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Introduction

Relevance of thesis topic

Opinion dynamics is a critical area of study that focuses on forming beliefs,
attitudes, and viewpoints, their spreading and evolving within social networks. So-
cial networks, comprising individuals or entities linked through various relationships,
can be considered as primary channels for information exchange and opinion shar-
ing nowadays. Since our world becomes increasingly interconnected, understanding
of forming opinions, their spreading, and evolving within these complex networks
is crucial for addressing numerous real-world challenges, i.e. for combating mis-
information, designing e!cient public policies, etc. The study of opinion dynam-
ics combines insights from sociology, psychology, physics, and computer science to
model and analyze individual interactions leading to collective behavior and social
phenomena.

Social networks are inherently complex systems, often consisting of multiple
interconnected layers that represent di"erent types of relationships or communica-
tion channels between individuals. In today’s digital age, when online platforms
and social media have dramatically altered the landscape of human interaction and
information dissemination they also have introduced new complexities into social
networks, such as the potential for rapid spread of information, the formation of
echo chambers, and the diversity of network structure. Moreover, the existence of
individuals who may publicly express opinions that are di"erent from their private
opinions adds another layer of complexity to these systems. This phenomenon is
prevalent in various real-world scenarios, such as workplace environment where em-
ployees might conceal their true opinions to conform to organizational culture, or
in political settings where individuals may alter their public position to align with
common majority opinions. Understanding the impact of such behavior on overall
opinion dynamics is crucial for developing more accurate models of social influence
and for designing interventions to promote authentic discourse.

When people talk about spreading opinions, they often refer to the process
of reaching a consensus or a common agreement on a particular issue. It is in-
teresting to examine the dynamics of opinion formation and propagation in social
networks with complex configurations, where individuals may exhibit stubborn be-
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havior, hypocrisy, fickleness, etc., and the network structure may be multi-layered,
cyclic, star, or of other types. Di"erent network structures cause di"erent network
characteristics and heterogeneity between individuals. For instance, the network
structure can significantly change the centrality of individuals, the average shortest
path, and the path of information dissemination a"ecting the opinion propagation.
And di"erent individual’s behavior can also a"ect the opinion propagation, such as
the stubborn never changes his opinion, the hypocritical individuals who may hold
di"erent private and public opinions, the fickle individuals who may change their
opinions frequently, etc. The existence of these individuals introduces new challenges
to the consensus formation and opinion propagation. The analysis of consensus time
and winning rates for di"erent network structures and initial individual’s configu-
ration provides insights into the e"ect of the network topology and individual’s
behavior on speed and outcome of opinion propagation. This knowledge can be ap-
plied for designing more e!cient communication strategies and understanding the
resilience of di"erent social structures to opinion change.

The thesis is devoted to studying opinion dynamics in social networks with
complex configurations in terms of a network structure and individual’s behavior.
A key aspect of this research is the exploration of two-layer network models, which
distinguish public (external) and private (internal) communication layers. This ap-
proach allows for a more nuanced and realistic representation of real-world social
interactions. At the same time, we also aim to explore centrality measures in these
complex network structures, and this analysis o"ers valuable insights into identify-
ing influential individuals within a social system. This has practical applications in
the areas such as targeted marketing, political campaigning, or public health inter-
ventions, where identifying key influencers is crucial for e"ective message dissem-
ination. Furthermore, in this thesis, we broaden the application of the developed
centrality measures to explainable artificial intelligence. Usage of the developed
centrality measures to estimate feature importance in regression and classification
tasks is helpful for artificial intelligence researchers to find the optimal model train-
ing strategy. From a social perspective, the optimal training strategy can reduce
energy consumption, thereby decreasing carbon dioxide emissions and contributing
to carbon neutrality.
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Overview of the results in this area

Wiener’s pioneering work in cybernetics [1] laid the foundation for socio-
cybernetics [2]. Socio-cybernetics focuses on the inherent laws of self-organization
and self-adaptation of social systems, exploring how social mechanisms and social
structures of a system representing society can spontaneously accomplish specific co-
ordination and control behaviors. The combination of sociology, systems and control
theory has shifted the focus of social network research from social network analysis
to the study of the evolution of perceptions, behaviors, and social relationships in
social networks from dynamic systems perspective, giving a rise to a new research
area # Opinion Dynamics.

In the 21st century, the development of multi-agent systems and complex
networks has provided researchers with a wealth of mathematical models and tools
for quantitative analysis or numerical simulation of large-scale social networks.

Opinion dynamics models can be divided into two main groups: macroscopic
and microscopic. Macroscopic models examine social networks using statistical-
physical methods and applying probability and statistics theories to analyze how
the distribution of opinions evolves, e.g., the Ising model [3] and voter model [4].
The Ising model has a long history in statistical physics [5]. The Sznajd model [6] is
one of the well-known modifications of the Ising model. In each round of the Sznajd
model, a pair of agents ai and ai+1 is selected to influence the nearest neighbors, i.e.
agents ai→1 and ai+2. In a voter model [4], a random agent ai is chosen, then his
random neighbor is chosen, and this neighbor adopts ai’s opinion.

Microscopic models directly describe how individuals’ opinions evolve from so-
cial individuals’ perspectives, e.g., see the DeGroot model [7], the Friedkin-Johnsen
(F-J) model [8], and bounded confidence models [9, 10].

In the DeGroot model, each individual updates his opinion based on his own
and neighbors’ opinions. The F-J model is one of the major extension of the De-
Groot model, and in the F-J model, the presence of stubborn-agents extends the
DeGroot model. In the F-J model, actors can also factor their initial prejudices
into every iteration of opinion [11]. The possibility to control the agents’ opinions
by nonmembers of network is considered in [12, 13]. The upgraded F-J model with
passive and active agents is introduced in [14]. A bounded confidence model (BCM)
is a model, in which agents ignore the opinions that are very far from their own
ones [5]. The BCM includes two essential models: the De"uant-Weisbuch model
(D-W) proposed in paper [10], and the Hegselman-Krause (H-K) model introduced
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in the work [9]. In the D-W model, two individuals ai, aj are randomly chosen, and
they determine whether to interact according to the bounded confidence [15]. The
H-K model is also an extension of the DeGroot model, in which it is assumed that
every individual in the network has a confidence bound, and the individual’s opin-
ion can be a"ected only by others within their own confidence bound. Therefore,
the opinion updating rule of the H-K model is state-related. The Krasnoshchekov’s
model (K) of opinion dynamics in the society represented by one layer is introduced
in [16] and then it is examined in [17]. This opinion dynamics can be reduced to
the F-J dynamics. In fact, if the opinion updating rule presented in K model is
applied, the corresponding dynamics gives the convergence of the agents’ opinions
to some terminal opinions. Therefore, a consensus is reached. The comprehensive
survey [18] examines various models in the bounded confidence opinion dynamics
domain, highlighting key mechanisms leading to consensus emergence, polarization,
and fragmentation within groups.

The presence of a group of agents who can manipulate the opinions of the
society is examined in [19]. The agents are assumed to be heterogeneous in this
model, taking into account that the group of the so-called leaders knows the initial
opinions of all the agents, while the rest of the agents do not know this information.

According to [20], opinion dynamics models are usually composed of a few
essential elements: (i) opinion expression formats defining how to represent opinion
mathematically, (ii) fusion rule determining how individuals interact with each other,
and (iii) opinion dynamics environments, that is, the structure of such a social
network.

In a social network, individuals neither fully accept nor completely ignore the
opinions of other individuals. To a certain extent, they consider these opinions in
forming their new opinions in a process defined by a fusion rule. Through a group
interaction, individuals continuously update and integrate their opinions on the same
issue. Eventually, there are three varieties of stabilized fusion results: consensus,
polarization, fragmentation, and one unstable fusion result, that is oscillation [9].

The basic voter model proposed by Richard and Thomas is called BVM [4] and
the concealed voter model proposed by Gastner et al. as CVM is designed [21, 22].
Both BVM and CVM belong to the macroscopic model. The structure of BVM
is based on a complete network, and the general assumption of this model is that
individuals always express their opinions publicly. Therefore, the fusion rule of
BVM is quite intuitive, that is, selecting an individual and his neighbor randomly,
the individual adopts his neighbor’s opinion. CVM assumes that the social network
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is divided into external and internal layers, and the individuals feel free to conceal or
publicly express their opinions. The external layer of CVM is a complete network,
and each node is the external layer linked with a node in the internal layer. Moreover,
there are no connections between nodes in the internal layer. Therefore, internal
interaction is not allowed in CVM.

In this thesis, we assume that the individuals can interact in the internal layer,
which is an assumption making our model di"erent from CVM. We propose this
idea motivated by the fact that the individuals always share their real opinions with
their close friends. The multilevel approach to model the structure of the society
including team networks in companies is widely spread in the models of industrial
organization [23]. Therefore, we also incorporate this multilevel communication
approach in the model of opinion dynamics, and call CVM with possible interactions
in the internal layer as GCVM [24–27]. In Chapter 1, we start with a network
structure and use statistical-physical methods and probability theory to formulate
and simulate the opinion dynamics process (i.e. in the simulations, we do not create
a real network and simulate this model based on formulas), and we call the proposed
model macroscopic-GCVM [24]. In Chapter 2, we create the corresponding networks
for the given internal and external structures instead of only use statistical-physical
methods, the corresponding model is referred to microscopic-GCVM [25–27].

Since network structure in GCVM is two-layer, it is interesting to examine how
this structure in general, and also network characteristics, e.g. di"erent centrality
measures [28], a"ect opinion dynamics and resulting opinion in consensus if it is
reached. We consider two key performance indicators of opinion dynamics, namely,
winning rate and consensus time.

Social power (influence centrality) is a concept ranks the importance of nodes
in a network. Centrality measures are used to identify the most powerful nodes in a
network. Understanding the powerful nodes is very important for opinion dynamics,
which can help us to know which nodes play a crucial part for spreading opinions.
The most common centrality measures are betweenness centrality [29], closeness
centrality [30–32] and degree centrality [33]. There are also some centrality measures
based on random walks, such as a random walk occupation centrality [34], which
is the frequency of a node in the network being accessed during a random walk, a
random walk betweenness centrality [35], that is the proportion of the paths through
a node to all paths during a random walk. A random walk betweenness centrality
does not depend on the shortest path, therefore it is more general than betweenness
centrality. We also mention a random walk closeness centrality, that is a variant of
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closeness centrality [34], and the computation of random walk closeness centrality is
based on the mean first-passage time (MFPT). The analytical expressions of random
walk based on centrality measures can be found in [34]. Game-theoretic network
centrality is a flexible and sophisticated approach to identify the most powerful
nodes in a network, the idea of which is borrowed from cooperative game theory.
Tarkowski provided a good review of game-theoretic network centralities in [36]. The
Shapley value [37] and the Myerson value [38] are both concepts from cooperative
theory which are used to fairly distribute the total payo" among players based on
their marginal contribution. In the paper [39], the authors introduce how to use
the Shapley value to determine the top-k nodes in the social network. Mazalov et
al. propose a game-theoretic centrality measure for weighted graph based on the
Myerson value in [40]. In [41], Mazalov and Khitraya propose a modified Myerson
value for unweighted undirected graphs. The characteristic function used for this
modification considers not only simple paths but also includes cycles. The next work
of Mazalov and Khitraya is [42], where the authors introduce the concept of integral
centrality for unweighted directed graphs and provide an accurate mathematical
proof that this centrality measure satisfies the Boldi-Vigna axioms [43].

In Chapter 3, we examine the connection between centrality measures and
opinion dynamics based on the Zachary’s karate club network, and proposed two
fast and accurate algorithms to approximate the game-theoretic centrality measures
and examine them in a randomly generated network and the Zachary’s karate club
network.

If we consider features in the machine learning model as nodes in the network,
and the importance of features as the power of nodes, then the centrality measures
can be used to explain the machine learning models. The feature importance is a
crucial concept in machine learning, which can help us to understand the model and
make the right decision which features to choose for creating an accurate model.
Arrieta et al. reviewed concepts related to explainable AI and analyzed the types
of explanations provided by XAI, primarily categorized into two types: global and
local explanations [44]. The methods of local explanations in XAI focus on providing
explanations for individual samples or predictions [45], while the methods of global
explanations provide explanations for the whole model [46]. These methods are
highly beneficial to help users understand the decision-making process and feature
importance of a model, enhancing trust in the model, providing explanation-based
decision support. In local explanations, LIME (Local Interpretable Model-Agnostic
Explanations) [47] and SHAP (Shapley Additive Explanations) [48] are two com-
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monly used methods. In global explanations, Feature Importance and SHAP can
also be used to provide explanations [49]. In Chapter 4, we proposed a new method
of global explanations and compared it with the state-of-the-art methods, such as
SHAP and Feature Importance.

Summarizing the above, it is essential and significant to investigate the opin-
ion dynamics in social networks with complex configurations, in particular, di"er-
ent network structures and individual’s behavior; the centrality measures and their
connection with opinion dynamics, and the practical applications of the developed
centrality measures. The results of this research can be applied to various fields,
such as sociology, psychology, physics, computer science, and artificial intelligence.

Goals of the thesis

The goal of the thesis is to study the opinion dynamics in social networks
with complex configurations by di"erent approaches and from various perspectives,
modeling the opinion dynamic in a statistical-physical (macroscopic) or real network
(microscopic) way. In modeling, we also assume existence of hypocrisy individuals,
from di"erent network properties, in particular, from the point of view of central-
ity measures to study the propagation processes and the practical applications of
the developed methods. To pursuit the central goal, several specific questions are
addressed and answered throughout the four chapters in the thesis.

This thesis can be considered as a series of results including modeling, ana-
lyzing the opinion dynamics in social network with complex configurations, and the
analysis of network properties with their applications.

Main tasks

To achieve the goals of the thesis, the following key tasks are identified:

1. Modeling opinion dynamics in two-layer networks with hypocrisy individuals
by statistical-physical methods and probability theory assuming that interac-
tion in the internal layer is allowed, which is more realistic than the concealed
voter model. Compare opinion propagation processes in specific internal net-
work structures (i.e. empty, complete, cycle, star, two-star and two-clique)
and initial individual’s configurations. The key indicators are the time to
reach consensus (consensus time) and the winning rate of the specific opinion
(e.g., the red opinion).
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2. Using microscopic approach to model the opinion dynamics in the same as-
sumption as in Task 1. Provide the model for a two-layer network. The model
should be general enough for any given two-layer network structure satisfy-
ing the definition. Simulate the opinion dynamics process in various network
structures and individuals’ behaviors. Analyze how network properties and
individual’s behavior a"ect the key indicators (consensus time and winning
rate).

3. Generating the more realistic two-layer network according to the definition of
a two-layer network and a real dataset (i.e. Zachary’s karate club network).
Examining the microscopic model on the generated network. Centrality mea-
sures are used to identify the most powerful nodes in the network, but not
much is known about centrality measures in a two-layer network. Therefore,
we should figure out how to simplify the two-layer network to one-layer net-
work and apply the centrality measures to the reduced network. Moreover, the
novel centrality measures should be developed and verified. The connection
between centrality measures and key indicators in opinion dynamics should be
examined.

4. Finding the practical applications of the developed centrality measures. The
feature importance is a crucial concept in machine learning, which can help us
to understand the model and make the right decision. The developed central-
ity measures can be used as the feature importance in the machine learning
models if we consider the features as nodes. Develop a new feature importance
algorithm based on the developed centrality measures and compare its work
with the state-of-the-art methods (SHAP, LIME, and Feature Importance).

Scientific novelty

In this thesis, we proposed a general concealed voter model (GCVM), in which
individuals interact in two layers and can exchange their opinions in the internal
layer. This interaction is not allowed in a concealed voter model (CVM). By ex-
changing opinions in the internal layer we mean that individuals share their real
or internal opinions with their close friends. There are two version of GCVM,
the macroscopic-GCVM and microscopic-GCVM. The macroscopic-GCVM is based
on the statistical-physical methods and probability theory, while the microscopic-
GCVM is based on a real network structure modeling.
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For the macroscopic-GCVM, the process of opinion formation in GCVM with
di"erent internal structures is presented in this thesis. We make the series of nu-
merical simulations of macroscopic-GCVM with di"erent network structures (both
external and internal) and get some counterintuitive conclusions. For instance, we
find out that sometimes with a relatively simple network structure of an external
layer the consensus within the individuals’ opinions cannot be reached, and if in-
dividuals in the network are not good at expressing their opinions publicly (in an
external layer), exchanging opinions with their close friends (in an internal layer) is
almost useless.

For the microscopic-GCVM, we provide the definition of a two-layer network
for opinion dynamics. Macroscopic-GCVM uses only statistical-physical methods,
while microscopic-GCVM starts with a real network. We conduct a series of sim-
ulations with di"erent network structures and individuals’ behaviors. Moreover,
we propose and validate the hypothesis that there exists a strong linear relationship
between a consensus time and pairwise average shortest paths d in the network struc-
ture. We performed a controlled variable approach to validate the impact of each
individual parameter on key performance indicators (KPIs) including a consensus
time and winning rate. Furthermore, we assess the influence of parameter combina-
tions (some specific behaviors of individuals) on KPIs by analyzing the results using
the K-means algorithm. We conclude that certain parameter combinations can have
a significant impact on the consensus time.

We examine centrality measures defined on two-layer networks. The approach
to simplify the two-layer network related to opinion dynamics to one layer weighted
network is proposed. The two fast and accurate algorithms for one-layer weighted
network to approximate the game-theoretic centrality measures are proposed and
connection between centrality measures and characteristics of opinion dynamic pro-
cesses in such networks is examined. As an example, the Zachary’s karate club
social network is considered and extended by adding the second (internal) layer of
communication. The structures of the external and internal layers may be di"erent.
By key characteristics of the opinion dynamic process we mean a consensus time
and winning rate of a particular opinion. Significantly strong positive correlation
between internal graph density and consensus time, and significantly strong negative
correlation between centrality of authoritative nodes and consensus time are found.

A new Explainable Artificial Intelligence (XAI) method called ShapG (Expla-
nations based on the Shapley value for Graphs) for measuring feature importance
is developed. ShapG is a model-agnostic global explanation method. At the first
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stage, it defines an undirected graph based on the dataset, where nodes represent
features and edges are added based on calculation of correlation coe!cients between
features. At the second stage, it calculates an approximated Shapley value by sam-
pling the data taking into account this graph structure. The sampling approach
of ShapG allows to calculate the importance of features e!ciently, i.e. to reduce
computational complexity. Comparison of ShapG with other existing XAI methods
shows that it provides more accurate explanations which is shown on two examined
datasets. We also compared other developed XAI methods based on cooperative
game theory with ShapG in running time, and the results show that ShapG exhibits
obvious advantages in its running time, which further proves e!ciency of ShapG.
In addition, extensive experiments demonstrate a wide range of applicability of the
ShapG method for explaining complex models. ShapG is found as an important tool
in improving explainability and transparency of AI systems and we believe it can
be widely used in various fields.

Research methods

This thesis uses the methods of modeling in statistical physics (Monte Carlo
method, molecular dynamics simulation), statistics (correlation coe!cient, hypoth-
esis testing), probability theory (distributions of random variables and stochastic
processes), game theory (elements of cooperative game theory including the Shap-
ley value and the Myerson value), machine learning (SHAP, LIME, Feature Impor-
tance, LightGBM, and multilayer perceptron), graph theory (centrality measures
and shortest path), and optimization theory (K-means algorithm).

Theoretical and practical significance

The results presented in this thesis are focused in opinion dynamics modeling,
network analysis and their applications. Their theoretical significance can be sum-
marized as follows: (i) the mathematical formulations of statistical-physics model
and microscopic model of opinion dynamics in social networks with complex configu-
rations are proposed. This provides a new perspective in opinion dynamics modeling
in social networks with complex configurations, and can be used to study the impact
of di"erent network structures and individual’s behavior on opinion propagation; (ii)
a general definition of two-layer network with replica nodes is proposed, a new ap-
proach to simplify the two-layer network to one-layer weighted network based on
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given opinion dynamics is developed; (iii) two fast and accurate algorithms to find
centrality measures based on game theory are developed; (iv) the novel approach
of defining the feature importance in machine learning models based on centrality
measures is proposed, and the new XAI method called ShapG is developed.

The practical significance of the results is manifested in the research on de-
sign of e"ective communication strategies, targeted marketing, political campaign-
ing, public health interventions, and artificial intelligence. The developed centrality
measures can be used to identify the most powerful nodes in a network, which is
crucial not only for opinion dynamics but also for transportation networks, com-
munication networks, etc. The developed feature importance algorithm (ShapG)
can be used to explain the machine learning models, design the optimal training
strategy, save energy on machine learning model training and contribute to carbon
neutrality.

In Chapter 1, a series of numerical simulations based on the mathematical form
of macroscopic-GCVM is conducted. It is found that the external cyclic structure
can significantly prolong the consensus time, and if individuals in the network are
not good at expressing their opinions publicly, exchanging opinions with their close
friends is almost useless. In Chapter 2, we propose and validate the hypothesis
that there exists a strong linear relationship between a consensus time and pairwise
average shortest paths d in the network structure, which is consistent with the results
of examining the macroscopic-GCVM model. Chapter 3 of the thesis is devoted
to the investigation of the relationship between centrality measures and opinion
dynamics in the Zachary’s karate club network. A significantly strong negative
correlation between centrality of authoritative nodes and consensus time is found.
In Chapter 4, the global explanation method based on the Shapley value for graphs
(ShapG) is developed, which is more accurate and e!cient than the state-of-the-art
methods (SHAP, LIME, and Feature Importance).

The research conducted in the thesis is supported by the Chinese Government
Scholarship (CSC) No. 202109010084 (2021–2025); the Russian Science Foundation
(RSF) grant No. 22-21-00346 “Game theoretic methods of opinion dynamics control
in social networks” (2022–2023).

Brief description of the thesis structure

The thesis consists of an introduction, four chapters, conclusions, list of
acronyms and symbols, list of figures, list of tables, bibliography and appendix.
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The content of each chapter is composed by basic notations, model description and
definitions, the detailed design of experiments, the analysis of the results, and a brief
summary of the chapter. This thesis contains 149 pages (158 pages in a Russian
version) including 38 figures and 34 tables. The bibliography cites 109 items.

The first chapter of the thesis is devoted to examining the opinion dynamics
in two-layer networks with hypocritical individuals using a macroscopic approach
based on statistical physics and probability theory methods. In Section 1.1, the
basic voter model (BCM) and concealed voter model (CVM) are introduced. In
Section 1.2, the motivation for general concealed voter model (GCVM) is given
(i.e. introduction of the interaction in the internal layer), and the mathematical
formulation of macroscopic-GCVM with di"erent network structures is proposed.
The design of experiments is introduced and the numerical simulation results are
presented and discussed in Section 1.3. Section 1.4 includes a brief summary of the
first chapter.

In contrast to the first chapter, the second chapter focuses on a microscopic
approach to model opinion dynamics in two-layer networks with hypocritical indi-
viduals. In Section 2.1 and 2.2, the definition of multi-layer and two-layer network
with replica nodes is given, respectively. The comparison of microscopic-GCVM with
macroscopic-GCVM is presented in Section 2.3. Then in Section 2.4, the experiment
design and the observations are presented and discussed. We briefly summarize the
second chapter results in Section 2.5.

Instead of using the classical network structures, the third chapter adopts
a real network structure, i.e. the Zachary’s karate club network, and extends it
by adding the second (internal) layer of communication. The relationship between
centrality of authoritarian nodes and key performance indicators (consensus time
and winning rate) is examined there. Specifically, Section 3.1 introduces the ap-
proach to simplify the two-layer network with the given opinion dynamics to one-
layer weighted network. In Section 3.2, the Zachary’s karate club network setting is
given. In Section 3.3, some network properties (pairwise average shortest paths, and
graph density), a series of centrality measures (classical, game-theoretic, and ran-
dom walk-based centralities), and two algorithms to approximate the game-theoretic
centrality measures are introduced. In Section 3.4, we verified the e!ciency of the
simplification approach, the accuracy and performance of the game-theoretic central-
ity measures, and the correlation between network properties and key performance
indicators (consensus time and winning rate). Section 3.5 finally concludes the third
chapter.
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By adopting the idea of approximated game-theoretic centrality measures from
the third chapter, the fourth chapter focuses on the application of the developed
algorithm in explainable artificial intelligence. In Section 4.1, we briefly introduce
the existing methods of explainable artificial intelligence. In Section 4.2, we propose
a new method of global explanation. The detailed description of the experiments
are presented in Section 4.3. In Section 4.4, we compare the results of the proposed
method with the state-of-the-art methods, such as SHAP and Feature Importance.
Section 4.5 finally concludes the fourth chapter.

The conclusion of the thesis contains a brief description of the results obtained
in the work.

Results submitted for defense

1. The mathematical formulation of opinion dynamics called a general concealed
voter model (GCVM) is proposed. The model generalizes a concealed voter
model (CVM) by introducing internal interactions between agents.

2. The mathematical formulation of statistical-physics model (macroscopic-
GCVM) of opinion dynamics in di"erent structures of two-layer networks with
hypocrisy and internal interaction is proposed. The relationship between in-
dividual’s characteristics and opinion dynamics processes (consensus time and
winning rate) is examined within this model.

3. The definition of two-layer network with replica nodes is proposed. The
microscopic-GCVM model for any network structure satisfying this defini-
tion is introduced. Methodology for validating the impact of each individual
parameter on consensus time and winning rate is proposed. The relation-
ship between network properties and opinion dynamics processes is examined
within this model of opinion dynamics.

4. The approach to simplify the two-layer network with the given opinion dy-
namics to one-layer weighted network is introduced. Novel approaches to
approximate the game-theoretic centrality measures speeding up the original
measures with a high accuracy are proposed. The connection between cen-
trality measures and opinion dynamics processes is examined.

5. The novel feature importance method called ShapG used to explain the ma-
chine learning models is proposed. The methodology of ShapG is based on
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considering the features in machine learning models as nodes in the network,
then the feature importance can be considered as the centrality of nodes. The
detailed algorithm of ShapG method is developed in the thesis. The tests of
ShapG demonstrate that it is more accurate and e!cient than the state-of-
the-art methods (SHAP, LIME, and Feature Importance).

6. An open-source implementation of the global explanation algorithm ShapG
[50] is developed.

7. Golang programs for simulating microscopic and macroscopic GCVM with
di"erent network structures and individuals’ behaviors are developed.

Main scientific results

1. The General Concealed Voter Model including the mathematical formulation
and corresponding interaction mechanisms of opinion dynamics processes is
proposed, see papers [24, 25, 27] in the bibliography (personal contribution is
at least 70%).

2. The relationships between individual’s characteristics, network properties, and
opinion dynamics processes (consensus time and winning rate) are examined
through numerical simulations, see papers [24,25,27] in the bibliography (per-
sonal contribution is at least 70%).

3. The definition of two-layer network with replica nodes that suitable for
microscopic-GCVM model with arbitrarily given network structure, see the
paper [51] in the bibliography (personal contribution is at least 70%).

4. Experimental verification of the relationship between the centrality of au-
thoritative nodes and the opinion dynamics processes is conducted, see pa-
pers [26,51] in the bibliography (personal contribution is at least 70%).

5. The approach to simplify the two-layer network with given opinion dynam-
ics to the one-layer weighted network, see papers [26, 51] in the bibliography
(personal contribution is at least 70%).

6. Novel approaches to approximate the game-theoretic centrality measures with
high performance and accuracy, see the paper [51] in the bibliography (personal
contribution is at least 70%).
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7. ShapG, a novel feature importance method to explain machine learning mod-
els, is proposed, see the paper [52] in the bibliography (personal contribution
is at least 70%).

8. An open-source implementation of the global explanation algorithm ShapG
is developed, see the entry [50] in the bibliography (personal contribution is
100%).

9. A Golang program aiming to simulate the macroscopic GCVM with di"erent
network structure and individuals’ behavior is developed, see the program
certificate [53] in the bibliography (personal contribution is 100%).

Verification of results

The main results of the thesis were presented at the International Conferences
“Stability and control processes” (Saint Petersburg, 2022); International Confer-
ences “Game Theory and Management” (Saint Petersburg, 2023, 2024); Scientific
School “Dynamics of Complex Networks and their Applications” (2023); “Dynamic
games and applications” seminar of GERAD (Online, 2024); International Confer-
ence “Mathematical Optimization Theory and Operations Research” (Omsk, 2024).

Publications

Based on the results of the thesis, the following works were published: [24–
27], they all are indexed in Scopus. The following items [24, 25] are published in
peer-reviewed journals from the list of the Higher Attestation Commission. These
papers [51, 52] are submitted to journals and now under review. The certificate of
registration of the computer program [53] with registration number No. 2023661532
has been obtained. The open-source program [50] is developed and released to the
python package index.

[24] Zhao C., Parilina E. M. Opinion Dynamics in Two-Layer Networks with
Hypocrisy // Journal of the Operations Research Society of China. – 2024.
– Mar. – Vol. 12, no. 1. – P. 109-132. – Access mode: https:
//doi.org/10.1007/s40305-023-00503-2.

[25] Zhao C., Parilina E. M. Analysis of consensus time and winning rate in two-
layer networks with hypocrisy of di"erent structures // Vestnik of Saint Peters-
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– 2024. – Vol. 20, no. 2. – P. 170-192.
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in Two-Layer Networks with Hypocrisy // Mathematical Optimization Theory
and Operations Research. – Cham : Springer Nature Switzerland. – 2024. –
P. 300-314.
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Chapter 1. Opinion Dynamics in
Two-Layer Networks with Hypocrisy

In this chapter, we add the internal interaction mechanisms to the concealed
voter model and formularize the macroscopic-GCVM for di"erent network struc-
tures. A series of numerical simulations is conducted, and the results are analyzed.
We also discuss the impact of the network structure on the consensus time and the
winning rate of an opinion. Results presented in this chapter are published in the
paper [24].

1.1 Basic and Concealed Voter Models

We assume that the society is represented by the agents or individuals who
have opinions on the topic. The opinion is binary, i.e., each individual’s opinion is red
or blue. We introduce the models of opinion dynamics taking into account the net-
work structure the individuals form within the social network which we call general
concealed voter model (GCVM). Before introducing GCVM, we briefly introduce a
basic voter model (BVM) and concealed voter models (CVM) (see [21,22]).

We call a classical voter model as a basic voter model. BVM assumes that
everyone in a network can express his opinion publicly, so there is only one layer
of information exchange and a unique opinion of an individual about the topic in
this model of opinion dynamics. In CVM described in Section 1.1.2, individuals can
either express or conceal their real (hidden) opinion publicly. An individual has both
publicly expressed and private opinions about the topic, and the private opinion is
unknown to other individuals. If an individual conceals his real opinion, i.e. his
publicly known opinion is di"erent from the private one, we call him hypocrisy :
an individual with cognitive dissonance [54]. There are two layers (external and
internal) in the CVM but the information exchange in the internal layer is not
allowed.



22

We focus on the time when groups under di"erent network structures reach
consensus, this time is called consensus time, and the winning rate of an opinion
after a series of simulations.

1.1.1 Basic Voter Model (BVM)

Suppose we have a predefined network G representing the communication or
network structure connecting players in the society. Denote the number of individ-
uals in network G by N . We examine the evolution of network in continuous time.
We use the following notations:

• ωext(ε, t) ↑ {0, 1} is the opinion of individual ε at time t (0 is represented by
blue and 1 is represented by red color);

• c is a copy rate, that is the probability of individuals adapt his neighbor’s
opinion;

• r is the number of individuals with red opinion;

• ϑ is the proportion of individuals with red opinion in the population (the
strength of red opinion), that is ϑ = r/N .

• Tcons is the consensus time, in BVM it means the time required for all indi-
viduals to form the same opinion (ϑ = 1 or ϑ = 0).

We use the proportion of red opinion to represent the state of such a BVM
system, and ϑ ↑ {0, 1

N , . . . ,
N→1

N , 1}. It is assumed that any individual can change
his opinion as a result of a stochastic event realization. We suppose that the interval
of such an event obeys the exponential distribution with arrival rate ϖ. Then we
define the following stochastic matrix with elements P (ϑ, ·) for each ϑ /↑ {0, 1},
where P (ϑ, ϑ

↓
) is the probability of transition of BVM system from state ϑ to state

ϑ
↓ after the event happens. If ϑ ↑ {0, 1}, we have P (0, 0) = 1 and P (1, 1) = 1

meaning that if all individuals in the network have the same opinion, they will never
change it. The proportion of red opinion ϑ can be changed to ϑ± 1

N or remains the
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same with positive probabilities:

P
(
ϑ, ϑ+

1

N

)
=

c(N → r)r

N(N → 1)
=

c(1→ ϑ)r

N → 1
,

P
(
ϑ, ϑ→ 1

N

)
=

cr(N → r)

N(N → 1)
=

cr(1→ ϑ)

N → 1
,

P (ϑ, ϑ) = 1→ 2
cr(1→ ϑ)

N → 1
.

(1)

If we consider the change of the BVM system state as a random event, then the
change rate per unit time in this system can be represented as the sum of positive
direction change rate ϖ+ and negative direction change rate ϖ→, where

ϖ→ = cr
N → r

N
= ϖ+ = c(N → r)

r

N
,

ϖ = ϖ+ + ϖ→ = 2c(N → r)
r

N
.

(2)

Therefore, we have a system with an arrival rate ϖ per unit time. The following
steps show how individuals interact with each other in BVM:

1. Initialization: Given fraction ϑ of the individuals with red opinion, other
individuals hold blue opinion. Initialize the time t ↔ 0.

2. Iteration:

a. Choose a “focal” individual f uniformly at random from all of N indi-
viduals.

b. Pick a neighbor a of the focal individual uniformly at random from all
of his neighbors.

c. Generate a temporary variable ϖt = ϖ · u, where u ↗ U(0, 1), individual
f adopts neighbor a’s opinion according to ϖt by the following way:

i. The state of this system will be changed from ϑ to ϑ+
1

N , if ϖt < ϖ+;

ii. The state of this system will be changed from ϑ to ϑ → 1

N , if ϖ+ ↘
ϖt ↘ ϖ+ + ϖ→ = ϖ,

d. We increase the time by a random number !t drawn from an exponential
distribution with mean 1

ω , t ↔ t+!t.

e. If the group has reached a consensus, we set t ↔ T
(BVM)

cons and terminate.
Otherwise we go back to step a.
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Fig. 1 represents the network of BVM with 10 individuals on the complete
network.

Figure 1: A complete network connecting 10 individuals in BVM

1.1.2 Concealed Voter Model (CVM)

In CVM the predefined networks G1 and G2 are given with the same set
of N individuals. Individual i is represented by node Ei in network G1 called an
external layer, and by node Ii in network G2 called an internal layer. Therefore, each
individual is represented by a pair of nodes (Ei, Ii), i = 1, . . . , N . We should notice
that there is no restriction on the network structure G1 but network G2 is always
an empty network with N individuals. The two-layer network structure satisfies the
following properties:

1. There are no links between nodes Ii and Ij, ≃i, j = 1, . . . , N .

2. There must exist a link between Ei and Ii, ≃i = 1, . . . , N .

Fig. 2 represents such a two-layer network with 10 individuals when the external
layer is a complete network.

In CVM, we use R,B (r, b) to represent individuals’ external (internal) red
and blue opinions respectively. Denote the state set of an individual’s opinion by
S = {Rr,Rb,Bb,Br}. We use the following notations for CVM systems:

• ω(ε, t) ↑ S is the state of individual ε’s opinion at time t;

• c is a copy rate (equivalent to the one in the BVM);
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Figure 2: A two-layer network structure in CVM with 10 individuals

• e is the externalization rate, that is the probability of hypocrisy choosing to
publicly express his internal opinion;

• i is the internalization rate, that is the probability of hypocrisy choosing to
accept his external opinion;

• re is the number of individuals with external red opinion;

• ri is the number of individuals with internal red opinion;

• r is the number of individuals with both external and internal red opinion;

• ϑre, ϑri, ϑr – the rate of external red, internal red and both external and internal
red opinions.

• Tcons is the consensus time, in (G)CVM it means the time required for all
individuals to form the same opinion in internal and external layers (i.e., ϑre =
ϑri = ϑr = 0 or ϑre = ϑri = ϑr = 1).

In the network represented in Fig. 2 there are five hypocrisies.
There is a complete network in the external layer of CVM, and the two-layer

network satisfies Properties 1-2 given above. Hypocrisy and cognitive dissonance
can be reduced by externalization or internalization. Within externalization, the
hypocrisy will express an opinion publicly, and within internalization, the hypocrisy
accepts his previously expressed opinion.
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If we are interested in the number of hypocrisies, we can focus on ϑr describing
the stochastic matrix QCVM in the CVM system, or we can describe the number
of individuals having any of the state from set S (the latter is considered in [21]).
Suppose the external layer in the CVM system is a complete graph, then the number
of individuals of each state is as follows:

N = #Rr +#Rb+#Br +#Bb,

re = #Rr +#Rb,

ri = #Rr +#Br,

r = #Rr,

#Bb = N → re → ri + r,

#Rb = re → r,

#Br = ri → r,

(3)

where #s is the number of individuals in state s ↑ S.
We can represent the state of the system with N individuals by triple

(ϑre, ϑri, ϑr). The transitions with positive probabilities from one state to other
states for the described CVM system are given in Table 1. We use Q to denote a
transition matrix from here on.

The updating procedure of CVM is similar to BVM, we can summarize the
di"erences as follows:

• Use a triple (ϑre, ϑri, ϑr) instead of ϑ to represent the state;

• As shown in Table 1, there are 6 possible state changes, we use the same
scheme as in BVM, but with a di"erent piecewise function to determine state
changes;

Based on Table 1, we can describe the CVM system by expressing ϑr, the
proportion of hypocrisies in the network, given by equation (4), where QCVM [x, y] =

{P (x, y)} represents the probability of transition from state x (the previous value
of ϑr) to state y (the next value of ϑr). For ϑr /↑ {0, 1}, we have equation (4) and
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P (0, 0) = P (1, 1) = 1:

P
(
ϑr, ϑr +

1

N

)
=QCVM

[
(ϑre, ϑri, ϑr),

(
ϑre +

1

N
, ϑri, ϑr +

1

N

)]

+QCVM

[
(ϑre, ϑri, ϑr),

(
ϑre, ϑri +

1

N
, ϑr +

1

N

)]
,

P
(
ϑr, ϑr →

1

N

)
=QCVM

[
(ϑre, ϑri, ϑr),

(
ϑre →

1

N
, ϑri, ϑr →

1

N

)]

P (ϑr, ϑr) = 1→ P
(
ϑr, ϑr +

1

N

)
→ P

(
ϑr, ϑr →

1

N

)
.

(4)

1.2 General Concealed Voter Model

1.2.1 Motivation

The General Concealed Voter Model (GCVM) idea is straightforward. We
assume that there exist connections in the internal layer. It is reasonable for an
individual to have his own close friends and share his real (internal) opinion with
them. Therefore, an individual and his friends may form either their own group or, a
clique in the network. If the cliques are formed in the internal layer, and individuals
never share true opinions with others outside the clique except they are connected
in the internal layer. First, we define the transition probabilities for a special case
of internal network when it is represented by a complete graph, then we describe
the dynamics of the network in the case of incomplete internal layer.
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1.2.2 Symmetric case: Complete internal network

First, we consider the simplest case of GCVM when both external and internal
layers are complete networks. Figure 3 represents a symmetric case of GCVM with
ten individuals.

Figure 3: Representation of GCVM with 10 individuals: symmetric case

The transition matrix is represented in Table 2. There are eight cases of state
transitions with nonzero probability while in the CVM system there are six cases,
because in the GCVM system states Bb, Rr are allowed to be changed to Br and
Rb respectively caused by internal interactions.

Compared to CVM, new GCVM assumes internal interactions which influence
the internal opinion transition process. In CVM, the changes of internal opinion can
only happen through internalization (an individual accepts his external opinion),
while in GCVM, internal opinion can be changed through internalization or interac-
tion between internal nodes (or individuals’ interaction in the internal layer). For ex-
ample, non-hypocrisy individuals (individuals with states Bb or Rr) can not change
their states to Br,Rb respectively in CVM system, but it is possible in GCVM.
Additionally, internal interaction will prolong the consensus time and change the
probability of each opinion winning.
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Similarly, we can represent the stochastic matrix with respect to ϑr. For ϑr /↑
{0, 1}, we have calculated transition probabilities by (5) with P (0, 0) = P (1, 1) = 1:

P
(
ϑr, ϑr +

1

N

)
=QGCVM

[
(ϑre, ϑri, ϑr),

(
ϑre +

1

N
, ϑri, ϑr +

1

N

)]

+QGCVM

[
(ϑre, ϑri, ϑr),

(
ϑre, ϑri +

1

N
, ϑr +

1

N

)]
,

P
(
ϑr, ϑr →

1

N

)
=QGCVM

[
(ϑre, ϑri, ϑr),

(
ϑre →

1

N
, ϑri, ϑr →

1

N

)]

+QGCVM

[
(ϑre, ϑri, ϑr),

(
ϑre, ϑri →

1

N
, ϑr →

1

N

)]
,

P (ϑr, ϑr) =1→ P
(
ϑr, ϑr +

1

N

)
→ P

(
ϑr, ϑr →

1

N

)
.

(5)

We use the same measure as in [21,22] to represent the strength of the red opinion,
that is

m(ϑre, ϑri) =
iϑre + eϑri

e+ i
, (6)

where m ↑ [0, 1] is the weighted value that combines the proportion of red opinions
in the internal and external layers, and m can be considered as an equivalent to ϑ

in BVM.

1.2.3 Asymmetric cases: Incomplete internal network

In this section, we consider several asymmetric cases including internal star-
coupled network, internal two star-coupled networks, and internal two-clique net-
works while the external layer is always the complete network. We assume that
there are two groups which are equal in size both in the internal two star-coupled
and two-clique networks.

Internal layer: Star-coupled network

In this case, we have a central node in the internal layer (star graph) as
represented in Fig. 4. In this case, the interaction in the internal layer exists only
between the central node and any noncentral node. There is no interaction between
noncentral nodes.
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Figure 4: Representation of an internal star-coupled network

For the internal star-coupled network, there are 8 types of transitions with
nonzero probabilities described in Table 3.

If we compare the transitions listed in Tables 2 and 3, we can conclude that
the changes of the internal network structure influence only the transition rate of
these transitions: Rb ↔ Rr, Bb ↔ Br, Br ↔ Bb and Rr ↔ Rb. Therefore, in the
following sections, where we consider other internal network structures, we will only
show the transition rates for these four cases, all other transition rates (Bb ↔ Rb,
Br ↔ Rr, Rb ↔ Bb and Rr ↔ Br) remain the same as in Table 2.

Internal layer: Two star-coupled network

Assume that there is a two star-coupled network in the internal layer, and we
consider two possible cases:

1. Two star-coupled networks share one common node (the total number of nodes
is an odd number).

2. Two star-coupled networks share two common nodes (the total number of
nodes is an even number).

Fig. 5a shows a simple example of the first case, each star subnetwork share a
common node “Sarah”. If we define a number of hubs (central nodes) by a, then for
this case a = 2. We also define ϑg as a proportion of nodes in one-star subnetwork
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(a) odd number of nodes (b) even number of nodes

Figure 5: Representation of internal two star-coupled network

of the nodes in the whole network, and ϑg =
N+1

2N . We characterize the transitions
for the first case of two star-coupled internal network in Table 4.

Fig. 5b shows an example when in the internal layer, two star-coupled net-
works are connected by one edge through their hubs (central nodes) [55]. There
are two common nodes “John” and “Jennifer” in each star subnetwork, and each
star subnetwork has five nodes. In this case, ϑg =

N+2

2N . We list the transitions in
Table 5.

Internal layer: two-clique network

Assume that there are two cliques in the internal layer, and there is one inter-
clique link in this network. Each clique has the same number of individuals. There
are two possible cases:

1. Two cliques share a common node (this common node has degree N → 1);

2. Two cliques share two common nodes (these two common nodes have degree
2

N ).

Fig. 6a shows an example of a two-clique network when two cliques share a
common node “Sarah”. The degree of node “Sarah” is N → 1. Other nodes have the
same degree N→1

2
, and ϑg =

N+1

2N in this case. The transitions for this type of GCVM
system are given in Table 6.
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(a) odd number of nodes (b) even number of nodes

Figure 6: Representation of internal two-clique network

Fig. 6b shows a simple example of the second case of a two-clique internal
network, when each clique has a special individual through whom two cliques are
connected, i.e. there is a link connecting two special individuals, which is called
an inter-clique link. In the second case, ϑg =

N+2

2N . The transition of this GCVM
system are given in Table 7.

1.2.4 Asymmetric case: Incomplete external network

In this section, we assume that not only the internal layer but also the external
layer can be incomplete graph. These changes in the external layer will a"ect four
transitions: Bb ↔ Rb, Br ↔ Rr, Rb ↔ Bb, and Rr ↔ Br.

External layer: Cycle network

In this section, we assume that the external layer is given by a cycle. Then
we represent how changes in the internal layer structure influence the transitions.
We also consider the internal layers given by two-star and two-clique networks. The
representations for such two-layer networks for GCVM are given in Figure 7, 8, 9.
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(a) cycle-star (b) cycle-complete (c) cycle-link free

Figure 7: Representation of external cycle network

(a) odd number of nodes (b) even number of nodes

Figure 8: Representation of external cycle and internal two star-coupled network
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(a) odd number of nodes (b) even number of nodes

Figure 9: Representation of external cycle and internal two-clique network

1. Bb ↔ Rb: One individual with state Bb copies a neighbor with external
opinion R. The changing rate is c(N→re→ri+r)re

N
3

N ;

2. Br ↔ Rr: One individual with state Br copies a neighbor with external opin-
ion R, or expresses his internal opinion. The changing rate is (ri→r)(c

re
N

3

N+e);

3. Rb ↔ Bb: One individual with state Rb copies a neighbor with exter-
nal opinion B, or expresses his internal opinion. The changing rate is
(re → r)(c

N→re
N

3

N + e);

4. Rr ↔ Br: One individual with state Rr copies a neighbor with external
opinion B. The changing rate is cr(N→re)

N
3

N .

1.3 Experiments and Results

We use the Monte Carlo method to simulate the process of opinion transition
in two-layer network. The simulations are organised as follows:
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1. Set a random seed, the number of runs (denoted by n), and initialize the model
by setting particular parameters;

2. Verify whether the consensus is reached for a given model (i.e. a unique opinion
exists in the networks), and if so, stop the simulation, or else go to Step 3;

3. Calculate the transition rate of each possible state change under the current
state;

4. Determine the next state under the assumption that the time between two
transitions is exponentially distributed with a current change rate;

5. Go to Step 2.

For simplicity, we refer to a consensus time and a winning rate as KPIs and
examine them. The simulation is organized as follows:

1. We run simulations varying parameters as shown below. Specifically, we focus
on the strength of red opinion for each simulation, in this part we could see
how the strength of red opinion influence the KPIs. Parameters used in the
simulations are as follows:

• Set 1: ϑ = 0.75, N = 400, r = 300, c = 1 for BVM, and m ⇐ 0.74, N =

400, re = 300, ri = 100, r = 80, e = 0.01, i = 0.50, c = 1 for GCVM;

• Set 2: ϑ = 0.80, N = 500, r = 400, c = 1 for BVM, and m ⇐ 0.79, N =

500, re = 400, ri = 100, r = 80, e = 0.01, i = 0.80, c = 1 for GCVM;

2. We change the structure of internal layer and show how internal network
structure influences the KPIs;

3. We modify the structure of external layer and observe the impact of di"erent
external network structures on KPIs.

The rest of this section demonstrates the most interesting results of our ex-
periments.

Fig. 10 shows the consensus time for the first 20 simulations. We can see
that the consensus time of BVM, CVM and GCVM with external complete network
structure is in the same order of magnitude.

We can consider GCVM with incomplete external structure and compare the
results with the previously described models. The results are summarized in Fig. 11.
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(b) Parameter set 2

Figure 10: Consensus time for 20 runs, comparison between BVM, CVM and GCVM
with external complete network structure

We highlight the surprising result: in the external layer the cycle structure is as-
sumed to be much simpler than the complete structure, but it greatly prolongs the
consensus time. One can observe the di"erence between the left and right subfigures
# there is no “cycle-complete” model in the left subfigure. We do not put this model
because in our simulations, there is no consensus on the model under parameter set
1. Even under parameter set 2, the consensus time for a structure “cycle-complete”
is much longer than for other models.
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Figure 11: Consensus time for 20 runs, comparison between all models

Fig. 12 represents the observed average consensus time for all models. It is not
too hard to make the same conclusion as the one based on Fig. 11 that the external
layer cycle structure prolongs the consensus time significantly.

If we compare the observed average consensus time between BVM, CVM and
GCVM with external complete structure, we can draw the following conclusions:

1. Multi-layer network structure of the society prolongs the consensus time in
comparison with BVM, in which there is a unique communication layer;
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2. Not all internal structures prolong the consensus time in CVM.
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Figure 12: Observed average consensus time for all models

We present Fig. 13 based on 1000 simulations of each model. As the graph
shows, BVM has the highest winning rate for both parameter sets. The case “cycle-
complete” (external layer is cycle, internal is complete graph) is interesting because
for parameter set 1 the consensus is not reached in our numerical simulations, there-
fore this structure is omitted in Fig. 12a. In the case “cycle-complete” with the
parameter set 2, the consensus is reached the time to consensus is extremely high
in comparison with all other structures of the layers. We also make an interesting
observation: for the internal layer of a complex structure (complete, two-clique), the
external cycle structure reduces the winning rate of the red opinion, which is close
to 0, although the strength of the initial red opinion given by our parameters sets is
very high. We can explain this as follows: when the external layer network structure
is cyclic, the lower the average degree of nodes, the higher the consensus time, and
the lower the winning rate. If we compare Fig. 13a with Fig. 13b, we can observe
the higher strength of the red opinion and its higher winning rate. Therefore, our
conclusion seems to be reasonable.

1.4 Conclusion to Chapter 1

In this chapter, we formularize the macroscopic general concealed voter model
(macroscopic-GCVM) which is an extension of the concealed voter model. We use
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Figure 13: Winning rate of red opinion for all models

two-layer network structure to model the social network, the external layer represents
the public communication network, and the internal layer represents the private
communication network. If individuals show di"erent opinions in the internal and
external layers, they can change their opinions by externalization or internalization.
We simulate the process of opinion transition for di"erent network structures (i.e.
complete, cycle, star, two-star-even, two-star-odd, two-clique-even, two-clique-odd
for internal layer, and complete, cycle for external layer) with di"erent parameters
which represent di"erent behaviors of individuals and compare the results with the
basic voter model and concealed voter model. The main formulated conclusions
based on the numerical simulations including some counter-intuitive ones are as
follows:

1. For some simulations, a simple external layer network structure like cycle
creates a problem for reaching a consensus;

2. If individuals in the social network are not good at expressing their opinions
publicly (have a low value of parameter e), internal interaction does not have a
great influence on consensus (including the winning rate and consensus time).



46

Chapter 2. Analysis of consensus time and
winning rate in two-layer networks with

hypocrisy of di!erent structures

This chapter provides the definition for two-layer networks with replica nodes.
We introduce the microscopic-GCVM which is more general than the macroscopic-
GCVM discussed in Chapter 1 under the assumption that the internal interaction
is allowed, the microscopic-GCVM is suitable for any given network structure that
satisfies the definition. The impact of network properties and individual’s behavior
on the consensus time and winning rate is discussed. The results of this chapter is
published in [25,27].

2.1 Multi-layer network with replica nodes

A multilayer network is a network formed by several networks that evolve and
interact with each other [56].

In a multilayer network with replica nodes there is a one-to-one mapping of
the nodes in di"erent layers and corresponding nodes are called replica nodes. Since
there is a one-to-one mapping between the nodes in di"erent layers, every layer is
formed by the same number of nodes [56].

2.2 Two-layer network with replica nodes

We use the following notations to define a two-layer (external and internal)
network with replica nodes:

1. N : number of nodes in each layer;
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2. ai = (a
E
i , a

I
i ): one-to-one mapping of node i in the external and internal layer,

where a
E
i (aIi ) is a representation of node i in the external (internal) layer;

3. GE(VE, EE): predefined external network, where VE = {aEi } and EE represent
a set of individuals and set of edges in the external layer;

4. GI(VI , EI): predefined internal network, where VI = {aIi } and EI represent a
set of individuals and set of edges in the internal layer;

5. EC = {(aEi , aIi )|i = 1, . . . , N}: edges between replica nodes.

A two-layer network with N individuals/agents can be defined as1:

G(V , E), (7)

where V = VE ⇒ VI , |VE| = |VI | = N , and E = EE ⇒ EI ⇒ EC . This definition is
independent of a specific network structure, i.e. external/internal networks can be
di"erent.

2.3 Model

2.3.1 The general concealed voter model (macro version)

Zhao and Parilina [24] proposed GCVM based on CVM introduced in [21].
These papers use simulations to represent opinion transmission processes in two-
layer networks. In the following section, we introduce GCVM in a micro version.

1This definition and the corresponding opinion dynamic models was firstly introduced in [27] and further discussed
in [25] and [26].
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2.3.2 The general concealed voter model (micro version)

In the GCVM, we use R,B (r, b) to represent individuals’ external (internal)
red and blue opinions respectively. There is a list of notations:

• S = {Rr,Rb,Br,Bb}: set of all possible states of an individual;

• ω(ai, t) ↑ S: opinion of individual ai at time t, where i = 1, . . . , N , and
t = 0, 1, . . .;

• ϑre: ratio of individuals having red opinion in external layer;

• ϑri: ratio of individuals having red opinion in internal layer;

• ϑr: ratio of individuals having red opinion in both internal and external layers;

• re: number of individuals having red opinion in external layer;

• ri: number of individuals having red opinion in internal layer;

• r: number of individuals having red opinion in both internal and external
layers;

• ϱce: external copy rate, that is a probability of an individual to copy opinion
of his/her external neighbor;

• ϱci: internal copy rate, that is a probability of an individual to copy opinion
of his/her internal neighbor;

• ϱe: externalization rate, that is a probability of hypocrisy2 choosing to publicly
express his/her internal opinion;

• ϱi: internalization rate, that is a probability of hypocrisy accepting his/her
external opinion.

In Sections 2.3.2–2.3.2, we describe GCVM of opinion dynamics in a two-
layer network. The description is organized so that to understand how numerical
simulations presented in Section 2.4 are done.

2By hypocrisy we mean a node having di!erent opinions in external and internal layers, i.e., the nodes in states
Rb and Br.
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Two-layer network structure initialization

We start by setting two networks GE and GI (we read these networks from
the file, and an example of such a file representing external cycle and internal star
structures is shown in Listing 1. Then we add the edges between external and
internal representations of individuals).

Listing 1: Example of graph file with external cycle and internal star structure
>>>ext e rna l

E0 E1

E1 E2

E2 E3

E3 E0

<<<ext e rna l end

>>>in t e r n a l

I00 I1

I00 I2

I00 I3

<<<in t e r n a l end

This results in a two-layer network G we store as an adjacency list.

Initialization of individuals’ initial states

The relationship between the number of individuals in each state is presented
in equation (3) of Chapter 1. Assuming a uniform distribution for each agent to
belong to any state s ↑ S at the initial time, we adopt the following rule of setting
the initial state ω(ai, 0) for any agent ai at time t = 0:

ω(ai, 0) := f(x) =






Rr, 0 ↘ x < ϑr,

Rb, ϑr ↘ x < ϑre,

Br, ϑre ↘ x < ϑre + ϑri → ϑr,

Bb, ϑre + ϑri → ϑr ↘ x ↘ 1,

(8)

where x ↗ U(0, 1).

Opinion transmission process

We can divide individuals into hypocrites and non-hypocrites based on the
consistency of their external and internal opinions. Hypocrites are individuals who
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have di"erent opinions in the internal and external layers, while non-hypocrites have
the same opinions in both layers.

We focus on two measurements to analyze GCVM:

• consensus time: Tcons is consensus time in (G)CVM, that is, the time required
for all individuals to form the same opinion in internal and external layers
(i.e., ϑre = ϑri = ϑr = 0 or 1 for Tcons);

• winning rate: ϑ is a winning rate of red opinion in a series of simulations. For
the opinion, to win means that there is no other opinion that agents have in
the whole network (i.e. in a series of simulations, the number of simulations,
in which red opinion wins blue opinion divided by the number of simulations).

Before presenting an algorithm of GCVM, we briefly define the actions avail-
able for a randomly chosen individual ai:

• picking up ai’s neighbor: Randomly choose a neighbor among all ai’s neigh-
bors. Let it be individual aj (this is a prerequisite action for external/internal
copying);

• external copying: ai copies aj’s external opinion with probability ϱce;

• internal copying: ai copies aj’s internal opinion with probability ϱci;

• externalization: ai expresses his/her internal opinion with probability ϱe (this
action is available only for hypocrite);

• internalization: ai accepts his/her external opinion with probability ϱi (this
action is available only for hypocrite).

Externalization and internalization are meaningless for non-hypocrites, so they
have only two possible actions (external and internal copies).

Algorithm of GCVM:

Step 1. Initialize t = 0.

Step 2. Choose an individual ai, uniformly random from N individuals in two-layer
network G;

Step 3. Check all valid actions of individual ai (depending on his/her state) and ran-
domly choose one of the valid actions with equal probabilities:
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I) ai is a hypocrite, then he/she has four possible actions: (i) external copy-
ing, (ii) internal copying, (iii) externalization, and (iv) internalization.
Any action is chosen with a probability of 0.25;

II) ai is a non-hypocrite, then he/she can perform only external or internal
copying. Any action is chosen with a probability of 0.5.

Step 4. Generate random number x ↗ U(0, 1). Perform the action chosen in Step 3:

a) if external copying is chosen in Step 3 and x < ϱce, then ai copies aj’s
external opinion;

b) if internal copying is chosen in Step 3 and x < ϱci, then ai copies aj’s
internal opinion;

c) if externalization is chosen in Step 3 and x < ϱe, then ai expresses his/her
internal opinion;

d) if internalization is chosen in Step 3 and x < ϱi, then ai accepts his/her
external opinion.

Step 5. Increase t by 1. If consensus is reached3, stop iteration. Otherwise, go back
to Step 2.

2.4 Experiments and results

2.4.1 General description

The experiment focuses on observing the e"ect of an external network struc-
ture on a winning rate of opinion and consensus time.

We consider two types of external structures: cycle and complete, and seven
internal structures: cycle, complete, star, two-star (odd and even cases), and two-
clique (odd and even cases). This gives us 14 di"erent combinations of external-

3The algorithm will be stopped when all individuals in both layers hold the same opinion, i.e. consensus is reached.
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internal structures, i.e. 14 two-layer networks. Most of the structures are shown in
Figure 3 to Figure 9 of the Chapter 1, we do not present here to save space.

For our experiments, we fix the following parameters: ϑre = 0.75, ϑri = 0.25,
ϑr = 0.2, ϱci = ϱce = 1, ϱe = 0.01, ϱi = 0.5, N = 100. Then we observe
the e"ect of external structure on the winning rate of opinion and consensus time
(number of iterations) for the given internal structure. We conduct 100 simulations
for each model and obtain the following statistical results. The models presented in
Figures 14a and 14b below are named as: “external layer # internal layer # # of
individuals”.

As shown4 in Figure 14a, we conclude that cyclic external structures prolong
consensus time in comparison with complete external structure (the similar result
is obtained in [24]). This conclusion is true for all internal structures we examine
in the experiment. Additionally, we observe that the internal structure also has
an impact on consensus time. For instance, consensus time for a two-star internal
structure is less than that of a two-clique internal structure.

However, the observation results for the winning rate are quite di"erent than
in our previous work [24], as shown in Figure 14b. We can notice that except internal
structures “twoStar-51” and “star-50”, a cyclic external layer decreases the winning
rate. For all other models, a cyclic external structure has a positive impact on the
winning rate. The possible reason is in specification of a microscopic model, i.e.
actions that an individual/agent can take are related only to his current state.5 In
a macroscopic version of GCVM, the probability of each possible action is related
to the overall state of the system represented by a triple (ϑre, ϑri, ϑr) (see [24]).

2.4.2 Main results and observations

Based on the findings from Section 2.4.1 indicating that a cyclic structure
has a positive impact on consensus time, we have formulated the following research
questions. A series of experiments were designed and conducted in order to address
these research questions:

4The number in the model name represents the number of individuals. e.g. 50 represents an even case, and 51 is
an odd case.

5For non-hypocrites, an individual has two possible actions, and for hypocrites, an individual has four possible
actions. The probability for each possible action of an individual/agent at the present moment is fixed.
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Figure 14: Observed consensus time (a) and winning rate (b) for models with dif-
ferent two-layer network structures
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1. How does an external structure influence KPIs, i.e. are there any features of
a network that significantly a"ect KPIs? To address these question we do the
following:

a) extend a cyclic structure to a complete one in di"erent ways, 6

b) reduce a cyclic structure to a line, and observe the KPIs,

c) conduct statistical tests to determine if there are significant di"erences
in the distribution of KPIs for di"erent ways of constructing a complete
graph (see Item a),

d) check the correlation between network features and KPIs.

2. How do externalization and internalization rates influence KPIs?

a) vary ϱe from 0.1 to 1.0 with a step of 0.1,

b) vary ϱi from 0.3 to 1.0 with a step of 0.1 (note: when ϱi = 0.1 or ϱi = 0.2,
consensus cannot be reached in some models).

3. How does a copying rate influence KPIs?

a) vary ϱc from 0.1 to 1.0 for both layers with a step of 0.1.

4. How does a combination of parameters influence KPIs (i.e. which combina-
tions maximize or minimize consensus time and winning rate)?

a) use a combination of parameters (ϱi, ϱe, ϱci, ϱce), where we vary ϱi ↑
[0.3, 1] and ϱe, ϱci, ϱce ↑ [0.1, 1] with a step of 0.1.

We start by extending a cyclic structure in the following three di"erent ways:

• normal: find a set of edges presented in a complete graph but not in a cyclic
graph, and add them sequentially to a cyclic graph until finally obtain a com-
plete graph;

• random: find a set of edges presented in a complete graph but not in a cyclic
graph, and add them randomly to a cyclic graph;

• shortest: find a set of edges presented in a complete graph but not in a cyclic
graph, and add the edges from the list that minimizes d, where d is the average

6A cycle graph can be transformed into a complete graph by adding several nonexistent edges, or degenerate into
a line by deleting an existing edge.
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of the shortest paths among all pairs of nodes in external layer. Here d is
calculated as follows:

d =

∑

s,t↑VE

d(s, t)

nE(nE → 1)
, (9)

where d(s, t) is the length of the shortest path between s and t, VE is a set of
nodes in external layer, nE = |VE| is the number of nodes in external layer.

Obviously, for an undirected graph with N nodes, a cyclic structure has only
N edges, and a complete structure has N ⇑ (N → 1)/2 edges. Therefore, a cyclic
graph can become a complete graph by adding N ⇑ (N → 3)/2 edges. If we remove
one edge from a cyclic structure, it will degenerate to a line.

In our experiments, we extended a network structure from ‘cycle-complete-50’
to ‘complete-complete-50’, defined ‘cycle+ς-complete-50’ as an intermediate network
structure, where ς ↑ Z means the number of edges which we have added to a cyclic
structure by an iteration. Here ς ↑ [→1, 1175], and the value ς = →1 corresponds
to the case when we deleted an edge from a cycle degenerating this cycle into a
line. When ς = 1175, the cycle becomes a complete graph, i.e. the maximal
number of edges that can be added into a cycle with 50 nodes is equal to 1175.
In our experiments we examined the dynamics of consensus time and d when ς is
increasing.

The results of simulations are shown in Figure 15. In particular, Figure 15a
shows how d (ς) influences winning rate for di"erent ways of extending a cyclic
structure to a complete one. The right figure is an increase of the first 150 points
from the left graph, we did the same in Figures 15b and 16. Looking at Figure 15a,
we can notice that winning rate is almost white noise with changes of ς. 7

Figure 15b shows a trend of consensus time when ς is changing, and it is easy
to recognize that the purple and green lines have almost the same trend. At the
beginning, with an increase of the number of added edges, consensus time signifi-
cantly decreases. After reaching a certain level, the increase in the number of edges
has no significant impact on consensus time. First points in Figure 15b correspond
to a network structure “cycle+-1-complete-50” having an external line structure. It
is obvious that dline > dcycle > dcomplete. Therefore, we formulate Hypothesis 1:

Hypothesis 1. There is a significant correlation between consensus time and d.

7The winning rate is white noise for “random” with lag 1–10, for “shortest” with lag 1–3, but the winning rate for
“normal” extending way is not white noise which is confirmed by Ljung–Box test.
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Observed average winning rate from different δ
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Figure 15: Winning rate (a) and consensus time (b) for the models with di"erent
extension ways

In order to verify Hypothesis 1, we should find d for each graph in Figure 15b.
After calculating d for each graph, we construct the third subfigure in Figure 15b.
Obviously, the first and third subfigures have a similar trend.
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Observed average consensus time from different d
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(a) Consensus time vs d (for di!erent extending ways)

Observed average consensus time from different d

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0  2  4  6  8  10  12  14  16  18

C
o
n
se

n
su

s 
T

im
e

d

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0  2  4  6  8  10  12  14  16  18

C
o
n
se

n
su

s 
T

im
e

d

(b) Consensus time vs d (aggregated data)

Figure 16: Consensus time vs d

We represent the relation between d and consensus time in Figure 16. The
di"erence between Figures 16a and 16b is that in Figure 16a we group the data by
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extending way first, and then draw the trend, while in Figure 16b, we do not specify
the way of extending the graph, but only make an analysis based on di"erent d and
consensus time.

We can observe an approximately linear relationship in Figure 16. We can
further use statistical methods for correlation analysis [57, 58]. The results of ex-
amining the Pearson correlation coe!cient (PCC) [59] are shown in Figure 17. We
make the following conclusions:

• the correlation between d and consensus time is significantly strong, and PCC
is 0.78;

• for other pairs of KPIs, the correlation is not significant, and the absolute
values of PCC are less than 0.15.
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Figure 17: Pearson correlation coe!cients

Hypothesis 2. There are significant di!erences in KPI distributions for di!erent

ways of constructing a complete graph.

We are interested in how a di"erent extending way influences the distribution
of KPIs. We show empirical distributions of KPIs in Figure 18. We should notice
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that their distributions are significantly di"erent for di"erent ways of extending the
graph from a circle to a complete one. But for ‘normal’ and ‘shortest’ extending
ways, KPIs distributions are very similar. We use the Kolmogorov–Smirnov test for
further analysis [60,61]. The results are shown in Table 8. From Table 8 we can see
that p-values for all KPIs when we compare normal and shortest extending ways
are larger than 0.05. We make the following conclusion: we should accept the null
hypothesis that the distributions of KPIs for normal and shortest extending ways
are identical.
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Figure 18: Frequency mass function and empirical cumulative distribution function
(ECDF) for di"erent KPIs

For now we find out that some ways of extending a circle to a complete graph
have an impact on KPI distributions. But how significant is this impact? How are
mean and variance a"ected? Therefore, we formulate next hypothesis:

Hypothesis 3. Means and variances of KPIs are the same for di!erent ways of

extending a circle to a complete graph.

We use some statistical tests to verify equity of variances and equity of means.
Before doing this, we first run normality tests [62,63] since some statistical tests are
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Table 8: Results of Kolmogorov–Smirnov tests
Pair Statistics p-values

Consensus time

normal vs random 0.557 0.0
normal vs shortest 0.031 0.641
random vs shortest 0.574 0.0

Winning rate

normal vs random 0.114 0.0
normal vs shortest 0.02 0.967
random vs shortest 0.121 0.0

d

normal vs random 0.121 0.0
normal vs shortest 0.02 0.978
random vs shortest 0.12 0.0

parametric, i.e. they assume normality of the data. The results of normality tests
are shown in Table 9, where we can see that the p-value for all KPIs are smaller
than 0.05. Then we should reject the null hypothesis that any KPI is normally
distributed.

In Table 10 and 11, we have two group of results, ‘ev/em test for all’ corre-
sponds to whether the variances/means of three extension ways are all equal. The
‘pairwise ev/em test’ corresponds to two-sample equity test of variances/means.
As none of KPIs is normally distributed, we use the Levene test for variance eq-
uity [64–67].

We make the following conclusions from Table 10:

• the variance of winning rate is the same for all extension ways (all p-values in
the Levene tests are greater than 0.05);

• we reject the null hypothesis that the variances of the consensus time are equal
for all extension ways (all p-values in the Levene tests are less than 0.05);

• variances of d are equal for normal and random extension ways.

Since none of KPIs is normally distributed, and not all KPIs are homoscedas-
tic, to verify equity of means we use the Kruskal test [68–71]. The results of the
tests are given in Table 11 and we conclude the following:
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Table 9: Results of normality tests
normality testing overall

KPIs Statistics p-values

Consensus time 0.5 0.0
Winning rate 0.996 0.0

d 0.396 0.0
normality testing grouped via mode

Mode KPIs Statistics p-values

normal Consensus time 0.379 0.0
normal Winning rate 0.996 0.003
normal d 0.32 0.0
random Consensus time 0.347 0.0
random Winning rate 0.996 0.003
random d 0.469 0.0
shortest Consensus time 0.442 0.0
shortest Winning rate 0.995 0.001
shortest d 0.369 0.0

• the means of d are equal for all extension ways, i.e. a way of extending a circle
to a complete graph does not a"ect the mean of d (all p-values in the Kruskal
tests are greater than 0.05). For consensus time and winning rate, the means
are not all equal, i.e. they di"er by extension ways;

• we accept the null hypothesis that the means of consensus time (and win-
ning rate) are equal for normal and shortest extension ways (all p-values in
KruskalResult are greater than 0.05).

Figures 19 and 20 show how parameters (ϱce and ϱci in Figure 19, and ϱe and
ϱi in Figure 20) influence winning rate. We can see that winning rate fluctuates
within a certain range, but not too much. Therefore, we temporarily think that an
impact of parameters on winning rate is limited.

Figures 21 and 22 show how consensus time varies with a change of parameters
(ϱce and ϱci in Figure 21, and ϱe and ϱi in Figure 22). We make these interesting
observations:

• an increase of external copying rate ϱce has a negative e"ect on consensus
time. The interpretation is as follows: when an individual in a society is more
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Table 10: Results of variance equity tests
Test Description KPIs Statistics p-values

EV test for all

Fligner test
Distribution free
when populations
are identical

Consensus time 195.249 0.0
Winning rate 1.206 0.547
d 23.341 0.0

Levene test
More robust
for significantly
non-normal population

Consensus time 12.533 0.0
Winning rate 1.074 0.342
d 5.441 0.004

Bartlett test More depends on
normal population

Consensus time 320.877 0.0
Winning rate 3.584 0.167
d 351.795 0.0

Pairwise EV test

Levene test
for pairs

normal vs random Consensus time 20.967 0.0
normal vs shortest Consensus time 6.579 0.01
random vs shortest Consensus time 7.651 0.006
normal vs random Winning rate 1.572 0.21
normal vs shortest Winning rate 0.003 0.959
random vs shortest Winning rate 1.71 0.191
normal vs random d 0.187 0.665
normal vs shortest d 8.533 0.004
random vs shortest d 10.099 0.002
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Table 11: Results of mean equity tests
Test Description KPIs Statistics p-value

EM test for all

f_oneway
test

Independent sample; each sample is
from a normally distributed
population; homoscedasticity

Consensus time 99.143 0.0
Winning rate 23.205 0.0
d 4.795 0.008

Kruskal test Sample size should > 5
Consensus time 1100.711 0.0
Winning rate 46.919 0.0
d 1.596 0.45

Alexander
Govern test

Independent sample; each sample is
from a normally distributed
population; heteroscedasticity

Consensus time 261.282 0.0
Winning rate 47.419 0.0
d 12.243 0.002

Pairwise EM test

Kruskal test
for pairs

normal vs random Consensus time 795.081 0.0
normal vs shortest Consensus time 0.775 0.379
random vs shortest Consensus time 854.985 0.0
normal vs random Winning rate 32.215 0.0
normal vs shortest Winning rate 0.229 0.632
random vs shortest Winning rate 37.928 0.0
normal vs random d 1.092 0.296
normal vs shortest d 0.001 0.972
random vs shortest d 1.301 0.254
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Figure 19: Winning rate for di"erent copying rates

inclined to listen to the opinions of his/her external neighbors, it is helpful to
reach consensus;

• with an increase of internal copying rate ϱci, consensus time increases;

• with an increase of externalization rate ϱe, consensus time first increases until
it reaches the maximal value, and then decreases. The interpretation of this
is as follows: expressing your true opinion to a certain extent is not e"ective
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Figure 20: Winning rate for di"erent externalization and internalization rates

to reach consensus within the whole system, but beyond this threshold, along
with an increase of desire to express your opinion, for the system, it is easier
to reach consensus;

• with an increase of internalization rate ϱi, consensus time decreases. This can
be interpreted as follows: when people are more willing to accept their own
external opinion, it will accelerate consensus of the whole system.
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Figure 21: Consensus time for di"erent copying rates

In Tables 12 and 13, we show minimal/maximal consensus time and winning
rate respectively for di"erent combinations of parameters. If we compare the left
and right parts in Tables 12 and 13, there is a large di"erence between maximum
and minimum values. We performed a clustering procedure using K-means method
with input variables being consensus time and winning rate separately [72,73]. The
resulting cluster labels are then added to the original data. Based on these cluster



67

 0
 5x10

6
 1x10

7
 1.5x10

7
 2x10

7
 2.5x10

7
 3x10

7
 3.5x10

7
 4x10

7
 4.5x10

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

complete-complete-50
cycle-complete-50
complete-cycle-50

cycle-cycle-50
complete-star-50

cycle-star-50
complete-twoClique-50

cycle-twoClique-50
complete-twoClique-51

cycle-twoClique-51
complete-twoStar-50

cycle-twoStar-50
complete-twoStar-51

cycle-twoStar-51

C
o
n
se

n
su

s 
T

im
e

Parameter - π
e

Observed average consensus time from different models

(a) Varying externalization rate ϱe

 0
 5x10

6
 1x10

7
 1.5x10

7
 2x10

7
 2.5x10

7
 3x10

7
 3.5x10

7

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

complete-complete-50
cycle-complete-50
complete-cycle-50

cycle-cycle-50
complete-star-50

cycle-star-50
complete-twoClique-50

cycle-twoClique-50
complete-twoClique-51

cycle-twoClique-51
complete-twoStar-50

cycle-twoStar-50
complete-twoStar-51

cycle-twoStar-51

C
o
n
se

n
su

s 
T

im
e

Parameter - π
i

Observed average consensus time from different models

(b) Varying internalization rate ϱi

Figure 22: Consensus time for di"erent externalization and internalization rates

labels, we observed the distribution of the corresponding four parameters (ϱce, ϱci,
ϱe, and ϱi).

Ideally, we prefer having two clusters since it allows us to determine which
parameter combinations result in respectively large or small KPIs. In practice, we
specify a range for the number of clusters k, from 1 to 20, and calculate the silhouette
score [74]. In some sense an optimal value of k is the one maximizing the silhouette
score.
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Since the distributions of winning rates are very close to a normal distribution,
based on clustering results of winning rate, we cannot observe any significant dif-
ferences in descriptive statistics of clusters (see Table 14). Therefore, in our future
analysis we only focus on performing a clustering analysis of consensus time.

Table 14: Descriptive statistics of clusters within winning rate (complete-complete-
50)

Parameters Cluster Count Mean Std Min 25% 50% 75% Max

ϱce

0 169 0.484 0.282 0.1 0.3 0.4 0.7 1.0
1 238 0.540 0.287 0.1 0.3 0.5 0.8 1.0
2 186 0.573 0.274 0.1 0.3 0.6 0.8 1.0
3 291 0.543 0.289 0.1 0.3 0.5 0.8 1.0
...

ϱci

0 169 0.487 0.306 0.1 0.2 0.4 0.7 1.0
1 238 0.591 0.293 0.1 0.3 0.6 0.9 1.0
2 186 0.533 0.272 0.1 0.3 0.5 0.8 1.0
3 291 0.547 0.290 0.1 0.3 0.5 0.8 1.0
...

ϱe

0 169 0.509 0.290 0.1 0.3 0.5 0.7 1.0
1 238 0.581 0.304 0.1 0.3 0.6 0.9 1.0
2 186 0.525 0.292 0.1 0.3 0.5 0.8 1.0
3 291 0.587 0.282 0.1 0.4 0.6 0.8 1.0
...

ϱi

0 169 0.698 0.233 0.3 0.5 0.7 0.9 1.0
1 238 0.632 0.230 0.3 0.4 0.6 0.8 1.0
2 186 0.631 0.237 0.3 0.4 0.6 0.8 1.0
3 291 0.622 0.230 0.3 0.4 0.6 0.8 1.0
...

Table 15 shows the number of elements in the clusters of consensus time, where
we selected to have two clusters since it maximizes the silhouette score.

In Figure 23a, the distributions of consensus time are almost consistent for
di"erent multi-layer models. At the same time, in Figure 23b, we can clearly observe
noticeable di"erences. This interesting result provides us with a valuable insight that
the diverse parameter distributions can significantly prolong consensus time.

In the top right corner of Figure 23b, we observe that when the internal
structure is complete or twoClique, parameter ϱci di"ers significantly consensus time
for these models in comparison with other models. In the lower left corner, we can
see when the internal structure is complete or twoClique, a value of ϱe in cluster 1
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Figure 23: Empirical cumulative distribution function of consensus time with respect
to parameters ϱce, ϱci, ϱe, and ϱi
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Table 15: Consensus time cluster sizes for each model
Model Cluster 0 Cluster 1

0 complete-complete-50 3267 20
1 cycle-complete-50 3241 19
2 complete-cycle-50 3319 105
3 cycle-cycle-50 3027 400
4 complete-star-50 3219 205
5 cycle-star-50 3124 312
6 complete-twoClique-50 3239 24
7 cycle-twoClique-50 3348 11
8 complete-twoClique-51 3904 14
9 cycle-twoClique-51 3831 17
10 complete-twoStar-50 3171 197
11 cycle-twoStar-50 3100 372
12 complete-twoStar-51 3598 225
13 cycle-twoStar-51 3634 362

is always equal to 0.1. For the figures in the top left and lower right corners, we can
get similar conclusions by comparison.

2.5 Conclusion to Chapter 2

This chapter introduces a novel approach, that is microscopic-GCVM, which
simulate opinion dynamics process by creating a real network instead of using
statistical-physical methods for its modeling as described in Chapter 1. There-
fore, this approach is suitable for any two-layer networks that are represented by
(7). Additionally, we use di"erent ways to extend an external cyclic structure to a
complete one. We highlight a hypothesis on how the way of extension of a circle to
a complete graph influences consensus time and winning rate based on simulation
results and use a statistical test to verify them. The main conclusions are as follows:

• cyclic external structure always increases consensus time;

• cyclic external structure has a positive impact on winning rate;
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• cyclic external structure influences consensus time by an increase of d, i.e.
there is a strong linear relationship between d and consensus time. The lower
d is, the higher is consensus time;

• the way of extension of a circle to a complete graph has a significant impact
on consensus time and winning rate;

• each parameter has a di"erent impact on consensus time but almost has no
impact on winning rate;

• the combination of parameters (di"erent individual’s behavior) has a signifi-
cant impact on consensus time.
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Chapter 3. Centrality measures and
opinion dynamics in two-layer networks

with replica nodes

In Chapters 1 and 2, we are separately introduced the macroscopic-GCVM
and microscopic-GCVM. The network structures discussed in Chapters 1 and 2 are
very simple structures – i.e. cyclic, complete, star, etc. In this chapter, we consider
a Zachary’s karate club social network and extend it by adding the second (inter-
nal) layer of communication, and simulate the opinion dynamics on such two-layer
networks based on microscopic-GCVM. The basic notations and concepts about
microscopic-GCVM were introduced in Chapter 2. Therefore, we will not repeat
them in this chapter.

A novel approach to simplify the two-layer network to one-layer weighted
network is discussed. We also proposed two fast and accurate algorithms for one
layer weighted network to approximate the game-theoretic centrality measures and
examine connection between centrality measures and characteristics of opinion dy-
namic processes on such networks. The results of this chapter are published in
papers [26,51].

3.1 Two-layer network simplification

According to the definition of two-layer network in Chapter 2 (see equa-
tion (7)), two-layer network G(V , E) is composed of external network GE(VE, EE),
internal network GI(VI , EI) with the set of edges EC connecting nodes between layers.
Two-layer networks can also be represented by an adjacency matrix. The adjacency
matrix of a two-layer network is a block matrix, where the diagonal blocks are the
adjacency matrices of the external and internal layers, and the o"-diagonal blocks
are the adjacency matrices of the connections between external and internal layers.
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The adjacency matrix of G(V , E) is as follows:

A =

[
AEE AEI

AIE AII

]
(10)

where AEE is the adjacency matrix of the external layer, AEI is the adjacency matrix
of the connections between external and internal layers, AIE is the adjacency matrix
of the connections between internal and external layers, and AII is the adjacency
matrix of the internal layer. For undirected graphs in both layers, the adjacency
matrix A is symmetric.

Keeping in mind an binary opinion dynamics model presented in the Chapter
1 and Chapter 2, we define the rates of coping opinions from one node to another:

• ϱce: external copy rate with which an individual is copying opinion of his/her
external neighbor if they both are randomly chosen;

• ϱci: internal copy rate with which an individual is copying opinion of his/her
internal neighbor;

• ϱe: externalization rate with which an individual is behaving as a hypocrisy8

choosing to publicly express his/her internal opinion;

• ϱi: internalization rate with which an individual being hypocrisy accepts
his/her external opinion.

We propose a way how to transform a two-layer network G(V , E) with the given
parameters ϱce, ϱci, ϱe, ϱi of opinion dynamics to a one-layer weighted network. We
can define a matrix of weights as follows:

W
↓
= ϱce · AEE + ϱci · AII + ϱi · ”E + ϱe · ”I , (11)

where ”E and ”I are N ⇑ N diagonal matrices, and the elements on the
diagonal represent the degrees of nodes in external and internal layers, respectively.
Furthermore, we use w

↓
ij to represent the elements of matrix W

↓ and define a new
weighted network G

↓
(V ↓

, E ↓
,W

↓
), where V ↓

= {1, 2, . . . , N} is the set of nodes, E ↓
=

{(i, j) | w↓
ij ⇓= 0, i, j ↑ V ↓} is the set of edges, and W

↓ is the matrix of weights.
Based on a new weighted network G

↓
(V ↓

, E ↓
,W

↓
), we proposed two game-

theoretic centrality measures which will be discussed in Section 3.3.3.
8By hypocrisy we mean a node having di!erent opinions in external and internal layers.
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3.2 Zachary’s karate club network in two-layer

setting

As an example of a social network, we consider Zachary’s karate club net-
work representing friendship relations among 34 members of a karate club at the
US university in the 1970s [75]. The study became famous in data and network
analytical literature since it highlighted a conflict between manager (Node 0) and
director (Node 33), which eventually led to the split of the club into two groups.
One-layer Zachary’s karate club network is represented in Fig. 24. The blue and red
colors of nodes represent two opinions in the social network.

Figure 24: One-layer Zachary’s karate club network

Fig. 25 shows how one-layer Zachary’s Karate Club network can be extended
into a two-layer network if we add an internal layer of communication between
agents. If we consider binary opinion dynamics models, in the concealed voter model
(CVM) [21,22], the nodes in the internal layer are not connected, i.e. internal layer
is represented by an empty graph (see Fig. 25a), while in the general concealed voter
model (GCVM) [24, 25, 27] there may be nonempty network representing internal
communication of agents. In Fig. 25b we represent a star internal structure. The
colors in Fig 25 represent individuals’ opinions.

The color, blue or red, is randomly initialized for the given parameters, these
are (i) probability of having red initial opinion for the basic voter model on one-layer
network, (ii) probabilities of having red initial opinion in external, internal, and in
both layers for CVM and GCVM models.

In the basic voter model (BVM, see [4]), there is only one layer, as shown
in Fig. 24, and each individual holds one of two opinions (red or blue). At each
step, a random individual selects a random neighbor and adopts his/her neighbor’s
opinion with the copying rate ϱce. This process repeats until everyone in the network
holds the same opinion, i.e. reaching a consensus. The opinion dynamics process in
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(a) CVM (b) GCVM

Figure 25: Two-layer networks used in CVM and GCVM: (a) CVM: two-layer net-
work with external Zachary’s karate club and empty internal layer, (b)
GCVM: two-layer network with external Zachary’s karate club and star
internal layer.

CVM [21,22] and GCVM [24–27] is implemented on a two-layer network (see Fig. 25a
and 25b). In the CVM, individuals in the internal layer do not communicate, while in
GCVM, individuals in the internal layer can communicate. The opinion dynamics
process in CVM and GCVM is similar to BVM, but have more options: in the
CVM, individuals can his/her internal opinion publicly with externalization rate ϱe

or accept his/her external opinion with internalization rate ϱi. These two options do
not exist in the BVM, while in GCVM, individuals can copy their internal neighbors’
opinion with internal copy rate ϱci, which is not allowed in the CVM.

3.3 Centrality measures in one- and two-layer

networks

In this section, we represent several centrality measures. Some of them are
defined for one-layer networks and can be applied for two layers separately, some of
them take into account the multi-layer structure of a network. We also introduce
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game-theoretical centrality measures and provide an algorithm to calculate their
approximation when the network contains large number of nodes.

Definition 1. A pairwise average shortest path for an external layer dE in a two-

layer network is

dE =

∑

s,t↑VE

dE(s, t)

nE(nE → 1)
, (12)

where dE(s, t) is a length of the shortest path between nodes s and t in the external

layer, VE is a set of nodes in the external layer, nE = |VE| is a number of nodes

in the external layer. Similarly, we can define pairwise average shortest path for an

internal layer denoted by dI .

Definition 2. A graph density is a ratio of the number of edges |E| with respect to

the maximal number of edges. Since internal layer is represented by an undirected

graph, we define an internal graph density as in [76]:

DI =
2|EI |

|VI |(|VI |→ 1)
. (13)

The definitions above we will use in the experiments to analyze the influence
of the network structure on the opinion dynamics process (See section 3.4.2).

3.3.1 Classical centrality measures

In this section we briefly introduce some (most well-known) centrality mea-
sures defined for one-layer networks. In the rest of the paper, we use V to denote
the set of nodes in a one-layer network.

Betweenness centrality

Betweenness centrality of a node introduced in [29] gives the number of
geodesics between all nodes that contain this node. It reflects the level of node
participation in the dissemination of information between other nodes in a graph.
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It is calculated by the formula:

Cb(v) =
1

nb

∑

s,t↑V

φs,t(v)

φs,t
, (14)

where φs,t indicates the number of shortest paths between nodes s and t, and φs,t(v)

is the number of shortest paths between nodes s and t containing node v. Normaliza-
tion coe!cient is nb = (|V |→1)(|V |→2) for v /↑ {s, t}, otherwise nb = |V |(|V |→1),
where |V | is the number of nodes in a one-layer network [28]. If s = t, φs,t = 1 and
if v ↑ {s, t}, then φs,t(v) = 0.

Group betweenness centrality

Group betweenness centrality measure indicates a proportion of shortest paths
connecting pairs of nongroup members that pass through the group (see [77]), and
it is defined by formula:

Cgb(X) =
1

ngb

∑

s,t↑V \X

φs,t(X)

φs,t
, (15)

where φs,t(X) is the number of shortest paths between nodes s and t passing through
some nodes in group X . Normalization coe!cient is ngb = (|V |→|X|)(|V |→|X|→1),
where |X| is the number of nodes in group X .

Closeness centrality

In a connected graph, closeness centrality of node u is the reciprocal of a sum
of lengths of the shortest paths between u and all other nodes in the graph [30–32].
When calculating closeness centrality, its normalized form is usually referred to as
the one representing the average length of the shortest path instead of their sum,
and it is calculated like this:

Cc(u) =
nc∑

v↑V \{u} d(v, u)
, (16)

where normalization coe!cient is nc = |V |→ 1.
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Group closeness centrality

Group closeness centrality is the reciprocal of the sum of the shortest distances
from the group to all nodes outside the group [77–79]. It is calculated as follows:

Cgc(X) =
ngc∑

v↑V \X d(v,X)
, (17)

where d(v,X) is the shortest distance between group X and v. Normalization
coe!cient is ngc = |V →X|.

Degree centrality

Degree centrality of node v [33] is defined as

Cd(v) =
vd

nd
, (18)

where vd is a degree of node v, and normalization coe!cient is nd = |V |→ 1.

Group degree centrality

Group degree centrality is the number of nodes outside the group connected
with the nodes from this group [77,78]. Normalized group degree centrality for group
X is given by the formula:

Cgd(X) =
|{vi ↑ V \X|vi is connected to vj ↑ X}|

ngd
, (19)

where normalization coe!cient is ngd = |V |→ |X|.

3.3.2 Random walk based centralities

The second group of centrality measures is based on random walks, simple
dynamical process that can occur on a network. Random walks can be also used to
approximate other types of di"usion processes [34,80,81].
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Random walk occupation centrality

The random walk occupation centrality [34] of node v is the probability of
that node v being visited by a random walker during an infinitely long walk, and it
is defined as

Crwoc(v) = lim
t↔⇔

nv(t)

t
, (20)

where nv(t) is the number of times node v is visited by a random walker during time
interval t. Di"erent exploration strategies can be used to calculate the occupation
centrality, we use the uniform exploration strategy in this paper (i.e. each node
jumps to its neighbor with the equal probability). In the weighted networks, jumping
probabilities are proportional to the weights of the edges.

The analytical expressions of random walk occupation centrality with a uni-
form exploration strategy in interconnected multilayer networks are presented in [34].

Random walk betweenness centrality

The most common betweenness is the shortest path betweenness [29,34], where
the centrality of a node v is relative to the number of shortest paths between all pairs
of nodes passing through v. However, in real networks, entities (rumors, messages,
or internet packets) that travel the network do not always follow the shortest path
[34, 82, 83]. Therefore, the random walk betweenness centrality of node v is defined
as the number of random walks between any pair (s, d) of nodes that pass through
node v [35]:

Crwbc(v) =
1

nrwbc

∑

s,t↑V
s ⇓=t

v ⇓=s,v ⇓=t

1v↑Paths→t, (21)

where nrwbc = 2N(N → 1) is the normalization coe!cient. The indicator function
1v↑Paths→t is equal to 1 if node v is in the path between nodes s and t, and 0 otherwise.
The Paths↔t is the random path between nodes s and t in the network. Repeating
the random walk process few times to get di"erent random paths we get the average
random walk betweenness centrality.

It will be useful to get the analytical expression of random walk betweenness
centrality for nodes by absorbing random walk, where the absorbing state is selected
to be the destination node d [35, 81]. An extended analytical expression of random
walk betweenness centrality for interconnected multilayer networks can be found
in [34].
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Random walk closeness centrality

A variant of closeness centrality is random walk closeness centrality, the com-
putation of which is based on the mean first-passage time (MFPT). The MFPT is
defined as the average number of steps to reach node d starting from a given node s.
The lower average MFPT indicates that a node is on average more quickly accessible
from other nodes. Therefore, a node with a lower average MFPT to all other nodes
is considered more “central” in the network. The random walk closeness centrality is
defined as the reciprocal of the average MFPT, and it is calculated by the formula:

Crwcc(v) =
n→ 1∑

u↑V \{v} ↼uv
, (22)

where ↼uv is the MFPT from node u to node v. The MFPT matrix can be calculated
analytically by means of Kemeny-Snell fundamental matrix Z [84, 85] or by means
of absorbing random walks [81,86].

The analytical expressions of random walk closeness centrality in intercon-
nected multilayer networks can be found in [34].

3.3.3 Game-theoretic centrality measures

Shapley value based centrality

The Shapley value is a solution concept in cooperative game theory introduced
by Lloyd Shapley in 1953 [37]. It is a measure of the average marginal contribution
of a player to all possible coalitions. Shapley value is a solution concept assigning a
singleton solution to the players as allocation given by formula:

↽(i) =

∑

S↖N\{i}

|S|!(n→ |S|→ 1)!

n!
(v(S ⇒ {i})→ v(S)), (23)

where S ↖ V represents a coalition, the value of coalition S can be denoted by v(S).
We define characteristic function v(S) as half of the sum of the weighted degrees of
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all nodes in the subgraph induced by S, that is,

v(S) =
1

2

∑

{i,j}↖S

W (i, j), (24)

where W (i, j) is the weight of the edge between nodes i and j within the subgraph
induced by S, coe!cient 1

2
is used for correction in case of an undirected graph, each

edge is counted twice when summing up over all pairs of nodes.

Algorithm 1 Calculation of the Shapley Values based on weighted graph
Require: A graph G(V,E,W ) with n = |V | nodes
Ensure: Shapley value component ↽(i) for each node i ↑ V

1: for all nodes i ↑ V do
2: Initialize ↽(i) ↙ 0

3: end for
4: for all nodes i ↑ V do
5: for all subsets S ↖ V \ {i} do
6: Compute v(S) ↙

∑
{j,k}↖S W (j, k) within subgraph induced by S

7: Compute v(S ⇒ {i}) within subgraph induced by S ⇒ {i}
8: !v(S, i) ↙ v(S ⇒ {i})→ v(S)

9: coe" ↙ |S|!·(n→|S|→1)!

n!
10: ↽(i) ↙ ↽(i) + coe" ·!v(S, i)

11: end for
12: end for

return ↽(i) for all i ↑ V

Algorithm 1 describes how to calculate the Shapley value based on a weighted
graph. However, the Shapley value is computationally expensive, especially, for
large networks with the large number of coalitions.9 Therefore, we propose a new
approach to calculate an approximated Shapley value described in the next section.

Approximated Shapley value

According to the fact that the influence from other nodes is decreasing with
an increase of the path length, we propose several ideas to fasten the calculation of
the Shapley value:

1. Depth limitation: By limiting the depth of the reachable nodes considered,
the number of subsets that need to be considered is reduced.

9For a network with n nodes, the total number of coalitions is equal to 2
n.
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2. Local subset iteration: Iterating over subsets only within the reachable nodes,
rather than the entire graph, decreases the number of iterations.

3. Sampling from reachable nodes : For a large number of reachable nodes, com-
putational complexity can be reduced by random sampling, thereby decreasing
the number of subsets iterated over.

We first define ⇀(i, dmax) as the set of reachable nodes of node i up to given
depth dmax excluding node i. We can calculate an approximated Shapley value of
node i based on set ⇀(i, dmax) by formula:

↽a(i) =






∑
S↖ε(i,dmax)

v(S⇒{i})→v(S)
2|ω(i,dmax)| if |⇀(i, dmax)| < m,

⇁
∑

S↖ε(i,dmax)

v(S⇒{i})→v(S)
2|ω(i,dmax)| if |⇀(i, dmax)| ∝ m,

(25)

where ⇁ =
|ε(i,dmax)|+1

m+1
is a scaling factor, and m is the maximal number of reachable

nodes considered.
For |⇀(i, dmax)| ∝ m, we create a random sample of m nodes from set

⇀(i, dmax) several times and calculate the components of the Shapley value based on
these samples. The sampling time H|ε(i,dmax)|,m is given by formula (26) (see [87]):

H|ε(i,dmax)|,m =

( |⇀(i, dmax)|+ 1

2

m
→ 1

2

)
(ln |⇀(i, dmax)|+ γ) +

1

2
, (26)

where γ ⇐ 0.5772156649 is the Euler-Mascheroni constant. This formula is the
mathematical expectation of the number of samples for collecting m nodes from set
⇀(i, dmax) until all reachable nodes are collected.10

Equation (25) gives a good approximation of the Shapley value, especially
when the density of the graph is not very high (less than 0.7). We should highlight
that our algorithm provide an accurate estimation of the ratio of the approximated
component of the Shapley value to the sum of all its components. Knowing this
ratio and exact value v(N), it is easy to calculate the approximated Shapley value
using the scaling factor ξ:

ξ =
v(N)∑
i↑V ↽a(i)

. (27)

The steps of calculation of the approximated Shapley value in weighted graphs
is described in Algorithm 2. We use the same characteristic function as in the original
10We can consider this problem as the generalized coupon collector’s problem [87].
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Shapley value calculation, but we reduce the number of calculations following the
ideas listed above.

We can get a more accurate approximated Shapley value by multiplying its
components ↽a(i) given by equation (25) with factor ξ defined by (27). We include
this step in the benchmark of Algorithm 2. The results of its work are presented in
Section 3.4.1.

Algorithm 2 Calculation of approximated Shapley Value in weighted graph
Require: A weighted graph G = (V,E,W ), depth limit dmax, maximal size m of the set of

reachable considered

Ensure: Approximated Shapley value (↽a(i), i ↑ V )

1: Initialize ↽a(i) ↙ 0 for each i ↑ V

2: for i ↑ V do
3: ⇀(i, dmax) ↙ Calculate or retrieve all reachable nodes of i up to depth dmax

4: if |⇀(i, dmax)| < m then
5: for each subset S ↖ ⇀(i, dmax) \ {i} do
6: Compute v(S) ↙

∑
{j,k}→S W (j, k) within subgraph induced by S

7: Compute v(S ⇒ {i}) within subgraph induced by S ⇒ {i}
8: !v(S, i) ↙ v(S ⇒ {i})→ v(S)

9: ↽a(i) ↙ ↽a(i) +!v(S, i)

10: end for
11: coe! ↙ 1

2|ω(i,dmax)|

12: ↽a(i) ↙ ↽a(i) · coe!, normalize ↽a(i) based on the number of subsets

13: else
14: Pick up m nodes randomly from ⇀(i, dmax) and repeat H|ω(i,dmax)|,m times

15: for i = 1 to H|ω(i,dmax)|,m do
16: sreachable ↙ Randomly select a sample of m nodes from ⇀(i, dmax),

17: for each subset S ↖ sreachable \ {i} do
18: Calculate v(S) and v(S ⇒ {i}) as before

19: !v(S, i) ↙ v(S ⇒ {i})→ v(S)

20: ↽a(i) ↙ ↽a(i) +!v(S, i)

21: end for
22: end for
23: coe! ↙ 1/2

|ω(i,dmax)|/H|ω(i,dmax)|,m · |ω(i,dmax)|+1
m+1

24: ↽a(i) ↙ ↽a(i) · coe!

25: end if
26: end for
27: Define scaling factor ξ ↙ v(N)∑

i→V εa(i)
▷ For accurate results

28: return ↽a(i) ↙ ξ · ↽a(i) for all i ↑ V

Myerson value based centrality

The Myerson value was introduced by Roger Myerson in 1977 [38], and it is an
allocation rule when players are connected by a network structure. By modifying the
calculation method of the Shapley value, Myerson takes into account connections in
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the network, thereby reflecting the influence of network structure on the cooperative
game. Consider a game where graph G is a tree, which consists on N nodes and
characteristic function is determined by the scheme proposed in [88]. Every direct
connection gives to coalition S a value r, where 0 ↘ r ↘ 1. Players also obtain
an impact from non-direct connections. This kind of impact will decrease with the
increase of the path length. The characteristic function is defined as follows [40]:

v(S) = a1r + a2r
2
+ · · ·+ akr

k
+ · · ·+ aLr

L
=

L∑

k=1

akr
k
, (28)

where L is a maximal distance between two nodes in the coalition; ak is the number
of paths of length k in this coalition; v(i) = 0, ≃i ↑ N.

Mazalov et al. in [89] proved that an allocation rule, that is, the Myerson
value for unweighted graphs:

Yi(v, g) =
φ1(i)

2
r +

φ2(i)

3
r
2
+ · · ·+ φL(i)

L+ 1
r
L
=

L∑

k=1

φk(i)

k + 1
r
k
, (29)

where φk(i) is a number of the paths of the length k including node i. The same
approach to define an allocation can be applied to weighted graphs by converting
the weight of the edge to the number of paths between two nodes, i.e. by converting
a weighted graph to a multigraph [40].

Approximated Myerson value

However, calculation of the Myerson value is also computationally expensive,
especially, for large networks. We can consider the rule of “six degrees separation”
[90], implementing the idea that any two persons in the world who do not know each
other only need a few intermediaries to establish a contact. Based on this idea, we
can reduce the computational expense by limiting the maximal depth L of nodes
with whom the node is connected. For a social network, the higher the density, the
lower intermediate nodes are needed to connect two nodes. We redefine L as follows:

L =






6, if D ↘ 0.2,

2, if 0.2 < D ↘ 0.3,

1, if D > 0.3,

(30)
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where D is the density of the network.
The algorithm for calculation of Myerson values in weighted graphs is pre-

sented in Algorithm 3. We use the same characteristic function as given by equa-
tion (29), but we cuto" the maximal depth to approximate the Myerson value given
by formula (30).

Algorithm 3 Calculation of the approximated Myerson value for weighted graph
Require: A weighted graph G(V,E,W ), discount factor r (default 0.5), boolean weight for con-

sidering edge weights (default True), boolean approximate for approximation (default True),

boolean scale for scaling (default False)

Ensure: Components of Myerson value Yi(v, g), i ↑ V

1: Yi(v, g) ↙ 0 for each i ↑ V ▷ Initialize Myerson values

2: if approximate then

3: L ↙






1, if density(G) > 0.3,

2, if density(G) > 0.2,

6, otherwise

▷ Adjust L based on density(G).

4: else
5: L ↙ |V |→ 1 ▷ Without approximation

6: end if
7: for all i ↑ V do
8: l2c ↙ Initialize a length->count map for paths through i

9: for all pairs (start, end) in V ⇑ V do
10: for all path in all simple paths from start to end with length ↘ L do
11: if node ↑ path then
12: length ↙ len(path)→ 1

13: if weight then
14: l2c[length] ↙ l2c[length] + min

(u,v)↑path
w(u, v)

15: else
16: l2c[length] ↙ l2c[length] + 1

17: end if
18: end if
19: end for
20: end for
21: for all (length, count) ↑ l2c do
22: count ↙ count/2 ▷ Correct for double counting

23: Yi(v, g) ↙ Yi(v, g) +

(
count · rlength

length+1



24: end for
25: end for
26: if scale then
27: Define ξ ↙ v(N)∑

i→V Yi(v,g)
▷ For more accurate results

28: return Yi(v, g) ↙ ξ · Yi(v, g) for all i ↑ V

29: else
30: return Yi(v, g) for all i ↑ V

31: end if
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Similarly to equation (27), we can also define the scaling factor ξ for the
approximated Myerson value as follows:

ξ =
v(N)∑

i↑V Yi(v, g)
. (31)

In both formulae (27) and (31), v(N) is used, and to calculate it for the Myer-
son value we need to count the number of paths for all lengths, i.e. a1, a2, . . . , aL. It
is much more computationally expensive than in the case of the Shapley value. But
after the ξ scaling, we obtain a more accurate approximation which will be shown
in Section 3.4.1.

3.4 Experiments

Network structure has a huge impact on key performance indicators (KPIs) of
opinion dynamics realized on this network. Therefore, we define several characteris-
tics of a network which, in our opinion, have most significant correlation with KPIs
of opinion dynamics. Our experiments are organized as follows: in Section 3.4.1 we
provide the series of experiments in which we calculated the centralities based on
approximated Shapley and Myerson values (realizations of Algorithms 2 and 3) for
the graphs with varying density. We analyze correlation between KPIs of opinion
dynamics and network properties in Section 3.4.2.

3.4.1 Centralities based on the Shapley and Myerson values

Due to the computational complexity of the Shapley value and Myerson value,
we run our experiments on networks composed by 20 nodes for a given density. We
create a network as follows: randomly and repeatedly take two di"erent nodes from
the set of nodes and add a connection between them until the density reaches a



88

desired value. We designed the following experiments to evaluate the performance
of the proposed centrality measures:

1. Shapley-value based centrality: The density of a network takes the values:
0.1, 0.2, . . . , 1.0. For each weighted or unweighted graph, we calculate the
exact Shapley value and an approximated Shapley value. We compare (i)
these two values and (ii) computation time for these two methods.

2. Myerson-value based centrality: The density of a network takes the val-
ues: 0.1, 0.11, . . . , 0.2.11 For each weighted or unweighted graph, we calculate
the exact Myerson value and an approximated Myerson value. We compare:
(i) these two values and (ii) computation time for these two methods. We
also make the series of experiments on networks composed by 10 nodes with
density from 0.05 to 1.0 to show e!ciency of our algorithm to approximate
the Myerson value.

3. Comparison with classical centrality measures: Based on the real social
network dataset “Zachary’s karate club”, we created a two-layer network by
adding di"erent internal network structures. We reduce a two-layer network
to a one-layer weighted network using opinion dynamics parameters by the
method described in Section 3.1. The most important nodes in the network
are nodes 0 (instructor # Mr Hi) and 33 (manager # John A). We define the
coe!cient of accuracy or simply accuracy of centrality measures as follows:

Ac =
|Top 2 nodes according to a centrality measure ′ {0, 33}|

2
·100%. (32)

The meaning of Ac is the percentage of important nodes (0 and 33) in the
top two nodes identified by considered centrality measures. We also compare
the accuracy Ac of the proposed centrality measures with the accuracy Ac of
classical centrality measures (betweenness and closeness centralities).

The results of this part of experiments are presented in Tables 16–23. In Ta-
ble 16 we provide the results for the graphs with 20 nodes and di"erent density (from
0.1 to 1.0), weighted and unweighted graphs. We compare the computation time
for the exact Shapley value (column “SV time”) and for an approximated Shapley
value (column “ASV time”). In Table 16 we also present a root mean square error
11We limit the density to the set {0.1, 0.11, . . . , 0.2} because even a small increase in density significantly increases

computation time. This makes the realization of the series of experiments quite complicated.
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for an approximated Shapley value (column “RMSE ASV”) and for the ratio of the
approximated Shapley value component to the sum of all its components (column
“RMSE ratio ASV”). The lower the value of RMSE, the more accurate approxima-
tion we obtain. We can make the following conclusions based on the results from
Table 16:

1. The computation time of an approximated Shapley value is much faster than
the time of the exact Shapley value (see columns “SV time” and “ASV time”).

2. The root mean square error of the approximated Shapley value is very small
(see column “RMSE ASV”), and root mean square error of the ratio is even
smaller than the first one (see column “RMSE ratio ASV”). The ratio here is
referred to the normalized values. The RMSE of ratio is the RMSE between
the exact normalized Shapley values and the approximated normalized Shapley
values. RMSE increases with an increase of the graph density because of the
sampling procedure.

3. The weighted graph introduces greater uncertainty in the sampling process
when graph density is high (∝ 0.7), leading to a slightly higher RMSE. How-
ever, even in the worst case (see graph “20-1.0” in Table 16), our algorithm
still demonstrates a high accuracy.

Table 16: Results on the Shapley value when ξ scaling factor is applied
Graph Weighted SV time ASV time RMSE ASV RMSE ratio ASV

20-0.1 True 7.2 · 102 2.2 · 10↑3 2.6 · 10↑22 5.5 · 10↑27

20-0.2 True 8.7 · 102 1.9 · 10↑2 3.1 · 10↑22 5.6 · 10↑27

20-0.3 True 1 · 103 1.5 · 10↑1 1.6 · 10↑22 1.2 · 10↑27

20-0.4 True 1.2 · 103 9.3 · 10↑1 1.7 · 10↑22 6.1 · 10↑28

20-0.5 True 1.3 · 103 2.2 · 100 7.1 · 10↑23 2 · 10↑28

20-0.6 True 1.5 · 103 1.9 · 101 7.7 · 10↑23 1.8 · 10↑28

20-0.7 True 1.6 · 103 4.7 · 101 3.3 · 10↑2 6 · 10↑8

20-0.8 True 1.7 · 103 1.7 · 102 2 · 100 2.9 · 10↑6

20-0.9 True 1.8 · 103 2.5 · 102 6.9 · 100 7.9 · 10↑6

20-1.0 True 1.9 · 103 3.2 · 102 9.9 · 100 9 · 10↑6

20-0.1 False 7.2 · 102 3.4 · 10↑3 4.5 · 10↑23 1.1 · 10↑26

20-0.2 False 8.8 · 102 1.6 · 10↑2 1.1 · 10↑22 7.8 · 10↑27

20-0.3 False 1 · 103 9.6 · 10↑2 1.1 · 10↑22 6.6 · 10↑27

20-0.4 False 1.2 · 103 5.5 · 10↑1 1.5 · 10↑22 1.6 · 10↑26

20-0.5 False 1.3 · 103 2.9 · 100 1.1 · 10↑22 8.6 · 10↑27

20-0.6 False 1.5 · 103 2.5 · 101 1.4 · 10↑22 9.4 · 10↑27

20-0.7 False 1.6 · 103 6.2 · 101 3.8 · 10↑4 2.1 · 10↑8

20-0.8 False 1.7 · 103 1.7 · 102 1.8 · 10↑3 7.7 · 10↑8

20-0.9 False 1.8 · 103 2.5 · 102 2 · 10↑3 6.9 · 10↑8

20-1.0 False 1.9 · 103 3.2 · 102 4.1 · 10↑21 8.6 · 10↑34

In Tables 17 and 18 we present the results on computation of the Myerson
value (exact and approximated) without and with scaling factor ξ defined by (31),
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respectively. In both tables we provide the results for the graphs with 20 nodes and
di"erent density (from 0.1 to 0.2), weighted and unweighted graphs. We compare
the computation time for the exact Myerson value (column “MV time”) and for
an approximated Myerson value (column “AMV time”). In these two tables we
also present a root mean square error for an approximated Myerson value (column
“RMSE AMV”) and for the ratio of the approximated Myerson value component
to the sum of all its components (column “RMSE ratio AMV”). Conclusions from
Tables 17 and 18 are

1. The computational complexity of the exact Myerson-value based centrality
grows rapidly with the increase of the network density (column “MV time”).

2. The root mean square error of an approximated Myerson value grows with
an increase of the network density (see column “RMSE AMV”), but the root
mean square error of the ratio is very small. The RMSE of the ratio means the
RMSE between the normalized approximated and normalized exact Myerson
values. Therefore, we can recommend to use an approximation of the Myerson
value as an approximated centrality measure.

3. If we estimate the e"ect of scaling factor ξ on the results, we can compare
“AMV time” in Tables 17 and 18, and conclude that without ξ the computation
time is much smaller, but the RMSE AMV is higher. While the RMSE ratio
AMV between Tables 17 and 18 are almost the same.

4. Comparing Tables 17 and 18, we cannot see a significant di"erence in the
results referred to weighted and unweighted graphs.

Next, we demonstrate the e!ciency of our algorithm to approximate the My-
erson value in high-density graphs. To do this, we examine graphs with 10 nodes and
with density from 0.05 to 1.0 with step 0.05, weighted and unweighted graphs. The
results of our experiments are presented in Tables 19 and 20 for the cases without
and with scaling factor, respectively.

By comparing the pairs of Tables 17 and 18, and Tables 19 and 20, we
can conclude that the scaling factor ξ has a very limited e"ect on reducing the
error of an approximated Myerson value and moreover using ξ significantly increases
computation time. But the RMSE of ratio is very small. Therefore, we could
recommend to use the Myerson-value based centrality approximation without scaling
factor ξ and better its ratio as an approximation of the Myerson value.
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Table 17: Results on the Myerson value without ξ scaling
Graph Weighted MV time AMV time RMSE AMV RMSE ratio AMV

20-0.1 True 1.03 · 10↑1 1.62 · 10↑1 4.37 · 10↑4 1.48 · 10↑8

20-0.11 True 1.91 · 10↑1 1.67 · 10↑1 8.75 · 10↑4 1.7 · 10↑8

20-0.12 True 4.17 · 10↑1 2.23 · 10↑1 1.54 · 10↑1 5.28 · 10↑7

20-0.13 True 1.02 · 100 3.56 · 10↑1 5.28 · 10↑1 8.15 · 10↑7

20-0.14 True 2.21 · 100 6.15 · 10↑1 2.14 · 100 1.93 · 10↑6

20-0.15 True 8.78 · 100 9.24 · 10↑1 1.89 · 101 4.3 · 10↑6

20-0.16 True 1.8 · 101 1.48 · 100 1.27 · 102 1.25 · 10↑5

20-0.17 True 2.87 · 101 2.14 · 100 4.06 · 102 3.24 · 10↑5

20-0.18 True 6.34 · 101 2.77 · 100 1.55 · 103 4.7 · 10↑5

20-0.19 True 1.45 · 102 3.58 · 100 4.82 · 103 8.66 · 10↑5

20-0.2 True 2.94 · 102 4.45 · 100 1.33 · 104 1.35 · 10↑4

20-0.1 False 3.3 · 10↑1 1.96 · 10↑1 1.12 · 10↑2 1.43 · 10↑6

20-0.11 False 3.45 · 10↑1 2.16 · 10↑1 1.73 · 10↑2 1.41 · 10↑6

20-0.12 False 4.87 · 10↑1 2.17 · 10↑1 3.43 · 10↑2 1.52 · 10↑6

20-0.13 False 1.37 · 100 3.79 · 10↑1 3.95 · 10↑1 5.73 · 10↑6

20-0.14 False 3.69 · 100 5.81 · 10↑1 2.71 · 100 1.53 · 10↑5

20-0.15 False 7.65 · 100 1.05 · 100 1.38 · 101 2.75 · 10↑5

20-0.16 False 1.71 · 101 1.38 · 100 5.94 · 101 4.19 · 10↑5

20-0.17 False 4.28 · 101 1.62 · 100 2.97 · 102 6.29 · 10↑5

20-0.18 False 8.25 · 101 1.88 · 100 8.04 · 102 6.73 · 10↑5

20-0.19 False 1.69 · 102 2.56 · 100 2.72 · 103 7.6 · 10↑5

20-0.2 False 3.66 · 102 3.57 · 100 8.75 · 103 1.31 · 10↑4

Table 18: Results on the Myerson value when ξ scaling is applied
Graph Weighted MV time AMV time RMSE AMV RMSE ratio AMV

20-0.1 True 1.23 · 10↑1 1.1 · 10↑1 1.98 · 10↑4 1.48 · 10↑8

20-0.11 True 1.57 · 10↑1 2.11 · 10↑1 3.21 · 10↑4 1.7 · 10↑8

20-0.12 True 4.53 · 10↑1 2.21 · 10↑1 1.55 · 10↑2 5.28 · 10↑7

20-0.13 True 9.1 · 10↑1 4.33 · 10↑1 3.15 · 10↑2 8.15 · 10↑7

20-0.14 True 2.09 · 100 6.7 · 10↑1 1.08 · 10↑1 1.93 · 10↑6

20-0.15 True 7.83 · 100 1.24 · 100 4.81 · 10↑1 4.3 · 10↑6

20-0.16 True 1.65 · 101 2.24 · 100 3.85 · 100 1.25 · 10↑5

20-0.17 True 2.63 · 101 3.28 · 100 2.36 · 101 3.24 · 10↑5

20-0.18 True 5.91 · 101 5.91 · 100 6.15 · 101 4.7 · 10↑5

20-0.19 True 1.41 · 102 1.15 · 101 2.07 · 102 8.66 · 10↑5

20-0.2 True 2.92 · 102 2.06 · 101 6.48 · 102 1.35 · 10↑4

20-0.1 False 2.75 · 10↑1 2.43 · 10↑1 1.59 · 10↑3 1.43 · 10↑6

20-0.11 False 3.64 · 10↑1 1.94 · 10↑1 1.81 · 10↑3 1.41 · 10↑6

20-0.12 False 4.56 · 10↑1 2.47 · 10↑1 2.65 · 10↑3 1.52 · 10↑6

20-0.13 False 1.34 · 100 4.13 · 10↑1 2.01 · 10↑2 5.73 · 10↑6

20-0.14 False 3.33 · 100 6.97 · 10↑1 1.18 · 10↑1 1.53 · 10↑5

20-0.15 False 7.17 · 100 1.29 · 100 5.64 · 10↑1 2.75 · 10↑5

20-0.16 False 1.55 · 101 2.01 · 100 1.92 · 100 4.19 · 10↑5

20-0.17 False 3.93 · 101 3.3 · 100 7.44 · 100 6.29 · 10↑5

20-0.18 False 7.78 · 101 5.58 · 100 1.6 · 101 6.73 · 10↑5

20-0.19 False 1.64 · 102 1.06 · 101 4.58 · 101 7.6 · 10↑5

20-0.2 False 3.43 · 102 1.99 · 101 2.06 · 102 1.31 · 10↑4
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Table 19: Results on the Myerson value without ξ scaling for networks with 10 nodes
Graph Weighted MV time AMV time RMSE AMV RMSE ratio AMV

10-0.05 True 1.24 · 10↑3 1.59 · 10↑2 0 · 100 0 · 100
10-0.1 True 1.79 · 10↑3 1.58 · 10↑3 0 · 100 0 · 100
10-0.15 True 1.27 · 10↑2 3.17 · 10↑3 0 · 100 0 · 100
10-0.2 True 7.33 · 10↑3 1.05 · 10↑2 9.65 · 10↑6 7.63 · 10↑10

10-0.25 True 1.49 · 10↑2 2.89 · 10↑3 3.27 · 101 1.64 · 10↑4

10-0.3 True 6.69 · 10↑2 3.35 · 10↑3 2.79 · 102 1.91 · 10↑4

10-0.35 True 1.17 · 10↑1 1.78 · 10↑3 1.85 · 103 5.12 · 10↑4

10-0.4 True 2.6 · 10↑1 1.2 · 10↑3 4.58 · 103 4.08 · 10↑4

10-0.45 True 5.53 · 10↑1 1.21 · 10↑3 1.05 · 104 6.26 · 10↑4

10-0.5 True 1.21 · 100 1.37 · 10↑3 1.56 · 104 5.53 · 10↑4

10-0.55 True 2.56 · 100 1.26 · 10↑3 3.92 · 104 4.49 · 10↑4

10-0.6 True 5.7 · 100 1.62 · 10↑3 1.11 · 105 6.17 · 10↑4

10-0.65 True 1.05 · 101 1.33 · 10↑3 2.31 · 105 7.47 · 10↑4

10-0.7 True 1.99 · 101 1.33 · 10↑3 5.19 · 105 6.84 · 10↑4

10-0.75 True 3.55 · 101 6.44 · 10↑3 1 · 106 5.96 · 10↑4

10-0.8 True 7.36 · 101 1.38 · 10↑3 3.42 · 106 5.9 · 10↑4

10-0.85 True 1.15 · 102 1.38 · 10↑3 8.11 · 106 3.76 · 10↑4

10-0.9 True 1.73 · 102 1.39 · 10↑3 1.63 · 107 3.92 · 10↑4

10-0.95 True 2.48 · 102 1.37 · 10↑3 2.74 · 107 3.7 · 10↑4

10-1.0 True 4.33 · 102 1.37 · 10↑3 7.31 · 107 2.79 · 10↑4

10-0.05 False 1.15 · 10↑3 1.06 · 10↑3 0 · 100 0 · 100
10-0.1 False 2.09 · 10↑3 1.99 · 10↑3 0 · 100 0 · 100
10-0.15 False 3.4 · 10↑3 2.84 · 10↑3 0 · 100 0 · 100
10-0.2 False 7.57 · 10↑3 1.08 · 10↑2 0 · 100 0 · 100
10-0.25 False 3.14 · 10↑2 8.37 · 10↑3 2.56 · 100 1.57 · 10↑4

10-0.3 False 3.12 · 10↑2 3.11 · 10↑3 8.85 · 100 9.04 · 10↑5

10-0.35 False 8.49 · 10↑2 1.13 · 10↑3 5.98 · 101 1.53 · 10↑4

10-0.4 False 2.18 · 10↑1 1.33 · 10↑3 2.28 · 102 1.29 · 10↑4

10-0.45 False 4.74 · 10↑1 1.16 · 10↑3 6.23 · 102 9.58 · 10↑5

10-0.5 False 9.61 · 10↑1 1.17 · 10↑3 1.81 · 103 8.71 · 10↑5

10-0.55 False 1.95 · 100 1.21 · 10↑3 4.91 · 103 7.4 · 10↑5

10-0.6 False 4.15 · 100 1.3 · 10↑3 1.97 · 104 4.98 · 10↑5

10-0.65 False 7.11 · 100 1.24 · 10↑3 4.79 · 104 5.33 · 10↑5

10-0.7 False 1.14 · 101 1.33 · 10↑3 1.07 · 105 9.37 · 10↑5

10-0.75 False 1.86 · 101 3.51 · 10↑3 2.46 · 105 1.6 · 10↑4

10-0.8 False 3.77 · 101 1.39 · 10↑3 8.53 · 105 1.07 · 10↑4

10-0.85 False 5.26 · 101 1.29 · 10↑3 1.73 · 106 1.35 · 10↑4

10-0.9 False 7.45 · 101 1.31 · 10↑3 3.64 · 106 9.85 · 10↑5

10-0.95 False 1.05 · 102 1.3 · 10↑3 7.74 · 106 4.85 · 10↑5

10-1.0 False 1.71 · 102 1.28 · 10↑3 2.16 · 107 0 · 100

In Table 16, the results for the weighted graph with density 1.0 show the
highest RMSE, and in Table 18 the results for the weighted graph with density 0.2

also show the highest RMSE. Therefore, we decide to carefully examine the high-
density case and examine the Shapley value for the weighted graph with density 1.0

and the Myerson value for the weighted graph with density 0.2. To make analysis,
we show the components of the exact and approximated Shapley values in Table 21
for the former graph and the exact and approximated Myerson values in Table 22 for
the latter graph. In these tables we provide a relative error which is calculated by
taking the di"erence between the approximated value and the exact value dividing
this di"erence by the exact value, that is, approximated value→exact value

exact value .
Analyzing Table 21, we can say that our algorithm provides a very accurate

approximation for the Shapley value such that only for two nodes (Nodes 5 and 19)
the absolute relative error is larger than 5%.
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Table 20: Results on the Myerson value when ξ scaling is applied for networks with
10 nodes

Graph Weighted MV time AMV time RMSE AMV RMSE ratio AMV

10-0.05 True 1.24 · 10↑3 1.22 · 10↑3 0 · 100 0 · 100
10-0.1 True 3.08 · 10↑3 1.99 · 10↑3 6.24 · 10↑32 0 · 100
10-0.15 True 4.67 · 10↑3 3.73 · 10↑3 0 · 100 0 · 100
10-0.2 True 1.2 · 10↑2 1.74 · 10↑2 3.25 · 10↑6 7.63 · 10↑10

10-0.25 True 1.46 · 10↑2 4.48 · 10↑3 1.67 · 100 1.64 · 10↑4

10-0.3 True 4.97 · 10↑2 8.24 · 10↑3 6.05 · 100 1.91 · 10↑4

10-0.35 True 1.05 · 10↑1 1.69 · 10↑2 3.5 · 101 5.12 · 10↑4

10-0.4 True 2.57 · 10↑1 2.63 · 10↑2 6.41 · 101 4.08 · 10↑4

10-0.45 True 5.52 · 10↑1 7.07 · 10↑2 2.14 · 102 6.26 · 10↑4

10-0.5 True 1.18 · 100 1.27 · 10↑1 2.91 · 102 5.53 · 10↑4

10-0.55 True 2.5 · 100 3.8 · 10↑1 5.78 · 102 4.49 · 10↑4

10-0.6 True 5.81 · 100 5.76 · 10↑1 2.15 · 103 6.17 · 10↑4

10-0.65 True 1.06 · 101 1.24 · 100 5.36 · 103 7.47 · 10↑4

10-0.7 True 1.98 · 101 2.14 · 100 1.12 · 104 6.84 · 10↑4

10-0.75 True 3.57 · 101 3.66 · 100 1.9 · 104 5.96 · 10↑4

10-0.8 True 7.43 · 101 6.77 · 100 6.41 · 104 5.9 · 10↑4

10-0.85 True 1.16 · 102 1.11 · 101 9.71 · 104 3.76 · 10↑4

10-0.9 True 1.75 · 102 1.71 · 101 2.03 · 105 3.92 · 10↑4

10-0.95 True 2.48 · 102 2.45 · 101 3.22 · 105 3.7 · 10↑4

10-1.0 True 4.33 · 102 4.33 · 101 6.49 · 105 2.79 · 10↑4

10-0.05 False 1.23 · 10↑3 1.29 · 10↑3 0 · 100 0 · 100
10-0.1 False 2.28 · 10↑3 2.55 · 10↑3 0 · 100 0 · 100
10-0.15 False 4.91 · 10↑3 1.73 · 10↑2 0 · 100 0 · 100
10-0.2 False 2.15 · 10↑2 7.96 · 10↑3 2.16 · 10↑31 2.65 · 10↑33

10-0.25 False 1.64 · 10↑2 9.18 · 10↑3 5.35 · 10↑2 1.57 · 10↑4

10-0.3 False 4.56 · 10↑2 6.48 · 10↑3 7.23 · 10↑2 9.04 · 10↑5

10-0.35 False 6.45 · 10↑2 6.84 · 10↑3 3.23 · 10↑1 1.53 · 10↑4

10-0.4 False 2.43 · 10↑1 1.99 · 10↑2 1.02 · 100 1.29 · 10↑4

10-0.45 False 4.54 · 10↑1 3.73 · 10↑2 2 · 100 9.58 · 10↑5

10-0.5 False 9.12 · 10↑1 8.23 · 10↑2 5.1 · 100 8.71 · 10↑5

10-0.55 False 1.86 · 100 2.11 · 10↑1 1.15 · 101 7.4 · 10↑5

10-0.6 False 4.29 · 100 3.61 · 10↑1 3.03 · 101 4.98 · 10↑5

10-0.65 False 7.36 · 100 6.8 · 10↑1 7.83 · 101 5.33 · 10↑5

10-0.7 False 1.14 · 101 1.51 · 100 3.05 · 102 9.37 · 10↑5

10-0.75 False 1.94 · 101 2.03 · 100 1.23 · 103 1.6 · 10↑4

10-0.8 False 3.74 · 101 3.41 · 100 2.9 · 103 1.07 · 10↑4

10-0.85 False 5.27 · 101 5.04 · 100 7.35 · 103 1.35 · 10↑4

10-0.9 False 7.45 · 101 6.5 · 100 1.13 · 104 9.85 · 10↑5

10-0.95 False 1.05 · 102 9.53 · 100 1.19 · 104 4.85 · 10↑5

10-1.0 False 1.71 · 102 1.63 · 101 0 · 100 0 · 100

Analyzing the results in Table 22, we can find that some nodes (Nodes 1,
2, 8, and 9) have a high relative error in approximation. The reason is that in
our algorithm we count the number of paths not for all lengths (length ↘ L).
By increasing L we can obtain a more accurate result, but it will increase the
computational complexity.

The last item in analysis of this series of experiments is to compare the ac-
curacy defined by (32) for the approximated Shapley and Myerson values, and for
the classical centrality measures (betweenness and closeness). We summarize these
results in Table 23. Both centrality measures proposed in this paper have a higher
accuracy than the classical centrality measures. In particular, an approximated
Shapley-value based centrality can identify the most important nodes with 100%
accuracy for all examined graphs. For the approximated Myerson value based cen-
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Table 21: Exact Shapley value vs an approximated Shapley value for “graph-1.0”
Nodes SV SV ratio ASV ASV ratio Rel. error ASV/SV

0 52.0000 4.96% 53.3579 5.09% 2.61%
1 46.5000 4.43% 46.5090 4.43% 1.83 · 10↑2

%

2 50.5000 4.81% 49.0574 4.68% ↓2.86%
3 53.0000 5.05% 53.6764 5.12% 1.28%
4 50.5000 4.81% 50.0131 4.77% ↓0.96%
5 50.0000 4.77% 54.3135 5.18% 8.63%
6 50.0000 4.77% 51.2873 4.89% 2.57%
7 63.0000 6.01% 62.5960 5.97% ↓0.64%
8 55.0000 5.24% 53.3579 5.09% ↓2.98%
9 44.0000 4.19% 44.4384 4.24% 0.99%
10 49.5000 4.72% 50.3316 4.80% 1.68%
11 51.0000 4.86% 51.6058 4.92% 1.19%
12 64.0000 6.10% 62.9145 6.00% ↓1.70%
13 49.0000 4.67% 49.0574 4.68% 0.12%
14 48.0000 4.58% 47.9425 4.57% ↓0.12%
15 63.5000 6.05% 63.0738 6.01% ↓0.67%
16 54.0000 5.15% 54.4728 5.19% 0.87%
17 57.0000 5.43% 57.0213 5.44% 3.66 · 10↑2

%

18 53.0000 5.05% 52.0837 4.97% ↓1.73%
19 45.5000 4.34% 41.8899 3.99% ↓7.93%

Table 22: Exact Myerson value vs an approximated Myerson value for “graph-0.2”
Nodes MV MV ratio AMV AMV ratio Rel. error AMV/MV

0 143.2672 6.53% 144.0222 6.56% 0.53%
1 68.7002 3.13% 49.3370 2.25% ↓28.18%
2 68.0767 3.10% 81.6335 3.72% 19.91%
3 104.6799 4.77% 109.9763 5.01% 5.06%
4 164.0880 7.48% 157.1853 7.16% ↓4.21%
5 114.6388 5.22% 106.1499 4.84% ↓7.40%
6 16.7705 0.76% 17.8578 0.81% 6.48%
7 228.8444 10.43% 251.4307 11.46% 9.87%
8 33.7682 1.54% 24.3128 1.11% ↓28.00%
9 36.1832 1.65% 28.1827 1.28% ↓22.11%
10 184.1740 8.39% 192.6532 8.78% 4.60%
11 79.7901 3.64% 69.8602 3.18% ↓12.45%
12 56.7906 2.59% 53.0066 2.42% ↓6.66%
13 48.8678 2.23% 46.0495 2.10% ↓5.77%
14 107.3196 4.89% 93.9069 4.28% ↓12.50%
15 63.4039 2.89% 66.5861 3.03% 5.02%
16 186.6146 8.50% 200.2029 9.12% 7.28%
17 229.3778 10.45% 258.1879 11.77% 12.56%
18 162.6473 7.41% 152.4821 6.95% ↓6.25%
19 96.4034 4.39% 91.3826 4.16% ↓5.21%
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trality, it has 100% accuracy for all cases except a case of a network “karate-twoStar-
34”, for which the accuracy is 50%. The mistake in prediction of one of the most
important nodes is that another node (Node 17) is the central one in the inter-
nal layer by construction. For the betweenness centrality, the accuracy is zero for
high-density networks. Closeness centrality also has the worst accuracy for these
networks.

Table 23: Accuracy defined by (32) for the proposed in this paper and classical
centrality measures

graph \ accuracy betweenness closeness Shapley value Myerson value

karate-34 100% 50% 100% 100%
karate-empty-34 100% 50% 100% 100%
karate-karate-34 100% 50% 100% 100%
karate-star-34 100% 100% 100% 100%

karate-twoStar-34 100% 50% 100% 50%
karate-cycle-34 100% 100% 100% 100%

karate-twoClique-34 0% 0% 100% 100%
karate-complete-34 0% 0% 100% 100%

3.4.2 Experiments to examine correlation of network
properties and opinion dynamics

We have done simulations of opinion dynamics in one-layer Zachary’s karate
club network following BVM and two-layer network following GCVM with Zachary’s
karate club network being an external layer and di"erent internal network structures.
There is a list of internal layers we use in our analysis:

1. karate: Zachary’s karate club network;

2. star: star structure with node 0 being the center;

3. two-star: two central nodes 0 and 17, nodes 1–16 are linked with node 0,
nodes 18–33 are linked with node 17. Moreover, nodes 0 and 17 are linked;
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4. cycle: node 0 is linked with node 1, node 1 is linked with node 2, and so on.
Finally, node 33 is linked with node 0;

5. two-clique: nodes 0–16 belong to the first clique, nodes 17–33 # to the second
clique, and these two cliques are connected through link between nodes 0 and
17;

6. complete: all nodes are linked with each other.

We start with simulations of opinion dynamics of BVM for one-layer network,
and then CVM and GCVM for two-layer networks implementing di"erent internal
structures and examine their a"ect on consensus time and winning rate. Network
properties (in this work, centrality measures) will also change with changes of the
network structure.

We describe the results of our experiments:

• Fig. 26a shows how internal average shortest path dI varies depending on the
network structure.12

• Fig. 26b shows how internal density varies depending on the network structure.
By comparing Fig. 26a and 26b, we can notice that the internal density DI

and internal average shortest path dI are negatively correlated.

• Fig. 27 shows di"erent centralities for Nodes 0 and 33 for di"erent network
structures. In the left part of Fig. 27, we present the betweenness centrality,
closeness centrality, approximated Shapley value, and approximated Myerson
value for Nodes 0 and 33 on the simplified one-layer weighted network with
weights calculated by formula (11). In the right part of Fig. 27, we present
the group degree centrality, group closeness centrality, group betweenness cen-
trality, and two di"erent random walk centralities for the two-layer network
with di"erent internal structures. By comparing the centrality trend of Node
0 and Node 33 in the left and right parts of Fig. 27, respectively, we can ob-
serve that both have a similar trend, and this result demonstrates the validity
of our approach of simplifying the two-layer network to a one-layer weighted
network.

12“Karate-34” and “karate-empty-34” refer to a one-layer Zachary’s karate club network and to a two-layer network
with Zachary’s karate club network in external layer and empty internal layer respectively, i.e. dI does not exist
for these two structures, in particular, it is equal to infinity. But in Fig. 26a, we replace infinity by number 99.
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• Fig. 28 shows how KPIs vary with di"erent network structures. Looking at
Fig. 27, we may notice that some centralities trend of Node 33 are very similar
to the trend in Fig. 26a. Fig. 26b also demonstrates the similar trend as in
Fig. 28b.

• Fig. 28a shows that network structure has a great impact on winning rate.

• From Fig. 28b and 26b, we can notice that there exists a relationship between
internal density DI and consensus time Tcons. Networks with higher density,
like “karate-complete-34”, take more time to reach consensus, while networks
with less density, like “karate-empty-34”, reach consensus faster. This can be
explained by the fact that networks with higher density have more connections
which makes it more di!cult for a single opinion to dominate quickly.

The main conclusions from the above results are: (i) there is a negative corre-
lation between internal average shortest path dI and both internal density DI and
consensus time Tcons, (ii) the approach of simplifying the two-layer network into a
one-layer weighted network is valid.
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Figure 26: Internal average shortest path and density for di"erent network structures

Our next step is to examine dependence of network structure and KPIs of
opinion dynamics. To do this, we conducted correlation tests on the above obser-
vation results by SciPy [57, 58]. We calculated three coe!cients for each pair of
characteristics: Pearson [59], Kendall [91] Spearman [92] correlation coe!cients.
They are presented in Table 24, where ∞, ∞∞, ∞ ∞ ∞ represent a level of significance
0.05, 0.01, 0.001 of the correlation coe!cient, respectively.13

13We choose node 33 as the input for centrality. Actually, if we choose another node as an input, the conclusions
are still valid.
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We can make several conclusions from Table 24:

1. High positive significant correlation: (i) The internal density DI exhibits a
very strong highly significant positive correlation with consensus time across
all correlation coe!cients (Pearson, Kendall, and Spearman), they all are
larger than 0.95. This indicates that when DI increases, consensus time Tcons

significantly increases; (ii) The internal average shortest path dI is signifi-
cantly positively correlated with most centrality measures which is confirmed
by Kendall and Spearman correlation coe!cients, they are significant.

2. Negative significant correlation: Tcons shows strong and significant negative
correlation with network centrality measures like Betweenness and Close-
ness, especially with Closeness (with Pearson correlation coe!cient equal to
→0.928). So we can conclude that higher centrality scores are associated with
shorter consensus time Tcons, which is expected.

3. Variability in correlations: Di"erent metrics show varying levels of correlation
strength across the Pearson, Kendall, and Spearman correlation coe!cients.
This variability indicates that the strength and significance of correlations can
depend on the correlation method used, likely influenced by the underlying
data distributions.

To sum up, Table 24 highlights significant relationships between specific net-
work properties and characteristics of opinion dynamics like consensus time. Cen-
trality of authoritative nodes and network density play a crucial role for consensus
time.
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Table 24: Correlation coe!cients

Pearson Kendall Spearman

dI vs Betweenness 0.414 0.654* 0.810*
dI vs Closeness 0.231 0.192 0.270
dI vs Shapley value 0.363 0.618* 0.766*
dI vs Myerson value 0.548 0.808** 0.908**
dI vs Group betweenness 0.366 0.185 0.157
dI vs Group closeness 0.408 0.333 0.614
dI vs Group degree 0.610 0.830** 0.933***
dI vs Random walk occupation 0.475 0.691* 0.826*
dI vs Random walk closeness 0.553 0.691* 0.826*
dI vs Random walk betweenness 0.161 0.618* 0.778*
Tcons vs Betweenness -0.841** -0.491 -0.537
Tcons vs Closeness -0.928*** -0.340 -0.464
Tcons vs Shapley value -0.872** -0.286 -0.452
Tcons vs Myerson value -0.791* -0.491 -0.659
Tcons vs Group betweenness 0.407 0.255 0.299
Tcons vs Group closeness -0.291 0.109 0.036
Tcons vs Group degree -0.807* -0.593* -0.771*
Tcons vs Random walk occupation -0.785* -0.429 -0.548
Tcons vs Random walk closeness -0.834* -0.357 -0.524
Tcons vs Random walk betweenness -0.424 -0.500 -0.571
DI vs Tcons 0.983*** 0.964** 0.988***

3.5 Conclusion to Chapter 3

In this chapter, we examined the correlation of several characteristics of opin-
ion dynamics (including BVM, CVM, and GCVM) realized on two-layer networks
with characteristics of these networks. As a network in one layer we consider a
Zachary’s karate club. We examined how internal network structure a"ects consen-
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sus time and winning rate, and if these key performance indicators correlate with
network centrality measures.

We proposed two fast and accurate algorithms to calculate centrality measures
based on game-theoretic approach. Our algorithms can e!ciently approximate the
theoretical values of these measures for the networks, for which exact values are com-
putationally di!cult to find. Both of our algorithms can identify the most important
nodes in the network, which is tested on di"erent examples. The ideas of finding
approximated centrality measures in the graphs implemented in our algorithms can
be easily transferred to other fields, such as explainable artificial intelligence.
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Chapter 4. ShapG: new feature importance
method based on the Shapley value

In this chapter, we introduce one of the practical application of the developed
centrality measures in Chapter 3 # explainable artificial intelligence. We consider
the features in the machine learning models as nodes in a graph and consider cen-
trality as feature importance. Based on the approximation algorithm of the Shapley
value proposed in Chapter 3, we develop a new XAI method called ShapG. Most of
results presented in this chapter are published in paper [52].

4.1 Explainable Artificial Intelligence (XAI)

methods

In a general formulation, we assume that there is a sample of observations
of features X1, . . . , XM which are used to construct a model f(X1, . . . , XM) to
explain/predict/classify a target variable Y . Due to nontransparency of black-box
models in data analysis, the functional form of f is not known and there is a crucial
requirement to estimate features importance in AI models applied for tabular data.
There are three most popular explainable AI methods: feature importance, LIME
(Local Interpretable Model-agnostic Explanations), and SHAP (SHapley Additive
exPlanations). We do not describe them here but provide corresponding references
where these methods are introduced or well described.

We use following methods in comparison with our novel XAI method described
in Section 4.2.2:

• Feature Importance: Feature importance is a built-in method applied to
tree models such as decision trees, random forests, gradient boosting trees, etc.
When constructing a tree model, the algorithm automatically calculates the
contribution of each feature to the model’s prediction measuring the impact
of each feature on the predicted outcome and evaluating its importance [93].
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• Permutation Feature Importance: Permutation feature importance, a
method for evaluating the importance of features, is proposed in [94]. If a
feature is important, then the model performance will be greatly reduced
when randomly shu$ed, while if a feature is unimportant, then it will have
very little impact on the model performance when it is randomly shu$ed.

• LIME: It is a model-agnostic explanation method proposed in [47] and used to
explain importance of variables in predictions of machine learning models [95].
The method is called agnostic if it is not specifically related to one particular
machine learning method but can be applied to most of machine learning
models.

• SHAP (SHapley Additive exPlanations): It is an explainable method
developed based on cooperative game theory and proposed in [48]. SHAP
provides a model-agnostic explanation mechanism that can theoretically be
applied to any machine learning model.

• KernelSHAP: The method is based on LIME and the Shapley value. The
method is using the following steps to simplify calculations: (i) generation
of a random number of samples of features, (ii) defining the sample data
for each subset of features in a special way, (iii) calculation of weights for
each subset of features, and (iv) solution of a specially defined weighted least
square optimization problem to find the vector of features importance, that
is, an approximated Shapley value.

• Sampling SHAP: It computes Shapley values under the assumption of fea-
ture independence and it is an extension of the algorithm proposed in [96]. The
calculations are based on a well-known alternative formulation of the Shapley
value [97].
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4.2 ShapG: a novel XAI method

4.2.1 The Shapley value

The cooperative game is defined by (M, v), where M = {1, . . . ,M} is the
set of players14 and v : 2

M ↔ R is a characteristic function defining a “strength” of
any coalition of players that is a subset of M, i.e., for any coalition or collection of
players S ∈ M, S = |S|. The value v(S) represents the payo" or power of coalition
S. One of the main problems which the theory of cooperative games is solving is
to find a “fair” allocation of the total payo" of the grand coalition v(M) among its
members. One imputation was proposed by Shapley [98] to allocate v(M), and it
is a vector ω = (↽1, . . . ,↽M), where ↽i is a payo" (part of v(M)) to player i ↑ M
defined by

↽i =

∑

S:S∈M\{i}

(M → S → 1)!S!

M !
(v(S ⇒ {i})→ v(S)) , (33)

where (v(S ⇒ {i})→ v(S)) is a marginal contribution of player i if he joins coalition
S.

The vector with the components defined by (33) is called the Shapley value
and it is a unique vector satisfying four axioms (e!ciency, symmetry, null player,
and additivity). The e!ciency axiom means that the sum of the components of the
Shapley value is equal to the payo" of grand coalition M, i.e.

∑
i↑M ↽i = v(M).

We also provide a probabilistic interpretation (see [99]) of the Shapley value
to better understanding why this vector can be applied to measure the feature
importance in complex machine learning models. Consider the i-th component of
the Shapley value defined by (33). Player i gets the payo" (v(S ⇒ {i})→ v(S)) when
he joins to the randomly formed coalition S : S ∈ M\ {i}. The probability that
coalition S containing S players is formed is equal to 1

M

(M→1

S

)
. It is assumed that

all coalition S’s sizes from 0 to M → 1 are equally probable and for a given coalition
size S, the subsets of S players are also equally probable. Then the value ↽i given
by (33) is player i’s expected payo" in such a probabilistic scheme.

14In the problem of measuring features importance, a feature is considered as a player in the game, so we use the
same notation M for the number of players and number of features.
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To make a connection between the Shapley value and the vector of feature
importance, we can associate the set of players with the set of features and the
characteristic function with the some quantitative characteristic of the prediction
made by a machine learning model using subset of features. Then, the di"erence
(v(S ⇒ {i})→ v(S)) can be interpreted as a contribution or payo" in the prediction
quality if we add feature i to the subset of features S. The expected value of such
payo" is associated with feature i’s importance in a testing prediction ML model.

The main idea described in this section is borrowed from the theory of coop-
erative games and implemented in the SHAP method, but due to the complexity
of the Shapley value calculation by formula (33) because the number of features
and complexity of a prediction model f , the algorithms such as KernelSHAP and
SamplingSHAP are proposed to approximate the Shapley value by reduction of the
number of calculations [48,100].

4.2.2 ShapG (explanations based on the Shapley value for
graphs)

We describe a new XAI method called ShapG to calculate the feature im-
portance in machine learning models based on the Shapley value defined on an
undirected weighted graph constructed in a special way.

The Shapley value for undirected weighted graphs

The calculation of the Shapley value for an undirected weighted graph can be
divided into following steps:

1. We define the undirected weighted graph G = (M, E), where M is the set of
nodes which are associated with features from set M = {1, . . . ,M} and the
set of edges E without loops. The weight of an edge (j, k), j ⇓= k, is equal to
the Pearson correlation coe!cient W (j, k) between features j and k calculated
by a given sample.

2. For any subset of features S ∈ M we define subgraph GS of graph G.
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3. For any subset of features S ∈ M, we define the value of function v as
follows:15

v(S) =
∑

{j,k}↖GS

W (j, k). (34)

4. We calculate the Shapley value by formula (33). As a result, the algorithm
gives the Shapley value centrality for each node (feature).

Since the set of features M may be large, we propose an approach for ap-
proximating the Shapley value with the high accuracy presented in [51], and the
proposed method is based on calculation of weights of the edges and function (34),
where S is a subset of features from set M, and GS is the subgraph induced by S.
With a very minor modification, we can apply this approach to define a new XAI
method presented in the next section.

Description and algorithm of the ShapG method

The ShapG method can be divided into following steps:

1. We define an undirected weighted graph G = (M, E), where M is the set
of nodes which are associated with the features M = {1, . . . ,M} in the
prediction model and E is the set of all possible edges without loops, i.e.
E = {(i, j) : i ↑ M, j ↑ M, i ⇓= j} is a complete graph without loops. The
weight of an edge (j, k), j ⇓= k, is equal to the Pearson correlation coe!cient
W (j, k) between features j and k calculated on a given sample.

2. The matrix of weights W = {W (j, k)}(j,k)↑E is usually a very dense matrix,
therefore, we need to reduce the density of graph G to reduce the number
of further calculations. We implement the idea of keeping all features of the
dataset while minimizing the number of edges in the graph to reduce the
density. The corresponding method is realized in Algorithm 4. The idea is
straightforward: we construct graph G

↓ starting from the empty graph by it-
eratively selecting the edges with largest Pearson correlation coe!cients given
in matrix W , and adding these edges into graph G

↓ ensuring each node is
included in G

↓ at least once and graph G
↓ is a connected graph (the latter

15The characteristic function (34) was proposed in the paper [39], the authors consider a cooperative game where
the characteristic function is defined by the group degree centrality [77] of each coalition [36].
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condition is a stopping rule in Algorithm 4). The output of Algorithm 4 is a
new graph G

↓. In the following steps, we do not use matrix of weights W .16

3. In graph G
↓, we define subgraph G

↓
S for any subset of features S ∈ M.

4. We define characteristic function f(S) assigning the R
2 score (for regression

models) or F1 score (for classification models) for any subset of features S:

v(S) = f(S). (35)

The characteristic function used for XAI can be defined by (35), where f(S)
is calculated as a prediction given by a ML model trained by only features
from subset S. For our purpose, we can use R

2 or F1 score as a measure of
“power” of subset S.

5. We calculate the Shapley value by formula (33). We use Algorithm 5 to find
values of the Shapley value using exact formula (33). If the number of features
is large, we use Algorithm 6 to find the approximated Shapley value.

Algorithm 4 Data preprocessing for ShapG method
Require: Dataset with M features

Ensure: The adjacency matrix A ↑ RM↔M
.

1: Compute the Pearson correlation matrix W for all features. ▷ This is an initial matrix of

weights for graph G

2: Initialize the adjacency matrix A with zero matrix.

3: E ↙ List of tuples (i, j,W (i, j)), where i < j.

4: E ↙ Sort E by |W (i, j)| in descending order.

5: Initialize index k = 0

6: while G
↗
is not connected do ▷ G

↗
represented by A

7: i, j, weight = E [k]
8: A(i, j) ↙ 1

9: A(j, i) ↙ 1

10: k ↙ k + 1

11: end while
return The adjacency matrix A to represent the feature graph.

16We only use weights to reduce graph G to G↑, we do not use it to calculate the Shapley value.
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The Algorithm 5 describes the calculation of the Shapley value of features
1, . . . ,M based on characteristic function defined by (35) following the steps de-
scribed above.17

Algorithm 5 Calculation of the Shapley Value based on graph G
↓

Require: A graph G
↗
(M, E) with M = |M| nodes

Ensure: Shapley value component ↽(i) for each node i ↑ M
1: for all nodes i ↑ M do
2: Initialize ↽(i) ↙ 0

3: end for
4: for all nodes i ↑ M do
5: for all subsets S ↖ M\ {i} do
6: Compute v(S) ↙ f(S)
7: Compute v(S ⇒ {i}) ↙ f(S ⇒ {i})
8: !v(S, i) ↙ v(S ⇒ {i})→ v(S)
9: coe! ↙ S!·(M↓S↓1)!

M !
10: ↽(i) ↙ ↽(i) + coe! ·!v(S, i)
11: end for
12: end for

return ↽(i) for all i ↑ M

However, the Shapley value is pretty computationally expensive, especially,
for a large number of features and consequently large number of feature subsets.
Therefore, we provide a modified algorithm based on the fact that an influence on a
particular node from other nodes is decreasing with an increase of the path length
connecting them. Algorithm 6 can be used instead of Algorithm 5 having G

↓ as an
input. Algorithm 6 implements the following ideas to speed up the calculation of
the Shapley value:

1. Depth limitation: By limiting the depth of the reachable nodes considered,
the number of subsets that need to be considered is reduced.

We set parameter dmax which is the depth in the graph for any node i ↑ M
to form the set of reachable nodes. Define ⇀(i, dmax) as the set of reachable
nodes of node i up to depth dmax excluding node i. Then we calculate the
Shapley value of a node/feature i based on ⇀(i, dmax) by equation (25), where
⇁ =

|ε(i,dmax)|+1

m+1
is a scaling factor, and m is the maximal number of reachable

nodes considered.

17For this algorithm, it’s not necessary to reduce the graph density, because regardless of the structure of the
graph, Algorithm 5 always needs to traverse all possible coalitions. Algorithm 5 needs to iterate for all possible
coalitions, so for graph G and graph G↑, the number of iterations is the same. For Algorithm 6, we do not
need to consider all the coalitions, but only any node and its reachable nodes. Therefore, Algorithm 5 is graph
independent, but Algorithm 6 is graph dependent.
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2. Local subset iteration: Iterating over subsets only within the reachable nodes,
rather than the entire graph, decreases the number of iterations. To be specific,
we calculate only the marginal contribution of the current node to its reachable
nodes from set ⇀(i, dmax), where dmax is set (see Item 1).

In Algorithm 6, we use formula (35) to define the values of the characteristic
function, but we limit the depth of the reachable nodes considered (Item 2)
to reduce the number of calculations.

3. Sampling from reachable nodes : For a large number of reachable nodes, com-
putational complexity can be reduced by random sampling, thereby decreasing
the number of subsets iterated over.

When |⇀(i, dmax)| ∝ m, we choose a random sample of m nodes from the
set ⇀(i, dmax) several times and calculate the Shapley value based on these
samples. The sampling time H|ε(i,dmax)|,m is given by formula (26). The value
H|ε(i,dmax)|,m is the mathematical expectation of the number of samples each
time collecting m nodes from the set ⇀(i, dmax) until all reachable nodes are
collected.18 As shown in Algorithm 6, we repeat sampling process H|ε(i,dmax)|,m

times and then take the average value of the Shapley values.

Items 1–3 from this list reduce the number of calculations and the compu-
tational complexity of an algorithm. Based on these three items, the modified
Algorithm 6 of the ShapG19 method is presented.

18This probabilistic scenario is known as a generalized coupon collector’s problem, which was introduced and
examined in [87].

19The corresponding code for ShapG can be found in the GitHub repository at https://github.com/vectorsss/
shapG.



110

Algorithm 6 Approximated Shapley Value based on graph of features
Require: A graph G

↗
= (M, E), depth limit dmax, maximal size m of the set of reachable con-

sidered

Ensure: Shapley value ↽a(i) for each node i ↑ M
1: Initialize ↽(i)a ↙ 0 for each i ↑ M
2: for i ↑ M do
3: ⇀(i, dmax) ↙ Calculate or retrieve all reachable nodes of i up to depth dmax

4: if |⇀(i, dmax)| < m then
5: for each subset S ↖ ⇀(i, dmax) \ {i} do
6: Compute v(S) ↙ f(S)
7: Compute v(S ⇒ {i}) ↙ f(S ⇒ {i})
8: !v(S, i) ↙ v(S ⇒ {i})→ v(S)
9: ↽a(i) ↙ ↽a(i) +!v(S, i)

10: end for
11: coe! ↙ 1

2|ω(i,dmax)|

12: ↽a(i) ↙ ↽a(i) · coe!, normalize ↽a(i) based on the number of subsets

13: else
14: Pick up m nodes randomly from ⇀(i, dmax) and repeat H|ω(i,dmax)|,m times

15: for i = 1 to H|ω(i,dmax)|,m do
16: sreachable ↙ Randomly select a sample of m nodes from ⇀(i, dmax),

17: for each subset S ↖ sreachable \ {i} do
18: Calculate v(S) and v(S ⇒ {i}) as before

19: !v(S, i) ↙ v(S ⇒ {i})→ v(S)
20: ↽a(i) ↙ ↽a(i) +!v(S, i)
21: end for
22: end for
23: coe! ↙ 1/2

|ω(i,dmax)|/H|ω(i,dmax)|,m · |ω(i,dmax)|+1
m+1

24: ↽a(i) ↙ ↽a(i) · coe!

25: end if
26: end for
27: return ↽a(i) for all i ↑ M
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4.3 Experiments

4.3.1 Description of datasets

To demonstrate the work of our XAI method ShapG, we consider two datasets
to construct the prediction models: (i) the “housing price” dataset for regression
prediction, and (ii) the “H1N1 flu vaccine” dataset for classification prediction.

We briefly describe datasets:

1. The “housing price” dataset was collected by the U.S. Census Bureau for hous-
ing information in the Boston, Massachusetts area. The dataset contains 13
features including “per capita crime rate by town”, “average number of rooms
per dwelling”, and “lower status of the population”, as well as a target variable,
that is, the “median value of owner-occupied homes.”

2. The “H1N1 flu vaccine” dataset is provided by the National Center for Health
Statistics and borrowed from the DrivenData website. The dataset contains
35 features including an “individual’s age”, “gender”, “education level”, and
“knowledge of the H1N1 flu vaccine”, as well as a target variable, that is, a
binary value of whether or not an individual received the H1N1 flu vaccine.

These two datasets are used for di"erent prediction tasks, but they are both
modeled and predicted by machine learning algorithms. For the regression task, we
use R

2 to define the characteristic function (35) in our ShapG XAI method, while
for classification task, we use F1 score to define the values of characteristic function
(35).

We should mention that the “housing price” dataset has much less number of
features, than the “H1N1 flu vaccine” dataset. We will compare our ShapG method
with other XAI methods not only quantitatively comparing their explanations but
also comparing running time. Such a comparison helps to evaluate e!ciency of
di"erent XAI methods in processing large-scale data.
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4.3.2 Preprocessing data for ShapG

We follow Algorithm 4 to create graph G
↓ based on the original complete graph

connecting nodes representing features. Algorithm 4 starts from the empty graph
and consequently adds the edges, these are the pairs of features with the strongest
correlation coe!cients. It stops when all features are connected (graph G

↓ should
be connected), ensuring that the feature graph has important structural informa-
tion. Figures 29 and 30 represent the feature correlation coe!cients heatmaps for
the “housing price” and “H1N1” datasets, respectively. On both figures, figure (a)
shows the original correlation coe!cient heatmap, and figure (b) # the heatmap
of correlation coe!cients between features in the reduced graph G

↓ computed by
Algorithm 4.

We highlight that we use Algorithm 4 to reduce the number of edges while
preserving all features, thus ignoring “unimportant” relationships between features
when constructing graph G

↓. This will reduce the number of iterations to compute
the components of the Shapley value measuring importance of the features.

(a) graph G with matrix of weights W (b) graph G↓
with matrix of weights W (see Algorithm 4)

Figure 29: Heatmap of Pearson correlation coe!cients for the “housing price” dataset

The original undirected graph G with the nodes representing features of the
“housing price” (“H1N1”) dataset is given in Figure 31a (Figure 32a), while Figure
31b (Figure 32b) shows the undirected graph G

↓ calculated by Algorithm 4. So,
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(a) graph G with matrix of weights W (b) graph G↓
with matrix of weights W (see Algorithm 4)

Figure 30: Heatmap of Pearson correlation coe!cients for the “H1N1” dataset

we simplify graph structures and keep important feature pairs improving running
e!ciency and explainability of the ShapG method.

(a) Original graph G (b) Reduced graph G↓
computed by Algorithm 4

Figure 31: Graph connecting features in “housing price” dataset
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(a) Original graph G (b) Reduced graph G↓
computed by Algorithm 4

Figure 32: Graph connecting features in “H1N1” dataset

4.3.3 AI prediction models

To evaluate e!ciency of our method ShapG, we apply several Explainable Ar-
tificial Intelligence (XAI) methods including our method to explain the importance
of features within LightGBM and MLP (Multilayer Perceptron) models. Moreover,
our ShapG algorithm can provide explanations for complex AI models that exist-
ing XAI methods cannot explain in a reasonable running time. We adopt ensemble
learning and a two-by-two combination of tree models, neural network models, linear
models, machine learning models to construct hybrid prediction models. We con-
struct these hybrid models as combination of di"erent types of simpler models to
achieve better performance and explainability. There is a list of constructed models
(including their combinations) and their descriptions:

• LightGBM (LGB): It is an e!cient Gradient Boosting Decision Tree
(GBDT) framework, which has fast training speed and high performance. It
is widely used in practice [101].

• Multilayer Perceptron (MLP): It is a feed-forward artificial neural net-
work consisting of fully connected neurons with nonlinear activation func-
tions [102]. Through several tests, we adjust the parameters to obtain the
best model prediction. In the regression model (for “housing price” dataset), a
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hidden layer containing 300 neurons is used, the learning rate is set to 0.007,
the activation function is chosen as ReLU (Rectified Linear Unit), and the
optimization algorithm is Adam (Adaptive Moment Estimation). These pa-
rameters achieve the best accuracy of prediction for “housing price” dataset.
In the classification model (for “H1N1” dataset), to obtain a high performance,
the model has two hidden layers, the first one is with 100 neurons, and the
second one is with 50 neurons. The model performs up to 3 iterations to
complete training dataset, and the activation function is also chosen as ReLU.

• Ensemble Learning (Stacking): It is an approach to get better predictive
performance by combining several single models [103]. Stacking is one of the
ensemble learning methods, where first several di"erent types of base models
are trained using a training sample, and second, meta model is trained using
the predictions of base models as input features in combination with real
labels [104]. In this paper, we choose Random Forest and XGBoost as basic
models, and LightGBM as the meta model.

• Linear Regression – LightGBM (Linear - LGB): It is a classic linear
regression model and the more representative LightGBM model for regression
prediction on the “housing price” dataset. Linear models e"ectively capture
linear relationships between features [105], while tree models are able to handle
non-linear relationships and high-dimensional features.

• Logistic Regression – LightGBM (Logistic - LGB): Logistic regression
is a common linear model used for classification problems [106]. For “H1N1”
dataset, we combined logistic regression and LightGBM for classification.

• Linear Regression – Multilayer Perceptron (Linear - MLP): Multi-
layer Perceptron (MLP) is an artificial neural network (ANN) consisting of
multiple layers of interconnected neurons with ability to process various data
types [107]. We combined linear regression model and neural network model
– MLP to construct a regression prediction model.

• Logistic Regression – Multilayer Perceptron (Logistic - MLP): We
combine Logistic Regression and MLP to make a classification model. Using
logistic regression to initially categorize the input data, we then apply MLP
to capture more complex patterns and nonlinear relationships. It is suitable
for dealing with a variety of complex classification problems.
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• Linear Regression – K-Nearest Neighbors (Linear - KNN): KNN is a
common machine learning algorithm that is widely used to solve classification
and regression problems [108]. The Linear-KNN model can be used to predict
both linear and nonlinear relationships when dealing with regression problems,
improving the flexibility and accuracy of the model.

• Logistic Regression – K-Nearest Neighbors (Logistic - KNN): We
combine logistic regression with KNN algorithm, and this hybrid model is able
to utilize both the linear relationship of logistic regression and nonparametric
properties of KNN when dealing with classification problems.

• Multilayer Perceptron – LightGBM (MLP - LGB): A hybrid model
of Multilayer Perceptron (MLP) neural networks and LightGBM can simul-
taneously utilize the nonlinear fitting ability of neural networks and e!cient
performance of gradient boosted decision trees.

• K-Nearest Neighbors – LightGBM (KNN - LGB): The hybrid model of
KNN and LightGBM gives an advantage of the high performance and e!ciency
of LightGBM while exploiting nonparametric properties of KNN.

• Multilayer Perceptron – K-Nearest Neighbors (MLP - KNN): We
combine a multilayer perceptron (MLP) neural network with KNN algorithm,
which is capable of exploiting both the nonlinear fitting ability of the neural
network and nonparametric properties of KNN to provide better classification
or regression performance.

The goal of the hybrid models is to combine di"erent types of models for
better performance and explainability. Our proposed XAI algorithm explains these
complex AI models and demonstrates its broad applicability. This means that it can
be applied to a wide range of complex hybrid models and is not limited by specific
model types. Therefore, it is model-agnostic.

We first calculate feature importance for LightGBM and MLP models for two
datasets in Section 4.4.1, and then for more complex models presented in the above
given list in Section 4.4.3.
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4.3.4 Evaluation of XAI methods

A common way of evaluating XAI methods is by performing a perturbation
analysis of the features, removing features in order of their importance from the
largest to the smallest, and observing a decrease of accuracy or R2 of the model [109].

When we consequently remove features based on their importance, if per-
formance of a model decreases significantly, it indicates that the feature is very
important. By evaluating the XAI method in this way, we can understand the
contribution of each feature to the model’s predictive performance.

In order to prove an e!ciency of our ShapG method, we can use this evaluation
method to compare ShapG with existing popular XAI methods. First, we will apply
our proposed XAI approach and other popular XAI methods to generate explanation
results. Then, we will remove features gradually according to their importance and
observe the changes in the model’s performance. We compare this process using
the following XAI methods: Feature Importance, Permutation Feature Importance,
LIME, SHAP (KernelSHAP and SamplingSHAP), and ShapG.

4.4 Results and analysis

4.4.1 Feature importance calculated by ShapG

“Housing price” dataset

Figure 33 shows the feature importance calculated by ShapG algorithm for the
“housing price” dataset based on LightGBM (Fig. 33a) and MLP (Fig. 33b) models,
respectively. For the “housing price” dataset with regression prediction based on
LightGBM, the four most important features given by ShapG are “LSTAT (lower
status of the population)”, “RM (average number of rooms per dwelling)”, “NOX
(nitric oxides concentration)”, “PTRATIO (pupil-teacher ratio by town)”, while with
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regression prediction based on MLP model, these features are “LSTAT (lower status
of the population)”, “B (the proportion of blacks by town)”, “RM (average number of
rooms per dwelling)”, “PTRATIO (pupil-teacher ratio by town)”. The three features
are the same for both models, and the most important one is the unique for both
models too.
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(a) LightGBM model
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(b) MLP model

Figure 33: Feature importance in “housing price” dataset calculated with ShapG

“H1N1” dataset

Figures 34 shows the feature importance calculated by ShapG algorithm for
the “H1N1” dataset based on LightGBM (Fig. 34a) and MLP (Fig. 34b) models,
respectively. For the “H1N1” dataset with classification prediction, the feature’s
approximated Shapley values given by ShapG algorithm represent the importance
of each feature for people’s willingness to be vaccinated against H1N1. For clas-
sification based on LightGBM, the five most important features are “doctor recc
h1n1 (H1N1 flu vaccine was recommended by doctor)”, “opinion h1n1 risk (Respon-
dent’s opinion about risk of getting sick with H1N1 flu without vaccine)”, “health
insurance”, “opinion h1n1 vacc e"ective (Respondent’s opinion about H1N1 vaccine
e"ectiveness)”, “employment occupation (Type of occupation of respondent)”.

For classification based on MLP model, the five most important features are
“doctor recc h1n1 (H1N1 flu vaccine was recommended by doctor)”, “opinion h1n1
risk (Respondent’s opinion about risk of getting sick with H1N1 flu without vac-
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cine)”, “doctor recc seasonal (Seasonal flu vaccine was recommended by doctor)”,
“health insurance”, “health worker”. Three most important features for both Light-
GBM and MLP models coincide.
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Figure 34: Feature importance in “H1N1” dataset calculated with ShapG

Based on the XAI approach to explain di"erent AI models, it produces dif-
ferent explanation results since di"erent model architectures may have di"erences
in processing data, extracting features and predictions, this leads to di"erences in
the result explanation. When both AI models (LightGBM and MLP) give the same
most important features, we can make better decisions and understand the behav-
ior of “black-box” models. As mentioned above, for the “housing price” dataset, we
can observe that features “LSTAT”, “RM”, and “PTRATIO” are considered to be
the most important features for both LightGBM and MLP models to predict house
prices. For “H1N1” dataset, such three features are “doctor recc h1n1”, “opinion
h1n1 risk (Respondent’s opinion about risk of getting sick with H1N1 flu without
vaccine)”, and “health insurance”, these are considered to be the most important
ones to predict if a person is willing to be vaccinated thereby developing relevant
strategies to increase vaccination rates.
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4.4.2 Evaluation of XAI methods

In order to prove e!ciency of our proposed XAI method ShapG, we compare
the results of its work with other existing XAI methods by (i) evaluating all methods
based on perturbation of features, and (ii) measuring running time to obtain results.

We introduce the feature numbering for “housing price” and “H1N1” in Tables
25 and 26, respectively.

Table 25: Feature No. in “house price” dataset
No. Feature No. Feature No. Feature
1 CRIM 6 RM 11 PTRATIO
2 ZN 7 AGE 12 B
3 INDUS 8 DIS 13 LSTAT
4 CHAS 9 RAD
5 NOX 10 TAX

Table 26: Feature No. in “H1N1” dataset
No. Feature No. Feature
1 h1n1 concern 19 opinion seas vacc e"ective
2 h1n1 knowledge 20 opinion seas risk
3 behavioral antiviral meds 21 opinion seas sick from vacc
4 behavioral avoidance 22 age group
5 behavioral face mask 23 education
6 behavioral wash hands 24 race
7 behavioral large gatherings 25 sex
8 behavioral outside home 26 income poverty
9 behavioral touch face 27 marital status
10 doctor recc h1n1 28 rent or own
11 doctor recc seasonal 29 employment status
12 chronic med condition 30 hhs geo region
13 child under 6 months 31 census msa
14 health worker 32 household adults
15 health insurance 33 household children
16 opinion h1n1 vacc e"ective 34 employment industry
17 opinion h1n1 risk 35 employment occupation
18 opinion h1n1 sick from vacc

Table 27 shows the results (ranking of feature importance) given by di"erent
XAI methods for “housing price” dataset based on LightGBM and MLP models.
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We observe that SamplingSHAP and KernelSHAP give the same results for both
LightGBM and MLP models, so they are combined into one column. As we can
see in Table 27, for the LightGBM model for the “house price” dataset, all XAI
methods have the same ranking of the first and second most important features,
“LSTAT (lower status of the population)” and “RM (average number of rooms per
dwelling)”. The XAI methods applied for the MLP model including SHAP, Sam-
plingSHAP, KernelSHAP, and ShapG, give the same ranking on the first and second
most important features “LSTAT” and “B (the proportion of blacks by town)”, while
the ranking given by LIME is the opposite. In addition, the PFI method already
disagrees with the results of other XAI methods in the ranking of the second feature.
We use the XAI evaluation method to compare performance of these XAI methods,
and comparison results are shown in Figures 35 and 36.

Table 27: Feature importance ranking for “housing price” dataset
LightGBM model

Rank
XAI SHAP SamplingSHAP (KernelSHAP) LIME Feature Importance ShapG

Top 1 13 13 13 13 13
Top 2 6 6 6 6 6
Top 3 8 7 7 1 5
Top 4 7 8 11 8 11
Top 5 5 5 10 7 3
Top 6 1 1 12 11 2
Top 7 11 11 4 12 8

MLP model

Rank
XAI SHAP SamplingSHAP (KernelSHAP) LIME Permutation Feature Importance ShapG

Top 1 13 13 12 13 13
Top 2 12 12 13 7 12
Top 3 7 7 11 12 6
Top 4 2 9 3 2 11
Top 5 9 2 1 9 8
Top 6 8 8 7 8 3
Top 7 6 6 6 6 1

Table 28 shows the results (ranking of feature importance) of di"erent XAI
methods for LightGBM and MLP models constructed for “H1N1” dataset. We should
mention that we do not use KernelSHAP to get explanation results due to its very
large running time: it requires more than 72 hours for LightGBM and more than 654
hours for MLP model. As we can see in Table 28, SamplingSHAP, LIME, and ShapG
give the same ranking for the most important feature “doctor recc h1n1 (10)” for the
LightGBM model for “H1N1” dataset. SHAP, SamplingSHAP, and ShapG rank the
first four features in di"erent orders, but the set of these features is the same: “doctor
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recc h1n1 (10)”, “opinion h1n1 risk (17)”, “health insurance (15)”, and “opinion h1n1
vacc e"ective (16)”. However, starting from the fifth feature, the feature rankings
significantly di"er for di"erent XAI methods. Meanwhile, explanation of the FI
method is significantly di"erent from the results of other XAI methods. For the MLP
model, we can see that SHAP, SamplingSHAP, LIME, and Permutation Feature
Importance methods rank feature “opinion h1n1 risk (17)” as the most important
feature, while this feature is ranked as the second by ShapG. Due to di"erences in
explanations, it becomes extremely important to evaluate and compare these XAI
methods. The comparison results are shown in Figures 37 and 38.

Remark 1. We should highlight that for LightGBM model we use Feature impor-

tance (FI) XAI method contrary to Perturbation Feature Importance (PFI) used

for MLP model. The reason is as follows. FI is an explanation method built in

tree models and it is widely used to explain tree-based models. However, for MLP

models, which do not have tree structures to directly compute feature importance.

Therefore, the impact of features in MLP models can be estimated using PFI more

e"ciently. Since the PFI method is independent of the specific model, it can be

widely used in various types of models to replace FI method in calculating feature

importance. Thus, in our experiments we use FI in the LightGBM model and PFI

in the MLP model for both datasets.

Figures 35 and 36 show the changes in R
2 after gradually dropping features in

di"erent XAI methods for LightGBM and MLP models, respectively, constructed for
“housing price” dataset. From these data, we can intuitively compare the decrease
and conclude that the accuracy in explanation of the results given by proposed XAI
method ShapG is better than given by other existing methods.

Figures 37 and 38 show the changes in accuracy after gradually dropping fea-
tures based on di"erent XAI methods for LightGBM and MLP models, respectively,
constructed for “H1N1” dataset. From Figure 37 we can observe that in explanation
results for the LightGBM model, the accuracy of three methods: SHAP, Sampling-
SHAP, and ShapG, exhibit a similar trend of steady decline. Although the accuracy
of ShapG remains unchanged when removing the five and six features and other
situations does not show an increase, it is noteworthy that SHAP shows an increase
in accuracy when removing the first six and eight features, while SamplingSHAP
shows continuous increase in accuracy when removing the first six, seven, and eight
features. Moreover, although ShapG’s explanation performance is comparable to
most XAI methods, in terms of accuracy changes after the top ten features are re-
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Table 28: Feature importance ranking for “H1N1” dataset
LightGBM model

Rank
XAI SHAP SamplingSHAP LIME Feature Importance ShapG

Top 1 15 10 10 30 10
Top 2 10 15 15 35 17
Top 3 16 17 16 34 15
Top 4 17 16 14 22 16
Top 5 20 20 27 16 35
Top 6 19 22 20 17 34
Top 7 11 30 17 31 14
Top 8 30 18 35 23 11
Top 9 35 35 18 20 20
Top 10 21 34 4 26 2

MLP model

Rank
XAI SHAP SamplingSHAP LIME Permutation Feature Importance ShapG

Top 1 17 17 17 17 10
Top 2 10 35 10 35 17
Top 3 20 21 28 10 11
Top 4 35 15 29 15 15
Top 5 34 10 32 11 14
Top 6 15 30 22 31 16
Top 7 16 31 11 18 20
Top 8 30 18 8 30 19
Top 9 27 22 30 29 35
Top 10 1 29 7 24 2

moved, ShapG performs the best. As we can see in Figure 38, ShapG significantly
outperforms other XAI methods in the explanation results based on the MLP model.

In order to compare running time of XAI methods based on game-theoretical
approach, we compare KernelSHAP, SamplingSHAP, and ShapG. We perform the
following results. Tables 29 and 30 show running time of XAI methods for both
LightGBM and MLP models on “housing price” and “H1N1” datasets, respectively.
The comparison obviously shows that ShapG method is much faster among such
game-theoretical methods as KernelSHAP and SamplingSHAP. With “housing price”
dataset with 13 features, ShapG works more than 5 (4.8) times faster than Ker-
nelSHAP with LightGBM (MLP) model. We do not start KernelShap with “H1N1”
dataset containing 35 features because an estimated time of its work is approx-
imately 4219 (39284) min for LightGBM (MLP) model, which is more than 161
(685) times more than with our ShapG method.

We do not consider SHAP in comparison analysis of a running time for several
reasons:
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Figure 35: Comparison of R2 after dropping features based on di"erent XAI methods
in “housing price” dataset (LightGBM)
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Figure 36: Comparison of R2 after dropping features based on di"erent XAI methods
in “housing price dataset” (MLP model)
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Figure 37: Comparison of accuracy after dropping features based on di"erent XAI
methods in “H1N1” dataset (LightGBM)
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Figure 38: Comparison of accuracy after dropping features based on di"erent XAI
methods in “H1N1” dataset (MLP model)
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Table 29: Running time (in sec) of XAI methods for “housing price” dataset
LightGBM model

XAI method KernelSHAP SamplingSHAP ShapG
Running time 214.55 s 42.14 s 37.73 s

MLP model

XAI method KernelSHAP SamplingSHAP ShapG
Running time 901.51 s 269.85 s 184.22 s

Table 30: Running time of XAI methods for “H1N1” dataset
LightGBM model

XAI method KernelSHAP SamplingSHAP ShapG
Running time ↗ 4219 min 374 min 87 s 26 min 12 s

MLP model

XAI method KernelSHAP SamplingSHAP ShapG
Running time ↗ 39284 min 364 min 50 s 57 min 22 s

• When explaining tree models (e.g., LightGBM), SHAP calls the TreeSHAP
Explainer. TreeSHAP utilizes the properties of the tree model itself to quickly
compute approximate SHAP values, which significantly improves computa-
tional e!ciency. However, the limitation of TreeSHAP is that it can only be
used to explain tree models. This means that we cannot apply it to complex
models such as neural networks.

• SHAP can automatically select the most suitable explainer for di"erent AI
models. When we use SHAP to explain MLP model, SHAP calls Permuta-
tionExplainer to generate explanation results. It works by iterating through
forward and reverse feature permutations, which change the features one by
one, thus e"ectively evaluating the independent contribution of each feature
to the final output. PermutationExplainer does not directly construct a subset
of all possible features, and does not use the Shapley value formula. Instead,
it uses a method of permuting features to approximate the SHAP value.

By comparing evaluation results and running time, our XAI method ShapG
provides a significant advantage in e!ciency and speed. This further confirms the
feasibility and usefulness of ShapG algorithm. Moreover, in the following section
we show that it can be used for prediction models with complex architectures when
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other XAI methods based on game-theoretical approach, like KernelSHAP and Sam-
plingSHAP do not work.20 This makes ShapG method a high-performance tool for
XAI.

4.4.3 Explanation of complex models

The proposed XAI method ShapG can be used not only for a single model
like LightGBM or MLP as we show in the previous section, but it also provides
global explanations for more complex models. These complex models include single
models with complex architectures, ensemble learning models, hybrid models, etc.
The models we use in this section are described in Section 4.3.3. ShapG method
can be applied to a wide range of models and can provide explanations of their
decision-making processes.

Tables 31 and 32 represent feature importance ranking given by ShapG for
hybrid models constructed by combining di"erent types of AI models in two-by-two
combinations for “housing price” and “H1N1” datasets, respectively. We can observe
very minor di"erences in the ranking of feature importance for di"erent models.

Table 31: Feature importance ranking by ShapG for complex AI models for “housing
price” dataset

Rank
AI Model LGB Stacking Linear-LGB Linear-MLP Linear-KNN MLP-LGB KNN-LGB MLP-KNN

Top 1 13 13 13 13 13 13 13 13
Top 2 6 5 6 6 6 6 6 6
Top 3 5 6 5 2 11 3 5 3
Top 4 11 3 11 3 3 5 3 11
Top 5 3 11 3 11 5 2 11 2
Top 6 2 2 2 8 2 11 2 5
Top 7 8 10 8 1 10 8 8 1

For the “housing price” dataset, from Table 31 we can clearly observe that
feature “LSTAT – lower status of the population (13)” is the most important feature
in predicting housing prices, and it is the same as is identified by simple LightGBM
and MLP models. In addition, we can also notice that features “RM – average
number of rooms per dwelling(6)”, “INDUS – proportion of non-retail business acres

20They could give the result but running time is so large that it makes them impossible to apply in practice,
especially, for datasets with many features.
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per town (3)”, and “NOX – nitric oxides concentration (5)” appear more frequently
in the top important features among all complex models.

For the “H1N1” dataset, from Table 32 we can clearly observe that “doctor recc
h1n1 (10)” and “opinion h1n1 risk (17)” are the two most important features, which
indicate that they have a significant e"ect on whether respondent received H1N1 flu
vaccine. Similarly, it can be noticed that “health insurance (15)” and “opinion h1n1
vacc e"ective (16)” appear more frequently among the most important features. This
means that these features are also important factors that a"ect people’s intention
to receive vaccination.

Table 32: Feature importance ranking by ShapG for complex AI models for “H1N1”
dataset

Rank
AI Model LGB Stacking Logistic-LGB Logistic-MLP Logistic-KNN MLP-LGB KNN-LGB MLP-KNN

Top 1 10 10 10 10 10 10 10 10
Top 2 17 17 17 17 17 17 17 17
Top 3 15 15 16 15 20 15 16 15
Top 4 16 16 11 14 16 11 15 14
Top 5 35 35 15 11 15 14 35 11
Top 6 34 14 14 20 11 35 11 24
Top 7 14 34 20 16 14 16 34 13
Top 8 11 11 19 5 24 20 14 20
Top 9 20 20 13 13 13 34 20 16
Top 10 2 19 1 1 29 24 2 35

Table 33: Running time by ShapG for complex AI models for “housing price” dataset
AI Model LGB Stacking Linear-LGB Linear-MLP Linear-KNN MLP-LGB KNN-LGB MLP-KNN

Running time 37.73 s 457.37 s 51.51 s 364.32 s 11.03 s 536.28 s 51.47 s 377.75 s

Table 34: Running time by ShapG for complex AI models for “H1N1” dataset
AI Model LGB Stacking Logistic-LGB Logistic-MLP Logistic-KNN MLP-LGB KNN-LGB MLP-KNN

Running Time 26 min 12 s 249 min 35s 42 min 31 s 61 min 17 s 115 min 02 s 105 min 03 s 157 min 16 s 156 min 44 s

Tables 33 and 34 show the running time required by the ShapG algorithm to
explain complex AI models for “housing price” and “H1N1” datasets, respectively.
Depending on the size of the dataset and model complexity, ShapG requires di"erent
running time. As expected, running time for “H1N1” dataset containing 35 features
is much larger than the time required for the same model constructed for “housing
price” dataset with 13 features. Although running time required by ShapG for
complex AI models is much larger than for simple models (LightGBM or MLP),
the ShapG method has many significant advantages in comparison with other XAI
methods. The ShapG method has not only been applicable to any model from
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theoretical point of view, but its performance is also verified in many experiments
with complex AI models. Although SHAP, SamplingSHAP, and KernelSHAP are
assumed to be applicable to explain any model, during our experiments we found
that when applying these methods to more complex neural network models or hybrid
models, the code often did not run successfully and did not give valid explanation
results. These methods lack good compatibility with complex AI models and require
more in-depth adjustments to the dataset or AI models. Therefore, for researchers
who are not specialized in the field of AI, these methods cannot easily provide
explainable results. When explaining complex AI models, ShapG is still able to
provide reliable explanation results.

4.5 Conclusion to Chapter 4

In this chapter, we proposed a new explainable artificial intelligence method
called ShapG, which is based on the Shapley value for graph games. The main idea
of this algorithm is from the proposed centrality measures in Chapter 3. ShapG is a
model-agnostic global explanation method, which calculates feature importance by
constructing an undirected graph of features, where nodes in the graph represent
features, and samples based on graph. It starts with an empty graph and conse-
quently adds the edges, which are pairs of features with the strongest correlation.
The algorithm stops when all features are connected to ensure that the feature graph
contains important structural information. In the process of calculating the Shapley
value, we only need to consider the coalitions between each node and its reachable
nodes, not all possible coalitions. This optimization improves the e!ciency of the
algorithm.

We have compared ShapG with several popular XAI methods, e.g., Feature
Importance (FI), Permutation Feature Importance (PFI), LIME, SHAP, Sampling-
SHAP, and KernelSHAP. Our ShapG exhibits excellent explanation results, which
are significantly better than other XAI methods for two datasets. In addition, com-
pared to SamplingSHAP and KernelSHAP methods also based on cooperative game
theory, ShapG saves significant computational resources in running time. These
results provide validation of reliability and wide applicability of our method.
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ShapG can be considered as a useful XAI method that can be applied not only
to simple AI models, but also to provide global explanations for complex models. It
can reliably explain decision-making process of complex models, thus helping users
to better understand these models.
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Conclusions

This thesis is devoted to the analyse of the influence of the network structure
and the behavior of agents on the opinion dynamics in social networks. Through this
research, opinion dynamics of several specific network structures are described by
statistical-physical (macroscopic) models or simulated by microscopic models under
the assumption that the agents can interact in the internal layer. A series of classical
network structures is examined in terms of the opinion dynamics within macroscopic-
GCVM and microscopic-GCVM with di"erent configurations (Chapter 1 and 2).
Chapter 2 examines how network properties and individual’s behavior a"ect the
opinion dynamics. A two-layer generated network based on a real social network, the
Zachery’s karate club network, is used to simulate opinion dynamics by microscopic-
GCVM, and the impact of centralities of authority nodes on opinion dynamics is
discussed in Chapter 3. The approach of simplifying the two-layer network with
opinion dynamics in this network to one-layer weighted network and the algorithms
of approximating the game-theoretic centrality measures are discovered in Chapter
3. In Chapter 4, a global explanation method for machine learning models based on
game-theoretic centrality measures proposed in Chapter 3 is developed.

The main results of the work are the follows:

1. We formulate a series of opinion dynamics models for di"erent network struc-
tures (i.e. complete, cycle, star, two-star-even, two-star-odd, two-clique-even,
and two-clique-odd for internal layer, and complete, and cycle for external
layer), and simulated the models by the statistical-physics method with dif-
ferent parameters which are related to the individual’s behavior. The main
observations are: (i) If individuals in the social network are not good at ex-
pressing their opinions publicly, internal interaction does not have a great
influence on the winning rate and consensus time; (ii) a simple external layer
network structure such as cyclic external structure significantly prolongs the
consensus time, even creates troubles for reaching a consensus. (See [24].)

2. We use the proposed microscopic-GCVM to simulate the opinion dynamics and
observe the impact of each type of behavior and the combination of behaviors
on opinion dynamics, respectively. The simulation results further verify the
correctness of our macroscopic model proposed in Chapter 1. Three di"erent
ways to extend a cyclic external structure to a complete one are examined, and
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we verify a hypothesis about an impact of the way of extension of a circle to
a complete graph impacts consensus time and winning rate. The main results
can be summarized as follows: (i) there is a strong linear relationship between
pairwise average shortest path and consensus time; (ii) the way of extension
of a circle to a complete graph has a significant impact on consensus time and
winning rate; (iii) cyclic external structure always increases consensus time;
(iv) cyclic external structure has a positive impact on a winning rate; (v) each
parameter has a di"erent impact on consensus time but almost no impact on
winning rate, for instance, expressing your real opinion to a certain extent
is not e"ective to reach consensus within the whole system. But beyond this
threshold, along with an increase of desire to express your opinion, for the sys-
tem it is easier to reach consensus, and when people are more willing to accept
their own external opinion, it will accelerate consensus of the whole system;
(vi) the combination of parameters has a significant impact on consensus time.
(See [25].)

3. A simplification approach for a two-layer network with the predefined opinion
dynamics to one-layer weighted network is proposed, this approach is suitable
for stochastic processes in two-layer networks with similar dynamics. The algo-
rithms to approximate the game-theoretic centrality measures are discovered.
The testing results show that the simplification method and the proposed
algorithms are e!cient. We also found a strong and significant negative corre-
lation between centralities of authoritative nodes and consensus time, i.e. the
main person in a social network plays a crucial role for reaching consensus,
which is expected. (See [51].)

4. We propose a new explainable artificial intelligence algorithm assuming fea-
tures in the machine learning models as nodes on an undirected graph con-
structed by a special way. A series of experiments verified the interpretability,
applicability, and runtime speed of the algorithm. Our algorithm is superior to
other algorithms (including PFI, FI, LIME and SHAP) in these three aspects.
(See [52])

We conclude that all the tasks formulated in this thesis are achieved, and the
objectives are fully accomplished.
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List of acronyms and symbols

BVM basic voter model.

CVM concealed voter model.

FI feature importance.

GCVM general concealed voter model.

KNN K-nearest neighbors.

KPI key performance indicator.

LIME local interpretable model-agnostic explanations.

MLP multilayer perceptron.

PCC Pearson correlation coe!cient.

PFI permutation feature importance.

SHAP Shapley additive explanations.

ShapG explanations based on Shapley value for graphs.

XAI explainable artificial intelligence.
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Del Ser J., Bennetot A., Tabik S., Barbado A., Garćıa S., Gil-López S.,
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