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Introduction

Recently, computing devices have undergone significant changes due to
the increasing intellectualization of various areas of human activity, be it
manufacturing, medicine or, for example, logistics. To solve large-scale prob-
lems, it is necessary to create complex information systems with a large
number of computers interacting with each other, since it is often not possi-
ble to solve current problems with the resources of a single machine within
required time.

At the same time, information processes are becoming more and more
voluminous—problems of so-called Big Data and the “curse of dimensional-
ity” arise. Moreover, often excessively voluminous data is subject to noise
and disturbances, which further complicates their analysis. Big data arises in
many areas of human activity: for example, in medicine we have to deal with
the analysis of three-dimensional images of the brain and other organs [13]
(C. Austin), [102] (A A. Tahmassebi), in agriculture there is also a need for
optimal coordination of the work of a large number of agricultural machin-
ery [91] (P. Ribarics), and in particle physics the problem of data processing in
experiments ion collisions amounting to petabytes are solved simultaneously
by a large-scale network of computers distributed throughout the world [2,3]
(NA61/SHINE CERN collaboration). Working with such data becomes pos-
sible only by combining the efforts of many computing devices into a single
network for distributed collaboration. In the context of control and informa-
tion processing tasks distributed computing has a number of useful features:
scalability (the solution to the problem can be accelerated by the additive in-
troduction of new devices into a common network), fault tolerance (if several
devices fail, the tasks assigned to them are redistributed to other computers)
and security (attack on some computing nodes will not bring down the entire
system, since such nodes can be temporarily eliminated without significant
damage to the operation of the entire system as a whole). These features give
rise to more and more relevant research aimed at creating technologies for
distributed analysis of big data: [30] (M. H. DeGroot), [82] (M. Pease), [65]
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(N. A. Lynch), [72] (S. Nakamoto), [79] (D. Ongaro), [41] (M. J. Fischer).

The problem of big data is typical not only for information systems in
the classical sense as a network consisting of desktop computers. There is
another trend: the number of all kinds of embedded mobile devices that
allow computerization of physical objects is growing. Integrated into a net-
work, “smart” objects form the so-called “Internet of Things” — a network of
cyber-physical systems (from the English cyber-physical systems). For ex-
ample, today the development of unmanned vehicles is becoming more and
more active, which opens up space for new solutions to the problem of “bal-
ancing” transport traffic on the roads. These solutions can be divided into
two classes: centralized and decentralized [33] (G. Egger). In the first case,
cars report their coordinates to some data center, which plays the role of a
coordinator who makes decisions on balancing traffic of the entire system.
In the second, there is no such center, and machines, with the help of local
interactions, come to a consensus that satisfies the solution to the problem.
Today, centralized hierarchical strategies are more preferable because they
provide direct and clear system monitoring, which is important for stable
operation. However, simplicity comes at the price of inevitable costs for
communications between computers and data centers, which on a large scale
can lead to a lack of communication channel capacity [93] (F. Rossi), [85] (S.
Rashid). In other words, the naturally limited bandwidth of the channels also
limits the scalability of the system, which makes such a solution unsuitable
for working with big data. At the same time, the described disadvantage is
practically absent in the decentralized strategy: depending on the load, new
nodes can be attached to those computers that have relatively few connec-
tions with others. In this case, there is no need to connect all nodes into a
fully connected network, since, by influencing the state of neighbors (here-
inafter, neighbors mean nodes communicating with each other), one way or
another, each computer in the system will be indirectly connected with the
others. Such systems are usually called multi-agent systems (MAS), and the
nodes in this case are called (intelligent) agents [118] (M. Wooldridge), [40]
(M. Falco), [114] (O. Vinyals). The study, creation and use of multi-agent
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systems has become commonly referred to as multiagent technologies (MT).
MT is based on a decentralized approach to problem solving, in which dy-
namically updated information in a distributed network of intelligent agents
is processed not in some center, but directly on the agents themselves based
on their local observations together with locally available information from
neighbors [46] (O. N. Granichin). At the same time, both resource and time
costs for communications in the network, as well as the time for processing
and decision-making in the center of the entire system (if it still exists) are
significantly reduced.

Today, multi-agent technologies have not yet become widespread due
to insufficient knowledge regarding MAS. However, multi-agent algorithms
such as Particle Swarm Optimization (PSO) [14] (M. Babanezhad), [103] (A.
Tharwat), gravitational search [34] (L. V. Enikeeva), [96] (H. Shehadeh),
stochastic diffuse search [4] (M. Al-Rifaie) or the ant algorithm [8] (N. O.
Amelina), [7] (K. S. Amelin) are already successfully used in the industry to
solve optimization problems. The main obstacle in the development of such
algorithms is the irreducibility of the behavior of individual agents to the
behavior of the whole system [45] (J. Goldstein), [62] (P. Lodge), which cy-
bernetics is called the phenomenon of emergence. In this regard, today we are
still at the stage of considering relatively simple problems of achieving con-
sensus states, for example, balancing the load on computing nodes [16] (M.
Bandupadhyay). However, the growing need for decentralized solutions and,
as a consequence, increasing interest in multi-agent technologies inevitably
lead to a discussion of projects of complex swarm robotic systems for medicine
and industry [90] (A. Requicha), as well as physics and mechanics [59] (T.A.
Khantuleva).

A major role in the mathematical formalization of multi-agent systems
was played by studies using the control and optimal decision making the-
ories, based on the works [104] (J. N. Tsitsiklis), [112] (T. Vicsek), [88, 89]
(W. Ren), [77,78] (R. Olfati-Saber), [29] (F. L. Lewis), [28,35,48,52] (O. N.
Granichin), [47] (V. I. Gorodetsky), [115] (P. O. Skobelev), [43] (A. L. Frad-
kov), [73] (A. Nedic), [76] (G. Notarstefano), [81] (F. Pasqualetti), [92] (F.
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Rossi), [19,20] (F. Bullo), [22,83,117] (C. Cassandras), [97] (Y. Shimizu), [87]
(Z. Volkovich), as well as dimensionality reduction control [105] (V. I. Utkin),
[98] (L. Fridman). The main alternative approach to the formalization of
multi-agent systems is modeling using automata [42] (M. Flasiński), [69] (A.
Mohammed), [99] (E. Silvia). However, for modeling cyber-physical systems
specifically, the first approach is the most convenient, since changes in the
states of cyber-physical agents (for example, unmanned aerial vehicles) occur
in the physical world according to the laws of mechanics.

Among the most developed methods of MAS control, two approaches
can be distinguished: global control, where each agent is given the same be-
havior algorithm, independent of the actions of the agents themselves [109]
(K. Vamvoudakis), and control with local feedback, where each agent has
its own algorithm for interaction with the others, depending on the state of
neighboring agents [43] (A. L. Fradkov), [8–11] (N. O. Amelina), [5,7] (K. S.
Amelin). In the first case, the control scheme is quite simple to understand
and, more importantly, to operate. However, for simplicity we have to sacri-
fice the variability of the set of reachable states. The theory of control with
local feedback is currently not as deeply developed as in the case of global
control, but has great potential due to the substantial variability of possible
technological solutions. Despite the promising prospects, local control has
a big problem: in large-scale systems, if it is necessary to change the con-
trol strategy (for example, when adapting to a new road in the problem of
balancing transport traffic), you will have to “pointwise” contact each agent
individually, which will entail large communication and computing costs on
the part of the data center.

In recent years, the popularity of research into the phenomenon of clus-
tering in MAS has been growing [23–25] (E. F. Camacho), [67] (M. Mattioni).
The clustering process can occur spontaneously: if the individual goals of the
agents coincide, then together they can form a certain structure (subsystem),
perceived as a whole. Spontaneous grouping is a very common phenomenon
in nature (union of animals into herds [61] (N. E. Leonard), synchronous
work of brain areas [1] (H. Acebron (J. Acebron)), [68] (V. I. Sysoev), [94]
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(M. Sadilek), and in human and intellectual activity (unification of settle-
ments into states, servers into clusters, discovery of common patterns in
data [80]) (J. Oyelade).

Just as clustering occurs in nature, this phenomenon is also common in
groups of robots. In fact, clustering can be used to manage entire groups
of agents — in this case, decentralization moves from the level of individual
agents to the level of interacting clusters. With a large number of agents in
the system, it is quite difficult to trace all the variety of interactions between
them, but at the same time, clustering allows you to effectively group agents,
which allows you to reduce the number of control actions and, thus, simplify
the system. Moreover, since individual groups of agents are isolated from
others, their trajectories in state space have a sparse representation. This
allows you to use data compression methods when transmitting information
about the MAS to the data center, for example, to make decisions about
changing the local and cluster management strategy.

Thus, the relevance of the cluster management paradigm is supported
by the numerous examples of demand in industry and science mentioned
above. However, in the main works devoted to the phenomenon of clustering
of multi-agent systems, the emphasis is on the connections between agents,
which, due to the violation of fully connectedness or weighted connectivity,
lead to desynchronization at the subsystem level. In this regard, there is
motivation to develop a new method for modeling and effective adaptive
control of multi-agent systems, taking into account both internal (networked,
local) and external factors in the emergence of clusters.

The goal of the study is research and development of algorithms for adap-
tive control of complex large-scale multi-agent network dynamic systems at
the cluster meso-scale. To achieve this goal, the following tasks were set and
solved:

1) develop a model of information and control processes in complex multi-
agent networked dynamical systems to identify characteristic patterns
in their behavior, which often lead to clusterization within the system;
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2) develop a new approach to controlling complex multi-agent networked
dynamical systems, based on the synthesis of control action at a new
meso-scale, corresponding to clusters emerging in the system;

3) explore data compression methods and develop on their basis an al-
gorithm for compressed representation of a complex multi-agent net-
worked dynamical system with clusters in a reduced-dimensional space
to encode the structure of the system without significant losses and
transition to the meso-scale.

Research methods. The dissertation employs methods from information the-
ory, control theory, optimization theory, graph theory; randomized algo-
rithms, linear matrix inequalities, and numeric simulations are used.

Main results. The following scientific results were obtained during the work:

1) a new approach to modeling information and control processes in com-
plex multi-agent networked dynamical systems is proposed and justi-
fied, describing time-varying clustering in dynamic networks of elemen-
tary control objects;

2) developed a method for controlling complex multi-agent networked dy-
namical systems with clustering, in which the synthesis of control ac-
tion occurs in a space of reduced dimensionality, the effectiveness of the
developed method in comparison with classical approaches was demon-
strated;

3) developed an approach to encoding sparse information in complex multi-
agent networked dynamical systems with clusters based on the “com-
pression identification” method, and demonstrated the connection be-
tween agent clustering and the sparseness of the system representation.

Scientific novelty. All the main scientific results of the dissertation are novel.

Theoretical value and practical significance. The theoretical value of the re-
sults lies in the development and substantiation of new methods for modeling
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and controlling complex network multi-agent systems based on the synthesis
of a control action based on a compressed representation of this system in a
low-dimensional space; in a new approach to compressing large sparse data
arising in large-scale networked systems, and in the connection between dy-
namic clustering and agent sparseness in the system’s shared state space. The
randomized method of encoding sparse data, “identification by compression”,
formed the basis of a new approach to encoding the state of a complex system
with clusters, allowing one to form effective observations of the main features
of the system and synthesize control with high computational efficiency.

The proposed methods and approaches can be used to solve a number of
practical problems. In particular, for effective load balancing in computer
networks, managing large-scale networks of autonomous unmanned vehicles,
spacecraft and nano-machines, as well as in problems of applied physics, geo-
logical and meteorological predictions, modeling of biological swarm systems
and social modeling.

Research validation. The results of the dissertation were presented at semi-
nars of the Department of System Programming of the Faculty of Mathemat-
ics and Mechanics of St. Petersburg State University, at the international
“Summer Student Program at JINR” (Dubna, Russia, July 1-August 10,
2018), conferences Science And Progress (St. Petersburg, Russia, Novem-
ber 12-14, 2018), XIV Workshop on Particle Correlations and Femtoscopy
(WPCF 2019) (Dubna, Russia, June 3-7, 2019), 18th National Congress
on Cognitive Research, Artificial Intelligence and Neuroinformatics (CAICS
2020) (Moscow, Russia, October 10-16, 2020), XIVth Multiconference on
Management Problems (MCPU 2021) (Divnomorskoe village, Gelendzhik,
Russia, September 27–October 2, 2021), at the 61st IEEE Conference on
Decision and Control (CDC 2022) (Cancun, Mexico, December 6-9, 2022),
XXIV All-Russian Conference of Young Scientists “Navigation and Traffic
Control” (with international participation) (St. Petersburg, Russia, March
15–18, 2022), 22nd IFAC World Congress (IFAC 2023) (Yokohama, Japan,
July 9-14, 2023).
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The results of the dissertation were used in grant work RSF 17-72-20045
“Application of machine learning methods and Bayesian Gaussian process
in modeling the properties of hadron collisions at high energies”, YBN202
0095061 “Compressing Sensing based image processing for improved percep-
tual quality in extremely low light conditions”, RSF 16-19-00057 “Adaptive
control with predictive models with a variable state space structure with
application to network motion control systems and automation of medical
equipment”, RSF 21-19-00516 “Multi-agent adaptive control in network dy-
namic systems with application to groups of robotic devices under uncer-
tainty”.

Publication of results. The main research results are reflected in the works [6,
36, 49–51, 95, 106–108]. The applicant has published 9 scientific papers, 4 of
which were published in journals indexed in the Web of Science and Scopus
databases, 3 in conference proceedings indexed in the Web of Science and
Scopus databases, and 2 were published in publications included in the RSCI.

The works [6,36,49–51,95,106–108] were written in collaboration. In the
work [95] D. R. Uzhva is responsible for the development of neural network
models for data analysis, conducting and visualizing the results of statisti-
cal analysis, co-authors — the general formulation of the problem. In the
work [49] D. R. Uzhva is responsible for the proof of the theorem and sim-
ulation modeling, the co-authors are responsible for the general formulation
of the problem and the choice of solution methods. In the work [51] D. R.
Uzhva is responsible for the proof of the theorem on the effective control
of nonlinear systems and simulation modeling, the co-authors include the
general formulation of the problem and the choice of solution methods. In
the work [108] D. R. Uzhva describes the approach to effective management
of clusters in complex systems, the co-authors describe the general formula-
tion of the problem, the choice of solution methods. In the work [50] D. R.
Uzhva is responsible for the development of the theory of control of complex
systems, the formulation and proof of the theorem, the co-authors are the
general formulation of the problem. In the work [107] D. R. Uzhva is respon-
sible for the development of an algorithm for encoding big data in a complex



13

network system and simulation modeling, the co-authors are the general for-
mulation of the problem. In the work [6] D. R. Uzhva is responsible for the
formulation of clustering models in multi-agent systems, formulations and
proofs of theorems on clustering in a nonlinear formulation, co-authors —
general formulation of the problem, simulation modeling. In the work [36]
D. R. Uzhva is responsible for the theoretical result, the formalization of
the problem, the co-authors are the general formulation of the problem and
simulation modeling.

Compliance with the specialty passport. The dissertation corresponds to the
passport of the scientific specialty 1.2.3. “Theoretical informatics, cyber-
netics” and the field “6. Mathematical theory of optimal control, including
optimal control under conflict conditions”.

Structure and volume of the dissertation. The dissertation consists of an in-
troduction, three chapters, a conclusion, a list of references, and 120 sources.
The text spans 95 pages and includes 9 figures and 5 tables.

Brief content of the work

The introduction substantiates the relevance of the dissertation work,
formulates the goal, sets the research objectives and briefly outlines the main
results.

In first chapter a description of the problem of modeling complex large-
scale multi-agent networks under conditions of external disturbances and
communication interference is given. Section 1.1 outlines intuitive ideas
about complex systems as difficult to predict multi-agent systems (MAS)
with a large number of weakly coupled elementary agents. The intuitive
foundations of clustering in complex systems are considered as a process of
pattern formation, thanks to which it is possible to organize the system and
describe it in an effective way without the need to contact each agent directly.
In section 1.2, a model of cluster flows is proposed for a formal description
of complex systems and the processes of cluster formation in them. The
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notations used in this work are first introduced, then a model of a contin-
uous dynamic system with disturbances and interference in observations, as
well as the introduction of cluster control, is formulated. This system has
been discretized for implementation in software agents. Section 1.3 contains
conclusions about the first chapter.

In chapter two a method is proposed for the formation of a new meso-
scopic (cluster) control based on the cluster flow model, applied to the meso-
scopic subsystems of the original system united in a coalition. Section 2.1
provides a general classification of control strategies based on the presence
of feedback, the achievability of the control goal, as well as a classification
of models by control action scale. By analyzing the advantages and dis-
advantages of the presented classes, the work further uses feedback strate-
gies optimized by the amount of control (labor input), as well as models
with meso-scale patterns and “unknown but limited” interference Section 2.2
demonstrates the advantage of the meso-level control strategy over micro-
and macro-level strategies. A method for controlling complex multi-agent
networked dynamical systems with clustering is proposed. In section 2.3,
using the developed methodology for forming meso-scale control, the nonlin-
ear model of Kuramoto oscillators is analyzed. For this model, conditions
are presented for the formation of clusters in the system under which cluster
management can be introduced. Section 2.4 contains conclusions about the
second chapter.

In chapter three A universal method “identification by compression” is
proposed, which is capable of efficiently encoding and recovering sparse sig-
nals. Methods for using this method to identify clusters in a complex system
are proposed. Section 3.1 describes the general methodology for “compres-
sion identification”. Conditions for efficient reconstruction of the original
signal from its compressed representation are formulated, and randomized
compression strategies are discussed. Section 3.2 demonstrates the connec-
tion between sparsity and clustering in a multi-agent system as between the
processes of pattern formation in the system state vector. A theorem on
transforming the system state vector into a sparse form is formulated and
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proven. Section 3.3 describes the developed software — a meso-scale con-
trol simulator with recognition by compression for generating a compressed
representation of the system. The principles of quantization of a system for
recognizing clusters are formulated, an assessment of complexity and software
requirements are given. In section 3.4, the developed software was tested
on the previously analyzed nonlinear model of Kuramoto oscillators. Exper-
iments were carried out to measure the accuracy of cluster determination. In
section 3.5, the developed software was tested on a large-scale multi-agent
system of 100,000 agents. The limits of noise intensity at which high-quality
restoration of the system state is possible are demonstrated. Section 3.6
contains conclusions on the third chapter.

The conclusion formulates the main results of the dissertation.

Main scientific results

Below are the main new scientific results of the author with links to the
relevant publications and author’s contribution:

• a new approach to modeling information and control processes in com-
plex multi-agent networked dynamical systems is proposed and justi-
fied, describing time-varying clustering in dynamic networks of elemen-
tary control objects:

– model of information-control processes in complex multi-agent
network dynamic systems with clustering arising in them, see [6,
36,49–51,107,108] (the personal contribution of the author of the
dissertation is at least 80%);

– modeling and analysis of nonlinear multi-agent network dynamic
systems, see [6, 49, 51] (all analytical and numerical calculations
were performed personally by the author of the dissertation, the
total contribution is at least 80%);
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• developed a method for controlling complex multi-agent networked dy-
namical systems with clustering, in which the synthesis of control ac-
tion occurs in a space of reduced dimensionality, the effectiveness of the
developed method in comparison with classical approaches was demon-
strated:

– meso-scale method of adaptive control of complex multi-agent net-
worked dynamical systems with clustering, see [6, 36, 50, 107, 108]
(the personal contribution of the author of the dissertation is at
least 80%);

– optimal meso-scale control of complex multi-agent network dy-
namic systems, see [6, 107] (all analytical calculations were per-
formed personally by the author of the dissertation, the total con-
tribution is at least 80%);

• developed an approach to encoding sparse information in complex multi-
agent networked dynamical systems with clusters based on the “com-
pression identification” method, and demonstrated the connection be-
tween agent clustering and the sparseness of the system representation:

– approach to encoding sparse information in complex multi-agent
clustered systems based on the “recognition by compression” method,
see [6, 36,51,106–108] (the personal contribution of the author of
the dissertation is at least 80%);

– simulations of complex multi-agent network dynamic systems with
clustering using sparse agent data coding, see [49, 51, 107] (all
analytical and numerical calculations were performed personally
by the author of the dissertation, the total contribution is at least
80%);

– coding of sparse magnetometric data based on the “recognition by
compression” method, see [106] (the contribution of the author of
the dissertation is 100%);
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– classification of events in physics experiments with high-energy
hadron collisions using deep neural networks, see [95] (all numer-
ical calculations were performed personally by the author of the
dissertation).

Findings and arguments of the dissertation to be

defended

Below are the main findings and arguments submitted by the author for
defense:

• model of information-control processes in complex multi-agent net-
worked dynamical systems with clustering arising in them; features of
clustering in linear and nonlinear multi-agent dynamic systems; condi-
tions for the emergence of a cluster structure in complex systems;

• meso-scale paradigm of adaptive control of complex multi-agent net-
worked dynamical systems with clustering; optimal adaptive control of
clustered multi-agent systems;

• relationship between sparseness of data in models describing complex
multi-agent networked dynamical systems and clustering; analytical
demonstration of the possibility of encoding complex clustered systems
using sparse data compression methods; numerical demonstration of
the efficiency of encoding complex systems with meso-scale control.
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Chapter 1

Model for describing
information and control
processes in complex
systems

To model complex multi-agent networked dynamical systems, such sys-
tems must first be defined. In their definition lies the problem of their de-
scription, which motivates the study of means for their formalization.

1.1 The concept of a complex multi-agent
networked dynamical system

When solving problems of automating life processes, there is always a
need to make predictions about the future behavior of our interpretations of
these processes. Without the assumption of the presence of cause-and-effect
relationships between natural phenomena, it would be impossible to make
correct predictions with a high probability, and therefore, the apparatus of
dynamic systems constructed from meaningful assumptions about the depen-
dence of events from the future on events occurring in the past and present
is used throughout.
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Thus, as we study patterns in the dynamics of various natural and ar-
tificial systems, we find that analyzing them to predict future behavior can
be extremely difficult. For example, consider the problem of weather fore-
casting. In most cases, it is safe to say that the weather one hour from now
Wfuture = T (Wpresent), where T is a transformation formalizing the cause-
and-effect relationship, will be very similar to the current weather Wpresent,
allowing us to view future events as transformed events occurring at the
present moment in time. However, as we move into the future, the transfor-
mations T will overlap: T n(Wpresent), where T has been reapplied to Wpresent

n times, corresponding to a prediction n hours ahead. In this case,

Wfuture = T n(Wpresent)

becomes less and less like the present. Moreover, if we “choose” current
weather W̃present to be slightly different from Wpresent (i.e. W̃present ≈ Wpresent),
then for large values of n ≫ 1 (e.g., when predicting the weather a week
ahead), the same series of transformations will lead to some future weather

W̃future = T n(W̃present),

which may be very different from Wfuture. In other words, W̃present ≈ Wpresent

does not necessarily lead to W̃future ≈ Wfuture, which is observed in practice:
the longer the time horizon of weather prediction, the less accurate it will be.
Such behavior, sensitive to initial conditions, is associated with the nature
of T , determined by the interaction between various internal components
and external disturbances (e.g., air molecules, the Sun) in the climate. It is
worth noting that the interactions themselves can be quite simple: for exam-
ple, today physics is able to describe the interactions between air molecules
quite accurately. However, the number of components and the relationships
between them, despite the simplicity of the interaction rules, makes it im-
possible to obtain and calculate an accurate model of T over a sufficiently
long time interval using limited resources. In turn, the emergent behavior
mentioned in the introduction, which consists in the irreducibility of the re-
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sulting observable behavior (the weather at the current moment in time) to
the behavior of the components of the system and its surrounding parts (air
molecules, the Sun, the geological and ecological situation on the planet),
is also characteristic of the described system. Thus, the problematic of de-
scribing the dynamics of the weather system stems from the impossibility of
accurately describing even its static picture at the current moment in time.
Further in the dissertation, such systems are called “complex multi-agent
networked dynamical systems”: applying the principles of multi-agent sys-
tems, multi-agent control and data coding theory, a framework for efficient
management of them is formulated. This framework bypasses the “curse
of dimensionality” typical for them, using new rules of cluster control and
simplification of models due to the sparse representation in the state space
caused by clustering. The current chapter is about the first necessary step:
building a model of complex multi-agent networked dynamical systems.

1.1.1 Modeling of complex multi-agent networked

dynamical systems

As noted above, the method of modeling using the apparatus of dynamic
systems allows one to intuitively clearly imagine systems developing over
time according to cause-and-effect relationships. This type of modeling can
be divided into three classes:

1. Discrete-time simulation [86] (C. Ravazzi), [99] (E. Silva).

2. Continuous time simulation [101] (S. H. Strogatz), [12] (V.I. Arnold),
[43] (A. L. Fradkov).

3. Modeling using the apparatus of field theory (with a continuum index
of agents) [113] (V. Vilasini).

According to the first class, a complex system consists of a finite num-
ber of elementary autonomous units (agents), each of which has its own
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individual state, evolving iteratively over time. The corresponding system
model can be expressed by a difference equation; As an example, consider
the autoregressive model:

xit = c+
K∑
k=1

θkx
i
t−k + wi

t, (1.1)

where xit is the state of agent i at time t, c is a constant, θ1, . . . , θp is the
system parameters and wi

t — external disturbance. When p = 1, the result is
a so-called Markov process, subject to the “out of memory” problem, since xit
depends only on its previous iteration xit−1. The model (1.1) can be expanded
by adding nonlinearity and relationships between several neighboring agents.
In addition, we can consider probabilistic versions of automata models based
on the formalism of Markov chains [99] (E. Silva). The class of discrete mod-
eling can also include Poincare and Lorentz “maps” [101] (S. H. Strogatz),
despite the fact that such models are traditionally associated with dynami-
cal systems. Thus, we can say that the discrete approach is convenient for
describing stochastic discrete processes, which is relevant in the context of
large-scale systems with a large number of digital agents.

Despite the fact that discrete modeling uses an iterative approach to
describe the evolution of a system and, accordingly, such models have a
simple implementation in software environments, cyber-physical systems can
often depend continuously on time. In this case, the dynamics are modeled
by a system of ordinary differential equations:

ẋi(t) = fi(x
i(t), ui(t), ξi(t)), (1.2)

where xi(t) ∈ Rni — agent state vector i ∈ N = {1, . . . , N} (ni — number
variables necessary to describe the agent’s state), ui(t) is a local control ac-
tion, and ξi(t) ∈ Rmi is a disturbance. Moreover, this method of modeling
systems is not subject to the above-mentioned phenomenon of memory short-
age due to greater freedom in choosing the time intervals over which the state
function xi(t) is defined. Continuous dynamic systems are more convenient
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for analytical research due to the well-developed apparatus of mathematical
analysis.

Finally, the field theory approach can be considered the most general
(derived from the equation (1.2) in the N → ∞ limit) since it is able to
model the continuum cardinality of agents:

ẋ(λ, t) = f(λ, x(λ, t), u(λ, t), w(λ, t)), (1.3)

where the agents are now “renumbered” (or rather localized) at the point
λ ∈ R or its equivalent subset (that is, also with continuum cardinality).

Modern cybernetics is mainly focused on modeling discrete and contin-
uous dynamic systems, while modeling based on field theory apparatus, as
in the equation (1.3), still has few applications, and theoretical methods for
analyzing field models are relatively poorly developed and less accessible to
researchers and engineers in the field of control theory than the first two cat-
egories of models. Consequently, the main emphasis will be placed further
on dynamic systems with a large, but finite and integer number of agents.

1.1.2 Clustering in complex systems

In the equation (1.2), the control input u regulates the behavior of the
system by establishing rules for changing the state of the agent depending
on the states of neighboring agents and other environmental factors. Arti-
ficial complex systems are often required to change their global state in a
controlled manner so that the rules u lead to a given global goal. Thus, be-
fore moving directly to systems management, it is worth exploring possible
management goals. According to [43] (A. L. Fradkov), five types of goals can
be distinguished:

1. Stabilization (reduction of all states of agents x to a constant vector
x∗):

lim
x→+∞

x(t) = x∗.
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2. Tracking (reducing the states of agents to the function x∗(t)):

lim
x→+∞

|x(t)− x∗(t)| = 0.

3. Excitation of oscillations:

lim
x→+∞

G(x(t)) = G∗

for some scalar function G(x).

4. Synchronization:
lim

x→+∞
|xi(t)− xj(t)| = 0.

5. Modifications of the limit set (qualitative changes in the system, for
example, modifications of the types of bifurcations).

However, this classification is applicable primarily to fairly simple systems,
primarily single-element ones. As for multi-agent systems, the goal of syn-
chronization is usually of greatest interest, since it is associated with the
emergence of patterns that open up opportunities to reduce the dimension of
the system and, as a result, complexity. Indeed, if all agent states converge
into one synchronous dynamic trajectory, the entire system can be controlled
as a single group of identically behaving components, which requires only one
control input instead of N for each agent.

Although the prospect of controlling a complex system using synchro-
nization may seem tempting, in practice complete synchronization almost
always cannot be achieved. Most often, in many artificial and natural com-
plex systems, the so-called cluster synchronization (also called clustering)
is observed, according to which agents are synchronized in groups: system
components from the same group are synchronized, but those belonging to
different groups are not. For example, cluster synchronization occurs in hu-
man brain activity, assuming that the brain can be accurately represented
by a nonlinear coupled oscillator model [1] (J. Acebron).
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As noted in the introduction, cluster synchronization mainly occurs in
systems with incomplete connectivity between agents and due to external
disturbances that can affect the connectivity and state of agents. During
clustering, a set of synchronous manifolds is formed (in reality or in the
model) on which the trajectories of agents fall. Let us denote the number of
such cluster varieties as s, then in practice the following relationship between
the number of agents N and the number of clusters s is often true:

N ≫ s > 1. (1.4)

The empirical inequality (1.4) motivates the need to study the phenomenon
of clustering in complex systems in order to develop simple strategies for
system control at the cluster level. To manage complex multi-agent systems
with significant uncertainties and non-trivial network topology leading to
clustering, a model of cluster flows is further formulated, the foundations
of which are outlined in [84] (O. N. Granichin, A. V. Proskurnikov) . The
model is based on the idea of combining equations of dynamics of agents from
one subsystem into an equation of the aggregated state of some characteristic
of the subsystem: for example, cluster centroids.

1.2 Cluster flows model

Next, we denote the vectors in bold or Greek letters (if this is a vector of
system parameters, noise or disturbances), for example x or θ; whereas the
indices of vectors, matrices, and ordered sets are represented as superscripts,
as in xi, Aij, or N i. Time indices are written as subscripts for discrete
systems (e.g. xt ) and in brackets for continuous ones (x(t)). A positive
definite matrix A is denoted by A ≻ 0, and a positive semidefinite matrix B

is denoted by B ⪰ 0. We denote the identity matrix as I, whose dimensions
are chosen according to its application, or In×n if the dimension must be
specified for clarity. We also denote the null matrix as either O or On×n if
the dimension must be specified. In the same way, the unit vector is denoted
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as 1 or 1n and the zero vector is denoted as 0 or 0n.. Everywhere below | · |
— the cardinality of a set or the absolute value of a number. The notation
⊗ represents the Kronecker product. The block matrix A consists of blocks
denoted by [Aij]i,j∈N , where N is the corresponding set of indices. A block
vector x consists of its lower-dimensional projections onto a standard basis,
denoted by [xi]i∈N = col(x1, . . . ,x|N |). The spectral norm of the matrix A

is denoted as ∥A∥.

1.2.1 Concepts from graph theory

Let G = (N , E) be a directed graph, where N = {1, . . . , N} is a set
of vertices, and E ⊆ N × N is a set of edges. Let (j, i) ∈ E if there is
a directed edge from node j to node i. The latter means that node j can
transmit data to node i. For node i ∈ N a set of neighbors is defined as
N i = {j ∈ N | (j, i) ∈ E}. We denote the indegree of a vertex i ∈ N
is equal to |N i|, and i /∈ N i. It is also assumed that the topology of the
graph can change over time, which is modeled by a subgraph G, that is,
Ḡt = (Nt, Et), where Nt ⊆ N and Et ⊆ E . Let bijt > 0 be the weight of
an edge (j, i) ∈ Et, and bijt = 0 whenever (j, i) /∈ Et. Let Bt = [bijt ] be
the weighted adjacency matrix (or simply the connectivity matrix) of the
graph Ḡt. We will assume that the weight bijt is the cost of transmitting
data through the edge (j, i) ∈ Et. The weighted indegree i ∈ N is defined
as deg+i (Bt) =

∑n
j=1 b

ij
t , the maximum weighted indegree among all nodes

contained in the graph Ḡt as deg+max(Bt). We also denote the diagonal matrix
of indegrees of all nodes as D(Bt) = diagn(col(deg

+
1 (Bt), . . . , deg+n (Bt))).

Then L(Bt) = D(Bt)− Bt is the “Laplacian” of the graph Ḡt.

Similarly, for continuous systems, the concepts of a time-varying subgraph
Ḡ(t) = (N (t)), E(t))) are introduced.
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1.2.2 Modeling agent group dynamics

As before, we denote the set of agents as N = {1, . . . , N}, where N is
their number. In classical approaches to MAS control, the dynamics of a set
of interacting agents is characterized by the following system of differential
equations:

ẋi(t) = f i(t,xi(t),ui(t),U(t), ξi(t)), (1.5)

where xi(t) ∈ Rni is the state vector of agent i ∈ N ; ui(t) — microscopic
control, describing how local interactions between agents affect their state;
U(t) is a macroscopic control that affects all agents equally; ξi(t) ∈ Rmi —
external disturbance. Next, the model (1.5) will be modified by including a
new control action acting on individual clusters in the system.

In practice, it is often not possible to extract the agent’s state xi(t)

in its pure form. For example, imagine a car system, where xi(t) will be
its coordinates and speed in R6, as well as the entire set of states of its
parts: engine temperature, oil pressure, etc. Despite the variety of measuring
instruments available to the driver, it is not possible to measure the condition
of absolutely all parts, and therefore the driver, as a controller that forms the
control input (by pressing the pedal and rotating the steering wheel), acts
according to only part of these measurements. In models, measurement is
represented by agent output functions.

D e f i n i t i o n 1 (System output). The function gi(xj(t), ηji(t)) is
called the output of agent j, received by agent i, if gi : Rnj × Rmji 7→ Rl,
where l does not depend on i and j; ηji(t) — communication interference
between agents i and j.

According to the ideas contained in [84] (O. N. Granichin, A. V. Proskur-
nikov), in multi-agent systems, it is useful to introduce two outputs: one is
used to ensure synchronization of agents if necessary, the other is used to
monitor the state of an agent. The first is used for internal communication
protocols between network nodes, the second is used for external or internal
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observation of agent’s state, according to which a cluster pattern is formed.
Let yji(t) = gi(xj(t), ηji(t)) j ∈ N i(t) be outputs agent j from neighbor-
hood i used for agent observation. By “communication” between agents it
is assumed that the state of an agent i (at time t) is changed based on the
outputs yji(t). In practice, these outputs can be transmitted from j to i

or displayed by agent j to the environment, being then recognized by agent
i. Mathematically, the transfer rules are defined in the local control ui (see
equation (1.5)):

ui(t) ≡ ui
(
t, {yji(t)}j∈N i(t)∪i

)
, (1.6)

where ui(·) is a vector function of outputs yji(t), j ∈ N i(t) ∪ i. Equa-
tion (1.6) is called communication protocol in the sense that it contains rules
for controlling ui(t) based on the outputs yji(t) received by agent i. Thus,
we formulate the following definition of a multi-agent networked dynamical
system:

D e f i n i t i o n 2 (Multi-agent networked dynamical system). A triple
of objects consisting of: 1) a family of agents (see equation (1.5)); 2) an
interaction graph G with dynamically changing topology of subgraphs Ḡ(t)
and 3) the communication protocol defined in equation (1.6) is called multi-
agent networked dynamical system.

Further in the dissertation, multi-agent networked dynamical systems are
denoted by the set of their agents — as N , corresponding to the set of agents
of the system.

Let zi(t) = hi(xi(t), ηi(t)) be the output i used to measure synchroniza-
tion, ηi(t) is communication interference between agent i and an external
measuring device. As described in the introduction, agents can synchronize
not only globally, but also across different clusters. In modern control the-
ory, as a rule, clustering is modeled by partitioning a set of agents N into
a number of disjoint subsets. Such subsets are usually called coalitions [24]
(E. Camacho).

D e f i n i t i o n 3 (Coalition structure). Time-dependent coalition
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structure over the set N , denoted by CS(t) = {C1(t), . . . , Cs(t)(t)}, where
1 ≤ s(t) ≤ N is the number of coalitions, is a partition of N into disjoint
subsets, satisfying the following conditions:

• coalition C(t) ∈ CS(t) is not empty: C(t) /∈ ∅;

• coalitions cover the entire system: ∪C(t)∈CS(t)C(t) = N ;

• coalitions do not intersect: ∀C(t), C(t) ∈ CS(t), C(t) ̸= C(t) : C(t) ∩
C(t) = ∅.

The number of agents in the coalition Cα(t) is denoted as |Cα(t)|. Everywhere
below, coalitions are indexed by Greek letters, for example, α ∈ S(t) =

{1, . . . , s(t)}.

The novelty of the result of the dissertation lies in the effective control of
cluster structures based on the aggregated states of clusters. To form such a
control, the standard definition of the coalition structure is not enough, and
therefore the definition of cluster synchronization from [84] (O. N. Granichin,
A. V. Proskurnikov) is presented below.

D e f i n i t i o n 4 (Cluster synchronization). Let ∆ij(t) = ∥zi(t)−zj(t)∥
denote the difference of states zi(t), zj(t), where ∥ · ∥ — norm equivalent to
the ℓ2-norm. Let also CS be a coalition structure over the set N . Then the
multi-agent network experiences cluster synchronization at δ ≥ ε ≥ 0 if for
C, C ∈ CS, C ̸= C is fair

1. ∆ij ≤ ε for all i, j ∈ C;

2. ∆ij > δ for all i ∈ C, j ∈ C.

For δ = ϵ = 0, “full” cluster synchronization takes place.

In the dissertation, it is proposed to modify this definition, since it as-
sumes the ability to find unclassified points zj (outliers) for which ε < ∆ij ≤
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δ for any i ̸= j and δ > ε. Such points will never be assigned to any coali-
tion C, but at the same time, by Definition 3 all agents are assigned to the
coalition. Thus, the Definitions of 3 and 4 from various sources contradict
each other. It is also worth noting that by definition, a cluster is a structure
in which even the most distant agents are located at a distance of at least ε.
Therefore, the communication graph between agents within a cluster, defined
by their respective distance ∆ij (which can be related to the communication
radius as (j, i) ∈ E ⇐⇒ ∆ij ≤ ε) will be fully connected. In general, such a
feature will require solving a complex computational clique problem (search
of complete subgraphs) [58] (R. Karp) to successfully identify clusters. Thus,
taking into account the above-mentioned problems, the cluster flow model
proposes a new definition of cluster synchronization that does not contradict
the Definition of coalition structure 3.

D e f i n i t i o n 5 (Cluster synchronization). Let ∆ij(t) = ∥zi(t)−zj(t)∥
denote the difference of observations zi(t), zj(t), where ∥ · ∥ — norm equiv-
alent to the ℓ2-norm. Let also C be a coalition structure over the set N .
The graph GCS(t) = (N , ECS(t)) is assigned the edges (i, j) ∈ ECS(t) ⇐⇒
∆(t)ij ≤ ri(t) for some ri(t) ≥ 0 (called the communication radius) and
nodes i ∈ N . Then the multi-agent network experiences cluster synchroniza-
tion if for C(t), C(t) ∈ CS(t), C(t) ̸= C(t) is true:

1. All i, j ∈ C(t) are in one connected component GCS(t);

2. All i ∈ C(t) and j ∈ C(t) are in different connected components GCS(t).

For ri(t) = 0, “full” cluster synchronization takes place.

In other words, any closed ri(t)-ball around zi(t) either does not contain
points (then the corresponding coalition C(t) = {i} trivial), or contains some
or all observation points of other agents within the same coalition C(t). In this
case, full synchronization means the collection of all agents within the cluster
into one point. This approach is also similar to density-based clustering
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methods such as Density-Based Spatial Clustering for Noisy Applications
(DBSCAN) [39] (M. Ester), and therefore has similar range of applications.

Finally, a new control input

ūα(t) ≡ ūα (t, z̄α(t)) (1.7)

can be the added into the system described by the equation (1.5), where
z̄α(t) is some aggregated (generalized) state of the cluster α, and i ∈ Cα(t).
For example, the average value of the outputs z in the coalition Cα(t) can be
used as an aggregated state:

x̄α(t) =
1

|Cα(t)|
∑

i∈Cα(t)

xi(t).

Equation (1.7) allows you to formulate control for s≪ N clusters, which ap-
plies equally to all agents in a single cluster. Thus, a new system is obtained,
which is used further within the framework of the cluster flow model:

ẋi(t) = f i(t,xi(t),ui(t), ūα(t),U(t), ξi(t)) (1.8)

with added “cluster” control ūα(t). Methods for synthesizing the proposed
control input for clusters will be discussed in the second chapter of the dis-
sertation.

1.2.3 Discrete multi-agent systems

Equation (1.8) represents the general continuous case, but discrete sys-
tems:

xi
t+1 = f it (x

i
t,u

i
t,U

i
t, ξ

i
t+1), (1.9)

in which the agent’s state changes iteratively. In this case, the disturbance
ξit+1 is modeled as a variable that is ahead of the current state and control,
which reflects the essence of the disturbance as an unpredictable interference
in the operation of the network. All the above definitions are also valid for
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discrete systems: to reformulate it is enough to include the time dependence
in the index of a function or variable.

1.3 Summary

The first chapter proposes a cluster flow model to describe clustering in
complex multi-agent systems. The practical value of such a model lies in the
potential simplification of the description of a complex system by moving to
a low-dimensional space, where some aggregated characteristics of clusters
will be used as system states, which will be described in the third chapter. A
formal description of clustering in the system is proposed as a time-varying
partition of the MAS into subsystems.

Further, in the second chapter, the cluster flow model will be used to
formulate and solve control problems, as well as demonstrate the advantages
of the new cluster control paradigm over more conventional ones using the
example of models of the same system, but in different dimensions.
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Chapter 2

Control of complex
multi-agent networked
dynamic systems at the
cluster meso-scale

The previous chapter described various types of goals for managing com-
plex systems, as well as a cluster flow model based on the goal of cluster
synchronization. The current chapter reveals possible approaches to the syn-
thesis of cluster control inputs for both classical linear systems and nonlinear
ones using the example of a model of coupled oscillators. First, the general
principles of synthesis of optimal control for classical linear systems are re-
vealed, then a modification of the classical control theory is proposed using
a model of cluster flows and cluster control.

2.1 Classification of control strategies

To develop a cluster control strategy, it is initially necessary to analyze
existing classes of strategies to correctly demonstrate the advantages of the
proposed approach.



33

2.1.1 Classification by the presence of feedback

One of the simplest, yet widely used in practice, ways to model and
implement the control action u is to construct the corresponding function
ui(t) for each agent i, which depends only on time. As an example, consider
a linear model without disturbances [57] (R. E. Kalman):

ẋi(t) = Aixi(t) +Biui(t), (2.1)

where Ai and Bi are state transition and control transformation matrices,
and ui(t) ̸≡ 0. By introducing such a control function ui(t), we obtain a het-
erogeneous system whose state xi(t) changes independently of any functions
of its current state, except linear. In what follows, this approach to control
will be called a program or open-loop strategy to emphasize its independence
from the current state of the system.

Program strategies are extremely simple to implement because they can
be calculated in advance without burdening the system with additional cal-
culations to correct the direction to the terminal state. However, often, espe-
cially for synchronizing multi-agent systems, the dependence of the control
input u only on time, as in the equation (2.1), turns out to be insufficient.
For example, local voting [8] (N. O. Amelina) and nonlinear models of Ku-
ramoto oscillators [1] (J. Acebron), [94] (M. Sadilek), discussed in detail later
in the current chapter, demonstrate useful and quite complex behavior that
stimulates synchronization in the system due to the dependence of control
inputs on the state of the system, even despite the simplicity of the control
functions themselves. In this regard, it is further proposed to consider control
strategies with feedback (thereby emphasizing the dependence of the control
action on the angets’ states) as a class of functions of the form

ui
(
t,xi(t), {xj(t)}j∈N i(t)∪i

)
,

depending, in addition to time, also on the states of the agent i and the set
of its neighbors.
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As was mentioned in the first chapter (see equation (1.6)), it is often
impossible to directly know the state of agents, and therefore observational
feedback control can be identified as a separate class:

ui
(
t,xi(t), {yji(t)}j∈N i(t)∪i

)
.

Thus, three classes of control strategies are formulated, varying in the
way the control function itself is modeled.

1. Program strategy.

2. Strategy with state feedback.

3. Strategy with observational feedback.

2.1.2 Classification by feasibility

Strategies can also be classified in terms of the feasibility of the desired
control action. Indeed, it is impossible to apply unlimited force to instantly
achieve the desired state of the system; such a force will always be limited
by the capabilities of either the influencing object or the capacity of the
communication channel between the controller and the system: |u| <∞. In
practice, similar reasoning is also true for the states of the system |x(t)| <∞
and observations |y(x(t))| <∞.

For the convenience of analytical derivation of solutions, stronger restric-
tions are often considered: for example, it is often assumed that the control
inputs belong to the class of Lipschitz continuous functions [44] (G. Gal-
braith). A function x(t) is said to be Lipschitz continuous if there exists a
constant K > 0 (the so-called Lipschitz constant) such that

|x(t1)− x(t2)| ≤ K|t1 − t2| (2.2)

for all real-valued t1 and t2 (or for all t1 and t2 on the time interval un-
der consideration). From the equation (2.2) we can conclude that state- or
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observation-dependent Lipschitz continuous control inputs u will be limited
by the magnitude of these states or observations, which leads to a simplifica-
tion of many proofs in the control theory, since, as will be seen later, quality
functionals often include a combination of a control function and a state (or
observation).

In other cases (for example, control action optimization in a Hilbert
space), x, y, or u may be required to be bounded in the sense of Lp(0, T )

norm: ∫ T

0

|u|pdt <∞

to control u, where T > 0—the so-called time horizon of system control,
which can be either finite or infinite, depending on the task (in the infinite
case, you should be especially careful to ensure the convergence integral).

Finally, methods of stability analysis and optimization for control synthe-
sis have recently attracted great interest. When analyzing stability, the task
is to search for control classes u that lead to stable states of the system (or
the task is to classify input signals u according to their ability to bring the
system to a stabilized state) [64] (A. M. Lyapunov). At the same time, when
solving optimization problems, a search is carried out for those u that would
most quickly lead the system to a stable variety [57] (R. E. Kalman), [32] (J.
Doyle) under the above-described restrictions on the classes of control func-
tions. Despite the fact that these two branches of research into the control of
complex systems were initially quite clearly separated, they are now closely
related to each other. Moreover, today the prospects for solving many com-
plex problems of optimal and, in particular, stabilizing control are opening
up thanks to sufficient computing power available for numerical optimization
methods, which are the only possible solution to the optimization problem
for complex systems that are difficult to analyze analytically.

To solve the optimal control problem, quality functionals J(u) are formu-
lated, depending on the state (or observation) and control. Minimizing the
distance to the target together with optimization or bounding of the applied
effort leads to an optimal control strategy. In a situation of limited resources,
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as a rule, in practice one of the following types of J(u) is minimized to
synthesize an optimal control strategy.

1. Time performance cost when control input is limited:

J1(u) = argmin
u

T (y,u),

where T is the total time spent as a function of monitoring the state
of the system y and the limited control input u.

2. The magnitude of the control input expressing the “expended effort”,
given that time is fixed and limited:

J2(u) = argmin
u

∫ T

0

ϕ(t,u(y))dt,

where ϕ is some function of the control input u and time t.

3. The values of the control input and output together:

J3(u) = argmin
u

∫ T

0

ϕ(t,y(t),u(y))dt, (2.3)

where ϕ is some function of observing the state of the system y, the
control input u and time t.

In the dissertation, further the third type (2.3) is considered, in which re-
source costs are optimized through control inputs and outputs. As a control
goal, we choose to bring the state to the origin and assume that the system is
controllable (satisfies the Kalman criterion), and also x(T ) = y(x(T )) = 0.
For a system of one agent it from the classical control theory is known that
the control action u(y) = −Ky(t) with observation feedback with the trans-
formation matrix K (the search for which is the formal optimization goal)
is optimal. It is easy to verify this intuitively by substituting the resulting
control function into the functional J2: such a function will iteratively bring
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the state closer to zero by subtracting the observation vector correlating with
it.

2.1.3 Classification by multiagent subsystem scale

The first chapter of the dissertation proposes a cluster flow model that
combines three classes of scale control strategies:

1. Local (micro-scale, microscopic) control, different for each agent.

2. Cluster (meso-scale, mesoscopic) control, different for all individual
clusters.

3. Global (macro-scale, macroscopic) control, the same for all agents in
the system.

For the above classification of control by scale of action, a feedback scheme
is proposed (see Fig. 2.1). In this diagram, the action of the control inputs
is demonstrated in parallel: the system is simultaneously affected by three
controls with different scales. However, as noted earlier, in practice it is often
sufficient to use one type of control due to resource limitations, while on a
micro scale control turns out to be accurate, but resource-intensive; at the
meso-scale—presumably optimal (in terms of the trade-off between resource
costs and accuracy in achieving the target state) with a small number of
clusters; at the macro-scale—easy to implement, but crude, since it is not
capable of making structural changes to the system.

Local and global strategies are considered traditional and the most stud-
ied, while cluster strategies are the least studied due to the non-trivial ap-
proaches to their study: in particular, it is necessary to resolve the issue of
“online” searching for clusters in the system, which will be discussed in the
third chapter. However, due to the emerging compromise between the com-
plexity of the calculation and the accuracy of system control, it is precisely
the meso-scale control that is emphasized in the dissertation. The next sec-
tion analytically demonstrates the advantage of cluster (meso-scale) control
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macro

meso

micro

Feedback control

Observations

Figure 2.1: Observational feedback control for a complex multi-agent system
with clustering. The system is represented as a composition of interacting
agents defined by states xi and connected by an adjacency matrix A with
elements ai,j equal to 1 in the case of a connection between agents i and j,
and equal to 0 if there is no connection. The system is affected by external
disturbances ξ, which can directly change the connectivity or states of the
agents. Observations are subject to η noise and are divided into three levels:
micro- (individual agents), meso- (clusters) and macroscopic (system as a
whole). Based on the type of observations, control is divided into three types
of inputs: ui—local control input of agent i, ūα—cluster control for coalitions
α and u—global control action, the same for all agents.

over local and global control when a realistic condition on the number of
clusters relative to the number of agents in the system s ≪ N is met (see
equation (1.4)).
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2.2 Adaptive meso-scale control of complex
multi-agent networked dynamical systems

Let’s consider a cyber-physical (in the sense of modeling physical characte-
ristics—coordinates and speeds) complex multi-agent networked dynamical
system of N agent-particles in 2d-dimensional space, each of them having a
state {xi

t, c
i
t} (coordinate and speed), represented as a vector from Rd ×Rd.

We consider the system on a finite time interval T = [0, . . . , T ]. Let’s assume
that clustering occurs in the system, which (under the influence of the ex-
ternal environment or internal communications) changes at certain moments
in time {t1, . . . , tK}, and these time counts correspond to coalition struc-
tures CSk, k ∈ {1, . . . K − 1}. The time costs of transient processes when
changing one cluster pattern to another are proportional to some time δ. Fur-
ther we assume that δ ≪ T : the change of cluster patterns occurs quickly
enough to consider the dynamics of the system only on “long” time intervals,
on which the coalition structure is stable. We denote such time intervals as
Tk = [tk, tk+1]. Accordingly, on Tk the coalition structure CSk is constant, i.e.
the cluster pattern remains unchanged. Note that, following the paradigm of
multi-agent technologies, local communications between agents stimulating
convergence within one coalition [37, 38] (O. N. Granichin, V. A. Erofeeva)
can contribute to the stabilization of the cluster pattern. Next, we propose a
cyber-physical model of a discrete dynamic system with discrete time steps
between the “observation” and “control” stages:

xi
t+1 = xi

t + cit +
1

µ
f it , (2.4)

where cit is the “velocity” vector; f it ∈ Rd is the “force” vector (acting on
the agent), and µ is a certain weighting coefficient that is the same for all
particles and plays the role of “mass”. Consider this system further on the
time interval Tk, the beginning of which, without loss of generality, but for
the convenience of subsequent reasoning, we set equal to 0. Given the initial
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conditions for the equation (2.4) and for the designated time interval be such
that ∥xi

0∥ > 0 and ∥ci0∥ > 0 (hereinafter the norm ∥ · ∥ is any, equivalent to
ℓ2), we set the control problem — bring all particles to one point (let it be
0, up to a change of variables, that is, translational invariance) in one step,
which also formally means the problem of minimizing the following quality
functional:

J(f1t , . . . , f
N
t ) =

N∑
i=1

|xi
1|, t = 0, (2.5)

with as little effort as possible. Below, two control strategies are proposed:
based on observations of global and cluster states, then they are compared.
The definition of clusters is carried out according to the model of cluster flows:
we denote zit = xi

t + cit as the outputs of agents to ensure synchronization
between agents, then for some δ,∆ij

t ≤ δ is the distance between agents in
the cluster, limited by some δ. We also define the output for monitoring the
states of agents yi

t = zit, equal to the output zit.

2.2.1 Macro-scale control strategy

In global control, a general force is applied: f it = Ft,∀i. This force is
applied to all particle agents, which is essentially equivalent to the action on
the center of mass:

Xt =
1

N

N∑
i=1

xi
t. (2.6)

Additionally, we define the average particle speed as

Ct =
1

N

N∑
i=1

cit. (2.7)

Thus, Yt = Xt +Ct plays the role of global observation and is further used
to obtain the optimal control strategy.

Let us denote Ut := Ft/µ the control input with amplitude |U | and
control direction coinciding with the direction of the force. After substituting
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the global control into (2.4) and (2.5) we get

Jglob(U0) =
N∑
i=1

|xi
0 + ci0 +U0| =

N∑
i=1

|yi
0 +U0|. (2.8)

The optimal solution (2.8) is the regulator

Uopt,0 = −Y0 = −(X0 +C0),

thus the minimum (2.8) is

min Jglob(U0) =
N∑
i=1

|yi
0 −Y0|. (2.9)

2.2.2 Meso-scale control strategy

Now consider the total force applied to each individual cluster (more
precisely, the agent in the cluster): f it = f̄αt , i ∈ Cαt , where Cαt —coalition,
a set of agent indices in the α cluster. In this case, such a force acts on
the centers of mass of each cluster and the average velocity of the cluster
particles, respectively:

x̄α
t =

1

|Cαt |
∑
i∈Cαt

xi
t, c̄αt =

1

|Cαt |
∑
i∈Cαt

cit.

Thus, z̄αt = x̄α
t + c̄αt plays the role of monitoring the state of the cluster and

is used further in deriving the optimal cluster (meso-scale) control strategies.

Let us denote ūα
t := f̄αt /µ the control input with amplitude |ūα

t | and
control direction, coinciding with the direction of the force applied to the α

cluster. Reasoning similar to that outlined in the previous subsection allows
us to obtain an optimal cluster control strategy:

min Jclust(ū
1
0, . . . , ū

s
0) =

s∑
α=1

∑
i∈Cα0

|yi
0 − ȳα

0 |, (2.10)
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where s is the number of clusters, and then

ūα
opt,0 = −ȳα

0 .

2.2.3 Micro-scale control strategy

However, the most accurate method is micro-scale control, which sets
individual impact for each agent separately. If we consider a system (2.4) for
which the optimal micro-scale control strategy ui

opt,0 = −yi
0 is applied, then

the functional quality

min Jmic(u
1, . . . ,uN) = 0 (2.11)

at the optimal point, which represents the best possible solution.

2.2.4 Comparison of meso- and macro-scale control

strategies

Next, we can compare the two strategies in terms of the corresponding
quality functionals (2.9) and (2.10) for the calculated optimal controls. Intu-
itively, the cluster control strategy is specifically “tuned” to change the states
of individual groups of agents, while the global strategy is roughly adjusted
to the global state, which can vary significantly in different parts of the sys-
tem. In this case, the macro-scale approach is unable to achieve the accuracy
that the meso-scale strategy can achieve, provided that the cluster structure
is non-trivial: s > 1. In fact, the equations (2.9) and (2.10) differ only in the
corresponding control functions: −Y0 can be considered as a perturbed (or
coarsened) version of −z̄α0 .

To summarize the above, a lemma is proposed that consolidates the above
reasoning for a dynamical system and the difference between the quality
functionals and the quality functionals.
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L e m m a 1. Consider a model (2.4) with N agents, ∥xi
0∥ > 0 and ∥ci0∥ > 0

for all i. Let clustering arise at the time t = 0, the number of clusters is equal
to s > 1 and each cluster has |Cα0 | agents, so that

∑s
α=1 |Cα0 | = N . Provided

that the quality functionals (2.9) and (2.10) are in the corresponding minima
(that is, the corresponding optimal controllers are substituted into them), it
is true that from ∣∣∣∣∣

s∑
α=1

|Cα0 |(ȳα
0 −Y0)

∣∣∣∣∣ > 0, (2.12)

should
min Jclust < min Jglob. (2.13)

Proof.

The lemma states that

s∑
α=1

∑
i∈Cα0

|yi
0 − ȳα

0 | <
N∑
i=1

|yi
0 −Y0| (2.14)

if the inequality (2.12) is true. Consider the equation (2.10) with the added
non-zero perturbation γα:

s∑
α=1

∑
i∈Cα0

|yi
0 − ȳα

0 + γα|,

and let γα = ȳα
0 −Y0. Hence,

s∑
α=1

∑
i∈Cα0

|yi
0 − ȳα

0 + γα| −
s∑

α=1

∑
i∈Cα0

|yi
0 − ȳα

0 | ≥

≥

∣∣∣∣∣NY0 −
s∑

α=1

|Cα0 |ȳα
0 +

s∑
α=1

|Cα0 |γα −NY0 +
s∑

α=1

|Cα0 |ȳα
0

∣∣∣∣∣ =
∣∣∣∣∣

s∑
α=1

|Cα0 |γα

∣∣∣∣∣ > 0

Then
s∑

α=1

∑
i∈Cα0

(
|yi

0 − ȳα
0 + γα| − |yi

0 − ȳα
0 |
)
> 0,
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and thus the inequality from the lemma (2.14) is true for the chosen pertur-
bation, which completes the proof.

2.2.5 Comparison of meso- and micro-scale control

strategies

Despite the fact that the micro-scale control strategy provides the best
minimization of the considered functional (2.11), in many applications to
complex systems with a large number of agents, it is impossible to imple-
ment such control for technical reasons and due to limited resources. Indeed,
to find ui

opt,0 it is necessary to measure all microstates xi
0 and ci0, which is

often impossible. In terms of complexity, such a task is comparable to de-
termining all the microstates of gas molecules in a certain volume instead
of using the methods of statistical physics for a comprehensive description
of the processes occurring. Another example is the task of monitoring brain
activity: when measuring neural oscillations, aggregated activity is usually
observed in different brain regions at the meso-scale, that is, at the level of
many synchronized neurons. At the same time, measuring the activity of
an individual neuron is much more difficult, both due to complex measur-
ing equipment and large amounts of data that arise during the measurement
process and require processing, and such accuracy is often not required for
successful diagnosis.

However, the above-mentioned difficulties associated with the synthesis
of micro-scale control can be circumvented using meso-scale control, provided
that clusters have formed in the system. For sufficiently dense clusters, the
difference between min Jmic(u

1
t , . . . ,u

N
t ) and min Jclust(ū

1
t , . . . , ū

s
t) will be as

small as the maximum distance between agents in the cluster δ, which allows
for more efficient (in the computational sense) synthesis of control without
significant errors.
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T h e o r e m 1. Consider a complex multi-agent networked dynamical
system of N agents following discrete dynamics (2.4) on a finite time in-
terval T = [0, . . . , T ]. Introduce outputs yi

t to monitor the states of agents.
Let a clustering arise in the system that changes at some points in time
{t1, . . . , tK}, and let these time counts correspond to coalition structures
CSk, k ∈ {1, . . . K − 1} that are stable on intervals Tk = [tk, tk+1], and
let the transient processes when changing cluster patterns be proportional in
duration to time τ ≪ T . We assume that the maximum distance between
agents in the cluster δ is small. Let’s consider the functional (2.3) in discrete
form for micro- and meso-scale control methods:

Jmic(u
1
t , . . . ,u

N
t ) =

K−1∑
k=1

∑
i∈N

|yi
tk
+ ui

tk
|+ C1Kτ, (2.15)

Jclust(ū
1
t , . . . , ū

s
t) =

K−1∑
k=1

sk∑
α=1

∑
i∈Cα0

|yi
tk
+ ūα

tk
|+ C2Kτ, (2.16)

where C1, C2 are some constants, and the terms C1Kτ and C2Kτ corre-
spond to transient processes. Also assume that sk < S ≪ N , where S

limits the number of clusters on the interval T . Then, under optimal con-
trol ui

tk
= −yi

tk
and ūα

tk
= −ȳα

tk
the difference between the values of the

functionals (2.15) and (2.17) is small and proportional to δ:∣∣min Jclust(ū
1
t , . . . , ū

s
t)−min Jmic(u

1
t , . . . ,u

N
t )
∣∣ < ε, (2.17)

where ε = CKSδ and C is some constant that limits the magnitude of
the difference in the functionals on intervals corresponding to the transient
processes.

Proof. Initially, we substitute ui
tk
= −yi

tk
into (2.15) and this way we get

min Jmic(u
1
t , . . . ,u

N
t ) = C1Kτ . Let’s now consider

min Jclust(ū
1
t , . . . , ū

s
t) =

K−1∑
k=1

sk∑
α=1

∑
i∈Cα0

|yi
tk
− ȳα

tk
|+ C2Kτ
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with optimal meso-scale management. The triple sum can be bounded as
follows:

K−1∑
k=1

sk∑
α=1

∑
i∈Cα0

|yi
tk
− ȳα

tk
| ≤ KS

δ

2
,

where dividing by δ
2 bounds the maximum distance between the centroid of a

cluster and an agent from that cluster. Let C1 = C̃1S
δ
2τ , C2 = C̃2S

δ
2τ , where

C̃1 and C̃2 are constants, then∣∣min Jclust(ū
1
t , . . . , ū

s
t)−min Jmic(u

1
t , . . . ,u

N
t )
∣∣ ≤

≤ KS
δ

2
+ C̃1KS

δ

2
+ C̃2KS

δ

2
=

(1 + C̃1 + C̃2)

2
KSδ = CKSδ,

where C = (1+C̃1+C̃2)
2 . We denote the resulting value CKSδ by ε.

Theorem 1 demonstrates a small difference between the functionals de-
pending on micro- and meso-scale control actions for systems with dense
clusters. The smallness of this difference implies, to some extent, the ap-
proximating property of the meso-scale strategy, which allows achieving the
control goal in a way close to optimal. At the same time, since sk < S ≪ N ,
the use of meso-scale strategies allows saving on the amount of resources
spent on calculating the control action for more complex systems: for exam-
ple, nonlinear ones, which will be discussed in the next section. Before this,
a method of adaptive meso-scale control of complex multi-agent networked
dynamical systems is formulated below.

2.2.6 Method (algorithm) of adaptive meso-scale

control of complex multi-agent networked

dynamical systems

Let us consider a discrete complex multi-agent networked dynamical sys-
tem with clustering, which corresponds to the coalition structure CS t:

xi
t+1 = f it (x

i
t, ū

α
t ), i ∈ Cαt , Cαt ∈ CSt
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on the time interval [0, . . . , T ]. Meso-scale control for which is synthesized
by minimizing the functional

ūα
t ← argmin

ū
J(ū), α ∈ St,

where St are cluster indices at time t. It is assumed that at some time
points tk, k ∈ {1, . . . K} the coalition structure changes, and therefore the
system needs to be adapted to such conditions. For the described system,
the corresponding adaptive control algorithm is formulated in listing 1.

Algorithm 1 Adaptive meso-scale control of a complex multi-agent net-
worked dynamical system

1: t← 0
2: xi

0, i ∈ N
3: while t < T do
4: compute coalition structure CS t
5: if CS t = CS t−1 then
6: ūα

t ← ūα
t−1

7: else
8: ūα

t ← argminū J(ū)
9: end if

10: xi
t+1 ← f it (x

i
t, ū

α
t ), i ∈ Cαt , Cαt ∈ CSt

11: end while

2.3 Adaptive meso-scale control of nonlinear
systems

Despite the fact that most cyber-physical systems used in practice can
be successfully represented by linear models — especially near stationary
points — the role of nonlinear models that can cover an incomparably larger
range of situations cannot be underestimated. As an example of generalizing
linear models to the class of nonlinear ones with a sinusoidal state exchange
protocol, the current section will consider a simple but at the same time
flexible nonlinear Kuramoto model with many applications [1] (J. Acebron),
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describing the oscillatory dynamics of locally interacting oscillators. The
model will demonstrate the conditions for achieving and maintaining a cluster
structure for the introduction of meso-scale control.

2.3.1 Kuramoto model of coupled oscillators

The dynamics of the Kuramoto model for a certain network of N agents
with one degree of freedom (which is often called the oscillator phase) is
described by the following system of differential equations:

ẋi(t) = wi +
N∑
j=1

Bij sin
(
xj(t)− xi(t)

)
, (2.18)

where xi(t) is the phase of agent i, Bij is the weighted network connectivity
matrix, and wi—natural frequency. According to [18] (D. Benedetto), [26] (N.
Chopra) and [56] (A. Jadbabaie), agents come to the state of frequency (ẋi =

ẋj ∀i, j ∈ {1, . . . , N}) or phase (xi = xj ∀i, j ∈ {1, . . . , N}) synchronization
under certain conditions on wi and Bij.

There are many extensions of the Kuramoto model, for example, a model
with time-dependent connectivity matrix Bij(t) and frequencies wi(t) [63] (
W. Lu); version of the model with time and phase delays [60] (T. Kotwal), [70]
(E. Montbrió). The main application of the model is the description of the
processes occurring in the brain [94] (M. Sadilek). Thus, three modes of
brain operation were identified, corresponding to three states of the oscillator
network: asynchronous, completely synchronous and “chaotic”, corresponding
to cluster synchronization. This model is also suitable for describing a large
number of biological swarm systems.

Let’s consider the model (2.18) from the point of view of cybernetics and
control theory. You can explicitly define a communication protocol between
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agents, which looks like this:

ui(t) = wi +
N∑
j=1

Bij sin
(
xj(t)− xi(t)

)
, (2.19)

that is, the corresponding communication outputs yi(t) ≡ xi(t). The matrix
B plays the role of a connectivity matrix for a certain configuration of a
network of oscillators (bij ̸= 0 ⇐⇒ j ∈ N i ⇐⇒ ∃(j → i) ∈ E(t)); and
xi(t) ∈ S1 ∀i ∀t ≥ 0. Synchronization in the Kuramoto model can manifest
itself in the form of frequency or phase consensus. The difference between
them lies in the choice of output zi(t): zi(t) = ẋi(t) and zi(t) = xi(t)

respectively. In the current work, the main attention is paid to the first
option, in which clustering is determined by the coincidence of oscillator
frequencies.

In many works on the analysis of the Kuramoto model, a constraint on
connectivity between agents is introduced, represented in the form bij =
C
N ∀i, j, where C is a constant. This restriction is called mean field cou-
pling and forces full connectivity in the communication graph of communi-
cation between agents. However, in practice there are many more examples
of networks with incomplete (or even sparse) graph topology than of highly
connected networks: for example, these are collections of neurons, swarm
structures in herds of animals, social networks or groups of robots. More-
over, the topology of the graph G(t) corresponding to a particular multi-agent
network is assumed to change over time. In this regard, the Kuramoto model
with more realistic restrictions is considered below:

ẋi(t) = wi + ρ
∑

j∈N i(t)

sin
(
xj(t)− xi(t)

)
, (2.20)

where ρ is a constant, and i is influenced only by neighboring agents from
N i(t). Let us further introduce the incidence matrix of the graph G(t) as
Aij(t) ∈ {0, 1} ∀i, j ∀t ≥ 0, such thus Bij(t) = ρAij(t) in the general case
with time dependence. Intuitively, a value of 0 could mean “agent j has no
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connection with agent i (j /∈ N i)”, while 1 means “agent i is available to
agent j (i ∈ N j)”.

Now we define the control goal: agents strive to synchronize using the
protocol in (2.20), from which it follows that ρ > 0. However, the agents at
the same time experience free movement (the so-called “drift”) with a speed
of wi ≥ 0, which can be thought of as movement along a circle in the complex
plane.

2.3.2 Meso-scale control

Let the clustering CS(t1) occur at time t1 in the model (2.20); let this
clustering remain constant over the time interval T = [t1,+∞). Everywhere
below t ∈ T . Then the topology G(t) corresponding to a given multi-agent
network does not change to T . Thus, Aij is also constant. In accordance
with the cluster flow framework, a modification of the Kuramoto model is
proposed, including cluster control (assuming that i ∈ Cα0 ):

ẋi(t) = µiūα(t, x̄α(t)) +wi + ρ

N∑
j=1

Aij sin
(
xj(t)− xi(t)

)
, (2.21)

where ūα(·) is a meso-scale function in the sense that it is the same for the
entire cluster Cα0 , µi —sensitivity to the control function ūα(·).

The proposed control functions, however, only bring agents into a syn-
chronized state if certain conditions are met. First, synchronization depends
on the values of µi: some agents in the Cα0 cluster may respond to ū(·) control
strongly enough that disrupt the cluster structure. Secondly, a large differ-
ence in the values of wi can also lead to undesirable consequences, including
chaotic behavior of the system.

Before looking for sufficient conditions for the invariance of the cluster
structure on the parameters in the model (2.21), we first formulate and prove
a theorem for the model (2.20) about the relationship between the natural
frequencies wi and the values Bij = ρAij necessary to achieve clustering.
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T h e o r e m 2. Consider a multi-agent network corresponding to the
model (2.20) and the graph G with the connectivity matrix A. Let t ∈ T ,
output zi(t) = ẋi(t) and ∆ij(t) = |zi(t)−zj(t)|. The following conditions are
sufficient to achieve cluster synchronization with ri(t) = 0 ∀i (coincidence
of states of agents from the same cluster) in this network:

1. For i, j ∈ Cα0 such that wj −wi ≥ 0

wj −wi ≤ ρ sin

(
∆xji

2

) N∑
l=1

[Ail + Ajl], (2.22)

where sin
(
∆xji

2

)
= 1 in the case of Aij = Aji = 0; otherwise

sin

(
∆xji

2

)
= max

{√
1− (Γi(j))2,

√
1− (Γj(i))2,

√
2

2

}
, (2.23)

Where

Γi(j) =
−di(j) +

√
(di(j))2 + 8(Aij + Aji)2

4(Aij + Aji)
. (2.24)

2. For i ∈ Cα0 , j ∈ Cβ, α ̸= β

|wi −wj| > 0. (2.25)

3. The graph G is strongly connected.

R e m a r k 1. The idea stated in the theorem is the following: if |wi−wj|
is large, the coupling strength may not be enough to form clusters, then the
value of ρ should be sufficient big to overcome the drift. In the simplest case,
where wi = w

foralli, synchronization always occurs ∀ρ > 0. It turns out that in order to
achieve cluster synchronization with the coincidence of the states of agents
from the same cluster, the difference |wi−wj| must necessarily be non-zero
for agents i and j from different clusters.
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Proof. In order to simplify the notation, the time dependence is omitted
throughout the proof: ẋi(t) as ẋi (the same applies to xi and ∆ij), and such a
dependence is implied. Following Definition 5, ∆ij =

∣∣ẋi − ẋj
∣∣ = 0 ∀i, j ∈ Cα0

and ∆ij > 0 ∀i ∈ Cα0 , j ∈ Cβ, α ̸= β.

Since the situation when i and j are from different clusters is easier to
prove, we will consider it first. Substituting the right side of the model (2.20)
instead of ẋi, we obtain the following expression ∆ij:

∆ij =

∣∣∣∣∣wi −wj + ρ

(
N∑
l=1

Ail sin(xl − xi)−

−
N∑
l=1

Ajl sin(xl − xj)

)∣∣∣∣∣ > 0.

(2.26)

Setting the arguments of the sines in (2.26) equal to 0, we obtain a sufficient
condition for the natural frequencies.

Next, consider the situation i, j ∈ Cα0 . Let the left side (2.26) be strictly
equal to zero; assume that wj −wi ≥ 0 without loss of generality. Let E be
the functional

E =
N∑
l=1

Ail sin(xl − xi)−
N∑
l=1

Ajl sin(xl − xj) =

= (Aij + Aji) sin(xj − xi) +
N∑

l=1,l ̸=j

Ail sin(xl − xi)−

−
N∑

l=1,l ̸=i

Ajl sin(xl − xj),

(2.27)

which follows. First-order necessary conditions for maximizing E

∂E

∂xi
= −(Aij + Aji) cos(xj − xi)−

N∑
l=1,l ̸=j

Ail cos(xl − xi) = 0, (2.28)
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∂E

∂xj
= (Aij + Aji) cos(xj − xi) +

N∑
l=1,l ̸=i

Ajl cos(xl − xj) = 0, (2.29)

∂E

∂xl
= Ail cos(xl − xi)− Ajl cos(xl − xj) = 0. (2.30)

For the following reasoning to be true, let us assume ∃l1 : Ail1 = 1 and
∃l2 : Ajl2 = 1. Since i and j are arbitrary, the graph G thus turns out to be
strongly connected. Consider the case Aij = Aji = 0. Then the cosines in
the second terms of the equations (2.29) and (2.29) are also equal to 0, from
which it follows

Emax =
N∑
l=1

[Ail + Ajl]. (2.31)

Now let Aij+Aji ≥ 1. Consider the equation (2.30). In the case Ail = Ajl =

0, it turns out that Emax has the form in (2.31). If Ail = 1 and Ajl = 0,
then, following (2.28), cos(xj − xi) = 0. The same is true if Ail = 0 and
Ajl = 1, following (2.29).

The most non-trivial situation is Ail = Ajl = 1. Using (2.30), we ob-
tain that either xl = xi+xj

2 or xi = xj = 0. However, from the second
it follows that E ≡ 0, which does not correspond to the goal of maximiz-
ing E. Thus, we substitute xl = xi+xj

2 into (2.28) and use the expression
cos(2x) = 2 cos2(x)− 1:

2(Aij + Aji) cos2
(
xj − xi

2

)
− (Aij + Aji)+

+ cos

(
xj − xi

2

) N∑
l=1,l ̸=j

Ail = 0.

(2.32)

After solving the quadratic equation (2.32) we obtain two solutions, the only
one of which (with a “plus” sign) satisfies the condition

cos

(
xj − xi

2

)
∈ [−1, 1].
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The chosen solution is denoted by Γj(i)—it corresponds to (2.24). In a similar
way we obtain solutions (2.29). And again, only the solution with the “plus”
sign, denoted as Γi(j), is suitable. Let the optimal value (xj−xi)opt = ∆xji

as in (2.23) , where the first two options are obtained from the expression
sin(arccos(x)) =

√
1− x2, while the last one is derived from (2.30) in case

one of coefficients is 1 and the other is 0. Finally, let’s substitute ∆xji and
xl = xi+xj

2 into (2.27):

Emax = sin

(
∆xji

2

) N∑
l=1

[Ail + Ajl], (2.33)

which completes the proof.

The result can be generalized to the model (2.21). In order to simplify
the notation, further ūα = ūα(t, x̄α).

T h e o r e m 3. Let’s consider a multi-agent network corresponding to the
model (2.21). Let t ∈ T , output zi(t) = ẋi(t) and ∆ij(t) = |zi(t) − zj(t)|.
Let also ūα not depend on xi ∀i. The following conditions are sufficient to
achieve (0, 0) synchronization in this network.

1. In the case of i, j ∈ Cα0 ,

|(µj − µi)ūα| ≤ 2ρ sin

(
∆xji

2

) N∑
l=1

[Ail + Ajl], (2.34)

where ∆xji is the same as in Theorem 1 (including the case Aij =

Aji = 0).

2. For i ∈ Cα0 , j ∈ Cβ, α ̸= β

|wi −wj + µiūα(t, x̄α)− µjūβ(t, x̄β)| > 0. (2.35)

3. The graph G is strongly connected.



55

Proof. Sufficient conditions can be obtained from Theorem 1 by substi-
tuting the meso-scale control ui into ∆ij:

∆ij =

∣∣∣∣∣wi −wj + µiūα − µjūβ+

+ρ

(
N∑
l=1

Ail sin(xl − xi)−
N∑
l=1

Ajl sin(xl − xj)

)∣∣∣∣∣.
(2.36)

To begin with, let’s assume that i, j ∈ Cα0 . Following the same reasoning as in
the Proof of Theorem 1, the equation (2.36) is equal to 0, which yields (2.34).
Now let i ∈ Cα0 , j ∈ Cβ, α ̸= β, so ∆ij > 0 in Eq. (2.36). Setting the sines
equal to zero, as in Theorem 2, the desired condition for meso-scale control
is obtained, which completes the proof.

2.4 Summary

In the second chapter, a classification of control strategies is carried out.
For a discrete system, methods for synthesizing macro-, meso-, and micro-
scale control by minimizing the functional over the distance between the
current state of agents and the target state are considered. The advantages
of the meso-scale approach are demonstrated (lemma 1, theorem 1): com-
pared to the macro-scale approach, it provides better accuracy, while in dense
clusters it is slightly inferior to the micro-scale approach, while providing a
significantly more efficient calculation of control inputs. A method for adap-
tive meso-scale control of complex multi-agent networked dynamical systems
is proposed based on the cluster flow model introduced in the first chap-
ter. Further, an example of meso-scale control synthesis is demonstrated for
a nonlinear system of Kuramoto oscillators. The next chapter discusses a
general method for obtaining aggregated features based on the compression
sensing approach.
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Chapter 3

Universal method
“compressed sensing” for
encoding and recognizing
clusters in complex systems

To form a mesoscale control strategy, there remains a need to specify ways
of transitioning to a space of reduced dimensionality, in which coalitions are
considered as independent objects — meso-scale agents. It was mentioned in
the previous chapter that certain aggregate characteristics of coalitions can
be measured for such a transition. Methods for obtaining such characteristics
will be discussed in detail in the current chapter, and to fully understand the
scale of control of a complex system, we will provide a brief classification of
them.

1. Algorithms like “local voting” [8, 9, 11] (N. O. Amelina), [7] (K. S.
Amelin).

2. “External” (i.e., non-multi-agent) cluster identification methods, such
as hierarchical clustering [71] (D. sukherjee) or centroid-based cluster-
ing [100] ( S. Singh).

3. Data compression methods, such as compressed sensing [21] (E. J.
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Candès), [31] (D. L. Donoho)

Among the three listed categories, the compression recognition method is
of particular interest because it is a universal approach to compressing sparse
data represented as a set of continuous values. It is known that the trajec-
tories of agents in the physical environment (for example, sensor readings or
coordinates of self-driving cars) are encoded as sequences of floating-point
numbers, which can be effectively compressed using standard dictionary ap-
proaches based on the Lempel-Ziv-Markov chain-Algorithm (LZMA) [55] (A.
Y. Horita) used in the ZIP software is not possible. Moreover, compression
recognition bypasses the need to accurately compute cluster characteristics
by calculating a compressed representation of the entire system at once. This
sacrifices the visual interpretability of observations of a complex system, but
this comes at a much higher cost of extremely efficient compression and the
absence of a strict dependence on the number of clusters. In this regard, we
further demonstrate the advantage of the compression identification method
in relation to the compression of data on clusters in complex multi-agent
systems.

One of the main disadvantages of compressed sensing is the loss of inter-
pretability of the model: in a low-dimensional space, the trajectories of agent
states transformed by randomized linear operations are aggregated in such
a way that they can only be recognized by solving an optimization problem.
However, in the approach proposed in the dissertation, recognition is not
required to synthesize control, which allows saving time spent on solving the
problem. Further, the advantage of the compressed sensing method in rela-
tion to the compression of data on clusters in complex multi-agent systems
is demonstrated.

3.1 Compressed sensing method

The current section outlines the theoretical basis of the compression iden-
tification method in the terminology of signal processing theory. In what
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follows, the concept of signal presented here will be related to the concept of
state in the MAS.

The discrete signal x ∈ RN is s-sparse with some sparse matrix Ψ ∈
RN×N , if we represent it in the form

x = Ψs, (3.1)

where s has at most s (s ≪ N) nonzero components. We will further call
such vectors s-sparse. This means that complete information is stored in
only s components out of their total number, equal to dimension N . Let
us define the matrix m × N(m ≪ N) C as a measurement operator that
transforms the original sparse signal from RN to Rm. In this section we will
give an estimate for m depending on N and s, but for now it is enough to
assume that m ∼ s. Compression of data represented by the s-sparse vector
x, according to the compression identification methodology, is carried out as
follows:

y = Cx = CΨs = Φs, (3.2)

where Φ — m×N(m≪ N) “sampling matrix”. We will further call the vector
y ∈ Rm the vector of measurements or the vector of compressed observations.

Restoring the original x from compressed observation is possible, despite
the significant difference in dimensions. In the general case, the problem
of estimating x for a given y is ill-conditioned, but in the sparse case the
reconstruction becomes feasible if the following conditions for Φ, called the
restricted isometry property (RIP), are satisfied:

(1− δs)||s||22 ≤ ||Φs||22 ≤ (1 + δs)||s||22, (3.3)

for all s-sparse vectors z for some δs between 0 and 1. In other words,
intuitively, the matrix Φ should preserve the lengths of sparse vectors after
compression.

Along with (3.3) in [53] (O. N. Granichin, D. V. Pavlenko) another fre-
quently used condition is proposed - the modified restricted isometry property
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(sRIP), which allows us to reconstruct x:

λ−1||s||2 ≤ ||Φs||2 ≤ λ||s||2

for some 0 < λ <∞ and any nonzero vector s with nonzero components s.

According to [53] (O. N. Granichin, D. V. Pavlenko), RIP can be satisfied
with high probability if the elements of C are randomly selected according
to one of the following three distributions:

1. Gaussian:
cij ∼ N

(
0,

1

m

)
.

2. Symmetric Bernoulli distribution:

P (cij = ±1/
√
m) =

1

2
.

3. Trinomial Bernoulli distribution:

cij =



+
√

3/m with probability

frac16

0 with probability 2
3

−
√

3/m with probability

frac16.

For the randomized elements C described above and according to RIP (3.3),

s ≥ k1s log(N/s) (3.4)

for 0 < δ < 1. The relation (3.4) guarantees that the measurement matrix
C will satisfy RIP with probability ≥ 1− 2e−k2s, where k1 and k2 are small
positive constants depending only from δ. In [17] (R. Baraniuk) particular
conditions for choosing the constants k1 and k2 are proposed. Under these
conditions, C is universal (for all three types of distributions used to generate
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its elements) in the sense that any s-sparse x can be reconstructed from a
given y of suitable dimension.

In addition to performing RIP, to unambiguously reconstruct the signal,
it is necessary to pose an optimization problem with a constraint on the
sparsity of the estimate s:

min ||̂s||ℓ0, such that ||Φŝ− y||2 = 0, (3.5)

where || · ||ℓ0 — ℓ0-norm equal to the number of non-zero elements in the es-
timate of the vector ŝ. Despite the fact that the introduction of such a norm
makes it possible to explicitly optimize the estimates of the original signal in
terms of sparsity, such a problem is NP-hard. The original paper on Com-
pressed Sensing [21] (E. J. Candès) also proposed linear relaxation through
the equivalent ℓ1 norm, which provides an acceptable compromise between
sparsity and computational complexity . The solution to the optimization
problem (3.5) can be obtained by minimizing the norm ℓ1 in polynomial time,
using, for example, the interior point method [75] (Yu. E. Nesterov), [74]
(A. S. Nemirovsky) or more advanced specialized solutions: “spectral pro-
jected gradient for L1” (SPGL1) [110, 111] (E. van den Berg), CVX [54]
(D. A. Guimares) or deep learning methods [66] (A. L. sachidon), [27] (J.
Chorowsky) Chorowski)). Robust approaches aimed at solving, among other
things, the problem in the presence of disturbances are described.

3.1.1 Application to wireless sensor networks

Multi-agent networks with low-cost, simple hardware or software agents
often have to process intensive data streams from multiple sensors, also called
sensors. For more efficient signal detection, various decentralized approaches
offer load balancing mechanisms for distributed computing, ranging from
simple ones aimed at the cheapest microcontrollers (local voting [9] (N. O.
Amelina), Kuramoto oscillator model [1] (J. Acebron), to highly accurate
machine learning models for more advanced computer agents, such as the
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Round-robin (RR) algorithm [15] (T. Balharith) )). Even distribution of
the load not only ensures that tasks are completed as quickly as possible,
but also extends the life of the entire system. For example, energy-efficient
load balancing in wireless sensor networks (WSN) [116] (Q. Wang), [119] (Y.
Yuan) is relevant problem in the area under consideration.

Among related studies, the following two papers on clustering in wireless
sensor networks describe clustering using compression recognition method-
ology. In [116] (Q. Wang) a detailed comparison of the clustering method
using compression recognition and standard approaches to identifying clus-
ters in networks, such as Threshold sensitive Energy Efficient sensor Network
protocol (TEEN) is presented [120] (Y. Zaied). Finally, Y. Yuan describes
an energy-efficient loop routing system with compression of sensor data.

3.2 Relationship between sparsity and
clustering

In many applications, it is often impossible to accurately find clusters by
specifying whether each agent belongs to a specific cluster. Moreover, the
cluster structure may change over time, which may make it impossible to
recalculate aggregated states using complex classical clustering algorithms.
The compression identification method allows us to bypass these limitations,
thanks to the method described below for representing the clustered system
state vector as sparse, which opens up the possibility of compression accord-
ing to the scheme described above. Suppose that by time t = 0 the multi-
agent network has achieved complete clustering (that is, all agents within one
cluster are grouped into a centroid) with s-clusters. This leads to zit = zjt for
all i, j ∈ Cα and α that are the cluster index. In fact, clustering leads to a
certain pattern in the system that, geometrically and intuitively, is sparse in
some basis. The above can be formalized by the following Lemma.

L e m m a 2. Let a multi-agent system with N agents have complete clus-
tering, resulting in the formation of s ≤ N clusters, which is equivalent to:
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zit = zjt for all i, j ∈ Cα, where α is the index of the coalition correspond-
ing to the cluster. Then there exists a rarefaction matrix Ψ ∈ RN×N and a
vector sit for each i with s nonzero components such that zit = Ψsit.

Proof. Consider a cluster α = 1 with an aggregated state z̄αt = zit for all
i ∈ Cαt . Let us construct sit as a vector whose α-th element is equal to z̄α,
the rest are equal to 0. Next, we select the α-th column of Ψ as a column
vector and assign its elements i ∈ Cαt the value 1, and the rest - 0.

In the case s > 1, the same procedure is repeated for all remaining
α ∈ {2, . . . , s}.

We can further demonstrate an even deeper relationship between the
nature of sparsity and clustering. To do this, consider the model:

xi
t+1 = θxi

t + ui
t, (3.6)

and local voting protocol for the system (3.6):

• θ = 1;

• ui
t = γ

∑
j∈N i

t
bijt (x

j
t − xi

t), where N i
t is the set of agents adjacent to i,

bijt is an element of the adjacent matrix Bt, xi
t — system state.

According to [8] (N. O. Amelina), such a system, with a given control pro-
tocol and a weighted-balanced communication graph, demonstrates global
synchronization at time t∗, that is, limt→t∗ |xi

t−xj
t | = 0 for all agents, where

t∗ is the point in time when full synchronization occurs. For the local voting
protocol with clustering, the following theorem is proposed.

T h e o r e m 1. Let’s consider the local voting protocol for the system (3.6).
Let xi

t ∈ Rd for all agents. Let us introduce the state vector of the entire
system xt = col(x1

t , . . . ,x
N
t ) ∈ RNd . Let xt∗ have s ≤ N nonzero elements

and the rest zeros. Then for a sparse basis Ψ and full clustering arising in
a dual system with state zt∗ = Ψxt∗, the difference

lim
t→t∗

∣∣|Cαt |xt −Q−1zt∗P
∣∣ = 0
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under a local voting protocol, where B = Ψ, up to a permutation of elements
z, specified by the matrices Q and P of the corresponding dimension.

Proof. A graph with an adjacency matrix Ψ has s connected components,
since Q−1ΨP is a block matrix with s blocks (the matrices Q and P sort the
rows of Ψ without changing the graph structure). Since different coalitions
correspond to different connected components, the clusters are not connected
to each other, and the local voting protocol is only able to balance the values
within each individual connected component. The Φ structure guarantees
that each of its blocks forms a spanning tree for each connected component
with the agent at the root of this tree having the initial state |xi

t∗
| > 0

for each cluster α. Thus, each connected component eventually reaches a
balanced state with |xi

t∗
− xj

t∗| for all agents from the same cluster. At the
same time, since

∑
i∈Cα x

i
t is constant for all t (due to load balancing of the

local voting protocol), the resulting states agents

xj
t∗ =

1

|Cαt |
xi
t∗

for all j ∈ Cαt .

3.2.1 Compressed sensing meso-scale control

algorithm

In the case where the exact characteristics of clusters cannot be obtained
by direct observations, the internal structure of the system can still be ef-
fectively extracted using compression identification methodology. As shown
above, the sparseness of a multi-agent system is associated with the forma-
tion of cluster patterns in it. Let us now assume that the system has s

clusters distributed in advance in an unknown way. According to the com-
pression identification methodology [21] (E. J. Candès), a sufficient number
of measurements to restore the state of the entire system is

s = 4s log(N/s). (3.7)
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Accordingly, observations with this dimension can ensure controllability of
the system at the meso-scale: CΨui

t ≡ ūα
t ∈ Rm, u ∈ RN . Alternatively, if

more precise control is required, the full state of the system can be restored
before calculating the control by solving the ℓ1-optimization problem for ûi

t ∈
RN :

min
∥∥ûi

t

∥∥
ℓ1
, such that

∥∥AΨûi
t − ūα

t

∥∥
2
= 0,

using, for example, traditional interior point methods.

Listing 2 presents an algorithm for iterative meso-scale control with recog-
nition by compression in a multi-agent system, generalizing the reasoning
described above. The sparsity z = Ψx ensures successful state recovery
from randomized compressed measurements after mutual restoration of state
and control, while the control action s-sparse in Ψ ūα

t is synthesized ac-
cording to any preferred optimization functional J with sparsity-inducing
ℓ1-regularization.

Algorithm 2 Compressed sensing meso-scale control algorithm
1: while t < T do
2: x̄t−1 ← Cxt−1
3: ξ̄t−1 ← Cξt
4: ūt−1 ← argmin J(ut−1)
5: x̄t ← θx̄t−1 + ūt−1 + ξ̄t−1
6: yt ← x̄t

7: x̂t ← restoring state by yt

8: xt ← x̂t

9: t← t+ 1
10: end while

The algorithm is also schematically presented in Fig. 3.1. It is worth
noting that the presented algorithm allows not only to compress data when
directly collecting it during observation, but also to form control through
indirect observation. For example, if there is no direct communication with
the controlled system from a swarm of robots, observations can be generated
using a video camera that records the trajectories of agents. In particular,
this will be demonstrated for the example of the nonlinear Kuramoto model.
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Observations

Synthesis of meso-scale control

Disturbance

Model parameters

Solution of

task
-optimization

System state
estimation
at time      

System state at time
instant             

Figure 3.1: meso-scale control algorithm with identification by compression

3.3 Simulation environment for the
compressed sensing meso-scale control
algorithm

In order to model remote observations of a multi-agent system, dynamic
trajectories are “quantized”: the continuous initial state space is transferred
to a discrete counting space. The power of the new discrete space depends
on the resolution and “field of view” of the observer sensor, which determines
the sampling step. In the context of this work, to conduct simulations, the
resolution and field of view parameters are selected heuristically based on
the specific behavior of the system. To better understand the concept of an
observer, we can consider a digital camera or video camera as an example: like
filming a scene, the observer sensor records a certain area of space (states)
with a certain degree of sampling. At the current moment, the stage of
limiting and quantizing the state space is performed heuristically, which gives
rise to the problem of optimal automatic selection of parameters for scaling
the observation area and selection of the sampling step.

The quantization algorithm consists of three main steps:

1. Limit and quantize the state space (model a remote sensor).
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2. Carry out observations with compression of the state vector.

3. Find clusters.

4. If necessary, change the cluster management strategy.

The indicated steps are repeated cyclically, which makes it possible to process
streaming data.

3.3.1 Limitation and quantization of dynamic

trajectories

Let’s consider the simplest example of one-dimensional synchronization
outputs {zit}i∈N . In this case, the trajectories can be represented by curves
on the “coordinate plane”, the horizontal axis of which is the time t, and
the vertical axis is z. The half-plane t > 0 is called full state space and we
denote it S. From the point of view of a remote sensor, the half-plane S

is a set of time-varying scenes (one-dimensional realizations of agent states).
However, since the outputs zit in the general case can take on any values, it
is practically impossible to cover the entire infinitely extending scene with a
sensor, and therefore it is necessary to select the area where the trajectories
in a specific task are located. This is equivalent to setting the “field of view”
of the sensor — limiting z to the values of zmin and zmax.

In addition, to implement the prototype in the current work, the begin-
ning of observations and their end (constraints on t) should be specified —
tmin and tmax. Thus, for any moment of time t ∈ [tmin, tmax) the trajectory
point zit belongs to

[
zmin, zmax

)
. This time limit is not mandatory when

implementing the streaming version of the algorithm.

Due to the actions described above in the half-plane S, it is possible to
select a limited region: R =

[
zmin, zmax

)
× [tmin, tmax) ⊂ S. The values

zmax and tmax do not belong to R in order to simplify further constructions.
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Further sampling of R involves dividing this area into “cells” (sampling):[
zmin, zmax

)
=
[
zmin, z1

)
∪ ... ∪

[
zp−1, zmax

)
,

[tmin, tmax) = [tmin, t1) ∪ ... ∪ [tq−1, tmax),
(3.8)

where the values p and q are determined by sampling steps: spatial resolution
of the sensor zr = zi − zi−1 and exposure length te = tj − tj−1 . The values
of zr and te depend on the shape of the trajectories {zit}i∈N and are chosen
empirically. For example, the time interval te must be much shorter than
the duration of the dynamic event of interest in order to capture rapid state
changes. Such events may involve intra-cluster disturbances or inter-cluster
exchange of agents.

Thus, to implement observations of trajectories, a p-pixel one-bit sensor is
modeled, taking the value 1 at the location where the trajectory is recorded,
otherwise 0. It is convenient to write a series of q observations in the form
of a matrix B ∈ {0, 1}p×q, the columns of which can be compressed in
accordance with (3.2). It is clear that when choosing smaller values of zr and
te, the dimension of B increases, which leads to an increase in the resolution
and readability of the corresponding portraits of discrete trajectories, but at
the same time the time of compression and reconstruction of observations
increases.

For the subsequent search for clusters, the reconstructed matrix B̂ of
threshold filtering with adaptive threshold adjustment: its elements b̂ij are
equated to one if they exceed a certain threshold value, otherwise they are
equated to 0. This value can be chosen to be proportional to the average of
all elements in the 5b̂·j column — as will be shown later in the simulations,
this threshold value is a good heuristic.

3.3.2 Compressed sensing

During the simulation process, the recording matrix B is filled. Each of its
columns, modeling a “snapshot” of the sensor, is compressed by multiplying



68

on the right by a constant measurement matrix: y = Cx, where y — vector
of compressed observations. The matrix C is pre-generated, the elements of
which are taken from the normal distribution

cij = N
(
0,

1

m

)
.

Also, preliminary, based on the average sparsity of the columns B, the value
m = c · s0 is determined, where c takes values from 2 to 4, and s0 is the
average (by all columns) column sparsity B. Based on the value of m and
the dimension of the vector x, equal to p (the number of sensor pixels), the
degree of compression can be determined: γc = N/s, where c is the above-
mentioned constant .

3.3.3 Cluster indentification

The task of searching for clusters currently comes down to the task of
determining the number of clusters found and the location of their centroids.
The initial data are binary sparse vectors, which makes it possible to intro-
duce a Euclidean metric, which, based on two non-zero elements of such a
vector, gives the modulus of the difference between their indices. The cen-
troid of the cluster in this case is the average value of the indices included in
the cluster due to their proximity according to the metric described above.

Hierarchical clustering allows you to select clusters without regard to
their actual number, and therefore the predicted number of clusters may
not coincide with the true value. Using this fact, you can build a metric to
evaluate the accuracy of clustering. Let’s introduce the following variable:

χ[k] =

1, if ŝ[k] = s,

0, if ŝ[k] ̸= s,

where k is the observation number from the series (takes values from 1 to q),
ŝ is the estimated number of clusters predicted by the algorithm, s is the true
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number of clusters. In this case, the percentage accuracy for q observations

ϵ =

∑q
i=1 χ[k]

q
· 100%. (3.9)

In some cases, ℓ1-reconstruction of compressed state vectors of agents
can lead to the appearance of unwanted bursts in places where there are no
trajectories. These isolated outliers are usually recognized as small clusters
consisting of 1–2 elements. As will be shown below, the accuracy of the
cluster detection algorithm can be increased by eliminating such outliers
from the general list of found clusters. Everywhere below, the size of the
minimal cluster is denoted by |C|min.

3.3.4 Estimation of complexity

The large dimension of the state space in multi-agent systems leads to
the emergence of unpredictable emergent behavior in them. This means that
the transfer of data from the micro-scale to the macro-scale can be a kind
of bottleneck in the entire process of communication between the system
and the observer (data center). Because of this phenomenon, the system
turns out to be complex in terms of the intricacy of connections between its
components, which leads to the problem of analyzing big data exchanged in
the MAS. Thus, the complexity of the proposed algorithm is most correctly
assessed in the amount of collected data. Consider column b·j of matrix B,
which is a vector in p-dimensional space. Identification with compression
makes it possible to reduce the amount of transmitted data from a multiple
of p to a multiple of s log(N/s), where s is equal to the number of non-zero
components of the sparse signal, represented by the vector b·j. In the case of
large state spaces, recognition with compression makes it possible to expand
the mentioned “bottleneck” in proportion to the sparsity, in order to then
quickly synthesize cluster control.
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3.3.5 Functional requirements

Dynamics of a multi-agent system

To simulate the dynamics of the MAS, first of all, it is necessary to provide
the ability to specify the number of agents in the system 0 ≤ N ≤ 100000,
as well as the graph of connections between them, for example, in the form
of a connectivity matrix or an associative array. Since instead of a simulator
in the future it will be possible to apply the algorithm to real cyber-physical
systems, simulations should be carried out with time measured in seconds
— for this it is necessary to provide the ability to set an elementary time
step dt, used in the numerical solution of systems of differential equations
describing the dynamics agent systems.

In order to simplify testing, the initial states of agents should be set not
only by a pseudorandom number generator, but also manually — for example,
to test special cases of unstable equilibrium in the system. It should also be
possible to precisely set the sensitivity of agents to local and cluster control
inputs. In addition, the operation of the system should not depend on the
nature of the agent — in this regard, it should be possible to implement
agents with the desired behavior.

Remote observations with compression

Remote observations of MAS are similar to the process of photographing
with a classic digital camera. In this regard, it is necessary to provide the
ability to set the following parameters: the number of “pixels” in the sensor,
exposure time, as well as the generalized zoom ratio, expressed in the specified
observation limits (in order to simplify the simulation of optics).

For compression in accordance with the “identification by compression”
methodology, it is necessary to specify a matrix of observations outside the
sensor (which should then also be provided to the data center for reconstruc-
tion) and, accordingly, the dimension of the vector of compressed observa-
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tions. For caching and monitoring, you need to be able to record “snapshots”
— original and compressed data from the sensor.

Reconstruction of system data

Since the reconstruction must be carried out in a remote data center,
its implementation should be separated from the sensor implementation, al-
lowing them to communicate with each other using some communication
channel. At the moment, there is no goal to provide communication between
them via the network, so it is enough to transfer the recorded data from the
sensor to the data center locally.

For reconstruction, it should be possible to provide the data center with
the same observation matrix that was provided to the sensor.

Search for clusters

Searching for clusters involves pre-setting the size of the minimum cluster
(to filter out outliers) and a threshold value of the distance between clustered
elements. If the distance between two elements exceeds this threshold, then
they should be classified into different clusters. Therefore, it should be pos-
sible to choose the minimum cluster size and threshold value.

In addition, in addition to determining whether certain elements belong
to a certain cluster, the algorithm must determine the position of the cluster
centroid based on the coordinates of the elements included in it.

Formation of a cluster management strategy

Ensuring the possibility of forming cluster management based on the
configuration of recognized clusters comes down to the requirement that the
corresponding strategy can be changed using the software being developed.
Thus, the software must be capable of solving a user-specified control task.
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3.3.6 Non-functional requirements

The software is intended for installation and use on the user’s personal
computers. In this regard, the following requirements have been put forward:

• The software must be cross-platform (in particular, run on computers
running an OS based on the Linux kernel or Windows 7 and higher);

• when running the software, it requires no more than 8 gigabytes of
RAM;

• Software with all used libraries requires no more than 200 megabytes
of permanent memory.

3.4 Numerical demonstration of the
compressed sensing meso-scale control
approach

To test the developed and implemented algorithm, a modified Kuramoto
model with cluster control is used. At this stage, the main goal of testing
is to test the algorithm for searching clusters using remote observations, as
well as to determine the dependence of clustering accuracy on the degree of
compression. In this regard, the cluster control action is determined by a
predetermined true number of clusters that needs to be predicted using hi-
erarchical clustering. In the future, cluster control action can be synthesized
not according to predetermined clusters, but according to predicted ones —
at the moment this is beyond the scope of the current work.
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Figure 3.2: Topology of the graph used

3.4.1 Simulation of the Kuramoto oscillator model

Let’s consider the model (2.21) and its simulation on the interval T =

[0, 60]:

xi
t+1 = µiūα

t (x̄
α
t ) +wi + ρ

N∑
j=1

Aij sin
(
xj
t − xi

t

)
.

As an example, let’s take the sinusoidal cluster control algorithm:

ūα
t (x̄

α
t ) = sin(2πfα(t− 20)) (3.10)

as an example, where ūα
t is activated from time t = 20.

Let’s set the following model parameters:
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• N = 16;

• graph topology G as in Figure 3.2;

• initial phases xi(0) from a uniform distribution on the circle S1;

• values of fα are taken from a uniform distribution on [0, 1];

• ρ = 0.5;

• natural frequencies wi are presented in Table 3.1;

• values of µi are presented in Table 3.2.

Table 3.1: wi values used in the simulation

w1 w2 w3 w4 w5 w6 w7 w8

4.1 4.2 4.3 4.4 8.1 8.2 8.3 8.4
w9 w10 w11 w12 w13 w14 w15 w16

12.1 12.2 12.3 12.4 16.1 16.2 16.3 16.4

Table 3.2: µi values used in the simulation

µ1 µ5 µ9 µ13 µ2 µ6 µ10 µ14

0.375 0.75
µ3 µ7 µ11 µ15 µ4 µ8 µ12 µ16

1.125 1.5

Next, we will determine the cluster synchronization of agent-oscillators in
the Kuramoto model by the proximity of the values of their angular frequen-
cies ẋi, which play the role of determining the synchronization of outputs
zit. Simulation of the dynamics of 16 agents allows us to obtain trajectories
of changes in their angular frequencies (see Figure 3.3). From the equa-
tions (2.34) and (2.35) it follows that the presented parameter values allow
the cluster pattern to remain unchanged over time. In Figure 3.3, the tra-
jectories of agents from the same cluster are marked with the same color for
clarity. Despite the rather small number of agents, the discrete state space
of such a system nevertheless turns out to be quite large in dimension. If



75

Figure 3.3: Trajectories of angular frequencies of 16 oscillator agents forming
4 clusters under sinusoidal cluster control described in the equation (3.10)

we consider the visualization of this state space further, it becomes clear
that such a space can include a much larger number of agents. However, af-
ter cluster synchronization, agents will in any case occupy a relatively small
area of space (thus reducing the state space to a sparse form). Thus, at the
moment, a simple example with 16 agents is used solely to demonstrate the
algorithm, while the system remains highly scalable.

3.4.2 Determination of clusters from discrete

observations

Let us denote the empirically selected parameters of the observation sys-
tem from the sensor and recording device (state space sampling parameters):

• zmin = 0, zmax = 20, zr = 0.1;

• tmin = 20, tmax = 60, te = 0.1.

With these parameters, a simulation of a 200-pixel sensor is performed, with
the help of which 400 of one-dimensional “snapshots” of dynamic trajectories
(angular frequencies) are made over a period of time from 20 to 60 seconds
from the beginning of the simulation of the oscillator system. These images
can be represented as a matrix B of dimension 200× 400. Figure 3.4 shows
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the matrix B obtained in the simulation, where white pixels are responsible
for the presence of one or more agents in the corresponding region of state
space.

Figure 3.4: 400 one-dimensional sequential 200-pixel snapshots of the trajec-
tories of 16 oscillators, represented as columns of the matrix B; white pixels
are responsible for the presence of one or more agents with the corresponding
state

Figure 3.5: Centroids of clusters (highlighted in red) recognized in each snap-
shot of the state space from a series of 400 snapshots, represented as columns
of the matrix B, with the value of the minimum cluster |C|min = 2
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Figure 3.6: Centroids of clusters (highlighted in red) recognized in recon-
structed snapshots of the state space from a series of 400 snapshots, presented
as columns of the matrix B̂, with a minimum cluster value of |C|min = 2

Next, we should determine the value of m: let it be equal to the integer
part of c · s0 = 3 · 24.78, that is, m = 74 (where s0 is the average spar-
sity value of the columns B, and c is some constant). The corresponding
compression ratio is γ3 = N/s ≈ 2.7. After compression and reconstruction
using the metric (3.9), one can compare the accuracy of finding clusters in the
original set of observations (matrix B) and in observations after compression-
reconstruction (matrix B̂). Let all clusters in which the number of elements
is less than 2 be considered as outliers (|C|min = 2). Let also everywhere
below the value δ = 0.8 be the threshold value for defining clusters (if two
non-zero elements of the observation vector are located closer than δ from
each other, then they belong to the same cluster). The accuracy compari-
son results are presented in Table 3.3. The found centroids are indicated in
Figures 3.5 and 3.6.

Table 3.3: Clustering accuracy with c = 3 and minimum cluster size |C|min =
2.

ϵ,%

B B̂
95.74 94.24
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3.4.3 Study of the dependence of accuracy on the

compression ratio

Figure 3.7: Accuracy of cluster identification in B̂ for |C|min = 2 and various
values of compression degree γc (values of c from 2 to 4 in increments of 0.5)

The accuracy of finding clusters depends on the degree of compression:
the higher the degree of compression, the more losses, which means lower
accuracy of cluster recognition. Figure 3.7 shows the dependence of the
accuracy of determining clusters in B̂ for various values of γc and |C|min = 2.
It can be seen that the accuracy decreases monotonically with increasing
compression ratio.

3.4.4 Study of the dependence of accuracy on the size

of the minimum cluster

When the minimum cluster size is |C|min = 1, any outliers are accepted
as a separate cluster. At the same time, for large values of |C|min the set of
centroids may turn out to be empty. Both situations lead to low clustering
accuracy, so it is important to find the optimal minimum cluster size to
maximize accuracy. Figure 3.8 shows the dependence of the accuracy of
determining clusters in B̂ for various values of |C|min and γ2.5 =3.28. From
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the resulting graph it follows that the optimal value of the minimum cluster
is 2.

Figure 3.8: Accuracy of cluster identification in B̂ at γ2.5 = 3.28 and various
values of the minimum cluster |C|min (from 1 to 5)

3.5 Numerical demonstration of the
robustness of the algorithm in a
large-scale system

Simulations were carried out for three systems with different numbers
of agents: N = 1000, 10000, 100000, while all three systems were clustered
into ten coalitions. State values range from 10 to 100 in 10 increments.
The number of clusters s and the total number of agents in the system N

determine the compression degree m, determined through the logarithm of
the number of agents (see equation (3.7)).

The control strategy is synthesized to reduce the aggregated states of the
cluster by half at each iteration towards the zero value with minimal effort,
which can be modeled by the leading function and the functional

p̄α
t =

1

2
x̄α
t , J(ūα

t ) =

|Cα|∑
α=1

|x̄α
t + ūα

t − p̄α
t |.
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For simplicity, the case of θ ≡ 1 is considered below, since the main interest is
the accuracy of compression-recovery instead of the features of the linear sys-
tem. Various types of perturbations ξ were tested: Gaussian zero mean and
uniform (an example of an unknown, but limited with non-zero mathematical
expectation) distribution. For the described number of agents in the system
and the corresponding dimensions of the coding space m, the distances ℓ2

between the agent states under control without compression and the restored
states after meso-scale control in the low-dimensional space are calculated.
The results are demonstrated in tables 3.4 (Gaussian perturbation) and 3.5
(uniform perturbation).

Table 3.4: ℓ2 distances between the reference (in the original space) and
restored states of agents after identification by compression with Gaussian
perturbations

Standard deviation of Gaussian perturbations
N m 0 0.001 0.01 0.1

1000 184 2.83 · 10−9 2.92 · 10−2 3.26 · 10−1 2.92

10000 276 2.09 · 10−11 8.47 · 10−2 8.19 · 10−1 7.59

100000 368 3.25 · 10−11 2.91 · 10−1 3.08 27.6

Table 3.5: ℓ2 distances between the reference (in the original space) and re-
constructed states of agents after identification by compression with unknown
but limited disturbances

sup of the support of the uniform distribution function
N m 0 0.001 0.01 0.1

1000 184 4.10 · 10−9 1.68 · 10−2 1.46 · 10−1 1.43

10000 276 4.09 · 10−8 4.55 · 10−2 4.63 · 10−1 4.43

100000 368 1.72 · 10−10 1.57 · 10−1 1.30 13.6

It can be seen that the proposed method provides acceptable accuracy
for values of standard deviation (for a Gaussian distribution) or sup (for a
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uniform distribution) up to 0.01. At higher disturbance intensities, the dis-
tance ℓ2 between the standard and the reconstructed state estimate exceeds
the minimum value of the agent’s state, equal to 10. In other words, the
signal-to-noise ratio becomes too low for a qualitative interpretation of such
an assessment. It is worth noting that the highest signal peaks in amplitude
(from 30 to 100 arbitrary units) remain distinguishable.

3.6 Summary

The third chapter demonstrates a universal method for compressing sparse
real-valued data (or data written as floating point numbers) — “identification
by compression”. The process of data compression and recovery using ran-
domized transformations and ℓ1-optimization is described, which forms the
basis of the compression identification method. Finally, as the main result of
the chapter, the connection between the sparsity of the full state vector of a
multi-agent system and its form during clustering is demonstrated.

As a result of three chapters, software was developed and tested that
synthesizes meso-scale control for a low-dimensional representation of the
state space of the system, transformed under the influence of identification
by compression. Testing was carried out on the nonlinear Kuramoto model,
as well as on a large-scale multi-agent network with up to 100,000 agents.
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Conclusion

In complex multi-agent networked dynamical systems with a large num-
ber of atomic structural units—agents—ordered patterns have a possibility
to emerge due to interactions with each other and with the environment
surrounding the system. First of all, this effect is valid for natural multi-
agent systems: physical, consisting of interacting elementary particles or
molecules, or biological, such as ensembles of connected neurons or commu-
nicating groups of animals. Aside from that, man-made systems are sub-
ject to pattern emergence too: robotic or, for example, computing systems.
Against the background of active mathematical control theory development
in the 20th century, which to this day attracts increasing interest amid spe-
cialists in the natural, technical sciences, as well as the humanities, many
scientifically and practically significant models of complex systems have been
derived. These models describe the above-mentioned emergent structures, as
well as prescribe effective methods of influencing the state of these systems.
In the dissertation, the diversity of multi-agent models is supplemented by
describing clusters of agents that are combined into groups based on the sim-
ilarity of their states during local interactions or under external disturbances.
The description of clustering is supplemented by derived prescriptive rules
for synthesizing optimal control focused on controlling groups of agents as a
more effective way to influence a complex system. These results are shown
to be applicable for a wide class of systems, where they are possible to be
described and controlled on so-called “meso-scale” with negligible losses in
accuracy. Here, a meso-scale is an intermediate scale of system modeling (in
the sense of generalization in its state) compared to the micro- and macro-
scales. In addition, an algorithm for meso-scale control of a complex system
exploiting the “compressed sensing” approach is proposed in the dissertation.
This algorithm is based on the observed fact, stating that clustering and
the formation of sparse data in models of the states of complex systems are
similar phenomena.

Main scientific results of the dissertation research achieved within the
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framework of the set tasks:

1) a new approach to modeling information and control processes in com-
plex multi-agent networked dynamical systems is proposed and justi-
fied, describing time-varying clustering in dynamic networks of elemen-
tary control objects (chapter 1);

2) developed a method for controlling complex multi-agent networked dy-
namical systems with clustering, in which the synthesis of control ac-
tion occurs in a space of reduced dimensionality, the effectiveness of the
developed method in comparison with classical approaches was demon-
strated (chapter 2);

3) developed an approach to encoding sparse information in complex multi-
agent networked dynamical systems with clusters based on the “com-
pressed sensing” method, and demonstrated the connection between
agent clustering and the sparseness of the system representation (chap-
ter 3).

The results described in the dissertation can form the basis for more
in-depth studies of mathematical models of complex systems: for example,
when describing a system as a topological space with clusters generalized
further as homologies of higher groups (for example, for hole-type patterns
in higher-dimensional spaces). The practical contribution of the dissertation
could presumably affect development of more effective and feasible methods
for controlling swarm robotic systems, as well as to some extent biological and
physical systems: networks and ensembles of neurons or physical particles.
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