
St. Petersburg State Univeristy

Manuscript copyright

Pankov Vikentii Dmitrievich

ESTIMATION OF SPARSE MODELS
PARAMETERS

1.2.3. Theoretical informatics, cybernetics

Thesis for the degree of
Candidate of Physical and Mathematical

Sciences

Translation from Russian

Scientific supervisor:
Doctor of Physical and Mathematical Sciences, Professor

Oleg Nikolayevich Granichin

St. Petersburg
2024



2

Contents

Introduction 4

Chapter 1. Problem Statement and Method Overview 11

1.0.1 Inverse Problems in Mathematical Modeling . . . . . . 11

1.0.2 Compressed Sensing Methodology . . . . . . . . . . . 16

1.0.3 Overview of Sparse Signal Reconstruction Methods from
Compressed Observations . . . . . . . . . . . . . . . . 17

1.0.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 2. Randomized Stochastic Approximation Algo-
rithm for Geological Model Parameter Adaptation to Devel-
opment History 24

2.0.1 Mathematical Representation and Parameterization of
Geological Models . . . . . . . . . . . . . . . . . . . . 26

2.0.2 SPSA Algorithm and Theorem on the Properties of
Estimates in the Context of the Given Problem . . . . 34

2.0.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 3. Compression-Based Recognition Methods in Dis-
tributed Clustering and Ultrasonic Tomography Tasks 41

3.0.1 Distributed Clustering in Multi-Agent Systems Based
on Compression-Based Recognition Methodology . . . 41

3.0.2 Compression and Reconstruction of Ultrasonic Tomog-
raphy Data . . . . . . . . . . . . . . . . . . . . . . . . 44

3.0.3 Full-Waveform Inversion with Compressed Measurements 50

3.0.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 55



3

Chapter 4. Software Simulation and Experimental Research
Results 56

4.0.1 Geological Model Parameter Adaptation System to De-
velopment History . . . . . . . . . . . . . . . . . . . . 56

4.0.2 Simulation of the Distributed Clustering Method . . . 64

4.0.3 Experiments on Full-Waveform Inversion and Compres-
sion of Ultrasonic Tomography Data . . . . . . . . . . 66

4.0.4 The ℓ1 Control Problem for Discrete Non-Minimum
Phase Systems with Unknown Bounded Disturbances . 70

4.0.5 A Voice Cloning System with Noise-Robust Speech Syn-
thesis Based on Latent Space Regularization . . . . . 73

4.0.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 77

Conclusion 78

Bibliography 79



4

Introduction

Inverse problems in mathematical modeling play a crucial role in nu-
merous scientific and engineering applications, including medical tomogra-
phy and geological modeling. These problems involve reconstructing hidden
model parameters based on observed data, which are often incomplete or
noisy.

In many cases, model parameters are highly sparse, meaning that the
solution depends on only a small number of parameters. Sparsity is a key
concept that unifies various practical approaches in this study. It enables
high-precision solutions, reduces dimensionality and computational costs,
enhances solution robustness to noise, and promotes the creation of more
interpretable and manageable models.

ℓ1-regularization is a key tool in solving inverse problems with sparse
structures. Research conducted at Saint Petersburg State University has
been instrumental in advancing methods for ℓ1 regularization. For example,
work by V.F. Demyanov and V.N. Malozemov in the 1960s-1970s on minimax
methods significantly influenced the development of ℓ1 regularization theory
in control problems. Later, the compressed sensing methodology introduced
by E. Candes, J. Romberg, and T. Tao in 2006 [17] gained wide recognition.
This approach allows the accurate reconstruction of sparse signals using a
small number of measurements, well below the Nyquist limit.

Most recent research on sparse models has primarily focused on recon-
structing the original signal from compressed observations using generative
deep learning methods [20,21,51,53,54,65] or iterative learning-based meth-
ods [5, 68, 76, 78]. However, often the original signal is not used directly but
rather serves as an initial step for solving another modeling problem. In
such cases, it is advantageous to avoid direct reconstruction of the complete
signal, solving the desired problem in the compressed domain and obtaining
the full (target) model output. This significantly reduces the complexity of
the problem, eliminating the need for storing and processing large volumes
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of data. Thus, an urgent task is to investigate methods that allow solving
sparse inverse modeling problems directly in the compressed space.

Goal of the study — the development of mathematical methods for solv-
ing inverse problems with sparse structures directly in compressed latent
spaces, without reconstructing the full signal, using stochastic optimization
algorithms and deep learning methods. To achieve this goal, the following
tasks have been formulated and addressed:

• Develop a method for adapting sparse geological model parameters
based on dynamic observational data, utilizing model parameteriza-
tion to obtain a compressed representation and applying a stochastic
optimization algorithm to find the solution in the compressed space.

• Implement a distributed clustering algorithm for multi-agent systems
using compressed sensing methodology to predict cluster parameters
based on compressed data; develop an efficient method for data col-
lection and storage from a three-dimensional ultrasound tomograph,
as well as a hybrid full-wave inversion method for direct image recon-
struction based on compressed ultrasound data.

• Develop a noise removal method for robust speech synthesis using reg-
ularization in the compressed voice representation space.

• Investigate the effectiveness of sparse controller synthesis using ℓ1 op-
timization methods for controlling non-minimum phase systems under
unknown bounded disturbances.

• Conduct software modeling and experimentally evaluate the perfor-
mance of the proposed methods.

Research methods. This dissertation utilizes optimization methods, deep
learning, compressed sensing theory, and simulation modeling.

Scientific novelty. All primary scientific results of the dissertation are origi-
nal.
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Theoretical value and practical significance. The theoretical value of this
work lies in the development of stochastic optimization methods and com-
pressed sensing for solving inverse problems with sparse structures directly
in compressed or latent spaces without reconstructing the full signal. The
practical significance of the study is reflected in the potential application of
the developed methods in real industrial and medical settings, greatly en-
hancing the efficiency of respective modeling, data collection, and processing
systems.

Validation of the work. The results of this research were presented at the De-
partment of System Programming, Faculty of Mathematics and Mechanics,
SPbU, at the 14th All-Russian Conference on Control Problems (Moscow,
Russia, June 17-20, 2024), and at the InterSpeech 2024 Conference (Kos
Island, Greece, September 1-5, 2024).

The findings were used in studies supported by the RSF Grant 21-19-
00516 “Multi-agent adaptive control in networked dynamic systems with ap-
plication to groups of robotic devices under uncertainties.”

Publication of results. The primary results are published in the works [6,25,
30, 31, 61]. The author has published five scientific papers, three of which
are in journals indexed in Scopus, and two in conference proceedings indexed
in Scopus. All works are co-authored. In [31], V.D. Pankov contributed
the algorithm for determining the angle of reflection and intersection point
of the ray with the object under reconstruction, while the co-authors devel-
oped the rest of the method for identifying special regions based on ultra-
sound tomography data and the general problem statement. In [61], V.D.
Pankov contributed to the method development and simulation modeling,
while the co-authors provided the general problem statement. In [6], V.D.
Pankov contributed to method development and simulation modeling in Sec-
tions 3.1-3.2 (distributed reconstruction of cluster structure from compressed
observations), with the co-authors providing the general problem statement,
methods development, and simulation modeling for other parts of the system.
In [30], V.D. Pankov contributed part of the simulation modeling, with the
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co-authors responsible for the general problem statement, theorem formula-
tion and proof, and methods development. In [25], V.D. Pankov contributed
to the general problem statement, formulation, and development of noise
regularization methods, with the co-authors developing the training method
for noisy data.

Structure and volume of the dissertation. The dissertation consists of an
introduction, four chapters, a conclusion, and a bibliography containing 84
sources. The text comprises 87 pages, includes 17 figures, and 4 tables.

Summary of the dissertation content.

In the Introduction, the relevance of the study, the goals and objectives,
as well as the main results are outlined.

In Chapter 1, the general formulation of inverse problems in mathemat-
ical modeling is presented, along with an overview of primary approaches in
the compressed sensing methodology for solving problems with sparse struc-
tures.

Chapter 2 describes the task of reconstructing sparse geological models
based on dynamic observational data. To reduce the dimensionality of the
problem, parameterization methods based on deep learning are applied. The
primary focus is on the Stochastic Approximation (SPSA) algorithm, adapted
for the task of geological model adaptation. A theorem on the upper bound
of mean-square error for the considered problem is provided.

Chapter 3 outlines methods based on compressed sensing theory, en-
abling the solution of various inverse modeling problems directly in the com-
pressed space. The first method, based on deep learning, allows each agent
to determine its cluster parameters based on local interactions with other
agents. The proposed algorithm uses compressed measurements for infor-
mation exchange and is capable of operating in real-time, reducing compu-
tational and communication costs. In the context of ultrasound computed
tomography, a method for gathering and processing large volumes of data re-
quired for object image reconstruction is discussed. Additionally, a method
for data compression and reconstruction is proposed, allowing a substantial
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reduction in the volume of information transmitted from tomography sen-
sors. Finally, an adapted full-wave inversion method using compressed data
is presented, allowing direct image construction based on the compressed sig-
nal representation without reconstructing the full data volume. A theorem
estimating image reconstruction accuracy when using compressed measure-
ments is provided.

Chapter 4 presents the results of software modeling and experiments,
confirming the effectiveness of the proposed methods. Experiments demon-
strate that using stochastic algorithms for geological model adaptation in the
compressed space, as well as compressed sensing theory approaches for clus-
tering and ultrasound tomography data recovery, allows significant reduction
in computational costs and data processing volumes while improving noise
robustness and maintaining high solution accuracy. Additionally, the effec-
tiveness of the ℓ1-synthesis method for sparse controllers for discrete systems
with arbitrary bounded disturbances is analyzed. Furthermore, the high
noise robustness of the proposed speech synthesis method based on regular-
ization in the compressed space is experimentally demonstrated, preserving
high-quality voice cloning.

In the Conclusion, the main research results are summarized.

Findings and arguments of the dissertation to be

defended

• A method for adapting sparse geological model parameters to reservoir
development history, based on the Stochastic Approximation (SPSA)
algorithm combined with a neural network-based dimensionality reduc-
tion algorithm.

• A method for predicting clusters from compressed observations for
multi-agent systems with a clustered state space structure.

• A method for data reconstruction and image recovery from compressed
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measurements in ultrasound tomography tasks.

• A noise-robust speech synthesis method based on voice representation
regularization in the compressed space.

• The specifics of software implementations and numerical demonstration
of the proposed methods’ effectiveness.

Main scientific results

1. A method for adapting sparse geological model parameters to reservoir
development history, based on the Stochastic Approximation (SPSA)
algorithm combined with a neural network-based dimensionality reduc-
tion algorithm (see [61], with the author’s contribution in this result
being no less than 80%).

2. A clustering method for multi-agent systems with a clustered state
space structure, based on compressed sensing theory and a neural net-
work algorithm for cluster prediction from compressed state represen-
tations (see Sections 3.1, 3.2 in [6], with the author’s contribution in
this result being no less than 80%).

3. A method for object reconstruction in ultrasound computed tomogra-
phy based on image processing algorithms for determining signal re-
flection location and angle (see Section 5.2 in [31], with the author’s
contribution in this result being 100%).

4. Research on ℓ1 optimization in control problems for discrete systems
with non-minimum phase and under unknown bounded disturbances
(see [30], analytical computations in Section 4 completed by the author,
overall contribution at least 20%).

5. A noise reduction method for robust speech synthesis using regular-
ization in the compressed speaker representation space, employing an
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approach that encourages the generation of noise-invariant representa-
tions without loss of synthesis quality (see [25], the author’s personal
contribution to this result is 100



11

Chapter 1

Problem Statement and
Method Overview

1.0.1 Inverse Problems in Mathematical Modeling

In many scientific fields and problems, there is a need to identify hidden
properties or parameters of the corresponding model. An example is recon-
structing an image from tomography or MRI data or evaluating reservoir
properties from seismic observations.

An inverse problem involves finding the vector x ∈ X of model parameters
based on observed data y ∈ Y :

y = F (x) + e, (1.1)

where X is the parameter space of the model, and Y is the observation
space. In most cases, X and Y are Banach or Hilbert spaces. F : X → Y

is a continuous operator that defines how observed data y is generated from
the model’s internal parameters x in the absence of noise.

The problem can be formulated as obtaining information about x based
on available data y and knowledge provided by the operator F .
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The solution methods depend on the properties of the operator F . The
most important of these are:

• Injectivity of the operator, which determines the sufficiency of data y

for uniquely reconstructing x.

• Stability of the operator: ||x1 − x2|| ≤ ω(||F (x1) − F (x2)||), for a
given function ω : R+ → R+ and all x1, x2 ∈ X. This defines the
extent to which model parameters change with slight modifications in
observations (e.g., due to noise).

Well-posed problems, according to Hadamard (1902, 1923), should satisfy
these properties. If a solution can be uniquely found from observations and
does not drastically change with minor disturbances in observations due to
noise, the problem is considered well-posed.

When noise levels are low, and observations are sufficient, the problem
reduces to the inversion of the operator F , which has a well-studied theory,
especially for linear operators.

Most often, inverse problems are ill-posed. It is not always possible to
gather enough measurements, and/or they may be affected by noise with an
unknown distribution. Solving these problems requires some a priori knowl-
edge. This chapter reviews regularization theory, which restricts the pa-
rameter space, for example, by assuming that they are sufficiently smooth.
Separately, we consider an approach based on finding sparse solutions, used
as the basis for methods in the following chapters.

Next, we present examples of various inverse problems [67].

Compressive Sensing Problem

The compressive sensing problem involves data collection at a sampling
rate lower than required by the Nyquist-Shannon theorem. The theorem
states that a signal with a limited spectrum can be reconstructed without loss
from measurements taken at a rate higher than twice the maximum frequency
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of the spectrum. Compressive sensing methodology allows for lossless signal
reconstruction with fewer observations if it is sufficiently "sparse" (i.e., has
a small number of non-zero elements in a certain basis).

The forward operator is the measurement matrix Φ with specific proper-
ties. The most critical of these is the Restricted Isometric Property (RIP),
which guarantees that the signal is not distorted when reducing the dimen-
sionality from N observations to m, provided it is sufficiently sparse. A
matrix Φ satisfies RIP if [58]:

√
1− δ ≤ ||Φz||2

||z||2
≤

√
1 + δ,

for some δ and s-sparse vectors z.

The problem is formulated as follows:

y = AΨx = Φx+ e,

where y ∈ Rm represents compressed measurements, x ∈ Rn is the original
signal, e is additive noise, Φ ∈ Rm×n is the measurement matrix, and Ψ is
the basis matrix in which the signal is sparse.

Super-resolution

The super-resolution problem aims to enhance data quality by increasing
the sampling frequency. For example, it may involve increasing the resolution
of an image by a given factor or increasing the sampling rate of an audio file.
The problem can be formulated as follows:

y = Θx+ e = DBx+ e,

where y ∈ Rm are low-resolution observed data, x ∈ Rn are the high-
resolution desired data, and e is additive noise. D ∈ Rm×n is the down-
sampling matrix, and B ∈ Rn×n is the degradation matrix (e.g., blurring).

Noise Removal

The noise removal problem can be formulated as follows.
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y = x+ e.

Here, the operator F is the identity: F = I. The observed data are the noisy
desired parameter vector x.

In the simplest case, the noise distribution is known, allowing the param-
eter vector to be determined by statistical methods. However, in real-world
problems, this is often not the case, and only bounded noise is assumed.

Image Sharpening

y = K ∗ x+ e.

In this case, the forward operator is a convolution with a blurring mask K,
and the observed data are the convolution of the desired parameter vector x
in the presence of noise.

In the absence of noise and with an available convolution mask K, this
problem can be solved by transforming to Fourier space and performing de-
convolution.

Inpainting (Filling in Missing Data)

An example of an inpainting problem is completing missing parts of an
image, such as parts that were lost or not measured.

In this problem, the operator is a restriction of the vector x to a certain
subset Ω.

y = x|Ω + e.

Computed Tomography

The simplest model of computed tomography (CT) assumes a monoener-
getic beam of X-rays without scattering effects. Under these conditions, the
desired parameter is a function from the spatial domain Ω ⊂ R3 to the set
of real numbers R.
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According to the Beer-Lambert law, the forward operator is defined as
follows:

A = e−ν
∫∞
−∞ f(x+sw)ds,

where w ∈ Sd−1, and x ∈ w⊥ defines the line x + sw along which the X-
rays propagate. To linearize the problem, the logarithm of the data is often
taken [67].

Regularization Methods

Regularization refers to the addition of certain constraints on the desired
vector of model parameters. The purpose of regularization is to solve an ill-
posed problem and to demonstrate that the obtained solution is stable with
respect to noise and close to the true solution or converges to it.

Analytical Operator Inversion. These methods are based on finding
an analytical expression for a stable inversion of the forward operator. Their
effectiveness and the approach used depend heavily on the specifics of the
problem. For example, in CT image reconstruction, the Radon transform is
a standard inversion algorithm frequently applied in practice.

Variational Methods are based on minimizing an objective function
that includes an additional term that defines the desired properties of the
solution.

Rθ : argmin
x∈X

(L(F (x), y) + Sθ(x)). (1.2)

This is a general method where the regularizing term Sθ(x) and the func-
tional L : Y × Y → R are chosen depending on the problem.

Formally, the regularization functional S can be defined as a mapping:
S : x → R+, which maps the solution to a positive number characterizing
how well x satisfies the desired properties (it is generally assumed that smaller
values correspond to "better" solutions).
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The type and interpretation of the functionals L and S depend on the
chosen approach to solving the problem. For example, in the Bayesian ap-
proach, S can be viewed as the negative logarithm of the prior probability
distribution, and L as the negative logarithm of the likelihood function. In
this case, minimization aims to find a solution that corresponds to the max-
imum likelihood and accounts for the prior distribution of the observation
y.

The reconstruction operator (here and throughout) is denoted as Rθ :

Y → X, and its result is a point estimate x̂ of the solution to the inverse
problem. θ represents the vector of parameters involved in the functionals L
and S.

A well-known regularization method of the form (1.2) is Tikhonov regu-
larization, with the operator L in the form of an ℓ2 norm and a regularizer
of the form θS(x), θ ∈ R. For S(x) = 1

2 ||x||
2 and a linear operator F , the

inverse problem solution is represented as Rλ = (F ∗ ◦F +λid)−1 ◦F ∗, where
F ∗ is the adjoint operator and id the identity operator.

1.0.2 Compressed Sensing Methodology

Sparsity is a key concept in compressed sensing. This characteristic allows
for efficient data compression and subsequent recovery with minimal informa-
tion loss. Compressed sensing (CS) methodology consists of two parts: first,
obtaining compressed measurements of the signal, and second, reconstructing
the original signal from the compressed observations.

In the data acquisition stage of CS methodology, there is a measurement
matrix Φ with certain properties. The most important of these is the Re-
stricted Isometric Property (RIP), which guarantees that the signal is not
distorted when reducing the dimensionality from N observations to m, pro-
vided the signal is sufficiently sparse. A matrix Φ satisfies RIP if [58]:

√
1− δ ≤ ||Φz||2

||z||2
≤

√
1 + δ,
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for some δ and s-sparse vectors z.

The problem is formulated as follows:

y = AΨx = Φx+ e,

where y ∈ Rm are compressed measurements, x ∈ Rn is the original signal,
e is additive noise, Φ ∈ Rm×n is the measurement matrix, and Ψ is the basis
matrix in which the signal is sparse.

In the tasks considered in the following chapters, the measurement matrix
is a random Gaussian matrix, which satisfies the required properties with a
high probability.

Signal reconstruction involves minimizing the ℓ0 norm, which allows find-
ing the most appropriate (sparse) solution among an infinite number of possi-
bilities. Direct minimization of the ℓ0 norm is an NP-hard problem. However,
there are numerous approximate numerical methods for solving this problem.
We will examine the main ones below.

1.0.3 Overview of Sparse Signal Reconstruction

Methods from Compressed Observations

Convex Optimization

The ℓ0 optimization problem is often replaced with a convex optimization
problem (typically ℓ1 optimization). Examples of algorithms based on this
approach include Basis Pursuit [11] and Basis Pursuit De-Noising (BPDN).
These methods solve the following optimization problem:

min
x

(
1

2
||y − Φx||2 + ||x||1

)
. (1.3)

There are numerous other algorithms, including the Least Absolute Shrink-
age and Selection Operator (LASSO), the Iterative Shrinkage/Threshold-
ing Algorithm (ISTA) [12], the Alternating Direction Method of Multipliers
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(ADMM), the Gradient Projection for Sparse Representation [37], and Total
Variation Denoising.

If the measurement matrix satisfies the RIP property, the following the-
orem (Candès, Romberg, and Tao 2006) [18] guarantees that if:

y = Φx+ e,

with a noise level ||e|| ≤ δ, then the solution:

x̂ = argmin ||x||1 subject to ||Φx− y||2 ≤ δ (1.4)

satisfies the following inequality:

||x̂− x||2 ≤ C

(
δ +

||x− xs||2√
s

)
, (1.5)

where xs is the vector consisting of the s largest (in absolute value) compo-
nents of the true solution x (with zeros elsewhere).

Greedy Algorithms

The greedy approach involves iterative optimization on an element-by-
element basis, with a locally optimal choice at each step. The solution is
constructed iteratively by sequentially adding non-zero components and solv-
ing a least squares optimization problem with constraints at each iteration.
Widely used algorithms in this class include Matching Pursuit (MP) and
Orthogonal Matching Pursuit (OMP) [52]. OMP starts the reconstruction
process by identifying the column of the measurement matrix most corre-
lated with the observations y in the first step, then finds the column with
the maximum correlation to the current residual at each iteration. The sig-
nal vector estimate is updated on each iteration, accounting for the selected
column. There are several enhancements to this algorithm, such as Com-
pressive Sampling Matching Pursuit [56], Stagewise Orthogonal Matching
Pursuit (StOMP) [69], and Generalized Orthogonal Matching Pursuit [74].
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Thresholding algorithms, such as Iterative Hard Thresholding (IHT) [13]
and Iterative Soft Thresholding [15], are also often used. These algorithms
alternate optimization steps (gradient descent) with thresholding functions
to ensure sparsity constraints.

Greedy algorithms tend to be more computationally efficient than convex
optimization methods. However, they may not provide satisfactory recon-
struction quality in the presence of noise or insufficient measurements.

Iterative Learning-Based Methods

Let us consider two approaches to solving the reconstruction problem us-
ing deep learning. The first is based on classical iterative optimization algo-
rithms for CS, where each iteration’s operations are replaced or supplemented
by neural networks. Network parameters and classical algorithm hyperpa-
rameters are tuned based on training data, allowing the algorithm to adapt
effectively to specific tasks and enhancing signal reconstruction quality [50].

ISTA [12] is a popular iterative algorithm used for reconstruction. The
ISTA algorithm and its extensions rely on a gradient-based approach, where
each iteration projects the gradient and then thresholds (zeros out) the solu-
tion components based on a threshold value. An adaptive variant is LISTA
(Learned ISTA) [68], which has an autoencoder architecture designed to find
a sparse representation of the signal in a given dictionary. Another adapta-
tion, ISTA-Net [76], directly solves the reconstruction problem compared to
LISTA, which tackles a sparse coding auxiliary task. TISTA further improves
LISTA by using error variance estimation to enhance convergence speed.

Approximate Message Passing (AMP) is another iterative algorithm based
on message passing on graphs. Its adaptive counterparts include Learned
AMP (LAMP) and LDAMP.

The ADMM algorithm, used for CS reconstruction, divides the optimiza-
tion problem into smaller parts, each of which is straightforward to solve.
For MRI reconstruction from CS measurements, an adaptive version called
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ADMM-NET [28], based on ADMM and convolutional neural networks, has
been proposed. ADMM-CSNet [5] represents a further improvement.

An analog of the Total Variation (TV) algorithm is TVINet [78], which
addresses regularization by combining the iterative TV method with a con-
volutional neural network.

The main advantage of replacing parts of iterative algorithms with learning-
based counterparts is the significant reduction in computational require-
ments. For example, after training, LISTA is 20 times faster than ISTA,
and LDAMP is 10 times faster than BM3D-AMP. Moreover, most learning-
based variants automatically tune hyperparameters, eliminating the need for
fine-tuning to ensure fast convergence and satisfactory reconstruction quality.
As a result, adaptive algorithms significantly improve reconstruction quality
compared to their classical iterative versions.

Direct Reconstruction Methods Based on Learned Models

The second approach involves direct reconstruction from compressed mea-
surements using a trained model. Unlike the first approach, this method is
not bound to traditional iterative algorithms. Additionally, it allows for mod-
ifying the sampling (compression) process of the data; for instance, it can
implement a measurement matrix selection algorithm based on data. Nu-
merous direct reconstruction methods exist, often categorized by the neural
network architectures underpinning these methods.

Autoencoders are widely applied in CS because they consist of two parts:
an encoder, which maps input data to a lower-dimensional latent space, and
a decoder, which reconstructs the original data from the encoded represen-
tation. Naturally, the encoder can be seen as implementing the CS sampling
process, while the decoder serves as the reconstruction algorithm. In [51], a
stacked denoising autoencoder (SDAE) based on a fully convolutional neural
network was proposed. Its drawback is the increasing number of parameters
as the signal dimension grows, leading to high resource consumption and the
risk of overfitting for large signals. To address this issue, [?, 65] proposed
dividing the signal into blocks, each of which is independently compressed
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and reconstructed. To reduce the risk of overfitting, [83] proposed the sparse
autoencoder compressed sensing (SAECS) method, with added regulariza-
tion that zeros out part of the parameters. Furthermore, [80] introduces a
method based on SDAE and SAECS, robust to noise.

Fully connected and convolutional neural networks are also often applied
for implementing reconstruction algorithms. ReconNet [65] is one of the earli-
est works utilizing convolutional networks in compressive sensing. In addition
to CNN, ReconNet uses a fully connected layer to map the compressed sig-
nal to the original dimension, showing improved reconstruction quality over
traditional algorithms. CombNet [20] achieved further reconstruction qual-
ity improvement with a deeper architecture and smaller convolution sizes,
reducing the likelihood of overfitting.

A notable work is DeepInverse [53], which is also based on CNN. Instead
of a fully connected layer, a conjugate operator (the transposed measure-
ment matrix) is used for the initial reconstruction. This significantly reduces
the model parameters, allowing for efficient recovery of high-dimensional sig-
nals without splitting them into blocks. A comparison with the D-AMP
algorithm showed an increase in reconstruction speed by several orders of
magnitude and improved quality at compression ratios below 5-7%. At
higher compression ratios, D-AMP demonstrated better reconstruction qual-
ity. Nevertheless, DeepInverse has potential for further improvements due
to its lightweight model and block-free application of compressive sensing.
Based on DeepInverse, DeepCodec [54] was proposed, which replaces the ran-
dom measurement matrix with a sampling algorithm based on training data.
An experiment comparing this algorithm to DeepInverse and LASSO with
varying compression and sparsity levels demonstrated substantial improve-
ments in model parameter count, reconstruction quality, and computational
complexity. ConvCSNet [21] also implements a learning-based measurement
acquisition algorithm. Unlike DeepInverse, ConvCSNet uses a linear layer for
compressed measurements instead of a convolutional layer. It also includes a
reconstruction algorithm composed of two branches of convolutional layers.
ConvCSNet is implemented with the option of applying it to full-size signals
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(without splitting into blocks).

Residual neural networks (ResNets) are primarily designed to address
the vanishing gradient problem when a large number of layers are present.
ResNet introduces shortcut connections between layers, such as summing a
layer’s output with its input, helping the network find the shortest paths
during training. In [26], a Deep Residual Reconstruction Network model
with a fully connected layer for adaptive sampling and several fully connected
layers followed by ResNet blocks for reconstruction is presented. A similar
method is proposed in [39], with the primary difference being the use of a
convolutional network for sampling instead of a fully connected layer. In [45],
the sampling algorithm is designed to learn measurement matrices suitable
for physical implementation (e.g., binary and bipolar matrices with elements
-1 and +1). Experiments showed comparable reconstruction accuracy with
other deep learning methods when using such matrices.

Generative adversarial networks (GANs) are also widely used in solv-
ing inverse problems. In [22], a modification of ReconNet with an added
discriminator was proposed, where ReconNet is implemented as the genera-
tor. The discriminator is trained to differentiate between real and ReconNet-
generated data, used in the generator’s loss function during training. Experi-
ments showed higher reconstruction quality compared to the original method.
GANs are also used in MRI data reconstruction [29], where the generator is
based on a ResNet architecture, and the discriminator on a CNN. Simultane-
ously training two neural networks (generator and discriminator) is challeng-
ing, requiring careful tuning of model parameters and architecture to ensure
training stability and convergence. This issue is partially addressed in [24],
where the generator is only used to construct missing image details, which
reduced network complexity and led to faster convergence.

1.0.4 Conclusions

This section provides an overview of inverse problems in mathematical
modeling, including the compressive sensing problem, which forms the basis
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of the methods presented in Chapter 3. A significant characteristic of many
problems is that they are often ill-posed, necessitating regularization methods
to stabilize solutions. Solutions to inverse problems rely on the properties of
the operator that describes the relationship between model parameters and
observed data, as well as prior knowledge about the desired solutions.

Convex optimization methods are effective tools for solving compressive
sensing and signal reconstruction problems. However, despite their theo-
retical justification, traditional iterative methods often require significant
computational resources and may not provide satisfactory quality with lim-
ited data or high noise levels. The application of deep learning methods
has opened new possibilities for improving the efficiency of inverse problem-
solving. Neural networks enable significant reductions in computation time
and improved data reconstruction quality. Adaptive versions of classical al-
gorithms, such as LISTA and ADMM-NET, as well as approaches based on
autoencoders and convolutional neural networks, demonstrate high efficiency
in solving reconstruction problems from compressed observations.

However, for each specific problem, careful model tuning, selection of
appropriate neural network architectures, and mathematical methods are re-
quired. In the following chapters, we will examine various methods for solving
inverse problems, with a primary focus on leveraging sparsity properties and
developing methods to solve them within compressed latent spaces.
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Chapter 2

Randomized Stochastic
Approximation Algorithm
for Geological Model
Parameter Adaptation to
Development History

Geological models are used in many tasks related to mineral resource
development. They enable the assessment of the cost and potential success of
activities such as seismic surveys, the placement of new wells, and forecasting
mineral extraction. For a geological model to support sound decision-making,
it must be highly accurate and incorporate the maximum amount of available
data about the deposit.

Data used in constructing a geological model can include such charac-
teristics as the geological concept of the reservoir, measurements at drilling
sites, and geophysical measurements. This data is used in the initial stages of
geological model creation. Additionally, there are dynamic data, continually
received during field operation, such as historical oil and fluid production
data. These data allow for continuous model updates. The process of updat-
ing the geological model based on dynamic data is called history matching.
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History matching is an inverse problem where the model’s input parame-
ters are adjusted to minimize the difference between simulated and observed
data. The simulated data are obtained by modeling the hydrodynamic be-
havior of the reservoir through simulation of the geological model with a
given set of parameters. The model’s input parameters can be various prop-
erties of the simulated environment, such as porosity and permeability at
each point in the reservoir.

Geological models include a large number of parameters that need to be
adjusted during history matching. For example, a model with 60 by 60 grid
cells requires 3600 values. Since history matching involves minimizing the
deviation of simulated data from observed data, finding an optimal set of pa-
rameters becomes highly challenging in high-dimensional space. To address
this, parameterization methods for geological models are used, allowing the
models to be described by a significantly smaller set of new parameters due
to their sparsity. A frequently used parameterization method is PCA [35,60].
Its drawback, however, is its inapplicability to non-Gaussian geological mod-
els. To solve this issue, the CNN-PCA method was developed [49], based on
PCA and using a neural network to build a parameterizing model.

Various approaches are used to minimize the objective function that de-
fines the deviation between simulated and observed data. Multiple Kalman
filters (EnKF) are frequently used [59, 71]. EnKF is an iterative model
adaptation method. It involves calculating the covariance between the an-
alyzed model parameters and simulated data, which is then used to update
model parameters based on observed data. A disadvantage of this method
is the loss of accuracy when adapting binary geological models [72], as well
as the requirement to generate a relatively large number of geological real-
izations. Another widely used method is the Particle Swarm Optimization
(PSO) [9,34,49,81], which is based on swarm intelligence principles. It does
not require gradient calculation with respect to model parameters, which is
often impossible due to the complexity and lack of implementation in many
hydrodynamic simulators.
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This work uses the Stochastic Optimization Algorithm SPSA [14]. Com-
pared to the aforementioned methods EnKF and PSO, SPSA has the advan-
tages of a minimal number of calls to the objective function for gradient esti-
mation and consistency under nearly arbitrary noise in the observed data [73].
The application of the SPSA algorithm to geological model recovery was pre-
viously examined in [40]. Comparisons with L-BFGS and gradient descent
methods showed greater efficiency in solving the problem. However, SPSA
was applied without prior parameterization, and its study was limited to a
simple, small-scale geological model. Additionally, only the case of normal
noise in the observed data was considered.

Among existing systems that allow history matching of geological models,
Schlumberger Petrel [1] can be noted. The advantages of this system include
ease of use and integration with other widely used Schlumberger systems,
such as the Eclipse hydrodynamic simulator. The main disadvantages of
Schlumberger’s tools are the lack of free software versions, closed-source code,
and lack of descriptions of the algorithms used. Currently, there are no open,
extensible systems for history matching of geological models, making the
creation of a system based on modern parameterization methods and open
geological tools a relevant problem that can be formulated as an inverse
problem with a sparse structure.

This chapter proposes an algorithm for the history matching of sparse
geological models based on historical production data, using the gradient-
free stochastic optimization method SPSA. A theorem providing an upper
bound on the mean square error of the algorithm is formulated.

2.0.1 Mathematical Representation and

Parameterization of Geological Models

Geological models can be deterministic or stochastic. For stochastic mod-
els, model parameters at each point in the medium are defined by a proba-
bility distribution. Stochastic modeling can generate not a single model but
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a family of different models, each consistent with the available data. This
approach allows for the uncertainty’s impact on the modeling outcome to be
considered [33].

Geostatistical methods are used in stochastic modeling. Sequential indi-
cator simulation, object-based modeling, and multipoint statistics methods
are widely applied. Sequential indicator simulation uses variograms (corre-
lations between two points in the medium) to model spatial correlations. In
object-based modeling, the geological model is generated by randomly gener-
ating objects according to specified rules, such as channel sinuosity and thick-
ness. Multipoint statistics methods, used in this work, generate geological
models based on a training image that serves as a conceptual representation
of the spatial structure of the modeled reservoir.

Using a training image is one way to set a priori information about the
geological features of the studied reservoir. The training image includes es-
sential structures, such as sinuous channels of a specific orientation and thick-
nesses. An example of a training image is shown in Figure 2.1.

Figure 2.1: An example of a training image from [49]. The image provides
prior information on the number, thickness, and orientation of channels at
45◦. This training image is used in subsequent experiments.

The geological model is represented as a random field. Based on the
training image, realizations are generated that include the features defined
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by this image and satisfy additional conditions (hard data), such as values
at specific points (e.g., including geological properties measurable at drilling
sites).

In practice, grid models of specific sizes are used, and realizations are
represented as a discrete set of grid blocks.

SNESIM Algorithm for Geological Model Distribution Simulation

The SNESIM algorithm [70] is a widely used method for generating ge-
ological realizations based on a training image and additional data. In the
first step of the algorithm, the frequencies of various patterns in the training
image are calculated. A random path through each block of the generated re-
alization is then constructed. According to this path, blocks are sequentially
traversed. For the current block, a pattern is randomly selected from the
training image with a probability proportional to the pattern’s frequency. It
is also checked that the selected pattern for each block matches the previously
constructed blocks and the additional data.

A more detailed description of the algorithm is provided below. Let
S = {s(k), k = 1, . . . , K} represent possible values that the blocks in the
realizations can take (in the case of binary models, these are 0 and 1). Define
a data template dn of size n as a set of vectors {nα, α = 1, . . . , n} specifying
values {s(u+hα), α = 1, . . . , n} in the blocks neighboring u. Based on these
definitions, the algorithm proceeds as follows:

1. The training image is scanned with the given template. Possible value
sets corresponding to the template and the values of central blocks
are stored in a search tree. For each set, a probability distribution
P (S(u) = sk|dn) = ck(dn)

c(dn)
, k = 1, . . . , K is saved. The value c(dn) is

calculated as the frequency of the data set dn in the training image,
while ck(dn) is the frequency of the set dn given that the central block
value u equals s(k);
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2. Values in specific blocks, set by additional data, are fixed. The re-
maining blocks are added to a queue according to a random path that
determines the block traversal order;

3. For the current block, a value set is found in the search tree, taking
into account values in neighboring blocks specified by the template;

4. If an appropriate set is found, a value is generated from the correspond-
ing distribution and assigned to the current block. If no set is found,
a retry with a smaller template size is performed;

5. Steps 2-4 are repeated until all blocks in the queue are processed. The
result is a realization with the correlation structure of the training
image and that satisfies the additional data.

Dimensionality Reduction Methods

Numerous methods have been developed for parameterizing and reduc-
ing the dimensionality of geological models. A commonly used method is
Principal Component Analysis (PCA), based on the singular decomposition
of a matrix obtained from a set of realizations. The drawback of PCA is
that it only considers correlations between two points in the medium, mak-
ing it inapplicable to non-Gaussian geological models. There are methods
based on the discrete wavelet transform (DWT) and discrete cosine trans-
form (DCT). Their primary limitation is that the parameterized realizations
may no longer match the additional data, as these methods, unlike PCA, do
not use the covariance matrix of prior realizations.

Deep learning-based methods are currently gaining popularity. Gener-
ative adversarial networks (GANs) [36] are employed; they consist of two
parts: a generative model that generates geological realizations from a low-
dimensional parameter vector and a discriminative model that evaluates the
generated realizations’ adherence to additional data and the training image.
Variational autoencoders [46] are also used, comprising two interconnected
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neural networks: an encoder and a decoder. The encoder compresses the
initial realizations by mapping them into latent space. The decoder seeks
to reconstruct the initial realizations from latent variables with minimal in-
formation loss. The paper [46] demonstrates a substantial improvement in
parameterization results using variational autoencoders compared to PCA,
DCT, and DWT parameterization methods.

This work employs the CNN-PCA parameterization method, which com-
bines PCA and deep neural networks. Unlike GAN and autoencoder-based
methods, CNN-PCA requires significantly fewer training resources, as it only
enhances realizations generated by PCA without needing to generate them
from scratch.

Principal Component Analysis (PCA) Parameterization

The PCA-based parameterization method includes the following steps:

1. Using the SNESIM algorithm, NR realizations satisfying the additional
data are generated based on the training image;

2. A matrix XC = [m1 −m, · · · ,mNR
−m] is constructed, where mi is a

realization vector of size NC , m is the mean vector over all realizations,
and Nc is the number of blocks in the geological model;

3. An SVD decomposition of the matrix Y = XC√
NR−1

is performed: Y =

UΣV T ;

4. New realizations are obtained using the formula mpca(ξ) = UlΣlξ+m,
where Ul is the matrix of l singular vectors, Σl is the diagonal matrix
of the l largest singular values, and ξ is a vector of size l, which can be
a sample from a standard normal distribution for generating a random
realization or a vector that best matches historical data for history
matching.
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CNN-PCA Parameterization

For binary geological models, the O-PCA method [72] is proposed, which
solves the following optimization problem:

mopca(ξ) = argmin
x

∥UlΣlξ + x− x∥22 + γxT (⃗1− x) (2.1)

where x is a vector of size NC . The component xi describes the value at
block i, 1⃗ is a vector of ones of size NC , the first term ensures similarity to
the PCA model, and the second term regularizes the solution to be as close
as possible to binary (minimum values at 0 and 1). λ is the regularization
parameter.

For binary models, this optimization problem has a simple analytical
solution.

However, O-PCA represents a histogram transformation of the PCA so-
lution. The solutions obtained through it do not always fully reproduce
what is contained in the training image, especially if only a small amount of
additional data is available.

The generalization of the O-PCA method proposed in [49] involves solving
the following optimization problem:

m(ξ) = argmin
x

(LC(x,mpca(ξ)) + γsLS(x,Mref)). (2.2)

The function LC ensures that x is similar to mpca. In a more general form,
unlike O-PCA, where LC is represented by the Euclidean norm, LS rep-
resents the style of realizations, with “style” meaning the similarity of the
desired realization x to the training image Mref , preserving channel conti-
nuity, width, and the sharp contrast between facies (high-permeability and
low-permeability media). In O-PCA, this is analogous to the regularization
term XT (1−X), ensuring binary outputs.

Representation of LC

The function LC , which ensures similarity between realization x and the
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PCA realization, is defined as:

LC(x,mpca(ξ)) =
1

NF
|F (x)− F (mpca(ξ))|2Fr, (2.3)

where F (x) is the chosen representation of model x. If F (m1) = F (m2),
then models m1 and m2 have similar content (e.g., channels in m1 are ap-
proximately in the same places as in m2), and NF is the number of elements
in the representation (matrix).

The advantage of using a more complex representation F (x) over directly
comparing model x to mpca(ξ) (||x − mpca||22) is the reduced likelihood of
models being mistakenly compared blockwise (with direct comparison, one
region of model x could mistakenly be matched with a similar region in
mpca(ξ), but located elsewhere).

For obtaining F (x) functions and those in LS, the VGG-16 convolutional
neural network pre-trained on the ImageNet database is used. The fourth
layer output (activation function output from convolution) — F4(m) — serves
as the F (x) function. Consequently, the LC function is expressed as:

LC(x,mpca(ξ)) =
1

Nz,4Nc,4
|F4(m)− F4(mpca(ξ))|2Fr, (2.4)

where Nz,4 is the number of filters (convolutions) in the fourth layer, and
Nc,4 is the number of elements in each convolution result for the fourth layer.

Representation of LS

To describe the correlation structure of the space specified by the training
image, a set of statistical metrics Gk is used. These metrics are obtained
from the convolutional network as the covariance matrices of the nonlinear
responses of filters at the k-th layer output:

Gk(m) =
1

Nc,kNz,k
Fk(m)Fk(m)T ,

LS(x,Mref) =
∑

k=(2,4,7,10)

1

N 2
z,k

∥Gk(x)−Gk(Mref)∥2Fr,
(2.5)
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where Nz,k is the number of filters for layer k.

Thus, LS captures the average similarity of realization x to the training
image Mref at various levels of image detail.

Model for Realization Generation

Generating realizations by minimizing m(ξ) is too resource-intensive, as
optimization would need to be performed in each iteration during history
matching.

The model for generating realizations based on vectors ξ in explicit form
is presented in [49]. A second CNN network fW (model transform net) is
used, trained on random data ξ generated from a standard normal distribu-
tion. The loss function is defined as follows (in accordance with (2.3) and
representations (2.4) for LC and (2.5) for LS):

Loss(W, ξ) = LC(fW (ξ),mpca(ξ)) + γsLs(fW (ξ), ξ) + Lh, (2.6)

where W represents the parameters of network fW .

The term Lh in Loss(x) ensures that the generated realizations satisfy
additional data. It is calculated by:

Lh =
1

Nh
(hTmi

pca − fW (mi
pca))

2, (2.7)

where h is a vector of ones at positions where additional data is available,
and zeros elsewhere, and Nh is the number of points where additional data
is provided.
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2.0.2 SPSA Algorithm and Theorem on the

Properties of Estimates in the Context of the

Given Problem

We formulate the task of adapting the geological model to production
history as minimizing the following objective function with respect to ξ:

ft(ξ) =
||dfopr(m)− dtobs||2

max(dtobs)
+

∑
i

||di(m)− dtobs,i||2
max(dtobs,i)

+
||ξ − ξ0||2
max(ξ0)

, (2.8)

where dtobs in the first term represents the observed production data avail-
able at time t, such as oil and water production rates. dfopr(m) denotes the
simulated data obtained by forecasting oil and water production using a
hydrodynamic simulator with variable permeability parameters m. These
parameters are derived from ξ using the CNN-PCA parameterization model,
mapping parameterized realizations to physical permeability values.

The second term is the difference between the simulated di(m) and ob-
served dtobs,i production rates, specified individually for each well i.

The third term is a regularization term, requiring ξ to be close to the
parameters ξ0. This is necessary as CNN-PCA was trained using ξ values
chosen from this distribution.

Each term of the objective function is normalized by the maximum of
the corresponding observation, ensuring that data from the entire field and
from each well carry equal weight, regardless of the absolute values of the
observations.

SPSA

Stochastic approximation algorithms can be applied to optimization prob-
lems when the objective function is noisy or its gradients are unavailable.
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These algorithms have the general form:

x̂n+1 = x̂n − αnĝn(xn),

where x̂n is the sequence of parameter estimates, ĝn(xn) is a pseudo-gradient
with an expected value equal to the true gradient, and αn is the convergence
rate parameter.

SPSA is a stochastic approximation algorithm that requires only two mea-
surements of the objective function per iteration to approximate the gradient.
Moreover, parameter estimates obtained via this algorithm can converge to
their true values under arbitrary bounded additive noise, while many other
optimization algorithms require the noise to be normally distributed and/or
have a zero mean. If α is constant and sufficiently small, SPSA guarantees
convergence of the mean-square estimates to a small bounded region around
the true parameter value [41].

Consider an observation model where historical production data are avail-
able at time t ∈ R:

yt = ft(xt) + νt, (2.9)

where νt is the additive noise due to parameterization and measurement
errors in the production data.

Let Ft−1 denote the σ-algebra of all probabilistic events occurring up to
time t, where EFt−1

represents the symbol of conditional expectation with
respect to the σ-algebra Ft−1.

Using observations y1, y2, . . . , yt, we need to construct an estimate ξ̂ of
the unknown parameter vector ξ that minimizes the mean-risk functional Ft:

Ft(ξ) = EFt−1
[ft(xt)].

These estimates can be constructed using the SPSA algorithm.

The SPSA algorithm’s input parameters are sequences of positive num-
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bers αn, βn that approach zero, and an initial solution ξ̂0. The parameter
estimates ξn can then be obtained using the following formulas:

u2n = ξ̂n−1 + βn∆n,

u2n−1 = ξ̂n−1 − βn∆n,

ξ̂n = ξ̂n−1 −
αn

2βn
∆n(y2n − y2n−1),

where y represents the noisy measurements (2.9) of the objective function,
and ∆n is an observable sequence of independent Bernoulli random vectors
from Rd, with each component independently taking values ± 1√

d
.

T h e o r e m 1. Assume the following conditions hold:

1. The functions Ft(·) have unique minima ξt and, for all x ∈ Rd:

⟨x− ξt, EFt−1
[∇fξt(x)]⟩ ≥ µ∥x− ξt∥2,

where µ > 0 is a constant.

2. The gradient at the minimum point is bounded:

E∥∇fξt(ξt)∥2 ≤ g2.

3. For all ξ ∈ Ξ, the gradient ∇fξ(x) satisfies the Lipschitz condition:

∀x′, x′′ ∈ Rd, ∥∇fξ(x
′)−∇fξ(x

′′)∥ ≤ M∥x′ − x′′∥,

where M ≥ µ is a constant.

4. For n = 1, 2, . . . , the observation noise difference is bounded:

|v̄n| = |v2n − v2n−1| ≤ cv,

where cv > 0 is a constant.
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5. The algorithm’s steps αn = α and βn = β are constant and satisfy:

0 < α <
2µ

M 2
, β > 0.

Then the sequence of estimates ξ̂2n generated by the SPSA algorithm
satisfies the inequality:

lim sup
n→∞

E
[
∥ξ̂2n − ξ2n∥2

]
≤ L,

where

L = h+

√
h2 +

l̄

k
,

with constants h, l̄, and k.

Proof.

We will prove the theorem by showing that under these assumptions, all
conditions of Theorem 1 in [41] hold, and therefore, the result follows from
this theorem. Consider assumptions 1–8 in [41] and justify their fulfillment
in the context of the geological model adaptation problem (2.8).

1. In this problem, observations are subject to noise νt, which models mea-
surement and simulation errors. We assume that the noise difference
between consecutive observations is bounded:

|v̄n| = |v2n − v2n−1| = |ν2n − ν2n−1| ≤ cv.

This corresponds to Assumption 1 in [41]. The constant cv can be
estimated through the known measurement errors of dynamic produc-
tion data and the degree to which simulated data changes relative to
measurement error.

2. The true parameter vector ξt is either constant over time or changes
very slowly:

∥ξt − ξt−1∥ ≤ δξ,
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where δξ ≥ 0 is a small constant. This assumption holds in real-world
applications because the geological model describes intrinsic rock prop-
erties — such as porosity and permeability values, or channel locations,
which hardly change over time within the planning horizon.

3. The arrival of new data leads to changes in the function ft(ξ) and its
gradient. We assume that the gradient change rate is bounded:

∥EF2n−2
[∇ϕn(x)]∥ ≤ a1∥x− ξ2n−2∥+ a0,

where ϕn(x) = fξ2n(x) − fξ2n−1
(x), and constants a1 and a0 are small.

This corresponds to Assumption 3 in [41].

It can be assumed that constants δξ, α0, α1 are small in practice because
model adaptation at each time point is based on a small number of new,
and a larger amount of accumulated prior observed data.

4. The assumption in the theorem condition corresponds to Assumption
4 in [41]:

⟨x− ξt, EFt−1
[∇fξt(x)]⟩ ≥ µ∥x− ξt∥2.

In practical problems, this condition is challenging to verify as the rela-
tionship between geological model parameters and dynamic production
data is complex and nonlinear, and it largely depends on the specifics of
the hydrodynamic simulator. This requirement is partially met by the
regularization term in (2.8), which keeps the solution within a region
where the function behavior is more convex.

5. The theorem condition assumes that the gradient of the function at
the minimum is bounded:

E∥∇fξt(ξt)∥2 ≤ g2,

where g ≥ 0 is a small constant. This corresponds to Assumption
5 in [41]. In practice, the true model parameter (e.g., reservoir per-
meability) changes minimally over time, and the error function itself
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remains near its minimum close to the true parameter, considering
minor parameterization model errors and data noise. Under physical
constraints and parameterization model smoothness, the gradient near
the true parameter remains bounded by a small constant.

6. The Lipschitz assumption corresponds to Assumption 6 in [41]. Like
assumption 4, Lipschitz continuity is challenging to prove due to the
hydrodynamic simulator’s presence in the optimization problem. It can
be assumed that the constant M is relatively small for most x′, x′′, as
hydrodynamic simulators, while not strictly ensuring Lipschitz conti-
nuity, use numerical methods for solving partial differential equations
that provide moderate solution changes relative to model parameters.
Additionally, the neural network-based parameterization model with
PCA also exhibits relatively small value changes in response to input
parameter changes, resulting in moderate M values.

7. Perturbation vectors ∆n and functions Kn(∆n) satisfy Assumptions 7
and 8 from [41]. In this problem formulation, independent Bernoulli

random vectors ∆n with components taking values of ± 1√
d

with a

probability of 0.5 are used. This corresponds to the following proper-
ties:

• ∥∆n∥ = 1 ≤ c∆;

• ∥Kn(∆n)∥ = 1, where Kn(x) ≡ x;

• Functions Kn(·) and perturbation distributions Pn(·) meet the
required conditions, including independence and symmetry.

These assumptions hold by the construction of the SPSA algorithm
and the properties of the random perturbations used.

Since all assumptions of Theorem 1 in [41] hold, applying it yields that
the sequence of estimates ξ̂n satisfies the inequality:

lim sup
n→∞

E
[
∥ξ̂n − ξn∥2

]
≤ L,
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where

L = h+

√
h2 +

l̄

k
.

In our problem, given the small values of δξ, a0, a1, and g, the constants
h, l̄, and k can be estimated, yielding in the limit:

L =
α2c2v
4β2γ

,

where
γ = 2ασ2

∆µ− α2σ2
∆M

2 − αa1 > 0,

and σ2
∆ =

1

d
.

2.0.3 Conclusions

This chapter discusses methods for adapting sparse geological models to
historical field production data. It is shown that the primary challenge in
model adaptation lies in the high dimensionality of model parameter space,
making the search for optimal solutions computationally difficult. To address
this, parameterization methods such as PCA and its improved versions for
non-Gaussian models, including CNN-PCA, are used.

Various optimization algorithms have been considered for minimizing dis-
crepancies between simulated and observed data. It is noted that commonly
used methods have limitations, such as difficulties with binary models and the
need to generate numerous realizations. The stochastic optimization method
SPSA is proposed as an alternative, which has the advantage of minimal func-
tion evaluations to estimate the gradient and robustness to noisy observed
data. Furthermore, a theorem on the upper bound of the mean-square error
of the SPSA algorithm for the given problem has been formulated, show-
ing that even under uncertainty and noise, the geological model parameter
estimate will converge to the true value with controllable accuracy.
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Chapter 3

Compression-Based
Recognition Methods in
Distributed Clustering and
Ultrasonic Tomography
Tasks

This chapter proposes methods for solving sparse problems in compressed
space based on a compressed sensing methodology. The first section de-
scribes a distributed clustering algorithm for multi-agent systems, assuming
the global state of the system is sparse due to its clustered structure. The
second section presents two methods: a method for compression and re-
construction of ultrasonic data based on a trainable neural network, and a
method for solving the modeling problem (ultrasound imaging from data) in
compressed space, without preliminary data restoration.

3.0.1 Distributed Clustering in Multi-Agent Systems
Based on Compression-Based Recognition
Methodology

Multi-agent systems model a wide range of real-world problems, such as
the Internet of Things and distributed sensor systems. Consequently, many
challenges arise in controlling such systems, traditionally involving mesoscale
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(individual agent control synthesis) and macroscale control levels (unified
control synthesis for the entire system). Macroscopic control is often insuf-
ficiently precise, especially when there are significant data transmission de-
lays. Meanwhile, microscopic control becomes overly complex as the number
of agents increases.

An alternative solution in many cases can be based on the property that
many systems exhibit cluster synchronization [6]—agent states cluster into a
small number of clusters, within which they exhibit similar behavior. In this
scenario, agent control can be simplified significantly by synthesizing control
for each cluster instead of each individual agent.

For distributed cluster control, each agent must be aware of the pa-
rameters of the cluster to which it belongs. This necessitates an effective
distributed clustering method that enables each agent, based on local in-
teractions with other agents, to obtain parameters for all system clusters.
This chapter proposes a distributed clustering method for multi-agent sys-
tems that reduces data transmission volumes and reconstructs clusters in
real-time.

Problem Formulation

A multi-agent system can be represented as a set N = {1, 2, . . . , N},
where each agent i in this set has its own state xi, a vector in the space Rd.
The system consists of N agents, and the state space has dimension d. Com-
munication among agents is modeled using a directed graph G = (N , E).
The adjacency matrix B = [bij] describes the directed communication paths
between agents.

Cluster parameters, denoted as Θ, include the centroids of k clusters,
defined as xk = 1

|Ck|
∑

i∈Ck
xi for each cluster Ck. It is assumed that the

agent states are clustered at any given time, ensuring system sparsity, and
allowing the use of compressive sensing theory for efficient data transmission.
Note that communication topology is not necessarily linked to agent cluster-
ing—two agents within the same cluster may not be connected, and agents
from different clusters may exchange information.

We propose a decentralized algorithm to estimate the parameters Θ based
on the Local Voting Protocol (LVP) and a deep learning method for rapid
centroid recovery. The algorithm should be scalable with respect to the
number of agents N and adaptable to changes in cluster structure. To avoid
direct transmission of large volumes of data about multi-agent states, only
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compressed measurements are used in communication, represented as y =
Ax. Here, x = [xT1 , . . . , x

T
N ]

T is the vector of all agent states in the space
RNd, and A ∈ Rmd×Nd, where m ∼ k ≪ N .

Distributed Clustering Method

We assume that each agent i ∈ N independently collects private mea-
surements as follows:

yi = Aixi, (3.1)
where yi ∈ Rmd is the compressed observation of agent i, Ai = A(·,i) ∈ Rmd×d

is the measurement operator for agent i, and A(·,i) represents the columns
of matrix A corresponding to agent i. The aggregate measurement vector is
then obtained as follows:

y =
1

N

∑
i∈N

yi =
1

N

∑
i∈N

Aixi, (3.2)

where y represents a set of compressed measurements, computed as weighted
sums of agent states with random weights. This method of gathering mea-
surements y allows the use of the Local Voting Protocol to synchronize com-
pressed measurements across all agents. To estimate cluster parameters, a
trainable method based on a neural network—similar in architecture to Point-
Net [64] except for the first and last layers—is proposed:

1. First Layer: A learnable projection from N (number of agents) to
m (128—dimension of the compressed measurements) using a linear
layer, applied independently to each of two dimensions (compression
factor—N//m).

2. Convolutional Layers: Five convolutional layers with Rectified Lin-
ear Unit (ReLU) activation and Batch Normalization. Channel dimen-
sions: 2 → 64 → 64 → 128 → 1024, transforming the two-dimensional
input into a feature vector of dimension 1024.

3. Average Pooling: Applied along one of the dimensions, reducing the
size from m to 1. The result is then concatenated with the output of the
third layer (to account for local and global features of the compressed
point cloud).

4. Convolutional Layers: Five convolutional layers reduce the dimen-
sion from 1024 + 64 to the number of output channels corresponding
to the number of clusters K.
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5. Final Projection: The second dimension is projected to 2 in the final
step, yielding the output dimensions: [B, 2, K].

As a loss function (3.3), a function based on the Hungarian method for
solving the linear assignment problem is used, following the method in [42].
This choice accommodates any arbitrary ordering in the predicted cluster
set, simplifying the training process (it is important only to predict the set
of centroids, not their order).

Lhun(Ŷ , Y ) = min
π∈Π

∥ŷi − yπ(i)∥22, (3.3)

where Ŷ are the predicted centroids, Y are the true centroids, and Π is the
permutation space. The assignment problem is solved using the Hungarian
algorithm in O(n3) time.

3.0.2 Compression and Reconstruction of Ultrasonic
Tomography Data

Ultrasound Computed Tomography (UCT) has garnered significant in-
terest due to the absence of radiation exposure for the human body, which
distinguishes it favorably from X-ray Computed Tomography (CT). More-
over, UCT does not require the injection of contrast agents, essential for
high-quality diagnostics in Magnetic Resonance Imaging (MRI). Unlike tra-
ditional ultrasound methods, UCT offers substantially higher reconstruction
quality of the examined object by utilizing a large number of ultrasound
sources and sensors. However, this leads to a considerable increase in data
volume and heightened computational complexity of the image reconstruc-
tion process, necessitating the development of more efficient data acquisition
and processing methods.

This section proposes and describes a method for efficient data acquisition
from UCT sensors. Such a tomograph is composed of a ring of N elements,
uniformly distributed around the circumference, capable of simultaneously
emitting and receiving ultrasound signals. The examined object is placed
inside this ring. Each sensor sequentially generates an ultrasound signal,
while the others remain in receiving mode for t time intervals. After collecting
data from all sensors, the ring shifts along the vertical axis, and the process
repeats to obtain data for a new slice of the object.
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Figure 3.1: Example of ultrasound signal data obtained from a single source.
Data displayed in the frequency domain (Discrete Cosine Transform) on a
logarithmic scale.

As a result, the tomograph generates a data volume of N 2t. In the con-
ducted experiment, with N = 2048 and t = 3750, this results in the need to
collect over 50 GB of information for each slice. The application of a com-
pressed sensing approach enables a significant reduction in the amount of
data collected by using a sampling rate lower than required by the Nyquist-
Shannon theorem. According to this theorem, a signal with a limited spec-
trum can be fully reconstructed from measurements sampled at a rate more
than twice the maximum frequency of the spectrum. However, ultrasound
data is inherently sparse (as illustrated in Fig. 3.1), and the useful signal can
be represented in a more compact form.

Full-Waveform Inversion (FWI) Problem

Full-Waveform Inversion (FWI) is a numerical optimization method aimed
at accurately recovering acoustic properties of the medium, such as sound
speed and density, based on wavefield data. In the context of Ultrasound
Computed Tomography, FWI is used to obtain an image of the object based
on a large volume of wave data from sensors.

FWI is based on solving the inverse problem for the wave equation. In
acoustic problems, the main wave equation can be written as:
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1

c2(r)

∂2p(r, t)

∂t2
−∆p(r, t) = s(r, t), (r, t) ∈ Rd × [0, T ], (3.4)

where c(r) is the speed of sound, p(r, t) is the sound pressure, s(r, t) is the
source function, and ∆ is the Laplace operator.

The initial conditions for the wave equation are given by:

p(r, 0) = 0,
∂p(r, 0)

∂t
= 0. (3.5)

Sensors are located on a surface S around the object and collect mea-
surements over time T :

d(r, t) = p(r, t)
∣∣
r∈S, t ∈ [0, T ]. (3.6)

The goal of full-waveform inversion is to recover the sound speed matrix
c(r) from the measured data d(r, t). This is formulated as an optimization
problem for a loss function between the simulated and measured data:

ĉ = argmin
c

1

2

I∑
i=1

∫ T

0

∫
S

∣∣di(r, t)− psim
i (r, t; c)

∣∣2 dS dt, (3.7)

where psim
i (r, t; c) represents the simulated data for the i-th source at the

current estimate of the sound speed c(r). The problem is solved iteratively,
computing simulated data (applying the forward wave equation operator)
and solving the adjoint problem to compute the gradient.

Image Reconstruction Method Based on Time-of-Flight Analysis

An alternative simplified image reconstruction method, based on Time-
of-Flight (TOF) analysis of ultrasound signals, was proposed in [31]. This
method aims to detect specific regions and estimate their density using ul-
trasound tomography data.

The primary steps of this method include data acquisition and prepro-
cessing, TOF calculation, and subsequent image reconstruction. During data
acquisition, each element of the ring array sequentially emits an ultrasound
signal, while the other elements in the array receive the signal, forming a
complete dataset for each source.

To compute the TOF, the Akaike Information Criterion (AIC) is em-
ployed, enabling accurate detection of the arrival time of the signal at each
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receiver. The AIC method is based on dividing the signal into two parts, be-
fore and after the wave arrival, and then computing variances for each part.
The modified AIC formula is given as:

AIC(k) = k · ln
(
σ2
1(k)

)
+ (N − k − 1) · ln

(
σ2
2(k)

)
,

where k is the current time index in the analysis window, N is the total
number of points in the window, and σ2

1(k) and σ2
2(k) are the variances of

the signals before and after point k.

After TOF calculation, an inverse problem is solved to estimate the dis-
tribution of sound speeds in the area under study. A ray-tracing method is
applied, which relates TOF to integrals over the signal propagation paths.
The time-of-flight between transmitter i and receiver j is expressed as:

TOFij =

∫
Lij

1

c(r)
dl,

where TOFij is the time-of-flight between transmitter i and receiver j,
c(r) is the sound speed at point r, and Lij is the signal propagation path
between these elements. An image is obtained by solving a system of linear
equations, which can be solved using least squares or regularization to ensure
stable solutions.

The advantages of this method include its simplicity, high computational
speed, and potential for parallelization. The method does not require com-
plex calculations related to solving the full-wave equation, making it suit-
able for rapid preliminary image generation. TOF calculations for different
transmitter-receiver pairs are independent, enabling parallel computation.

Ultrasound Data Compression and Reconstruction Method

The following describes the proposed method for compressing and recon-
structing data obtained from the sensors of the ultrasound tomograph.

Data Preprocessing

In the initial preprocessing step, the median value of the signal data from
each receiver is subtracted. This eliminates noise resulting from varying
signal levels among sensors in the idle state (example shown in Fig. 3.2).

Next, high-amplitude data portions are isolated and transmitted sepa-
rately without compression. This step significantly improves signal recovery
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Figure 3.2: Example of preprocessing results. Top - original image with noise
in the form of horizontal lines.

accuracy, while adding minimal data since the high-amplitude portion occu-
pies less than 5

Figure 3.3: Data separation example. Top - isolated high-amplitude portion,
bottom - main data portion.

Finally, data from each source are divided into small fragments (64x64),
enabling the use of algorithms with low memory requirements.

Implementation Scheme
The overall reconstruction method scheme is illustrated in Fig. 3.4. The

algorithm input is a vector of size 64 · 64/CR, where CR is the desired
compression ratio (5 in the experiment). Initial reconstruction is performed
using a fully connected neural network layer, outputting a 64 · 64 matrix.
Subsequently, a convolutional neural network RIDNet [8] is used to restore
local structures. Additionally, a skip connection is added to the network
output, which improves training by allowing partial signal recovery from the
fully connected layer.

The RIDNet convolutional network architecture is depicted in Fig. 3.5.
EAM represents an attention mechanism-based module, which enables the
network to detect patterns between input and output data. EAM begins
with two branches of convolutional layers with different parameters, which
are then summed and fed into further convolutional layers.
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Figure 3.4: Reconstruction method architecture. CR - signal compression
ratio, Fully connected layer - fully connected layer (linear transformation
with learnable weights), RIDNet module - convolutional neural network.

The final three blocks implement a channel attention mechanism. The
first of these blocks, Global Pooling, computes the mean and variance of the
input data. The last block, a sigmoid function, outputs weights that indicate
the importance of each data channel. The resulting vector is the input vector
multiplied by these weights.

Figure 3.5: RIDNet architecture [8]. EAM - attention mechanism module,
structure shown below. Convolutional layers are in green. Arrow lines - skip
connections (adding results from one layer to another)

The loss function for training the proposed network on ultrasound to-
mography data is defined as follows:

||x− f(x)||1
||x||1

+
||Af(y)− y||2

||y||2
,

where x represents the desired data, f(y) is the function defined by the neural
network with architecture shown in Fig. 3.4 producing reconstructed data,
y is the compressed observation vector, and A is the designed measurement
matrix. Thus, the network is trained to minimize the ℓ1 distance between the
original and reconstructed signal while also striving to minimize the distance
between Af(y) and y.
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3.0.3 Full-Waveform Inversion with Compressed
Measurements

The previous section examined the problem of efficient data acquisition in
ultrasound computed tomography. A method based on compressive sensing
was proposed to significantly reduce data collection volume without com-
promising result quality. Next, we describe a hybrid full-waveform inversion
method for image reconstruction from compressed ultrasound data, enabling
direct image reconstruction from the compressed signal representation with-
out requiring full data reconstruction beforehand.

The problem is formulated as in [7]. Let us consider an inhomogeneous
medium with a distribution of inverse velocities s(r), where r = (x, z) are
spatial coordinates. The goal is to reconstruct the distribution s(r) based
on ultrasound wave measurements passing through this medium. Observed
data are collected by ultrasound sources and receivers rotating around the
object at angles θi, i = 1, . . . , Nviews. At each angle, waves are emitted and
signals recorded on the opposite side of the object.

For ultrasound wave propagation modeling, the angular spectrum method,
detailed in [7], is employed.

We proceed with a method modification for operation in compressed
space.

Compression is applied via a random matrix A ∈ RM×N , where M ≪ N .
The observed data for angle θi are recorded as:

yi = Apobs,i,

where pobs,i represents the full-space data vector.

The simulated signal is expressed as:

ysim,i(s) = ApN,i(s),

where pN,i(s) is the simulated data for viewing angle i at the current estimate
of the medium parameters s.

The objective function for full-waveform inversion based on compressed
data is formulated as:

J(s) =
1

2

Nviews∑
i=1

∥ysim,i(s)− yi∥2 .
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To minimize this function, a conjugate state method is used, which allows
efficient gradient computation J(s) with respect to the medium parameters
s. This method involves solving both forward and adjoint problems:

The forward problem for wavefield modeling is described by the equation:

A(s, f)p(s, f) = b(f),

where A(s, f) is the wave propagation operator, and b(f) is the wave source
model for frequency f .

The adjoint problem is formulated as:

A†(s, f)λ(s, f) = K⊤A⊤ (ApN,i(s)− yi) ,

where A† is the adjoint operator, λ(s, f) is the adjoint state, and K is the
sampling operator for data recorded by sensors.

The gradient of the objective function with respect to the medium pa-
rameters s is given by:

∂J

∂sm
= −

Nviews∑
i=1

∑
f

Re

{
λ†(s, f)

∂A(s, f)

∂sm
p(s, f)

}
,

where sm is the inverse velocity at grid point m.
Data compression affects the right-hand side of the adjoint problem. The

error residual is computed in the compressed space:

δyi = ysim,i(s)− yi.

Then, this residual is "uncompressed" using the transpose of the compression
matrix:

δpN,i = A⊤δyi.

This ensures accurate computation of the adjoint state λ(s, f) and, conse-
quently, the gradient ∂J

∂s .
To improve solution stability, ℓ1-regularization is introduced, encouraging

sparsity in the modeled data:

Jreg(s) = λ

Nviews∑
i=1

∥ApN,i(s)∥1 ,

where λ is the regularization coefficient. The full objective function becomes:

Jtotal(s) = J(s) + Jreg(s).
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Minimizing Jtotal(s) enables recovery of parameters s that fit the observed
data while also exhibiting sparsity properties. The optimization problem
is solved using a wave-equation migration velocity analysis method, as de-
scribed in [7].

Thus, a method for effectively solving the full-waveform inversion problem
with compressed data is proposed. Next, we derive an upper error bound for
the solution based on the number of compressed measurements.

T h e o r e m 2. Let the goal be to recover a model f ∗ ∈ RN from data
g = F (f ∗), where F : RN → RN is a nonlinear forward wave operator.

Assume that:
1. For any f ∈ RN , the vector F (f) is s-sparse, containing no more

than s non-zero components.
2. The operator F is Lipschitz continuous with constant L > 0, meaning

that for any f1, f2 ∈ RN ,

∥F (f1)− F (f2)∥2 ≤ L∥f1 − f2∥2.

3. An approximate solution f̃ ∈ RN exists in the full space such that

∥f̃ − f ∗∥2 ≤ ε0.

Let A ∈ Rm×N be a random matrix with independent, identically dis-
tributed entries, e.g., normally distributed N (0, 1/m).

Suppose the number of measurements m satisfies:

m ≥ C · s · log
(
N

s

)
,

where C > 0 is a positive constant dependent on the Restricted Isometry
Property (RIP) constant δ ∈ (0, 1).

Then with probability at least 1 − 2e−cm, where c > 0 is a constant
dependent on δ, matrix A satisfies the RIP of order 2s with parameter δ,
i.e., for all 2s-sparse vectors h ∈ RN :

(1− δ)∥h∥22 ≤ ∥Ah∥22 ≤ (1 + δ)∥h∥22.

Denote the compressed measurements y as:

y = AF (f ∗).
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Then the solution f̂ obtained by minimizing the loss function in the com-
pressed space:

f̂ = arg min
f∈RN

∥AF (f)− y∥22,

satisfies the following bound with probability at least 1− 2e−cm:

∥F (f̂)− F (f ∗)∥22 ≤
1 + δ

1− δ
Lε0.

Proof.
According to [82], for a random matrix A with elements aij ∼ N (0, 1/m),

if the number of measurements:

m ≥ C · s · log
(
N

s

)
,

then with probability at least 1− 2e−cm, matrix A satisfies the RIP of order
2s with parameter δ, i.e.,

(1− δ)∥h∥22 ≤ ∥Ah∥22 ≤ (1 + δ)∥h∥22

for all 2s-sparse vectors h.
Considering the loss function:

L̃(f) = ∥AF (f)− y∥22 = ∥A(F (f)− F (f ∗))∥22.

Since f̂ minimizes L̃(f), for any f ,

L̃(f̂) ≤ L̃(f).

In particular, for the full-space solution f̃ ,

L̃(f̂) ≤ L̃(f̃) = ∥A(F (f̃)− F (f ∗))∥22.

Using the RIP for vectors h = F (f̂) − F (f ∗) and h = F (f̃) − F (f ∗),
which are 2s-sparse, we obtain:

(1− δ)∥F (f̂)−F (f ∗)∥22 ≤ ∥A(F (f̂)−F (f ∗))∥22 ≤ (1 + δ)∥F (f̂)−F (f ∗)∥22,

(1− δ)∥F (f̃)−F (f ∗)∥22 ≤ ∥A(F (f̃)−F (f ∗))∥22 ≤ (1 + δ)∥F (f̃)−F (f ∗)∥22.

Therefore, from L̃(f̂) ≤ L̃(f̃), we have:

(1− δ)∥F (f̂)− F (f ∗)∥22 ≤ (1 + δ)∥F (f̃)− F (f ∗)∥22.
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Hence:
∥F (f̂)− F (f ∗)∥22 ≤

1 + δ

1− δ
∥F (f̃)− F (f ∗)∥22.

Given the Lipschitz continuity of F ,

∥F (f̂)− F (f ∗)∥22 ≤
1 + δ

1− δ
Lε0.

Note: The theorem provides a bound on reconstruction accuracy in the
data space. Under more stringent assumptions (e.g., local invertibility and
Lipschitz continuity of the inverse operator), an upper error bound in the
image space can also be derived.

Remark:
Further, by applying Theorem 9.25 from [38], we can derive an upper bound
on the RIP constant δ and, consequently, on ∥F (f̂) − F (f ∗)∥22 in terms of
the number of measurements and a desired probability ϵ:

If the number of measurements m satisfies the inequality:

m ≥ 2η−2

(
s ln

(
eN

s

)
+ ln

(
2

ε

))
, (3.8)

then with probability at least 1− ε, the RIP constant δs of the matrix 1√
m
A

satisfies:

δs ≤ 2

1 +
1√

2 ln
(
eN
s

)
 η +

1 +
1√

2 ln
(
eN
s

)


2

η2. (3.9)

Thus, we obtain an accuracy bound (in the data space) when solving the
full-waveform inversion problem in the compressed space.

The proposed method is based on an optimization approach to solve the
full-waveform inversion problem. In the future, it could be combined with the
compression method described in Section (3.0.2) and adapted for learning-
based full-waveform inversion approaches, which generate seismic images di-
rectly from data using generative models, such as those proposed in [79].
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3.0.4 Discussion

In this chapter, we proposed methods based on compressive sensing the-
ory to address problems of distributed clustering and image reconstruction
from ultrasound data, both in the original and directly in the compressed
space, eliminating the need for full data reconstruction. A theorem was for-
mulated, providing an upper bound on the error of the solution.

In distributed clustering, data compression allows efficient information
exchange between nodes in multi-agent systems with a cluster structure.
This significantly simplifies interaction between nodes, reducing the volume
of transmitted information and enabling efficient computation of the global
state of the system by each agent. In ultrasound tomography tasks, apply-
ing compressed measurements reduces data volume, speeds up processing
and image reconstruction, which is especially relevant for three-dimensional
ultrasound tomographs that may consist of a vast number of sensors and
receivers.

Practical implementation of such diagnostic systems faces challenges, such
as the complexity of creating a physical bus for data transmission from nu-
merous sensors and the need for efficient processing of large data volumes.
Potentially, applying a multi-agent approach to ultrasound tomographs al-
lows grouping sensor data according to similar states, which opens up the
possibility of sparse interconnections between system components and direct
application of the proposed compression and image reconstruction methods
without intermediate data reconstruction or transmitting the full data vol-
ume to a central node.
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Chapter 4

Software Simulation and
Experimental Research
Results

This chapter provides implementation details and simulation results for
the proposed methods.

4.0.1 Geological Model Parameter Adaptation System
to Development History

System Architecture

The system’s purpose is to search for an optimal set of parameters for
geological models that best describe the available field development history
data. The system is designed for two-dimensional stochastic geological mod-
els, defined using a training pattern and supplementary data.

The main components of the system are illustrated in Figure 4.1:

The realization generation module encompasses an algorithm for produc-
ing realizations based on a stochastic geological model. This model is defined
through a training pattern. The module input consists of a training image
in the form of a picture and supplementary data at specific points (measured
data from drilling sites). The module output is a matrix where each column
represents a realization vectorized into a one-dimensional format.
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Figure 4.1: System Architecture

The parameterization module trains a neural network, Model Transform
Net, to parameterize the realizations. The input to this module includes the
matrix of realizations and hyperparameters utilized in the training process.
The outcome is a trained model that, given a low-dimensional parameter
vector ξ, generates realizations of the geological model. During training, an
auxiliary neural network, VGG-16, is used in constructing the loss function.
A detailed description of the CNN-PCA parameterization algorithm used is
provided in Chapter 2.

The hydrodynamic simulator enables fluid flow simulation within an en-
vironment defined by variable porosity and permeability values, alongside
static parameters. Within the system, the simulator is regarded as a func-
tion, where the input consists of permeability values for each grid block, and
the output includes the oil or fluid production rates over a specified time
interval for each well.

The model adaptation module addresses the primary task of the system.
It is based on an optimization algorithm (SPSA or PSO), which minimizes
the objective function, representing the deviation of simulated data from
observed data.

The main use case of the system is depicted in Figure 4.2.
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Figure 4.2: Primary System Use Case. Visualization of system interaction
with the user and its behavior in solving the main task.

The user interacts with the system through a command line interface
(Main), or, for example, via an interactive environment like Jupyter Note-
book, by calling relevant classes. In the first step, input data is provided, in-
cluding the training pattern, supplementary drilling data, historical data, and
a set of static data for the hydrodynamic simulator (such as well locations,
bottomhole pressures, and fluid properties). Subsequently, a set of geologi-
cal realizations is generated, which is then used to train the parameterizing
model. Once the trained model is obtained, the adaptation process begins.
In each iteration, the parameterization module is called, the parameterized
realization is passed to the hydrodynamic simulator, which returns simulated
data. The geological model parameters are then adjusted to minimize the
deviation of the simulated data from the historical data. The adaptation ter-
minates upon meeting a specified condition (e.g., iteration count, accuracy),
after which the user receives a geological realization that optimally describes
the historical data. The Python programming language was selected for
implementing the system, simplifying the core system module—the param-
eterization module—due to the availability of suitable libraries and ease of
neural network construction and training.

The realization generation module is based on the MPSLib library [43].
MPSLib implements several multiple-point statistics algorithms, including
the SNESIM method used in this work [70]. The training image and supple-
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mentary data are loaded in GSLIB format [2].

The parameterization module is implemented using the PyTorch library
[62], which employs a computational graph representation and applies au-
tograd algorithms for computing parameter gradients and performing back-
propagation. The loss function is constructed using a pre-trained VGG-16
neural network, available in the PyTorch Hub repository [63]. The Model
Transform Net neural network is constructed according to the architecture
described in [49]. The Adam optimizer was used for training. The overall
parameterization model training process includes the steps listed below.

• Construct a PCA model by calling the realization generation module
and performing a singular value decomposition on the resulting matrix
of geological realizations. The singular value decomposition algorithm
from the Numpy library is used.

• Generate a specified number of PCA realizations with parameters ξ
drawn from a standard normal distribution.

• Train the Model Transform Net neural network on the generated re-
alizations using the ADAM algorithm, with a specified batch size and
learning rate.

• Save the trained model to a file for subsequent use in the adaptation
module.

The Open Porous Media Flow (OPM) hydrodynamic simulator [10] is
used. For interaction with it, automatic generation of Eclipse-format files
is implemented, forming them based on a template and input parameters
(Numpy matrices of porosity and permeability). The system enables parallel
execution of the simulator on different parameter sets. The Ecl library [3]
is used for reading simulation results and obtaining them in Numpy vector
format.

The model adaptation module is based on two alternative optimization al-
gorithms—PSO and SPSA. Non-gradient optimization methods were chosen,
as many simulators, including OPM, do not provide derivative calculations
with respect to parameters, and implementing this feature is a labor-intensive
task.

The particle swarm optimization (PSO) algorithm uses the pyswarms
library [4].
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The SPSA algorithm implementation involves selecting sequences of co-
efficients αn and βn. The sequences αn = αn1/5, α = 0.5 and βn = 0.2n1/10

were selected based on experiments and theoretical results from [73]. Addi-
tionally, a condition was added so that the coefficient α is halved, and the
best parameter vector found during optimization is used if, at any optimiza-
tion step, the current function value exceeds the initial value. Without this
condition, the algorithm was sensitive to initial data, requiring different α
values for each case.

The objective function used is as follows:

f(ξ) =
||dfopr(ξ)− dobs||

max(dobs)
+
∑
i

||di(ξ)− dobsi||
max(dobsi)

+
||ξ − ξ0||
max(ξ0)

,

where dfopr(ξ) and di(ξ) are the simulated production rates obtained for
the porosity and permeability values corresponding to the parameter vector
ξ. dobs and dobsi represent the observed production rates (historical field
development data).

The first term of the objective function accounts for the deviation of
the observed total oil production rate from the simulated rate. The sum
over i corresponds to the deviation of production rates for each individual
well. The last term in the function acts as a regularizer, ensuring that the
target parameter vector does not deviate excessively from the prior ξ0. Each
term is normalized by the maximum value of the corresponding observation
vector. This normalization ensures that data for each well is weighted equally,
and the minimization algorithm seeks to achieve similarity for each set of
observations, regardless of absolute values.

Experiments and Conclusions

Synthetic Geological Model

A binary two-dimensional geological model, consisting of a 92 by 92 grid
with a block size of 50x50x10 m, was constructed for system testing and
adaptation algorithm comparison. Using a training image from [49], a true
realization was generated, shown in Figure 4.3. This realization was not used
during the training of the parameterization model.

Five injection wells and four production wells were specified. The well
locations were chosen to ensure each production well connects to an injec-
tion well via high-permeability channels. The bottomhole pressures of the
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injection wells were set to allow water from the injection wells to reach the
production wells within the simulation period, ensuring a non-trivial de-
pendence between model parameters (porosity/permeability values) and oil
production rates.

A simulation period of 7 years with 3-month intervals was specified, re-
sulting in a total of 28 observation points for each production well.

Figure 4.3: Permeability map of the simulated model. High-permeability
channels are marked in yellow. Blue markers denote injection wells, and red
markers denote production wells.

Figure 4.4 shows the true and observed data for each production well.
Observed data were derived from the true data with added noise. Four types
of noise were considered: random Gaussian noise N (0, 0.02m), constant noise
ν0t = 0.05m, plus-minus noise ν1t = 0.05 sign(sin t) · m, and irregular noise
ν2t = 0.03m (0.1 sin t + 2 sign(3 − t mod 5)), where t = 1 . . . 28, and m is
the maximum value of the corresponding observation.
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Figure 4.4: Simulated data: oil production rate curves for each production
well. Observed data are shown as red dots.

Comparison of Adaptation Methods for Various Types of Noise
in Observed Data

A total of 6000 realizations were generated using the training image,
and 20,000 PCA realizations were obtained, with a parameter vector size of
l = 170 (a 50-fold dimensionality reduction). The parameterization model
was trained for 50 epochs with a batch size of 32.

Threshold transformation O-PCA with a parameter γ = 0.9 was applied.
Using O-PCA in place of threshold truncation enabled a continuous depen-
dence of realizations on the parameter vector ξ, preventing abrupt changes
in the objective function during optimization.

The optimization algorithms used a stopping criterion with an accuracy
threshold of 1.2, and a maximum of 2000 objective function evaluations was
specified.

A total of 7 posterior realizations were obtained for various prior realiza-
tions (initial data). Prior realizations were drawn randomly from a standard
normal distribution.

Figure 4.5 shows the model adaptation results, with total oil production
rates for all wells across prior and posterior realizations obtained via the PSO
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and SPSA algorithms. A two-year forecast period, whose data were not used
during adaptation, is displayed. The results show a significant reduction
in uncertainty, with production rate curves for all realizations approaching
the true curve. It can be observed that realizations obtained by the SPSA
algorithm exhibit less variance and are closer to the true curve, especially in
the forecast period.

Figure 4.5: Model adaptation results. Observations are marked with red
dots, and the true data are represented by the blue curve. Gray curves corre-
spond to data from prior realizations, yellow curves show data for posterior
realizations obtained by the SPSA algorithm, and green curves show data
obtained by the PSO algorithm. The vertical gray line separates the histor-
ical period from the forecast period.

Table 4.1 presents the comparison results for the different types of noise:
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Noise Type Algorithm mean stddev fail

Gaussian Noise PSO 502 254 2
SPSA 439 332 2

Constant Noise PSO 657 364 4
SPSA 473 317 2

Plus-Minus Noise PSO 908 291 7
SPSA 448 402 3

Irregular Noise PSO 708 415 6
SPSA 514 358 3

Table 4.1: Comparison of algorithms for four types of noise. The mean
column shows the average number of iterations, the stddev column shows
the standard deviation in iteration count, and the fail column shows the
number of attempts for which the accuracy threshold was not reached within
the maximum number of iterations.

As shown in Table 4.1, the SPSA algorithm achieves the required accuracy
level with significantly fewer iterations than PSO on average for all types of
noise. SPSA is also equally effective across all noise types. The standard
deviation in iteration count is high in all cases due to the use of random
realizations as initial data.

Thus, the experiments demonstrate that the SPSA method can yield
good and stable results even with non-Gaussian noise in the observed data.
It has been shown that SPSA is well-suited for adapting non-Gaussian geolog-
ical models with various types of observation noise and outperforms particle
swarm optimization in terms of convergence speed.

4.0.2 Simulation of the Distributed Clustering Method

We present the results of a software simulation for the method of recover-
ing clusters of states in a multi-agent system based on compressed observa-
tions, as described in Section 3.0.1. A synthetic dataset was used for training
and testing, based on randomly generated states of 3000 agents divided into
either 3 or 10 random clusters. Experiments were conducted with a batch
size of 128, using the Adam optimizer with an initial learning rate of 0.003,
linearly decreasing to 0.0003. Experiments were conducted to assess the
effectiveness of the proposed method, using 10 and 3 clusters. For compari-
son, clustering results using k-means and randomly assigned cluster centers
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are also provided. The evaluation metric used was the minimum absolute
deviation.

Table 4.2: Comparison of Clustering Methods. Metric calculated on 128,000
randomly generated sets of agent states

Method 10 Clusters 3 Clusters
k-means 0.012± 0.01 0.00± 0.00
proposed 0.11± 0.01 0.12± 0.01
random 0.17± 0.03 0.30± 0.10

Visualizations of the true and predicted centroids, as well as the agent
positions for experiments with 3 and 10 clusters, are presented in the figures
below.

Figure 4.6: Example for 3 Clusters

Conclusions

Currently, the proposed method is significantly less accurate than classi-
cal non-distributed clustering methods, such as k-means. Nevertheless, the
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Figure 4.7: Example for 10 Clusters

proposed method enables distributed clustering and can predict cluster pa-
rameters in real time, allowing rapid adaptation to changes in the cluster
structure of multi-agent systems.

4.0.3 Experiments on Full-Waveform Inversion and
Compression of Ultrasonic Tomography Data

We present experimental results for the method outlined in Section 3.0.2.
The software implementation was carried out in Python, using the PyTorch
library [62]. The reconstruction model was trained for 50 epochs with a batch
size of 32. The training dataset consisted of ultrasonic tomography data for
four different objects. Experiments were conducted with a compression ratio
of 0.2.

Figure 4.8 shows a comparison of ultrasonic data after reconstruction.
Visually, all signal features were preserved.

Figure 4.9 compares images obtained through full-waveform inversion
across the entire dataset for a single slice. Visually, all essential features, in-
cluding fine details, were preserved. The Structural Similarity (SSIM) metric
value was approximately 0.88. This value may be lower than optimal, as the
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Figure 4.8: Comparison of original data obtained for a single source. Left:
reconstructed data after compression. Right: original data

final images differ in intensity in some areas, potentially because the orig-
inal image was reconstructed from noisy data (vertical stripes), while the
reconstructed one was based on noise-free data.

Figure 4.9: Comparison of images reconstructed from original data for one
object slice. Left: image from reconstructed data. Right: from original data
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Image Reconstruction from Compressed Ultrasonic Data

Further results are presented for direct image reconstruction from com-
pressed ultrasonic data, without preliminary reconstruction of the original
data, using the method described in Section 3.0.3. The following metrics
were used to evaluate reconstruction quality:

• PSNR (Peak Signal-to-Noise Ratio) — measures the ratio between
the maximum signal power and noise level, expressed in decibels.

• SSIM (Structural Similarity Index) — assesses structural similar-
ity between the reconstructed and original images. Unlike PSNR and
MSE, SSIM considers such image aspects as brightness, contrast, and
structural changes. This metric better reflects human visual perception
of image quality by focusing on structural resemblance.

• MSE (Mean Squared Error) — measures the mean squared devia-
tion between pixels of two images (sound velocities).

Compression Ratio PSNR (dB) ↑ SSIM ↑ MSE ↓
Uncompressed 54.8 0.866 8.12
2x 54.9 0.862 8.04
5x 53.9 0.835 10.03
10x 53.4 0.810 11.47
15x 52.4 0.772 14.37
20x 52.5 0.769 14.12

Table 4.3: Comparison of the quality of reconstructed images from com-
pressed data with varying compression ratios, relative to the original image.

As seen in Table 4.3, reconstruction quality declines only slightly as the
compression ratio increases, remaining high for compression ratios of 2-10
times. The object images in Figure 4.10 show that all features of the original
image are preserved. Notably, artifacts present in the original full-waveform
inversion method (concentric circles) are intensified with compression, but all
image details are retained (including fine features). Artifact intensification
is minor, as they do not obscure key image elements and are predictable and
regular distortions. The primary metric reduction in the table can also be
explained by the increased presence of concentric circles rather than by the
loss of important details.
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Figure 4.10: Comparison of images reconstructed by full-waveform inversion
from compressed data. Top left: original image used to obtain simulated
data. Top right: image reconstructed by full-waveform inversion from un-
compressed data. Bottom: images reconstructed from data compressed 5
and 20 times (without preliminary recovery)

Conclusions

Thus, the potential for using full-waveform inversion to reconstruct im-
ages from compressed ultrasonic data without preliminary recovery, trans-
mission, and storage of data in the original volume has been demonstrated.
This is especially important for ultrasonic tomographs, as it enables signif-
icant reduction in the amount of transmitted and stored data, allowing for
an increase in the number of sources and sensors without requiring higher
data transmission bandwidth and without substantial computational cost in-
crease. Additionally, the method can be further adapted for use in learned
image reconstruction methods, such as [44, 48, 77]. In this case, it could sig-
nificantly accelerate the training and execution of such image reconstruction
models.
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4.0.4 The ℓ1 Control Problem for Discrete
Non-Minimum Phase Systems with Unknown
Bounded Disturbances

In control tasks for systems with unknown but bounded disturbances, reg-
ularization of parameters is often necessary to stabilize the system, similarly
to ℓ1-regularization methods in compressed sensing. This section examines
the problem of synthesizing a sparse controller for a discrete dynamic non-
minimum phase system with unknown but bounded disturbances, based on
the method presented in [30].

Consider a discrete dynamic system of the form:

A(q−1)yt = B(q−1)xt + υt,

where yt is the system’s output signal, xt is the input signal (control action),
and υt is a disturbance bounded in norm by |υ|∞ ≤ Cυ, with shift operator
q−1 such that q−1yt = yt−1. The polynomials A(q−1) and B(q−1) define the
system dynamics.

The stabilizing controller is given by:

α(q−1)ut = β(q−1)yt,

where α(q−1) and β(q−1) are polynomials in the shift operator q−1. The goal
is to determine coefficients α and β that minimize the maximum deviation
of the output signal in the worst-case disturbance scenario. This deviation
is characterized by the following control performance metric:

J(α(q−1), β(q−1), Cυ) = inf
α(q−1),β(q−1)

sup
∥υ∥∞≤Cυ

lim
t→∞

|yt − yt|,

where yt represents the desired system behavior.

Next, we present a theorem from [30], forming the basis of the fractional
delay method.

T h e o r e m 3. Let the polynomial B(q−1) have m unstable zeros
λ1, . . . , λm, and contain no unit roots. Then, the minimum value of the
control performance metric J(α(q−1), β(q−1), Cυ), corresponding to the min-
imization of the output signal deviation under worst-case disturbances, is
estimated as follows:
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min
X∈Rm

+

Cυ

m+r∑
j=1

|Fj(X)| ≤ J(α(q−1), β(q−1), Cυ),

where F (X) = W−1(X)G, and the matrix W (X) and vector G depend on
system parameters and unstable zeros λ1, . . . , λm. Components of matrix
W (X) depend on the powers x1, x2, . . . , xm, which represent delay coeffi-
cients for the unstable zeros. The problem reduces to minimizing the sum
over X = (x1, x2, . . . , xm), where xi may take both integer and fractional
values.

If the minimum value is achieved at point X0 with integer components,
the polynomials α(q−1) and β(q−1) can be derived as in [30]:

α(q−1) =
F (q−1)B(q−1)

q−r
∏m

j=1(q
−1 − λj)

,

β(q−1) =
(A(q−1)F (q−1)− 1)

q−r
∏m

j=1(q
−1 − λj)

,

where

F (q−1) =
r−1∑
j=0

Fj(X0)q
−j +

m+r−1∑
j=r

Fj(X0)q
−
∑i−r+1

k=1 xk.

In cases where X0 includes fractional values, the fractional delay method
can be applied [30]. Here, fractional delays xi are divided into integer and
fractional parts:

xi = x̃i + di,

where x̃i = floor(xi) is the integer part, and di = xi − x̃i is the fractional
part. Fractional delay filters, such as:

D̂(q−1) = (1− d) + dq−1,

are used to implement fractional delays, where d represents the fractional
delay. In this case, fractional delays can be approximated as follows:

q−xi ≈ q−x̃iD̂(q−1),
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allowing fractional delays to be incorporated into the calculation of coeffi-
cients α(q−1) and β(q−1).

Below, we present results of regulator synthesis for a non-minimum phase
system described by the following equation:

yt − 1.91yt−1 + 5.2yt−2 = λ1λ2ut−1 − (λ1 + λ2)ut−2 + ut−3 + υt,

where λ1 = 0.5, λ2 = 0.7.

We then perform a comparative analysis of suboptimality levels for two
controller design methods: rounding and fractional delay.

1. Calculate matrix A(X) and vector B:

A (X) =

∥∥∥∥∥∥
1 0 0
1 0.5x1 0.5x1+x2

1 0.7x1 0.7x1+x2

∥∥∥∥∥∥ , B =

 1
0.743
0.452


2. Find F (X) = A−1(X)B.

3. Calculate the functional minimum:

Jmin(x1, x2) = 1 + |f1(x1, x2)|+ |f2(x1, x2)| .

4. The minimum value Jmin = 2.224 is achieved at Xopt = (2.255, 2.409).

5. Determine polynomial α coefficients:

1 + α1λ
⌊xopt

1 ⌉
1 + α2λ

⌊xopt
1 +xopt

2 ⌉
1 = a(λ1)

1 + α1λ
⌊xopt

1 ⌉
2 + α2λ

⌊xopt
1 +xopt

2 ⌉
2 = a(λ2)

,

where ⌊x⌉ denotes rounding to the nearest integer. We obtain α1 ≈
0.754 and α2 ≈ 5.006.

6. The suboptimality (error) level is calculated as:

1 + |α1|+ |α2| − Jmin = 2.536.

Next, we examine the fractional delay method.
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The fractional delays are extracted as follows:

d1 = 0.745 + 0.255q−1, d2 = 0.336 + 0.664q−1.

The polynomial α = (α11 + α12, α21 + α22) coefficients are found via:

α(q−1) =
F (q−1)B(q−1)

q−r
∏m

j=1(q
−1 − λj)

,

where α11 = −0.855, α21 = −0.049 are integer part coefficients, and α12 =
−0.293, α22 = −0.098 are fractional part coefficients. The suboptimality
level in this case is calculated as:

1 + |α11|+ |α12|+ |α21|+ |α22| − Jmin = 0.071.

Conclusions

The synthesis method for a suboptimal ℓ1 controller with fractional de-
lays for discrete non-minimum phase systems with unknown but bounded
disturbances significantly improves control accuracy compared to methods
based on delay rounding. The use of fractional delays reduces suboptimality
and enhances control quality.

The connection of this approach with ℓ1-regularization methods, tradi-
tionally used in compressed sensing, lies in minimizing the ℓ1 norm to obtain
sparse solutions. In compressed sensing, ℓ1-regularization promotes sparsity
in signals recovered from a limited number of measurements. Similarly, in
the control problem, ℓ1-regularization is applied to find an optimal controller
with sparse coefficients, minimizing the deviation of the system output from
the desired behavior in the presence of unknown but bounded disturbances.
Sparsity in this context reduces controller complexity and enhances robust-
ness, ensuring minimal worst-case error levels.

4.0.5 A Voice Cloning System with Noise-Robust
Speech Synthesis Based on Latent Space
Regularization

This section presents a noise reduction method within the compressed la-
tent representation of audio, utilizing self-supervised learning via the DINO
(Distillation with No Labels) approach [19]. Unlike traditional noise re-
duction methods applied in the original audio signal space, such as those
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in [23, 27, 57], the proposed approach performs denoising in a compressed
space, significantly reducing computational costs, handling noise more effec-
tively, and preserving key voice characteristics.

The noise reduction task in the context of voice cloning from noisy audio,
where the goal is to copy the speaker’s voice to synthesize speech based
on a given text, can be formulated as follows. Let y denote the observed
noisy audio recording of the speaker (reference), x be the desired clean voice
representation, and e the noise present in the reference. The noisy reference
audio can then be described by the equation:

y = F (x) + ϵ, (4.1)

where x represents the voice characteristics, such as timbre, pitch, and speak-
ing style, to be extracted for voice cloning, and ϵ is arbitrary noise.

Traditional methods assume that the operator F is identical (F = I),
with the task being to remove the noise e from the audio signal y, after which
the preprocessed signal is passed to the encoder to obtain a compressed voice
representation. These methods aim to estimate x from y using pre-trained
models trained on explicitly labeled noisy data [23,27,57]. Such methods are
computationally intensive, as the reference audio must be processed in the
original space. Moreover, in real-world conditions, such as those involving
various types of background noise, the noise distribution may be unknown,
and the noise itself may be complex and change depending on the recording
environment. This makes traditional denoising methods, which process au-
dio in the original space, less effective and risks the loss of important voice
characteristics required for accurate cloning.

Instead of noise removal in the original audio space, the work in [25] pro-
poses a method for denoising in the compressed space. The Speaker Encoder
model, based on the Context Aware Masking (CAM)++ architecture [16], is
used to obtain latent representations. Regularization is implemented through
joint training of the encoder with a speech synthesis model (a decoder trained
via a generative adversarial approach), with additional regularization of the
compressed voice representation based on the DINO approach [19]. DINO
enables model training without labeled data, encouraging the generation of
embeddings with certain properties that facilitate noise removal and extrac-
tion of relevant information necessary for effectively capturing the voice style
and identity.

The DINO approach uses a teacher-student method, where the student
is trained to predict the teacher’s outputs for different versions of the same
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input (with two randomly chosen and augmented audio segments as input).
The DINO loss function is defined as the cross-entropy between the teacher
output distribution PT and the student output distribution PS:

LDINO = −
K∑
i=1

σ

(
PT (xa1)i − C

τ

)
log σ

(
PS(xa2)i

τ

)
, (4.2)

where σ is the softmax function, C is a vector of means calculated as the
exponentially weighted average of the previous teacher outputs, and τ is a
temperature constant for stabilizing model training. Here, xa1 and xa2 are
two different segments of the input signal x, augmented with random noise.

With DINO self-supervised learning, the speaker encoder model is trained
to generate compressed representations that are invariant to noise and other
non-essential variations while preserving key voice and speech style char-
acteristics. This allows for efficient noise removal in the latent represen-
tation, enabling the decoder to reproduce a clean voice. Similar to how
ℓ1-regularization in compressed sensing promotes sparse solutions, DINO en-
courages the model to create embeddings with specific useful properties based
on unlabeled data, facilitating noise reduction while retaining critical infor-
mation.

System Architecture

The implementation was carried out in Python using the PyTorch ma-
chine learning framework [62].

The implemented system consists of four modules (see Fig. 4.11):
S2U (Speech-to-Unit): A pre-trained module based on the HuBERT

model [32] that converts input speech into a sequence of discrete representa-
tions.

T2U (Text-to-Unit): A module based on the mBART model [55],
which converts text into the same representation space as the S2U module,
learning to predict HuBERT outputs from text.

Speaker Encoder: A model based on the CAM++ architecture, trained
jointly with the speech synthesis model using DINO regularization to pro-
duce voice representations in a compressed space that are noise-robust and
maintain speech style.

U2S (Unit-to-Speech): A speech synthesis model based on the VITS
architecture [47], which takes discrete representations from the S2U module
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Training:

S2U Random
crop & augment

Random
crop & augment

VITS
EMA

CAM++

// Stop grad

Center

CAM++
Teacher

Reconstruction loss
KL loss

Duration loss
Adversarial loss DINO loss

Inference:

Speech
Text T2U

CAM++
VITS Output

speech

S2U T2U CAM++
HuBERT mBART Speaker encoder

Pretrained models:

Speech

Final loss

Figure 4.11: Architecture of the proposed DINO-VITS method.

(during training) or the T2U module (to obtain an encoded text representa-
tion during inference) and the compressed voice representation to synthesize
speech with a voice similar to that in the reference audio.

Experiments and Results

Experiments were conducted to evaluate synthesis quality and voice simi-
larity retention in the presence of noise in the reference audio. The proposed
DINO-VITS method showed significant improvements compared to baseline
methods such as YourTTS [75] and BYOL-A [66].

To empirically verify the hypothesis that the proposed approach enhances
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the ability to encode style in reference embeddings, an additional emotion
recognition experiment was performed based on the compressed voice rep-
resentation. Results showed a 9% increase in emotion recognition accuracy,
indicating that joint training with DINO regularization preserves speech style
information in the latent space more effectively than baseline methods.

Subjective evaluation results of naturalness and voice similarity are pre-
sented in Table 4.4.

Table 4.4: Comparison of the proposed DINO-VITS system with YourTTS,
DEMUCS denoiser (preliminary denoising in the original space) + YourTTS,
and BYOL-A for clean and noisy reference audio. Metrics are scored from
1 to 5. For each model, 210 audio samples were used, each evaluated by 10
annotators from the Yandex Toloka crowdsourcing platform.

Speech Naturalness Speech Similarity
Clean Data Noisy Data Clean Data Noisy Data

Original Data 4.68 ± 0.03 - 3.94 ± 0.07 -
Proposed Method 4.00 ± 0.05 3.55 ± 0.10 3.85 ± 0.08 3.52 ± 0.08
YourTTS 3.96 ± 0.05 3.11 ± 0.11 3.33 ± 0.08 3.20 ± 0.08
YourTTS+Denoiser - 3.28 ± 0.10 - 3.35 ± 0.08
BYOL-A - 1.85 ± 0.09 - 1.89 ± 0.07

As shown in the table, the implemented system outperforms baseline
methods on all metrics, particularly in noisy conditions, even compared to
the YourTTS+Denoiser variant based on preliminary noise removal in the
original space (audio spectrograms).

4.0.6 Discussion

Chapter Four presents experimental results confirming the effectiveness
of the proposed methods for solving inverse modeling problems in compressed
space. The experiments validated the practical significance of the proposed
methods, demonstrating that using compressed data representations allows
for a substantial reduction in data volume, avoids the need for preliminary
recovery in task solutions, enhances noise robustness, and maintains high
solution accuracy.
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Conclusion

The primary scientific results obtained from the completion of the re-
search objectives are as follows:

• An adaptation algorithm for sparse geological models to historical ob-
served data was developed based on the stochastic optimization method
SPSA. The method operates effectively under nearly arbitrary bounded
disturbances and is applicable to non-Gaussian geological models (Chap-
ter 2).

• Based on the theory of compressed sensing, methods were developed
for efficient data acquisition and reconstruction using deep learning for
ultrasonic computed tomography, full-waveform inversion in the com-
pressed space of ultrasonic data, and a decentralized clustering method
in multi-agent systems with direct cluster prediction from compressed
observations, employing a local voting protocol for the exchange of com-
pressed information. These methods significantly reduce the volume of
data collected, stored, processed, and transmitted while maintaining
high accuracy for the respective tasks (Chapter 3).

• A noise-robust speech synthesis method was developed based on regu-
larization in the compressed voice representation space. Experiments
demonstrated high resilience to various types of noise and preserva-
tion of essential voice characteristics (Section 4.0.5). Additionally, the
effectiveness of the ℓ1 control method for synthesizing sparse controls
in discrete non-minimum phase systems under unknown but bounded
disturbances was investigated (Section 4.0.4).

• The proposed methods were implemented in software, and experiments
were conducted to confirm their effectiveness (Chapter 4).
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