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Introduction

Relevance of the Research Topic

The mathematical pendulum and its varieties have been the key models of
analytical mechanics for more than four centuries, starting from the youthful
experimental discoveries and subsequent fundamental works of the outstanding
scientist G. Galilei, as well as many of his followers. They are not only of theoretical
interest, but also of great practical importance for applications. Among the many
pendulum systems, much attention is drawn to the double pendulum, which is two
pivotally connected mathematical or physical pendulums, as well as its numerous
modifications. They are extremely popular objects of study not only in the field
of the theory of oscillations of systems with several degrees of freedom, but also
in a number of related disciplines.

An extensive layer of both domestic and foreign publications is devoted to the
study of the dynamic behavior of such systems under a wide variety of conditions,
which number is continuously increasing every year. Such serious attention to the
double pendulum is connected, first of all, with its practical applications. The
rise of interest in biomechanics, which began in the middle of the last century,
accompanied by the active design of manipulators and other anthropomorphic
devices, received significant development and aroused interest in the creation of
multi-link pendulum structures equipped with power drives and control circuits, as
well as in the development of various kinds of androids intended to replace humans
working in hazardous conditions. Of course, the main interest here is precisely the
double pendulum as the simplest multi-link pendulum, on the example of which
it is possible to qualitatively and quantitatively describe the dynamics of various
robotic structures, and, in addition, to identify a number of new provisions in
theoretical terms and evaluate the possibility of their application in engineering.



5

Particular attention along this path is attracted by spatial two-link pendulums
with cylindrical joints, whose axes are not collinear to each other. In this case,
the configurations of the system will have a more complex form than for a flat
double pendulum, and this circumstance also finds some application in practice.
However, such systems are far from being studied sufficiently in comparison with
flat versions of two-link structures. First of all, in their analysis questions arise
about the study of their small and large oscillations, which are of a periodic
character and suitable for practical use, as well as about the accelerating and
braking modes of their movement, which have effective properties and are again
dictated by the needs of practice. This leads to the need for a thorough study
of such important problems as the construction of nonlinear oscillation modes,
the formation of rational control actions, the search for optimal parameters for
passive and active oscillations damping, as well as a whole range of related tasks.

Summarizing all the above, it can be argued that the study of the movements of
spatial double pendulum under various conditions of its functioning is a actual
task that deserves the most serious attention, which was the reason for
writing this dissertation.

Research Methodology

The work uses the methods of analytical mechanics, the theory of mechanical
oscillations, the theory of control of mechanical systems, optimization of mechanical
systems, as well as approximate asymptotic methods of nonlinear mechanics.
In addition, the numerical integration of the motion equations in the software
environment MATLAB is carried out in the work, and for this purpose the
universal solver ode45 is used, which designed for systems of ordinary differential
equations and based on the implementation of the numerical Runge-Kutta method
4-5 order of accuracy.

Aim and Tasks of the Work

The aim of this dissertation is to study the dynamic behavior of spatial double
pendulum with identical parameters of its loads and links, whose joint axes are
not collinear to each other. It consists in studying conservative, dissipative and
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controllable models of this system in a linear and nonlinear formulations, as well
as in solving the problem of finding the optimal parameters of passive and active
damping of its oscillations.

In the course of this work, the following tasks were set and considered in
detail:

1) To build a mathematical model of oscillations of spatial double pendulum
and to consider its particular variants of a flat and orthogonal double pendulum.
To investigate the frequencies and modes of its small vibrations depending on
the angle between the joint axes. To establish qualitatively and quantitatively
the influence of dissipative forces of viscous friction in articulated joints on its
dynamic behavior.

2) To investigate the question of nonlinear oscillation modes of spatial double
pendulum and its particular variants using asymptotic methods of nonlinear
mechanics. To give their visual graphical interpretation. To compare the analytical
expressions with the results obtained by numerical integration of the motion
equations.

3) To form various options for control actions that will allow overclocking
spatial double pendulum on each of its oscillation modes separately from small to
sufficiently large deviations. To identify the gradual drift of the oscillation mode
and demonstrate it graphically based on numerical results. To take into account
the influence of dissipative effects and determine the possible motion modes of
the system.

4) To determine the best parameters of passive and active damping of spatial
double pendulum separately according to various criteria characterizing the effici-
ency of the damping processes of the system motions. To consider the joint
accounting of two variants of oscillation suppression and determine the optimal
parameters of active damping for given parameters of passive damping. To compare
all the results.

Scientific Novelty

The dissertation contains a number of new results that clarify the behavior
of spatial double pendulum in various modes of its motion. In the presented
study, for the first time, the most detailed analytical solution was constructed
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for the problem of small oscillations of spatial double pendulum in the absence
and presence of viscous friction in the joints, an analytical and numerical study of
its nonlinear oscillation modes of was carried out, its autoresonant overclocking
modes were studied under the action of collinear control with a constant and
variable gain coefficient, as well as a joint accounting of dissipative and control
actions was carried out and the optimal parameters of passive and active damping
were determined based on criteria characterizing the efficiency of the attenuation
processes of system motions.

Theoretical and Practical Significance of the Work

The study of the movements of spatial double pendulum is of considerable
theoretical interest and makes a certain contribution to one of the most important
for applications and rapidly developing branches of mechanics – the dynamics of
pendulum structures. The considered mathematical models and the given analyti-
cal and numerical solutions provide the basis for studying the movement character
of more complex pendulums with several degrees of freedom, as well as many
related issues. The obtained results can find some practical application in the field
of robotics and biomechanics, namely, in the development, design and analysis
of the dynamic behavior of various devices: two-link manipulators, elements of
complex multi-link systems, numerous androids and other mobile robots. Moreover,
the problems presented in the work and their detailed solutions are also interesting
as illustrative examples of applied mechanics of pendulum systems in pedagogical
and engineering practice.

Reliability of Results

The reliability of the results obtained in the work is ensured by using existing
exact and approximate mathematical methods for studying linear and nonlinear
oscillations of mechanical systems in the absence and presence of dissipative effects
and control actions, as well as by comparing analytical expressions with the results
found by numerically integrating the motion equations. Besides, for particular
variants of a flat and orthogonal double pendulum, the obtained expressions are
compared with previously known formulas from the literature.
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Structure and Scope of the Work

The dissertation consists of an introduction, 5 chapters and a conclusion. The
volume of the dissertation is 168 pages with 67 figures. The list of references
contains 156 titles. The Introduction presents the relevance of the research
topic and formulates the aim and tasks of the work. Chapter 1 is devoted to
the research history of the double pendulum, as well as a discussion of current
directions in its analysis. In Chapter 2, the motion equations of spatial double
pendulum are derived, its particular variants of a flat and orthogonal double
pendulum are considered, and its small oscillations are studied, including in the
presence of viscous friction in the articulated joints. In Chapter 3, nonlinear
oscillation modes of spatial double pendulum and its particular variants are const-
ructed and studied in detail with the help of asymptotic methods, and they are
compared with the results of numerical integration. Chapter 4 is devoted to
the analytical and numerical study of the controlled motions of spatial double
pendulum and its particular variants under the action of a collinear control, which
allows to overclock the system on each of its oscillation modes separately with a
smooth transition from a linear zone to a nonlinear one and can have both constant
and and a variable gain factor, and also the possibility of viscous friction is taken
into account and the motion modes of the system under the influence of dissipative
and control actions are studied. In Chapter 5, the issues of optimal selection
of parameters for passive and active damping of oscillations of spatial double
pendulum are solving separately and with their cooperative action according to
various optimization criteria that characterize the efficiency of damping processes
of its movements, and a comparison of the results is carried out. The Conclusion
summarizes the results of the study and draws the main findings on the work.

Author’s Publications on the Dissertation Topic

On the topic of the dissertation, the author published 17 scientific papers in
journals included in the list of peer-reviewed scientific journals recommended by
the Higher Attestation Commission; and in publications indexed in the RSCI
database and international citation databases Web of Science and Scopus:
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1) Smirnov A. S., Smolnikov B. A. Controlling the sway process of the
swing. Week of Science SPbPU. Materials of the scientific forum with international
participation. Institute of Applied Mathematics and Mechanics. 2016. Pp. 106–
109. (In Russian)

2) Smirnov A. S., Smolnikov B. A. Optimal damping of free oscillations in
linear mechanical systems. Mashinostroenie i inzhenernoe obrazovanie. 2017. No.
3 (52). Pp. 8–15. (In Russian)

3) Smirnov A. S., Smolnikov B. A. Resonance oscillations control of the non-
linear mechanical systems based on the principles of biodynamics. Mashinostroenie
i inzhenernoe obrazovanie. 2017. No. 4 (53). Pp. 11–19. (In Russian)

4) Smirnov A. S., Smolnikov B. A. Resonance oscillations control in the
nonlinear mechanical systems. Transactions of seminar “Computer methods in
continuum mechanics” 2016-2017. St. Petersburg University publishing house.
2018. Pp. 23–39. (In Russian).

5) Leontev V. A., Smirnov A. S., Smolnikov B. A. Optimal damping of two-
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6) Leontev V. A., Smirnov A. S., Smolnikov B. A. Collinear control of
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No. 1. Pp. 65–70. (In Russian)

7) Smirnov A. S., Smolnikov B. A. Double pendulum research history.
History of Science and Engineering. 2020. No. 12. Pp. 3–12. (In Russian)

8) Smirnov A. S., Smolnikov B. A. Oscillations of Double Mathematical
Pendulum with Noncollinear Joints. Advances in Mechanical Engineering. Selected
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St. Petersburg, Russia, June 2020. 2021. Pp. 185–193.

9) Smirnov A. S., Smolnikov B. A. Nonlinear oscillation modes of double
pendulum. IOP Conference Series: Materials Science and Engineering. International
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Engineering” (ToPME 2020) 2nd–4th December 2020, Moscow, Russia. 2021.
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Provisions to be Defended

1) The design scheme of a spatial double mathematical pendulum with identical
parameters of loads and links, whose joint axes are not collinear to each other, is
considered. Nonlinear equations of motion of the system are derived and a linear
model of its small oscillations is studied. The forces of viscous friction in the joints
were taken into account and their influence on the character of the damping of
the system’s movements was established.

2) Based on asymptotic methods of nonlinear mechanics, nonlinear oscillation
modes of a spatial double pendulum in the first approximation and its particular
variants of a flat and orthogonal double pendulum in the first and second approxi-
mations were constructed and analyzed. The obtained analytical solutions are
compared with the results of numerical integration of the motion equations.

3) The controlled motion of a spatial double pendulum and its particular
variants under the action of moments in joints formed according to the principle of
collinear control with a constant gain is considered. A modification of the collinear
law is proposed, which contains a variable gain associated with the current energy
of the system. Within the framework of a linear controlled model with a constant
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gain, consideration of viscous friction is considered and a classification of possible
modes of motion of such a system is given.

4) The issues of optimal damping of oscillations of a spatial double pendulum
under the influence of dissipative and control influences were studied, and two
optimization criteria were adopted: maximizing the degree of stability of the
system and minimizing the integral energy-time indicator. A comparison of the
optimal damping parameters found using the specified criteria is given.
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1. Overview of Double
Pendulum Research

1.1. Historical Studies of Double Pendulum

The double pendulum problem has a long and rich history. Therefore, it is of
interest to turn first to the historical studies of the double pendulum [64]. The
history of the double pendulum dates back to the first half of the 18th century, and
it is associated with the names of prominent scientists of that time – A. Clairaut,
D. Bernoulli and L. Euler.

A double pendulum was first described in 1735 by A. Clairaut [25]. He gave
a lecture at the Paris Academy of Sciences, after which he published an article
“Solution of some dynamics problems” [99], published in 1736. Clairaut’s creation
was prompted by discussions with A. Fontaine, who published an article [106] in
1734, which dealt with the definition of a curve described by the vertex of an angle
whose sides slide along some given curve. In Clairaut’s preface to his work [99]
there is the phrase “The discussion about the tractrix between Mr. Fontaine and
myself, which lasted for several assemblies, prompted me to the research that
I propose” [87]. Clairaut’s work was devoted to solving seven problems on the
motion of a bunch of two points in a horizontal or vertical plane. It is assumed
that the trajectory of one of the points or the center of gravity of the system
is considered to be given (a straight line, a circle, or an arbitrary plane curve),
and the problem is to determine the trajectory of another point or both points
when the magnitudes and directions of their initial velocities are given. At the
same time, Clairaut used both traditional geometric techniques and methods of
differential calculus to solve these problems. Referring to D. Bernoulli, Clairaut
based the solution of his problems on the principle of conservation of living forces,
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which at that time was still questioned and subsequently canonized by Lagrange
under the name “theorem of the change in kinetic energy”. It should be emphasized
that Clairaut’s work was historically the first work of its kind. An important
difference between Clairaut’s work and the works of his predecessors is that he
studied the movement of not just two interconnected points, but the behavior
of one point, on which given geometric connections [87] are superimposed. This
approach was important for creating the foundations of the non-free motion
mechanics of a point, a system of points and a rigid body, which were subsequently
laid down in the works of J. d’Alembert.

The next contribution to the analysis of the double pendulum was made
by D. Bernoulli, who published in 1738 an article “Theorem on oscillations of
bodies suspended vertically on an elastic thread and on a chain” [92]. A complete
theory of small swings of a double gravitational pendulum is given in it for the
first time [25]: its oscillation modes are determined for identical mathematical
pendulums, and the general case of different masses of loads and different lengths
of links is considered. Subsequently, Bernoulli published a number of other articles
on this topic, the most significant of which was the article of 1774 “Special
physical-mechanical reasoning on mutual compound motions. Easily observable
studies of the double pendulum in support of the principle of coexistence of simple
oscillations” [91]. The discussion of the possibility of the appearance of internal
resonances in the system, when the oscillation frequencies are related as integers,
is of interest in this article, and as a result the conditions on the system parameters
under which they are realized are determined. It is shown that if the lengths of
both pendulums are equal and the masses of the first and second loads are related
as 16 : 9, then the resonance 1 : 2 will take place, and if these masses are related
as 9 : 16, then the resonance 1 : 3 will be implemented.

Finally, L. Euler, who published in 1741 an article “On oscillations of a flexible
wire, on which an arbitrary number of small loads is suspended” [105], closes the
top three historical studies. The author analyzes in it not only the problem of
a double pendulum (a drawing from this work is shown in Fig. 1.1), for which
expressions for the oscillation modes are given, but also generalizes this problem
to the case of any number of loads, thereby coming to calculation scheme of a
multilink mathematical pendulum.
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Fig. 1.1. Drawing
from Euler’s paper

Fig. 1.2. Cologne bell and its tongue: real construction and
its design scheme from Veltmann’s article

The problem of the double pendulum first received serious practical application,
which was associated with the solution of the problem of the “silent” Cologne
bell, only in the second half of the 19th century. In 1875, an interesting case
was observed on the bell tower of the Cologne Cathedral (German Empire): a bell
hollow inside (Kaiserglocke – an imperial bell) and a tongue jointed to it oscillated
as one whole (Fig. 1.2). This amazing phenomenon was strictly explained by W.
Veltmann in the article “On the movement of the bell” [151], where he interpreted
the system as a double pendulum: the bell played the role of the first pendulum,
and its tongue – the second one. The design scheme of the system in the deflected
position from the mentioned work is also presented in Fig. 1.2. To solve this
problem, the Lagrange equations of the second kind were used and the question
of when two differential motion equations admit a particular solution, in which
both the bell and its tongue deviate by the same angle all the time, was considered.
As a result, a condition for the system parameters was obtained, when the tongue
does not move relative to the bell. With accuracy sufficient for practice, this
condition can be given a simple physical interpretation: the bell moves as a single
body and therefore cannot sound if the bell’s swing center at rest coincides with
the swing center of its tongue. So, the reduced length of the Cologne Cathedral
bell is 328.2 cm, the reduced length of its tongue is 262.9 cm, and the distance
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between the suspension points of the tongue and the bell is 66.7 cm. Therefore,
the tongue swing center was 262.9+66.7=329.6 cm away from the bell suspension
axis, i.e. it almost coincided with the bell swing center [25]. This explains the
almost complete absence of relative movements of the tongue, which made such
small oscillations in relation to the bell that it could not strike, although the
tongue was long enough to reach the walls of the bell [121]. The bell began to ring
only after the length of its tongue was increased. It should be emphasized that in
deriving the mentioned condition, the global nonlinear model of the system was
used, and not the linearized one. Finally, the article [151] has a table that presents
data on all the bells of the Cologne Cathedral and demonstrates that all bells,
except Kaiserglocke, did not experience sounding problems, since their parameters
deviated too much from the obtained ratio. This problem is very instructive not
only for bell designers, but also for a wide range of engineers, and therefore it was
included in a number of canonical books on mechanics – both foreign [115, 117]
and domestic [26].

The next important application of the double pendulum was discovered in the
first half of the 20th century, when in 1923 it was proposed by V. P. Vetchinkin
and N. G. Chentsov for the experimental determination of the moments of inertia
of solids using the swing method in the work “A flat pendulum with two degrees
of freedom and the determination of the center of gravity height and the moment
of inertia of a rigid body using it” [15]. As a result, a corresponding theory was
developed, which was also considered by L. G. Loitsyansky and A. I. Lurie [43].
This method has received wide practical application for determining the moments
of inertia of aircraft, and a special suspension PE1 was designed and built in
TsAGI, which makes it possible to swing an aircraft on a bifilar suspension like
a double pendulum [25]. Subsequently, this design was improved and a PE2
suspension was built. These experiments were described in detail by Yu. A.
Pobedonostsev in the articles [57, 58]. It should be noted that this method was
also used abroad [112]. The work [25] details the way to derive the formula for the
moment of inertia. To determine the moment of inertia of the body about the main
central axis, it is suspended on two rods (or two bands) of equal length, located
symmetrically about the center of gravity (or its intended location). It is also
necessary to keep in mind that when the system is in equilibrium, the horizontal
segments connecting the upper and lower ends of the rods must be parallel to the
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given axis (Fig. 1.3). To find the moment of inertia, we need to determine the
periods of both main oscillations by selecting the initial conditions, achieving the
oscillations of the aircraft only on one of the modes of its oscillations.

Fig. 1.3. Suspension of the aircraft (suspension PE1 TsAGI)

As a result, the scheme of a double pendulum and the calculation of its
oscillations in various formulations entered both foreign [95, 119, 147], as well
as numerous domestic [7, 28, 34, 48, 86] engineering, scientific and educational
literature. The results presented in these works relate to the analysis of small
oscillations of a double mathematical or double physical pendulum within the
framework of a linear model and the determination of the frequencies and modes
of its small oscillations and the consideration of various particular or limiting
cases.

1.2. Main Directions of Modern Research of

Double Pendulum

In the last few decades, there has been a sharp increase in interest in the double
pendulum mechanics and its varieties. As mentioned earlier in the introduction,
this is primarily due to its use in robotics as the simplest model of a two-link
manipulator, which must perform working movements with both small and very
large amplitudes, and as an element of complex multi-link structures, as well as
in problems of biodynamics, since a double pendulum can imitate the limbs of
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living organisms [74,75,77]. In this case, the movements of a double pendulum are
investigated not only analytically or numerically, but as a result of experiments.
Fig. 1.4 shows various designs of a double mathematical and double physical
pendulum, created as demonstration setups and borrowed from the works of [90,
133], as well as from video recordings of experiments that are in open access.

Fig. 1.4. Various double pendulum designs

Let us single out the main directions of modern research on the gravitational
double pendulum, related to the last three decades, and accompany them with
references to relevant articles and books in which new problems of this kind are
encountered. Of course, the division presented below is generally conditional, since
some publications can be attributed to several areas.

1. Analysis of forced oscillations and controlled movements of a double pendu-
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lum under various operation conditions, including the issues of optimal control of
its movement and optimal suppression of its oscillations [3, 8, 36, 83, 88, 120, 123,
155].

2. Dynamics, stabilization and control of an inverted double pendulum and its
modifications [2, 44,55,59,60,94,107,114,134,154].

3. Dynamics of a double pendulum with a vibrating suspension point [13, 19,
56,84,97,116,139].

4. Stability of equilibrium positions, dynamics and motion control of spatial
modifications of a double pendulum [1,50,85,90,124].

5. Numerical and experimental study of various problems of a double pendulum,
computer simulation of a double pendulum in application software packages with
visual visualization of its dynamic behavior [30,33,89,93,98,100,103,104,111,129,
152,156].

6. Analytical study of the movements of a double pendulum with large deviati-
ons [38,39,113,118,128,133,146].

7. Analysis of the chaotic behavior of a double pendulum [49,52,101,122,125,
132,138,145].

Summarizing the above, we can conclude that the double pendulum is a fairly
well-studied object in many respects. As can be seen, a significant number of
publications are devoted to the numerical integration of the motion equations of
a double pendulum, which are preliminarily written in a form convenient for
this purpose (Lagrangian or Hamiltonian), and the subsequent establishment
of various features of its behavior. In this case, the flat variant of the double
pendulum is most often considered, which greatly simplifies all constructions and
reasoning.

1.3. Conclusions on First Chapter

The presented detailed literature review of publications devoted to the mecha-
nics of a double pendulum allows us to identify some areas in which research on
this object can be continued. First of all, of great interest is just the mechanics
of spatial variants of a double pendulum, which movements can have a more
diverse character and will cover a wider variety of configurations than a flat double
pendulum. Nevertheless, it must be emphasized that even for the flat two-link
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pendulum there are still a number of issues that require serious discussion and
thorough research. As for the spatial variants of the double pendulum, one of them
is a double pendulum whose joint axes are not collinear to each other. Naturally,
the range of applicability of these pendulums turns out to be much larger, and
they are widely used in practice, since such non-collinearity is characteristic
of many real manipulator designs. As a result, questions arise in the study of
conservative, dissipative and controllable models of the mentioned systems in
a linear or nonlinear formulation, as well as questions of optimal damping of
their oscillatory motions, which are of serious theoretical and applied importance
and should be solved using a reasonable combination of analytical and numerical
methods. This dissertation is in this direction.
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2. Equations of Motion of
Spatial Double Pendulum and

Analysis of its Small
Oscillations

2.1. Design Scheme of Spatial Double Pendulum

We turn to a study of the design scheme of double pendulum consisting of
two pivotally connected identical mathematical pendulums of length l and with
end loads of mass m [144]. In the future, such an identity will make it possible to
construct analytical solutions to all the posed tasks and conduct their exhaustive
study. We assume that axes of both cylindrical joints are horizontal and form an
angle α between themselves in their main equilibrium position, when both links
lie on the same vertical, and joint angles of their rotation are equal to zero, so that
these axes are not collinear to each other (Fig. 2.1). Without loss of generality,
we can consider this angle to be acute if it is counted appropriately. As result, the
geometry and kinematics of this system are much more complicated than in the
case of a simple flat double pendulum.

The Fig. 2.2 shows the deflected position of the considered double pendulum.
We consider the articulated rotation angles θ1 and θ2 as the generalized coordinates.
For the convenience of further actions, we introduce a rectangular Cartesian
coordinate system xyz with the fixed orthogonal basis ijk connected, so that
in the state of main equilibrium the first link is directed along the unit vector i.
In addition, we introduce a movable orthogonal basis i′j′k′ connected with the
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Fig. 2.2. Deflected position

first link, where unit vector i′ is directed along the axis of this link from the input
(first) joint to the output (second) joint rotated by an angle α relatively to the
input joint.

2.2. Motion Equations of Spatial Double

Pendulum

In order to derive the motion equations of spatial double pendulum we proceed
to the calculation of its kinetic and potential energies. It is clear that energies of
the first load are easily determined and cause no problems, since its speed is
v1 = lθ̇1 and the vertical coordinate is given by expression x1 = l cos θ1. Main
difficulty here is to find the speed and vertical coordinate of the second end load
which makes a complex spatial motion determined by the angles θ1, θ2 and α.
The simplest way to find the velocity of this load is a coordinate method in which
it is necessary to determine the Cartesian coordinates of this load in a fixed basis
and then find the projections of velocity on the corresponding coordinate axes.

With this purpose, we obtain the expression for radius vector r2 of the second
load. For this we first find the vectors l1 and l2 which have the following length and
direction of links in the basis i′j′k′ with simple representations. The expression
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for l1 is obvious, while to determine l2 it is necessary to refer to Fig. 2.3, where
the coordinate system x′y′z′ is represented, to which the basis i′j′k′ corresponds.
As a result, it is easy to obtain that

i′

k′

j′

l2

l

α

θ2

α

y′

x′

z′

Fig. 2.3. To the calculation of the vector l2

l1 = li′, l2 = l(cos θ2i
′ + cosα sin θ2j

′ − sinα sin θ2k
′). (2.2.1)

Summarizing these vectors, we obtain the desired vector r2:

r2 = l1 + l2 = l

(1 + cos θ2)i

′ + cosα sin θ2j
′ − sinα sin θ2k

′ . (2.2.2)

Considering the obvious relations between the unit vectors of the bases i′j′k′ and
ijk

i′ = cos θ1i+ sin θ1j, j′ = − sin θ1i+ cos θ1j, k′ = k, (2.2.3)

we get the expression for r2 in motionless basis ijk:

r2 = l [((1 + cos θ2) cos θ1 − cosα sin θ2 sin θ1) i+

+((1 + cos θ2) sin θ1 + cosα sin θ2 cos θ1) j − sinα sin θ2k

.

(2.2.4)

From this expression, Cartesian coordinates of the second load in the xyz coordinate
system can be found:

x2 = l [(1 + cos θ2) cos θ1 − cosα sin θ2 sin θ1]

y2 = l [(1 + cos θ2) sin θ1 + cosα sin θ2 cos θ1]

z2 = −l sinα sin θ2

. (2.2.5)
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Differentiating these expressions by time, one can find the projection of the
velocity of second load on coordinate axes:

ẋ2 = l

(−(1 + cos θ2) sin θ1 − cosα sin θ2 cos θ1) θ̇1−

− (sin θ2 cos θ1 + cosα cos θ2 sin θ1) θ̇2


ẏ2 = l


((1 + cos θ2) cos θ1 − cosα sin θ2 sin θ1) θ̇1+

+(− sin θ2 sin θ1 + cosα cos θ2 cos θ1) θ̇2


ż2 = −l sinα cos θ2θ̇2

. (2.2.6)

As a result, it is possible to determine the desired velocity of the second load:

v22 = ẋ22 + ẏ22 + ż22 = l2

1 + cos2 α + 2 cos θ2 + sin2 α cos2 θ2


θ̇21 +

+2 cosα(1 + cos θ2)θ̇1θ̇2 + θ̇22


.

(2.2.7)

Therefore, kinetic energy of the system is determined by expression:

T =
1

2
m(v21 + v22) =

1

2
ml2


2 + cos2 α + 2 cos θ2 + sin2 α cos2 θ2


θ̇21+

+2 cosα(1 + cos θ2)θ̇1θ̇2 + θ̇22


=

1

2
θ̇TA(θ)θ̇.

(2.2.8)

Here θ = [θ1, θ2]
T is the column of generalized coordinates, and kinetic energy

matrix A(θ) is determined by expression:

A(θ) = ml2


2 + cos2 α + 2 cos θ2 + sin2 α cos2 θ2 cosα(1 + cos θ2)

cosα(1 + cos θ2) 1


,

(2.2.9)
and it is symmetric: AT = A. Potential energy of this system has the form:

Π = mg(3l − x1 − x2) =

= mgl [3− (2 + cos θ2) cos θ1 + cosα sin θ2 sin θ1] = Π(θ),
(2.2.10)

where an additive constant is added, so that Π = 0 at equilibrium position θ1 = 0,
θ2 = 0. This was done for the convenience of expanding Π into a Taylor series in
the further study of small oscillations.

Substituting expressions (2.2.8) and (2.2.10) into Lagrange equations of the
second kind in matrix form [45]

d

dt

∂T

∂θ̇
− ∂T

∂θ
= −∂Π

∂θ
, (2.2.11)
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we obtain, after series of transformations, the equations of motion of spatial double
pendulum in the well-known matrix form

A(θ)θ̈ +B(θ, θ̇) +C(θ) = 0, (2.2.12)

where the matrix A(θ) has the representation (2.2.9), and the columns B(θ, θ̇)

and C(θ) are determined by expressions:

B(θ, θ̇) = ml2 sin θ2

 −

2

1 + sin2 α cos θ2


θ̇1 + cosαθ̇2


θ̇2

(1 + sin2 α cos θ2)θ̇
2
1

 ,
C(θ) = mgl


(2 + cos θ2) sin θ1 + cosα sin θ2 cos θ1

sin θ2 cos θ1 + cosα cos θ2 sin θ1


.

(2.2.13)

Due to the conservatism of the system under consideration, the energy integral
T +Π = E = const takes place, or explicitly:

E =
1

2
ml2


2 + cos2 α + 2 cos θ2 + sin2 α cos2 θ2


θ̇21 + 2 cosα(1 + cos θ2)θ̇1θ̇2+

+θ̇22


+mgl [3− (2 + cos θ2) cos θ1 + cosα sin θ2 sin θ1] = const .

(2.2.14)
This integral will be needed later to control the correctness of the expressions that
will be obtained in the analysis of nonlinear oscillation modes of spatial double
pendulum.

The nonlinear mathematical model (2.2.12) is the basis for all subsequent
studies in this work. As is known, the Lagrange equations can be solved with
respect to the generalized accelerations, since the matrix A is nonsingular [48].
Therefore, for numerical integration of the nonlinear matrix equation (2.2.12), it
is convenient to represent it in the following form:

θ̈ = −A−1(θ)

B(θ, θ̇) +C(θ)


. (2.2.15)

2.3. Particular Variants of Flat and Orthogonal

Double Pendulum

Let us consider two interesting particular cases to which special attention
should be paid. The results obtained for these cases will later help to control the
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correctness of general formulas where the dependence on angle α will take place.
1. Flat double pendulum. In the case when α = 0, i.e. the double pendulum

is flat (Fig. 2.4), the expressions for the energies (2.2.8) and (2.2.10) take the
simpler form [126]:
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ϕ2

Fig. 2.4. Flat double pendulum

T =
1

2
ml2


(3 + 2 cos θ2) θ̇

2
1 + 2(1 + cos θ2)θ̇1θ̇2 + θ̇22


, (2.3.1)

Π = mgl [3− (2 + cos θ2) cos θ1 + sin θ2 sin θ1] . (2.3.2)

Then the motion equations have the form (2.2.12), where according to (2.2.9) and
(2.2.13)

A(θ) = ml2


3 + 2 cos θ2 1 + cos θ2

1 + cos θ2 1


,

B(θ, θ̇) = ml2 sin θ2


−(2θ̇1 + θ̇2)θ̇2

θ̇21


, C(θ) = mgl


2 sin θ1 + sin (θ1 + θ2)

sin (θ1 + θ2)


.

(2.3.3)
We emphasize that the motion equations of a flat double pendulum will take

an even simpler form if we introduce another pair of generalized coordinates ϕ1

and ϕ2, assuming ϕ1 = θ1 and ϕ2 = θ1+ θ2. These new coordinates represent the
absolute deviation angles of the pendulum links from the vertical (Fig. 2.4). As a
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result, we get from (2.3.1) the expression for the kinetic energy [22]:

T =
1

2
ml2


2ϕ̇2

1 + 2 cos (ϕ2 − ϕ1)ϕ̇1ϕ̇2 + ϕ̇2
2


=

1

2
ϕ̇TA(ϕ)ϕ̇, (2.3.4)

where ϕ = [ϕ1, ϕ2]
T, and the symmetric matrix A(ϕ) now has the form:

A(ϕ) = ml2


2 cos (ϕ2 − ϕ1)

cos (ϕ2 − ϕ1) 1


. (2.3.5)

Potential energy according to (2.3.2) will then be determined by the formula:

Π = mgl (3− 2 cosϕ1 − cosϕ2) . (2.3.6)

Using again the Lagrange equations of the second kind in matrix form

d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
= −∂Π

∂ϕ
, (2.3.7)

we arrive after transformations at a notation similar to (2.2.12), namely:

A(ϕ)ϕ̈+B(ϕ, ϕ̇) +C(ϕ) = 0, (2.3.8)

where the columns B(ϕ, ϕ̇) and C(ϕ) are now defined by expressions:

B(ϕ, ϕ̇) = ml2 sin (ϕ2 − ϕ1)


−ϕ̇2

2

ϕ̇2
1


, C(ϕ) = mgl


2 sinϕ1

sinϕ2


. (2.3.9)

It can be seen that this notation is more preferable in the study of free motions of a
flat double pendulum. This ensures the advantage of the angles ϕ1 and ϕ2 over the
interlink angles θ1 and θ2, in which the motion equations have a more complex
form. We also write the energy integral for this case based on the expressions
(2.3.4) and (2.3.6):

E =
1

2
ml2[2ϕ̇2

1+2ϕ̇1ϕ̇2 cos (ϕ2 − ϕ1)+ ϕ̇
2
2]+mgl (3− 2 cosϕ1 − cosϕ2) = const .

(2.3.10)
For numerical integration of the matrix equation (2.3.8), it should be solved with
respect to the column of generalized accelerations by analogy with (2.2.15):

ϕ̈ = −A−1(ϕ) [B(ϕ, ϕ̇) +C(ϕ)] . (2.3.11)

2. Orthogonal double pendulum. Let us now consider another particular
case, when α = π/2. Such a double pendulum will be further called orthogonal,
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and thus emphasizes that in this version the joint axes of both pendulums are
perpendicular (Fig. 2.5) [50]. In this case, the expressions (2.2.9) and (2.2.13) are
also significantly simplified, becoming:

A(θ) = ml2


2 + 2 cos θ2 + cos2 θ2 0

0 1


, AT = A, (2.3.12)

B(θ, θ̇) = ml2 sin θ2


−2 (1 + cos θ2) θ̇1θ̇2

(1 + cos θ2)θ̇
2
1


, C(θ) = mgl


(2 + cos θ2) sin θ1

sin θ2 cos θ1


.

(2.3.13)

2.4. Determination of Frequencies and Modes of

Small Oscillations of Spatial Double Pendulum

We turn now to the analysis of the linear model of spatial double pendulum.
For this purpose, we linearize the nonlinear motion equation (2.2.12) near the
stable equilibrium θ1 = 0, θ2 = 0 and obtain the traditional linear matrix
equation:

A0θ̈ +C0θ = 0, (2.4.1)
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where the constant symmetric matrices of inertial A0 and quasi-elastic C0 coeffici-
ents have the forms:

A0 = ml2


5 2 cosα

2 cosα 1


, C0 = mgl


3 cosα

cosα 1


. (2.4.2)

The equation (2.4.1) corresponds to the following quadratic approximations of the
kinetic and potential energies:

T =
1

2
ml2


5θ̇21 + 4 cosαθ̇1θ̇2 + θ̇22


=

1

2
θ̇TA0θ̇,

Π =
1

2
mgl


3θ21 + 2 cosαθ1θ2 + θ22


=

1

2
θTC0θ.

(2.4.3)

1. Determination of oscillation frequencies. We will seek the solution of
the matrix equation (2.4.1) in the form of single-frequency harmonic oscillations:

θ = Θ cos (k0t+ ψ0), (2.4.4)

where Θ is the unknown column of oscillation amplitudes of generalized coordina-
tes, k0 is the oscillation frequency, ψ0 is the initial oscillation phase. Substituting
the solution (2.4.4) into the equation (2.4.1), we obtain a matrix algebraic equation
with respect to the column Θ:

(C0 − k20A0)Θ = 0. (2.4.5)

This equation has a nontrivial solution only when determinant of matrix C0−k20A0

turns to zero:
det (C0 − k20A0) = 0. (2.4.6)

Revealing this determinant taking into account representations (2.4.2), we arrive
at the frequency equation, which is biquadratic with respect to the required
frequency k0:

(1 + 4 sin2 α)k40 − 4(1 + sin2 α)
g

l
k20 + (2 + sin2 α)

g2

l2
= 0. (2.4.7)

For the convenience of further actions, we introduce the notation: k =

g/l is the

frequency of small oscillations of an ordinary mathematical pendulum of length l,
p0 = k0/k is the dimensionless oscillation frequency of spatial double pendulum.
Then the equation (2.4.7) becomes:

(1 + 4 sin2 α)p40 − 4(1 + sin2 α)p20 + 2 + sin2 α = 0. (2.4.8)
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Solving this equation with respect to p0, we find the dimensionless frequencies:

ps0 =


2(1 + sin2 α)±


2− sin2 α

1 + 4 sin2 α
, s = 1, 2. (2.4.9)

Natural frequencies ks0 are obtained by multiplying the dimensionless frequencies
by factor k. We emphasize that here and below the lower sign corresponds to
the first frequency (for s = 1), and the upper sign corresponds to the second
frequency (for s = 2). We also note that here, for convenience, the frequencies are
provided with the index “0”, in order not to confuse them with the frequencies
of the dissipative and controlled systems, as well as with the frequencies of the
nonlinear system.

Let us analyze the dependencies of the dimensionless frequencies on the angle
α (2.4.9). It is easy to see that for a flat double pendulum to which the value
α = 0 corresponds, we obtain widely known results [14]:

p10 =


2−

√
2 ≈ 0.7654, p20 =


2 +

√
2 ≈ 1.8478. (2.4.10)

For an orthogonal double pendulum with α = π/2 we have:

p10 =


3

5
≈ 0.7746, p20 = 1. (2.4.11)

It is easy to understand that the first of these frequencies corresponds to the
movement of a two-link pendulum as a single link with two weights of mass m
fixed on it at distances l and 2l from the fixed joint, and the other frequency
corresponds to the second link movement as an ordinary pendulum with the fixed
first link.

It is also possible to obtain approximate dependencies for oscillation frequencies
near the boundary values α = 0 and α = π/2. Expanding (2.4.9) into a Taylor
series in α in the locality of point α = 0 and holding only one correction, we find:

p10 =


2−

√
2


1 +

5
√
2− 7

8
α2


, p20 =


2 +

√
2


1− 5

√
2 + 7

8
α2


.

(2.4.12)
It can be seen that coefficient at α2 in the bracket for the frequency p10 is 0.0089,
while for the frequency p20 it is (−1.7589). Therefore, as α increases from 0,
the first frequency increases very slightly, while the second frequency begins to
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decrease significantly. Similarly, approximate formulas can also be obtained near
α = π/2 by expanding expressions (2.4.9) in the power series of a small parameter
ε = π/2− α, keeping as before only one correction:

p10 =


3

5


1− 1

60
ε2

, p20 = 1 +

1

4
ε2. (2.4.13)

It can be seen from this, that with decreasing α from π/2, the first frequency
decreases only slightly, while the second frequency increases to a greater extent.

Curves of the dependence of dimensionless frequencies ps0 on the angle α are
presented in Fig. 2.6. It is seen clearly from them that the first frequency is almost
independent of α. Indeed, its highest value (at α = π/2) differs from the lowest
one (at α = 0) by only 1.2%. The second frequency depends on α much more
significantly.
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Fig. 2.6. Graph dependencies of
frequencies p10 and p20 on angle α
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2. Determination of oscillations modes. Let us now find the eigenmodes
corresponding to the found frequencies ps0. They are determined by the ratio
between the components of the column Θ = [Θ1,Θ2]

T, i.e., by the ratio between
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the oscillation amplitudes Θ2 and Θ1 of the rotation angles θ2 and θ1 in the
pendulum joints. We characterize the oscillation mode by the relation βs0 =

Θ2s/Θ1s. This value can be found from any of the two scalar equations correspon-
ding to the matrix equation (2.4.5), for example, the second as simpler, because
these equations become linearly dependent after substituting frequencies in them
due to the condition (2.4.6). As a result, after transformations we obtain:

βs0 = −cosα(1− 2p2s0)

1− p2s0
= − 3± 2


2− sin2 α

cos 2α±


2− sin2 α
cosα, s = 1, 2. (2.4.14)

Of course, the oscillation modes Θ(s) are determined up to a constant factor.
Therefore, for further actions, it will be necessary to set some value Θ1s, for
example, Θ1s = 1. Then the value Θ2s will be equal to βs0, and the oscillation
modes can be written as: Θ(s) = [1, βs0]

T.
Let’s look again at particular cases. For a flat double pendulum, when α = 0,

we find according to (2.4.14):

β10 =
√
2− 1 ≈ 0.4142, β20 = −1−

√
2 ≈ −2.4142. (2.4.15)

If we consider the oscillation modes, taking the absolute angles ϕ1 and ϕ2 as
generalized coordinates, then another relation should be introduced: µs0 = Φ2s/Φ1s

= Θ2s/Θ1s+1 = βs0+1 because ϕ1 = θ1, ϕ2 = θ1+θ2. Then we get the following
values µs0:

µ10 =
√
2 ≈ 1.4142, µ20 = −

√
2 ≈ −1.4142. (2.4.16)

Assuming for simplicity that for each of the oscillation modes Φ1s = 1, we obtain
Φ2s = ∓

√
2, so that the oscillation modes in the case under consideration can be

represented as the following columns:

Φ(1) =


1
√
2


, Φ(2) =


1

−
√
2


. (2.4.17)

For the case α = π/2 corresponding to an orthogonal double pendulum we find
the following relations βs0 = Θ2s/Θ1s according to (2.4.14):

β10 = 0, β20 = −∞, (2.4.18)

and in the second case we have indeterminacy 0/0, which is easily revealed, for
example, according to L’Hopital’s rule. Formulas (2.4.18) mean that in this case,
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we can take the oscillation modes in the form: Θ(1) = [1, 0]T and Θ(2) = [0, 1]T, so
the oscillations in both degrees of freedom in this case are independent. This fact
also is followed from expressions for matrices (2.4.2), when each of them becomes
diagonal at α = π/2

Θ11

Θ21

Θ12

Θ22

Fig. 2.8. Oscillation modes of spatial double pendulum

We also obtain approximate formulas for the values βs0 near the points α = 0

and α = π/2. Expanding (2.4.14) into a Taylor series in α in the locality of point
α = 0 and keeping only one correction, we find:

βs0 =

−1∓

√
2


1±
√
2

4
α2


. (2.4.19)

To find approximating formulas near the point α = π/2 we set again ε = π/2−α
and obtain the following approximate expressions:

β10 =
ε

2
, β20 = −2

ε
. (2.4.20)

Curves of the dependence of values βs0 on the angle α are presented in Fig. 2.7.
Considering that we have β10 > 0 and β20 < 0 for any value α in the range from
0 to π/2, we can schematically represent the oscillation modes of spatial double
pendulum in Fig. 2.8.

3. Orthogonality conditions and normalization coefficients. We note
that the found oscillation modes satisfy the orthogonality conditions [147]:

ΘT
(1)A0Θ(2) = 0, ΘT

(1)C0Θ(2) = 0. (2.4.21)
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In addition, we will also need the normalization coefficients Ns, which are determi-
ned by the formulas:

ΘT
(s)A0Θ(s) = Ns, ΘT

(s)C0Θ(s) = Nsk
2
s0. (2.4.22)

In the case under consideration, we have:

Ns = ml2

5 + 4 cosαβs0 + β2

s0


. (2.4.23)

For further calculations, it is also convenient to introduce dimensionless normaliza-
tion coefficients Hs = Ns/ml

2:

Hs = 5 + 4 cosαβs0 + β2
s0. (2.4.24)

We note that when studying a flat double pendulum, it is more convenient
to introduce normalization coefficients for modes written in absolute angles. In
this case, according to (2.3.5) and (2.3.9), the constant matrices of inertial and
quasi-elastic coefficients are determined by the expressions:

A0 = ml2


2 1

1 1


, C0 = mgl


2 0

0 1


. (2.4.25)

Given these expressions, it is easy to check directly that the previously recorded
oscillation modes (2.4.17) also satisfy the orthogonality conditions:

ΦT
(1)A0Φ(2) = 0, ΦT

(1)C0Φ(2) = 0, (2.4.26)

and the normalization coefficients for these modes in the original and dimensionless
versions will be equal to

Ns = ΦT
(s)A0Φ(s) = 2(2∓

√
2)ml2, Hs = 2(2∓

√
2). (2.4.27)

4. Construction of a general solution. The general solution of the problem
of small free oscillations of spatial double pendulum can be written as a superposi-
tion of two oscillation modes:

θ = Θ(1)a1 cosψ1 +Θ(2)a2 cosψ2, (2.4.28)

where the full phases ψ1 and ψ2 are defined by the formulas:

ψ1 = k10t+ ψ10, ψ2 = k20t+ ψ20, (2.4.29)
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where ψ10, ψ20 are the initial values of these phases, and a1 and a2 are values
characterizing the amplitudes of each of the oscillation modes in the solution
(2.4.28), and they are determined by given columns of initial conditions θ0, θ̇0

for t = 0. It can be seen from (2.4.28) that, in the general case, the oscillations
of a double pendulum have a two-frequency character, i.e., they are not strictly
periodic. However, if the initial conditions are chosen in a special way, then it is
possible to achieve oscillations of the system in only one of the modes. To discuss
this issue in more detail, we write a system for determining unknown integration
constants: 

θ0 = Θ(1)a1 cosψ10 +Θ(2)a2 cosψ20

θ̇0 = −Θ(1)a1k10 sinψ10 −Θ(2)a2k20 sinψ20

. (2.4.30)

Multiplying each of these equations by ΘT
(1)A0 on the left and taking into account

the first orthogonality condition (2.4.21), we find:

C1 = a1 cosψ10 =
ΘT

(1)A0θ0

N1
, D1 = −a1 sinψ10 =

ΘT
(1)A0θ̇0

N1k10
. (2.4.31)

Similarly, if we multiply each of the equations (2.4.30) by ΘT
(2)A0 on the left, we

get two more relations:

C2 = a2 cosψ20 =
ΘT

(2)A0θ0

N2
, D2 = −a2 sinψ20 =

ΘT
(2)A0θ̇0

N2k20
. (2.4.32)

It should be emphasized that it does not make sense to find the constants ψ10,
ψ20, a1 and a2, since the expression (2.4.28) taking into account (2.4.29), (2.4.31)
and (2.4.32) can be rewritten as:

θ = Θ(1) (C1 cos k10t+D1 sin k10t) +Θ(2) (C2 cos k20t+D2 sin k20t) , (2.4.33)

therefore it is sufficient to know only C1, D1, C2 and D2 according to (2.4.31) and
(2.4.32). Now it is easy to understand that in order for the motion of a double
pendulum to be single-frequency, i.e., to represent only one mode, for example,
the first one, we should set the initial conditions in the form:

θ0 = µΘ(1), θ̇0 = ηΘ(1), (2.4.34)

i.e. proportional to this modes, where µ and η are arbitrary constants. Indeed, in
this case, according to (2.4.32), we will have C2 = 0, D2 = 0. Similarly, to excite
only the second mode, the initial motion conditions should be set in the form:

θ0 = µΘ(2), θ̇0 = ηΘ(2). (2.4.35)
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2.5. Dissipative Model of Spatial Double

Pendulum

The conservative model of spatial double pendulum was considered above and
its small oscillations were analyzed. At the same time, it is clear that in any
real system there are inevitably resistance forces that arise naturally (friction
in the articulation joints, resistance from the environment, etc.), which must
be taken into account in order to build a more adequate model of this system.
In addition, dissipative forces can be specially introduced into the system using
friction elements (oscillation dampers). Various dissipative models of a flat double
pendulum in the presence of viscous, dry and quadratic friction are presented
in [18,45,115,136].

Let us turn to the study of the simplest dissipative model of spatial double
pendulum, assuming that it has viscous friction in both of its joints with the same
coefficient b [141]. As is known, a dissipative Rayleigh function is constructed to
take into account friction forces, and it has the following form in the case under
consideration [32]:

R =
1

2
b(θ̇21 + θ̇22) =

1

2
θ̇TB0θ̇, B0 = b


1 0

0 1


, (2.5.1)

where the matrix of dissipative coefficients B0 is diagonal. Using the Lagrange
equations of the second kind for a dissipative system in matrix form

d

dt

∂T

∂θ̇
− ∂T

∂θ
= −∂Π

∂θ
− ∂R

∂θ̇
(2.5.2)

and bearing in mind the further study of the linear model of the dissipative
process, let us substitute into (2.5.2) immediately the quadratic approximations
of the kinetic and potential energies (2.4.3), as well as the dissipative function
(2.5.1). As a result, we can arrive at a matrix equation in the classical form [10]:

A0θ̈ +B0θ̇ +C0θ = 0, (2.5.3)

where constant matrices of inertial A0 and quasi-elastic C0 coefficients have
representations (2.4.2). We will look for a solution of the equation (2.5.3) in the
form

θ = Θeλt. (2.5.4)
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Substituting (2.5.4) into (2.5.3), we arrive at an algebraic matrix equation for the
unknown column Θ:

(A0λ
2 +B0λ+C0)Θ = 0, (2.5.5)

for which the condition for the existence of a nontrivial solution has the form:

det (A0λ
2 +B0λ+C0) = 0. (2.5.6)

To solve this characteristic equation, we analyze the structure of the matrices A0,
B0, and C0. It is easy to establish that for any value of the angle α there is a
simple linear relationship between them:

A0 +
1

2n
B0 =

2

k2
C0, 2n =

b

ml2
, (2.5.7)

where, for convenience, the value n is introduced, which has the meaning of the
damping factor of small oscillations of an ordinary mathematical pendulum of
length l with an end load of mass m, and viscous friction with coefficient b acts in
its joint. Eliminating (2.5.7) matrix B0 from (2.5.6), we get the following equation:

det


A0(λ

2 − 2nλ) +C0


1 +

4n

k2
λ


= 0. (2.5.8)

By comparing it with the frequency equation of the conservative system (2.4.6),
which is satisfied by the natural frequencies ks0 without dissipative forces, we
establish that values λ are determined from the following two equations:

λ2 − 2nλ = −k2s0

1 +

4n

k2
λ


, s = 1, 2. (2.5.9)

It also follows from this that oscillation modes of the dissipative system, determined
from (2.5.5) taking into account (2.5.7) and (2.5.9), will remain the same as in the
conservative system, i.e., they will match the previously found columns Θ(s) [10].

It is well known that dissipative forces in a multidimensional mechanical
system in the general case distort free oscillation modes, which took place in the
absence of friction [147]. In addition, if the dissipative forces are quite large, which
occurs when friction elements (oscillation dampers) are specially introduced into
the system, then they can significantly distort the oscillation modes [78]. However,
in some cases of damping, which are of particular interest, it turns out that the
introduction of both small and large dissipative forces into the system does not
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violate its conservative oscillation modes [16, 61]. This circumstance will make it
possible to damp the oscillations of the systems according to its own, i.e., natural
movements, without distorting their general character, but only by decreasing the
amplitudes of each mode. In particular, if the movement of the system represents
only one oscillation mode, then only this mode should be smoothly extinguished
without complicating its structure. It is known that a similar effect occurs only
for the so-called “proportional damping”, which takes place in our case, since the
matrix B0 is a linear combination of matrices A0 and C0 according to (2.5.7).
This remarkable property of spatial double pendulum with identical geometrical,
inertial and dissipative parameters at any angle α makes it possible to obtain the
simplest analytical expressions and qualitatively analyze the movements of spatial
double pendulum in the presence of viscous friction, as well as investigate in detail
many additional issues. We note that if the friction is too high, the fading of some
part of the solution may already be aperiodic, and as a result, it is more correct to
call the column Θ(s) corresponding to it not the oscillation mode, but the motion
mode.

We emphasize that for an arbitrary spatial double pendulum with different
masses of end loads and different lengths of links, proper selection of two dissipative
coefficients of articulated viscous friction can ensure the independence of the
oscillation modes from damping. Indeed, the “proportional damping” condition
B0 = γAA0 + γCC0 in scalar form gives a system of three equations for finding
four values – two dissipative coefficients and two uncertain parameters γA, γС ,
so that it is underdetermined. As a result, there is not one solution, but a family
of them, which allows to choose dissipative coefficients to provide the desired
condition, as shown in [141]. However, for more complex multi-link structures, the
situation is completely different. For example, for a three-link pendulum, we can
control the values of the dissipative coefficients in each of the three joints and we
have two more undefined parameters γA and γC , while the “proportional damping”
condition will already give six scalar equations. Therefore, in this situation we get
an overdetermined system, which is incompatible in the general case. A similar
conclusion can be drawn for systems with a large number of degrees of freedom,
so that of all multi-links, only a two-link with arbitrary parameters of its links
and loads can have the property of independence of the oscillation modes from
damping.
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Returning now to the equations (2.5.9) for the original scheme of spatial
double pendulum with identical geometric, inertial and dissipative parameters,
we transform them to the form:

λ2 + 2nsλ+ k2s0 = 0, s = 1, 2, (2.5.10)

where the following notation is introduced:

ns = (2p2s0 − 1)n =
3± 2


2− sin2 α

1 + 4 sin2 α
n. (2.5.11)

The solutions of the equations (2.5.10) obviously have the form:

λ1,2 = −n1 ± ik1, λ3,4 = −n2 ± ik2, (2.5.12)

where the notation is also adopted:

ks =

k2s0 − n2s. (2.5.13)

It is clear that the values ks can be both real and imaginary. If they are real,
they will represent the frequencies of free oscillations of spatial double pendulum
with viscous friction, and the values ns represent then the damping factors of each
mode. Otherwise, already aperiodic damping will take place according to the form
Θ(s). To assess the character of the oscillating fading of the modes, we introduce
dimensionless coefficients ηs = ns/n and write down their expressions:

ηs = 2p2s0 − 1 =
3± 2


2− sin2 α

1 + 4 sin2 α
, s = 1, 2. (2.5.14)

This shows that η2 < η1, so the oscillation modes are not damped in the same
way, and the second mode always fades out faster than the first one. The graph
dependencies of the values η1 and η2 on the angle α are shown in Fig. 2.9. It
can be seen that η1 increases slightly with increasing angle α, while η2 decreases,
changing much more significantly.

Let us write down the expressions for the dimensionless oscillation frequencies
ps = ks/k:

ps =

p2s0 − (2p2s0 − 1)2ν2 =

=

2(1 + sin2 α)±

2− sin2 α

1 + 4 sin2 α
−


3± 2


2− sin2 α

1 + 4 sin2 α

2

ν2,

(2.5.15)
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where ν = n/k is dimensionless damping factor of an ordinary pendulum which
can also be called the dimensionless dissipative coefficient. It can be seen from
(2.5.15) that the values ps are real if the following conditions are respectively
fulfilled:

ps ∈ R ⇒ ν < νs0 =
ps0

2p2s0 − 1
=

(1 + 4 sin2 α)

2(1 + sin2 α)±


2− sin2 α



3± 2


2− sin2 α

2 .

(2.5.16)
It is not hard to show that ν20 < ν10. Indeed, since p20 > p10, then the following
chain of relations takes place:

ν20 =
p20

2p220 − 1
=

1

p20

1

2− 1/p220
<

1

p10

1

2− 1/p210
=

p10
2p210 − 1

= ν10. (2.5.17)

Consequently, the second frequency becomes zero with increasing ν earlier than
the first one. This means that the second frequency will become less than the first,
starting from a certain value ν, which we will designate as ν0. To determine this
value, let us equate the frequencies p1 and p2 according to (2.5.15) to each other.
As a result, we get the following equation:

p210 − (2p210 − 1)2ν20 =

p220 − (2p220 − 1)2ν20 . (2.5.18)

Solving it relatively ν0, we find:

ν0 =
1

2

p210 + p220 − 1

=


1 + 4 sin2 α

2
√
3

. (2.5.19)

The graph dependencies of values ν10, ν20 and ν0 on the angle α art presented
in Fig. 2.10. These graphs, together with the dependencies shown in Fig. 2.9,
clearly illustrate the change in the basic values that characterize the dissipative
model of spatial double pendulum with increasing the angle between the joint
axes. The graph dependencies of values p1 and p2 on ν are qualitatively presented
in Fig. 2.11, where the case of coincidence of frequencies p1 = p2 is clearly
visible, which can be called dissipative internal resonance, and it can be of certain
theoretical and practical interest. These considerations emphasize the fact that
instead of the terms “first frequency” (i.e., the lowest) and “second frequency” (i.e.,
the highest), it is sometimes preferable to use the terms “first mode” and “second
mode”.
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Now we consider the particular cases and write out the specific values of all
key parameters for them. So, for a flat double pendulum (α = 0) we have from
(2.5.14):

η1 = 3− 2
√
2 ≈ 0.1716, η2 = 3 + 2

√
2 ≈ 5.828, (2.5.20)

whence it can be seen that η2/η1 = 17 + 12
√
2 ≈ 33.97, i.e., the damping factor

for the second mode is much greater than for the first one. Therefore, the second
mode disappears very quickly, and then there is a slow attenuation on the first
mode. We find from formulas (2.5.15) at α = 0 the expressions for dimensionless
frequencies [42]:

p1 =


2−

√
2− (17− 12

√
2)ν2, p2 =


2 +

√
2− (17 + 12

√
2)ν2, (2.5.21)

and we also determine from formulas (2.5.16) and (2.5.19) values:

ν10 =


10 + 7

√
2 ≈ 4.4609, ν20 =


10− 7

√
2 ≈ 0.3170, ν0 =

1

2
√
3
≈ 0.2887.

(2.5.22)
In another particular case of an orthogonal double pendulum (α = π/2) we

find from (2.5.14):

η1 =
1

5
= 0.2, η2 = 1, (2.5.23)

whence it follows that η2/η1 = 5, i.e., this ratio is an order of magnitude less than
it was for α = 0. We find from (2.5.15) at α = π/2 the expressions:

p1 =


3

5
− 1

25
ν2, p2 =


1− ν2, (2.5.24)

and we also determine the values from formulas (2.5.16) and (2.5.19):

ν10 =
√
15 ≈ 3.873, ν20 = 1, ν0 =

√
5

2
√
3
≈ 0.6455. (2.5.25)

Returning now to the matrix motion equation (2.5.3), we compose its general
solution in complex form:

θ = Θ(1)e
−n1t


A1e

ik1t +B1e
−ik1t


+Θ(2)e

−n2t

A2e

ik2t +B2e
−ik2t


. (2.5.26)

Therefore, the column of generalized velocities will have the form:

θ̇ = Θ(1)e
−n1t


A1(ik1 − n1)e

ik1t −B1(ik1 + n1)e
−ik1t


+

+Θ(2)e
−n2t


A2(ik2 − n2)e

ik2t −B1(ik2 + n2)e
−ik2t


.

(2.5.27)
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The complex integration constants As and Bs, s = 1, 2 from the reality condition
for θ must satisfy the relation Bs = As, and they are determined from the initial
conditions and θ0, θ̇0 by analogy with how it was done earlier for a conservative
system. As a result, we can get:

As =
(ns + iks)Θ

T
(s)A0θ0 +ΘT

(s)A0θ̇0

2iksNs
, Bs =

−(ns − iks)Θ
T
(s)A0θ0 −ΘT

(s)A0θ̇0

2iksNs
.

(2.5.28)
It is easy to understand that if the initial conditions are accepted in the form
(2.4.34), then taking into account (2.4.21) from (2.5.28) we have A2 = 0, B2 = 0,
i.e., the damping of movements will be carried out only according to the first
mode. By analogy, under the conditions (2.4.35) the damping will take place only
on the second mode.

Note that the resulting solution (2.5.26), taking into account (2.5.28), is valid
for any value of the coefficient ν – both in the case of real values of ks, and in the
case when some of them is a purely imaginary value, as well as when these values
individually become equal to zero. We emphasize that in the latter case, when the
s-th frequency turns out to be equal to zero, the characteristic equation will have
multiple roots. Therefore, we will have a limit-aperiodic motion according to the
s-th mode, and the above solution should be understood in the limit sense, i.e.,
at ks → 0. Indeed, the expression Ase

ikst +Bse
−ikst, taking into account (2.5.28),

will be at ks → 0 (i.e. ns → ks0) an uncertainty 0/0, which is easily revealed:

Ase
ikst +Bse

−ikst → 1

Ns


ΘT

(s)A0θ0 +

ks0Θ

T
(s)A0θ0 +ΘT

(s)A0θ̇0


t

. (2.5.29)

Therefore, in this case, there will be components containing the functions e−ks0t

and te−ks0t in the part of the solution that corresponds to the mode Θ(s), as it is
well known from mathematical analysis.

2.6. Conclusions on Second Chapter

In this chapter, a mathematical model of oscillations of spatial double pendulum
was constructed, in which the axes of cylindrical joints are not collinear to each
other. This construction is the simplest scheme of spatial two-link manipulator.
Small oscillations of such a pendulum in conservative formulation were investigated
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and the frequencies and modes of its oscillations were determined depending on the
angle between the joint axes. In addition, the problem of system small oscillations
in the presence of viscous friction in articulated joints is considered. It is shown
that in the case of identical parameters of loads, links and friction in the joints,
dissipative forces do not distort the oscillation modes of the conservative model,
but only reduce their amplitudes. Therefore, this example clearly demonstrates the
property of preserving the eigenmodes of conservative oscillations when dissipation
is introduced. This circumstance makes it possible to damp oscillations of this
system according to its natural movements – its eigenmodes, without distorting or
complicating their qualitative character. The revealed property of the dissipative
double pendulum allowed to get the most representative and rather simple analyti-
cal expressions for all key values of the damping process. The obtained results were
clearly illustrated by graphical dependencies.
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3. Construction and Analysis
of Nonlinear Oscillation
Modes of Spatial Double

Pendulum

3.1. Problem Statement of Finding Nonlinear

Oscillation Modes

An extensive bibliography is devoted to the study of nonlinear oscillations of
various pendulum structures – in particular, in relation to a double pendulum,
one can single out the works [38,103,104,128,129,156]. As mentioned earlier, the
overwhelming majority of publications are devoted to the numerical study of the
behavior of a double pendulum based on the Lagrangian or Hamiltonian form of
writing the equations of its motion. Of course, this way leads to a quantitative
assessment of the motion characteristics, but does not allow to reveal in detail
their main qualitative features, which are most clearly demonstrated on the basis
of analytical dependencies. Moreover, the question naturally arises of how such a
pendulum smoothly passes from the zone of small (i.e., linear) oscillations to the
nonlinear zone. It is clear that of all the possible motion modes of nonlinear
systems, regular modes that have periodicity are the most valuable, because
it is advisable to use them in practice to achieve specific goals [142]. Finding
such modes is closely related to the well-known problem of definition nonlinear
oscillation modes of multidimensional mechanical systems, which has recently
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attracted a large number of specialists both in theoretical and practical terms
[46, 82, 130, 135, 137, 148–150]. At the same time, pendulum systems are often
taken as objects of study [37, 47, 111, 118]. A nonlinear oscillation mode means
a single-frequency motion in all degrees of freedom in a nonlinear system, and
it is a natural development of the concept of a linear oscillation mode. We note
that the main characteristics of the linear mode are the frequency and the ratio
of the oscillation amplitudes, however, when studying a nonlinear mode, due to
its nonharmonic nature, it is not enough to know, in addition to the frequency,
only the ratio of the amplitudes, although it is an important characteristic of
the nonlinear mode. For its complete description, it is necessary to indicate the
specific dependencies of all generalized coordinates on time [143].

There are many different ways of constructing solutions of nonlinear systems
corresponding to nonlinear oscillation modes [153]. The most frequently used
variant is based on the application of asymptotic methods of nonlinear mechanics
specially developed for this purpose [11]. It should be emphasized that a double
pendulum is a system with two degrees of freedom, for which the construction of
approximate analytical solutions in a nonlinear zone turns out to be much more
difficult than for systems with one degree of freedom, where there is no question
of constructing oscillation modes. Therefore, in most works on the dynamics of
a double pendulum, its nonlinear oscillations are studied only with the help of
numerical methods. Thus, the main interest is analytical study of periodic system
motions, which will clearly demonstrate the drift of oscillation frequencies and
modes with a gradual increase in the amplitudes of oscillations of the links. This
chapter is devoted to the construction of nonlinear oscillation modes of spatial
double pendulum in the first approximation, and for its particular variants of the
double flat and orthogonal pendulums, it is possible to construct an approximate
solution not only in the first, but also in the second approximation [72].

3.2. Nonlinear Oscillation Modes of Orthogonal

Double Pendulum

Let us first turn to the study of nonlinear oscillation modes of an orthogonal
double pendulum, when α = π/2, since in this case they are most easily found.
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To do this, we go back to the nonlinear matrix motion equation (2.2.12) and
expressions (2.3.12) and (2.3.13). It is easy to see that this equation admits two
partial modes of motion:

θ̈1 + k210 sin θ1 = 0, θ2 ≡ 0, k10 =


3

5
k, (3.2.1)

θ̈2 + k220 sin θ2 = 0, θ1 ≡ 0, k20 = k. (3.2.2)

These equations show that in the case of orthogonal double pendulum and within
the framework of a nonlinear model, one generalized coordinate can oscillate while
the other coordinate is zero. Wherein, each of the equations (3.2.1) and (3.2.2)
is equation of oscillations of ordinary mathematical pendulum. Therefore, the
question of nonlinear oscillation modes in this situation is solved by examining
these second-order differential equations separately. We consider, for example, the
first of them. The technique for constructing approximate asymptotic solutions
for ordinary pendulum is well known, and it is described in [11]. To do this, the
equation (3.2.1) should be rewritten so that the left side contains linear terms
corresponding to small oscillations, and everything else must be transferred to
the right side. Then we come to the study of the equation:

θ̈1 + k210θ1 = Q(θ1), Q(θ1) = k210 (θ1 − sin θ1) . (3.2.3)

The functionQ(θ1) can be interpreted as a perturbing force that excites oscillations
in a linear system. To construct the first two approximations to the solution, it
suffices to expand the function Q(θ1) in Taylor series and keep two nonlinear
terms in this expansion, one of which has the third order of smallness, and the
other term has the fifth order of smallness:

Q = Q(I) +Q(II), Q(I) = k210
θ31
6
, Q(II) = −k210

θ51
120

. (3.2.4)

1. Construction of the first approximation. We will look for the solution
of the equation (3.2.3) in the initial approximation in the same form as in the
linear model, namely:

θ1 = a cosψ, (3.2.5)

where still a = const, but the total phase ψ (or frequency) already depends in
some way on a. It is easy to understand that the correction to the oscillation
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frequency will have the second order of smallness in a:

ψ̇ = k10


1 + ρ(I)a2


= k

(I)
1 (a). (3.2.6)

The value a can be treated here as a small parameter. To determine the value
ρ(I), we use the harmonic balance equation [11]:

2π
0

(θ̈1 + k210θ1 −Q) cosψdψ = 0. (3.2.7)

This equation must be performed with required accuracy. In the first approximation,
it is necessary that it be fulfilled up to terms of the third order of smallness in a.
Referring to the formula (3.2.5), we calculate θ̇1 and θ̈1 up to the third order of
smallness, taking into account (3.2.6):

θ̇1 = −ak10 sinψ

1 + ρ(I)a2


, θ̈1 = −ak210 cosψ


1 + 2ρ(I)a2


. (3.2.8)

To determine the perturbing force with the same accuracy, it suffices to substitute
the expression (3.2.5) into Q(I), and as a result we get:

Q =

U (I) cosψ + V (I) cos 3ψ


k210a

3, U (I) =
1

8
, V (I) =

1

24
. (3.2.9)

Substituting now (3.2.5), (3.2.8), and (3.2.9) into the equation (3.2.7), we get a
simple expression for ρ(I):

ρ(I) = −U
(I)

2
= − 1

16
. (3.2.10)

Then the expression for the oscillation frequency in the first approximation will
take the following form:

k
(I)
1 (a) = k10


1− a2

16


= k10(1− 0.0625a2). (3.2.11)

Now we have the opportunity to clarify the solution, namely, to construct
it up to the third order of smallness. It is clear that the harmonic cosψ is
already balanced, but the harmonic cos 3ψ is still unbalanced. Let us consider
the oscillations that it excites in the unperturbed system, i.e., we will find a
particular solution θ(I)1 of the following equation:

θ̈1 + k210θ1 = V (I)k210a
3 cos 3ψ, (3.2.12)
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which obviously looks like:

θ(I)1 (a, ψ) =
V (I)k210a

3

k210 − 9k21(a)
cos 3ψ. (3.2.13)

To keep only the terms of the third order of smallness in this expression, it is
sufficient to substitute the constant value k10 instead of k1(a). Adding (3.2.13)
with the expression (3.2.5), we find a solution with the specified accuracy [96]:

θ
(I)
1 = a cosψ + θ(I)1 = a cosψ − a3

192
cos 3ψ. (3.2.14)

Assuming ψ = 0, we can find from here the oscillation amplitude A depending
on the parameter a, which plays the role of the amplitude of the first harmonic
in the representation (3.2.14):

A = a− a3

192
. (3.2.15)

To control the correctness of the obtained expressions, it is advisable to calculate
the total mechanical energy E and make sure that when it is calculated with
the required accuracy, it remains unchanged in time. The expression for the total
energy has the form (2.2.14), and in the case α = π/2 and under the condition
θ2 ≡ 0 it will take a simple form:

E =
5

2
ml2θ̇21 + 3mgl(1− cos θ1) =

5

2
ml2


θ̇21 + 2k210(1− cos θ1)


. (3.2.16)

Therefore, up to terms of the fourth order of smallness, we obtain the following
expression:

E =
5

2
ml2


θ̇21 + k210


θ21 −

θ41
12


. (3.2.17)

We also calculate θ̇1 by differentiating the expression (3.2.14) according to (3.2.11)
and keeping the terms no higher than the third order of smallness in a:

θ̇
(I)
1 = k10


−

a− a3

16


sinψ +

a3

64
sin 3ψ


. (3.2.18)

Substituting the expressions (3.2.14) and (3.2.18) into the formula (3.2.17), we
obtain, up to the fourth order in a, the following expression:

E(I) = E0


1− 3

32
a2

, E0 =

3

2
mgla2, (3.2.19)
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where E0 is the total energy of the system within the linear model. It can be seen
that the energy E(I) depends according to (3.2.19) only on a and does not depend
on ψ, which once again confirms the correctness of the obtained expressions.

2. Construction of the second approximation. The obtained expressions
can now be used to construct the second approximation. In this case, the harmonic
balance equation must be performed up to the fifth order of smallness in a. Let us
introduce one more correction ρ(II) to the frequency, which should have the fourth
order of smallness:

ψ̇ = k10


1 + ρ(I)a2 + ρ(II)a4


= k

(II)
1 (a). (3.2.20)

Taking into account the orthogonality conditions of trigonometric functions, we
can rewrite the harmonic balance equation (3.2.7) in the following form:

2π
0


d2x

dt2
+ k210x−Q


cosψdψ = 0, (3.2.21)

where x = a cosψ. Let us now calculate the expression up to the fifth order of
smallness:

d2x

dt2
+ k210x =


−2ρ(I)a3 −


ρ(I)

2
+ 2ρ(II)


a5

k210 cosψ. (3.2.22)

We also calculate Q up to the fifth order of smallness:

Q =

U (I)a3 + U (II)a5


cosψ +


V (I)a3 + V (II)a5


cos 3ψ +W (II)a5 cos 5ψ


k210,

(3.2.23)
where the old notation for U (I) and V (I) is retained according to (3.2.9), and new
notation is made:

U (II) = − 3

512
, V (II) = − 1

256
, W (II) = − 3

2560
. (3.2.24)

As a result, we again arrive at the relation (3.2.10) for ρ(I), as expected, and also
find:

ρ(II) = −ρ
(I)
1

2

2
− U (II)

2
=

1

1024
. (3.2.25)

Therefore, the oscillation frequency in the second approximation is determined by
the formula:

k
(II)
1 (a) = k10


1− a2

16
+

a4

1024


≈ k10(1− 0.0625a2 + 0.00098a4). (3.2.26)
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By analogy, we can now obtain a solution up to the fifth order of smallness.
To do this, we obtain a particular solution θ(II)1 of the equation

θ̈1 + k210θ1 =

V (I)a3 + V (II)a5


cos 3ψ +W (II)a5 cos 5ψ


k210, (3.2.27)

which has the following form:

θ(II)1 (a, ψ) =


V (I)a3 + V (II)a5


k210

k210 − 9k21(a)
cos 3ψ +

W (II)k210a
5

k210 − 25k21(a)
cos 5ψ. (3.2.28)

To keep in this expression the terms not higher than the fifth order of smallness in
a, it is enough to substitute the formula (3.2.11) instead of k1(a) in the first of the
fractions, and the constant value k10 in the second. Adding the resulting expression
with the expression (3.2.5), we find a solution with the required accuracy:

θ
(II)
1 (a, ψ) = a cosψ + θ(II)1 = a cosψ −


a3

192
+

a5

4096


cos 3ψ +

a5

20480
cos 5ψ.

(3.2.29)
We can find from here the oscillation amplitude A depending on the parameter a
in the considered approximation:

A = a− a3

192
− a5

5120
. (3.2.30)

It remains to calculate the total energy with the required accuracy. To do this,
we write the expression (3.2.16) up to terms of the sixth order of smallness:

E =
5

2
ml2


θ̇21 + k210


θ21 −

θ41
12

+
θ61
360


. (3.2.31)

We calculate θ̇1 by differentiating the expression (3.2.29), taking into account
(3.2.26) and keeping the terms no higher than the fifth order of smallness in a:

θ̇
(II)
1 = k10


−

a− a3

16
+

a5

1024


sinψ +


a3

64
− a5

4096


sin 3ψ − a5

4096
sin 5ψ


.

(3.2.32)
Substituting the expressions (3.2.29) and (3.2.32) into the formula (3.2.31), we
obtain, up to sixth order in a, the following expression:

E(II) = E0


1− 9

96
a2 +

17

4096
a4

, E0 =

3

2
mgla2, (3.2.33)

which in this approximation also depends only on a and does not depend on ψ.
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We note that this problem has an exact solution, and the oscillation frequency
k1 depending on the oscillation amplitude A is determined by the formula [48]:

k1 =
πk10

2K (κ)
, κ = sin

A

2
, (3.2.34)

where K(κ) is a complete elliptic integral of the first kind with modulus κ.
Discussion of the results. We now study the dependence of the frequency

k1 on the oscillation amplitude A in various approximations. So, within the
framework of the linear model, which can be called also the zero approximation,
the frequency is equal to k10, and it does not depend on the oscillation amplitude,
which is equal to a. In the first approximation, the frequency is (3.2.11), and
the amplitude is (3.2.15), and in the second approximation, the frequency is
given by (3.2.26), while the amplitude is given by (3.2.30). In both cases, we
have a parametric dependence of the frequency on the amplitude through the
intermediate parameter a, and each subsequent approximation takes into account
the next correction both in the expression for the frequency and in the expression
for the amplitude.

The dependence of dimensionless frequency k1/k10 on the oscillation amplitude
A (which for clarity is presented in degrees) in two approximations is shown in
Fig. 3.1, where the exact dependence is also shown according to (3.2.34). It is
easy to see that the approximate asymptotic formulas correlate very well with the
exact values, and every next approximation refines the results. The undoubted
advantage of the constructed approximate expressions is that they give adequate
results not only for sufficiently small amplitudes, but in a very wide range of them.
For definiteness, we emphasize that we will not consider oscillations of the system
with very large amplitudes, and we will limit the specified range to the values not
exceeding π/2 and shown in Fig. 3.1.

It should also be emphasized that if the expression (3.2.34) is expanded into
a Taylor series, then the obtained result will be in full accordance with the
asymptotic formulas. Indeed, we have from (3.2.34) the following expansion up to
the fourth order of smallness in amplitude A:

k1 = k10


1− 1

16
A2 +

1

3072
A4


. (3.2.35)

It remains to show that the formula (3.2.26) with the same accuracy, taking into
account (3.2.30), will go to (3.2.35). To do this, we obtain an inverse relationship



55

k1
k10

A,◦

1

2

0 10 20 30 40 50 60 70 80 90
0.84

0.88

0.92

0.96

1

Fig. 3.1. Dependence of dimensionless frequency k1/k10 on amplitude A:
1 – first approximation, 2 – second approximation, ◦ – exact values

with respect to (3.2.30), i.e., we express a in terms of A with the same accuracy.
Looking for a in the form a = A+µ(I)A3+µ(II)A5 and substituting this expression
into (3.2.30), we equate the coefficients at the same powers of A, whence we find:

µ(I) =
1

192
, µ(II) =

17

61440
, a = A+

1

192
A3 +

17

61440
A5. (3.2.36)

Substituting this expression into (3.2.26) and keeping the terms no higher than
the fourth order of smallness in A, we arrive exactly at the formula (3.2.35). It can
be seen that for this purpose it was sufficient to obtain the expression (3.2.36) with
only one cubic correction, but if necessary, for example, to eliminate a through
A in the formula (3.2.29) while preserving the terms not above the fifth order of
smallness, then the full expression (3.2.36) would be required.

Let us now turn to a visual graphical illustration of the obtained results. For
this purpose, it is appropriate to construct a phase portrait of the system on
the phase plane (θ1, θ̇1/k10), where the division of the generalized velocity by
k10 is carried out in order to plot dimensionless values on both axes. We will
construct phase trajectories using the second approximation formulas (3.2.29)
and (3.2.32), treating ψ as an intermediate parameter and compare them with
the phase trajectories obtained in the exact solution. It is necessary to carry out
this correspondence in such a way that the phase trajectory in the approximate
solution corresponds to the phase trajectory in the exact solution, having the same
energy level. For further actions, it is convenient to introduce the dimensionless
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energy ε = E/(mgl). Therefore, in the second approximation from the formula
(3.2.33) we will have:

ε =
E

mgl
=

3

2
a2

1− 3

32
a2 +

17

4096
a4

. (3.2.37)

By varying the parameter a, we will also vary the value ε, i.e., we will obtain phase
trajectories with different energy levels. At the same time, the phase trajectories
in the exact solution for the same values ε can be determined from the expression
(3.2.16), resolving it with respect to θ̇1/k10:

θ̇1
k10

= ±


2ε

3
− 4 sin2

θ1
2
. (3.2.38)

Note that the phase portrait for the exact solution can also be constructed using
this solution, which has the form [48]:

θ1 = 2arcsin [κ sn (k10t+ ϑ, κ)], θ̇1 = 2κk10 cn (k10t+ ϑ, κ), (3.2.39)

where sn and cn are Jacobi elliptic functions, κ = sinA/2 =

ε/6, and ϑ is an

integration constant. In this case, the time t acts as a parameter. It is easy to
see that the formulas (3.2.39) identically satisfy the equation (3.2.38), which once
again confirms their validity.

The phase portrait of the system on the plane (θ1, θ̇1/k10) is shown in Fig. 3.2,
and for the uniformity of the graphic presentation of the results, it is assumed that
the solid lines correspond to the asymptotic formulas of the second approximation,
and circles represent exact values. In this case, it should be noted that on each
of the phase trajectories, the circles correspond to the values taken at the same
time intervals. It can be seen that there is an adequate correspondence between
the approximate and exact results, and in the accepted range of amplitudes, their
difference does not manifest itself at all. In addition, it can be observed that the
form of the phase trajectories is gradually distorted with increasing energy level
and becomes more and more different from the circular one, which is characteristic
of the linear model, which also emphasizes the nonlinear nature of the problem
under consideration.

In addition, we plot the dependencies of the angle θ1 and the dimensionless
angular velocity θ̇1/k10 in the second approximation on the phase angle ψ on one
oscillation period, i.e., when ψ changes from 0 to 2π, which correspond to the
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Fig. 3.2. Phase portrait: solid lines – formulas of the second approximation,
◦ – exact values
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Fig. 3.3. Graphs dependencies of values θ1 и θ̇1/k10 on ψ:
solid lines – formulas of the second approximation, ◦ – exact values

phase trajectory with the highest energy level from those shown above in the
phase portrait in Fig. 3.2. For a more visual comparison of the behavior of these
graphs with similar exact dependencies, it is advisable to introduce the value
ψ = k1t for the exact solution by analogy, where k1 is determined by the formula
(3.2.34). This scaling leads to the fact that the introduced value ψ in the exact
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solution also lies in the range from 0 to 2π. Therefore, the comparison of the
results will be carried out not at the same points in time, but when the system
reaches a certain part of the oscillation period. This action makes it possible to
exclude from consideration the existing mismatch of oscillation frequencies in the
approximate and exact solutions and to correlate precisely the character of the
oscillatory motion. In this case, we put in the formula (3.2.39) ϑ = K(κ), so
that for t = 0 we have θ1 = 2arcsinκ = A and θ̇1 = 0. These dependencies
are shown in Fig. 3.3, which also shows excellent agreement between approximate
and exact results. We note once again that the presented dependencies have a
somewhat more complex structure than for harmonic oscillations, which have a
purely sinusoidal character and appear at low amplitudes.

It remains to emphasize that numerical integration of the matrix equation
(2.2.15) when specifying the appropriate initial conditions for motion according
to the first nonlinear oscillation mode with accepted energy levels will give for the
angle θ1 similar results as the exact solution (3.2.39).

3.3. Nonlinear Oscillation Modes of Flat Double

Pendulum

We now turn to the problem of constructing approximate asymptotic formulas
for the first and second nonlinear oscillation modes of flat double pendulum at
α = 0. As mentioned earlier in Ch. 2, to study the free motions of this system,
it is more convenient to take as generalized coordinates not the joint rotation
angles θ1 and θ2, but the absolute angles of deviation of the links ϕ1 and ϕ2 from
the vertical, since in this case the motion equations take the most compact form.
This circumstance makes it much easier to construct an approximate analytical
solution by developing the technique used in the previous section, and it is possible
to construct not only the first, but also the second approximation without much
difficulty.

We turn to the equation (2.3.8) taking into account (2.3.5) and (2.3.9) and
rewrite it in such a way that its left side contains linear terms corresponding to
small oscillations, and everything else will be moved to the right side [17,21]:

A0ϕ̈+C0ϕ = A(ϕ)ϕ̈+ B(ϕ, ϕ̇) + C(ϕ) = Q(ϕ, ϕ̇, ϕ̈). (3.3.1)
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Here the constant matrices A0 and C0 have representations (3.3.2), and the
following notation is made:

A(ϕ) = A0 −A(ϕ), B(ϕ, ϕ̇) = −B(ϕ, ϕ̇), C(ϕ) = C0ϕ−C(ϕ). (3.3.2)

The column Q in the equation (3.3.1), treated as a column of perturbing forces
acting in a linear system, then has the form:

Q = ml2 sin (ϕ2 − ϕ1)


ϕ̇2
2

−ϕ̇2
1


+mgl


2(ϕ1 − sinϕ1)

ϕ2 − sinϕ2


+

+ml2 (1− cos (ϕ2 − ϕ1))


ϕ̈2

ϕ̈1


.

(3.3.3)

Let us expand the trigonometric functions included in the expression (3.3.3) into
Taylor series with an accuracy sufficient to construct the first two approximations
to the solution. As a result, we get the following representation:

Q = Q(I) +Q(II), (3.3.4)

where the column Q(I) contains terms of the third order of smallness in generalized
coordinates, velocities, and accelerations, and Q(II) – the fifth order:

Q(I) = ml2(ϕ2 − ϕ1)


ϕ̇2
2

−ϕ̇2
1


+
mgl

6


2ϕ3

1

ϕ3
2


+
ml2

2
(ϕ2 − ϕ1)

2


ϕ̈2

ϕ̈1


,

Q(II) = −ml
2

6
(ϕ2 − ϕ1)

3


ϕ̇2
2

−ϕ̇2
1


− mgl

120


2ϕ5

1

ϕ5
2


− ml2

24
(ϕ2 − ϕ1)

4


ϕ̈2

ϕ̈1


.

(3.3.5)
1. Construction of the first approximation. As an initial approximation

to the solution of the equation (3.3.1), we take the same expression as for oscillati-
ons on one of the modes in the linear system (2.4.17):

ϕ = Φ(s)a cosψ, (3.3.6)

where a = const (for brevity, the index “s” of a and ψ is omitted here and below
as insignificant), and the oscillation frequency depends on a as follows:

ψ̇ = ks0(1 + ρ(I)s a
2) = k(I)s (a), ks0 =


2±

√
2k. (3.3.7)
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Here the first correction is introduced, and it will be proportional to a2, as for
a conventional mathematical pendulum. We note that the value a, taking into
account (2.4.17), plays the role of the oscillation amplitude of the angle ϕ1 in the
initial approximation. The coefficient ρ(I)s in the formula (3.3.7) can be found from
the harmonic balance equation for the given mode Φ(s) [11, 63]:

2π
0

ΦT
(s) (A0ϕ̈+C0ϕ−Q) cosψdψ = 0. (3.3.8)

Based on the expressions (3.3.6) and (3.3.7), we calculate the columns of generalized
velocities ϕ̇ and accelerations ϕ̈ up to the values of the third order of smallness:

ϕ̇ = −Φ(s)a sinψks0


1 + ρ(I)s a

2

, ϕ̈ = −Φ(s)a cosψk

2
s0


1 + 2ρ(I)s a

2

, (3.3.9)

as well as perturbing forces with the same accuracy:

Q =

U(I)

s cosψ +V(I)
s cos 3ψ


mgla3, (3.3.10)

where the columns U(I)
s and V

(I)
s have the following representations:

U(I)
s =


14± 9

√
2

4

−22∓ 17
√
2

8

 , V(I)
s =


46± 33

√
2

12

−54∓ 41
√
2

24

 . (3.3.11)

Let us substitute the obtained expressions into the equation of harmonic balance
(3.3.8), taking into account that the oscillation modes Φ(s) satisfy the equation

C0 − k2s0A0


Φ(s) = 0, (3.3.12)

and also using the notation (2.4.27) for the normalization coefficients, we arrive
at the following expression for ρ(I)s :

ρ(I)s = − mgl

2Nsk2s0
ΦT

(s)U
(I)
s = − 1

2Hsp2s0
ΦT

(s)U
(I)
s = −31± 20

√
2

32
. (3.3.13)

Substituting now (3.3.13) into (3.3.7), we obtain expression for the oscillation
frequency in the first approximation:

k(I)s (a) = ks0


1− 31± 20

√
2

32
a2


. (3.3.14)
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Thus, when system moves on each of the nonlinear oscillation modes, the frequen-
cies in the first approximation are determined by the following expressions:

k
(I)
1 (a) ≈ k10(1− 0.0849a2), k

(I)
2 (a) ≈ k20(1− 1.8526a2), (3.3.15)

whence it can be seen that the second frequency changes more significantly with
increasing a than the first frequency.

Now we can obtain a solution up to the third order of smallness. To construct
it, we find out separately which forced oscillations ϕ are excited by the harmonic
force Q = Q0 cosωt in the unperturbed (i.e., linear) system, namely, we define a
particular solution of the equation:

A0ϕ̈+C0ϕ = Q0 cosωt. (3.3.16)

To solve this equation, we introduce the modal matrix U = [Φ(1)|Φ(2)], i.e., the
matrix of eigenmodes. Next, we pass to the principal coordinates ξ = [ξ1, ξ2]

T

using the relationship:

ϕ = Uξ = Φ(1)ξ1 +Φ(2)ξ2. (3.3.17)

Substituting this expression into the equation (3.3.16) and multiplying it from the
left by UT, taking into account the orthogonality conditions for the eigenmodes
(2.4.26), we arrive at matrix equation:

A0ξ̈ + C0ξ = Q0 cosωt, (3.3.18)

where the following values are introduced:

A0 = UTA0U = diag(Ns), C0 = UTC0U = diag(Nsk
2
s0),

Q0 = UTQ0.

(3.3.19)
Since the matrices A0 and C0 are diagonal, (3.3.18) splits into two independent
scalar equations that actually describe the motion of a linear oscillator in the
presence of an external harmonic force:

ξ̈s + k2s0ξs =
ΦT

(s)Q0

Ns
cosωt. (3.3.20)

The solution of each of these equations, corresponding to the right side, has the
form:

ξs =
ΦT

(s)Q0

Ns(k2s0 − ω2)
cosωt. (3.3.21)



62

Returning to the original generalized coordinates according to (3.3.17), we finally
find: ϕ =


Φ(1)

ΦT
(1)Q0

N1(k210 − ω2)
+Φ(2)

ΦT
(2)Q0

N2(k220 − ω2)


cosωt. (3.3.22)

Using the resulting expression, it is easy to understand what forced oscillation
each of the harmonic components of the expression (3.3.10) excites. We note that
when constructing a solution on the first mode, the first harmonic should take
into account only the second term in the expression (3.3.22), since this harmonic
is already balanced on the first mode. On the contrary, when constructing a
solution on the second mode, only the first term should be taken into account [11].
Summing up the solutions corresponding to each harmonic of the expression
(3.3.10), we obtain the so-called “regularized oscillation” excited in an unperturbed
system by generalized forces Q(I)(Φ(s)a cosψ, . . .) in the form:

ϕ(I)(a, ψ) = Φ(n)

ΦT
(n)U

(I)
s mgla3

Nn (k2n0 − k2s(a))
cosψ+

+

Φ(1)

ΦT
(1)V

(I)
s mgla3

N1 (k210 − 9k2s(a))
+Φ(2)

ΦT
(2)V

(I)
s mgla3

N2 (k220 − 9k2s(a))

 cos 3ψ.

(3.3.23)

where the additional index n is introduced, and n = 1 at s = 2 and vice versa
n = 2 at s = 1. It is clear that to keep only the terms of the third order of smallness
in this expression, it suffices to substitute the constant value ks0 instead of ks(a).
Adding (3.3.23) to the expression (3.3.6), one can obtain a solution up to the third
order of smallness in the form:

ϕ = Φ(s)a cosψ + ϕ(I)(a, ψ) =

Φ(s)a+ u(I)

s a
3

cosψ + v(I)

s a
3 cos 3ψ, (3.3.24)

where the columns u(I)
s and v

(I)
s are:

u(I)
s =


±
√
2 + 1

32

2±
√
2

32

 , v(I)
s =


∓552

√
2− 437

2688

±781
√
2 + 576

2688

 . (3.3.25)

The expression (3.3.24) together with (3.3.14) describes the motion of flat double
pendulum on each of the nonlinear modes in the first approximation. We note
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that it is necessary to know both modes of small oscillations Φ(1) and Φ(2) to
construct each of the nonlinear oscillation modes separately.

Let us now calculate the column of generalized velocities corresponding to the
expression (3.3.24), taking into account the formula (3.3.14) with the required
accuracy:

ϕ̇ = −ks0


Φ(s)a+ u(I)
s a

3

sinψ + v(I)

s a
3 sin 3ψ


, (3.3.26)

where the columns are u(I)
s = u

(I)
s + ρ

(I)
s Φ(s) and v(I)

s = 3v
(I)
s look like:

u(I)
s =


∓19

√
2− 30

32

21± 16
√
2

16

 , v(I)
s =


∓552

√
2− 437

896

±781
√
2 + 576

896

 . (3.3.27)

Now we can calculate the total mechanical energy of the system according to
(2.3.10) up to the fourth order of smallness and make sure that for a given value
of a it is a constant value, i.e. does not depend on ψ. Expanding the trigonometric
functions included in the formula (2.3.10) into series, we obtain with the required
accuracy:

E =
1

2
ml2


2ϕ̇2

1 + ϕ̇2
2 + 2ϕ̇1ϕ̇2


1− (ϕ2 − ϕ1)

2

2


+
1

2
mgl


2ϕ2

1 + ϕ2
2 −

ϕ4
1

6
− ϕ4

2

12


.

(3.3.28)
Substituting here formulas (3.3.24) and (3.3.26), we obtain the desired expression
for the total energy up to the fourth order in a in the form:

E(I) = E0


1 +

∓20
√
2− 37

64
a2


, E0 =

1

2
Nsk

2
s0a

2 = 2mgla2, (3.3.29)

whereE0 is the total energy in the linear model. It is easy to see that the expression
(3.3.29) really does not depend on ψ, but depends only on a, which once again
confirms the correctness of the performed calculations.

Returning to the formula (3.3.24) and setting ψ = 0 in it, we can determine
the oscillation amplitudes of links A1s and A2s depending on the parameter a:

A
(I)
1s (a) = a+

∓468
√
2− 353

2688
a3, A

(I)
2s (a) = ∓

√
2a+

±865
√
2 + 744

2688
a3. (3.3.30)

It is interesting to estimate how the ratio of oscillation amplitudes of links µs(a) =
A2s/A1s changes when system moves on nonlinear mode with a gradual increasing
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a. Compose an expression for µs using (3.3.30), and then expand it into a series
in a, keeping only one correction:

µ(I)s (a) = µs0


1− 16∓ 3

√
2

84
a2


. (3.3.31)

Here µs0 = ∓
√
2 is the ratio of oscillation amplitudes in the linear model according

to (2.4.16). The expression (3.3.31) already gives a certain representation of the
change in the oscillation mode and shows that as a increases in a relatively small
range, the ratio of the amplitudes begins to fall when moving both on the first
and on the second mode:

µ
(I)
1 (a) ≈ µ10(1− 0.2410a2), µ

(I)
2 (a) ≈ µ20(1− 0.1399a2). (3.3.32)

2. Construction of the second approximation. We now turn to the
construction of the second approximation [72]. In this approximation, a fourth-
order correction should be introduced into the expression for oscillation frequency:

k(II)s (a) = ks0


1 + ρ(I)s a

2 + ρ(II)s a4

. (3.3.33)

Taking into account the orthogonality conditions (2.4.26), we can rewrite the
harmonic balance equation (3.3.8) as:

2π
0


Ns


d2x

dt2
+ k2s0x


−ΦT

(s)Q


cosψdψ = 0, (3.3.34)

where x = a cosψ is denoted. Let us calculate the expression up to the values of
the fifth order of smallness:

d2x

dt2
+ k2s0x =


−2ρ(I)s a

3 −

ρ(I)s

2
+ 2ρ(II)s


a5

k2s0 cosψ, (3.3.35)

as well as the column Q with the same accuracy:

Q =


U(I)
s a

3 +U(II)
s a5


cosψ +


V(I)

s a
3 +V(II)

s a5

cos 3ψ +

+W(II)
s a5 cos 5ψ


mgl,

(3.3.36)
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where the columns U(II)
s , V(II)

s and W
(II)
s have the form:

U
(II)
s =


∓43915

√
2− 61938

3584

106634± 76131
√
2

7168

 , V
(II)
s =


∓40077

√
2− 56722

1792

74698± 52845
√
2

3584

 ,

W
(II)
s =


∓201035

√
2− 279322

17920

354770± 252083
√
2

35840

 ,
(3.3.37)

while the columns U(I)
s and V

(I)
s retain the same notation (3.3.11). Then from the

equation (3.3.34) we obtain for ρ(I)s the same values (3.3.13) as before, as expected,
and also the expression for ρ(II)s :

ρ(II)s = −


ρ
(I)
s

2
2

− ml2

2Ns
ΦT

(s)U
(II)
s =

113415± 79872
√
2

28672
. (3.3.38)

Thus, the oscillation frequency in the second approximation k(II)s (a) when system
moves in nonlinear mode is determined by the expression:

k(II)s (a) = ks0


1− 31± 20

√
2

32
a2 +

113415± 79872
√
2

28672
a4


, (3.3.39)

or in a more visual form:

k
(II)
1 (a) = k10(1−0.0849a2+0.01604a4), k

(II)
2 (a) = k20(1−1.8526a2+7.8952a4).

(3.3.40)
We now obtain a solution up to the fifth order of smallness. To do this, we

determine which forced oscillation excites Q from (3.3.36) in the unperturbed
system:

ϕ(II)(a, ψ) = Φ(n)

ΦT
(n)


U

(I)
s a3 +U

(II)
s a5


Nn(k2n0 − k2s(a))

mgl cosψ+

+

Φ(1)

ΦT
(1)


V

(I)
s a3 +V

(II)
s a5


N1(k210 − 9k2s(a))

+Φ(2)

ΦT
(2)


V

(I)
s a3 +V

(II)
s a5


N2(k220 − 9k2s(a))

mgl cos 3ψ+
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+

Φ(1)

ΦT
(1)W

(II)
s a5

N1(k210 − 25k2s(a))
+Φ(2)

ΦT
(2)W

(II)
s a5

N2(k220 − 25k2s(a))

mgl cos 5ψ.
(3.3.41)

Here, as before, n = 1 for s = 2 and vice versa n = 2 for s = 1. To keep the
terms no higher than the fifth order of smallness in a, it suffices to substitute
the expression (3.3.14) in the first three fractions of this formula instead of ks(a),
and replace ks(a) with the constant value ks0 in the remaining two. Adding the
expression (3.3.41) to (3.3.6), we obtain with the required accuracy:

ϕ = Φ(s)a cosψ + ϕ(II)(a, ψ) =

=

Φ(s)a+ u(I)

s a
3 + u(II)

s a5

cosψ +


v(I)
s a

3 + v(II)
s a5


cos 3ψ +w(II)

s a5 cos 5ψ,

(3.3.42)
where the columns u(II)

s , v(II)
s and w

(II)
s have representations:

u
(II)
s =


∓1375

√
2 + 233

28672

±233
√
2− 2750

28672

 , v
(II)
s =


812575± 535236

√
2

802816

−1148584∓ 756783
√
2

802816

 ,

w
(II)
s =


±2255280

√
2 + 2911491

9748480

∓3111099
√
2− 4066960

9748480

 ,
(3.3.43)

and the columns u
(I)
s and v

(I)
s are defined by the former formulas (3.3.25). The

expression (3.3.42) together with (3.3.39) describes the motion of flat double
pendulum on each of the nonlinear modes in the second approximation. Let us
now calculate the column of generalized velocities with the same accuracy:

ϕ̇ = −ks0


Φ(s)a+ u(I)
s a

3 + u(II)
s a5


sinψ+

+
v(I)

s a
3 + v(II)

s a5

sin 3ψ + w(II)

s a5 sin 5ψ

,

(3.3.44)

where the columns u(I)
s and v(I)

s keep the old representations (3.3.27) and the
columns u(II)

s = u
(II)
s + ρ

(I)
s u

(I)
s + ρ

(II)
s Φ(s), v(II)

s = 3

v
(II)
s + ρ

(I)
s v

(I)
s


and w(II)

s =
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5w
(II)
s have the following form:

u(II)
s =


111660± 77069

√
2

28672

∓57585
√
2− 82675

14336

 , v(II)
s =


3435281± 2329564

√
2

802816

∓3270817
√
2− 4820440

802816

 ,

w(II)
s =


±2255280

√
2 + 2911491

1949696

∓3111099
√
2− 4066960

1949696

 .
(3.3.45)

To verify the obtained results, we write down the total mechanical energy of the
system up to terms of the sixth order of smallness. Turning again to the formula
(2.3.10) and expanding the series of trigonometric functions included in it with
the retention of the required number of terms, we obtain the following expression:

E =
1

2
ml2


2ϕ̇2

1 + ϕ̇2
2 + 2ϕ̇1ϕ̇2


1− (ϕ2 − ϕ1)

2

2
+

(ϕ2 − ϕ1)
4

24


+

+
1

2
mgl


2ϕ2

1 + ϕ2
2 −

ϕ4
1

6
− ϕ4

2

12
+

ϕ6
1

180
+

ϕ6
2

360


.

(3.3.46)

Substituting the formulas (3.3.42) and (3.3.44) into it, we finally get:

E(II) = E0


1 +

∓20
√
2− 37

64
a2 +

2262801± 1577160
√
2

802816
a4


, E0 = 2mgla2.

(3.3.47)
It can be seen that the total energy does not depend on ψ in this approximation,
which is an indicator of the correctness of the constructed solution.

Referring to the formula (3.3.42), we determine the oscillation amplitudes of
the pendulum links depending on the parameter a in the second approximation:

A
(II)
1s (a) = a+

∓468
√
2− 353

2688
a3 +

22500963± 14502380
√
2

17059840
a5,

A
(II)
2s (a) =

√
2a+

±865
√
2 + 744

2688
a3 +

−33160840∓ 21387427
√
2

17059840
a5.

(3.3.48)

Writing down the expression for the ratio of these amplitudes and expanding it
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into a series with the retention of two correction terms, we get:

µ(II)s (a) = µs0


1− 16∓ 3

√
2

84
a2 +

±895665
√
2− 747064

9596000
a4


, (3.3.49)

or in a more visual form:

µ
(II)
1 (a) = µ10(1−0.2410a2−0.2099a4), µ

(II)
2 (a) = µ20(1−0.1399a2+0.0542a4).

(3.3.50)
The formula (3.3.49) refines the expression (3.3.31) obtained earlier in the first
approximation and gives a certain representation of the first oscillation mode in
a wider range of the parameter a.

We note a regularity that can be traced when we construct formulas in the first
and second approximations for system motions on nonlinear oscillation modes: it
is clear that all differences between the first and second modes in all expressions
are only in the sign in front of the value

√
2.

Discussion of the results. We now turn to the analysis of the obtained
results. First, let us analyze the formulas obtained for the first nonlinear oscillation
mode. We plot the dependence of the oscillation frequency when the system moves
on the first mode in the first (3.3.14) and in the second approximation (3.3.39),
divided by the frequency in the linear model (i.e. k1/k10), on the oscillation
amplitude of the first link A11 within the same approximations according to
(3.3.30) and (3.3.48), respectively. As for orthogonal double pendulum, here in
each case we have a parametric dependence of the frequency on this amplitude
by means of an intermediate parameter a, and each subsequent approximation
takes into account a new correction both in the expression for the frequency
and in the expression for the amplitude. However, in contrast to the orthogonal
double pendulum, where the study of nonlinear oscillation modes was reduced
to the analysis of an ordinary mathematical pendulum, which admits an exact
analytical solution, in the case of flat double pendulum such a well-known solution
for nonlinear oscillation modes is absent. Therefore, approximate analytical results
must be compared with the corresponding numerical results obtained by numerical
integration of the matrix equation of motion (2.3.11). To do this, for each specific
oscillation amplitude of the first link A11, we should numerically select such an
oscillation amplitude of the second link A21, setting them as the initial conditions
of motion (the initial angular velocities of the links are assumed to be equal to
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zero), so that the motion of the double pendulum will be periodic (more precisely,
the closest to periodic) with a frequency near the first oscillation frequency of
the linear model k10 (so as not to get into the second mode). As a result, one
can also determine the oscillation frequency k1 for each amplitude A11, and we
should compare the approximate analytical results with it, and also give the
dependence of the dimensionless frequency k1/k10 corresponding to it on A11. All
mentioned dependencies are shown in Fig. 3.4. It can be seen that the analytical
and numerical results correlate very well, and each subsequent approximation
refines the results. Moreover, the oscillation frequency changes in a fairly small
range with increasing amplitude. Thus, by analyzing the constructed plots, one
can verify that the formulas obtained above give asymptotically correct results.

k1
k10

A11,
◦

1

2

0 5 10 15 20 25 30 35 40 45
0.94

0.95

0.96

0.97

0.98

0.99

1

Fig. 3.4. Dependence of the dimensionless frequency k1/k10 on amplitude A11:
1 – first approximation, 2 – second approximation, ◦ – numerical solution

Let us now turn to the expression for the ratio of amplitudes in the first (3.3.31)
and second (3.3.49) approximations and plot the dependence of µ1/µ10 on the
oscillation amplitude of the first link A11 according to (3.3.30) and (3.3.48). In
this case, we also compare the results with numerical ones. According to Fig. 3.5,
it can be seen that each subsequent approximation refines the results, i.e., the
obtained formulas also give asymptotically correct results in this case. It can also
be seen that the ratio of the amplitudes decreases with their increase, changing
more significantly than the oscillation frequency.

It should be emphasized that for the excitation of oscillations on the first
nonlinear mode at sufficiently large amplitudes, it is completely impossible to use
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µ1

µ10

A11,
◦

1
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0.95

1

Fig. 3.5. Dependence of value µ1/µ10 on amplitude A11: 1 – first approximation,
2 – second approximation, ◦ – numerical solution

the linear model, since it will already give incorrect results, but it is necessary to
use the obtained asymptotic expressions. For example, if it is necessary to excite
system oscillations on the first mode with the oscillation amplitude of the first link
A11 = 45◦, then from the obtained formulas, by varying the parameter a, it is easy
to determine what the oscillation amplitude of the second link A21 should be. So,
when we use a linear model, it should be A21 = 63.6◦, in the first approximation
A21 = 55.8◦, and in the second approximation A21 = 52.6◦. The value obtained
by numerical integration will be A21 = 53◦, and, as can be seen, it differs very
little from the second approximation, has noticeable differences from the first
approximation, and differs quite strongly from the value from linear model.

In order to visually illustrate the process of the drift of the first oscillation
mode during the transition from a linear to a nonlinear zone, let us turn to the
construction of a phase portrait of the system when it moves on this mode.
It is clear that the phase space in the problem under consideration is four-
dimensional. Therefore, it is convenient to construct a phase portrait for each
generalized coordinate separately, i.e., in the form of projections onto the planes
(ϕ1, ϕ̇1/k10) and (ϕ2, ϕ̇2/k10), where the division of the generalized velocities by
the value k10 is carried out from dimension considerations [142]. We will plot a
phase portrait using the formulas of the second approximation and compare it
with the results obtained using numerical integration. Of course, the accordance
between analytical and numerical results here must be made from the condition
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of equality of the energy levels corresponding to them. For a numerical solution,
it is easiest to set the initial values ϕ10 and ϕ20 of the angles ϕ1 and ϕ2, leaving
the system to itself, as was done above with study of the oscillation frequency
and the ratio of oscillation amplitudes. These values must be chosen so that they
correspond to a periodic motion on the first mode, and, as mentioned above, that
the according numerical phase trajectory corresponds to the same energy level as
the phase trajectory from the approximate analytical solution. For convenience,
we introduce the dimensionless energy ε = E/(mgl). On the one hand, for given
initial conditions in the numerical solution, it is determined according to (2.3.10):

ε = 3− 2 cosϕ10 − cosϕ20. (3.3.51)

On the other hand, the expression for the dimensionless energy in the second
approximation according to (3.3.47) will be:

ε = 2a2


1 +

20
√
2− 37

64
a2 +

2262801− 1577160
√
2

802816
a4


. (3.3.52)

By changing the parameter a, we will thereby vary the value of ε, i.e., we will
obtain phase trajectories with different energy levels. Figs 3.6 and 3.7 show
phase portraits on the planes (ϕ1, ϕ̇1/k10) and (ϕ2, ϕ̇1/k10). The solid lines show
the phase trajectories corresponding to the asymptotic formulas of the second
approximation, and the circles show the values obtained as result of numerical
integration and taken at regular time intervals. One can see a very good agreement
between the analytical and numerical results, and the process of oscillation mode
drift with increase in the dimensionless energy level ε is also clearly observed.
Thus, for small ε, the phase trajectories are concentric circles, which correspond
to the motion on linear oscillation mode, while as ε increases, the circles gradually
begin to be distorted and turn into other, more complex phase trajectories.

In addition, it is also of interest to construct a phase portrait for the interlink
angle θ2 = ϕ2 − ϕ1, which can be taken as the second generalized coordinate
instead of the absolute angle ϕ2, i.e., on the plane (θ2, θ̇2/k10), for the same energy
levels. It is shown in Fig. 3.8 and has a very nontrivial form. It demonstrates that
as ε increases, the phase trajectories significantly complicate their character and
acquire peculiar “loops”. In this case, with increase in the energy level, the circles
are located on the phase trajectories more and more unevenly. It can also be seen
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Fig. 3.7. Phase portrait for coordinate
ϕ2: solid lines – approximate analytical

results, ◦ – numerical solution

that as the energy level increases, more tangible differences between the analytical
and numerical results begin to appear here than in Figs 3.6 and 3.7. We note that
the intersection of phase trajectories with different energy levels in Fig. 3.8 does
not at all contradict the proposition that phase trajectories should not intersect
each other, since the above Figure shows only projections of phase trajectories
onto the plane (θ2, θ̇2/k10), while in reality the phase space is four-dimensional,
and no intersections of phase trajectories will be observed in it. In this case, the
energy levels corresponding to the constructed trajectories were chosen in such a
way that all phase portraits were the most accessible for perception.

For greater clarity, graph dependencies of the absolute angles ϕ1 and ϕ2

and the interlink angle θ2 on the phase angle ψ as it changes from 0 to 2π,
corresponding to one oscillation period, are presented in Fig. 3.9, and they are in
accordance with the phase trajectory with the highest energy level of those plotted
in Figs 3.6–3.8. In this case, the value ψ = k1t is also introduced for the numerical
solution, where k1 is the frequency obtained in the course of this solution, and
the analytical results correspond to the formulas of the second approximation.
As before, the analytical dependencies are represented by solid lines, and the
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Fig. 3.8. Phase portrait for coordinate θ2: solid lines – approximate analytical
results, ◦ – numerical solution

numerical dependencies are shown by circles. These graphs once again clearly
demonstrate the nontrivial character of the movements of flat double pendulum
on the first nonlinear mode, and there is also a good agreement between the
numerical and analytical results. Similar graphs are presented in Fig. 3.10, but
for the corresponding angular velocities. It should be noted that for the given case,
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the angle θ2, as well as the angular velocities ϕ̇1/k10 and θ̇2/k10 differ significantly
from sinusoidal functions and have six extremes on the oscillation period, not two,
as is the case of small oscillations. At the same time, the angles ϕ1 and ϕ2, as well
as the angular velocity ϕ̇2/k10, have two extremes on the oscillation period, as
in the case of small oscillations, but their form is also significantly different from
sinusoidal functions, thereby clearly reflecting the influence of nonlinear factors.
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Fig. 3.9. Graph dependencies of ϕ1, ϕ2 и θ2 on ψ: solid lines – approximate
analytical results, ◦ – numerical solution
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Fig. 3.10. Graph dependencies of ϕ̇1/k10, ϕ̇2/k10 и θ̇2/k10 on ψ: solid lines –
approximate analytical results, ◦ – numerical solution

We can also conclude from these considerations that if the angles ϕ1 and
θ2 are taken as generalized coordinates, then the ratio of their values achieved at
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ψ = 0 and taken as oscillation amplitudes will be an adequate characteristic of the
nonlinear oscillation mode only at sufficiently small deviations, since the maximum
value of the angle θ2 with their increase will not be reached at all at ψ = 0. In
this case, such a ratio will already be meaningless. This circumstance once again
emphasizes that in order to describe a nonlinear mode, it is necessary to know
the specific dependencies of the generalized coordinates on time (or the phase
angle) and the oscillation frequency corresponding to them. These expressions
were obtained above, and they made it possible to describe the first nonlinear
oscillation mode, i.e., the fundamental tone, which represents the main practical
value. It turned out that the limits of applicability of the asymptotic formulas
of the second approximation turn out to be quite wide, which ensures their
importance in the study of periodic modes of motion of a flat double pendulum.
In this case, the limits of applicability of the asymptotic formulas of the second
approximation turn out to be quite wide, which ensures their importance in the
study of periodic motion modes of flat double pendulum.

Let us now turn to a brief discussion of the results corresponding to the
second nonlinear oscillation mode. As before for the first mode, we consider
the dependence of the second frequency, divided by the corresponding linear
frequency: k2/k20, on the amplitude of the first link A12 using the same formulas
that contain the first two approximations. We also plot the dependence µ2/µ20 on
the oscillation amplitude of the first link A12 in two approximations. In each case,
we also apply the results obtained using numerical integration. These dependencies
are shown in Figs 3.11 and 3.12 respectively.

It can be seen according to Fig. 3.11 that each next approximation refines the
results for the frequency, although it is acceptable in a rather narrow range of
amplitudes. In this case, the second oscillation frequency changes strongly even
at small amplitudes, in contrast to the first frequency. This also follows from the
formulas (3.3.40), where there are very significant numerical coefficients for the
second frequency in comparison with the expression for the first frequency. In
particular, this also indicates that the area of applicability of the linear theory
in studying the system motions on the second oscillation mode is much smaller
than on the first mode, and it is limited for both angles to only a few degrees.
Formally, this is explained by the fact that when we have oscillations on the first
mode, when ϕ1 and ϕ2 oscillate in phase in the initial approximation, and when
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Fig. 3.12. Dependence of value µ2/µ20 on amplitude A12:
1 – first approximation, 2 – second approximation, ◦ – numerical solution

we have oscillations on the second mode, when ϕ1 and ϕ2 oscillate out of phase,
expansion of the nonlinear terms (3.3.5) of the equations under study (3.3.1) into
series will adequately describe the behavior of the system in different ranges of
oscillation amplitudes. The ratio of amplitudes does not undergo practically any
changes in the considered range. However, even in such a narrow range, a reliable
asymptotic behavior of the obtained results is clearly demonstrated. Thus, despite
the fact that the oscillation frequency strongly depends on the amplitude, i.e.,
this zone is already nonlinear, the ratio of the amplitudes and the character of the
corresponding oscillation mode in the amplitude range under consideration will
still be practically indistinguishable from the linear variant.
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3.4. Nonlinear Oscillation Modes in General Case

of Spatial Double Pendulum

Let us turn to the study of nonlinear oscillation modes in the general case of
a spatial double pendulum, using the already proven technique and constructing
here only one approximation due to the sufficient cumbersomeness of subsequent
calculations [143]. To this purpose, we rewrite the nonlinear matrix motion equation
(2.2.12) in the following form:

A0θ̈ +C0θ = A(θ)θ̈ + B(θ, θ̇) + C(θ) = Q(θ, θ̇, θ̈), (3.4.1)

where the matrices A0 and C0 are defined by the formulas (2.4.2), and the notation
is made:

A(θ) = A0 −A(θ), B(θ, θ̇) = −B(θ, θ̇), C(θ) = C0θ −C(θ). (3.4.2)

It is enough to keep only the cubic nonlinearity in expression for Q to construct
the first approximation. In turn, this means that the following approximations for
matrix A and columns B and C should be used:

A(θ) =
1

2
ml2θ22


2(1 + sin2 α) cosα

cosα 0


,

B(θ, θ̇) = ml2θ2

 2 1 + sin2 α

θ̇1 + cosαθ̇2


θ̇2

−(1 + sin2 α)θ̇21

 ,
C(θ) =

1

6
mgl

 3θ1(θ
2
1 + θ22) + cosαθ2(3θ

2
1 + θ22)

θ2(3θ
2
1 + θ22) + cosαθ1(θ

2
1 + 3θ22)

 ,
(3.4.3)

so that the column Q will contain third-order nonlinear terms at θ, θ̇ and θ̈.
We note that, by virtue of the construction of only the first approximation, its
number will be omitted everywhere below. As an initial approximation, we take
the following expression:

θ = Θ(s)a cosψ, (3.4.4)

where a = const, and the oscillation frequency depends on a as follows:

ψ̇ = ks0(1 + ρsa
2) = ks(a), (3.4.5)
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and the modes of small oscillations are here taken in the form Θ(s) = [1, βs0]
T

taking into account the expression (2.4.14). Therefore, the value of a according
to (3.4.4) will be the amplitude of oscillations of the angle θ1 in the initial
approximation. The correction factor ρs in the expression for the frequency ks will
now depend on the angle α, and establishing this dependence is one of the main
tasks. As before, it should be determined from the harmonic balance equation for
the given oscillation mode Θ(s):

2π
0

ΘT
(s)


A0θ̈ +C0θ −Q


cosψdψ = 0. (3.4.6)

We calculate the column θ̈ up to terms of the third order of smallness, according
to (3.4.4) and taking into account (3.4.5), and also the column of nonlinear terms
Q with the same accuracy:

θ̈ = −Θ(s)a cosψk
2
s0(1 + 2ρsa

2), Q = mgl (Us cosψ +Vs cos 3ψ) a
3, (3.4.7)

where the columns Us and Vs have the following representations:

Us =
1

8


3

β3
s0


+

3− 2p2s0(1 + sin2 α)


βs0


βs0

1


+

+cosα


3βs0

1


+ cosα(1− p2s0)β

2
s0


βs0

3


,

(3.4.8)

Vs =
1

24


3

β3
s0


+ 3βs0


βs0

1


+ 6


1 + sin2 α


p2s0βs0


−3βs0

1


+

+cosα


3βs0

1


+ cosαβ2

s0


βs0

3


− 3 cosαp2s0β

2
s0


3βs0

1


.

(3.4.9)

Substituting now (3.4.8) and (3.4.9) into (3.4.6) and taking into account that
C0 − k2s0A0


Θ(s) = 0, we get after transformations:

ρs = − mgl

2Nsk2s0
ΘT

(s)Us = − 1

2Hsp2s0
ΘT

(s)Us, (3.4.10)

where the values Ns and Hs are determined by the formulas (2.4.23) and (2.4.24)
respectively. It is not difficult to calculate the expression ΘT

(s)Us in (3.4.10) using
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the formula (3.4.8):

ΘT
(s)Us =

1

8


3 + 4 cosαβs0 + 2


3− 2p2s0(1 + sin2 α)


β2
s0+

+4 cosα(1− p2s0)β
3
s0 + β4

s0


.

(3.4.11)

Thus, the dependence (3.4.10), taking into account (2.4.14), (2.4.24) and (3.4.11),
determines the dependence of the correction factor ρs on the angle α.

It remains to obtain a solution up to the third order of smallness. For this, we
find the correction θ(a, ψ) due to the value Q in equation (3.4.1). By analogy with
the formula (3.3.23), it is easy to understand what kind of oscillations the force
Q excites in the unperturbed system, up to terms of the third order of smallness:θ(a, ψ) = (us cosψ + vs cos 3ψ) a

3, (3.4.12)

where the columns are us = [u1s, u2s]
T and vs = [v1s, v2s]

T have the following
form:

us = Θ(n)

ΘT
(n)Us

Hn(p2n0 − p2s0)
, vs = Θ(1)

ΘT
(1)Vs

H1(p210 − 9p2s0)
+Θ(2)

ΘT
(2)Vs

H2(p220 − 9p2s0)
,

(3.4.13)
where n = 1 for s = 2 and vice versa n = 2 for s = 1. As before, a “regularized
oscillation” is written here, which takes into account that when constructing a
solution for a given oscillation mode Θ(s), it is already balanced due to (3.4.6).
Therefore, only the term corresponding to the other oscillation mode is retained
in the expression for us. It should also be emphasized that the small oscillation
frequencies maximally differ at α = 0, when p20/p10 =

√
2+1 ≈ 2.4142, and this

ratio tends to the value p20/p10 =

5/3 ≈ 1.2910 with increasing α from 0 to

π/2. Consequently, the denominators of fractions in the formula (3.4.13) for vs

cannot be equal to zero, which ensures the correctness of the constructed solution
for the considered double pendulum with noncollinear joints. Summing up the
expressions (3.4.12) and (3.4.4), we obtain a solution with the desired accuracy:

θ = Θ(s)a cosψ + θ(a, ψ) = Θ(s)a+ usa
3

cosψ + vsa

3 cos 3ψ, (3.4.14)

which describes the motion of the system on a nonlinear oscillation mode. Therefore,
the expression for the column of generalized velocities θ̇, taking into account
(3.4.5), will then look like:

θ̇ = −ks0

Θ(s)a+ usa

3

sinψ + vsa

3 sin 3ψ

, (3.4.15)
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where the following notations are made: us = us + ρsΘ(s) and vs = 3vs.
In order to make sure that the constructed solution is correct, we should check

the constancy of total mechanical energy with the required accuracy. Considering
that the exact expressions for the kinetic and potential energies are respectively
(2.2.8) and (2.2.10), we expand the trigonometric functions included in them into
Taylor series, as a result of which we get:

E =
1

2
ml2


5− (1 + sin2 α)θ22


θ̇21 + cosα(4− θ22)θ̇1θ̇2 + θ̇22


+

+
1

2
mgl


3θ21 −

θ41
4
+ θ22 −

θ42
12

− θ21θ
2
2

2
+ 2 cosαθ1θ2


1− θ21

6
− θ22

6


.

(3.4.16)

Taking into account the formulas (3.4.14) and (3.4.15), we the obtain an expression
for the total energy up to the terms of the fourth order of smallness at a:

E = Es0(1 + δsa
2), Es0 =

1

2
mglHsp

2
s0a

2, (3.4.17)

which does not depend on ψ. This circumstance can be verified using computational
procedures in any computer program, since analytical calculations here turn out to
be too cumbersome. We note that Es0 in (3.4.17) represents the total mechanical
energy in the linear model, and the dependence of the coefficient δs on the angle
α can also be obtained using computational procedures.

Let us further consider in detail the first nonlinear oscillation mode, which, as
mentioned above, represents the main practical value. We plot the dependence of
the correction factor ρ1 on the angle α. It is shown in Fig. 3.13. It is easy to check
the results obtained in the special cases α = 0 and α = π/2, which were considered
above. At α = 0 we have according to (3.4.10) ρ1 = −(31−20

√
2)/32 ≈ −0.0849,

which agrees with the expression (3.3.13), and at α = π/2 we get ρ1 = −1/16 =

−0.0625, as it should be based on the formula (3.2.10). These values are clearly
visible in Fig. 3.13.

Discussion of the results. Let us now discuss the dependencies of the
elements of columns u1 = [u11, u21]

T and v1 = [v11, v21]
T, which characterize

the correction terms in the formula (3.4.14), on the angle α. They are presented
graphically in Figs 3.14 and 3.15 respectively. In case α = 0 we find from (3.4.13)
values: u11 = (1 −

√
2)/32 ≈ −0.0129, u21 = 1/32 = 0.03125, v11 = (552

√
2 −

437)/2688 ≈ 0.1278 and finally v21 = (1013 − 1333
√
2)/2688 ≈ −0.3245. To



81

0 π/12 π/6 π/4 π/3 5π/12 π/2
-0.086

-0.084

-0.082

-0.08

-0.078

-0.076

-0.074

-0.072

-0.07

-0.068

-0.066

-0.064

-0.062

α

ρ1

Fig. 3.13. Graph dependence of
value ρ1 on angle α

0 π/12 π/6 π/4 π/3 5π/12 π/2
-0.015
-0.012
-0.009
-0.006
-0.003

0
0.003
0.006
0.009
0.012
0.015
0.018
0.021
0.024
0.027
0.03

0.033

u11

α

u21

u11

u21

Fig. 3.14. Graph dependencies of
values u11 and u21 on angle α

v11

v11

v21

v21

α
0 π/12 π/6 π/4 π/3 5π/12 π/2

-0.33
-0.3

-0.27
-0.24
-0.21
-0.18
-0.15
-0.12
-0.09
-0.06
-0.03

0
0.03
0.06
0.09
0.12
0.15

Fig. 3.15. Graph dependencies of
values v11 and v21 on angle α

0 π/12 π/6 π/4 π/3 5π/12 π/2
-0.137

-0.133

-0.129

-0.125

-0.121

-0.117

-0.113

-0.109

-0.105

-0.101

-0.097

-0.093

α

δ1

Fig. 3.16. Graph dependence of
value δ1 on angle α



82

check these results, we should compare them with the values obtained earlier.
Recall that when studying the variant α = 0, we took as generalized coordinates
the absolute deviation angles ϕ1 and ϕ2 of the pendulum links from the vertical.
As mentioned above, these angles are related to the rotation angles in joints by
the relations ϕ1 = θ1, ϕ2 = θ1 + θ2, and this should be taken into account when
calculating the values u11, u21, v11, v21 from the formula (3.4.14) for the case of
a flat double pendulum. Referring to the formulas (3.3.24) and (3.3.25), it is easy
to check that the indicated values really take at α = 0 the same values that were
written above. For the case α = π/2 we find from (3.4.13): u11 = u21 = v21 = 0

and v11 = −1/192 ≈ −0.005208, which is in full agreement with the formula
(3.2.14). All these values are easily seen in Figs 3.14 and 3.15. We also note that
both u11 = 0 and u21 = 0 when condition ΘT

(2)U1 = 0 is performed, i.e., at
α = 0.8108.

The graph dependence of the coefficient δ1 in the expression for the total
energy on the angle α is shown in Fig. 3.16. In the particular cases we have:
δ1 = (20

√
2 − 37)/64 ≈ −0.1362 at α = 0 и δ1 = −3/32 = −0.09375 at

α = π/2, and these values are in full agreement with the formulas (3.3.29) and
(3.2.19).

Next, we present the phase portrait of the system movement on the first
nonlinear oscillation mode, for example, at α = π/6, considering the motion of the
representing point in the projection onto the planes (θ1, θ̇1/k10) and (θ2, θ̇2/k10).
We restrict ourselves here to only demonstrating a smooth transition of linear
to nonlinear oscillations mode, depicting phase trajectories with not very large
energy. It is necessary to use the formulas (3.4.14) and (3.4.15) to construct
these trajectories. In addition, we compare qualitatively and quantitatively the
obtained solution with the numerical one constructed using numerical integration
procedure. To numerically determine the nonlinear mode, as usual, one can set
the initial values θ10 and θ20 of the angles θ1 and θ2 without specifying the initial
velocities, and these values must be chosen so that they correspond to periodic
movement, which frequency should be close to the linear value k10. Finally, the
phase trajectories in the analytical and numerical solution must correspond to
the same energy level. Reintroducing the dimensionless energy ε = E/(mgl), we
establish that for given initial conditions in the numerical solution it is determined
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by the expression:

ε = 3− (2 + cos θ20) cos θ10 + cosα sin θ20 sin θ10, (3.4.18)

which follows from (2.2.10), and at the same time, in the approximate analytical
solution according to (3.4.17), it has the form:

ε =
1

2
H1p

2
10(1 + δ1a

2) = 1.8924a2(1− 0.1276a2), (3.4.19)

where the specific values of the coefficients are also indicated for the case α = π/6.
The phase portraits are shown in Figs 3.17 and 3.18. The solid lines represent
the approximate analytical results, and the circles correspond to the results of
numerical integration, and they correspond to values which are taken at equal
time intervals. It is seen that there is a good agreement between the analytical
and numerical results. Moreover, the shape of phase trajectories with energy level
increasing is more and more different from the circular one that corresponds to
the linear model. This can be seen especially clearly in Fig. 3.18, although the
values θ2 and θ̇2/k10 are rather small. Nevertheless, the nonlinearity influence is
very significant here.

For greater clarity, we finally plot the graphs dependencies of the values of
angles θ1 и θ2 and dimensionless angular velocities θ̇1/k10 and θ̇2/k10, where
k10/k = p10 = 0.7672 at α = π/6, on phase angle ψ when it changes from 0

to 2π, which correspond to the trajectory with the highest energy level from the
above. To pass from time t to a similar value in the numerical solution using the
formula ψ = k1t, it is necessary to know the frequency of nonlinear oscillations in
this solution: k1/k = 0.7415. We notice that for approximate analytical solution
according to (3.4.5), this value turns to k1/k = 0.7405, i.e. it does not differ
practically from the numerical one. The indicated dependencies are shown in
Fig. 3.19, and they clearly describe the motion process of the system on the
first nonlinear oscillation mode, demonstrating also adequate agreement between
analytical and numerical results. It can be seen that the given dependencies have
more complex nature than when the system moves on a linear oscillation mode.



84

θ1

θ̇1
k10

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Fig. 3.17. Phase portrait for coordinate
θ1: solid lines – approximate analytical

results, ◦ – numerical solution

θ2

θ̇2
k10

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Fig. 3.18. Phase portrait for coordinate
θ2: solid lines – approximate analytical

results, ◦ – numerical solution

π
ψ

θ̇2
k10

θ̇1
k10

θ2

θ1

θ1

θ2

θ̇1
k10

θ̇2
k10

0 π/4 π/2 3π/4 5π/4 3π/2 7π/4 2π
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Fig. 3.19. Graph dependencies of θ1, θ2, θ̇1/k10 и θ̇2/k10 on ψ:
solid lines – approximate analytical results, ◦ – numerical solution



85

3.5. Conclusions on Third Chapter

The approximate analytical solutions constructed in this chapter for oscillation
frequencies and modes of double pendulum with noncollinear joints make it possible
to consider from a unified standpoint a smooth transition from its linear model to
a nonlinear one and vice versa. For the general case, the solution was obtained only
in the first approximation, while for particular variants of the orthogonal and flat
double pendulum, it was possible to construct a solution in two approximations.
These approximations demonstrate that the motion of the system on the oscillation
mode is periodic and is the sum of several harmonic components when nonlinear
effects are taken into account. In this case, the first approximation is described by
rather compact expressions and gives a qualitatively correct picture of the change
in the key parameters of the nonlinear mode, while the second approximation,
being more cumbersome in its structure, makes it possible to obtain more accurate
results in quantitative terms. The undoubted advantage of all the above expressions
is their convenient formula representation and adequate correspondence to the
results of numerical integration, as well as a clear graphical interpretation of
the oscillation frequencies, the ratio of oscillation amplitudes, phase portraits,
generalized coordinates and dimensionless generalized velocities in one oscillation
period.

The obtained results may be necessary in the development and design of
various devices of modern robotics, first of all, spatial manipulators, which can
oscillate with sufficiently large amplitudes. In addition, the significant value of
these results lies in the fact that they are important for further research, and
first of all, for the problems of adequate control of the working movements of such
manipulators. This is due to the fact that in this case it is necessary to provide for
transient overclocking modes from their small oscillations on any mode to large
ones, where the role of nonlinear terms in the overall picture of behavior sharply
increases, so that it is necessary for this purpose to have a detailed representation
of the qualitative and quantitative character of these movements.
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4. Collinear Control of
Oscillation Modes of Spatial

Double Pendulum

4.1. Principles of Formation of Rational Control

Actions

Oscillation control of pendulum structures is one of the main directions of
modern control theory, and a large number of publications are devoted to this
issue. Herewith, controlled processes in pendulum systems with several degrees
of freedom are of particular interest. This is due to the fact that in this case,
in order to achieve certain purposes, it is necessary to pay closer attention to
the formation of control actions than in the study of systems with one degree of
freedom. In particular, a significant number of works are devoted to the control
of the movements of a double pendulum and its modifications [3, 88,94,120].

It is clear that one of the most important tasks is to propose an approach to
the formation of a fairly simple control law that allows such pendulum system
to swing on each of its oscillation modes separately with their gradual transition
to a nonlinear zone. This path should be considered rational, since during its
implementation, all the energy supplied to the system will be directed to the
development of only one oscillation mode, without exciting other modes. In this
case, it is important also to ensure the gradual transition of the system to the
required functioning mode which corresponds to a predetermined energy level and
represents a regular periodic motion with sufficient large amplitude. As mentioned
above, these motions are the most valuable of all possible movement modes of
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nonlinear systems, because they are advisable for practical use in the operation of
manipulators and other robotic devices. In this regard, the main purpose of this
chapter is to construct and study a control with the indicated properties.

As noted, the oscillation frequencies of nonlinear systems begin to drift with an
increase in the oscillation amplitudes, while the oscillation modes also gradually
begin to change. Therefore, the traditional methods of swinging of the system, that
is, the organization of resonant oscillations, associated with harmonic excitation
in the form of a given program in time with prescribed frequency from the outside
and widely used in linear systems, are unsuitable here. This is due to the fact that
in this case the main condition for the occurrence of the resonant process will be
violated – the action of an external force in time with natural oscillations of the
system. This means that in order to organize truly resonant effects in nonlinear
systems, it is necessary to create control actions in accordance with the state of
the system, i.e. when the excitation frequency is not externally prescribed, but fed
to the excitation drive as a feedback signal [65]. Such a controlled resonant mode
is well known for systems with one degree of freedom, and its research begins
from fundamental work [4], where the concept of ”autoresonance” was introduced
for it. This controlled mode ensures that the frequency and phase of the feedback
signal will exactly correspond to the current frequency and phase of the system
oscillations, due to which all the energy entering the system will be transferred
to it. However, term ”autoresonance” remained practically unnoticed for many
years, and the interest in this concept gradually increased only in the last several
decades [5, 32]. For example, the works [109, 110] are devoted to the feedback
resonance. The main difficulty in the practical implementation of such resonance
is the need to use a feedback loop in order to form the required drive control law.

It is known that the formation of a control law using feedback can be carried
out in many different ways for systems with one degree of freedom, when there will
be a monotonic increase in the total energy of the system [108]. The organization
of such an overclocking mode turns out to be more difficult for multidimensional
nonlinear systems. Feedback resonance in similar systems is studied in some works,
for example, in [102]. In this situation, the difficulty arises due to such mechanical
systems have several degrees of freedom, i.e., several frequencies and modes. As
mentioned above, it is necessary for swinging of the system in this case not only
to increase the energy of the system, but also to be able to swing the system on
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one of its free oscillation modes separately. Otherwise, the energy supplied to the
system will go to excite all modes at once, which will lead to a sharp decrease
of the resonant properties of control and the quality of the motion processes.
This means that the required control should not violate the linear oscillation
modes of the system and allow a gradual transition of each oscillation mode to a
corresponding nonlinear one, swinging the system from small amplitudes up to the
sufficiently large ones. We note that the preservation of the topological structure
of the nonlinear oscillations mode becomes extremely important for the running
movement modes of living organisms with amplitudes of limb swaying, reaching up
to sufficiently large values. Therefore, the required control will play an extremely
important role in the problems of biomechanics and robotics, where the transition
from stepping to running amplitudes is possible only in the autoresonance mode,
and both when walking and running, the movement remains single-frequency,
although its frequency is gradually changing, and there is also a smooth change
in the oscillation mode. Consequently, the control actions constructed in this way
will be of great practical importance and will be able to find application in the
running of androids, where the creation of a nonlinear resonant mode plays a
primary role [81], so their formation and analysis seems to be the actual task.

4.2. Formation of Control Actions According to

the Principle of Collinear Control

Let us turn to the study of controlled motions of spatial double pendulum. We
will assume that sensors are installed in both of its joints that can read information
about state variables, i.e., the values θ1, θ̇1, θ2, θ̇2, corresponding to the current
system configuration. The control moments acting in the pendulum joints are
formed according to the feedback principle on the basis of these values. We write
the nonlinear matrix equation of the controlled motion of the system by adding
the column of control actions Q to the right side of the equation (2.2.11):

d

dt

∂T

∂θ̇
− ∂T

∂θ
= −∂Π

∂θ
+Q. (4.2.1)

To find out how the feedback control law should be formed, we first establish the
energy relation by multiplying the equation (4.2.1) by the string θ̇T on the left.
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The resulting equality can be transformed, taking into account that according to
(2.2.8) and (2.2.10) we have T = T (θ, θ̇), Π = Π(θ), and in addition

d

dt


θ̇T∂T

∂θ̇


= θ̇T d

dt

∂T

∂θ̇
+ θ̈T∂T

∂θ̇
,

dT

dt
= θ̇T∂T

∂θ
+ θ̈T∂T

∂θ̇
,

dΠ

dt
= θ̇T∂Π

∂θ
.

(4.2.2)
As a result, we get the following relation:

d

dt


θ̇T∂T

∂θ̇
− T +Π


= θ̇TQ. (4.2.3)

Since T is the quadratic form of generalized velocities, then

θ̇T∂T

∂θ̇
= θ̇TA(θ)θ̇ = 2T, (4.2.4)

and after that we finally arrive from (4.2.3) at a simple energy relation:

Ė = θ̇TQ, (4.2.5)

where E = T + Π is the total mechanical energy of the system. This implies the
obvious conclusion that in order to increase in energy, it is necessary to choose
the column of control actions Q in order to fulfill the condition

θ̇TQ ≥ 0. (4.2.6)

It seemed that the simplest way here is to choose the column of control actions
in proportion to the column of angular velocities, i.e., in the form

Q = γθ̇, (4.2.7)

where γ is the gain factor, which is a constant value in its simplest form. It is
clear that in this case the energy relation (4.2.6) will take the form:

Ė = γθ̇Tθ̇ = γ∥θ̇∥2 ≥ 0, (4.2.8)

where ∥θ̇∥ =

θ̇21 + θ̇22 is the norm of the column θ̇, and this relation will

be satisfied for any positive value γ. It is easy to understand that with such
formation of the control law, it will imitate the dissipative forces of viscous friction
in the pendulum joints, taken with opposite signs. Based on the analysis of the
dissipative model of the spatial double pendulum under consideration, carried out
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in Ch. 2, we can conclude that in this case, within the framework of the linear
model, at values γ that ensure the oscillatory character of the motion, the second
mode will grow much faster than the first one. This means that if the initial
conditions of motion are set not exactly corresponding to the first mode, then
the second mode will also be excited, which will disrupt the smooth growth of
the first mode and eventually begin to dominate. We note that such behavior
will also be characteristic of other mechanical systems if, instead of dissipative
forces of viscous friction, analogous control actions are organized in articulated
joints. Indeed, usually in oscillatory systems with many degrees of freedom, the
presence of friction in articulated joints leads to the rapid disappearance of higher
oscillation modes [11], so that in the case of a controlled process organized in the
indicated way, we will have the opposite effect. Moreover, as was also mentioned
in Ch. 2, in the problem under consideration, dissipative forces do not violate the
natural oscillation modes of the system, however, in the general case, these forces
can significantly distort them. At the same time, it is highly desirable to form a
control that can be recommended for use in a wide class of mechanical systems.
These circumstances do not allow us to recommend the control law (4.2.7) for
practical use, and therefore the question of construction a control that would not
violate the modes of conservative oscillations and would allow swinging each of
them equally becomes more serious than it seemed at first sight.

To form a control that has the required resonant properties that would allow to
transfer all the supplied energy to the excitation of only one oscillation mode for
an arbitrary oscillatory mechanical system, let us turn to physical considerations.
They suggest that it is expedient to apply control actions in “unison” with the
inertia forces that arise when the system is overclocked, while not changing their
general character. Such a controlled motion mode is called collinear control [76]. In
a multidimensional mechanical system, the collinearity condition means that the
column of control actions Q is proportional to the column of generalized impulses
of the system K = ∂T/∂θ̇:

Q = γ
∂T

∂θ̇
, (4.2.9)

where γ is the gain factor, which is a constant value in the simplest case. It
can be seen from the control structure (4.2.9) that it is kinetic, i.e. it takes
into account the own dynamic properties of the system [51]. Initially, this idea
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was applied to the problem of overclocking a free rigid body to a certain level
of angular velocity by means of an external torque (for example, using gas-jet
engines mounted on the carrier body), constructed on the principle of collinear
control. Considering that for a rigid body the generalized impulse is directly the
vector of the kinetic moment, then the torque here is formed in proportion to
the kinetic moment [51]. This mode turned out to be extremely useful, and,
moreover, optimal in terms of such criteria as consumption of working substance
or speed. Therefore, it was subsequently used to control the movement of various
manipulators, where it also demonstrated its effectiveness [76]. All this prompted
the use this method for autoresonant excitation in multidimensional oscillatory
systems that are functioning in various force fields. The expression (4.2.5), taking
into account (4.2.9), is reduced to the following form:

Ė = γθ̇T∂T

∂θ̇
= 2γT, (4.2.10)

and since the kinetic energy is a positive-definite quadratic form of generalized
velocities, then for γ > 0 there is a system overclock, and for γ < 0 there is
its braking, as expected from physical considerations. We note that in the case
γ = const > 0, collinear control can also be interpreted as dissipative actions
taken with the opposite sign, for which the dissipative function is defined by the
expression R = γT . It is clear that in this analogy we are already talking about
external viscous friction acting on the loads of the pendulum, and in our problem
the dissipative coefficients will be equal to b = γm. It should be noted one more
important feature of the control (4.2.9) – like the Lagrange equations of the second
kind, it will have the same formula for any choice of generalized coordinates.
Therefore, for example, to study the controlled motion of a flat double double,
we can take ϕ as a column of generalized coordinates, so that the equations have
the simplest form, and then the column of control actions will be Q = γ ∂T/∂ϕ̇,
where the kinetic energy T must be expressed in terms of ϕ and ϕ̇ as (2.3.4)
[41, 72, 73]. It should keep in mind that with such a choice, the column Q will
no longer be a column of control moments in the joints, but will simply be a
column of generalized forces corresponding to the chosen generalized coordinates.
However, the resulting equations will describe the same controlled process.

The motion equations of spatial double pendulum in the presence of collinear
control can be obtained by adding a column (4.2.9) to the right side (2.2.11). As
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a result, we arrive at the following matrix equation for the controlled motion of
the system:

A(θ)(θ̈ − γθ̇) +B(θ, θ̇) +C(θ) = 0, (4.2.11)

which is the main subject of further research. It is necessary to show that this
control satisfies all the requirements which were presented above, and we move
on to this.

4.3. Analysis of Linear and Nonlinear Controlled

Models at Constant Gain

Before directly studying the nonlinear equation (4.2.11), let us consider in
detail the corresponding linear model, assuming γ = const. Linearizing this
equation, we obtain the following matrix equation:

A0(θ̈ − γθ̇) +C0θ = 0. (4.3.1)

Looking for its solution in the form (2.5.4), we arrive at a linear matrix equation
with respect to the unknown column Θ:

(λ2 − γλ)A0 +C0


Θ = 0, (4.3.2)

for which the condition for the existence of a nontrivial solution has the form:

det

(λ2 − γλ)A0 +C0


= 0. (4.3.3)

Comparing (4.3.3) with (2.4.6), it can be established that the solutions of the
characteristic equation (4.3.3) satisfy the following equations:

λ2 − 2δλ+ k2s0 = 0, δ =
γ

2
, s = 1, 2. (4.3.4)

This also implies the most important conclusion that the oscillation modes of the
controlled system within the framework of the linear model remain the same as
in the original conservative system, i.e., they are not distorted by control actions.
This confirms what was said earlier about the worth of collinear control. Solving
the equations (4.3.4), we find the roots of the characteristic equation (4.3.3) for
the problem under consideration:

λ1,2 = δ ± ik1, λ3,4 = δ ± ik2, (4.3.5)
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where the notation is introduced:

ks =

k2s0 − δ2, (4.3.6)

and the values ks depending on δ can be both real and imaginary. In the case
when these values are real, they represent the oscillation frequencies of spatial
double pendulum considering collinear control, otherwise, there will already be
an aperiodic motion according to the mode Θ(s). As in the case of dissipative
forces, we write expressions for dimensionless oscillation frequencies ps = ks/k:

ps =

p2s0 − σ2, (4.3.7)

where σ = δ/k is a dimensionless control coefficient, where σ > 0 corresponds to
system overclocking and σ < 0 to its braking. It can be seen from (4.3.7) that the
values p1 and p2 are real if the following conditions are satisfied, respectively:

ps ∈ R ⇒ |σ| < σs0 = ps0. (4.3.8)

It follows from this that σ10 < σ20, therefore, as |σ| increases, the first frequency
will first turn to zero, remaining always less than the second according to (4.3.7).
Graphs dependencies of values p1 and p2 on |σ| are shown in Fig. 4.1.

Thus, the solution of the equation (4.3.1) can be written as:

θ = eδt

Θ(1)


A1e

ik1t +B1e
−ik1t


+Θ(2)


A2e

ik2t +B2e
−ik2t


, (4.3.9)

where As and Bs, s = 1, 2 are complex integration constants, and, as in the case
of a dissipative system considered earlier, it follows from the reality of θ that
Bs = As. These constants are defined similarly to (2.5.28) and have the form:

As =
(−δ + iks)Θ

T
(s)A0θ0 +ΘT

(s)A0θ̇0

2iksNs
,

Bs =
(δ + iks)Θ

T
(s)A0θ0 −ΘT

(s)A0θ̇0

2iksNs
.

(4.3.10)

All conclusions regarding the linear model of collinear control are of a general
character and remain valid for an arbitrary oscillatory mechanical system, which
initial linearized equation is described by equation in the form (2.4.1) [73].
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Fig. 4.1. Oscillation frequencies of spatial double pendulum with collinear control

Thus, collinear control at δ > 0 in the linear model does not violate oscillation
modes of the original conservative system, but only enhances their amplitudes.
Therefore, it is possible with its help to separately swing spatial double pendulum
both on the first and on the second oscillation mode, setting the appropriate
initial conditions. The most important for applications is the case δ ≪ k10, when
the system is overclocked at a not too fast pace, and the oscillation frequencies
practically do not differ from the conservative variant. This situation is of main
practical interest, when small control actions can swing the system to sufficiently
large amplitudes. In this case, all roots of the characteristic equation are complex
conjugate and have the same real part δ. This means that the oscillation amplitudes
of each modes will exponentially increase absolutely in the same way, and therefore,
even if the initial conditions are not set strictly according to one of the oscillation
modes, the other mode that appears in the solution will not be able to dominate
the main mode and will not introduce any noticeable contribution to overclocking
process. This fact should also be attributed to the advantages of collinear control.

However, it is clear that with increasing deviations, the presence of nonlinear
factors in the equation (4.2.11) will gradually affect, and the linear theory will no
longer give acceptable results. In this case, there will be a smooth transition from
the linear zone to the nonlinear one according to the selected oscillation mode. It
should be emphasized that this process already depends entirely on the features
of the system and the character of its nonlinearity.
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To illustrate the controlled processes during the transition from the linear to
the nonlinear zone, let us adapt the equation (4.2.11) for numerical integration,
resolving it with respect to the column of generalized accelerations:

θ̈ = γθ̇ −A−1(θ)

B(θ, θ̇) +C(θ)


. (4.3.11)

It is natural to assume that if we set small initial conditions corresponding to linear
oscillation mode, then it will be possible over time to observe how the frequency
drifts and the oscillation mode evolves with increasing oscillation amplitudes. For
example, for simplicity, we can assume that at t = 0 the initial conditions are
given in the form: θ0 = a0Θ(s), θ̇0 = 0, where a0 is small enough. We note that
under the chosen control law, there will be an unlimited increase in the total
mechanical energy of the system. However, as a rule, the final goal of such control
is to bring the system to a certain desired energy level E∗, when the oscillation
amplitudes are not yet too large, the oscillations are still regular and close to
periodic, and they are also suitable for use in practical purposes. It is easy to
understand that to ensure this condition, the control should be turned off when
the predetermined and not so high energy level E∗ is reached, and as a result a
transition to the required conservative motion mode will occur.

Let us consider the processes of overclocking of spatial double pendulum on the
first and second oscillation modes, starting from small deviations, and compare the
final conservative modes with the motion on nonlinear oscillation modes, which
were obtained and analyzed in Ch. 3.

1. Orthogonal double pendulum (α = π/2). As before in the study of
nonlinear oscillation modes in the conservative version, let us first turn to the
study of orthogonal double pendulum. It is easy to see that in this case the matrix
equation of motion (4.2.11), taking into account the representations (2.3.12) and
(2.3.13), allows two particular modes of motion:

θ̈1 + k210 sin θ1 = γθ̇1, θ2 ≡ 0, k10 =


3

5
k, (4.3.12)

θ̈2 + k220 sin θ2 = γθ̇2, θ1 ≡ 0, k20 = k, (4.3.13)

and they correspond to the process of controlled motion of ordinary mathematical
pendulum in the presence of a control proportional to the angular velocity, which
represents viscous friction, taken with the opposite sign [71]. It can be seen that
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Fig. 4.2. Overclocking of orthogonal double pendulum (α = π/2)

in these modes one generalized coordinate can oscillatory increase, while the
second generalized coordinate is identically equal to zero, and they correspond
to overclocking on the first or second oscillation modes of orthogonal double
pendulum. Turning, for example, to the equation (4.3.12), we integrate it using
numerical methods, setting small initial conditions. In this case, we will assume
that the control is turned off when the energy reaches the value corresponding
to that phase trajectory on the phase portrait in Fig. 3.2, which has the highest
energy level among all the trajectories presented on it. The behavior of the angle
θ1 and the dimensionless angular velocity θ̇1/k10, which characterize the controlled
process, is shown in Fig. 4.2, and the abscissa axis here and on subsequent
graphs plots the dimensionless time τ = kt. These graphs clearly illustrate the
overclocking of orthogonal double pendulum on the first oscillation mode up to
significant amplitudes, having a fairly distinctly character. We note that the same
dependencies can also be obtained by numerically integrating the matrix equation
(4.3.11) with the appropriate initial conditions, which is easy to verify directly.
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2. Flat double pendulum (α = 0). Let us now turn to the case of flat
double pendulum [72,73]. We turn to the matrix equation (4.3.11) and perform its
numerical integration, first setting small initial conditions on the first oscillation
mode. In this case, we will assume that the desired energy level corresponds
to that phase trajectory in the phase portraits in Figs 3.6–3.8, which has the
highest energy level among all the trajectories shown on them. It can be expected
that the final conservative mode will be in accordance with the dependencies
shown in Figs 3.9 and 3.10. The picture obtained as a result of the numerical
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Fig. 4.3. Overclocking of flat double pendulum (α = 0) on first oscillation mode:
angles ϕ1, ϕ2 and θ2
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Fig. 4.4. Overclocking of flat double pendulum (α = 0) on first oscillation mode:
dimensionless angular velocities ϕ̇1/k10, ϕ̇2/k10 and θ̇2/k10

study is shown in Figs 4.3 and 4.4, where the dependence graphs of the angles
ϕ1 = θ1, ϕ2 = θ1 + θ2 and θ2 and the dimensionless angular velocities ϕ̇1/k10,
ϕ̇2/k10 and θ̇2/k10 on dimensionless time τ are presented respectively. It can be
seen that the overclocking process smoothly transforms the linear mode into a
nonlinear one and brings the oscillations to the desired energy level, and the final
mode corresponds to almost periodic motion. However, there are some distortions
that are most clearly seen in the plots of values θ2, ϕ̇1/k10 and θ̇2/k10 on τ ,
and they are associated with the presence of more than two extremes on these
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dependencies on one oscillation period, which was discussed in detail in Ch. 3. It
is easy to understand that the mentioned distortions occur as a result of a rather
intensive increase in amplitudes at a constant and even very small gain γ and a
sharp turning off the control when desired energy level is reached. It affects the
quality of the controlled process and does not allow to obtain a completely “pure”
nonlinear oscillation mode at such a high achieved energy level and with such a
complex geometry of the nonlinear oscillation mode at large amplitudes. Further,
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Fig. 4.5. Overclocking of flat double pendulum (α = 0) on second oscillation
mode: angles ϕ1, ϕ2 and θ2
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Fig. 4.6. Overclocking of flat double pendulum (α = 0) on second oscillation
mode: dimensionless angular velocities ϕ̇1/k20, ϕ̇2/k20 and θ̇2/k20

a modification of the collinear control law with adjustable gain γ depending on the
energy level will be considered, which allows to obtain much smoother overclocking
processes without visible distortions of the final nonlinear mode.

For completeness, let us also illustrate the overclocking of flat double pendulum
on the second oscillation mode. The corresponding picture is shown in Figs 4.5
and 4.6, where the dependencies of the angles ϕ1, ϕ2 and θ2, as well as the
dimensionless angular velocities ϕ̇1/k20, ϕ̇2/k20 and θ̇2/k20 on the dimensionless
time τ are plotted. It is easy to see that when the system is overclocked on
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Fig. 4.7. Overclocking of spatial double pendulum (α = π/6)
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the second mode, the effects mentioned above are already absent, associated
with the presence of more than two extremes at any generalized coordinates or
dimensionless generalized velocities on one period. Therefore, a conservative mode
can be observed at the output, which practically does not differ from the periodic
one and without any noticeable distortion. This circumstance allows us not to
discuss the second oscillation mode further in this chapter, paying all attention
to the first mode, which is of primary importance in practice and has a sufficient
number of nontrivial features.

Thus, overclocking of flat double pendulum on each of the oscillation modes
with the help of collinear control allows, with increasing deviations of the pendulum
links, to gradually transfer the linear mode of oscillation to a nonlinear one, and
turning off the control in both cases, even at a sufficiently high energy level,
transfers the system to a nonlinear conservative mode, which turns out to be quite
close to periodic and is characterized by very significant oscillation amplitudes.

3. Spatial double pendulum. Finally, we consider the process of controlled
motion on the first oscillation mode for the general variant of a spatial double
pendulum. Let us accept for definiteness, as before in Ch. 3, α = π/6. We will
assume that the desired energy level corresponds to that phase trajectory on
the phase portraits in Figs 3.17–3.18, which has the highest energy level among
all the trajectories shown on them. Therefore, we can suppose that the final
conservative mode will be in agreement with the dependencies shown in Fig. 3.19.
By numerically integrating the matrix equation (4.3.11), we arrive at the graphs
in Fig. 4.7, which show the angles θ1 and θ2, as well as the dimensionless angular
velocities θ̇1/k10 and θ̇2/k10 depending on dimensionless time τ . These graphs also
clearly demonstrate the drift of the oscillation mode during a gradual transition
from a linear zone to a nonlinear one by means of collinear control and the output
of oscillations to a nonlinear conservative mode, which once again emphasizes the
expediency of forming control actions in this way.

4.4. Collinear Control with Variable Gain

As mentioned above, collinear control with constant gain γ, even at fairly
small values of it, leads to a very intensive energy increasing in time, which stops
abruptly when the desired value E∗ is reached. So that, the question arises, how is
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it necessary to set the gain in order to achieve a smooth transition of the system
to the steady motion with the desired energy level E∗ [140]? It is clear that it
is necessary to gradually lower the gain γ as the energy approaches this value,
that is, to set this gain in the form of a function depending on the state variables
γ = γ(θ, θ̇). It is easy to understand that this dependence can be formed in the
various ways. The most preferable option seems to be similar to that described
in [108]:

γ(θ, θ̇) = γ0
E∗ − E(θ, θ̇)

mgl
, (4.4.1)

where the factor mgl is introduced in the denominator for dimensional reasons,
so that constant value γ0 has the same dimension as γ.

It can be seen that γ gradually decreases to zero as the energy approaches the
value E∗, so in this situation the transition to the steady oscillatory mode will be
smooth. Assuming that the function (4.4.1) changes rather slowly, we can assume
that this change will have practically no effect on the main property of collinear
control – the preservation of the oscillation modes of the original conservative
model. Let us note again that this circumstance is decisive, since the main task
of the control action means the development of one or another oscillation mode
of the system. In the case under consideration, the controlled motion equation
retains the form (4.2.11), where now γ is determined by the expression (4.4.1),
and the total energy E(θ, θ̇) – by the relation (2.2.14).

1. Orthogonal double pendulum (α = π/2). Consider first the overclocking
of orthogonal pendulum on the first oscillation mode, specifying the gain in the
form (4.4.1). It is clear that in this situation, the gain factor, taking into account
the formula (3.2.16), will be determined by the expression:

γ(θ1, θ̇1) = γ0


ε∗ −

3

2


θ̇21
k210

+ 2(1− cos θ1)


, (4.4.2)

where ε∗ = E∗/(mgl) is the dimensionless energy level corresponding to the
desired energyE∗. The equation of controlled motion for the generalized coordinate
θ1 will be similar to (4.3.12) [66]:

θ̈1 + k210 sin θ1 = γ(θ1, θ̇1)θ̇1. (4.4.3)

By numerically integrating this equation with small initial conditions, one can
obtain the controlled motion process of orthogonal double pendulum corresponding
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Fig. 4.8. Overclocking of orthogonal double pendulum (α = π/2)

to its overclocking on the first mode, and it is shown in Fig. 4.8, where we
can clearly see the smooth output of the movement to the steady oscillatory
motion with a sufficiently large amplitude. We note that these graphs can also be
obtained by numerically integrating the complete matrix equation of motion with
appropriate initial conditions.

Let us consider separately the case when the desired energy level is not very
large, i.e. when the deviations are not significant. The important feature of this
variant is that it is possible to construct an approximate analytical solution for it.
Introducing into consideration the oscillation amplitude A of the final oscillatory
mode and taking into account that we have E∗ = 3mgl(1 − cosA) according to
(3.2.16), we rewrite the equation (4.4.3) in the form:

θ̈1 + k210 sin θ1 =
3

2
γ0


2(cos θ1 − cosA)− θ̇21

k210


θ̇1, (4.4.4)

which is absolutely exact. Considering further the generalized coordinate θ1 and
the amplitude A = const as values of the same order of smallness, we simplify the
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equation (4.4.4) by replacing sin θ1 on its left side by θ1, and on the right side,
replacing cos θ1 and cosA with 1− θ21/2 and 1−A2/2 respectively. We note that
in this approximation we will have E∗ = 3mglA2/2, so ε∗ = 3A2/2, and we will
need further this expression. As a result of these actions, the equation (4.4.4) will
be reduced to the form [66]:

θ̈1 + k210θ1 = Q(θ1, θ̇1), (4.4.5)

where the valueQ, characterizing the control actions, is determined by the expression:

Q(θ1, θ̇1) =
3

2
γ0


A2 − θ21 −

θ̇21
k210


θ̇1. (4.4.6)

Under our assumption that the nonlinear term Q(θ1, θ̇1) is small, we will look for
a solution to the equation (4.4.5) in the form:

θ = a cosψ, (4.4.7)

where a = a(t) is a slowly changing time function characterizing the oscillation
amplitude, and ψ = k10t+ψ0 (where ψ0 = const) is the full phase of oscillations,
expression for which will not differ from the linear model, since the conservative
nonlinearity in the equation (4.4.5) was not taken into account. The dependence
of value a on t should be found from the following harmonic balance equation [11]:

2π
0


θ̈1 + k210θ1 −Q


sinψdψ = 0. (4.4.8)

Assuming that ȧ = F (a), where the function F (a), as it is easy to understand, has
the third order of smallness in a and A, considered as values of the first order of
smallness, we calculate θ̇1 and θ̈1 according to (4.4.7) with the required accuracy:

θ̇1 = F (a) cosψ − a sinψk10, θ̈1 = −2F (a) sinψk10 − a cosψk210. (4.4.9)

Next, we determine the value Q by the formula (4.4.6) up to the third order of
smallness:

Q = −3

2
γ0(A

2 − a2)a sinψk10. (4.4.10)

Substituting now the formulas (4.4.7), (4.4.9) and (4.4.10) into the harmonic
balance equation (4.4.8), we obtain after transformations:

F (a) = − 1

2k10π

2π
0

Q sinψdψ =
3

4
γ0a(A

2 − a2). (4.4.11)
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Thus, we arrive at the following equation for determining a(t):

ȧ = κa(A2 − a2), κ =
3

4
γ0, (4.4.12)

which, obviously, is equation with separable variables and is reduced to the form:
da

a(A− a)(A+ a)
= κ


dt. (4.4.13)

The integral on the left side of the equation (4.4.13) can be calculated by expanding
the fraction in the integrand into simple fractions:

da

a(A− a)(A+ a)
=

1

2A2

 
2

a
+

1

A− a
− 1

A+ a


=

1

2A2
ln

a2

A2 − a2
.

(4.4.14)
As a result, the equation (4.4.13) will look like:

1

2A2
ln

a2

A2 − a2
= κt+ C, (4.4.15)

where C = const is an integration constant. Let us assume that at the initial
time t = 0 there will be θ1 = a0, θ̇1 = 0, where a0 is a small value. Referring
to the formulas (4.4.7) and (4.4.9) and taking into account that F (a) is small in
comparison with a, we can approximately obtain that ψ0 = 0, a = a0, and also
express the constant C:

C =
1

2A2
ln

a20
A2 − a20

. (4.4.16)

Finally, we resolve the equation (4.4.15) taking into account that (4.4.16) with
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Fig. 4.9. Overclocking of orthogonal double pendulum (α = π/2) in case of small
deviations
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respect to a and remembering that κ = 3γ0/4 and ε∗ = 3A2/2, and as a result,
we find the desired dependency:

a(t) =
a0Ae

κA2t
A2 + a20 (e

2κA2t − 1)
=

a0Ae
γ0ε∗t/2

A2 + a20 (e
γ0ε∗t − 1)

. (4.4.17)

This shows that for t → ∞ we indeed have a → A, i.e., E → E∗, as it
should be. The process of controlled motion for small deviations, obtained by
numerical integration and demonstrating the change in the angle θ with increasing
dimensionless time τ , is shown in Fig. 4.9, where the envelope lines characterize
the oscillation amplitude of the angle θ1, and they are plotted according to
(4.4.17). It can be seen that these lines are in complete agreement with the results
of numerical integration, which confirms the correctness of the analytical solution.

2. Flat double pendulum (α = 0). Turning to the case of flat double
pendulum, we plot based on the numerical integration the graph dependencies
of the main values characterizing the controlled overclocking of the system on
the first mode – generalized coordinates (Fig. 4.10) and generalized velocities
(Fig. 4.11) – on the dimensionless time τ . Analyzing them, one can observe a
pronounced drift of the oscillation modes as a gradual transition from a linear
zone to a nonlinear one with output to a steady movement for all the indicated
values, which has a periodic character.

It should be noted that due to the variability of the gain, the process of the
system reaching the final mode in this situation has a smooth character, therefore,
here it was possible to obtain the most “pure” nonlinear oscillation modes without
any visible distortions that could be observed in Figs 4.3 and 4.4, where the
overclocking was carried out at constant gain and abruptly stopped when the
desired energy level was reached [67]. This circumstance confirms the expediency
of varying the gain, subjecting it to the condition (4.4.1).

3. Spatial double pendulum. Now we consider the controlled motion of
spatial double pendulum on the first mode for α = π/6. The graphic dependencies
obtained by means of numerical integration for this case are shown in Fig. 4.12.
It is again easy to see upon a detailed examination of the presented graphs that
there is a gradual transition of the oscillation mode from a linear to a nonlinear
variant with the preservation of single-frequency motion and reaching the final
conservative mode corresponding to the desired energy level.
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Fig. 4.10. Overclocking of flat double pendulum (α = 0): angles ϕ1, ϕ2 and θ2

It should be noted that the desired energy levels of the final mode for the
dependencies shown in Figs 4.8, 4.10–4.11, 4.12, were taken exactly the same as in
Figs 4.2, 4.3–4.4, 4.7, and specific numerical values of the gain γ (if it is constant)
and γ0 (if it is variability) in each case were chosen in such a way as to demonstrate
the processes of controlled motion on the same interval of dimensionless time, and
it was done solely for uniformity and is not of fundamental character.

It remains to find out what the approximate analytical solution of the equation
(4.2.11) will look like when we choose the gain according to the formula (4.4.1)
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Fig. 4.11. Overclocking of flat double pendulum (α = 0): dimensionless angular
velocities ϕ̇1/k10, ϕ̇2/k10 and θ̇2/k10

and the system is overclocked on one of the oscillation modes for the case of
sufficiently small deviations. To this purpose, we write the expression of the total
mechanical energy in a quadratic approximation according to (2.4.3):

E =
1

2
θ̇TA0θ̇ +

1

2
θTC0θ. (4.4.18)

We will assume that it is required to bring the system to the harmonic oscillations
on one of the oscillation modes Θ(s) of the linear model with the corresponding
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Fig. 4.12. Overclocking of spatial double pendulum (α = π/6)
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oscillation frequency ks0:
θ = Θ(s)A cosψ, (4.4.19)

where A is some constant parameter that has the meaning of amplitude and is also
sufficiently the small one, and ψ = ks0t+ψs0, where the specific value of ψs0 does
not play here no significant role, and in it will be determined the future by the
initial conditions of motion. We calculate the desired energy level corresponding
to the mode (4.4.19) using the formula (4.4.18):

E∗ =
1

2
A2

ΘT

(s)A0Θ(s)k
2
s0 sin

2 ψ +ΘT
(s)C0Θ(s) cos

2 ψ

=

1

2
Nsk

2
s0A

2, (4.4.20)

where conditions (2.4.22) are used. Since Hs = Ns/(ml
2) and ps0 = ks0/k, it

follows that ε∗ = E∗/(mgl) = Hsp
2
s0A

2/2. It is clear that for small deviations the
equation (4.2.11) can be simplified by reducing it to the form:

A0θ̈ +C0θ = Q(θ, θ̇), (4.4.21)

where the column of control actions here is determined by the expression:

Q(θ, θ̇) =
γ0

2mgl


Nsk

2
s0A

2 − θ̇TA0θ̇ − θTC0θ

A0θ̇. (4.4.22)

As in the construction of approximate solution for the case of orthogonal double
pendulum, we excluded here the own nonlinearity of the system, which affects
only the oscillation frequency in the first approximation, and we have left only
third-order nonlinear terms that arise due to control actions and directly affect
the increase in oscillation amplitudes. We will seek solution of equation (4.4.21)
in the form:

θ = Θ(s)a cosψ, (4.4.23)

where a = a(t) is some unknown time function, which is to be determined, and
ψ = ks0t+ψs0. The dependence of a on t will be found from the following harmonic
balance equation for the given mode Θ(s) [11]:

2π
0

ΘT
(s)


A0θ̈ +C0θ −Q


sinψdψ = 0. (4.4.24)

Assuming that ȧ = F (a), where the function F (a) has the third order of smallness,
we calculate the columns θ̇ and θ̈ according to (4.4.23) with required accuracy:

θ̇ = Θ(s) [F (a) cosψ − a sinψks0] , θ̈ = Θ(s)


−2F (a) sinψks0 − a cosψk2s0


.

(4.4.25)
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In addition, we calculate the column of control actions (4.4.22) also up to the
third order of smallness:

Q = −γ0Nsk
2
s0

2mgl
(A2 − a2)a sinψks0A0Θ(s). (4.4.26)

Substituting now formulas (4.4.23), (4.4.25) and (4.4.26) into the harmonic balance
equation (4.4.24), we obtain after some transformations:

F (a) = − 1

2Nsks0π

2π
0

ΘT
(s)Q sinψdψ =

γ0Nsk
2
s0

4mgl
a(A2 − a2), (4.4.27)

so the equation for determining the function a(t) will take the form:

ȧ = κsa(A
2 − a2), κs =

γ0Hsp
2
s0

4
. (4.4.28)

It is easy to see that the equation (4.4.28) is completely similar to the previously
obtained equation (4.4.12) for the case of orthogonal double pendulum. Setting
the initial conditions in the original form, namely θ0 = a0Θ(s), θ̇0 = 0, referring
to the formulas (4.4.23) and (4.4.25), and, in addition, taking into account that
F (a) is small in comparison with a, we can approximately obtain that ψs0 = 0,
and a = a0 at t = 0. Therefore, the equation (4.4.28) will have a solution that is
completely similar in structure to the expression (4.4.17), where it is also taken
into account that κs = γ0Hsp

2
s0/4, and ε∗ = Hsp

2
s0A

2/2 [140]:

a(t) =
a0Ae

κsA
2t

A2 + a20 (e
2κsA2t − 1)

=
a0Ae

γ0ε∗t/2
A2 + a20 (e

γ0ε∗t − 1)
. (4.4.29)

It is again easy to see from here that for a→ A we have t→ ∞, i.e. E → E∗.
Graphs of the controlled movement of the system on the first mode are shown

in Fig. 4.13 for the case α = π/6 for sufficiently small angles θ1 and θ2. . The
envelope lines are also shown here, and they characterize the oscillation amplitudes
of these angles and are constructed according to the formulas obtained above. It
can be seen that these lines are in complete agreement with the results of numerical
integration. Thus, the obtained analytical results make it possible to evaluate
the character of the increase in the oscillation amplitudes within the framework
of the considered simplified model. We emphasize once again that despite the
approximations carried out and the absence of a drift of frequency and oscillation
mode in this model, it still remains nonlinear due to the control actions.
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Fig. 4.13. Overclocking of spatial double pendulum (α = π/6) in case of small
deviations

Analyzing the obtained results, we can conclude that the presented modification
of the collinear control law, which has variable gain, as well as the collinear control
with constant gain, allows to transfer all the energy supplied to the system to the
growth of oscillations only on one oscillation mode. This means, that it is possible
to excite resonant oscillations on a given oscillation mode with the help of such
control, i.e., swing the system on this mode with its gradual transition from a
linear to a nonlinear variant, and a smooth transition to a steady oscillatory
motion with a given energy level will be carried out over time. As a result, it is
possible to observe the system movement on a nonlinear oscillation mode which
is characterized by periodicity and is very different from the corresponding linear
oscillation mode, which has a harmonic, i.e., purely sinusoidal character.
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4.5. Collinear Control in Presence of Dissipative

Forces

In conclusion of the conversation about the controlled motions of the system,
we consider the situation when control moments act in the joints of a spatial
double pendulum, constructed on the principle of collinear control with a constant
gain γ, and viscous friction is also taken into account with the dissipative coefficient
b [41]. It is clear that the motion equations of such a system, written in matrix
form, will look like:

d

dt

∂T

∂θ̇
− ∂T

∂θ
= −∂Π

∂θ
− ∂R

∂θ̇
+ γ

∂T

∂θ̇
. (4.5.1)

Bearing in mind the further study of the linear model of the process under
consideration, let us substitute into (4.5.1) the quadratic approximations of the
kinetic and potential energies (2.4.3), as well as the dissipative function (2.5.1).
As a result, we obtain the following linear matrix equation:

A0θ̈ + (B0 − γA0)θ̇ +C0θ = 0. (4.5.2)

Multiplying the motion equation (4.5.2) by θ̇T on the left, it is easy to obtain the
following energy relation:

Ė = 2(γT −R) = 2ml2

(5δ − n)θ̇21 + 4δ cosαθ̇1θ̇2 + (δ − n)θ̇22


=

= N(θ̇) =
1

2
θ̇TD0θ̇,

(4.5.3)

where it is taken into account that 2n = b/(ml2), 2δ = γ. It can be seen that
the total power of the dissipative and control forces N(θ̇) is the quadratic form
of the column of generalized velocities with the matrix

D0 = 2ml2


5δ − n 2δ cosα

2δ cosα δ − n


. (4.5.4)

First, let us determine the conditions on the parameters δ and n when the
total energy of the system will always be an increasing or, conversely, decreasing
function. It follows from the formula (4.5.3) that for this the power N must always
take positive or negative values for any values of the generalized velocities θ̇1 and
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θ̇2. Therefore, the matrix D0 must be sign-definite positive or negative, as dictated
by Sylvester’s conditions [23]. Thus, for this matrix to be positive definite, it is
required that

5δ > n, (5δ − n)(δ − n)− 4δ2 cos2 α > 0. (4.5.5)

Solving this system of inequalities, we obtain

δ >
3 + 2


2− sin2 α

1 + 4 sin2 α
n = n2, σ > η2ν, (4.5.6)

where the relation (2.5.11) is taken into account, and the resulting condition is
presented in dimensionless form, where σ = δ/k, ν = n/k, and also ηs = ns/n,
and these values are determined by the formula (2.5.14). For the matrix D0 to be
negative definite, the inequalities must be satisfied

5δ < n, (5δ − n)(δ − n)− 4δ2 cos2 α > 0, (4.5.7)

which, in turn, give

δ <
3− 2


2− sin2 α

1 + 4 sin2 α
n = n1, σ < η1ν, (4.5.8)

where all the same relations are used. These considerations also lead to the
conclusion that under the condition

η1ν < σ < η2ν (4.5.9)

the power N will be an sign-changing function of the generalized velocities θ̇1 and
θ̇2, so that some intermediate modes will correspond to this double inequality.

Let us now consider in detail the entire spectrum of possible modes of motion
of the system. To construct these modes and give them an adequate interpretation
and classification, we construct an exact analytical solution of the equation (4.5.2).
Seeking this solution in the form (2.5.4), we arrive at a matrix algebraic equation:

A0λ
2 + (B0 − γA0)λ+C0


Θ = 0, (4.5.10)

which has a non-trivial solution under the condition

det

A0λ

2 + (B0 − γA0)λ+C0


= 0. (4.5.11)

Considering the relation (2.5.7) between the matrices A0, B0 and C0, we get:

det


A0


λ2 − (2n+ γ)λ


+C0


1 +

4n

k2
λ


= 0. (4.5.12)
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Comparing this equation with (2.4.6), to which the frequencies of conservative
oscillations ks0 correspond, it follows that the values λ are found from the following
equations:

λ2 − (2n+ γ)λ = −k2s0

1 +

4n

k2
λ


, s = 1, 2, (4.5.13)

and the oscillation modes remain the same as in the original conservative system.
Transforming the equations (4.5.13), we get:

λ2 + 2(ns − δ)λ+ k2s0 = 0, (4.5.14)

where the old designations for ns are kept according to (2.5.11). Solutions of
equations (4.5.14) obviously have the form:

λ1,2 = δ − n1 ± ik1, λ3,4 = δ − n2 ± ik2, (4.5.15)

where the notation is introduced:

ks =

k2s0 − (δ − ns)2. (4.5.16)

We note that the solution of equation (4.5.2) can be written as:

θ = eδt

Θ(1)e

−n1t

A1e

ik1t +B1e
−ik1t


+Θ(2)e

−n2t

A2e

ik2t +B2e
−ik2t


,

(4.5.17)
where the complex integration constants As and Bs, s = 1, 2 are again determined
by analogy with (2.5.28), and they have the form:

As =
(ns − δ + iks)Θ

T
(s)A0θ0 +ΘT

(s)A0θ̇0

2iksNs
,

Bs =
(−ns + δ + iks)Θ

T
(s)A0θ0 −ΘT

(s)A0θ̇0

2iksNs
.

(4.5.18)

Introducing now for convenience the dimensionless eigenvalues κ = λ/k, we
can write them according to (4.5.15) and using the dimensionless parameters ν
and σ in the final form:

κ1,2 = σ − η1ν ± i


p210 − (σ − η1ν)

2, κ3,4 = σ − η2ν ± i


p220 − (σ − η2ν)

2.

(4.5.19)
It can be seen that, depending on the relation between ν and σ, the values κ
can be either real (positive or negative) or complex (having a positive or negative
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real part). All these cases predetermine the fundamentally different qualitative
character of the emerging motion modes of the system. In order to introduce the
character of these modes and estimate their total number, we construct a family
of boundary lines on the plane νσ, on which the character of motion on each
of the modes Θ(s) changes from damped to overclocking and from oscillatory to
aperiodic. It is clear from the expressions (4.5.19) that these boundary lines are
the following six straight lines:

σ = η1ν, σ = η2ν,

σ = η1ν ± p10 = p10


±1 +

ν

ν10


, σ = η2ν ± p20 = p20


±1 +

ν

ν20


.

(4.5.20)
The real parts of the roots κ1,2 and κ3,4, respectively, turn to zero on the first two
of the straight lines, and the imaginary parts are zero on the remaining two pairs.
Straight lines (4.5.20) are shown in Fig. 4.14. Taking into account that ν > 0, and
σ can be both positive and negative, we can conclude that these lines divide the
half-plane ν > 0 into 11 regions with different motion character of spatial double
pendulum.

Let’s give a detailed classification of these regions:
1 – aperiodic overclocking of both modes Θ(1) and Θ(2);
2 – aperiodic overclocking of mode Θ(1), oscillatory overclocking of mode Θ(2);
3 – oscillatory overclocking of both modes Θ(1) and Θ(2);
4 – oscillatory overclocking of mode Θ(1), oscillatory damping of mode Θ(2);
5 – aperiodic overclocking of mode Θ(1), oscillatory damping of mode Θ(2);
6 – oscillatory overclocking of mode Θ(1), aperiodic damping of mode Θ(2);
7 – aperiodic overclocking of mode Θ(1), aperiodic damping of mode Θ(2);
8 – oscillatory damping of both modes Θ(1) and Θ(2);
9 – oscillatory damping of mode Θ(1), aperiodic damping of mode Θ(2);
10 – aperiodic damping of mode Θ(1), oscillatory damping of mode Θ(2);
11 – aperiodic damping of both modes Θ(1) and Θ(2).
It can be seen that at γ = 0 and at ν = 0, conclusions follow from this diagram,
which are in full agreement with the previously obtained results.

Returning now to the results obtained above, we can see that the condition
(4.5.6) occurs in regions 1, 2 and 3, where both modes sway, and the condition
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Fig. 4.14. Diagram of system motion modes

(4.5.8) is satisfied in regions 8, 9, 10 and 11 when both modes are extinguished,
as one would expect. For clarity, these groups of regions are highlighted in the
mode diagram with dark and light backgrounds, respectively. In regions 4, 5, 6,
and 7, intermediate modes are realized, when the first mode is swinging, and
the second mode is extinguished, and the condition (4.5.9) corresponds to them.
Regions 4 and 6 may be of particular practical interest, since if the parameters ν
and σ are chosen in these regions, the second mode will be damped (oscillatory
or aperiodically, respectively), and as a result, only one swinging first mode can
be observed over time. We also note that if we choose the parameters ν and σ on
the boundary σ = η1ν, then it will be possible to observe undamped oscillations
only on the first mode over time.

Thus, the cooperative consideration of both control and dissipative actions
significantly complicates the picture of possible motion modes of spatial double
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pendulum and makes it possible to choose the most suitable of them for specific
practical purposes.

4.6. Conclusions on Fourth Chapter

In this chapter, it was demonstrated that with the help of collinear control it is
possible to overclock spatial double pendulum on each of its modes of oscillation
separately up to sufficiently large amplitudes. This remarkable feature of such a
control means the existence of autoresonant oscillation mode, when all the energy
supplied to the system is completely spent on its overclocking on one oscillation
mode, providing a single-frequency growth of these oscillations. At the same time,
the oscillation mode gradually drifts with the frequency during the transition
from the linear zone to the nonlinear one, however, with the complication of
its qualitative character, it retains regular structure and it is characterized by
periodicity. In addition to collinear control with a constant gain, when the steady
motion is reached by simply turning it off, an effective modification of the original
control law is also proposed, which consists in using a variable gain and allows
a smooth transition to the mode of periodic oscillations with the desired energy
level. Finally, the cooperative influence of dissipative and control actions on the
dynamic behavior of the system within the framework of a linear model was
studied, and as a result a diagram of possible motion modes was presented, which
have their own distinctive features and can find certain practical applications.

We note once again that, based on the above advantages of the proposed
method of forming control actions, it is advisable to use it not only to control the
motion of a spatial double pendulum, but also of any other mechanical system.
This conclusion is especially true for systems from the field of modern robotics
and biodynamics, since the described controlled modes are widespread in the
animal world, where all running, swimming and flying animals perform their
locomotions in resonant motion on one of the oscillation modes. This emphasizes
the importance of using these principles to control the movement of modern
androids and many other devices encountered in various applied problems.
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5. Optimization of Oscillation
Damping Modes of Spatial

Double Pendulum

5.1. Problem Statement of Optimization of

Passive and Active Oscillation Damping and

Optimization Criteria Formation

In the previous chapters, the spatial double pendulum motions were considered
under the action of dissipative forces of viscous friction and control actions built on
the principle of collinear control, which make it possible to suppress oscillations of
the system. The first type of damping is usually called passive, while the second
is called active. In this case, the question naturally arises of finding the best
parameters for each of the mentioned types of damping separately and under their
combined action [69,70]. It is clear that in order for oscillations to be damped most
efficiently, an optimization criterion should be proposed, on the basis of which the
parameters of each type of damping would be selected [9,31,35,40,127,131]. It is
of interest to use different criteria and compare the results obtained according to
these criteria.

In the existing literature, as an optimization criterion for systems with several
degrees of freedom, the criterion based on maximizing the degree of system stability
is most often taken [53, 54]. As is known, the degree of stability of a linear
dynamical system is the distance ∆ from the imaginary axis of the plane of the
roots of the characteristic equation to the root closest to it, under the condition
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that all these roots lie to the left of the imaginary axis [12, 62,76] (Fig. 5.1):

∆ = min
i

|Reλi| = max . (5.1.1)

Reλ

Imλ

0

∆ = max

λ1

λ2

λ3

λ4

Fig. 5.1. Degree of stability

This optimization criterion is maximin, and its important advantages include
the fact that it does not depend on the initial conditions of the system motion.
However, it can be constructed only for a linear system, since in a nonlinear system
the concept of the degree of stability is meaningless, which is a disadvantage of this
criterion. Besides, this criterion is not directly related to the energy parameters
of the system, characterizing only the degree of attenuation of component of the
solution that decreases the slowest. Therefore, this criterion should be considered
purely mathematical rather than physical. Nevertheless, the criterion based on the
degree of stability is widely used in various practical problems, due to its relative
simplicity of calculation.

However, it is more natural from a physical point of view in the problems of
mechanics to choose the parameters of active or passive damping of oscillations
from the consideration of the best dissipation of the total mechanical energy in
time. Based on this, we can take as an optimization criterion the value of the
integral [20,29,76]:

F =

∞
0

E(t)dt = min, (5.1.2)
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where E = T +Π is the total mechanical energy of the system. Integral criteria of
this kind are also often used in automatic control theory [6,27,79]. It is important
to emphasize that the criterion (5.1.2) has the following geometric meaning – the
value F is the area under the energy curve E(t) on an infinite time interval, and
the optimization problem then reduces to determining such damping parameters,
when this area is minimal (Fig. 5.2).

t

E

0

F = min

Fig. 5.2. The geometric meaning of the energy-time criterion

We also note that the criterion (5.1.2) is energy-time, since it harmoniously
combines in its structure both energy and time characteristics of the process of
damping free oscillations. Moreover, in contrast to the degree of stability, this
criterion can be used for both linear and nonlinear systems, which significantly
expands the scope of its applicability. However, using the energy-time criterion, we
have a significant difficulty in determining the optimal parameters, due to the fact
that in the general case these parameters will significantly depend on the initial
conditions of motion, which is typical of any integral criterion. This is the main
disadvantage of the criterion under discussion, which the criterion based on the
degree of stability was deprived of. Nevertheless, since the initial conditions are by
no means always precisely defined, it is advisable to act according to the principle
of guaranteed success, i.e., to determine the best damping mode parameters for
the worst set of initial conditions (the one for which the criterion value is the
largest at the specified damping parameters). In this case, we arrive at a minimax
procedure.

As a rule, when solving problems of optimizing the parameters of mechanical
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systems with several degrees of freedom, it is necessary to resort exclusively to
numerical methods of analysis, since the construction of exact analytical solutions
turns out to be laborious or even impossible. This circumstance significantly
reduces the value of such a solution in qualitative terms. However, in the present
example of spatial double pendulum with dissipative and control factors, it is
possible to construct an analytical solution and use numerical methods only to
determine the roots of algebraic equations, which is a very important point for
the most visual and accessible interpretation of the results.

5.2. Optimization of Viscous Oscillation Damping

Let us first raise the question of finding the coefficient of viscous friction b (or
the value n corresponding to it) in the joints from the optimization condition for
the damping process of small oscillations of spatial double pendulum [42].

1. Degree of stability. Let us discuss in more detail the trajectories of the
roots (2.5.12) of the characteristic equation in the dimensionless form κ = λ/k

on the root hodograph with increasing coefficient ν = n/k from 0 to ∞. At ν = 0

all four roots obviously lie on the imaginary axis of the hodograph plane. As ν
increases in the range 0 < ν < ν20, these roots move along semicircles lying to
the left of the imaginary axis:

(Reκ1,2)2 + (Imκ1,2)
2 = p210, (Reκ3,4)2 + (Imκ3,4)

2 = p220. (5.2.1)

In this case, the roots κ3,4 move along the larger semicircle (5.2.1) and approach
each other until, at ν = ν20, they merge into one multiple real root, and after that
they are already move in different directions along the real axis. The roots κ1,2
also move along their semicircle in the range ν20 < ν < ν10 until at ν = ν10 they
merge into one multiple root. After that, they, like the pair of roots κ3,4, begin to
diverge in different directions along the real axis. Thus, at ν → ∞ in each pair
one root tends to −0 and the other tends to −∞. The root hodograph of this
process is shown in Fig. 5.3.

Let us show that there exists a value ν∗ in the range ν20 < ν∗ < ν10 when the
roots κ3,4 have already diverged from their merge point to different sides along
the real axis, while the roots κ1,2 are still on their semicircle, i.e. are complex
conjugate, and the real part of the roots κ1,2 coincides with the smaller in modulus
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−p20

κ1

κ2

κ3 κ4

Fig. 5.3. The root hodograph

of the real roots κ4. In this case, three roots will be located on the root hodograph
on the same vertical, and the fourth one will be much to the left of them. Indeed,
by equating the real parts of these roots, which are −n1 and −n2 +


n22 − k220,

and passing to dimensionless notation, we obtain the equation:

−η1ν = −η2ν +

η22ν

2 − p220. (5.2.2)

Resolving it relative to ν, we find the desired value ν∗:

ν∗ =
p20

η1(2η2 − η1)
. (5.2.3)

Fig. 5.4 shows the location of ν∗ relative to the values ν20 and ν10 depending on
the angle α, and it clearly demonstrates its location in the range ν20 < ν∗ < ν10.

Thus, it is possible to qualitatively represent the behavior of the dependence
graphs of the modules of the real parts of all four roots of the characteristic
equation in a dimensionless version (Fig. 5.5). Here, the solid lines mark the
sections corresponding to the root closest to the imaginary axis, which determines
the dimensionless degree of stability ∆/k. To be convincing, we additionally show
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∆
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Fig. 5.5. Graph dependence of dimensionless degree of stability ∆/k on ν
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that the curve |Reκ2| = η1ν −

η21ν

2 − p210 at ν > ν10 lies above the curve
|Reκ4| = η2ν −


η22ν

2 − p220. Indeed, the following chain of relations holds:

|Reκ2| =
p210/η1

ν +

ν2 − ν210

>
p220/η2

ν +

ν2 − ν220

= |Reκ4|, (5.2.4)

where it is taken into account that ν10 > ν20 according to (2.5.17), and also

p210
η1

=
1

2− 1/p210
>

1

2− 1/p220
=
p220
η2

(5.2.5)

due to the relations (2.5.14) and the fact that p10 < p20. According to Fig. 5.5, it
is easy to see that it is the value ν∗ that provides the maximum degree of stability,
and this extremum is acute. The maximum value of the degree of stability, taking
into account the non-dimensionality, will be:

∆max

k
= η1ν∗ = p20


η1

2η2 − η1
. (5.2.6)

We can determine from the formulas (5.2.3) and (5.2.6) the values ν∗ and
∆max/k in particular cases. Thus, at α = 0 we find

ν∗ =


13
√
2 + 18

21
≈ 1.3163,

∆max

k
=


5
√
2− 6

21
≈ 0.2268, (5.2.7)

and at α = π/2 we have

ν∗ =
5

3
≈ 1.6667,

∆max

k
=

1

3
≈ 0.3333. (5.2.8)

Finally, according to Fig. 5.5 it can be seen that for 0 < ν ≤ ν∗ the dimensionless
degree of stability is determined by the real part of the complex conjugate roots
κ1,2, while for ν > ν∗ is the smallest of the real roots of κ4, so that

∆

k
=


η1ν, 0 < ν ≤ ν∗

η2ν −

η22ν

2 − p220, ν > ν∗

. (5.2.9)

Of course, both at ν → 0 and ν → ∞ the degree of stability tends to zero.
2. Energy-time criterion. To solve the problem by the second criterion, we

will use the solution in complex form (2.5.26). Its convenience lies in the fact that
the integral (5.1.2) will then be calculated most simply. Substituting formulas
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(2.5.26) and (2.5.27) into the expressions (2.4.3) for the kinetic and potential
energies, as well as using the formulas (2.4.21) and (2.4.22), we calculate the total
mechanical energy:

E =
1

2


N1e

−n1tf1(t) +N2e
−n2tf2(t)


, (5.2.10)

where the functions fs(t) have the following form:

fs(t) = A2
se

2ikst

(ns + iks)

2 + k2s0

+

+B2
se

−2ikst

(−ns + iks)

2 + k2s0

+ 4AsBsk

2
s0, s = 1, 2.

(5.2.11)

Let us now substitute the expression (5.2.10), taking into account (5.2.11), into
the integral (5.1.2), and also taking into account that

∞
0

e−2(ns±iks)tdt =
1

2(ns ± iks)
,

∞
0

e−2nstdt =
1

2ns
, s = 1, 2. (5.2.12)

Then we get the following expression for F :

F =
1

2


N1

(A1 +B1)
2n21 + 2A1B1k

2
1

n1
+N2

(A2 +B2)
2n22 + 2A2B2k

2
2

n2


. (5.2.13)

We note that the complex integration constants As and Bs in this expression have
representations (2.5.28). In addition, we emphasize that the expression (5.2.13)
has no singularities when multiple roots of the characteristic equation appear, i.e.,
at ks → 0. Indeed, it is easy to see that both the values As+Bs and AsBsk

2
s turn

out to be finite in this case according to (2.5.28). Thus, the resulting expression
(5.2.13) is valid for any values of the dimensionless dissipative coefficient ν.

Let us now turn to determining the optimal value ν for the worst set of initial
conditions. To this puprose, we represent the initial conditions θ0 and θ̇0 as the
sum of two modes Θ(1) and Θ(2) with some coefficients Ps and Rs:

θ0 = P1Θ(1) + P2Θ(2), θ̇0 = R1Θ(1) +R2Θ(2), (5.2.14)

and these coefficients are uniquely determined by the given θ0 and θ̇0 [10]. However,
they are not very convenient for further analysis. Therefore, instead of pairs of
coefficients (Ps, Rs), it is advisable to introduce two other pairs (rs, µs) using the
formulas:

Ps =
rs
Nsk2s0

cosµs, Rs =
rs√
Ns

sinµs. (5.2.15)
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It is clear that the transition from first coefficients to another actually represents
the transition from Cartesian to polar coordinates with some scale factors. In this
case, µs ∈ [0, 2π), and rs ∈ [0,∞). It is convenient to set the pair (r1, r2) also by
polar coordinates:

r1 = ρ cosϑ, r2 = ρ sinϑ, (5.2.16)

where ρ ∈ [0,∞), and ϑ ∈ [0, π/2]. Convenience of replacement of initial condition
columns θ0 and θ̇0 by parameters ρ, ϑ, µ1 and µ2 is that the initial energy of the
system is then expressed most simply:

E0 =
1

2
θ̇T
0 A0θ̇0 +

1

2
θT
0 C0θ0 =

1

2
ρ2. (5.2.17)

This implies an important conclusion that the parameter ρ characterizes the initial
energy level of the system, while the parameters ϑ, µ1, and µ2 do not affect it in
any way.

Substituting now (2.5.28), (5.2.14), (5.2.15), (5.2.16) into (5.2.13) and taking
into account (5.2.17), we arrive at the expression for F (ν, µ1, µ2, ϑ):

F =
E0

2


cos2 ϑ

k10


1

ν1
+ ν1 + ν1 cos 2µ1 + sin 2µ1


+

+
sin2 ϑ

k20


1

ν2
+ ν2 + ν2 cos 2µ2 + sin 2µ2


,

(5.2.18)

where, for convenience, two more dimensionless dissipative coefficients ν1 and ν2
are also introduced, which are related to ν by the following formulas:

ν1 =
n1
k10

=
η1
p10

ν, ν2 =
n2
k20

=
η2
p20

ν. (5.2.19)

Turning to the expression (5.2.18) for the integral optimization criterion, we
now proceed directly to finding the optimal value ν for the worst set of initial
conditions. Here we have the minimax problem of finding the extremum points
of the function F (ν, µ1, µ2, ϑ), i.e. about finding min

ν
max
µ1,µ2,ϑ

F (ν, µ1, µ2, ϑ). It can

be seen that in this case the value of the initial energy E0 does not play a role,
but only the relation between the columns of initial conditions θ0 and θ̇0 has
the meaning, which is determined is determined by µ1, µ2, ϑ. Discarding further
the insignificant factor E0/(2k) in the expression for F , we denote the resulting



129

dimensionless expression by f :

f =
cos2 ϑ

p10


1

ν1
+ ν1 +


1 + ν21 sin (2µ1 + ψ1)


+

+
sin2 ϑ

p20


1

ν2
+ ν2 +


1 + ν22 sin (2µ2 + ψ2)


, tgψs = νs, s = 1, 2.

(5.2.20)
It is easy to see from (5.2.20) that f reaches its maximum values in µ1 and µ2

equal to

fmax
µ1,µ2

=
cos2 ϑ

p10


1

ν1
+ ν1 +


1 + ν21


+

sin2 ϑ

p20


1

ν2
+ ν2 +


1 + ν22


(5.2.21)

at points when sin (2µ1 + ψ1) = 1, sin (2µ2 + ψ2) = 1. Next, we need to maximize
the expression (5.2.21) in ϑ. It is clear that this expression reaches its extreme
values either at ϑ = 0 (when the initial conditions are given on the first mode)
or at ϑ = π/2 (when the initial conditions are given on the second mode). Let us
determine at which of these points the function fmax

µ1,µ2

reaches its maximum value
in ϑ. To do this, we write out the values of this function at extreme points:

ϑ = 0 : fmax
µ1,µ2

=
1

p10


1

ν1
+ ν1 +


1 + ν21


,

ϑ =
π

2
: fmax

µ1,µ2

=
1

p20


1

ν2
+ ν2 +


1 + ν22


.

(5.2.22)

If ν1 and ν2 are expressed in terms of ν using the relations (5.2.19), then each of
these expressions can be obtained as a function of ν and α. In order to compare the
values (5.2.22) with each other, let us write down their simplified representations.
Thus, for ν → 0 we have

fmax
µ1,µ2

(ϑ = 0) ≈ 1

η1ν
+

1

p10
, fmax

µ1,µ2


ϑ =

π

2


≈ 1

η2ν
+

1

p20
, (5.2.23)

while for ν → ∞ it will be

fmax
µ1,µ2

(ϑ = 0) ≈ 2


2− 1

p210


ν, fmax

µ1,µ2


ϑ =

π

2


≈ 2


2− 1

p220


ν, (5.2.24)

where the formulas (2.5.14) are taken into account. Since p10 < p20, η1 < η2, we
can conclude from this that at ν → 0 there will be fmax

µ1,µ2

(ϑ = 0) > fmax
µ1,µ2

(ϑ = π/2),
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while at ν → ∞ we already have fmax
µ1,µ2

(ϑ = 0) < fmax
µ1,µ2

(ϑ = π/2). This means that
the equation fmax

µ1,µ2

(ϑ = 0) = fmax
µ1,µ2

(ϑ = π/2) has for any value α on the interval
0 < ν < ∞ at least one real root, which can be determined using numerical
procedures. A numerical study shows that such a root ν∗ is unique for any α.

Из этих рассуждений следует, что максимальное значение функции fmax
µ1,µ2

по ϑ зависит от величины коэффициента ν следующим образом:

f max
µ1,µ2,ϑ

=


1

p10


1

ν1
+ ν1 +


1 + ν21


, 0 < ν ≤ ν∗

1

p20


1

ν2
+ ν2 +


1 + ν22


, ν > ν∗

. (5.2.25)

It remains to find the minimum value of the function (5.2.25) in ν. To do this,
we first determine the extremum points of each of the functions (5.2.22) on the
interval 0 < ν < ∞. Since fmax

µ1,µ2

at ϑ = 0 is a function of the variable ν1,
then to find its extremum point, it suffices to calculate its derivative by this
variable and equate the resulting expression to zero. As a result, after a series of
transformations, we will have:

ν41 + ν21 − 1 = 0, ν1 =

√
5− 1

2
, ν∗1 =

p10
η1
ν1 =

p10
η1

√
5− 1

2
. (5.2.26)

Similarly, we determine the extremum point of the function fmax
µ1,µ2

at ϑ = π/2:

ν42 + ν22 − 1 = 0, ν2 =

√
5− 1

2
, ν∗2 =

p20
η2
ν2 =

p20
η2

√
5− 1

2
. (5.2.27)

Let us plot the dependencies of ν∗, ν∗1 and ν∗2 on the angle α on one graph
(Fig. 5.6). It is easy to see that for any value α we will have ν∗2 < ν∗ < ν∗1. This
means that the value ν∗1 does not fall within the interval 0 < ν ≤ ν∗ and the value
ν∗2 does not fall within the interval ν > ν∗. Therefore, the graph of the function
(5.2.25) over the entire interval 0 < ν < ∞ can be schematically represented
as follows (Fig. 5.7). In this case, the necessary segments of the functions are
highlighted by solid lines, and the extraneous ones are dotted. It is clear from this
that the minimum of the function f max

µ1,µ2,ϑ
is reached exactly at ν = ν∗, and this

extremum is sharp, as it was when considering the optimization criterion based
on the degree of stability. We note that at the point ν = ν∗ both values in (5.2.22)
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are equal, so if we return to the formula (5.2.21), we can see that for a given value
ν it will not depend on ϑ, since the equal factor can be taken out of the bracket,
and cos2 ϑ+sin2 ϑ = 1. The left branch of the graph shown in Fig. 5.7 corresponds
to the value ϑ = π/2, and the right branch corresponds to the value ϑ = 0. At
the found optimal point ν = ν∗, the value ϑ does not play any role – it can be
any value, and the value of the criterion (5.2.21) will not change.

Finally, we write down the specific values ν∗ and the corresponding values of
criterion f max

µ1,µ2,ϑ
in particular cases. Thus, at α = 0 we find

ν∗ = 1.5764, f max
µ1,µ2,ϑ

= 5.5458, (5.2.28)

and at α = π/2 we have

ν∗ = 1.9521, f max
µ1,µ2,ϑ

= 4.6577. (5.2.29)

5.3. Optimization of Collinear Oscillation

Damping

Let us now assume that the oscillations of spatial double pendulum are damped
by means of collinear braking, i.e., it is active. Based on the same optimization
criteria as for the case of passive oscillation suppression, let us determine the
optimal values of the parameter γ < 0 (or the corresponding value δ = γ/2).

1. Degree of stability. As before, we first consider a criterion based on
the degree of stability and discuss the behavior of the dimensionless roots of the
characteristic equation κ = λ/k, referring to the formulas (4.3.5). It is easy to
understand that the root hodograph here will have the same form as in Fig. 5.3,
however, the movement of the roots when changing the coefficient σ = δ/k now
occurs differently on it. So, at σ = 0 all four roots lie on the imaginary axis.
When σ decreases in the range −p10 < σ < 0, the roots move along semicircles
(5.2.1), while being on the same vertical. At σ = −p10, the roots κ1,2 merge into
one multiple real root, and as σ decreases further, they diverge along the real axis
in different directions from the merging point. The pair of roots κ3,4 in the range
−p20 < σ < −p10 continues to move along their semicircle, until at σ = −p20 they
merge into a multiple root, after which, for σ < −p20, they also diverge along the
real axis.
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Considering what has been said, it is possible to plot the graph dependencies
of the modules of the real parts of all four roots of the characteristic equation in a
dimensionless variant (Fig. 5.8). As before, the solid lines here highlight sections
corresponding to the root closest to the imaginary axis, which determines the
dimensionless degree of stability ∆/k. We emphasize additionally that, in contrast
to the case of viscous damping considered above, here for σ < −p20 the curve
|Reκ2| = −σ −


σ2 − p210 lies below the curve |Reκ4| = −σ −


σ2 − p220, and

this is obvious because p10 < p20. It is clear that in the problem under study the
maximum degree of stability is reached at the point when the roots κ1,2 merge, i.e.,
under the condition that they are multiplicity. Thus, we obtain the optimal value

∆

k

σ
0−p10−p20

|Reκ1|

|Reκ3|

|Reκ4|

|Reκ2|

Fig. 5.8. Graph dependence of the dimensionless degree of stability ∆/k on σ

σ∗ and the maximum degree of stability corresponding to it in the dimensionless
version:

σ∗ = −p10,
∆max

k
= p10. (5.3.1)

Therefore, the dependence of σ∗ on the angle α completely repeats the dependence
of the first frequency on this angle, shown in Fig. 2.6, and therefore the value of
σ∗ is practically independent of the angle α. It is clear that for −p10 ≤ σ < 0 the
dimensionless degree of stability is determined by the real part of the complex
conjugate roots κ1,2, and after this point, by the smaller modulus of these roots
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κ2 which are already real:

∆

k
=


−σ, −p10 ≤ σ < 0

−σ −

σ2 − p210, σ < −p10

. (5.3.2)

However, two important things should be kept in mind here. First, as mentioned
above, in the case of a multiple root, one of the functions in the fundamental
system of solutions has the form te−k10t. This function grows at small times,
although it decays at t → ∞, and, nevertheless, it is hardly advisable to have
such a component of the solution if we are talking about optimal oscillation
damping [76]. Secondly, the left part of the graph shown in Fig. 5.8 has a vertical
tangent at the point σ = −p10. This means that even the slightest error in the
value σ in the smaller direction can lead to a sharp drop in the degree of stability.
It follows from this that if we are guided by a criterion based on the degree of
stability, then it is best to choose in practice the value σ∗ slightly larger than the
value −p10 so that it is located on the linear section of the graph. In this case,
both of these disadvantages will be eliminated: there will be no multiple roots,
and an error in the value σ will lead to exactly the same error in the value ∆/k.

2. Energy-time criterion. Turning now to the integral criterion (5.1.2)
without stopping again on transformations, we arrive at the following expression
for this criterion after completely analogous actions:

F =
E0

2


cos2 ϑ

k10


1

σ1
+ σ1 + σ1 cos 2µ1 + sin 2µ1


+

+
sin2 ϑ

k20


1

σ2
+ σ2 + σ2 cos 2µ2 + sin 2µ2


,

(5.3.3)

where the dimensionless coefficients σ1 and σ2 are also introduced, which are
related to σ by the formulas:

σ1 = − δ

k10
= − σ

p10
, σ2 = − δ

k20
= − σ

p20
. (5.3.4)

It can be seen that the expression (5.3.3) coincides with (5.2.18) up to notation,
but the dependence of the coefficients σ1 and σ2 on σ according to the expression
(5.3.4) is fundamentally different from how ν1 and ν2 previously depended on ν

in (5.2.19). Therefore, it makes sense to proceed further in more detail.
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Discarding in (5.3.3) the insignificant constant factor E0/(2k) and finding the
maximum value of the resulting expression in µ1 and µ2

fmax
µ1,µ2

=
cos2 ϑ

p10


1

σ1
+ σ1 +


1 + σ21


+

sin2 ϑ

p20


1

σ2
+ σ2 +


1 + σ22


, (5.3.5)

we see that, as before, it reaches an extremum in ϑ at the points ϑ = 0 and
ϑ = π/2. Comparing the values of the function fmax

µ1,µ2

at these points

ϑ = 0 : fmax
µ1,µ2

=
1

p10


1

σ1
+ σ1 +


1 + σ21


,

ϑ =
π

2
: fmax

µ1,µ2

=
1

p20


1

σ2
+ σ2 +


1 + σ22


,

(5.3.6)

and taking into account the expressions (5.3.4), it is easy to establish that

fmax
µ1,µ2

(ϑ = 0) = −1

σ
− σ

p210
+

1

p10


1 +

σ2

p210
,

fmax
µ1,µ2


ϑ =

π

2


= −1

σ
− σ

p220
+

1

p20


1 +

σ2

p220
.

(5.3.7)

It is easy to see from here that the maximum value of the function fmax
µ1,µ2

in ϑ is
reached at ϑ = 0 for any value σ, since p20 > p10. It remains to minimize the
expression

f max
µ1,µ2,ϑ

=
1

p10


1

σ1
+ σ1 +


1 + σ21


(5.3.8)

in σ (or, more simply, in σ1). Differentiating (5.3.8) by σ1 and equating the
derivative to zero, we get:

σ41 + σ21 − 1 = 0, σ1 =

√
5− 1

2
= − σ∗

p10
. (5.3.9)

Thus, the optimal value σ is determined by the expression:

σ∗ = −

√
5− 1

2
p10 ≈ −0.7862p10. (5.3.10)

The resulting optimal value is closely related to the famous “golden section”,
which often occurs when solving a wide variety of optimization problems. In
particular, a similar result takes place in the problem of the damping optimization
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of a single-link manipulator, i.e., a system with one degree of freedom (when
the collinear control action is actually identical to viscous friction), where the
same optimization criterion was used [76]. In addition, the presented method for
finding the optimal collinear damping parameter can be generalized to the case of
a mechanical system with an arbitrary finite number of degrees of freedom [68].
Finally, we also calculate the value of the criterion f max

µ1,µ2,ϑ
at the found point,

which we will need later:

f max
µ1,µ2,ϑ

=


11 + 5

√
5

p10
√
2

≈ 3.3302

p10
. (5.3.11)

5.4. Comparison of Optimal Parameters of

Passive and Active Oscillation Damping

Let us proceed to a comparison of the obtained results for passive and active
damping of oscillations of spatial double pendulum. First, we plot the dependencies
of the values ν∗ and σ∗ on the angle α, obtained by studying both optimization
criteria. Herewith, to avoid confusion, we supplement the designations of these
values with indices showing their belonging to a certain criterion: (1) – criterion
based on the degree of stability, (2) – energy-time criterion. These dependencies
are shown in Figs 5.9 and 5.10 respectively.

It can be seen that for both cases of damping there are differences in the
optimal values obtained in the study of various optimization criteria, but their
scatter is not too significant. Therefore, it is possible to estimate in what range
it is most advantageous to choose the parameters ν and σ in order to ensure the
extreme properties of the considered criteria. Wherein, it is easy to understand
that in the case of optimal passive damping, according to both criteria, the motion
of the system is oscillatory-aperiodic, i.e., ν20 < ν∗ < ν10 for any angle α: roots κ1,2
are complex conjugate, and roots κ3,4 are real. This means that the first mode
is damped rather slowly and retains an oscillatory character, while the second
form is strongly damped, and instead of oscillations on it, aperiodic damping
takes place. In the case of optimal active damping according to both criteria, the
character of the damping of the modes is oscillatory (of course, provided that the
optimal value according to the criterion based on the degree of stability is taken
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in practice slightly to the right of the maximum point).
To assess the advantages of the active method of oscillation damping over the

passive one, we plot the dependence of the ratio β(1) of the degree of stability
at the optimal value σ = σ

(1)
∗ in the case of active damping to the degree of

stability at the optimal value ν = ν
(1)
∗ in the case of passive damping on the angle

α. In addition, referring to the integral criterion, we consider its values at the
optimal points σ = σ

(2)
∗ and ν = ν

(2)
∗ , which give the best result in the worst

case for active and passive damping respectively, and also plot their ratio β(2).
These graphs are shown in Figs 5.11 and 5.12 respectively. It can be seen that
β(1) > 1 and β(2) < 1, as expected. In this case, active damping makes it possible
to significantly increase the maximum degree of stability in comparison with the
passive damping variant, while the gain in the value of the energy-time indicator
is not so tangible.

5.5. Optimization of Collinear Oscillation

Damping in Presence of Viscous Damping

In conclusion, we consider the situation when the system already has some
given damping in both joints with a dimensionless dissipative coefficient ν. Let us
find out how the parameters of the active collinear action should be chosen in order
to improve the damping processes of the movements of a double pendulum. It is
clear that in this case the roots of the characteristic equation in the dimensionless
version will be determined by the formulas (4.5.19). As before, we analyze both
criteria and determine the dependence of the optimal value σ∗ according to these
criteria on ν.

1. Degree of stability. It is easy to see that for ν not exceeding some value
ν∗∗, it will still be possible to merge the roots κ1,2, as this was also true at ν = 0,
and the roots κ3,4 will then be to the left of these roots. Then the maximum
dimensionless degree of stability will be equal to ∆∗/k = p10, and the value σ∗
corresponding to it will be determined by the condition:

σ − η1ν = −p10, σ∗1(ν) = −p10 + η1ν, (5.5.1)
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and everything said earlier in Sect. 5.3 about multiple roots also applies to it.
However, if ν exceeds the value ν∗∗, then this situation will no longer be possible,
since the root κ4, when σ decreases, will lie on the same vertical with the roots
κ1,2 before they merge into one multiple root. This situation is similar to the case
that took place in Sect. 5.2. The real part of these three roots will determine the
maximum degree of stability. Therefore, in this case, the value σ∗ is determined
from the equation:

σ − η1ν = σ − η2ν +


(σ − η2ν)

2 − p220, (5.5.2)

and resolving it with respect to σ, we find the required value:

σ∗2(ν) = η2ν −

(η2 − η1)

2 ν2 + p220. (5.5.3)

Equating the expressions (5.5.1) and (5.5.3), after solving the resulting equation,
we find the boundary value ν∗∗:

ν∗∗ =
p220 − p210

2p10(η2 − η1)
. (5.5.4)

It is easy to understand that at ν = ν∗∗ the maximum degree of stability will
correspond to the case when the three roots are the same. Combining now the
expressions (5.5.1) and (5.5.3), we get that the optimal value σ∗ is given by the
following formula:

σ∗(ν) =


−p10 + η1ν, 0 < ν ≤ ν∗∗

η2ν −


(η2 − η1)
2 ν2 + p220, ν > ν∗∗

. (5.5.5)

It can be seen that this expression vanishes at ν = ν∗, determined from (5.2.3), i.e.,
when the viscous damping coefficient is taken according to the optimal variant. As
expected, it will be impossible in this situation to improve the degree of stability
by introducing collinear control. It is important to emphasize here that at ν > ν∗

the value of σ∗ becomes positive, and this indicates that in this case the collinear
control should be overclocked. However, the combined effect of damping and
collinear control has the effect of oscillation suppressing, since it is easy to see
that in this case from (5.5.5) it follows that σ∗ < η1ν, and according to the
diagram presented in Fig. 4.14, this zone that is responsible for damping the
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system movements. Moreover, σ∗ as ν → ∞ tends from below to the oblique
asymptote σ∗ = η1ν. We note that we can write the approximate character of the
dependence (5.5.5) for large values ν:

σ∗(ν) = η2ν − (η2 − η1) ν


1 +

p220
(η2 − η1)

2 ν2
≈

≈ η1ν −
p220

2(η2 − η1)ν
+

p420
8(η2 − η1)3ν3

.

(5.5.6)

At last, we obtain an expression for the dimensionless degree of stability
corresponding to the optimal choice of the value σ∗ according to (5.5.5), depending
on the value ν. It is clear that for any ν from the range 0 < ν ≤ ν∗∗, by proper
selection of σ, one can ensure the maximum possible value of the dimensionless
degree of stability, equal to p10, when the roots κ1,2 are multiples. If ν > ν∗∗, then
the maximum degree of stability in the dimensionless version will correspond
to the coincidence of the real parts of the three roots, which in absolute value
according to (5.5.2) and (5.5.3) are η1ν−σ∗2 = −(η2−η1)ν+


(η2 − η1)2ν2 + p220.

Naturally, this value will decrease as ν increases. Combining the obtained expressi-
ons, we will have:

∆∗

k
=


p10, 0 < ν ≤ ν∗∗

−(η2 − η1)ν +


(η2 − η1)2ν2 + p220, ν > ν∗∗

. (5.5.7)

The graph dependence of ∆∗/k on ν when choosing the optimal value σ∗ is shown
in Fig. 5.13.

2. Energy-time criterion. Turning to the study of the integral criterion for
the problem under consideration, it is easy to understand that the expression for
it, by analogy with (5.2.18) and (5.3.3), will have the following form:

F =
E0

2


cos2 ϑ

k10


1

ν1 + σ1
+ ν1 + σ1 + (ν1 + σ1) cos 2µ1 + sin 2µ1


+

+
sin2 ϑ

k20


1

ν2 + σ2
+ ν2 + σ2 + (ν2 + σ2) cos 2µ2 + sin 2µ2


,

(5.5.8)

where the old designations (5.2.19) for νs and (5.3.4) for σs are retained. Again
discarding the constant factor E0/(2k), we immediately write down the maximum
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Fig. 5.13. Dimensionless degree of stability depending on ν when choosing the
optimal value σ∗

value of the resulting expression in µ1 and µ2:

fmax
µ1,µ2

=
cos2 ϑ

p10


1

ν1 + σ1
+ ν1 + σ1 +


1 + (ν1 + σ1)2


+

+
sin2 ϑ

p20


1

ν2 + σ2
+ ν2 + σ2 +


1 + (ν2 + σ2)2


.

(5.5.9)

As before, the next step is to understand which of the expressions is greater:

ϑ = 0 : fmax
µ1,µ2

=
1

p10


1

ν1 + σ1
+ ν1 + σ1 +


1 + (ν1 + σ1)2


,

ϑ =
π

2
: fmax

µ1,µ2

=
1

p20


1

ν2 + σ2
+ ν2 + σ2 +


1 + (ν2 + σ2)2


.

(5.5.10)

It was established above that at ν = 0 we have fmax
µ1,µ2

(ϑ = 0) > fmax
µ1,µ2

(ϑ = π/2)

for any value of σ. To find out the behavior of these functions at ν ̸= 0, we write
their approximate expressions at σ → −∞:

fmax
µ1,µ2

(ϑ = 0) ≈ 2


2ν − (ν + σ)

1

p210


, fmax

µ1,µ2


ϑ =

π

2


≈ 2


2ν − (ν + σ)

1

p220


,

(5.5.11)
and for the first of them, also when σ approaches another boundary σ = η1ν,
which is the boundary of the motion damping zone in the regime diagram in
Fig. 5.13:

fmax
µ1,µ2

(ϑ = 0) ≈ 1

η1ν − σ
+

1

p10
, (5.5.12)



142

while fmax
µ1,µ2

(ϑ = π/2) tends to a finite limit as σ → η1ν. It is easy to see that
for both cases σ → −∞ and σ → η1ν we have fmax

µ1,µ2

(ϑ = 0) > fmax
µ1,µ2

(ϑ = π/2).
It is clear that as ν increases from 0 to some boundary value ν∗∗, the graphs of
these functions will still have no common points, so that fmax

µ1,µ2

(ϑ = 0) will be the
largest of the specified two values. Its minimization, as it is easy to understand,
leads to the following value σ∗ in the investigated range:

σ − η1ν = −

√
5− 1

2
p10, σ∗1(ν) = −

√
5− 1

2
p10 + η1ν. (5.5.13)

As ν increases, at some point the two curves fmax
µ1,µ2

(ϑ = 0) and fmax
µ1,µ2

(ϑ = π/2)

will touch. However, the boundary situation corresponding to the value ν∗∗ is not
the case of tangency, but the case of intersection of these curves at the extremum
point of the curve fmax

µ1,µ2

(ϑ = 0), because it has been still the minimum point of
the function f max

µ1,µ2,ϑ
. To determine this point, it is enough to solve the equation

fmax
µ1,µ2

(ϑ = 0) = fmax
µ1,µ2

(ϑ = π/2) taking into account representations (5.5.10) and
substituting the expression (5.5.13) into it. Numerical investigation allows to find
the dependence ν∗∗(α). Turning to the analysis of the case ν > ν∗∗, we note first
that the function fmax

µ1,µ2

(ϑ = π/2) in the range σ < η1ν will be decreasing, since
its extremum point

σ = −

√
5− 1

2
p20 + η2ν (5.5.14)

will not fall into the interval of interest to us, being greater than the value
η1ν. Indeed, using numerical methods for solving algebraic equations, it can be
established that if this point is located on the boundary σ = η1ν, which is realized
at

ν =

√
5− 1

2

p20
η2 − η1

, (5.5.15)

then the equation fmax
µ1,µ2

(ϑ = 0) = fmax
µ1,µ2

(ϑ = π/2) will not have solutions for any
values α, i.e., the curves fmax

µ1,µ2

(ϑ = 0) and fmax
µ1,µ2

(ϑ = π/2) will not overlap yet.
Then in the range ν > ν∗∗, due to the decrease of the function fmax

µ1,µ2

(ϑ = π/2)

on the interval under study, these curves will have two intersection points, and
the minimum of the function f max

µ1,µ2,ϑ
is the intersection point σ∗2, which lies closer

to the right boundary of the interval. This situation is shown in Fig. 5.14, where
dependence f max

µ1,µ2,ϑ
is marked by a solid line, and the extraneous sections are

marked by a dotted line.
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f max
µ1,µ2,ϑ

σ
0

fmax
µ1,µ2

(ϑ = 0)

fmax
µ1,µ2


ϑ =

π

2



σ∗2 η1ν

Fig. 5.14. Graph dependence of f max
µ1,µ2,ϑ

on σ at given value ν > ν∗∗

It is easy to understand that with increase in ν at ν = ν∗ this point will be
σ∗2 = 0, since when ν is chosen according to the optimal variant based on the
energy-time criterion it will be impossible to improve this indicator. Indeed, if
we look at the equation fmax

µ1,µ2

(ϑ = 0) = fmax
µ1,µ2

(ϑ = π/2) taking into account the
representations (5.5.10), it is easy to see that it is satisfied precisely at ν = ν∗ and
σ = 0, since the value ν∗ was obtained earlier from exactly the same equation, in
which σ was missing, so that the expressions (5.5.10) in this situation completely
turn into (5.2.22). With a subsequent increase in ν, we already have σ∗2 > 0, and
σ∗2 → η1ν at ν → ∞. To determine an approximate expression for the point σ∗2
for large values of ν, we return to the equation fmax

µ1,µ2

(ϑ = 0) = fmax
µ1,µ2

(ϑ = π/2)

from which it is found, and set

σ∗2 = η1ν +
A

ν
+
B

ν2
, (5.5.16)

where A and B are undefined coefficients. Substituting the expression (5.5.16)
into the equation fmax

µ1,µ2

(ϑ = 0) = fmax
µ1,µ2

(ϑ = π/2), we retain in its left and right
sides only the main terms at ν → ∞ corresponding to their oblique asymptotes.
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Then we get that

− 1

A
ν +

B

A2
+

1

p10
=

2(η2 − η1)

p220
ν. (5.5.17)

Equating the coefficients in this expression at the same powers ν, we find the
values A and B:

A = − p220
2(η2 − η1)

, B = −A
2

p10
= − p420

4(η2 − η1)2p10
. (5.5.18)

Therefore, the approximate character of the dependence of value σ∗2 on ν according
to (5.5.16) will take the form:

σ∗2(ν) ≈ η1ν −
p220

2(η2 − η1)ν
− p420

4(η2 − η1)2p10ν2
. (5.5.19)

Comparing the formulas (5.5.6) and (5.5.19), we can make an important conclusion
that the curve corresponding to the maximum degree of stability at large ν is
located higher than the curve corresponding to the minimum of the integral
criterion, and in the limit at ν → ∞ they have the same oblique asymptote
σ∗ = η1ν. In this case, not only the first terms corresponding to the oblique
asymptote coincide in these approximate expressions, but also the second terms,
which are inversely proportional to ν. Therefore, we can conclude that in a wide
range of sufficiently large values ν, both optimization criteria will lead to almost
identical results.

Thus, the optimal value σ∗ is determined by the expression:

σ∗(ν) =

 −

√
5− 1

2
p10 + η1ν, 0 < ν ≤ ν∗∗

σ∗2, ν > ν∗∗

. (5.5.20)

It remains only to obtain an expression for f max
µ1,µ2,ϑ

depending on ν when choosing

the optimal value of σ∗ according to (5.5.20). In the range 0 < ν ≤ ν∗∗ this value
will be equal to fmax

µ1,µ2

(ϑ = 0) calculated taking into account (5.5.13), which leads
to the expression (5.3.11). Of course, this can also be understood from elementary
considerations, since a change in ν only leads to a parallel horizontally shift of
the dependence of the function fmax

µ1,µ2

(ϑ = 0) on σ according to (5.5.10), which
does not affect its extreme value. Thus, we can ensure by proper selection of σ the
minimum possible value of f max

µ1,µ2,ϑ
equal to (5.3.11) in the specified range ν. For
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the case ν > ν∗∗ the desired value f max
µ1,µ2,ϑ

should be calculated at σ = σ∗2, and it

will be already greater than (5.3.11). As a result, we find the desired dependence

f max
µ1,µ2,ϑ

∗ =




11 + 5
√
5

p10
√
2

, 0 < ν ≤ ν∗∗

f max
µ1,µ2,ϑ

(σ∗2), ν > ν∗∗

, (5.5.21)

which is shown in Fig. 5.15.

f max
µ1,µ2,ϑ

∗

ν
0 ν∗∗


11 + 5

√
5

p10
√
2

Fig. 5.15. Graph dependence f max
µ1,µ2,ϑ

∗ on ν when choosing the optimal value σ∗

Turning now to the evaluation of the obtained results, let us discuss the
dependencies σ∗ on ν obtained by the formulas (5.5.6) and (5.5.20) and correspon-
ding to two different optimization criteria. To do this, we first turn to the characte-
ristic values ν∗ and ν∗∗, obtained in the study of each criterion, and plot these
dependencies on the angle α (Fig. 5.16). As before, these values are here provided
with indexes indicating their belonging to a certain criterion: (1) – criterion based
on the degree of stability, (2) – energy-time criterion.

It can be seen that the values ν(1)∗ , ν(2)∗ , ν(1)∗∗ and ν(2)∗∗ in ascending order for any
value of the angle α always turns out to be the same, so the graph dependencies
of the values σ(1)∗ and σ(2)∗ on ν will have the form shown in Fig. 5.17. The given
curves have quantitative differences, although they are qualitatively very similar.
It is interesting to note that there is a point ν12 where both criteria give the same
result. Since this point lies in the range ν(1)∗∗ < ν12 < ν

(2)
∗∗ , the following equation
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should be written to determine it:

η2ν −

(η2 − η1)2ν2 + p220 = −

√
5− 1

2
p10 + η1ν. (5.5.22)

Resolving it with respect to ν, we get:

ν12 =
1

2
√
2p10

√
5 + 1p220 −

√
5− 1p210


. (5.5.23)

The dependence of value ν12 on the angle α is also shown in Fig. 5.16. Thus, for
any α the following chain of inequalities holds:ν(1)∗∗ < ν12 < ν

(2)
∗∗ < ν

(1)
∗ < ν

(2)
∗ .

In conclusion, it is of interest to evaluate how much the quality indicators
improved when collinear control was introduced into the system with the best-
tuned parameters. First, we plot the ratio β(1) of the dimensionless degree of
stability ∆∗/k according to (5.5.7) to the dimensionless degree of stability ∆/k

at σ = 0 , i.e. according to (5.2.9), on the parameter ν. It is clear that at ν = 0

this ratio is equal to +∞, and at ν = ν
(1)
∗ it reaches a minimum equal to 1 when

the collinear control for any parameters cannot improve the degree of stability.
Finally, to establish the behavior of this relation at ν → ∞, we write approximate
representations of the functions under study (5.5.7) and (5.2.9):

∆∗

k
≈ p220

2(η2 − η1)ν
,

∆

k
≈ p220

2η2ν
. (5.5.24)

This implies that limit of the function β(1) as ν → ∞ is equal to η2/(η2−η1) > 1.
We note that this value will be the greater, the larger the ratio η1/η2, i.e., the
closer the angle α to π/2. This dependence is shown in Fig. 5.18.

In addition, we plot the dependence of the ratio β(2) of the value of the function
f max
µ1,µ2,ϑ

∗ according to (5.5.21) in the presence of the best-tuned control to the value

of the function f max
µ1,µ2,ϑ

in the absence of control, i.e. according to (5.2.25), on the

parameter ν. It is clear that at ν = 0 this ratio is equal to zero, and at ν = ν
(2)
∗ it

reaches a maximum equal to 1, when collinear control cannot improve the value
of criterion. Finally, to establish the behavior of this relation at ν → ∞, we
write simplified representations of the functions (5.5.21) taking into account the
approximate expression (5.5.19) and (5.2.25):

f max
µ1,µ2,ϑ

∗ ≈
2(η2 − η1)ν

p220
, f max

µ1,µ2,ϑ
≈ 2η2ν

p220
. (5.5.25)
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Fig. 5.18. Graph dependence of value
β(1) on ν

ν
ν
(2)
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1
η2 − η1
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Fig. 5.19. Graph dependence of value β(2)

on ν

This implies that limit of the function β(2) as ν → ∞ is equal to (η2−η1)/η2 < 1.
Of course, this value is the smaller, the larger the ratio η1/η2, i.e., the closer α is
to π/2. The mentioned dependence is shown in Fig. 5.19.

5.6. Conclusions on Fifth Chapter

In this chapter, questions of optimal oscillation damping of spatial double
pendulum were studied. In this case, the possibility of both passive damping
(viscous damping) and active damping (collinear control), as well as their joint
accounting, was considered. Two optimization criteria were adopted that characteri-
ze the efficiency of the attenuation processes of system movements: maximization
of the degree of stability and minimization of the energy-time indicator. The
main advantages and disadvantages of these criteria were discussed. In the course
of the exact solution of the problem within the framework of the linear model,
the optimal parameters of each of the damping options were determined as a
function of the angle between the joint axes of spatial double pendulum according
to both optimization criteria and the results were compared. In addition, visual
graphical estimates are given, demonstrating the advantage of active damping.In
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conclusion, the problem of cooperative passive and active damping was considered
and the optimal values of active damping parameters were obtained for given
passive damping parameters, and dependencies illustrating the efficiency of using
such parameters were presented. These results clearly demonstrate the expediency
of adding appropriate control actions to a dissipative system to ensure the most
pronounced processes of attenuation of its motions. The nontrivial structure of
the constructed solutions should be emphasized. The obtained conclusions may be
of serious practical interest in the study of the dynamic behavior of real two-link
manipulators.



150

Conclusion
Turning to the final section of the dissertation, we present its main results

and draw conclusions, demonstrating once again the close connection between
the sections of this work with each other.

The object of the study was a double mathematical pendulum with identical
parameters of its links and weights, whose joint axes were assumed not to be
collinear to each other. Therefore, the double pendulum became spatial, which
significantly affected the complexity of studying its dynamic behavior compared
to a simpler version of a flat double pendulum. The main geometric and kinematic
relations were obtained, on the basis of which the nonlinear motion equations of
the system under consideration were derived, and particular variants of a flat and
orthogonal double pendulum were discussed. As a result of a detailed analysis
of the linear model, the frequencies and modes of small oscillations were found,
and graphical illustrations of their dependencies on the angle between the joint
axes were also given. It is shown that viscous friction in articulated joints with
identical dissipative coefficients does not violate the modes of free oscillations of
the original conservative model and damps the system motions exactly by these
modes without distorting their character. In addition, during the study of the
dissipative model, the key values describing the attenuation process of the system
motions were analyzed and illustrated graphically.

Much attention was paid to the construction of nonlinear oscillation modes
both for particular variants of the flat and orthogonal double pendulum, and for
the general case of a spatial double pendulum. On the basis of the expressions
obtained for the linear model and using asymptotic methods of nonlinear mecha-
nics, approximate analytical solutions were obtained for the system motion on
nonlinear oscillation modes in the first approximation for the general case, and for
particular variants, due to their simpler character, these formulas were obtained
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in second approximation. It was shown that the found expressions are in good
agreement with the results of numerical integration of the motion equations. The
results of this study were clearly presented in the form of graphs explaining the
character of the system motion on nonlinear oscillation mode, namely, graphs
dependencies of oscillation frequencies on amplitudes, phase portraits for each
generalized coordinate separately, as well as graphs of changes in generalized
coordinates and velocities in one oscillation period. All these illustrations show
how significantly nonlinear oscillation modes differ from their corresponding linear
version, which must be taken into account in the analysis of large oscillations of
the system.

A very extensive section of the work is the analysis of controlled motions of a
spatial double pendulum. The control moments in the articulated joints were
formed with the help of feedback on the principle of collinear control, which
takes into account the dynamic features of the system and acts in unison with
the generalized inertia forces. With the help of a reasonable combination of
analytical and numerical studies, it was shown that such a control at a constant
gain makes it possible to direct all the energy supplied to the system only to
the evolution of the selected oscillation mode. This means that it is possible to
overclock the system for each of its natural modes separately from small and up to
sufficiently large amplitudes with preservation the single-frequency character of
the motion and a gradual drift of the frequency and mode of the oscillations
from the linear version to the nonlinear one. Thus, a clear demonstration of
the phenomenon of autoresonance in a system with two degrees of freedom was
obtained. Herewith, to bring the system to the mode of nonlinear conservative
oscillations close to periodic and corresponding to the desired sufficiently high
energy level, it is necessary to turn off the control at the moment when the
system reaches this energy. It was noted that the obtained modes in this way are in
accordance with the nonlinear oscillation modes constructed earlier. In addition to
the collinear control with a constant gain, its useful modification was considered,
and it has a variable gain that gradually decreases as the total energy of the
system increases and approaches the desired value, the achievement of which is
the purpose of the control. This allows to realize more flexible control of the system
movement, avoiding abrupt shutdown of control actions and thus ensuring the best
quality and smoothness of control processes. Moreover, approximate analytical
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expressions for this modification were also obtained, which also agree with the
results of numerical integration. Finally, a cooperative account of dissipative and
control actions was made, leading to the possibility of implementing a number of
motion modes that have their own features and are illustrated using a diagram of
modes on the plane of dimensionless dissipative and control parameters.

The last chapter of the work was devoted to determining the optimal parame-
ters of the passive and active damping options for a spatial double pendulum,
which are viscous friction and collinear control with a constant gain respectively,
whose properties were established in the previous sections. Both the criterion
based on the degree of stability and the integral energy-time criterion were taken
as optimization criteria characterizing the efficiency of the attenuation processes
of system motions, and their advantages and disadvantages were discussed. In the
course of solving the optimization problem in the framework of a linear model,
the optimal parameters of each of the damping options were first determined by
both criteria separately, and then the joint accounting of two damping options
was considered and the optimal values of the control coefficient were found for
a given value of the dissipative parameter. All the obtained results are displayed
graphically and it is shown that the use of different criteria leads to qualitatively
similar results, which, however, have some quantitative differences. In addition,
the expediency assessment of the additional consideration of appropriately tuned
control actions in the dissipative system in order to ensure the most pronounced
attenuation processes was made.

Summarizing all the results of this dissertation, we can conclude that the aim
stated at its beginning is achieved.
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1734. Pp. 527–530.

[107] Formalskii A. M. On stabilization of an inverted double pendulum with one
control torque. Journal of Computer and Systems Sciences International.
2006. 45(3). Pp. 337–344.

[108] Fradkov A. L. Cybernetical physics. From Control of Chaos to Quantum
Control. Springer-Verlag, Berlin, Heidelberg: 2007. 242 p.



164

[109] Fradkov A. L. Exploring nonlinearity by feedback. Physica D. 1999.
128(2–4). Pp. 159–168.

[110] Fradkov A. L. Investigation of physical systems by feedback. Automation
and Remote Control. 1999. 60(3). Pp. 471–483.

[111] Gerres J. M., Jacobs R. M., Kasun S. F., Bacon M. E., Nagolu C. M.,
Owens E. L., Siehl K. F., Thomsen M., Troyer J. S. Large Amplitude
Oscillations of a Double Pendulum. American Physical Society. 2008. Spring
Meeting of the Ohio-Region Section of APS, March 28-29, 2008. P1.004.

[112] Gracey W. The Experimental Determination of the Moments of Inertia
of Airplanes by a Simplified Compound-Pendulum Method. NAGA. 1948.
TN № 1629. 29 p.

[113] Ivanov A. V. Study of the double mathematical pendulum – III Melnikov’s
method applied to the system in the limit of small ratio of pendulums masses.
Regular and chaotic dynamics. 2000. Vol. 5. № 3. Pp. 329–343.

[114] Jadlovská S., Sarnovský J. Classical Double Inverted Pendulum – a Complex
Overview of a System. IEEE 10th International Symposium on Applied
Machine Intelligence and Informatics (SAMI). 2012. Pp. 103–108.

[115] Karman von Т., Biot M. A. Mathematical Methods in Engineering.
McGraw, Hill Publishing Co., 1940. 505 p.

[116] Kholostova O. V. On the motions of a double pendulum with vibrating
suspension point. Mechanics of Solids. 2009. 44(2). Pp. 184–197.

[117] Klotter K. Technische Schwingungslehre. Bd. 2. Springer-Verlag, 1960. 484 s.

[118] Kovacic I., Zukovic M., Radomirovic D. Normal modes of a double
pendulum at low energy levels. Nonlinear Dynamics. 2020. Vol. 99. Pp. 1893–
1908.

[119] Lamb H. Dynamics. Cambridge: The University press, 1914. 344 p.

[120] Lavrovskii E. K., Formalskii A. M. The optimal control synthesis of
the swinging and damping of a double pendulum. Journal of Applied
Mathematics and Mechanics. 2001. 65(2). Pp. 219–227.



165

[121] Levi-Civita T., Amaldi A. Lezioni di meccanica razionale. Volume secondo.
Dinamica dei sistemi con un numero di gradi di libertà. Parte seconda.
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