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Introduction

The relevance of the thesis topic

The thesis topic is highly relevant due to its potential applicability for various
industries and engineering applications. For instance, in the field of automotive in-
dustry, where crashworthiness and occupant safety are paramount concerns, study-
ing the plastic behavior of metallic materials under impact loads is essential. The
research’s focus on developing accurate models that consider strain-rate effects and
thermal softening phenomena allows for predicting material response during high-
speed collisions or accidents. Consequently, this aids in designing improved vehicle
structures and safety systems, leading to enhanced passenger protection. In the
aerospace sector, the research topic is crucial for aircraft design, particularly in
emergency landing scenarios and bird strikes. Through the incorporation of strain-
rate effects and thermal softening phenomena in computational models, engineers
can optimize the structural integrity of aircraft components. This optimization con-
tributes to safer and more reliable flight operations, mitigating risks associated with
impact events. Moreover, this work can be used for metal cutting processes. Accu-
rate modeling of material responses during cutting operations allows manufacturers
to optimize machining parameters, tool design, and cutting strategies. By gaining
insights into dynamic plasticity under impact loads, improvements in safety, relia-
bility, and efficiency can be achieved in a range of applications.

The degree of development of the thesis topic

The plastic deformation at high-loading rates is often accompanied by an obvi-
ous adiabatic temperature rise. This process involves strain rate effects and thermal
softening phenomenon. To account for the combined influence of strain rate and tem-
perature, a strain rate-temperature correspondence is proposed. It assumes that the
increased stress caused by higher strain rates can be effectively simulated by lowering
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the temperature. Mathematically, this relationship is expressed through the mul-
tiplicative form σ = f1(εp, ε̇)f2(εp, T ), where f1 represents the function capturing
the strain rate effect, and f2 represents the function accounting for the tempera-
ture effect. Empirical formulations can be found in numerous models [1] [2] [3] [4]
[5]. These models are usually investigated by introducing additional and empir-
ical rate-dependent and temperature-dependent components into classical models
initially developed for quasi-static cases. They give a satisfactory description of dy-
namic plastic behavior for many materials and are widely used to deal with different
engineering problems. However, they are proposed using the direct empirical curve
fitting approach based on the experimental analysis.This is so-called empirical fitting
approach. In addition, the dynamic stress-strain curves of many materials are non-
monotonic. The yield drop phenomenon can be observed in series of experiments
and often neglected in the simulation of stress–strain diagrams. Plastic deformation
in metals occurs mainly by the motion of dislocations. Many micromechanism-
based models [6] [7] are also developed, incorporating physical background of plastic
deformation. This approach requires a detailed understanding of the material’s mi-
crostructure and the interaction between dislocations, and the value of some model’s
parameters can be challenging to determine experimentally. The incubation time
approach proposed by Petrov and Morozov provides a new viewpoint for under-
standing the dynamic response of materials. They indicate that in the limit case
of low-rate loading it transfers into the classical quasi-static models by neglecting
certain insignificant components. This approach requires further development.

Goals and tasks of the thesis

The primary goal of this thesis is to provide a new perspective in understanding
strain rate sensitivity and thermal softening response of metallic materials by de-
veloping the incubation time approach. This approach aims to study the relaxation
model of plasticity, considering the influence of strain rate effects and thermal soften-
ing phenomena, while also accounting for negative hardening behavior of materials
subjected to high-rate loads.

To achieve this overarching goal, several specific tasks have been identified:

1. Develop the RP model. This includes formulating a comprehensive model that
incorporates the incubation time approach and accurately represents the strain
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rate sensitivity and thermal softening effects observed in metallic materials
under impact loads.

2. Investigate the temperature-time correspondence. By analyzing experimental
data and introducing the concept of the relative stress factor, the research aims
to establish the relationship between temperature and incubation time in order
to better understand the dynamic plastic response of metallic materials.

3. Perform a comparative analysis between different existing models. This task
involves evaluating and comparing the proposed RP model with other existing
models used for dynamic plasticity modeling. By assessing their strengths
and weaknesses, insights can be gained to further enhance the accuracy and
effectiveness of the RP model.

4. Develop a computational approach for the RP model within finite element
analysis (FEA) to simulate 3D plasticity problems. This task focuses on imple-
menting a robust computational framework using FEA techniques. The aim is
to enable accurate simulation and prediction of the plastic behavior of metallic
materials under impact loads, incorporating the developed RP model.

Scientific novelty

The plastic response of metals under impact loads is generally modeled by in-
troducing the rate-dependent and temperature-dependent components into hard-
ening models originally developed for quasi-static cases. The multiplicative from
σ = f1(εp, ε̇)f2(εp, T ) is widely accepted. Differing from that, we consider the
strain-rate sensitivity as a manifestation of the time sensitivity of materials and
develop the relaxation model of plasticity (RP model) using the incubation time
approach. The original RP model has a limited ability to describe work-hardening
response over a wide range of strain rates and temperatures. The temperature-
time dependence is also comprehensively examined. Previous studies [8] [9] [10]
have discussed some temperature-time dependences. Nevertheless, they were per-
formed within a limited range of strain and strain rate, and the adiabatic temper-
ature rise appeared under impact loading was not considered. Additionally, the
impact of temperature on the elastic properties of the materials studied was not
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considered, which could influence the incubation time measurement. In contrast
to previous researches, this study establishes a framework of modified RP model
to overcome existing difficulties and examines the temperature-time correspondence
by introducing the relative stress (RS) factor over a wide range of strain, strain
rate and temperature. Experiments demonstrate that the RS factor has a clear
rate-dependent and temperature-dependent behavior pattern, which must be fol-
lowed by the temperature-time correspondence. However, the multiplicative model
in the form σ = f1 (εp, ε̇) f2 (εp, T ) leads to a temperature-independent behavior
of the RS factor. In addition, a possible explanation for the existence of different
proposed phenomenological temperature-time correspondences are discussed. The
relation between this model and the yield surface equation within the incubation
time framework is explored. As a result, using the incubation time approach, we can
describe the non-monotonic/softening stress-strain diagram, i.e. the negative hard-
ening, due to thermal softening induced by the adiabatic plastic deformation under
high-rate loading conditions. The main differences between the artificial neural net-
works (ANN model) and constitutive models are discussed. At last, a computational
approach for RP model used in FEA is proposed firstly.

Research methods

The RP model is developed through incubation time approach. The temperature-
time correspondence is examined by introducing the relative stress factor and an-
alyzing existing experimental data at different strain rates and temperatures. The
computational scheme is implemented using the finite element method. To solve
dynamic plasticity problems associated with the RP model, several numerical tech-
niques are employed. Firstly, we use the explicit method for time integration to
efficiently handle the transient nature of these problems. Additionally, the return
mapping algorithm is incorporated to ensure accurate computation of the plastic
strains. Moreover, we adopt a safe version of the Newton-Raphson method to achieve
robust convergence during the iterative solution process. By combining the incuba-
tion time approach, analysis of experimental data, and implementation of various
numerical techniques, our developed computational scheme provides a comprehen-
sive framework for studying dynamic plasticity problems within the context of the
RP model.
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Theoretical and practical significance

This work has significant theoretical importance as it contributes to the develop-
ment of the relaxation model of plasticity, the establishment of temperature-time
correspondence, and the formulation of a computational algorithm for finite element
analysis (FEA). These advancements improve our understanding of dynamic plastic-
ity and enhance the accuracy of simulations. Specifically, the work enriches the field
by expanding the application of the incubation time approach. By incorporating
this approach into the modeling of dynamic plastic response of metallic materials,
the study provides a valuable framework for simulating and predicting their behav-
ior under impact loads. Practically, this thesis has direct relevance to engineering
applications that require the simulation and prediction of material plastic behavior
under impact conditions. Industries such as automotive, aerospace, and structural
engineering can benefit from these results to optimize designs, improve safety mea-
sures, and ensure the integrity of components subjected to high-velocity impacts.

Results submitted for defense

1. Framework of the modified relaxation model of plasticity (RP model). A sim-
plified version and incremental version of the RP model are introduced. The
incubation time approach considers the rate sensitivity as a manifestation of
time sensitivity of materials.

2. Methodology of investigating the temperature-time correspondence. The rela-
tive stress (RS) factor is introduced to analyze the tendency of the temperature-
time relationship over a wide range of strain, strain rate and temperature. The
reliability of the methodology is confirmed by existing experimental data.

3. Result of the study on the descriptive ability of multiplicative models σ =

f1(εp, ε̇)f2(εp, T ). These models are improper to simulate the strain-rate effect
and thermal softening phenomenon over a wide temperature range. They are
derived from the direct empirical fitting approach and results in a temperature-
independent RS factor, which does not follow the behavior pattern of the RS
factor observed by analyzing existing experimental facts.
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4. Results of the comparative analysis of the IRP model with other phenomeno-
logical models and micromechanism-base models. The comparison is per-
formed based on experimental data from various metallic materials including
aluminium alloy 6082-T6, 2519A, HSLA-65 steel, 93W–4.9Ni–2.1Fe tungsten-
based composite, and titanium alloy Ti-6Al-4V.

5. An artificial neural network model and results of its comparative analysis with
other discussed constitutive models. The ANN model uses a data-driven learn-
ing approach, while other constitutive models are proposed by the rule-based
analyzing method.

6. New approaches and results of modeling negative hardening in HSLA-65 steel,
induced by rapid plastic deformation and adiabatic energy dissipation.

7. An original computational scheme for finite element analysis of dynamic plas-
ticity problems using a simplified version of the RP model. For solving three-
dimensional dynamic plasticity problems, a Fortran program based on the de-
veloped finite element scheme has been implemented.

8. Software modules written in Python for calculating stress-strain diagrams of
various materials and determining parameters of different models.

The main scientific achievements obtained during the dissertation research
include the following:

1. Modification of the relaxation model of plasticity. The modified RP model can
be derived from the yield surface equation within the framework of the incuba-
tion time approach, while many other phenomenological models are primarily
derived using a direct empirical approach. This is one of the main differences
between the modified RP model and other phenomenological models.

2. Estimation of the dependence between incubation time and temperature for
HSLA-65 steel and the tungsten-based composite 93W–4.9Ni–2.1Fe, as well as
the titanium alloy Ti–6Al–4V.

3. Comparison of the IRP model with other constitutive models. It is shown that
the commonly used multiplicative form σ = f1(εp, ε̇)f2(εp, T ) is not suitable
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for modeling the strain rate effect and thermal softening over a wide range of
temperatures.

4. Modeling of negative hardening in HSLA-65 steel induced by rapid deformation
and adiabatic energy dissipation.

5. Development of an original computational scheme for finite element analysis of
dynamic plasticity problems using a simplified version of the RP model. Sim-
ulation of split Hopkinson pressure bar experiments using the finite element
method (FEM) was conducted to verify the developed computational scheme.
The simulation results show good agreement with available experimental data.

Verification of results

The main results of the thesis were presented by the author at the following
conferences:

1. International Student Conference “Science and Progress” organized by German-
Russian Interdisciplinary Science Center (Saint Petersburg, 2021).

2. 7th International Conference on Crack Paths (Trondheim, 2021).

3. School-Seminar "Mechanics, Chemistry, and New Materials" (Saint Petersburg,
2022, 2023)

4. 13th Russian Congress on Theoretical and Applied Mechanics (Saint Peters-
burg, 2023)

5. 3rd Sino-Russian Forum «Material science & Technology» (Harbin, 2023)

At the 13th Russian Congress on Theoretical and Applied Mechanics held in 2023,
the author was awarded for the best sectional presentation among young scientists.

Based on the results of the thesis, 6 works were published, the following 3 of which
are indexed by the Web of Science and Scopus databases:

1. Modeling of the thermal softening of metals under impact loads and their tem-
perature–time correspondence / S. Zhao, Yu. V. Petrov, Yuyi Zhang et al. //
International Journal of Engineering Science. — 2024. — Vol. 194. — P.
103969. (Q1)
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2. Zhao S., Petrov Yu.V., Volkov G.A. The modified relaxation plasticity model
and the non-monotonic stress–strain diagram // International Journal of Me-
chanical Sciences. — 2023. — Vol. 240. — P. 107919. (Q1)

3. Zhao S., Petrov Yu. V., Volkov G. A. Modeling the Nonmonotonic Behavior
Flow Curves under Dynamic Loads // Physical Mesomechanics. — 2022. —
Vol. 25, no. 3. — P. 221–226. (Q2)

Based on the developed RP model, a state registration was obtained by the author
for computer program No. 2023684476 titled "Software package for constructing de-
formation diagrams of metals under impact loading, calculated using an incremental
relaxation model of plasticity" [11].
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Literature review

In engineering applications, accurately modeling the plastic behavior of various
materials, such as metals, across a wide range of strain rates and temperatures is
crucial. In finite element analysis, the J2 plasticity model is widely accepted for
a large amount of plasticity problems, with the yield function playing a key role
in describing the performance of the yield surface. The yield function consists of
the yield criterion and the hardening rule, which determine the yield condition and
stress level of the plastic flow for each element in the object under consideration.
While classical isotropic and kinematic hardening models are commonly used in the
yield function, they are inadequate for capturing the dynamic behavior of materials
subjected to high-rate loading and different thermal conditions. To address this
limitation, additional rate-dependent and temperature-dependent components have
been introduced into classical models originally developed for quasi-static cases to
investigate the thermal-mechanical response of materials at high loading rates.

Strain rate effects encompass various phenomena that occur at different strain
rates. Generally, these effects are characterized by an increase in stress levels as
the strain rates rise. In particular, it is widely acknowledged that metals tend to
exhibit higher yield stress under higher strain rates. Additionally, impact loads
can sometimes result in non-monotonic stress-strain behavior, notably leading to
the occurrence of the yield drop phenomenon. Conversely, elevated temperatures
typically induce relaxation or softening of materials, resulting in a decrease in stress
levels. This phenomenon is commonly referred to as the temperature effect.

The Split Hopkinson Pressure Bar (SHPB) technology has emerged as the one
of main experimental methods for evaluating the dynamic properties of engineering
materials subjected to high strain rates [12]. The SHPB test apparatus comprises
essential components, including a gas gun serving as the launching system, a striker
bar, an incident bar, a transmission bar, and a data acquisition system, as illustrated
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in figure 1 [13]. Notably, both the incident and transmission bars have identical
mechanical properties.

During the experiment, a striker bar is fired by an air gun and strikes the end
of the incident bar, generating an elastic pressure pulse that propagates along the
incident bar. At the interface marked as 1○, which connects the incident bar and the
specimen, the elastic stress wave experiences partial reflection and transmission into
the short specimen with a length l. Consequently, plastic deformation occurs within
the specimen. Similarly, at interface 2○ between the specimen and the transmission
bar, the stress wave also undergoes partial reflection and transmission. The choice of
a "short" specimen length is deliberate to ensure uniform stress distribution within
it. As a result, this experimental setup does not deal with a wave front where plastic
deformation takes place due to a uniform stress distribution.

In the SHPB device, the propagation of stress waves is assumed to be one-
dimensional. For a specimen of length l, the strain rate within the specimen can be
expressed as

ε̇s =
dε

dt
=

v1(t)− v2(t)

l
, (1)

where v1(t) and v2(t) are the particle velocity at interfaces 1○ and 2○, respectively.
Using one-dimensional wave theory, relations between the particle velocities and
the strains are v1 = c0 (εI − εR) and v2 = c0εT , where c0 is the longitudinal wave
speed in incident and transmission bars, εI , εR and εT denote strains caused by
incident, reflected and transmission bars, respectively. Consequently, the strain rate
and strain can be defined as

ε̇s =
dεs
dt

=
c0 (εR + εT − εI)

l
,

εs =
c0
l

∫ t

0

(εR + εT − εI) dt.

(2)

Based on the assumption of a uniform stress field within the specimen, stress can
be determined using the equation

σs =
F1 + F2

2As
=

E0A0 (εI + εR + εT )

2As
, (3)

where F1 = A0E0 (εI + εR) and F2 = A0E0εT are forces on the two interfaces, E0

and A0 are the Young’s modulus and cross-sectional area of the incident and trans-
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Figure 1: Schematic of the pulse shaped SHPB test apparatus, given in work [13]

mission bars, and As is the cross-sectional area of the specimen. The assumption of
uniformity also implies the equality expressed as

εI + εR = εT (4)

By substituting this equality into the equations for strain rate and stress, given by
equations (2) and (3), respectively, the following relations are obtained to reveal the
constitutive relation of tested materials

εs(t) =
2c0
l

∫ t

0

εR(t)dt (5)

ε̇s(t) =
2c0
l
εR(t) (6)

σs(t) = E0
A0

As
εT (t) (7)

The present thesis does not encompass any experimental work. The description
of the SHPB is primarily based on works by other professors cited in references [12]
and [13].

Under quasi-static loading conditions, the plastic deformation process is gener-
ally isothermal and has been discussed in many works. Following the dissipation
of energy produced by the irreversible deformation, materials generally strive to
attain a renewed thermal balance with their surrounding media. However, the ma-
terial undergoing high-rate loads is unable to achieve thermal equilibrium with the
ambient environment within the deformation period. Thus, the irreversible defor-
mation at high-loading rates is accompanied by an obvious adiabatic temperature
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rise [14] [15] [16] [17] [18] [19]. The thermal softening refers to the process where the
stress level in materials reduces as the internal temperature increases. It is related
to the stress relaxation, i.e. a reduction in the internal resistance to deformation.
For some metals subjected to rapid loads, the non-monotonic relation between true
stress and true strain may be observed [14], which seems to contradict the Drucker
stability postulates. In fact, it just indicates a negative hardening due to thermal
softening induced by the rapid plastic dissipation. To simulate the thermal soften-
ing phenomenon occurred under impact loads, different types of phenomenological
constitutive models, micromechanism-based constitutive models and artificial neural
network (ANN) models were developed and are further discussed in this work.

To account for the combined influence of strain rate and temperature, a strain
rate-temperature correspondence is proposed. It assumes that the increased stress
caused by higher strain rates can be effectively simulated by lowering the tempera-
ture. Mathematically, this relationship is expressed through the multiplicative form
σ = f1(εp, ε̇)f2(εp, T ), where f1 represents the function capturing the strain rate
effect, and f2 represents the function accounting for the temperature effect. As
for the rate-dependent multiplier, empirical formulations can be found in numer-
ous empirical models [1] [2] [3] [4] [5]. For example, the Johnson-Cook [1] and
Johnson-Holmquist models [20] incorporate the logarithmic rate-dependent compo-
nent 1+C ln(ε̇/ε̇0) to describe the dynamic behavior of plastic and brittle damaged
materials, respectively. The Cowper-Symonds model [3] adds the power-like com-
ponent 1 + (ε̇/B)1/q to the classical hardening model. Peng et al. [21] proposed
a modified Johnson-Cook model that assumes an exponential relationship between
the rate-dependent component and the normalized logarithmic strain rate, given by
exp [C ln (ε̇/ε̇0)]. Shokry suggested using the multiplier 1+ (C1 + C2ε) ln (ε̇/ε̇0) for
predicting the dynamic mechanical response of materials [22]. Zhang et al. [23]
improved the Johnson-Cook model by introducing a sinusoidal strain rate strength-
ening coefficient as 1+

(
C1 + C2 sin

(
ln ε̇−C3

C4
π
))

ln(ε̇/ε̇0). In a study by Zhao et al.
[24] on the dynamic mechanical response of a U75VG rail flash-butt welded joint,
it was found that the aforementioned models did not accurately describe the strain
rate strengthening behavior of the base metal, welding zone, and heat-affected zone
at high strain rates. To address this limitation, an improved constitutive model was
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proposed:

σ = [η1A+B (εp)
n1]

[
1 + η2C

#

(
ε̇p
ε̇0

)n2

ln

(
ε̇p
ε̇0

)]
,

where C# is the strain rate dependent material parameter. The correction coefficient
η1 reflects the relationship between strain hardening and material strength in dif-
ferent regions (i.e., the base metal, welding zone, and heat-affected zone). Likewise,
the correction coefficient η2 accounts for the difference in strain rate strengthening
among these regions. All the models mentioned here provide a satisfactory descrip-
tion of rate-dependent plastic behavior for various materials and are widely used
in addressing different engineering problems. However, it is important to note that
these models are generally developed by assuming empirical rate-dependent and/or
temperature-dependent components into existing conventional bases originally pro-
posed for quasi-static cases.

A negative feature of these empirical models is their single model performance,
which may cause difficulties in explaining many of the fundamental effects that dis-
tinguish the dynamic behavior of materials from the static one. The Johnson-Cook
(JC) model [1] and its modifications [21] [22] [23] [25] are widely used models of that
type. They are based on the assumption that the material behavior is a combina-
tion of strain hardening, strain rate hardening, and thermal softening. These are
multiplicative-type models, and the thermal softening phenomenon is characterised
by the temperature-dependent component f2 = 1−

(
T−Tr

Tm−Tr

)m
, where Tm, Tr and m

are materials constants. The Khan-Huang-Liang (KHL) model, initially proposed
by Khan and Liang [26], aims to depict the interdependence of flow stress on the
strain, strain rate, and temperature. The temperature-dependent term

(
Tm−T
Tm−Tr

)m
is

proposed. Subsequently, Farrokh and Khan [27] enhanced the KHL model by consid-
ering the post-yield mechanical properties of ultra-fine-grained and nanocrystalline
materials. Piao et al. [28] incorporated a rate-dependent thermal softening term
into the Lim-Huh model [29] to account for elevated temperature effects. Omer,
Butcher, and Worswick demonstrated that the generalized Voce model accurately
represented the constitutive behavior of current 7000-series alloys under the tem-
peratures and strain rates experienced during hot forming [30]. These models were
developed through empirical fitting approaches based on experimental observations,
and they have good agreement with experimental data at various strain rates and
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temperatures. Consequently, they are useful for numerical simulations, such as the
finite element method, and can be conveniently determined using commercial or
self-programmed constrained optimization procedures. However, these models have
drawbacks, including a lack of physical basis for the model parameters and the inabil-
ity to describe non-monotonic stress-strain behavior and abnormal work-hardening
response. To empirically address these limitations, additional terms should be in-
troduced into the classical basis, or other empirical functions that depend on the
strain rate and/or temperature should replace the logarithm and/or power function.

Plastic deformation in metals occurs mainly by the motion of dislocations. The
interaction of defects in materials with dislocations may result in obstacles to the
dislocation motion. The flow stresses necessary to surmount these obstacles were
separated into athermal and thermal components. The thermal component may
be derived by different relations in dislocation kinetics for metals with the body-
centered cubic (BCC), the face-centered cubic (FCC) and hexagonal close packed
(HCP) structures. The form of the athermal component may be guided by exper-
imental results. Hence, various versions of the constitutive models were obtained.
According to Orowan’s equation of the plastic strain rate and Kock’s relation on the
energy required for a dislocation to overcome its short-range barrier by its thermal
activation, Nemat-Nasser and Isaacs [6] introduced a constitutive model for BCC
metals with the physical background. Later, similar constitutive models for FCC
metals [31] and HCP models [32] were discussed, and the thermal softening of the
HSLA-65 steel plates at a strain rate of 3000 s−1 was reliably verified by experiments
[14]. Referring to the activation energy expressed as G = G0 −

∫ σth

0 A∗b dσ′
th, Zer-

illi and Armstrong proposed different physical-based models for metals with BCC,
FCC [7] and HCP structure [33]. Voyiadjis and Abed developed microstructure-
based and consistent constitutive relations to describe the flow stress of pure metals
with various crystal structures for both static and dynamic applications [34] [35].
Song, Yeon, and Voyiadjis proposed a constitutive model that incorporates an addi-
tional flow stress component accounting for the hardening caused by dynamic strain
aging in Martensitic Microcomposite Formable Steel alloy [36]. Voyiadjis, Song and
Rusinek examined the dynamic strain aging (DSA) phenomenon and introduced
the Voyiadjis-Abed-Rusinek model to address the stress increase due to the DSA
phenomenon [37]. Inspired by the thermally-activated dislocation motion theory,
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Rusinek and Klepaczko assumed a decomposition of the total flow stress into the
internal stress and the effective stress with a consideration of the the temperature-
dependent evolution of Young’s modulus [38]. The Rusinek-Klepaczko model is
further developed in works [39] [40] etc. Based on the thermally activated depin-
ning of dislocations from grain boundary obstacles, Khan and Liu established an
Arrhenius type rate equation for ultrafine-grained/nanocrystalline FCC polycrys-
tals [41]. Zhang, Lu, Kang et al. developed a thermodynamic model to investigate
the temperature effect on the tensile behavior of the interstitial high entropy alloy,
considering the kinematics of dislocation slip, deformation twinning and martensite
phase transformation [42]. By employing a suitable scale-transition rule from a single
crystal grain to polycrystalline aggregates, Xie, Zhu, Kang et al. introduced a crys-
tal plasticity-based impact dynamic constitutive model [43]. Later, they proposed
a thermal-activation-based dynamic constitutive model for temperature-dependent
deformation of extruded AZ31B magnesium alloy, taking into account both disloca-
tion slipping and twinning as shear movements with fixed planes and directions but
differing thermodynamic features [44]. These are micromechanism-based models.
They have been shown to accurately describe the thermo-mechanical behavior of
different metallic materials under various loading conditions. However, it requires
a detailed understanding of the material’s microstructure and the interaction be-
tween dislocations, and the value of some model’s parameters can be challenging to
determine experimentally.

Artificial neural network (ANN) models have gained significant attention in re-
cent studies, such as those conducted by Jia et al. [40], Ali et al. [45], Olivier
et al. [46], and Xu [47], for simulating the plastic behavior of various materi-
als. Gu, Zhang, and Golub proposed a meshless physics-informed neural networks
method to solve thin-walled structural problems [48]. Li, Mohr, et al. [49] de-
veloped a machine-learning-based plasticity model capable of capturing complex
rate and temperature-dependent hardening with dynamic strain aging. They also
proposed a neural network-based fracture model for predicting fracture initiation.
Jordan, Gorji, and Mohr [50] demonstrated that a single-hidden-layer neural net-
work is sufficient for characterizing the hardening behavior of polypropylene. They
introduced a neural-network-based viscoelastic model combined with a temperature-
dependent spring to account for the immediate elastic response of the material. The
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backpropagation algorithm, incorporating Bayesian regularization, was employed to
identify an appropriate neural network function. In our current work, we have found
that a single-hidden-layer artificial neural network is more suitable for our specific
needs compared to other more complex structures, which are determined by the
inherent characteristics of neural networks. Additionally, we discuss the main dif-
ferences between ANN models and constitutive models, including phenomenological
and physically-based models.

The rate-dependent constitutive response of plastics and metals has been investi-
gated by Cristescu [51] and Lubliner [52], who introduced a quasi-linear differential
equation. They proposed a function that describes the non-instantaneous plastic
response. Another approach to address the non-instantaneous material response is
the integral approach. Cotrell and Bilby’s dislocation theory [53] states that the
time required to release dislocations is proportional to exp

(
U(σ/σ0))

kT

)
, where T rep-

resents the absolute temperature, σ0 is the yield limit at temperature T = 0, K, k
is Boltzmann’s constant, U is the energy of activation, and σ is the applied stress.
By assuming that the plastic process begins when the dislocation density reaches a
certain critical value, Campbell derived a dynamic yield criterion in the form of an
integral equation: ∫ ty

0

(
σ(t)

σ0

)α

dt = C, (8)

Here, ty represents the starting time of the plastic process, α is a constant that may
vary with temperature, and C is a constant with units of time. Campbell’s criterion
is considered convenient and applicable for arbitrary impact loading histories [54].
Moreover, Klepaczko [55], Stolarski [56], and Jankowiak [57] have found it suitable
for use as a dynamic fracture criterion, referred to as the cumulative fracture crite-
rion, by substituting fracture parameters for ty and σ0. Tuler and Butcher proposed
a similar integral fracture criterion [58] based on the concepts of cumulative damage
and overstress. These integral criteria have been shown to effectively describe yield
and fracture conditions at high loading rates. However, it should be noted that they
contradict the quasi-static conditions of plasticity and fracture, where σ(tc) = σc,
with σc representing the static yield stress or static critical strength.

New perspectives on modeling the dynamic response of the materials can be
associated with the structural-temporal approach, which was initially proposed by
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Petrov and Utkin [59] and Petrov and Morozov[60] and Petrov [61] in the field of
fracture dynamics. The approach is based on the notion of the incubation time of the
fracture process and suggests that, in cases of low-rate loading, it can be reduced to
classical models by ignoring insignificant components. Instead of using an empirical
rate-dependent component, the approach introduces an incubation time constant,
denoted by τ , into a time integral. The parameter τ characterizes the time sensitivity
of materials and has a sense of the characteristic period of relaxation processes. The
relaxation nature of the incubation time was mentioned in works [62] [63]. To
account for dynamic rock fracture, Xu et al. [64] used a modified incubation time
criterion with a contribution weight factor containing the incubation characteristic
time and discussed the viscosity analogy of microcrack kinematics. The contribution
weight factor can actually be regarded as the kernel K ′(t) = 1

τ e
− t

τ of an integral
operator

∫ t

0 K
′(t−s)σ (s) ds, while original incubation time criterion uses the kernel

K(t) = 1
τH(τ − t), where H(·) is the Heaviside function, as a linear approximation

of K ′(t) [62]. Petrov and Gruzdkov proposed an integral criterion of plasticity [8],
which was inspired by the structural-temporal approach [59] [60] [61] and Campbell’s
criterion (8) [54]. Applicable to arbitrary loading forms [65] [66], Petrov’s integral
criterion [67] [68] discussed later in section 2.1.1 furnishes a unified depiction of both
quasi-static and dynamic yield conditions using merely a limited parameter set.

An irreversible deformation and corresponding stress-strain relationships can be
described by the relaxation model of plasticity (RP model) first introduced by Petrov
and his group [69] [70] [71]. The RP model considers plastic deformation as a relax-
ation process, where stresses caused by loads are released with time due to the motion
of defects in the crystal lattice. The RP model proposes a dimensionless relaxation
function to describe the relaxation nature of plasticity and is derived from the incu-
bation time concept, without the empirically proposed rate-dependent component.
The RP model has been demonstrated to effectively simulate both the strain-rate
effect and the yield point phenomenon across a broad range of strain rates [70] [71].
However, the RP model has a limited ability to describe work-hardening response
over a wide strain range. The incubation time, reflecting the time sensitivity of ma-
terials, is a characteristic time of the relaxation process of microscopic events. The
softening of materials, as a relaxation event, is significantly affected by temperature.
Higher temperatures can cause more noticeable softening, leading to a decrease in its
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characteristic time. This temperature-time correspondence can be mathematically
summarised through the temperature dependence of the incubation time parame-
ter. Previous studies, such as [9] and [10], have discussed some temperature-time
dependences. However, they were performed within a limited range of strain and
strain rate, and the adiabatic temperature rise appeared under impact loading was
not considered. Additionally, the impact of temperature on the elastic properties of
the materials studied was not considered, which could influence the incubation time
measurement. In contrast to the previous researches, we examines the temperature-
time correspondence by introducing the relative stress (RS) factor over a wide range
of strain, strain rate and temperature. In addition, a possible explanation for the
existence of different proposed phenomenological temperature-time correspondences
are discussed. We also describe the non-monotonic stress-strain diagram, i.e. the
negative hardening, due to thermal softening induced by the adiabatic plastic de-
formation under high-rate loading conditions. Furthermore, the incubation time
approach considers the strain-rate sensitivity as a manifestation of the time sensi-
tivity of materials. The time-dependent yield surface equation in the incubation
time approach is essential for further development of this theory. Therefore, in this
work, we introduce the framework of the modified RP model and explore the role
of the relaxation function γ(t), as well as the relationship between the modified RP
model and the time-dependent yield surface equation.
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Chapter 1

Existing models for dynamic plasticity

In this chapter, some widely used models describing the strain rate effects and
thermal softening phenomenon, including phenomenological, dislocation-mechanics-
based constitutive models and the ANN model, are briefly introduced.

Discussion presented in the chapter is published in paper [72].

1.1 A basic background

The strain rate sensitivity of materials can be effectively examined through SPHB
experiments [73]. In these experiments, the material is subjected to high strain rates
while being maintained in a state of dynamic equilibrium. During deformation, the
material experiences either an isothermal or adiabatic condition. Thus, we will focus
on the elasto-plastic behavior of isotropic metallic materials under monotonic loads
and neglect heat transfer. This behavior is described by Hook’s law (1.1), the plastic
flow rule ε̇p = γ ∂Φ(σ)

∂σ ,∀σ : f(σ,q) ⩽ 0 and the yield surface equation f(σ,q) = 0,
where σ is the Cauchy stress tensor (true stress tensor), C is the fourth-order
tensor of the elastic moduli, εe and εp are the elastic strain tensor and plastic strain
tensor, respectively, γ is a scalar multiplier function, Φ (σ) represents the plastic
flow potential. The internal variables q are generally considered the functions of the
plastic strain tensor εp and a set of hardening parameters. We consider the isotropic
J2 plasticity problem, i.e. the case with an isotropic von-Mises yield surface (1.4),
where σ̄(s) = (32s : s)

1/2 represents the shear stress intensity, s is the stress deviator
tensor. The hardening function σy (ε̄p, ˙̄εp, T ) can be established by pure tension or
compression tests in the one-dimensional statement. The equivalent plastic strain
is determined by ε̄p =

∫ t

0
˙̄εpdt′ and ˙̄εp =

(
2
3 ε̇

p : ε̇p
) 1

2 .
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The hardening behavior of materials generally conforms to Drucker’s stability
postulate (1.5), which implies that the normality (or convexity) rule for the yield
surface holds at different strain rates. Furthermore, these materials also satisfy the
principle of maximum plastic dissipation, indicating the validity of the associated
flow rule (1.2) (Φ(·) = f(·)). However, in certain cases, such as under impact
loads [14], hardening materials may exhibit softening behavior, seemingly contrary
to Drucker’s postulate and the associated flow rule. This specific response, char-
acterized by negative hardening at high strain rates, can be attributed to thermal
softening caused by adiabatic temperature rise (or rapid plastic dissipation). To de-
scribe this thermal softening phenomenon resulting from impact loads, equation (1.3)
provides an explanation. Here, ρ is the mass density, Cν refers to the temperature-
dependent heat capacity and η is the Taylor–Quinney coefficient. Typically, η is
evaluated experimentally by measuring the temperature rise of a specimen during
plastic deformation.

In this work, we consider the isotropic J2 dynamic plasticity problem. This
problem is characterized by a set of constitutive relations represented by equations
(1.1) to (1.4), where the one-dimensional hardening function σy (ε̄p, ˙̄εp, T ) is rate-
dependent and has been developed by different scientific groups. To investigate the
behavior of materials under dynamic loading conditions, several approaches have
been proposed in the literature. In the following sections, we will discuss empirical
models, dislocation-mechanics-based models, and artificial neural network models.
These models can serve as potential options for representing the rate-dependent
hardening function σy (ε̄p, ˙̄εp, T ). By analyzing their strengths and limitations, we
aim to provide insights into the applicability of a new approach in capturing the
complex behavior of materials during plastic deformation.

σ̇ = C : ε̇e,C = KI⊗ I− 2G

(
E− 1

3
I⊗ I

)
(1.1)

ε̇p = γn, n =
s

(s : s)
1
2

=
s

|s|
(1.2)

Ṫ =
η( ˙̄εp)

ρCv
σ : ε̇p (1.3)
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f (σ, ε̄p, ˙̄εp, T ) = σ̄(s)− σy (ε̄p, ˙̄εp, T ) = 0, σ̄(s) =

(
3

2
s : s

) 1
2

(1.4)

∫ t

0

(σ(ε(s))− σ′) : ε̇(s)ds ⩾ 0 (1.5)

1.2 Empirical models

1.2.1 The Johnson-Cook model

The Johnson-Cook (JC) model [1] is one of the most influential phenomenological
constitutive models for simulating the plastic response at different strain rates and
temperatures. The model is given as follows

σ =
(
A+Bεnp

)(
1 + C ln

(
ε̇

ε̇0

))(
1−

(
T − Tr

Tm − Tr

)m)
. (1.6)

In the JC model (1.6), σ is the von Mises stress (σ̄(s)), εp is the equivalent plastic
strain, ε̇ is the strain rate, ε̇0 is the reference strain rate, Tm is the melting temper-
ature and Tr is the reference temperature. A,B, n, C,m are model parameters.

This model is proposed by the direct empirical approach, based on experimental
analysis. It is implemented in a large number of commercial finite element (FE) pack-
ages, and this provides significant convenience for modeling the thermo-mechanical
response of different materials. However, it may not give relatively accurate results
over a wide range of strain rates and temperatures.

1.2.2 The Khan-Huang-Liang model

The Khan-Huang-Liang (KHL) model was proposed by Khan and Liang [26] to
describe the coupled work hardening dependence of flow stress on the strain, strain
rate, and temperature. Later, it was modified to have closer predictions to the
observed response [74]. The widely used KHL model is presented in the equation
(1.7). Here, A, B, n0, n1, c, and m are model parameters; Tr is the reference
temperature; Tm is the melting temperature; D0 is the arbitrarily chosen upper
bound of the strain rate; ε̇0 is the reference strain rate and generally chosen as 1
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s−1.
σ =

{
A+B

[(
1− ln ε̇

lnD0

)]n1

εn0
p

}(
ε̇

ε̇0

)c(
Tm − T

Tm − Tr

)m

(1.7)

1.3 Dislocation-mechanics-based models

Another class of constitutive models refer to the dislocation-mechanics-based
models. One of main factors affecting the plastic deformation is the motion of
dislocations. The interaction of defects in materials with dislocations may result
in obstacles to the dislocation motion. Forest dislocations, point defects, alloy el-
ements, solution atoms, impurities, deposits, etc. can cause short-range obstacles;
grain boundaries, far-field dislocation forests, and other microstructural elements
with far-field influence may generate long-range obstacles. The flow stresses σ nec-
essary to surmount these obstacles are reasonable to be separated into two com-
ponents given in the expression (1.8). The athermal component σath characterizes
the long-range obstacles, which are believed temperature-insensitive. The thermal
component σth mainly reflects the short-range obstacles overcome by the action of
thermal activation.

σ = σath + σth (1.8)

The thermal component σth may be derived by different relations in dislocation ki-
netics, and the form of the athermal component σath may be guided by experimental
results. Hence, various versions of the constitutive models can be obtained.

1.3.1 The Nemat-Nasser’s models

Nemat-Nasser and Isaacs [6] introduced a constitutive model with the physical
background. Assuming the dependence of the athermal stress component on the
dislocation density, they proposed a simple power-law representation shown below
as a first approximation

σath = aεnp , (1.9)

where εp is the equivalent plastic strain. a and n are model parameters. According
to Orowan’s equation of the plastic strain rate and Kock’s relation on the energy re-
quired for a dislocation to overcome its short-range barrier by its thermal activation,
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the thermal part of flow stress σth is given as

σth = σ0

[
1−

(
−kT

G0
ln

ε̇

ε̇0

)1/q
]1/p

H

(
1 +

kT

G0
ln

ε̇

ε̇0

)
, (1.10)

where σ0 is the threshold stress above which the barrier is crossed by a dislocation
without any assistance from thermal activation, and ε̇0 is regarded as a reference
strain rate that characterizes the strain rate sensitivity and the parameter k/G0

represents the temperature sensitivity of the material (k is the Boltzmann constant).
The function H(·) is the Heaviside function. Parameters 0 < p ⩽ 1 and 1 ⩽ q ⩽ 2

define the profile of the short-range obstacles.
For metals with a BCC structure, the Peierls barriers are the main resistance

to the dislocation motion, and the average dislocation spacing l may be denoted a
certain constant. Thus, it is concluded that σ0 = σ0(l) can be a material constant
[6][14]. Consequently, the Nemat-Nasser-Isaacs (NNI) model can be written as

σ = aεnp + σ0

[
1−

(
−kT

G0
ln

ε̇

ε̇0

)1/q
]1/p

H

(
1 +

kT

G0
ln

ε̇

ε̇0

)
. (1.11)

In the NNI model (1.11), parameters a, n, σ0, k/G0, ε̇0, q, and p are required to be
determined.

For metals with a FCC structure, the Peierls barriers restrict the dislocation
motion only at very low temperatures, and the dislocation forests which intersect
the slip planes are the essential barriers for dislocations lying on the slip planes.
Hence, the dislocation-density-dependent average spacing l, as well as the σ0(l),
should be the function of the plastic strain εp and temperature T . Assuming l ∼
(1 + a0(1− (T/Tm)

2)εn0
p )−1, Nemat-Nasser and Li [31] proposed the NNL model as

follows

σ = aεnp + σ0f(εp, T )

[
1−

(
−kT

G0
ln

ε̇f(εp,T )
ε̇0

)1/q]1/p
H
(
1 + kT

G0
ln

ε̇f(εp,T )
ε̇0

)
,

f(εp, T ) = 1 + a0

[
1−

(
T
Tm

)2]
εn0
p .

(1.12)

In the NNL model (1.12), the parameters a, n, σ0, k/G0, ε̇0, q, p, a0, Tm, and n0 are
required to be established. Tm is the melting temperature. For OFHC Cu, the
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parameter n0 is taken as 1
2 .

The NNL model was also implemented to Ti-6Al-4V with HCP structure, consid-
ering n0 = 1 [32].

1.3.2 The Zerilli-Armstrong models

Referring to the activation energy expressed as G = G0 −
∫ σth

0 A∗b dσ′
th, Zerilli

and Armstrong proposed different physical-based models for metals with BCC, FCC
[7] and HCP structure [33].

For BCC metals, where the Peierls stress is responsible for the thermal activation,
the area of activation A∗ is considered essentially independent of plastic strain εp.
Consequently, the thermal component σth can be written without regard for the
strain as follows

σth = B exp (−β0T + β1T ln ε̇) . (1.13)

The final constitutive model can be presented in the form (1.14). The first term is
the athermal component; the second term arises from a thermal activation analysis
of the Peierls stress interactions; the third term exhibits a continual work hardening
without saturation of flow stress at a large strain [75].

σ = σa +B exp (−β0T + β1T ln ε̇) +B0ε
n0
p (1.14)

For FCC metals, where the intersection of dislocations is the main mechanism for
the thermal activation behavior, the area of activation is believed to be dependent
of plastic strain εp. The thermal component differs from that in (1.13) and has an
additional multiplier ε1/2p . Then, the FCC model takes the form (1.15).

σ = σa +Bε1/2p exp (−β0T + β1T ln ε̇) (1.15)

For HCP metals, the final constitutive model is supposed to be

σ = σa +B exp (−β0T + β1T ln ε̇) +B0ε
1/2
p exp (−α0T + α1T ln ε̇) . (1.16)

In the above Zerilli-Armstrong models, the parameters σa, B,B0, β0, β1, α0, α1, n0

may need to be determined, depending on the structure type of considered metals.
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1.4 Artificial Neural Network model

Artificial neural network (ANN) algorithms were mainly examined as solutions
to approximation problems. The task of learning a mapping between an input and
an output space can be viewed as the problem of creating an associative "memory"
that finds the correct output when given the input and generalizes its output when
presented with new inputs [76]. The classical approximation approach assumes a
linear dependence of a suitable basis of functions Φi(x) of its vector argument x as
follows, where w represents the weight coefficient vector with components wi and
repeated index i follows the Einstein summation convention.

F (w,x) = wiΦi(x). (1.17)

Spline interpolation and many approximation approaches, such as expansions in a
series of orthogonal polynomials, belong to representation (1.17). Neural Network
approach suggests a composition of functions, such as the active function f(·) and
regression relations, to approximate needed functions, as shown in expression (1.18).
This approach implies a multilayer network of units that sum their inputs with
weight coefficients w1, ..., wn, v1, ..., vi, u1, ..., uj.

F (W,x) =
∑
n

wnf

(∑
i

vif

(
. . . f

(∑
j

ujxj

)
. . .

))
(1.18)

Machine learning algorithms, as an approximation (or hypersurface reconstruc-
tion) approach, are able to approximate constitutive models as functions of argu-
ments εp, ε̇, and T , i.e. σ = F (εp, ε̇, T ). In this paper, we consider an ANN model
with a sigmoid active function (1.20) and a linear regression relation (1.21) with a
weight matrix W and a bias vector b. The sigmoid function is monotonic and varies
within the range (0, 1). A normalization (or non-dimentionlisation) of arguments
(or inputs) are performed by expression (1.22), where [·]min and [·]max are the lower
and upper boundaries of the corresponding field. For an ANN model with N hid-
den layers, the function σ = F (x) is approximated by relation (1.19). Technically,
W(k) and b(k) are the weight matrix and bias vector of the k-th hidden layer. The
component wij

(k) of weight matrix W(k) represents the associated weight parameter
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between the ith neuron of hidden layer k and the jth neuron of the hidden layer
(k − 1). The dimension n × m of W(k) corresponds to m neurons of the hidden
layer (k− 1) and n neurons of hidden layer k. The hyper-parameters required to be
predetermined are often referred to the total number of hidden layers, the number
of neurons per hidden layer, and the activation function [77]. Values of "build-
in" parameters including weight coefficients wij

(k), components bi(k) of bias vectors,
components w0i of the weight vector w0, and scalar parameter b0 are determined by
"learning" a given dataset, i.e. fitting the model to the dataset via an optimization
algorithm. Gradient descent (GD) is a conventional optimization algorithm utilised
in machine learning [78]. It operates by moving against the gradient at a predeter-
mined rate controlled by the learning rate α to identify the extreme value point or
the optimal parameter. However, traditional gradient descent very easily falls into
the local optimal solution in the process of finding the extreme value, therefore, to
increase the possibility of finding the global optimal solution, we choose stochastic
gradient descent (SGD) [79] as the optimizer for neural network training. It follows
the same way as GD in updating the model parameters, except that it adds ran-
domness to the descent process, thus increasing the probability of finding the global
optimal solution. The neural network architecture and the model inference1 process
with one hidden layer (N = 1) and n neurons are shown in figure 1.1.

y(1) = W(1) x+ b(1),

y(k) = W(k) f
(
y(k−1)

)
+ b(k), k = 2...N

σ = w0 · f
(
y(N)

)
+ b0

(1.19)

In this thesis, we discuss an ANN model using a sigmoid active function (1.20)
and a linear regression relation (1.21) with a weight matrix W and a bias vector b.

f(x) =
1

1 + e−x
(1.20)

y = Wx+ b (1.21)
1The process of inputting unknown data into the model and outputting results through the calculation of the

model is called model inference in the field of artificial intelligence.
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Figure 1.1: The architecture of the Neural Network model with 3-n-1 structure. Left: the global
architecture of the model. Right: details of jth neuron and output layer. Three features (x1, x2, x3)
are contained in the input layer. The only hidden layer consists of n neurons, each of which in-
cludes the weight parameter vector

(
wj1

(1), wj2
(1), wj3

(1)
)
, the bias parameter bj(1) and the sigmoid

activation function f(·). The entire hidden layer then carries a weight matrix W(1) with n × 3
components wji

(1) and bias vector b(1) with n components bj(1). Finally, the original 3 features are
mapped to n implicit features yj(1), which are transformed by hidden layer into a one-dimensional
output σ using the weight parameter vector w0 and the bias parameter b0.

x1 =
εp − [εp]min

[εp]max − [ε̇p]min

x2 =
ε̇− [ε̇]min

[ε̇]max − [ε̇]min

x3 =
T − [T ]min

[T ]max − [T ]min

(1.22)
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Chapter 2

Relaxation model of plasticity and
temperature-time correspondence

The study of dynamic yield phenomena has been the subject of numerous works
[73] [80] [81] [82] [83]. Campbell derived a dynamic yield criterion in integral form
(8), based on Cotrell’s and Bilby’s dislocation theory [53]. However, this criterion
contradicts the quasi-static yield and fracture criteria σ(tc) = σc, where σc repre-
sents either the static yield stress or the static critical strength. In light of this
contradiction, Petrov and Gruzdkov proposed an integral yield criterion that incor-
porates an incubation time parameter τ and aligns with both static and dynamic
experimental results [8]. Based on incubation time approach, Petrov’s group pro-
posed a relaxation model of plasticity and the temperature-time correspondence,
which are discussed and developed in this work.

Results presented in the chapter are published in papers [72] [84] [85]

2.1 Development of the relaxation model of plasticity

2.1.1 Incubation time criterion of dynamic plasticity

The integral yield criterion proposed by Petrov and his group is expressed as
follows:

I(t) =
1

τ

∫ t

t−τ

(
σ(s)

σy

)α

ds ⩽ 1, (2.1)

where τ denotes the incubation time (or characteristic time), σy is the static yield
stress, α is a dimensionless parameter (typically α ⩾ 1). The incubation time τ

characterizes the temporal or strain rate sensitivity of materials, while α reflects the
material’s sensitivity to the intensity level (amplitude) of local stress. Criterion (2.1)
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closely approximates the static yield condition σ(t) ⩽ σy when the loading duration
significantly exceeds the incubation time τ . In cases of impact loading, where the
loading duration is comparable to or less than the incubation time, criterion (2.1)
bears similarity to Campbell’s criterion (8). This advantageous feature of criterion
(2.1) permits a unified description of both quasi-static and dynamic yield conditions,
rendering it suitable for investigating the strain-rate effect observed in numerous
experiments.

According to inequality (2.1), the plastic process initiates only when I(ty) = 1

occurs. For constant strain rate loading (i.e., σ(t) = Eε̇tH(t) where H(t) denotes
the Heaviside function), the relationship between the rate-dependent yield stress
σdy = σ(ty) and the strain rate ε̇ can be determined by equation (2.2) derived from
(2.1) (see appendix A).

σ1+α
dy − (σdy − Eε̇τ)1+αH (σdy − Eε̇τ) = (1 + α)(Eε̇τ)σα

y , (2.2)

or by the following equivalent equations (2.3) σ1+α
dy − (σdy − Eε̇τ)1+α = (1 + α)(Eε̇τ)σα

y , ε̇ ⩽ σy(1+α)
1
α

Eτ ;

σdy =
(
(1 + α)(Eε̇τ)σα

y

) 1
1+α , ε̇ >

σy(1+α)
1
α

Eτ .
(2.3)

For "rapid" loading, defined as ε̇ > σy(1+α)
1
α

Eτ , the yield stress has a simple and clear
dependence on the strain rate as shown in equation (2.3). In contrast, for relatively
"slow" loading where ε̇ ⩽ σy(1+α)

1
α

Eτ , the relationship is slightly more complex and
can be solved using various numerical iteration methods.

Criterion (2.1) boasts several advantages: it is applicable to arbitrary loading
forms, it provides a unified description of both quasi-static and dynamic yield con-
ditions, and it determines the yield condition based on only a limited set of material
constants (τ, α, σy). Moreover, it enables further investigations into the strain-rate
effect, yield drop phenomenon, and work-hardening response, as detailed below.

2.1.2 Original relaxation model of plasticity

The relaxation model of plasticity (RP model), originally introduced by Petrov
and his group [69] [71] [86] [70], allows for the prediction of the unstable behavior in
the stress-strain relationship. In the original RP model, a dimensionless relaxation
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function γ(t) is introduced, satisfying the identity (2.4) during the plastic stage
(t ⩾ ty)

1

τ

∫ t

t−τ

(
γ(t)Σ(s)

σy

)α

ds ≡ 1, (2.4)

where Σ(t) = Eε(t)H(t) represents the elastic predictor of true stress. Conse-
quently, γ(t) varies within the interval (0, 1] and is uniquely determined by the
condition (2.5) derived from equation (2.4), with I(t) = 1

τ

∫ t

t−τ (Σ(s)/σy)
α ds.

γ(t) =

{
1, I(t) < 1

I(t)−1/α, I(t) ⩾ 1
(2.5)

In equation (2.5), the equality γ(t) = 1 corresponds to the accumulation of elastic
deformation, while the gradual decrease in the relaxation function within the range
0 < γ(t) < 1 signifies the material’s transition into the plastic deformation stage.
The stress-strain relationship is established by expression (2.6), where β represents
the hardening parameter (0 ⩽ β < 1) and the case β = 0 corresponds to perfect
plasticity.

σ(t) = Σ(t)γ(t)1−β = Eγ(t)1−βε(t). (2.6)

In the original RP model (2.4)-(2.6), all three parameters τ, α, β are assumed to
remain invariant throughout the loading history, relying solely on structural trans-
formations within the material. Consequently, a limited set of parameters (τ, α, β)

can be used to simulate various stress-strain curves across a wide range of strain
rates [87].

The original RP model (2.4)-(2.6) has been successfully employed to simulate
strain-rate effects and yield drop phenomena within a broad range of strain rates [71]
[86] [70]. However, the hardening parameter β assumed as a power of the relaxation
function γ(t) could limit the model’s ability to describe work-hardening effects, and
this is discussed in more detail in section 2.1.3. While the original RP model reliably
characterizes and predicts the stress-strain behavior of certain materials within the
strain range near the yield point (at the early stage of plasticity), it overlooks the
influence of developed plastic deformation on subsequent plastic performance. These
aspects may account for some deviations observed between model descriptions and
experimental stress-strain curves during the hardening stage of plastic flow. Thus,
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a modification of the original RP model is necessary.

2.1.3 Framework of the modified relaxation model of plasticity

Dynamic stress intensity

In this work, we investigate the dynamic stress intensity derived from the integral
dynamic yield criterion (2.1). To understand the difference and connection between
the new dynamic stress intensity and the classical quasi-static shear stress intensity
σ̄ (the equivalent von Mises stress given in expression (2.7)), it is essential to explain
Novozhilov’s concept of the shear stress intensity (SSI). Novozhilov demonstrated
in a spherical coordinate system that the SSI is a limit value obtained by taking
an integral average (or the root mean square, the quadratic mean) of shear stresses
στ over the entire spherical surface Ω enclosing the point under consideration. This
expression is given in equation (2.8), where r represents the radius of the sphere,
dΩ denotes the area of an infinitesimal plane on the spherical surface Ω, and στ

represents the shear stress at that specific point on the plane dΩ. For further
details, refer to appendix B. In the classical theory of plasticity, the yield criterion
is assumed to be

σ̄(s) ⩽ σy,

where s is the stress deviator tensor.

σ̄(s) =

√
3

2
s : s =

√
1

2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]

(2.7)

σ̄ =

√
15

2
lim
r→0

(
1

Ω

x
σ2
τdΩ

) 1
2

(2.8)

We now introduce a functional Mα(σ, t) in the form (2.9), which represents a mean
integral value of stress σ(t) in the time space and is considered as the dynamic stress
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intensity 1 within an incubation time interval [t− τ, t].

Mα(σ, t) =

(
1

τ

∫ t

t−τ

σα(s)ds

)1/α

(2.9)

In more general cases, the yield criterion is supposed to be summarised in the fol-
lowing form, similar to classical yield criterion

Mα(σ̄(s), t) ⩽ σy or ∥σ̄∥α ⩽ σy. (2.10)

Hence, the criterion (2.1) can be stated as follows: the yield occurs when the dy-
namic stress intensity within an incubation time interval reaches a critical value.

The functional Mα(σ, t) characterises the stress intensity along the time axis and
regards the strain-rate sensitivity as a manifestation of the time sensitivity. The
strain-rate sensitivity refers to the reaction of the material behavior to the variation
of the strain-rate, while the time sensitivity is related to the reaction of the mate-
rial behavior to the variation of state variables along the time axis. Especially, the
functional Mα(σ, t) focuses the variation of stress state in the time interval with a
constant length τ . This means not only the strain rate, but also the development
of stress state matter. In uniaxial tension or compression impact tests, a constant
strain rate is often assumed. In this special case, the stress state is mainly char-
acterised by the stress rate or the strain rate according to the Hook’s law, and the
criterion (2.10) derives the rate-dependent criterion (2.3).

The modified relaxation model of plasticity

At first, let us focus on the one-dimensional problem and discuss the framework
of the modified RP model. In the original RP model, the parameter β is used to
represent the hardening response. In the modified model, we introduce a hardening

1The dynamic stress intensity can also be a norm of the measurable function σ(t) in the Lebesgue space (Lp

space), as defined below, where t′ = t/τ and s′ = s/τ .

Mα(σ, t) = ∥σ∥α =

(∫ t′

t′−1

σα(s′)ds′

)1/α

, 1 ⩽ α ⩽ ∞,
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function σc(t) into the identity (2.4) as follows:

1

τ

∫ t

t−τ

(
γ(t)Σ(s)

σc(t)

)α

ds ≡ 1. (2.11)

Now we reformulate the identity (2.11) using the notation Mα(σ, t) and introduce
a strain hardening function σc(εp(t)), then we have

Mα(Σ, t)γ(t) ≡ σc(εp(t)), ∀t ⩾ ty, (2.12)

where σc(εp(ty)) = σy and εp(t) = 0, ∀t ⩽ ty. The Ludwik’s hardening rule [88]
expressed in equation (2.13) could be one choice for the function σc(t). Additionally,
a quadratic interpolation for the hardening rule [89] may also be utilized. Here, σy
remains the meaning of yield stress, εp represents the plastic strain, while K and n

are the hardening parameters. Parameter n is also known as the strain hardening
exponent.

σc(εp(t)) = σy +Kεnp(t) (2.13)

According to identity (2.12), the relaxation function γ(t) is assumed to be

γ(t) =
σc(εp(t))

Σ̃(t)
(2.14)

where

Σ̃(t) =

{
σy, t < ty

Mα(Σ, t), t ⩾ ty

Furthermore, according to equation (2.6), the true stress is now determined by
equation (2.15):

σ(t) = Σ(t)γ(t) = Σ(t)
σc(εp(t))

Σ̃(t)
= σc(εp(t))

(
Σ(t)

Σ̃(t)

)
(2.15)

An important characteristic of the modified model is its ability to describe both
the elastic and plastic responses of materials under various strain rates simultane-
ously. In the case of elastic deformation (t < ty), it is evident that σc(εp(t)) =

Σ̃(t) = σy, and then σ(t) = Σ(t) = Eε(t). At plastic deformation stage, we can
have a framework of the modified RP model in a multiplicative form (2.16), which
is actively used in this work. The modification of the RP model primarily involves
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the definition of the hardening behavior. Instead of using the hardening parameter
β, we introduced a strain hardening function σc (εp(t)) into the identity (2.4) to
replace the single yield constant σy. The strain hardening function σc(εp(t)) can
be defined by the experimentally measured quasi-static stress-strain curve, since in
cases ε̇τ ≪ 1 we have Mα(Σ, t) ≈ Σ(t) and, then, σ(t) ≈ σc(εp(t)). The second
multiplier Σ(t)

Mα(Σ,t)
, or more precisely Mα(Σ, t), contributes to describing strain-rate

effects. Therefore, the RP model regards the strain-rate sensitivity as a manifesta-
tion of the time sensitivity.

σ(t) = σc(εp(t))

(
Σ(t)

Mα(Σ, t)

)
, ∀t ⩾ ty. (2.16)

On the relaxation function γ(t)

During the plastic deformation, the true stress σ can be determined based on
the plastic strain using equation (2.17), which involves a dimensionless function
γ(εp). This function γ, ranging from (0, 1], characterizes the relaxation behavior
of materials during plastic deformation. The plastic strain εp can be obtained us-
ing the hardening function σc(εp, ε̇) (see equation (1.4)) through equation (2.18).
Additionally, the relaxation function γ(t) = γ(εp(t)) can be determined using ex-
pression (2.19). For instance, in the case of a multiplicative hardening function
σc(εp, ε̇) = f1(εp)f2(ε̇), the relaxation function γ at the quasi-static strain rate ε̇0

takes the value γ(εp) =
σc(εp,ε̇0)
Σ(ε) =

f1(εp)
Σ(ε) =

σc(εp)
Σ(ε) with f2(ε̇0) = 1. In the incubation

time approach, instead of directly considering the strain rate ε̇, we introduce a time
functional Mα(·) that incorporates the incubation or relaxation time parameter τ .
Consequently, the relaxation function γ(t) is assumed to be given by equation (2.20),
consistent with classical theory, i.e. γ(t) =

σc(εp(t))
Mα(Σ,t)

≈ σc(εp(t))
Σ(t) when ε̇τ = ε̇0τ ≪ 1.

Equation (2.20) may lead to the identity presented in equation (2.12). It should be
noted that one of the drawbacks of the original RP model is the relaxation function
γ(t) =

σy

Mα(Σ,t)
in equation (2.4) or (2.5) does not contain the plastic strain εp(t),

which limits its modeling ability over a wide strain range.

σ = E(ε− εp) = Eε(1− εp
ε
) = Σ(ε)γ(εp) (2.17)
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σ = Σ(ε)γ(εp) = σc(εp, ε̇) (2.18)

γ(t) =
σc(εp(t), ε̇(t))

Σ(t)
(2.19)

γ(t) =
σc(εp(t))

Mα(Σ, t)
(2.20)

The equation (2.18) can be the one-dimensional form of the yield surface equation
(1.4). Similarly, the modified RP model (2.12), (2.15) can also be derived by the yield
surface equation f(σ, εp, t) ≡ 0 in the framework of the incubation time approach
instead of being introduced empirically by following the multiplicative form σ =

f1(εp, ε̇)f2(εp, T ). The shear stress intensity σ̄(t) given by the stress tensor σ could
be regarded as a product of two functions σ̄(t) = Σ(t)γ(t), where Σ(t) is the stress
predictor and γ(t) is the relaxation function ranging in (0, 1]. Then, following the
equation (2.20), we expect an equation f(σ, εp, t) = Mα(Σ, t)γ(t) − σc(εp(t)) ≡ 0

to define the yield surface, and the identify (2.12) characterizes the plastic flow.
In subsequent sections of this work, our focus lies on the implementation and

examination of the modified RP model. Specifically, we explore different versions of
this model by considering various options for the strain hardening function σc(εp(t))

and the stress predictor Σ(t). For the sake of simplicity and clarity in our discus-
sions, we will primarily refer to the modified RP model (2.16) as the "RP model".
It is important to note that whenever we mention the original RP model (2.6), we
will denote it as the ORP model.

A simplified version of the relaxation model of plasticity

As is known, the strain rate almost remains constant in Hopkinson pressure bar
experiments, thus we can derive a simplified version of RP model by assuming a
linear stress predict Σ(t) = Eε(t) = Eε̇tH(t). Then the functional Mα(Σ, t) can be
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calculated as follows

Mα(Σ, t) =

(
1

τ

∫ t

t−τ

(Eε̇)αH(s)ds

)1/α

=
Eε̇

τ 1/α

(
s1+αH(s)

1 + α

∣∣∣∣t
t−τ

)1/α

=
Eε̇

τ 1/α

(
t1+α − (t− τ)1+αH(t− τ)

1 + α

)1/α

= E

(
ε1+α − (ε− ε̇τ)1+αH(ε− ε̇τ)

ε̇τ(1 + α)

)1/α

.

(2.21)

This leads to a rate-dependent simplified RP model (2.22) or the alternative
version (2.23), which also confirms the rate sensitivity as a manifestation of the
time sensitivity of materials. The function g(t) denotes the multiplier Σ(t)

Mα(Σ,t)
.

σ(t) = σc (εp, T ) g(ε, ε̇) = σc (εp, T )

(
ε̇τ(1 + α)εα

ε1+α − (ε− ε̇τ)1+αH(ε− ε̇τ)

)1/α

(2.22)

σ(t) =

σc (εp, T )
(
ε̇τ(1+α)

ε

)1/α
, ε

ε̇τ ⩽ 1,

σc (εp, T )
(

ε̇τ(1+α)εα

ε1+α−(ε−ε̇τ)1+α

)1/α
, ε

ε̇τ > 1.
(2.23)

At relatively low strain rates ε̇τ ≪ 1 or ξ = ε
ε̇τ ≫ 1, we have

g(ε, ε̇) = g(ξ) =

 1 + α

ξ − (ξ − 1)
(
1− 1

ξ

)α
1/α

=

(
1 + α

(1 + α)− α(α+1)
2 ξ−1 + (α−1)α(α+1)

6 ξ−2 − (α−2)(α−1)α(α+1)
24 ξ−3 + o (ξ−4)

)1/α

≈ 1.

(2.24)
This verifies the correspondence between the simplified RP model and the classical
quasi-static model, i.e. σ(t) ≈ σc (εp, T ) under quasi-static conditions.

An incremental version of the relaxation model of plasticity

The RP model (2.16) may have different versions by choosing various strain hard-
ening functions σc(εp(t)) and the form of the stress predictor Σ(t). By introducing
an incremental version of the stress predictor Σ(t) defined in equation (2.25), we
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can derive the incremental version of the RP model (IRP model), which takes the
development of the true stress account.

Let’s consider a time sequence {tk}, where tk − tk−1 = h and t0 = ty. Here,
h represents the length of a time increment, and ty indicates the start time of the
plastic process (Mα(Σ, ty) = σy). During elastic deformation, Σ(t) remains as the
elastic stress Σ(t) = Eε(t). However, during plastic deformation (t ⩾ t0 = ty),
Σ(t) is dependent on the time interval [tk, tk+1] (or technically, the index k) and is
determined as follows:

Σ(t)
def
= Σ(k)(t) =

σ(t), t ⩽ tk

σ (tk) + E (ε(t)− ε (tk)) , t ∈ (tk, tk+1]
, k = 0, 1, 2, . . . .

(2.25)
The graphical representation of the function Σ(t) is represented in figure 2.1. The
incremental version of the stress predictor Σ(t) coincides with the true stress σ(t)

in past time increments and proposes an elastic increment only within the last time
increment [tk, tk+1], since Σ(t)−Σ(tk) = Σ(t)− σ(tk) = E (ε(t)− ε (tk)). The true
stress at time tk+1, for instance, can be obtained by σ(tk+1) = Σ(k+1)(tk+1) · γ(tk+1)

as shown in figure 2.1.

Time

S
tr

e
s
s

Figure 2.1: The time dependence of the stress predictor Σ(t).
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Based on numerous experimental data for various materials under dynamic load-
ing, it has been observed that the ratio m = ty/h can be a constant for most metals.
The dimensionless parameter m should also satisfy the logical relation h ⩽ τ . In
the quasi-static case, h = τ is required. The calculation scheme of the IRP model
is illustrated in figure 2.2.
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Figure 2.2: Calculation scheme of the IRP model

Possible scenarios of the IRP model

The IRP model allows one to simulate both the monotonic and non-monotonic
behaviour of the elasto-plastic deformation due to the multiplier Σ(t)/Mα(Σ, t).
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Since the strain-rate is believed to be nearly unchanged in most uniaxial tensile
and compression tests, here the discussion is continued in the case of a constant
strain-rate ε(t) = ε̇tH(t). The monotonic yield diagram under the quasi-static con-
dition is considered. In a quasi-static case (not strictly speaking, ε̇τ ≪ 1), it has
been discussed above that there is no significant distinction between the value of the
functional Mα (Σ, t) and the function Σ(t). Thus, the strain-rate-dependent mul-
tiplier Σ(t)/Mα(Σ, t) is close to 1 and the Ludwik’s hardening rule plays a crucial
role, which corresponds with the classical model of plasticity and gives a monotonic
stress-strain curve. The IRP model can also deal with the non-monotonic yield di-
agram under the dynamic or impact condition. Let us consider the simplest case
when ε̇τ ⩾ (1+α)1/ασy

E , i.e. ty ⩽ τ . According to equation (2.26), the following in-
equality (2.27) derives the relation Σ (ty) /Mα (Σ, ty) > Σ (ty + h) /Mα (Σ, ty + h),
which verifies the possibility of simulating the yield drop phenomenon. The inequal-
ity ε̇τ ⩾ (1+α)1/ασy

E is not considered a necessary condition of appearing the yield
drop phenomenon. It just simplify the theoretical analysis of the non-monotonic
behaviour of the multiplier Σ(t)/Mα (Σ, t).

Mα (Σ, ty) =
(

1
τ

∫ ty
0 (Eε̇s)αds

)1/α
=
(
(Eε̇)α

τ
ty

1+α

1+α

)1/α
,

Mα (Σ, ty + h) =
(
(Eε̇)α

τ
(ty+h)

1+α

1+α

)1/α (2.26)

(ty + h)1+α tαy > t1+α
y (ty + h)α (2.27)

As for the JC model (1.6), it is clear that it shows only monotonic curves. Further-
more, due to the low increasing rate of the logarithm function ln

(
ε̇
ε̇0

)
, sometimes

the JC model fails to show the difference between flow stress levels at intermediate-
and high-rate loading.

2.2 Temperature-time correspondence

In the modified RP model (2.16), strain-rate effects are mainly characterized
using the functional Mα (Σ, ty), or more precisely, the relaxation time parameter
τ . As relaxation process is obviously affected by temperature, its relaxation time
should be temperature dependent. This section explores one of the main topics
— the temperature-time correspondence and proposes a methodology for investi-
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gating this relationship. The introduction of the relative stress factor helps ana-
lyze the tendency of the temperature-time relationship. A possible explanation for
different phenomenological relationships proposed previously is provided and fur-
ther discussed in section 4.2. Additionally, the suitability of multiplicative models
σ = f1(εp, ε̇)f2(εp, T ) for simulation over a wide range of temperatures and strain
rates is examined.

2.2.1 Parameters τ and α

Understanding how parameters τ and α affect the behavior pattern of mate-
rials under different mechanical conditions is crucial for accurately modeling the
thermo-mechanical response of considered materials. The expression (2.3) provides
a simplified mathematical relation between the yield stress and two parameters τ

and α. Nevertheless, the graphical demonstration of the stress-strain diagrams in
figures 2.3 (a) and (b) directly show the capacity of τ and α to describe the strain-
rate effect. In these examples, the IRP model is used to simulate the stress-strain
diagrams in figures 2.3 (a) and (b) with different parameter values τ and α, where
a constant strain rate, i.e. ε(t) = ε̇t, is assumed. The values τ0, α0 are considered
the reference. The ε̇0 represents the quasi-static strain rate, and the stress σ(εp, ε̇0),
equal to σc(εp(t)), is assumed the reference stress. In most cases, the parameters τ
and α have an insignificant impact on the stress at the quasi-static strain rate ε̇0

[84], as shown in figures 2.3 (a) and (b), where dashed curves nearly overlap. In
figures 2.3 (c) and (d), the relative stresses (RS), i.e. σ(εp, ε̇)/σ(εp, ε̇0), at different
strain rates and values of τ and α are demonstrated.

It is shown that, at fixed values of τ and α, the increasing strain rate (ε̇ > ε̇0)
results in an elevated stress level; at the fixed strain rate ε̇, the decreasing τ with
the fixed α or increasing α with the fixed τ leads to a decreased stress value. It is
more important to note that parameters τ and α, in fact, affect the relative relation
of the stress value σ(εp, ε̇) to their reference stress σ(εp, ε̇0), i.e. the value of the
RS, which is also discussed in detail in subsections 2.2.2 and 2.2.3. Therefore, we
can conclude that the decreasing τ with the fixed α or increasing α with the fixed
τ leads to a decreased value of RS at the fixed strain rate.
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Figure 2.3: The stress-strain diagrams calculated by the IRP model (2.12)–(2.25) and the corre-
sponding relative stress curves σ(εp, ε̇)/σ(εp, ε̇0) under different strain rates and parameter values
τ and α. In (a) and (c), parameters τ0, τ1 and τ2 follow the relation τ1 > τ0 > τ2, while in (b) and
(d), the parameters α0, α1 and α2 satisfy α1 < α0 < α2. Stress curves at the quasi-static strain
rate ε̇0 are depicted by dashed lines, while those at a higher strain rate, denoted by ε̇, are shown
using solid lines.
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2.2.2 The temperature dependence of the parameter τ and/or α

It is experimentally observed that the increasing initial temperature T0 of ma-
terials generally results in the relaxation of the flow stress, i.e. thermal softening.
In addition, at high loading rates, the plastic deformation is accompanied by an
approximately adiabatic temperature rise. Thus, the understanding of the thermal
softening of materials under different loading conditions is important for its model-
ing. It is reasonable to expect that the relaxation function (2.20) is temperature-
dependent, i.e. γ(T, t) =

σc(εp(t),T (t))
Mα(Σ,T,t)

, since a thermal softening behavior leads to
a stress relaxation. That means the hardening function σc(εp(t), T (t)) and/or the
dynamic stress intensity Mα(Σ, T, t) should be temperature-dependent. Hence, the
modified RP model (2.16) is expected to be the following one

σ(t) = σc(εp(t), T (t))

(
Σ(t)

Mα(Σ, T, t)

)
, ∀t ⩾ ty. (2.28)

The hardening function σc(εp(t), T (t)) (or σc(εp, T )) could take various forms
depending on the quasi-static behavior of tested materials at different temperatures,
for instance, the well-known forms (2.29) and (2.30). Here, A,B0, B1, n0, n1 and
β1 are model parameters; Tm is the melting temperature and Tr is the reference
temperature.

σc(εp, T ) =
(
A+B0ε

n0
p

)(
1−

(
T − Tr

Tm − Tr

)n1
)

(2.29)

σc(εp, T ) = A+B0ε
n0
p +B1 exp (−β1T ) (2.30)

The dynamic stress intensity Mα(·) shall also be temperature-dependent. Ac-
cording to Cottrell and Bilby’s dislocation theory, Campbell derived an integral
yield criterion [54]. In his criterion, α is temperature-dependent parameter shown
in expression (2.35), where n is a model constant and k is the Boltzmann’s con-
stant. Gruzdkov and Petrov [9] introduced a temperature-dependent relation of
the incubation time given in the expression (2.31), assuming that the parameter α

is a constant and the incubation time is inversely proportional to the average dis-
location velocity proposed by Johnson and Gilman [90]. Selyutina [10] suggested
another temperature-time relation (2.33). In this work, we examine these relations
along with two additional phenomenological relations (2.32) and (2.34) to analyze
why different relations were used and how to determine the temperature-time cor-
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respondence for various materials. The results in figures 2.3 (a) and (b) suggest
the possible temperature-dependent behavior of τ and/or α. On the other hand, as-
suming only one of them as temperature-dependent is more convenient for numerical
modeling.

τ = τ0 exp

(
β0
T

)
, α = constant. (2.31)

τ = τ0 exp(−β0T ), α = constant. (2.32)

τ = τ0

(
1−

(
T − Tr

Tm− Tr

)β0

)
, α = constant. (2.33)

τ = τ0

(
Tm− T

Tm− Tr

)β0

, α = constant. (2.34)

The incubation time is a characteristic time of the relaxation nature of microscopic
events. The softening of materials, as a relaxation event, is significantly affected by
temperature. Higher temperatures can cause more noticeable softening, leading to
a decrease in its characteristic time. The temperature-time correspondence can be
mathematically summarised through the temperature dependency of the incubation
time τ . In addition, the following temperature-dependences of parameter α are also
concerned for comparison.

α = (nkT )−1, τ = constant. (2.35)

α = α0 exp(β0T ), τ = constant. (2.36)

α = α0

(
Tm− Tr

Tm− T

)β0

, τ = constant. (2.37)

As concluded in the section 2.2.1, a decrease in τ or an increase in α results in a
lower stress level, which seems to agree with the thermal softening (or relaxation) of
the flow stress. However, according to the equation (2.28), the value of the reference
stress (at the reference strain rate ε̇0) σc(εp, T ) significantly influences the value
of the flow stress as well. Equation (2.28) suggests that with even the constant
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value of τ and α, one can technically model the decreasing tendency of the flow
stress at an elevated temperature if the reference stress σc(εp, T ) decreases with the
increasing temperature (see expressions (2.29) and (2.30)). Nevertheless, it should
be noted that the parameters τ and α only affects the relative relation of the flow
stress σ(εp, ε̇, T ) to their reference stress σc(εp, T ) as shown in figures 2.3 (c) and (d).
Hence, the temperature-dependent parameter τ or α should only reflect the variation
of the relative stress (RS) at different temperatures, which is featured by the RS
factor σ(εp,ε̇,T )

σ(εp,ε̇0,T )
. In a wide temperature range, the RS factor generally decreases with

increasing temperature for many materials, although its non-monotonic temperature
dependence sometimes appears. The performance of RS factor for materials HSLA-
65 steel and a Tungsten-based composite are discussed below in subsection 2.2.3.
Different temperature-dependent relations of τ or α given in expressions (2.31)–
(2.37) are considered in sections 2.2.3, 2.2.4 and 4.2.

2.2.3 The relative stress factor for HSLA-65 steel and Tungsten-based

composite

In Nemat-Nasser and Guo’s work [14], the thermo-mechanical response of the
HSLA-65 steel was investigated over a wide range of strain rates and temperatures.
The temperature dependence of the true stress at different strain rates and a true
strain of 10%, 15% and 20% are demonstrated in figures 2.4 (a), (c) and (e), while fig-
ures 2.4 (b), (d) and (f) depict the corresponding temperature dependence of the RS
factor σ(ε, ε̇, T )/σ(ε, ε̇0, T ). The reference strain rate ε̇0 was taken as 0.001 s−1. The
symbols in the figures represent experimental data from the work [14] and the dash-
dotted curves approximate experimental data using the spline algorithm to show the
trend of their variation with increasing temperature. The results indicate that the
mechanical response of HSLA-65 steel at low loading rates ε̇ = 0.001 s−1, 0.1 s−1 is
temperature-insensitive at temperatures of 296–700 K, whereas the curves at high
loading rates are temperature-sensitive in this temperature range. Nemat-Nasser
and Guo suggest that the temperature-insensitivity range in high-loading cases may
shift to even higher values of temperature due to the dynamic strain aging of the
material. Some abnormal material responses caused by dynamic strain aging require
additional attention and are not discussed in our paper. These responses include the
unusual performance of the true stress at strain rate 0.1 s−1, i.e. the stress at the
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temperature of 400–600 K being lower than that at lower strain rate 0.001 s−1, and
the abnormal behavior of the true stress at temperatures higher than 700 K, i.e. the
stress at strain rate 3000 s−1 increasing with elevated temperature. Hence, cases at
strain rate 0.1 s−1 and cases at temperatures higher 700 K are out of consideration.

The RS factors at high strain rates 3000 s−1 and 8500 s−1 and temperatures up
to 700 K are studied in figures 2.4 (b), (d) and (f). Note that the values of left and
right ends of curves at high strain rates are greater than the initial temperatures 77
K and 700 K, at which samples were tested. These are explained by the intensive
adiabatic temperature rise discussed in section 1.1. Under impact loading, final
temperatures of samples tested initially at temperatures of 77 K and 700 K have
increased up to more than 105 K and 710 K, respectively, at the true strain of 10%.
Results in figures 2.4 show that the RS factors are not only rate-dependent but also
temperature-dependent. Over a wide temperature range, T ∈ (250K, 600K), the
RS factor decreases with increasing temperature, while in other temperature ranges,
they might slightly increase. The tiny growth in RS factors at higher temperatures
could be linked to the abnormal increase in stresses at the reference strain rate
and temperatures of 400–650 K. This abnormal behavior can result in a noticeable
drop of the RS factor within this temperature range, which in turn "causes" a
slight increase in the RS factor at temperatures higher 650 K. The RS factors at
lower temperatures seem also slightly increase. For the Tungsten-based composite,
however, the mentioned here abnormal phenomena do not exist in a very wide
temperature range.

Xu and Huang [16] conducted experiments on a Tungsten-based composite with
a composition of 93W–4.9Ni–2.1Fe over a wide range of temperatures and strain
rates. Figures 2.5 (a), (c), and (e) show the temperature dependence of the true
stress at a plastic strain of 3%, 5%, and 8%, respectively, at different strain rates.
Correspondingly, figures 2.5 (b), (d), and (f) display the temperature dependence of
the RS factor σ(εp, ε̇, T )/σ(εp, ε̇0, T ), where the reference strain rate ε̇0 is 0.001 s−1.
The symbols in figures 2.5 represent experimental data from the work [16] and
the dash-dotted curves approximate experimental data using the spline algorithm
to demonstrate their trend with increasing temperature. At the plastic strain of
8%, the lack of experimental data at strain rate 200 s−1 is due to the materials
fracturing. The tested Tungsten-based composes are less ductile than the HSLA-65
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Figure 2.4: The effect of strain rates and temperatures on the true stress σ(ε, ε̇, T ) at a true strain
of 10%, 15% and 20% for HSLA-65 steel are presented in (a), (c) and (e), respectively. The symbols
are experimental data taken from Nemat-Nasser and Guo’s work [14] and dash-dotted lines are
curves approximated by the spline algorithm. The corresponding temperature dependence of the
relative stress factor σ(ε, ε̇, T )/σ(ε, ε̇0, T ) at a true strain of 10%, 15% and 20% are illustrated in
(b), (d) and (f), respectively, where ε̇0 = 0.001 s−1.
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steel. Similar to conclusions drawn for HSLA-65 steel, the RS factor at low loading
rates is less sensitive to temperature than at high loading rates. As suggested
by Nemat-Nasser and Guo [14], we can expect that the temperature-insensitivity
range for materials under dynamic loading conditions may shift to temperatures
even higher than thoes under quasi-static loading conditions. Results indicate that,
although a special point at strain rate 200 s−1 and the room temperature appears,
the RS factors at different strain rates are generally monotonically decreasing along
the temperature axis.

As concluded in subsection 2.2.2, the decreasing τ with the fixed α or increasing
α with the fixed τ leads to the decreasing value of the RS at the fixed strain rate.
Hence, in most cases, the parameter τ has a negative correlation with the tem-
perature, and α reveals a positive correlation with the temperature. The relations
(2.31)–(2.34), and relations (2.36)–(2.37) agree with what has been observed and
their comparison is discussed in section 4.2. The relation (2.35) suggests a negative
correlation between α and the temperature and may be useful in some temperature
ranges, such as temperatures higher than 600 K for HSLA-65 steel. In summary,
at temperatures higher than room temperature, the RS factors of tested materials
at different strain rates generally exhibit a monotonic decrease with increasing tem-
perature. This implies that the temperature rise results in a monotonic decrease in
τ or an increase in α. However, some special cases of non-monotonic behavior may
occur due to, for instance, the dynamic strain aging, and a non-monotonic relation
between τ or α and the temperature might be required. Nevertheless, we focus on
simple monotonic relations in this paper.

The behavior of the RS factor at different temperatures suggests that it may be
improper to model the strain-rate effect and thermal softening phenomenon sep-
arately using specific multipliers depending on the strain rate or the temperature
over a wide temperature range. In other words, at least for considered here ma-
terials, the constitutive model could not be σ = f1(εp, ε̇)f2(εp, T ). The widely
used Johnson-Cook (JC) model (1.6) consists of three multipliers corresponding to
the hardening work, the strain effect, and the temperature effect, respectively. It
suggests a temperature-independent RS factor as follows

σ(εp, ε̇, T )

σ(εp, ε̇0, T )
= 1 + C ln

(
ε̇

ε̇0

)
,
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Figure 2.5: The effect of strain rates and temperatures on the true stress σ(εp, ε̇, T ) at a plastic
strain of 3%, 5% and 8% for the 93W–4.9Ni–2.1Fe Tungsten-based composite are presented in (a),
(c) and (e), respectively. The symbols are experimental data taken from Xu and Huang’s work
[16] and dash-dotted lines are curves approximated by the spline algorithm. The corresponding
temperature dependence of the relative stress factor σ(εp, ε̇, T )/σ(εp, ε̇0, T ) at a plastic strain of
3%, 5% and 8% are illustrated in (b), (d) and (f), respectively, , where ε̇0 = 0.001 s−1
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which does not follow the behavior pattern of the RS factor observed by analyz-
ing existing experimental facts. Similarly, some modifications of the JC model
[21] [22] [23] [25] shown in expressions (2.38) could not be suitable for simula-
tions in a wide temperature range as well. These models follow the relation σ =

f1(εp, ε̇)f2(εp, T ), which is derived from the direct empirical fitting approach and
results in a temperature-independent RS factor. In these models, dynamic relations
are conventionally constructed in the way of direct extrapolation of static notions
into dynamic cases using special terms incorporated into well-known static formula.
Nevertheless, they are still very convenient for engineering problems where the tem-
perature does not vary significantly. On the other hand, the modified RP model
follows the relation σ = f(εp, T, t), which is derived from the incubation time ap-
proach and concerns the rate-dependent phenomena as manifestation of the time
sensitivity of materials.

σ =
(
A+Bεnp

)
exp

(
C0 ln

(
ε̇

ε̇0

))(
1−

(
T − Tr

Tm − Tr

)m)
,

σ =
(
A+Bεnp

) [
1 + C1 + C2 sin

(
ln ε̇− C3

C4
π

)
ln

(
ε̇

ε̇0

)](
1−

(
T − Tr

Tm − Tr

)m)
,

σ =
(
A+B1εp +B2ε

2
p +B3ε

3
p

) [
1 + (C1 + C2εp) ln

(
ε̇

ε̇0

)](
1−

(
T − Tr

Tm − Tr

)m1+m2εp
)
.

(2.38)

σ(t) =
(
A+B0ε

n0
p

)( Σ(t)

Mα(Σ, T, t)

)(
1−

(
T − Tr

Tm − Tr

)n1
)
, ∀t ⩾ ty. (2.39)

The modified relaxation model of plasticity (2.28) can be reformulated in the
expression (2.39) closely resembling the well-known Johnson-Cook model in the
structure if the hardening function σc(εp(t), T (t)) takes the form (2.29). Beyond
that similarity, the model (2.39) is rather different from the JC model. The “strain-
rate dependent” term in the model (2.39), represented by Σ(t)/Mα(Σ, T, t), is a
time function and does not explicitly include the strain rate. It accounts for the
time sensitivity, characterized by the incubation time parameter τ . Instead, the
JC model approximates the rate-dependent behavior through an analytical loga-
rithm function of strain rate, which is based on empirical analysis. This is a direct
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empirical approach, which is convenient for numerical simulations, such as finite
element simulations, but has a negative feature of the single model performance. It
has limitations in describing non-monotonic stress-strain behavior, abnormal work-
hardening response, and other complex phenomena. To address these limitations,
new additional terms (2.38) should be introduced into the JC basis, or the logarithm
function should be replaced with other empirical functions depending on the strain
rate. In contrast, the modified relaxation model of plasticity (2.28) is derived from
the incubation time approach. The “strain-rate dependent” term Σ(t)/Mα(Σ, T, t)

reflects not only the rate-dependent behavior of materials, but also the temperature-
dependent pattern of the RS factor.

2.2.4 The determination of parameters τ and α

The hardening function σc(εp(t), T (t)) and its associated parameters need to be
determined using quasi-static stress-strain curves. Although the incubation time
τ has a physical basis [69, 71], in this work, we treat it as a model parameter
(phenomenological parameter). The parameters τ and α at specific temperatures
should be established by fitting dynamic diagrams. Common curve fitting algorithms
may not converge to determine both τ and α simultaneously. However, they can be
separately defined. Assuming the value of parameter α is fixed, then the value of
the parameter τ is not difficult to be found using least square method, in particular,
the Levenberg–Marquardt algorithm (also called the damped least-squares method).
Technically, a value of τ that gives less than 5% description error in dynamic curves
(see equation (4.1) is considered suitable. In this work, for the sake of simplicity, the
parameter α is taken as an integer, and its value generally varies from 3 to 35 for
studied metals. The value of α leading to a less than 5% description error with found
value of τ is regard suitable for modeling. We often obtain a range of values for τ at
a fixed α suitable for modeling and vice versa, as discussed later in section 4.2 and
illustrated in figures 4.4 (b), (c) and 4.8. Sometimes, the value range for τ may be
relatively wide, suggesting that slight variations in τ may not significantly impact
the final results. In such cases, any temperature-time relationship falling within
these value ranges may be considered technically suitable. As a result, different
temperature-time correspondences have been suggested and verified to be applicable
for modeling dynamic stress-strain diagrams. It is worth noting that a simple linear
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relationship could also be used. However, this may result in a negative value for τ .
Hence, exponential or power phenomenological relationships, as shown in equations
(2.31)–(2.34) and (2.35)–(2.37), are preferable choices to avoid negative values.

2.3 Conclusions to the chapter

In this chapter, a comprehensive analysis of the framework of the modified RP
model is given. The new understanding of the relaxation function, the time-dependent
yield surface equation and a methodology of investigating the temperature-time cor-
respondence are discussed. The following main conclusions are made.

1. A simplified version and incremental version of the RP model are proposed.
The incubation time approach considers the rate sensitivity as a manifestation
of time sensitivity of materials. The modified RP model can be derived from the
proposed yield surface equation instead of using the empirical fitting approach
by following the multiplicative form σ = f1(εp, ε̇)f2(εp, T ).

2. The relative stress (RS) factor can be used to analyze the tendency of the
temperature-time relationship. For studied HSLA-65 steel and Tungsten-based
composite, the RS factors at different strain rates generally exhibit a monotonic
decrease with increasing temperature. This implies that the temperature rise
results in a monotonic decrease in τ . Some special cases of non-monotonic
behavior may also occur due to, for instance, the dynamic strain aging, and a
non-monotonic relation between τ and the temperature might be required.

3. Multiplicative models σ = f1(εp, ε̇)f2(εp, T ) is not suitable for simulation over a
wide range of temperatures and strain rates, while they still provide a power tool
for many engineering problems in cases with a limited temperature variation.
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Chapter 3

Simulation Methodology: finite element
method for dynamic plasticity problems

This chapter provides an introduction to essential concepts related to the finite
element (FE) method and presents potential solutions for dynamic plasticity prob-
lems. Additionally, a calculation scheme is proposed for performing FE analysis
using a simplified version of the RP model. Some algorithms discussed in this chap-
ter have been utilized by the author in their published works [91], [92], [93] and
[94].

3.1 A basic background on finite element method

The fundamental basis of the finite element method has been extensively discussed
in the works of Professor Belytschko and Zienkiewicz [95, 96, 97]. This section aims
to recapitulate certain essential aspects of their works for solving dynamic plasticity
problems.

Lagrangian formulations utilize meshes that employ Lagrangian descriptions, where
the dependent variables are expressed as functions of both the material (Lagrangian)
coordinates X and time t. The nodes and elements within the mesh move in accor-
dance with the material, while boundaries and interfaces align with the edges of the
elements, simplifying their treatment. There are two classifications of Lagrangian
meshes: updated Lagrangian formulations and total Lagrangian formulations. In
the updated Lagrangian formulation, derivatives are taken with respect to the spa-
tial (Eulerian) coordinates x, and the weak form involves integrals over the current
configuration. Conversely, the total Lagrangian formulation performs integrals over
the reference configuration and takes derivatives with respect to the material coordi-
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nates X. For solving dynamic plasticity problems, we adopt the updated Lagrangian
formulation, which expresses the governing equations in terms of the Eulerian co-
ordinates x and the Cauchy stress σ. Subsequently, we introduce the principle of
virtual power, a weak form for the governing equations.

Weak form: principle of virtual power

The weak form, often called a variational form, reduces the continuity require-
ments on the basis functions used for approximation which gives way to using lesser
degree polynomials. This approach converts the differential equation into an inte-
gral form which is usually easier to solve comparatively. The displacement function
u(X, t) = x(X, t) − X is required to satisfy all displacement boundary conditions
and to be smooth enough so that all derivatives in the momentum equation are well-
defined. Additionally, variations in displacement or velocity, denoted as δu or δv,
are assumed to exhibit sufficient smoothness to guarantee well-definedness through-
out the subsequent steps and vanish at the prescribed displacement boundary Γu,
i.e. δu = δv = 0,∀x ∈ Γu. This is the standard, classical way of developing a weak
form.

By integrating the product of the momentum equation with a variation of ve-
locity δv over the current configuration, we can have the equation (3.1), where b

is the body force, ρ represents the mass density, and Ω denotes the volume in the
current configuration. The equivalent formulation in the form of components is
demonstrated in equation (3.2).∫

Ω

δv · (∇ · σ + ρb− ρv̇) dΩ = 0 (3.1)

∫
Ω

δvi

(
∂σji
∂xj

+ ρbi − ρv̇i

)
dΩ = 0 (3.2)

The derivative product rule gives∫
Ω

δvi
∂σji
∂xj

dΩ =

∫
Ω

[
∂

∂xj
(δviσji)−

∂ (δvi)

∂xj
σji

]
dΩ. (3.3)

According to the traction condition n ·σ = t∗ on the boundary Γt, the first term in
expression (3.3) can be converted by Gauss’s theorem as follows, where Γ = Γu ∪Γt
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is the boundary of the volume Ω.∫
Ω

∂

∂xj
(δviσji) dΩ =

∫
Γ

δvinjσjidΓ =

∫
Γt

δvit
∗
idΓ. (3.4)

Equations (3.2)–(3.4) derive the weak form for the momentum equation and the
traction boundary conditions. It is known as the principle of virtual power.∫

Ω

∂ (δvi)

∂xj
σjidΩ−

∫
Ω

δviρbidΩ−
∫
Γt

δvit
∗
idΓ +

∫
Ω

δviρv̇idΩ = 0 (3.5)

It is also important to note that items in the weak form (3.5) have physical back-
ground. Considering the symmetry of Cauchy stress tensor and rewriting the term

∂ (δvi)

∂xj
σij = δLijσij = (δDij + δWij)σij = δDijσij = δD : σ,

we can derive the virtual internal power in the form (3.6), where L = ∂v
∂x = (∇v)T

is the spatial velocity gradient, D = 1
2

(
L+ LT

)
is rate of deformation tensor and

W = 1
2

(
L− LT

)
is the spin tensor.

δP int =

∫
Ω

δDijσijdΩ =

∫
Ω

∂ (δvi)

∂xj
σijdΩ ≡

∫
Ω

δLijσijdΩ =

∫
Ω

δD : σdΩ (3.6)

The second and third terms of the weak form gives the virtual external power arising
from the external body forces b and prescribed tractions t∗.

δP ext =

∫
Ω

δviρbidΩ +

∫
Γt

δvit
∗
idΓ =

∫
Ω

δv · ρbdΩ +

∫
Γt

δv · t∗dΓ (3.7)

The last term in the weak form represents the virtual inertial (or kinetic) power.

δP kin =

∫
Ω

δviρv̇idΩ =

∫
Ω

δv · ρv̇dΩ (3.8)

Consequently, the weak form (3.5) can be reformulated as the following virtual power
equation

δP = δP int − δP ext + δP kin = 0. (3.9)

Updated Lagrangian finite element discretization

Let the current domain Ω be subdivided into elements Ωe, i.e. Ω =
⋃
e
Ωe, which

contains Ne nodes with the motion xI(t), I = 1 to Ne. The approximation of the
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motion field x(X, t) for the element Ωe is assumed to be defined by the interpolation
(or shape) functions NI(X) and motion of node XI as follows

x(X, t) = NI(X)xI(t) or xi(X, t) = NI(X)xiI(t). (3.10)

xiI(t) denotes the coordinates of node xI(t) in the current configuration. In the
reference configuration, we have

X = x(X, 0) = NI(X)xI(0) = NI(X)XI . (3.11)

Then, the equality XJ = NI(XJ)XI derives the condition (3.12), where δIJ is the
Kronecker delta.

NI (XJ) = δIJ (3.12)

The displacement field u(X, t) can be derived by

u(X, t) = x(X, t)−X = NI(X)xI(t)−NI(X)XI = NI(X)uI(t), (3.13)

where uI(t) = xI(t)−XI is the displacement of node XI . The velocities are obtained
by taking the material time derivative of the displacements, giving

v(X, t) = NI(X)u̇I(t) = NI(X)vI(t) or vi(X, t) =
Dui(X, t)

Dt
= NI(X)viI(t).

(3.14)
Similarly, the accelerations a(X, t) are defined by

a(X, t) = NI(X)v̇I(t) = NI(X)aI(t) or ai(X, t) =
Dvi(X, t)

Dt
= NI(X)aiI(t).

(3.15)
In the updated Lagrangian formulation, it is important to note that the shape
functions are expressed with respect to the material coordinates, despite using the
weak form in the current configuration. This choice is essential for Lagrangian
meshes as it ensures that the time dependency in the finite element approximation
of motion is solely attributed to the nodal variables.

The spatial velocity gradient L and rate of deformation tensor D are yielded by

L = vI∇NI = vI
∂NI

∂x
or Lij = viI

∂NI

∂xj
, (3.16)
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D =
1

2

(
vI

∂NI

∂x
+

∂NI

∂x
vI

)
or Dij =

1

2

(
viI

∂NI

∂xj
+

∂NI

∂xj
viI

)
. (3.17)

Variations are approximated as

δv(X) = δvINI(X) or δvi(X) = δvilNI(X). (3.18)

As a results of these approximations, the principle of virtual power (3.5) is reformu-
lated by

δviI

∫
Ω

∂NI

∂xj
σjidΩ− δviI

∫
Ω

NIρbidΩ− δviI

∫
Γt

NIt
∗
idΓ + δviI

∫
Ω

NIρv̇idΩ = 0.

(3.19)
The arbitrariness of the virtual nodal velocities δviI on the boundary Γ/Γu derives∫

Ω

∂NI

∂xj
σjidΩ−

∫
Ω

NIρbidΩ−
∫
Γt

NIt
∗
idΓ +

∫
Ω

NIρv̇idΩ = 0,∀(I, i) /∈ Γu. (3.20)

Now we define nodal forces f int, f ext and fkin corresponding to the virtual internal,
external and kinetic powers. The virtual power equations (3.6)–(3.8) yield

δP int = δviIf
int
iI =

∫
Ω

∂ (δvi)

∂xj
σjidΩ = δviI

∫
Ω

∂NI

∂xj
σjidΩ, (3.21)

δP ext = δviIf
ext
iI = δviI

∫
Ω

NIρbidΩ + δviI

∫
Γt

NIt
∗
idΓ, (3.22)

δP kin = δviIf
kin
iI = δviI

∫
Ω

NIρv̇idΩ. (3.23)

This leads to the definition of internal and externalnodal forces f int and f ext, giving

f int
I =

∫
Ω

∇NI · σdΩ or f int
iI =

∫
Ω

∂NI

∂xj
σjidΩ, (3.24)

f extI =

∫
Ω

NIρbdΩ +

∫
Γt

NIt
∗dΓ or f ext

iI =

∫
Ω

NIρbidΩ +

∫
Γt

NIt
∗
idΓ. (3.25)

The kinetic forces are defined by

fkinI =

∫
Ω

ρNI v̇dΩ = I

∫
Ω

ρNINJdΩ · v̇J , (3.26)

where I = δijei ⊗ ej is the unit tensor of second order. Introducing a mass matrix
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(or tensor) (3.27), we obtain the final form (3.28) of the kinetic forces.

MIJ = I

∫
Ω

ρNINJdΩ or MijIJ = δij

∫
Ω

ρNINJdΩ (3.27)

fkinI = MIJ v̇J or fkin
iI = MijIJ v̇jJ (3.28)

Consequently, we can concisely write the discrete approximation to the virtual power
equation (3.9) as

MIJaJ + f int
I − f ext

I = 0, I and J = 1 to Ne. (3.29)

In the process of assembling the finite element system, which involves converting
local matrices and vectors from individual elements Ωe into global ones for the entire
domain Ω, the connectivity matrix Le plays a crucial role. The connectivity matrix
is a Boolean matrix that aids in this conversion process. A detailed discussion on
this procedure can be found in the work by Belytschko [95]1. For the sake of brevity,
we will omit any node and element numbers in the following discussion and focus
solely on the final governing equation (3.30) for the entire domain Ω, where P is the
global internal nodal forces and f denotes the vector of the global external nodal
forces.

Ma+P− f = 0. (3.30)

3.2 Nonlinear dynamic analysis

This section focuses on addressing the potential solutions for a dynamic prob-
lem involving physical/material nonlinearity, specifically plasticity. Mathematically,
this nonlinearity manifests itself in the constitutive relations (equations (1.1)–(1.4)),
thereby influencing the internal nodal forces P within the governing equation (3.30).
By examining the constitutive relations, we gain insight into how this nonlinearity
affects the overall behavior of the system (3.30). The equation (3.30) is also called
the semidiscrete momentum equations since they have not been discretized in time.
Below we introduce some time integration algorithms for discretization of time.

1Section 2.5: Element and Global Matrices.
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3.2.1 Time integration algorithms

Time integration algorithms enables the simulation of a physical system’s behav-
ior through the discretization of time into smaller intervals or time steps. At each
time step, the algorithm evaluates the system’s current state based on its previous
state and the governing equations. To perform these calculations, the algorithm
relies on the current time, state variables, their relevant time derivatives, etc. By it-
eratively executing this process, the algorithm updates the quantities for subsequent
time steps until the desired simulation time is reached. As a result, it effectively
traces the system’s evolution over time. Different time integration algorithms are
available, including explicit methods like forward Euler or central difference method,
and implicit methods such as the backward Euler method, Runge-Kutta methods,
the Newmark β-method, the α-method 2 [98] etc. These methods enable the nu-
merical solution of the system of differential equations at time tk+1, represented by
equation (3.31), by transforming it into a system of algebraic equations, which can
be either linear or nonlinear in nature. This transformation allows for the applica-
tion of efficient numerical techniques to obtain approximate solutions to the dynamic
equilibrium problem. Here, we will provide a brief introduction to two methods: one
explicit and one implicit.

Mak+1 +Pk+1(uk+1)− fk+1 = 0 (3.31)

Explicit central difference method

The central difference method is a commonly used approach for time integration
systems. This explicit calculation scheme can be represented as follows

uk+1 = uk +∆tvk +
1

2
∆t2 ak = ũk+1,

vk+1 = vk +
1

2
∆t (ak + ak+1) = ṽk+1 +

1

2
∆t ak+1,

(3.32)

where ũk+1 and ṽk+1 are values relying only on the solution at t = tk. Compared
to the forward Euler method, the central difference method allows for Pk+1(uk+1)

to be calculated by using values only from the previous time step, i.e. without
depending on ak+1. Consequently, it may transform dynamic equations (3.31) to

2The α-method is available in ABAQUS/Standard package.
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linear algebraic equations with one unknown value ak+1. This characteristic sets it
apart as a more convenient approach for dynamic analysis. Thus, it is widely used in
many commercial simulation packages, for in stance, in ABAQUS/Explicit package.
Nevertheless, explicit schemes are conditionally stable only when the time step ∆t

fulfils ∆t ≤ ∆tcrit. Here, ∆tcrit is determined by the minimum time required for
"wave propagation" across any element or, alternatively, the highest "frequency"
present in the finite element mesh [96] 3.

Newmark β-method

The Newmark β-method as a method of time integration is specifically designed to
solve systems of second-order differential equations. It finds applications in various
fields, including physical and/or engineering problems, and provides an effective
approach for numerically solving complex systems such as dynamic response systems.
It enables calculation of displacements, velocities and accelerations with the use of

uk+1 = uk +

∫ ∆t

0

v(t′) dt′

= uk +∆tvk +

(
1

2
− β

)
∆t2 ak + β∆t2 ak+1 = ũk+1 + β∆t2 ak+1,

vk+1 = vk +

∫ ∆t

0

a(t′) dt′

= vk + (1− γ)∆t ak + γ∆t ak+1 = ṽk+1 + γ∆t ak+1,

(3.33)

where β and γ are parameters, ũk+1 and ṽk+1 are values relying only on the solution
at t = tk. Parameters β and γ are chosen to ensure the accuracy and stability. The
implicit scheme is unconditionally stable for β ≥ γ

2 ≥ 1
4 . It transforms dynamic

equations (3.31) to non-linear algebraic equations with one unknown value ak+1,
which may be solved by, for instance, Newton-Raphson method and its modifica-
tions. For more detailed discussions on cases with conditional stability, refer to the
work by Belytschko [95] 4. Notably, the explicit central difference and undamped
trapezoidal methods are special cases of Newmark β-method, where β = 0, γ = 1

2

and β = 1
4 , γ = 1

2 , respectively.
In addition to time integration algorithms, accurately calculating the constitutive
3chapter 2: Galerkin Method of Approximation, page 31
4chapter 6: Solution Methods and Stability, page 339
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equations within Pk+1(uk+1) is also crucial for solving the equations (3.31). Specifi-
cally, it is necessary to compute the stress increments ∆σ with a given value of ∆u,
therefore, the strain increment ∆ε.

3.2.2 Computation of stress increments in problems of isotropic

plasticity J2

Elastomeric-plastic problem has a non-linear characteristic due to non-linear con-
stitutive relations. In terms of the elasto-plastic modulus matrix D⋆

ep(σ, ε) given
by Zienkiewicz [96] 5, this means that the stresses have to be integrated as ∆σ =∫ ∆ε

0 D⋆
ep(σ, ε

′)dε′. In the case of isotropic J2 plasticity, we solve the following gov-
erning differential equations (3.34)–(3.36) equivalent to relations (1.1)–(1.3) with
initial conditions (3.37) and a norm of a tensor giving |s| = (s : s)

1
2 . The predictor-

corrector algorithm – the return mapping algorithm – is commonly used to integrate
governing equations (3.34)–(3.36). The von-Mises yield surface equation (3.38) (or
1.4) can be solved by Newton–Raphson method.

ṡ = 2G dev (ε̇− ε̇p) = 2G dev ε̇− 2Gε̇p

= 2G dev ε̇− 2Gγn
(3.34)

Ṫ =
ηγ

ρCv
σ : n (3.35)

˙̄εp =

(
2

3
ε̇p : ε̇p

) 1
2

=

√
2

3
γ(n : n)

1
2

=

√
2

3
γ

(3.36)

s(tk) = sk, T (tk) = Tk, ε̄
p(tk) = ε̄pk (3.37)

f(γ) =

√
3

2
|s| − σy(γ) = 0 (3.38)

Return mapping algorithm for the time integration of stress

Based on the backward Euler algorithm, the return mapping algorithm increments
5chapter 4: Inelastic and Nonlinear Materials, page 95
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the stress tensor σ, plastic strain tensor εp and the equivalent plastic strain ε̄p. It
introduces a trial deviatoric stress tensor strk+1 (the stress predictor at time tk+1)
shown inexpression (3.39) and utilizes the coaxiality between tensors sk+1, strk+1 and
ε̇pk+1. In isotropic J2 plasticity problems, a proportional factor m = |sk+1|

|strk+1|
arising

due to the coaxiality of tensors sk+1 and strk+1 plays a crucial role in simplifying the
calculation procedure.

strk+1 = sk + 2G dev(∆εk+1) (3.39)

Using the backward Euler method (3.40), the governing equations (3.34)–(3.36)
can be integrated as given in equations (3.41)–(3.43), where ∆εpk+1 = εpk+1 − εpk and
σy
k+1 = σy(tk+1).

yk+1 = yk +

∫ ∆t

0

f(t, y)dt ≈ yk +∆tf (tk+1, yk+1) (3.40)

sk+1 = sk + 2G dev(∆εk+1)− 2G∆tγk+1nk+1

= strk+1 −
√
6G∆εpk+1nk+1

(3.41)

Tk+1 = Tk +
1

ρCv

∫ ∆t

0

ηγ|s|dt′ = Tk +
ηk+1

ρCv
∆tγk+1|sk+1|

= Tk +
ηk+1

ρCv
∆εpk+1σ

y
k+1

(3.42)

εpk+1 = εpk +

√
2

3
∆tγk+1

= εpk +∆εpk+1

(3.43)

Equation (3.42) utilizes the equality σ : n = s : n = |s|. The coaxiality of tensors
sk+1 and strk+1 is demonstrated in equation (3.41), yielding the relation

|sk+1| = |strk+1| −
√
6G∆εpk+1.

Subsequently, the von-Mises yield surface equation (3.38) can be derived as shown
in equation (3.44), where σ̄tr

k+1 =
(
3
2s

tr
k+1 : s

tr
k+1

) 1
2 =

√
3
2

∣∣strk+1

∣∣.
f(∆εpk+1) = σ̄tr

k+1 − 3G∆εpk+1 − σy(∆εpk+1) = 0 (3.44)

As a result, the solution to the set of governing equations (3.34)–(3.38) is reformu-
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lated as the solution to an algebraic scalar equation (3.44) with respect to the scalar
variable ∆εpk+1. The coaxiality of tensors sk+1 and strk+1, along with the von-Mises
yield surface equation, also gives

sk+1 =
|sk+1|∣∣strk+1

∣∣strk+1 =
σy
k+1

σ̄tr
k+1

strk+1 = m strk+1.

The proportional factor m =
σy
k+1

σ̄tr
k+1

can be used to calculate the plastic strain incre-
ment tensor as follows

∆εpk+1 =
strk+1 − sk+1

2G
=

1−m

2G
strk+1.

Therefore, a simple return mapping algorithm can be summarized in the following
scheme:

1. Solve the algebraic scalar equation (3.44) to find the increment of equivalent
plastic strain ∆εpk+1. Update the equivalent plastic strain εpk+1 and its rate
ε̇
p
k+1 = ∆εpk+1/∆t.

2. Calculate the trial stress tensor strk+1, value of isotropic hardening function
σy
k+1 = σy(∆εpk+1) and the proportional factor m =

σy
k+1

σ̄tr
k+1

.

3. Determine the increment of plastic strain tensor ∆εpk+1 by the value of m

and strk+1 and update the deviatoric stress tensor sk+1 and plastic strain tensor
εpk+1.

4. Update the temperature T varied in response to the plastic dissipation, follow-
ing equation (3.42).

5. Switch to the next time step.

Newton–Raphson method for solution of the yield surface equation

Several iterative methods exist to solve the yield surface equation (3.44) with
one variable ∆εpk+1. Among these methods, the Newton-Raphson (NR) method is
widely used due to its effectiveness. However, before delving into the details of
the NR method, it would be helpful to provide a brief introduction to the explicit
method for finding a preliminary solution, which can also serve as a way of providing
the initial approximation for the NR method. The hardening function σy(ε̄p, ˙̄εp, T )



66

can be expanded as

σy
k+1 ≈ σy

k +
∂σy

k

∂ε̄p
∆ε̄p +

∂σy
k

∂ ˙̄εp
∆( ˙̄εp) +

∂σy
k

∂T
∆T,

resulting in equation (3.45). To simplify the solution, the expression (3.46) instead
of (3.42) is used. This substitution eliminates the dependence of ηk+1 and σy

k+1

on the value ∆εpk+1. Consequently, the increment of equivalent plastic strain can
be approximated calculated using equation (3.47). This explicit method requires
the condition f(∆εpk+1) ≈ 0 to be satisfied at each time step in order to ensure
satisfactory accuracy.

f(∆εpk+1) ≈ σ̄tr
k+1 − 3G∆εpk+1 − (σy

k +
∂σy

k

∂ε̄p
∆ε̄p +

∂σy
k

∂ ˙̄εp
∆( ˙̄εp) +

∂σy
k

∂T
∆T ) ≈ 0 (3.45)

Tk+1 = Tk +
σy
kηk
ρCv

∆εpk+1 (3.46)

∆ε̄pk+1 =
σ̄tr
k+1 − σy

k

3G+
∂σy

k

∂ε̄p +
1
∆t

∂σy
k

∂ ˙̄εp
+ ηk

ρCv
σy
k
∂σy

k

∂T

(3.47)

The Newton-Raphson method is based on the iterative procedure (3.48), where
x denotes the variable ∆ε̄pk+1 and xn represents the value of x at n-th iteration, i.e.
xn = ∆ε̄p

(n)

k+1. The derivative function f ′ (x) is given in expression (3.49). Solution
of the explict method (3.47) can serve as the initial approximation of the iterative
method as shown in expression (3.50). Hence, equations (3.48)–(3.50) establish the
NR method.

xn+1 = xn −
f (xn)

f ′ (xn)
(3.48)

f ′ (x) = −3G− ∂σy

∂ε̄p
− 1

∆t

∂σy

∂ ˙̄εp
− σyη

ρCv

∂σy

∂T
(3.49)

x0 =
σ̄tr
k+1 − σy

k

3G+
∂σy

k

∂ε̄p +
1
∆t

∂σy
k

∂ ˙̄εp
+ ηk

ρCv
σy
k
∂σy

k

∂T

(3.50)
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Figure 3.1: Example of convergence and divergence cases for the Newton-Raphson Method [99]

3.3 A calculation scheme suitable for the RP model

The Newton-Raphson (NR) method is renowned for its convenience and rapid
convergence rate. However, certain challenges can arise when employing the NR
method. One such challenge occurs when the function f(x) is non-monotonic, and
its derivative f ′(x) vanishes at certain points during the iteration process as shown
in figure 3.1 [99]. Additionally, difficulties may arise when f(x) lacks a derivative at
specific points, such as in the case of a piecewise function. For dynamic plasticity
problems, a non-monotonic behavior of f(x) may arise due to the yield drop phe-
nomenon, thermal softening under impact loads, etc. Thus, a safe version of NR
method [100] is used in my work.
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3.3.1 Safe version of the Newton–Raphson method

The safe version of the Newton-Raphson (NR) method combines both the NR
procedure and the bisection method to ensure reliable convergence [100]. The bisec-
tion method utilizes an interval [xmin, xmax] at each iterative step and considers the
midpoint xmid = xmax+xmin

2 as the new boundary for the subsequent interval. The
determination of the upper or lower boundary is based on the sign of the product
f(xmid)f(xmin). In the safe version of the NR method, after each iteration, the inter-
val is adjusted by replacing one of its boundaries with the newly computed solution.
If the obtained solution from the NR method at the current iteration, defined in
equation (3.48), falls outside the interval bounds, it is considered invalid. In such
cases, a bisection step is performed to bring the solution back within the interval,
i.e. xmid is the new boundary. This iterative process guarantees that subsequent
iterations remain within the specified interval range, ensuring convergence towards
the desired solution.

3.3.2 Implementation in commercial software package

The commercial software package ABAQUS/Explicit incorporates the explicit
central difference method, as discussed in Section 3.2.1, for solving the dynamic
equation (3.31). To facilitate this solution approach, the subroutine VUMAT is
available, allowing users to integrate their own custom programs responsible for
computing stress increments with the ABAQUS/Explicit procedure. This combi-
nation of user-defined programs and ABAQUS/Explicit functionality enhances the
flexibility and versatility of the software package for a wide range of applications. In
the present study, the safe version of the Newton-Raphson (NR) method has been
integrated into a Fortran-based VUMAT subroutine. The hardening function σy(·)
follows the simplified version of the RP model (2.22). It is important to highlight
certain key aspects of the RP model that are particularly relevant to implementation
of the subroutine.

At first, scalar variables σ, ε̇, ε̇p need be related to invariants of tensors σ, ε̇, ε̇p.
In cases of one-dimension stress state, we have following stress and strain tensors,
where θ̇ = tr ε̇ = tr ε̇e characterises the change of element volume, ν is the Poisson’s
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ratio.

σ = σe1e1, ε̇ = ε̇e1e1 +
1

2

(
θ̇ − ε̇

)
e2e2 +

1

2

(
θ̇ − ε̇

)
e3e3,

ε̇e = ε̇ee1e1 − νε̇ee2e2 − νε̇ee3e3, ε̇
p = ε̇pe1e1 −

1

2
ε̇pe2e2 −

1

2
ε̇pe3e3.

According to expressions (3.36) and (3.38), invariants σ̄(s) =
(
3
2s : s

) 1
2 and ˙̄εp yield

σ̄(s) =

(
3

2
s : s

) 1
2

= σ,

˙̄εp =

(
2

3
ε̇p : ε̇p

) 1
2

= ε̇p.

(3.51)

The volume change described by θ is not considered in the one-dimensional plasticity
problem, thus the scalar variable ε̇ is not equal to

(
2
3 ε̇ : ε̇

) 1
2 . Nevertheless, we may

have

˙̄ε =
θ̇

3
+

(
2

3
dev ε̇ : dev ε̇

) 1
2

= ε̇. (3.52)

Consequently, we solve the equations (3.34)–(3.38), where the hardening function
σy is defined by

σy (ε̄, ε̄p, ˙̄ε, T ) = σc (ε̄
p, T ) g(ε̄, ˙̄ε, T ),

g(ε̄, ˙̄ε, T ) =


(

˙̄ετ(1+α)
ε̄

)1/α
, ε̄

˙̄ετ
⩽ 1,(

˙̄ετ(1+α)ε̄α

ε̄1+α−(ε̄− ˙̄ετ)1+α

)1/α
, ε̄

˙̄ετ
> 1.

, τ = τ(T ).
(3.53)

In the model (3.53), the value ε̄α or ε̄1+α can be extremely minor, especially
during the initial stages of plastic deformation when ε is much less than 1 and α

is relatively large. In contrast, the value of σc (ε̄
p, T ) is significantly larger than

ε̄α or ε̄1+α. The stark difference in magnitude between these values can lead to
notable cumulative imprecision in the iterative calculation procedure. Therefore, it
is necessary to adjust the form of the function g(ε̄, ˙̄ε, T ) to mitigate inaccuracies
that may arise during the calculation process.

Let’s denote a dimensionless value ε̄
˙̄ετ

by ξ. Then, the function g(ε̄, ˙̄ε, T ) can be
reformulated as g(ξ) given in equation (3.54), where ξ = ξ(ε̄, ˙̄ε, T ) = ε̄

˙̄ε τ(T )
. Partial

derivatives used in the safe version of NR method are shown in expression (3.55).
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g(ξ) =

(
(1 + α)ξα

ξ1+α − (ξ − 1)1+αH(ξ − 1)

)1/α

=


(
1+α
ξ

)1/α
, ξ ≤ 1(

1+α

ξ−(ξ−1)(1− 1
ξ)

α

)1/α

, ξ > 1
(3.54)

∂σ

∂ε̄
= σc

∂g

∂ε̄
,

∂σ

∂ε̄p
=

∂σc
∂ε̄p

g,

∂σ

∂ ˙̄ε
= σc

∂g

∂ ˙̄ε
,

∂σ

∂T
=

∂σc
∂T

g + σc
∂τ

∂T

∂g

∂τ
,

(3.55)

Values ∂g(ξ)
∂ξ , ∂g(ξ)

∂ ˙̄ε
and ∂g(ξ)

∂τ can be calculated in two cases. If ξ ≤ 1, we may have

dg(ξ)

dξ
= (1 + α)1/α

(
− 1

α

)
ξ−1/α−1 = −(1 + α)1/α

αξ1+1/α
= −g(ξ)

αξ
,

∂g(ξ)

∂ε̄
=

1

τ ˙̄ε

dg(ξ)

dξ
=

1

τ ˙̄ε

(
−g(ξ)

αξ

)
= −g(ξ)

αε̄
,

∂g(ξ)

∂ ˙̄ε
= −ξ

˙̄ε

dg(ξ)

dξ
=

(1 + α)1/α

α ˙̄ε

(
1

ξ

)1/α

=

(
1 + α

ξ

)1/α

(α ˙̄ε)−1 =
g(ξ)

α ˙̄ε
,

∂g(ξ)

∂τ
= −ξ

τ

dg(ξ)

dξ
=

(
1 + α

ξ

)1/α

(ατ)−1 =
g(ξ)

ατ
.

(3.56)

In case of ξ > 1, the following equation is derived

dg(ξ)

dξ
= −

ξ − (ξ + α)
(
1− 1

ξ

)α
ξ − (ξ − 1)

(
1− 1

ξ

)α g(ξ)αξ
,

∂g(ξ)

∂ε̄
=

1

τ ˙̄ε

dg(ξ)

dξ
= −

ξ − (ξ + α)
(
1− 1

ξ

)α
ξ − (ξ − 1)

(
1− 1

ξ

)α g(ξ)αε̄
,

∂g(ξ)

∂ ˙̄ε
= −ξ

˙̄ε

dg(ξ)

dξ
=

ξ − (ξ + α)
(
1− 1

ξ

)α
ξ − (ξ − 1)

(
1− 1

ξ

)α g(ξ)α ˙̄ε
,

∂g(ξ)

∂τ
= −ξ

τ

dg(ξ)

dξ
=

ξ − (ξ + α)
(
1− 1

ξ

)α
ξ − (ξ − 1)

(
1− 1

ξ

)α g(ξ)ατ
.

(3.57)
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In summary, we have partial derivatives given in equations (3.58), (3.59) and (3.60).

∂g(ξ)

∂ε̄
=


−g(ξ)

αε̄ , ξ ≤ 1

−ξ−(ξ+α)(1− 1
ξ)

α

ξ−(ξ−1)(1− 1
ξ)

α
g(ξ)
αε̄ , ξ > 1

(3.58)

∂g(ξ)

∂ ˙̄ε
=


g(ξ)
α ˙̄ε

, ξ ≤ 1

ξ−(ξ+α)(1− 1
ξ)

α

ξ−(ξ−1)(1− 1
ξ)

α
g(ξ)
α ˙̄ε

, ξ > 1
(3.59)

∂g(ξ)

∂τ
=


g(ξ)
ατ , ξ ≤ 1

ξ−(ξ+α)(1− 1
ξ)

α

ξ−(ξ−1)(1− 1
ξ)

α
g(ξ)
ατ , ξ > 1

(3.60)

Calculation flowchart of the safe version of NR method for dynamic plasticity prob-
lem with the RP model is illustrated in figure 3.2. The initial point x0 of NR method
for the RP model differs from that discussed in equation (3.50), giving

x0 =
σ̄tr
k+1 − σy

k −
∂σy

k

∂ε̄ ∆ε̄

3G+
∂σy

k

∂ε̄p +
1
∆t

∂σy
k

∂ ˙̄εp
+ ηk

ρCv
σy
k
∂σy

k

∂T

. (3.61)

3.4 Conclusion to the chapter

In this chapter, time integration algorithms, return mapping algorithm for time
integration of stress and a safe version of the Newton–Raphson method for solving
algebraic equations are discussed. A calculation scheme suitable for the simplified
version of RP model is presented. The developed calculation approaches are used
to perform simulation of dynamic plasticity problems. The results are discussed in
section 4.3.
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Figure 3.2: Calculation flowchart of the safe version of NR method for dynamic plasticity problem
with the simplified version of RP model 3.53
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Chapter 4

Simulation results from different models
and comparative analysis

In this chapter, behaviors of the original and modified RP models are firstly
compared based on aluminium alloys 6082-T6 and 2519A and titanium alloy Ti-
6Al-4V without considering the thermal softening phenomenon. Then, the thermo-
mechanical responses of HSLA-65 steel, the commercial 93W–4.9Ni–2.1Fe Tungsten-
based composite and Ti-6Al-4V over a wide range of strain rates and temperatures
are simulated by IRP model, different phenomenological, dislocation-mechanism-
based and artificial neural network models discussed in chapter 1. Main differ-
ences between different types of models are examined. Moreover, we compare the
temperature-time correspondences within our simulations. Finally, to validate the
calculation scheme developed in chapter 3 and illustrated in figure 3.2, we perform
finite element analysis using a simplified version of the RP model. This analysis
serves as an essential step towards confirming the accuracy and reliability of our
computational approach.

Most of results presented in the chapter are published in papers [72] [84].

4.1 Comparison of results: IRP and ORP models

The validation of the model performance in describing the strain rate effects
is given in this section. The elasto-plastic response of aluminium alloys 6082-T6,
2519A and titanium alloy Ti-6Al-4V in a wide range of strain rates are simulated
by the IRP model, the ORP model and the JC model. It is important to note that
this section does not specifically address the thermal softening behavior, but only
focuses on the strain rate effects. Therefore, all simulations are performed within a
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true strain limit of 0.15. Additionally, we assume constant strain rates throughout
the simulations. Theoretical results under uniaxial loading conditions are obtained
and compared with experimental data to assess the accuracy of our models.

4.1.1 Aluminium alloys 6082-T6 and 2519A

Mocko W., Rodriguez-Martinez J. A. et al. conducted a group of experiments to
study the compressive plastic response of 6082-T6 aluminium alloy (AA6082-T6) in
a wide range of strain rates at room temperature [101]. The low-rate compression
experiments (10−4 s−1 < ε̇ < 10−1 s−1) were conducted by a servo-hydraulic test-
ing machine, the intermediate- and high-rate compression experiments (950 s−1 <

ε̇ < 4500 s−1) were performed by a conventional split pressure Hopkinson bars
(SPHB) arrangement and very-high-rate compression experiments (2 × 104 s−1 <

ε̇ < 4 × 104 s−1) were carried out using a miniaturised direct impact compres-
sion tests (MDICT) configuration. In addition, some of Winzer’s experimental re-
sults [102] on the dynamic compressive behaviour of AA6082-T6 were mentioned
in Mocko’s research. One of the main characteristics of SPHB experiments, com-
pared with other high-rate test techniques, is that a high strain rate deformation
is imposed while the tested material is approximately in a dynamic equilibrium.
Thus, the SPHB experiments are convenient for studying the rate-dependent con-
stitutive behaviour of tested materials without considering the wave propagation.
The mechanism of material response at very-high-rate loading could be different, so
the very-high-rate compression experiments are not interested in the current paper.

Experimental results obtained under uniaxial compression with a wide strain-
rate range and the performance of the IRP, JC and ORP models are illustrated
in figures 4.1 (a), (b) and (c). The determined parameter values are shown in
tables 4.1, 4.2 and 4.3. The Young’s modulus at temperature T = 0 K and its
temperature dependence are given in the work [101], where the Young’s modulus at
room temperature can be derived. According to the experimental results, the strain-
rate effect is pronounced, i.e. the flow stress level is elevated with the increasing
strain rate. The IRP model and JC model are compared firstly. It is evident in
figures 4.1 (a) and 4.1 (b) that both models can well depict the strain-rate effect due
to their strain-rate dependent multipliers, Σ(t)/Σ̃(t) and 1+C ln

(
ε̇
ε̇0

)
, respectively.

In the quasi-static case (ε̇ = 0.01 s−1), the experimental data and simulated curves
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of both IRP and JC models nearly overlap. However, in dynamic cases (950 s−1 <

ε̇ < 4500 s−1), the IRP model outperforms the JC model.
Three key points are noteworthy. First, there are three flow stress levels observed

in experiments, corresponding to the low- (ε̇ = 0.01 s−1), intermediate- (ε̇ = 950 s−1

and 1100 s−1) and high-rate compression conditions (ε̇ = 3900 s−1 and 4500 s−1),
respectively. At intermediate strain rates, the flow stress level obtained by the IRP
model is closer to the experimental data than that acquired by the JC model. Be-
sides, the stress-strain curves modelled by the JC model at intermediate strain rates
distinctly overestimate the experimental results, and they are almost identical to
those curves at high strain rates. In contrast, the curves acquired by the IRP model
at intermediate and high strain rates are separated, and only the curve at strain
rate 1100 s−1 locates slightly above the experimental one. Moreover, the IRP model
simulates three stress levels, which are in good agreement with experimental facts.
Nevertheless, the JC model acquires only two stress levels (the quasi-static and dy-
namic ones). Second, in the high-rate compression test, an obvious yield drop effect
is found. As the plastic deformation commences, the dynamic stress-strain curves
ascend slightly at first and then descends to be lower than the yield stress ultimately.
As presented in figure 4.1 (b), the flow stress levels simulated by the JC model at
high loading rates are consistent with the experimental results when the true strain
exceeds 4%. Notwithstanding, in the strain range approaching the yield point, the
JC model may fail to work. At an approximately constant strain rate, both ORP
and IRP models can describe and predict the non-monotonic material behaviour. At
last, in a numerical simulation (for instance, the finite element analysis), in addition
to the rate-dependent hardening law, the plastic criterion is equally crucial in the
yield function. The yield stress vs. strain rate curves simulated by IRP (or ORP)
and JC models are shown in figure 4.1 (d). The value C = 0.01 is determined by
fitting stress values at different strain rates. In this way, the rate-dependent flow
stress levels are acceptably described, as given in figure 4.1 (b). However, the rate
dependence of the yield stress (εp = 0) can not be well characterised. It can be seen
in figure 4.1 (d) that the IRP model provides a better description of rate-dependent
yield stresses than Johnson-Cook’s plastic criterion does. In the current case, the
Johnson-Cook’s criterion σ ≤ A

(
1 + C ln

(
ε̇
ε̇0

))
is not suitable for the yield stress

prediction since the plastic deformation simulated by the JC model takes place ear-
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Table 4.1: Determined parameter values of different materials in the IRP model.

Materials Elasticity Plasticity

E (GPa) σy (MPa) K (MPa) n τ (µs) α m

AA 6082T6 30 [101] 306.52 116.48 0.408 2.10 3 5.5
Ti-6Al-4V 114 [82] 773.99 322.75 0.370 459 22 12
Al 2519A 78 [103] 424.30 241.00 0.433 0.65 5 4

Table 4.2: Determined parameter values of different materials in the Johnson-Cook model.

Materials A (MPa) B (MPa) n C ε̇0 (s−1)

AA 6082T6 306.52 116.48 0.408 0.01 0.01
Ti-6Al-4V 773.99 322.75 0.370 0.016 0.001
Al 2519A 424.30 241.00 0.433 0.008 0.001

lier than that in experiments. As a consequence, the JC model may provide a less
accurate result in a simulation of a complex dynamic system. It might be believed
that the Johnson-Cook’s plastic criterion is still available if the value of parameter
C is well adjusted to fit the rate-dependent yield stresses. The adjustment is sum-
marised in figure 4.1 (d), where C = 0.0176. As a consequence of adopting the JC
model, the simulated flow stress levels overestimate the experimental ones, shown
in figure 4.1 (e). Thus, if the JC model is implemented, a compromise should be
made between describing the flow stress level and the yield stress.

The flow stress levels predicted by the ORP model align well with experimental
results when subjected to intermediate- and high-rate loading conditions. However,
when exposed to a low strain rate, the model overestimates the flow stress compared
to the experimental data. This discrepancy highlights a limitation of the ORP model
in accurately capturing the hardening behavior across different strain rates. Specifi-
cally, this deficiency arises from the absence of a functional relationship between the
relaxation function γ(t) and the plastic strain εp(t) within the model as discussed
in section 2.1.3.

Table 4.3: Determined parameter values of different materials in the ORP model.

Materials Elasticity Plasticity

E (GPa) σy (MPa) τ (µs) α β

AA 6082T6 30 [101] 306.52 2.10 3 0.09
Ti-6Al-4V 114 [82] 773.99 459 22 0.45
Al 2519A 78 [103] 424.3 0.65 5 0.09
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Figure 4.1: Comparison between stress-strain curves of the AA 6082T6 measured in compression
tests [101] and those simulated at room temperature and various strain rates by (a) IRP model
(b) JC model with C = 0.01, (c) ORP model and (e) JC model with C = 0.0176. (d) The strain
rate dependence of the yield stress acquired by experiments, the ORP or IRP model and the JC
model. The symbols represent experimental data, and lines are model description.
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The stress-strain relations of the 2519A aluminium alloy (Al 2519A) at room
temperature and various strain rates are investigated experimentally in the work
[89]. The compression tests and simulated results are given in figures 4.2 (a), (b)
and (c). The determined parameter values are shown in tables 4.1, 4.2 and 4.3. The
Young’s modulus is provided in the work [103]. The IRP and ORP models show the
separating flow stress levels at high loading rates, while the flow curves simulated
by the JC model are nearly overlapping. Figure 4.2 (d) illustrates that the yield
stress vs. strain rate relation is better described by the ORP and IRP models.
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Figure 4.2: Comparison between stress-strain curves of the Al 2519A measured in compression
tests [89] and those simulated by (a) IRP model (b) JC model and (c) ORP model at room
temperature and various strain rates. (d) The strain rate dependence of the yield stress acquired
by experiments, the ORP or IRP model and the JC model. The symbols represent experimental
data, and lines are model description.



79

4.1.2 Titanium alloy Ti-6Al-4V

In the research [73], a series of tension experiments were carried out by Hu et
al. to investigate both quasi-static and dynamic plastic response of a commercial
Ti-6Al-4V Titanium alloy under various loading conditions and temperatures. The
MTS testing machine and the split Hopkinson pressure bar (SHPB) technique are
used to achieve a wide range of strain rates (MTS machine for quasi-static tests,
SHPB for dynamic tests). A sequence of effects, including strain-rate effect, work-
hardening effect, stress state effect and temperature influence, were discussed in
detail. Here, the stress state effect and temperature influence are temporarily out
of consideration.

The tensile experimental results and the model description are illustrated in fig-
ures 4.3 (a), (b) and (c). The parameter values are shown in tables 4.1, 4.2 and 4.3.
The Young’s modulus is provided in the work [82]. Under impact loads, the yield
drop is observed in experiments, the tendency of which can be described by the
IRP model. All three models give satisfactory flow stress levels at high strain rates.
However, it is noticeable in experiments that at high strain rates the work hardening
response is not obvious. Under dynamic loading conditions, the flow stress curves
generally go steadily with the increase of deformation, although a visible strain hard-
ening response is observed under the quasi-static loading condition. The JC model
doesn’t make a distinction between strain hardening responses at different strain
rates, while the ORP model and the IRP model provide a better characterisation of
the stable work-hardening response of the material under dynamic conditions. At
the low strain rate ε̇ = 1 s−1, the JC model performs better than other models.

To sum up, the JC model gives acceptable flow stress levels at different strain
rates at the expense of the accuracy of the predicted yield stress in the case of
yield drop. Besides, the JC model cannot simulate the non-monotonic behaviour of
stress-strain curves. The ORP model, on the contrary, can more precisely predict
the yield stress and describe the yield drop effect, but it is slightly inferior to the
JC model in the work-hardening simulation at low strain rates. The IRP model
demonstrates better performance.
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Figure 4.3: Comparison between stress-strain curves of the Ti-6Al-4V measured in tensile tests
[73] and those simulated by (a) IRP model (b) JC model and (c) ORP model at room temperature
and various strain rates. (d) The strain rate dependence of yield stress. The symbols represent
experimental data, and lines are model description.

4.2 Comparison of results: IRP and other existing models

In this section, the thermo-mechanical responses of HSLA-65 steel, the commer-
cial 93W–4.9Ni–2.1Fe Tungsten-based composite and Ti-6Al-4V over a wide range
of strain rates and temperatures are simulated by the IRP model considering differ-
ent temperature-time correspondences. The descriptive abilities of various models
mentioned in chapter 1 are compared. All simulations are performed assuming a con-
stant strain rate. The initial values of the model constants are determined through
physical definitions or experimental data fitting. These values are then optimized
using a constrained optimization procedure to minimize the errors between model
descriptions and experimental results. The ability of the studied models to accu-
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rately describe the experimental data was quantitatively assessed using the following
error measure

∆ =
1

N

N∑
i=1

∣∣∣∣σexp
i − σmod

i

σexp
i

∣∣∣∣× 100%, (4.1)

where N is the total number of experimental data, σexp
i is the experimental measured

true stress and σmod
i is the true stress described by models. The results are deemed

to be relatively accurate when the descriptive error ∆ is less than 5%, which is
commonly accepted in engineering practice.

To investigate the negative hardening at low temperatures and high strain rates,
experimental data on HSLA-65 steel are considered. In the section 4.2.5, we specif-
ically examine the main differences between the artificial neural network (ANN)
model and constitutive models using experimental data from the tungsten-based
composite. Additionally, the temperature-time correspondence that provides better
results for the HSLA-65 steel and tungsten-based composite is validated through
experimental data for Ti-6Al-4V.

4.2.1 Taylor–Quinney coefficient

Plastic deformation produces heat that can either be dissipated to the surround-
ings or retained within the material, thereby raising its temperature. If the rate
of heat generation surpasses the rate of heat dissipation, the temperature of the
material increases. At high strain rates, the adiabatic process occurs where most
of the heat generated by rapid plastic deformation is retained within the material.
The rapid and continuous temperature rise during plastic deformation leads to a
simultaneous decrease in the flow stress of the material. The temperature rise is
generally determined by the equation (1.3), which derives the equation (4.2) in the
one-dimensional case.

∆T =
η

ρCν

∫ εp+∆εp

εp

σdεp (4.2)

4.2.2 HSLA-65 steel

As mentioned in the section 2.2.3, Nemat-Nasser, and Guo conducted a compre-
hensive study [14] on the thermo-mechanical behavior of HSLA-65 steel with a BCC
structure. The compression tests were carried out over a wide range of strain rates
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from 0.001 s−1 to 8500 s−1 and temperatures ranging from 77 to 1000 K. For quasi-
static loading rates of 0.001 s−1 and 0.1 s−1, experiments were performed using an
Instron hydraulic testing machine at temperatures of 77 to 800 K. The high load-
ing rates tests were conducted using the enhanced compression recovery Hopkinson
technique, over the temperature range of 77 to 1000 K. Elevated temperatures were
achieved using a high-intensity quartz lamp in a radiant-heating furnace of an ar-
gon environment. The low temperature of 77 K was achieved by immersing the
specimen and the testing fixture (AL2O3 ceramic bars) in a bath of liquid nitrogen.
At temperatures above 700 K, the flow stress increased significantly with increas-
ing temperature due to dynamic strain aging. This abnormal phenomenon is not
considered in the current paper. Therefore, the modeling is only conducted within
the temperature range of 77–700 K. Young’s modulus of HSLA-65 steel at different
temperatures was given in the work [104]. Over the temperature range of 296–700
K, the temperature dependence of Young’s modulus can be described by the rela-
tion (4.3) mentioned in the work [38]. E0 is Young’s modulus at T = 0 K, Tm is
the melting temperature, and θ∗ is the characteristic homologous temperature. The
model description and the experimentally measured elastic modulus are displayed
in figure 4.4 (a), and used parameter values are shown in table 4.4. The adiabatic
temperature rise was a concern by Nemat-Nasser and Guo [14]. The value of the
mass density ρ of HSLA-65 steel and the Taylor–Quinney coefficient η are shown in
table 4.4. The heat capacity Cν is taken 0.5 J/gK.

E(T ) = E0

{
1− T

Tm
exp

[
θ∗
(
1− Tm

T

)]}
(4.3)

The experimental stress-strain diagrams of HSLA-65 steel at quasi-static strain
rates can be well described by the relation (2.30). Thus, in this case, the relation
(2.30) is incorporated into the IRP model (2.28). By fitting the corresponding
experimental stress-strain diagrams given in the work [14], the value ranges for τ

and α at different temperatures, which provides a less than 5 % relative error in
describing the dynamic stress-strain diagrams, can be established. These ranges
are denoted by green vertical lines in figures 4.4 (b) and (c). Figure 4.4 (b) shows
the temperature dependence of the incubation time τ with a fixed value α = 15,
while figure 4.4 (c) illustrates the temperature dependence of the parameter α with a



83

0 200 400 600 800

Temperature, K

100

150

200

250

Y
o
u
n
g
's

 m
o
d
u
lu

s,
 G

P
a

(a)

0 200 400 600 800

Temperature, K

0

10

20

30

T
h
e 

in
cu

b
at

io
n
 t

im
e,

 
s

(b)

0 200 400 600 800

Temperature, K

0

20

40

60

T
h
e 

v
al

u
e 

o
f 

th
e 

p
ar

am
et

er
 

(c)

Figure 4.4: The temperature dependence of the Young’s modulus (a), the incubation time τ with
fixed α = 15 (b) and the parameter α with fixed τ = 6.44µs (c) for HSLA-65 steel. The symbols
are the experimentally measured Young’s modulus (a). The value ranges for τ (b) and α (c)
obtained by fitting the IRP model to the experimental data are denoted by green vertical lines.
The solid and dash-dotted lines in (b) and (c) are corresponding model descriptions.

fixed value τ = 6.44µs. The relations (2.34) and (2.37) more accurately describe the
temperature dependence of parameters τ and α compared to others. Although the
relation (2.37) can not perfectly fall within the value range for α at the temperature
of 700 K, it still provides a satisfactory stress-strain diagrams shown below in figure
4.5 (b). Additionally, this paper does not focus on the temperature dependence of
the parameter α.

Figures 4.5 and 4.6 illustrate the stress-strain diagrams obtained from experiments
and simulations using different phenomenological and dislocation-mechanics-based
models. Figure 4.5 presents simulation results at temperatures of 77, 296, 500, and
700 K and high loading rates of 3000 and 8500 s−1. Figures 4.5 (a) and (b) show
the performance of the IRP model incorporating the relation (2.34) and (2.37),
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Table 4.4: Parameters determining the Young’s modulus, the mass density, the plastic work-heat
conversion factor and the melting temperature of tested materials.

Materials E0 (GPa) Tm (K) θ∗ ρ (g/cc) η

HSLA-65 Steel [38][14] 252.80 1773 0 7.8 1
Tungsten [16] 370 1730 0.5 17.8 0.9
Ti-6Al-4V [105] [74] 109 1941 0.29 4.428 0.9

respectively. The parameter values used in the IRP model are provided in table 4.5
and table 4.6 or 4.7. Parameter values of the JC model, KHL model 1, NNI model
and ZA model are given in tables 4.8, 4.9, 4.10 and 4.11, respectively. Figure 4.6
demonstrates the quasi-static response of the HSLA-65 steel under different loading
conditions and their corresponding modelling. The description error (4.1) of different
models is graphically presented in figure 4.7.

At the temperature of 77K and high-rate loadings, the negative hardening due
to thermal softening induced by the rapid plastic dissipation are observed. The
dislocation-mechanics-based models show good agreement with experimental data
at different strain rates, whereas the negative hardening is only partially featured.
The JC and KHL models satisfactorily describe some curves at high loading rates,
but at the expense of their performance at low loading rates. The experimental
data are more accurately described by the IRP model, NNI model, and ZA model.
Specifically, the IRP model captures the negative hardening tendency due to the
equation (1.3) and the temperature-time correspondence following the temperature-
dependent behavior of the RS factor. It appears that the temperature-dependent
relations (2.34) and (2.37) can give similar results. The parameter values of the
NNI model are given in the work [14]. The initial parameter values of other models
are determined through experimental data fitting, and then these values are opti-
mized using a constrained optimization procedure to minimize the errors between
descriptive and experimental results.

4.2.3 93W–4.9Ni–2.1Fe Tungsten-based composite

Xu and Huang conducted a series of compression tests on the commercial 93W–
4.9Ni–2.1Fe Tungsten-based composite [16] with a BCC structure over a wide range

1Since there is a lack of data at the strain rate of 1 s−1, the parameters of the KHL model for HSLA65 steel
are determined by considering all available curves and minimizing the relative error. This approach may not yield
optimal performance for the KHL model. It would be preferable to have experimental diagrams at a strain rate of
1 s−1 to enhance the accuracy and reliability of the parameter estimation.
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Figure 4.5: The stress-strain diagrams of the HSLA-65 steel at 4 temperatures and 2 high load-
ing rates and the corresponding simulation performed by the IRP model with the temperature-
dependent τ (a), the IRP model with the temperature-dependent α (b), JC model (c), KHL model
(d), NNI model for BCC metals (e) and the ZA model for BCC metals (f).

Table 4.5: Parameters determining the flow stress at quasi-static loading rate following the relation
(2.29) or (2.30).

Materials σ0 (MPa) B0 (MPa) n0 B1 (MPa) β1 (K−1) n1 Tr (K)

HSLA-65 Steel 361.74 386.12 0.35 1049.81 8e-3 – –
Tungsten 248.06 1023.17 0.42 2062.87 5.40e-3 – –
Ti-6Al-4V 759.84 211.08 0.28 – – 0.72 296
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Figure 4.6: The stress-strain diagrams of the HSLA-65 steel at 4 temperatures and the quasi-static
loading rate and the corresponding simulation performed by the IRP model with the temperature-
dependent τ (a), the IRP model with the temperature-dependent α (b), JC model (c), KHL model
(d), NNI model for BCC metals (e) and the ZA model for BCC metals (f).

Table 4.6: Parameters used in the IRP model with the temperature-dependent τ following the
relation (2.34).

Materials τ0 (µs) β0 α m Tr (K)

HSLA-65 Steel 6.44 7.38 15 1 296
Tungsten 118 2.08 10 1 173
Ti-6Al-4V 1300 2.35 25 5 296
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Table 4.7: Parameters used in the IRP model with the temperature-dependent α following the
relation (2.37).

Materials τ (µs) α0 β0 m Tr (K)

HSLA-65 Steel 6.44 17.05 2.62 1 296
Tungsten 110 9.98 0.94 1 173
Ti-6Al-4V 1300 24.97 0.70 5 296

Table 4.8: Determined parameters of different materials in the Johnson-Cook model.

Materials A (MPa) B (MPa) n C ε̇0 (s−1) m Tr (K)

HSLA-65 Steel 969.30 570.98 0.382 0.015 1e-3 0.494 50
Tungsten [16] 1011.10 1601.50 0.4982 0.0305 1 0.7263 173
Ti-6Al-4V 759.84 211.08 0.28 0.02 0.001 0.72 296

Table 4.9: Determined parameters of different materials in the KHL model.

Materials A (MPa) B (MPa) n0 n1 D0 (s−1) ε̇0 (s−1) C m Tr (K)

HSLA-65 Steel 772.93 337.38 0.584 0.333 1e6 1 0.016 1.64 296
Tungsten [16] 264.6 1533.7 0.2172 3.9588 1e6 1 0.2196 1.1444 288
Ti-6Al-4V 851.79 91.94 0.087 2.45 1e6 1 0.032 1.50 296

Table 4.10: Determined parameters of different materials in the NNI or NNL model.

Materials a (MPa) n σ0 (MPa) a0 n0 k/G0 (K−1) ε̇0 (s−1) q p

HSLA-65 Steel [14] 760 0.15 1450 – – 10.6e-5 4e8 2 2/3
Tungsten [16] 1154.4 0.2635 2061.4 – – 3.89e-5 2e10 3/2 1/2
Ti-6Al-4V 685 0.05 1037.59 0 1 6.2e-5 1.32e10 2 1

Table 4.11: Determined parameters of different materials in the ZA model.

Materials σa (MPa) B (MPa) β0 (K−1) β1 (K−1) B0 (MPa) n α0 (K−1) α1 (K−1)

HSLA-65 Steel 361.74 1049.81 6.39e-3 3.23e-4 386.12 0.35 – –
Tungsten [16] 230.50 1864.60 4.01e-3 2.49e-4 1083.10 0.4355 – –
Ti-6Al-4V 513.73 1167.99 3.49e-3 1.54e-4 2812.71 – 0.31 0
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Figure 4.7: Comparison of different constitutive models in describing the stress-strain diagrams
of HSLA-65 Steel.

of strain rates from 0.001 s−1 to 3000 s−1 and temperature from 173 to 873 K.
The quasi-static compression tests, including strain rates 0.001 s−1 and 1 s−1, were
performed using a MTS servo-hydraulic testing machine. Dynamic compression
tests, at strain rates of 200 s−1, 1000 s−1, and 3000 s−1, were conducted using the
revised split Hopkinson pressure bar technique. These dynamic tests were performed
at elevated temperatures of 288–873 K using electro-thermal cells. The temperature
was measured by a thermocouple arrangement in the furnace for quasi-static tests,
while during dynamic tests a thermocouple was directly attached to the specimen.
Young’s modulus of tested materials at different temperatures was given in Xu and
Huang’s work. The temperature dependence of Young’s modulus was also described
by the relation (4.3). The value of required parameters, as well as the mass density
ρ of tested samples and its Taylor–Quinney coefficient η, are shown in table 4.4. The
temperature-dependent heat capacity Cν is assumed a function as Cν = 162.92 −
0.00995T + 1.74× 10−5 T2

(
×10−3 J/gK , for 0◦C ⩽ T ⩽ 1000◦C) [16].

The value ranges for τ and α, which were obtained by fitting the experimental data
to the IRP model, are displayed in figures 4.8. Equations (2.34) and (2.37) provide
satisfactory descriptions of the temperature dependence of τ and α, respectively.
Although the relation (2.32) also agrees with value ranges for τ , it gives a slightly
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Figure 4.8: The temperature dependence of the incubation time τ with fixed α = 10 (a) and the
parameter α with fixed τ = 101µs (b) for the 93W–4.9Ni–2.1Fe Tungsten-based composite. The
value ranges for τ and α obtained by fitting the IRP model to the experimental data are denoted
by green vertical lines. The solid and dash-dotted lines are corresponding model descriptions.

higher error in describing the stress-strain diagrams compared to the relation (2.34).
At the temperature of 873 K, the IRP model can only provides modelling with the
description error approximately equal to 6–7 %. Thus, a single green point, instead
of a value range, is illustrated. The parameter values are shown in tables 4.6 and
4.7. The stress-strain diagrams and model descriptions at various strain rates and
temperatures are presented in figures 4.9 and 4.10, respectively. The stress-strain
diagrams at quasi-static strain rates are well described by the relation (2.30) used
in the IRP model. The parameter values are shown in table 4.5. The parameter
values of the JC, KHL, NNI and ZA models are provided in the work [16]. The final
parameter values used in the JC, KHL, NNI and ZA model are given in tables 4.8,
4.9, 4.10 and 4.11, respectively.

The experimental data are also described by the ANN model with 1 hidden layer
and 512 neurons, i.e. structure 3–512–1 in figure 1.1. The total number of build-in
parameters is 2561, and the model performance is illustrated in figures 4.11 (a),
(b), and (c). The training dataset of the ANN model includes experimental data
obtained at static strain rates of 0.001 s−1 and 1 s−1, as shown in 4.11 (a), and
dynamic strain rates of 200 s−1 and 3000 s−1 given in 4.11 (b). The number of data
points for training is 3600, since a sufficient number of points meeting our needs can
always be obtained from stress-strain curves, and part of them are demonstrated in
4.11 (a) and (b). The model validation is performed using experimental data at a
strain rate of 1000 s−1, and the results is demonstrated in 4.11 (c). The experimental
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data are represented by symbols, and the solid lines indicate the model descriptions.
The description errors of different models are reported in figure 4.12 (a), among
which the more accurate description is provided by the IRP model, the ZA model,
and the ANN model. Notice that the ANN model has the best descriptive ability,
as a large number of parameters can always achieve relatively accurate data fitting.
The description errors of different models on the validation dataset are illustrated in
figure 4.12 (b), where the ANN model seems to lose its superiority. The description
error of ANN model higher than many other models, shown in figure 4.12 (b), is
explainable and discussed in detail in section 4.2.5, along with the main differences
between the ANN model and constitutive models.

4.2.4 Ti-6Al-4V

As discussed in sections 4.2.2 and 4.2.3, the temperature dependences of τ in
(2.34) and α in (2.37) provide better results for HSLA-65 steel and Tungsten-based
composite. Hence, these relations are validated using experimental data of the
widely used Ti-6Al-4V. Meanwhile, the function (2.29) is validated as well, although
the relation (2.30) can also accurately describe the thermal softening at quasi-static
loading rates.

In the study [82], Xu and Huang conducted a series of experiments to examine
the quasi-static and dynamic plastic responses of the Ti-6Al-4V alloy, which has an
HCP structure, under various thermo-mechanical loading conditions. To achieve a
wide range of strain rates and temperatures, they employed the MTS testing ma-
chine for quasi-static tests and the split Hopkinson pressure bar (SHPB) technique
equipped with a temperature control system for dynamic tests. The study discussed
in detail the strain-rate effect, work-hardening effect, stress-state effect, and tem-
perature influence. However, the stress state effect is not considered in the current
paper. Here, we focus on the tension tests from the study [82], which revealed in-
triguing non-monotonic behavior. The work [105] provided Young’s modulus values
for the tested Ti-6Al-4V at different temperatures. The temperature dependence
of Young’s modulus can be accurately described using relation (4.3), as shown in
figure 4.13 (a). Table 4.4 displays the required parameters, as well as the mass den-
sity (ρ) of the tested samples and its Taylor–Quinney coefficient (η) given by Khan
[74]. Moreover, the work [74] used a temperature-dependent heat capacity (Cv =
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Figure 4.9: The stress-strain diagrams of the commercial 93W–4.9Ni–2.1Fe Tungsten-based com-
posite at 4 temperatures and 3 high loading rates and the corresponding simulation performed
by the IRP model with the temperature-dependent τ (a), the IRP model with the temperature-
dependent α (b), JC model (c), KHL model (d), NNI model for BCC metals (e) and the ZA model
for BCC metals (f).
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Figure 4.10: The stress-strain diagrams of the commercial 93W–4.9Ni–2.1Fe Tungsten-based
composite at 5 temperatures and 2 quasi-static loading rates and the corresponding simulation
performed by the IRP model with the temperature-dependent τ (a), the IRP model with the
temperature-dependent α (b), JC model (c), KHL model (d), NNI model for BCC metals (e) and
the ZA model for BCC metals (f).
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Figure 4.11: Performance of an Artificial Neural Network (ANN) model in describing stress-strain
diagrams of the commercial 93W–4.9Ni–2.1Fe Tungsten-based composite at various temperatures
and strain rates. The training dataset includes experimental data obtained at static strain rates of
0.001 s−1 and 1 s−1 (a) and dynamic strain rates of 200 s−1 and 3000 s−1 (b). The model validation
is performed using experimental data at a strain rate of 1000 s−1 (c). The experimental data are
represented by symbols, and the solid lines indicate the model descriptions.
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Figure 4.12: Comparison of description errors of different models in describing the stress-strain di-
agrams of the commercial 93W–4.9Ni–2.1Fe Tungsten-based composite. These include the overall
comparison of errors at quasi-static and dynamic strain rates, as well as their average errors (a).
Meanwhile, the error of the ANN model at its validation dataset (1000 s−1) and its comparison
with other models are also focused (b).(
559.77− 0.1473T + 0.00042949T 2

)
× 10−3 J/(gK) (278 K < T < 1144 K)) in
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Figure 4.13: The temperature dependence of the Young’s modulus (a) and the description error of
different models for Ti-6Al-4V. The symbols are the experimentally measured Young’s modulus.
The solid line is the corresponding model description.

Figure 4.14 presents stress-strain diagrams and model descriptions at various
strain rates and temperatures. The initial parameter values for the KHL, NNL,
and ZA model for HCP metals are established based on works [74], [106], and [107],
respectively. These values are then optimized using a constrained optimization pro-
cedure to minimize the errors between descriptive and experimental results. The
final parameter values used in the JC, KHL, NNL and ZA models are listed in ta-
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bles 4.8, 4.9, 4.10 and 4.11, respectively. The parameter values used in the IRP
model are provided in table 4.5 and table 4.6 or 4.7. Figure 4.13 (b) reports the
description errors of different models, among which the IRP, JC, KHL and the ZA
model provide relatively accurate results. Nevertheless, the ZA model performs well
at the expense of its hardening behavior at low strain rates. Among with all men-
tioned constitutive models, only the IRP model can feature the tendency of the
non-monotonic pattern of the flow curves at high loading rates.

4.2.5 Main difference between constitutive models and ANN model

In this paper, the term "constitutive models" is specifically referred to phe-
nomenological and physical-based models as shown in expressions (2.38)–(1.16). As
discussed in section 1.4, the ANN model approximates the constitutive relationship
σ = F (εp, ε̇, T ) by a composition of the active function (1.20) and the linear regres-
sion (1.21), which requires a large number of weight and bias parameters. Therefore,
the ANN model uses a data-driven learning approach, while constitutive models are
proposed by the rule-based analyzing method. This is the main difference between
the ANN model and different constitutive models. We explore this difference in two
aspects: methodology of data analysis and interpretability.

One of the main advantages of ANN algorithm is its generality. The performance
of the ANN model is data-driven, instead of being rule-based. It can "automatically"
extract even implicit features or behavior patterns of the given dataset, disregarding
the type or meaning of the data. This generality is a feature of most approximation
algorithms, but the ANN seems to provide a more powerful approximation method
(1.18) than the classical approaches (1.17) do. It can prove to be more advantageous
in tackling intricate multi-dimensional problems. However, due to the data-driven
feature, it is more sensitive to data quality. In machine learning, a model trained
too well on the training dataset can become overcomplex, resulting in poor gener-
alization to new, unseen data. This is overlearning of the model and it can happen
when the model has too many parameters or is trained for too many epochs, causing
it to fit the noise or random fluctuations in the training data. Overlearning in the
ANN model can be detected by evaluating its performance on a separate validation
dataset. Hence, to analyze data and extract a specific pattern from them, ANN
model requires data to be separated into, at least, two groups: the training dataset
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Figure 4.14: The stress-strain diagrams at 3 temperatures and 5 high loading rates and the
corresponding simulation performed by the IRP model with the temperature-dependent τ (a), the
IRP model with the temperature-dependent α (b), JC model (c), KHL model (d), NNL model for
HCP metals (e) and the ZA model for HCP metals (f).
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and the validation dataset. The validation dataset is often used for artificially ad-
justing values of hyper-parameters in relatively simple cases. The descriptive ability
of an ANN model can be attributed to its capacity to extract implicit behavior pat-
terns from the available data, including both the training and validation datasets.
In contrast, constitutive models are rule-based. Behavior patterns have been math-
ematically summarised in them beforehand using a few parameters. And these are
performed by the reliable scientific and interpretable analysis of the experimental
facts. All given data can be used to validate their descriptive ability, and they are
not likely to fit any noise or random fluctuations in data. The descriptive ability of
constitutive models is determined by their ability to fit mathematically established
rules/patterns to the existing data. Thus, their descriptive and predictive abilities
are limited. The new abnormal physical phenomena often require the introduction
of additional terms to the existing model basis, while the use of ANN model does
not need such modifications.

The ANN model, with a "black box" nature, is not likely to interpret the physical
meaning of parameters or the model itself. It might be a certain pure empirical
model, but with a large number of parameters. This is also a consequence of its data-
driven feature. Instead, the constitutive models show the interpretable meanings of
their parameters. For example, the JC model uses the melting temperature Tm and
the strain hardening exponent n corresponding to the hardening behavior.

Generally, fundamental principles or frameworks of mechanics are always required
to be simple, clear, and “visualizable” for human investigators, and, more impor-
tantly, reliable. The reliability is protected by mathematically summarised rules,
instead of a group of active functions and regressions, which may have unstable be-
haviors and technical challenges. Therefore, machine learning is not recommended
for summarising or describing fundamental principles due to its poor interpretability.
However, it can be used to describe and predict the consequences of fundamental
principles, especially in intricate cases. After general topics, we continue to com-
pare the performance of different models through the example of the Tungsten-based
composite discussed in section 4.2.3.

A good performance of the ANN model in describing stress-strain diagrams on
its training dataset is less valuable compared with that on its validation dataset.
For the Tungsten-based composite, experimental data at a strain rate of 1000 s−1
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and different temperatures are selected to be the validation dataset. This allows us
to test the performance of the model at a high strain rate, which belongs to the
"learned" strain rate range from 200 s−1 to 3000 s−1. With this validation dataset,
it can be assessed whether the model is overfitting to the training data or not. The
description errors of all mentioned models on the validation dataset are shown in
figure 4.12 (b). Except for the JC, KHL and ANN model, all other models exhibit a
description error of less than 5%. However, this does not necessarily imply that the
ANN model has poorer performance than many other models. Instead, the deviation
of the ANN model’s description from the dataset, and mainly at a temperature of
288 K and strain rate of 1000 s−1, is more likely due to the "abnormal" behavior of
flow stresses at a temperature of 288 K and a strain rate of 200 s−1. As illustrated in
figures 4.9, all constitutive models tend to overestimate these flow stresses denoted
by the pink diamonds. More importantly, figures 2.5 (b) and (d) indicate that the
experimentally measured flow stresses at a temperature of 288 K and a strain rate of
200 s−1 does not follow the common decreasing behavior pattern of the RS factor.
In other words, constitutive models, as rule-based models, are limited describing
this "abnormal" behavior of flow stresses. However, the ANN model, with a data-
driven feature, is capable of perfectly capturing this "abnormal" behavior during its
training. Therefore, its underestimated description of stresses at the temperature of
288 K and strain rates higher than 200 s−1, shown in figure 4.11 (c), is reasonable.
By training the ANN model with a few more data points at the temperature of 288
K and strain rates higher than 200 s−1, the description error is likely to be easily
reduced to less than 5%.

4.3 Validation of the calculation scheme for RP model

through finite element analysis

To validate the calculation scheme developed in section 3.3.2 for the simplified
version of RP model (3.53), the SHPB setup is simulated using the commercial
software package ABAQUS/Explicit. This package implements the explicit central
difference method to solve the dynamic equation (3.31). The time step is chosen by
ABAQUS/Explicit to ensure stability, but for added accuracy, the maximum time
step is set to 0.2 µs. The work by Zhuang et al. [108] provides optimized dimensions
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for the incident and transmission bars to minimize computational resources. The
recommended sizes are �25 × 1000 mm for the bars and �18 × 22 mm for the
sample. The mechanical properties of the incident and transmission steel bars are
as follows:

E = 200GPa, ν = 0.3, ρ = 7.85 g/cm3

The sample used is the 603 steel investigated by Xu and Huang [109]. Figure 4.15
presents the experimental data and model behavior at quasi-static rates and impact
loading rates of 2000 s−1 and 4500 s−1. The impact cases are mainly focused here.
The elastic modulus values are E = 200 GPa, ν = 0.3. The model parameters are
set to σy = 850 MPa, K = 505.15 MPa, n = 0.40, τ = 1.4× 10−4 s and α = 35.

To take advantage of the symmetry in both geometry and boundary conditions, a
3D quarter-geometry of the bars and sample is created, as shown in figures 4.16a and
4.16b. The element type C3D8R is used. The contact between bars and samples
are set to be hard (no friction, no thermal interactions, etc.). The experimental
setup, including the boundary conditions, is illustrated in figures 4.17a and 4.17b.
The cross-section normal to the x-axis is constrained by no-rotation conditions and
a displacement condition of ux = 0. Similarly, the cross-section normal to the y-axis
is constrained by no-rotation conditions and a displacement condition of uy = 0.
The left side of the incident bar is subjected to stress pulses, as depicted in figures
4.18a and 4.18b. For instance, the stress pulse shown in figure 4.18a results in
a strain rate of 2000 s−1 in the sample. In this case, figure 4.19a demonstrates
that the stress state in the sample remains approximately uniform during loading.
Additionally, figures 4.20a and 4.20b reveal that the strain ε33 and stress history σ33

of elements 182, 801, and 1497 (shown in figure 4.19b) validate the uniformity of the
stress state. Another stress pulse, as shown in figure 4.18b, produces a strain rate
of 4500 s−1. The σ33–ε33 diagrams obtained through FEA at two impact loading
rates are presented in figure 4.21. The simulation results exhibit good agreement
with the experimental data, which confirms the reliability of the RP model (3.53)
and the developed calculation scheme.
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Figure 4.15: True stress-true strain diagrams for the 603 steel at different strain rates and the
performance of the RP model
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(a)

(b)

Figure 4.16: The geometry for the simulation: (a) A quarter of the incident and/or transmission
bar, (b) a quarter of the sample.
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(a)

(b)

Figure 4.17: The assembled geometry (a) and boundary conditions (b)
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Figure 4.18: The stress pulses loaded on the left side of the incident bar causes two different strain
rates of the sample: (a) ε̇ = 2000 s−1, (b) ε̇ = 4500 s−1.
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(a)

(b)

Figure 4.19: Stress distribution in sample during the loading (a) and elements selected for analysis
(b)
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Figure 4.20: Strain history (a) and stress history (b) of three different elements.
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Figure 4.21: Comparison of stress-strain diagrams at strain rates of 2000 s−1 and 4500 s−1 between
FEM simulations and experimental data.
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Conclusions

In this work, modeling of dynamic plasticity problems is studied. Strain rate
effects and thermal softening phenomenon of a group of metallic materials, as well
as their negative hardening induced by the rapid plastic dissipation, are successfully
simulated within the framework of the incubation time approach. A comprehen-
sive analysis of the framework of the modified relaxation model of plasticity (RP
model) is given. The finite element analysis is conducted to assess the accuracy and
reliability of the computational approach developed for the RP model.

The following main conclusions are made:

1. The framework of the modified RP model is proposed. A simplified version
and incremental version of the RP model are developed. The relaxation func-
tion γ(εp(t)) involves the dynamic stress intensity Mα(·) to characterize strain
rate effects instead of introducing an empirical rate-dependent component. The
yield surface equation using incubation time approach is proposed. The incu-
bation time approach considers the rate sensitivity as a manifestation of time
sensitivity of materials.

2. A methodology of investigating the temperature-time correspondence, i.e. tem-
perature dependence of the incubation time, is discussed. The relative stress
(RS) factor can be used to analyze the tendency of the temperature-time rela-
tionship over a wide range of strain, strain rate and temperature. For studied
HSLA-65 steel and Tungsten-based composite, the RS factors at different strain
rates generally exhibit a monotonic decrease with increasing temperature. This
implies that the temperature rise results in a monotonic decrease in τ . Some
special cases of non-monotonic behavior may also occur due to, for instance,
the dynamic strain aging, and a non-monotonic relation between τ and the
temperature might be required.
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3. Several possible temperature-time correspondences given in expressions (2.31)–
(2.34) are discussed. Since any temperature-time correspondence ensuring a
modeling error within 5% may be considered technically suitable, different phe-
nomenological temperature-time relations were proposed previously and veri-
fied to be available. Exponential or power phenomenological relationships are
preferable choices to avoid negative values of τ .

4. A comparative analysis is made between the effectiveness of the temperature-
time principle with a constant value of parameter α and the dependence of
parameter α on temperature with a constant value of parameter τ . Simulation
results indicate that the modeling capabilities of relations (2.34) and/or (2.37)
are almost equivalent.

5. The multiplicative form σ = f1(εp, ε̇)f2(εp, T ) is improper to simulate the
strain-rate effect and thermal softening phenomenon over a wide tempera-
ture range. Experiments demonstrate that the RS factor has a clear rate-
dependent and temperature-dependent behavior pattern, which must be fol-
lowed by the temperature-time correspondence. However, the multiplicative
models σ = f1(εp, ε̇)f2(εp, T ) is derived from the direct empirical fitting ap-
proach and results in a temperature-independent RS factor. In these models,
dynamic relations are conventionally constructed in the way of direct extrap-
olation of static notions into dynamic cases using special terms incorporated
into well-known static formula. Nevertheless, they are still very convenient for
engineering problems where the temperature does not vary significantly.

6. The developed RP model is evaluated based on experimental data from various
metallic materials including aluminium alloy 6082-T6, 2519A, HSLA-65 steel,
93W–4.9Ni–2.1Fe tungsten-based composite, and titanium alloy Ti-6Al-4V. A
comparison is made between the descriptive ability of the IRP model and other
phenomenological models, micromechanism-based models, and the artificial
neural network (ANN) model. The IRP model provides a good descriptive abil-
ity and, specifically, can feature the tendency of the non-monotonic/softening
behavior of the stress-strain curves at high loading rates.

7. Based on experimental facts of 93W–4.9Ni–2.1Fe tungsten-based composite, the
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main difference between ANN model and other constitutive models is examined.
The ANN model uses a data-driven learning approach, while other constitu-
tive models are proposed by the rule-based analyzing method. The choice of
modeling approach should depend on the specific material and loading condi-
tions being studied, as well as the desired level of accuracy and computational
complexity.

8. The negative hardening response of HSLA-65 steel caused by the rapid plastic
dissapation is successfully simulated by the IRP model. The adiabatic temper-
ature rise in the material results in a decrease in the characteristic relaxation
time (or incubation time) as indicated by the temperature-time correspondence.

9. A computational approach is developed for the simplified version of RP model
and validated through the finite element analysis. Software modules have been
developed for calculating stress-strain diagrams of various materials, deter-
mining parameters of different models, and solving three-dimensional dynamic
plasticity problems. The simulation results exhibit good agreement with exist-
ing experimental data, which confirms the reliability of the RP model and the
developed calculation scheme.
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Appendices

A The integral yield criterion.

Assuming a constant strain rate, i.e. σ(t) = Eε̇tH(t), where H(t) is the Heaviside
function, one may have

I(t) =
1

τ

∫ t

t−τ

(
σ(s)

σy

)α

ds =
Eαε̇α

σα
y τ

∫ t

t−τ

sαH(s)ds

=
Eαε̇α

σα
y τ

· s
α+1H(s)

1 + α

∣∣∣∣t
t−τ

=
(Eε̇t)α+1H(t)− (Eε̇t− Eε̇τ)α+1H(t− τ)

(1 + α)σα
yEε̇τ

=
σ(t)α+1H(t)− (σ(t)− Eε̇τ)α+1H(t− τ)

(1 + α)σα
yEε̇τ

(A.4)

According to the integral yield criterion 2.1, the plastic process begins when
I(ty) = 1 takes place. Thus, the rate-dependent yield stress (or strength) σdy =

σ(ty) can be derived by A.5, where H (σdy − Eε̇τ) = (Eε̇) ·H(ty − τ) = H(ty − τ).

σ1+α
dy − (σdy − Eε̇τ)1+αH (σdy − Eε̇τ) = (1 + α) (Eε̇τ)σα

y (A.5)

Now let us consider the case when ty = τ or σdy = Eε̇τ . The equation A.5
transforms into equation A.6

σ1+α
dy = σα

y (1 + α) (Eε̇τ) = (1 + α)σdyσ
α
y , (A.6)

which derives σdy = (1 + α)1/ασy or ε̇ =
σy(1+α)

1
α

Eτ . Thus, the equation A.5 can also
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be represented in the form A.7. σ1+α
dy − (σdy − Eε̇τ)1+α = (1 + α)(Eε̇τ)σα

y , ε̇ ≤ σy(1+α)
1
α

Eτ ;

σdy =
(
(1 + α)(Eε̇τ)σα

y

) 1
1+α , ε̇ >

σy(1+α)
1
α

Eτ .
(A.7)

B The mean shear stress.

The mean shear stress σ̄τ proposed by Novozhilov V. V. at the point M is defined
as

σ̄τ = lim
r→0

(
1

Ω

x
σ2
τdΩ

) 1
2

, (B.8)

where Ω is the area of the spherical surface enclosing the point M , dΩ is the area
of an infinitesimal plane on the surface Ω, r is the radius of the surface Ω, στ is the
shear stress on the plane dΩ. For the sake of better readability, both the surface
area and the surface could be denote by dΩ or Ω depending on the context.

Let us denote unit orthogonal vectors in three principal directions at considered
point M by e1, e2, e3 and the normal vector of the plane dΩ by n with components
ni (i = 1,2,3). Then, the traction vector t on the plane dΩ is given by equation B.9

t = σ · n =
(
σiei ⊗ ei

)
· n = σiniei, (B.9)

where σ is the Cauchy stress tensor; σi is the principal stress in the direction of
ei, and it is considered the principal stress at point M when r approaches 0. The
magnitude of the normal stress component σn and the shear stress component στ

can be derived as follows.

σn = t · n = σin
2
i ,

στ = |t− σnn| =
√

(σ2
i n

2
i )− (σjn2

j)
2

(B.10)

In the spherical coordinate system with the unit basis (e1, e2, e3), the area of the
plane dΩ and the spherical surface Ω and components of the normal vector n are
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Figure B.1: The spherical face Ω enclosing the point M . r is the radio of the sphere and dΩ
is an infinitesimal plane on the surface Ω with a normal vector n. θ and φ are polar angle and
azimuthal angle, respectively.

defined by
dΩ = r2 sin θdφdθ;

Ω = 4πr2;

n1 = sin θ sinφ, n2 = sin θ cosφ, n3 = cos θ;

θ ∈ [0, π), φ ∈ [0, 2π).

(B.11)

The graphical illustration is shown in figure B.1. Therefore, the magnitude of the
shear stress component can be derived from the equations B.10 and B.11 and given
by equation B.12.

σ2
τ = σ2

1 sin
2 θ sin2 φ+ σ2

2 sin
2 θ cos2 φ+ σ2

3 cos
2 θ−

−
(
σ1 sin

2 θ sin2 φ+ σ2 sin
2 θ cos2 φ+ σ3 cos

2 θ
)2 (B.12)

And the integral in expression B.8 is transferred into the equation B.13.

σ̄2
τ =

1

4π

∫ 2π

0

dφ

∫ π

0

{
σ2
1 sin

2 θ sin2 φ+ σ2
2 sin

2 θ cos2 φ+ σ2
3 cos

2 θ−

−
(
σ1 sin

2 θ sin2 φ+ σ2 sin
2 θ cos2 φ+ σ3 cos

2 θ
)2}

sin θdθ

=
1

15

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
] (B.13)

Thus, the shear stress intensity T (see expression 2.7) and the mean shear stress σ̄τ
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are equivalent, to within a constant factor, and are related by the expression B.14.

T =

√
2

15
σ̄τ =

√
2

15
lim
r→0

(
1

Ω

x
σ2
τdΩ

) 1
2

(B.14)

Relation B.14 indicates that the stress intensity is not just an invariant with respect
to the stress tensor, but also characterises the "mean" stress behaviour in the space.



114

Bibliography

[1] Johnson G.R., Cook W.H. A constitutive model and data for metals subjected
to large strains, high strain rates and high temperatures // Proceedings of
the 7th International Symposium on Ballistics. –– Vol. 21. –– The Hague, The
Netherlands, 1983. –– P. 541–547.

[2] Rusinek A., Klepaczko J.R. Shear testing of a sheet steel at wide range of strain
rates and a constitutive relation with strain-rate and temperature dependence
of the flow stress // International Journal of Plasticity. –– 2001. –– Vol. 17,
no. 1. –– P. 87–115.

[3] A computational determination of the Cowper–Symonds parameters from a
single Taylor test / C. Hernandez, A. Maranon, I.A. Ashcroft, J.P. Casas-
Rodriguez // Applied Mathematical Modelling. –– 2013. –– Vol. 37, no. 7. ––
P. 4698–4708.

[4] Lin Y.C., Chen X.M., Liu G. A modified Johnson-Cook model for tensile
behaviors of typical high-strength alloy steel // Materials Science and Engi-
neering: A. –– 2010. –– Vol. 527, no. 26. –– P. 6980–6986.

[5] Gambirasio L., Rizzi E. An enhanced Johnson–Cook strength model for split-
ting strain rate and temperature effects on lower yield stress and plastic flow //
Computational Materials Science. –– 2016. –– Vol. 113. –– P. 231–265.

[6] Nemat-Nasser S., Isaacs J.B. Direct measurement of isothermal flow stress of
metals at elevated temperatures and high strain rates with application to Ta
and TaW alloys // Acta Materialia. –– 1997. –– Vol. 45, no. 3. –– P. 907–919.

[7] Zerilli Frank J., Armstrong Ronald W. Dislocation-mechanics-based consti-
tutive relations for material dynamics calculations // Journal of Applied
Physics. –– 1987. –– Vol. 61, no. 5. –– P. 1816–1825.



115

[8] Gruzdkov A. A., Petrov Yu V. On temperature-time correspondence in high-
rate deformation of metals // Doklady Physics. –– 1999. –– Vol. 44, no. 2. ––
P. 114–116.

[9] Thermal Effect in Dynamic Yielding and Fracture of Metals and Alloys /
A.A. Gruzdkov, E.V. Sitnikova, N.F. Morozov, Yu.V. Petrov // Mathematics
and Mechanics of Solids. –– 2009. –– Vol. 14, no. 1-2. –– P. 72–87.

[10] Selyutina N.S. Temperature relaxation model of plasticity for metals under
dynamic loading // Mechanics of Materials. –– 2020. –– Vol. 150. –– P. 103589.

[11] Zhao S. Software package for constructing stress-strain diagrams of metals
under impact loading, calculated using an incremental relaxation model for
plasticity (In russian). –– 2023. –– State registration of computer program No.
023684476, 11/15/2023.

[12] Yu Tongxi, Xue Pu. Chapter 12 - Introduction to dynamic plasticity // In-
troduction to Engineering Plasticity / Ed. by Tongxi Yu, Pu Xue. –– Elsevier,
2022. –– P. 327–371.

[13] Bagher Shemirani Alireza, Naghdabadi R., Ashrafi M.J. Experimental and
numerical study on choosing proper pulse shapers for testing concrete speci-
mens by split Hopkinson pressure bar apparatus // Construction and Building
Materials. –– 2016. –– Vol. 125. –– P. 326–336.

[14] Nemat-Nasser Sia, Guo Wei-Guo. Thermomechanical response of HSLA-65
steel plates: experiments and modeling // Mechanics of Materials. –– 2005. ––
Vol. 37, no. 2. –– P. 379–405.

[15] Roth Christian C., Fras Teresa, Mohr Dirk. Dynamic perforation of lightweight
armor: Temperature-dependent plasticity and fracture of aluminum 7020-
T6 // Mechanics of Materials. –– 2020. –– Vol. 149. –– P. 103537.

[16] Xu Zejian, Huang Fenglei. Thermomechanical behavior and constitutive mod-
eling of tungsten-based composite over wide temperature and strain rate
ranges // International Journal of Plasticity. –– 2013. –– Vol. 40. –– P. 163–
184.



116

[17] Goviazin G.G., Shirizly A., Rittel D. Does plastic anisotropy affect the thermo-
mechanical coupling in steel? // International Journal of Engineering Sci-
ence. –– 2023. –– Vol. 187. –– P. 103852.

[18] Garcia-Gonzalez D., Zaera R., Arias A. A hyperelastic-thermoviscoplastic con-
stitutive model for semi-crystalline polymers: Application to PEEK under
dynamic loading conditions // International Journal of Plasticity. –– 2017. ––
Vol. 88. –– P. 27–52.

[19] Importance of microstructure modeling for additively manufactured metal
post-process simulations / Sumair Sunny, Glenn Gleason, Karl Bailey et al. //
International Journal of Engineering Science. –– 2021. –– Vol. 166. –– P. 103515.

[20] Johnson G. R., Holmquist T. J. An improved computational constitutive model
for brittle materials // High-pressure Science and technology. –– Vol. 309 of
American Institute of Physics Conference Series. –– 1994. –– P. 981–984.

[21] Peng J. X., Li Y. L., Li D. H. An experimental study on the dynamic con-
stitutive relation of tantalum (In Chinese) // Explosion and Shock Waves. ––
2003. –– Vol. 23, no. 2. –– P. 183–187.

[22] Shokry Abdallah. A Modified Johnson–Cook Model for Flow Behavior of Al-
loy 800H at Intermediate Strain Rates and High Temperatures // Journal of
Materials Engineering and Performance. –– 2017. –– Vol. 26, no. 12. –– P. 5723–
5730.

[23] A modified Johnson–Cook model for 7N01 aluminum alloy under dynamic con-
dition / Yi-ben Zhang, Song Yao, Xiang Hong, Zhong-gang Wang // Journal
of Central South University. –– 2017. –– Vol. 24, no. 11. –– P. 2550–2555.

[24] Dynamic constitutive model of U75VG rail flash-butt welded joint and its
application in wheel-rail transient rolling contact simulation / Jizhong Zhao,
Xing Pang, Peilin Fu et al. // Engineering Failure Analysis. –– 2022. –– Vol.
134. –– P. 106078.

[25] Experimental and numerical investigation on the ballistic resistance of 2024-
T351 aluminum alloy plates with various thicknesses struck by blunt projec-



117

tiles / Jue Han, Yahui Shi, Qianqian Ma et al. // International Journal of
Impact Engineering. –– 2022. –– Vol. 163. –– P. 104182.

[26] Khan Akhtar S., Liang Riqiang. Behaviors of three BCC metal over a wide
range of strain rates and temperatures: experiments and modeling // Interna-
tional Journal of Plasticity. –– 1999. –– Vol. 15, no. 10. –– P. 1089–1109.

[27] Farrokh Babak, Khan Akhtar S. Grain size, strain rate, and temperature de-
pendence of flow stress in ultra-fine grained and nanocrystalline Cu and Al:
Synthesis, experiment, and constitutive modeling // International Journal of
Plasticity. –– 2009. –– Vol. 25, no. 5. –– P. 715–732.

[28] Characterization of hardening behaviors of 4130 Steel, OFHC Copper,
Ti6Al4V alloy considering ultra-high strain rates and high temperatures /
MingJun Piao, Hoon Huh, Ikjin Lee, Leeju Park // International Journal of
Mechanical Sciences. –– 2017. –– Vol. 131-132. –– P. 1117–1129.

[29] Evaluation of dynamic hardening models for BCC, FCC, and HCP metals
at a wide range of strain rates / Hoon Huh, Kwanghyun Ahn, Ji Ho Lim
et al. // Journal of Materials Processing Technology. –– 2014. –– Vol. 214,
no. 7. –– P. 1326–1340.

[30] Omer Kaab, Butcher Clifford, Worswick Michael. Characterization and appli-
cation of a constitutive model for two 7000-series aluminum alloys subjected
to hot forming // International Journal of Mechanical Sciences. –– 2020. –– Vol.
165. –– P. 105218.

[31] Nemat-Nasser Sia, Li Yulong. Flow stress of f.c.c. polycrystals with application
to OFHC Cu // Acta Materialia. –– 1998. –– Vol. 46, no. 2. –– P. 565–577.

[32] Dynamic response of conventional and hot isostatically pressed Ti–6Al–4V
alloys: experiments and modeling / Sia Nemat-Nasser, Wei-Guo Guo, Vi-
tali F. Nesterenko et al. // Mechanics of Materials. –– 2001. –– Vol. 33, no. 8. ––
P. 425–439.

[33] Zerilli Frank J., Armstrong Ronald W. Constitutive relations for titanium
and Ti-6Al-4V // AIP Conference Proceedings. –– 1996. –– Vol. 370, no. 1. ––
P. 315–318.



118

[34] Voyiadjis George Z., Abed Farid H. Microstructural based models for bcc
and fcc metals with temperature and strain rate dependency // Mechanics
of Materials. –– 2005. –– Vol. 37, no. 2. –– P. 355–378. –– New Directions in
Mechanics and Selected Articles in Micromechanics of Materials.

[35] Voyiadjis George Z., Abed Farid H. Effect of dislocation density evolution
on the thermomechanical response of metals with different crystal structures
at low and high strain rates and temperatures // Archives of Mechanics. ––
2005. –– Vol. 57, no. 4. –– P. 299–343.

[36] Song Yooseob, Yeon Jaeheum, Voyiadjis George Z. Constitutive modeling and
numerical simulations for dynamic strain aging in MMFX steel at elevated
temperatures // International Journal of Mechanical Sciences. –– 2021. –– Vol.
210. –– P. 106743.

[37] Voyiadjis George Z., Song Yooseob, Rusinek Alexis. Constitutive model for
metals with dynamic strain aging // Mechanics of Materials. –– 2019. –– Vol.
129. –– P. 352–360.

[38] Rusinek A., Klepaczko J.R. Shear testing of a sheet steel at wide range of strain
rates and a constitutive relation with strain-rate and temperature dependence
of the flow stress // International Journal of Plasticity. –– 2001. –– Vol. 17,
no. 1. –– P. 87–115.

[39] Thermo-viscoplastic behavior of DP800 steel at quasi-static, intermediate,
high and ultra-high strain rates / Bin Jia, Pengwan Chen, Alexis Rusinek,
Qiang Zhou // International Journal of Mechanical Sciences. –– 2022. –– Vol.
226. –– P. 107408.

[40] Thermo-viscoplastic behavior and constitutive relations for 304 austenitic
stainless steel over a wide range of strain rates covering quasi-static, medium,
high and very high regimes / Bin Jia, Yaoyue Zhang, Alexis Rusinek et al. //
International Journal of Impact Engineering. –– 2022. –– Vol. 164. –– P. 104208.

[41] Khan Akhtar S., Liu Jian. A deformation mechanism based crystal plasticity
model of ultrafine-grained/nanocrystalline FCC polycrystals // International
Journal of Plasticity. –– 2016. –– Vol. 86. –– P. 56–69.



119

[42] Temperature effect on tensile behavior of an interstitial high entropy alloy:
Crystal plasticity modeling / Xu Zhang, Xiaochong Lu, Jianfeng Zhao et al. //
International Journal of Plasticity. –– 2022. –– Vol. 150. –– P. 103201.

[43] Crystal plasticity-based impact dynamic constitutive model of magnesium al-
loy / Qijun Xie, Zhiwu Zhu, Guozheng Kang, Chao Yu // International Journal
of Mechanical Sciences. –– 2016. –– Vol. 119. –– P. 107–113.

[44] Xie Qijun, Zhu Zhiwu, Kang Guozheng. Thermal activation based constitu-
tive model for high-temperature dynamic deformation of AZ31B magnesium
alloy // Materials Science and Engineering: A. –– 2019. –– Vol. 743. –– P. 24–31.

[45] Application of artificial neural networks in micromechanics for polycrystalline
metals / Usman Ali, Waqas Muhammad, Abhijit Brahme et al. // Interna-
tional Journal of Plasticity. –– 2019. –– Vol. 120. –– P. 205–219.

[46] Pantalé Olivier. Development and Implementation of an ANN Based Flow Law
for Numerical Simulations of Thermo-Mechanical Processes at High Temper-
atures in FEM Software // Algorithms. –– 2023. –– Vol. 16, no. 1.

[47] Xu Z., Huang F. Artificial neural network modeling of mechanical properties
of armor steel under complex loading conditions // Journal of Beijing Institute
of Technology (English Edition). –– 2012. –– Vol. 21. –– P. 157–163.

[48] Gu Yan, Zhang Chuanzeng, Golub Mikhail V. Physics-informed neural net-
works for analysis of 2D thin-walled structures // Engineering Analysis with
Boundary Elements. –– 2022. –– Vol. 145. –– P. 161–172.

[49] Counterexample-trained neural network model of rate and temperature depen-
dent hardening with dynamic strain aging / Xueyang Li, Christian C. Roth,
Colin Bonatti, Dirk Mohr // International Journal of Plasticity. –– 2022. ––
Vol. 151. –– P. 103218.

[50] Jordan Benoit, Gorji Maysam B., Mohr Dirk. Neural network model describ-
ing the temperature- and rate-dependent stress-strain response of polypropy-
lene // International Journal of Plasticity. –– 2020. –– Vol. 135. –– P. 102811.



120

[51] Cristescu N. A procedure for determining the constitutive equations for mate-
rials exhibiting both time-dependent and time-independent plasticity // Inter-
national Journal of Solids and Structures. –– 1972. –– Vol. 8, no. 4. –– P. 511–
531.

[52] Lubliner Jacob. A generalized theory of strain-rate-dependent plastic wave
propagation in bars // Journal of the Mechanics and Physics of Solids. ––
1964. –– Vol. 12, no. 1. –– P. 59–65.

[53] Cottrell A. H., Bilby B. A. Dislocation Theory of Yielding and Strain Ageing
of Iron // Proceedings of the Physical Society. Section A. –– 1949. –– Vol. 62,
no. 1. –– P. 49–62.

[54] Campbell J.D. The dynamic yielding of mild steel // Acta Metallurgica. ––
1953. –– Vol. 1, no. 6. –– P. 706–710.

[55] Klepaczko Janusz R. On Fracture Enrgy of Concrete for Short-Time Loading
in Tension // Brittle Matrix Composites 8 / Ed. by A. M. Brandt, V. C. Li,
I. H. Marshall. –– Woodhead Publishing, 2006. –– P. 547–558.

[56] Stolarski A. Dynamic Strength Criterion for Concrete // Journal of Engineer-
ing Mechanics. –– 2004. –– Vol. 130, no. 12. –– P. 1428–1435.

[57] Jankowiak T., Rusinek A., Wood P. Comments on paper: “Glass damage by
impact spallation” by A. Nyoungue et al., Materials Science and Engineering
A 407 (2005) 256–264 // Materials Science and Engineering: A. –– 2013. ––
Vol. 564. –– P. 206–212.

[58] Tuler Floyd R., Butcher Barry M. A criterion for the time dependence of
dynamic fracture // International Journal of Fracture Mechanics. –– 1968. ––
Vol. 4, no. 4. –– P. 431–437.

[59] Petrov Yu. V., Utkin A. A. Dependence of the dynamic strength on loading
rate // Soviet materials science : a transl. of Fiziko-khimicheskaya mekhanika
materialov / Academy of Sciences of the Ukrainian SSR. –– 1989. –– Vol. 25,
no. 2. –– P. 153–156.



121

[60] Petrov Yu. V., Morozov N. F. On the Modeling of Fracture of Brittle Solids //
Journal of Applied Mechanics. –– 1994. –– Vol. 61, no. 3. –– P. 710–712.

[61] Petrov Yu. V. Quantum Analogy in the Mechanics of Fracture of Solids //
Phys Solid State. –– 1996. –– Vol. 38, no. 11. –– P. 1846—-1850.

[62] Morozov N. F., Petrov Yu. V. Dynamics of Fracture. –– New York, NY :
Springer Berlin, Heidelberg, 2000. –– P. 98.

[63] Maximum yield strength under quasi-static and high-rate plastic deformation
of metals / E. N. Borodin, A. E. Mayer, Yu. V. Petrov, A. A. Gruzdkov //
Physics of the Solid State. –– 2014. –– Vol. 56, no. 12. –– P. 2470–2479.

[64] A modified incubation time criterion for dynamic fracture of rock considering
whole stress history / Xuan Xu, Li Yuan Chi, Jun Yang, Zong-Xian Zhang //
International Journal of Rock Mechanics and Mining Sciences. –– 2023. –– Vol.
164. –– P. 105361.

[65] An analytical approach to dynamic spalling of brittle materials / C. Yan,
Z. Ou, Z. Duan, F. Huang // International Journal of Impact Engineering. ––
2015. –– Vol. 83. –– P. 28–36.

[66] Yan C., Liu R., Ou Z. Analytical Model for Dynamic Yield Strength of
Metal // Physical Mesomechanics. –– 2019. –– Vol. 22, no. 4. –– P. 333–339.

[67] Petrov Yu. V. On the incubation stage of fracture and structural transfor-
mations in continuous media under pulse energy injection // Mechanics of
Solids. –– 2007. –– Vol. 42, no. 5. –– P. 692–699.

[68] Petrov Yu. V. Incubation time criterion and the pulsed strength of continua:
Fracture, cavitation, and electrical breakdown // Doklady Physics. –– 2004. ––
Vol. 49, no. 4. –– P. 246–249.

[69] Petrov Yu. V., Borodin E. N. Relaxation mechanism of plastic deformation
and its justification using the example of the sharp yield point phenomenon in
whiskers // Physics of the Solid State. –– 2015. –– Vol. 57, no. 2. –– P. 353–359.



122

[70] Relaxation model for dynamic plastic deformation of materials / Yu.V. Petrov,
E.N. Borodin, E. Cadoni, N.S. Selyutina // EPJ Web of Conferences. ––
2015. –– Vol. 94. –– P. 04039.

[71] The definition of characteristic times of plastic relaxation by dislocation slip
and grain boundary sliding in copper and nickel / N. Selyutina, E.N. Borodin,
Yu. V. Petrov, A.E. Mayer // International Journal of Plasticity. –– 2016. ––
Vol. 82. –– P. 97–111.

[72] Modeling of the thermal softening of metals under impact loads and their
temperature–time correspondence / Shixiang Zhao, Yu. V. Petrov, Yuyi Zhang
et al. // International Journal of Engineering Science. –– 2024. –– Vol. 194. ––
P. 103969.

[73] Effects of strain rate and stress state on mechanical properties of Ti-6Al-4V
alloy / H. Hu, Z. Xu, W. Dou, F. Huang // International Journal of Impact
Engineering. –– 2020. –– Vol. 145. –– P. 103689.

[74] Khan Akhtar S., Sung Suh Yeong, Kazmi Rehan. Quasi-static and dynamic
loading responses and constitutive modeling of titanium alloys // International
Journal of Plasticity. –– 2004. –– Vol. 20, no. 12. –– P. 2233–2248.

[75] Abed Farid, Makarem Fadi. Comparisons of Constitutive Models for Steel Over
a Wide Range of Temperatures and Strain Rates // Journal of Engineering
Materials and Technology. –– 2012. –– Vol. 134, no. 2.

[76] A Theory of Networks for Approximation and Learning : Rep. / MAS-
SACHUSETTS INSTITUTE OF TECHNOLOGY ; Executor: Tomaso Pog-
gio, Federico Girosi. –– USA : 1989.

[77] A survey on modern trainable activation functions / Andrea Apicella,
Francesco Donnarumma, Francesco Isgrò, Roberto Prevete // Neural Net-
works. –– 2021. –– Vol. 138. –– P. 14–32.

[78] A privacy-preserving and non-interactive federated learning scheme for regres-
sion training with gradient descent / Fengwei Wang, Hui Zhu, Rongxing Lu
et al. // Information Sciences. –– 2021. –– Vol. 552. –– P. 183–200.



123

[79] Bottou Léon. Stochastic Gradient Descent Tricks // Neural Networks: Tricks
of the Trade: Second Edition. –– Berlin, Heidelberg : Springer Berlin Heidel-
berg, 2012. –– P. 421–436.

[80] Schwab R., Ruff V. On the nature of the yield point phenomenon // Acta
Materialia. –– 2013. –– Vol. 61, no. 5. –– P. 1798–1808.

[81] Yoshida F., Kaneda Y., Yamamoto S. A plasticity model describing yield-
point phenomena of steels and its application to FE simulation of temper
rolling // International Journal of Plasticity. –– 2008. –– Vol. 24, no. 10. ––
P. 1792–1818. –– Special Issue in Honor of Jean-Louis Chaboche.

[82] A generalized plasticity model incorporating stress state, strain rate and tem-
perature effects / W. Dou, Z. Xu, H. Hu, F. Huang // International Journal
of Impact Engineering. –– 2021. –– Vol. 155. –– P. 103897.

[83] Determination of shear behavior and constitutive modeling of the 603 steel
over wide temperature and strain rate ranges / Z. Xu, Y. Liu, H. Hu et al. //
Journal of the Mechanics and Physics of Solids. –– 2019. –– Vol. 129. –– P. 184–
204.

[84] Zhao Shixiang, Petrov Yu.V., Volkov G.A. The modified relaxation plasticity
model and the non-monotonic stress–strain diagram // International Journal
of Mechanical Sciences. –– 2023. –– Vol. 240. –– P. 107919.

[85] Zhao S., Petrov Yu. V., Volkov G. A. Modeling the Nonmonotonic Behavior
Flow Curves under Dynamic Loads // Physical Mesomechanics. –– 2022. ––
Vol. 25, no. 3. –– P. 221–226.

[86] Selyutina N.S., Petrov Yu.V. Comparative Analysis of Dynamic Plasticity
Models // Reviews on Advanced Materials Science. –– 2018. –– Vol. 57, no. 2. ––
P. 199–211.

[87] Selyutina N. S., Petrov Y. V. Instabilities of Dynamic Strain Diagrams Pre-
dicted by the Relaxation Model of Plasticity // Journal of Dynamic Behavior
of Materials. –– 2022. –– Vol. 8, no. 2. –– P. 304–315.



124

[88] Zadpoor A.A., Sinke J., Benedictus R. 4 - Numerical simulation modeling of
tailor welded blank forming // Tailor Welded Blanks for Advanced Manufac-
turing / Ed. by Brad L. Kinsey, Xin Wu. –– Woodhead Publishing, 2011. ––
Woodhead Publishing Series in Welding and Other Joining Technologies. ––
P. 68–94.

[89] Dynamic mechanical properties and constitutive equations of 2519A aluminum
alloy / W. Liu, Z. He, Y. Chen, S. Tang // Transactions of Nonferrous Metals
Society of China. –– 2014. –– Vol. 24, no. 7. –– P. 2179–2186.

[90] Johnston W. G., Gilman J. J. Dislocation Velocities, Dislocation Densities, and
Plastic Flow in Lithium Fluoride Crystals // Journal of Applied Physics. ––
1959. –– Vol. 30, no. 2. –– P. 129–144.

[91] Zhao, Shixiang, Pronina, Yulia. On the stress state of a pressurised pipe with
an initial thickness variation, subjected to non-homogeneous internal corro-
sion // E3S Web Conf. –– 2019. –– Vol. 121. –– P. 01013.

[92] Zhao Shixiang, Pronina Yulia. On the MATLAB finite element modelling of
an elastic plane with a hole under tension // 2017 Constructive Nonsmooth
Analysis and Related Topics (dedicated to the memory of V.F. Demyanov)
(CNSA). –– 2017. –– P. 1–4.

[93] Zhao S. On mechanochemical corrosion of a pipe with thickness deviation
under the influence of external and internal pressure (In russian) // Togliatti
State University science vector. –– 2020. –– no. 1. –– P. 86–91.

[94] Zhao S. Algorithm for calculating the stress state of a plate with an elliptical
hole in MATLAB (In russian) // Control process and stable performance. ––
2017. –– Vol. 4, no. 1. –– P. 251–255.

[95] Nonlinear Finite Elements for Continua and Structures, 2nd ed. / T. Be-
lytschko, W. Liu, B. Moran, K. Elkhodary. –– Wiley, 2014.

[96] Zienkiewicz O., Taylor R. The finite element method for solid and structural
mechanics. 7th ed. –– Butterworth-Heinemann, 2014.



125

[97] Zienkiewicz O., Taylor R., J.Z. Zhu. The Finite Element Method: Its Basis
and Fundamentals. 6th ed. –– Butterworth-Heinemann, 2005.

[98] Hilber Hans M., Hughes Thomas J. R., Taylor Robert L. Improved numerical
dissipation for time integration algorithms in structural dynamics // Earth-
quake Engineering & Structural Dynamics. –– 1977. –– Vol. 5, no. 3. –– P. 283–
292.

[99] Oden J. Tinsley. Finite Elements of Nonlinear Continua. –– Dover publications,
1972.

[100] Ming, Lu, Pantalé, Olivier. An efficient and robust VUMAT implementation
of elastoplastic constitutive laws in Abaqus/Explicit finite element code //
Mechanics & Industry. –– 2018. –– Vol. 19, no. 3. –– P. 308.

[101] Compressive Viscoplastic Response of 6082-T6 and 7075-T6 Aluminium Al-
loys Under Wide Range of Strain Rate at Room Temperature: Experiments
and Modelling / W. Moćko, J. A. Rodriguez-Martinez, Z. L. Kowalewski,
A. Rusinek // Strain. –– 2012. –– Vol. 48, no. 6. –– P. 498–509.

[102] Winzer R., Glinicka A. The Static and Dynamic Compressive Behaviour of
Selected Aluminium Alloys // Engineering Transactions. –– 2014. –– Vol. 59,
no. 2. –– P. 85–100.

[103] Low Cycle Fatigue Properties of Sc-Modified AA2519-T62 Extrusion /
Robert Kosturek, Lucjan Śnieżek, Janusz Torzewski, Marcin Wachowski //
Materials. –– 2020. –– Vol. 13, no. 1.

[104] Temperature-Dependent Material Property Databases for Marine Steels—Part
2: HSLA-65 / Jennifer K. Semple, Daniel H. Bechetti, Wei Zhang,
Charles R. Fisher // Integrating Materials and Manufacturing Innovation. ––
2022. –– Vol. 11, no. 1. –– P. 13–40.

[105] Babu Bijish. Physically Based Model for Plasticity and Creep of Ti-6Al-4V. ––
Lulea, Sweden : Luleå University of Technology, 2008.

[106] Dynamic response of conventional and hot isostatically pressed Ti–6Al–4V
alloys: experiments and modeling / Sia Nemat-Nasser, Wei-Guo Guo, Vi-



126

tali F. Nesterenko et al. // Mechanics of Materials. –– 2001. –– Vol. 33, no. 8. ––
P. 425–439.

[107] Zerilli Frank J, Armstrong Ronald W. Constitutive relations for titanium and
Ti-6Al-4V // Materials Science and Engineering: A. –– 1996. –– Vol. 209, no.
1-2. –– P. 198–205.

[108] Finite element analysis and application based on ABAQUS (In Chinese) /
Zhuo Zhuang, You Xiaochuan, Jianhui Liao, et al. –– Tsinghua University
Press, 2009.

[109] Xu Zejian, Huang Fenglei. Plastic behavior and constitutive modeling of armor
steel over wide temperature and strain rate ranges // Acta Mechanica Solida
Sinica. –– 2012. –– Vol. 25, no. 6. –– P. 598–608.


