ОТЗЫВ

члена диссертационного совета на диссертацию Савеловой Карины Эдуардовны на тему «Регулярное и маховское отражение газодинамических разрывов с энерговыделением» представленную на соискание ученой степени кандидата физикоматематических наук по специальности 1.1.9 – Механика жидкости, газа и плазмы

Актуальность работы. Диссертационная работа К.Э. Савеловой посвящена разработке достоверного математического аппарата для быстрой оценки и анализа поля течения с образующимися ударно-волновыми структурами, а также анализу ударноволновых структур, возникающих при отражении косых скачков уплотнения, в том числе в условиях энерговыделения и изменения химического состава газовой смеси на главном скачке.

обусловлена темы исследования необходимостью Актуальность распространения теории взаимодействия газодинамических разрывов на случаи отражения и взаимодействия разрывов с возможным импульсным энерговыделением и изменением химического состава газа. Расширение спектра теоретически решаемых задач обусловлено развитием авиационной и ракетно-космической техники, а также созданием современных двигательных установок для летательных аппаратов, которые способны осуществлять полеты с большой сверхзвуковой скоростью. При больших сверхзвуковых скоростях полёта в воздухе его термодинамические свойства становятся существенно отличными от описываемых моделью совершенного двухатомного газа. Кроме того, благодаря высокой температуре течения, особенно за сильными скачками уплотнения, в топливно-воздушных смесях возможно инициирование экзотермических реакций с практически импульсным выделением энергии. Поэтому необходимо исследовать взаимодействие газодинамических разрывов в сверхзвуковых потоках реакционноспособных газовых смесей, анализировать возникающие ударно-волновые структуры и поле течения в целом, благодаря чему быстро оценивать новые аэродинамические схемы летательных аппаратов и перспективные конструкции реактивных двигателей.

Решение упомянутых задач требует хорошего понимания теории взаимодействия (интерференции) газодинамических разрывов, частности, регулярного и нерегулярного отражения скачков уплотнения, их взаимодействия между собой и с различными поверхностями, образующихся при этом тройных конфигураций, более сложных ударно-волновых структур, возникающих в сопловых и канальных течениях, а также теории детонационных процессов.

В представленной диссертации проведен большой объем исследований различных видов отражения и взаимодействия скачков уплотнения, в том числе при наличии импульсного энерговыделения и изменения химического состава газа на сильных скачках. В частности, исследована неоднозначность решения для тройных конфигураций, образующихся при маховском отражении, построены аналитические

модели ударно-волновой структуры течений с маховским отражением и проведен анализ влияния детонационных эффектов на поле течения в целом. **Достоверность** полученных результатов подтверждается их сравнением с результатами применения ранее разработанных моделей, а также с результатами численного эксперимента, проведенного диссертантом и другими авторами.

Основными новыми научными результатами, представленными в диссертации, на мой взгляд, являются:

- аналитические соотношения, описывающие ударно-волновые структуры регулярного отражения с минимальным динамическим и, впервые, с минимальным термическим нагружением объекта воздействия;
- выявление и аналитическое описание области неоднозначности решения для ударно-волновых структур, возникающих при отражении косых скачков уплотнения в течениях с большими числами Маха и сниженными показателями адиабаты;
- описание условий существования и проведение параметрического анализа тройных конфигураций скачков уплотнения, возникающих при маховском отражении с импульсным энерговыделением и изменением химического состава смеси на главном скачке. Сравнение полученных результатов с результатами применения модели совершенного газа, показывающее маховское отражение относительно слабых скачков, которые при отсутствии перечисленных физико-химических эффектов отражаются только регулярно;
- приближенно-аналитическая модель течения с маховским отражением при возможном наличии импульсного энерговыделения и изменения химического состава смеси на главном скачке, с высокой точностью и достоверностью описывающая ударно-волновую структуру потока при наличии вышеперечисленных эффектов;
- закономерности изменения ударно-волновой структуры маховского отражения в условиях импульсного энерговыделения на главном скачке уплотнения (маховское отражение более слабых скачков, увеличение размеров главного (маховского) скачка, аналогичное по направленности влияние уменьшения показателя адиабаты газовой смеси).

Замечания Серьезных замечаний по материалам, представленным в содержательных главах диссертации, нет. Тем не менее, работа не лишена ряда недостатков, в частности:

1. В главе II (на рисунке 2.11) приведено сравнение значений безразмерной высоты главного скачка уплотнения при маховском отражении в сужающемся канале в зависимости от угла наклона падающего скачка, вычисленных по модели, предложенной автором диссертации, с результатами использования ранее предложенных моделей других авторов, но нигде в тексте диссертации не указаны недостатки предшествующих моделей.

- 2. В главе III автор пишет об использовании модели турбулентности, но не приводит уравнения этой модели. Не описаны причины выбора данной модели турбулентности.
- 3. Текст работы содержат большое количество опечаток и неточностей. Например, подписи к рисункам 3.2, 3.3, 3.5 и 3.6 слишком громоздкие, сами рисунки местами перегружены данными.

Сделанные замечания не умаляют основные достоинства этой актуальной, интересной и объемной диссертации. Все поставленные в работе задачи успешно и полностью решены, цель исследования достигнута.

Диссертация Савеловой Карины Эдуардовны на тему: «Регулярное и маховское отражение газодинамических разрывов с энерговыделением» соответствует основным требованиям, установленным Приказом от 19.11.2021 № 11181/1 «О порядке присуждения ученых степеней в Санкт-Петербургском государственном университете», а соискатель Савелова Карина Эдуардовна заслуживает присуждения ученой степени кандидата физико-математических наук по научной специальности 1.1.9 - Механика жидкости, газа и плазмы. Нарушения пунктов 9 и 11 указанного Порядка в диссертации не установлены.

Член диссертационного совета
Владимир Александрович Титарев
доктор физико-математических наук,
главный научный сотрудник ФИЦ ИУ РАН
E-mail: Vladimir.titarev@frccsc.ru
06.12.2024

Подпись В.А. Титарова заверяю ученый рекретарь ФИЦ ИУ РАН ДОТИТЬ В.Н. Захаров 12 2024г.

BIII-