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INTRODUCTION 

In recent decades, scientific groups and organizations in various countries have 

been actively exploring the possibilities of satellite remote sensing for environmental 

monitoring. The advancement of remote sensing technologies has significantly expanded 

the possibilities of practical environmental monitoring. The data obtained helped to 

identify the consequences of fires, track deforestation, observe changes in natural 

ecosystems, control land use and solve other problems. Special attention was paid to the 

development of monitoring systems for agriculture and urban areas. In Uzbekistan, over 

the past 15-20 years, there have been significant changes in land use for economic 

reasons. The structure of land use has changed, and large tracts of land previously 

allocated for agricultural production now remain unused. Objective information is needed 

on changes in agricultural land use [3]. Currently, land use management is mainly carried 

out by the State Committee of the Republic of Uzbekistan for Land Resources, Geodesy, 

Cartography and State Cadaster through statistical observations. However, the 

information collected is of a general nature and is not subject to proper control over its 

reliability. As a result, the existing system for collecting land-use data does not fully 

comply with modern standards. Monitoring of changes in agricultural land use is 

becoming an integral part of the regulation system of the agro-industrial complex [6, 8]. 

In the field of agricultural monitoring, the Ministry of Agriculture and Water 

Resources of the Republic of Uzbekistan and the Agency for Space Research and 

Technology under the Council of Ministers of the Republic of Uzbekistan are working 

together to create their own satellite-based agricultural monitoring system, which is 

designed to obtain reliable information on the use of agricultural land. An important 

element of this system is the collection of data on the availability and use of arable land, 

including information on the geographical distribution of these lands and the crops used, 

as well as data on crops and operational monitoring of the condition of crops. The system 

is designed to provide users with information about the area of arable land, a variety of 

crops, their yields and the condition of crops. The use of remote sensing data plays a key 



5 
 
role in assessing the use of agricultural land. Satellite imagery is an additional data source 

that needs to be monitored regularly. Among the important advantages of satellite images, 

their timeliness, objectivity and independence should be highlighted. Previously, the 

creation of operational monitoring systems was hampered by limited access to data from 

modern satellites, the lack of necessary software and hardware, as well as imperfect 

methods of thematic image processing. However, in recent years, the advent of new 

satellite systems has greatly simplified access to remote sensing data. It is important to 

note that without appropriate pre-processing and image processing algorithms, remote 

sensing information cannot be used effectively [8].  

The development of remote sensing data processing methods for crop monitoring 

will contribute to improving the accuracy and objectivity of land-use information. This is 

an important stage in the creation of land-use maps based on remote sensing data. Taking 

into account the world experience and the level of development of modern satellite 

monitoring systems and computer technologies, the development of methods for 

automatic processing and analysis of satellite observation data seems promising. This 

technology plays an important role in the creation of a monitoring system for agricultural 

land in Uzbekistan [2]. 

Monitoring of agricultural land includes covering large areas and, consequently, 

processing a significant amount of remote sensing data. The main purpose of this study 

is to develop an algorithm that will automate this process of processing remote sensing 

data as efficiently as possible. The state and dynamics of land use are key aspects of 

modern ecology. Changes in the use of arable land can affect the microclimate and 

landscape, which in turn affects carbon dioxide emissions. 

In recent years, almost all regions of Uzbekistan have faced the process of 

degradation of agricultural lands, which has led to soil erosion, a decrease in their fertility 

and the spread of shrubs. At the same time, crop failure is a natural phenomenon that 

complicates the management and control of agricultural land. For example, inefficient 

use of land, including ignoring the principles of crop rotation, can contribute to soil 

erosion, which ultimately leads to a long-term decrease in its fertility. Therefore, an 
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objective approach to land use management is required both at the level of individual 

agricultural areas and at the state level [2]. 

Given the importance of agriculture for the environment, economy and social 

sphere in Uzbekistan, as well as the lack of objective, practical and reliable information 

about arable land, the development of a methodology for monitoring their condition using 

satellites is becoming extremely relevant and necessary. This determines the relevance of 

the presented research. 

As it is known, current demographic forecasts and trends indicate that the world's 

population will continue to grow in the coming decades. At the same time, the demand 

for natural resources and living space will grow. As a result, urban areas are expanding 

significantly, and new settlements and urban agglomerations are emerging all over the 

world. Therefore, in order to solve problems related to current and future urbanization 

trends, data and methods are needed to observe and quantify the changes associated with 

urban expansion. The purpose of this work is to develop an analytical scheme to identify 

patterns of urban growth based on remote sensing data at various scales and spatial and 

temporal resolutions. This paper also attempts to assess the environmental consequences 

of urbanization using the concept of established landscape indicators, their extensions and 

combinations. It is worth noting that urbanization occurs unevenly, varying greatly in 

space and time. The unique and often chaotic growth of urban areas currently taking place 

is particularly noticeable in Central Asia. Uzbekistan has been experiencing rapid 

urbanization, especially since mid-2001. The demand for new residential, commercial 

and industrial land stimulates the emergence of new urban centers, which threatens 

sustainable development, the creation of a high quality of life and the protection of 

environmental sustainability [9]. 

Many scientists have proposed various methods to solve the above problems. 

However, the accuracy of these methods does not always meet the requirements, solves 

the problem only partially and requires significant computational costs. Therefore, the 

development of methods for processing, segmentation and detection of objects in urban 

and agricultural areas based on satellite data remains an urgent task. 
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The purpose of the study.  The main purpose of the dissertation research was to 

develop automation methods, algorithms and tools, as well as appropriate software for 

processing data obtained from satellite observations in order to solve monitoring 

problems in agriculture and urban areas. The following approaches have been proposed 

to achieve this goal: 

1. Development of an atmospheric correction algorithm for the formation of satellite 

data sets free from the influence of atmospheric distortion. This algorithm will 

improve the accuracy of segmentation of satellite images of the Earth and the 

reliability of the results obtained, as well as make it possible to unify images 

obtained from different satellites. 

2. Development of a satellite data processing method for the identification of 

agricultural products in agricultural territories. This method will allow 

classification by types of products grown on agricultural land. 

3. Development of a method for identifying urban objects by analyzing and 

segmenting satellite data. This method will make it possible to classify objects 

located in urban areas, and will also make it possible to identify newly built objects. 

4. Development of satellite data processing software for solving agricultural problems 

and monitoring urbanization. This software will improve the quality of satellite 

data using atmospheric correction, provide data on the state of agricultural 

territories and types of agricultural products grown in these territories, and will also 

allow monitoring urban areas. 

Scientific novelty. The following new scientific results were obtained in the work: 

1. Based on deep learning approaches, a method for atmospheric correction of 

satellite images is proposed. The method allows for unified atmospheric correction 

for images obtained from different types of satellites. 

2. Methods for assessing the state of agricultural zones and classifying crops using 

algorithms for determining vegetation indices and deep learning methods are 

proposed. The methods allow us to obtain objective information about the 

distribution and condition of agricultural land, cultivated crops, as well as about 

the distribution of urban land. 



8 
 

3. A method based on modification of the architecture of a deep learning neural 

network is also proposed, which allows segmenting and identifying objects on 

satellite images of territories, including urban and agricultural areas. The method 

allows to significantly reduce the requirements for computing resources needed to 

solve such problems. 

Research methods. The work uses methods of digital image processing, machine 

learning methods, and methods of mathematical statistics. 

Practical significance. The developed method of preprocessing remote sensing data 

makes it possible to obtain images free of clouds and other interfering factors. The 

resulting images are used to solve various remote sensing problems. The developed 

method of crop identification was used to obtain data on the spatial distribution of winter 

crops, sunflowers and clean fallow lands in the Ferghana region. The result of this study 

was the creation of an important software tool for the national monitoring system of 

agricultural lands and urban areas being developed in Uzbekistan. 

Approbation. The main results of the dissertation work were reported and discussed 

at scientific seminars of the Department of Computer Modeling and Multiprocessor 

Systems of St. Petersburg State University, as well as at eight international scientific 

conferences: 

Proceedings of the 9th International Conference "Distributed Computing and Grid 

Technologies in Science and Education" (GRID'2021), Dubna, Russia, July 5-9, 2021. 

1. The 1st International Conference on Problems and Perspectives of Modern 

Science: Icppms-2021, Tashkent, Uzbekistan, 10–11 June 2021. 

2. Modern Methods of Applied Mathematics, Control Theory and Computer 

Technologies (Pmtukt-2021), Voronezh, Russia, December 14–16, 2021. 

3. Digital Region: Experience, Competencies, Projects Bryansk, Russia, November 

26–27, 2020. 

4. International Scientific Conference Proceedings “Advanced Information 

Technologies and Scientific Computing” PIT 2021, Samara, Russia. 

5. International Scientific and Technical Conference "Advanced Information 

Technologies" (PIT-2022), Samara, Russia, April 18 - 21, 2022. 



9 
 

6. 10th International Conference "Distributed Computing and Grid Technologies in 

Science and Education" (GRID'2023), Dubna, Russia, July 3-7, 2023. 

Publications. During the research, nine scientific papers were published, which 

contain the main results. All data processing methods, software and analysis of the results 

were developed and applied by the authors of the study independently. List of author's 

publications: 

1. Grishkin V. et al. Detection of Fertile Soils Based on Satellite Imagery Processing 

[Electronic resource] / V Grishkin, E Zhivulin, A Khokhriakova, S Karimov // Ceur 

Workshop Proceedings. – 2021. – P. 251-255. - Access mode: 

https://doi.org/10.54546/mlit.2021.13.12.001 (date of access: 24.03.2024). 

2. Grishkin V. M., Karimov S. I. Use of satellite imagery and index control to monitor 

and analyze the agricultural lands of Bukhara region, which is a world historical 

heritage [Electronic resource] / V Grishkin, S Karimov // AIP Conference 

Proceedings. – AIP Publishing, 2022. – Vol. 2432. – №. 1 - Access mode: 

https://doi.org/10.1063/5.0089537 (date of access: 25.03.2024). 

3. Karimov S. I. Structural strategy for the formation of remote monitoring of 

agricultural lands // Modern methods of applied mathematics, control theory and 

computer technologies (PMTUKT-2021). – 2021. – P. 59-62. 

4. Karimov S. I., Karimova M. I., Grishkin V. M. General description of the reception 

and study of data coming through the satellite // Digital region: experience, 

competencies, projects. – 2020. – P. 1044-1047. 

5. Grishkin V. M., Karimov S. I. U. Models and methods of data processing remote 

sensing // The American journal of engineering and technology. – 2021. – Vol. 3. 

– No. 02. - P. 67-74. 

6. Grishkin V. M. et al. Comparison of multi-resource remote sensing data for 

vegetation indices. – 2021. 

7. Karimov S.I. Machine learning methods for predicting yield using sentinel-2 

satellite images // International scientific and technical conference "Advanced 

Information Technologies" (PIT-2022). – 2022. – P. 163-169. 
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8. 124. Grishkin V.M., Karimov S.I. Deep neural network for semantic 

segmentation of satellite images // H&ES Reserch, 2024, Vol.16, No. 3, P. 12-17. 

9. 125. Grishkin V. M., Karimov S. I. Atmospheric correction of satellite images 

using a neural network // Physics of Particles and Nuclei, 2024, Vol. 55, No. 3, P. 

545–547. 

Certificates of state registration of programs. 

1. Certificate of state registration of a computer program No. RU2023664858 Russian 

Federation // Program for recognition and segmentation of objects on satellite 

images" (SatObj) // No. 2023663505: application. 06/28/2023: publ. 07/10/2023 

Bulletin. No. 7 // V. M. Grishkin, S. I. Karimov // Federal State Budgetary 

Educational Institution of Higher Education "St. Petersburg State University" 

(SPBGU). 

The structure and scope of the dissertation. The work consists of an introduction, 

four chapters, conclusion and bibliography. The total volume consists of 124 pages. 

Bibliography consists of 125 titles. 

The main scientific results of the dissertation work: 

1. An atmospheric correction method has been developed and implemented for 

processing satellite monitoring data on agricultural and urban lands. This method 

allows to obtain satellite images that are not affected by the properties of the 

atmosphere, and also makes it possible to unify images obtained from different 

satellites [1, 7, 125]. The operating principle of the new method is presented in 

[125] and in section 3.4. The author made 90% contribution to the development of 

atmospheric correction. 

2. Methods of segmentation of satellite images for monitoring agricultural territories 

and classification of agricultural products grown in these territories have been 

developed and implemented [2, 3, 6, 124]. The process of segmenting agriculture 

by index VI and the process of analyzing index indicators are presented in article 

[2-3, 6] and sections 2.3 – 3.6. At this stage, the author’s contribution to obtaining 

the results was 95%. The process of identifying and segmenting types of 

agricultural products is reflected in sections 3.7 and [123-124] of the program and 
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article. The author made 85% contribution to the results of experiments and 

determination of the type of agricultural products using neural networks. 

3. To study urban and rural areas, a method for processing satellite data using deep 

learning neural networks has been developed and implemented. Using this method, 

it is possible to identify certain objects in both urban and rural areas [1-7, 123, 124]. 

Using the developed methods, it was possible to improve the understanding of the 

distribution of urban lands in the Republic of Uzbekistan and control agricultural land, 

determine the quality of arable land, determine the types of crops grown on these lands 

[1, 2, 3, 123, 124, 125]. 

The main provisions submitted for protection. 

1. Atmospheric correction method for processing satellite monitoring data of 

agricultural and urban lands. This method allows to obtain satellite images that are 

not affected by the properties of the atmosphere, and also makes it possible to unify 

images obtained from different satellites. 

2. Methods of processing satellite images to assess the state of agricultural zones and 

classify crops using algorithms for determining vegetation indices and deep 

learning approaches. 

The method of segmentation and identification of objects in satellite images of areas 

of interest, including urban and agricultural areas. The method is based on a modification 

of the architecture of a deep learning neural network and reduces computational costs 

when processing these images. 
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CHAPTER 1. ANALYSIS OF REQUIREMENTS FOR THE FUNCTIONAL 

STRUCTURE AND CHARACTERISTICS OF THE EARTH SATELLITE 

MONITORING SYSTEM IN UZBEKISTAN 

1.1. Features of agricultural production and the main tasks of land monitoring 

The development of productive agriculture is an important factor in economic 

progress in Uzbekistan. According to 2004 data, the population living in rural areas was 

16.3 million people. About 8.7 million people are employed in agriculture annually, 

which is about 52% of the total employed population in the country. Agriculture is 

represented by approximately 12% of agricultural enterprises, 75% of households and 

"dean farms", which together produce 62% of all agricultural products. At the same time, 

5.5 percent of Uzbekistan's GDP is produced in agriculture (2006). The agricultural sector 

is divided into two main branches: crop production and animal husbandry. Crop 

production accounts for 55.1% of total agricultural production (at current prices in 2004). 

The volume of production of main crops has remained stable in recent years, despite the 

constant reduction in acreage. Crop production is used both for export and for the 

domestic market. 

Uzbekistan has 20 million hectares of agricultural land, including 3.2 million 

hectares of arable land, 10.5 million hectares of pastures, 3 million hectares of deposits 

and 2.8 million hectares of perennial plantations (as of 2004). However, not all arable 

land is actually used: In 2004, only 12.8 million hectares of arable land were used, which 

were distributed among the following crops: 31% - forage, 9% - industrial, 10% - winter, 

41% - spring and 10% - vegetable. The net fallow areas amounted to 5 million hectares. 

The production of major crops is concentrated in several regions with the most favorable 

climatic conditions. They are located mainly in the southern regions, Surkhandarya region 

and Ferghana Valley. Crop production is very intensive in almost all regions of 

Uzbekistan. They account for more than 50 percent of the total sown area [8]. The 15 

regions with the largest sown areas account for 73% of the total sown area of Uzbekistan 
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(2004). Most of the arable land is occupied by farmers, who account for 82 percent of the 

total cultivated area. 

 

Figure 1.1 - The state of agricultural development in Uzbekistan in 2017-2020 

 

Between 1996 and 2017, the area of arable land decreased by 8 million hectares 

(35 percent). Abandoned arable land is formally still agricultural land, but it is often no 

longer suitable for further use in agriculture. At the same time, the spatial heterogeneity 

of the process of abandoning agriculture and the inefficiency of traditional data collection 

systems on the state of the agro-industrial complex make it difficult to obtain the 

necessary management information in a timely manner. 
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Figure 1.2 – Dynamics of the share of certain types of agricultural products in the total 

volume of agricultural production 

 

The main reason for the reduction in the acreage of forage crops was a sharp 

decrease in livestock production. At the same time, the acreage of economically valuable 

crops decreased slightly, and the acreage of industrial and other crops increased. A 

comparison of the structure of crops from 2010 to 2017 is shown in Figure 1.3. changes 

in the structure of crops mainly affect the fertility of arable land. Wind erosion of the soil 

is a prerequisite for reducing soil fertility in areas with a light mechanical composition of 

the soil and strong winds. 

 

Figure 1.3. Distribution of agricultural land allocated for acreage, orchards and 

vineyards 
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Meanwhile, a decrease in the activity of arable land use had a beneficial effect on 

soil fertility in the steppe zone. Changes in the structure of crop rotation violate scientific 

principles related to soil cultivation and lead to significant degradation of humus, which 

negatively affects soil fertility.  

 Changes in the use of agricultural land in Uzbekistan and the growing need for 

effective and sustainable management of the agro-industrial complex at all levels 

emphasize the importance of objective and periodically updated information on the 

properties of agricultural land. Currently, the State Committee of the Republic of 

Uzbekistan is collecting such information. The features that complicate the objective 

management of the situation in agricultural production include a large number of small 

business entities (agro-enterprises) and the extremely disparate geographical location of 

business entities. The information provided by agricultural enterprises is partially 

processed by regional agronomists, but this is an extremely time-consuming task. 

Therefore, information on the area of crops of various crops and other aspects of 

agricultural production is provided by agricultural producers to the regional bodies of 

national statistics, but there is no system for verifying the reliability of this information. 

The statistical observation system does not provide data on the spatial distribution of 

crops, since agricultural producers report only the total area of available and used 

agricultural land, but do not specify which crops are grown on these lands. Thus, 

information on the placement of crops and actual land use is not regularly collected in 

traditional agricultural monitoring systems in Uzbekistan. In addition, the existing 

detailed land use maps of Uzbekistan contain only general summary data.  

It is necessary to effectively monitor changes in land use. Information on the most 

important parameters of agricultural production is also needed for the organization of the 

agro-industrial complex. Systems for collecting such data should be characterized by 

objectivity, efficiency, correspondence in time and space in determining indicators, 

accuracy and a high degree of independence from agricultural producers. 

 Therefore, there is an urgent need for systematically updated and spatially 

coordinated information on the availability and actual use of arable land at the regional 

and national levels. This information should include data on the use of arable land and its 
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changes over time, the area and condition of crops of various crops, as well as changes in 

the structure of crops. The existence of systems for collecting such information that meet 

modern standards contributes to improving the accuracy and reliability of forecasts of 

agricultural production parameters, as well as increasing the effectiveness of information 

support for decision-making in the agro-industrial complex, including support for 

agribusiness through subsidies. Given the growing concern about global climate change, 

accurate data on agricultural land dynamics and land use patterns play a key role in 

conducting basic research. By improving land use systems, optimal strategies can be 

developed to minimize carbon dioxide emissions into the atmosphere.  

In order to obtain more complete and reliable information on the actual use of 

agricultural land in 2017, agricultural land was monitored in Uzbekistan. As part of the 

monitoring, no field studies were conducted to collect information on the spatial 

distribution of crops, but information was collected from large farming organizations. 

Due to the high cost of such continuous research, future research will be conducted with 

a five-year cycle. Thus, the annually updated information on the condition and spatial 

distribution of agricultural land will be a significant addition to the data collected during 

the agricultural census. 

1.2. The capabilities of satellite remote sensing tools in solving the tasks of 

monitoring agricultural land 

 From the very beginning of space exploration, starting with the first conventional 

images taken by the American satellite ERTS-1 (later renamed Landsat) in 1972, and 

ending with satellite systems created by various countries to explore natural resources, 

remote Earth observation has become one of the most important tasks. The data obtained 

as a result of remote sensing from satellites are used for various purposes of Earth 

monitoring, including agricultural surveying. Remote sensing data in the visible, near 

infrared and mid-infrared ranges of the electromagnetic spectrum are most widely used 

for vegetation monitoring. Satellite images in these spectral ranges can effectively 
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distinguish green vegetation from other types of vegetation cover. Studies conducted on 

the basis of data from ground and aerial observations [10,11,12] have studied in detail the 

reflective characteristics of agricultural crops. The main factors determining the reflective 

properties of vegetation are the presence of chlorophyll and other phytochromes, leaf 

structure and vegetation cover layout.  

 One of the main aspects of remote sensing data is the ability to provide high spatial 

resolution. Such data is usually classified into four main categories: low-resolution data 

(up to 1 km), medium-resolution data (150-300 m), high-resolution data (20-80 m) and 

extremely high-resolution data.  

 The AVHRR instrument provides images of the earth in six spectral channels with 

a resolution of 1.1 km in nadir. Due to the presence of several NOAA satellites in orbit, 

the survey cycle of any site takes only a few hours. Data acquisition is possible online via 

standard antennas, and archived data is provided free of charge by many government and 

scientific organizations. For example, archival survey data has been available since 1973 

through the U.S. Geological Survey. 

 In recent years, satellite devices (Terra/Aqua-MODIS, Envisat-MERIS) have been 

increasingly used to obtain images of the Earth's surface with moderate spatial resolution 

(250-500 m). These devices are distinguished by the presence of numerous spectral 

channels and shooting in a narrow spectral range up to 10 nm wide. This makes it possible 

to observe the absorption bands of chlorophyll, water and other significant components, 

increases the accuracy of identification of subsurface objects and assessment of their 

condition by spectral characteristics. Devices with a wide bandwidth provide the ability 

to observe any point of the earth's surface for one to two days. In areas of intensive 

agriculture in Uzbekistan, where the size of agricultural land exceeds the spatial 

resolution of the data obtained by several orders of magnitude, it is necessary to have a 

sufficient number of frequent high-frequency observations. Therefore, MODIS offers 

data visualization in 36 spectral channels in the range from 0.4 to 14.4 microns. The 

spatial resolution of the infrared and near infrared data channels for vegetation monitoring 

is 250 meters. The Terra and Aqua satellites are part of NASA's experimental Earth 

Observation System (EOS) program.  
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 By launching the Copernicus Earth monitoring program, the European Space 

Agency (ESA) has set itself an ambitious goal - to create a network of satellites that will 

collect a wide and diverse range of data on the state of the Earth. All these indicators will 

be processed and summarized to get a complete Figure of the changes taking place on 

Earth. Different groups of users will have access to the information they are interested in. 

Sentinel-1A, the first satellite of the Copernicus program, has been in orbit since April 

2014. A fully operational constellation of two Sentinel-1 radar satellites will receive 

detailed radar images of the Earth's surface and compare them with optical images 

obtained by Sentinel-2. As a result, the most complete and accurate image of the Earth's 

surface will be obtained. 

 Sentinel-2A and 2B are projects from the European Space Agency (ESA) Sentinel, 

which are equipped with multispectral optoelectronic sensors capable of receiving images 

in the visible, near infrared and shortwave infrared ranges with a resolution of 10 to 60 

meters. They include 13 spectral channels and 3 spectral channels and are able to detect 

differences in the state of vegetation, including temporary changes, minimizing the 

impact of atmospheric conditions on image quality. The average altitude of the orbit is 

785 km and two satellites in flight allow images to be repeated every five days in the 

equatorial regions and every two to three days in the middle latitudes. In addition to the 

high repeatability of images, the increased capture width allows to track rapidly changing 

processes, for example, changes in the structure of vegetation during the growing season. 

The Sentinel-2 mission is unique in its combination of covering large areas, frequent 

repeat surveys and systematically obtaining high-resolution multispectral images with 

full coverage of the entire Earth. For free viewing, analysis and downloading of images 

received from Sentinel-1, 2 and 3 satellites with low and medium resolution, use the 

online portals EO Browser and Sentinel Playground. Sentinel Playground is an interactive 

portal that allows to view and analyze mosaics of images obtained using Sentinel and 

Landsat satellites.  

 High-resolution images of the Earth's surface are provided by a number of satellite 

systems. The most widely used satellites are the MSS (Landsat-1, 2, 3, 4 and 5), TM 

(Landsat-4 and 5) and ETM+ (Landsat-7) Landsat series. The most modern ETM+ 
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instruments have eight spectral channels covering the range from 0.4 to 13 microns, with 

a resolution from 15 to 60 meters. Data from ETM+ is available commercially, but the 

University of Maryland provides free access to an extensive global archive of images. 

 The use of remote sensing data for monitoring agricultural lands began back in the 

1970s. The purpose of monitoring determines the type of equipment used to receive data. 

Low-resolution satellite instruments are used for global monitoring, which allow 

obtaining data on the entire surface in a short period of time, but do not allow collecting 

information about individual agricultural fields. The medium resolution data has a high 

frequency of observations and spatial resolution, which is sufficient for monitoring large 

rural areas.  

 In order to effectively solve thematic problems in agricultural monitoring, pre-

processing of spatial images is often required. This is especially important for detecting 

pixels obscured by clouds or covered with snow, as well as for identifying pixels that 

have been disrupted due to hardware failures. Previously, the selection of cloudless and 

clean images was carried out manually by operators, however, with the increase in the 

volume of remote sensing data, there was a need for automated methods and 

preprocessing systems [12]. Pretreatment consists of atmospheric corrections that occur 

when radiation reflected from the Earth's surface passes through the atmosphere. 

 Due to the high dimensionality of the analyzed data space (multispectral images of 

different time periods), a full-fledged tracking system becomes impossible without 

creating a complex of algorithms for primary image processing and object interpretation 

[11]. The main tasks here are to select the most appropriate classification characteristics 

and reduce the dimension of the analysis space. Vegetation indices (VI) can be used as 

an intermediate step in reducing the dimension in assessing the volume and condition of 

green vegetation, the applicability of a particular index depends on the characteristics of 

the task to be solved. For example, the source [15] analyzes the comparison of values of 

vegetation indices using different data sets, while articles [11, 16] compare the 

applicability of EVI and NDVI indices calculated on the basis of these data with pure 

vegetation indices. The article [16] also describes the possibility of determining EVI 

based on the values of vegetation indices. It should be noted that in order to ensure 
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comparability of the values of vegetation indices calculated from data from various 

instruments, special calibration of the satellite data obtained is required.  

Many studies based on high-resolution data are focused on analyzing the 

applicability of remote sensing in limited areas. These data can be used to compile maps 

and assess the condition of major crops, ranging from individual farms to several 

administrative districts [17]. The use of remote sensing has also proved useful for 

assessing the impact of floods on crops [19]. Research based on high-resolution data is 

an important tool for studying various aspects of remote sensing applications in precision 

agriculture. 

 The potential of using high-resolution data is being actively studied among some 

farmers within the framework of the concept of "precision farming" [18,19]. The use of 

remote sensing helps farmers to improve the efficiency of fertilizer use, monitor the 

condition of crops and assess the impact of negative factors on yields. Information 

obtained using high-resolution data can be an important tool for optimizing agricultural 

methods [20]. 

 Low-resolution information can provide a rough idea of crop growth. In such 

situations, image classification is usually used, covering a relatively small number of 

objects [21]. These data can be used to assess yields and determine the timing of plant 

phenology [22].  

 In the study [23], high-resolution data (for example, MSU-E, HRV-SPOT), 

medium-resolution data (for example, MSU-SK) and low-resolution data (for example, 

NOAA-AVHRR) were used to map the soil and vegetation cover of agricultural 

territories. The results of thematic processing of high-resolution images provide material 

for educational analysis of medium-resolution images, which can be extended to a wider 

range. The researchers conclude that the use of medium-resolution data (Terra-MODIS) 

is promising. High-resolution (e.g. Landsat) and medium-resolution data are also 

considered in the literature [24, 25]. Maps of vegetation diversity were developed on the 

basis of high-resolution data, while data from the MODIS tool were used to monitor leaf 

area indices and assess the yield of various crops. 
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 The availability of medium-resolution data improves the accuracy of global 

monitoring compared to low-resolution data in remote sensing. These data make it 

possible to observe phenology in individual fields in a spatial and temporal context. 

Currently, research is actively underway on monitoring crops using medium-resolution 

devices [26,27], and data from Terra-MODIS are used to estimate the area of rice crops 

at both the national and subcontinental levels. The use of automatic classification methods 

has made it possible to obtain information on the spatial distribution of rice crops in 

several countries of Southeast Asia and China. Estimates of the area of crops were carried 

out, the results of which are in good agreement with official statistics. It should be noted 

that the study covered a vast area extending over 2.6 million square kilometers. The 

methodology used to map rice crops is based on a priori information and analysis of crop 

dynamics. The results of the study were compared with official statistics and the results 

of the classification of high-resolution images. Medium-resolution remote sensing 

equipment is capable of receiving data for the same area within one to two days. Attempts 

have been made to predict the phenology of rice using satellite data [28]. For example, 

using MODIS data, the date of rice sowing, the date of the beginning of flowering, the 

date of harvest and the duration of the growing season were predicted [29]. 

 For grain crops, the relationship between the satellite-observed vegetation indices 

and yield has been established [30,31]. Due to the high frequency of observations of 

medium-resolution remote sensing, it is also possible to estimate the actual timing of 

sowing crops [32]. However, the accuracy of the simulation depends on the quality of the 

initial data on the biophysical parameters of the culture. Remote sensing is one of the 

sources of such data for modeling [33,34,35]. 

1.3. Urbanization and urban expansion 

 Urbanization is defined simply as "the movement of people from rural to urban 

areas, in which population growth corresponds to urban migration" (United Nations, 

2005). Urbanization is also a social process that involves changes in behavior and social 
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relationships as a result of people living in urban areas [36]. In fact, it includes a 

comprehensive lifestyle change resulting from the impact of cities on society [37]. 

However, nowadays urbanization is usually used in a broader sense and implies much 

more than just urban population growth; it includes the physical growth of urban areas, 

as well as changes in the socio-economic and political structure of the region as a result 

of population immigration to urban areas [38,39]. Urbanization is a dynamic and complex 

phenomenon taking place all over the world. This process, without signs of slowing down, 

led to significant changes in the land cover and landscape structure [39,40]. Rapid 

urbanization, especially in developing countries, will continue to be one of the important 

problems of global changes affecting the human dimension [39]. Due to the process of 

rapid urbanization, the spatial expansion of built-up areas is accelerating. Although 

urbanization contributes to socio-economic development and improves the quality of life, 

urban growth inevitably leads to significant changes in land cover in urban areas, for 

example, the transformation of forests and wetlands into agricultural or built-up land, as 

more land is used for production. goods and services, and for people living in cities, more 

residential land is needed. Although urban areas currently cover only 3% of the Earth's 

land surface [41], the transformations resulting from urban growth are among the most 

significant types of anthropogenic dynamics of land cover, and the environmental 

consequences of urban growth go far beyond urban boundaries [42,43]. This is especially 

relevant in rapidly developing regions, where vegetation changes caused by rapid urban 

growth have led to serious problems threatening sustainable urban development, for 

example, local and regional climate change, changes in the hydrological circle [44]. 

 The process of urban growth can be characterized either as a change in the urban 

area (a measure of scale), or as the rate at which suburban land is transferred to urban use 

(a measure of speed) [45]. However, the scale and pace of urban growth cannot provide 

detailed information about spatial models of urbanization or the underlying processes. 

Therefore, the urban spatial structure has become another subject of interest for 

geographers and economists when studying changes in cities. 

 In the context of urban growth trends, much attention is paid to urban sprawl. In 

the late 1950s, the phenomenon of urban sprawl in the United States began to be widely 
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studied. This is seen as a phenomenon accompanied by the expansion of urban areas with 

low population density. Later, similar processes of urban sprawl were described in most 

cities, including cities in developing countries. 

 Due to its diversity and complexity, many definitions of sprawl have been 

proposed. For example, the authors [46] suggested that urban sprawl occurs when land is 

consumed at a faster rate than population growth. [47] defined urban sprawl as a type of 

low-density development with separated residential, commercial and industrial areas, a 

lack of thriving centers of activity and a limited choice of travel routes. Similarly, [48] 

noted that urban sprawl has its own special spatial patterns: unlimited external and abrupt 

expansion of new buildings with low population density. Although there is no generally 

accepted definition of urban sprawl, there is a general consensus regarding the depiction 

of urban sprawl as a special type of urban expansion characterized by low density, 

dispersed spatial structure with environmental and social consequences [49,50]. 

1.4. Requirements for the functional configuration and characteristics of satellite 

monitoring systems for agricultural lands 

 In accordance with the Decree on the establishment of the National Space Agency 

of Uzbekistan, adopted in 2019, the formation of a national satellite monitoring system 

for agricultural land has begun in the country. The main purpose of the system is to 

provide reliable information on the use of agricultural land, including arable land. The 

satellite monitoring system will provide the Ministry of Agriculture and other public and 

private organizations with objective data on agricultural production. During the 

development of the monitoring system project, the following main objectives were 

identified: 

1. Drawing up a basic map of indicators of agricultural land use during the period 

from 2017 to 2022; 

2. Assessment of updating data and dynamics of arable land use - at the end of each 

planting season; 
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3. Determination of the area of fallow lands - at the end of each agricultural period; 

4. Assessment of the use of fallow lands - annually for 6 weeks after the end of the 

agricultural season; 

5. Assessment of the use of arable land for perennial crops - at the end of each 

agricultural season; 

6. Assessment of compliance with crop rotation rules - updated annually at the end of 

the growing season; 

7. The estimated area under cultivation for the current year is determined annually 

within 6 weeks from the beginning of the agricultural season and at its end; 

8. Assessment of the area of winter crops - is carried out annually in autumn, after the 

end of the agricultural season; 

9. Assessment of the safety of winter crops - annually, within four weeks after the 

start of the agricultural season; 

10.  Monitoring of crop growth during the intensive agricultural season;  

11. The projected yield and total production of the main crops. 

 Maps of cultivated fields in Uzbekistan should become a fundamental information 

base for agriculture. The creation of such maps is a starting point for the development of 

further monitoring of crops. The use of crop detection algorithms will allow for an 

operational analysis of the situation in agriculture in the future. Therefore, the primary 

task of monitoring is to develop methods for mapping the spatial distribution of arable 

land and existing crops. 

 When developing requirements for monitoring systems of cultivated fields, the 

peculiarities of agriculture were taken into account. Monitoring of cultivated lands can be 

performed using various remote sensing devices with different characteristics, such as 

spatial resolution, spectral channels, refresh rate, and others. However, special conditions 

are required for effective remote sensing. When monitoring vegetation, for example, 

satellite images should be recorded in the spectral ranges that most accurately separate 

green vegetation from other species. The spatial resolution of the satellites used should 

be sufficient to observe individual agricultural fields. Crops are growing rapidly, 
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requiring constant monitoring. An important factor in choosing satellite data was their 

price. Given that the monitoring system covers all agricultural areas of Uzbekistan, the 

cost of remote sensing makes the entire system expensive. Therefore, one of the key 

principles in the development of the monitoring system was the maximum use of free 

remote sensing data. 

 The data received from the instruments installed on the Terra and Aqua satellites 

perfectly meet these requirements. The surveillance systems have spectral channels 

covering the infrared and near infrared regions, and their spatial resolution is 250 meters. 

The wide viewing angle of the cameras allows to take figures of the territory of 

Uzbekistan at least once a day; in addition, Landsat-TM/ETM+ images were selected as 

an additional data source with high spatial resolution. 

 Due to the large area and wide spatial distribution of cultivated lands, the 

simultaneous use of several methods of visual interpretation of spatial images is almost 

impossible. The large volume of transmitted remote sensing data requires maximum 

automation of information processing in order to minimize the involvement of specialists. 

However, due to the presence of clouds and other factors, the effective use of remote 

sensing data for thematic analysis is impossible without pre-processing. Satellite data 

preprocessing algorithms should exclude surface areas unsuitable for thematic analysis, 

for example, cloud areas. Pre-processing should ensure that cloudless images are obtained 

for the entire monitoring area. 

 Thematic map processing algorithms should be able to create the necessary 

thematic maps, for example, crop distribution maps. Experts can easily identify different 

thematic categories using visual analysis, but it is very difficult to develop automatic 

algorithms for this purpose. However, without the use of automated algorithms, it is 

almost impossible to perform a thematic analysis of agricultural land data in Uzbekistan. 

These algorithms also guarantee the objectivity of the results, significantly reduce 

information processing time and reduce the need for human resources compared to 

traditional visual analysis. Based on the above-mentioned requirements, the configuration 

of the agricultural land monitoring system is determined as follows: 
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1. The subsystems responsible for collecting satellite data are aimed at obtaining, 

archiving and cataloguing the necessary remote sensing data. Given the vast 

amounts of remote sensing data, these processes require automation. The data from 

the following satellite systems turned out to be the most suitable for monitoring 

agricultural land: 

 Medium spatial resolution information obtained through the Sentinel 

satellite system covers the entire globe in one to two days. The images are 

formed in the visible and infrared regions of the spectrum. These data are 

ideal for operational monitoring of vegetation development. 

 The data from Sentinel-2 has a high spatial resolution. Contrary to this, they 

do not cover agricultural land with the required regularity, however, they can 

be used as additional data to the existing archive of historical photographs. 

2. The role of the preprocessing subsystem is to prepare the data before the subject 

processing. Atmospheric correction algorithms are a necessary component of this 

subsystem. Such software should read data in standard formats, create composite 

data and provide a record of the results in the most convenient format for further 

processing. 

3. An important element of this module is the object processing algorithm for remote 

sensing data. This set of algorithms should be able to objectively and reliably 

determine the selected categories of objects with minimal intervention from a 

specialist. In addition, the algorithms must demonstrate reliable results for vast 

territories with various climatic, relief and other geographical features. It is also 

important to develop specialized software to implement these algorithms. 

4. The data distribution device should allow the user to select the necessary remote 

sensing data through an easy-to-use interface and access them in the shortest 

possible time. Distribution systems should ensure the provision of aggregated 

images obtained after the preprocessing stage, thematic maps and data reflecting 

the state of monitoring facilities. Information on monitoring results should be 

archived, systematized and provided with quick access. The most effective method 
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of distributing information is to provide a database over the Internet with a 

graphical user interface on a website for the convenience of users. At the same 

time, specialists using GIS software should be able to upload data in a specialized 

format.  
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Conclusion to the chapter 1 

 Monitoring the use of agricultural and urban land is a key factor for effective 

management of the main sectors of the economy. To achieve this task, it is necessary to 

have objective and up-to-date information on land use. Currently, Uzbekistan is actively 

developing a national monitoring system for agricultural and urban lands, which uses data 

obtained by remote sensing. The main objectives of this system include the creation of 

maps of arable land, maps of annual crops, maps for tracking the condition of crops, maps 

for assessing yields, maps for monitoring the use of urban land and maps for planning the 

placement of facilities. To achieve these goals, the most suitable are medium spatial 

resolution data, which have sufficient detail for operational monitoring over large areas, 

as well as high-resolution remote sensing data, which are used for research at the regional 

level. Currently available remote sensing data meets the requirements of vegetation 

monitoring in terms of speed, availability, cost and spectral availability. However, the use 

of remote sensing data to monitor large areas of agricultural land in Uzbekistan requires 

the development of systems for collecting, processing and distributing results.  

The processing system should contain a module of automatic algorithms for 

preliminary and thematic data processing, which will allow manual processing of 

agricultural monitoring information without the involvement of specialists. The creation 

of automated algorithms for preprocessing remote sensing data will ensure their effective 

use for monitoring crops, urbanization processes and other satellite monitoring programs. 

It is necessary to develop thematic processing algorithms for determining the use of arable 

land, mapping crop types and monitoring the condition of crops.  
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CHAPTER 2.  STUDY OF METHODS FOR CLASSIFYING EARTH REMOTE 

SENSING DATA 

In recent studies [51], where remote sensing data from urban areas were used to 

analyze changes in the landscape, it is noted that combining these data with spatial 

indicators can provide more detailed and spatially consistent information about the 

structure and changes of urban areas than using each method separately. Also, in [52], the 

importance of developing indicators of the state of ecosystems based on GIS and remote 

sensing data for mitigation and planning is emphasized. Together, these tools can 

significantly improve our understanding of landscape change and use, which can have an 

impact on urban planning by improving its quality. The following sections present the 

history of the problem and recent advances in research related to the classification of 

remote sensing data in urban areas and the use of indicators to monitor landscapes and 

assess their environmental impact, including landscape parameters. To obtain significant 

indicators and metrics, it is necessary to carefully draw up land-use maps classified based 

on remote sensing data. 

2.1. Application of medium and high-resolution multispectral data from the 

field of remote sensing 

The information obtained from remote sensing data is an important source for the 

analysis of various territories. These data are characterized by high spatial consistency 

and detailed geometric information, and can also be obtained with high frequency over 

vast territories [51]. After classifying remote sensing data, it is possible to extract thematic 

information such as changes in the Earth's surface or land use. Classification of 

multispectral remote sensing data based on statistical pattern recognition methods is one 

of the most widely used methods for information extraction [53].  

Parametric and nonparametric algorithms based on statistical methods, methods 

that do not require parametric assumptions, non-metric approaches, methods that do not 
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use distance metrics, logical approaches to classification with observable and 

unobservable data, classification methods with hard or fuzzy boundaries between classes, 

classification algorithms focused on pixels or objects, object-oriented methods 

classifications, Hybrid approaches and other classification methods are used to create 

maps of vegetation cover and land use based on remote sensing data [54]. All 

classification methods involve a compromise between three aspects: the amount of 

spectral information in the image, the method used to determine the classification, and 

the class of information. The choice of classification method depends on the physical 

characteristics of the studied area, prior knowledge, distribution of remote sensing data 

and the specifics of the classification task. 

This study focuses on the regional level for a comprehensive consideration of the 

urban area and its natural environment. This is also a key aspect for assessing 

environmental impacts, as the negative effects of fragmentation on biodiversity and 

ecosystem services are often observed at intermediate (regional) spatial scales. Many 

studies have been conducted at the level of regional territories, urban agglomerations and 

microdistricts [56,57,58,59,60], as well as at the global, continental and national levels 

[61,62,63,64,65,66]. However, there is still insufficient research linking urbanization to 

specific local environmental impacts, especially at the level of megacities. More research 

is needed, taking into account the landscape perspective [57,64]. 

Low-resolution, high-bandwidth data such as MODIS and AVHRR are suitable for 

continental and global studies, while VHR data such as Quickbird and Ikonos are suitable 

for more detailed, small-scale studies, such as suburban areas and specific types of 

habitats. Small-scale studies, for example, suburban areas and specific types of habitats. 

Medium and high-resolution satellite data are used for intermediate regional approaches 

because they provide the best compromise between spatial coverage and level of detail. 

Before subjecting satellite data to thematic processing, they must be pre-processed 

in order to obtain realistic information about surface features. This is due to the fact that 

the reflected radiation recorded by satellites is distorted when passing through the 

atmosphere. Therefore, the first operation is to eliminate this distortion, known as 

atmospheric correction. 
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2.2. Methods and algorithms of atmospheric correction 

Atmospheric correction in satellite image processing is the process of removing 

atmospheric effects from measurements taken with satellite imagery. The purpose of 

atmospheric correction is to eliminate atmospheric effects such as light scattering and 

radiation absorption, and to obtain more accurate values of the radiation properties of the 

Earth's surface. The atmospheric correction process consists of several stages [68]: 

1. Radiation measurement. Obtaining measurements recording radiation from 

objects on Earth. These measurements may include brightness values in different 

channels of the spectrum, depending on the sensor used. 

2. Assessment of atmospheric parameters. Assessment of atmospheric parameters 

such as optical thickness, transmission and other characteristics. These parameters 

can be estimated using atmospheric models, statistical methods, or other 

techniques. 

3. Correction of measurements. Applying correction to measurements based on 

estimated atmospheric parameters. This may include subtracting the influence of 

the atmosphere or other mathematical operations to restore the true radiometric 

characteristics of the surface. 

4. Restoration of the surface reflectance. Conversion of corrected measurements 

into reflectance, which is a fraction of the radiation reflected by the surface. The 

reflectance is a more stable and comparable value than the measured brightness 

values. 

Atmospheric correction is important for accurate analysis and interpretation of 

satellite data. It allows to get more reliable and comparable results when comparing data 

from different time and spatial regions. There are several methods and algorithms of 

atmospheric correction for processing space images [69]: 

1. Dark Object Subtraction (DOS): He is often associated with Jason R. Smith, who 

first proposed the concept of DOS in 1990. corR = rawR −D, where corR  is the 

corrected reflection, rawR  is the measured reflection, D is the correction.  
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The basic idea of DOS is to take into account the influence of dark objects 

(for example, shadows) on the image and adjust the pixel values to improve the 

accuracy of the data. How the DOS process works: 

 Definition of dark objects: DOS begins by identifying objects in the image 

that can be considered "dark". This often includes shadows, dark clouds, 

water surfaces, and other objects that can contribute dark artifacts to the 

image. 

 Dark Object Assessment: DOS evaluates the intensity of dark objects in the 

image. This may include calculating statistical parameters such as the mean 

or median of dark objects. 

 Subtraction of dark objects: The estimated intensity values of dark objects 

are then subtracted from the original pixel values in the image. This allows 

to adjust the measured values, compensating for the influence of dark 

objects. 

 Calibration and correction: Additional calibration and correction may be 

required to take into account the characteristics of the atmosphere, light and 

other factors affecting the image. 

 The advantages of DOS include improved contrast and image quality, as 

well as more accurate extraction of information from pixels. This method is 

often used in the context of processing data from Earth observation satellites, 

such as data from Landsat and Sentinel, where atmospheric effects can 

significantly affect image quality. 

2. Flat Field Correction: Also known as Flat Fielding, it is an image correction 

technique that is used in the field of optical and digital image processing. This method 

is used to compensate for uneven lighting or sensitivity of the image sensor over its 

entire surface. How Flat Field Correction works: 

 Getting a Flat Field (Flat Frame): First needs to get an image called a Flat Field or 

Flat Frame. This image is usually an image obtained under uniform and intense 

lighting, in which there are no objects on the scene. Thus, any irregularities in 
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lighting or sensor sensitivity, as well as any artifacts associated with the optical 

system, can be fixed. 

 Flat Field Calculation: Flat Field is calculated by averaging several such images. It 

is important that the objects in the scene do not create shadows or changes in 

intensity in the image. 

 Applying Correction: Flat Field is then applied to the actual images of the scene. 

Each pixel in the scene image is divided by the corresponding pixel in the Flat 

Field. This allows to compensate for any changes in the brightness or sensitivity of 

the sensor recorded in the Flat Field. 

 Additional Processing: After applying Flat Field Correction, additional processing 

may be required, such as color correction, contrast alignment, and other steps, 

depending on the specific requirements of the task. 

The use of Flat Field Correction is especially important in cases where the image 

quality is affected by uneven lighting or other artifacts that may occur during the 

photographing process. 

3. Empirical Line Method (ELM): John Robert Rocks (John Robert Schott) is often 

associated with the development of the ELM method. It is a method used in image 

processing in remote sensing to correct and calibrate data. This method is usually used 

to improve the accuracy and calibration of satellite data, such as Landsat, Sentinel 

and others, by correcting atmospheric effects and other distortions. Linear regression 

is used to correct atmospheric effects. 

bRmR rawcor 
 

where corR  is the corrected reflection, rawR  is the measured reflection, m and b are the 

parameters of the linear regression. The algorithm of the method is as follows: 

 Training data collection: First, training data is collected for the area that want 

to explore. This data includes survey measurements taken from sensors such as 

on-site spectrometers. 
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 Measuring the brightness of objects: The brightness (reflectivity) of various 

objects on the ground in various spectral channels is measured. Usually, several 

channels are used to account for different characteristics of the Earth's surface. 

 Building an empirical line: Based on measurements, an empirical line is built 

that connects the brightness in the shooting image with the measured brightness 

on the ground. Linear regression is usually used to construct this line. 

 Satellite data calibration: The empirical line is then applied to the data received 

from the satellite. This allows to adjust the brightness values on satellite 

images, taking into account atmospheric effects, shooting angles and other 

distortions. 

 Verification and correction: The accuracy is checked and, if necessary, the 

empirical line is corrected. This process can be repeated to ensure the best 

accuracy. 

The Empirical Line method is widely used in the field of remote sensing data 

processing and provides a powerful tool for correcting atmospheric effects and 

calibrating data. 

4. Radiative Transfer Models (RTM): Radiation Transfer Models (RTM) are 

mathematical models that describe the interaction of electromagnetic radiation with 

the atmosphere, the Earth's surface and other objects. They are widely used in the 

field of remote sensing for the analysis and interpretation of data obtained from 

spacecraft and aerial photography. How RTM works: 

 Atmospheric radiation: RTM takes into account the interaction of solar 

radiation with various layers of the atmosphere. This includes the scattering, 

absorption and reflection of radiation by various atmospheric components such 

as molecules, aerosols and clouds. 

 Radiation from the Earth's surface: RTM simulates the interaction of solar 

radiation with the Earth's surface. This includes reflection, absorption and 

emission of thermal radiation, which depends on the properties of the surface. 
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 Transmission of radiation through the atmosphere: RTM takes into account 

how radiation reflected from the Earth passes through the atmosphere and 

reaches the sensor on a spacecraft or airplane. 

 Detector measurements: The model predicts which measurements should be 

taken at the detector as a result of the interaction of solar radiation with the 

atmosphere and the Earth's surface. 

 The main difficulty of RTM is to take into account the various physical 

processes occurring in the atmosphere and their interrelationships. 

5. MAJA (Multi-sensor Atmospheric Correction and Cloud Screening): The MAJA 

method is developed and maintained by the French Space Agency (CNES) and is used 

in the context of many Earth observation missions such as Sentinel-2. The MAJA 

method is implemented in the appropriate software for atmospheric correction and 

cloud allocation in data received from various Earth observation sensors on satellites. 

The main features of MAJA: 

 Atmospheric correction: One of the main functions of MAJA is atmospheric 

correction. This includes modeling the interaction of sunlight with the 

atmosphere and the Earth's surface. MAJA takes into account aerosols, 

humidity, ozone and other atmospheric constituents to adjust brightness 

measurements according to the physical processes taking place in the 

atmosphere. 

 Cloud Highlighting: MAJA provides cloud screening by identifying cloud 

pixels in an image. This is important in order to exclude cloud areas from the 

analysis and ensure clean data of the Earth's surface. MAJA uses various 

methods, including cloud mapping, statistical methods, and others. 

 Multi-sensor processing: MAJA is designed to work with data from various 

sensors, including Sentinel-2, Landsat and others. This ensures the versatility 

and applicability of the program to various missions. 



36 
 

 Integration with other tools: MAJA can integrate with other data processing 

tools and platforms, which allows it to be used as part of larger data processing 

and analysis systems. 

MAJA provides stable and reliable atmospheric correction and cloud processing 

for satellite Earth observation data, which makes them more suitable for various 

applications such as cartography, agriculture, ecology and many others. 

6. Py6S: The 6S model was developed to simulate the effects of the atmosphere on 

radiation detected by sensors on spacecraft. The model takes into account the 

influence of the atmosphere on measurements obtained from Earth observation 

devices on satellites. Py6S is implemented as a library in Python, which is designed 

to work with the 6S model (Second Simulation of the Satellite Signal in the Solar 

Spectrum). Py6S provides a software interface for interacting with the 6S model, 

simplifying the process of simulating atmospheric effects on radiation in the observed 

spectrum. It can be useful for remote sensing research, atmospheric correction of 

satellite data, and other tasks. 

Each method has its advantages and limitations, and the choice depends on the specific 

requirements of the task and the characteristics of the data. Some methods require 

knowledge of atmospheric parameters such as optical thickness, humidity, etc., while 

others may be less demanding on external data, but less accurate. 

Among the existing software tools that implement, including atmospheric correction, 

Sen2Core software should be noted. Sen2Core is a software tool designed to process data 

from Sentinel-2 satellites belonging to the European Space Agency (ESA). It is part of 

the extensive Copernicus system, providing free access to Sentinel data and other space 

data for the public and scientific research. Sen2Core provides tools for processing 

Sentinel-2 data, including the following functions: 

1. Correction of radiation errors: Sen2Core includes processes for correcting 

atmospheric effects such as aerosols and water vapor, which allows for more 

accurate measurements of radiation. 
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2. Geometric Correction: The tool provides geometric correction tools, including 

improved image registration and elimination of geometric distortions. 

3. Processing of various products: Sen2Core is capable of processing various 

products, including the high-resolution level (Level-1C) and the top-level level 

(Level-2A). 

4. Integration with data processing tools: Sen2Core can be used in various data 

processing environments, including graphical user interface (GUI) and command 

line. 

As a rule, one or another atmospheric correction method is implemented as part of 

the software of the corresponding data processing centers for each satellite family. These 

processing centers provide users with satellite images with various levels of processing, 

including images for which atmospheric correction has been performed. However, 

atmospheric correction is not carried out for all data received from satellites. For example, 

for Sentinel-2 satellites, atmospheric correction is missing for a large number of images 

taken earlier than 2018. At the same time, users can independently pre-process the data 

they are interested in, including atmospheric correction, using appropriate application 

programs.  However, this processing is carried out interactively for each image of a 

specific area, which does not allow for automatic processing of sufficiently large sets of 

such images. Therefore, this paper proposes a method that allows to automate the process 

of atmospheric correction of "raw" satellite images using a simple convolutional neural 

network implementing the encoder - decoder architecture.  Images without atmospheric 

correction are received at the input of this network, and the result of its operation will be 

images with atmospheric correction. The network is trained on a dataset formed from 

images of the earth's surface with atmospheric correction already performed and images 

of the same areas without it. The proposed method is discussed further in the third chapter 

of the work. 
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2.3.  Spectral indices 

Spectral indices are numerical characteristics obtained from data on the spectral 

reflectivity of various wavelength ranges of the electromagnetic spectrum. These indices 

are used in various fields such as agriculture, ecology, and geology to estimate various 

parameters of the observed territories using satellite or aerospace data. In addition, they 

can be used for preliminary segmentation of the obtained images by types of the earth's 

surface.  These indices are usually calculated using values from various spectral regions 

such as visible light, infrared and ultraviolet regions.  The values of conditional symbols 

used in formulas are given below [1]: 

• NIR - pixel values from the near infrared channel. 

• RED - reflection in the red region of the spectrum. 

• SWIR – pixel values from the shortwave infrared channel. 

• L is the value of the green vegetation cover. It is often used in desert areas where 

vegetation cover is negligible and results range from -1.0 to 1.0. 

• BLUE – pixel values from the blue channel. 

• GREEN - pixel values from the green channel. 

When processing spectral data obtained during remote sensing of the Earth, the 

following spectral indices are most often used: 

1. NDVI (Normalized Difference Vegetation Index): Assessment of vegetation 

health. Green plants strongly absorb light in the Red and near infrared (IR) ranges, 

which makes NDVI useful for monitoring plant growth. 

REDNIR
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2. EVI (Enhanced Vegetation Index): An analogue of NDVI, but with correction 

for atmospheric conditions and the influence of the soil background. 
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3. NDWI (Normalized Difference Water Index): Definition of bodies of water, 

such as lakes and rivers. Water strongly absorbs in the near infrared (NIR), while 

vegetation usually reflects. 

SWIRNIR
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4. NDSI (Normalized Difference Snow Index): Snow and ice detection. Snow 

reflects strongly in the green and shortwave infrared (SWIR) bands. 
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5. SAVI (Soil-Adjusted Vegetation Index): Correction for the soil background, 

which makes it more sensitive to changes in vegetation density. 
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where L is a constant (usually 0.5). 

6. MSAVI (Modified Soil-Adjusted Vegetation Index): Correction for the soil 

background, taking into account a higher sensitivity to green vegetation. 

))(8)12(12(5.0 2 REDNIRNIRNIRMSAVI    (6) 

Spectral indices are widely used in various fields, including agriculture (for crop 

monitoring), ecology (for tracking changes in vegetation cover), geology and remote 

sensing. The calculation of these indices helps to highlight features of objects that may 

be difficult to identify with simple visual analysis of images. Spectral indices, including 

NDVI and SAVI, were used in studies aimed at analyzing agricultural land in order to 

identify and monitor agricultural land in Uzbekistan. In addition, the SAVI, NDVI and 

EVI indices were used to determine and pre-evaluate the level of fertility and productivity 

of agricultural land. The NDSI index can be used to determine the presence of snow cover 

in mountainous areas. These indices can also be used to evaluate irrigation efficiency, 

determine the optimal harvest time, and solve other agricultural tasks. Their use in 

combination with modern remote sensing data and satellite images allows for more 

accurate and efficient management of agricultural land. Thus, vegetation indices can be 
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used as informative signs for a system for recognizing types of crops and the degree of 

their development [2]. 

2.4.  Object analysis and image classification  

Object analysis and image classification are image processing and data analysis 

techniques that focus on highlighting and identifying objects (objects can be houses, trees, 

cars, etc.) in an image instead of simply classifying individual pixels. Many studies have 

shown that object-oriented image analysis (OBIA) using medium- and high-resolution 

satellite images surpasses the traditional pixel-based classification in urban settings 

[70,71,72,73,74,75]. Object-oriented image analysis (OBIA), sometimes called image 

segmentation, is the process of dividing an image into spatially adjacent, non-overlapping 

homogeneous regions (also known as objects) based on color, shape, and scale 

parameters. This method can be defined as splitting an image into spatially continuous, 

non-overlapping homogeneous areas (also known as objects) based on color, shape, and 

scale parameters. In addition, objects created on the basis of spatial information 

correspond more to real structures or areas on the ground than to individual pixels [76]. 

Their main advantage is that the decision-making rules are usually determined by the 

knowledge of a human analyst, rather than computer algorithms [55], and merging 

different types of data allows for increased accuracy [70]. In the study [77], 13 

observation methods were compared, and it turned out that in all cases, object-based 

classification methods turned out to be slightly better than pixel-based classification 

methods based only on spectral data. 

In particular, a number of studies have shown that OBIA is successfully applied to 

SPOT data for various purposes [78.79,80,81,82,83,84,85], and in 2014 [86] tested two 

object-based classification methods (KNN and SVM), and in 2014 [86] tested two object-

based classification methods (KNN and SVM SVM) and found that both methods work 

better than pixel-based (DT) methods for LULC mapping. The literature [87] clearly 

shows the advantages of using object-oriented methods of classifying knowledge in 
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images of the urban environment of SPOT 5 compared with pixel methods. Among the 

several methods compared, the first one had the highest accuracy in creating and 

highlighting significant objects such as roads and buildings. [75] revealed an 

improvement in OBIA's ability to define city boundaries on a regional scale using SPOT 

data. [88] demonstrated the advantages of an object-oriented approach compared to pixel-

based forest fragmentation assessment. Statistics Sweden (2008) used OBIA and SPOT 

5 rule-based data to classify urban green spaces, and the Swedish Environmental 

Protection Agency used SPOT 5 data [89]. The data classify natural types [89]. 

Image analysis and classification at the object level are image processing techniques 

focused on analyzing and interpreting image content based on objects rather than 

individual pixels. This process goes through a number of stages:  

1. image segmentation; 

2. extraction of features of objects; 

3. classification of objects. 

Let's give a brief description of each of these stages. 

Image segmentation - This is the process of splitting an image into separate segments 

or areas in order to simplify analysis. In the context of computer vision and image 

processing, this means dividing an image into groups of pixels that have similar 

characteristics or have a uniform structure. The purpose of image segmentation includes 

[90]: 

1. Selection of objects. Segmentation helps to highlight specific objects or areas of 

interest in an image. This can be useful, for example, when automatically 

recognizing objects such as cars, faces, or others. 

2. Improved analysis. Dividing the image into segments makes it easier to analyze 

each area independently. This is useful when studying the properties of different 

parts of an image or when applying different processing methods to each segment. 

3. Simplification of machine learning tasks. In machine learning tasks such as training 

a model for object recognition, segmented images can be used to train a model at 

the segment level, which can improve accuracy and efficiency. 
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There are several methods for image segmentation, including threshold 

segmentation, clustering, object boundary-based methods, and deep learning, including 

semantic and instance segmentation. 

1. Threshold segmentation: Based on applying a threshold for the brightness or 

color of pixels to separate them into objects and background. 

2. Clustering: Groups pixels based on their similarity in the color or texture space. 

3. Semantic segmentation: Assigns a class label to each pixel, which allows to 

select segments corresponding to specific objects. 

4. Instance segmentation: Differs in that it distinguishes not only classes of 

objects, but also each individual instance of an object. 

Extracting features of objects (Feature Extraction) — This is the process of 

highlighting the characteristic features or properties of objects in an image or in other 

types of data. These features represent information that can be used to describe objects 

and, often, for subsequent analysis or data processing. Feature extraction plays an 

important role in pattern recognition tasks, object classification, and other scenarios. 

Some key aspects of this process include [90]: 

1. Feature selection, which includes determining which characteristics of objects 

or areas of the image will be extracted. These features can range from textural 

features and color characteristics to the shape and size of objects. 

2. Data Transformation: After selecting features, they can be extracted from an 

image or other data by applying various algorithms and signal processing 

methods. 

3. Feature representation: The resulting features are represented in the form of 

vectors or sets of numbers that can be used in machine learning algorithms to 

train models and make decisions. 

Well-chosen features can significantly improve the performance of algorithms and 

models, making them more capable of recognizing and classifying objects. 

Classification of objects - This is the process of assigning an object (for example, 

an image, text, sound, or other data) a certain category or class based on its characteristics 
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and properties. This is one of the key tasks in the field of machine learning and computer 

vision. The object classification process usually includes the following steps: 

1. Data preparation. The source data, such as images or text, is prepared for use in 

the classification algorithm. This may include scaling, normalization, data 

transformation, and other preprocessing steps. 

2. Feature extraction: The characteristics that will be used for classification are 

extracted from the data. This may include extracting color characteristics, 

textures, shapes, numeric values, etc., depending on the type of data. 

3. Model selection. The machine learning model that will be used for classification 

is selected. This can be, for example, a logistic regression model, the k-nearest 

neighbor method, the support vector machine (SVM) method, neural networks, 

and so on. 

4. Model training. The process of training the model involves the use of pre-

marked data. This stage involves transferring the input data and the 

corresponding class labels to the model so that the model can learn the 

connections between input features and classes. 

5. Testing and evaluation. The trained model is tested on new data that it has not 

previously seen in order to evaluate its performance and accuracy. Various 

metrics such as accuracy, completeness, and F-measure can be used to assess 

the quality of classification. 

6. Application. After successful training and testing, the model can be used to 

classify new data. 

Object classification tasks have a wide range of applications and play an important 

role in automation and data processing. At the same time, two approaches are possible – 

on the basis of learning with a teacher or on the basis of learning without a teacher. 

In Supervised Learning, the model is trained based on labeled data, where a 

corresponding label or target value is provided for each input example. At the same time, 

the model seeks to find a mapping between the input data and the corresponding target 

labels, so that when it encounters new, previously unseen data, it is able to predict or 
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classify the target labels. The following methods of model construction are most often 

used [91]: 

1. Linear regression - used to predict a continuous dependent variable based on 

one or more independent variables. The main idea is to find a linear relationship 

between the features and the target variable, which can be expressed as an 

equation of a straight line or a hyperplane in a larger dimensional space. The 

process of training a model is to adjust the parameters of the model based on the 

training data in order to minimize the prediction error. After training, the model 

can be used to predict the values of the target variable for new observations 

based on feature values. The quality of a linear regression model is usually 

assessed using various metrics such as standard error (MSE), coefficient of 

determination (R^2), mean absolute error (MAE), and others. 

2. Support vector machine (SVM) methods perform classification and regression 

tasks by partitioning the feature space using hyperplanes. The main idea of the 

SVM method is to find the best hyperplane that best separates the various 

classes of data in the feature space. In the search process, split it up. A 

hyperplane is a separating surface that maximizes the distance (gap) between 

the nearest points of different classes, called support vectors. The hyperplane 

parameters are searched based on minimizing the loss functional, taking into 

account the penalty for violating the separation boundary. SVM can use various 

kernels that allow to build nonlinear separating surfaces in the original feature 

space by converting data into a higher dimensional space. When classifying 

satellite images, this method can be used to assign image pixels to a particular 

class, i.e. in segmentation tasks [92].  

3. Decision Trees and Random Forest - Builds decision trees for classification and 

regression, as well as their combinations into random forests to improve 

accuracy. The main idea of decision trees is to divide the feature space into 

regions, in each of which the model makes predictions about the target variable. 

A random forest creates an ensemble of decision trees, each of which is trained 

on a subset of training data and using randomly selected features. In a random 
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forest, two forms of randomness are used: random sampling of observations 

with replacement (bootstrap) and random selection of features at each split of 

the tree. This helps to reduce the correlation between trees and reduce 

overfitting. When it is necessary to make a forecast for a new observation, each 

tree in a random forest makes its own forecast, and then the forecasts are 

aggregated (for example, using voting for classification or averaging for 

regression) to obtain a final decision. A random forest can also be used to 

segment satellite images.  

4. Neural networks are models that can be trained to predict or classify data using 

layers of neurons and error back propagation algorithms. Neural networks 

consist of neurons that are grouped into layers. Neural networks usually have 

three types of layers: an input layer, hidden layers, and an output layer. Each 

neuron in one layer is connected to neurons in the next layer. These connections 

have weights that are adjusted during the learning process to achieve optimal 

network performance. This usually happens using optimization techniques such 

as stochastic gradient descent. An activation function is applied to each neuron, 

which determines the output value of the neuron based on the input data and the 

weights of the connections. Deep learning: Neural networks with multiple 

hidden layers are called deep neural networks.  Depending on the tasks being 

solved, various neural network architectures are used - multilayer perceptrons 

(MLP), convolutional neural networks (CNN), recurrent neural networks 

(RNN) and deep neural networks (DNN). Deep convolutional neural networks 

are usually used when processing satellite images [93].  

In Unsupervised Learning, the model is trained on untagged data, and there are no 

target labels. The model has to find structures or patterns in the data on its own. In this 

way, the model seeks to highlight common characteristics or structures in the data, and 

can also be used to reduce the dimensionality of the data. Clustering methods are most 

successfully used for processing satellite images. At the same time, the k-means algorithm 

shows good results. It is used both for preliminary segmentation of the entire image in 
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order to identify various areas of interest, and for segmentation of the areas of interest 

themselves, for example, to determine the degree of development of agricultural plants in 

the fields [94].  

Clustering methods are algorithms that group data based on their similarity. The k-

means algorithm is a clustering method that is used to divide a dataset into k clusters. The 

basic idea is to divide the data into clusters in such a way that objects within one cluster 

are more similar to each other than to objects from other clusters. The number of clusters 

is set by the user. First, the centers for each cluster are selected in one way or another. 

Then each data object is assigned to the nearest centroid, thus creating clusters. After 

assigning objects to clusters, the centroids of the formed clusters are recalculated by 

calculating the average value of all objects in each cluster. The process of assigning 

clusters and recalculating centroids is repeated until the centroids are stabilized or until 

the maximum number of iterations is reached.  Various metrics can be used to assess the 

quality of clustering, such as the sum of the squares of the distances to the centroids, the 

distance between the centroids, or their ratio of these metrics. 

Object analysis and image classification improve the accuracy and contextual 

understanding of the analyzed data, which makes them more useful for a wide range of 

tasks in various fields. Segmentation and classification of big data is possible based on 

the use of neural networks and optimization of their hyperparameters. Almost all modern 

satellite image processing systems are based on the use of deep learning neural networks, 

since they allow for high accuracy of segmentation and classification of objects [94]. 

2.5.  Deep neural networks 

   Deep learning relies on the use of multi-layered neural networks to obtain high-

level features from input data. As a result of training, a specific set of features is formed 

on each layer of such networks, reflecting both local features and general features of the 

processed data [95].  Semantic segmentation architectures based on convolutional neural 

networks can specifically extract contextual features and object-level information at 
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several levels and, finally, label each pixel of the input image [96]. They are used in many 

image analysis tasks, including satellite image processing, medical research, robotics, 

autonomous vehicles, precision agriculture, etc. [96,97]. In the field of remote sensing, 

many studies have applied semantic segmentation algorithms to 2D images and even 3D 

scenes [98]. For example, a fully convolutional network model has been applied to 

Sentinel-2 and SAR data for slum mapping with learning transfer based on very high 

resolution optical satellite images (VHR) [99]. CloudNet, a semantic image segmentation 

model with deep residual learning and atrophic convolution, was proposed to identify 

clouds and haze in Sentinel-2 images [100]. The DeepUNet network, which is a 

redesigned U-Net network structure, was used to segment seas and land at the pixel level 

using manually marked annotations and images from Google Earth [101]. Thus, DL-

based models open up new possibilities for object detection, especially in cases where 

high- and medium-resolution remote sensing images are used. 

Convolutional neural networks (CNNs) are a class of neural networks specializing 

in processing structured data (such as images) in the form of lattices or matrices for 

computer vision tasks such as image classification, object detection, and image 

segmentation. They are successfully applied. The main components of convolution neural 

networks include: 

1. Convolutional layers that apply filters (convolution kernels) to an image to 

extract various features. These layers allow the network to automatically study 

important image characteristics such as faces, textures, and shapes. On each 

layer, so-called "feature maps" are formed, which are processed by other filters 

on the next layer of the network. 

2. Pooling layers - reduce the dimension of the feature space by removing 

redundant data and simplifying calculations. 

3. Fully connected layers are used for classification or regression based on 

extracted features. There are also networks in which fully connected layers are 

missing and replaced with convolutional layers.   

4. Activation functions - applied after each layer to add non-linearity to the 

network. The ReLU (Rectified Linear Unit) activation function is most often 
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used between layers, and the sigmoidal activation function is usually used on 

the output layer. 

When training the network, the loss function is minimized. This function evaluates 

in one way or another the difference between network forecasts and true labels. The loss 

function is constructed depending on the nature of the problem being solved. The most 

commonly used loss functions are the standard error (MSE) and the cross-entropy 

function. In segmentation problems, the loss function is formed based on the Jacquard 

coefficient of the IoU metric [102].   

Since the optimization problem is solved during training, various optimization 

algorithms can be used. These algorithms update network parameters during the learning 

process to minimize the loss function.  As a rule, algorithms based on stochastic gradient 

descent are used, such as the Adam optimizer [102]. 

Another method that can be used to speed up and normalize the learning process of 

neural networks is Batch Normalization. This method of normalization of activations in 

neural networks, which was proposed in 2015. It is used to stabilize and accelerate the 

learning of deep neural networks by normalizing the input data of each layer. The basic 

idea is to normalize the activations of each layer before transferring them to the next layer. 

This helps prevent explosive growth of gradients and accelerates learning convergence. 

The main components of Batch Normalization include: 

1. Calculation of Batch Statistics: The average and standard deviation of 

activations are calculated for each mini-data packet. 

2. Normalization of activations: Activations of each layer are normalized by 

subtracting the mean and dividing by the standard deviation, then scaling is 

applied using the scaling parameter and adding an offset using the offset 

parameter. 

3. Parameter update: The scaling and offset parameters are trained along with the 

rest of the network parameters in the process of error back propagation. 

Batch Normalization is often applied to the results of a convolution operation in 

convolutional layers or to the results of a fully connected layer in neural networks. It helps 
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to speed up learning, improve learning stability, and usually leads to better generalizing 

ability of models [102]. 

After normalization of the learning process, it is necessary to avoid the process of 

retraining, for this the regularization method is used. This is another method in machine 

learning that is used to prevent overfitting a model by limiting its complexity or the size 

of the weights. The main idea of regularization is to add an additional term to the loss 

function of the model, which penalizes large values of weights or their complexity. There 

are two main types of regularization [102]: 

1. L1 regularization (Lasso): In this method, a penalty is added to the loss function, 

proportional to the absolute value of the model weights. L1 regularization is 

also called the Lasso method (Least Absolute Shrinkage and Selection 

Operator). It can lead to sparse weights because it can reset some weights, 

making the model more interpretable. 

2. L2 regularization (Ridge): In this method, a quadratic penalty is added to the 

loss function, proportional to the square of the weights of the model. L2 

regularization is also called the Ridge or Tikhonov regularization method. She 

aims to make the model's weights smaller and prevent them from overfitting. 

Regularization is often used in conjunction with other machine learning methods 

such as linear regression, logistic regression, or neural networks. It helps to improve the 

generalizing ability of models and prevent them from overfitting on training data [102]. 

Deep learning methods also include the so-called Transfer Learning. This is a 

machine learning method that allows to use the knowledge gained from training a model 

on one task to improve performance or speed up model training on another task. The basic 

idea is to use the pre-trained weights of a model trained on a large dataset and adjust them 

on a new dataset associated with a new task. Key Aspects of Transfer Learning: 

1. Pre-training: First, the model is trained on a large dataset and gains knowledge 

about the features and dependencies in the data. 
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2. Knowledge transfer: After that, the knowledge gained during the preliminary 

training is transferred or transferred to a new task. This may include the use of pre-

trained neural network weights or feature extraction functions. 

3. Model Setup: The model is then configured or retrained on a new dataset to perform 

a specific task. This may include changing the last layers of the model or using a 

frozen layer learning technique. 

Transfer Learning allows to use the knowledge gained on one task to improve the 

performance of the model on another task, especially if a small amount of training data is 

available for a new task. This method allows to significantly reduce the cost of training 

new models and improve the performance of models on new tasks, especially in 

conditions of a limited amount of available data. 

2.5.1. Encoder – decoder architectures 

Encoder-decoder architectures are a class of neural networks that consists of two main 

components - an encoder and a decoder. These architectures are widely used in various 

fields of machine learning, such as machine translation, text generation, image 

segmentation, and others [103]. 

Encoder: 

1. The encoder accepts data as input and converts it into some hidden representation 

or code. 

2. Usually, the encoder consists of several layers of neural networks that gradually 

reduce the dimension of the input data and extract their features. 

3. Recurrent neural networks (RNN), convolutional neural networks (CNN), or 

combinations thereof can be used in the encoder to process sequential data such as 

text or time series. 

Decoder: 

1. The decoder takes the hidden representation received from the encoder and decodes 

it back into the output data. 
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2. The decoder also consists of several layers of neural networks that gradually 

increase the dimension of the data to the original dimension of the input data. 

3. It can also use recurrent layers to model the dependencies between input and output 

data, especially in the case of sequence generation. 

The mechanism of attention (Attention Mechanism): 

1. Some encoder-decoder architectures add an attention mechanism that allows the 

network to focus on different parts of the input data at different times. 

2. This helps to improve the output quality, especially in tasks where it is necessary 

to process long sequences or variable-length inputs. 

Encoder-decoder architectures are used to solve a wide variety of tasks – both for 

image segmentation, machine translation, and text generation. These architectures are 

highly flexible and can be adapted to different tasks and data types. Among the most 

successful architectures that provide relatively high quality ratings are the following:  

1. Seq2Seq (Sequence-to-Sequence) models are used in machine translation, 

question-answer, text generation and other tasks where it is necessary to convert 

one sequence into another. 

2. Models for text generation that are based on recurrent elements such as LSTM 

(Long Short-Term Memory) and GRU (Gated Recurrent Unit) that convert 

hidden sequence representations into text. 

3. SegNet and U-Net architectures that have shown good quality metrics in the 

image segmentation task, where the input images are converted to segmented 

masks. 

2.5.2. Neural network architectures for image segmentation 

Semantic image segmentation is the allocation of local image regions 

corresponding to different classes of objects. Although methods and algorithms for 

classifying objects in images are developing rapidly, this problem has not yet been 
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completely solved. On the other hand, there is no single generally accepted approach that 

could form the basis of most algorithms. There is also no general algorithm that provides 

the best segmentation for any image. 

Currently, there are many methods of semantic image segmentation based on the 

use of convolutional neural networks (CNN). In general, such methods provide fairly 

good performance and segmentation accuracy for relatively small images.  At the same 

time, various CNN architectures are used to classify and tightly label these images. 

However, these neural network image processing methods have certain disadvantages and 

are far from perfect.  It should also be noted that the computational cost of segmentation 

is high due to the high resolution of satellite images of the earth's surface.   Therefore, it 

is very important to develop methods that reduce computational costs and improve the 

quality of segmentation.  

Currently, there are no strict rules for the configuration of convolutional neural 

network (CNN) structures - this includes choosing the number of layers, sizes and number 

of feature maps, as well as the sizes of convolution matrices, learning algorithms, etc. 

When developing CNN structures, it is important to keep in mind that a small number of 

network parameters can reduce classification accuracy. At the same time, a large number 

of parameters can increase computational complexity and does not always lead to an 

improvement in the classification ability of the network. 

Semantic segmentation in computer vision consists in assigning a semantic label to 

each associated area of an image. Almost all modern CNN architectures for image 

segmentation follow the principles outlined in [104]. The main idea is to change the 

traditional CNN classification so that the output is not a probability vector, but a 

probability map of classes. As a rule, the standard CNN is used as an encoder that 

generates feature maps for various levels of image decomposition.  The encoder is 

followed by a decoder that scales feature maps to the original spatial dimensions of the 

input image. Then a heat map is obtained for each class. Deep semantic segmentation 

networks are usually based on the principles of full convolution and encoder–decoder 

architectures [124]. 
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Typically, the encoder is a sequence of convolutional layers followed by batch 

normalization (BN) and rectified linear activation function (ReLU). The convolution 

blocks are followed by a pulling layer. In fact, the encoder is an ordinary convolutional 

network trained to classify the input image.  The decoder has the same number of layers 

and performs the function of interpolating the encoder output. At the last level of the 

decoder, a 1×1 convolution followed by a sigmoidal activation function is usually used 

to form the output segmented image. 

U-Net [105] and MobileNet [106] are two different neural network architectures 

designed to solve different problems. U-Net is usually used for image segmentation. The 

architecture includes convolutional layers for feature extraction and transposed 

convolutional layers for increasing dimensionality and creating detailed segmented maps. 

In the Unet architecture, when using the pooling operation, the 2×2-pixel area 

maximization method is used. After passing through several successive layers of 

convolution and pooling, the input image is transformed into abstract feature maps, which 

are the output data of the corresponding encoding blocks. 

The Unet network can be considered as a modified version of the first one, which 

combines the output data of the decoder layers with feature maps from the encoder at the 

same level.  In this case, interpolation in the decoder layers is performed using transposed 

convolution [107].  This architecture has shown a significant increase in the accuracy of 

segmentation of images of various natures, as well as the ability to learn from a small 

amount of data. The disadvantages of Unet are relatively low performance and high 

resource consumption. These disadvantages are associated with the rather complex and 

resource-intensive architectures of the encoders used, such as ResNet [108], Inception 

[109], EfficientNet [110]. 

MobileNet, on the other hand, is designed to classify images with a minimum 

number of parameters. Its lightweight architecture makes it suitable for use on mobile 

devices and embedded systems. U-Net uses MobileNet as an efficient encoder to extract 

functions from input images. Thanks to its lightweight architecture, MobileNet allows to 

quickly process images and extract important functions. MobileNet replaces the standard 

convolutional layers in the U-Net encoder. This reduces the number of parameters and 
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calculations, which is useful for resource-intensive scenarios. MobileNet is used as an 

encoder in U-Net when high performance is needed in resource-constrained 

environments. 

Initially, the U-Net neural network architecture was developed for semantic 

segmentation of medical images. With its help, certain types of cells were isolated in 

images obtained from microscopes. The same architecture was used to segment organ 

abnormalities in tomographic images. However, then this architecture began to be 

successfully used for segmentation of other images, including satellite images. The main 

idea of U-Net is to use a fully convolutional architecture, which works equally well both 

for encoding (reducing the dimension) of an image and for decoding (increasing the 

dimension) of the resulting representation in order to restore segmented images. The main 

features of the U-Net architecture include [105]: 

1. Convolutional blocks: The architecture consists of a sequence of convolutional 

blocks, including convolution, activation function (usually ReLU) and pooling 

operation. These blocks are used to extract features from the input image. 

2. Encoder Path: The input image is consistently reduced in size using convolution 

and pooling operations, which allows to extract more and more abstract features. 

3. Decoder Path: After reaching the minimum image size, the size is gradually 

increased using transposed convolution and concatenation operations with the 

outputs of the encoder blocks, which allows to restore spatial resolution and 

perform segmentation. 

4. Residual connections (Skip Connections). To improve the transmission of 

information between the encoder and the decoder, transmission connections are 

used that transmit signs from lower levels directly to the corresponding layers of 

the decoder. 

5. Loss function. Usually, the cross-entropy loss is used as a loss function, especially 

for the binary segmentation problem, or the mean squared error for the multi-class 

segmentation problem. 

U-Net demonstrates high efficiency in solving image segmentation problems due 

to its special architecture, which allows to extract both local and global features from 
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images, while preserving spatial information and details. However, this architecture is 

very resource intensive. It requires both large amounts of memory and powerful graphics 

accelerators, even when processing medium-resolution images.   

In this paper, it is proposed to use a neural network based on the principles of the 

U-Net architecture for semantic segmentation of satellite images. At the same time, the 

main attention will be paid to reducing the requirements for the necessary computing 

resources, while the segmentation accuracy should not decrease. The proposed method is 

discussed further in the third chapter of the work.  
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Conclusion to Chapter 2 

1. It is proposed to use a neural network for atmospheric correction. This is due to the 

fact that data (images) obtained from data access hubs are usually provided with 

atmospheric correction. However, often the available data do not always have an 

atmospheric correction. Therefore, a method is proposed that allows automating 

the process of atmospheric correction of "raw" satellite images using a simple 

convolutional neural network implementing the encoder -decoder architecture.  

Images without atmospheric correction are received at the input of such a network, 

and the result of its operation will be images with atmospheric correction. The 

network should be trained on a dataset formed from images of the earth's surface 

with atmospheric correction already performed and images of the same areas 

without it. This approach will allow for atmospheric correction for those satellite 

data for which there is no atmospheric correction. 

2. To classify crops grown on agricultural lands, it is proposed to use indices of a set 

of different vegetation indices. This is due to the fact that these indices differ for 

different crops, and also reflect the degree of vegetation development. Thus, 

vegetation indices can be used in the future as informative signs for the crop type 

recognition system. In addition, vegetation indices can be used for preliminary 

identification of agricultural land. 

3. To solve the problems of atmospheric correction, segmentation of satellite images 

and classification of crops, it is proposed to use neural networks based on various 

architectures. This is due to the good accuracy indicators achieved with their help. 

It should be noted that when implementing them, it is necessary to reduce the 

requirements for computing resources, but at the same time, the accuracy of the 

results, at least, should not decrease compared to existing solutions. 
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CHAPTER 3. DEVELOPMENT OF METHODS FOR MONITORING THE 

TERRITORY BASED ON SATELLITE IMAGES 

3.1. General structure of the system for monitoring areas of the Earth's 

surface 

Based on the analysis carried out in Chapter 2, the following structure of the 

satellite data processing system for monitoring the region of the earth's surface is 

proposed, shown in Figure 3.1. 

 

Figure 3.1. Structure of the Earth surface region monitoring system 

 

The proposed structure reflects the main components of the monitoring system – 

data acquisition using two methods of atmospheric correction, as well as components 
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implementing segmentation and classification of segmented areas, and their further 

analysis. 

3.2. Monitored regions 

To evaluate the various methods of detecting changes presented in this dissertation, 

the cities of Uzbekistan in the Ferghana Valley were selected as places for research. As 

the largest cities in Uzbekistan, Tashkent, Ferghana, Andijan and Namangan have 

experienced rapid changes in their urban structure. This high rate of expansion makes 

them attractive candidates for urban change detection research using remote sensing 

images. 

Tashkent is one of the centers of Central Asia, the capital of the sovereign Republic 

of Uzbekistan. Tashkent is located in the northeastern part of the republic, in the 

observation zone in the valley of the Chirchik river, at an altitude of 440-480 meters above 

sea level and occupies about 43,500 hectares.  

 

Figure 3.2. The city of Tashkent, captured by the Landsat satellite (Google Earth 

Engine platform) 
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The city of Ferghana, located in the south of the Ferghana Valley, is one of the 

ngest cities in Uzbekistan. Established in 1876 as a result of the annexation of the Kokand 

Khanate to the Russian Empire, the city, named New Margilan, was built 12 kilometers 

from Margilan and became the administrative center of the Ferghana region.  

 

Figure 3.3. The city of Ferghana, captured by the Landsat satellite (Google Earth 

Engine platform) 

 

Andijan is an ancient city located in Uzbekistan, in the south-east of the Ferghana 

Valley, near the border with Kyrgyzstan. The administrative center of the Andijan region 

of the sovereign republic. Andijan is 360 km away from the capital Tashkent.  

 

Figure 3.4. The city of Andijan, captured by the Landsat satellite (Google Earth 

Engine platform) 

 



60 
 

Namangan is one of the oldest cities. The approximate date of its foundation is 

1610. The relief of the city is mostly flat. The city's land surface is inclined from north to 

south and from west to east; the southern part of the territory is subtropical. In summer, 

there is a sharp increase in air temperature. Namangan is located in the northern part of 

the Ferghana Valley, 200 km southeast of Tashkent (about 300 km by road). 

3.3. Methods for obtaining satellite data 

Before choosing a data source for a regional monitoring system, it is important to 

consider factors such as data availability, cost, quality, and compatibility with existing 

tools and software. In this study, data will be obtained from two main sources: the Google 

Earth Engine and the Sentinel Hub platform. 

3.3.1. Getting data from Google Earth Engine in interactive mode 

Google Earth Engine (GAE) offers a wide range of datasets and tools that can provide 

various types of information for monitoring the territory of Uzbekistan. To get 

information from Google Earth Engine, need to register and log in to the platform, select 

an area of interest (AOI) for Uzbekistan, search for relevant datasets and process the data 

using GEE image processing functions. To get information from GEE for monitoring the 

territory of Uzbekistan, some steps may follow: 

1. Must register and log in to the Google Earth Engine platform using a Google 

account. 
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Figure 3.5. The workspace of the Google Earth Engine platform 

 

2. It is necessary to select a zone of interest for Uzbekistan. This can be done by 

drawing a polygon over the desired area using the Draw Shape tool in the GEE user 

interface. 

3. After that, should search for datasets containing relevant data for the selected area 

of interest. This can be done by using the "Search" tab in the GEE user interface 

and filtering by keywords, data type and other criteria. 

 

Figure 3.6. On the platform, the field of scientific research can be found through a 

search engine or through a graphical assistant 

 

4. Select the necessary datasets and add them to the GEE workspace. This can be 

done by clicking on the dataset and then clicking "Add to Map". 

5. Process the data using GEE image processing functions. This can be done by 

writing JavaScript and Python code on the Code Editor tab in the GEE user interface. The 

code can be used to filter, process, and visualize data. 
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6. Finally, the processed data should be exported for further analysis. This can be 

done by using the Export tab in the GEE user interface and selecting the desired export 

format and options. 

 

Figure 3.7. Some settings can be made on the research object on the platform. For 

example, spectral ranges and auto-correction service 

 

 

Figure 3.8. It is possible to pre-configure and download the necessary satellite data from 

the platform 

3.3.2. Obtaining data from Google Earth Engine in automatic mode 

Automated data collection from Google Earth Engine means using software tools to 

extract and download geospatial data from the Google Earth Engine cloud platform 

without manual intervention. Google Earth Engine provides extensive geospatial datasets 

and powerful analysis tools available through APIs that automate the data collection 

process. Google Earth Engine provides a wide range of geospatial data that can be used 

for a variety of applications, including agricultural land analysis, vegetation change 
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monitoring, disaster risk assessment, and more. As an example of data analysis for 

Uzbekistan, let's consider a detailed algorithm for working with the Google Earth Engine 

API: 

1. Installing and configuring the API: 

 It is necessary to check that have the earth engine api library for Python 

installed. 

 Need to register with Google Earth Engine and create an account with API 

access. 

2. Importing the library and initializing the API: 

 Import the Python Earth Engine API library: import ee. 

 The API must be initialized using the ee.Initialize() command. 

3. Definition of the area of interest (AOI): 

 Define the geographical area of Uzbekistan using a geometric object (for 

example, a rectangle) by specifying coordinates. 

4. Data selection: 

 Need to select the data that want to analyze. For example, it could be a 

Landsat dataset for monitoring vegetation changes. 

5. Data filtering: 

 To select information related only to Uzbekistan, apply filters by time and 

region. 

 Cloud filters can be used to exclude cloud scenes. 

6. Data analysis: 

 Analysis operations such as vegetation index calculation (NDVI, NDWI), 

classification, dynamic transformation, etc. can be applied 

7. Visualization of the results: 

 Visualization of results, for example, using graphs or maps. 

8. Data export (optional): 

 If necessary, the data can be exported to the desired format for further use in 

other applications. 
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Figure 3.9. Sample Python code for downloading and visualizing Landsat data for 

Uzbekistan using the Google Earth Engine API 

 

This is an example of downloading and visualizing a Landsat image for Uzbekistan 

using the Google Earth Engine API. Package parameters, filters and other parameters can 

be customized according to needs. 

3.3.3. Receiving data from the Sentinel Hub in interactive mode 

Sentinel Hub is a cloud—based platform that provides access to a wide range of 

satellite data, including Sentinel-1, Sentinel-2, Sentinel-3 and other missions. The 

platform offers various tools for data visualization, processing and analysis, which makes 

it a useful tool for monitoring the environment and natural resources. To receive 

information from the Sentinel Hub for Uzbekistan, follow these steps: 

1. Should register and log in to the Sentinel Hub platform using a valid account. 
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Figure 3.10. After registration, the Sentinel Hub workspace opens 

 

2. Select the area of interest (AOI) for Uzbekistan. This can be done by specifying 

the latitude and longitude coordinates of the desired area or by drawing a polygon 

using the platform's map interface. 

3. It is necessary to search for available data for the selected area of interest. This can 

be done using the platform's data discovery tools, which allow to filter datasets 

based on date range, sensor, and other parameters. 

 

Figure 3.11. By selecting the required field, configure additional filters offered by the 

platform and select which satellite receive 

 

4. Selection the desired datasets and visualize the data using the platform's image 

processing tools. This can be achieved by applying filters, adjusting the contrast of 

the image, and using other methods to improve the visual representation of the data. 
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5. It is necessary to export the data for further analysis. This can be done by uploading 

the data in the desired format or integrating the data with other analysis and 

visualization software. 

 

Figure 3.12. Before downloading, check the desired area again and download it 

3.3.4. Receiving data from Sentinel HUB in automatic mode 

To receive data from the Sentinel Hub in automatic mode, use their API, which 

provides access to a wide range of geospatial data, including images from Sentinel 

satellites. An API (Application Programming Interface) is an interface that allows 

software to interact with other programs or services. In the case of geospatial data, the 

Sentinel Hasp API allows developers to access various datasets about geographical 

features, satellite images, metadata, and other information through programmatic queries. 

An example of an algorithm for working with the Sentinel Hasp API to obtain data 

on geographical objects and satellite images for Uzbekistan: 

1. Registration and receipt of the API key: 

 Need to go to the Sentinel Hub website and register an account. 

 Get an API key (instance ID) that will allow to use the Sentinel Hub API. 

2. Import the necessary libraries: 

 Need to install the Sentinelhub library for Python, if it is not already 

installed. 
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 To work with the API in a Python script, need to import the necessary classes 

and methods from Sentinelhub. 

3. Definition of the area of interest (AOI): 

 It is necessary to select the geographical region of Uzbekistan from which 

information should be obtained. It can be defined as a geometric object (for 

example, a rectangle or polygon) using coordinates. 

4. Request formation: 

 A request is sent to the Sentinel Hub API specifying the necessary 

parameters, such as the data type (for example, Sentinel-2 images), time 

interval, area of interest, image dimensions, and other parameters. 

5. Sending a request: 

 The prepared request is sent to the Sentinel Hub API using the API key and 

request parameters. 

6. Receiving data: 

 The data is received as a response to the request. These can be satellite 

images, metadata, or other information about geographical objects in a 

certain area and in a certain period of time. 

7. Data processing and analysis: 

 The received data is processed and analyzed according to the set goals. This 

can include image processing, feature extraction, time series analysis, and 

more. 
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Figure 3.13. Sample code for obtaining Sentinel-2 images for Uzbekistan using 

the Sentinel Hub API 

 

This code sends a request to the Sentinel Hasp API to receive Sentinel-2 images 

for Uzbekistan over a certain time range and visualizes the resulting image using the 

matplotlib library. 

3.4. Methods of satellite image preprocessing 

Currently, data from most satellites are publicly available, but only a small part of 

them are data with previous atmospheric correction. Users who have access to data from 

a particular satellite can perform atmospheric correction of the necessary data using 

appropriate application programs. However, this processing is usually performed 

interactively for each image of a certain area. 

Correction of atmospheric distortions of data obtained by remote sensing of the 

Earth is a critical stage of preprocessing. It compensates for the differences between the 
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solar radiation reflected from the surface and the true radiation recorded on board the 

spacecraft. These differences depend on many factors, including the angle of incidence 

of sunlight, the position and viewing angle of the spacecraft, the composition and 

humidity of the atmosphere, and others. Satellite images are often processed without 

atmospheric correction. However, the introduction of this correction helps to improve the 

reliability of satellite image processing results.  

Many atmospheric correction algorithms are available as part of the data center 

software for various satellite families. However, atmospheric correction is not performed 

for all data received from satellites. Users can perform their own data preprocessing, 

including atmospheric correction, using specialized application programs.  

Most satellites provide multispectral images of the Earth. The data received from 

Sentinel-2 satellites has already been partially processed at several levels. Two of them 

are used in this work, namely L1C and L2A. Images of the L1C level are images that 

have undergone orthocorrection. The images obtained at the L2A processing level 

underwent both ortho and atmospheric correction. Users who have access only to L1C 

level data can independently perform atmospheric correction of the necessary images 

using specialized applications located on the Sentinel access hub. However, such 

processing often requires interactive interaction for each image individually, which 

makes it difficult to automatically process large sets of such images. An example of the 

same image in the visible spectral range at the L1C and L2A levels is shown in Figure 

3.14. 

a  b 

 

 

 

 

 

Figure 3.14. Images at levels 1C and 2A: (a) Incorrect image — level L1C (b) Image 

with atmospheric correction — level L2A 
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The GEE platform accumulates data received from a variety of satellites, and at the 

same time allows to select any of them.    Not all the data obtained in this way have 

atmospheric correction. At the same time, as a rule, there may be no means for conducting 

atmospheric correction for these data. Therefore, in order to carry out atmospheric 

correction of data obtained from various sources, a method is proposed that allows this 

correction to be made.   The method is based on the use of a neural network with an 

encoder–decoder architecture. The available data of the L1 and L2 levels obtained from 

the Sentinel-2 platform is used as a dataset for network training.   

3.4.1. Neural network for atmospheric correction of satellite images 

The proposed method makes it possible to automate the process of atmospheric 

correction of "raw" satellite images using a simple convolutional neural network.  Images 

without atmospheric correction are received at the input of this network, and the result of 

its operation will be images with atmospheric correction.  The most suitable network 

architecture for such conversion is the encoder–decoder architecture.  The structure of the 

proposed neural network is shown in Figure.3.15. The encoder contains only three coding 

layers. The structure of the coding layer is shown in Figure. 3.15.  In fact, the encoder is 

an ordinary convolutional network trained to classify the input image. The decoder has 

the same number of layers and performs the function of interpolating the encoder output. 

The decoding layer shown in Figure 3.15 is a reverse convolution followed by batch 

normalization.  
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Figure 3.15. (a) The structure of the proposed neural network. (b) The coding 

layers. (c) Decoding layer. D indicates the size of the image, C indicates the number of 

filters 

 

The initial data set for training and testing a neural network is a subset of satellite 

images from the L1C and L2A levels obtained for several regions of the Earth at different 

times of the year. The analysis uses data obtained from spectral channels B04 (red), B03 

(green) and B02 (blue) in the visible range, as well as data from channel B08 (near 

infrared) of the spectral range. The preprocessing algorithm for atmospheric correction, 

shown in Figure 3.15, begins with the alignment of the sizes of all image channels. After 

that, each image is divided into 64 parts, and each part is normalized in brightness. This 

process creates 64 four-channel images. Next, the resulting set of images is randomly 

divided into training, verification and test datasets, which make up 80%, 10% and 10% 

of the entire dataset, respectively. Then the network is trained, which is then used for 

atmospheric correction 

Corrected images are fed to the input of the trained neural network. The result of 

processing each such image is 64 parts of the output image. From these parts using the 

post-processing algorithm shown in Figure 3.16 a full-size image with atmospheric 

correction is compiled. 
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Figure 3.16. Data preprocessing algorithm 

 

 

 

 

 

Figure 3.17. Algorithm for post-processing of output data 

 

Using the proposed neural network makes it possible to carry out atmospheric 

correction and unify images obtained from different satellites. The procedure for training 

the proposed network and the results of its use are described in Chapter 4.   

3.5. Neural network for semantic segmentation of satellite images 

As noted in Chapter 2, among networks for semantic segmentation, networks based 

on the U-Net architecture show better segmentation results compared to other 

architectures. Therefore, in this paper it is proposed to use this architecture as a basic one. 

However, this network requires significant computing resources for its operation, and 

does not have too high performance, which is especially important when processing high-

resolution images. 

Images obtained by remote sensing of the Earth have a high resolution, often 

exceeding 2000x2000 pixels, while most convolutional neural networks, including U-

Net, are designed to work with images of 256×256 pixels. When dividing large images 

into smaller fragments, the processing time increases in proportion to the number of 

fragments. For efficient segmentation of large images, it is necessary to increase network 

performance while maintaining the necessary accuracy.  
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One way to improve the performance of this architecture is to use high-

performance encoders. Currently, the MobileNet network [111] is one of these encoders. 

It reduces memory consumption for calculations, while maintaining high accuracy of 

forecasts. This pre-trained network can even be used on mobile devices.  The paper 

proposes to modify the architecture of the U-Net network for segmentation of satellite 

images, where the MobileNet network is used as an encoder. The proposed architecture 

is named MobileNet-Unet and is shown in Figure 3.18. 

 

Figure 3.18. MobileNet-Unet architecture 

 

MobileNet, used as an encoder, is a convolution network specifically designed for 

use, for example, on mobile devices with limited computing resources. It was introduced 

by Google researchers in 2017. The main idea of MobileNet is to use "deepwise separable 

convolutions", which allow to perform convolutions with fewer parameters than 

traditional convolutional layers. This allows to reduce the number of calculations and the 

number of parameters of the model, which makes it easier and faster. 
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Figure 3.19. Convolutional blocks: a) deep shared convolution block (DS); b) 

deep convolution block (DW); D – image dimension, Cin, Cout — number of input and 

output channels, stride — convolution step 

 

MobileNet architecture is based on the use of deep shared convolution (DSW - 

depthwise separable convolution), which divides the standard convolution into two parts: 

deep convolution (DW - depthwise convolution) and 1×1 point convolution (pointwise 

convolution). Unlike standard convolution, which simultaneously processes and 

combines input data into a new set of output data in one pass, this method separates these 

operations to improve efficiency. Deep shared convolution is performed in two stages. At 

the first stage, each input channel is processed by a separate filter using deep convolution. 

In the second stage, the output from the deep convolution is combined using a point 

convolution. This allows to split a standard convolution into two layers: one for filtering 

and the other for combining. This approach significantly reduces the computational load 

and the size of the model [124].  

The network architecture includes two types of blocks shown in Figure 3.19. The 

first type implements deep shared convolution (DSW) using batch normalization and 

ReLU activation. The second type is a deep convolution with batch normalization and the 

same activation function. Basically, these blocks use convolution with step 1 (stride = 1), 
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while convolution with step 2 (stride = 2) It is used to reduce the spatial dimension. Two 

main types of convolutional levels are formed from convolutional blocks. The structure 

of the blocks of the first and second types is shown in Figures 3.20 and 3.21. The feature 

of the base block of the first type is the use of a residual connection. According to this 

principle, the result of applying successive DS and DW type convolutions is summed up 

with the result of a separate deep convolution. 

 

 

 

 

 

Figure 3.20. The structure of the base block of the first type of convolutional level. Cin 

and Cout denote the number of input and output channels, and C1 and C2 

represent the number of channels in the deep split convolution and deep convolution, 

respectively 

 

 

 

 

 

Figure 3.21. The structure of the base block of the second type of convolutional 

level. Cin and Cout denote the number of input and output channels, and C1 and C2 

represent the number of channels in the deep split convolution and deep convolution, 

respectively 

 

Each convolutional layer in the network is created by combining these basic blocks. 

In Figure 3.22 the structure of the convolutional network layer is presented, which 

includes a base block of the first type and N base blocks of the second type. 



76 
 
 

 

 

Figure 3.22. Convolutional network layer. Din and Dout denote the dimensions of 

the input and output feature maps, and Cin and Cout represent the input and output 

number of channels. C1 denotes the number of channels in the base block of the first 

type, and C2, ... CN+1 - the number of channels in the corresponding blocks of the second 

type 

 

The initial part of the encoding network begins with a conventional convolutional 

layer using a 3x3 core and a convolution step of 2, followed by the application of batch 

normalization and the maximum pooling operation. This is followed by several 

convolutional layers, where each layer is represented by a sequence of basic blocks of the 

convolutional level, as shown in Figure 3.22. Each subsequent layer increases the number 

of filters and reduces the spatial dimensions of feature maps.  

In this paper, it is proposed to use an encoder consisting of 4 convolutional layers. 

The parameters of these convolutional layers are shown in Table 3.1. The encoder works 

with input images with a dimension of 512x512 and is a modification of the Mobile Net 

network for mobile devices in terms of the number of layers and their parameters. This 

modification allows to work with larger parts of the images, which allows for more 

detailed segmentation of large satellite images. 
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Table 3.1. Parameters of convolutional layers in the encoder 

Layer 

number 

The 

dimension 

of the Din 

input 

The 

dimension 

of the 

output 

Dout 

Number 

of input 

channels 

Cin 

Number 

of Cout 

output 

channels 

Number 

of Type 1 

blocks 

Number 

of Type 2 

blocks 

1 512 128 3 64 - - 

2 128 128 64 256 1 2 

3 128 64 256 512 1 3 

4 64 32 512 1024 1 5 

 

The decoding part of the network consists of several levels, where each level begins 

with increasing the dimension of the input feature map and combining this result with the 

feature map obtained from the previous encoder level. The combined result is then 

subjected to deep convolutions using batch normalization and the Relu activation 

function. Figure 3.23 shows the structure of the decoding layer of the network used in this 

work. 

 

 

 

 

Figure 3.23. The structure of the decoding layer. Din, Dout — dimensions of input 

and output feature maps; Cin, Cout – input and output number of channels 

 

To increase the dimension of the input feature map, a transposition convolution is 

used, which doubles the dimension, but reduces the number of channels by half. These 

changes help to align the dimension and number of channels with the feature map coming 

from the previous layer of the encoder. After combining these maps, a new feature map 

is created, the size of which corresponds to the dimension of the corresponding encoder 
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layer, and the number of channels is equal to the number of input channels. This resulting 

feature map is processed using two deep convolution blocks. The output of the decoding 

layer is a feature map that is transmitted to the next decoding layer. In the last decoding 

layer, the input data is the feature map of the penultimate decoder layer and the original 

image. This layer includes an additional deep convolution, the number of channels in 

which corresponds to the number of classes that need to be recognized in the image. The 

sigmoid function is used for activation. The output of this layer is a "heat map" that 

visualizes a segmented image. 

The use of deep convolutions in the encoding and decoding parts of the proposed 

network significantly reduces the number of parameters configured during network 

training and then used during its operation, which reduces the requirements for computing 

resources and increases its performance.  

The procedure for training the proposed network and the results of its use are 

described in the chapter 4.   

3.6. Methodology for determining agricultural land 

 Land use maps or land cover maps are the main tool for managing information 

about the earth's surface and the interaction between different types of land cover. In 

Uzbekistan, until the 1990s, most of the information on land use came from the National 

Cartographic and Geodetic Program. Land-use maps are used not only for land 

management, but are also important for environmental purposes such as land use, land-

use change and forestry, in climate change policy and biodiversity research.  

The main purpose of this study is to test the possibility of using satellite sensor data to 

accurately and accurately map the main types of irrigated crops using deep learning 

algorithms. To achieve this goal, it is necessary: 

 Map and compare the performance of deep learning algorithms such as Unet 

and VG19 for major irrigated arable lands by crop type with Google Earth 

and Sentinel data of medium and high resolution;  
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 test various combinations of vegetation indices, such as DV, AVI and AVI, 

as input data to obtain a classification of crop types;  

 compare the areas of all received agricultural land use maps with the OSS 

data of the State Statistics Committee of the Republic of Uzbekistan. 

This study focuses on some cities and the Tashkent region in the Central Asian 

country of Uzbekistan. Agricultural land accounts for about 62 percent of the total area 

of the country, most of which is pasture. Cultivated lands occupy only 10 percent of the 

total area of the country, which is about 425 square kilometers [112]. The region borders 

Kazakhstan in the north and northwest, Kyrgyzstan in the northeast, Namangan region in 

the east, Tajikistan in the south and Syrdarya region in the southwest. Given that arable 

land is mainly distributed in the low-lying areas of this region, the analysis was limited 

to these areas (Figure 3.24). 

 

Figure 3.24. Geographical location of the research region 

 

The climate is characterized by a typical continental regime, with cool and humid 

winters, as well as hot, dry and long summers; average temperatures range from -1°C to 

-2°C in January and reach 26.8°C in July. The total rainfall during the year is 

approximately 300 mm in the plains, 300 to 400 mm in the foothills and 500 to 600 mm 

in mountainous areas. The main precipitation comes in early spring, and in alpine areas it 

falls in the form of snow. The Syrdarya River and its tributaries, Chirchik and 

Akhangaran, are mainly fed by melting snow and glaciers, and are used for irrigation and 

hydroelectric power generation. Approximately 40 percent of irrigated land in Uzbekistan 

is used for wheat cultivation, 36 percent is occupied by cotton crops, and the remaining 
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24 percent is allocated to other crops such as fruits, vegetables, cattle breeding and various 

types of cereals. In the Tashkent region, the share of acreage under cotton and wheat is 

more than 61 percent of the total in 2018.  

The S2 and L8 data (Sentinel 2 and Landsat 8) covering the relevant study region 

are multispectral images necessary for calculating vegetation indices. (Algorithms for 

calculating vegetation indices are described in Section 2.3.) This data was downloaded 

from the Google Earth Engine website for several dates of the vegetation growth period 

from May to October 2018. In addition, only images without clouds are available during 

this period. The specification of spectral bands for the two sensor systems used in the 

analysis can be seen in Figure 3.25 [114]. 

 

Figure 3.25. Spectral band specifications for S2 and L8 

 

After uploading the S2 image, SWIR 1 and SWIR 2 channels were resampled to a 

resolution of 10 m. The L8 and S2 data were then adjusted to take into account the 

atmosphere from upper atmosphere reflectivity (TOA) to surface reflectivity. This was 

done using the Sen2Core package Sentinel Hub. Then all the S2 and L8 tiles are combined 

for each month separately and displayed in the study area. The data transformed in this 

way is used to calculate the NDVI, SAVI, NDVI and SAVI indices. As a result, the 

monthly time profiles NDVI, SAVI, NDVI and EVI were obtained, which are the initial 

data for the ML classifiers. 
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3.7. Neural network for classifying crops  

Convolutional neural networks (CNNs) are widely used to identify crops, as they 

effectively cope with the classification of images of various types. In this context, several 

CNN variants can be distinguished and their characteristics can be considered when 

applied to the classification of agricultural crops [115]: 

1. LeNet-5: 

 This is one of the first convolutional neural networks developed by Jan 

LeCun. 

 Consists of several layers of convolution and pudding, as well as fully 

connected layers at the end. 

 Usually used for classification tasks with a small number of classes. 

2. AlexNet: 

 Developed in 2012 and has become a pioneer in the field of deep learning 

and CNN. 

 Contains several layers of convolution and pooling, as well as normalization 

and dropout layers to prevent overfitting. 

 Widely used for image classification, including agricultural crops. 

3. VGG (Visual Geometry Group) Net: 

 Has a very deep architecture using small 3x3 bundles. 

 Simple and efficient architecture, easily adaptable to various classification 

tasks. 

 Used to classify images in various fields, including agriculture. 

4. ResNet (Residual Neural Network): 

 Introduces the concept of "residual blocks", which allows to train deep 

neural networks without the problem of gradient attenuation. 

 Shows high efficiency in image classification and can be successfully 

applied to agricultural data. 

5. Inception (GoogLeNet): 
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 Has a modular design using parallel bundles of different sizes. 

 Allows efficient use of resources and improves the quality of classification. 

 Used to classify images of agricultural land and crops. 

In this project, the VGG neural network was used to classify agricultural products. 

VGG (Visual Geometry Group) Net is a convolutional neural network developed 

by researchers from the Visual Geometry Group at the University of Oxford. This neural 

network has been widely recognized for its simplicity and high performance in image 

classification tasks. The VG 19 model (also known as G Net-19) has the same basic idea 

as the VG 16 model, except that it supports 19 layers. The numbers "16" and "19" refer 

to the weight layers of the model (convolutional layers). Compared to VG 16, VG 19 

contains three additional convolutional layers. When building a VGG network, very small 

convolutional filters are used. Thirteen convolutional layers and three fully connected 

layers make up VGG. 

 

Figure 3.26. VGG-Net architecture 

 

Consider the VGG architecture: 

 Input data: VGGNet accepts 224x224 pixel images as input. To maintain a constant 

size of ImageNet input data. 
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 Convolutional layers: Convolutional layers in VGGNet are represented by 

sequentially arranged convolutional operations using 3x3 filters and the ReLU 

activation function. Every two convolutional layers are followed by MaxPooling 

layers. 

 Fully connected layers: A series of convolutional and puddling layers are followed 

by fully connected layers for classification. At the end of a neural network there is 

usually a fully connected layer with a softmax activation function to predict the 

probabilities of belonging to different classes. 

The VGGNet architecture is easy to understand and implement, which makes it 

easier to use and modify. In general, the VGG neural network differs from other neural 

networks in its deep architecture, the use of small convolutional filters, a simple and 

uniform structure, as well as high performance on various image classification tasks.  

In this paper, a modification of the architecture of the VGG network used is 

proposed to reduce computational costs. The modification consists in replacing 

conventional convolutions with deep convolutions in all convolutional layers of the 

network.  This modification allows to significantly reduce the number of parameters 

configured during network training and then used during its operation, which reduces the 

requirements for the computing resources used and increases its performance.   

In this project, to train such a modified network, a dataset was used in which 160 

images with a size of 224x224 pixels corresponded to each class of crops.  The procedure 

for training the proposed network and the results of its use are described in the chapter 4. 

3.8. Methodology for detecting active urban territory 

The discovery of an active urban area is the process of identifying and analyzing 

areas of the urban environment that are actively used by people or are subject to 

significant changes in different periods of time. This includes traffic, commercial activity, 

pedestrian traffic, etc. This process can be performed as follows:  

1. Data preparation:  
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 Creating a collection of images containing various urban environments: 

about 13,000 images were used in the project. 

 Markup of images according to the recognized classes of objects. This is 

usually done manually by tracing the boundaries of the objects. The project 

uses already marked-up images. The total number of object classes is 21 

classes. 

2. Choosing the model architecture for image segmentation. The project proposes to 

use an architecture based on U-Net and MobileNet networks. 

3. Preparation of the training data set: 

 Separation of images and their labels into sets of training and test data: 

images are divided into fragments and distributed into folders Train, Test 

and Validation. 

 Images and their characteristics are converted into a format suitable for 

training the model, for example, the format accepted by the neural network. 

4. Model Training: 

 The selected model must be trained on a set of training data. During training, 

the model adjusts its parameters to accurately predict the types of fields in 

the images. 

 Selectable loss function and parameter search optimization method are 

usually used to train the model. The project uses cross-entropy as a loss 

function, and the Adam optimization algorithm is used for optimization. 

5. Evaluation of the model: 

 Calculation of achieved segmentation quality parameters and visualization 

of segmentation results, as well as evaluation of model performance. 

6. Application of the model: 

 Application of a trained model for segmentation of new images of the urban 

environment. 

 Using the segmentation results for further analysis, for example, for mapping 

urban areas, analyzing urban infrastructure planning, etc. 
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Semantic segmentation using neural networks is widely used in the detection of 

active urban areas, since it allows to accurately identify various classes of objects in the 

image, including active and inactive cities. Therefore, in this project, the segmentation 

process was implemented based on the neural network architecture. The results obtained 

using the neural network are presented in chapter 4. 

3.9. Evaluating the quality of results 

Quality assessment is the process of evaluating the results of applying a model or 

algorithm by comparing its output results with true values (the gold standard). This is an 

important stage in the development and evaluation of any machine learning model or 

algorithm, as it allows to understand how well the model is able to make predictions and 

how it generalizes to new data.  

Key metrics used to assess the quality of machine learning models [116]: 

1. Accuracy measures the proportion of correct model predictions relative to the total 

number of predictions. Formally, this is the number of correct predictions divided 

by the total number of predictions: 

FNFPTNTP

TNTP
Accuracy





  (3.1) 

where TP (True Positive) - is the number of true positive predictions, TN (True 

Negative) - is the number of true negative predictions, FP (False Positive) - is the 

number of false positive predictions and FN (False Negative) - is the number of 

false negative predictions. 

2. Accuracy of classification (Precision):  

This is a metric used in classification tasks that measures the proportion of correct 

model predictions relative to the total number of examples. It's just a fraction of 

correctly classified examples. 

FNTP

TP
precision




 (3.2) 
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3. Completeness (Recall): 

The proportion of correctly recognized objects of the main class among all objects 

of the main class from the sample. Completeness - the probability of correct 

classification when an image belongs to a given class. 

FNTP

TP
recall




 (3.3) 

 

4. Sensitivity – the probability of giving the correct answer for the images of the main 

class. 

TNFP

TP
ysensitivit




 (3.4) 

 

5. Error Matrix: The error Matrix is a table where the rows represent the actual 

classes and the columns represent the predicted classes. This allows to better 

understand what types of errors the model makes: false positive (FP), false negative 

(FN), etc. 

Accurate assessment of the quality of the model is crucial for successful deep learning. 

Several methods are used to assess the quality of the CNN model: 

1. The matrix of confusion. This is a table that allows to visualize the quality of the 

classification model by comparing the actual and predicted classes for a dataset. It 

is the basis for calculating various classification quality metrics. The confusion 

matrix is usually a square matrix where the rows represent the actual classes and 

the columns represent the predicted classes. Consider an example of a confusion 

matrix for binary classification:  
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Table 3.2. Confusion matrices for binary classification problems 

 

where: 

 TN (True Negative): the number of correctly predicted negative examples. 

 FP (False Positive): the number of false positive predictions (negative 

examples, but predicted as positive). 

 FN (False Negative): the number of false negative predictions (positive 

examples, but predicted as negative). 

 TP (True Positive): the number of correctly predicted positive examples. 

The confusion matrix allows to analyze the quality of the model, identify the types of 

errors that it makes, and calculate various quality metrics such as accuracy, completeness, 

F1-measure, etc., based on the values contained in the matrix. 

2. Cross-Validation is a method of evaluating the quality of a machine learning 

model, which allows to more reliably assess the generalizing ability of the model 

on new data. The basic idea of cross-validation is to divide the available data into 

several parts (called "folds" or "folds"), train the model on one part and test it on 

the remaining parts. There are several different approaches to cross-validation, but 

one of the most common is K-fold Cross-Validation, which includes the following 

steps: 

1. Data separation: 

 The original data set is divided into K equal parts (folds). 

2. Training and evaluation iterations: 

 

The actual class 
Negative Positive 

Negative TN FP 

Positive FN TP 
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 For each iteration, one of the funds is used as a test dataset, and the 

remaining K-1 funds are used as a training dataset. 

 The model is trained on a training set and evaluated on a test set. 

3. Averaging metrics: 

 The evaluation results (for example, the values of quality metrics) are 

averaged over all K iterations to obtain an overall estimate of the model's 

performance. 

     Advantages of cross-validation: 

 Allows to better evaluate the generalizing ability of the model, since each 

data sample is used in both training and testing. 

 Reduces the likelihood of overfitting the model on a specific data set. 

 Provides a more stable assessment of the model's performance, since the 

assessment is carried out on several different data partitions. 

4. Evaluation of a test dataset is the process of evaluating the quality of a machine 

learning model on deferred data that the model did not see during training. This 

is an important step in the development of models, as it allows to evaluate the 

ability of the model to generalize to new, previously unknown data. 

Accuracy estimation in the UNet architecture, as in any other neural network 

architecture, can be performed using various metrics, depending on the type of task, data 

set, and model requirements. Typical metrics that can be used to evaluate the accuracy of 

the U-Net model [117]: 

1. Dice Similarity Coefficient): 

 This is a metric that measures the degree of similarity between two areas. In 

the case of image segmentation, the Dice index is used to assess the 

similarity between true and predicted masks. 

 Formula for calculation: 

BA

BA
Dice





2

 (3.5) 
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where A is the true mask, B is the predicted mask, ∣⋅∣ denotes the cardinality 

of the set. 

2. Intersection over Union (Itu): 

 This is another metric for measuring the degree of overlap between the true 

and predicted masks. 

 Formula for calculation: 

BA

BA
IoU





 (3.6) 

3. Accuracy: 

 In the context of image segmentation, accuracy measures the proportion of 

pixels that have been correctly classified. 

 Formally, it is the ratio of the number of correctly classified pixels to the 

total number of pixels in the image. 

4. Average accuracy (Mean Accuracy): 

 This is the average accuracy value for all classes. 

5. Mean Error: 

 This is a metric that measures the average distance between the true and 

predicted masks.  

6. The average distance to the contour (Mean Distance to Boundary): 

 This is a metric that measures the average distance from pixels in the 

predicted mask to the nearest pixel in the true mask. 

7. The Jaccard Index, also known as the intersection coefficient or the Jacquard 

similarity measure, is a metric used to assess the similarity between two datasets. 

In the context of image segmentation, it is used to measure the degree of overlap 

(in area) between the true and predicted masks. The formula for calculating the 

Jaccard Index looks like this and coincides with the calculation of the IoU metric: 

BA

BA
BAJ




),(

 (3.7) 

       where: 
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 A is the set of pixels in the true mask, 

 B is the set of pixels in the predicted mask, 

 ∣⋅∣ denotes the cardinality of the set. 

The Jacquard index is in the range from 0 to 1, where 0 indicates the complete 

absence of intersection between the masks, and 1 indicates their complete coincidence. 

These metrics are commonly used in computer vision tasks to evaluate the 

effectiveness of classification or segmentation models such as CNN. Accurate assessment 

of model quality is crucial for successful deep learning, and various accuracy assessment 

methods should be used to reliably assess model quality. The use of evaluation metrics in 

the loss function (Jacquard index, IoU, etc.) helps to optimize model training in neural 

networks correctly. 
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Conclusion to Chapter 3 

1. It is proposed to receive data for this project from the Sentinel Hub and Google 

Earth platforms. Because two platforms are open for use and allow to upload high-

quality images. The primary correction of the atmosphere can be performed based 

on additional settings on the platforms, if this is not possible, the correction of the 

atmosphere should be performed using a method based on neural networks.  

2. It should be noted that the encoder-decoder architecture is becoming increasingly 

popular in semantic segmentation due to its high flexibility and performance. 

Therefore, this project uses U-Net and MobileNet with encoder-decoder 

architecture in the process of atmospheric correction, segmentation of urban and 

agricultural lands. The standard encoder-decoder architecture was used for 

atmospheric correction, and the basic U-Net architecture was used to track urban 

and agricultural sites, detect objects, and monitor urban changes. To achieve better 

results, this was achieved by modifying the U-Net architecture, that is, the coding 

part of the U-Net architecture was replaced by the coding part of the MobileNet 

architecture. Thus, the result is improved, and all the results are presented in 4 

chapters. 

3. The process of semantic segmentation was implemented to classify and identify 

agricultural products. The classification process is based on a neural network and 

implemented using the VGG 19 architecture. Before training the neural network, 

the images were segmented by index VI. After analyzing the NDVI, SAVI and EVI 

indices, the data obtained were trained using the VGG 19 neural network 

architecture.  

4. For segmentation and classification of areas and objects, it is proposed to use neural 

networks with U-Net, MobileNet and VGG architectures. All these based 

architectures were chosen based on speed, quality of results, simplicity and, most 

importantly, reducing the load on computing resources.  
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CHAPTER 4. IMPLEMENTATION AND EXPERIMENTAL STUDY OF 

TERRITORY MONITORING METHODS BASED ON SATELLITE IMAGES 

Satellite image-based territory monitoring involves the use of satellite images to 

monitor the current state of the territory, as well as to track changes in a specific 

geographical location over time. In this project, the possibilities of monitoring rural and 

urban areas based on segmentation and processing of satellite data are experimentally 

analyzed. The experimental analysis consists of: 

1. Neural networks were used for atmospheric correction of satellite images. 

2. New methods of monitoring agricultural land and identification of agricultural 

products were used. 

3. The result was obtained based on the integration of neural networks into urban 

monitoring and object detection. 

This chapter presents the results of the above methods. 

4.1. Territory monitoring tool 

4.1.1. Atmospheric correction based on a neural network 

The most suitable network architecture for such conversion is the encoder–decoder 

architecture.  The structure of the proposed neural network is shown in Chapter 3 (Figure 

3.15). The encoder has only three encoding levels. In fact, the encoder is an ordinary 

convolutional network trained to classify the input image. The decoder has the same 

number of layers and performs the function of interpolating the encoder output. The 

decoding layer (Figure 3.15) is a reverse convolution followed by batch normalization. 

A dataset for training and testing a neural network is formed on the basis of 

available satellite images of L1C and L2A levels for several regions of the earth's surface 

obtained at different times of the year. In this case, data from spectral channels B04 (R), 

B03 (G), B02 (B) of the visible range and data from channel B08 (NIR) of the near 
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infrared ranges are used. The data from these channels is preprocessed and converted into 

four-channel images. The structure of the preprocessing algorithm is described in Chapter 

3 (Figure 3.16). First, the channel images are reduced to the same dimension, then they 

are divided into 64 parts, normalized in brightness and form 64 four-channel images. The 

set of images obtained in this way is randomly divided into training, validation and test 

samples containing 80%, 10% and 10% of the dataset volume, respectively.   

When forming the dataset, 355 L1C level images and the same number of 

corresponding L2A level images were used, each with a dimension of about 2048x2048 

pixels. Thus, the network was trained and tested on a set of 22,720 four-channel images 

of the L1C level with a dimension of 128x128 pixels, and the corresponding images of 

the L2A level were the target ones. The set of original multispectral images is downloaded 

from Sentinel Hub and contains data for several regions of Uzbekistan for 3 years.  

When training the network, the RMS error MSE was used as a loss function. This 

standard error is an estimate of the accuracy of atmospheric correction.  The Adam 

optimization algorithm was used to search for network parameters. 

The results of network training on the used dataset are shown in Figure 4.1. At the 

same time, it was possible to achieve a correction accuracy of about 99.5%. In Figure 4.2 

an example of visualization of correction results using a neural network is shown. 

 

Figure 4.1. Dependence of losses (mean square error) on the training epoch 
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                                    a)                                         b) 

 

 

 

 

 

 

 

 

 

Figure 4.2. Images of levels 1C and 2A: (a) Image without atmospheric correction 

— level L1C (b) Atmospheric correction using a neural network 

 

During atmospheric correction, in addition to a three-channel RGB image 

reflecting the corrected visible part of the spectrum, a single-channel NIR image 

representing the corrected near-infrared range of the spectrum is also formed. These 

images are necessary, among other things, for calculating vegetation indices.   

During the research, satellite images were also processed not only from Sentinel, 

but also from other satellites. The results showed acceptable correction accuracy for these 

"third-party" neural network images.   

4.2. Neural networks for semantic segmentation of satellite images 

Semantic segmentation of satellite images using neural networks involves 

assigning each pixel of an image a label indicating the class of objects to which it belongs. 

This includes mapping vegetation cover, monitoring urban changes, and crop analysis.  

In this paper, the proposed MobileNet-Unet network architecture, described in 

section 3.5, was studied for semantic segmentation. The results of its work were compared 

with the results of the network with the Unet architecture, which is usually used in 
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semantic segmentation tasks. In order for such a comparison to be adequate, the training 

of both networks was carried out on the same dataset.  

4.2.1. Dataset and preprocessing 

To train the networks, a pre-prepared LandCover dataset [118] was used, 

supplemented with images related to the regions of Central Asia. However, these 

additional images were without atmospheric correction. Therefore, atmospheric 

correction was carried out for them using the network proposed in this work. In total, the 

set contains 1,146 high-resolution satellite images of areas of the Earth's surface. In 

addition to the images themselves, it includes masks that display the type of earth's 

surface for each pixel of the corresponding image. The following types are present in the 

dataset: agricultural land, pastures, barren lands, buildings and structures, woodlands, and 

water bodies. Other surface types that are not included in this list are displayed as an 

unknown type.  

High-resolution satellite images are too large to be processed directly on a neural 

network. Simply zooming out of the original images will result in loss of segmentation 

accuracy. Therefore, the first stage of preprocessing is to separate the images of the 

dataset and their corresponding masks into fragments. When designing the network, the 

dimension of the input images 512x512 pixels was chosen, which allows, on the one hand, 

to reduce the computational costs of training and using the network, and on the other 

hand, will ensure sufficient segmentation accuracy. The resulting fragments of images 

and masks are scaled to the specified dimension. In this work, each original image is 

divided into 16 fragments.  

In Figure 4.3 shows the algorithm for preprocessing images included in the original 

dataset. The dataset consists of RGB satellite images of certain territories and their 

corresponding masks. Each mask is an RGB image with a specified number of colors. At 

the same time, each type of earth's surface is displayed in the mask with its pre-determined 
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color contained in the table of colors used. Thus, the number of colors N in the mask 

corresponds to the number of types of the earth's surface.  

 

  

 

 

 

 

 

Figure 4.3. Dataset image preprocessing algorithm 

 

All images from the original dataset are preprocessed according to the procedure 

described above. As a result, a working data set is formed, consisting of 18336 image 

fragments and their corresponding masks. The resulting working set is randomly divided 

into training, validation and test datasets, which make up 60%, 20% and 20% of the 

volume of the working set.  

4.2.2. Network Training 

As already noted, training and testing were conducted for two neural network 

architectures – the U-Net architecture and the MobileNet-Unet architecture proposed in 

this paper.  The same parameters were used to train both networks.  

A function based on the Dice coefficient was used as a loss function [119]. This 

coefficient is a metric of the similarity of two sets and is calculated as follows: 

𝑑𝑠𝑐 = 2 ∗ (|𝑥 ∩ 𝑦|)/(|𝑥| + |𝑦|) (4.1) 

where x is the predicted pixel class, and y is the true class of the same pixel obtained 

from the corresponding mask channel, | x | and | y | are the number of elements in each 

set, and |xy| is the number of matching elements in the sets. Then the corresponding loss 

function is defined as 
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𝐿𝑜𝑠𝑠_𝑑𝑠𝑐 = 1 − 𝑑𝑠𝑐 (4.2) 

The Adam optimization algorithm is used for iterative updating of network weights 

in the learning process [120]. This algorithm is an extension of stochastic gradient 

descent.  When training the network, the recommended learning rate parameter of 10-5 

was used, and algorithms were also used to automatically reduce the learning rate and 

stop learning early if losses did not decrease over several epochs. The network was trained 

using batch normalization, and a packet size of 4 was experimentally selected. 

Figure 4.4 shows the training schedules of the Unet network and the proposed 

MobileNet-Unet network over a small number of epochs.  During further training on a 

larger number of epochs, the values of loss functions and segmentation quality indicators 

changed slightly. The training results show that the proposed MobileNet-Unet 

architecture has increased the pixel-by-pixel accuracy of segmentation by 4.4%.  

 

 

 

 

A) 

 

 

 

 

 

B) 

 

 

Figure 4.4. Training schedules of the Unet (A) and MobileNet-Unet (B) networks 

depending on the training epochs 

 

An analysis of the architecture of the studied networks showed that about 31.4 

million parameters are configured during the training of the Unet network. At the same 
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time, the training of the proposed MobileNet-Unet network requires the configuration of 

20.6 million parameters. At the same time, in the case of using conventional convolutions 

used in Unet, the amount of memory required for their calculation and storage of results 

significantly exceeds the amount of memory required when using deep convolutions in 

the proposed network. Thus, when using the proposed architecture, the requirements for 

the amount of memory required for training and operation of the neural network are 

significantly reduced and, therefore, simpler graphics accelerators can be used.  

Network training was conducted using Nvidia graphics accelerators with different 

technical characteristics. Since a significantly larger amount of memory is required when 

training the Unet network, an Nvidia Tesla V100 video card with 40 GB of memory was 

used. To train the proposed network, a less powerful Nvidia GeForce RTX 3060 graphics 

card with 4 GB of memory was used. At the same time, the training time for both networks 

turned out to be approximately the same. 

4.2.3. Testing 

The proposed Msunet trained network was tested on a test set of images. The result 

of processing each of the test images is 16 parts of the segmented image. Each of these 

parts is a multi-channel binary image. The number of channels is equal to the number of 

segmented types of the earth's surface. For visualization, these multi-channel images are 

converted into regular RGB images using a table in which each type of surface 

corresponds to a specific color. Then, a full-size image is formed from 16 such images, 

reflecting the result of segmentation. The algorithm for visualizing segmentation results 

is shown in Figure 4.5. An example of segmentation of the satellite image from the test 

set is shown in Figure 4.6. 
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Figure 4.5. Algorithm for visualizing the result of satellite image segmentation 

 

 

 

 

                            

a                                                 b                                               c 

Figure 4.6. An example of segmentation of a satellite image: a) the original image; b) 

the marked mask; c) the result of segmentation. Color designations: yellow – 

agricultural land, blue — urban area, black — undefined area 

 

During testing, the pixel-by-pixel segmentation accuracy is also determined using 

the appropriate marked masks from the test set. This accuracy on the test set was about 

89%, which corresponds to the accuracy on the validation set used in network training. 

Here, the figure should be coordinated with the graphs  

Figure 4.7 shows the results of segmentation of the same satellite image from the 

test set obtained using the proposed MobileNet-Unet network, as well as the U-Net 

network. Comparing these results, it can be seen that the proposed model copes much 

better with the segmentation of areas related to agricultural land.  
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Figure 4.7. Examples of segmentation of satellite images obtained using various neural 

network architectures: a) the original image; b) the marked mask; c) the result of 

segmentation by the MobileNet-Unet network; d) the result of segmentation by the U-

Net network; e) the image not included in the dataset and the result of its segmentation; 

Color designations: yellow – agricultural land, blue — urban area, black — undefined 

area 

4.3. Neural network for crop classification 

After the autocorrection is done, it is necessary to determine the condition of the 

land and agricultural products to control agricultural land. VI indices and a neural network 

were used to analyze agricultural territories and identify agricultural products.  
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In this work, the proposed VI indexes and the VGG network architecture described 

in sections 3.6 and 3.7 were used for semantic segmentation. The results of his work were 

compared with the results of networks with other architectures widely used in semantic 

segmentation tasks. This comparison showed good results for all neural networks, but the 

main requirement when choosing a network was the use of fewer computing resources. 

4.3.1. Dataset and preprocessing 

To train the networks, a pre-trained set of Cropland Mapping cartographic data 

[121] was used, filled with images related to agricultural areas and types of crops. In total, 

the collection contains 800 high-resolution satellite images, the collection is divided into 

5 classes, each of which is represented by 160 images and consists of 4-channel images. 

In addition to the images themselves, it contains masks indicating the type of agricultural 

products for each pixel of the corresponding image. The dataset includes the following 

types: agricultural land, pastures, woodlands, and crop types. Other surface types not 

included in this list are displayed as unknown types. 

Satellite images are usually of high quality and large size. At this stage, the 

segmentation process VI is performed before training neural networks. Therefore, at this 

stage, if possible, should not change the size and quality of the images. This is because 

all image data must be extracted using lossless indexes. After the segmentation process, 

all images are adapted for neural network training, i.e. the images are scaled to 224x224 

pixels, since the selected VGG architecture works with this image size standard. 

The dataset consists of satellite RGB images of specific areas and their 

corresponding masks. Each mask is an RGB image. In addition, each crop type is 

displayed on the mask in predefined shapes. 

All images in the original dataset are preprocessed according to the procedure 

described above. The resulting working set is randomly divided into sets of training, 

verification and test data, which make up 50%, 30% and 20% of the working set.  
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4.3.2. Network Training 

As mentioned above, the control of agricultural land and the determination of the 

type of crops consists of 2 stages. First, a segmentation process was carried out using the 

satellite image index VI. NDVI, SAVI and EVI indexes are used to analyze the quality of 

agricultural land and monitor agricultural areas. Ranges of a number of satellite images 

are used to determine the indices.  

Information about indexes can be found in Section 3.6, and information about 

ranges can be found in Figure 3.25. 

 

Figure 4.8. Visualization of satellite data by range 

 

After the index segmentation process is completed, all satellite data is prepared for 

neural network training. The VGG neural network architecture was used, based on which 

the images were reduced to 224x224 pixels and a database of 160 images for each class 

was created. 

 

Figure 4.9. The process of learning the classification of agricultural products 
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The categorical cross-entropy of the loss function was used to set up a neural 

network before training. Categorical cross-entropy provides a probabilistic interpretation 

[122]. It allows the model to output the probabilities of each class. For two discrete 

random variables and the cross entropy is defined as follows: 


x

xqxpqpH )(log)(),(
  (4.3) 

This definition is not symmetrical. p is assumed to be a “true” distribution partially 

observed, while q is assumed to be an “unnatural” distribution derived from the 

constructed statistical model. 

Adam's optimization algorithm is used to iteratively update the network weights 

during the learning process. This algorithm is an extension of stochastic gradient descent. 

The recommended learning rate parameter 10-3 was used to train the network. The 

network was trained using batch normalization, and the packet size of 16 was chosen 

experimentally. 

Figure 4.10 shows the VGG network training schedule for a small number of 

cycles. In the first experiment, see a graph of 50 epochs. The training results show that 

the accuracy of the VGG architecture was 0.88%. 

 

Figure 4.10. Experimental graph training based on the VGG network consisting of 50 

epochs 

 

If we experimentally retrain data based on the VGG architecture based on 100 

epochs, the result will be as good as expected — 0.98%. The main reason for this result 
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is the small size of the database. But an increase in the amount of training does not always 

give good results, since an increase in the amount of training can lead to retraining. Figure 

4.11 shows the VGG network training schedule for 100 cycles. 

 

Figure 4.11. Experimental training based on the VGG network consisting of 100 

epochs 

 

An analysis of the studied network architecture showed that about 2.52 million 

parameters were adjusted during the training of the VGG network. In addition, when 

using the traditional 16 convolutions used in VG, the amount of memory required to 

calculate them and store the results significantly exceeds the amount of memory required 

when using deep convolutions in the proposed network. Thus, when using the proposed 

architecture, memory requirements for learning and neural network operation are 

significantly reduced, and therefore simpler graphics accelerators can be used.  

 

 

 

 

 

 

 

 

Figure 4.12. The results after learning are presented in a matrix of confusion 
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4.3.3. Testing 

As mentioned above, the process of dividing agricultural land and products into 

segments was carried out in two ways. First, more than 800 datasets were used to obtain 

the VI results. Figure 4.13 shows an RGB image obtained from the Ferghana region. 

 

Figure 4.13. RGB composite image using stretching 

 

In the next step, view the results of the NDVI and SAVI indexes. Information about 

these indices is provided in Section 2.3. It should be noted that DVI is used to determine 

agricultural area, and the SAVI index controls the quality of agricultural land based on 

analysis. Figure 4.14 shows the results of the analysis based on the NDVI index, and 

Figure 4.15 shows the results of the analysis based on the SAVI index. 

 

Figure 4.14. An example of segmentation of satellite images based on the NDVI index 
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Figure 4.15. An example of segmentation of satellite images based on the SWVI index 

 

After analyzing index VI, all data is prepared for training in a neural network. 

Neural network training helps to identify agricultural products. The test also determines 

the accuracy of segmentation using the corresponding labeled masks in the test set. This 

accuracy on the test set was about 88%, which is similar to the accuracy of the test set 

used to train the network.  

Figure 4.16 shows the classification of agricultural products by index. The figure 

was taken from a satellite, the image quality is high, it was taken from an average distance. 

 

Figure 4.16. The result of the classification of agricultural products according to the 

EMBI and NDVI indices for the Tashkent region. The original image was obtained 

from the Sentinel 2 satellite  
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Figure 4.17. The result of the classification of agricultural products according to the 

EMBI and NDVI indices for a part of the Tashkent region. Color designations: yellow – 

wheat, blue — water, green — cotton, purple – rice, red - other crops 

 

In Figure 4.18 shows the result of the classification of agricultural products for the 

entire Tashkent region, made up of processed images of its parts. 

 

Figure 4.18. The result of the classification of agricultural products for the entire 

Tashkent region, obtained on the basis of the EVI and NDVI indices  
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Conclusion to Chapter 4 

1. For atmospheric correction, an experimental study of the proposed method based 

on the architecture of the encoder - decoder neural network was carried out. This 

new method avoids the use of interactive correction programs. The accuracy of this 

method was 90.5% compared to the result of the interactive program (Sen2Core), 

which shows its adequacy. The proposed method makes it possible to automate the 

process of atmospheric correction of "raw" satellite images and to abandon the use 

of interactive programs that require user participation. In addition, this method 

makes it possible to carry out atmospheric correction of images obtained from 

different satellites in a single way and unify the correction result.  

2. Two different methods were used to classify agricultural areas and products. 

Firstly, the VI indices were used to determine the condition and productivity of 

agricultural land. Secondly, the data obtained on the basis of the VI indices were 

used to train a neural network with a modified VGG architecture. As a result, it 

was possible to identify the types of agricultural products cultivated in the study 

area. The accuracy of the result was 88%.  This accuracy is acceptable for 

determining the distribution of agricultural product types over relatively large 

areas. 

3. A new method based on neural networks for tracking urban and rural areas, 

detecting objects and tracking changes in cities has been experimentally 

investigated. For this purpose, the U-Net and MobileNet encoder-decoder 

architectures were used. At the first stage, the data was trained using the U-Net 

architecture. The accuracy of the result obtained from the application of the U-Net 

architecture was 89%. To increase accuracy, within the framework of the U-Net 

architecture, its coding part has been replaced by an encoding part based on the 

MobileNet network architecture. The conducted experimental study showed an 

improvement in segmentation accuracy by 4.4%.  
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CONCLUSION 

The presented dissertation is a study devoted to the development of methods and 

tools for processing data obtained from satellites in order to monitor vast territories. 

The main scientific and applied results of this work can be described as follows: 

1. An atmospheric correction method for processing satellite images has been 

developed and implemented. This method allows to obtain satellite images that are 

not affected by the properties of the atmosphere, and also makes it possible to unify 

images obtained from different satellites. At the same time, it is possible, without 

involving existing interactive programs, to carry out automatic atmospheric 

correction of images for which it is missing. 

2. A method based on modification of the architecture of a deep learning neural 

network is proposed and implemented, which allows segmentation and 

identification of objects in territories, including urban and agricultural areas. The 

method makes it possible to increase the accuracy of the results and significantly 

reduce the requirements for computing resources needed to solve such problems. 

3. Methods for assessing the state of agricultural zones and classifying crops using 

algorithms for determining vegetation indices and deep learning methods are 

proposed and implemented. The methods allow us to obtain objective information 

about the distribution and condition of agricultural land, cultivated crops, as well as 

about the distribution of urban land.  

4. An experimental study of all proposed methods implemented in the form of 

appropriate software has been conducted. This study showed an increase in the 

accuracy of satellite image processing results compared to existing methods. This 

implementation has made it possible to reduce the requirements for computing 

resources in both memory and hardware support for computing. 
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