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INTRODUCTION 

 

In modern science, there has been a rapid development of computational 

approaches that are increasingly being used to solve complex chemical problems. One 

of such approaches is Quantitative Structure-Property Relationships (QSPR), which 

allows predicting the properties of new compounds and materials based on their 

molecular structure. QSPR is based on the use of mathematical models that link 

molecular descriptors - characteristics that describe the structure of a molecule 

numerically - to the properties of interest. This approach greatly accelerates and 

cheapens the process of developing new substances and materials with specified 

characteristics, reducing the need for costly and time-consuming experiments. QSPR 

allows researchers to obtain valuable information about the properties of compounds, 

bypassing the stage of their synthesis and experimental testing, which helps in the 

development of new drugs, solvents, all kinds of materials. This method has a wide range 

of applications in various fields including pharmaceuticals, environmental science, 

materials science, and chemical engineering. 

Classical QSPR approaches require large amounts of data to build reliable models, 

usually thousands of compounds whose structure and properties are used to create a 

mathematical model. This significantly hampers the application of QSPR in analytical 

chemistry, where the ability to select large representative homogeneous datasets is very 

limited. For example, in order to predict the analytical performance of potentiometric 

sensors with polymer plasticized membranes based on the structural formula of the 

ionophore, a set of experimental data on sensors made on the basis of structurally 

similar ionophores is required. In this case, the composition of membranes (polymer, 

solvent-plasticizer, ion exchange additive) should be identical in this training sample. 

The conditions of potentiometric measurements (concentration ranges for determining 

sensitivities, set of interfering ions for determining selectivity) and experimental 

protocols for determining sensor characteristics should also coincide. Obviously, 
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different scientific groups working in this field conduct experiments in slightly different 

ways and direct comparison of the results obtained by different researchers is not 

always possible. Under such conditions, the creation of a training sample for QSPR 

containing at least a few tens of compounds characterized under similar conditions 

seems to be a serious problem. Similar limitations exist in many other areas of analytical 

chemistry, such as the development of extractants with desired properties. Overcoming 

such limitations and investigating the potential of QSPR for the development of new 

materials in analytical chemistry is an important and urgent task. 

In the present work, two popular current research directions are chosen to 

explore the potential of QSPRs in solving analytical chemistry problems: the 

development of potentiometric sensors and the development of deep eutectic solvents 

(DES) with desired properties. As specific tasks in these directions, the work is focused 

on investigating the possibility of in silico prediction of sensitivity and selectivity of 

potentiometric sensors with polymer plasticized membranes based on ionophores and 

on the possibility of predicting the density, conductivity and viscosity of DESs. Sensors 

based on phosphoryl acetamides with pronounced sensitivity to heavy metal ions, 

carbonate-selective sensors and DESs based on choline chloride were chosen as model 

systems for research. 

 

Relevance of the topic 

The development of new approaches to QSPR modeling, providing the possibility 

of building predictive models based on a limited set of training data, would be an 

extremely useful tool for solving urgent problems in analytical chemistry. The choice of 

specific directions of this study is dictated by the following considerations. The 

development of new ion-selective electrodes (ISEs) for the determination of heavy 

metals and hydrophilic anions is an important task in the field of creating tools for 

environmental monitoring, food quality control, and medical diagnostics. QSPR 

modeling can significantly accelerate and optimize this process, allowing prediction of 
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sensor properties based on the structure of ionophores and other membrane 

components, thus reducing the time and cost of developing new ISEs. 

    Predicting the physicochemical properties of deep eutectic solvents is also a 

highly sought-after capability. DESs represent a new class of green solvents with unique 

properties that make them promising for applications in various fields such as green 

chemistry, pharmaceuticals and energy. QSPR modeling will make it possible to predict 

the properties of DESs based on their composition, which will greatly simplify the search 

for optimal formulations for specific applications, contributing to the development of 

sustainable technologies and reducing the negative impact on the environment. 

 

Aims and tasks of the study 

The aim of this study is to develop and validate QSPR models, adapted to deal 

with limited data sets, for predicting the properties of ion-selective electrodes and deep 

eutectic solvents. 

To achieve this goal, the following tasks are set: 

1. Development of QSPR models to predict the selectivity of potentiometric 

sensors to hydrophilic carbonate anions based on ionophores with acceptor 

substituents near the carbonyl group. 

2. Development of QSPR models for predicting the sensitivity of 

potentiometric sensors to heavy metal cations (Ca²⁺, Cd²⁺, Pb²⁺) based on 

diphenylphosphoryl acetamide ionophores. 

3. Development of QSPR models for predicting the density, conductivity and 

viscosity of choline chloride-based DESs with organic acids as hydrogen bond donors. 

 

Scientific novelty: 

QSPR models for predicting the selectivity of ISE to hydrophilic anions (carbonate 

ions) based on limited training datasets were proposed and validated for the first time.  
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New approaches to modeling the sensitivity of ISEs to heavy metal cations (Ca²⁺, Cd²⁺, 

Pb²⁺) based on substructure molecular fragments using limited training data sets were 

proposed; the models were validated on independent test sets of compounds.  

QSPR models for predicting the physicochemical properties of choline chloride-

based DESs with organic acids as hydrogen bond donors were proposed and validated 

for the first time. The models were validated on independent test sets of compounds. 

For all QSPR models the key molecular descriptors that have a significant influence 

on the properties of compounds have been identified, which contributes to the 

development of approaches to obtaining materials with desired properties. 

The efficiency of QSPR approaches when working with small training samples is 

shown and methods of validation of QSPR models under conditions of limited availability 

of compounds with experimentally determined target properties are proposed. 

 

Practical significance of the study: 

The development of QSPR models for the directed design of ionophores providing 

the given characteristics (selectivity to carbonate ions and sensitivity to heavy metal 

cations) of ion-selective electrodes essentially facilitates the search for new ligands for 

ISE. 

The development of QSPR-model for prediction of physicochemical properties of 

deep eutectic solvents based on choline chloride with organic acids allows to select DESs 

with necessary properties for a specific task, bypassing labor-intensive stages of 

experimental study of their properties. 

Demonstration of the possibility of successful application of the QSPR approach 

for prediction of properties of analytical chemistry objects characterized by limited data 

sets. 
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Thesis outline: 

1. QSPR models built on the basis of substructural molecular fragments 

describing ionophores for ISE using limited training data sets provide prediction of the 

selectivity of potentiometric sensors to carbonate anion with an error not exceeding 1.5 

𝑙𝑜𝑔𝐾сел(𝐻𝐶𝑂3
−/𝐶𝑙−). 

2. QSPR models based on substructural molecular fragments describing 

phosphoryl acetamide ionophores provide prediction of the sensitivity of ion-selective 

sensors to heavy metal cations (Ca²⁺, Cd²⁺, Pb²⁺) with an error not exceeding 8 mV/dec. 

3. QSPR models based on substructural molecular fragments and semi-

empirical descriptors calculated by the PM3 quantum-chemical method using limited 

training datasets provide predictions of density, viscosity, and conductivity of choline 

chloride-based DESs with organic acids as hydrogen bond donors. The estimation errors 

do not exceed 0.065 g/cm for density, 4.6 mS/cm for conductivity, 3.6 mPa∙s for 

viscosity. 

 

Main results of the work.  

 The results were presented at the following scientific events: The 1st 

International Electronic Conference on Chemical Sensors and Analytical Chemistry; XII 

International Conference of Young Scientists "Mendeleev 2021", St. Petersburg; 13th 

International Symposium WSC-13, Moscow; The 2nd International Electronic 

Conference on Chemical Sensors and Analytical Chemistry; as well as three publications 

in peer-reviewed international journals indexed by Scopus and Web Of Science [1–3]: 

1. Vladimirova, N., Polukeev, V., Ashina J., Babain V., Legin, A., Kirsanov, D. 

Prediction of Carbonate Selectivity of PVC-Plasticized Sensor Membranes with Newly 

Synthesized Ionophores through QSPR Modeling (2022) Chemosensors, 10(2), 43. DOI: 

10.3390/chemosensors10020043 

2. Vladimirova N., Puchkova E., Dar’in D., Turanov A., Babain V., Kirsanov D. 

Predicting the Potentiometric Sensitivity of Membrane Sensors Based on Modified 
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Diphenylphosphoryl Acetamide Ionophores with QSPR Modeling (2022) Membranes, 

12(10), 953. DOI: 10.3390/membranes12100953 

3. Vladimirova N., Bochko T., Shishov A., Dmitry Kirsanov. Predicting the 

properties of deep eutectic solvents based on choline chloride and carboxylic acids and 

their mixtures with water using QSPR approach (2024) Colloids and Surfaces A: 

Physicochemical and Engineering Aspects, 692. DOI: 10.1016/j.colsurfa.2024.133961 

 

Main scientific results: 

1. Vladimirova N., Puchkova E., Dar'in D., Turanov A., Babain V., Kirsanov D.. 

Predicting the Potentiometric Sensitivity of Membrane Sensors Based on Modified 

Diphenylphosphoryl Acetamide Ionophores with QSPR Modeling (2022) Membranes, 

12(10), 953. DOI: 10.3390/membranes12100953 

This study investigated the applicability of the QSPR method for predicting the 

potentiometric sensitivity of plasticized polymer membrane sensors based on the 

chemical structures of ionophores described by substructural molecular descriptors as 

model inputs. The QSPR model was trained on literature data on heavy metal 

sensitivities of previously studied structurally similar ionophores and showed high 

predictive ability for sensitivities to Cu2+, Cd2+ and Pb2+. The model predictions for four 

new diphenylphosphorylacetamide-based ionophores were compared with 

potentiometric experimental data for these ionophores, and satisfactory agreement 

was observed. 

The co-researcher contributed significantly to this study by collecting and 

analyzing the literature data, formalizing the ionophore structures, constructing the 

QSPR model, analyzing the obtained results and interpreting the contribution of 

different descriptors to the sensitivity of the sensors. The applicant was also actively 

involved in the preparation of the scientific publication. 

2. N. Vladimirova, T. Bochko, A. Shishov, D. Kirsanov. Predicting the properties of 

deep eutectic solvents based on choline chloride and carboxylic acids and their mixtures 
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with water using QSPR approach (2024) Colloids and Surfaces A: Physicochemical and 

Engineering Aspects, 692. DOI: 10.1016/j.colsurfa.2024.133961 

In this work, a QSPR approach for predicting the properties of HERs is investigated. 

Regression models were constructed based on the organic acid structures of the HERs. 

The models related solvent properties and molecular descriptors of the corresponding 

carboxylic acids represented by substructural fragments and quantum chemical 

descriptors. Statistically significant correlations were established between the acid 

descriptors and the density, viscosity and electrical conductivity of HERs. The effect of 

different descriptors on these properties was analyzed based on regression coefficients. 

Given the rather limited data set, the statistical validity of the regression models was 

assessed using nested cross validation. 

The co-researcher was very actively involved in this study, performed data 

collection and analysis, formalization of carboxylic acid structures using substructural 

molecular fragments and quantum chemical descriptors, construction and validation of 

QSPR models, and interpretation of the results. The co-researcher also prepared the 

initial draft of the scientific publication. 

3. Vladimirova, N., Polukeev, V., Ashina J., Babain V., Legin, A., Kirsanov, D.. 

Prediction of Carbonate Selectivity of PVC-Plasticized Sensor Membranes with Newly 

Synthesized Ionophores through QSPR Modeling (2022) Chemosensors, 10(2), 43. DOI: 

10.3390/chemosensors10020043 

In this work, the potential of the QSPR approach for predicting the potentiometric 

selectivity of plasticized polymer membrane sensors based on novel ligands is 

investigated. Sensors with selectivity to carbonate were considered as the object of 

study. Using selectivity data for 40 ionophores available in the literature and their 

substructural molecular fragments as descriptors, a QSPR model was constructed that 

demonstrated sufficient accuracy in predicting selectivity for novel ligands having similar 

molecular fragments to the ligands used to train the model. 
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The co-researcher contributed significantly to this work by collecting and 

analyzing literature data, formalizing ionophore structures, constructing the QSPR 

model, analyzing model results, including establishing the contribution of substructural 

molecular descriptors to the model, and experimentally determining the selectivity of 

sensors with novel ionophores in the composition. The applicant was also actively 

involved in the preparation of the scientific publication.  
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Chapter 1. LITERATURE REVIEW 

 

1.1. Quantitative Structure-Property Relationships: theoretical foundations, 

methodology and applications in chemistry 

 

  For modern chemical research, the search for compounds with predetermined, 

desired properties is an urgent task. The traditional experimental approach, in which a 

hypothesis is proposed and then a series of experiments are performed, although it has 

a long history and is the basis for understanding chemical phenomena, often faces 

limitations when it comes to the efficiency of selecting structures with predetermined 

properties. First, the cycle of research - formulating hypotheses, conducting 

experiments, observing results, and refining procedures often takes a long time to 

achieve the desired result. Each step, based on previous knowledge, theoretical 

foundations and new assumptions put forward, requires strict adherence to the 

experimental methodology, analyzing and then adjusting to the latest results. In 

addition, each series of experiments requires material costs and labor of experimenters. 

Finally, the performed synthesis does not guarantee that the obtained compound or 

material will have the desired properties. 

With the development of computational techniques, computational approaches 

have become an increasingly important complement to experimental work. These 

computational methods, including quantum calculations, molecular dynamics modeling, 

and the search for quantitative structure-property relationships, allow us to solve both 

theoretical problems, such as the study of interaction mechanisms, and practical 

problems, such as predicting the properties of previously unexplored compounds. Such 

calculations provide an opportunity for preliminary evaluation of new compounds and 

materials, which is carried out faster and with much lower material costs than 

experiments performed in the laboratory. 
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QSPR is a computational approach that allows to establish a relationship between 

the chemical structure of a molecule and its properties. The general idea of this 

approach is to calculate, using various computational methods, a mathematical 

relationship (model) between the structure of a compound and its properties, and then 

use this model to calculate the properties of new molecules not used in the model. This 

calculation is carried out on the basis of parameters representing information about the 

properties of compounds in numerical form - descriptors. The general scheme of the 

approach is presented in Figure 1, which shows that the calculation of the connection 

between the structure of a compound and its properties is carried out through the 

stages of descriptor collection and their further statistical analysis. 

 

 

  Figure 1: Schematic of the methodology used in papers applying the QSPR 

approach. 

 

  The ideas underlying QSPR seem intuitive, and they were discussed long before 

the term was officially coined. The first paper in which these ideas are most explicitly 

articulated is a paper by Alexander Kram Brown and Thomas R. Fraser [4],  which argues 
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that there must be a relationship between the chemical structure and the physiological 

action of a substance. In such a case, if the structure changes by ΔC and the properties 

at the same time change by ΔΦ, then it becomes possible to find the dependence 

between C and Φ. 

 The term "QSPR" was formally proposed by Corwin Hansch in the 1960s [5]. [5]. 

The works of Hansch and his group belong to the field of biochemistry[6,7], where the 

QSPR approach is often referred to as QSAR -- Quantitative Structure-Activity 

Relationships. 

  From the time of Hansch's work to the present day, it is the calculation of the 

activity of compounds that represents the widest area of application of QSPR, in which 

such a direction as the search for new drugs should be singled out. For example, in one 

of the recent works [8] the structure of a quinoxaline derivative, a new drug against 

leishmaniasis, was proposed. The new substance in this work was not only proposed 

using descriptor analysis, OSIRIS Property Explorer program and Weber and Lipinski 

rules, but its properties were also predicted by QSPR model. After the synthesis of the 

compound with the proposed structure and its investigation, it turned out that the 

predicted property - the concentration index of half-maximal inhibition is close to that 

obtained experimentally (the percentage deviation of the predicted value from that 

obtained experimentally was less than 4%). 

  The structures of novel coumarin-isoxazole-sulfonamide hybrid compounds as 

antibiotics were evaluated using the QSAR approach[9], and 1H-pyrazole derivatives 

were studied by a new variation of QSAR, 5D-QSAR, to identify the best inhibitor of 

epidermal growth factor receptor, such inhibitors are used in cancer treatment [10]. 

  Why is drug discovery such a significant area of application for QSPR? It's all about 

the specifics of the approach: first, the most important advantage of QSPR is the 

significant reduction of costs associated with the development of new materials and 

compounds. Traditional experimental approaches to the development of new materials 

are often resource-intensive and require significant financial, labor, and time 
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investment. However, models calculated with QSPR allow predicting the properties of 

compounds prior to experimentation. This is especially important when measurements 

are time-consuming or technically challenging. 

In addition, QSPR plays an important role in shortening the development time of 

new materials. Calculating the properties of compounds prior to experimentation 

speeds up the development, synthesis and testing cycle by identifying promising 

candidates and eliminating unsuitable ones. This is particularly useful in fast-moving 

industries where speed to market is critical. 

 Finally, in the area of product development requiring animal testing, QSPR's 

ability to provide predictive data reduces the number of tests, which is ethically 

important. 

 Because of all these advantages, QSPR has been successfully applied in a 

multitude of areas of chemistry, the previously mentioned drug discovery being just one 

example of an application. 

For example, in the field of environmental chemistry (ecological chemistry), QSPR 

is used to predict the behavior of chemicals from an environmental perspective, 

including biodegradability [11,12], toxicity to aquatic organisms [13,14], 

bioaccumulation potential [15,16] and contaminant persistence assessment [17].  

Consideration of these factors contributes to the development of safer chemicals and 

regulatory compliance. Similar goals are pursued by studies applying QSPR in the field 

of agrochemistry, where it predicts the toxicity of pesticides [18,19], herbicides [20,21] 

and fungicides [22,23], helping to develop compounds with improved efficacy and 

reduced environmental impact. 

The QSPR approach has been widely used to predict the properties of new 

materials including polymers [24,25], nanomaterials [26,27] and composites [28], these 

materials are then applied in areas such as electronics, energy storage and 

photovoltaics. Much research has been devoted to the development of new catalysts as 

the resulting QSPR models help to calculate their activity [29,30]. 
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In food chemistry, QSPR models can predict flavor aroma [31,32], aroma [33] and 

stability of food additives and preservatives [34], facilitating the development of new 

food products and improving their safety.  

In the cosmetic industry, QSPR models predict the absorption of chemicals 

through the skin [35], comedogenicity [36] and irritation risk [37] from new ingredients, 

providing an opportunity to develop safer and more effective cosmetic products. 

  In chemical engineering, QSPR helps in the design and optimization of chemical 

processes by predicting the thermodynamic properties and reactivity of starting 

substances and products [38,39], a significant amount of work is devoted to predicting 

the properties of ionic liquids [40,41]. 

 In the petroleum and fuel industry, the QSPR approach is used to predict the 

properties of fuels and lubricants [42–44], such as viscosity, flash point and combustion 

efficiency, which helps in developing more efficient and environmentally friendly fuel 

formulations. 

 

1.2. Descriptors 

 

  In the QSPR approach, the concept of descriptors plays a key role and links the 

structure of a molecule and its physical, chemical or biological properties. In a general 

sense, descriptors are numerical values that quantitatively describe some aspect of a 

molecule, most commonly the molecular structure, and serve as the basis for building 

predictive models. The variety and choice of these descriptors are critical to the accuracy 

and applicability of QSPR models, as they directly affect the predictive power of the 

model. Regardless of the nature of the descriptors, they have the following mandatory 

requirements [45]: independence from labeling and numbering of atoms, independence 

from molecular rotation, definition by an unambiguous algorithm, and well-defined 
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applicability to molecular structures. In addition, it is desirable that descriptors be 

simple and can be applied to a wide range of molecules. 

 Most descriptors can be categorized as structural, geometric (3D), electrostatic, 

and quantum. 

1.2.1. Structural descriptors 

Structural descriptors are the simplest descriptors that quantify the structural 

characteristics of molecules without delving into their electronic or spatial 

characteristics. Structural descriptors include the number of atoms of a particular type, 

the number of bonds, and the presence of certain functional groups. They are easy to 

calculate and provide basic but important information about the size and composition 

of a molecule. Various methods and tools exist for deriving structural descriptors, each 

with unique advantages and applications. 

      Prominent among the methods are:  

 SMILES (Simplified Molecular-Input Line-Entry System): SMILES is a notation, 

represents a chemical structure as a line of text. It describes the structure based 

on the sequence of atoms and the types of bonds between them. SMILES 

strings can be easily converted into numerical descriptors using a variety of 

software tools, including the widely used ChemDraw, making them very 

convenient for studies using the QSPR approach. Figure 2 shows the structure 

of the 1-benzhydrylindoline-2,3-dione molecule and its record in SMILES.  



18 
 

 

  

Figure 2. An example of recording the structure of a molecule using SMILES 

 

 Molecular graphs are an approach that represents a molecule as a graph, where 

each vertex is labeled with the corresponding chemical element (e.g., C = 

carbon, H = hydrogen) and each edge is labeled with the type of covalent bond 

(single -, double =, triple, aromatic). Hydrogen atoms are usually omitted in this 

representation of the molecule, since the valence of each atom is known. Using 

this approach, various graph-based descriptors such as adjacency matrices or 

topological indices can be derived. Figure 3 shows the molecule 

N2,N2,N6,N6,N6-tetraethylpyridine-2,6-dicarboxamide as a graph. 
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Figure 3. Representation of the N2,N2,N6,N6-tetraethylpyridine-2,6-

dicarboxamide molecule as a graph. Different types of nodes according to atomic 

elements and different types of edges depending on the chemical bonding in the 

molecule 

 

Various free and commercial programs are used to find descriptors based 

on graphs. Among the most popular programs are the proprietary (with a paid 
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license) DRAGON and the openly available PaDEL and ISIDA. The latter was 

developed by Vitaly Petrovich Solovyov, Doctor of Chemical Sciences, leading 

researcher of the Laboratory of New Physicochemical Problems of the Institute of 

Physical Chemistry of the Russian Academy of Sciences. 

 Molecular fingerprints are binary or numerical vectors that reflect the presence or 

absence (and sometimes the number) of certain substructures or patterns in a 

molecule. There are several types of fingerprints, including pathway-based 

fingerprints, Extended-Connectivity Fingerprints (ECFP) [46], and Molecular ACCess 

System keys (MACCS). Figure 4 shows the structure recordings using MACCS and 

EFCP. One cell of the fingerprint is called a bit. A MACCS bit is 1 if the molecule 

contains a substructure corresponding to the bit; otherwise it is 0. ECFP searches 

for the relative position of each atom in the molecule using the l bond layer and 

records the structural information in a bit array. 

 

 

 

Figure 4. Representation of molecular structures using (a) MACCS and (b) 
ECFP 
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  1.2.2. Geometric (3D) descriptors 

Geometric (3D) descriptors are descriptors that include three-dimensional 

information about a molecule, such as shape, volume, and surface area. Geometric 

descriptors are important for understanding properties that depend on the spatial 

arrangement of atoms and are often applied to objects of study that are large molecules 

such as proteins. However, models trained on datasets composed solely of 3D 

descriptors are often inferior in predictive power to models composed solely of 

structural descriptors, so geometric descriptors are often used as a complement to 

structural descriptors [47]. Geometric descriptors can be divided into several groups, 

each of which reflects different aspects of molecular geometry and its influence on the 

behavior of molecules. 

1. Molecular shape descriptors. These descriptors quantitatively characterize the 

overall shape of a molecule, which can affect its ability to interact with biological 

targets or to incorporate into receptor sites. For example, eccentricity, 

asphericity, and shape indices that describe how elongated, flat, or spherical the 

molecule is.  

2. Volume and surface area descriptors. This group includes descriptors that 

measure the surface area and volume of a molecule, such as solvent-accessible 

surface area and molecular volume. These descriptors are important for 

predicting solubility, permeability, and other properties related to how a 

molecule interacts with its environment.  

3. Descriptors of steric effects. These descriptors quantitatively determine the 

spatial arrangement of atoms in a molecule and the resulting steric effects that 

can affect the reactivity of molecules and their interactions. Separately, we can 

single out the parameter Sterimol [48], which takes into account the size of atoms 

in the molecule and allows us to estimate the steric accessibility. 

4. Moment of inertia descriptors. These descriptors are related to the distribution 

of mass within the molecule and its rotational inertia around different axes. They 
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provide information about the balance of the molecule and the mass distribution 

in three-dimensional space. 

5. 3D indices. The 3D Wiener index (W3D) is the best known topological descriptor 

used to quantify the branching of molecules and is defined as the sum of the 

lengths of the shortest paths between all pairs of vertices (atoms) in a molecule 

[49]. W3D takes into account the geometric distances between pairs of atoms, 

not only their topological distances. This modification of the Wiener number 

allows W3D to more accurately characterize the spatial configuration of a 

molecule.  

The 3D Balaban Index (J3D) is another topological descriptor that measures the 

degree of branching and cyclicity within a molecule. Like the Wiener index, J3D is 

calculated based on geometric rather than topological distances between atoms 

[50]. 

6. 3D autocorrelation descriptors. Unlike the previous descriptors, 3D indices, 3D 

autocorrelation descriptors quantify not only the distance between pairs of 

atoms, but in addition the distribution of certain molecular properties (such as 

charge, mass, or hydrophobicity) over the structure of a molecule  [51].  

7. Weighted Holistic Invariant Molecular (WHIM) descriptors. WHIM descriptors 

reflect information about the shape, size, symmetry and distribution of atoms in 

a molecule and are calculated from the (x, y, z)-coordinates of the atoms. WHIM 

descriptors are designed to be constant regardless of the position or rotation of 

the molecule [52].  

 

 1.2.3. Quantum chemical descriptors 

Quantum chemical descriptors play an important role in computational chemistry, 

allowing us to understand the properties and behavior of molecules using quantum 

mechanics-based calculations. Various computational methods including ab initio, 
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density functional theory (DFT) and semiempirical approaches are used to derive these 

descriptors. 

Ab initio methods are aimed at solving the Schrödinger equation for molecular 

systems. Calculations by these methods are performed without reference to empirical 

parameters or fitting to experimental data and the only input data for ab initio 

calculations are physical constants. This makes these methods highly accurate, but 

extremely long and computationally demanding. 

  Density functional theory offers a different approach, based on the electron 

density of a system rather than its wave function. DFT assumes that all properties of a 

system can be determined from its electron density, and calculations using this method 

are less computationally intensive.  

       Semi-empirical methods simplify the computational process by incorporating 

empirical data and simplifications into quantum mechanical calculations. This approach 

significantly reduces the required computational resources. Semiempirical methods, 

such as PM3, strike a balance between computational efficiency and the accuracy 

required to effectively study the properties of molecules. 

     Quantum-chemical descriptors include such parameters as:  

 total energy of the molecule, obtained as a result of quantum mechanical 

calculations, includes all kinetic and potential energies of electrons and nuclei.  

 heat of formation, which characterizes the change in energy associated with the 

formation of a molecule from its constituent atoms in their standard states. 

 repulsion and attraction energies, quantifying the electrostatic repulsion 

between electrons and the attraction between electrons and nuclei, 

respectively.  

 protonation energy, which characterizes the energy change associated with the 

attachment of a proton to a molecule. 
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 electron density, showing the distribution of electron density in a molecule, 

highlighting regions with more and fewer electrons. 

1.2.4. Electrostatic descriptors 

Electrostatic descriptors quantify the distribution and influence of electrical 

charges within a molecule. The characteristics described by these descriptors affect the 

properties of the molecule such as solubility, binding affinity, and reactivity.  The same 

programs used to calculate electrostatic descriptors of molecules are used to calculate 

quantum descriptors: Gaussian, HyperChem, and Open3DGRID. 

 Among electrostatic descriptors the following can be distinguished: empirical 

atomic partial charges of Gasteiger-Marsili -- semi-empirical charges calculated using the 

method of electronegativity equalization and giving an approximate idea of the charge 

distribution between atoms of a molecule. Empirical Zefirov atomic partial charges -- 

charges derived from an empirical method that takes into account the electronic 

structure of the molecule. 

Mulliken atomic partial charges - charges derived from quantum mechanical 

calculations, reflecting the distribution of electron density around atoms. [53] 

Minimum and maximum atomic partial charges represent the most negative and 

most positive charges in a molecule, indicating regions of high and low electron affinity, 

respectively. 

Polarity parameters – descriptors that quantitatively characterize the overall 

polarity of a molecule and reflect its dipole character and potential for polar 

interactions. Dipole moment – a vector quantity measuring the separation of positive 

and negative charges in a molecule and indicating its overall polarity. Molecular 

polarizability – a descriptor describing how easily a molecule's electron cloud can be 

distorted by an external electric field, affecting its interaction with light and other 

molecules. Molecular hyperpolarizability – higher-order polarizability that contributes 
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to nonlinear optical properties. Local polarity of a molecule characterizes the change in 

polarity in different regions of the molecule. 

Average ionization energy reflects the energy required to remove an electron 

from a molecule, related to its ionization potential and stability. The minimum and 

maximum electrostatic potential at the surface of a molecule indicate the regions with 

the lowest and highest electrostatic potential, which is important for understanding how 

molecules interact with charged particles. The total variation in surface electrostatic 

potential is a quantitative estimate of the variability of the electrostatic potential across 

the surface of a molecule. The electrostatic balance parameter describes the balance 

between positive and negative sites within a molecule, which affects its overall 

electrostatic behavior. 

In addition, Charged Partial Surface Area (CPSA) descriptors can be separately 

identified. CPSA descriptors are designed to describe polar intermolecular interactions. 

CPSA descriptors proved to be applicable, for example, in the study of toxicity of 

aqueous solutions, acting as an alternative to LUMO energy level measures to describe 

global and local electrophilicity in the case of noncovalent molecular interactions [54].  

 

1.3. Mathematical methods for data processing 

 

To establish quantitative relationships between the molecular structure of 

compounds and their properties, the QSPR approach uses various mathematical 

methods to reveal complex relationships. The main purpose of these methods, in 

particular those based on linear regression, is to model quantitative properties such as 

selectivity, density or biological activity. 

 Among the regression methods used in QSPR, multiple linear regression (MLR), 

partial least squares (PLS) are predominant. Each method aims at obtaining a 

mathematical regression equation linking molecular descriptors to properties. In the 
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general case of linear regression, this equation is as 

follows:

𝑦 = 𝑎0  +  𝑎1𝑥1  + 𝑎2𝑥2  +  … + 𝑎𝑛𝑥𝑛 +  𝜀, (1) 

 

 

Where y is the dependent variable representing the property being modeled, 

    𝑎0, 𝑎1 … 𝑎𝑛  - regression coefficients determining the change in Y as a result of 

changing each variable X by one unit, provided that all other variables X remain 

unchanged, 

    𝑥1, 𝑥2, … 𝑥𝑛 - independent variables, which are represented by molecular 

descriptors when applying the QSPR approach, 

ϵ is an error that takes into account the deviation of the observed values from the 

dependence defined by the model  

 

 Thus, the main goal of regression methods is to find the optimal coefficients a 

that best describe the relationship between descriptors and properties. For this 

purpose, the coefficients need to be calculated in such a way as to minimize the 

prediction error. The final model is characterized by various metrics to assess its quality. 

 However, the task of model building is not limited to the calculation of 

coefficients. Given that data sets in chemical research are often small - typically 

consisting of dozens of data points - the risk of model overfitting is very high. Overfitting 

occurs when the model describes random noise rather than the trend that makes up the 

regression. Validation techniques such as cross-validation are used to reduce this 

contribution to the model. Cross-validation involves dividing the data into several 

subsets. In this case, some of them are used to train the model and others are used to 

test it. This approach ensures that the model generalizes well to new, unknown data, 

rather than simply repeating the dependencies of the training set. 
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1.3.1. Metrics and validation 

Assessing the quality of models is important to ensure their predictive ability. 

Typically, this assessment is done using various statistical metrics that quantify how well 

models predict properties. Before moving directly to a discussion of these metrics, it is 

worth noting the concept of residuals as a fundamental idea for understanding these 

metrics. 

Residuals are the difference between the observed values of the target variable 

and the predictions made by the model:  

Residual = actual value - predicted value 

Figure 5 illustrates a linear regression built on one variable (x) and predicting the 

dependent variable (y). The red dots represent the actual observations, the purple line 

corresponds to the linear regression model, and the green lines highlight the residuals 

for each observation, visualizing the errors in the prediction. 

 

 

Figure 5. Example of residuals for a linear model with one feature. 

 

This visual representation is not just a method to see how well the model is 

performing on its prediction task, but also a way to help identify patterns of error that 

may indicate certain model problems. 
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Based on the concept of residuals, Mean Squared Error (MSE) determines the 

average of these squared differences, providing a comprehensive measure of the 

model's prediction error: 

𝑀𝑆𝐸 =  
1

𝑛
∑ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙2

𝑛

𝑖=1

, (2) 

  

The Root Mean Squared Error (RMSE) provides a measure of error in the same 

units as the predicted property.  RMSE=√𝑀𝑆𝐸 

Coefficient of Determination, or R² -- another important metric derived from 

residuals. It measures the proportion of variance of the dependent variable and gives an 

indication of the strength of the relationship between the model inputs and 

outputs:

𝑅2  =  1 – 
∑ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙2

∑(𝑦𝑖−�̅�)2
, (3) 

 

It follows from the equation that the maximum value of R2 = 1, then the larger the 

value of R², the better the model is, the more accurately the model reproduces the 

observed values of the dependent variable. 

When calculating the model, it is important to evaluate the quality of prediction 

of unknown data by the model. The simplest method of such evaluation is to divide the 

initial data set into two parts: training and test samples. The model is trained on the 

training set and then evaluated using the metrics described above on the test set, which 

acts as new data unknown to the model. This method is as simple as possible, but 

excludes the test set from the training data, which can be a significant limitation when 

working with small datasets. 

To maximize the use of available data, especially if it is limited, the data 

partitioning method has evolved into cross-validation (cross-validation). Cross-

validation involves repeatedly partitioning a data set into training and test sets, allowing 
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each subset of data to be used for both training and testing. The most common form of 

this technique is K-fold cross-validation. 

In K-fold cross-validation, the data set is divided into K equal parts. The model is 

trained on K-1 parts, and the remaining part is used as a test set. This process is repeated 

K times, with each of the K parts being used as a test set exactly once. The final model 

performance is usually the arithmetic mean of the model performance estimates on 

these K test sets. This method not only improves the robustness of the model estimates, 

but also utilizes the data more efficiently by ensuring that each data point contributes 

to both training and validation. 

An extreme variant of K-fold cross-validation is full cross-validation (leave-one-out 

cross-validation, LOO CV), where K is equal to the number of samples in the dataset. This 

means that each part contains exactly one data point. The model is trained on all but 

one sample of the data and tested on that excluded sample. The LOO CV method is 

particularly useful for very small datasets, but can be computationally expensive when 

dealing with large datasets, making it less practical in such scenarios. 

1.3.2. Multiple Linear Regression 

Multiple Linear Regression (MLR) is one of the fundamental and still the most 

frequently used statistical methods in QSPR. Its popularity stems from its simplicity, 

interpretability and an easy-to-understand way to model the relationship between a 

dependent variable (the property of interest) and several independent variables 

(molecular descriptors). As one of the earliest methods used in QSPR research, MLR is a 

precursor to more sophisticated computational methods in the field. The fundamental 

idea behind this method is the assumption that there is a linear relationship between 

the property of interest and the molecular descriptors. 

 From a formal point of view, the MLR model is described by the general linear 

regression equation given earlier. And the goal of MLR -- to find the set of coefficients 

(a0, a1, ... an) that best fit the observed data -- is consistent with the general goal of linear 
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regression. Typically, finding the coefficients is implemented using the least squares 

method. 

 Due to its simplicity, the MLR method works efficiently only on very simple 

research objects because of the following significant limitations: the number of 

descriptors should not exceed the number of samples and there should not be a linear 

relationship between the descriptors. In addition, it should be taken into account that 

the method assumes the existence of a linear relationship between each descriptor and 

the dependent variable. 

 

1.3.3. Partial Least Squares 

Partial Least Squares (PLS) regression, also known as Projection on Latent 

Structures, is a key statistical method in the field of QSPR, especially valued for its 

efficiency in dealing with complex, multivariate data. The PLS method was developed by 

Svante Wold specifically for chemometrics applications [55] and is indispensable in QSPR 

studies where available experimental data may be scarce. Unlike the previously 

described MLR method, the PLS method allows modeling dependence using latent 

variables (LV) in variable sets where the number of descriptors (independent variables) 

greatly exceeds the number of samples and where the variables may be linearly 

dependent. These features of the method are indispensable for finding dependence in 

cases where descriptors represent frequencies of the spectrum [56]. 

 PLS regression aims at finding a relationship between two matrices, X 

(independent variables represented in QSPR by molecular descriptors) and Y (responses, 

e.g., physicochemical properties), by projecting the independent variables onto new 

latent variables. The original data is a space with dimensionality corresponding to the 

number of descriptors, but to find a linear dependence we reduce the original 

dimensionality by projecting the available data onto new axes - latent variables. 
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The process of finding these variables is as follows: the first stage is to normalize 

and center the descriptor data. This ensures that each descriptor is transformed to 

account for values so that variables with large numerical ranges do not carry more 

weight in the analysis.  The analysis will then focus on the distribution and covariance of 

the descriptors rather than their absolute values. 

The directions of maximum covariance are then determined using an iterative 

process: the algorithm starts by finding the direction in the descriptor space that has the 

highest covariance with the dependent variable. Next, a latent variable is constructed as 

a linear combination of descriptors weighted by their contribution to this direction of 

maximum covariance. 

 The process continues by successively finding latent variables, each of which 

represents a direction in descriptor space that reflects the next highest level of 

covariance with the dependent variable, orthogonal to the directions already 

considered. This orthogonality ensures that each new latent variable reflects unique 

information that has not yet been accounted for by previous latent variables. Figure 6 

shows the result of finding the latent variables for the sample set. 

The final PLS model is built using these latent variables as inputs. The number of 

latent variables to be included in the model is usually determined through validation to 

balance the transfer of information to the model and the risk of overfitting. 

Thus, in addition to the matrix of independent variables X and the matrix of 

properties Y, the matrices of accounts and loadings are also used to find the dependence 

(Figure 7): the matrix of accounts (T) represents the projection of the raw data onto the 

latent variables, while the matrix of loadings (P): Loadings show how much each 

descriptor contributes to each latent variable.  
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Figure 6: Illustration of the iterative process of constructing latent variables in PLS 

regression. The initial axes represent normalized and centered descriptors. The point 

cloud represents the distribution of objects in the descriptor space. Latent variables are 

found as directions of maximum covariance with the dependent variable, orthogonal to 

each other 

 

 

Figure 7. PLS data can be presented as two tables, matrices, X and Y 
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 The basic idea of PLS can be described by the following 

equations:

𝑋 = 𝑇𝑃𝑇 + 𝐸, (4) 

𝑌 = 𝑈𝑄𝑇 + 𝐹, (5) 

 

where T and U are the count matrices for X and Y, respectively, representing the 

projections of X and Y onto the latent variables.  

P and Q are loadings matrices showing how each original variable in X and Y 

contributes to the components.  

E and F are residual matrices containing information not explained by the model. 

Thus, the equation for finding the PLS model: 

𝑌 = 𝑋𝐵 + 𝐹, (6) 

where B is the matrix of regression coefficients calculated to maximize the 

covariance between X and Y. 

Since the model allows not only predicting properties but also understanding the 

relationship between structure and properties through the interpretation of counts and 

loadings, PLS regression is a widely applicable method in QSPR, allowing researchers to 

uncover relationships between molecular descriptors and desired properties even under 

challenging data acquisition scenarios. [57,58] 

 

1.3.4. Support Vector Regression 

Support vector regression (SVR) is an approach known for its effectiveness in 

dealing with complex and nonlinear relationships. Derived from the principles of support 

vector machine (SVM) used for classification, SVR extends the application of the method 

to regression problems. Unlike traditional regression methods that minimize the error 

between predicted and actual values, SVR focuses on fitting the error within a given 
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threshold, which makes it useful when dealing with data sets with noise [59].  

  The basic idea of SVR is to find a hyperplane in a multi-dimensional descriptor 

space that best fits the data. The concept of hyperplane is central to understanding the 

SVR method and its predecessor, the SVM method. A hyperplane is an n-1 dimensional 

subplane in n-dimensional space (a line in two-dimensional space, a plane in three-

dimensional space) that is used to separate data points in space in order to find a 

classification or regression.  

 The goal of SVR is to build a model that predicts an output value y for an input 

vector X with a variance of no more than ϵ for each data point. 

 The hyperplane equation in SVR is as follows: 

𝑓(𝑥) = 𝑤𝑇𝑋 + 𝑏, (7) 

where w is the vector of descriptor weights, X is the descriptor matrix, and b is the 

displacement of the hyperplane with respect to the origin. 

 

1.3.5. Neural Networks 

  Neural Networks or Artificial Neural Networks are the most complex class of 

machine learning models under consideration. The main attraction of neural networks 

is their ability to model complex, non-linear relationships that are often too complex for 

traditional statistical methods. The construction of such relationships is achieved by 

mimicking the structure and function of the human brain, using layers of interconnected 

nodes or "neurons" to process data through a series of transformations and 

connections. 

 Neurons take signals from one or more inputs and convert them into an output 

signal. Each neuron can be described as a collection of two components (Figure 8) - an 

adder (Σ) and an activation function (f). The adder receives input signals and returns 

their weighted sum, which is then converted by a nonlinear activation function into an 

output signal. Various functions such as sigmoid, hyperbolic tangent (tanh), ReLU 

(Rectified Linear Unit) and others can be used as activation function. The choice of a 
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particular function depends on the task and the architecture of the neural network. 

From the mathematical point of view, this scheme can be described as 

follows:

𝑦 = 𝑓(𝑤 ⋅ 𝑥 + 𝑏), (8) 

Where y is the output signal, x is the input vector, w is the weight vector, b is the bias, 

and f is the activation function. 

 

 

Figure 8. Scheme of a neuron of the artificial neural network. 

 

The fundamental idea of NN involves the arrangement of neurons in layers: an 

input layer, one or more hidden layers, and an output layer (Fig. 9). Each neuron in one 

layer connects to neurons in the next layer. Then the process of training the neural 

network, during which the difference between the predicted and actual results is 

minimized, is a change in the bias and weighted sums in the adders of neurons. 
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Figure 9. Multilayer neural network with three inputs (Xi = I, 2,3), two hidden layers, 

and one output (Y). B - bias neurons. 

 

  Neural networks, due to their complex structure, allow us to establish 

dependencies in datasets where descriptors are nonlinearly related to a property. 

However, NNs have disadvantages - they are easily overtrained, especially when the 

number of descriptors is large, and are difficult to interpret, which makes it difficult to 

understand the influence of descriptors on properties. 

 

1.4. Application of QSPR in analytical chemistry 

 

Despite significant progress in QSPR, the development of accurate and reliable models 

for property prediction continues to be hampered by the limited amount and variety of 

experimental data. The variability of experimental conditions and the complexity of 

chemical systems, especially in the case of multicomponent mixtures such as deep 
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eutectic solvents, make it difficult to collect the homogeneous data sets needed to build 

generalizable models. 

Nevertheless, QSPR modeling has been successfully applied in a number of areas 

of analytical chemistry where it has been possible to collect sufficient data from 

experiments performed under similar conditions. Such areas include the development 

of ion-selective sensors, optimization of extraction of target components from natural 

products using DES, and the development of new chromatographic phases. 

One of the most important applications of QSPR is the development of ion-

selective sensors. In a study by Solovyov et al. (2019) [60], applied QSPR using structural 

fragments of chemical compounds as descriptors to predict the potentiometric 

sensitivity of polymeric membrane sensors to heavy metal ions such as Cu²⁺, Zn²⁺, Cd²⁺, 

and Pb²⁺. This work demonstrates that despite a limited data set, QSPR models can 

achieve significant predictive power, as evidenced by the low RMSE value (about 5 

mV/dec) and high coefficient of determination (R² about 0.8) in cross-validation. This 

suggests that QSPR can effectively complement traditional experimental approaches by 

predicting how different ligands in PVC-plasticized membranes will respond to specific 

ions. 

  Subsequently, Martynko et al. (2020) studied the selectivity of Mg²⁺/Ca²⁺ sensor 

membranes using different amide ligands [61]. This study demonstrates how QSPR 

models can facilitate the early stages of sensor development by identifying promising 

candidates prior to synthesis and measurements. 

  QSPR modeling can not only predict sensor sensitivity, but also enable the 

development of more selective and efficient sensor systems. For example, a study by 

Paurbashir (2023) uses a combination of genetic algorithms and support vector 

machines to predict selectivity to carbonates for sensors with PVC-plasticized 

membrane [62]. 

  Similarly, Kiani-anbui and colleagues applied QSPR to model electrode selectivity 

coefficients to lanthanum [63]. Their approach involves using density functional theory 



38 
 

to calculate descriptors, which allows for more detailed and accurate prediction of 

sensor performance. 

  A novel application of QSPR is illustrated in Phan Ti Diem-Tran et al. (2023), where 

QSPR models were developed to predict the stability and potentiometric sensitivity of 

complexes formed by heavy metal ions with organic fluorescent compounds [64]. This 

study focused on coumarin-like ligands, which are known for their fluorescent 

properties. QSPR models showed excellent performance, with quadratic correlation 

coefficients (R²) as high as 1.00, demonstrating the accuracy of the method in predicting 

ligand interactions with metals such as Cu²⁺, Cd²⁺, and Pb²⁺. By analyzing a virtual 

database of coumarin-like structures, the researchers identified several new ligands 

with promising sensitivity and stability constants. Subsequent quantum chemical 

calculations and toxicological profiling helped to evaluate their suitability as fluorescent 

chemosensors for heavy metals in industrial wastewater.  

Deep eutectic solvents are a new type of solvent introduced by Abbott and 

colleagues about two decades ago [65]. DESs typically consist of a hydrogen bond donor 

(HBD) and a hydrogen bond acceptor (HBA), which together form a eutectic mixture with 

a melting point significantly lower than that of each component individually. This feature 

allows DESs to remain liquid at room temperature, making them ideal for a variety of 

chemical applications due to their increased solubility, reduced volatility and adjustable 

viscosity. 

Since DESs are multicomponent systems, it is common to model any one of the 

components when applying the QSPR approach to them.  

 Lemaoui et al. first applied QSPR to predict the properties of deep eutectic 

solvents using QSPR models and COSMO-RS sigma profiles as molecular descriptors 

[66,67]. The predicted DES conductivity values obtained from the developed models 

were in good agreement with experimental data. 

Salakhshouri et al. extended the application of QSPR for DES by developing a 

hybrid model combining QSPR and Gaussian process regression to predict CO2 solubility 
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in different DES compositions [68]. This study demonstrated the potential of QSPR 

models as a tool to accurately predict interactions between DES components and 

dissolved gases, which can be used to design and optimize solvent systems for carbon 

capture.  

In addition, QSPR models have found applications in optimizing the extraction 

efficiency of target components from natural products using DESs. For example, Hu et 

al. used QSPR models in combination with COSMO-SAC models to investigate the effect 

of DES composition on the extraction efficiency of oleocanthal from olive oil [69]. Thanks 

to the models built, it was possible to accurately predict the extraction results and select 

the most efficient DES compositions for the process.  

  The development of chromatographic phases is a necessary process for the 

development of chromatography, an extremely widely used analytical technique. The 

QSPR approach can be applied to develop new phases designed for specific analytical 

purposes, thereby improving the efficiency and specificity of chromatographic 

separation of complex mixtures. The first studies in the field of retention time prediction 

were carried out by Fedorova et al. in  [70], where they studied retention time prediction 

using deep learning models in high performance liquid chromatography (HPLC). 

Different architectures of deep learning models were trained on molecular fingerprints 

and SMILES representations. The best performance was demonstrated by a one-

dimensional convolutional neural network (1D CNN), which used SMILES as input.  

 Based on the study by Fedorova, Obradovich et al. further improved the predictive 

capabilities of QSPR models in their comparative study of descriptor calculation tools for 

modeling the retention mechanism of isomeric compounds [71]. This study extended 

previous work by applying a broader set of computational tools and machine learning 

techniques, including SVM, MLR and XGBoost, as well as feature selection methods such 

as genetic algorithm and stepwise regression.  

Despite its successes, QSPR modeling in analytical chemistry faces a number of 

unresolved challenges that require further research. 
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First, the potential of QSPR to predict the properties of deep eutectic solvents 

remains poorly understood. Existing approaches based on modeling of individual 

components of DESs do not always allow taking into account complex interactions 

between components, which may limit the accuracy of predicting the properties of the 

mixture as a whole. The development of new QSPR models capable of predicting the 

properties of DESs based on their composition is an urgent task, the solution of which 

will expand the field of application of these solvents. 

Secondly, there is an urgent need to develop new approaches to QSPR modeling 

of sensor selectivity, especially for the determination of hydrophilic anions such as 

carbonate ions. Due to the limited number of available ionophores and the difficulty in 

achieving high selectivity, the development of efficient sensors for carbonate ions is a 

significant challenge. Given the importance of carbonate detection in environmental 

studies, food industry and other fields, the development of new QSPR models for 

predicting and optimizing the selectivity of sensors for carbonate ions is a highly relevant 

task. 

 

1.5. Aim and tasks of the work 

 

Analysis of the applicability of the QSPR approach to various objects of analytical 

chemistry, combined with a review of existing descriptors and modeling methods, has 

shown that, despite the promising nature of this approach, the amount of research in 

this area is limited. This is due to the difficulties in obtaining large homogeneous 

datasets required for the construction of classical QSPR models. 

Nevertheless, solving this problem seems to be crucial for the development of 

analytical chemistry. Therefore, in this work, we have chosen two research areas with 

high potential for practical application and allowing us to collect sufficient experimental 

data to build reliable QSPR models: ion-selective electrodes and deep eutectic solvents.
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Accordingly, the main objective of this study is to extend the scope of QSPR 

applications in analytical chemistry by developing models to predict the properties of 

ion-selective electrodes and deep eutectic solvents. To achieve this goal, the following 

three objectives were set: 

1. Development and validation of QSPR models to predict the selectivity of ion-

selective sensors to carbonate-ions (CO₃²-). 

Determination of anions such as carbonate ion (CO₃²-) using ion selective 

electrodes (ISEs) is a challenging task in analytical chemistry. The development of 

selective ligands for anion binding is generally difficult compared to cations because 

inorganic anions are characterized by a lower charge-to-radius ratio, a greater variety of 

geometries, and their forms of existence in solution are strongly pH dependent. 

In addition, the development of highly selective sensors for carbonate ions is 

difficult due to their hydrophilicity, which prevents effective binding to ionophores in 

the hydrophobic sensor membrane. 

Currently, the most successful commercial ionophores for the determination of 

carbonate ions are based on trifluoroacetophenone and its derivatives. The key 

structural element of these compounds is a carbonyl group with reduced electron 

density on oxygen due to the strong acceptor influence of the -CF3 group. This suggests 

that other compounds containing acceptor substituents near the carbonyl group may 

also exhibit high selectivity to carbonate ions. 

However, experimental validation of each potential ionophore is time and 

material intensive. The development of QSPR models capable of predicting the 

selectivity of ISEs to carbonate ions based on the structural characteristics of ionophores 

will significantly accelerate and optimize the process of searching for new effective 

ligands. Such models use structural fragments of ionophore molecules as descriptors, as 

well as membrane plasticizer characteristics encoded using specialized software.  



42 
 
2. Development and validation of QSPR models to predict the sensitivity of ion-

selective sensors to heavy metal cations (Ca²⁺, Cd²⁺, Pb²⁺). 

The determination of heavy metals (Ca²⁺, Cd²⁺, Pb²⁺) in the environment, food and 

biological samples is an important task for environmental monitoring, quality control 

and medical diagnostics. Ion-selective electrodes represent a convenient and affordable 

tool for the determination of metal ion concentrations, but their application in real-

world applications is often limited by insufficient sensitivity. 

One of the promising directions for improving the characteristics of ISE is the 

development of new ionophores - substances that provide selective binding of metal 

ions in the sensor membrane. Diphenylphosphorylacetamides represent a new class of 

ligands with high extraction ability towards metal ions, which makes them promising 

candidates for the creation of new ionophores. [72] 

However, experimental validation of each potential ionophore is a costly and 

time-consuming process. The development of QSPR models to predict the sensitivity of 

ISEs based on the structural characteristics of ionophores will greatly accelerate and 

simplify the process of searching for new effective ligands. Structural fragments of 

ionophore molecules encoded by specialized software are used as descriptors in such 

models. 

3.  Development and validation of QSPR models for predicting physicochemical 

properties of DESs with organic acids as hydrogen bond donors. 

Deep eutectic solvents are a new class of solvents with unique properties such as 

low volatility, high solubility and tunable viscosity. These properties make DESs 

promising for applications in various fields including extraction, electrochemistry, 

catalysis, and new materials development. However, finding optimal HER compositions 

for specific applications is difficult due to the large number of possible combinations of 

components and the difficulty in experimentally determining their properties. 

This objective is to develop QSPR models that allow predicting the 

physicochemical properties of DESs, such as density, conductivity, viscosity and 
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refractive index, based on the structural characteristics of organic acids acting as 

hydrogen bond donors in the HER composition.  

Not only structural fragments of organic acid molecules are used as descriptors, 

but also semi-empirical descriptors such as HOMO and LUMO energies, dipole moment 

and heat capacity calculated using the PM3 quantum chemical method. This will allow 

to take into account the electronic properties of the molecules and improve the 

prediction accuracy. 

The choice of DES with organic acids as hydrogen bond donors is due to their wide 

use and structural diversity, which allows the properties of DES to be varied over a wide 

range. Density, conductivity, viscosity and refractive index are key physicochemical 

properties of DES that determine their applicability in various fields, namely: density and 

viscosity affect the efficiency of extraction and separation of mixture components, 

conductivity is a critical parameter for electrochemical processes such as electrolysis and 

electrodeposition, physicochemical properties of DES can affect the activity and 

selectivity of catalysts. 

The development of such models will make it possible to optimize the 

composition of DES for specific applications, accelerate the process of development of 

new DES with improved characteristics. 
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Chapter 2. APPLICATION OF QSPR MODELING FOR PREDICTING SELECTIVITY OF 

CARBONATE IONOSELECTIVE ELECTRODES 

 

This chapter investigates the possibility of using QSPR to predict the 

potentiometric selectivity of plasticized polymer membrane sensors based on new 

ligands. Special attention is paid to the development of sensors with selectivity to 

hydrophilic anions, which is an important task in environmental monitoring, water and 

food quality control, and medical diagnostics. 

Despite significant progress in the development of ion-selective electrodes, the 

development of sensors with high selectivity to carbonate ions remains a challenge. This 

is due to the hydrophilicity of the carbonate ion and the limited number of available 

ionophores that can effectively bind it in the hydrophobic sensor membrane. 

QSPR modeling represents a promising approach to solve this problem, allowing 

the prediction of sensor selectivity based on the structural characteristics of ionophores. 

In this chapter, the application of QSPR modeling to predict the selectivity of carbonate 

ISEs based on a dataset of 40 ionophores described in the literature is discussed. 

Structural fragments of ionophore molecules were used as descriptors. In addition, data 

on the selectivity of chloride ionophores and membrane plasticizer characteristics were 

added to expand the dataset and to account for the influence of the sensor matrix on 

its response. 

Analysis of the obtained QSPR models allows us to evaluate their predictive ability 

and identify key structural features of ionophores responsible for selectivity to 

carbonate ions, which can be used for the directed search for new ligands with improved 

characteristics and the development of highly selective carbonate sensors. 
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2.1. Experimental section 

 

2.1.1. Selection of descriptors 

  Following the methodology outlined in Chapter 1.1, the first stage of the 

experiment is to collect data for further processing and model building. "The dataset for 

QSPR modeling included 40 structures with known 𝑙𝑜𝑔𝐾𝑠𝑒𝑙(𝐻𝐶𝑂3
−/𝐶𝑙−)  described in 

the literature (the structures are listed in Table 1 in the Appendix A) [73–79]. Since the 

number of papers reporting the successful development of carbonate potentiometric 

sensors is small, in order to expand the data set with additional samples, several 

ionophores showing low carbonate selectivity were also added since these substances 

were chloride ionophores. In these cases, the reported 𝑙𝑜𝑔𝐾𝑠𝑒𝑙(𝐶𝑙−/𝐻𝐶𝑂3
−) were 

converted to в 𝑙𝑜𝑔𝐾сел(𝐻𝐶𝑂3
−/𝐶𝑙−)  according to the Nikolsky-Eisenman equation:   

𝐸 =  𝐸𝐼
0 +

𝑅𝑇

𝑧𝐼𝐹
𝑙𝑛 (𝑎𝐼  + ∑ 𝐾𝐼𝐽𝑎𝐽

𝑧𝐼
𝑧𝐽⁄  ) , (9) 

where 𝑎𝐼, 𝑎𝐽, 𝑧𝐼, 𝑧𝐽 – are the activities and charges of the main and interfering 

ions, respectively, and 𝐾𝐼𝐽 is the selectivity coefficient. The value of the selectivity 

coefficient can be found according to the expression:  

𝐾𝐼𝐽 =  𝑎𝐼 𝑎𝐽

𝑧𝐼
𝑧𝐽⁄⁄ , (10) 

then we can calculate the logarithm of the selectivity coefficient 𝐾𝐼𝐽 under the condition 

that the charges of ions I and J are equal. Thus, in our case  

𝑙𝑜𝑔𝐾сел(𝐶𝑙−/𝐻𝐶𝑂3
−)   =  −𝑙𝑜𝑔𝐾сел(𝐻𝐶𝑂3

−/𝐶𝑙−)  

Uniformity of experimental conditions is very important to obtain a quality data 

set for QSPR modeling. In collecting data from the literature, we limited ourselves to 

those papers that used polyvinyl chloride (PVC) as the polymer for the sensor membrane 

matrix. The limited number of studies on carbonate sensor selectivity makes it difficult 

to compile a suitable dataset for modeling that uses the same membrane polymers and 

plasticizers. Therefore, we further considered those works that used o-nitrophenyl octyl 
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ether (NPOE), dioctyl adipate (DOA) or bis(2-ethylhexyl) sebacinate (DOS) as plasticizers. 

In this case, the dielectric constant of these plasticizers was added to the data set as a 

descriptor to account for differences in sensor properties due to different plasticizers in 

the membrane compositions. Tridodecylmethylammonium (TDMA) was used as an 

anion exchanger in all literature sources. 

  In addition, we considered the conditions under which sensor selectivity 

measurements were made and only considered literature data obtained in the pH range 

of 7.0-8.6. This was done to ensure that 𝐻𝐶𝑂3
− is the dominant ionic form in solutions.  

The method of measuring selectivity was also evaluated - all 𝑙𝑜𝑔𝐾сел(𝐻𝐶𝑂3
−/

𝐶𝑙−) in the selected literature were obtained by the split-solution method, with the 

exception of eight substances from [77], where the reduced potential method was used. 

However, it was decided to keep these eight samples in the data set as the two methods 

usually give comparable results. The selectivity of 𝑙𝑜𝑔𝐾сел(𝐻𝐶𝑂3
−/𝐶𝑙−) in the literature 

dataset ranged from -5.8 to 6.2. The mean value was -1.4 and the median value was -

2.6. 

2.1.2. Ion-selective sensors with new ligands in composition 

To study the possibility of predicting the selectivity of carbonate sensors using 

the obtained QSPR model based on literature data, sensors based on new ligands were 

designed and investigated. 

The structures of the ligands are summarized in Table 1. The choice of these 

compounds for synthesis was due to the fact that most of the known carbonate 

ionophores are based on trifluoroacetophenone and its derivatives. The carbonyl group 

with reduced electron density on oxygen due to the strong acceptor influence of the -

CF3 group is the key moiety responsible for binding the carbonate ion. Substance 1, 

commercially available, was purchased from Merck (Darmstadt, Germany) and was used 

without further purification. Ligands 2-4 (Table 1) were obtained from an original 



47 
 

synthesis. All four substances contain different acceptor substituents near the carbonyl 

group, suggesting their potential ability to efficiently bind carbonates. 

 

Table 1. Structures of the new ligands investigated in the experiment 

# Structure of the ligand IUPAC name 

1 

 

Phenanthrenequinone 

S1 

2 

 

1-(diphenylmethyl)-1H-indol-

2,3-dione 

S2 

3 

 

2-((4-

chlorophenyl)(phenyl)methyl)-

2-nitro-1H-indan-1,3-dione 

S3 

4 

 

5,7-Dimethoxy-2-benzyl-

1,3,4(2H)-isoquinolintrione 

S4 
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  Four new ligands were used to prepare PVC-plasticized sensor membranes. The 

compositions of the membranes are summarized in Table 2. Each membrane contained 

50 mmol/kg ionophore and 10 mmol/kg TDMA-NO3 as an anion exchanger. The ratio 

between PVC and solvent-plasticizer was 1:2, and the total weight of the membrane was 

300 mg. NPOE was used as the solvent-plasticizer. 

 

Table 2. Compositions of sensor membranes, wt. %. 

Sensor PVC TDMA NO3 Plasticizer Ligand 

S1 32.79 0.60 65.57 1.04 

S2 32.61 0.60 65.22 1.57 

S3 32.48 0.60 64.96 1.96 

S4 32.59 0.60 65.18 1.63 

 

Polymer membranes for sensors were prepared according to a standard protocol. 

Suspensions of all membrane components were dissolved in 3 ml of freshly distilled 

tetrahydrofuran (THF) in a glass beaker using a magnetic stirrer. The resulting solutions 

were poured into 20 mm diameter Teflon beakers and left to dry for 48 h. Discs of 8 mm 

diameter were cut from the initial membranes and attached to the PVC sensor bodies 

using a mixture of PVC and cyclohexanone. The thickness of the prepared membranes 

was 0.4 mm. After the adhesive dried, the inner parts of the obtained electrodes were 

filled with a mixture of 0.01 M NaHCO3 and 0.001 M NaCl. Chloride anion is necessary 

for the functioning of the Ag/AgCl electrode, and bicarbonate is necessary to ensure its 

constant content in the membrane phase required by the Nikolsky formalism. Water for 

the preparation of all aqueous solutions was obtained from a GFL 2102 distiller (GFL 

Burgwedel, Germany). The conductivity of the monodistillate is 2.2 s/cm at 25 C. Finally, 

internal Ag/AgCl electrodes were incorporated into the sensors.  Three sensors were 

fabricated for each membrane composition. 
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Potentiometric measurements were performed using a multi-channel digital mV-

meter KHAN-32 (Sensor Systems LLC, St. Petersburg, Russia) connected to a PC for data 

acquisition via a USB port. The measurements were performed in relation to the 

standard reference Ag/AgCl electrode ESr-10101 (Izmeritel'naya Tekhnika, Moscow, 

Russia). To control pH values in sample solutions, a glass pH-sensor PY-41 (GOnDO 

Electronic Co., Ltd., Taipei, Taiwan) was used. 

Sensor sensitivity was studied in aqueous solutions of inorganic salts (sodium 

sulfate, sodium chloride, sodium nitrate, sodium bicarbonate, sodium monosodium 

phosphate) in the concentration range from 10-6 to 10-2 M. Sensitivity values were 

calculated as the slopes of the linear portions of the sensor response curves (10-4-10-2 

M). The sensors were washed with several portions of distilled water before, after and 

between measurements until constant potential values were achieved. 

Selectivity coefficients were obtained by the split-solution method, which is also 

known as the bi-ionic potential method [80]. 

EI and EJ were calculated for solutions of the major and interfering ions with a 

concentration of 10-3M, respectively. 

2.1.3. QSPR modeling 

Structural descriptors in the form of molecular graphs represented by 

substructural molecular fragments (SMF) were used as descriptors to describe the 

molecular structures of ligands.  

The program "MolFrag", which is a part of the software package "ISIDA QSPR", was 

used to obtain SMFs [81]. SMF in ISIDA can be described in two ways: either as 

sequences of atoms and/or bonds (topological pathway) or as a selected ("augmented") 

atom (atom-centered fragments) with its environment, which can be atoms, bonds, or 

both. Both ways are illustrated in Figure 10. 
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Figure 10. Two approaches to obtain substructure molecular fragments 

 

In this study, sequences of atoms and bonds that satisfied the following conditions 

were chosen as structural descriptors to describe molecules: the descriptor represents 

the shortest path from one atom to another; its length ranges from 4 to 10 atoms. The 

latter restriction is due to the fact that short fragments do not carry significant 

information about the structure of the molecule, are represented in a larger number 

relative to longer descriptors, and are present in most compounds. In contrast, 

descriptors with lengths longer than 10 atoms are represented in an extremely small 

number of compounds in the dataset, often only one. 

The descriptor generation resulted in a 40 * 1103 matrix corresponding to the 

number of literature compounds * calculated structural descriptors, which was 

supplemented with another column containing the dielectric constants of the 

plasticizers used in the preparation of the sensor membrane. The resulting matrix was 

used to construct a regression model relating these descriptors to the selectivity values 

𝑙𝑜𝑔𝐾𝑠𝑒𝑙(𝐻𝐶𝑂3
−/𝐶𝑙−) of the corresponding potentiometric sensors. 



51 
 

The PLS algorithm was used to construct multivariate regressions. PLS models 

were calculated in The Unscrambler 9.7 software package (CAMO, Norway). To optimize 

the number of latent variables and the number of descriptors in the model, full cross-

validation was applied using the mean-square error of cross-validation as a criterion. 

Before modeling, the descriptor values in the X matrix were auto-scaled (the 

column mean was subtracted from each item and the result was divided by the column 

standard deviation). The resulting model was used to predict 𝑙𝑜𝑔𝐾𝑠𝑒𝑙(𝐻𝐶𝑂3
−/𝐶𝑙−) for 

the new ligands. 

 

2.2. Discussion of results 

 

  The molecular descriptor matrix obtained for the 40 ligands was related to their 

𝑙𝑜𝑔𝐾𝑠𝑒𝑙(𝐻𝐶𝑂3
−/𝐶𝑙−) values using PLS regression. The number of variables in the 

original model was optimized by analyzing the regression coefficient values of the 

model. All variables having regression coefficients in the range [-5*10-3; 5*10-3] were 

excluded from consideration, reducing the number of variables to 585 from the original 

1103. The resulting QSPR model is presented in Figure 11. Based on the statistical 

performance of the model (RMSECV and R2 values), it can be concluded that the 

obtained dependence is suitable for semi-quantitative prediction of the potentiometric 

selectivity of ionophores. The values of 𝑙𝑜𝑔𝐾𝑠𝑒𝑙(𝐻𝐶𝑂3
−/𝐶𝑙−)  range from -6 to +6 in the 

modeled data set, and the RMSECV value is 1.5. Thus, the model is able to distinguish 

between weakly, moderately and highly selective carbonate ligands. This seems to be a 

promising result, given the wide chemical diversity of the ligands, the relatively small (in 

the scale of the QSPR approach) data set, the use of literature data obtained under 

dissimilar conditions, and the overall simplicity of the approach. 

Analysis of the PLS model regression coefficients allows us to judge the importance 

of certain descriptors and their contribution to the selectivity values. The greatest 

contribution is made by the fragments with the highest absolute values of regression 
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coefficients. The calculated fragments (model variables) were filtered by the presence 

of distinguishing ligands in the chemical structures. Structural descriptors present in at 

least five ligands were selected for analysis. The remaining fragments were then 

analyzed for repeatability in other fragments, and the smallest fragments were selected 

from a number of equivalent fragments. Thus, the C-C-C-C-O-C=C fragment contains a 

shorter C-O-C=C fragment, and this shorter fragment was retained for analysis. Finally, 

the fragments were sorted by the value of their respective regression coefficients, and 

only fragments with absolute values of b > 0.01 were considered. The resulting variable 

importance diagram is presented in Figure 12. 
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Figure 11. "Measured and predicted values" plot of the cross-validated QSPR model for 

predicting membrane sensor selectivity. The green line corresponds to a perfect match 

between measured and predicted values 

 



53 
 

C
=

C
-C

=
C

-C
-C

-F
C

=
C

-C
=

C
-C

=
O

C
-C

-C
-F

F
-C

-C
=

O
C

=
C

-C
-C

-F
C

=
C

-C
-C

-C
-F

C
-C

-C
=

C
C

=
C

-C
-C

=
O

C
=

C
-C

=
O

C
-C

-C
=

O
O

=
C

-C
=

C
-C

=
C

-C
=

O
F

-C
-C

-C
=

C
-C

=
C

-C
=

O
O

-C
-C

=
C

-C
=

C
-C

=
O

F
-C

-C
-C

=
C

-C
=

C
-C

-O
 C

=
C

-C
=

C
-C

-O
C

-C
-N

-C
C

-O
-C

=
O

C
=

C
-C

-O
C

=
C

-C
=

C
O

-C
=

C
-C

=
C

-O
H

g
-C

=
C

-C
-O

C
-C

=
C

-O
H

g
-C

=
C

-H
g

C
=

C
-C

=
C

-O
C

-O
-C

=
C

H
g

-C
-C

-O
C

-O
-C

-C
-H

g
C

-C
=

C
-H

g
C

=
C

-C
-H

g
C

=
C

-C
=

C
-H

g

-0.04

-0.02

0.00

0.02

0.04

W
e
ig

h
te

d
 r

e
g

re
s

s
io

n
 c

o
e
ff

ic
ie

n
ts

Molecular fragments

     

  Figure 12. Fragments with the largest contribution to 𝑙𝑜𝑔𝐾𝑠𝑒𝑙(𝐻𝐶𝑂3
−/𝐶𝑙−) , 

where "-" is a single bond and "=" is a double bond 

 

The diagram shows that the largest negative contribution corresponds to the 

fragment C=CC=C-C-C-C-F. Since the modeled value is 𝑙𝑜𝑔𝐾𝑠𝑒𝑙(𝐻𝐶𝑂3
−/𝐶𝑙−)  , and the 

more negative it is, the higher the selectivity to 𝐻𝐶𝑂3
−/𝐶𝑙−, implying that such C=C-C-

C=C-C-C-C-C-F fragments contribute more selectivity to the hydrogen carbonate anion. 

It should be noted that among the 17 fragments with negative contribution, there are 

only 2 fragments that do not contain fluorine (F-) or C=O groups. These are the 

fragments C=C-C-C=C-C-O and C-C-N-C, which also have a significant negative 

contribution among the selected fragments (rank 15 and 16 out of 17). 
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The ten fragments with the highest negative contribution come from the 

trifluoroacetophenone fragment. Trifluoroacetophenone is incorporated into a 

significant number of existing carbonate ionophores. An excellent example of an 

ionophore with this group and high selectivity 𝑙𝑜𝑔𝐾𝑠𝑒𝑙(𝐻𝐶𝑂3
−/𝐶𝑙−)  = -3.1 is N, N-

Dioctyl-3, 12-bis(4-trifluoroacetylbenzoyloxy)-5-cholan-24-amide (carbonate ionophore 

VII from the Merck catalog). The structure of this compound is shown in Figure 13. It is 

known that the TFA group promotes the binding of the carbonate anion through the 

formation of hydrogen bonds [82]. 

 

 

  Figure 13. Chemical structure of N, N-Dioctyl-3, 12-bis(4-

trifluoroacetylbenzoyloxy)-5-cholan-24-amide 

 

The fragment with the largest positive contribution is C=C-C=C-Hg. Only 6 

fragments out of 13 fragments with positive contribution do not contain mercury (Hg-) 

in their composition. In descending order of contribution values, these are fragments C-

O-C=C, C=C-C=C-O, C-C=C-O, O-C=C-C-C=C-O, C=C-C=C and C=C-C-O. These fragments 

belong to the ionophores proposed for chloride determination and therefore have low 

selectivity towards carbonate [79]. An example of such an ionophore is {μ-[4,5-dimethyl-
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3,6-bis(octyloxy)-1,2-phenylene]}bis(trifluoroacetato-0) dimercurium, whose structure 

contains all fragments with positive contributions, resulting in 𝑙𝑜𝑔𝐾𝑠𝑒𝑙(𝐻𝐶𝑂3
−/𝐶𝑙−) = 

5.5. The structure of this ligand is given in Figure 14. 

 

 

Figure 14. Chemical structure of {μ-[4,5-dimethyl-3,6-bis(octyloxy)-1,2-

phenylene]}bis(trifluoroacetato-0) dimercurium 

 

Thus, it can be stated that the constructed QSPR model is in good agreement with 

chemical considerations about the structure of the ligands, and the significance of the 

different fragments is consistent with chemical intuition. 

Polymeric sensor membranes prepared using four new ligands were studied for 

their sensitivity to inorganic anions and 𝐻𝐶𝑂3
−/𝐶𝑙− selectivity. Typical response curves 

of the new sensors are shown in Figure 15 and the calculated sensitivity values are 

shown in Table 3. It should be noted that sensors S2 and S3 did not demonstrate 

sufficient sensitivity to carbonate. 
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Figure 15. Typical potentiometric response curves of the S2 sensor. The EMF 

readings are shifted to zero for clarity 

 

Table 3. Sensitivity values of sensors in the solution of tested anions, mV/dec 

 SO4
2- Cl- HCO3

- H2PO4
- NO3

- 

S1 1.7 ± 0.3 -6.4 ± 1.0 -43.4 ± 3.8 29.6 ± 1.1 -27.5 ± 0.9 

S2 -16.6 ± 1.1 -41.0 ± 1.2 -7.2 ± 3.4 -1.5 ± 1.2 -57.8 ± 0.8 

S3 -24.0 ± 1.6 -42.5 ± 3.8 -16.4 ± 4.2 -3.5 ± 1.4 -64.9 ± 5.9 

S4 -1.2 ± 1.2 -23.8 ± 1.0 -28.7 ± 1.6 12.4 ± 1.4 -47.1 ± 0.7 

 

Using a QSPR model derived from literature data, the selectivity of these four novel 

membrane sensor compositions was predicted. For this purpose, each of the ligands was 

described using the same set of SMFs and the resulting data were fit to a filtered set of 

585 variables. The ligand structure descriptions thus obtained were used in the QSPR 

model to calculate the predicted 𝑙𝑜𝑔𝐾𝑠𝑒𝑙(𝐻𝐶𝑂3
−/𝐶𝑙−). The results of this prediction 
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are summarized in Table 4 together with the selectivity data obtained in a conventional 

potentiometric experiment using the split-solution method. 

 

Table 4. Comparison of predicted and experimental values of 𝑙𝑜𝑔𝐾𝑠𝑒𝑙(𝐻𝐶𝑂3
−/

𝐶𝑙−) for the new ionophores 

Sensor 
Experimental value 

𝑙𝑜𝑔𝐾𝑠𝑒𝑙(𝐻𝐶𝑂3
−/𝐶𝑙−) 

Predicted value  𝑙𝑜𝑔𝐾𝑠𝑒𝑙(𝐻𝐶𝑂3
−/

𝐶𝑙−) 

S1 -3.6 -2.5 

S2 -0.7 -3.4 

S3 -1 -2.9 

S4 -2.5 -2.7 

 

Considering the RMSECV value of the QSPR model equal to 1.4 𝑙𝑜𝑔𝐾𝑠𝑒𝑙(𝐻𝐶𝑂3
−/

𝐶𝑙−), the agreement between the predicted and experimental selectivities is found to 

be satisfactory in two out of four cases (S1, S4). Compound S1 has C=C-C-C=C-C=O, C-C-

C=C, C=C-C-C=O, C=C-C=O, C=C-C=O, C-C-C=O fragments with negative contribution and 

C=C-C=C fragment with positive contribution. The model predicted the logarithm of the 

selectivity coefficient with a value of -2.5, while the experimentally found selectivity 

coefficient is -3.6. Compound S2 contains a C-C-N-C fragment and the remaining 

fragments are the same fragments as in the first compound. All these fragments except 

C=C-C-C=C contribute negatively to the logarithm of the selectivity coefficient. Thus, 

there is a marked deviation between the predicted 𝑙𝑜𝑔𝐾𝑠𝑒𝑙(𝐻𝐶𝑂3
−/𝐶𝑙−) of -3.4 and 

the experimental value of -0.7. There are only a few fragments in compound S3 that 

have a significant effect on the model. These are C-C-C-C=C fragments with negative 

contribution and C=C-C-C=C with positive contribution. Since the model has only two 

structural fragments with significant influence for this compound, the difference 

between the model prediction (-3.0) and the experimental data (-1.0) is also high. The 

rather large discrepancy between prediction and experiment for S2 and S3 can also be 
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explained by the fact that these sensors actually did not show sufficient response to 

carbonate (Table 3). 

Compound S4 includes fragments such as C=C-C-C=C-C=O, C=C-C=O, C=C-C=O, C-

C-C=O, C-C-C=C, O-C-C-C=C-C=C-C=C-C=O and C-C-N-C with negative contribution and C-

O-C=C, C=C-C=C-O, C-C=C-O and C=C-C=C with positive contribution. Since the number 

of important fragments is quite high, the agreement between experiment and 

prediction is also quite high (-2.7 vs. -2.5, respectively). 

Thus, in order to correctly predict the properties of new ligands using the QSPR 

model, it is necessary that the same important fragments are present in their structure 

as in the ligands used to build the model. This conclusion follows from chemical 

considerations and mathematical principles, since the diversity of the training set 

determines the scope of applicability of the model. 

 

Conclusion to Chapter 2 

 

A QSPR model linking the structure of carbonate ionophores to the selectivity 

𝑙𝑜𝑔𝐾𝑠𝑒𝑙(𝐻𝐶𝑂3
−/𝐶𝑙−)  of the corresponding potentiometric sensors with plasticized 

polymer membrane was developed based on literature data on 40 ionophores. Analysis 

of the regression coefficients in the PLS model allowed the identification of important 

structural fragments affecting selectivity. 

Four new ligands with different acceptor substituents at the carbonyl group 

synthesized for this work were used to test the predictive ability of the model. Two of 

these ligands showed potentiometric sensitivity to hydrocarbonate ions. Good 

agreement between predicted and experimental selectivity values was observed for 

these ligands, especially in the case of ligands sharing important molecular moieties with 

the ionophores used for model construction. 
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These results indicate the potential of the QSPR approach for the development of 

new anion-selective sensors, allowing the prediction of selectivity based on the 

structural characteristics of the ionophores.  
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Chapter 3. APPLICATION OF QSPR MODELING FOR PREDICTING THE SENSITIVITY OF 

IONOSELECTIVE ELECTRODS TO HARD METAL CATHIONS (Cu²⁺, Cd²⁺ AND Pb²⁺) 

 

This chapter investigates the possibility of applying the QSPR method to predict 

the potentiometric sensitivity of plasticized polymer membrane sensors based on the 

chemical structure of the ionophore. The QSPR model was developed based on 

literature data on the sensitivity of previously studied, structurally similar ionophores. 

The resulting model was shown to be highly effective in establishing the relationship 

between ionophore structures and their sensitivity to Cu²⁺, Cd²⁺, and Pb²⁺. The model 

predictions for four new diphenylphosphorylacetamide-based ionophores were 

compared with experimental data obtained for these ionophores and showed 

satisfactory agreement, confirming the validity of the proposed approach. 

Despite the successful application of QSPR modeling for predicting the sensory 

properties of ionophore-based potentiometric sensors, including sensitivity and 

selectivity parameters, to date this approach has not been used to predict the sensitivity 

of new membrane sensors based on yet unexplored ionophores. This work aims to fill 

this gap by developing a QSPR model based on literature data on sensitivity to Cu²⁺, Cd²⁺, 

and Pb²⁺ for structurally similar ionophores. The choice of these particular metals was 

dictated by their toxicity and hence the expressed interest in these elements in 

environmental studies. 

 

3.1. Experimental section 

 

3.1.1. Selection of descriptors 

To build QSPR models for predicting potentiometric sensitivity, literature data on 

the responses of sensors with PVC-plasticized membranes to metal ions Cu2+, Cd2+ and 

Pb2+ were collected. The choice of these particular metals was dictated by their toxicity 

and hence the expressed interest in these elements in environmental studies. Most of 
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the data set (35 structures and data on their potentiometric responses) was taken from  

[60]. To improve the training set on phosphorus-containing ionophores, six substances 

from [83] were added (#36-41, Table 1, Appendix) 

The structures of ionophores, their IUPAC names and literature references are 

summarized in Table 1 in the Appendix. 

 The structures of the ionophores were described using molecular descriptors. In 

this work, similar to the choice of descriptors described in Chapter 2.1.1, substructural 

molecular fragments obtained using the ISIDA software package were used for this 

purpose. The main idea behind the derivation of such molecular descriptors is that a 

substructural fragment is a sequence of atoms of a chemical structure connected by 

chemical bonds. Each fragment corresponds to the number of times that fragment 

occurs in the molecule. These numbers are then assembled into a matrix where each 

row corresponds to a particular ionophore and each column indicates the number of 

times that a particular fragment occurs in the ionophore. In this study, fragments with 

lengths ranging from 2 to 9 atoms were considered. The resulting descriptor matrix has 

dimensionality 41 × 1095, where 41 is the number of ionophores in the training set and 

1095 is the number of different molecular descriptors found describing the ionophore 

structures that make up the training set. 

 

3.1.2. QSPR modeling 

  PLS regression was applied to find a mathematical relationship linking the 

chemical structures of ionophores represented by molecular descriptors and the 

potentiometric sensitivity of these ionophores to copper, cadmium and lead ions.  

PLS models were subjected to full cross validation to find the optimal number of 

latent variables, this type of cross validation was chosen because of the relatively small 

size of the training set. 

The calculated QSPR models were used to predict the potentiometric sensitivities 

to copper, cadmium and lead for the four newly synthesized ionophores. The structures 
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of the new substances and their names according to IUPAC nomenclature are 

summarized in Table 5. 

 

Table 5. Structures of new ionophores and their names according to IUPAC 

nomenclature 

 Chemical structure IUPAC name 

1 

 

3,3'-(ethane-1,2-

diylbis(propylazandiyl))b

is(1-

(diphenylphosphoryl)pro

pan-2-one) 

2 

 

3,3'-(butane-1,4-

diylbis(octylazandiyl))bis

(1-

(diphenylphosphoryl)pro

pan-2-one) 

3 

 

3,3'-(hexane-1,6-

diylbis(octylazandiyl))bis

(1-

(diphenylphosphoryl)pro

pan-2-one) 

4 

 

1,1'-(piperazine-1,4-

diyl)bis(2-( 

diphenylphosphoryl)eth

anone) 
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3.2. Discussion of results 

 

At the first stage of the experiment, three separate PLS models were constructed 

linking molecular descriptors of ionophores from the training set to their potentiometric 

sensitivities to copper, cadmium, and lead. Figure 16 shows a typical result of such 

modeling: a plot of the dependence of the measured sensitivity on the predicted 

sensitivity for cadmium. It can be seen that a reasonably good correlation is observed, 

and the cross-validation error was about 4 mV/dec. These results suggest that the 

formalized description of the ionophore using substructural molecular fragments can be 

used to predict the sensitivity of the corresponding plasticized polymer sensor 

membranes.  

 

 

Figure 16. Graph of the entered-found model of cadmium sensitivity (four latent 

variables) with a marked line of perfect dependence. 
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The values of regression coefficients in PLS modeling can be used to judge the 

significance of molecular fragments for a particular target property. A graph of 

regression coefficients is a convenient way to visualize these values. Weighted 

regression coefficients are calculated from the weighted data matrix with descriptors 

during PLS regression; a brief explanation can be found in the Supplementary Materials. 

Figure 17 shows the plot for the PLS model of cadmium sensitivity: the X-axis shows the 

descriptor number and the Y-axis shows the numerical value of the specific regression 

coefficient for each descriptor. The higher the absolute value of the regression 

coefficient, the more significant was the contribution of the corresponding descriptor. 

It can be seen that some descriptors did not contribute significantly to the model, and 

thus could only carry noise. In order to optimize the model, we excluded all variables 

(descriptors) within the marked area in Figure 17 that had small regression coefficient 

values between -0.05 and +0.05. Getting rid of irrelevant variables resulted in improved 

models. A similar procedure was carried out for the PLS models of copper and lead and 

the resulting statistics are summarized in Table 6. Measured-predicted plots for copper 

and lead are presented in Figures 18 and 19. 

 

 

Figure 17. Regression coefficient plot for the PLS model of cadmium sensitivity 

with a marked region of fragments with small contributions to the model. 
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Figure 18. Graph of the entered-found model of copper sensitivity (two latent 

variables) with the line of perfect dependence marked 

 

 

Figure 19. Graph of the entered-found model of lead sensitivity (six latent 

variables) with the line of perfect correlation marked 
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Table 6. Model characteristics for cadmium, copper, and lead sensitivities. 

  slope RMSE R2 

Cd 
calibration 0.91 2.85 0.91 

validation 0.76 4.22 0.81 

Cu 
calibration 0.86 4.29 0.86 

validation 0.64 6.88 0.66 

Pb 
calibration 0.95 2.60 0.95 

validation 0.55 7.49 0.64 

 

It can be seen that the worst performance of the model was observed for lead, 

where the RMSE at cross-validation was more than 7 mV/dec. Obviously, such a model 

is more suitable for qualitative evaluation of ionophores in terms of their suitability for 

sensor development for lead than for numerical prediction. Somewhat better results 

were obtained in the case of copper, but they were still semi-quantitative in terms of 

prediction accuracy.  

 An important indicator of the validity of the QSPR model was the consistency of 

important molecular fragments with established patterns of chemistry. Figure 20 shows 

the fragments that were important for characterizing cadmium sensitivity. They were 

selected on the condition that they occur in at least five structures to avoid random 

correlations. In plotting the diagrams, we omitted fragments with hydrocarbon chains 

at the ends if the nested fragments had similar contributions. As an example of such 

fragments, we can consider the pairs C-C-C-P-C=C-C and C-C-P-C=C. Figures 21 and 22 

show these plots for copper and lead, respectively.   
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Figure 20. Fragments with high contribution to the cadmium sensitivity value 

 

 

Figure 21. Fragments with high contribution to the copper sensitivity value 
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Figure 22. Fragments with high contribution to lead sensitivity value 

 

 Analysis of the graph in Figure 20 shows that the fragments with the highest 

contribution to cadmium sensitivity include a phosphorus atom or an N,N-

dimethylpicolinamide fragment (Figure 23a). In contrast to copper sensitivity (Figure 

21), the structure fragments (C=C-C=C-C=C-C=N, C-N=C) have mostly negative 

contributions. 4,40-dibromo-N6,N60-diethyl-N6,N60-bis(4-hexylphenyl)-[2,20-

bipyridine]-6,60-dicarboxamide had the highest sensitivity to cadmium in the training 

data set (41 mV/dec). The chemical structure of this compound is shown in Figure 23b. 

 The compound contained fragments with both positive (highlighted in green) and 

negative (highlighted in red) contributions. In general, the identified important 

structural fragments followed the chemical logic of complexation: ionophores with a 

picolinamide fragment (Figure 23a) showed a pronounced sensitivity to cadmium when 

used in plasticized polymer membranes for potentiometric sensors (see also Table 6). 

The same was observed for the green fragment in Figure 23b, which represented a 

portion of picolinamide, although the absence of an oxygen atom in the green fragment 

seems questionable. Another discrepancy with experimental observations is the red 
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fragment in Figure 23b - in general, the presence of a pyridine structural unit was 

observed for ionophores with both high and medium sensitivity to Cd2+. We believe that 

these discrepancies can be explained by the rather small size of the data set used (only 

41 ionophores), whereas traditional QSPR studies typically involve hundreds or 

thousands of entries. It should be noted that in the case of potentiometric experiments, 

the creation of such a large dataset is hardly possible due to differences in the 

experimental protocols used by researchers to study potentiometric sensors 

(membrane compositions, sensitivity calculations, sample pH). 

 

 

а) 

 

b) 

Figure 23. N,N-dimethylpicolinamide fragment (a), 4,4'-dibromo-N6,N6'-diethyl-

N6,N6'-bis(4-hexylphenyl)-[2,2'-bipyridine]-6,6'-dicarboxamide with separated C-C-C-C-

N-C-C=C (green) and C=C-C=C-C=C-C=N (red) fragments (b). 

 

 The obtained PLS models were applied to predict the potentiometric sensitivity 

of four new ionophores, whose structures are summarized in Table 5. The chemical 

structures of these compounds were analyzed using a previously optimized set of 

molecular fragments. These four sets of molecular descriptors then served as input data 

for three PLS models to predict the sensitivity to each of the metal cations. The results 

are summarized in Table 7. 
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The agreement between model predictions and experimental data was highest 

for sensitivity to cadmium. The predicted values of sensitivity to copper and lead showed 

some inconsistency with the experimental data. In particular, for compounds 2 and 3, 

the predicted values of sensitivity to copper differed from the experimental ones by 2 

and 6 mV/dec, respectively. This is explained by the absence in the structure of these 

compounds of the fragments that contribute most to the sensitivity to copper (C-N-C-C-

C-N=C, C-N-C-C-C-N and others). For lead, the largest deviation of the prediction from 

the experiment was observed for compound 4, which is probably due to the presence 

of phosphorus in its composition. Despite the presence of compounds with phosphorus 

in the training set, there are no phosphorus-containing fragments among the fragments 

with the highest sensitivity to lead. 

 

Table 7. Experimental and predicted sensitivity. The standard deviation values for 

the experimental data obtained on three identical sensors in three repeated 

measurements did not exceed 1.5 mV/dec 

 Cd2+ Cu2+ Pb2+ 

 Experiment Prediction Experiment Prediction Experiment Prediction 

1 24.6 24.7 20.3 20.9 32.9 29.7 

2 22.1 22.5 18.3 16.4 31.7 29.2 

3 24.7 22.5 21.1 15.3 34.6 29.1 

4 23.0 23.1 23.4 19.4 34.9 27.2 

 

This study investigated the sensitivity of sensors based on new ionophores to 

nickel, cobalt, zinc, and some other metals. However, only data for copper, cadmium 

and lead were included in the QSPR modeling, since only for these ions the 

corresponding literature data were available. To construct the initial descriptor matrix, 

it was necessary to characterize the sensitivity of each substance from the database to 
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each of the ions considered. Since some of the ligands in our database have not been 

studied in sensors for nickel, cobalt and zinc, we had to limit the list of metals. In 

agreement with previous studies, substances with pronounced extractivity towards 

lanthanides showed a significant potentiometric response towards d-elements in 

aqueous solutions. The complete table with all obtained sensitivities for all investigated 

ionophores is given in Table 8, where a certain structural dependence of sensitivity 

values for cobalt and nickel can be traced. 

 

Table 8. Potentiometric sensitivity of sensors to metal cations (±1 mV/dec) 

Sensor Co2+ Ni2+ Cu2+ Zn2+ Cd2+ Pb2+ 

1 18 13 21 18 25 33 

2 20 16 18 15 22 32 

3 22 18 21 19 25 34 

4 18 16 23 20 23 35 

 

An increase in the length of the alkyl chain between nitrogen atoms in the ligand 

(substances 1, 2 and 3) correlated with an increase in the sensitivity of the sensors to 

cobalt and nickel. At the same time, this trend was not observed for the other metals. 

Substance 4 with a piperazine bridge showed a different behavior from substances with 

alkyl bonds. It can be assumed that the mechanism of complexation between the ligand 

and the target ion, based on the interaction between the oxygen of the phosphine oxide 

and the keto group with some influence of nitrogen atoms, is common to all the studied 

substances. However, further studies are needed to understand the interaction 

mechanism in more detail. 

The comparison between the predictions of the QSPR model and the results of 

the potentiometric experiment, presented in Table 7, shows a high degree of agreement 

in most cases. A particularly exact match was observed for cadmium, while for lead the 

predicted values were systematically lower than the experimental values. Nevertheless, 
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the relative order of increase in sensitivity from copper to lead agreed well with the 

model predictions. 

 

Conclusion to Chapter 3 

 

  This chapter demonstrates the possibility of successfully applying a QSPR model 

trained on literature data on the potentiometric sensitivity of plasticized polymer 

membrane sensors to predict in silico the potentiometric behavior of new ionophores 

without the need for their synthesis and experimental characterization. The validity of 

the model predictions for sensitivity to Cu²⁺, Cd²⁺, and Pb²⁺ was confirmed 

experimentally for four new diphenylphosphorylacetamide ionophores. The high degree 

of agreement between the model predictions and the experimental sensitivity values 

indicates the significant potential of the QSPR approach for the development of new 

plasticized membrane sensors with specified characteristics. 
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Chapter 4. APPLICATION OF QSPR MODELING TO PREDICT PHYSICOCHEMICAL 

PROPERTIES OF DEEP EUTECTIC SOLVENTS BASED ON CHOLINE CHLORIDE 

 

This chapter investigates the possibility of applying the QSPR method to predict 

the physicochemical properties of deep eutectic solvents based on choline chloride with 

organic acids as hydrogen bond donors. The aim of this study is to develop efficient QSPR 

models capable of predicting the properties of DESs based on their molecular structure 

and composition, which will optimize the choice of components and ratios to obtain 

DESs with desired properties. This is especially relevant due to the growing interest in 

DESs as environmentally safe and efficient solvents for various applications. 

A dataset of 36 samples of six organic acids with different water contents was 

used to construct QSPR models. This approach allows to consider the influence of both 

the nature of the acid and the water content on the properties of DESs. The 

substructural molecular fragments characterizing the chemical structure of the acids, 

semi-empirical parameters obtained by PM3 quantum-chemical calculation reflecting 

the electronic properties of the molecules, and the percentage of water content in each 

solution were chosen as independent variables. The dependent variables were viscosity, 

refractive index, electrical conductivity and density determined experimentally. These 

properties were chosen due to their importance for the practical application of DES in 

various fields. 

The predictive ability of the developed models was further validated on two DESs 

that were not included in the training set. This allows us to evaluate the effectiveness of 

the models for predicting the properties of new, previously unstudied DESs. 

 

4.1. Experimental section 

4.1.1. Selection of descriptors 

In developing QSPR models for carboxylic acid-based DES, the aim was to establish 

the relationship between the descriptors and the dependent variables represented by 
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viscosity, density, conductivity and refractive index. A dataset containing 36 samples of 

six organic acids with different water contents was collected for modeling using the 

QSPR approach. Of these, two samples were excluded from the calculations because 

they are crystals in concentrated form (0% water content). Unlike previous studies 

described in Chapters 2 and 3, the set of independent variables included not only 

substructure molecular fragments, but also semi-empirical parameters derived from the 

PM3 quantum chemical calculation, as well as the percentage of water content in each 

solution. The dependent variables, viscosity, refractive index, conductivity, and density, 

were obtained experimentally and provided by colleagues from the Department of 

Analytical Chemistry, Tatiana Bochko and Andrey Shishov. Table 2 in the Appendix A 

summarizes the measured DES characteristics, and Table 9 lists the trivial and IUPAC 

names and structures of the investigated organic acids. 

The structural descriptors were calculated using the ISIDA software package 

similar to the experiments described in Chapters 2 and 3. Since the chemical compounds 

in the training set of this experiment are much smaller than in the previously described 

experiments, the size of the substructural molecular fragments was chosen from two to 

four atoms. 

Quantum chemical descriptors were determined with HyperChem software from 

Hypercube, Inc. (http://www.hypercubeusa.com/) using the parametric PM3 method. 

PM3 enables quantum calculations of the electronic structure of molecules in 

computational chemistry. Several descriptors such as the energies of the highest 

occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), 

dipole moment and heat capacity (calculated for 300K) were determined using 

HyperChem. These calculations added additional data to the training set and allowed us 

to analyze in more detail the nature of the dependencies obtained.  
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Table 9. Organic acids comprising the training set, their structures and names 

according to IUPAC nomenclature 

№ Trivial name Structure IUPAC name 

1 lactic 

 

2-hydroxypropanoic acid 

2 malic 

 

2-hydroxybutanedioic acid 

3 malonic 

 

propanedioic acid 

4 citric 

 

2-hydroxypropane-1,2,3-

tricarboxylic acid 

5 tartaric 

 

2,3-dihydroxybutanedioic 

acid 

6 glycolic 

 

2-hydroxyethanoic acid 

 

The integrated use of structural descriptors together with semi-empirical 

parameters provides a robust representation of the independent variables within the 

QSPR modeling framework, enhancing the predictive power of the models. 
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4.1.2. QSPR modeling 

  To establish a mathematical relationship between a set of descriptors for the 

studied DES and their viscosity, refractive index, density and conductivity, we used PLS 

regression combined with cross-validation to determine the optimal number of latent 

variables that provide the greatest predictive power. Descriptors were also selected 

based on their contribution to the models and to reduce noise, those descriptors that 

had a negligible effect on the model were excluded from the dataset. 

Due to the limited size of the training dataset, it was necessary to perform a 

thorough check on the quality of the model and its ability to generalize to the data. 

Nested cross validation, also known as double cross validation, was applied to test the 

statistical significance of the models. This type of cross-validation is computationally 

costlier than K-fold or even full cross-validation, but avoids overfitting the model. Nested 

cross-validation involves two stages, shown in Figure 24 for clarity: an inner stage for 

model selection or hyperparameter tuning, primarily the number of latent variables, and 

an outer stage, the familiar full cross-validation, for evaluating model performance. The 

nested cross-validation has two iterations of splitting the data into several training and 

validation sets, thus providing a more reliable estimate of efficiency and reducing the 

risk of model overfitting.  
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Figure 24. Scheme of nested cross-validation. 

 

As an additional stage of model validation, permutation testing was performed. In 

permutation tests, a number of new sets of values of the dependent variable are created 

from the values of the dependent variable. For this purpose, the values of the original 

sample are swapped, mixed, and for each resulting set the model performance 

indicators are calculated; this process is illustrated in Figure 25. Thus, it is assumed that 

all models except the one where the data are not shuffled have no predictive power. So, 

by comparing the performance of the real model with this distribution, we can assess 

the significance of the model's predictive power and ensure that it is not the result of 

random correlation. 
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Figure 25. Schematic of permutation testing. 

 

Regression modeling was performed in the R programming environment (R version 

4.1.3) using the caret package for PLS and the nestedcv package for nested cross-

validation. 

 

4.2. Discussion of results 

4.2.1. Density 

As a first step in analyzing the data, we plotted the relationship between density 

and refractive index and water content as shown in Figures 26-27. These plots revealed 

a well-defined linear relationship between these variables and percent water content. 

Which is not surprising considering that the water content varies from 0 to 50 wt% in 
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the samples. PLS modeling was applied to these data in order to gain a deeper 

understanding of which parameters the values of the variables depend on and how 

these dependencies can be explained. 
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Figure 26. Scatter plot showing the relationship between density and water 

content. The blue line shows the relationship obtained by simple linear regression 

 

To minimize the influence of water on the DES characteristics, a data set limited 

to samples with a fixed water content (30 wt%) was used in the simulations. This value 

of water content was chosen because of its central position in the range studied. Similar 

studies carried out at other water contents gave similar results, which confirms the 

validity of the chosen approach. 
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Figure 27. Scatter plot showing the relationship between refractive index and 

water content. The blue line shows the dependence obtained by simple linear regression 

 

A PLS model based on the molecular descriptors of the organic acids comprising 

the DES was constructed to predict the density. Figure 28 shows the entered-found plot 

for this model, indicating that there is a statistically significant correlation between 

descriptors and density. 

This correlation can be further explored using the PLS regression coefficients. The 

absolute value of each coefficient is proportional to the contribution of the 

corresponding variable to the final model, with the sign of the coefficient indicating its 

negative or positive contribution. The corresponding plot of regression coefficients for 

the PLS model describing DECs with the same water content is shown in Figure 29. 

Analysis of this plot suggests that the main influence on density is hydrogen bonding, 

since molecular fragments containing COH and C=O moieties show a positive correlation 

due to their propensity to hydrogen bond. An increase in the number of hydrogen bonds 

leads to a denser arrangement of molecules, which leads to an increase in the overall 
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density [83]. These interactions are also reflected in the hydration energy: a greater 

number of bonds corresponds to a lower hydration energy and hence a higher density. 

In addition, the strengthening of hydrogen bonds generally reduces the lipophilicity of 

acids. This is due to the polar properties of hydrogen bonds, which increase solubility in 

water, resulting in acids becoming less soluble in nonpolar solvents, as reflected in the 

negative correlation with log p (log of the water-octanol distribution coefficient).  
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Figure 28. Measured-predicted plot for PLS density model based on samples with 

water content = 30% (2 latent variables, full cross-validation) 
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Figure 29. Regression coefficients of variables with the largest contributions to the 

PLS density model 

4.2.2. Conductivity 

Using the same methodology, PLS modeling for predicting the conductivity of DES 

was performed - a subset of samples with a constant water content of 30 wt.% was 

investigated, and only variables with high absolute values of regression coefficients were 

included in the model. A plot of the relationship between measured and predicted 

values for the corresponding PLS model is shown in Figure 30. The model demonstrated 

a sufficiently high predictive ability. 
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Figure 30. Measured-predicted plot for the conductivity model based on 6 samples 

with water content = 30% (2 latent variables) 

 

Analysis of regression coefficients (Fig. 31) shows that conductivity is significantly 

affected by several factors: positively by log P (lipophilicity), total and free energy, and 

negatively by polar COH groups and entropy. Increasing log P increases conductivity, 

probably due to the effect on ion mobility [85]. In addition, the presence of long carbon 

chains can inhibit the mobility of charge carriers, thereby reducing the conductivity. 
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Figure 31. Regression coefficients for PLS model of conductivity based on samples 

with water content = 30%. 

4.2.3. Viscosity 

The first experiments on predicting DES viscosity using PLS modeling showed that 

the models have a clearly nonlinear structure due to the very wide range of variation in 

experimentally determined viscosity values. To circumvent this problem, we performed 

regression modeling with respect to the logarithm of the viscosity values. Fig. 32 shows 

the corresponding plot of the dependence of measured values on predicted values after 

excluding descriptors with insignificant regression coefficients. 
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Figure 32. Measured-predicted plot for the viscosity logarithm model based on 6 

samples with water content = 30% (1 latent variable) 

 

The regression coefficients for the remaining variables are presented in Figure 33. 
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Figure 33. Regression coefficients for the PLS viscosity model based on samples 

with water content = 30% for the optimized set of variables 
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More than half of the presented variables have a significant effect on the logarithm 

of viscosity. In particular, log P and hydration energy have a negative effect on the 

logarithm of viscosity, that is, the higher the log P or hydration energy of an organic acid, 

the lower its viscosity. On the contrary, ten variables including CC, COH, CCOH, CCCOH, 

enthalpy, heat capacity, polarizability, refractivity, surface area and volume of the acid 

molecules have a positive influence. The observed correlation between lipophilicity and 

viscosity can probably be explained by the interaction of DES components with water; 

higher lipophilicity suggests less interaction with water, resulting in lower viscosity. The 

effects of surface area and volume suggest that larger molecules contribute to higher 

viscosity, which is consistent with general physical considerations and other 

experiments [86]. The authors of [86] showed that the viscosity in a series of 1-alkanol 

solutions correlates with the number of C atoms in the molecule (which is similar to the 

CC descriptor in our study, correlating with the total number of C atoms). The presence 

of hydroxyl (-OH) groups in the molecular fragments indicates the possibility of 

hydrogen bond formation, which possibly increases the resistance to flow. In addition, 

polarizability, heat capacity, and refractivity may have a significant effect on viscosity as 

a result of enhanced intermolecular interactions or forces that contribute to the overall 

viscosity. 

 

4.2.4. Refractive index 

The next property studied was the refractive index of the DES. Following the 

similar reasoning in Section 4.2.1 with density analysis, simulations were performed for 

a set of samples with the same water content (30 wt.%). A measured-predicted plot for 

the corresponding PLS model is shown in Fig. 34. 
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Figure 34. Measured-predicted plot for the refractive index model for samples with 

water content = 30% (1 latent variable)   

 

It can be seen that the correlation between the studied set of descriptors and 

refractive index was rather weak (R2 at calibration 0.55, R2 at validation 0.31), with the 

glycolic acid sample being a clear outlier. These results mean that the descriptors chosen 

are insufficient to predict the optical properties of DES, the set obtained is not sufficient 

to explain the structure-refractive index dependence. In this case, further extended 

study will be required to obtain the dependence. 

One of the promising approaches to solve this problem seems to be the inclusion 

of descriptors reflecting the electrodynamic behavior of molecules into the model. Since 

the nature of the refractive index is related to the interaction of electromagnetic 

radiation with matter, it is affected by the ability of the molecular structure to polarize 

in response to the electromagnetic field. This polarization, in turn, depends on the 

distribution and dynamics of electronic charges and molecular momentum. Examples of 

such descriptors are topological charge indices [87]. 
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4.2.5. Statistical validation of models 

The ultimate goal of QSPR modeling is to evaluate the applicability of these 

models for predicting the properties of new DESs. Given the limited number of samples, 

the models were thoroughly validated using nested cross-validation and permutation 

testing as described in Section 4.1.2. This approach allows for a preliminary assessment 

of the predictive ability of the regression models under limited sample conditions. In the 

next step, the predictive ability of the model was evaluated for two acid-based DESs that 

were not used in training (Section 3.6). 

Plots of the ratio of measured to predicted values for the nested cross-validation 

PLS models are shown in Figure 35. The RMSE and R² values indicate that all properties 

except refractive index can be predicted with reasonably high accuracy. For example, 

the prediction of density in the range of 1.12 - 1.23 g/cm³ is achieved with an RMSE of 

0.012. In the case of refractive index, the model did not perform satisfactorily with 

nested cross-validation, indicating the need for additional descriptors or alternative 

modeling approaches. 
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Figure 35. Measured-predicted plots for PLS models with nested cross-validation. 

The blue line shows the hypothetical perfect dependence 

 

Similar results were obtained in permutation testing (Fig. 36). The graphs show 

that the set of descriptors used does not allow building a reliable model for refractive 

index prediction, while density, conductivity and viscosity correlate well with the 

optimized descriptors. 
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Figure 36. Results of the permutation test for modeling DES properties. The RMSE 

of the original model without permutations is indicated by the red line 

 

4.2.6. Evaluation of predictive performance of models 

To evaluate the predictive ability of the developed QSPR models, descriptors for 

maleic and acetic acids, which were not included in the training set, were calculated. 

Based on these descriptors, the density, viscosity, conductivity and refractive index of 

two corresponding DESs containing 30 wt.% water were predicted. The predictions 

obtained were compared with the experimental data obtained for the synthesized DESs. 

The comparison results are presented in Table 10. 
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Table 10. Properties of DES based on maleic and acetic acids with 30 wt.% water 

obtained in experiment and predicted by QSPR models. Experimental values are given in 

the columns "Exp.", predicted values are given in the columns "Pred." 

Chemical 

structure of an 

organic acid 

Refractive index Density, g/сm3 Viscosity, 

mPa∙s 

Conductivity, 

mS/cm 

Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. 

 

1.438 1.444 1.210 1.145 17.4 13.8 29.0 28.5 

 
1.435 1.429 1.102 1.085 7.1 7.4 42.5 37.9 

 

As can be seen from the results obtained, there is satisfactory agreement between 

the predicted and measured values of these new DESs. The largest discrepancy is 

observed for the viscosity in the case of maleic acid - this is probably due to the presence 

of a C=C double bond in this molecule, a feature that was not present in the training set 

molecules.  

Some deviation of the predicted value from the experimental one is also observed 

for the conductivity of HER with acetic acid in its composition. This is probably due to 

the peculiarities of the acetic acid structure (e.g., the smallest molecule size among the 

training and test data sets), which are not fully accounted for in the model. 

Despite some inconsistencies, the results of the study confirm the promising use 

of the QSRP method for modeling various physical properties of eutectic solvents. 

 

Conclusion to Chapter 4 

 

It has been shown that mathematical modeling using the QSPR approach can be 

used to predict the properties of DESs based on molecular descriptors characterized by 

structural fragments of organic acids. The structural fragments of the molecules and the 
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results of semi-empirical quantum calculations are sufficient to quantitatively predict 

the density, conductivity and viscosity values of DESs. The demonstrated feasibility of 

QSPR in this research area indicates the relevance of further dedicated studies to extend 

the range of modeled properties and described deep eutectic solvents. Such modeling 

can significantly facilitate the development of DES systems for specific practical 

applications  
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CONCLUSIONS 

 

1. For a sample of 40 ligands described in the literature for anion-selective 

electrodes based on substructural molecular fragments and plasticizer conductivity, 

QSPR models were created that allow predicting the potentiometric selectivity of 

polymer plasticized membrane sensors based on such ligands to carbonate anion. The 

model allows to obtain selectivity prediction for new compounds with an average error 

of no more than 1.5  𝑙𝑜𝑔𝐾𝑠𝑒𝑙(𝐻𝐶𝑂3
−/𝐶𝑙−). 

2. On the basis of substructural molecular fragments for 41 compounds 

containing amide and phosphoryl functional groups, QSPR models have been developed 

to predict the potentiometric sensitivity of polymer plasticized membrane sensors 

based on such ligands to heavy metal cations (Cu²⁺, Cd²⁺, and Pb²⁺). The model allows us 

to obtain sensitivity predictions for new compounds with an error not exceeding 8  

mV/dec. 

3.  QSPR models have been developed based on a sample of deep eutectic 

solvents based on choline chloride with 6 different organic acids as hydrogen bond 

donors, for which molecular descriptors in the form of substructure molecular 

fragments and quantum chemical descriptors have been obtained, which allow 

predicting density with an error not exceeding 0. 065 g/cm, conductivity with an error 

not exceeding 4.6 mS/cm and viscosity with an error not exceeding 3.6 mPa∙s. 

4. Approaches such as nested cross-validation and permutation testing allow 

the validation and reliability of QSPR models based on limited samples of training data. 

5. Regression coefficient analysis for the PLS regression in QSPR models 

reveals the key structural descriptors that determine the desired properties of the new 

materials.  
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ABBREVIATIONS LIST 

 

СPSA - Charged partial surface area 

DES - deep eutectic solvent 

DFT - density functional theory 

ECFP - Extended-Connectivity Fingerprints 

HPLC - high performance liquid chromatography 

ISE - ion selective electrode 

J3D - 3D Balaban index 

LV - latent variable 

LOO CV - leave-one-out cross-validation 

MACCS - Molecular ACCess System 

MLR - Multiple Linear Regression  

PLS - Partial Least Squares 

SMF - substructure molecular fragment 

SMILES - Simplified Molecular-Input Line-Entry System 

SVM - support vector machine 

SVR - support vector regression 

QSAR - Quantitative Structure-Activity Relationships 

QSPR - Quantitative Structure-Property Relationships 

W3D - 3D Wiener Index  
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APPENDIX A 

 

Table 1. Structures and heavy metal sensitivities of ionophores 

# Ionophore structure 
Sensitivity, mV/dec 

Cd2+ Cu2+ Pb2+ 

1

1 

 

9 5 30 

2

2 

 

13 12 24 

3

3 

 

13 9 18 

4

4 

 

14 25 27 

5

5 

 

14 23 26 

6

6 

 

27 34 51 
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7

7 

 

21 31 37 

8

8 

 

26 34 34 

9

9 

 

32 43 44 

1

10 

 

32 43 45 

1

11 

 

19 37 37 

1

12 

 

23 28 28 

1

13 

 

22 27 28 
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1

14 

 

24 31 31 

1

15 

 

25 28 29 

1

16 

 

22 25 42 

1

17 

 

36 31 24 

1

18 

 

37 39 26 



107 
 

1

19 

 

36 26 28 

1

20 

 

31 30 23 

2

21 

 

36 34 23 

2

22 

 

41 31 27 

2

23 

 

3 -12 0 

2

24 
 

6 1 0 

2

25 
 

5 -10 3 



108 
 

2

26 

 

16 15 24 

2

27 

 

15 15 24 

2

28 

 

17 19 25 

2

29 

 

24 34 24 

3

30 

 

18 28 27 



109 
 

3

31 

 

18 20 28 

3

32 

 

26 24 31 

3

33 

 

27 23 26 

3

34 

 

7 0 0 

3

35 

 

5 0 4 

3

36  

18 9 9 

3

37 

 

-10 5 -20 



110 
 

3

38 

 

23 30 38 

3

39 

 

25 30 33 

4

40 

 

27 26 40 

4

41 

 

24 20 16 

 

Table 2. Properties of DESs based on acids and their mixtures with water. Asterisk 

(*) denotes calculated values 

Acid in DES 

composition 

Water content, wt. % 

0 10 20 30 40 50 

Refractive index 

Lactic 1.4811 (*) 1.4660 1.4505 1.4350 1.4170 1.4035 

Tartaric 1.4910 1.4910 1.4635 1.4460 1.4290 1.4115 
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Malic 1.4875 1.4870 1.4575 1.4395 1.4245 1.4060 

Citric 1.4955 1.4960 1.4645 1.4455 1.4295 1.4130 

Malonic 1.4830 1.4665 1.4500 1.4335 1.4200 1.4020 

Glycolic 1.4856 1.4675 1.4565 1.4445 1.4360 1.4290 

Density, g/cm3 

Lactic 1.172 (*) 1.155 1.139 1.122 1.104 1.087 

Tartaric 1.330 1.297 1.260 1.226 1.190 1.156 

Malic 1.271 1.241 1.218 1.187 1.163 1.129 

Citric 1.340 1.306 1.268 1.226 1.189 1.156 

Malonic 1.232 1.211 1.181 1.161 1.140 1.113 

Glycolic 1.203 1.176 1.157 1.137 1.117 1.099 

Viscosity, mPa∙S 

Lactic - 153.6 36.32 13.55 6.752 4.297 

Tartaric 4504994 2435.7 157.5 29.07 10.09 5.099 

Malic 19098.6 400.8 69.2 18.43 8.499 4.345 

Citric 10099000 8327 342.7 34.39 11.27 5.598 

Malonic 2208.41 147 21.8 10.83 5.944 3.454 

Glycolic 797.6 73.1 20.08 9.185 4.996 3.373 

Conductivity, mS/cm 

Lactic - 5 16 34 55 75 
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Tartaric 0.01 0.015 5 16 34 53 

Malic 0.077 0.13 9 26 43 63 

Citric - 0.002 3 14 29 51 

Malonic 0.38 4.47 16.15 34.5 53 77 

Glycolic 1 8 18 34 56 79 

 

 


