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Introduction

Relevance of thesis topic

In recent years, artificial intelligence (AI) [1–3] models such as ensemble learning
and deep learning have demonstrated notable success in time series forecasting,
particularly for long-term forecasting [4–6]. In various competitions, these
machine learning techniques have consistently outperformed traditional
statistical methods. A significant milestone was reached when LightGBM [7]
won the M5 competition [8–11], drawing widespread attention to the capabilities
of artificial intelligence. Prof. S. Makridakis, the founder of the M competition
series1 and an eminent authority in the field of forecasting, has recently
compared the effectiveness of statistical algorithms, machine learning, and deep
learning [12]. The experimental results affirm the substantial potential of AI for
long-term time series forecasting, surpassing conventional statistical approaches.
Figure 1 illustrates the winning solutions from major time series forecasting
competitions over recent years, further emphasizing the prevailing trend towards
AI-driven methods.

Figure 1: Summary of winning solutions for mainstream competitions in time series forecasting

AI techniques have proven highly effective in modeling complex patterns and
1M competition homepage
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generating accurate forecasts, making them indispensable across various industries
such as energy [13, 14], healthcare [15, 16], and finance [17, 18]. However, the
inherent opacity of these models presents a significant challenge. The lack of
transparency in these black-box models undermines trust and limits their broader
acceptance. This issue is particularly critical in applications where understanding
the decision-making process is as important as the forecasting results. To address
this challenge, there has been increasing interest in Explainable AI (XAI) [19–
21, 23, 26, 28–31]. XAI aims to make these black-box models more transparent
and trustworthy by elucidating their decision-making processes. This technology
holds substantial implications for advancing artificial intelligence and ensuring
its safer application in society [32–34]. Figure 2 illustrates two distinct types of
explanations in the context of time series forecasting.

Figure 2: Examples of explanation results in time series forecasting. (a) shows how each feature
affects the target variable; (b) shows how historical data affects the target variable.

Figure 2(a) presents an explanation from a feature perspective, showing how
each variable influences the target variable [19–23, 28–31]. This type of
explanation is particularly useful for multivariate time series forecasting tasks,
where multiple variables are involved. In contrast, Figure 2(b) provides an
explanation from a temporal perspective. It highlights how historical data
impacts the forecasting results [26]. This approach is applicable to both
univariate and multivariate time series forecasting tasks, making it versatile
across different types of datasets. These visualizations underscore the
importance of explainability in AI models used for time series forecasting. By
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understanding how features and historical data contribute to forecasts,
stakeholders can gain valuable insights, leading to more informed
decision-making.

In recent years, the rapid advancement of artificial intelligence (AI) models in
time series forecasting has underscored the need for Explainable AI (XAI)
solutions in this field. Understanding and interpreting these complex models is
crucial for their adoption and trustworthiness. Consequently, the exploration of
XAI within the context of time series forecasting holds significant
importance [35–44]. The modern concept of XAI can be traced back to 2007
with V. Schetinin’s research [45] on the explainability of Bayesian decision trees.
Since then, substantial academic progress has been made, including numerous
theoretical frameworks, algorithms [46–48], and supporting code libraries2.

The XAI algorithms can be broadly categorized into model-specific,
model-agnostic, and hybrid approaches. Model-specific algorithms, such as
the feature importance (FI) [49, 50] embedded in boosting algorithms, are
tailored to specific types of black-box models. On the other hand,
model-agnostic algorithms like SHAP [51] and LIME [52] offer versatility by
being applicable to all types of black-box models, providing strong
generalizability. Hybrid approaches combine an interpretable module [53, 54]
within the forecasting model, where the module’s output explains the overall
model’s behavior. While these algorithms have produced considerable research
outcomes for classification and regression tasks, their application to time series
data remains limited. This limitation highlights several key problems that need
to be addressed:

Problem 1: How to evaluate the effectiveness of the explanation results in time
series forecasting?

Unlike tasks such as regression, where real target values are available for
evaluation, the field of Explainable AI (XAI) faces challenges in obtaining
labeled values in practical applications [23,55,56]. This lack of accessible labeled
data complicates the objective assessment of XAI quality. Consequently, unlike
well-established metrics in other fields, such as mean squared error (MSE) and

2SHAP official homepage
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area under the curve (AUC), there is a scarcity of universally accepted
quantitative metrics within the XAI domain. This absence makes it difficult to
standardize the evaluation of XAI algorithms.

Problem 2: How to build XAI algorithms that explain the impact of historical
data for all types of AI models?

Recent research has underscored the growing importance of XAI in the field
of time series forecasting. Much of this research has focused on model-specific
algorithms to individual models [35, 38, 39]. Typically, these studies involve
developing a new time series forecasting model and then adding interpretable
modules to claim it as an explainable model. While this methodology has its
merits, we argue that the adoption of model-agnostic algorithms is crucial,
especially in engineering applications. The generalizability of these methods,
regardless of the forecasting model or explanation method used, holds significant
value.

Problem 3: How to build XAI algorithms based on new hybrid mechanisms in
time series forecasting?

Currently, the hybrid method involves incorporating an attention
mechanism [42–44] into forecasting models to improve their overall
explainability. Although this approach has been applied in time series
forecasting, the inherent explainability of the attention mechanism itself is still a
topic of ongoing discussion.

Problem 4: How to translate explanation results into real economic value?
Many previous studies present the concept of explainability as a new idea but

often overlook its practical applications for current challenges [35–44].
These algorithms developed in this work are primarily based on the Shapley

value, a concept introduced by L. Shapley in 1951. The Shapley value [57] is a
foundational method in cooperative game theory, designed to fairly allocate
payoffs among participants. This principle has been effectively adapted for XAI,
particularly in the form of the SHAP algorithm developed by S. Lundberg and
Su-In Lee. While the traditional SHAP method calculates variable contributions
to model outputs, it lacks the capability to provide explanations from a
temporal perspective. Addressing this limitation is essential for advancing
interpretability in time series forecasting. Significant contributions to
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attribution algorithms have also been made by researchers such as S. Bach, A.
Charnes, A. Datta, S. Lipovetsky, M. T. Ribeiro, A. Shrikumar, E. Strumbelj,
and H. P. Young . These advancements collectively enhance our understanding
and application of fair and reasonable allocation methods in the context of XAI.

Goals and tasks of thesis work

This thesis seeks to advance the field of XAI in time series forecasting. As
black-box AI models continue to be prevalent, our aim is to create XAI
algorithms specifically designed for this domain while investigating their
economic applications. Achieving this goal requires addressing four primary
challenges in the field. First, obtaining labeled data for XAI in practical
applications remains difficult, leading to a lack of universally accepted
quantitative metrics. This thesis aims to propose new evaluation metrics that
objectively assess XAI algorithm quality. Second, employing model-agnostic
approaches is essential, particularly in engineering contexts where general
applicability across various forecasting models is desired. We intend to develop
model-agnostic XAI algorithms to enhance flexibility and usability. Third, while
attention modules are commonly used in models, their interpretability is often
questioned. This research will explore alternative mechanisms to develop hybrid
approaches, thereby improving the explainability of time series forecasting
models. Finally, many studies emphasize explainability without fully addressing
its specific purposes or contributions to current challenges in the field. This
thesis aims to fill this gap by conducting comprehensive exploratory research,
applying XAI algorithms to real-world scenarios, and elucidating their benefits.
To achieve these objectives, the following tasks will be undertaken:

1. Establishing Quantitative Evaluation Metrics: Develop common evaluation
metrics based on recognized theorems to select applicable XAI algorithms
for different AI models. This foundation will enable the development of new
algorithms rooted in the most suitable XAI methodologies.

2. Developing Model-Agnostic Algorithms: Create a model-agnostic algorithm
for time series forecasting that can be applied to any forecasting model. The
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algorithm will explain the significance of historical data over different time
periods, subsequently enhancing forecasting accuracy.

3. Hybrid Approach Mechanism: Implement a combination of model-agnostic
and model-specific algorithms as a new mechanism for hybrid approaches.
This will expand the technical scope of XAI algorithms, providing variable
importance explanations and improving forecasting accuracy.

4. Exploring Economic Value: Investigate the economic impact of XAI by
applying it to practical issues such as online adaptation, improving
forecasting accuracy, and enabling impact factor analysis.

Through these tasks, the thesis aims to link theoretical insights with tangible
outcomes in real-world scenarios, thereby contributing both academically and
practically to the field.

Scientific novelty

The challenge of non-explainability in AI algorithms significantly hinders their
broader application in time series forecasting. This paper addresses this issue
by exploring Explainable AI (XAI) techniques within the context of time series
forecasting, a field where AI algorithms have diverse applications. The novelties
of this work are as follows:

1. In contrast to time series forecasting tasks, where algorithm performance is
assessed using metrics like mean squared error, evaluating AI model
explanations lacks true benchmark values. This complicates the assessment
of high-quality explanatory methods. Our research introduces a
quantitative framework designed to evaluate these explanatory results,
allowing superior XAI methods to be identified and highlighted.

2. Different from the original SHAP, our algorithm - ShapTime achieves
explanation in the time series dimension, i.e., it is able to output the
importance of historical data for the forecasting results, which is not
possible with other model-agnostic algorithms.
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3. Combination of the model-agnostic and the model-specific enables the
explanation of the results to be more informative implicitly, thus helping to
optimise the accuracy of the forecasting.

4. Explanatory results from XAI methods are merely presented without
practical application in previous work. Our paper bridges this gap by
demonstrating how these insights can be translated into tangible economic
value. We highlight the utility of the explanatory results by applying them
to real-world problems. This includes analysis of influencing factors,
forecasting performance improvement, and online adaptation problems.

Through these innovations, this work aims to advance the reliability and
applicability of AI in time series forecasting by making AI models more
interpretable and practically beneficial.

Theoretical and practical significance

This research holds significant theoretical and practical implications.
Theoretically, by comparing the performance of boosting models and neural
network models in time series forecasting tasks, we provide a foundation for
selecting the most appropriate model to be explained. This indirectly highlights
the necessity of developing general model-agnostic algorithms. Furthermore,
through the development of model-agnostic algorithms for time series forecasting
(ShapTime) and a hybrid approach combining feature importance and SHAP
algorithms (FI-SHAP), this study expands the realm of explainable AI
technology in time series forecasting and introduces new perspectives for
explanation.

Practically, this study offers valuable guidance for model selection and
deployment, black-box model explanation, decision support, and risk
management. By applying XAI algorithms, we can analyze influencing factors
and provide robust decision support, thereby driving the development and
application of AI technology. Overall, this research positively impacts the
comprehensibility and trustworthiness of artificial intelligence, promoting its
widespread use in real-world scenarios.
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In conclusion, this study enhances the explainability and trustworthiness of
artificial intelligence, facilitating its extensive application in practical settings.
By introducing novel approaches and perspectives in explainable AI for time
series forecasting, we are better equipped to address challenges and meet
demands in real-world contexts. This research not only improves the
effectiveness of decision support systems but also lays the groundwork for the
broad application of AI technology across various domains. Through a deep
understanding and application of XAI algorithms, we ensure transparency,
explainability, and trustworthiness in advancing artificial intelligence, thus
fostering its broad adoption and societal benefits.

Structure of dissertation

The first chapter provides a comparative analysis of artificial intelligence models,
focusing on both theoretical aspects and forecasting performance. Section 1.1
clarifies the fundamental characteristics of various AI models. In Section 1.2, we
compare different AI methods to identify the most effective model for various
tasks.

In the second chapter, we introduce an explainable AI (XAI) technique
designed specifically for time series forecasting, adopting a model-agnostic
approach. Section 2.1 addresses the challenges faced in developing this temporal
perspective. Section 2.2 details the structure of the proposed ShapTime
algorithm and explains how it mitigates these challenges.

The third chapter focuses on improving existing XAI techniques by combining
model-agnostic and model-specific algorithms. This integration results in a novel
XAI approach called FI-SHAP, tailored for boosting models.

Chapter fourth showcases practical applications of XAI techniques through
simulations, including factor analysis in forecast modeling and addressing online
adaptation problems. Section 4.1 and 4.2 utilizes available XAI techniques to
explain the optimal model and perform factor analyses on variables related to
solar power generation and PM2.5 concentrations, providing recommendations for
optimal siting of solar power plants. In Section 4.3, the XAI method is applied
to manage concept drift in online adaptation scenarios.
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Research methods

This study employs literature analysis as a theoretical approach to investigate the
application of artificial intelligence (AI) methods in time series forecasting tasks,
as well as the historical development and current challenges faced by explainable
AI techniques in this domain. Empirically, we conducted comparative research to
compare various forecasting methods and different explainable AI technologies.
Additionally, experimental studies were carried out to demonstrate the validity of
the algorithms. Furthermore, simulation studies were performed to simulate the
application scenarios of Explainable AI methods in time series forecasting using
real-world data.

Approval of obtained results

The results presented in the thesis were reported and approved at the following
international conferences and seminars (with a sufficient number of foreign
participants):

• NeuroNT 2021-2022: 2nd and 3rd International conference on neural
networks and neuro-technologies, St. Petersburg (Russia).

• IntelliSys 2022-2023: Intelligent Systems Conference, Amsterdam (The
Netherlands).

• MLIS 2022: Machine Learning and Intelligent Systems, Daegu, South
(Korea).

During the author’s PhD study, she participated in a collaborative project
between St. Petersburg State University and a chinese commercial company.
This project focused on energy forecasting and control, and findings from this
thesis work were partially implemented in the project, leading to the successful
achievement of the expected outcomes.

The results of research have been repeatedly reported in co-authorship by
Professor Petrosian Ovanes Leonovich, Ph.D student Jinying Zou, Feiran Xu,
Ruimin Ma, Jing Liu, and Ph.D candidate Dongfang Qi and Qiushi Sun.
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Publications. The author completed over 13 scientific papers [19–31],
including 5 papers [19, 21–23, 26] in the periodicals indexed by The Web of
Science or Scopus databases. Among them, 9 papers [19–23, 26, 27, 30, 31] are on
the thesis topic, including 4 papers [19, 21, 22, 27] in the periodicals from the list
of peer-reviewed journals recommended by the Higher Attestation Commission
of the Russian Federation, and 4 papers [19, 21, 22, 27] in the periodicals indexed
by The Web of Science or Scopus databases scientific results submitted for
defense were published in the following peer-reviewed periodicals. The main
scientific results submitted for defense were published in the following
peer-reviewed periodicals: [23, 27] - item 1; [26] - item 2; [20] - item 3; [19, 21, 22]
- item 4.

All of author’s research papers have received a total of 300 citations on Google
Scholar3 during PhD studies (form 2020 to 2024 year). Further, all the code is
published on GitHub4.

Personal contribution of author

This work was done at St. Petersburg State University. Some of the research was
done jointly with Petrosian Ovanes Leonovich, Jinying Zou, Feiran Xu, Ruimin
Ma, Jing Liu, Qiushi Sun, Dongfang Qi. Most of the research results presented in
the dissertation were published with co-authorship; to avoid ambiguity in the
dissertation, the corresponding references are labelled with a complete list of
names. Meanwhile, the results of the thesis defence belong to the authors only.

Main scientific results

• The XAI evaluation metric - MDMC is created, in order to measure the
accuracy of the explanatory results so that the respective most suitable
explanatory methods for different AI algorithms can be filtered out. It is a
generalised evaluation metric, i.e. it can be used for any task including time
series forecasting tasks, see work [23, 27] and Chapter 1 (P.22) in this work
(with at least 80% individual contribution).

3The Google Scholar homepage of Zhang Yuyi
4The GitHub homepage of Zhang Yuyi
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• The new XAI algorithm - ShapTime is created, in order to visualise the
importance of historical time periods for the forecasting results. This
algorithm divides time steps into the time periods in the time dimension
and calculates the shapley values for each time period as its importance for
the forecasting results, see work [26] and Chapter 2 (P.39) in this work
(with at least 80% individual contribution).

• The new XAI hybrid mechanism - FI-SHAP is created, in order to improve
the explanatory accuracy of the current SHAP algorithm. This mechanism
enables the explanatory results to contain richer information compared to
previous SHAP methods through combining model-agnostic algorithms and
model-specific algorithms, see work [20] and Chapter 3 (P.56) in this work
(with at least 80% individual contribution).

• Developed XAI methods and approaches are applied in analyzing
influencing factors, solving concept drift in adaptation problems and
improving the accuracy of time series forecasting, see work [19, 21, 22], and
Chapter 4 (P.71) in this work. (with at least 80% individual contribution).

Results submitted for defense

• Quantitative evaluation of XAI methods - MDMC. An evaluation metric for
the accuracy of the explanatory results is constructed, which is able to show
the most suitable XAI method for a given black-box AI model. In this way,
the optimal XAI method can be determined, and in this work, the SHAP
method based on the shapley value is confirmed to be optimal. Therefore,
subsequent development of new XAI algorithms are based on the shapley
value.

• Generalised XAI method for the time series dimension - ShapTime, which
calculates the shapley values for different time periods in the time dimension,
which represents the contribution of different time periods to the forecasting
results. ShapTime is more suitable for time series forecasting tasks than
previous XAI methods that output the contribution of variables. The results
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of ShapTime are also consistent with the MDMC metrics, which greatly
proves its effectiveness.

• XAI method based on the new hybrid mechanism - FI-SHAP. In boosting
algorithms, feature importance and SHAP are two common explanatory
methods, the former contains information from the model itself, while the
latter contains information from the dataset. FI-SHAP combines both, so
that it contains more information, and correspondingly, the feature
engineering based on it achieves better performance enhancement results.

• Explore scenarios where explainable AI can be used in real-life applications.
This is crucial for AI to better serve the society, and is key to improving
the transparency of AI as well as the trust of human beings. This includes
influencing factor analysis as well as solving online adaptation problems.
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Literature review

Current approaches to explainable time series forecasting can be divided into three
categories: model-agnostic methods, model-specific methods and hybrid methods.

Model-agnostic methods. It is realized by perturbing the input data set and
inducing the change of the output, and finally attributing this change to the
input features, so as to realize the explanation of the model. This is one
approach that is widely used compared to others because of its
generality(e.g [19, 20, 35–37]). However, this type of XAI method was originally
developed based on classification and regression tasks, so they often output
feature importance instead of the importance of time itself, that is, they cannot
output Φ(XTi

).
Model-specific methods. This is a specific method for the development of time

series forecasting models, that is, to embed the interpretation function into the
model(e.g [38, 40]), in order to achieve better interpretation effect for time series
forecasting. Although some works pay attention to the explanation of the
temporal dimension (e.g ( [39, 41]), they are still based on features, that is, the
XAI approach outputs the feature importance at each moment and stitches
them together to achieve the explanation of the temporal dimension. Strictly
speaking, such an explanation also fails to output Φ(XTi

), and seriously lacks
generality.

Hybrid methods. This is an approach to achieve explanation effects by
hybridizing modules with a certain degree of interpretation function into time
series forecasting model. The most representative approach is to hybridize the
attention mechanism into the time series forecasting model(e.g [42–44]), and
achieve the explanation through the explainability of the attention mechanism.
Some works have discussed the explainability of the attention mechanism. Even
though there are some controversies(e.g [66]), researchers still hold a positive
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attitude towards its explainability (e.g [67, 68]. The hybrid methods suffers from
the same problem as above approaches, that is, even if there is an explanation in
the temporal dimension, this explanation is dependent on features. On the other
hand, it also requires the development of new models and thus lacks generality.

Machine learning and deep learning techniques have demonstrated superior
performance in the domain of time series forecasting, particularly for long-term
forecasting tasks. Ensemble learning [69] and deep learning techniques have
proven to be highly effective for handling non-linear and non-stationary data.
Ensemble learning involves combining the predictions of multiple models in
order to improve accuracy, while deep learning utilizes intricate network
structures to identify relationships between input and output variables. These
approaches hold particular significance in domains such as solar and wind
energy forecasting [70], where nonlinear relationships and patterns are
frequently observed. Ensemble learning encompasses Boosting and Bagging
algorithms, with Boosting algorithms such as XGBoost [71], LightGBM [72],
and CatBoost CatBoost [73] being widely utilized. On the other hand, Deep
Learning can be classified into three distinct types based on their network
structure: Artificial Neural Networks (ANN) [27, 74], Convolutional Neural
Networks (CNN) [75], and Recurrent Neural Networks (RNN) [76].

XGBoost, LightGBM, and CatBoost have exhibited remarkable efficacy in
time series forecasting competitions. Notably, XGBoost has been extensively
employed in the M4 competition [77]. LightGBM has proven its effectiveness in
handling vast datasets and achieving rapid training times, rendering it a popular
selection in diverse competitions. In fact, LightGBM surpassed other
frameworks and emerged victorious in the M5 forecasting competition [78], thus
highlighting its exceptional performance in real-world scenarios. CatBoost is
also widely utilized in Kaggle time series forecasting competitions. All three
frameworks have demonstrated their potency for long-term time series
forecasting, with each possessing unique advantages that render them suitable
for distinct use cases [79] [80]. Bae DJ, et al. [81] proposed an XGBoost-based
load forecasting algorithm, which enhanced accuracy by 21% and 29% in 2019
and 2020, respectively, when compared with previous models. Zhang Y, et
al. [19] assessed mainstream prediction methods across various datasets,
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including solar power generation. The experimental results indicated that
LightGBM was the superior algorithm overall, outperforming others in the three
datasets. As another notable boosting algorithm, CatBoost also exhibits evident
potential in solar power generation forecasting [82]. Deep learning techniques
are frequently employed for time series forecasting, particularly artificial neural
network (ANN) [83], recurrent neural network (RNN)-based models (RNN [84],
LSTM [85], GRU [86]), and bidirectional RNN-based models [87] (Bi-RNN,
Bi-LSTM, Bi-GRU). These models possess the capacity to automatically extract
pertinent features from input data, providing an advantage over ensemble
learning, which relies on manual feature engineering. ANN excels at capturing
intricate non-linear patterns in scenarios where the relationships between input
features and target variables are unclear or non-linear. While RNN-based and
Bi-RNN-based models were initially devised for natural language processing [88],
they have become extensively adopted in solar power generation forecasting due
to their ability to capture temporal dependencies. Given that different models
may possess varying abilities to learn from data, it is imperative to conduct
comprehensive comparisons and analyses tailored to specific cases [19].

Ensemble learning and deep learning represent prominent methodologies for
time series forecasting, particularly in the context of intricate and long-term
predictions. Nevertheless, their opaque nature poses a challenge to discerning
the factors that impact the accuracy of these forecasts [89]. Conversely, the
identification of such factors assumes great importance when optimizing solar
energy systems. Factors such as weather conditions [90], shading [91], and
equipment characteristics [92] assume a pivotal role in system performance, cost
reduction, and site selection. Scrutinizing these factors can mitigate risks,
optimize energy generation, and facilitate the selection of the most suitable
location for a solar power plant. Consequently, successful solar power generation
necessitates the critical analysis of influential factors alongside effective
forecasting techniques.

However, the lack of explainability presents a significant obstacle to their
further development. Non-interpretability refers to the inability of a model to be
comprehensible to human. Explainability [93–95] encompasses the following
aspects:
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• Interpretability of the patterns

• Interpretability of the parameters

If learned patterns and parameters can be readily understood by humans, it is
referred to as a "white-box model." Conversely, models whose internal mechanisms
are opaque to human interpretation are termed "black-box models." Notably, it
is these black-box models that have increasingly exhibited superior performance
in time series forecasting tasks, especially for long-term forecasting problems.

Despite the superior performance of black-box models, represented by machine
learning and deep learning techniques, in terms of long-term forecasting, their
inherent non-interpretability raises two significant concerns: the crisis of trust
and the lack of knowledge provision [96–98].

• The crisis of trust arises from the inability of humans, whether users or
developers, to comprehend the patterns and decision-making processes
within these black-box models. This lack of transparency raises concerns
about potential discrimination, bias, or other undesirable factors embedded
within the model’s architecture. Furthermore, the absence of a clear
understanding of the model’s inner workings hinders subsequent
improvement and optimization, leaving them largely reliant on engineering
experience. Collectively, these factors exacerbate human distrust in
black-box models.

• The lack of knowledge provision is another critical issue. While black-box
models can produce relatively accurate results in time-series forecasting
tasks, they merely generate outputs without providing additional
information or insights. In contrast, traditional mathematical and
statistical methods, with their interpretable models and parameters, offer
supplementary knowledge and information to aid human decision-making
processes. These methods can identify the variables and time periods that
exert the greatest influence on the predicted outcomes, thereby assisting
humans in making more informed and reasonable decisions.

As a potential resolution to the controversies surrounding opaque artificial
intelligence (AI) models, the concept of Explainable Artificial Intelligence
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(XAI) [32–34, 46–48] has been proposed. XAI aims to enhance the
interpretability and transparency of complex "black-box" models, rendering
them comprehensible to human users, even if only partially or to a certain
degree. By doing so, XAI endeavors to provide humans with as much
information and knowledge as feasible, thus fostering a better understanding of
the underlying decision-making processes and rationale employed by these
models.

Figure 3: Paper citations for the mainstream algorithms with a data collection date of
07.12.2023.

The pursuit of interpretability in machine learning models has led to the
development of various algorithms, including LIME (Local Interpretable
Model-agnostic Explanations) [52], SHAP (SHapley Additive exPlanations) [51],
Deep-LIFT [99, 100], Integrated Gradients (IG) [101], and LRP (Layer-wise
Relevance Propagation) [102]. Notably, the Shapley value, upon which SHAP is
based, is the only algorithm that satisfies certain deterministic properties,
contributing to its widespread adoption in studies involving interpretability.
Figure 3 illustrates the indexing of the original papers for these approaches,
revealing a clear lead for SHAP. It is crucial to emphasize that the efficient
implementation of SHAP in engineering technology leverages the ideas of LIME,
directly leading to LIME’s high level of interest. Furthermore, the concepts
underpinning LIME have inspired the key algorithms employed in this study.

It is an established fact that SHAP is a widely adopted method for
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interpreting black-box models [51, 103, 104]. However, its direct application to
time series forecasting tasks is not feasible. In classical SHAP, the assumption of
sample independence is made, implying that any temporal dependencies between
samples are disregarded. Consequently, when dealing with data exhibiting
temporal relationships, the explanation results produced by SHAP are limited to
feature importance and fail to capture the intrinsic dynamics governing the time
series. For instance, in the context of temperature forecasting [105], traditional
SHAP can elucidate the relative importance of factors such as solar irradiation
and humidity on temperature. Nonetheless, it falls short in elucidating the
influence of previous time steps’ temperature values on subsequent time steps,
which is a crucial aspect in interpreting time series forecasting models.
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Chapter 1

Comparison of forecasting and explainable

AI algorithms for time series forecasting

Explainable AI (XAI) focuses on making AI models more interpretable, so
comparing the performance of these models is essential. In this chapter, we
compare mainstream AI models to identify the most suitable ones for various
tasks, and our results have been published in academic

journals [19, 21, 27]. It’s important to note that different XAI algorithms can
yield varying results even when applied to the same AI model. Therefore,
measuring the quality of these explanation results is crucial. To address this, we
developed an evaluation framework for XAI called MDMC, which helps filter out
the most appropriate XAI algorithms for different AI models, and our results

have been published in conference [23].

1.1 Comparison of explainable artificial intelligence

algorithms

1.1.1 Forecasting algorithms

Neural networks and ensemble models are considered exemplary representatives
of black-box models within the field. Notably, artificial neural networks (ANN)
[27,74] as well as ensemble models like Random Forest (RF) [106] and LightGBM
[78–80] demonstrate outstanding predictive capabilities.

The realm of predictive modeling encompasses various black-box models,
prominently comprising neural network models and ensemble models. Among
these, the Artificial Neural Network (ANN) model stands as a representative of
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the neural network paradigm. Meanwhile, LightGBM and Random Forest are
deemed as representatives within the ensemble model domain. LightGBM, being
founded upon the boosting algorithm, epitomizes an ensemble model, whereas
Random Forest is rooted in the bagging algorithm. Both boosting and bagging
techniques are essentially composed of multiple simplistic tree models. In the
absence of interconnections between these tree models, the bagging algorithm
employs a "voting" mechanism for deriving the final output result. On the other
hand, when strong interdependencies exist among these tree models, they form a
boosting algorithm wherein the output of preceding tree models influences
subsequent ones. Additionally, linear regression and white-box model-decision
trees are also employed in prediction tasks for comparative analysis.

The Neural Network can be described as an adaptive nonlinear dynamic
system that encompasses numerous basic units, commonly referred to as
neurons. These neurons are interconnected through activation functions, giving
rise to a complex web of interactions. Although the structure and function of
each individual neuron are relatively straightforward, the collective behavior of
the entire network becomes exceedingly intricate and challenging to elucidate.
The ANN architecture is typically organized into three distinct layers: input,
hidden, and output. This layered arrangement enables the network to process
information in a sequential manner. The input layer receives external stimuli or
data, which is then transmitted to the hidden layer. Within the hidden layer,
the intermediate computations take place, allowing for complex transformations
and feature extraction. Finally, the processed information flows to the output
layer, which generates the network’s response or prediction.

GBDT [78–80] holds a position of utmost significance in the domain of
machine learning. At its core, this model revolves around leveraging weak
classifiers, specifically decision trees, to progressively train and acquire an
optimal model. The utilization of such an approach renders GBDT highly
desirable due to its exceptional training efficacy and ability to circumvent
overfitting. In line with GBDT, LightGBM, also known as Light Gradient
Boosting Machine, emerges as a remarkable framework that implements the
GBDT algorithm. This framework offers several noteworthy advantages,
including accelerated training speed, reduced memory consumption, and
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enhanced accuracy. LightGBM’s ability to deliver these benefits further
reinforces its value as an essential tool within the field of machine learning.

The Random Forest is a powerful ensemble learning technique that
combines multiple decision trees to improve the accuracy and stability of
predictions. By merging these decision trees, the random forest classifier
leverages the aggregate knowledge of all individual classifiers, while utilizing the
hyperparameters associated with the bagging classifier to regulate its overall
structure. It is important to mention that in addition to classification, the
concept of a random forest can also be applied to regression problems, wherein a
random forest regressor is employed.

1.1.2 Tests of forecasting performance

In order to visually ascertain the advantages of the black-box model in prediction,
we employ two traditional models, linear regression (LR), and the classic white-
box prediction model-decision tree (DT), as a control group. These models are
used alongside artificial neural networks (ANN), LightGBM, and random forest
(RF) to predict the Boston housing data set. The prediction results in terms of
quality are presented in the following table 1.1, considering a standard data set 1.

Table 1.1: The Quality Statistics

Model R2 MSE MAE

LR 0.64856 28.40585 3.69136

DT 0.74361 20.72322 3.05065

ANN 0.79477 16.58769 2.57977

LGBM 0.80417 15.82852 2.53292

RF 0.81888 14.63918 2.35044

The analysis of metrics reveals that artificial neural networks (ANN),
LightGBM, and random forests (RF) exhibit substantial advantages when
utilized for prediction tasks. Nevertheless, in contrast to linear regression and
decision trees, ANN, LightGBM, and RF pose difficulties for human
comprehension due to their intricate internal structures. Consequently, even
though black-box models with enhanced accuracy surpass traditional models

1Boston housing dataset
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and white-box models with reduced accuracy across various domains, they
cannot entirely supplant them. Consequently, it becomes imperative to advance
effective approaches aimed at comprehending and elucidating the workings of
these opaque models.

1.1.3 Explainable artificial intelligence algorithms

According to Figure 3, an evident superiority of attention is observed in SHAP and
LIME compared to the other algorithms. Hence, for the purpose of this section,
we shall concentrate on these two approaches, employing quantitative evaluation
metrics to assess their performance.

SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable
Model-agnostic Explanations) represent two prominent methodologies utilized in
the realm of interpreting machine learning models and comprehending their
predictions. In the case of SHAP, its primary objective lies in assigning
significance values to the input features of a given model to shed light on its
output. Employing game theory principles and Shapley values, SHAP effectively
computes feature attributions. By exhaustively considering all feasible
combinations of features and corresponding outcomes, this approach accurately
gauges the contribution made by each feature in predicting an instance.
Notably, this methodology embraces an inclusive perspective on feature
interactions, thereby furnishing explanations that are both locally precise and
globally coherent. SHAP values introduce a comprehensive framework for
interpreting diverse machine learning algorithms encompassing deep neural
networks, tree-based models, and linear models. Consequently, it facilitates our
comprehension of how individual features impact the model’s predictions,
granting us insights into the rationale underlying specific decisions.

In the framework of SHAP, the variables x = (x1, x2, · · · , xn) are considered as
the set of players, and the black-box model f is replaced by an explainer g, such
that f(x) = g(x) = ϕx0 +

∑n
i=1 ϕxi. This implies that SHAP assumes any black-

box model to be represented by this linear expression, where ϕi represents the
contribution of the corresponding variable to the prediction, and Φx0 represents
the model’s output when all variables are ineffective. In fact, when modeling
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real-world problems, it is nearly impossible to list all influencing factors. The
contributions generated by these variables not included in the analysis scope are
represented by Φx0 in a physical sense. Within this framework, the mathematical
expressions of all black-box models are assumed to be the aforementioned linear
expression, and the contribution of each variable represented by Φxi serves as the
explanation result, thereby achieving the generality of XAI. The contribution of
each variable is calculated using the Shapley value formula,
ϕ(xi) =

∑
xs⊆{x1···xn}\{xi}

|s|!(n−|s|−1)!
n! (v(xs ∪ {xi}) − v(xs)), which considers

the prediction results of a black-box model f(xs) (where s is a subset of n) as the
profit function v(xs). This allows us to compute the contribution value ϕ(xi) for
each variable xi, serving as an explanation for the black-box model.

In comparison, LIME places its emphasis on providing explanations at a local
level for individual predictions rather than striving for global interpretability. It
achieves this by approximating intricate machine learning models with
interpretable models that are comparatively simpler to comprehend. LIME’s
approach involves perturbing the input data surrounding a particular instance of
interest and observing the resulting changes in predictions. By constructing a
fresh dataset through sampling instances from the original data, LIME fits a
local model to this sampled data, thereby generating explanations.

The approximated model produced by LIME sheds light on significant features
and their influence on the prediction for that specific instance. A notable aspect of
LIME is its model-agnostic nature, enabling its application to any black-box model
without necessitating an understanding of the internal workings of said model.
One of LIME’s strengths lies in providing human-understandable explanations,
such as feature importances or highlighting pertinent parts of the input. This
capability contributes to the development of trust in machine learning models.

Both SHAP and LIME serve as potent tools for interpreting complex machine
learning models. While SHAP delivers global explanations that account for
feature interactions, LIME primarily focuses on supplying local explanations by
employing a simplified approximated model. The choice between these
methodologies depends on the particular task at hand and the specific
requirements of the interpretability analysis.
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1.1.4 Evaluation framework for explainable AI algorithms

The establishment of the XAI evaluation framework is based on a premise:
deleting or changing the large contribution (calculated by the XAI method)
features in the data set will result in a significant decrease in the accuracy of the
model’s prediction. Therefore, based on this premise, the degree of change in the
metrics (R2, MSE, MAE) can be used as the core of the evaluation framework.

Algorithm 1 Mean degree of metrics change (MDMC)
Input: Original original metric: R2

0, MSE0, MAE0; Changed metric: R2
i *, MSEi*, MAEi*;

Total number of features n0
Output: MDMC value

1: Let n = 2
3n0.

2: Let D = (R2
0 −R2

i ) + (MSEi −MSE0) + (MAEi −MAE0).
3: for i in range (n) do

4: MDMC = 1
n

∑n
i=1D.

5: end for

6: return MDMC value

Mean degree of metrics change (MDMC)

In perturb the original data according to the output of the XAI method, and
input the modified data into the prediction model to obtain a new metrics (R2*,
MSE*, MAE*), then the degree of change of the metrics (D) can be is defined as:

D = f(M −M∗) (1.1)

M is the original metric, and M* is the changed metric.
Combining the degree of change of all metrics, the final evaluation framework

(MDMC) can be defined as:

MDMC =
1

n

n∑
i=1

D =
1

n

n∑
i=1

f(M −M∗)

=
1

n

n∑
i=1

[
(R2

0 −R2
i ) + (MSEi −MSE0) + (MAEi −MAE0)

] (1.2)
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It should be noted that the values of MSE and MAE in Equation 1.2 need to be
used after normalization. In theory, the larger the value of MDMC, it means that
the black-box prediction model has made significant changes to the data set, thus
proving the effectiveness of XAI.

Visualisation of qualitative evaluation

In order to understand the MDMC framework intuitively, take the ANN model
as an example to evaluate the XAI algorithms. The changes in the metrics are
shown in Figure 1.1. It is worth noting that if the stability of the ANN model
itself is lacking, then randomly deleting features will also cause a decrease in the
accuracy of the model’s prediction. In order to eliminate this possibility, in the
evaluation process, the data set of "randomly deleted features" was used as a
comparison of the XAI algorithms to prove the stability of the ANN model we
constructed.

As shown in Figure 1.1, compared to randomly deleting features, the
perturbation based on the results of the XAI algorithms significantly reduces the
accuracy of the ANN prediction model.

Metrics for quantitative evaluation

Visualization can intuitively evaluate the XAI method, but for those tasks with
high-precision requirements, a quantitative evaluation matrix is necessary. The
process of the XAI algorithms on LightGBM and Random Forest is similar to
that of ANN and follows the same calculation formula. The values in Table 1.2
are calculated based on Equation 1.2. The larger the value, the more effective the
XAI method is.

Table 1.2: Evaluation Matrix

MDCD ANN LightGBM RandomForest

Random 0.8333 0.8222 0.6242
SHAP 1.4154 1.5004 1.3286
LIME 1.6506 1.3995 1.6069

The experimental results show that in the black-box model, the perturbation
based on the XAI algorithms is more effective than the random perturbation.
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Figure 1.1: Visualization of the changes in the metrics for ANN

On the other hand, within the XAI method, LIME performs better in the ANN
model and the random forest model, and SHAP is more effective for the LightGBM
model.

1.2 Comparison of forecasting algorithms based on

artificial intelligence

1.2.1 Comparison of energy time series forecasting

Data description

The Schneider competition places significant emphasis on the fundamental role
of planning and forecasting for achieving effective operation in the energy sector.
Therefore, accurate time series forecasting becomes imperative within this
domain. Concurrently, the American Society of Heating, Refrigerating, and
Air-Conditioning Engineers (ASHRAE) highlighted in their building energy
prediction competition on Kaggle that the prevailing estimation algorithms lack
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cohesion and fail to offer scalability. Consequently, the absence of a standardized
approach hinders our ability to ascertain the optimal model for time series
forecasting. A description of the energy dataset used in the prediction
competition is as follows:

• ASHRAE: great energy predictor III2

The ASHRAE dataset comprises energy usage data from a diverse range of
sources within buildings, encompassing chilled water, electric, hot water,
and steam meters. This comprehensive dataset spans over three years and
encompasses more than 1000 buildings. In order to facilitate accurate
predictions, the dataset incorporates 15 distinct features. These features
include both internal characteristics of the buildings, such as building ID,
usage type, area, year of completion, and floor count, as well as external
factors like wind speed, wind direction, temperature, and cloud cover.
Precise estimation of energy-saving investments is of paramount importance
as it garners increased attention from stakeholders, particularly financial
institutions. This heightened focus on the field ultimately drives
advancements in building efficiency.

• Power laws: forecasting energy consumption3

The dataset provided by Schneider encompasses a comprehensive set of 14
features, including building ID, temperature, and information regarding
holidays and weekends, which spans a period of approximately three years.
The primary objective of this competition is to enhance the accuracy of
estimating global energy consumption in buildings. By leveraging this
dataset, participants aim to refine and improve the existing methodologies
used for estimating these consumption patterns.

• Solar power generation data4

In our research, we incorporated solar power plant data as an additional
resource. The primary objective of this project is to enhance grid
management by accurately forecasting the near-term solar power generation

2ASHRA data set
3Schneider data set
4Solar Power data set



31

capacity. The dataset utilized encompasses five distinct features, namely
device number, direct current, alternating current, temperature, and
radiation. These variables were carefully selected to capture essential
aspects that influence solar power generation.

In this study, a distinct time point is utilized as the demarcation between
the training set and the test set, aligning with the inherent logic of the time
series. Approximately 70% of the elements are required to be incorporated into
the training set.

Objective function

Various criteria have been developed to assess the performance of machine learning
models. Two widely used metrics include Coefficient of Determination (R2) ans
Mean Squared Error (MSE), They can be calculated as follow:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(1.3)

MSE =
1

n

n∑
i=0

(yi − ŷi)
2 (1.4)

where yi is the true value; ŷi is the forecast value, ȳ is the average of all true
values, and n is the number of observations.

Comparative results

In this study, we present the loss value results of the ASHRAE competition as
examples, focusing on their simplicity. To ensure efficient computation, a subset of
the data was selected based on the computing power of the computer. Specifically,
the training set consisted of 242,214 samples, while the test set contained 79,514
samples. To facilitate analysis, a total of 98 features were constructed using this
data.

The learning curves of all models exhibited a consistent decline, as depicted in
Figure 1.2. Notably, the Bi-RNN model displayed superior performance on the
validation set compared to the training set. In order to provide a comprehensive
comparison, it is essential to include a detailed quantitative index analysis.
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Figure 1.2: Visualisation of the training process. During the training process, the errors of all
models decreased steadily, which means that these models are effective.

It is evident that all forecasting models have demonstrated exceptional
performance on the ASHRAE dataset, as depicted in Figure 1.2 and Table 1.3.
Among these models, Bi-RNN stands out with the most impressive performance.
However, it is noteworthy that M5 LightGBM exhibits significantly shorter
running times compared to both random forest and neural network models. This
implies that M5 LightGBM can achieve accuracy levels similar to those of neural
network models in the ASHRAE context while requiring less computational
time.

Table 1.3: Forecast Quality of Power ASHRAE

ASHRAE R2 MSE TimeSpent

M5LightGBM 0.9676 2516.83 39.5 s
Random Forest 0.9673 2538.70 3 min 8 s

Bi-RNN 0.9688 2426.72 6 min 33 s
Bi-LSTM 0.9655 2678.17 13 min 47 s
Bi-GRU 0.9568 3358.26 12 min 11 s

Following our initial application of these forecasting models, we proceeded to
utilize them on various datasets, encompassing the Schneider competition as
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well as the solar power plant dataset made available on Kaggle. In the Schneider
dataset, we carefully selected a portion of the data for analysis, consisting of a
training set comprising 271,803 instances and a test set containing 78,380
instances. Subsequently, we crafted a comprehensive array of 28 features based
on this dataset.

In the solar power dataset, we employed the entirety of the available data
(which was relatively small in size). For Plant 1, the training set contained 2,393
instances, while the test set comprised 864 instances. Similarly, for Plant 2,
the training set encompassed 2,293 instances, with the test set consisting of 862
instances. Based on this dataset, we created a total of 19 features to facilitate
our analysis.

To assess the effectiveness of the forecasting models, it is crucial to measure
their performance (refer to Table 1.4). Accuracy is evaluated within each
dataset, while stability is examined across all datasets. Notably, the target
variable’s data values in both the Schneider and Kaggle datasets are
considerably large, rendering the loss optimization of all forecast models nearly
ineffective. Consequently, a prudent approach is adopted during the forecasting
process where the target variable and feature data undergo separate processing
using the MinMax algorithm.

Table 1.4: Forecast Quality of Power Schneider

Schneider R2 MSE TimeSpent

M5LightGBM 0.9381 0.0001 42.1s
Random Forest 0.9297 0.0001 1min 34s

Bi-RNN 0.8595 0.0003 55.2 s
Bi-LSTM 0.9146 0.0001 1min 19s
Bi-GRU 0.9165 0.0001 1min 48s

In relation to the solar power datasets, the performance of forecasting models
for power plant 1 is consistently excellent, as evidenced by Table 1.5. Specifically,
the M5 LightGBM model stands out for its accuracy and efficiency, surpassing all
other models in terms of both metrics.

When it comes to power plant 2, the primary objective is to maintain high
accuracy, achieving a commendable value of 0.9005. In this regard, the M5
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Table 1.5: Forecast Quality of Solar Power Generation—Plant 1

Solar-1 R2 MSE TimeSpent

M5LightGBM 0.9928 0.0008 0.74 s
Random Forest 0.9723 0.0034 0.99 s

Bi-RNN 0.9665 0.0041 6.17 s
Bi-LSTM 0.9887 0.0013 12.9 s
Bi-GRU 0.9865 0.0016 8.36 s

LightGBM model emerges as the most optimal choice, ensuring efficient
operation while minimizing time costs. These findings are presented in Table 1.6
for reference.

Table 1.6: Forecast Quality of Solar Power Generation—Plant 2

Solar-2 R2 MSE TimeSpent

M5LightGBM 0.9005 0.0081 0.16 s
Random Forest 0.8689 0.0107 1.19 s

Bi-RNN 0.9329 0.0055 6.39 s
Bi-LSTM 0.8917 0.0088 13.7 s
Bi-GRU 0.9185 0.0066 8.76 s

The results indicate that M5 LightGBM exhibits distinct advantages. In
terms of accuracy, M5 LightGBM outperforms other algorithms in both datasets
(refer to Table 1.4 and Table 1.5). Additionally, it demonstrates significantly
shorter processing time, especially when compared to neural network algorithms.
While M5 LightGBM may not achieve the best performance in certain datasets
(see Table 1.3 and Table 1.6), it still attains a comparable forecasting accuracy
(R2 > 0.9) at a lower computational cost. Consequently, after conducting a
comprehensive comparison, we conclude that M5 LightGBM serves as a superior
forecasting model.

Ensemble learning algorithms, despite their seemingly simplistic nature, often
deliver exceptional performance in practical applications. This can be attributed
to their ability to amalgamate multiple fundamental algorithmic ideas into a
coherent framework, bolstering strengths and minimizing weaknesses.
Consequently, this optimization enhances the robustness and generalization
capacity of the original basic algorithms, thereby facilitating stable model
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operations. To provide visual representation of the forecast results, please refer
to Figure 1.3.

Figure 1.3: Visualisation of M5LightGBM forecasts on the ASHRAE dataset

1.2.2 Comparison of PM2.5 time series forecasting

Data description

The dataset used in this study comprises PM2.5 concentration data collected at
the Beijing Olympic Sports Centre Gymnasium5. The data spans a period from 1
March 2013 to 28 February 2017, with measurements recorded at hourly intervals.

The dataset used in the study consists of 31,815 observations. It encompasses
11 variables, comprising both meteorological conditions and emission factors.
The emission factors encompass particulate matter (PM10, ug/m3), sulfur
dioxide (SO2, ug/m3), nitrogen dioxide (NO2, ug/m3), carbon monoxide
(CO,ug/m3), and ozone (O3,ug/m3). Among the meteorological conditions,
there are continuous variables such as temperature (TEMP, degree Celsius),
pressure (PRES, hPa), dew point (DEWP, degree Celsius), rainfall (RAIN, mm),
wind speed (WSPM, m/s), and one discrete variable, wind direction (WD).
Wind direction is coded using a natural order system with 16 directions: NNW,
N, NW, NNE, ENE, E, NE, W, SSW, WSW, SE, WNW, SSE, ESE, S, SW.

Objective function

Given that our focus in this section pertains to long time series prediction as a
more intricate task, it becomes imperative to employ comprehensive evaluation

5Beijing PM2.5 data set
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metrics for effectively assessing the performance disparities among various AI
models. Therefore, we have specifically selected objective functions such as R2

(coefficient of determination), RMSE (root mean squared error), and MAE (mean
absolute error) to serve as the basis for our assessments. These metrics will
enable us to thoroughly evaluate the efficacy of distinct AI models in tackling this
complex prediction challenge.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(1.5)

RMSE% =

√
1
n

∑n
i=1(yi − ŷi)2

n
× 100 (1.6)

MAE =
1

n

n∑
i=1

|yi − ŷi| (1.7)

where yi is the true value; ŷi is the forecast value, ȳ is the average of all true
values, and n is the number of observations.

Comparative results

Long-term forecasting based on statistical algorithms are challenging due to non
stationarity and noise. Deep learning [107–111] and ensemble learning [112–114]
are both powerful techniques for handling non-linear and non-stationary data.
They offer effective ways to uncover relationships in complex datasets. Ensemble
learning accomplishes this by combining the predictions of multiple models,
leveraging their collective wisdom to enhance accuracy. Boosting
algorithms [113, 114], such as XGBoost, LightGBM, and CatBoost, are widely
used in ensemble learning, along with Bagging algorithms. On the other hand,
deep learning utilizes a complex network structure to identify intricate patterns
and dependencies between input and output variables. This technique is
categorized into three types based on network structure: Artificial Neural
Networks (ANN) and Recurrent Neural Networks (RNN). These algorithms find
significant applications in domains like long-term PM2.5 forecasting [4–6], where
nonlinear relationships and patterns are prevalent. By employing ensemble
learning and deep learning, researchers and practitioners can avoid the problem
of non-linear and non-stationary data in these fields more effectively.
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We applied emission factors and meteorological conditions as inputs to black-
box models for PM2.5 forecasting and evaluated the performance of these models
at different forecast horizons (30 days, 90 days, and 180 days). The results are
summarized in Table 1.7.

Horizon 30 90 180

Metrics R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

XGBoost 0.9623 24.180 0.0144 0.9376 28.167 0.0239 0.9349 28.471 0.0210
LightGBM 0.9639 23.653 0.0148 0.9433 26.863 0.0227 0.9414 27.001 0.0203
Catboost 0.9734 20.310 0.0128 0.9297 29.893 0.0252 0.9349 28.471 0.0214
ANN 0.9278 33.298 0.0218 0.9498 26.305 0.0256 0.9304 28.036 0.0264
RNN 0.9614 24.462 0.0149 0.9639 21.418 0.0206 0.9564 23.274 0.0185
LSTM 0.9659 22.973 0.0148 0.9521 24.677 0.0216 0.9531 24.149 0.0182
GRU 0.9327 32.307 0.0227 0.9513 24.878 0.0237 0.9520 24.433 0.0189
Bi-RNN 0.9603 24.807 0.0165 0.9570 23.375 0.0262 0.9576 22.970 0.0189
Bi-LSTM 0.9419 30.005 0.0212 0.9661 20.740 0.0196 0.9576 22.949 0.0185
Bi-GRU 0.9648 23.345 0.0153 0.9656 20.912 0.0214 0.9589 22.601 0.0182

Table 1.7: Comparison of forecasting performance. The optimal model is filtered through the
validation set and compared on the test set. The performance metric values reported here are
taken from the test set.

The analysis reveals that Catboost performs best for a 30-day forecast
horizon, while Bi-LSTM yields the highest accuracy at 90 days, and Bi-GRU
excels at 180 days. When considering model types, ensemble learning models
demonstrate superior performance for shorter forecast horizons, whereas
recurrent neural network models, including their derived bi-directional
counterparts, exhibit better accuracy for longer-term forecasting. Conversely,
the multilayer perceptron model did not deliver noteworthy results in our study.

1.3 Conclusion of chapter 1

After comparing with the accuracy of traditional linear regression and white-box
models, black box models such as neural networks and ensemble models
including boosting algorithms and bagging algorithms have absolute advantages
in prediction, however, the unexplainable nature makes the black-box model an
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obstacle in the process of practical application. The XAI algorithms can
obviously alleviate this problem. By identifying features with relatively high
contributions, users can understand the black box model more clearly when
using the black box model to predict, thereby increasing trust. However,
because many XAI algorithms have different principles and characteristics,
different XAI algorithms output different results for the same black-box model.
Therefore, the establishment of an evaluation framework for XAI algorithms is
necessary. The XAI algorithms are evaluated through the established XAI
evaluation framework - MDMC. The results show that LIME is more suitable
for ANN model and random forest model based on bagging algorithm, and
SHAP is more suitable for LightGBM based on boosting algorithm.
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Chapter 2

Explainable AI algorithms for calculating

importance of time periods

The application of Explainable AI (XAI) in time series forecasting has gradually
attracted attention, given the widespread implementation of machine learning
and deep learning. ShapTime - A general XAI approach based on shapley value
specially developed for explainable time series forecasting, which can explore more
plentiful information in the temporal dimension, instead of only roughly applying
traditional XAI approaches to time series forecasting as in previous works. The

research results have been published in the conference paper [23, 26].
The novelty of our method is that it achieves explanation in the time series
dimension, i.e., it is able to output the importance of historical data for the
forecasting results, which is not possible with other model-agnostic methods.

2.1 Description of problems in calculating importance of

time periods

2.1.1 Lack of generalisability

Numerous time series forecasting competitions including M4 [77] and M5 [78] have
shown that ML and DL perform significantly better than traditional statistical
methods, especially for more complex tasks. This has led to research on the
application of Explainable AI (XAI) in time series forecasting. explainable time
series forecasting aims to improve the trustworthiness of ML and DL in fields such
as Finance, Energy and Meteorology. There are two main approaches to apply
XAI in time series forecasting models: (1) directly using the existing model-
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agnostic method with high generality; (2) developing a model-specific method
specifically for the model. These two approaches directly caused two key problems.

Bottleneck 1: In time series forecasting, the existing model-agnostic method
is roughly applied, resulting in insufficient explanation. The essential reason for
the insufficient explanation is that most of the existing model-agnostic methods
are feature attribution methods, given that XAI was originally developed based
on regression and classification tasks, such as SHAP [51], LIME [52], etc. In
contrast to time-series data, there is no temporal relationship among data
instances for regression and classification, so the corresponding model-agnostic
method pays more attention to feature importance (or contribution). However,
this is not sufficient for time series forecasting. In time series forecasting models
yt = ϕ1yt−1 + ϕ2yt−2 + · · · + ϕpyt−p + ωt; ωt = b + k1x1 + k2x2 + · · · + knxn.
yt−i is the historical data of the target variable, and ωt is composed of features
xi and intercept terms b. These traditional model-agnostic methods can only
output feature importance ki, but not the importance of time itself ϕi. Actually,
due to human cognitive inertia, it is common to use feature importance as the
explanation result even in model-specific methods.

Bottleneck 2: The specially developed model-specific method needs to be
embedded in the model, resulting in low generality and high application cost.
Several works have noticed problem 1 and developed some explainable time
series forecasting models that can show periodicity as well as trend, which acts
on the temporal dimension. However, these methods are still not able to output
ϕi, and the degree of explanation is limited. In addition to the above problems,
there is also a common problem in the field of XAI, which is listed as problem 3
in this work.

Bottleneck 3: Lack of application scenarios. In works involving XAI,
usually, explanation results are only presented as an innovation. In a large
number of previous works, the application scenarios of XAI are only mentioned
in the introduction part, including helping users trust the model and developers
debugging the model, but these scenarios are not implemented.

Overall, on the one hand, the current model-agnostic method with high
generality cannot fully explain the time series forecasting task, that is, it cannot
realize the explanation of the temporal dimension. On the other hand, the
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model-specific method that can achieve temporal dimension explanation to a
certain extent also has limitations, and its low generality also increases the cost
of use. Therefore, a general XAI approach to explainable time series forecasting
is needed, given the increasing importance of ML and DL in time series
forecasting.

ShapTime1 realizes the attribution of time by calculating the shapley value [57]
on the temporal dimension, and finally outputs the importance of time itself ϕi.
Therefore, ShapTime can realize the explanation in the temporal dimension, and
it belongs to the model-agnostic method, which means that it can be deployed
on any forecasting model at a lower cost. The foundation of ShapTime is the
shapley value, which is the basis for numerous attribution methods including
SHAP. shapley value comes from cooperative game theory, which studies how to
reasonably distribute the benefits to the players in the alliance, and it has been
proved to have some good properties. Therefore, in recent years, the development
of XAI methods around shapley value is trying to become a stable path [103], and
our ShapTime is exploring explainable time series forecasting as a branch on this
path. Its contributions include:

• It realizes time attribution in the temporal dimension, that is, the importance
of time itself ϕi can be obtained

• As a highly general model-agnostic method, it can be deployed in any
forecasting model

• Its explanation results can be used as a guide to improve the forecasting
performance of the model

2.1.2 High computational complexity

The introduction of feature attribution methods such as SHAP aims to address
the interpretability issue of black-box models. Among various feature attribution
methods, SHAP stands out as the only method that satisfies several desirable
properties. Furthermore, the corresponding software library is highly compatible
with the Gradient boosting algorithm. As a result, the combination of SHAP

1The github library of ShapTime
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and Gradient boosting has gained widespread attention in the industry due to
its convenience. Each year, a significant number of application-oriented research
works based on this combination are published, focusing on tasks related to time
series forecasting.

However, the initial development of SHAP was primarily focused on regression
and classification tasks. It assumes that samples are independent and identically
distributed (i.i.d.), thus it can only explain the influence of features Xi on yi

(Figure 1), i.e., the forecast value ŷi = ΦiXi = ϕ1x1 + · · · + ϕSxS, but not the
impact of historical data YL = {yi−L, · · · , yi−L} on yi.

This problem can be addressed by transposing YL from the temporal dimension
to the feature dimension. In other words, the original data is processed as ti =
{Xi, YL, yi}. By doing this, the historical data YL of yi is integrated into the
feature dimension. Consequently, using SHAP, forecast value ŷi can be attributed
as ŷi = ΦiXi+ΨLYL, ΨLYL = ψi−Lyi−L+· · ·+ψi−1yi−1, allowing for explanation
in the temporal dimension. However, when we need to explain a longer historical
data range in the temporal dimension, it leads to high-dimensional data. For
instance, with a time frequency of 1 hour and wanting to investigate the impact
of the past year’s historical data on the current value yi, i.e., L = 24×365 = 8760,
the resulting dimensionality of the processed temporal data becomes 8760 + S.
Similarly, with a time frequency of 15 minutes, L will reach 96 × 365 = 35040.
Such high-dimensional data poses two challenges for achieving explainability:

Challenge 1: It requires substantial computational resources, to the

point where computation may become infeasible. The core algorithm of
SHAP is the shapley value, and its computational complexity is 2F (where F
represents the total number of features). Despite the existence of some variant
algorithms in the current SHAP library that can reduce the complexity,
high-dimensional data still poses a significant burden on their calculations. The
introduction of SHAP and its variants can be found in Section 3.1.

Challenge 2: Extracting meaningful information from high

dimensional explanatory results becomes difficult. Assuming negligible
computational resource consumption, we obtained the temporal explanation of
this high-dimensional data. Taking a time frequency of 1 hour and L = 8760 as
an example, the final explanatory results ΨL = {ψi−8760, · · · , ψi−1} will be
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outputted for the historical data of yi. In fact, it is challenging to extract useful
information from such dense data, and the presence of abnormal fluctuations in
time series data may still prevent human understanding of these explanatory
results.

In short, to overcome the bottleneck of SHAP in time series forecasting, the two
aforementioned challenges must be addressed. Therefore, it is necessary to have a
reasonable dimensionality reduction framework for YL that can preserve temporal
information. figure 2.1 intuitively demonstrates the approach to addressing these
challenges by reducing YL to YK .

Figure 2.1: Dimensionality reduction. In this example, K = 5

The choice of K depends on practical requirements, for example, if we are
interested in determining the day within the past week that had the greatest
impact on the current yi, with a time frequency of 1 hour, then
L = 7 × 24 = 168 and K = 7. This results in a new dataset ti = {Xi, YK , yi},
YK = {yT0

, yT1
, · · · , yT6

}. By calculating SHAP, ŷi can ultimately be
decomposed into ŷi = ΦiXi + ΨKYK , ΨKYK = ψT0

yT0
+ · · · + ψT6

yT6
, thus

achieving our explanatory goal.

2.2 ShapTime: explainable AI algorithm with

generalizability and low computational complexity for

calculating importance of time periods

Shapley value is one of the classic theories in cooperative games, which aims to
distribute the benefits fairly to the players in the alliance. There is the
correspondence between shapley value and model explanation: the features used
for training correspond to "players", and the model’s predictions correspond to
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"revenues". Therefore, the assignment achieved by shapley value can attribute
the prediction result to the features, that is, the contribution (importance) of
each feature to the prediction result. The assignment is achieved by the
following formula:

ki =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
× (v(S ∪ {i})− v(S)). (2.1)

where N is the set of all players (features) (1,2,3...i...n), which is the complete
set; S is a subset of N , in which removes the explained feature i, with a total
of 2N ; v is the gain function (v(S) = ED̂ [f(x) | xS], where D̂ is the empirical
distribution of the training data and f is the black-model).

The reason why shapley value has become the basis of many XAI approaches
is that it has some desirable properties, including: efficiency, symmetry, linearity
and null player, and among many attribution methods, it is the only mapping
(v : 2N → R) that can satisfy the above properties.

shapley value has two key elements: "player" and "gain function". When both
are determined, shapley value has the possibility to be calculated theoretically.
Accordingly, shapley value is the attribution of "player".

In order to achieve attribution on the temporal dimension, time points should
be considered as "players". Corresponding to the time series forecasting model,
yt−k is regarded as a "player", and after defining the gain function, the attribution
of yt−k, namely ψk, can be realized through shapley value. The modified formula
(ShapTime) is:

ψtk =
∑

S′⊆T\tk

|S′|!(|T | − |S′| − 1)

|T |!

×(v′(S′ ∪ tk)− v′(S′)).

(2.2)

where tk is super-time (players), T is the set of all super-time tk. S′ is a subset
of T , in which removes the explained super-time tk, with a total of 2T . v′ is the
gain function of ShapTime.
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2.2.1 Super-time: method to reduce computational complexity

The so-called temporal attribution is to attribute the forecasting results to time,
which means treating the time points as "players", which will inevitably cause
the dimension explosion and the system crash. A similar problem is encountered
in the XAI approach for image recognition - a large number of pixels makes the
computational cost increase exponentially. In order to solve this problem, [52]
proposed the concept of super-pixel, which is to cluster pixels with high similarity
into a whole, and then participate in the calculation of pixel contribution, thereby
greatly reducing the calculation cost.

Algorithm 2 Super-time
Input: Original data set: X
Parameter: The number of super-time: n
Output: All the super-time ti

1: Let L = int(length(X)/n).
2: Let start = length(X) - L× n.
3: Let Xused = X [start :, :].
4: for i in range (n) do

5: ti = X [i× L : (i+ 1)× L].
6: end for

7: return all the ti

In view of the similarity of the problem, we refer to his method to construct
super-time in the temporal dimension, that is, the data set is divided into n

super-times ti according to the temporal dimension.

ti = {yt−i, yt−i−1, yt−i−2, · · · } (2.3)

In ShapTime, super-time is equivalent to "player". Crucially, although super-
time controls the computational cost within an acceptable range, considering the
complexity of O(2n) in the ShapTime, we recommend that n not exceed 10 or 11.
Algorithm 4 shows the construction process of Super-time.

2.2.2 Redefinition of functions for generalizability

In ShapTime, the attributed object is super-time, which is the collection of time
points within a period of time, that is, the "player" is no longer a time point at
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this time, but a time period.

Algorithm 3 Gain Function of ShapTime
Input: Explained model: f ; Super-time: ti
Output: All the gain value: v′

1: Let S′ ⊆ T \ ti.
2: Let T = {t0, t1, · · · , tn}
3: for S′ in T do

4: if length(S′) == 1 then

5: S′ = {ti}.
6: v′ = sum(f(ti))/length(ti).
7: else

8: S′ = {ti, tj , · · · }.
9: Sc = concat(ti, tj , · · · )

10: v′(Sc) = sum(f(Sc))/length(Sc).
11: end if

12: end for

13: return 2T gain values: v′

Correspondingly, our forecasting target yt is also the collection of time points.
However, the calculation of shapley value requires that for each "player"
combination, the corresponding gain function outputs a value. Therefore, here,
the averaged model f forecasting results are taken as the gain function v′ of
ShapTime (lines 6 and 10 in Algorithm 3). The formula is:

v′(S′) = avg(fS′(xS′)) (2.4)

Eventually, the gain value v′ of all combinations of super-time will be obtained,
a total of 2|T |. In this way, according to equation (7), the forecasting result can
be attributed to each super-time ti, that is, ϕti, so as to realize the explanation
in the temporal dimension.

2.2.3 Visualisation of importance of time periods

Currently, there is the lack of recognized correct labels in the XAI research field,
which poses challenges for the evaluation of XAI methods. On the other hand,
our ShapTime is the model-agnostic method for the explanation of the temporal
dimension. In the field, this form of explanation is scarce, resulting in the lack of
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objects for comparison, so evaluation by contrast is difficult to achieve. Therefore,
we propose some reasonable evaluation criteria to evaluate ShapTime effectively
to a certain extent. It also provides a basic benchmark for subsequent research.

Property 1: Under the premise of using the same data set, the explanation
results of the XAI approach to similar types of models should be consistent to a
certain extent.

Property 2: The XAI approach should be subject to sensitivity analysis, that
is, when vital "players" are perturbed, there is the significant drop in forecasting
performance.

XAI’s evaluation criteria are critical for users to build trust in machines. The
most important of these is that the explanation results of XAI should maintain
a certain degree of stability (Property 1), which is the basis for building trust.
On this basis, the XAI method also guarantees validity (Property 2), that is,
when important "players" are changed, the performance of the model will decline
significantly. This can prove to a certain extent that the explanation results of
this XAI approach are valid. We applied ShapTime on the above 8 models and
generated the explanation results (figure 2.2: For the sake of brevity, we only
show the explanation results of ShapTime for XGBoost and LSTM in 5 data sets,
and the complete explanation results are in the Github).

In explanation results, the daily climate dataset (Figure.2.2(a)(f)) is taken as
the example. In this example, the number n of super-time is set to 8, then the
corresponding theoretical modified time series model is:

yt = ϕt0t0 + ϕt1t1 + · · ·+ ϕt7t7 + ωt (2.5)

After the training is completed, we use ShapTime to explain XGBoost and
LSTM, so as to attribute the forecasting results of the model to each super-time,
and then get each ϕti value, and display them visually through the heat map. We
can clearly see that both models capture the most recent super-time t7 as the
most important input. In the energy consumption dataset, the two models regard
t7 as the most important super-time; in gold price it is t9; in tesla stock it is t10.
Different situations appear in solar generation. The super-time captured by the
two models is different. XGBoost captures t0 as the most important, while LSTM
captures t5.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Figure 2.2: Example of explanation results from ShapTime. This is ShapTime’s explanation
of XGBoost and LSTM. a: XGBoost-Climate; b: XGBoost-Energy; c: XGBoost-Solard; d:
LSTM-Climate; e: LSTM-Energye; f: LSTM-Solar; g: XGB-Gold; h: XGB-Tesla; i: LSTM-
Gold; j: LSTM-Tesla. The heat map is used to visualize the explanation results of the input
data. The darker the color, the more important the super-time. This means that the model
pays more attention to this super-time during the training process. It can be seen from figures
that the explanation of trend data by LSTM and XGBoost is basically consistent, and there
is a certain degree of difference in the explanation of periodic data, especially in the Solar
Generation data set.

Looking at all the 5 × 8 explanation results, the most important super-time
captured by all models is the last one in the trend data, but in the periodic data,
there is no obvious rule. However, if we analyze the forecasting performance of
the model (Table.2.1), we can still find some potential rules, that is, the Boosting
model is more suitable for periodic data, while the RNN-based model is more
suitable for periodic data when the explanation results are generally consistent.

According to the above evaluation criteria, we evaluate the explanation results
of ShapTime, and the evaluation examples are shown in figure 2.3. Similarly, for
simplicity, we only display the evaluation results on the Boosting model. figure
2.3(a)(d) represents the explanations of ShapTime for XGBoost and LightGBM,
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respectively. It can be intuitively seen that the explanation of ShapTime can be
maintained all the time for the same type of models, which is a common pattern
in all the explanation results. This is key to the trust of users from all industries.
Imagine if the explanation results change frequently during use, which will directly
lead to user distrust or even abandonment.

(a) (b) (c)

(d) (e) (f)

Figure 2.3: Evaluation example of ShapTime explanation results. a: XGB-Solar; b: XGB-r2;
c: XGB-MSE; d: LGB-Solar; e: LGB-r2; f: LGB-MSE. (a) and (b) satisfy property 1, (b)(c)
and (e)(f) satisfy property 2.

This is exactly the purpose for which Property 1 was defined. However, in case
of different types of models, in principle, differences in the explanation results need
to be allowed, since models of varying architectures are not equally sensitive to
the nature of the distribution of the data. As in figure 2.2 (c)(h), the explanation
results present differences in the various models.

On the other hand, theoretically, if we perturb the training data according to
the explanation results, i.e., the important super-time is replaced with the least
important, then the forecasting performance of the model will be significantly
decreased. In this example, the most important t0 is replaced with the least
contributing t3, as well as t7 is replaced with t4. Correspondingly, the r2 and
MSE of XGBoost and LightGBM exhibit significant and gradual performance
degradation (figure 2.3(b)(c)(e)(f)). This evaluation schema is the relatively
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classical evaluation method in the field of XAI, and it is also known as
sensitivity analysis. In this work, it is summarized in property 2.

2.2.4 Improvement of forecasting accuracy using ShapTime

Even though research on explainability has received increasing attention in recent
years, however, in general, explanation results are simply presented as samples.
This phenomenon does not only occur within the domain of explainable time series
forecasting, but is the pervasive problem for the entire domain of Explainable AI
(Bottleneck 3). To explore the application scenarios of the XAI approach, we
try to use ShapTime’s explanation results as a guideline, aiming to improve the
performance of time series forecasting.

Figure 2.4: ShapTime-based performance improvement process. The blue line represents the
original data set, and the orange line represents the forecasting results of the model. The blue
background represents the explanation result of ShapTime. The darker the color, the more
important the tk is, and vice versa. After obtaining the importance in the temporal dimension,
the tk with the lowest value is replaced by highest one. The green line represents the improved
forecasting results.

First of all, the input data set is divided equally into several super-times, and
then, the importance of each super-time is calculated using ShapTime and
visualized by the heat map, where the darker color means more important and
the lighter color is less important. The way to improve performance is to replace
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low-importance tk with high-importance tk, and use this newly constructed data
set to retrain the model. The reason for constructing such the improvement
scheme (figure 2.4) is that ShapTime based on shapley value is the
model-agnostic method, so its operation logic is based on the data set. In detail,
the disturbance of the input data will change the forecasting result, and this
type of method realizes attribution through this change. In fact,
(v′(S′ ∪ tk) − v′(S′)) represents this change. Therefore, dataset-specific
refinements are naturally adopted when utilizing the explanation results output
by this method.

Based on our developed approaches, FI-SHAP and ShapTime, we provide
explanations of the model from two different perspectives. The former focuses
on the feature (or variable) level and improves performance through enhanced
feature engineering techniques. On the other hand, the latter operates at the
temporal level and enhances performance through data augmentation methods.

Experiments

In order to verify the practical application ability of ShapTime, we selected 5 real
data sets, including: climate data, energy consumption, solar power, gold price,
tesla stock. Among them, the first three are periodic data, and the last two are
trend data, so as to test the performance of ShapTime under different data types.

On the other hand, there are two types of black box models involved in training:
Boosting model and RNN-based model. The former consists of XGBoost and
LightGBM; the latter includes RNN, LSTM, GRU (RNN-based) and Bi-RNN,
Bi-LSTM, Bi-GRU(Bi-RNN-based). These forecasting models basically include
the current mainstream methods in competition and practice. Their forecasting
performance measures are shown in table 2.1

Improvement results

To create valuable XAI application scenarios, we use the explanation results of
ShapTime as our guide for achieving improved forecasting performance, and the
improvement process is shown in figure 2.4. table 2.2 shows the improved
performance metrics (compared to table 2.1), and the results show that
Bi-RNN-based and Boosting still maintain their original advantages in trending
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Data Climate Energy Gold Solar Tesla

XGB 0.7756 0.7570 0.7988 0.9307 0.7632
(0.0081) 0.0095 0.0006 0.0055 0.0029

LGB (0.7814) (0.8290) 0.7779 0.9322 0.7777

0.0082 (0.0071) 0.0006 0.0053 0.0023

RNN 0.7170 0.6574 0.7018 0.9587 0.8133
0.0104 0.0128 0.0011 0.0051 0.0022

LSTM 0.7507 0.6249 0.8182 0.9544 0.8586

0.0081 0.0153 0.0005 0.0057 0.0017

GRU 0.6719 0.7130 0.7096 (0.9661) 0.8176
0.0117 0.0119 0.0009 (0.0035) 0.0025

Bi-R 0.7257 0.6804 0.8048 0.9312 0.7990
0.0102 0.0120 0.0008 0.0099 0.0029

Bi-L 0.6903 0.7122 (0.8791) 0.9326 (0.8689)

0.0103 0.0119 (0.0005) 0.0082 (0.0016)

Bi-G 0.7136 0.5927 0.8664 0.9481 0.7055
0.0109 0.0154 0.0006 0.0056 0.0045

Table 2.1: Metrics to forecasting performance. forecasting models are divided into three
categories: Boosting; RNN-based; Bi-RNN-based. r2 and MSE are used as forecasting
performance metrics, for each model, the first row is r2 and the second row is MSE. Within
each class of models, the best model is marked (in bold); among all models, the best model is
additionally marked (in brackets). As can be seen from the table, Bi-RNN-based performs best
in trending data (Gold Price and Tesla Stock), and Boosting performs best in periodic data
(Daily Climate, Energy Consumption, and Solar Generation ).

and periodic data, respectively.
The measure of the degree of improvement is presented in figure 2.5 (a),

which shows the average degree of improvement for each type of model in each
data set. The percentages are calculated based on the degree of improvement in
table 2.2 compared to table 2.1. It can be intuitively seen that ShapTime shows
the maximum improvement for Bi-RNN-based, and the most significant
improvement for solar generation. Overall, the effect of ShapTime on boosting is
less significant than that of other types of models. Specifically, ShapTime has
the most significant improvement on Bi-GRU. In the original forecasting
performance (table 2.1), Bi-GRU does not possess the best performance in all
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(a)

(b) (c)

(d) (e)

Figure 2.5: Visualization of performance improvement. a: Improvement results of forecasting
performance; b: Improve Energy; c: Improve Gold; d: Improve Solar; e: Improve Tesla.
"Original" is the output of the original forecasting model, and "Ours" is the output of the
ShapTime-guided forecasting model.
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Data Climate Energy Gold Solar Tesla

XGB (0.7898) 0.7975 0.8880 0.9521 0.8198

0.0075 0.0093 (0.0004) 0.0038 0.0021

LGB 0.7847 (0.8445) 0.8715 0.9573 0.8038
0.0082 (0.0069) 0.0004 0.0033 0.0022

RNN 0.7255 0.7572 0.8535 0.9701 0.8385
0.0096 0.0116 0.0006 0.0024 0.0020

LSTM 0.7751 0.6412 0.8287 0.9597 0.8812

(0.0070) 0.0142 0.0005 0.0047 0.0016

GRU 0.7470 0.7376 0.7825 0.9740 0.8498
0.0092 0.0101 0.0006 0.0026 0.0020

Bi-R 0.7428 0.7425 0.8980 0.9693 0.8932
0.0082 0.0101 0.0004 0.0036 0.0016

Bi-L 0.7532 0.7604 0.9002 0.9742 (0.9080)

0.0084 0.0100 0.0004 0.0028 (0.0013)

Bi-G 0.7412 0.7092 (0.9043) (0.9840) 0.8505
0.0100 0.0112 0.0004 (0.0014) 0.0021

Table 2.2: ShapTime guided forecasting performance improvement. r2 and MSE are used as
forecasting performance metrics, for each model, the first row is r2 and the second row is MSE.

datasets, while after the improvement (table 2.5), the best forecasting
performance of gold price and solar generation appears in Bi-GRU.

The partial visualization of the improvement effect is shown in figure 2.5
(b,c,d,e). From the forecasting effect, the forecasting results after ShapTime
improvement still maintain approximately the same pattern as the original
forecasting results, however, they can be much closer to the original data, thus
achieving the performance improvement.

2.3 Conclusion of chapter 2

In this work, the XAI approach specifically oriented to time series forecasting is
developed, and we name it ShapTime since its computation is based on shapley
value. It enables attribution in the temporal dimension, thus explaining the
importance of time itself, which differs from previous works. On the other hand,
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with the help of ShapTime explanation, we have been able to achieve the
improved performance in time series forecasting. By replacing data in times of
low contribution with high ones, performance improvements can be achieved to
some extent.
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Chapter 3

Explainable AI algorithms for calculating

feature importance

The aforementioned research findings indicate that both ensemble learning,
represented by boosting, and deep learning, represented by neural networks, are
important in the field of time series forecasting, especially for long-term
sequence forecasting. However, they are both black-box models that cannot be
understood by humans. In this chapter, we focus on the boosting model as a
representative of ensemble learning. In the field of time series forecasting, the
application of boosting models often requires feature engineering. Therefore,
explanations for boosting models can provide effective guidance for feature
engineering, leading to performance improvement.

Boosting algorithm (BA) is state-of-the-art in major competitions, especially
in the M4 and M5 time series forecasting competitions. However, the use of
BA requires tedious feature engineering work with blindness and randomness,
which results in a serious waste of time. In this work, we try to guide the initial
feature engineering operations in virtue of the explanation results of the SHAP
technique, and meanwhile, the traditional feature importance (FI) method is also
taken into account. The results of the research have been successfully

published [20]. The novelty of our method is that the combination of the two
methods enables the explanation of the results to be more informative implicitly,
thus helping to optimise the accuracy of the forecasting.
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3.1 Feature engineering based on feature importance

What feature engineering needs to achieve is to enrich the information of the data
set, so that the prediction model can learn more "knowledge" and show better
performance [115]. Existing feature engineering methods in time series forecasting
tasks fall into two categories: exogenous and endogenous. The exogenous scheme
is to add features that may affect the time series; the endogenous scheme is to
enrich the information of the dataset by extracting the hidden features of the
original features. In this work, only the endogenous scheme is discussed.

Feature engineering does not have a fixed execution route. It often requires
practitioners to design features based on their professional knowledge, so it is
extremely dependent on human experience. This is unreliable and time
consuming. To alleviate this problem, a large number of automatic feature
engineering methods have been developed, such as [116–120]. These mainstream
frameworks use multiple feature groups contained in the original dataset to
discover new relevant features, and they all focus more on classification tasks.
Even though these methods can be partially used in time series forecasting, they
do not reflect the temporal features. In contrast, our feature engineering method
based on XAI is specially designed for time series data and can reflect temporal
features.

Feature engineering methods for time series forecasting include [121–123]. They
essentially add lag features on the basis of the above methods, that is, introduce
autoregressive features, so as to ensure that enough time features are involved
in training. In addition, feature selection is performed by constructing a large
number of features (including autoregressive features) in advance, and calculating
the feature importance of the model after forecasting, such as [124–126]. However,
this process has a certain degree of blindness and randomness. However, our XAI-
based feature engineering method is able to quantitatively calculate the order of
the required lags, thereby eliminating this blindness and randomness.

3.1.1 Construction of lagged features

For feature engineering in time series forecasting, the construction of lag features
is extremely critical. Firstly, time series forecasting, theoretically, is an
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autoregressive task, that is, using its own historical data to predict future data,
so the construction of lag features is indispensable for time series forecasting
tasks. Secondly, the more lag features are not the better, and too many lag
features will cause the decline of the prediction performance. This is because the
autoregressive process will cause the accumulation of errors, which means that
the more lag features, the more errors will accumulate. Therefore constructing a
suitable number of lag features is especially critical in time series forecasting.
Automatic feature engineering developed by us will focus on the construction of
lag features in time series forecasting.

3.1.2 Disadvantages of existing algorithms for calculating feature

importance for feature engineering

The Feature importance in the boosting model is an important part of feature
engineering. On the one hand, it has perfect mathematical theoretical knowledge
[127]; on the other hand, it is applicable to almost all tree models and is extremely
convenient. Feature importance is essentially Information Gain, which is used for
feature selection when the decision tree is split, and its calculation is based on
Shannon entropy. Features with larger information gain are considered important
features. The calculation process of the information gain is defined as:

Expected information (Shannon entropy):

Info(X) = −
∑n

i=1 P (xi)log2P (xi) (3.1)

Information Gain:

Gain = Info(X)−
∑n

i=1
|Xi|
X Info(X i) (3.2)

X is a random variable, P is the probability of all cases.
As mentioned above, in order to construct the right amount of lag features,

we must know the importance of the features in advance. In addition to the FI
function that comes with the boosting model, XAI is also a way worth trying.

The explanation method achieves the purpose of explanation by constructing
a simpler and easier-to-understand model and allowing it to continuously
approximate the model that needs to be explained. This kind of method is
called Post-Hoc, which is different from Intrinsic, which integrates interpretable
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functions into the black-box model. The former rarely relies on the architecture
of the black-box model and can be widely used in models that have been trained.
Among them, Generalized Additive Models [129], Bayes Rule List [128], and
Neural Additive Model [130] belong to Intrinsic, and their operation is closely
related to the black box model. SHAP [51] and LIME [52] are two exceedingly
popular model-agnostic (Post-Hoc) explanations. In this work, we only consider
SHAP due to its complete code repository and rigorous mathematical theory.

The creation of SHAP is based on the Shapley value, which treats each
feature as a "player" to build a system where "single-player (single feature)" and
"alliance (feature combination)" participate in the "game (black-box model)".
SHAP actually attributes the output value to the shapely value of each feature.
In other words, it calculates the Shapley value of each feature and based on this,
measures the impact of the feature on the final output value. For linear models
with independent features, the sum of the contributions of all the features of the
sample is equal to the predicted value minus the average predicted value, but
this is obviously not true for boosting algorithms. Therefore, for the features of
the Boost model, the Shapley value needs to be calculated for all possible
feature combinations (including different orders) and then weighted and
summed, which is defined as:

ϕ(val) =
∑

S⊆{x1···xp}\{xj}
|S|!(p−|S|−1)!

p! (val(S ∪ {xj})− val(S)) (3.3)

where S is a subset of the features used in the model, x is the vector of feature
values of the sample to be explained, p is the number of features, and val(S)

refers to the model output value under the feature combination S. We can
quantitatively construct lag variables based on the explanation results of XAI,
enabling automatic feature engineering. The overall process is shown in Figure
3.1.

Actually, since a lot of resources are used in feature engineering when machine
learning is performing tasks, the explanation of boosting Algorithm has been
considered as early as its development. Feature Importance (FI), as an integrated
attribute of boosting Algorithm itself, has been applied to feature selection for
a long time. However, as an explanation of boosting Algorithm, FI has many
shortcomings that cannot be ignored, including:
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Figure 3.1: The process of feature engineering that XAI uses for time series forecasting. In
theory, the XAI part can be replaced with other methods that can output feature importance
(contribution). The interpretation result is the feature importance (contribution), which is also
the basis for feature engineering processing in our method framework.

• FI cannot reflect whether the influence of features on the forecast results is
positive or negative.

• FI cannot reflect the interrelationship between features and target variables.
In essence, this means that the interpretation is not ideal

Different from the popular Model-Agnostic Approximations in the
Explainable AI field, FI is an attribute of boosting Algorithm itself. Therefore,
FI should be paid attention to in the framework of constructing boosting
Algorithm explanation, even if it has extremely poor performance for
user-oriented explanation.

The popularity of machine learning and deep learning has led to a wider focus
on explainable artificial intelligence (XAI). Machine learning models and deep
learning models are generally regarded as "black boxes" with internally unknown
characteristics. Therefore, when these models are applied, it is very important to
gain human’s trust, clarify the specific meaning of their errors, and the reliability
of their predictions.
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3.2 FI-SHAP: explainable AI algorithm with hybrid

mechanism for calculating feature importance

3.2.1 Description of hybrid mechanism

A hybrid explanation method combining FI and XAI was constructed, with the
purpose of trying to combine feature engineering and Explainable AI to improve
the forecast performance of boosting Algorithm in time series forecasting.
Especially for energy and other time series that are susceptible to external
interference. Taking the two Explainable AI methods mentioned above: SHAP
and FI as examples, the new hybrid explanation method is defined as:

φxj = ϕxj ×
FI(xj)∑p
i=1 FI(xi)

(3.4)

φxj represents the contribution of j feature to the forecast result under the
explanation framework of SHAP.

FI-SHAP combines traditional feature engineering with the emerging
Explainable AI. On the one hand, it enhances XAI’s specificity for boosting
Algorithm, and on the other hand, it provides users with more comprehensive
explanation results.

Algorithm 4 FI-SHAP
Input: The feature importance from LightGBM: FI(x); The feature contribution from SHAP
ϕx

Parameter: The number of feature: p
Output: FI-SHAP value φxj

1: for i in range (p) do

2: φxj = ϕxj ×
FI(xj)∑p
i=1 FI(xi)

3: end for

4: return FI-SHAP value φxj

3.2.2 Visualisation of feature importance

The energy time series data used in this work comes from Kaggle, which was
collected from two solar power plants located in India with a time period of 34
days (every 15 minutes). The data set consists of two parts, the first part is the
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power generation data set, which is generated by the inverter, including direct
current, alternating current, daily yield, and total yield. The second part is the
data collected by the sensors, including temperature and solar radiation. The
inverters are named sourcekey, and each power plant has 22 inverters, for a total
of 44 inverters. These inverters all generate power generation data at the same
time, resulting in a dataset with a total of 136,476 rows and 7 columns (within
34 days).

Figure 3.2: Raw Forecasting Results (No Feature Engineering). The results show that the data
set of power plant 1 is inherently of high quality, while the data set of power plant 2 contains
a large number of anomalies, and even LightGBM almost fails for it.

We adopted a multi-threaded processing scheme, that is, according to different
inverter ids (sourcekey), the data table is divided into 44 data sets with about
3000 rows and 7 columns (within 34 days). We use both raw boosting models and
boosting models with feature engineering on these datasets to highlight the best
performing explanation methods.

We use XGBoost with LightGBM to separately make forecasting on 22 small
datasets from the solar power plant. The forecasting results are shown in Figure
3.2. It should be noted that LightGBM has significantly outperformed XGBoost
in time series competitions in recent years, because the scale of the datasets used
in the competition is large. The basis of LightGBM is still XGBoost, and the
addition of algorithms such as histogram enables LightGBM to train faster than
XGBoost and to ensure accuracy. However, on small datasets, the advantages
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of LightGBM disappear accordingly. This is also the reason why LightGBM’s
performance is poor compared to XGBoost in this work.

From such these data sets, we test the improvement performance of these
explanation methods using the power plant 1 dataset and the repair
performance of these explanation methods using the power plant 2 dataset.

Compared with Feature Importance, the explanation results (Figure 4) output
by SHAP can show both the positive and negative effects of the feature, and can
provide users with more comprehensive explanation information. Here, we only
show the explanation results of a data set produced by an inverter as an example.

(a)

(b)

Figure 3.3: SHAP Explanation (Plant 1, Source Key id: 0): a: XGBoost; b: LightGBM

It can be seen from the results that the impact of "Hour" is both positive and
negative, and the overall effect is relatively balanced. However, the impact of
"AMBIENT TEMPERATURE" on the forecasting results is biased negatively,
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that is, within a certain range, the rise in temperature will have a certain positive
impact on the power generation, and other features are also explained according
to the same logic. For Feature Importance, such an interpretation effect cannot
be achieved, and FI can only show the ranking of feature importance, as shown
in Figure 3.4.

Figure 3.4: Feature Importance (Plant 1, Source Key id: 0)

3.2.3 Improvement of forecasting accuracy using FI-SHAP

As mentioned above, the core of our automatic feature engineering is to
construct a suitable amount of lag features to achieve the purpose of feature
engineering improvement. Initially, we used the features of the original data to
forecast directly using the boosting model, i.e. without feature engineering.
Explain the model after the model is trained to obtain the importance of the
features, and calculate the weight of each feature, which is defined by the
following formula:

Weight =
Fj∑n
j=1 Fj

(3.5)



65

Fj represents the explanation value of each feature.
For different explanation methods, the representation of Fj is also different. For

SHAP, F is ϕ(val) (Equ.3.3); for FI, F is Gain (Equ.3.2), and for our FI-SHAP,
F is φ(val) (Equ.3.4).

Figure 3.5: The process of feature engineering works by explanation results. N is the total
number of features, which can be set by the user according to actual needs.

Calculate the weight of each continuous feature through the explanation results
of SHAP and Feature Importance (FI) output, and set the total number of features
to be constructed, so that lag features can be constructed according to the weight
(Figure 3.5). After obtaining the weights, we also need to set the total number
N of features to be constructed, and construct lag features for the continuous
features in the original dataset according to the result of N*weight. However, in
fact, we do not know the exact value of N, so the automatic feature engineering
we provide takes an iterative approach to construct lag features. For example,
when the user sets N to 50, our framework will start from 1 to 50, and select
the best performing result. Therefore, theoretically, if the computing power of
the computer allows, the value of N can be set larger. However, based on actual
performance, we recommend setting the value of N not to exceed 200. See this
code library for details1.

In order to effectively measure the improvement effect of these explanation
methods on feature engineering, we use the "average lag explanation" as the
baseline of the experiment. In the "average lag explanation", the explained value

1The github library of FI-SHAP
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of all features is artificially set to 1 (or any value, as long as the explained value
of all features is guaranteed to be equal), that is, the weight of each feature is
equal.

Table 3.1: Forecast Quality (R2) of Power Plants 1

Source key 0 1 2 3 4 5 6 7 8 9 10

XGBoost 0.934 0.940 0.942 0.934 0.938 0.920 0.938 0.941 0.935 0.940 0.941
avg. 0.934 0.941 0.947 0.941 0.939 0.923 0.942 0.946 0.940 0.944 0.944
FI 0.938 0.953 0.953 0.942 0.944 0.927 0.938 0.951 0.951 0.942 0.944

SHAP 0.940 0.952 0.952 0.944 0.944 0.932 0.943 0.952 0.950 0.943 0.945

FI-SHAP 0.940 0.954 0.951 0.944 0.942 0.933 0.941 0.952 0.953 0.943 0.945

Source key 11 12 13 14 15 16 17 18 19 20 21

XGBoost 0.941 0.945 0.940 0.945 0.936 0.916 0.934 0.942 0.934 0.944 0.932
avg. 0.944 0.948 0.943 0.946 0.941 0.920 0.942 0.944 0.937 0.948 0.941
FI 0.946 0.953 0.943 0.948 0.942 0.926 0.938 0.946 0.947 0.953 0.949

SHAP 0.945 0.953 0.943 0.948 0.942 0.934 0.939 0.946 0.950 0.953 0.950
FI-SHAP 0.944 0.954 0.943 0.948 0.942 0.935 0.939 0.946 0.951 0.953 0.951

Source key 0 1 2 3 4 5 6 7 8 9 10

LightGBM 0.892 0.836 0.856 0.914 0.914 0.760 0.919 0.867 0.831 0.913 0.920
avg. 0.911 0.885 0.889 0.930 0.934 0.764 0.933 0.888 0.877 0.932 0.934
FI 0.928 0.889 0.893 0.940 0.936 0.774 0.936 0.895 0.879 0.935 0.940

SHAP 0.925 0.889 0.899 0.944 0.939 0.774 0.935 0.893 0.878 0.941 0.941
FI-SHAP 0.931 0.892 0.900 0.944 0.938 0.859 0.934 0.904 0.888 0.942 0.945

Source key 11 12 13 14 15 16 17 18 19 20 21

LightGBM 0.912 0.857 0.914 0.939 0.909 0.779 0.914 0.923 0.838 0.864 0.838
avg. 0.924 0.890 0.922 0.948 0.929 0.793 0.929 0.935 0.889 0.893 0.882
FI 0.935 0.891 0.936 0.947 0.926 0.827 0.937 0.940 0.881 0.887 0.880

SHAP 0.937 0.894 0.942 0.953 0.932 0.903 0.939 0.944 0.883 0.890 0.888
FI-SHAP 0.939 0.904 0.938 0.953 0.932 0.915 0.942 0.943 0.890 0.894 0.893

So the effect it has is that each feature needs to build the same number of
lag features. For example, when N = 30 and the original number of features is
5, the "average lag explanation" is to construct 6 lag features for each feature.
Shap might assign 20 lag features to the first feature, 15 features to the second,
and no lag features to features with low explanatory values. Finally, compare the
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effect of these methods on the improvement of forecasting performance, which
also represents the improvement effect of these methods on feature engineering.

Table 3.2: Forecast Quality (R2) of Power Plants 2

Source key 0 1 2 3 4 5 6 7 8 9 10

XGBoost 0.132 0.141 0.365 0.810 0.878 0.535 0.102 0.297 0.124 0.367 0.755
avg. 0.494 0.159 0.372 0.869 0.904 0.556 0.153 0.327 0.174 0.449 0.821
FI 0.569 0.209 0.465 0.934 0.924 0.544 0.192 0.375 0.227 0.554 0.889

SHAP 0.568 0.309 0.384 0.946 0.943 0.538 0.216 0.394 0.362 0.398 0.890
FI-SHAP 0.558 0.252 0.497 0.951 0.937 0.536 0.212 0.433 0.375 0.401 0.896

Source key 11 12 13 14 15 16 17 18 19 20 21

XGBoost 0.271 0.415 0.176 0.251 0.134 0.093 0.051 0.689 0.173 -0.011 0.813
avg. 0.318 0.598 0.321 0.311 0.347 0.281 0.324 0.788 0.216 0.061 0.822
FI 0.301 0.608 0.456 0.357 0.449 0.343 0.360 0.938 0.247 0.337 0.826

SHAP 0.303 0.656 0.462 0.316 0.445 0.305 0.352 0.947 0.258 0.073 0.827
FI-SHAP 0.302 0.682 0.541 0.355 0.465 0.471 0.368 0.948 0.249 0.296 0.828

Source key 0 1 2 3 4 5 6 7 8 9 10

LightGBM -0.472 -0.962 0.502 -0.486 -0.045 -0.176 -0.292 -0.107 -1.073 0.188 -0.546
avg. -0.042 -0.314 0.576 0.654 0.405 0.080 0.004 0.318 -0.586 0.398 0.191
FI 0.278 -0.061 0.570 0.714 0.884 0.205 0.169 0.396 -0.179 0.367 0.500

SHAP 0.248 0.206 0.597 0.770 0.903 0.047 0.022 0.324 -0.008 0.309 0.615
FI-SHAP 0.253 0.074 0.585 0.688 0.889 0.135 0.117 0.356 0.022 0.324 0.670

Source key 11 12 13 14 15 16 17 18 19 20 21

LightGBM 0.288 -0.134 0.155 0.407 -0.628 -0.955 -0.148 0.653 -0.487 0.049 0.202
avg. 0.327 0.110 0.213 0.442 -0.051 -0.210 0.013 0.708 -0.288 0.193 0.258
FI 0.317 0.168 0.177 0.429 0.127 0.012 0.162 0.729 -0.224 0.177 0.325

SHAP 0.307 0.107 0.503 0.477 0.000 0.026 0.190 0.901 -0.290 0.224 0.313
FI-SHAP 0.290 0.188 0.403 0.475 0.142 -0.025 0.161 0.884 -0.222 0.188 0.345

We create different kinds of lag features based on different explanation results,
thereby enriching feature engineering to improve the performance of forecasting
models. The improvement effect of the explanation method is tested by the data
set of Power Plant 1, and the repair effect of the explanation method is tested by
the data set of Power Plant 2.

The final improvement results are shown in Table 3.1 and Table 3.2, Table 3.1
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is the upgrade of Power Plant 1, and Table 3.2 is the repair of Power Plant 2.
According to the results, in the dataset of higher quality Power Plant 1, all

explanation methods show improved effect. On the whole, the improvement effect
of FI-SHAP is the best, especially in LightGBM. The second is SHAP, and FI has
a general effect on improving high-quality data. In the low-quality Power Plant
2 dataset, synthetically, almost all explanation methods have insignificant repair
effects. On the one hand, it means that only the construction of autoregressive
features is not enough to achieve good performance. On the other hand, the
results also show that for small datasets, the adaptability of LightGBM is not as
good as that of XGBoost.

The performance improvement brought by more lag features is still not
negligible, because when we are doing actual feature engineering, there are still
many ways to participate, as described earlier. However, in this work, we only
focus on the construction of lag features, in order to study time series
forecasting tasks more professionally. In the repair of low-quality data, it can be
clearly seen that the repair effect of FI-SHAP is more obvious for XGBoost, and
the repair effect of SHAP is more obvious for LightGBM.

3.3 Conclusion of chapter 3

In this chapter, we propose a novel hybrid explanation method, termed
FI-SHAP, for the boosting algorithm, which integrates both model-specific and
model-agnostic techniques. By leveraging the feature importance scores
obtained from the FI-SHAP output, we perform feature engineering on the most
influential features to enrich the feature set. Our objective is to enhance the
performance of time series forecasting tasks through this feature enrichment
process.
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Chapter 4

Applications of explainable AI

In this chapter, we apply Explainable AI techniques to real-world tasks,
including the analysis of influencing factors, improvement of time series
forecasting performance, and online adaptation problem. Relevant results

were published in the paper [21, 22]. The results of section 4.2 [30] and
section 4.3 [31] are under review by the journal. The results of section
4.1 [21, 22] have been published in journals. The novelty is that previous works
only show explanation results without exploring the application scenarios, our
research proposes three economically valuable application scenarios in practice.

4.1 Analysis of factors affecting solar generation and air

quality

The novelty of our method is that information on the importance of features is
obtained based on the XAI method and this is used to obtain the location of the
solar panel installation

4.1.1 Analysis of factors affecting solar generation

Although more suitable forecasting models were found for the solar power
generation dataset through comparative experiments, these models are different
from traditional statistical models in that their output logic is not transparent
to us. Rather, we only know that nonlinear relationships exist within them.
This lack of transparency prevents us from fully relying on their forecast results
and limits our ability to analyze the factors that influence these forecasts.
Influencing factor analysis is an effective tool for forecasting and managing the
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capacity of solar power systems.

(a)

(b)

Figure 4.1: Example of local explanation results. (a): 01 September 2008 7:00; (b): 01
September 2008 13:00. The horizontal axis represents the SHAP values, while the vertical
axis displays the names and values of each variable. The numerical value of f(x) represents
the forecasting of LightGBM at that moment. In practice, it is not possible to enumerate all
the factors that affect solar power generation. Therefore a concept of BASELINE is assumed
in SHAP, represented by E [f(x)], with which those influences that are not taken into account
are represented. Here, it is represented by the average of all forecast values.

The identification of key factors that impact system performance, such as
weather patterns, geographical location, and shading, can enable more precise
forecast of energy generation and optimization of system performance through
improved management strategies. Furthermore, historical data and trends
derived from influencing factor analysis may support informed decisions
regarding investments in solar technology and infrastructure.
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Figure 4.2: Example of global explanation results.

Influencing Factors Analysis

The study employs the SHAP algorithm as a general method for XAI to
perform an influence factor analysis. The SHAP algorithm, which calculates
Shapley values, is described in detail in Section 2.2. We utilizes LightGBM as an
exemplar to showcase the implementation of SHAP. This choice is informed by
SHAP’s source code library support for ensemble learning and superior
visualization capabilities, which surpass those of deep learning. It is important
to acknowledge that this disparity in technical capabilities is confined to the
code domains only, and SHAP retains its role as an explanation scheme for all
black-box models within the theoretical framework.

It is important to emphasise that the SHAP value of a variable represents
the degree of its contribution to the forecasting results, and the larger the value
indicates that its corresponding variable is more important. We will use Figure
4.1 as an example to show in detail the analysis of influencing factors using SHAP
as the basis of the technique.

Figure 4.1 shows the SHAP explanations for two sample points with timestamps
of "September 1, 2008, 7:00" and "September 1, 2008, 13:00". The baseline,
denoted as E [f(x)], represents unconsidered variables and is substituted with the
average value of all forecasting values. In this study, E [f(x)] = 0.579. For Figure
11(a), starting from the bottom, the model’s baseline is 0.579. The inclusion
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of average temperature and average wind speed does not cause a change in the
forecasting value f(x). However, once relative humidity is included, f(x) begins to
vary, and each subsequent variable contributes to the forecasting. The calculation
process is as follows: f(X) = 0.579− 0− 0 + 0.01 + 0.03− 0.03 + 0.05− 0.05 +

0.06− 0.28 = 0.351.
Thus, SHAP assigns the forecasting value f(x) = 0.351 to each variable. The

same process applies to Figure 11(b). By comparing Figures 11(a) and 11(b), it
can be observed that when the time changes from 7:00 to 13:00, most variables’
contributions to the predicted value turn positive. Particularly, as the distance
to solar noon decreases, its contribution significantly rises to +1.85, exerting a
decisive influence. However, these are only the explanations for two sample points.
In practice, it is impossible to analyze each data point individually. Therefore,
SHAP also provides global explanations for variables by taking the absolute values
of local explanation results and averaging them. This average serves as the global
explanation, presented in Figure 4.2.

Global explanation can comprehensively assess the importance of these
variables. Figure 4.2 illustrates the ranking of variable importance for
forecasting outcomes, with variables arranged from top to bottom in descending
order based on their importance. For the entire dataset, the "distance to the
solar noon" is the most important, with its significance surpassing that of the
remaining variables by a large margin. Subsequently, sky cover and relative
humidity take precedence, while other variables such as wind direction, wind
speed, and average temperature do not stand out in this comprehensive
assessment. Up to this point, the aforementioned analysis is solely based on the
static explanation of SHAP values, without incorporating variable values. Next,
we will explore the SHAP values under variable value changes to achieve
dynamic analysis. The global dynamic explanation is presented in Figure 4.3.

The analysis of Figure 4.3 helps us examine the presence of a strong
monotonic relationship between SHAP values and variable values. The key
aspect of analyzing Figure 4.3 lies in observing the clear distinction between the
blue and red regions. For instance, considering the most important variable -
distance to the solar noon, when this variable has lower values, it is represented
by blue dots located on the right side. This indicates that lower values of this
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Figure 4.3: Global dynamic explanation. The left vertical axis shows the name of the variable
and the right colour bar from blue to red represents the variable’s value from small to large.
The horizontal axis represents the SHAP value, indicating the importance or contribution of
the variable to the forecasting results.

variable have a positive impact on the forecasting solar power generation.
Conversely, the red dots representing higher variable values are concentrated on
the left side, suggesting that larger values of this variable have a negative effect
on the forecasting. The more distinct the separation between the red and blue
regions, the stronger the monotonic relationship between variable values and
their corresponding SHAP values. In addition, SHAP provides an interactive
explanation plot (Figure 4.4, 4.5) which not only presents such monotonic
relationships in detail but also illustrates the interaction effects among variables.

We begin by conducting an analysis on continuous variables. As shown in
Figure 4.4, the trend exhibited by the data points represents the relationship
between variable values and SHAP values, while the color indicates the variable
value that has the most significant interaction effect with the given variable. The
influential factors based on interactive plots are analyzed as follows:

Distance to Solar Noon (figure(4.4a)). The trend displayed by the data
points indicates a strong monotonic relationship, wherein the SHAP value
decreases significantly as the variable value increases. This implies a
considerable reduction in its contribution to the predicted value. Additionally,
when the variable value increases to approximately 0.3, its SHAP value remains
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at a relatively low level (around 0.5); however, when the value reaches around
0.4, its contribution becomes negative.

(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Interaction effects of continuous variables on forecasting results. (a): Distance to
Solar Noon; (b): Relative Humidity; (c): Average Wind Direction; (d): Average Wind Speed;
(e): Average Barometric Pressure; (f): Average Temperature. The grey shading demonstrates
the distribution of the corresponding variables

On the other hand, the right side of the plot demonstrates the variable that
exhibits a notable interaction effect, which in this case is sky coverage. It can be
observed that even when the distance is within 0.3 km, the red data points
representing high sky cover can still lower the SHAP value to a lower level.
However, once the distance surpasses 0.3 km, due to a significant decrease in



75

power generation, such interaction effects lose their analytical value. Overall, it
can be inferred that when the distance does not exceed 0.3 km and the sky cover
remains below 2, the model can generate higher forecasting values. Finally, the
results of the SHAP analysis indicate that the distance to the solar noon within
0.3 km, combined with a sky cover rate not exceeding 60%, are the most crucial
environmental factors for high-quality solar power generation.

Relative Humidity (figure(4.4b)). As the relative humidity increases, its
corresponding SHAP value gradually decreases, indicating a diminishing
contribution to the forecasting values. As observed from the figure, when the
distance to the solar noon is within 0.3km, relative humidity below 60% exhibits
a relatively positive impact on solar power generation.

Average Wind Direction (figure(4.4c)). In regard to the dataset, it can
be observed that when the distance to the solar noon is within 0.3km, the average
wind direction falls between 25◦ and 30◦, thus favoring solar power generation.
However, it should be emphasized that this conclusion is only applicable to the
given dataset.

Average Wind Speed (figure(4.4d)). In reference to this data set, when
the relative humidity remains below 60% and the average wind speed ranges from
15m/s to 25m/s, a significant increase in corresponding SHAP values is observed.
Consequently, this exerts a positive influence on solar power generation.

Average Barometric Pressure (figure(4.4e)). Concerning this dataset,
when the distance to the solar noon is within 0.3 km, an average barometric
pressure ranging from 30 inHg to 30.2 inHg can generate positive SHAP values,
indicating a positive effect on the forecasting value. However, the magnitude of
this influence is significantly lower than that of the aforementioned four
environmental factors.

Average Temperature (figure(4.4f)). Overall, in comparison with other
environmental factors, the average temperature has a relatively minor impact on
solar power generation. Based on the results, most data points fluctuate around
SHAP=0, indicating zero contribution to solar power generation. The only
notable observation is that when the average temperature drops below 45◦F, it
does exert a negative influence on solar power generation. However, above this
temperature threshold, its impact remains limited.
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Figure 4.5 illustrates the analysis of discrete variables, with a particular focus
on the presentation of "Is Daylight" for the sake of analytical completeness. In
practice, when this value is 0, indicating nighttime, the solar power generation
decreases to zero. Conversely, when the value is 1, representing daytime, the solar
power generation starts to increase.

Figure 4.5: Interaction effects of discrete variables on forecasting results

The analysis of sky cover reveals that when the distance to the solar noon
is within 0.3km, the sky cover does not exceed 2, corresponding to 60%. This
situation positively affects the solar power generation capacity by enhancing its
efficiency. However, conversely, it leads to a significant negative impact on solar
energy generation.

Application Example

Taking these factors into consideration, we propose two potential sites for the
power plant based on the topographic map of Berkeley (Figure 4.6). We have
identified Location 1 with an average elevation of 340m and Location 2 with an
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average elevation of 370m. Both locations are recommended as suitable options
for the solar power plant site selection.

Figure 4.6: Suggested locations for power plant siting.

The following conclusions can be derived from the feature importance output
obtained through modeling using LightGBM and explainable artificial intelligence
(XAI) techniques represented by SHAP. It is evident that the distance from the
sun at noon is the most significant environmental factor, forming the foundation
for positive influences of other environmental factors. Specifically, it is crucial to
maintain a distance within 0.3 km from the sun at noon in order to maximize
solar power generation. Additionally, the following conditions further contribute
to an increase in solar energy production: relative humidity below 60%, average
wind direction between 25◦ and 30◦, average wind speed ranging from 15 m/s
to 25 m/s, average barometric pressure between 30 inHg and 30.2 inHg, average
temperature below 45◦F, and cloud cover not exceeding 60%.

4.1.2 Analysis of factors affecting air quality

In this study, we selected the ensemble learning model that was best supported
by SHAP in order to analyze the factors influencing PM2.5. We focused our
comparison within the type of ensemble model. Specifically, we utilized
Catboost to examine the factors affecting PM2.5 with a 30-day forecast horizon,
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and LightGBM for 90 and 180-day analyses. The SHAP explanation results
offered valuable insights into how variables influenced the forecasting outcomes,
capturing both individual variable effects and interactions between variables. To
visually represent each variable’s contribution, we utilized mean value plots, as
shown in Figure 4.7.

In this analysis, SHAP’s explanation of the three forecasting horizons
maintains consistency. It reveals that PM10 has the highest contribution to the
PM2.5 results across all horizons, indicating its significant impact. Following
PM10, CO also exhibits a higher level of significance in the forecasted results for
all horizons. Regarding emission factors like O3 and SO2, their impact is
considered acceptable. However, among all the emission factors, NO2 has the
least significant effect. Concerning meteorological conditions, the dew point
demonstrates the most pronounced effect on PM2.5, with temperature being the
next influential factor. In fact, these two factors outweigh all emission factors
except PM10 and CO. Pressure and wind speed hold a minor influence on
PM2.5 concentrations. Since the analysis focuses solely on the PM2.5
concentration in a specific area, the impact of wind direction is limited.
Furthermore, in this dataset, the variable rain representing rainfall amount is
generally recorded as 0 in most cases. Consequently, its effect on PM2.5 is
minimal, which is emphasized due to Beijing’s climatic characteristics.

The analysis presented above focuses on individual variables, but the scatterplot
provides additional insights into the relationship between variables and SHAP
values. The scatterplot (figure 4.7 upper) shows high variable values depicted as
red dots, while low values are represented by blue dots. For instance, with respect
to PM10, a high PM10 value corresponds to a high SHAP value on the horizontal
axis, indicating a positive effect. In other words, an increase in PM10 (red dots)
contributes to the increase in PM2.5, whereas a decrease in PM10 (blue dots)
inhibits the increase in PM2.5. Applying the same analytical process, we observed
similar patterns for CO, dew point, and ozone. However, the effect of temperature
exhibits a different correlation mechanism. An increase in temperature inhibits
the increase of PM2.5, whereas a decrease promotes its increase. This phenomenon
is likely influenced by the presence of centralised winter heating in the Beijing
area. As the primary heating method during winter involves thermal power,
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Figure 4.7: Univariate explanation results of SHAP for the Catboost (left: 30 days), for the
LightGBM (middle: 90 days, right: 180 days). The scatterplot of the explanation results is
shown above, and the mean plot is shown below. For each variable in each observation, SHAP
calculates its contribution to the forecasted outcome, all contributions are processed in absolute
values and averaged for each variable, which ultimately results in the global contribution value
of the variable. Where the SHAP value of each data point is displayed as a point in the
scatter plot and the final global contribution of the variable is plotted in the mean plot. In the
scatterplot, the horizontal axis represents the SHAP Value, where a larger value represents a
larger value of the target variable, and the vertical axis is a ranking of the contribution of all
variables to the forecast, where a higher ranked variable represents its greater influence on the
final forecast result. The blue and red transitions represent variable values from small to large.

a significant amount of fossil fuels is burned at lower temperatures, leading to
higher concentrations of PM2.5.

Interaction analysis of factors

In light of the significance of the interaction explanation plot presentation, we
have specifically chosen to focus our analysis on four variables that demonstrate
a substantial influence on the results. These variables comprise two emission
factors, namely PM10 and CO, along with two meteorological conditions,
namely dew point and temperature. The SHAP interaction explanation plot
offers valuable insights, particularly regarding the interplay among variables. It
unveils the mechanisms behind variable influences on forecast results, even in
cases where there is covariance between them. Figure 4.8 visually illustrates how
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two crucial factors, PM10 and CO, impact the PM2.5 concentration.
The relationship between PM10 concentration and its contribution to the

forecasting result, as indicated by the SHAP value, demonstrates that an
increase in PM10 leads to a corresponding increase in PM2.5. The interaction
effect of CO on PM10 is particularly significant. To analyze this interaction
effect, we represent CO concentration using colors, with red indicating high CO
concentration and blue indicating low CO concentration. Examining the data
reveals that at high CO concentrations, there is a linear promotion of PM2.5
with increased levels of PM10 (red dots). Conversely, a decrease in CO
concentration significantly inhibits the contribution of PM10 to PM2.5
concentrations (blue dots). Similarly, analyzing the CO interaction plots reveals
that increasing CO also promotes PM2.5, although not to the same extent as
PM10. Furthermore, at high PM10 concentrations, both PM10 and CO
contribute to higher PM2.5 levels, but the suppression of this trend by low
PM10 levels is not significant (only a few blue dots are observed).

Figure 4.8: SHAP interaction effects plot of PM10 and CO for the Catboost (left: 30 days), for
the LightGBM (middle: 90 days, right: 180 days). The horizontal axis represents the value of
the variable, the shaded area represents the data distribution for this variables. the left vertical
axis represents the SHAP value, and the right vertical axis displays the variable with which the
variable has the most obvious interactions, representing the smallest to the largest of its values
by transitioning from blue to red.

The SHAP interaction plot provides insights that are not attainable through the
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scatter plot and average plot alone. While PM10 ranks highest in importance, this
is observed specifically at high CO concentrations. At low CO concentrations, an
increase in PM10 concentration tends to stabilize its impact on PM2.5. Therefore,
it can be deduced that CO plays a crucial role in driving these effects.

Figure 4.9 illustrates the impact of a single variable on the forecasted
outcomes. The variable exhibiting the most pronounced interaction with this
variable is displayed on the right vertical axis. The interaction plots provide
clearer depictions of the linear associations between changes in these variables
and alterations in PM2.5 levels. Specifically, the dew point exhibits a positive
correlation with PM2.5, while temperature generally show a negative
correlation. On the other hand, for PM2.5 forecasting with a horizon of 30 days,
"month" has the most obvious interaction with "dew" and "press", respectively.
However, since "month" does not have a linear relationship with the forecast
results, it does not show a clear red-blue boundary here either.

Figure 4.9: SHAP interaction effects plot of dew point and temperature for the Catboost (left:
30 days), for the LightGBM (middle: 90 days, right: 180 days).

For the remaining horizons, there exists a significant interaction between
temperature and dew point. It is evident that higher dew points correspond to
higher temperatures, indicating a positive correlation between dew point and
temperature. This relationship can be further confirmed by examining the
"temperature" variable, where high dew points (represented by red dots) are
observed in the higher temperature range. Additionally, an increase in dew point
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coincides with an increase in the SHAP value, suggesting a rise in PM2.5
concentration. Conversely, high temperatures accompanying elevated dew points
lead to a decrease in PM2.5 concentration. However, numerically, when the dew
point exceeds 25 degrees Celsius, it may even contribute to a 100 µg/m3

increase in PM2.5 concentration, while a corresponding temperature increase
only results in a decrease of about 60 µg/m3. Therefore, the impact of a high
dew point on PM2.5 concentration can be considered reasonably reliable.
Consequently, it is crucial to underscore the positive effect of a high dew point
on PM2.5 concentrations.

Findings from the analysis

The findings of the analysis indicate that "PM10" has the strongest impact
on the prediction of PM2.5, followed by "CO," "dew point," and "temperature."
These influential factors exhibit varying degrees of linear association with
PM2.5. In particular, temperature displays a negative correlation with PM2.5,
whereas PM10, CO, and dew point generally exhibit positive correlations with
PM2.5. Additionally, the influence of PM10 on PM2.5 diminishes at lower
concentrations of CO, while the influence of CO on PM2.5 appears to be largely
unaffected by PM10. Theoretically, these correlated variables can influence
PM2.5 concentration mutually. However, numerically, exceeding 25 degrees
Celsius in dew point leads to a significant increase of up to 100 µg/m3 in PM2.5
concentration, compared to a maximum reduction of 60 µg/m3 at high
temperatures and 20-40 µg/m3.

4.2 Development of automated feature engineering for

time series forecasting tasks

This study presents an automated feature engineering framework for time series
forecasting that leverages explainable artificial intelligence (XAI). By integrating
the XAI module, the framework enhances explainability and directs feature
engineering efforts to improve forecasting accuracy. We employ LightGBM
(Light Gradient-Boosting Machine) and a hybrid model that incorporates the
Exponential Smoothing (ES) algorithm to address trend extrapolation issues
inherent in tree-based models. The effectiveness of various XAI methods within
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the framework is assessed through performance evaluation. Experimental results
indicate that a hybrid XAI method, combining model-agnostic and
model-specific approaches, delivers the most substantial performance
improvements. However, the consistency of these improvements varies between
the hybrid model and the original LightGBM, suggesting limitations in the
framework. From an engineering perspective, this work demonstrates that XAI
is a highly economical solution for enhancing forecast accuracy in time series
data. On the artificial intelligence front, our findings highlight the potential of
the hybrid XAI approach as an effective technical strategy, evidenced by the
superior results achieved with our developed hybrid method.

4.2.1 Framework for automated feature engineering for time series

forecasting

For univariate time series data, we focus on developing two columns of features.
The first column represents the timestamp information, while the second column
corresponds to the target variable. The automated feature engineering framework
proposed in this study is highly applicable to regression models, specifically when
applied to time series forecasting tasks, particularly univariate multi-step time
series forecasting tasks. The framework, as illustrated in Figure 4.10, comprises
three integral components: generating lagged features , generating time feature,
and selection of the optimal lag.

Figure 4.10: The automated feature engineering framework adapted for time series forecasting
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Module 1: Generating lagged features

Within this module, only one column, specifically the target variable, is
utilized to generate lagged features according to the desired forecasting horizon.
As exemplified in Figure 4.10, when the forecasting horizon is set to 3, the initial
feature generated is the 3rd order lag feature of the target variable.
Subsequently, the 4th order lag feature is produced, followed by the 5th order
lag feature, and so forth. Therefore, it becomes essential to define the maximum
number of lag features, denoted as N . In this work, we set N equal to 100.

Module 2: Generating time features

This module entails generating relevant time features based on the timestamp
information - a widely adopted feature engineering technique in the realm of time
series forecasting. For instance, given a timestamp such as ’2020- 01-01 15:30’,
the corresponding time feature would consist of various components: year=2020;
month=01; day=01; hour=15; min=30.

Module 3: Selection of optimal lag

The data generated by Module 1 encompasses a total of 100 lag features. In
this module, the 100 lagged features extracted from the dataset are incorporated
individually into the model during the training phase. Through systematic
evaluation on the validation set, the optimal number of lagged features, denoted
as n, is determined. Subsequently, the trained model incorporating this optimal
configuration is utilized for the forecasting task on the test set.

4.2.2 Automated feature engineering framework

The proposed framework, as illustrated in Figure 4.10, allows for the reasonable
application of the regression model to the task of time series forecasting.
Subsequent experimental results demonstrate the efficacy of the framework in
terms of forecasting performance. However, this effectiveness does not absolve
the framework from inherent limitations, namely the generation of redundant
features due to the large number of lagged variables. The removal of these
redundant features is crucial for improving forecasting performance.

The XAI-guided automatic feature engineering framework, depicted in Figure
4.11, addresses this challenge and comprises three distinct modules:
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Figure 4.11: Framework for XAI-guided automated feature engineering

Module 1: Explanation

In this module, the XAI method is employed to explain the black-box model
and the dataset, generating the contribution or feature importance of each feature.
Features with lower contributions are considered redundant.

Module 2: Data selection

After obtaining the feature importance ranking, the determination of the
number of features to be removed is necessary. In this module, we commence by
iteratively removing features with the lowest feature importance, continuously
forming a new dataset. Ultimately, we select the optimal number of features to
be removed, resulting in the best dataset.

Module 3: Forecasting

In this module, the list of features from the best dataset is saved and deployed
on the test set to obtain the prediction results.

The proposed XAI-guided framework aims to leverage the power of XAI
techniques to identify and eliminate redundant features, thereby enhancing the
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forecasting performance of the regression model in the context of time series
forecasting tasks.

4.2.3 Improvement of forecasting accuracy

Data description

This study utilizes four diverse datasets obtained from various sources to
investigate distinct phenomena. The datasets encompass solar power generation,
traffic volume, temperature recordings, and egg sales data. A comprehensive
description of each dataset is provided below, highlighting their origin, temporal
coverage, frequency, and sample size.

Dataset 1 (D1): Solar Power Generation. The solar power generation
dataset is sourced from a solar power system in Berkeley, California, USA. It
records the energy output from this renewable energy source over a one-year
period, from September 1, 2008, to August 31, 2009. The data is collected at
three-hour intervals, providing a total of 2,920 samples.

Dataset 2 (D2): Traffic Volume. The traffic volume dataset originates from
the westbound traffic flow on interstate highways in Minnesota, USA. It captures
the vehicular flow on these major transportation arteries over an extensive period,
spanning from October 2, 2012, to September 30, 2018. The data is recorded at
hourly intervals, resulting in a substantial sample size of 48,204 observations.

Dataset 3 (D3): Temperature. The temperature dataset is obtained from
the Weather Detection Centre in Delhi, India. It consists of daily temperature
recordings over a period of approximately four years, from January 1, 2013, to
April 24, 2017. The dataset comprises a total of 1,575 samples, providing insights
into temperature fluctuations in the region.

Dataset 4 (D4): Egg Sales. The egg sales dataset is derived from a local
shop in Sri Lanka, spanning a 30-year period. To ensure the data’s relevance and
accuracy, the first 5,000 samples, which dated back to 1993, were excluded from
the analysis. The modified dataset covers a period from September 9, 2006, to
December 31, 2021, with daily frequency, resulting in a total of 5,592 samples.
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Comparison of forecasting performance

The feature importance rankings produced by various explanation methods are
inconsistent. This inconsistency suggests that the forecasting results generated
under the XAI framework will vary depending on the explanation method used,
leading to different performance enhancement effects. Consequently, the feature
lists generated by each explanation method are initially screened using the
validation set. Once the optimal feature lists are determined, the corresponding
feature engineering’s performance enhancement effect on time series forecasting,
guided by different explanation methods, is tested on the test set. The
enhancement results for LightGBM in figure 4.12.

Figure 4.12: Comparison results of time series forecasting. The shaded box shows the optimal
average performance.

In summary, the use of XAI significantly enhances forecast accuracy across
all datasets except Dataset 1. However, the model-specific explanation method,
FI, which is incorporated within LightGBM, fails to improve forecast accuracy
satisfactorily. This shortcoming arises because the FI method does not account
for correlations between features, leading to inaccuracies in its explanatory results.

Although the improvement of FI is not readily apparent, the enhancement of
FI-SHAP, which integrates it with TreeSHAP in LightGBM, is particularly
significant. This is because the TreeSHAP method does not rely on the
independence assumption. Furthermore, the combination of model-specific and
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model-agnostic methods offers more effective explanatory information, which
can provide valuable guidance for performance improvement. This guidance,
based on XAI methods, can effectively eliminate redundant features,
fundamentally differing from the mitigation of the trend extrapolation problem.
Mitigating the trend extrapolation problem is demonstrated by the upward
shifting of LightGBM predictions, meaning the predicted values by LightGBM
increase to some extent. Conversely, removing redundant features is unrelated to
the shifting of prediction results. Instead, it aims to alleviate the overfitting
problem, bringing the prediction results closer to the actual values.

4.3 Handling concept drift in online adaptation problems

In time series forecasting tasks, the solution to concept drift is almost focused
on the development of online model that can be updated in real-time. The
implementation of these models mostly depends on the update of the training
set and model parameters. We propose a new simple adaptation framework
based on online model to further solve the concept drift in time series
forecasting - the Tracker. In our adaptation framework, features with low
feature contribution will be deleted immediately based on the feature
contribution ranking obtained from XAI, so as to achieve dynamic improvement.
Compared with the previous online models that focus on parameters and
training set updates, within our adaptation framework, the dimensions of the
training set are also updated in real-time. The experimental results prove that
our framework has obvious improvement. The novelty of our method is that
Based on the XAI methods, features can be dynamically updated in an online
forecasting model. Previously, online adaptation could only dynamically update
parameters and incorporate new data. As a result, our method is able to better
forecast performance. The code for the experiment can be viewed in this link1.

4.3.1 Concept drift

Concept drift [131] is a thorny problem encountered in time series forecasting
tasks, which means that the accuracy of a trained model will gradually decrease

1The github library of XAI-adaptation framework
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over time until fails. The reason [132] for this is that the distribution of the data
stream changes over time, causing the static model that has been trained to fail.
Therefore, the popular solution is to use the updated data set and parameters
to train the model in real time, so that the forecasting model can capture the
information of the data distribution change in time (Figure 4.13). These solutions
are all from the perspective of the number of instances of the data set and the
model itself, and we are more inclined to try the dimensional perspective. On the
basis of these previous solutions, the addition of "dimension change" makes the
unimportant features in the original data removed.

Figure 4.13: Visualization of concept drift and its solutions

Explainable AI [32–34], also called XAI, broadly speaking, is a kind of artificial
intelligence designed to let humans understand the working principle of the black-
box model through its explanation results. In view of different user identities, the
human-computer interaction experience realized by XAI is also different: For users
in various professional fields , its method tends to post-hoc explanation, that is,
to measure the change of the prediction result through the "perturbation feature"
to calculate the contribution of the feature; For model-oriented developers, the
method tends to intrinsic, that is, to provide interpretation for the developers in
the process of model development, leading to the optimization of the model. In
recent years, the latter has gradually developed into Interpretable AI, which pays
more attention to developing models that are inherently interpretable.

Considering that the purpose of this work is to construct a universal and
generalized explainable adaptation framework, the post-hoc explanation is
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adopted by us, which can ensure the application of the framework to other black
box models. The simple adaptation framework built by us for concept drift in
time series forecasting, the Tracker, not only covers the previous concept drift
processing solutions but also introduces new perspectives, dimensional changes,
to deal with the problem of concept drift, thereby increasing the upper limit of
the performance of the forecasting model.

4.3.2 Online adaptation framework

The frame we designed is shown in Figure 4.14. After the explanation of each
updated forecasting model is obtained, the low contribution features of the
updated data set will be deleted. According to the result of the explanation, the
forecasting model is retrained based on the data set whose dimensionality has
changed. Finally, we found that the upper limit of the forecasting performance
of the updated model was boosted with appropriate parameter adjustments.

Figure 4.14: The Tracker: XAI-Based Adaptation Framework

Training set update

In our multivariate time series forecasting task, X = {x0, x1, · · · , xm} is the
feature matrix, where feature x contains time series instances accompanied by
time T = {t0, t1, · · · , tn}, namely x = {at0, at1, · · · , atn}. Y = {y0, y1, · · · , yn}
is the target variable in the task, as shown in Figure 4.15. In order to make
our presentation more concise, we stipulate t = {a0,t, a1,t, · · · , y}. In actual



91

tasks, the data distribution of X and Y will change over time. As a result, the
information of the data distribution change cannot be effectively captured in the
static forecasting model, resulting in a continuous decrease in prediction accuracy.

Since concept drift is caused by changes in data distribution, continuously
updating the training set has significant performance in solving concept drift.
The training set can be updated by continuously adding newly generated data to
the training set (increasing tn), and adjusting the weight appropriately, that is,
reducing the weight of the past time (w0, w1, w1, etc.), and increasing the weight
of the recent time (wn, wn−1, etc.). t is the time information, which is a row of
training set at a point in time (Equation 4.1).

Xexpansion = {w0t0, w1t1, w2t2, · · · , wntn} (4.1)

It can also be updated through a sliding window. After setting the window
length L, the training set is updated through the step size S. i is the number of
times the window slides, therefore, the value of i is the number of updates of the
forecasting model (Figure 4.15).

The process can be summarized as the equations

Xwindow = [i× S, L+ (i× S)] , i = 0, 1, 2, · · · , k;L > S

Xw0 = {t0, t1, · · · , tl} , i = 0; l < n

Xw1 = {ts, t1+s, · · · , tl+s} , i = 1; l + s < n

· · ·

Xwl =
{
ti×s, t1+(i×s), · · · , tl+(i×s)

}
, l + (i× s) < n

(4.2)

In this work, the sliding window approach is adopted, taking into account its
more excellent effectiveness, that is, it can maximize the retention of recent data
information in real-time at a small computational cost.

Forecasting model

Since updating the forecasting model requires a lot of repetitive calculations, we
are more inclined to the faster forecasting model, that is, the forecasting model
that can achieve better accuracy with faster calculation efficiency.

Our previous experimental research results show that LightGBM [19] is a better
forecasting model that can take both into account at the same time, in addition,
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Figure 4.15: The process of updating forecasting. Every time the window of length L moves
backward by S steps, the forecasting model will be retrained and the corresponding prediction
value matrix will be output.

the title of the M5 prediction competition [8–10] champion also proved its excellent
performance.

Therefore, within this framework, LightGBM is selected by us as the forecasting
model. In fact, the forecasting model is not fixed, theoretically, it can be replaced
with any type of model, as long as it is beneficial to the experimental goal.

The update of the forecasting model depends on the update of the training set,
so the number of updates of the forecasting model is also i:

fi(Xwindow) =
{
Ŷ0, Ŷ1, Ŷ2, · · · , Ŷk

}
, k < n (4.3)

Among them, f is the forecasting model and Ŷ is the prediction value matrix.
As shown in Figure 4.14, with the continuous update of the training set, even

if the distribution of the data changes, the forecasting model will capture this
change in time with the help of the continuously updated training set.

XAI explanation

XAI technology is considered to be used in the explanation of this issue. We try
to use the SHAP [51] method to explain the process, and implement further
performance improvements on the updated forecasting model based on the
explanation results.

The calculation of the SHAP value (V ) is based on the Shapley value [57] in a
cooperative game (Equation 4.4).

Vxi =
∑

U⊆M\{i}

|U |!(M − |U | − 1)!

M !
[Fx(U ∪ {i})− Fx(U)] (4.4)
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M is the dimension of all features, U is the dimension of the feature subset, and
F is the feature function. The calculation of V , which represents the SHAP value,
is the difference between the feature values assigned by the Shapley principle.

We are not satisfied to get the i numbers of predicted value matrix with more
accuracy, but want to know more information about the forecasting model,
including the feature information in the forecasting process, for example, the
contribution of each feature to the forecasting result. In this way, we have a
certain degree of understanding of the forecasting model that belongs to the
black-box model, that is, the model explanation is obtained, and the explanation
result provides us with the possibility to improve the robustness, safety, and
performance of the forecasting model.

Explainable AI is divided into local and global. Both are the contribution V

of features to the forecasting results. The difference is that the scope of local
explanation g is limited to one instance (one row), while the scope of global
explanation G is within a period of time (several rows), which is essentially the
average weight of local explanations over a period of time.

Gi = SHAP (fi(Xwindow))

= {Vx0, Vx1, · · · , Vxm}

g = {Va0,t, Va1,t, · · · , Vam,t}

(4.5)

Therefore, theoretically, for the additive model, once the local explanation g is
obtained, the global explanation G will be calculated accordingly.

Vxz =

n∑
i=0

Vaz,ti, z = [0,m] , z ⊂ N (4.6)

In time series tasks, in order to make the terminology more reasonable, the
"explanation" below all represents the global explanation G, and the local
explanation g we use "real-time explanation" instead. "explanation" is the
contribution of a subset of T to the forecasting result, and "real-time
explanation" is the contribution of t to the forecasting result.

In the specific XAI methods, SHAP is given priority to us, not only because it
has a complete resource library that can be directly called, but more importantly,
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this explanation method based on the Shapley value has a mathematical proof
foundation of game theory.

Dimensional change

The sliding of the window causes the forecasting model to be updated, and the
explanation results are updated accordingly. Based on each explanation result,
the original feature matrix is improved, that is, features with low contribution
values are removed, and the forecasting model is retrained. Essentially, this real-
time dimensional change is a noise reduction operation, thereby improving the
efficiency of the data set. The process of dimension change is shown in Algorithm
5.

Algorithm 5 Tracker Algorithm
Input: Total number of features: M ; Explainable results: Gi; Window length L: Move step:
S

Output: The optimised forecast results: fi (Xnew)

1: for i = 0 to k do

2: SORT (Gi) : ascending

3: Xwindow = [i ∗ S, L+ (i ∗ S)] , i = 0, 1, 2, ..., k

4: Set h = number(h < M)

5: Interval = [0, h]

6: Featuredeleted = SORT (Gi).Interval

7: Xnew = Xwindow.DROP (Featuredeleted)

8: fi (Xnew)

9: end for

10: fi (Xnew)

Since the removal of dimensions is based on the contribution of the feature,
which is the result of the explanations, in the first step, we need to sort the
feature contribution result Gi. Here, the ascending order is considered by us. Set
a value h (h < k), and construct an interval from 0 to h, and then extract the
features of 0 to h sorted from Gi. Finally, the features with low contribution
values are removed from the original training set Xwindow to form a new training
set Xnew, and the forecasting model is retrained.
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4.3.3 Improvement of forecasting accuracy

In this work, the main process of optimization is to use the explanation results
output by XAI to improve the features of the original data. Therefore,
theoretically, any technology that can output feature importance
(contribution) [113, 114] can achieve the purpose of optimization, for example,
for LightGBM (that is, the forecasting model used in this work), its own Feature
Importance (FI) function can output feature importance.

Figure 4.16: Explanation Results.

However, FI has more obvious limitations than the XAI technology we are
referring to [103]. For example, it cannot output local explanation, which means
that it cannot achieve real-time explanation in time series-related tasks. On the
other hand, its explanation result is the global average importance of each feature,
so it is not positive or negative, which means that users cannot use it to understand
whether the impact of the features on the forecasting model is positive or negative.

In addition, in this work, our goal is to build an explainable and adaptive
framework, so generalization is very important for all parts of the framework.
This prompts us not to consider the unique explanation methods of a certain
model or a certain type of model such as FI. In general, we are more inclined to
XAI technology, which can achieve model-agnostic local and global explanations.

We train the static forecasting model by using part of the data extracted from
the original data. We are not satisfied with simply getting the results of the
forecasting, we hope to get more information about the internal workings of the
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Figure 4.17: Simulation Results

forecasting model. Therefore, we use SHAP as an explanation tool for the
forecasting model. In this work, the explanation results are shown in Figure
4.16.

Some obvious features are clearly shown in Figure 4.16, such as Surface, site
id, and lag features, which can significantly affect energy demand. The increase
in Surface will naturally lead to an increase in energy demand.

From the final result (see Figure 4.17), our adaptation algorithm more or less
has an optimization effect on the updated model.

From the perspective of the optimized trend, the trend is consistent with the
original updated model. Therefore, this can also indicate that our adaptation
framework is an optimization of the updated forecast model. If the updated
forecast model does not work well (the performance of the updated model is not
as good as the static model), the adaptation framework is also optimized on this
basis.
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4.4 Conclusion of chapter 4

This section delves into the practical application of eXplainable Artificial
Intelligence (XAI) methods and emphasizes their economic value. In order to
provide a comprehensive understanding, we conducted an in-depth analysis of
numerous influential factors and examined their respective impacts. As a result,
we were able to enhance our forecasting accuracy significantly through the
integration of XAI techniques. Moreover, our research has made a noteworthy
contribution by addressing the challenge of concept drift in online adaptation
scenarios. This accomplishment is particularly significant as it paves the way for
a solution that effectively tackles this persistent problem. By combining these
pivotal elements, our study underscores the immense potential of XAI methods
to be implemented profitably and with remarkable efficacy in real-world
applications.

By shedding light on the practical implications and economic benefits of XAI,
our findings encourage the adoption of these methods to unlock new
opportunities for businesses and industries. Not only can XAI improve the
accuracy and reliability of forecasts, but it also provides valuable insights into
the decision-making process, offering transparency and interpretability. This not
only instills trust among stakeholders but also enables organizations to make
informed choices based on understandable and justifiable AI-driven predictions.
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Conclusions

In this work, the XAI approach specifically oriented to time series forecasting is
developed, and we name it ShapTime since its computation is based on Shapley
Value. It enables attribution in the temporal dimension, thus explaining the
importance of time itself, which differs from previous works.

With the explanation of ShapTime, we are able to understand the forecasting
model to some extent. In trending time series data, all models focus on the most
recent data as the most important learning object, while in periodic time series
data, this pattern does not obviously exist and different models do not necessarily
focus on the same time period for learning.

On the other hand, with the help of ShapTime explanation, we have been
able to achieve the improved performance in time series forecasting. By
replacing data in times of low contribution with high ones, performance
improvements can be achieved to some extent. The improved performance
metrics show that the Boosting model and the Bi-RNN-based model are still
able to maintain their original advantages in periodic data and in trending data,
respectively. In summary, ShapTime showed the most significant improvement
for the Bi-RNN-based model, with the average improvement of 35%. In
particular, ShapTime showed the most significant improvement for the Bi-GRU
model, with the 73.87% improvement in the Solar Generation dataset.

On the other hand, we confirm that the construction of lagged features can
improve the performance of forecasting models in time series forecasting tasks,
but for lower quality data, lagged features are not enough. Simulation results
also show that our constructed automatic lag feature method: FI-SHAP’s
improvement effect is the most stable in higher quality data. In lower quality
data, FI-SHAP still has a significant repairing effect on the forecasting of
XGBoost. Synthetically, XGBboost outperforms LightGBM for small datasets
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and adapts better to poorer quality data. Most of the existing feature
engineering methods focus on classification tasks, while feature engineering
methods for time series forecasting also pay little attention to lag feature
construction. In this work, reasonable lag feature construction is proven to be
critical.
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