167], a molecular doublet with the

structure corresponding to the right part of Figure 30 was also found. At the same

time, we cannot but note the extreme ambiguity of the situation in this matter. As

can be seen from Figure 31, our work, confirming the results [167], demonstrates

the cluster character (and, accordingly – belonging to the rotational band) of

the states 2+, 5.26 MeV, 4+, 7.12 MeV for positive parity and 1−, 8.04 MeV for
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negative parity. However, in a recent paper [169], the authors concluded that

there are no cluster states in the 18O nucleus, except for the 6+ 11.7 MeV state.

Since the authors studied the α-particle transfer reactions in reaction with 7Li,

a situation similar to the case of the 16O nucleus emerges. In a recent review

on cluster degrees of freedom [33], the authors point out that further careful

investigation of this issue is needed. In the following, we will focus on the results

obtained in our experiment.

Not long ago, the paper [170] presented data on the rotational bands of the
20O nucleus. The structure of such states is more complicated; in particular, theo-

retical consideration of the question tells us that it is possible for both α-particles

and 6He [171] to exist as a cluster in such a nucleus. The cluster structures ex-

pected in the 20O nucleus have been discussed in [170]. The cluster doublet data

from this work are summarized in Table 9.

Thus, it can be concluded that the neutron excess in the oxygen nucleus has

a much weaker effect than for carbon.
.

Table 9. rotational doublet of nucleus 20O [170].

Jπ Excitation Energy Γ Jπ Excitation Energy Γ
(MeV) (keV) (MeV) (keV)

0+ 4.46 - (1−) 9.92 20
2+ 5.24 - (3)− 11.95 90
4+ 7.75 - (5)− 13.96 150
(6+) 10.93 40 (7)− 18.46 140
(8+) 16.36 90

3.5. Isotopes of neon

As stated earlier, the 20Ne nucleus is, along with the 44Ti nucleus, the main

“test stone” for testing the cluster approximations. Due to its twice-magic core,

as well as the presence of its own rotational bands of cluster nature, this nucleus

has always attracted considerable attention. One of the first works on the global

systematics of cluster states of light nuclei was Richards’ work on the 20Ne [88]

nucleus, which, in many respects, “set the tone” for further studies in this direc-

tion. In particular, Richards showed the existence of a number of bands in neon,
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the members of which had close values of reduced widths. The bands identified so

far have been shown in Figure 11. As in the previous section, the question arises

– whether such states can be described within the potential model and how the

structure of the nucleus would behave if neutrons were added.

Apparently, the first suggestion of the existence of an inverse doublet for

the rotational band in the 20Ne nucleus was made in [15]. The study of such

states, similar to the case of the 16O nucleus, proceeded preferentially using lithium

transfer reactions or the transfer of two α-particles in the 12C(12C,α) [172] reaction,

which allowed the study of a large number of high-spin states of neon. In contrast

to lithium transfer reactions, where one usually applies an angular distribution

analysis within the DWBA framework, the angular correlation method is preferred

in this case. In this case, the problem is reduced to the study of the reaction
12C(12C,α1)

20Ne*→16O+α2. In the case where α1 is registered at 0◦ (or a very

small angle), the angular distribution of α2 obeys the distribution:

W (θ) ∼ 2J + 1

4π
|PJ(cos θ)|2 (70)

where θ is the angle of registration α2 (or between α2 and α1 in the case where

the first particle is not registered under zero). This procedure greatly facilitates

the finding of the J angular momenta of the J excited states of the neon nucleus.

Table 10 summarizes the data for the two doublets.
.

Table 10. Rotational doublet of nucleus 20Ne [155].

Jπ Excitation Energy Γ Jπ Excitation Energy Γ
(MeV) (keV) (MeV) (keV)

0+ 0.0 - (1−) 5.788 0.028
2+ 1.63 - 3− 7.156 8.2
4+ 4.25 - 5− 10.262 145
6+ 8.776 0.11 7− 15.336 78
8+ 11.951 0.035 9− 22.87 225

Whereas for the first band the generally accepted interpretation of the 16O⊗α
states. For the second, the 8p− 4h configuration is usually considered, which can

be interpreted as 12C⊗2α or 12C⊗8Be. The first interpretation admits a symmetric

picture of the arrangement of the two α-particles with respect to the core.
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Figure 32. 2D-plot 14C(12C,α1)
22Ne*→18O+α2. A corresponds to populating the ground state of

the 18O nucleus, B to an excitation energy of 1.98 MeV, and C to an excitation energy of 3.55-3.63
MeV [35].

3.5.1. Aims and Methods of the Study

A reaction similar to the above 14C(12C,α1)
22Ne*→18O+α2 with the angular

correlation analysis method was chosen to experimentally study similar high-spin

states in the 22Ne nucleus. Previously, in [173], it was shown that a high-spin 18+

resonance exists in the 12C+14C system at energy Ecm=23.5 MeV. Such a reso-

nance will correspond to an increased probability of populating high-spin states

in the exit channels of this reaction.

The experiment was performed at the gas pedal of the University of Jyvaskyla,

Finland. The beam of the K-130 cyclotron was directed onto a 14C 280 µg/cm2

foil with 90% enrichment. The beam energy was 44 MeV, which corresponded

to the above resonance. The reaction products were detected by four groups of

detectors – two gas ∆E − E telescopes and two detectors located at an angle of

±3◦ relative to the beam. To extract α-particles, these detectors were switched

on using the pulse shape analysis scheme [130] (see Chapter 2). The gas detectors

spanned an angle of 34◦ ≥ θ ≥ 74◦ to analyze the angular distributions. The

detector positions were chosen so as to capture the angle 90◦ in the center-of-

mass system in the investigated energy range, which was previously tested for the

case of a 12C target. A detailed description of the study performed is presented

in [35,36].
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The Figure 32 shows the two-dimensional spectrum of the studied reaction. As

can be seen from the two-dimensional spectrum, we have a good resolution of

the three low-lying levels of the 18O nucleus (see also Figure 31). The minor

contribution from the 12C impurity (states above the A band) was removed by

subtracting the known states from the data we obtained with the 12C target and

analyzing the dependence of the peak intensity position on the excitation energy of

the residual nucleus. The resolution in this experiment was assumed to be better

than 100 keV. In agreement with [173,174] the 22Ne nucleus decays preferentially

to the 4+ state and slightly to the 2+ state of the 18O residual nucleus in this

range of excitation energies.

Figure 33. One-dimensional spectra of the reaction 14C(12C,α1)
22Ne*→18O+α2 for the three states

of the residual nucleus [35]. The upper panel corresponds to the ground state of the 18O nucleus,
the middle one to the state with excitation energy 1.98 MeV, and the lower one to the unresolved
doublet 3.55-3.63 MeV.

Figure 33 shows the spectrum of the excited states of the 22Ne nucleus. The

upper panel corresponds to the decay of 22Ne into the ground state 18O, the middle

one, into the 2+ state with energy 1.98 MeV, the lower one corresponds to the

decay into the insoluble doublet 4+ 3.55 MeV and 0+ 3.63 MeV. An analysis of

the distribution in the intensities of the spectrum perpendicular to the location
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Figure 34. Angular correlations for α-decay of 22Ne* to the ground state of 18O [35].

of the loci shows that it is the 4+ state that gives the largest contribution to the

latter spectrum.

In the experiment, the excitation region from 15 to 30 MeV was investigated.

As a result, 12 states were investigated, of which 5 were identified as new high-spin

states belonging to the rotational bands.

Figure 34 shows correlation plots for the five states detected in this work.

The fit to the experimental points was performed by the function |PJ |2+const,

which, as can be seen from the formula (70), makes it possible to assign values

of the angular momenta to the states considered. The background present due to

the coincidence requirement is small and can be removed.

The obtained results and comparison with the reference data are presented

in Table 11.



94

Table 11. 22Ne nucleus levels.

Experimental data [35,36] References data
Jπ Exc. energy. Γ Jπ Exc. energy. Ref.

(MeV) (keV) (MeV)
17.0 non resolved (7−) 17.05 [177]
18.45 330 18.42 [174]
19.13 non resolved 7− 19.28 [175]

9− 20.0 270 (10)+ 19.89 [176]
11− 20.7 340 9− 20.85 [175]
9− 21.6 350 9− 21.8 [175]
12+ 22.2 250 22.2 [174]

22.9 290
24.0 non resolved 24.1 [178]

9− 25.0 350
25.9 non resolved
27.0 non resolved

As indicated above, the reaction we have chosen is particularly efficient in

populating cluster states with the structure α+Cor and 2α+Cor. A comparison

of the available theoretical and experimental data on the structure of rotational

bands in the 22Ne nucleus with the results obtained allows us to attribute the

levels found to rotational bands of different structure . The levels found in the

paper and listed in Table 11 are detailed below.

Level 9−, 20.0 MeV. In the 14C(18O,18O+α) reaction, levels with close energies

of 19.9 MeV [174] and 19.89 MeV [176] were observed. In the latter case, the spin

was presumably determined to be (10+). As follows from the spectra obtained

in [173] for the population of the 4+ state (3.55 MeV) in 18O, several closely

spaced levels with a strong dependence of the population probability on the beam

energy are present in this energy region. The most intense level with energies

slightly below 20 MeV appears at beam energy Ec.m.=20.75 MeV, while at higher

energies a peak with energy 20 MeV is observed. Its position coincides well with

the predictions for the end of the K = 0+ band

11− level, 20.7 MeV. In [175], evidence was obtained for the presence of a

fragmented rotational band of negative parity in an elastic scattering study of α-

particles in inverse geometry. Doublets with angular momenta 1−,3−,7−,9− were

found and the existence of a state with spin 11− was predicted. On the other

hand, in the paper [179], based on the use of a microscopic cluster model, the
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breakage of this band at angular momentum 7− is predicted.

The 9− level, 21.6 MeV. In this energy region, the 9− level was observed

in [176] (excitation energy 21.96 MeV) and in [175] (excitation energy 21.84 MeV).

It presumably belongs to the fragmented molecular rotational band.

Level 12+, 22.2 MeV. This level, having a significant spin, may belong only

to the yrast line. For the case of the sd-region, the maximum spin when the

α-particle populates the next shell is 8+ for the 20Ne nucleus and 10+ for the
22Ne nucleus. However, in [180, 181] it was shown that there are minima on the

potential surface for neon nuclei corresponding to higher angular momenta. As

shown in [180], the rotational band corresponding to the yrast line in the 22Ne

nucleus experiences backbending already at spin 10+. Thus, this level allows us

to test the consistency between cluster models and models based on collective

effects [180,181].

Level 9−, 25.0 MeV. In this energy region, states corresponding to the struc-

ture 2α(8Be)+14C should be expected to appear. Then the found state corre-

sponds well to the case when the head level 0+ is formed near the decay threshold

of the system. Moreover, such a level lies in the region where, according to the

work [178], states with high intensity decay of the 22Ne nucleus into 12C+8Be are

observed. Two such states, 24.14 MeV and 26.89 MeV, were reported in [178].

Their spins were estimated as 6+ and 8+ or 8+ and 10+, assuming an approximate

equality of excitation energies for bands of the same structure in 20Ne and 22Ne

nuclei, corrected for the magnitude of the Q-reaction.

The obtained result is illustrated in the Figure 35 of [32], where, in addition

to the previously known states of the 22Ne nucleus, the high-spin states obtained

in our [35, 36] (shown in red) are given. As can be seen, the high-spin state 12+

belonging to the yrast line may also belong to the band Kπ=0+2 .

As mentioned above, in the simplest case of the shell model for the 22Ne

nucleus, the 6 nucleons in the sd shell assume a ground state band cutoff at spin

10+. Theoretical analysis of the properties of the neon isotopes [182,183] predicts

a backbanding phenomenon at a spin value of 8 for the 22Ne nucleus and 6 for 20Ne.

This was confirmed by experimental results in the detection of the high-spin state

10+ [180] in 22Ne. Significant efforts have been made to search for a similar level
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Figure 35. Molecular bands in the 22Ne nucleus from the paper [32]. Red shows the results of our
work [35,36].

in 20Ne, since states with spin greater than 8 are allowed and predicted [177,184]

for the high-lying bands. It is now believed that such a state has been found [185],

allowing an interesting comparison of 20Ne and 22Ne nuclei.

A plot of the effective moment of inertia of the 20Ne and 22Ne nuclei as a

function of rotational frequency is shown in Figure 36. As indicated in [180],

there are two important differences between these nuclei: the moment of inertia

for 20Ne experiences stronger oscillations than in the case of 22Ne and backbending

occurs in 22Ne two angular momentum units later than in 20Ne. These effects can

be qualitatively understood within the Nilsson-Strutinsky theory approach. The

inset Figure 36 shows the trajectory of the minimum on the energy surface of 20Ne

and 22Ne nuclei obtained in the work [181]. This graph emphasizes the similarity

of the backbending processes occurring for these nuclei. The results obtained

by us perfectly confirm the theory of energy surface construction, which predicts

almost linear (in J(J + 1) coordinates) behavior of the yrast line up to the 12+

state for the 22Ne nucleus, in contrast to the sharp jump of the yrast line for the
20Ne nucleus. The predicted value of the 12+ state of 24.5 MeV turns out to be

very close to our experimental value of 22.2 MeV.
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Figure 36. Effective moment of inertia as a function of rotation frequency for the yrast line of
20Ne and 22Ne [35, 36]. The inset shows the yrast line trajectories for these nuclei on the energy
surface [181]
.

3.5.2. Results obtained

The oxygen and neon nuclei considered above can be seen to possess a sig-

nificant number of states, which can be called cluster or molecular states. An

important feature of these nuclei is also that the core and clusters populate dif-

ferent shells – p shell for the core, sd – for the clusters. Before moving on to

heavier nuclei, it is interesting to compare the possibility of describing neon iso-

topes within the potential model.

In [62] we have described the rotational bands in the nuclei 16O, 18O, 20O, 20Ne,

and 22Ne using theWS+WS3 potential with parameters a=0. 73 fm, x=0.3 (satis-

fying Buck’s systematics), and the potential itself was chosen as V (r) = 250 ·f(r),
where the form factor was given by the formula (27). We have presented the re-

sults obtained in [61, 62]. A comparison of these results with experimental data

is presented in Figure 37. The radius values were fitting parameters and the

following values were chosen:
16O - R=2.9 fm.
18O - R=2.93 fm.
20O - R=3.21 fm.
20Ne - R=3.06 fm.
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J(J+1)
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Figure 37. Comparison of potential model predictions for 16O, 18O, 20O, 20Ne, and 22Ne nuclei [35].
The dark and light circles are states with positive and negative parity, respectively. For states
with negative parity 22Ne, several candidates are presented
.
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Figure 38. Radial wave functions for 0+ states 16O – 1, 18O – 2, 20O – 3, 20Ne – 4, and 22Ne –
5 [62].

22Ne - R=3.21 fm.

For the 20Ne nucleus, the value we have chosen coincides with the result

obtained in [76]. The radius behavior is approximately described as R = r0A
1/3,

where r0=1.14 fm.

Figure 38 shows the wave functions for the ground states of the considered

nuclei.

3.6. Magnesium

One of the most important reactions in which molecular resonances have been

and are being studied is the elastic scattering of 12C+12C, i.e., the states in the
24Mg nucleus. As a result, to date, we have extensive material on this reaction. Let

us list the main results obtained indicating the presence of molecular structure.

1) Presence of a well-distinguishable structure in the full cross-section plot.

2) The spectrum contains narrow peaks.

3) The energy of the excited states varies with angular momentum in propor-

tion to J(J + 1).

4) The slope of the resulting graph is in good agreement with the “classical”

moment of inertia for a system of two closely spaced nuclei with mass number 12.
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There is a large number of interesting and relevant problems related to the

analysis of molecular states in such a system. At the same time, there are quite

a lot of models allowing to describe such interactions from the point of view

of quantum mechanics: potential model (Buck potential, convolution potential),

model of linear combination of nuclear orbitals (LCNO), model of cluster orbitals,

vibrator-rotator model, etc.

Above we have shown that additive neutrons can destroy the cluster structure

of carbon nuclei. In this case, how do molecular states behave in scattering and

how do they relate to reactions?

Consider the 14C+12C reaction with yields of various beryllium isotopes near

the elastic scattering resonance found in the 14C+12C system Ecm =23.5 MeV [173,

186]. As found [173], this state corresponds to a quasi-molecular resonance with

angular momentum 18+ at energy Ecm =23.5 MeV, and the excitation function

in this region has the same resonance-like structure for a number of output chan-

nels, including the 12,13,14C excited states (see Figure 39). A similar structure

is observed for the 14C(12C,10Be)16Ochannel we are considering. The interest in

this reaction is due to the significant angular momentum (exceeding the grazing

angular momentum) for such a light system, which is in poor agreement with

theoretical predictions based on the DWBA approach to describe quasi-molecular

resonances [187], leaving even the question of the optical interaction potential in

such a system uncertain.

At the same time, the possibility of the existence of a sufficiently high momen-

tum in the considered system is indirectly confirmed by the data obtained earlier

in the works [35,36], in which it is shown that the residual 22Ne nucleus formed in

the reaction 14C(12C,α) can have a spin 12+ significant for such a nucleus. In order

to study this reaction and to determine its relation to quasi-molecular states, we

have obtained angular distributions at energies Ecm=21.1 MeV and 24.6 MeV –

near resonance and at the resonance point at energy 23.5 MeV.

The experiment was performed at the cyclotron of the University of Jyvaskyla

(Finland). The 12C beam was directed onto a self-supported 14C target (thickness

280 µg/cm2, enrichment 90%). The detector system for registration of reaction

products was located in a scattering chamber with a diameter of 1.5 meters. The
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Figure 39. Excitation function for the reaction 14C+12C. The elastic channel and the channel
with 16O+10Be output are shown. The dotted line shows the energies chosen in the paper for the
study [38].

products were registered by two position-sensitive gas ∆E − E telescopes (see

Chapter 2). The accuracy of the information on the particle registration angle

was ±0.2◦. A detailed description of the experiment is presented in [37,38]

The angular distributions of the 10Be+16O yield channel obtained for the three

energies shown in Figure 40.

The angular distributions for all considered energies have an oscillatory char-

acter with a tendency to increase the cross section at small angles, and the period

of their oscillations in the first approximation can be described by a Legendre

polynomial. For the case of nonresonant energies, the order of the polynomial

cannot be determined unambiguously; however, the best approximations for 21.1

and 24.6 MeV are of order 15 and 16, respectively, which coincides well with the

estimates of Lgr for these energies [186]. In the case of the 23.5 MeV energy,

there is a sharp minimum in the distribution of χ2 values for the fitting polyno-

mials, corresponding to a 12th-order polynomial. This behavior is characteristic

of an isolated resonance. The angular distributions for the excited states of the



102

30 40 50 60 70 80 90
θCM

10-1

100

101

102

103

104

d
σ
/d

Ω
, µ
b/
sr Ecm=22.1 MeV

P15

P11

P16

exp

6 8 10 12 14 16 18 20 22
L

1.0

1.5

2.0

2.5

χ
2

1

30 40 50 60 70 80 90
θCM

10-1

100

101

102

103

104

d
σ
/d

Ω
, µ
b/
sr Ecm=23.5 MeV

P12

P15

exp

6 8 10 12 14 16 18 20 22
L

0
1
2
3

χ
2

2

30 40 50 60 70 80 90
θCM

10-1

100

101

102

103

104

d
σ
/d

Ω
, µ
b/
sr Ecm=24.6 MeV

P16

P13

exp

6 8 10 12 14 16 18 20 22
L

0
1
2
3

χ
2

3

Figure 40. Angular distributions for three energies near resonance [37]. Comparison with Legendre
polynomials is shown, the insets give χ2 values for the polynomials. 1 – 22.1 MeV, 2 – 23.5 MeV,
3 – 24.6 MeV.

16O residual nucleus and for the case of the 9Be yield turned out to be almost

structureless, with the cross section falling smoothly with increasing angle.

In the simplest model for resonance states in reactions with heavy ions, the or-

der of the Legendre polynomial describing the angular distribution corresponds to

the angular momentum in the system under consideration. The angular momenta

determined by this method can be compared with the predictions of quasi-classical

models. Figure 41 shows the maximum partial wave orders available in the input

and output channels. The calculation was performed using the formula [188]:

Lcr = r0(A
1/3
1 + A

1/3
2 )
√︁

(2µ/ℏ2)(Ecm − Vc), (71)

where µ – reduced mass, Vc – height of the Coulomb barrier, A1,2 – mass numbers,

r0=1.55-0.00125η, η – Sommerfeld parameter.

As can be seen, in our case there is no smooth growth of the angular momen-
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Figure 41. Comparing the maximum angular momenta for the input and output channels for the
14C(12C,10Be)16Oresponse [37]. Triangles–experimental data. Solid line – maximum partial wave
order values for the input channel, dashed line – for the output channel. Circles – data for elastic
resonances from the paper [173].

tum with energy, as it occurs in the case of nonresonant reactions. Except for the

23.5 MeV energy, the angular momentum growth corresponds well to the change

in the maximum order of the partial wave. Taking into account the closeness of

the moments obtained from the quasi-classical analysis and the maximum values

for the partial wave moments, we can conclude that absorption of waves with

maximum momentum plays a significant role in the reactions at energies 21.1 and

24.6 MeV.

It should be noted that there is a significant difference in the angular momenta

for the input and output channels of the response under consideration. In the

work [173], the 12C+14C states with energies of 20.75 and 23.5 MeV are assigned

angular momenta of 16 and 18, respectively, so that the slope of the graph also

roughly corresponds to the increase with energy of the Lcr value, although the

angular momentum values found lie somewhat higher, and the angular momentum

value of 12, found by us, lies somewhat below the Lcr estimates for the exit channel

(see Figure 41). At the same time, for the known resonances in the 12C+12C

system, the angular momenta found for the different channels (elastic and 8Be

output) almost coincide. This discrepancy may have the following explanations:

1) The observed distribution is not a consequence of resonance in the sys-

tem and is due to a direct reaction mechanism in the transfer of a sufficiently

heavy cluster. Thus, in the work [189] such a picture arises due to the processes

associated with the transfer of the α-particle.
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Figure 42. Schematics of single-stage two-proton transfer processes and α-cluster transfer [37].

2) In the system under consideration, there are two nearby resonances with

angular momenta 18+ and 12+. The first one is most intense in the elastic channel,

while the intensity of the second one is small there, but it becomes prominent in

the 10Be+16O channel.

To evaluate the contribution of direct processes, the transmission reactions

were calculated within the DWBA model. Two direct reaction channels available

in the one-step approximation were considered. Their graphical representation is

given in Figure 42.

The core-products are identical but rearranged so that the channels in ques-

tion dominate at different angular ranges of the 14C(12C,10Be)16Oreaction. The

two-proton disruption is maximized in the anterior hemisphere, and the trans-

mission of the α-cluster defines the region of larger angles. The intermediate

angles are thus formed by the interference of these two processes and from the

formula (83) for the differential cross section of the 14C(12C,10Be)16Oreaction can

be written:

dσ

dΩ
∼ |f2p (θ, S2p) + fα (π − θ, Sα)|2 , (72)

where fi – reaction amplitudes, i = 2p – two-proton disruption, i = α – α-

cluster pickup, S2p,α – coefficients determining the magnitude of the contribution

of each mechanism and equal to the product of the corresponding spectroscopic

amplitudes. The case of the influence of this mechanism on elastic scattering will

be considered below.

The calculation of the response 14C(12C,10Be)16O and the analysis of channel

contributions were performed within the DWBA model of the FRESCO [161] pro-
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gram, taking into account the cluster approximation to describe the transmission

process. The optical potential found from the analysis of the elastic scattering

data 14C + 12C obtained by us in this study and from comparison with experi-

mental data from the [173] paper was used as the input channel potential. The

parameters of the potential used, of the Woods-Saxon type with bulk and surface

absorptions, are fixed in energy and equal to:

V0 = 135.003 MeV, r0 = 1.200 fm, a0 = 0.440 fm,

W0 = 29.841 MeV, rW = 1.352 fm, aW = 0.114 fm,

Wd0 = 1.699 MeV, rWd = 1.518 fm, aWd = 0.107 fm.

For all potentials used in this work, the Coulomb radius parameter was chosen

to be rC = 1.25 fm, and the radii, as above, are determined by the expression:

Ri = ri

(︂
A

1/3
t + A

1/3
p

)︂
. Nevertheless, it should be noted that the use of a simple

non-volatile model of the input channel potential can only be considered as a first

approximation, since a more correct description of the elastic scattering of 14C

+ 12C requires the elastic transmission of two neutrons to be taken into account.

The importance of such a mechanism for scattering is shown, for example, in [190].

Due to the lack of potential parameterization or elastic scattering data for

the 10Be+16O output channel, a modified energy-dependent optical potential with

bulk absorption for 9Be+16O [191] was used. Its parameters are summarized in

Table 12.
.

Table 12. Optical potential parameters 10Be + 16O [39].

Ecm., MeV 22.1 23.5 24.6
V0, MeV 134.000 138.665 142.554
r0, fm 0.964 0.940 0.925
a0, fm 0.694 0.707 0.716

W0, MeV 11.500 11.744 11.939
rW , fm 1.301 1.291 1.282
aW , fm 0.694 0.707 0.716

The spectroscopic amplitudes were free parameters of the calculation. From

the analysis of the angular distributions, it was obtained that the spectroscopic

amplitudes are practically independent of energy and are for ⟨12C|10Be⟩g.s. and
⟨16O|14C⟩g.s. 0.380 (2p breakdown), and for ⟨14C|10Be⟩g.s. and ⟨16O|12C⟩g.s. 0.618
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(α-cluster pickup), as shown in Tables 13, 14, 15, 16, 17.

Table 13. Theoretical spectroscopic amplitudes and quantum numbers of the α-cluster [39].

overlap NLj α-cluster A

⟨14C|10Be⟩g.s. 3S0 -0.566 [192]

⟨16O|12C⟩g.s. 3S0 0.544 [193]

Table 14. Theoretical spectroscopic amplitudes for the two-proton transfer reaction [39].

overlap
(︂
1p 3

2

)︂2 (︂
1p 1

2

)︂2
2S0 [192]

⟨12C|10Be⟩g.s. 0.770 0.544 0.800

⟨16O|14C⟩g.s. -0.817 -0.577

Table 15. Spectroscopic amplitudes obtained from the analysis of the 14C(12C,10Be)16O reaction
at 41.5 MeV [39].

overlap A overlap A

⟨14C|10Be⟩ 0.618 ⟨12C|10Be⟩ 0.374

⟨16O|12C⟩ 0.618 ⟨16O|14C⟩ 0.374

As can be seen from Figure 43, in the angular range of the experimental

data obtained, the main contribution is given by the two-proton transfer reaction,

and the influence of the α-cluster transfer channel is manifested approximately

starting from an angle of 60°. Thus, the transmission of the heavy cluster is not, in

this case, the cause of the resonance-like structure. Nevertheless, the importance

of the contribution from α-cluster configurations to the structure of the 14C+12C

nuclei formed in the 14C reaction should be noted, since the relative channel yields

for different excitation energies of the 18O residual nucleus show a suppression of

states with the 4p-2h configuration at 24.6 MeV compared to others.

Figure 44 shows a comparison of the experimental distributions with the

DWBA calculation results. A comparison of the experimental data for the reaction
14C(12C,10Be)16O for the case of interference of the two channels considered is

presented. As discussed earlier, when considering the elastic transmission response

for 12C+16O scattering, the best agreement with the calculation results occurs

when we are not at the resonance point. At energy Ecm =23.5 MeV, the value of
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Table 16. Spectroscopic amplitudes obtained from the analysis of the 14C(12C,10Be)16O reaction
at 44 MeV [39].

overlap A overlap A

⟨14C|10Be⟩ 0.618 ⟨12C|10Be⟩ 0.391

⟨16O|12C⟩ 0.618 ⟨16O|14C⟩ 0.391

Table 17. Spectroscopic amplitudes obtained from the analysis of the 14C(12C,10Be)16O reaction
at 46 MeV [39].

overlap A overlap A

⟨14C|10Be⟩ 0.618 ⟨12C|10Be⟩ 0.375

⟨16O|12C⟩ 0.618 ⟨16O|14C⟩ 0.375
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Figure 43. The contributions of the two-proton transmission channels (red dashed line), the α-
cluster (blue dashed line), and their interference (black solid line) for energy Ecm =22.1 MeV [37].
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Figure 44. The angular distributions obtained in this paper [37].

χ2 increases by an order of magnitude, which may indicate the inclusion of other

reaction mechanisms, including resonance ones.

In general, as can be seen, there is a good agreement between the calculations

and the experimental data. Nevertheless, it should be noted that the obtained

integral cross section poorly reproduces the experimental excitation function, pre-

dicting a smooth growth of the cross section with energy.

Thus, the results obtained indicate a good description of the angular dis-

tribution within the DWBA model at the nonresonant energies Ecm =22.1 and

24.6 MeV and, to a first approximation, reproduce the general regularities of the

angular dependence at the resonant energy Ecm =23.5 MeV. This indicates the

applicability of DWBA as a method for describing the nonresonant background

in this reaction. The differences appearing in the resonance region may be the

result of the existence of an additional 12+ resonance weakly manifested in the

elastic channel.

Considering that the studied resonance-like structure at energy Ecm=23.

5 MeV is observed, as mentioned above, in several output channels at once (in-

cluding those with excited states) we can conclude that there is a complex quasi-
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Figure 45. Comparison of the dependence of excitation energy on angular momentum for the
system 14C+12C (dashed line) and 16O+10Be (solid line) based on the systematics of the [105]
paper. Experimental data are given [38]: triangles – for the reaction 14C+12C from the work [105],
dots – the present work. The predicted state 10+ is enclosed in brackets.

molecular structure of the compound-core 26Mg, similar to the detected mixing

of configurations |8Be⊗16O⟩ and |12C⊗12C⟩ in the study of decays of high-lying

resonances in 24Mg [194]. A similar situation is observed in the case of the study

of the 12C(16O,8Be)20Ne [195] reaction, indicating the importance of the effects

discussed at the beginning of this chapter for light nuclei as well. The results also

indicate the occurrence of resonance processes in the case of neutron-depleted nu-

clei, but do not allow us to unambiguously confirm the resonance nature of the

case under consideration.

For a better understanding of the nature of the emerging structure, the

angular distribution of other channels showing signs of resonance should be

studied. Also, from this point of view, it is of interest to study the reaction
14C(12C,10Be)16O in the region of energy Ecm =19.7 MeV, where a structure simi-

lar to the one considered by us is observed. If the quasi-molecularity hypothesis is

confirmed, this point may correspond to a resonance with an angular momentum

of 10+. This is shown in Figure 45, where a comparison of the results obtained

with the systematics is made.

Let us consider the possibility of applying the potential model to our result.

Table 18 gives examples of WS2 potential parameters for various combinations

of nuclei forming molecular resonances (the case of 12C+16O will be considered
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separately). For each potential, the value of the volume integral is given:

JV =
4π

A1A2

∫︂
V (r)r2dr. (73)

.

Table 18. Examples of potential parameters for reactions with heavy ions obtained in this work.

V0 R a J
MeV fm. fm. MeV·fm3

12C+12C 294 3.84 1.3 367
12C+12C 313 3.66 1.6 379
16O+16O 413 3.97 1.46 330
16O+16O 362 3.92 1.56 288
16O+20Ne 241.5 4.5 1.59 221
10Be+16O 331.8 3.77 0.95 320

In this case, the excitation energy of the 10+ state is E=14.84 MeV with a

width of Γ=0.508 MeV, and for 12+ the energy is E=18.66 MeV, with a width of

Γ=0.356 MeV, which is close to the experimental results.

Magnesium isotopes are not “good” representatives of exactly α-cluster nu-

clei, although the very manifestation of clustering is quite strong in them. Our

experimental results on this issue will be presented below in the discussion of

heavy cluster interactions.

From the point of view of theory, the best approach to describing the cluster

structure of this nucleus is precisely the calculations based on the liquid drop

method with the Nilsson-Strutinsky corrections [181, 196, 197] to obtain the cor-

responding energy surface. The 24Mg nucleus was one of the first to be studied

in detail within this model, resulting in the discovery of several minima corre-

sponding to cluster degrees of freedom. The connection between deformed-shell

and clustering calculations was well demonstrated in [83,198], where a comparison

between the results of the liquid drop model and the pure Brink-Bloch cluster ap-

proach was made for the 24Mg nucleus [5,199]. A comparison of these results with

the predictions of the maximal α-particle model has been presented in Table 2.

It is the 24Mg nucleus that has been particularly scrutinized for the detection

of chain configurations, bearing a pronounced α-cluster [200] character. Neverthe-

less, the main discussion of cluster degrees of freedom in this nucleus is centered
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mainly in the field of molecular resonances associated with heavy ions (such as
12C+12C). This issue will be discussed later in the paper.

In order to investigate cluster and high-spin states in this nucleus, the already

mentioned reactions leading to the active population of cluster states have been

studied. For example, despite the difficulties of using a 20Ne gas target, the

reactions (6Li,d) and (7Li,t) [201, 202] were studied. More successful work has

been done with the reactions 12C(16O,α) or 16O(12C,α) [203–205]. In particular,

it has been shown:

1) Existence of levels with sufficiently high settlement efficiency.

2) The existence of high-spin states (with spins 8+,9−), which can be consid-

ered as a manifestation of rotational bands [205].

In [202], the 26Mg states in the 22Ne(6Li,d) reaction were also investigated.

Despite the limited information it is possible to compare the predictions of

the potential model with the obtained result. For the 24Mg nucleus, the level data

were taken from [155, 205], and for 26Mg, the states forming the yrast line from

the [155] data were selected. As suggested in [202], the constraint on the number

of nodes from the formula (23) was chosen as 2N + L=8. The value of the radii

was taken from fitting to the experimental data:
24Mg - R=3.2 fm.
26Mg - R=3.22 fm.

The results are shown in Figure 46. The obtained result can only be evaluated

qualitatively because, due to the rather large detachment energy of the α-particle,

most of the positive parity levels are located under the threshold, and due to the

large splitting, even the low-spin levels are poorly defined and poorly investigated.

In particular, for the negative parity states in the 24Mg nucleus, the closest set of

levels with a suitable angular momentum has been used, thus perhaps these states

do not belong to the Kπ=0− band. Thus, in the paper [205] another variant of

the states 3−, 5− and 8+ was proposed.

Using the example of the 26Mg nucleus, it has been shown that Buck’s hy-

pothesis about the possibility of the manifestation of several cluster states in a

nucleus also holds for such light nuclei. Even such a nucleus with a complex

internal structure as 10Be (see Figure 24) can be a cluster for the rotational band.
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Figure 46. Comparison of potential model predictions for 24Mg and 26Mg nuclei [155]. Dark and
light circles – states with positive and negative parity, respectively.

3.7. Silicon and Sulfur

Silicon and sulfur nuclei do not seem to have low-lying bands with good

cluster structure, but these nuclei play an important role in the use of heavy nuclei

(12C+16O and 16O+16O) as clusters, which will be discussed below. Also, when

considering the high-lying α-cluster states. In contrast to heavier nuclei (with

the exception of argon, discussed below), these nuclei have been well studied in

resonance scattering of α-particles, mostly in inverse geometry with a thick target.

As shown by the performed experiment [206], the high-lying states form well-

defined fragmented bands. Within the potential model approach, it is difficult

to describe such parity-unfragmented bands. The case of sulfur will be discussed

separately in the next paragraph. One could assume that, within the infinite

barrier tunneling model, a band is formed in which α-particles populate high-lying

orbitals. One can only estimate the moment of inertia for such systems, given that

the moments of inertia of positive and negative parity bands are approximately

the same.

3.8. Argon

Like the previous two nuclei, α-cluster degrees of freedom are relatively poorly

understood for the 36Ar nucleus. Nevertheless, from the available evidence it can

be concluded that this nucleus has rotational bands that can be identified as α-

cluster bands. And, in addition, a large number of fragmented cluster states are
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present.

The first work to study such states was the α-particle (6Li,d) [207] trans-

mission experiments. Similarly to other self-coupled nuclei, a number of states

populated with increased intensity were found in this reaction. The states corre-

sponding to the ground state band, 0+ – ground state, 2+ – 1.97 MeV, and 4+ –

4.41 MeV were weakly populated.

In [207], attention was drawn to the existence of intensely populated levels

whose spins had not been determined at that time – 4.95, 6.14, 7.8, 9.9 MeV.

The study of the 36Ar nucleus in γ-spectroscopy experiments allowed us not only

to assign spin to these states, but also to find out that they belong to the band

Kπ=0+ (4.33 MeV), which has a sufficiently large moment of inertia and extends

to values of 18+, which, for this nucleus, is a very high angular momentum. At

the same time, the active population of initial states may indicate the importance

of the α-cluster degree of freedom for all states of this band.

On the other hand, a significant deficit of states with negative parity, which

would not be “one-particle” in nature, draws attention. Thus, the observed states

3− 4.18 MeV, 2− 4.97 MeV, and 5− 5.17 MeV, when compared with the results of

the reaction 35Cl(τ ,d), show their belonging to the (d3/2)
3
3/2f

7/2 multiplet, while

the states 1− 5. 84 MeV, 3− 6.84 MeV belong to the (d3/2)
3
3/2p3/2 multiplet.

While two such 1− states with energies of 9.12 and 10.65 MeV are populated with

sufficient efficiency in both the transfer reaction and the (32S,γ) reaction, which

may be a sign of the onset of fragmented states.

To obtain information on the high-lying fragmented cluster states, we per-

formed an elastic scattering experiment of α-particles on 32S [66] nuclei. The

experiment was performed using the inverse geometry method with a thick tar-

get [208]. As a result, 44 new levels with angular momenta from 0 to 6 and

located in the excitation energy range from 12 to 16 MeV were identified as active

in this reaction. Figure 47 presents a compilation of the data on α-cluster levels

for comparison with the potential model predictions.

As can be seen, for radius R=4.1 fm, there is a good agreement with the data

obtained in the transfer reactions and by γ spectrometry, but the fragmented

states detected in the experiment lie too high, except for the 5− 12.2 MeV level.
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Figure 47. States in the 36Ar nucleus having cluster character. Black dots – states with positive
parity obtained from experiments with transfer reactions and γ-spectroscopy. Light dots – 1−

states that are actively populated in transfer reactions. Triangles – low-lying 3− states from the
α-particle capture reaction [155]. Crosses – data from our elastic scattering experiment [66].

This level, which has a small width (5 keV) and a large reduced width compared to

the other states, was also observed in the transmission reaction in the work [208].

Also shown in the Figure are the 1− levels discussed above that are actively

populated in the transmission reaction and the low-lying 3− doublet found in the
32S(α, γ) [155] reaction. However, it is not clear from the results whether these

levels are the beginning of a fragmented band.

3.9. Calcium

Although we have pointed out a number of cluster properties of the 36 Ar

nucleus, it is the 40Ca nucleus that turns out to be particularly important in terms

of cluster degrees of freedom, now in intermediate nuclei. Since this nucleus is

twice magic (the last nucleus of this type of stable self-conjugated nuclei), we

should expect the clusters to populate the new fp shell. This approach allowed

us to draw an analogy with the well-known cluster nuclei we considered earlier.
16O=⇒40Ca
20Ne=⇒44Ti.

Thus, by analogy with the cluster states of 16O and its isotopes, we might

expect cluster states in 40Ca. Indeed, a number of theoretical studies have pre-
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dicted the existence of states characterized by the 4p− 4h and 8p− 8h structure.

We have performed an experimental study of the levels of 40Ca and 42Ca nuclei,

which allowed us to detect the predicted states and the bands appearing based on

them. The experimental apparatus and procedure have been fairly fully described

in [209], and the results obtained are reported in [63].

Let us consider the application of the two models described in Chapter 1 to

the case of a rotational doublet in the 40Ca [63] nucleus. Positive and negative

parity states distributed in good agreement with the law Eex ∼ J(J + 1), where

Eex is the energy of the excited level, reach a sufficiently high (for a nucleus of

such mass) value of angular momentum. According to [210, 211], the positive

parity band based on the 0+ state, with energy 3.35 MeV, has a 4p−4h structure,

which is confirmed by the high probability of its population in α-particle transfer

reactions. The negative parity band has a moment of inertia close in value to the

moment of inertia of the 4p − 4h band, and its low-lying states are also rather

actively populated in α-transfer [212] reactions.

More complex tunneling models for octupole strain [213,214] include a param-

eterization of the barrier between the two configurations describing the decrease

in the magnitude of the splitting with increasing angular momentum. In [215],

the equation describing the potential entering the Hamiltonian of octupole oscilla-

tions contains as parameters the moment of inertia and the octupole deformation

of the β nucleus, is of the form:

UJ(β) =
J(J + 1)d22(β

2 − β2
min)

2

2(d1 + d2β2
min)

2(d1 + d2β2)
. (74)

Here d1,2 are the parameters determining the moment of inertia, βmin is the equi-

librium octupole deformation parameter. The data obtained in this work for
224Ra, 226Ra, 224Th, 226Th nuclei allow us to make an estimate of the potential for

the deformed 40Ca nucleus [64]. The value corresponding to the moment of inertia

is defined in the paper [215] as Θ(β) = d1+d2β
2. Moreover, the average value of

the deformation parameter d1 for the range of nuclear masses considered in [215]

is of the order of 0.045 MeV−1, and for d2 – of the order of 0.155 MeV−1. Con-

sidering that, by analogy with the moment of inertia of a solid, both coefficients

are proportional to A5/3, for the case of the 40Ca nucleus we obtain, respectively,
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d1 ∼0.0025 MeV−1, d2 ∼0.0087 MeV−1. On the other hand, we can assume that

the octupole deformation parameter will be only slightly larger than that found

in [215], since the cluster/cor mass ratio for the above heavy nuclei is of the order

of the ratio α-particle/36Ar, viz. i.e., βmin ∼0.2. Another parameter necessary for

the calculation of the band splitting is the effective mass parameter B3 included

in the Hamiltonian [216]:

Hoct
osc =

ℏ2

2B3

d2

dβ2
+ UJ(β). (75)

As is obvious, this parameter is a function of mass. For the static octupole

deformation for the moment of inertia, we can obtain that Θ=6B3β
2 [217]. For

the simplest kind of dual-core system α⊗36Ar, the moment of inertia parameter

ℏ2/2Θ is a value on the order of 81 keV [63]. Thus, for our estimate of the octupole

deformation, we can, as a first approximation, obtain B3 ≈ 25ℏ2 MeV−1.

Let us choose the found parameters as a first approximation for fitting by

the expression (74) the experimental data obtained by us [63]. To calculate the

energy of octupole oscillations, an expression was proposed in [215]:

Eosc(J) = E0 −
1

2
(−1)JδE(J), (76)

where δE(J) = E−
J −E

+
J is the energy difference between the negative and positive

parity states, and E0 is a constant. This approach allows us to remove the non-

rotational part from the expression. Since in the experiment we observe only

states with natural parity, to determine the value corresponding to the parity

splitting we write:

δE(J) =
1

2
[E(J + 1)− 2E(J) + E(J − 1)−

1

4
(E(J + 2)− 2E(J) + E(J − 2))

]︃
. (77)

For the case when J=1 the formula (77) is written as

δE(1) = E(1)− 0.5(E(0) + E(2)), which is the first approximation.

The theoretical prediction for the energies E−
J and E+

J was obtained by nu-

merically solving the Schrödinger equation with the Hamiltonian from the ex-
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Figure 48. Comparing the experimental parity dependence of the rotational band splitting in the
40Ca nucleus with the theoretical prediction [64,65].

pression (75) and the potential UJ(β) (formula (74)). The result is shown in

Figure 48.

Note that in this case the limit on the number of nodes from the formula (23)

is 2N +L=12, while the Figure 48 shows all states of the observed doublet. Since

the splitting for large values of angular momentum is small, only the Hamilto-

nian (75) was used in the fit; however, assuming a band structure more complex

than 2N + L ≥12, where the allowed angular momentum may exceed the value

J=12, the quadrupole-octupole rotational model [218] may need to be taken into

account to describe the splitting at large values of angular momentum. As can

be seen, there is good agreement between the theoretical and experimental val-

ues of the splitting. The parameters found, with the exception of d2, deviate

slightly from the expected values. The obtained value of the octupole strain also

agrees well with the estimate that can be obtained from the analysis of the reduced

transition probability between states 2+ → 0+, which is B(E2)=30±4 W.U. [219].

From the approximation for the transition probability:

B(E2; 2+ → 0+) =

(︃
3

4π
eZR2

)︃2

β2
2 , (78)

follows from the value of β2 =-0.16 if we take the value of the parameter r0 in

determining the radius to be 1.2 fm.
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Figure 49. Comparison of experimental and theoretical results for positive and negative parity
bands in the 40Ca nucleus [64, 65]. See text for explanations.

Now let us consider the second variant of the description of the parity-split

states in the framework of the potential model using the WS +WS3 potential,

formula (27). As mentioned above, this potential has been successfully applied

not only to heavy nuclei [220, 221], but also to the above α-cluster bands in

light nuclei. In [76], it was also used to successfully characterize the states in

the 44Ti nucleus. The parameters a=0.73 fm. and x=0.33 coincide with the

previously chosen parameters for oxygen and neon nuclei. The form factor was

normalized by its value at zero radius. The depth of the potential was chosen as

V = −54.0 · A1A2/A, where A1,2 are the mass numbers of the core and cluster,

and A= 40.

Applying this potential one finds that the band with positive parity in the
40Ca nucleus is described much better than when the cosh-type potential [219]

is applied. Figure 49 shows the results of calculations for the energies of the

rotational band levels with positive and negative parity, and Table 19 summarizes

the values of B(E2) for the known transitions in comparison with theoretical data

obtained by us as well as with results from the work [219]. The value R=4.15 fm

was chosen as the radius of 40Ca.

The transition probabilities were calculated using the semiclassical

model [222], taking into account the effective charge, the replacement Z = Z+ ϵA
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and the factor ϵ= 0.25 [109]. Such good agreement is achieved only under the

assumption of population of the fp shell, which corresponds to 2N + L=12.

Table 19. Comparison of transition intensities in the 40Ca nucleus for different types of poten-
tial [64, 65].

Transition Intensity WS +WS3 Deep cosh Shallow cosh
(W.u.) (W.u.) (W.u.) [219] (W.u.) [219]

2→ 0 30±4 29.7 5.7 27.0
4→ 2 59±6 40.3 7.3 37.0
6→ 4 16+8.8

−4.4 38.5 6.4 37.5
8→ 6 31.2 4.8 34.1
10→ 8 21.0 3.0 27.6
12→ 10 9.9 1.3 17.2

In describing the positive parity bands for self-conjugated nuclei with mass

number 36≥ A ≥48, applying a similar potential, one can obtain a very good

agreement with experiment for the positions of levels with positive parity, and

the value of the radius of the nucleus used as a parameter will have a dependence

on the mass:

R ≈ 0.85(A1/3
core + A

1/3
clust). (79)

At the same time, as it was shown in [76], the above potential also describes

high-lying negative parity bands found in some nuclei, which, except for the 20Ne

nucleus, appear as a set of nearby levels with the same spin and are actively

populated in α-transfer reactions [223]. Taking into account that the calculation

of the positions of the “weighted average” levels involves certain difficulties, we

can give only approximate estimates of the lower bounds for their energies. These

are the values indicated for the experimental values of the energies of states with

negative parity (Figure 49, dashed line). For these values we used the totality of

the data on α-transfer reactions available to date [64, 65], so the energies of the

levels in Figure 49 are slightly different from those given in the paper [223].

Thus, we are dealing with a set of rotational bands possessing α-cluster struc-

ture, one with positive parity and two with negative parity. The positive parity

band (having a 4p − 4h structure) is weakly split with the low-lying negative

parity band, with the splitting exponentially decreasing with increasing angular
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momentum [63] and is well described by theory. The high-lying band with nega-

tive parity appears fragmented and has a moment of inertia close to the moments

of inertia of the other two bands. It should be noted that a similar low-lying

band with negative parity is also found in the neighboring 40Ca nuclei (44Ti and
48Cr). Although the absence of clearly distinguished states with low spins and

the presence of a band with non-natural parity suggest that this is one band with

K ̸=0. At the same time, another assumption is possible for the 40Ca nucleus [63].

This approach can be applied to describe nuclei far from the region of closed

shells. Consider again the 32S nucleus. It is characterized by the absence of well

separated α-particle bands. By applying the WS + WS3 potential and using

the above expression to estimate the radius parameter, we can find that for the

number 2N + L=8 (the case of correlation in the 2s − 1d shell) the energy of

the 0+ state is too low (much smaller than the binding energy). In the case of

2N + L=12 (1f − 2p shell), the 0+ level has an energy of about 7.2 MeV, 2+ –

about 8 MeV, and 12+ lies higher than 22 MeV. Hence, it is possible that similar

bands are present in this nucleus, but because of the need to populate a new

shell, they are strongly suppressed. To date, we have very little information on

both the states of the 32S nucleus excited at energies above 10 MeV and on the

γ-transitions in the case of reactions with heavy ions [65].

As can be seen, theWS+WS3 potential is well suited for describing states in

nuclei having a more complex structure than 4p−0h. This allows us to better un-

derstand the properties of the rotational bands, which, due to their multiparticle

character, have too complicated and approximate description in the framework of

the shell model [224].

In conclusion, however, it should be noted that, unlike the potential model,

the tunneling model cannot be unambiguously accepted for a given nucleus. Sim-

ilar to the 16O nucleus described above, there are works [225] pointing to a rela-

tively small deformation of high-spin states having negative parity. As seen in our

work [63], we have uncertainty with the choice of the 5− state, and, in particular,

the problem of interpreting some states with negative parity in this nucleus [226]

has been pointed out. Despite the fact that in this effect of the work, the authors

of the paper [225] pointed out a possible consistency with the results of the tunnel-
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Figure 50. Excitation function obtained by scattering 40Ar on helium. The spectrum taken from
the ∆E − E detector is shown [228].

ing model, it is nevertheless necessary to exercise some caution and assume that

the tested cluster states with negative parity belong mainly to the fragmented

band described above.

3.10. Heavy nuclei and clusters

An interesting question is the experimental study of analogous states for

heavier clusters as well as neutron excess nuclei. Thus, to date, no sufficiently

well-confirmed data on molecular resonances in systems heavier than 16O+16O

have been obtained. For example, rather controversial results [227] have been

obtained [227] when studying the scattering of 16O+40Ca.

Since in this problem we need to study the excitation function over a suf-

ficiently wide interval, the best approach to the solution is to use the inverse

kinematics and thick target method discussed in Chapter 1 and applied earlier in

our study of α-cluster states in the 36Ar [206,228] nucleus.

The work was performed at the cyclotron at the University of Warsaw. We in-

vestigated elastic scattering reactions of 40Ar with energy 220 MeV on gas targets

– 4He, 20Ne, and CO2. A thick carbon target was also used. Excitation functions

at 180◦ for the above targets were obtained. A large number of narrow resonances

were found for the 40Ar+α excitation function. This indicates that the band of
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Figure 51. Excitation function obtained by scattering 40Ar on 12C, CO2 and 20Ne [228].

fragmented states is also manifested in the 44Ca nucleus. The excitation function

is shown in Figure 50.

At the same time, we did not obtain a resonance pattern for the case of heavier

nuclei (see Figure 51). However, the results show a significant superiority of the

yield of the target nuclei over their neighbors.

Thus, to date we have no reliable information on molecular resonances in

systems corresponding to fp shell nuclei and above. Given the great interest in

such states, their importance, including for astrophysical studies, and the presence

of encouraging theoretical predictions, the study of such structures should be

continued.

As a conclusion, let us briefly review the situation of heavier nuclei not inves-

tigated in this paper. As discussed in the Introduction, one of the most common

examples of the application of the potential model in describing α-cluster degrees

of freedom is the 44Ti nucleus. The population of the α-particle fp shell over a

closed magic core leads to the appearance of well-defined rotational bands forming

a split doublet. In this case, as indicated in the discussion of the bands in the
40Ca nucleus, we have a situation analogous to the neon nucleus.

Cluster levels in the 44Ti nucleus have been studied in the transmission re-
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action [223] , elastic scattering of α-particles [229], and by γ-spectrometry [230].

The latter study revealed the presence of several bands of complex structure in
44Ti. Similar to 40Ca, titanium does not have a “complete” low-lying negative

band; the states observed in it begin at level 3− – the lowest-lying level with neg-

ative parity, although the further behavior of the intensities of transitions between

states is characteristic of the rotational band. Another important difference from

the cluster levels discussed above is the poor fit to the E∗ ≈ J(J + 1) law. For

the shell-filling fp-shell α-particle from the Wildermuth (23) condition we have

2N + L ≥12, while the energy difference between 8+ and 10+ (1.162 MeV) is

smaller than the difference between 8+ and 6+ (2.495 MeV) and this difference is

quite small for the transition between 12+ and 10+ and is only 368 keV. In spite

of this, in the E∗.vs.J(J + 1) plot, the position of the levels will be described by

a smooth curve, in the two-particle approximation, corresponding to the growth

of the moment of inertia.

The point is that from the point of view of the potential model the moment

of inertia is unstable and can both decrease with increasing angular momentum

and increase. The first process corresponds to “displacement” of the particle into

the peripheral region due to the growing effective angular momentum potential.

The second is due to the decreasing number of nodes. Figure 52 shows the change

in the wave function with decreasing number of nodes. The presence of a strongly

oscillating part in the overlap region (to exclude forbidden states), leads to the

fact that when the number of nodes is small, the particle is closer to the nucleus.

Thus, if the potential is narrow and deep, the first process is more effective, and

for a wide potential the second process is more effective.

In his paper, Pilt [108] chose a narrow cosh potential which, although it

described the behavior of the graph E∗.vs.J(J+1), did not, as Okubo pointed out,

combine with Wildermuth [107]’s condition. This error was corrected both in the

above work by Okubo (for a potential of type WS2) and by Pal and Lovas [219],

who chose a broader potential cosh. However, all the above works predicted

a quadratic energy growth between levels and described well only states with

positive parity. Thus, the potential from [219] gives an estimate for the 1− state

of 9.5 MeV.
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Figure 52. Shown are the wave functions of the ground state 0+ (bottom) and state 12+ (top) for
the band with the condition 2N + L =12. The dotted line shows the most probable distance for
the cluster-core system.

If we draw an analogy with the neon nucleus, we should observe a negative

parity band with a potential that describes states with positive parity. Taking

the 40Ca nucleus discussed above as an example, in the absence of a low-lying

“tunneling” band, we should observe a band of fragmented states.

In the [76] paper, the first option was considered. Using the WS + WS3

potential, positive parity states (band from 0+ to 8+) and low-lying negative

parity states actively populated in the reactions 40Ca(6Li,d) and 40Ca(16O,12C) -

1− 6. 25 MeV, 3− 7.37 MeV, and 5− 9.46 MeV. For the radius value R=4.33 fm,

we were also able to satisfactorily describe the widths and intensities of the known

transitions. However, for the 10+ and 12+ states, the error in the positions of the

levels was significant.

In [223], the potential model was applied to the same states with positive

parity (also omitting high-spin states because of the large error), and the centers

of fragmented states were chosen as the states for the negative parity band, as

in [64,65] – 1− 7.16 MeV, 3− 8.00 MeV, 5− 9.5 MeV.

Summarizing the intermediate conclusion, it can be stated that in the region
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Figure 53. Dependence of the moment of inertia parameter on the mass number [61]. The dots
indicate experimental data, the solid line is the fit by the formula (80).

of fp shells the states having the α⊗Cor structure are no less widely represented

than for the previous shells. Moreover, in the framework of the Merchant po-

tential model, it was shown that such states also appear for non-self-conjugate

nuclei [231].

As shown above, the application of the WS+WS3 potential for 16,18,20O and
20,22Ne nuclei allowed a good description of the low-lying rotational bands. The

correct value of the theoretically obtained moment of inertia shows that all con-

sidered states have a very large contribution of structure of the form α⊗cor. This

remains true even for the 20O nucleus, where the value of the theoretical splitting

is slightly larger than the experimental value. This picture suggests a more global

manifestation of the cluster structure in nuclei of light and intermediate mass

groups with neutron excess [232].

Let us emphasize the currently known low-lying rotational states of α-cluster

nature, discussed above, in nuclei up to and including titanium. Figure 53 shows

the dependence of the moment of inertia parameter ℏ2/(2Θ) where Θ is the mo-

ment of inertia of the nucleus, from the mass number for the known low-lying

rotational bands with positive and negative parity nuclei 8,10,11,12Be,12C,16,18,20O,
20,22Ne, 32S, 36,38Ar, 40,42Ca, 46Ti, 44,48Cr. This result was presented in the pa-

per [61].
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If the structure of all the given rotational bands can be represented as α⊗core,

the points will be approximately located on the curve corresponding to the fol-

lowing dependence of the moment of inertia on the mass number of the nucleus:

Θ = Θ1 +Θ2 +
A1A2

A
R2m0. (80)

here A1,2 and Θ1,2 are the mass numbers and moments of inertia of the cluster

and the core, respectively, A is the mass number of the nucleus, R is the distance

between the cluster and the core, and m is the mass of the nucleon. Assuming

that the moments of inertia of the cluster and the core are equal to the moments

of inertia of spherical nuclei of radius R1,2 = r0 · A1/3
1,2 and the distance between

them is equal to the sum of radii R = R1 + R2, the equation (80) contains only

one free parameter r0, which for nuclei of a given mass group is usually chosen

in the range 1-1.2 fm. By fitting the equation (80) to the available experimental

data, we can estimate the value of r0, which is 1.134 fm, which corresponds well

to the specified range. The correctness of the considered treatment is indicated

by the good coincidence between the fitting curve and the point corresponding

to the moment of inertia parameter for the 8Be nucleus. The exception is the
12Be nucleus, which has a very large moment of inertia due to the large distance

between the α-particles (see Table 5). By this feature, the rotational band in this

nucleus could be categorized as molecular.

The next nuclei when the α-particle populates a state above two closed shells

are 94Mo and 212Po. For both nuclei, the low-lying bands of states with positive

parity are well known and they conform very poorly to the E∗ ≈ J(J+1) law. At-

tempts to detect states with negative parity that could be identified as a α-cluster

band were made in the work [223] in the 90Zr(6Li,d)94Mo reaction. However, the

result was unsatisfactory - the spectrum was strongly contaminated with 16O and
20Ne states and it was not possible to identify any intense levels with negative

parity. It should be noted that during the study of γ-spectra in this nucleus a

band with negative parity states reaching angular momenta of order 17 was found

and, like the analogous band in the 44Ti nucleus, it has no low-spin states.

Nevertheless, the bands in 94Mo and 212Po were considered in the framework

of the potential model in [112, 233] with cosh and WS + WS3 potentials. It
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was shown that although the distribution of all levels cannot be satisfactorily

described, the model predicts the approximate position of some part of the levels

and allows us to estimate the half-lives of [234].

It should be noted that, despite the success of the potential used to describe

cluster states over a wide mass range, in this case, the analogy between cluster

bands in heavy and light nuclei is not complete. As was shown in [232], the rms

distance between cluster and core depends strongly on the mass number, so that

even for neighboring isotopes the simple correspondence between the moment of

inertia and the excitation energy difference that we found in [62] is not satisfied,

when the normalized ratio of energies of levels with different spins is proportional

to the reduced mass of the considered nuclei. This fact confirms the assumption

about the α-cluster nature of the low-lying rotational bands of the considered

nuclei.

Thus it can be seen that the presence of additional neutrons not only does

not reduce the contribution of cluster configurations to the excited states, but

leads to an increase in the available combinations due to their different ways of

inclusion.

The above examples of the manifestation of cluster degrees of freedom con-

cern firstly only α-clusters, and secondly, relate specifically to the problem of the

structure of the nucleus. In this chapter we will consider the possibility of the

existence of heavier clusters with respect to nuclear reactions.

As it was mentioned in the introduction, one of the objectives of the transition

to the cluster consideration of the nucleus structure is to reduce the number of

variables and to reduce the problem to a two-particle one. Of course, not any

partitioning is suitable and sometimes the process of cluster selection is nontrivial.

One interesting and effective approach to solving this problem for heavy nuclei

was proposed by Buck [235]. For this purpose, a function on the charge and mass

of the core (Z1, A1) and cluster (Z2, A2) was introduced:

D(Z1, A1, Z2, A2) = [BA(Z1, A1)−BL(Z1, A1)]

+ [BA(Z2, A2)−BL(Z2, A2)] (81)
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where BA is the binding energy of the corresponding nucleus and BL is the binding

energy calculated from the liquid drop model. Then the obtained function is

averaged over neighboring values and plotted as a function of the averaged charge.

When this function reaches a maximum, it means that the nucleus energetically

“benefits” from such a partitioning. Often this function has several maxima [109].

By introducing the cluster-core interaction potential (usually WS +WS3), one

can calculate the positions of the rotational band levels, transition intensities,

and lifetimes. Such a model is applicable only to sufficiently heavy nuclei, so that

the use of Wildermuth’s rule is already quite difficult. In [236], an alternative

expression was proposed to determine the value of G = 2N + L:

G =
0.88A1A2

(A1 + A2)2/3
(82)

This approach allowed us to describe a large number of rotational bands in

the heavy nuclei arising from clustering [237].

Another very important case of clustering in medium and heavy nuclei, mostly

belonging to sd shells (and above), analogous to the Ikeda diagram, is the appear-

ance of molecular resonances. By definition, a nuclear molecule – a system of two

nuclei (or more) bound by a quasi-molecular potential [238]. From the microscopic

point of view, such systems can arise also if there is a nucleon (nucleons) whose

orbitals are arranged around both nuclei, like covalent bonds in molecules. Earlier

we described such configurations when a α-particle was considered as a cluster. In

this section, we are interested in the manifestation of molecular structure arising

from the scattering of heavy ions – the phenomenon of molecular resonances.

In work [238], it was noted that “nuclear molecules are the most pronounced

manifestation of clustering at the moment”. Given that we can only observe such

states in experiment if there is no strong absorption, the molecular properties are

most clearly manifested by studying the scattering of well-connected nuclei, with

mass numbers between 12 and 28. For example, 12C+12C, 12C+16O, 16O+16O,
16O+28Si, 28Si+28Si, although there are predictions even for such giant molecules

as 238U+238U [239].

To date, quite a large number of resonances in the scattering of self-conjugated

nuclei are known, although there is no precise understanding of whether all such
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resonances are “molecular”. Purely phenomenologically, they can best be de-

scribed by the systematics proposed by Abbondanno in [105]. It is with it that

we will compare our results.

The above examples of molecular states are well enough studied, and in this

section we will describe experimental studies of such states in neutron-deficient

nuclei and the manifestation of “heavy” clustering in the decay of excited states.
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Chapter 4. Cluster transfer in elastic scattering

Usually, in heavy-ion interaction reactions, the process of compound-nucleus

formation followed by evaporation of light particles and emission of γ-quanta plays

an important role. In the case of light nuclei, especially self-conjugated ones, the

picture is somewhat more complicated due to the presence in such systems of

molecular resonances, rainbow scattering, and other important and interesting

features. One such feature is the elastic transmission response. This issue was

mentioned earlier in Chapter 3.

The general approach to transmission reactions was discussed in Chapter 1.

Let us restrict ourselves to the case where two nuclei collide and the structure of

one can be represented as A + a and the other as A. Then a a-transfer process

is possible, with the same set of nuclei remaining in the output channel as in the

input channel, as in the case of simple elastic scattering, as is evident:

A+ (A+ a) = A+ (A+ a) - elastic scattering

A+ (A+ a) = (A+ a) + A - elastic transmission

The two cases are schematically illustrated in Figure 54. Because of the

indistinguishability of the particles, we cannot conclude whether or not transfer

has occurred in this particular case, but to obtain the full amplitude of the process

we must consider the amplitude of the transfer as well. Since in the center-of-

mass system the angle between the scattered particles is related by the expression

θA = π − θB, where B denotes the (A + a) system, the total amplitude can be

written as:

|ftot(θB)|2 = |fel(θB) + (−)Aftr(π − θB)|2. (83)

The situation considered is often encountered in scattering physics when de-

scribing interaction processes: electron exchange in molecular scattering, neutron

exchange in nuclear scattering, and π-meson exchange in nuclear particle scatter-

ing.

One interesting and verifiable consequence of the presence of well-defined

cluster degrees of freedom is the increase of the scattering cross section in the back-

angle region due to cluster transfer. Thus, when studying the most important
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Figure 54. 1 – Elastic dissipation, 2 – Elastic transmission.

reactions that allow us to study the occurrence of molecular resonances (12C+16O,
16O+20Ne) to describe the elastic scattering angular distribution, we need to take

into account the α-particle transmission. Given the fact that it is from the analysis

of elastic scattering within the optical model that we can extract the interaction

potentials important for analyzing reactions related to nucleon redistribution,

taking into account the elastic transfer processes is a necessary step for the correct

determination of these potentials. In this chapter, we briefly discuss our results

from a cluster point of view.

In our work, we have experimentally investigated the reactions associated

with the elastic transfer of α-particles –16O+20Ne and 10,11B+15Ne.

4.1. Reaction 16O+20Ne

Of interest from the point of view of studying the elastic transfer reaction

is the elastic scattering reaction 16O+20Ne, where the α-particle exchange also

gives a significant increase in cross section at large angles in the posterior hemi-

sphere [240]. This response was first studied in [241] in the ≤156◦ angular range

in the center-of-mass system, where a strong increase in cross section at large

angles was observed.

Since, from the point of view of studying the elastic transmission response, we

are interested specifically in large angles, we performed an experiment to study the

elastic scattering of 16O on 20Ne in the ≤156◦ range in the center-of-mass system.
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Figure 55. The angular distribution of elastic scattering of 16O on 20Ne. Blue and red lines –
calculation without and with α-particle transmission, respectively.

The measurements were performed on a 20Ne beam at the cyclotron laboratory

of the University of Warsaw. The beam energy was 2.5 MeV/A. The scattered

particles were detected by the gas ∆E−E telescopes of the ICARE system, their

resolution was 700 keV. The target was made as a self-supported aluminum oxide

foil Al2O3, 150 mg/cm2 thick. Details of the work are presented in the paper [242].

The measurements showed that the angular distribution has a typical, in

terms of the optical model, structure in the anterior hemisphere and a signifi-

cant increase in cross-section in the posterior hemisphere. The resulting angular

distribution is shown in Figure 55.

Experimental data in the anterior hemisphere were analyzed within the op-

tical model as shown in the Figure, while a cross section involving the elastic

transmission mechanism was obtained using the FRESCO [161] program. The

optical potential values are summarized in Table 20.

Table 20. Potential parameters for the reaction 12C+20Ne.

V0 rr ar W0 ri ai
MeV fm. fm. MeV fm. fm.
100.0 1.20 0.49 35.0 1.31 0.49
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4.2. Reaction 10,11B+15N

As has been shown, the 20Ne nucleus is a “good” cluster nucleus. However,

elastic transfer of α-particles can also take place in the case of other nuclei. Let

us consider two elastic scattering reactions:

1. 15N(11B,11B)15N

2. 15N(10B,10B)15N

The process of elastic transmission can proceed only in the first case (if we

neglect the possibility of transmission of the 5He cluster) and, accordingly, the

cross section of the second reaction at large angles can be described in the first

approximation by an optical model, while the first one will require accounting for

elastic transmission and addition of amplitudes by the formula (83).

The experiment was performed at the cyclotron laboratory of the University

of Warsaw. A 15N beam with an energy of 43 MeV was incident on 10B and
11B targets with densities of 0.15 mg/cm2 and 0.25 mg/cm2, respectively. The

particles were recorded by the ICARE gas telescope system. The angular dis-

tribution of the scattered 15N nuclei was measured over the angular range 5◦ to

40◦ in the laboratory system. To obtain cross-sectional data at larger angles, the

distributions of 10B and 11B nuclei were studied. The details of the experiment

are outlined in the paper [52].

The Woods-Saxon potentials WS (24) and the double convolution potential

F2 (29) were used for the analysis within the optical model and DWBA, the

imaginary part in both cases being taken into account by Woods-Saxon.

In the case of the double convolution potential for the nucleon-nucleon inter-

action VNN(r), the CDM3Y6 potential based on the M3Y-Paris [98,243] potential

was used. The density distribution in the nuclei was calculated in the MHO

(Modified Harmonic Oscillator) [244] approximation:

ρ(r) = ρ0

[︃
1 + α

(︂r
a

)︂2]︃
exp

[︃
−
(︂r
a

)︂2]︃
, (84)

where the parameters ρ0, a, and α are given in Table 21.

The parameters of the Woods-Saxon optical potential for the reaction
15N(11B,11B)15N are given in Table 22. When calculated with the real part as

a double convolution, the imaginary part had the same parameterization as for
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Table 21. Density distribution parameters [244].

Nucleus ρ0 a α
10B 0.1818 1.71 0.837
11B 0.1818 1.69 0.811
15N 0.158 1.81 1.25

the real Woods-Saxon. The parameters of the optical Woods-Saxon potential

for the reaction 15N(10B,10B)15N are given in Table 23. In this case, when us-

ing the double convolution potential, the imaginary part of the potential is given

in the second row of the table. The radius was calculated using the formula

R = rr,i(A
1/3
1 + A

1/3
2 ), where A1,2 are the mass numbers of the colliding nucleus

and target.
.

Table 22. Potential parameters for the reaction 15N(11B,11B)15N.

V0 rr ar W0 ri ai
MeV fm. fm. MeV fm. fm.
200.0 0.79 0.75 11.0 1.25 0.75

.

Table 23. Potential parameters for the reaction 15N(10B,10B)15N.

V0 rr ar W0 ri ai
MeV fm. fm fm MeV fm. fm.
205.7 0.79 0.831 8.48 1.25 0.95
. - - - 9.94 1.25 0.97

The angular distributions obtained in the experiment and the model calcula-

tions are shown in Figures 56 and 57.

For the DWBA analysis of the elastic transmission response, the spectroscopic

amplitude was chosen to be 0.435. The wave functions of the relative motion of the

α-particle were calculated for theWS potential when the radius was calculated for

a value of r0=1.25 fm and diffusivity a = 0.65 fm. The depth of the potential was

chosen from the condition of reproducing the binding energy. The number of wave

function nodes was chosen according to the Wildermuth condition, formula 23.

From the results obtained, we can conclude that it is important to take



135

Figure 56. The angular distribution of elastic scattering 15N(11B,11B)15N. The case of the WS-
potential is shown on the left and the folding-potential is shown on the right [52].

Figure 57. Elastic scattering angular distribution 15N(10B,10B)15N [52].
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into account the transfer process when extracting the optical potential param-

eters from the elastic scattering reaction in order to use them in more compli-

cated cases involving nucleon redistribution processes. This remains true even

if the nuclei are not self-conjugated. For example, the elastic scattering re-

action 15N(11B,11B)15N [52] considered is important for extracting the interac-

tion potential of 11B and 15N. This will allow us to study the inelastic channels
15N(11B,16O)10Be and 15N(11B,14C)12C. And these reactions, in turn, allow us to

evaluate the processes of proton capture by the nuclei 15N and 14C, which are

important, from the astrophysical point of view, for the correct analysis of the

CNO cycle reactions.
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Chapter 5. Reactions with heavy cluster escape

As already mentioned in the discussion of cluster states in the 40Ca nucleus,

one important way to investigate the structure of nuclei is to study the formation

of compound systems followed by evaporation of light particles (protons, neu-

trons, and light ions) and spectrometry of γ-transitions. However, to analyze the

properties of the resulting structures, it is necessary to have at least a qualitative

description of the reactions taking place. To date, quite a large number of decay

species with manifestation of cluster degrees of freedom are known, ranging from

the familiar α-decay to heavy exotics. However, accurate quantum mechanical cal-

culations are difficult in some cases. Given the great importance of such processes,

one can conclude that experimental study is necessary for subsequent theoretical

evaluation. Thus, to study exactly the cluster component in the output channels

of reactions, in addition to the obvious and quite well experimentally studied case

of the α-particle output, one should consider nuclei in which the contribution to

the structure of the cluster configuration is very large. As can be seen from the

list of “good” cluster nuclei (not too heavy for high intensity of their observation

in the exit channel), these are 8Be nuclei in the ground state and 12C in the “Hoyl”

0+ state with an excitation energy of 7.65 MeV.

The importance of studying such exit channels is, in addition, due to the fact

that the residual, nucleus, in this case, may be in a state that is unattainable when

observing exit channels with only light particles. This is essential in the study of

high-spin states, since, for example, the proton, carrying away a relatively large

energy, carries away a small momentum, so that the channel will be “closed” if the

residual nucleus is under the yrast line. A wide range of experimental approaches

are now available to study such reactions. For example, our work described above

on 8Be registration in the study of 18O levels was based on the selection of events

by an invariant mass spectrum, which allowed us to efficiently isolate α-particles

from the decay of the 8Be nucleus (as described earlier in the study of the 18O

nucleus.

This experiment was performed at the Accelerator Laboratory of Legnaro,

Italy. The experimental setup consisted of a system of silicon ∆E − E detec-
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tors covering 64% of the full surface in 4π steradian and protected from heavy

fragments by a 14µm aluminum foil and a γ spectrometer based on ultrapure

germanium detectors. A detailed description of the experimental setup is given

in [245]. The main feature of this work was the geometry of the experiment, which

allows the registration of exotic channels with heavy ion output. For both output

channels considered (8Be and 12C∗), the nuclei were in states only slightly above

the decay energy, so that the cluster dispersal was performed at a very small solid

angle, so that the reaction products predominantly fell into a single telescope.

For our purposes, two reactions were chosen:

1) 13C(18O,8Be)23Ne. The beam energy was 100 MeV. Both the study of

channels with α-particle yields and the spectroscopy of states of neon nuclei were

allowed. Due to the low energy of the first excited state of beryllium, its small

impurity could be observed in the spectrum.

2) 24Mg(28Si,12C∗)40Ca. The beam energy was 130 MeV. The 8Be was also

allowed to be registered in this experiment.

Due to the foil shielding of the telescopes, nuclei heavier than lithium did

not reach the detector. However, since 12C* and 8Be decay in flight, individual

particles of these nuclei could be registered. On the other hand, the relative

momenta of these particles are so small that the detector “perceives” their hits as

a single event, placing them at the appropriate locus. The spectra obtained in the

∆E − E work for both reactions are shown in Figure 58. The loci corresponding

to protons, deuterons, tritons, and α-particles, as well as the obtained loci for the

registered unbound states 8Be and 12C∗ are clearly visible.

Let’s compare the intensities of several α-particles hitting one detector with

their intensities hitting different detectors. Suppose we have N identical detectors

and their efficiency is Ω. Let us denote by M the number of uncorrelated α-

particles hitting p detectors. If several particles hit one detector, it is considered

as a common event. Then the probability of triggering p of N detectors is:

P p
N =

N∑︂
k=p

P k
N · P (kp). (85)

The first multiplier, the probability that each particle hits some detector, is NΩ -
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Figure 58. ∆E − E spectra for the reactions 13C(18O,8Be)23Ne (left) and 24Mg(28Si,12C∗)40Ca
(right) [47]. The corresponding loci are shown. The shadowing at low particle energies is due to
instrument overloading due to high intensities of light particles.

the total efficiency. The second multiplier denotes the distribution of k particles

to N detectors. The probability that k ofM particles will hit any detector is [246]:

P k
N =

(︃
M

k

)︃
(NΩ)k(1−NΩ)M−k. (86)

To account for the full efficiency, we need to move from the center-of-mass system

to the laboratory system, which is provided by multiplying it by the Jacobian,

a kinematic transformation often used to transition between reference systems in

determining the cross section. Since the Jacobian is different for different channels,

we will denote the obtained efficiencies with the corresponding reaction product.

In this paper, we evaluated the ratio of yields for different channels. We give

the corresponding calculations for the channels of interest.

Channel 2α

Probability of detecting two α:

P 2
2 = (NΩα)

2. (87)

Probability of two α-particles hitting different detectors:

(P 2
2 )s = N(N − 1)Ω2

α. (88)
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Then the probability of registration of two particles in one detector is:

(P 2
2 )d = P 2

2 − (P 2
2 )s = NΩ2

α, (89)

and the ratio of the probability of registering two α-particles in one detector to

the probability of their hitting in different detectors is:

(P 2
2 )d

(P 2
2 )s

=
1

N − 1
. (90)

Channel 8Be

Similarly, the probability of registering 8Be is:

P8Be = NΩ8Be. (91)

Its ratio to the probability of registering two α-particles in two detectors will be:

P8Be

(P 2
2 )s

=
Ω8Be

(N − 1)Ω2
α

. (92)

Channel 3α

For channel 12C∗, we have a registration of three α-particles out of three. So:

P 3
3 = (NΩα)

3. (93)

And for the probability of three α-particles hitting different detectors:

(P 3
3 )s = N(N − 1)(N − 2)Ω3

α, (94)

, so for three α-particles to hit one detector:

(P 3
3 )d = P 3

3 − (P 3
3 )s = N(3N − 2)Ω3

α. (95)

The ratio of the probability of three α-particles hitting one and three different

detectors is:

(P 3
3 )d

(P 3
3 )s

=
3N − 2

(N − 1)(N − 2)
. (96)

Channel 12C∗



141

In this case, three α-particles hit one detector.

P12C = NΩ12C . (97)

and the ratio of probabilities of hitting α-particles from the decay of 12C into one

detector to the number of α-particles hitting three detectors will be:

P12C

(P 3
3 )s

=
Ω12C

(3N − 2)Ω3
α

. (98)

One more important feature of the kinematics of this experiment should be

noted. Since the relative momentum of the particles in the center-of-mass system

is small, it is these particles that fill the corresponding locus (8Be or 12C∗). In

other words, the energies of all alpha particles are equal and are half or one third

of the total, depending on the channel. For random particles hitting one detector,

this equality is no longer satisfied and the particle “leaves” the corresponding

locus. If, as in the case of two α-particles, the probabilities of such events are

not too small, this will result in a background that distorts the locus. Figure 59

illustrates this fact in a Monte Carlo simulation. The “ideal” beryllium locus

(black circles) and random α-particles (white circles) are shown. The resulting

“hump” is clearly visible above the beryllium locus on the left in Figure 58.

A detailed description of the experimental procedure of this study is given in

our paper [47]. Let us review the most interesting results.

To compare the yields of 8Be or 12C nuclei, an energy spectrum was con-

structed containing events corresponding to the registration of two or three α-

particles, respectively. The number of events and energies were normalized for

these spectra. The results are presented in Figures 60 and 61. To compare the
8Be spectrum, kinematic calculations were performed to account for the differ-

ences in the 13C(18O,8Be)23Ne reaction and the 13C(18O,α)27Mg reaction. The

Jacobian value was used for the calculations:

Yield αJ=1.9, yield 8Be J=2.7 (reaction 13C+18O).

The yield of αJ=2.1, the yield of 12C J=3.0 (reaction 28Si+24Mg).

We will use the formula (92) to compare the spectra, then we can write:
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Figure 59. Position of the kinematic ∆E − E locus for 8Be (black circles) and random matches
(white circles).

N ∗
8Be

N ∗
2α

=
N8Be

N2α

1

(N − 1)

J8Be

ϵ∗J 2
α

, (99)

here ϵ∗ is the geometry-adjusted detector efficiency, N ∗
8Be and N

∗
2α are the exper-

imental intensities in the corresponding channels given the detector efficiency in

the laboratory reference frame, and N8Be and N2α are the true intensities. Simi-

larly for the comparison with three α-particles:

N ∗
12C∗

N ∗
3α

=
N12C∗

N3α

1

(3N − 2)

J12C∗

ϵ∗2J 3
α

, (100)

where the values are chosen similarly to the previous formula. Thus, we can

compare the energy spectra for the departure of heavy clusters with the α-particle

exit channels. For example, for the 2α channel, a factor of two arises due to the

addition of the intensities of the registered particles, which allows us to take into

account the case of their different energies. A similar procedure was performed

for the channel with three α-particles.

When analyzing the spectra (Figures 60, 61), one should take into account

the loss of events in the low-energy part, since the particle must overcome the

protective foil and the ∆E part of the detector. In our case, the clipping for
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Figure 60. The spectra of the uncorrelated two α-particles and 8Be nuclei are compared at the
top. The ratio of their intensities is shown at the bottom [47].

α-particles occurred at an energy of 14.9 MeV.

When comparing with the 90 and 96 formulas, one must take into account

possible inaccuracies due to the possibility of high intensities in channels with

heavy cluster escape (which obviously gives a contribution to the events detected

by different detectors), the possibility of other particles escaping, and the energy

dependence of the Jacobian. In both cases of decay, we observe a shift of the

emission intensity to small values where its probability becomes maximal. An

important consequence of this is the increased excitation energy of the residual
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Figure 61. The spectra of the uncorrelated three α-particles and 12C∗ nuclei are compared at the
top. The ratio of their intensities is given at the bottom [47].

nucleus compared to the escape of uncorrelated particles.

Let us consider the allowed angular momenta for such residual nuclei in both

cases on the example of the escape of two α-particles and 8Be. The dependence

of the angular momentum L carried away by the particle on its kinetic energy E

is given by the formula:

L = R

√︁
2m(E − VC)

ℏ
, (101)

where R is the radius of the nucleus, VC is the height of the Coulomb barrier,
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m is the mass of the particle. For two α-particles of the same energy E and a
8Be nucleus with twice the energy 2E, the values of the angular momenta are

equal. However, it is necessary to take into account the two-stage process – in

the one-stage process the smaller angular momentum is carried away. In addition,

the value of the channel radius may change.

Thus, we need to determine experimentally the values of the entrained ener-

gies and angular momenta in the reactions under consideration. This can be done

by analyzing the γ-spectra of the residual nuclei. The spectrum of the 18O+13C

reaction was analyzed with one of two output channel conditions:

1) 2α-particles

2) 8Be nucleus.

For the reaction spectrum of 28Si+24Mg, one of three options was allowed:

1) 3α-particles

2) 8Be nucleus and α-particle

3) 12C∗ nucleus

In addition, since the analysis was based on the obtained γ-spectra, with

sufficient excitation energy it was possible to distinguish channels with the depar-

ture of an additional α-particle, proton or neutron. Because of the high velocity

of the residual nucleus, the γ-spectrum was subjected to a Doppler shift, which

allowed the width of the γ-lines to be significantly reduced. Figure 62 shows the

γ-spectrum of the reaction of 24Mg(28Si,12C∗)40Ca with conditions 3α (upper part)

and 12C∗ (lower part). The previously mentioned difference in the excitation en-

ergy of the 40Ca residual nucleus depending on the channel is clearly seen - the
36Ar residual nuclei appear as a result of the departure of an additional α-particle

and their number is negligibly small in the upper spectrum. In addition, the 39K

levels appear more intensely on the lower spectrum (the departure of an addi-

tional proton), and some transitions corresponding to high-lying 40Ca levels are

very strongly suppressed.

The relative intensities for the above three output channels of the 28Si+24M

reaction, which include the possible departure of light particles, are shown in

Figure 63. The difference in the excitation energy of the residual nucleus is well

demonstrated by the ratio of the formation intensities of 40Ca and 39K nuclei. The
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Figure 62. Dependence of the γ-spectrum on the type of decay [63]. The lines indicate the residual
nuclei corresponding to the peaks.

following conclusions can be drawn from this result:

1) At the departure of two α-particles, the probability of the subsequent

departure of a α-particle is approximately equal to the probability of the departure

of two protons.

2) The joint departure of a 8Be α-particle nucleus has about three times less

probability than the departure of three α-particles.

3) The 12C∗ nucleus flies out almost 14 times less often than three α-particles,

while the probability of an additional proton flying out increases about 16 times.

Consider the reaction 13C+18O, in which the comparison is made for the
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Figure 63. Ratio intensities for different reaction channels 28Si+24Mg [209].

escape channels of two α-particles and the 8Be nucleus. If the residual nucleus

has sufficient excitation energy, one or two neutrons can be ejected. The result of

the comparison is shown in Figure 64. The 8Be locus shown in Figure 58 overlaps

strongly with the locus of the 8Li nucleus, which can overcome the protective foil

and the ∆E part of the detector. This leads to the appearance of a residual 23Na

nucleus, which is clearly visible when comparing the γ spectra. The intensity ratio

of 2α/8Be is of the order of 4 for the 22Ne residual nucleus and of the order of 1.5

for 21Ne. As can be seen from the Figure 64, the yield of 8Be is almost 2.5 times

higher than that of lithium (results for lithium isotopes with mass numbers 7 and

6 and subsequent escape of one or two neutrons, respectively, are included here).

As shown in Figure 65, the beryllium yield events belong predominantly to the

low-energy range, which is in perfect agreement with the spectrum in Figure 60.

Consequently, the two approaches, comparison of particle spectra and analysis of

γ-spectra, are equivalent.

Thus, it can be concluded from this work that heavy clusters carry away less

energy from the composite nucleus than the constituent particles individually. On

the other hand, a much higher probability of sequential emission of α-particles

than of heavy clusters was observed, which is consistent with statistical models.

The residual nuclei formed after the emission of light clusters appear closer to the

yrast line than in the case of heavy clusters.

Calculations within the framework of the models developed by us [40] for the

extended Hauser-Feshbach method allow us to obtain very good agreement with
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Figure 64. Distribution of ground state transition intensities for various residual nuclei after
emission by the compound nucleus 8Be [47].

the experimental data on the intensities of occupancy of different levels. The

potential from the paper [247], in the form WS with parameters:

V0 = 51.5 MeV, r0 = 1.175 fm, a0 = 0.645 fm, W0 = 27.5 MeV, rI = 1.09 fm,

aI = 0.659 fm,

with radius parameter rC = 1.2 fm. The radius value was determined from the

formula Rx = rx(A
1/3
1 +A

1/3
2 ), where x = 0, I, C, and A1, A2 are the mass numbers

of the heavy ions. It is interesting to note that this potential was chosen in the

work [247] to reproduce the resonance-like structure in the 24Mg+28Si system. It

was shown that at interaction energies of 50-53 MeV there is a strong dominance of

partial waves, of the order l=33-38ℏ. This agrees very well with our assumptions

on the flow of compound processes.

The permeability coefficients for α-particles were calculated based on the

modified parabolic Hill-Wheeler model [40], and for the other channels within the

systematics [248] framework

The level density parameter was chosen in a core temperature-dependent form

as proposed in [249]:

σ2 = 0.0145A5/3t, (102)
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Figure 65. Ratio between the intensities of transitions to the ground states of 21Ne and 22Ne [47].

where the nuclear temperature is given by the formula:

t =

√︃
Ex − δ

a
. (103)

The level density parameter was chosen from the work [249], and the energy shift

value was calculated based on the drop model with Pearson parameterization [250].

The simplified approach is chosen in order to obtain estimates of the occu-

pancy probabilities of states with different angular momenta in the cluster de-

cay. For a more accurate description it is necessary to use the extended Hauser-

Feshbach version, when the excitation energy of the corresponding fragments is

taken into account for the resulting partial widths:

P
(c)
J =

∑︂
(IL,IH)I

∑︂
(L,I)J

∫︂ ∫︂ ∫︂
ρIL(ϵL)ρIH(ϵH)TL(E)

× δ(ϵL + ϵH + E +Q− Ex)dϵLdϵHdE. (104)

Here TL(E) is the permeability coefficient for the case of angular momentum

L. The delta function provides the energy conservation law, ϵ is the excitation
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energy of the corresponding nucleus, the indices L and H correspond to the cases

of light and heavy fragments, and Q is the reaction energy. The summation

is performed over all final states of the daughter nucleus i, as well as over the

angular momenta of the heavy and light fragments and the angular momentum of

the compound nucleus available in the system. ρ(ϵH) is the density of levels of the

heavy fragment. In this case, the excitation of the light fragment will correspond

to the Hoyl state. The calculation showed an increased probability of populating

states with angular momentum L=10, approximately reproducing the spectrum

obtained for α-particles

The above observed decrease in the energy carried away by the heavy clus-

ter can lead to very interesting conclusions. The explanation may be based on

the representation of the 12C(0+2 ) state with excitation energy 7.65 MeV as a

Bose-Einstein condensate state. [96, 251]. As was pointed out in Chapter 1, the

condensation process of α-particles in nuclei, is associated with a strong increase

of the rms radius and, accordingly, a decrease of the density (including the charge

density). In this case, tunneling at low energies will not be so strongly suppressed

by the Coulomb barrier as in the case of tunneling by a compact particle. The

calculations agree well with the experimental data, so that the obtained result is

not only a new proof of the existence of the Bose condensate in nuclei, but also

provides an additional method for its search and experimental investigation.

In this chapter we considered the cases when nuclei heavier than α-particles

were considered as a cluster. It was shown that, although such states are not

detected in resonance scattering for fp-shell nuclei, nevertheless, for sd-shell nuclei

they show up well in experiment even in the case of neutron-excess nuclei. At the

same time as for such sufficiently heavy nuclei, the existence of fragmented α-

cluster states forming a rotational band is observed.

It has been shown that heavy clusters are not necessarily strongly bound nu-

clei. We have considered cases where even the unbound 8Be and 12C(0+2 ) nuclei

were considered as clusters. It was shown that the pattern observed in the exper-

iment with the emission of these nuclei is related to another, extremely important

manifestation of cluster degrees of freedom, the Bose-Einstein condensation in the

nuclei.
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Chapter 6. Systematics of interaction of heavy clusters within the

framework of a potential model

6.1. Elastic interaction

As mentioned in the Introduction, the description of cluster states in nuclei

using the potential model allows one to simplify the calculations considerably by

introducing some effective interaction potential. In the previous chapters, within

the framework of this approach, several ways of introducing the “cluster-core”

potential were considered, differing, among others, in the method of eliminating

forbidden states in the overlap region of the cluster and the core. The intro-

duction of a surface potential was considered in Chapter 1, in the description of

states associated with Bose-Einstein condensation in nuclei. In this case, the wave

function decreased rapidly in the overlap region of the nuclei. The volume po-

tential close to the convolution potential was considered in the description of the

α-particle+core structure, and the forbidden states arising in it were excluded by

the appropriate choice of the global quantum number on the basis of the formu-

las (23) or (82). The advantages of the second approach stem from the possibility

of using a potential related, as it is assumed, to the potential used in the analysis

of angular distributions in the optical model. This issue has been investigated

in [252], but a good reproduction of the energies arising in the nucleus of states,

was not achieved. A similar approach was used in the work [76]. Potential, as a

sum of WS +WS3, was used to describe the states in the nuclei 20Ne and 44Ti

and was discussed earlier in Chapter 3. Note that this approach also allowed us

to correctly describe the intensities of γ-transitions and angular distributions in

the energy range of α-particles 20-40 MeV. The depth of the imaginary potential

(surfaceWS for the 20Ne nucleus andWS3 for 44Ti) was used as a free parameter.

In the present work, this approach was used to describe the states in the 40Ca

nucleus, and, in this case, the cor was not a doubly magic nucleus.

Let us consider the case of the interaction of heavier nuclei that can never-

theless be considered as clusters (i.e., structureless objects). For this purpose,

we considered the interaction of 12C and 16O nuclei. On the one hand, for this

reaction there is a large amount of available experimental data (including those
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obtained in the present work), which allows us to carry out a systematization. On

the other hand, in contrast to similar reactions 12C+12C and 16O+16O, there is an

interaction of non-identical particles, so that the existence of states with negative

parity is allowed in the system. The occurrence of quasi-molecular states with the

structure 12C+16O was previously considered in [253], and the optical potential

was obtained from the analysis of elastic scattering of 12C on 16O nuclei at an

energy of 75 MeV [254]. It was shown that a number of resonances in such can be

described as quasi-bound states forming rotational bands with different values of

the global quantum number G. In addition, the authors of this work concluded

that the contribution to the elastic transmission cross section of the α-particle

at low energies is negligible, which allows us to simplify the problem of finding

the potential. We have proposed an approach to analyze the interaction of heavy

clusters in the framework of the potential model [53].

6.2. Model

Several methods are currently available for determining the angular momen-

tum of resonances arising in heavy ion scattering reactions. However, most of the

angular momenta of resonances, which are presented as possible quasi-molecular

states, were determined by comparing the angular distributions with Legendre

polynomials. In this case, the angular distribution in the posterior hemisphere,

where oscillations of the cross section are clearly manifested, was compared with

a function of the form A · |PL(cos θ)|2 and the angular momentum corresponding

to the best match with the polynomial was assigned to the resonance.

Let us consider a complex potential of two-particle interaction, which allows

us to describe in a first approximation the angular distribution of elastic scattering

in the energy region containing states that may belong to rotational bands having

a quasi-molecular (cluster) configuration. We will limit ourselves to potentials

with the depth of the real part independent of energy, and we will use the depth

of the imaginary part as a free parameter. According to [76] and [253], states with

different values of global quantum numbers and fragmentation of states can arise

in the scattering of heavy ions. Then, for regions with sufficiently high excitation

energy of the composite nucleus, one can expect the presence of a significant
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number of resonances.

Within the framework of the optical model, we obtain angular distributions

with a given potential for different energies, comparing the result in the region of

angles 90◦-180◦ with Legendre polynomials of different orders from the region of

expected values of angular momenta (less than the value of the critical angular

momentum). The differential cross section of elastic scattering, in general, has

a complex character of dependence on the angle, but there are cases when we

can talk about the recovery of a polynomial structure and in this case there is a

set of maxima that can be identified with the maxima of a function of the form

P 2
L (cos θ) (where PL(x) is a Legendre polynomial corresponding to the order of

L) with a fixed value of L. Even in these cases, the structure cannot be described

only by a given polynomial of degree L. However, to determine the dominant

order of the polynomial, the cross section can be approximated by a function:

fL(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a1P
2
L (cos θ) , 0 ≤ θ < θ1

a2P
2
L (cos θ) , θ1 ≤ theta < θ2

. . .

aLP
2
L (cos θ) , θL ≤ theta < π,

(105)

where ai are the free parameters. Here, two cases were considered as bounds for

the angular intervals: θi – positions of zeros or maxima for the function P 2
L (cos θ).

It should be noted that both cases of angular range partitioning give rather close

results.

During the approximation procedure, we fixed the value of L. At the

same time, the differential cross section was divided into intervals [0, θ1), [θ1, θ2),

. . . ,[θi, θi+1), . . . , [θL, π). Depending on the chosen angular range of our experi-

mental data, there can be at most L intervals. Each such interval i will correspond

to a different function aiP
2
L (cos θ) of (105). The magnitude of the coefficients ai

was determined from the minima in the expression:

χ2
i =

1

Ni − 1

∑︂
θj∈i-th interval

(︁
σ (θj)− aiP

2
L (cos θj)

)︁2
∆σ2 (θj)

, (106)

where Ni is the number of points falling into the given interval i. In general, the
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quality of such approximation by the function fL(θ) is given by the expression:

χ̄2
L =

1

M

M∑︂
k=1

χ2
k, (107)

where M is the number of intervals in which we perform the analysis. Thus, the

dominant value from the contribution of the polynomial Lopt in the analysis of

the experimental elastic scattering distribution is defined as follows:

Lopt = argmin
L∈[Lmin,Lmax]

χ̄2
L, (108)

where [Lmin, Lmax] is the interval for the powers of the Legendre polynomial we

used in the analysis.

In addition to analyzing for the whole angular range of differential sections

available to us, we can take only the part of interest, for example, in our case it

will be the interval from 90◦ to 180◦.

It is convenient to consider the value (107) obtained in this case as a func-

tion of energy. In this case, the minimum on the graph of such a function will

correspond to the energy for which the modeled distribution best coincides with

a polynomial of order L. When analyzing such a function, it would be interesting

to obtain answers to the following questions:

1) Do such minima appear in the region of resonances with different global quan-

tum numbers found within the potential two-particle model?

2) How do the regions in which experimentally detected resonances are present

relate to the minima obtained for polynomials of different orders?

3) What are the contributions for partial waves of different orders to the regions

of such minima?

Since this formulation of the problem allows strong ambiguity in the choice

of a possible potential, we have considered two possible potentials that allow us

to describe well the experimental angular distribution for the elastic scattering of
12C+16O nuclei.

In the experiment we performed, we chose a narrow region of energies

Ecm=17.28-18 MeV [256, 257] corresponding to two consecutive narrow peaks

in the 12C+16O excitation function was chosen. The first peak is identified as
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l=11 [256]. By making measurements over a wide angular range for intermedi-

ate energy, the contribution from extraneous processes can be reduced to analyze

the elastic transfer response. The work was performed at the cyclotron of the

University of Warsaw, Poland. A 16O beam with an energy of 41.3 MeV (which

corresponded to an energy value of 17.7 MeV in the center-of-mass system) was

incident on a self-supported 12C target (35 µ/cm2). The registration was carried

out with the gas ∆E−E telescopes of the ICARE system, covering an angle from

8◦ to 153◦ in the laboratory system. The result is shown in Figure 66 together

with the adopted data.

The first potential (WS1) was used in [253] to determine the position of quasi-

bound states for the potential model, and was also used in [254] to describe the

experimental angular distribution of elastic scattering at energies of 75 MeV. The

second potential used (WS2) was obtained by us from the condition to reproduce

the experimental angular distribution of elastic scattering in the energy region

from 10 to 30 MeV and the quasi-bound states that were obtained in [253], but

with the condition that the wave function for the corresponding levels contains

one additional node more. The form factors for both potentials were chosen as

the quadratic Woods-Saxon (WS2), the formula (25), their parameters, and the

values of the corresponding volume integrals (73) are given in Table 24.

Table 24. Parameters of the real part of optical potentials [53].

Parameter Value
WS1

V0 305 MeV
Rv 4 fm.
av 1.4 fm.
Jv 326 MeV fm3

WS2
2

V0 320 MeV
Rv 4.184 fm.
av 1.3 fm.
Jv 378 MeV fm3

Figure 66 compares the experimental elastic scattering angular distributions

with calculations based on the proposed potentials WS1 and WS2. We chose

the imaginary part as the bulk Woods-SaxonWS (24), for theWS1 potential the

used radius and diffusivity parameters were taken from the paper [254], and for the
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Figure 66. Angular distributions of elastic scattering of nuclei are shown 12C+16O. Black dots –
experimental data (from NNDC [155] database and [255]), blue dashed curve – calculation with
WS1 potential, red solid curve – calculation with WS2 potential.

WS2 potential they were chosen as Rw=4.81 fm, aw=0.26 fm. The depth for the

imaginary part in both cases was taken from the best fit to the experimental data

at a given energy. As can be seen from Figure 66, there is good agreement between

the model angular distributions and the experimental data for angles larger than

90◦ for the chosen energy range. At the same time, calculations for quasi-bound
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states within the potential model lead to an almost identical dependence for the

energy of levels on their angular momentum, but the global quantum number for

the potential WS2 is one more than for WS1.Note that the values of the global

quantum number used in our work exceed the value of G obtained on the basis

of the phenomenological formula 82. The FRESCO [161] program was used for

calculations based on the optical model. The program GAMOW [258] was used

to calculate the positions of quasi-bound states.

10 20 30 40 50 60
Ecm, MeV

100

150

200

250

300
χ̄2
L

Figure 67. Graph of χ̄2
L dependence on energy for polynomials L = 11 (blue dashed curve) and

L = 14 (red solid curve) [53]. The minima correspond to the values of energy Ecm = 17.3 MeV
and Ecm = 24.2 MeV.

Let us consider the procedure of comparing the model angular distributions

with Legendre polynomials of different orders. Figure 67 shows the energy depen-

dence of the value χ̄2
L calculated by the formula (107) for the values of angular

momenta L = 11 and L = 14. Similar dependencies were obtained for other

angular momenta. Thus, for the range of energies (Ecm=10-30 MeV) and allow-

able angular momenta (L=8-18) considered in this work, we observe well-marked

minima corresponding to the best fit of the model angular distribution to the Leg-

endre polynomial of the corresponding order. Figure 68 shows a comparison of the

obtained positions of the minima with the positions of the quasi-bound states for

even (odd) angular momenta calculated in the framework of the potential model

with values of the global quantum number G=22(23) for the potential WS1 and
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G=24(25) for the potential WS2. As can be seen, for small values of angular mo-

menta (L ≤ 10) the obtained plots almost coincide. In addition, the Figure shows

the phenomenological dependence for the cluster rotational bands derived from

the Abbondanno [105] systematics. Note that up to values of angular momenta

of order L=9, all three plots almost coincide.

6.3. Analysis

Let us consider the result obtained above from the point of view of the pos-

sibility of unambiguously determining the angular momenta of the states when

comparing the experimental angular distribution of elastic scattering with Legen-

dre polynomials. The excitation function for the 12C+16O reaction was obtained

in a number of papers [259–261], and it was found that there are fairly strong

oscillations of the cross section values with energy. However, examination of the

correlations showed [262] that only the state with energy 19.7 MeV has a signif-

icant deviation in the excitation function. From comparison with the Legendre

polynomials, the angular momentum L=14 was assigned to this state. Note that

this state coincides well with the G=22 [253] band levels. However, based on

the analysis of experimental angular distributions, it was shown [263] that the

excitation function must, in addition, also contain a rather significant number of

resonances forming rotational bands. This led to the comparison of some rather

narrow and sparse peaks of the excitation function to states with a certain angular

momentum only on the basis of comparison with Legendre polynomials.

Figure 68 shows the currently available data on resonances with known angu-

lar momentum observed in elastic scattering of 12C+16O. As can be seen, most of

these states (with the exception of low-lying states) cluster near the systematics

line and do not show a splitting that allows us to assign states to bands with

specific values of G. It is also possible to identify a few states lying above the sys-

tematics. These states, in the case of combining them into a rotational band, have

a smaller moment of inertia than the potential model allows (even with increasing

values of G). On the other hand, their positions correspond well to the regions

of the excitation function where the angular momentum corresponds to the order

of the Legendre polynomial, which best describes the angular distribution. The
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Figure 68. Dependence of the energy of states in elastic scattering of 12C+16O in the center-of-mass
system on the angular momentum of the states J(J + 1) [53]. Red and blue crosshairs – states
with positive and negative parity, respectively. Squares and circles, states obtained within the
potential model with potentials WS1 and WS2, respectively. Solid line, parameterization [105].
Dotted line and dots – values of the minima of the function as shown in Figure 67 for potentials
WS1 and WS2, respectively.

main candidates for these states are: 9−, 14.8, 14.4,14.35 MeV [264, 265], 10+,

18.3, 18.55,18.87 MeV [266–268], 11−, 17. 29, 17.98, 19.15, MeV [267, 268], 12+,

19.9, 20.5, 21.4 MeV [260, 268, 269], 13−, 22. 0, 22.9, 25.5 MeV [260, 270, 271],

14+, 22.79,23.6,24.6, MeV [259,272], 15−, 25.5,27.0,28.4, MeV [259,270,272], 16+,

29.6,32.2, MeV [261, 272]. All the above states correspond to sufficiently large

cross sections of the excitation function. Levels 11−, 14+ and with higher values

of angular momentum were obtained from experimental data for the angular dis-

tributions of elastic scattering at large angles, 12+ – from the angular distribution

of the reaction 12C(16O,8Be), 9− and 13− – from analysis of the reaction and elas-

tic scattering cross sections. The remaining states were investigated in reactions

for both the elastic and inelastic scattering cases, including from the analysis of

compound-core decay correlations. The distinguishing feature of these states is

their increased energy with respect to the predictions based on systematics and

the potential model.

As can be seen from the position of the minima for the χ̄2
L (E) function,

there is a coincidence with both the states discussed above and the lower-spin

resonances. When a fluctuation or resonance with small angular momentum and
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small reduced width coincides with a region for which the angular distribution has

a polynomial structure at large angles, there may be an error in determining the

angular momentum of the state. For example, consider the cross section behavior

for the energy corresponding to the minimum with L=14 in Figure 67. Figure 69

shows its corresponding angular distribution for the scattering of 12C+16O nu-

clei with an interaction potential as WS2
2 , compared to a 14th-order Legendre

polynomial. However, while matching the polynomial well, this model state not

only cannot be unambiguously described as a resonance with angular momentum

L=14, but may not contain a partial wave of this order at all, as can be seen in

Figure 69. This leads to the need for a more careful approach in determining the

positions and quantum characteristics of resonances in elastic scattering reactions

of heavy ions.
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Figure 69. Angular distribution, in the region of the minimum (see Figure 67) for L = 14 [53].
Black solid and blue dashed curves – calculations within the optical model, for the full set of
partial waves and with the exclusion of the L=14 partial wave, respectively. The red dashed curve
is the square of the 14th order Legendre polynomial.

Thus, we see that the selected potentials reproduce well the experimental

angular distributions in the region of small interaction energies. This allows us to

raise the question about the applicability of these potentials to the problems of

astrophysics.
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Chapter 7. Fusion reactions in the cluster approximation

The application of the ideas of the cluster description of nuclei can be useful

not only for the case of elastic (quasi-elastic) scattering, but also when consid-

ering nuclear fusion processes. Indeed, the initial approach to the description of

the fusion cross section assumed complete structurelessness of nuclei and was de-

termined only by the permeability coefficient. The development of this approach

led to the appearance of the method of coupled channels and the consideration of

the internal structure of interacting nuclei (excitations, deformation), but, at the

same time, the uncertainty associated with the phenomenological parameters de-

scribing the process - first of all, with the parameters of the potential - increased.

At the same time, in the region of low interaction energies there are a number

of processes manifested in fusion reactions, which probably have a cluster nature

and their qualitative explanation is preferable to be given within the framework of

the simplest approach, avoiding unnecessary parameterization. In this paper we

will consider two examples – the resonance-like behavior of the excitation function

of the 12C+16O nuclear fusion reaction (which will allow us to use the results of

the previous section) and the systematics of the excitation function of reactions

at energies below the Coulomb barrier. Since both cases correspond to small

interaction energies, their consistent description is of paramount importance for

nuclear astrophysics. The results are reported in the articles [48–50]

7.1. Cluster states in astrophysics problems

Nuclear reactions play a key role in the evolution of the Universe, from the

Big Bang epoch to the description of stellar evolution. For this reason, it is cru-

cial to estimate the contributions of different reactions to the energy balance of

burning elements, which not only gives a deeper understanding of stellar evo-

lution, but also allows us to evaluate the efficiency of different nucleosynthesis

variants and compare the results with the data on the abundance of elements in

nature. According to modern concepts, we have three types of nuclear transfor-

mation processes, the course of which requires a detailed analysis of the reactions

accompanying them:
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1) Processes accompanying the Big Bang and occurring after the epoch of baryo-

genesis.

2) Nuclear reactions occurring in stars and stellar atmospheres.

3) Processes occurring in the interstellar medium during the interaction of nuclei

with high-energy cosmic rays.

The most important reactions occurring during the Big Bang lead mainly

to the formation of helium nuclei, although some models may also consider the

formation of nuclei up to and including oxygen [273]. A key feature of this stage is

the presence of neutrons, which allows the efficient formation of deuterons in the

p+ n→ d+ γ reaction. Despite the importance of this reaction in understanding

the initial nucleosynthesis, it is relatively poorly studied experimentally in the

energy range of interest, 0.02<E< 0.2 MeV, and we have the main information

about it from a detailed equilibrium analysis for the d + γ → p + n reaction.

Further processes are mainly related to the formation of helium isotopes, which

allows the subsequent formation of heavier elements.

Despite this, it can be assumed with good accuracy that the expanding Uni-

verse immediately after the Big Bang consisted of 75 percent hydrogen and 25

percent helium. Thus, it is these two nuclei that would play a significant role at

the very beginning of stellar nucleosynthesis. In addition, α-particles are produced

as “ash” as a result of hydrogen burning in the pp-cycle. Subsequent reactions

suggest the participation of carbon, oxygen, and up to and including silicon nuclei

as fuel for stellar nucleosynthesis, up to and including the formation of iron nuclei.

A good opportunity to clearly demonstrate the processes occurring in stars was

the introduction by Kubono in 1994 of the CND Cluster Nucleosynthesis Dia-

gram, which allows us to take into account the basic processes within the cluster

approximation [274]. The proposed diagram was a modification of the Ikeda dia-

gram discussed above, which allows us to take into account cluster states in nuclei

near the threshold for the cluster+core system. The proposed diagram is shown

in Figure 70. The first step considered in this approach is the synthesis of 12C by

capturing the α-particle by a resonant (unstable) 8Be state, thus overcoming the

so-called “beryllium gap”. The next step is the capture of the α-particle in the
12C(α, γ)16O reaction. Thus, the 12C and 16O nuclei, well known from the point
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of view of the cluster approach, are formed as “ash”, besides α-particles. Further,

the formed nuclei also participate in the combustion process, in turn being sources

of α-particles and leading to the appearance of even-even sd-region nuclei. The

next step – reactions with 20Ne are strongly suppressed due to structural (exactly

cluster!) features of the 20Ne nucleus. Gradually, photodesintegration reactions

to clusters become important, according to CND.

.

Figure 70. Diagram of cluster nucleosynthesis proposed in the paper [274]

It should be noted that the class of reactions considered in this approach

is much broader than given in the Figure, so that the only requirement for an

appropriate description is a significant overlap of the states considered in a par-

ticular reaction with the cluster configurations. Examples of reactions considered

in [274,275] under this approach are
8Li(α,n)11B,
14O(α,p)17F,
18Ne(α,p)21Na,



164

13C(α,n)16O,

and there is also an influence of CND on the reactions associated with ν − p

processes important for understanding the evolution of supernovae of the second

type.

7.2. Reactions in Nuclear Astrophysics

As stated above, the area of interest of this work is limited to the consider-

ation of reactions described within the CND approach or related reactions with

α-particles or other clusters in the entrance channel. Thus, there is a signifi-

cant effect of the Coulomb barrier for energies characteristic of nucleosynthesis

reactions at temperatures on the order of 107 K. The Coulomb barrier tunneling

probability P can be written in the form:

P = exp(−2πη), (109)

where η is the Sommerfeld constant. For particles with charge Z1 and Z2 moving

with relative velocity v, it is:

η =
Z1Z2e

2

ℏv
. (110)

If the particle energy is expressed in keV and µ is the reduced mass in AEM, we

can write:

2πη = 31.29Z1Z2

(︂ µ
E

)︂ 1
2

. (111)

Then, the probability of tunneling through the Coulomb barrier is proportional

to:

σ(E) ∝ exp(−2πη). (112)

On the other hand, the proportionality of the cross section to the de Broglie

wavelength must be taken into account:

σ(E) ∝ πλ2 ∝ 1

E
. (113)

Then from the expressions (112) and (113), for the reaction cross section with
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charged particles we can write:

σ(E) =
1

E
exp(−2πη)S(E), (114)

where the function S(E) is called the astrophysical S-factor. This value is usually

used instead of the reaction cross section, including for reactions with heavy ions

at low energies. In most cases it is obtained directly from the formula (114) in

the form:

S(E) = σ(E)E exp(2πη), (115)

although there are also its modifications.

When studying the processes occurring in supernovae and at the late stages

of development of supermassive stars, it is necessary to take into account the

combustion of carbon and oxygen and heavier nuclei. For this purpose, it is nec-

essary to study the fusion reactions of such nuclei at low energies characteristic

of stars. The energy region of the most intense occurrence of these processes has

been called the “Gamov window”. We have closely approached this energy re-

gion for the interaction of light and heavy nuclei [276, 277], but for intermediate

masses the situation is still ambiguous. In recent years, progress in experimen-

tal work on the study of nuclear fusion at sufficiently low energies has allowed

us to obtain reliable estimates of the astrophysical S-factor for reactions with
12,13C,16O nuclei. One interesting feature for the derived excitation functions was

the appearance of a resonance-like structure for 12C+12C+12C fusion reactions

at energies Ecm¡6 MeV [278]. Several models have been proposed to explain the

behavior of the cross section, including those treating the observed structure as

a manifestation of molecular resonances coupled to fragmentation by overlapping

compound states [282]. On the other hand, an explanation within the framework

of isolated compound states [278] has been proposed. In this work, it was shown

that this structure can be explained within the framework of the cross-sectional

fluctuation model, when the width of resonances in a system of nuclei becomes

comparable to the average distance between them. This approach made it possible

to satisfactorily describe the expected regions of the resonance-like structure in

the 12C+12C reaction and to predict the energy region for its observation in other
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reactions, for example, with oxygen and carbon nuclei. Thus, for the 12C+16O

fusion reaction, this region will be limited to energies of the order of 2 MeV, but

experimental results indicate its presence up to energies of about 7.5 MeV or even

higher. Thus, the reaction mechanism described in [278] probably has only limited

application to the 12C+16O fusion reaction, at least in the energy region of 3-7.5

MeV. In the work [279], the manifestation of such states was also considered from

the position of the AMD model. The existence of several rotational bands was

predicted and data on the possible position of low-lying resonances with positive

parity near the Gamowindow were obtained. On the other hand, as discussed

above, the 12C+16O nuclei system is known to have a large number of resonances,

which are regarded as members of rotational bands and are of molecular [253]

character.

7.3. Interaction Potential

In the present work we have considered the processes of the appearance of

suprathreshold and subthreshold molecular resonances in the 28Si nucleus at inter-

action energies 12C+16O near the Gamow window. These reactions are essential

for the processes occurring during the formation of type Ia supernovae and in

massive [280] stars. One of the distinguishing features of these reactions is the

manifestation of a resonance-like structure in the excitation function of the fusion

reaction for energies below ECM<10 MeV, so that, in the case of the presence of

a resonance near the Gamow window, the nuclear interaction cross section can

increase by a factor of several. Such resonance-like structure was most strongly

observed in the 12C+12C reaction and, to a lesser extent, in the 12C+16O reac-

tion, while for the 16O+16O reaction such structure was hardly observed [278].

The applicability of the cluster approach to these reactions allows their sequential

inclusion in the cluster nucleosynthesis diagram (DNC) [274], which implies the

possibility of molecular states leading to strong fluctuations in the fusion cross

section. Significant success in the experimental study of the excitation function

for fusion reactions has provided experimental data for the deep sub-barrier in-

teraction in the region around 3 MeV [281]. Several models have been proposed

to explain the behavior of the cross section, including those treating the observed
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structure as a manifestation of molecular resonances coupled to fragmentation by

overlapping compound states [282]. On the other hand, an explanation within the

framework of isolated compound states [278] was proposed. A boundary energy

below which the occurrence of structure can be explained by the fluctuation of

the cross section due to the presence of non-overlapping compound states was

obtained. The value of the boundary for the 12C+12C fusion reaction was of the

order of 7.3 MeV, which almost completely covers the range of the observed struc-

ture, while for 12C+16O this value was of the order of 1.8 MeV. This is well below

the energies available for experimental studies to date [281]. Thus, the 12C+16O

reaction was chosen to determine the contribution of molecular states, on the one

hand having a low threshold for the manifestation of fluctuations from compound

states, and on the other hand exhibiting a well-observed structure in the cross

section of the fusion reaction.

To eliminate the ambiguity mentioned in [279] related to the choice of the

model describing the 12C+16O reaction, the following conditions were imposed on

the interaction potential:

1) Qualitative description of the angular distribution of elastic scattering in

the energy region corresponding to the small probability of quasi-elastic transmis-

sion of the α-particle.

2) Description within the potential model [11] of the observed resonances

attributed to the rotational band near the Abbondanno [105] systematics.

3) Agreement of the fusion cross section calculations with the experimental

value of the astrophysical S-factor at energies on the order of 7.5 MeV.

An additional condition may be the requirement to reproduce the widths of states

and the probabilities of transitions between them, as we have done, for example,

for the case of rotational bands in the 40Ca nucleus. However, for heavy nuclei

this information is usually missing, which may lead to the use of potentials that

allow anomalously broad “unphysical” states [253].

These conditions are well met by the potentials we used earlier in Table 24.

However, this approach requires the introduction of a global quantum number,

which can be determined by the Wildermuth formula (23) not for all poten-

tials [107] and not for all cluster-cor [109] combinations, especially in the case
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of approximate equality of their masses.

Figure 71 shows the energy dependence of the fusion cross section for the

considered potentials, and the experimental data [283–286]. The theoretical

value of the cross section was determined in a model with a boundary condition

on the wave function defining the absorption of the incident wave [287]. As can

be seen, both potentials give good agreement with the experimental results up to

the minimum values known to date, near the Gamow window. It should be noted

that similar results are observed for a rather wide class of potentials, such as the

deep double convolution potential [288] or the shallow potential of the rectangular

potential well [289]. However, in the low energy region, the deep potential, as well

as the barrier passage [290] model, give deviations from the experimental values

of the S-factor. On the other hand, the application of the rectangular pit may be

associated with certain difficulties in interpreting the results obtained [291]. This

issue will be discussed in detail below.
.

Figure 71. Fusion cross section 12C+16O. Circles – experimental data [155]. Solid line – calculation
for WS2 potential, dashed line – for WS1 potential [49].

Following the approach of describing the interaction of nuclei within the po-

tential model developed in [11, 253], we consider the resonance and bound states

arising for these potentials. The numerical solution was obtained using the pro-
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gram GAMOW [258]. Since, as mentioned above, the choice of the global quan-

tum number for the considered system is difficult, we should be guided by the

description of the existing resonances. For the potential WS1 [253], most of the

resonances observed in the system 12C+16O are well described by the rotational

band G=22(23) for even (odd) states. Similar results are obtained for the WS2

potential when G=24(25). The moment of inertia for such rotational bands as

well as the value for the average energy of the (0+-0−) states E(0) agree well with

the systematics of the work [105]. The averaging data for the resulting parity

splitting are presented in Table 25.

.

Table 25. Bands parameters [49].
Parameter WS1 WS2 Systematics [105]
E(0) MeV 6.9 7.5 8.6

Moment of inertia parameter 71.3 67.2 55.0

Thus, we can assume that these potentials equivalently describe high-lying

rotational bands with large angular momentum values. If a low-lying band exists,

it should have a close moment of inertia parameter, and its head level should be

located either near the binding energy of -16.76 MeV or near the threshold.

This leads to the need to consider bands of several types. For the first-type

band, both potentials predict states with strong parity splitting (on the order of

7 MeV), with G=18(20) for WS1 and 20(21) for WS2. The positive parity levels

form a ground state band in the 28Si core with flattened strain, having a much

smaller moment of inertia [292]. Note that the states with negative parity, which

can be considered as candidates for this band, despite a very good energy match,

are not expected to belong to a particular band.

The bands of the second type G=20(21) for WS1 and G=22(23) for WS2 in

both cases have a moment of inertia parameter on the order of 600 keV and a

parity splitting on the order of 5 MeV. Since the average value of E(0) is of the

order of 1 MeV, some of the low-spin states (0+,2+ and 4+ for WS1 and 0+,2+ for

WS2) are located below the threshold.

Figure 72 shows a comparison of the positions of the resonances obtained

from the potential model with the referential data for which the boundaries of
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Figure 72. Position of resonances in the system 12C+16O. Rectangles indicate fragmentation
regions obtained from experimental data (shaded, unshaded – negative and positive parity, re-
spectively). The solid line is the calculation within the potential model for WS2, the dashed line
is for the potential WS1.

the fragmented states [293–296]. As can be seen, there are several states near

the predicted resonances for the low-lying bands. The states 1−-7− are located

directly above the threshold and, on the one hand, already have high enough

excitation energies for their experimental detection. On the other hand, these

states do not overlap with the states of the overlying band and with states of

positive parity.

As in the case of high-lying states, such quasi-molecular resonances can lead

to oscillations of the fusion cross section. Figure 73 shows the energy dependence

of the S-factor. The solid line and dashed line show the calculations for the WS2

and WS1 potentials. Both curves describe the experimental result well under the

assumption that the cross section in this region can be represented as:

σr = σres + σnon, (116)

where σres is the cross section of resonant processes and σnon is the cross section

of non-resonant interaction, which can be reproduced in the framework of the

coupled channel model [287].
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Figure 73. Astrophysical S-factor for the 12C+16O reaction [49]. Solid line – calculation for the
WS2 potential, dashed line – for the WS1 potential. The horizontal lines indicate the interval
for the states (from left to right) 1−, 3−, 5−, 7−.

Thus, if for the system 12C+16O, the resonance-like states predicted in the

paper [278] should be observed up to energies of the order of Ecm=2 MeV, the

existence of the corresponding structure in the region 3-7.5 MeV [281,297] can be

explained by the contribution from states with molecular nature. As can be seen

from the figures, low-lying resonance states with negative parity are located in this

region. It should be noted that the model used does not allow us to unambiguously

identify the positions of the resonances. In the excitation energy region under

consideration, the difference between the predictions for the two potentials is of

the order of 700 keV, which is comparable to the expected distance between the

levels. Table 26 summarizes the results of calculations of the energies of low-lying

states with approximate positions of possible maxima of the experimental cross

section.

The present results indicate only an approximate region of the appearance

of molecular states, both because of the ambiguity in the choice of potential

parameters discussed in this work and the possible energy dependence of the

potential.
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Table 26. Band parameters [49].

Experiment [281,297] MeV WS1 MeV, Jπ WS2 MeV, Jπ

3.4, 1−

3.9 4.1, 3− 4.2, 1−

4.9 5.2, 3− 4.8, 3−

6.1 5.9, 5−

6.6 6.8, 7−

7.2 7.3, 7−

7.4. Description of quasi-bound states in the framework of the

potential model

To date, there have been a significant number of papers considering one or

another aspect of potential models to calculate cross sections, the astrophys-

ical S-factor, or the possible position of resonances in reactions with heavy

ions [76, 291, 298, 299]. Depending on the goals of the work, potentials from the

simplest case of a rectangular pit, allowing an analytical solution [291], to a po-

tential with a large number of parameters, taking into account the dependence

on the angular momentum [298] or constructed on the basis of a semi-microscopic

description [299], can be used. Let us briefly consider the manifestation of the

ambiguity in the choice of potential mentioned in the previous section. We will

proceed from the three positions we have established.

The potential model gives a good description of the arising molecular states

belonging to rotational doublets for the case of α-particle+cor [76], but in the

case of heavy nuclei, as it was indicated, there is a problem of experimental

identification of such states [253]. The strong sensitivity of the calculations to

the potential parameters leads to difficulty in identifying unknown resonances in

order to determine their angular momentum. In the cluster approximation, the

rotational band (doublet) is defined by a condition on the wave function in the

form of the parameters G – global quantum number, N – number of nodes of the

wave function in the cluster approximation, L – angular momentum of the state

under consideration. For the case of the 1s0d shell, G ≥24. The application of such

a formula assumes that the integral of the overlap of the wave functions for the

single-particle states in the considered potential and the corresponding oscillator
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wave functions is close to unity. For the system of 12C+16O nuclei, despite the

closed oxygen shells, the use of this formula may be insufficiently justified. A

variant of the phenomenological assignment of the number G was also considered,

but its definition was limited to the potential proposed in the paper [300]. For

the studied system of carbon and oxygen nuclei, the phenomenological value was

G ≥18. Also, the ambiguity in the choice of the G value within the RGM, OCM,

and SU(3) model approaches, is discussed in paper [253]. Thus, the parameter G

cannot be determined unambiguously. In addition, according to [76,253] one can

expect the appearance of several rotational bands with different global quantum

numbers.

Using the data known to date on the manifestation of resonances correspond-

ing to rotational doublets in nuclei, we can assume that the head state 0+ of the

first band will be located near the binding energy 16O and 12C in the 28Si nucleus

(-16.8 MeV). We will denote it as L – the band. The band of resonances close to

the maximum angular momenta allowed in this system should also be observed.

Let us denote it as the H-band. According to the systematics of the [105] paper,

this should be a weakly split band with a mean value of 0+-0− of the order of 8.6

MeV and a slope of the rotational band of about 0.055 MeV.

Using the methods proposed in [49], several optical potentials suitable for

describing the 12C+16O interaction were considered in this work. Various param-

eterizations of the quadratic Woods-Saxon potential and a potential derived from

a semi-microscopic approach, the Sao Paulo potential (SPP), taking into account

the nucleon density calculated on the basis of the Dirac-Hartree-Fock [301] model,

have been considered. This potential was successfully used by us earlier in the

description of angular scattering of α-particles on the 14C [51] nucleus.

1. The deep potential for elastic scattering in the energy range ECM = 10 -

30 MeV obtained using Bayesian analysis [302].

2. SPP potential with a normalization factor equal to one.

3. The phenomenological potential from the previous section WS2.

4. The phenomenological potential from the previous section WS1.

5. Potential derived from systematics data for optical potentials (previous 4

items), with a requirement to reduce the number of wave function nodes.
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The characteristics of the potentials under consideration are summarized in

Table 27.

Table 27. Potential parameters [48]. The radius value is defined as R = r0(A
1/3
P +A

1/3
T ). Potential

2 was the SPP potential with a normalization factor equal to one. Potential parameters 3 and 4
were taken from Table 24.

Potential V MeV r0 fm. a fm.
1 390.6 0.902 1.11
2 SPP
3 320.0 0.87 1.3
4 305.0 0.83 1.4
5 295.9 0.75 1.5

7.5. Rotational bands in the heavy ion system

The positions of the resonances were obtained with the condition of repro-

ducing the energies given for the L and H bands. The calculation was carried out

within the model proposed in [258]. For all potentials considered, the gap between

two neighboring doublets was of a magnitude much smaller than the required en-

ergy difference for the L and H bands (25.4 MeV). This suggests that another

band exists between them. Let us denote it by the M -band. The existence of

such a band for states with positive parity was predicted within the AMD model

in [279]. Estimates for the position of the 0+ head level give a value in the region

of – 6 MeV, so that the doublet should form near the threshold.
.

Table 28. Positions of the head levels E(0+) and E(1−) of the considered doublets and the
corresponding global quantum numbers G [48].

Potential 1 2 3 4 5
Band H

E(0+)/E(1−) MeV 6.84/9.12 5.34/8.27 7.41/8.90 6.91/8.62 7.82/9.03
G(+)/G(−) 28/29 26/27 24/25 22/23 20/21

Band M
E(0+)/E(1−) MeV -4.60/2.15 -5.85/0.55 -1.07/4.22 -1.77/3.42 0.81/5.32

G(+)/G(−) 26/27 24/25 22/23 20/21 18/19
Band L

E(0+)/E(1−) MeV -21.4/-12.4 -21.4/-13.1 -14.5/-7.20 -14.9/-7.70 -11.2/-4.53
G(+)/G(−) 24/25 22/23 20/21 18/19 16/17

Table 28 lists the values of the 0+ and 1− states for all G values considered
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for the G values corresponding to the formation of the L, M , and H bands. The

question of the ambiguity of the potentials used to describe elastic scattering was

considered earlier in [49]. We next consider the issue of ambiguity in the definition

of the potential to describe the fusion cross section by analogy with the ambiguity

arising in the analysis of elastic scattering.

In our determination of the potential parameters, the following ambiguities

arose: for phenomenological potentials, there was an almost linear decrease in

the depth of the real part of the potential with increasing radius value. When

extracting the potential on the basis of Bayesian methods, a stable correlation of

the kind of proportionality of the imaginary potential to the value 1/
√
W , where

W is the depth of the imaginary potential, appeared. Thus, for the description

of the fusion cross section we have an ambiguity similar to that arising in the

description of elastic scattering. The ambiguity in the choice of potential can also

be seen in Figure 74, which shows the value of the astrophysical S-factor for the

considered potentials and comparison with available experimental data and their

fitting within the framework of the phenomenological model [290].

Figure 74. The value of the astrophysical S-factor as a function of energy [48]. Shown are
the experimental values [281] and cross sections obtained from the coupled channel model with
potentials 1 - 5 from Table 27. Curve 6 corresponds to a fit of the cross section to the experimental
data from the paper [290].

As can be seen, the results, for potentials 2,3 and 4 are almost identical and

close to the fitting curve. The method with the condition of strong absorption
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under the Coulomb barrier [287] was used to obtain the fusion cross section.

As can be seen from Figure 74, if there is a cross section hindrance effect in the

low energy region in a given reaction, it is observed only for the last point. Addi-

tionally, it should be noted that a number of proposed models allow the S-factor to

drop with decreasing interaction energy in the framework of the potentially [303]

model, which will be used in the next chapter.

Figure 75. Normalization of the experimental and theoretical cross section for potentials 1 – 5
from Table 27 [48] to the fitted cross section values from the paper [290].

.

Table 29. Parameters of rotational band [48].

Angular momentum of the
state with energy 3.92 MeV

Energy of the state 1−

MeV
MeV slope parameter

3− 3.31 0.06
5− 2.47 0.05
7− 1.81 0.04

Next, we consider the positions of resonances in the low-energy region from

the viewpoint of the potential model. According to the data given in Table 28,

one can expect the appearance of low-spin resonances of negative parity in the

energy region up to 12 MeV. For clarity, this is demonstrated in Figure 75, where

we normalize the experimental data by the value of the fit [290]. The resonance

structure with sharp maxima in the energy region of 3.92 MeV, 5 MeV, 6.5 MeV,
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and 8.6 MeV is clearly visible in the plot. In [281], the possibility of describing

the first two peaks within the framework of R-matrix theory was shown. There

are several possibilities for including these peaks in the sequence of states with

negative parity belonging to theM band. Depending on the choice of the angular

momentum of the initial state (3.92 MeV), the band will be characterized by the

parameters (1− level energy and band slope) listed in Table 29. The band for

potential 4 has the closest characteristics, predicting for the 3− state an energy

of 4.1 MeV and a slope parameter of 0.05 MeV. At the same time, it should be

noted that the condition of reproducing the positions of the resonances has the

strongest sensitivity to the parameters of the potential, so the requirement for an

exact match between the molecular resonances and the experimental data does

not seem reasonable. It should be noted that in such an approach no obvious

connection between the spin of the considered state and the number G is ob-

served (see Table 29). Thus, in potential 2, a state appears at energy 3.85 MeV

with angular momentum 7−, and in potential 3, at energy 4.2 MeV with angular

momentum 1−. Thus, to remove the ambiguity, it is necessary to experimentally

determine the value of the angular momentum of the states under consideration.

As a conclusion, we compare the results obtained in this work and in the

framework of the AMDmodel. The result is presented in Figure 76. The presented

result is similar to Figure 68, but in this case, potential 2 from Table 27 was chosen

for comparison, resulting in an additional node in the wave function. As can be

seen, for the band G=26-27 there is a good agreement with both the experimental

results and the calculations AMD performed in [279].

Thus, it is shown that there is ambiguity in the choice of potential for each

of the processes under consideration, but all three processes can be described

simultaneously by a single potential, and specifying the angular momentum of the

low-energy states can remove the ambiguity. As can be seen from Table 29, all the

considered potentials predict the existence of resonances for the M -band in the

energy region below three MeV, which corresponds to temperatures below 109 K

attainable in hot stars. Thus, these resonances can significantly affect the intensity

of element formation in heavy ion fusion reactions in stellar nucleosynthesis, and

their consideration provides important information for analyzing stellar evolution
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Figure 76. Comparison of G=26-27 band position [48] with experimental data [155] and AMD
calculations from the paper [279].

processes.

7.6. Determination of the astrophysical S-factor for the cluster

approximation in the framework of the rectangular potential well

model

.

Conventionally, all the reactions considered in the CND framework can be

categorized into two groups – reactions with α-particles and heavy ion fusion

reactions. The first group of reactions can be considered directly within the po-

tential model, taking into account possible resonances, e.g., as suggested in [304].

Unfortunately, this approach does not always allow one to describe the occur-

rence of narrow resonances. It is convenient to consider the second group in the

framework of an approximate optical model by introducing a complex potential

and determining the corresponding fusion cross section. This was done in the last

chapter, but the systematics is complicated by the presence of a large number

of parameters. In this chapter we will consider the simplest quantum model of

a rectangular hole, which allows, at the same time, to describe very well the fu-

sion cross section with a minimum number of free parameters. The results were

presented by us in the paper [50].

In recent years, a large number of experimental works have appeared devoted

to the study of fusion reactions at energies below the Coulomb barrier [305].
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Special interest in such works arises because of their importance for analyzing the

processes of stellar nucleosynthesis, studying the formation of superheavy elements

and exotic states of nuclear matter. To describe the observed excitation functions

in fusion reactions (FRs), a number of approaches have been proposed, relying

both on phenomenological models [306] and on various approximations within

the potential model. In the simplest case, the cross section for the MS can be

estimated by setting a boundary condition for the wave function and introducing

some value of the radius at which complete absorption occurs. Taking into account

the coupled channels in this case, it is possible to describe the MS cross section

more effectively in a wide range of masses and energies [287]. The uncertainty

arising in this case can be reduced by taking into account the known resonances in

the system under study. Approaches involving convolution-based potentials [307]

and unified potentials [301] reduce the number of parameters, but this approach

is difficult for the imaginary part of the potential.

An interesting way to account for the real and imaginary potentials with a

small number of parameters is to use the simplest version of the potential – a

rectangular pit, with the radii of the imaginary and real parts coinciding. This

was one of the first models with which to analyze FRs important for astrophysical

purposes [308]. In a paper [291] on the validity of such a model, a number of

artifacts arising in the process of describing the MS cross section were considered

and it was concluded that such a description was acceptable. One of the main

consequences of such a model is the presence of a core – the real part of the

potential is taken with a plus sign [289], so that this type of potential is labeled

“small”. At the same time, it was noted in [291] that this behavior of the potential

is not due to a manifestation of its microscopic nature (e.g., the Pauli prohibition).

For a correct systematics, it is necessary to clarify this issue.

We have addressed the question of the parameter systematics of the rectan-

gular potential model that has been used to describe the sub-barrier fusion of

nuclei from CND. So far, this approach has been applied to single nuclei, not

allowing us to obtain the dependence of the potential parameters on the charge

and mass numbers of the nuclei involved in the reaction. In the present work, we

analyzed the RS between spinless nuclei, which play an important role in stellar
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nucleosynthesis processes, at energies below the Coulomb barrier, in the mass

range A=2-28 [50].

Calculations were performed within the formalism proposed in [309] for a

rectangular pit of radius R and a potential with real and imaginary parts (V +iW )

equation (30). The permeability coefficient for the partial wave l, in this case, can

be written as:

Tl =
4PlIm(fl)

(1− SlRe(fl) + PlIm(fl))2 + (PlRe(fl) + SlIm(fl))2
. (117)

The functions PL and SL are defined in terms of the regular and irregular Coulomb

wave functions F and G. Unfortunately, in the literature, the value of PL denotes

both the barrier permeability (formula 34) and the permeability parameter used

in the calculation of the reduced level width (formula 47). In this section, the

second option will be used:

Pl =
kR

F 2
l +G2

l

, (118)

Sl = kR
FlF

′
l +GlG

′
l

F 2
l +G2

l

, (119)

where the wave vector of the free particle k =
√︁
2µE/ℏ2. The wave vector inside

the hole can be written in the form:

K =
√︁

2µ(E − V + iW )/ℏ2. (120)

Here µ is the reduced mass, E is the energy in the center-of-mass system, V is the

real part of the potential, andW is the imaginary part. fl is the complex logarith-

mic derivative of the wave function in the region of the potential well. As stated

in [291], such a wave function can be considered proportional to exp(−iKr). Our

comparison of this approximation with the wave function obtained by numerical

solution of the Schrödinger equation with the considered potential described by

means of splines [310] has shown the correctness of the chosen approach. In this

case, the logarithmic derivative at the boundary of the potential can be written

as fl = i/(KR). To estimate the cross section of the RS from the formula (33) we

have [291]:
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σfus =
π

k2

∑︂
l

wl(2l + 1)Tl. (121)

The multiplier wl = 1 + (−1)l applies to the case of merging identical nuclei.

Using the obtained formulas one can calculate the values of the astrophysical

S-factor. Since in this work it was assumed to consider only energies below the

Coulomb barrier, it is convenient to carry out the corresponding normalization of

E/VC when comparing the theoretical results with the experiment. The value of

the Coulomb barrier was assumed to be equal to:

VC =
ZTZPe

2

1.36(A
1/3
T + A

1/3
P ) + 0.5

. (122)

In this work we considered the fusion processes of combinations of nuclei:
12C, 16,18O, 20Ne, 24Mg, 28,30Si. The experimental data were taken from the EX-

FOR [311] database. The potential parameters V,W,R were determined by min-

imizing the value χ2, which, in turn, characterizes the discrepancy between the

values of the S-factor theoretically calculated by the formula (119) and its exper-

imental values. The fit was limited to the region of energies below the Coulomb

barrier. The obtained values of V,W,R are given in Table 30.

Table 30. Parameters of the potential of a rectangular well from the work [50].

Reaction V MeV W MeV R fm
12C+12C 3.9 1.16 6.8
12C+16O 5.7 1.01 7.5
12C+18O 4.8 3.70 7.8
16O+16O 9.2 1.92 8.1
12C+20Ne 7.8 2.01 7.7
16O+18O 7.9 2.22 8.2
12C+30Si 11.2 0.72 7.9
12C+24Mg 9.8 0.56 7.6

24Mg+24Mg 20.8 6.8 8.9
28Si+28Si 27.4 1.4 9.0

A comparison of the obtained astrophysical S-factor with the experimental

data is shown in Figure 77. As can be seen, in the whole range of masses and

energies considered, there is such a set of parameters R, V,W that allows us to

satisfactorily describe the energy dependence of the S-factor. Nevertheless, there
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Figure 77. The dependence of the astrophysical S-factor on the energy normalized by the height
of the Coulomb barrier. Dots are experimental results [311]. The solid line is the fitting data [50].

is uncertainty for all parameters, since small changes in their values do not lead

to a significant change in the resulting S-factor and, in addition, it would be

incorrect to require a perfect description of the experimental data within such

a simple model. We should emphasize the possibility of describing the recently

discovered phenomenon of cross section hindrance at low energies in comparison

with calculations based on optical potentials [312, 313]. As indicated in [312],
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the hindrance leads to the presence, at some energy, of a maximum value of the

astrophysical S-factor, and then, for lower energies, it is assumed to fall smoothly.

In numerical experiments, such behavior of the S-factor for a rectangular potential

well in the region of the considered nuclei turns out to be irreproducible. However,

it is possible to describe the existence of a local maximum for the S-factor, with the

presence of a local minimum at lower energies and a smooth growth of the S-factor

as the energy tends to zero. In Figure 77, this behavior of the excitation functions

(presence of a local maximum) can be observed for the reactions 12C+30Si and
12C+24Mg.

Of particular interest is the possible systematics of the parameters obtained,

summarized in Figure 78.

For all reactions considered, an increased value of the reaction channel radius

is observed (Figure 78 a). The magnitude dependence of the obtained parameter

can be approximated by a linear function:

R = 1.35(A1/3
p + A

1/3
t ) + 0.92, (123)

which agrees well with the value of the Coulomb radius in such systems. On the

other hand, according to [291], the increased value of the radius is due to the

presence of a potential jump and is an artifact of the model. This, due to the

equality of the radii of the real and imaginary parts of the potential, leads to an

increased absorption at large distances compared to the Woods-Saxon potential.

Taking this effect into account may help to explain the significant difference in

the values of the astrophysical S-factor for the systems of the considered mass

range.

As shown in Figure 78 b, the real part of the potential is determined mainly

by the Coulomb contribution, and has a well-defined linear dependence on the

magnitude of , leading to a repulsive core.

V = 0.98
ZpZt

A
1/3
p + A

1/3
t

− 4.0. (124)

The observed small negative contribution turns out to be almost constant for all

the nuclei considered in the paper.

At the same time, for the depth of the imaginary part of the potential (Fig-
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Figure 78. Potential parameters obtained in the paper [50]. Dots – fitting values, solid line –
approximation by a linear function (see explanations in the text). Top figure – dependence of the

radius R on the value (A
1/3
T + A

1/3
P ). Center figure – dependence of the real part of the potential

V on the value ZTZP e2

A
1/3
T +A

1/3
P

. Bottom figure – dependence of the imaginary part of the potential W

on the mass of the compound core.

ure 78 c), there is a rather wide scatter of values that does not show any strict

systematic dependence. As can be seen from Figure 78 c, small values of the imag-

inary potential are found for heavy nuclei, while for light nuclei, on average, an

increase proportional to the mass of the compound nucleus is observed. It should

be noted that in some cases it was possible to achieve a satisfactory description

of the value of the S-factor and at zero depth of the imaginary potential.

As a conclusion to this section, the results obtained in this work are illustrated

in Figure 79, which shows the experimental values of S-factors normalized to the
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Figure 79. The ratio of the experimental S-factor to the one obtained within the considered
model [50], as a function of the energy of the nuclei divided by the height of the Coulomb barrier
(colors correspond to different combinations of nuclei). The purple region corresponds to the
scatter of theoretical predictions, and the yellow region to the conditions occurring in the stars

.

values obtained in the framework of the proposed approach. As can be seen, there

is a very good agreement, which allows us not only to predict the value of the

cross section for low energies, but also to better understand the mechanism of the

fusion reactions taking place.
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Conclusion

.

In conclusion, we summarize the results of the research work on the thesis

topic.

The manifestation of cluster degrees of freedom is associated with a wide

range of experimentally verifiable phenomena related both to the structure of

atomic nuclei and to questions related to the mechanism of nuclear reactions.

From the point of view of structure, we have considered the maximal α-

cluster model, when the whole nucleus is represented as a system of interact-

ing α-particles. In spite of the quasi-classical approach, it was shown that the

consequences of this model allow us to describe not only the ground states of

self-conjugated nuclei (in the whole mass range known to date), but also exotic

excited states. For example – possessing such a strong deformation that they can

be considered as an analog of chain states, when several α-particles line up one

after another. Or the emergence at a certain excitation energy of a Bose-Einstein

condensate of α-particles constituting the nucleus.

Further we considered the manifestation of cluster degrees of freedom in nuclei

of a broad mass group.

Using the example of 6,8He nuclei, we considered the cases when the function of

the core is performed by the α-particle nucleus, 6He, and when one can presumably

speak of neutron clusters. The structure of such nuclei is a challenge for both

experimental and theoretical studies. The momentum distributions of the clusters

comprising these halo nuclei have been obtained.

For light nuclei – beryllium, carbon, oxygen and neon, magnesium, and argon

– experiments to study the interaction of α-particles with the core were considered.

It was shown that in the considered nuclei neutron excess does not always lead to

a decrease in the contribution of cluster configurations to the structure of excited

states.

Adopted data for heavier nuclei were considered. Despite their lack of well-

identified low-lying cluster states, they nevertheless possess high-lying fragmented

states. For argon nuclei, an elastic scattering experiment has been considered to

study the fragmented states. The detected states agree well with the predictions
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of the potential model.

A detailed consideration (both experimental and theoretical) of the next nu-

cleus – 40Ca allowed us not only to detect low-lying cluster states, but also to apply

a unified model to describe them – both potential and tunneling models. This

makes it possible to relate the data for such intermediate-mass nuclei to nuclei

in the uranium region, for which such behavior is characteristic. This conclusion

extends the notion of shape isomerism.

Finally, heavy clusters were considered. The most interesting manifestation

of this form of clustering is the observation of molecular resonances in heavy ion

scattering.

Exotic clusters in the form of unbound nuclei were considered, which made

it possible to conclude about the transition arising in such nuclei leading to con-

densation, thus linking these states with the limit α-cluster model considered at

the very beginning.

The potential model approach to the description of states in the carbon-

oxygen system at energies close to the Gamow window has been considered. A

satisfactory description of the fusion cross section and the positions of the observed

resonances was obtained. A systematics in the cluster approximation for reactions

important from the point of view of astrophysics was obtained.
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