
LOMONOSOV MOSCOW STATE UNIVERSITY

on the rights of the manuscript

Nikita Igorevich Tsyganov

Optimization of tree-like transport systems
of energy markets

Scientific specialty 1.2.3. Theoretical computer science, cybernetics

Dissertation for the degree of
Candidate of Physical and Mathematical Sciences

Translation from Russian

Scientific supervisor:
Doctor of Physics and Mathematics,

Professor
Alexander Alekseevich Vasin

Moscow - 2024



2

Table of contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 1. Algorithms for optimizing the transport system of the energy market 16

1.1. Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.1. Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.2. Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.3. Social welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.4. The problem of maximizing social welfare . . . . . . . . . . . . . . . . . . 21

1.1.5. Reducing the initial problem to the problem of finding the optimal set of

extensible lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2. NP-hardness of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3. Solving the auxiliary problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.1. Dot-multiple mappings and operations on them . . . . . . . . . . . . . . . 25

1.3.2. Supply function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.3. Demand function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.4. Functions of marginal transmission costs . . . . . . . . . . . . . . . . . . . 29

1.3.5. Competitive equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3.6. Algorithm for solving the auxiliary problem . . . . . . . . . . . . . . . . . 32

1.3.7. Estimation of the complexity of the algorithm for the case of piecewise linear

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.4. Complementary and competitive lines. The flow structure invariance condition . . 41

1.5. Special cases of the problem for which polynomial solving algorithms exist . . . . 45

1.5.1. Chain-type market with zero initial transmission capacity . . . . . . . . . . 45

1.5.2. Chain-type market with monotonous initial equilibrium prices . . . . . . . 47

1.6. Solving the problem when the flow structure invariance condition is met . . . . . . 50

1.6.1. Chain-type market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1.6.1.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.6.1.2 Estimation of the average complexity of the algorithm . . . . . . 54

1.6.2. Star-type market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.6.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.6.2.2 Estimation of the average complexity of the algorithm . . . . . . 64



3

1.6.3. Star-chain-type market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

1.6.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

1.6.3.2 Estimation of the average complexity of the algorithm . . . . . . 70

1.6.4. Tree-type market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1.6.5. Comparison of algorithms for different types of markets . . . . . . . . . . . 76

Conclusions to the first chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 2. Application of the developed algorithms to assess the prospects of

gasification of Russian regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.1. About natural gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.2. Natural gas consumption in the Russian Federation . . . . . . . . . . . . . . . . . 80

2.3. Estimation of the transmission cost function for a new gas pipeline . . . . . . . . 81

2.3.1. Main gas pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.3.2. Gas pipelines of distribution networks . . . . . . . . . . . . . . . . . . . . . 84

2.4. Estimation of the production cost function for a gas deposit . . . . . . . . . . . . 85

2.4.1. A dynamic model for the functioning of a gas deposit . . . . . . . . . . . . 86

2.4.2. Simplified model for the functioning of a gas deposit . . . . . . . . . . . . 91

2.4.3. Estimation of the production cost function . . . . . . . . . . . . . . . . . . 92

2.5. Estimation of the demand function for natural gas in a non-gasified node . . . . . 92

2.5.1. Overview of potential gas consumers on a non-gasified territories . . . . . . 93

2.5.2. Mathematical model for estimating the demand function for natural gas . . 94

2.6. Analysis of gasification prospects in Irkutsk Oblast . . . . . . . . . . . . . . . . . 112

2.6.1. Overview of the main potential natural gas consumers in the region . . . . 113

2.6.2. Preparation of the initial task parameters . . . . . . . . . . . . . . . . . . 117

2.6.3. Calculation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Conclusions to the second chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

List of acronyms and symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Reference list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

List of illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



4

Appendixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146



5

Introduction

This paper is devoted to the study of optimization mathematical models of multi-node

energy markets. Energy resources play an important role in people’s lives and the global economy.

They are used in the electric power industry, industry, transport, heat supply, and construction.

These resources are mainly used as an energy source or in the chemical industry, where they are

used as feedstock. Plastics, rubber, dyes, medicines, explosives, oils and much more are obtained

from hydrocarbons (natural gas, oil, coal).

Usually, energy resources are extracted in places far from consumers. Hydrocarbons, as

a rule, lie deep underground, large areas of their occurrence suitable for profitable industrial

development are called deposits. To make their extraction possible, the deposits are previously

explored and equipped. Wells are drilled to extract natural gas and oil, and quarries (open-pit

mining) or mines (closed-pit mining) are used to develop coal deposits.

Hydrocarbons are non-renewable energy sources. Although their accumulations in the bowels

of the earth are still huge, and proven reserves alone will last for at least several decades [64–66],

much attention is currently being paid to renewable energy sources (RES), such as solar energy,

water, wind, waves, tides, and bioenergy. While hydropower has been used on an industrial scale

since the end of the XIX century, the popularity of other renewable energy sources has begun to

actively grow relatively recently. Over the past decade, solar energy and wind energy have shown

significant growth. So, if in 2008 the shares of capacities of these industries in the electric power

industry among all renewable energy sources were 1.4% (solar energy) and 10.5% (wind energy),

by 2020 they increased to 26.8% and 26.2% respectively [67, 68]. The share of renewable energy

sources in electricity generation in 2019 was 26%1 (in 2020 - 28.4% compared to 61.4% of the

share of hydrocarbons [69]), and in total final energy consumption - 11.2% (compared to 8.7% a

decade earlier).

The main disadvantage of renewable energy is its strong dependence on climatic, weather

and time conditions2, which results in variability of energy production volumes. This disadvantage

can be eliminated by using energy storage devices that smooth out these fluctuations. Despite the

rapid growth in the popularity of renewable energy sources, it is not expected that they will be able

to catch up with non-renewable hydrocarbon sources in terms of output in the next few decades,

however, renewable energy undoubtedly has an advantage due to environmental friendliness and

1 Excluding traditional biofuels.
2 This dependence is less relevant to bioenergy and tidal energy.
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inexhaustibility.

The third type of energy resources is nuclear fuel used in nuclear power plants (NPP),

icebreakers and submarines. Nuclear energy is based on a controlled nuclear chain reaction,

accompanied by the release of energy. The key problem of nuclear energy is its safety. The risks

of accidents and terrorist attacks, which can lead to man-made and environmental disasters as

a result of explosions and releases of radioactive substances into the environment, cause acute

disputes regarding the expediency of using nuclear power plants. The largest accidents in the

history of nuclear energy are the accidents at the Chernobyl (1986, [5]) and Fukushima-1 (2011, [6])

nuclear power plants. The second problem is the disposal of radioactive waste.

Due to these disadvantages, some countries adhere to a policy of abandoning nuclear energy

[70]. Thus, by 2020, Germany has reduced the volume of electricity generation at nuclear power

plants by more than half compared to a decade earlier and plans to completely close all operating

nuclear reactors in the near future. Energy substitution occurs mainly due to renewable energy

sources. However, in general, the global nuclear energy industry continues to develop actively.

Among the advantages of nuclear power plants, it should be noted that there are no emissions

of pollutants into the atmosphere (during trouble-free operation), including carbon dioxide, which

has a positive effect on reducing the «greenhouse effect». The second advantage is the high energy

intensity of the fuel used (uranium and plutonium) compared to hydrocarbons: the complete

burning of a kilogram of uranium enriched to 4% provides the same amount of energy released as

burning 100 tons of coal [71]. According to Alexey Likhachev, the head of Rosatom, uranium for

the operation of the current generation of nuclear power plants will last for 60 years, and in the

future, given the new technologies for the reuse of uranium raw materials, for 600 years [72]. In

2020, the share of nuclear energy in electricity generation was 10.2% [69].

The field of application of energy resources is extensive and eventually covers almost all

spheres of human activity. Consumers of energy resources are power plants, boiler houses, industrial

enterprises, transport companies, the population and many others. Transportation lines are used

to deliver energy resources from production sites to consumers. Gas pipelines, oil pipelines, roads

and railways, waterways and air routes can act as transportation lines. As a rule, the nodes of

energy production and consumption, together with the transportation lines and intermediate nodes

connecting them, represent a complex transport network called the energy market.

Often, the producer and consumer of an energy resource are located at a great distance from

each other, which makes the share of transportation costs in the final cost of the energy resource

significant for the consumer. The construction of new transportation lines or the modernization of

existing ones can help reduce transportation costs. However, such transformations almost always
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require serious capital investments. Therefore, an urgent task for the modern world economy is

effective planning of the development of transport systems, in which, taking into account the

various set of possible transformations and the economic benefits derived from them, a certain

criterion reaches an optimum.

One of these criteria is the public welfare of the energy market - the total utility of

energy consumption minus the total costs of its extraction, transportation and development of

the transport system. Also, public welfare can be equivalently defined as the total gain (profit) of

all market agents - producers, consumers and owners of the transport system. When maximizing

public welfare at the optimum point, the greatest «economic effect» is achieved, extracted from

the market and then distributed among market agents depending on the nodal prices and in

accordance with the rules of market functioning.

The criterion of public welfare is the best possible criterion for a regulated market in the

following terms. For any possible «efficient» (or «fair») distribution of gains among market agents,

implemented under some scenario of the development of the transport system of the market, the

same or better (i.e., the gains of each market agent will not decrease) distribution can be achieved

with optimal, in terms of maximizing public welfare, development of the transport system and

correct external regulation, in which the achieved optimum is maintained, but if necessary, the

gains are redistributed between market agents. Mechanisms such as fixing the nodal prices for

energy resources, subsidies, taxes and compensations can be used in regulation.

Also, the criterion of public welfare is closely related to the concept of perfect competition, in

which each individual market agent is unable to influence the price, but has complete information

about the market and can freely choose partners for transactions. It is known that in conditions

of perfect competition in the market, a price is set that balances supply and demand for energy

resources, while maximizing public welfare (Arrow K. D. and Debre J., 1954, [7]). However, this

statement is true only in the short term, in which the transport system of the market is fixed, and

market agents choose only the volumes of energy resources used (in the case of the producer, they

are the volumes of production and sales, the consumer - the volumes of purchase and consumption,

the owners of transportation lines - the volumes of purchase, transportation and sale) at given

nodal prices.

The concepts of social welfare and perfect competition are fundamental in modern economic

theory. One of the very first works that laid the foundations of this theory is the classic book by

Leon Walras, published in 1874, «Elements of Pure Political Economy, or the theory of social

wealth» [8]. It formulates the principle of general economic equilibrium, based on two basic

hypotheses - maximum utility and equality of supply and demand. Wald A., Arrow K. D. and
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Debre J. prove the existence of this equilibrium [7,9]. Also Debre J. describes the conditions under

which the equilibrium is Pareto-optimal in terms of the gains of market agents, and the conditions

under which, on the contrary, any Pareto-optimal situation is an equilibrium [10].

In scientific works devoted to the study of multi-node energy markets, models with a fixed

transport structure without the possibility of upgrading transportation lines are mainly considered

(Crewe M. A., Fernando C. S., Kleindorfer P. R., Davidson M. R., Guessushkina Yu. V., Kraynes

E. M., Novikova N. M., Seleznev A. V., Udaltsov Yu. A., Shiryaeva L. V., Hogan V., Vasin A. A.,

Vasina P. A., Fogelsang I., Edoli E., Fiorenzani S., Vargiolu T., Wu F., Harsha N., Zlotnik A.,

Sioshansi R., Rudkevich A. M., Roger Z. R.-M., Conrado B.-S., [11–20]). These works mainly study

problems associated with the search for competitive equilibrium. Davidson M. R., Guessushkina

Yu. V., Kraynes E. M., Novikova N. M., Seleznev A. V., Udaltsov Yu. A., Shiryaeva L. V. describe

a mathematical model for optimizing the functioning of the unified energy system of Russia [14]. In

this model, the modes of generating equipment loading are selected according to the price requests

of generating companies. The following problems that arise when making management decisions

are considered: choosing the composition of the included generating equipment, maximizing public

welfare of the market for the day ahead, minimizing the costs of generating companies of the

balancing market. The first problem is a partially integer optimization problem. The last two are

linear programming problems.

Roselon H. considers an optimization model of a multi-node electricity market [21], which

consists of producers, consumers and power transmission lines. Producers and consumers are

characterized by the functions of production costs and utility, respectively, lines are characterized

by the functions of transport losses and capacity. The problem of maximizing public welfare, which

is a convex programming problem, is set, and its solution is given. The same paper describes three

ways to attract investments for long-term network expansion. Joskou P. L. and Tyrol J. They

consider the multi-node electricity market and study the impact on the market power of players

in the distribution of rights to transmit electricity through network lines [22]. At the same time,

two types of rights are considered: financial and physical.

In the works dealing with the problem of the development of the transport system, the task

of minimizing costs at given volumes of consumption and production is mainly considered (Levit

B. Yu., Livshits V. N., Gomez P. V., Saraiva J. T., Zhao H.-S., Chen L., Wu T., Choi J., Tran T.,

Al-Kib A. A., Thomas R., O H. S., Bilinton R., Suleimani K., Mazlum D., Jaber R. A., [23–28]).

In the work of Levit B. Yu. and Livshits V. N. the problems of optimal distribution of cargo flows

through the transport network and the choice of the most profitable ways of its development in

terms of minimizing transportation costs are considered [23], while the nodes of departure and
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arrival and volumes for each of the transported and interchangeable types of cargo are considered

to be set.

Among the works that explore the task of developing transport systems of energy markets in

terms of maximizing public welfare, it is worth noting the works [29–32]. In the works of Vasin A. A.

and Dylova E. A. [29,30] a two-node market is considered in conditions of imperfect competition,

the task of optimizing capacity is set for it, three possible Nash equilibria are indicated, and the

behaviour of the public welfare function is investigated for each type of equilibrium. The same

works consider a two-node market in conditions of perfect competition with several transmission

lines, as well as a multi-node market in conditions of perfect competition without fixed transport

costs, for which some properties are derived. The chain-type market is studied separately in

conditions of perfect and imperfect competition. For this type of market, statements are proved

that allow, under certain conditions, to determine the flow directions for transmission lines.

In the works of Vasin A. A. and Dolmatova M. S. [31, 32] for a multi-node energy market

in which there are variable and fixed transportation costs, the flow structure invariance condition

(FSIC) is introduced, in which the flow directions in the lines are constant and do not depend on

capacities. A chain-type market with monotonous initial equilibrium prices is being investigated.

For such a market, the validity of the FSIC and the supermodularity of the social welfare

function over a set of expandable lines are proved, and an algorithm for solving the problem

for the case of zero initial capacity is described. For the star-type market, the criterion for the

implementation of the FSIC is written out, the property of this transport structure associated with

the concepts of supermodularity and submodularity is proved (the properties of supermodularity

and submodularity are studied in the works of Khachaturov R. V. and Cherenin V. P. [33–36]),

however, algorithms for solving the problem for arbitrary initial capacities are not proposed.

This dissertation work continues the research started in [31,32] and is devoted to the task of

optimizing the transport system of the energy market of one resource in terms of maximizing social

welfare. The energy market consists of multiple nodes and many transportation lines connecting

them, the transport structure of the market corresponds to a graph of the «tree» type. Each node

represents a local market with its own producers and consumers. Producers are characterized by

a function of production costs, consumers - by a function of consumption utility. These functions

depend on the volume of production and consumption, respectively.

Each transportation line connects two nodes and allows energy resources to move between

them in any direction. The line is characterized by the marginal transmission costs for energy

resources, the initial capacity (in a particular case, it may be zero, in this case, we assume, the

line has not yet been built) and the cost function of increasing capacity (expansion). The latter
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consists of two components: a variable and a fixed one. The variable component depends on the

amount of expansion. Fixed costs do not depend on the volume of expansion and are charged if

the line is expanded.

In the case of natural gas or oil markets, fixed costs for the construction of a main pipeline

(transportation line) can include the costs of preparing a construction project, renting or buying

land, preparing the pipeline route, building facilities for linear pipeline operation, labour costs,

fixed costs for the construction of compressor stations and other fixed costs [1].

The variables in the problem under consideration are the production volumes at the nodes

and the flows in the transportation lines. At the same time, consumption volumes in nodes are

expressed in terms of production volumes and flows, and the capacity of each line is equal to

either the initial capacity (if the flow value does not exceed it) or the flow value (if the flow value

exceeds the initial capacity). The task is static, i.e. all the initial parameters of the task do not

change over time. It is assumed that a certain period of time has been fixed (for example, a year),

and all volumes, flows and capacities are considered in relation to this period. Since the costs

of expanding the line are charged once, such costs are preliminarily reduced to the same period,

taking into account the discount rate, inflation rate and the expected service lifespan of the line.

The key feature of the problem is the consideration of fixed costs when expanding lines, as a

result of which the problem moves from the class of convex optimization problems (Karmanov V.

G., 1986, [37]) to the class of NP-hard problems (Gary M., Johnson D., 1982, [38]) and requires

the development of special solution algorithms. The original problem generalizes two well-known

optimization problems. The first is the problem of maximizing the social welfare of the market

in conditions of perfect competition (Arrow K. D. and Debre J., 1954, [7]). The second is the

transport problem (Kantorovich L. V., Gavurin M. K., Gisevait G. M., Pardalos P. M., [39,40]).

Another important problem is the development of a way to use the model in practice for

planning the development of real energy markets. Although the scope of this model is not limited

in any way, it was originally created to describe the functioning of natural gas and oil markets.

In this regard, it is necessary to be able to evaluate the initial parameters of the model for such

markets.

The purpose of this dissertation research is to develop methods for effective planning of

the development of transport systems for the energy markets of gas and oil. To achieve this goal,

the following problems have been set:

1) to describe a model of a multi-node energy market and formulate the problem of optimizing

its transport system in terms of maximizing social welfare;

2) to determine the complexity class of the problem;
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3) to develop algorithms for solving the problem for various transport structures and to assess

their complexity;

4) to develop a method for estimating the initial parameters of the model for the natural gas

market, in which consumers do not have access to natural gas, but there is a possibility of

their gasification;

5) to apply the developed methods and algorithms to assess the prospects of gasification of any

non-gasified region of the Russian Federation.

The object of the study is a multi-node energy market with a tree-like transport structure,

the subject of the study is an optimization model of a multi-node energy market with a tree-like

transport structure.

The scientific novelty of the research is as follows:

1) the NP-hardness of the considered problem of optimizing the transport system of the energy

market is proved;

2) an algorithm for solving an auxiliary problem with a fixed set of expanded lines is developed,

and its complexity is estimated for the case of piecewise linear functions;

3) polynomial algorithms for solving the initial problem have been developed for the following

special cases:

• chain-type market with zero initial transmission capacity;

• chain-type market with monotonous initial equilibrium prices;

4) algorithms for solving the initial problem have been developed in the case of the flow structure

invariance condition being met for the following transport structures: «chain», «star», «star-

chain»; the average complexity of these algorithms has been studied;

5) mathematical models and methods have been developed for the natural gas market to

assess the initial parameters of the problem: transportation cost functions for gas pipelines,

production cost functions for gas fields and demand functions for non-gasified nodes;

appropriate estimates have been obtained for main and distribution gas pipelines, gas fields

and consumers of Irkutsk oblast;

6) an assessment of the prospects for gasification of Irkutsk oblast was carried out, optimal

plans for the development of the gas network in terms of maximizing public welfare for

various scenarios of taking into account the environmental component were determined.

Theoretical significance. Proven statements and developed algorithms develop the field

of mathematical economics, optimization methods and computational methods.

Practical significance. The results of the research and the developed algorithms can be

used in planning the development of real gas or oil markets. The optimization model under study,
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together with the corresponding algorithms, can be adapted for use in other fields (for example,

information networks).

The research used methods from the following branches of science: optimization, theory

of algorithms, computational mathematics, data analysis, mathematical analysis and discrete

mathematics. Various software development methods were also used.

The reliability of the theoretical results obtained is due to the rigor of the proofs

of the formulated mathematical statements and is confirmed by the conducted computational

experiments. The reliability of the results obtained using data from open sources depends on

the reliability of the data itself. The author of the study gave preference to official sources when

selecting data.

Approbation. The results of the research were reported at the following mathematical

conferences and seminars:

• XVII Baikal International School-seminar «Optimization methods and their applications»

(Maximikha village, Republic of Buryatia, 2017);

• II All-Russian Conference «Sociophysics and Socioengineering» (Moscow, 2018);

• 5th International Conference on Energy, Sustainability and Climate Change (Greece, 2018);

• IX Moscow International Conference on Operations Research (Moscow, 2018);

• Seminar on mathematical economics (heads: V. Danilov I., Polterovich V. M.) «Energy

markets: optimization of transmission networks» (CEMI RAS, Moscow, March 5, 2019);

• 30th European Conference on Operational Research (Dublin, Ireland, 2019);

• X International Conference «Optimization and Applications» (Montenegro, 2019);

• Scientific conference «Tikhonov Readings 2019» (Moscow, 2019);

• Lomonosov Readings 2020. Computational Mathematics and Cybernetics Section (Moscow,

2020);

• IV Russian Economic Congress «REC-2020» (Moscow, 2020);

• Scientific conference «Tikhonov Readings 2021» (Moscow, 2021);

• The 9th International Conference on Information Technology and Quantitative Management

(China, 2022);

• Seminar on mathematical economics (heads: V. Danilov I., Polterovich V. M.) «Optimization

of transport systems of energy markets» (CEMI RAS, Moscow, November 7, 2023).

Publications. The main results on the research topic have been published in 10 printed

publications: 3 - in journals recommended by the Higher Attestation Commission [41, 43, 44], 7 -

in collections and abstracts [42, 45–50].

Main scientific results. The following main scientific results were obtained during the
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study:

1) • for a star-type multi-node energy market of a single resource (and the more general

case of the tree-type market), in which fixed costs are present during the expansion

of transportation lines that do not depend on the volume of expansion, the task of

optimizing the transport system in terms of maximizing social welfare (hereinafter

referred to as the initial problem) is NP-hard; see [43] (the personal contribution of the

author of the dissertation is 100%);

2) • for the auxiliary problem of optimizing a transport system with a fixed set of expanded

lines (hereinafter referred to as the auxiliary problem), which is a convex programming

problem, a special solution algorithm has been developed; see [43] (the personal

contribution of the author of the dissertation is 100%);

• its complexity is estimated for the case of piecewise linear initial functions: the number

of computational operations of the algorithm does not exceed the value of some

predetermined quadratic function of the number of nodes in the market; see [43] (the

personal contribution of the author of the dissertation is 100%);

3) • algorithms for solving the initial problem for various transport structures have been

developed for the case of the flow structure invariance condition being met, in which

the directions of flows in transmission lines are constant and do not depend on

transmission capacities; algorithms have been developed for the following transport

structures: «chain», «star», «star-chain»; see [41, 42] («chain») [44] («star»); the

personal contribution of the author of the dissertation to the direct development of

algorithms is 100%; the theorem on the property of complementary and competitive

lines underlying the algorithms was formulated and proved by other authors earlier;

• the average statistical complexity of these algorithms is investigated: for computational

experiments with random generation of initial problems for each of the three cases, even

for a large number of nodes (more than 50), the initial problem is solved in a reasonable

time, and the dependence of the average number of solved auxiliary problems on the

number of nodes in the market is approximated by a quadratic function; see [41, 42]

(«chain») [44] («star»); the personal contribution of the author of the dissertation to

the implementation and evaluation of algorithms is 100%;

4) • for the natural gas market, methods have been developed for estimating the demand

functions for non-gasified nodes; see [45] (the personal contribution of the author of

the dissertation to the development of models is at least 80%, the contribution to the

derivation of demand functions together with evidence is 100%);
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5) • the developed algorithms and methods are applied to assess the prospects of gasification

of Irkutsk oblast with the possibility of connecting thermal power plants and boiler

houses of the region to the main gas pipeline «Power of Siberia»; see [45] (the personal

contribution of the author of the dissertation is 100%);

• according to the calculations based on data on the characteristics of thermal power

plants and boiler houses in the region for 2021-2022, gasification brings a positive effect

only if the environmental component is taken into account, expressed in the form of a

fine for burning each unit of coal currently used in the region; see [45] (the personal

contribution of the author of the dissertation is 100%);

• the calculations performed showed that the developed algorithms can be used in

planning the development of real energy markets and allow solving the initial problem

in a reasonable time.

Provisions to be defended. Based on the results of the study, the following provisions

are submitted for defence:

1) • for a star-type multi-node energy market of a single resource (and the more general

case of the tree-type market), in which fixed costs are present during the expansion

of transportation lines that do not depend on the volume of expansion, the task of

optimizing the transport system in terms of maximizing social welfare is NP-hard;

2) • for the auxiliary problem of optimizing a transport system with a fixed set of expanded

lines, which is a convex programming problem, a special solution algorithm exists;

• for the case of piecewise linear initial functions the number of computational operations

of this algorithm does not exceed the value of some predetermined quadratic function

of the number of nodes in the market;

3) • algorithms for solving the initial problem for various transport structures exist for the

case of the flow structure invariance condition being met, in which the directions of

flows in transmission lines are constant and do not depend on transmission capacities;

• for computational experiments with random generation of initial problems for «chain»,

«star», and «star-chain» transport structures the dependence of the average number of

solved auxiliary problems on the number of nodes in the market is approximated by a

quadratic function;

4) • according to the calculations based on data on the characteristics of thermal power

plants and boiler houses in the region for 2021-2022, gasification of Irkutsk oblast with

the possibility of connecting thermal power plants and boiler houses of the region to the

main gas pipeline «Power of Siberia» brings a positive effect only if the environmental
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component is taken into account, expressed in the form of a fine for burning each unit

of coal currently used in the region;

• the calculations performed showed that the developed algorithms can be used in

planning the development of real energy markets and allow solving the initial problem

in a reasonable time.



16

Chapter 1. Algorithms for optimizing the transport system

of the energy market

This chapter is devoted to the study of the optimization model of the multi-node energy

market. The market consists of many nodes where producers and consumers of energy resources

are located, as well as a tree-like transport structure that allows energy resources to move between

nodes. The optimization criterion is social welfare - the total utility of consumption minus the

total costs of production and transmission.

In order to reduce the recording and to ease perception throughout the chapter, the term

«market» is used instead of «energy market», instead of «energy resource» - «resource», and

instead of «transportation line» - «line».

Paragraph 1.1. describes the formulation of the problem of optimizing the energy market

transport system. The auxiliary problem of maximizing social welfare with a fixed set of expandable

lines is formulated. It is shown that the initial problem reduces to the problem of finding the

optimal set of expandable lines.

In paragraph 1.2. the NP-hardness of the initial problem is proved.

Paragraph 1.3. is devoted to the study of the auxiliary problem. It introduces the concept

of competitive equilibrium, which is closely related to the solution of the auxiliary problem. An

algorithm for solving this problem is proposed, and its complexity is estimated for the case of

piecewise linear functions.

Paragraph 1.4. introduces the flow structure invariance condition, in which the flow direction

is constant for each line and is known in advance. The relations of complementarity and

competitiveness for lines are also defined there. It shows how these relations can be used in the

search for the optimal set of expandable lines.

Paragraph 1.5. discusses some special cases of the problem for which there are polynomial

algorithms for solving, describes the corresponding algorithms and evaluates their complexity.

In paragraph 1.6. algorithms for solving the problem, if the flow structure invariance

condition is met, are proposed for the following transport structures: «chain», «star», «star-chain»

and «tree». For each algorithm, a computational experiment is conducted to estimate the average

statistical complexity, and an approximation of the average number of auxiliary problems to be

solved, depending on the number of nodes, is found.
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1.1. Formulation of the problem

Let’s consider a model of a multi-node market for a homogeneous3 product consisting of

multiple local markets and a transmission network. The functioning of the model is considered

in the long term, but it is assumed that the market structure does not change significantly in

dynamics. At the same time, a certain basic period of time is allocated (for example, a year), in

relation to which the values used in the model and representing the volume of goods are measured

(for example, the volume of production per year, the volume of consumption per year, the volume

of transmission per year). For the sake of brevity, this gap is not mentioned later in this chapter,

but it is implied. The undirected4 graph G = (N,L) characterizes the transport structure of the

market and consists of a set of nodes (local markets) N and a set of lines L ⊆ {{i, j} | i, j ∈ N}.

We assume that any pair of nodes is connected by at most one line, and graph G is a tree, i.e.

it does not contain cycles (figure 1). The set L can include both existing lines and potential ones

that have not yet been built.

lines

nodes

Fig. 1. An example of a tree-type transport market structure

1.1.1. Nodes

Each node i ∈ N represents a local market where producers and consumers of goods can be

present.

The producers of node i are characterized by the function of production costs ci(vi),

depending on the volume of production vi and defined on the set [0, V max
i ], where the maximum

3 That is, not differing in quality (Vasin A. A., Morozov V. V., 2005, [51]).
4 The requirement of graph undirectidness is introduced for the convenience of description. For all the results

obtained in the work, their analogues can be obtained for the case of a directed graph.
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volume of production V max
i ≥ 0 belongs to the extended numerical line and can be equal to +∞,

if the volume of production is not limited. In a special case V max
i can also be zero, which means

that there is no possibility of production at this node. Denote for an arbitrary function f by f ′
−

(f ′
+) the left (respectively right) derivative. We assume that the function ci(vi) is continuous,

non-decreasing, convex, ci(0) = 0 and c′i−(vi) → +∞ for vi → +∞, if V max
i = +∞. The economic

meaning of these properties is intuitive. With an increase in production, we assume that costs

cannot decrease. The convexity property means that enterprises introduce production capacities

in ascending order of marginal costs, thus minimizing their own costs. The latter property suggests

that marginal costs tend to infinity with increasing output.

Consumers of node i are characterized by the function of consumption utility Ui(v
d
i ),

depending on the volume of consumption vdi ≥ 0. We assume that this function is continuous,

does not decrease, is concave, and is equal to a constant for sufficiently large vdi , Ui(0) = 0 and

U ′
i+(0) < +∞. It is worth explaining the meaning of these assumptions. If the product is not

consumed, then the utility is zero, while the marginal utility is limited in zero. With an increase

in consumption, the utility can only increase. The concavity property means that the utility of

purchasing another unit of goods is no greater than that of purchasing the previous unit. We

also assume that there is a certain finite amount of saturation, at which a further increase in

consumption no longer leads to an increase in utility. Let’s denote it by V d,max
i .

1.1.2. Lines

Each line {i, j} ∈ L allows the product to move between nodes i and j in any5 direction. We

assume that the marginal cost et{i,j} ≥ 0 of transmission of goods is constant and does not depend

on the direction of flow, and the volume of goods transferred is limited by the initial transmission

capacity of the line Q0
{i,j} ≥ 0, which can be increased. The cost of increasing transmission capacity

consists of two components: a fixed Ef
{i,j} ≥ 0 and a variable Ev

{i,j}(∆Q{i,j}), depending on the

volume of expansion (increase in transmission capacity) of the line.

The presence of a fixed component is due to the fact that during the construction or

expansion of the line there are costs, the value of which slightly depends or does not depend

at all on the volume of expansion, but is determined only by the fact of expansion. Such costs

include the costs of designing, renting land, preparing the route of the line, labour costs and other

5 In the case of a problem with an oriented graph, movement is possible only in one direction.
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fixed costs.

We assume that the variable component Ev
{i,j}(∆Q{i,j}) is continuous, non-decreasing,

convex, defined on the set [0,∆Qmax
{i,j}], where the maximum volume of expansion ∆Qmax

{i,j} ≥ 0

belongs to the extended numeric line and can be equal to +∞, and also that Ev
{i,j}(0) = 0.

It is worth noting that the costs of expanding the line are of a one-time nature, while the

production, transfer and consumption of goods are carried out constantly during the functioning

of the market. This inconsistency is eliminated by bringing the cost of expanding the line to the

base time interval in which the volumes of production, transmission and consumption of goods

are considered. Let the base interval be equal to τ years. The reduction is made taking into

account the service life of the line T{i,j}, which is also measured in years, and the coefficient δ

- the difference between the interest rate on bank deposits and the inflation rate (continuous

discounting is considered). Let Ef,r
{i,j} and Ev,r

{i,j}(∆Q{i,j}) be the initial fixed and variable costs for

the extension of the line, respectively, which are charged once at the initial time. Then the given

costs, which are further used in the model, are as follows (Stoft S., 2002, [52]): Ef
{i,j} = k · Ef,r

{i,j},

Ev
{i,j}(∆Q{i,j}) = k · Ev,r

{i,j}(∆Q{i,j}), where

k =


δτ

1− e−δT{i,j}
, δ > 0,

τ

T{i,j}
, δ = 0.

(1.1)

Denote by qij the volume of transfer (flow6) of goods from node i to node j. If qij < 0,

then we assume that the goods are transferred in the opposite direction, i.e. qji = −qij. The

transport costs Eij(qij) for line {i, j} are made up of the cost of transferring the goods and the

cost of extending the line if the amount of flow exceeds the initial capacity of the line:

Eij(qij) =

 et{i,j}|qij|, |qij| ∈ [0, Q0
{i,j}],

et{i,j}|qij|+ Ef
{i,j} + Ev

{i,j}(|qij| −Q0
{i,j}), |qij| ∈ (Q0

{i,j}, Q
max
{i,j}],

(1.2)

where Qmax
{i,j} = Q0

{i,j} + ∆Qmax
{i,j}. The function Eij(qij) is defined on the set |qij| ≤ Qmax

{i,j} and is

non-negative, even, and Eij(0) = 0. If Ef
{i,j} > 0 and ∆Qmax

{i,j} > 0, then it is not convex, since it

has a gap at qij ∈ {−Q0
{i,j}, Q

0
{i,j}} (figure 2). It is worth noting that the functions Eij(qij) and

Eji(qji) coincide.

6 It is worth recalling that the flow, as well as the volumes of production and consumption, are measured in
relation to some basic period of time (for example, a year).
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Eij( )

qij

qij

Q{i,j}
0

E{i,j}
fE{i,j}

f

-Q{i,j}
0

Fig. 2. Example of the transport cost function Eij(qij) with ∆Qmax
{i,j} = +∞

1.1.3. Social welfare

Denote by q⃗ = (qij | {i, j} ∈ L) the flow vector for which the conditions qji = −qij, {i, j} ∈ L

are met, by v⃗ = (vi | i ∈ N) - the vector of production volumes, and by Z(i) = {j ∈ N | {i, j} ∈ L}

- the set of adjacent nodes for node i ∈ N . For fixed vectors q⃗ and v⃗ we define the consumption

volumes v⃗d(q⃗, v⃗) = (vdi (q⃗, v⃗) | i ∈ N) as follows:

vdi (q⃗, v⃗) = vi −
∑

j∈Z(i)

qij, i ∈ N. (1.3)

Here it is assumed that the volume of consumption in the node is equal to the volume of production

minus the total outflow of goods from the node. Let’s number all nodes from the set N in an

arbitrary way and define social welfare as the total utility of consumption minus total production

and transportation costs:

W (q⃗, v⃗) =
∑
i∈N

Ui

(
vi −

∑
j∈Z(i)

qij

)
−
∑
i∈N

ci(vi)−
∑

{i,j}∈L, i<j

Eij(qij). (1.4)

Social welfare can also be represented as the sum of the gains of all market players: producers,

consumers and line owners. Denote by p⃗ = (pi | i ∈ N) the price vector, where pi is the price at

which the purchase and sale of goods takes place at node i. Then the producers’ profit Pri(q⃗, v⃗, p⃗)

and consumer surplus CSi(q⃗, v⃗, p⃗) of node i are equal to the following values:

Pri(q⃗, v⃗, p⃗) = pivi − ci(vi), CSi(q⃗, v⃗, p⃗) = Ui

(
vi −

∑
j∈Z(i)

qij

)
− pi

(
vi −

∑
j∈Z(i)

qij

)
.
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The profit from the operation of the line {i, j} ∈ L is formed as a result of the purchase of goods

in one incident node and its sale in the second node and is equal to

Tij(q⃗, v⃗, p⃗) = (pj − pi)qij − Eij(qij).

The total profit of the transport system is as follows:

T (q⃗, v⃗, p⃗) =
∑

{i,j}∈L, i<j

Tij(q⃗, v⃗, p⃗).

As a result, the alternative representation of social welfare has the following form for any price

vector p⃗:

W (q⃗, v⃗) =
∑
i∈N

Ui

(
vi −

∑
j∈Z(i)

qij

)
−
∑
i∈N

ci(vi)−
∑

{i,j}∈L, i<j

Eij(qij)

+
∑
i∈N

pi

(
vi −

∑
j∈Z(i)

qij

)−
∑
i∈N

pi

(
vi −

∑
j∈Z(i)

qij

)
=
∑
i∈N

(pivi − ci(vi)) +
∑
i∈N

Ui

(
vi −

∑
j∈Z(i)

qij

)
− pi

(
vi −

∑
j∈Z(i)

qij

)
+

∑
{i,j}∈L, i<j

((pj − pi)qij − Eij(qij))

=
∑
i∈N

Pri(q⃗, v⃗, p⃗) +
∑
i∈N

CSi(q⃗, v⃗, p⃗) + T (q⃗, v⃗, p⃗) ≡ W a(q⃗, v⃗, p⃗).

Representations W (q⃗, v⃗) and W a(q⃗, v⃗, p⃗) coincide as a function of q⃗, v⃗. Thus, when prices change,

there is only a redistribution of social welfare between the players, whereas social welfare itself

remains unchanged.

1.1.4. The problem of maximizing social welfare

Let’s set the problem of maximizing social welfare:

W (q⃗, v⃗) →⃗
q,v⃗

max . (1.5)
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The current chapter is devoted to solving the problem (1.5). Its main difficulty lies in the presence

of fixed costs Ef
{i,j} in (1.2), which is why the objective function of the problem is not concave,

i.e. the problem is not a convex programming problem (Karmanov V. G., 1986, [37]).

The issue of implementing the optimal state of the market deserves special attention. Let

(
−→
q∗ ,

−→
v∗) is some solution of the problem (1.5). What are the mechanisms of market regulation that

stimulate all market players to act in accordance with the found solution: producers to produce

goods in volumes
−→
v∗ , the transport system to re-sell them in volumes

−→
q∗ , and consumers to buy

in volumes v⃗d(
−→
q∗ ,

−→
v∗)? After all, all players, we assume, are rational and strive to maximize their

winnings. As will be shown below, the solution (
−→
q∗ ,

−→
v∗) corresponds to the vector of equilibrium

prices, when fixing which it is beneficial for all market players to act in accordance with the solution

(
−→
q∗ ,

−→
v∗) if the owner of each line {i, j} ∈ L in the case of its expansion receives compensation

in the amount of Ef
{i,j} from a player interested in implementing the optimal state. Such a

player may be the state. It is also able to regulate prices in nodes with the help of the Federal

Antimonopoly Service (if we are talking about the Russian market), not allowing them to deviate

from equilibrium, in the case of the presence of large players in the nodes that can influence prices.

In the case of considering the Russian gas or oil market, the possibility of implementing the

optimal state is facilitated by the fact that the largest companies owning main pipelines (in the

case of the gas market, «Gazprom», in the case of the oil market, «Transneft»), are controlled by

the state.

1.1.5. Reducing the initial problem to the problem of finding the optimal set of

extensible lines

Consider an auxiliary problem with a fixed set of extensible lines R ⊆ L:

W (q⃗, v⃗, R) →⃗
q,v⃗

max, (1.6)

where W (q⃗, v⃗, R) is different from W (q⃗, v⃗) in that in the calculation of W (q⃗, v⃗, R), if {i, j} ∈ R,

regardless of the flow qij fixed costs for the extension of the line Ef
{i,j} are always included in

the function of transportation costs (1.2), and if {i, j} ∈ L \ R, we assume that Qmax
{i,j} = Q0

{i,j}

regardless of ∆Qmax
{i,j}. Let’s denote by W̃ (R) the maximum welfare value in the problem (1.6), and

by X̃(R) = {(q⃗, v⃗) | W (q⃗, v⃗, R) = W̃ (R))} - a set of solutions to this problem. Then the original
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problem (1.5) reduces to the problem of finding the optimal set of extensible lines :

W̃ (R) →
R⊆L

max . (1.7)

Therefore, if L∗ is the solution of the problem (1.7), then (
−→
q∗ ,

−→
v∗) ∈ X̃(L∗) is the solution of the

problem (1.5).

1.2. NP-hardness of the problem

Let’s prove that the original problem (1.5) is NP-hard7. Let’s consider a special case of the

problem in which the market consists of a set of producing nodes N s = {1, ..., n} and a consuming

node 0 connected to all the others: N = N s ∪ {0}, L =
⋃

i∈Ns

{i, 0}. Each producing node i ∈ N s

is characterized by a maximum production volume V max
i = gi ∈ N, while ci(vi) ≡ 0, Ui(v

d
i ) ≡ 0.

The consuming node has no production (V max
0 = 0) and is described by the utility function of

consumption, which is determined by the parameter K ∈ N ∪ {0} and has the following form

(figure 3):

U0(v
d
0) =

 (K + 1)vd0 − (vd0)
2
/2, vd0 ∈ [0, K + 1],

(K + 1)2/2, vd0 ∈ (K + 1,+∞).

Each line {i, 0} ∈ L is characterized by fixed extension costs Ef
{i,0} = gi ∈ N, at the same time

et{i,0} = 0, Q0
{i,0} = 0, ∆Qmax

{i,0} = +∞, Ev
{i,0}(∆Q{i,0}) ≡ 0. Then for a fixed set of producing nodes

N ⊆ N s with extensible incident lines, the maximum value of social welfare is obviously as follows:

W̃ (N) = U0

( ∑
i∈N

V max
i

)
−
∑
i∈N

Ef
{i,0} = U0

( ∑
i∈N

gi

)
−
∑
i∈N

gi.

Here, for all expandable lines, the maximum possible volume of goods is transferred to the

consuming node. As a result, the problem under consideration is determined by parameters n,

K, gi (i ∈ {1, ..., n}) and is equivalent to the following:

W̃ (N) →
N⊆N

max . (1.8)

7 A problem is called NP-hard if any problem from the NP class is polynomial reduced to it (Gary M., Johnson
D., 1982, [38]). The NP class consists of solvability problems that can be solved on a non-deterministic Turing
machine in polynomial time of the length of the input data.
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U0( )

K+1

(K+1) /22

v0
d

v0
d

0

Fig. 3. Consumption utility function U0(v
d
0)

Let ’s now consider the following decision problem8 with an additional parameter W ∈ R:

is there a set

N ⊆ N , for which W̃ (N) ≥ W? (1.9)

Note that problem (1.9) reduces to problem (1.8) in polynomial time of the length of the input

parameters. Indeed, to solve problem (1.9), it is sufficient to find the maximum welfare value W ∗

in problem (1.8), and then check the inequality W ∗ ≥ W . Let’s prove the NP-completeness9 of

problem (1.9), which will result in the NP-hardness of problem (1.8) (and hence the more general

problem (1.5)).

Theorem 1. Problem (1.9) is NP-complete.

Proof. Problem (1.9) belongs to the NP class, since it can be solved in polynomial time from the

length of the input parameters on a non-deterministic Turing machine by considering all subsets

of N ⊆ N and checking the corresponding inequality for each of them. Therefore, to prove the

statement, it is sufficient to reduce to problem (1.9) the well-known NP-complete problem «on

the sum of subsets» (Kleinberg D., Tardosh E., 2006, [53]): for a given set of natural numbers

S = {s1, ..., sm} and natural number P is there a subset

S ′ ⊆ S, for which
∑
s∈S′

s = P? (1.10)

Let’s consider the problem (1.9) with the following parameters: n = m, K = P , gi = si

8 The decision problem is a problem with the answer «yes» or «no» (Gary M., Johnson D., 1982, [38]).
9 The decision problem is called NP-complete if it belongs to the NP class and any other problem from the NP

class is polynomial reduced to it (Gary M., Johnson D., 1982, [38]).
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(i ∈ {1, ...,m}), W = P 2/2. In that case

W̃ (N) = U0

(∑
i∈N

si

)
−
∑
i∈N

si = φ
(∑

i∈N

si

)
,

where

φ(t) =

 Pt− 1
2
t2, t ∈ [0, P + 1],

1
2
(P + 1)2 − t, t ∈ (P + 1,+∞).

Note that the function φ(t) is concave, and its only maximum is reached at t = P , so max(φ(t)) =

φ(P ) = P 2/2. This means that the inequality W̃ (N) ≥ P 2/2 holds if and only if
∑
i∈N

si = P .

Therefore, the answer to the problem (1.9) with these parameters is positive if and only if the

answer to the problem (1.10) is positive, i.e. the desired information is obtained. ■

Consequence. Problem (1.5) is NP-hard.

The obtained result suggests that, in general, there are no effective10 methods for solving

the problem (1.5). However, there are such methods for some special cases of the problem, which

will be shown later.

1.3. Solving the auxiliary problem

1.3.1. Dot-multiple mappings and operations on them

Let’s introduce some notations and operations that are used later in the work. For a point-set

mapping G(x) defined on the set X ⊆ R, we introduce the following definitions.

Definition 1. A dot-multiple mapping G is called correct if for any x ∈ X G(x) is a convex

set, and the graph of the mapping {(x, g) | x ∈ X, g ∈ G(x)} is a continuous mapping of some

one-dimensional convex nonempty set in R2.

Definition 2. A dot-multiple mapping G is called non-decreasing (non-increasing) if for any x1,

x2 ∈ X, x1 < x2, and for any g1 ∈ G(x1), g2 ∈ G(x2) the inequality g1 ≤ g2 (g1 ≥ g2) is met.

Definition 3. A point-set mapping G is called monotonic if it is non-decreasing or non-increasing.
10 That is, solved by a deterministic Turing machine in polynomial time from the length of the input data (Gary

M., Johnson D., 1982, [38]).
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Let’s denote by P ↑ (P ↓) the set of all non-decreasing (non-increasing) regular point-multiple

maps, and by Pm = P ↑ ∪ P ↓ the set of all monotonic regular point-multiple maps.

For the sets Y , Y1, Y2 ⊆ R, and the number y ∈ R we introduce the following operations:

• −Y ≡ {y | − y ∈ Y };

• Y1 + Y2 ≡ {y | y = y1 + y2, y1 ∈ Y1, y2 ∈ Y2};

• Y1 − Y2 ≡ Y1 + (−Y2);

• Y + y ≡ y + Y ≡ Y + {y};

• Y − y ≡ −y + Y ≡ Y − {y};

• −Y + y ≡ y − Y ≡ (−Y ) + {y};

• −Y − y ≡ −y − Y ≡ (−Y )− {y};

• max(Y ) ≡ max
y∈Y

y, min(Y ) ≡ min
y∈Y

y (for the set Y , which is a point or a segment).

For G(x), G1(x), G2(x) ∈ Pm with the areas of definition X, X1, X2 respectively, we

introduce the following notations.

• G−1 is a point-multiple mapping, the graph of which is a reflection of the mapping G graph

relative to the line g = x. Obviously, if G ∈ P ↑ (G ∈ P ↓), then G−1 ∈ P ↑ (G−1 ∈ P ↓).

• −G is a point-multiple mapping, the graph of which is a reflection of the mapping G graph

relative to the line g = 0. Moreover, if G ∈ P ↑ (G ∈ P ↓), then −G ∈ P ↓ (−G ∈ P ↑).

• G1 + G2 is a point-set map with a domain of definition X1 ∩X2, defined as follows: (G1 +

G2)(x) = G1(x) + G2(x) for any x ∈ X1 ∩ X2. In the case of X1 ∩ X2 ̸= ∅ the following

property is met: if G1 ∈ P ↑, G2 ∈ P ↑ (G1 ∈ P ↓, G2 ∈ P ↓), then G1+G2 ∈ P ↑ (G1+G2 ∈ P ↓).

• G1 −G2 ≡ G1 + (−G2).

•
b∫
a

G(x)dx ≡
b∫
a

minm(G(x))dx is a generalization of the integral for point-multiple mapping

where minm(Y ) ≡ {y ∈ Y | |y| ≤ |y′| ∀ y′ ∈ Y } is the minimum modulo number from the

set Y ⊆ R.

Let’s denote by f ′ the subdifferential11 for an arbitrary continuous function f(x) defined on

a convex set X ⊆ R. Moreover, if f is a convex (concave) function, then f ′ ∈ P ↑ (f ′ ∈ P ↓).

11 The subdifferential is a point-set mapping and is used instead of the derivative in cases where the latter may
not exist (Vasiliev F. P., 1988, [54]). The existence of one-sided derivatives is sufficient for the existence of a
subdifferential.
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1.3.2. Supply function

The Walras supply function (Vasin A. A., Morozov V. V., 2005, [51])

Si(pi) ≡ Arg max
vi∈[0,V max

i ]

(pivi − ci(vi))

is related to the production cost function ci(vi) and determines the optimal output volume of

node i producers in terms of maximizing their profits at a fixed selling price pi. This function is a

non-decreasing regular point-set mapping (i.e. Si(pi) ∈ P ↑) defined at pi ≥ 0, with min(Si(0)) = 0.

Thus, Si(pi) is a point or a segment for any pi ≥ 0.

The following relations are derived from the definition of the supply function, linking the

functions ci(vi) and Si(pi):

Si(pi) =



{0}, V max
i = 0,

{0}, pi ∈ [0, c′i+(0)),

(c′i)
−1(pi), pi ∈ [c′i+(0), c

′
i−(V

max
i )],

{V max
i }, pi ∈ (c′i−(V

max
i ),+∞),

V max
i > 0,

ci(vi) =

vi∫
0

S−1
i (u)du.

Figure 4 shows an example of a piecewise linear production cost function ci(vi) together with its

corresponding supply function Si(pi). This example describes a case in which node producers have

three production facilities available, each of which allows them to produce a limited amount of

goods at a fixed marginal cost.

1.3.3. Demand function

The demand function

Di(pi) ≡ Arg max
vdi ∈[0,V

d,max
i ]

(
Ui(v

d
i )− piv

d
i

)
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vi

vici( )

Vi
maxv1 v2

piSi( )

v1

v2

Vi
max

Vi
maxc' (       )i-c' (0)i+ ip

Fig. 4. An example of a piecewise linear production cost function ci(vi) (left) and the corresponding
supply function Si(pi) (right)

is related to the utility function Ui(v
d
i ) and determines the optimal purchase volume for consumers

of node i in terms of maximizing their gains at a fixed price for the product pi. This function is

a non-increasing regular point-set mapping (i.e. Di(pi) ∈ P ↓) defined at pi ≥ 0 and equal to zero

for sufficiently large pi, with Di(0) being a point.

The following relations are derived from the definition of the demand function, linking the

functions Ui(v
d
i ) and Di(pi):

Di(pi) =


{V d,max

i }, pi = 0,

(U ′
i)

−1(pi), pi ∈ (0, U ′
i+(0)],

{0}, pi ∈ (U ′
i+(0),+∞),

Ui(v
d
i ) =

vdi∫
0

D−1
i (u)du. (1.11)

Figure 5 shows an example of a piecewise linear utility function of consumption Ui(v
d
i ) together

with its corresponding demand function Di(pi). This example corresponds to the case in which,

for consumers of the node, the utility of purchasing another unit of goods does not change with

an increase in consumption until the saturation volume V d,max is reached.
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Ui( )

Vd,max vi
d

vi
d

i

piDi( )

Vd,max

U' (0)i+ ip

i

Fig. 5. An example of a piecewise linear utility function of consumption Ui(v
d
i ) (left) and its

corresponding demand function Di(pi) (right)

1.3.4. Functions of marginal transmission costs

Let’s introduce for each line {i, j} ∈ L functions of marginal transmission costs enexij (qij)

and eexij (qij). The first function corresponds to the case of no line extension, the second to the case

of line extension. The function enexij (qij) is defined as follows: if Q0
{i,j} = 0, then enexij (qij) is defined

only when qij = 0 and is equal to (−∞,+∞) at this point; otherwise

enexij (qij) =



(
−∞,−et{i,j}

]
, qij = −Q0

{i,j},

{−et{i,j}}, qij ∈ (−Q0
{i,j}, 0),[

− et{i,j}, e
t
{i,j}
]
, qij = 0,

{et{i,j}}, qij ∈ (0, Q0
{i,j}),[

et{i,j},+∞
)
, qij = Q0

{i,j}.
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The function eexij (qij) is defined as follows: if ∆Qmax
{i,j} = 0, then eexij (qij) ≡ enexij (qij); if ∆Qmax

{i,j} ̸= 0,

Q0
{i,j} = 0, then

eexij (qij) =



(
−∞,−et{i,j} − Ev

{i,j}
′
−
(∆Qmax

{i,j})
]
, qij = −Qmax

{i,j},

−et{i,j} − Ev
{i,j}

′(|qij| −Q0
{i,j}), qij ∈ (−Qmax

{i,j}, 0),[
− et{i,j} − Ev

{i,j}
′
+
(0), et{i,j} + Ev

{i,j}
′
+
(0)
]
, qij = 0,

et{i,j} + Ev
{i,j}

′(|qij| −Q0
{i,j}), qij ∈ (0, Qmax

{i,j}),[
et{i,j} + Ev

{i,j}
′
−
(∆Qmax

{i,j}),+∞
)
, qij = Qmax

{i,j};

if ∆Qmax
{i,j} ̸= 0, Q0

{i,j} ̸= 0, then

eexij (qij) =



(
−∞,−et{i,j} − Ev

{i,j}
′
−
(∆Qmax

{i,j})
]
, qij = −Qmax

{i,j},

−et{i,j} − Ev
{i,j}

′(|qij| −Q0
{i,j}), qij ∈ (−Qmax

{i,j},−Q0
{i,j}),[

− et{i,j} − Ev
{i,j}

′
+
(0),−et{i,j}

]
, qij = −Q0

{i,j},

{−et{i,j}}, qij ∈ (−Q0
{i,j}, 0),[

− et{i,j}, e
t
{i,j}
]
, qij = 0,

{et{i,j}}, qij ∈ (0, Q0
{i,j}),[

et{i,j}, e
t
{i,j} + Ev

{i,j}
′
+
(0)
]
, qij = Q0

{i,j},

et{i,j} + Ev
{i,j}

′(|qij| −Q0
{i,j}), qij ∈ (Q0

{i,j}, Q
max
{i,j}),[

et{i,j} + Ev
{i,j}

′
−
(∆Qmax

{i,j}),+∞
)
, qij = Qmax

{i,j}.

Each of these functions is a non-decreasing regular point-set mapping (i.e. enexij (qij), e
ex
ij (qij) ∈

P ↑) with a graph passing through the origin and symmetrical with respect to it (figure 6).

1.3.5. Competitive equilibrium

We introduce an important concept of competitive equilibrium, equivalent to the

corresponding definition from [43] (Vasin A. A., Grigorieva O. M., Tsyganov N. I., 2019).

Definition 4. For a fixed set of expanded lines R ⊆ L, the combination of the prices vector

p⃗ = (pi | i ∈ N), production volumes vector v⃗ = (vi | i ∈ N) and flows vector q⃗ = (qij | {i, j} ∈ L)
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Fig. 6. Example of marginal transmission cost functions enexij (qij) (left) and eexij (qij) (right) with
∆Qmax

{i,j} = +∞

is called the competitive equilibrium of the market if it meets the following conditions:

vi ∈ Si(pi), vdi (q⃗, v⃗) ∈ Di(pi) for any node i ∈ N ; (1.12)

pj − pi ∈

 enexij (qij), if {i, j} /∈ R,

eexij (qij), if {i, j} ∈ R

for any line {i, j} ∈ L. (1.13)

Let’s denote the set of all triples (p⃗, v⃗, q⃗) meeting (1.12, 1.13) by X̃comp(R), and we will call

the corresponding prices p⃗, production volumes v⃗, flows q⃗ and consumption volumes v⃗d(q⃗, v⃗)

equilibrium.

The first condition means that in each node i ∈ N at a fixed price pi the volume of

production vi maximizes producers’ profit, the volume of consumption vdi (q⃗, v⃗) maximizes the

gain of consumers, and the price pi balances supply and demand in the node, taking into account

incoming and outgoing flows. The second condition says that for each line {i, j} ∈ L at fixed

prices pi and pj at incident nodes the flow value |qij| from a node with a lower price to a node

with a higher price reached such a value at which the marginal transport costs equaled the price

difference, making further increasing the flow is unprofitable for the owner of the line {i, j}. In

other words, competitive equilibrium is a market condition in which, at fixed prices, it is not

profitable for any of the market players to change their behaviour.

The following statement concretizing the well-known welfare theorem (Arrow K. D. and

Debre J., 1954, [7]) and proved in [43] (Vasin A. A., Grigorieva O. M., Tsyganov N. I., 2019),

establishes a connection between competitive equilibrium and the solution of the auxiliary problem

(1.6).
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Theorem 2. Task (1.6) is a convex programming problem, and (q⃗, v⃗) ∈ X̃(R) if and only if ∃ p⃗:

(p⃗, v⃗, q⃗) ∈ X̃comp(R).

Thus, to solve the auxiliary problem (1.6), which is now reduced to the solution (1.12, 1.13),

standard convex optimization methods can be used (Sukharev A. G., Timokhov A. V., Fedorov

V. В., 1985, [55]). In the next paragraph, a special algorithm for solving this problem is proposed.

The following important conclusion also follows from theorem 2. Let L∗ be the optimal set

of extensible lines found according to (1.7), and (
−→
p∗ ,

−→
v∗ ,

−→
q∗) ∈ X̃comp(L∗). Then, when encouraging

line owners to make decisions to «expand/not expand» in accordance with L∗ and the inability of

players to influence prices, the state (
−→
p∗ ,

−→
v∗ ,

−→
q∗) that ensures maximum public welfare is stable, i.e.

rational players have no incentive to deviate from it. Line owners can be stimulated, for example,

by compensating fixed costs Ef
{i,j} on the part of a player interested in implementing an optimal

condition. As previously noted, this player may be the state.

1.3.6. Algorithm for solving the auxiliary problem

Let’s describe the algorithm for solving the auxiliary problem (1.6). Its main idea is to

transfer the aggregated net supply from all nodes to some node i0 ∈ N , calculate the equilibrium

price for this node and then reverse the movement, in the course of which a competitive equilibrium

(
−→
p̃ ,

−→
ṽ ,

−→
q̃ ) meeting (1.12, 1.13) is calculated. According to theorem 2, the found vectors of flows

−→
q̃ and production volumes

−→
ṽ form the solution of the problem (1.6).

The algorithm consists of the following three steps.

Step 1. Building a root tree of minimum height. Let’s choose node i0 ∈ N in such a

way that the root tree corresponding to graph G = (N,L) with root i0 has the minimum possible

height h. Let’s denote by σ(i) the mapping that matches an arbitrary node i ∈ N with its nearest

predecessor (parent), while we assume that σ(i0) = i0. We divide the set of all nodes N into

subsets N1, ..., Nh+1 as follows:

• N1 = {i ∈ N | σ−1(i) = ∅} - the set of final nodes;

• Nk =

{
i ∈ N \

k−1⋃
l=1

Nl

∣∣∣ σ−1(i) ⊆
k−1⋃
l=1

Nl

}
, k = 2, ..., h+ 1.

In this case, Nh+1 = {i0}. Figures 7 and 8 show an example of the transport structure of the

market and the corresponding root tree of minimum height with h = 3 and i0 = 6. Let’s describe

one of the ways to calculate the values h, i0, σ(i), Nk for given sets of adjacent nodes (Z(i) | i ∈ N),

whose complexity is O(|N |2). The desired tree is built by sequentially including nodes, starting
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with the final ones. Let’s introduce the following values: N̂ - the set of nodes not yet included; Ẑi -

the set of nodes not yet included adjacent to the node i; d̂i - the number of nodes not yet included

adjacent to node i. For an arbitrary singleton set A let’s denote by J(A) its only element.

Substep 1.0. Suppose N̂ = N , Ẑi = Z(i), d̂i = |Z(i)| for each i ∈ N .

Substep 1.k, k=1, ... . If |N̂ | > 2, then we assume:

1) Nk = {i ∈ N̂ | d̂i = 1}, N̂ = N̂ \Nk;

2) for every i ∈ Nk: σ(i) = J(Ẑi), ẐJ(Ẑi)
= ẐJ(Ẑi)

\ {i}, d̂J(Ẑi)
= d̂J(Ẑi)

− 1.

If |N̂ | ≤ 2, then we assume:

 h = k − 1, i0 = i1, Nh+1 = {i0}, σ(i0) = i0, if N̂ = {i1},

Nk = {i1}, σ(i1) = i2, h = k, i0 = i2, Nh+1 = {i0}, σ(i0) = i0, if N̂ = {i1, i2},

after that, step 1 is completed.

3

5

8
7

1

6

12

15

16

13

14

9

1110

4

2

Fig. 7. An example of a transport market structure

Step 2. Transferring the balance of supply and demand to the root node (direct

move). Denote by ∆Si(pi) = Si(pi)−Di(pi) the function of pure supply in the node i ∈ N , showing

the excess of supply over demand at a fixed price in the node, without taking into account the

transfer of goods between nodes.

We introduce the following two functions: ∆Sj(pj) and ∆Sij(pj). The function ∆Sj(pj)

determines the aggregated net supply at node j ∈ N , taking into account the transfer of goods

between this node and subsequent nodes, i.e. the excess of supply over demand for a subtree with

root j at a fixed price at this node. The function ∆Sij(pj) determines the flow from node i ∈ N

to the preceding node j = σ(i), which, at a fixed price in node j balances supply and demand in
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Fig. 8. Root tree of the minimum height for the market shown in figure 7

the subtree with the root vertex i and at the same time ensures maximum profit for the owner of

the line {i, j} provided that it cannot influence the price at node i.

At this step, the functions ∆Sj(pj) and ∆Sjσ(j)(pσ(j)) are sequentially calculated, starting

from the final nodes and ending with the root node.

Substep 2.k, k=1, ..., h. For each node j ∈ Nk, the functions ∆Sj(pj), ∆Sjσ(j)(pσ(j)) are

calculated according to the operations introduced in paragraph 1.3.1.:

∆Sj(pj) = ∆Sj(pj) +
∑

i∈σ−1(j)

∆Sij(pj); (1.14)

∆Sjσ(j)(pσ(j)) =

 ((∆Sj)
−1 + enexjσ(j))

−1(pσ(j)), {j, σ(j)} /∈ R,

((∆Sj)
−1 + eexjσ(j))

−1(pσ(j)), {j, σ(j)} ∈ R.

(1.15)

Substep 2.(h+1). The function ∆Si0(pi0) is calculated for the root node:

∆Si0(pi0) = ∆Si0(pi0) +
∑

i∈σ−1(i0)

∆Sii0(pi0). (1.16)

Step 3. Calculation of competitive equilibrium (reverse). At this step, equilibrium

prices p̃i, production volumes ṽi, consumption volumes ṽdi and flows q̃ij are sequentially calculated,

starting from the root node and ending with the final ones. Auxiliary coefficients λj are also

calculated, which are used for ambiguous determination of the basic quantities using the functions

Sj(pj), Dj(pj), ∆Sij(pj) and ensure the fulfillment of condition (1.12) in this case.

Substep 3.1. The following values are calculated for the root node according to the

operations entered in paragraph 1.3.1.:
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1) p̃i0 = min((∆Si0)
−1(0)) - equilibrium price at the root node;

2) λi0 =


0, qmin = qmax,

−qmin

qmax − qmin
, qmin < qmax

- auxiliary coefficient for root node where qmin =

min(∆Si0(p̃i0)), qmax = max(∆Si0(p̃i0));

3) ṽi0 = (1− λi0) ·min(Si0(p̃i0)) + λi0 ·max(Si0(p̃i0)) - equilibrium volume of production at the

root node;

4) ṽdi0 = λi0 ·min(Di0(p̃i0)) + (1− λi0) ·max(Di0(p̃i0)) - equilibrium volume of consumption at

the root node.

Figure 9 shows an example of calculating and using the auxiliary coefficient λi0 in substep

3.1.

𝛥S  ( )pi0i

__

0

pi0

𝜆  = 1/4⇒ i0

qmin

qmax

pi
∼

0

0
1x

4x

S  ( )pi0i0

S  (((min ))pi0i0

∼

S  (((max ))pi0i0

∼

pi0
pi
∼

0

vi
∼

0

0

1y

4y

Fig. 9. An example of calculating the auxiliary coefficient λi0 in item 2 of substep 3.1 (left) and
using it to calculate the equilibrium volume of production ṽi0 in item 3 of the same substep
(on the right); for the functions shown in the graphs λi0 = −qmin

qmax−qmin = 1/4, therefore ṽi0 =

3/4 ·min(Si0(p̃i0)) + 1/4 ·max(Si0(p̃i0));

Substep 3.m, m=2, ..., h+1. The set Nk is considered, where k = h − m + 2. The

following values are calculated for each node i ∈ Nk:

1) q̃iσ(i) = (1−λσ(i)) ·min(∆Siσ(i)(p̃σ(i)))+λσ(i) ·max(∆Siσ(i)(p̃σ(i))) - the equilibrium flow from

node i to node σ(i);

2) p̃i =

 min
(
(∆Si)

−1(q̃iσ(i)) ∩
(
pσ(i) − enexiσ(i)(q̃iσ(i))

))
, {i, σ(i)} /∈ R,

min
(
(∆Si)

−1(q̃iσ(i)) ∩
(
pσ(i) − eexiσ(i)(q̃iσ(i))

))
, {i, σ(i)} ∈ R

- equilibrium price in

node i;
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3) λi =


0, qmin = qmax,

q̃iσ(i) − qmin

qmax − qmin
, qmin < qmax

- the auxiliary coefficient for node i, where qmin =

min(∆Si(p̃i)), qmax = max(∆Si(p̃i));

4) ṽi = (1− λi) ·min(Si(p̃i)) + λi ·max(Si(p̃i)) - the equilibrium volume of production at node

i;

5) ṽdi = λi · min(Di(p̃i)) + (1 − λi) · max(Di(p̃i)) - the equilibrium volume of consumption in

node i.

The main amount of calculations falls on the second step of the algorithm, where operations

on functions are performed. The introduction of the minimum height requirement for the root

tree used in the algorithm is related to the possibility of independent calculations of functions

∆Sj(pj), ∆Sjσ(j)(pσ(j)) in the second step for nodes j belonging to the same set Nk, which, when

using parallel computing systems, reduces the time to solve the problem. For the third step, similar

reasoning is valid.

Theorem 3. All calculations of the algorithm are correct12. The vectors of prices
−→
p̃ = (p̃i | i ∈ N),

production volumes
−→
ṽ = (ṽi | i ∈ N) and flows

−→
q̃ = (q̃ij | {i, j} ∈ L), resulting from the work of

the algorithm, meet the following relations: (
−→
p̃ ,

−→
ṽ ,

−→
q̃ ) ∈ X̃comp(R), (

−→
q̃ ,

−→
ṽ ) ∈ X̃(R).

Thus, the algorithm finds a competitive equilibrium (1.12, 1.13) and a solution to the

auxiliary problem (1.6).

Proof. Since Si ∈ P ↑, Di ∈ P ↓ for any node i ∈ N , then ∆Si ∈ P ↑, and ∆Si(pi) is defined

if pi ≥ 0, is non-negative for sufficiently large pi, ∆Si(pi) is a point or segment for any

pi ≥ 0 and min(∆Si(0)) ≤ 0. It is proved by induction that all functions of the form ∆Si(pi)

and ∆Siσ(i)(pσ(i)) calculated at the second step of the algorithm according to (1.14-1.16) also

satisfy similar properties. This takes into account the properties of the operations and functions

enexiσ(i)(qiσ(i)), e
ex
iσ(i)(qiσ(i)) introduced in paragraph 1.3.1..

For convenience, we introduce a dummy variable q̃i0i0 = 0 for the root node. We prove by

induction that all calculations of the third step of the algorithm are correct, and the obtained values

satisfy the following relations:

ṽi ∈ Si(p̃i), ṽdi ∈ Di(p̃i), p̃i ≥ 0, λi ∈ [0, 1], q̃iσ(i) ∈ ∆Si(p̃i) for any i ∈ N ; (1.17)

12 The correctness of calculations is understood as the absence of the following operations during the work of the
algorithm: dividing by zero, finding the minimum or maximum of an empty set.
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p̃σ(i) − p̃i ∈

 enexiσ(i)(q̃iσ(i)), if {i, σ(i)} /∈ R,

eexiσ(i)(q̃iσ(i)), if {i, σ(i)} ∈ R

for any i ∈ N \ {i0}. (1.18)

Since for any i ∈ N , pi ≥ 0 each of the value ∆Si(pi), ∆Siσ(i)(pσ(i)), Si(pi), Di(pi) is defined

and is a point or a segment, then the min and max operations applied in the algorithm for such

expressions are correct.

Let’s consider substep 3.1. Since ∆Si0 ∈ P ↑, min(∆Si0(0)) ≤ 0 and ∆Si0(pi0) is non-

negative for sufficiently large pi0, then (∆Si0)
−1(0) ∩ [0,+∞) ̸= ∅, therefore, the action 1) of

this substep is correct, and p̃i0 ≥ 0 and 0 ∈ ∆Si0(p̃i0). It follows from the last property that

min(∆Si0(p̃i0)) ≤ 0, max(∆Si0(p̃i0)) ≥ 0, which means λi0 ∈ [0, 1], which, in turn, means the

validity of inclusions ṽi0 ∈ Si0(p̃i0) and ṽdi0 ∈ Di0(p̃i0).

Let the relations (1.17, 1.18) be true for the values calculated in substeps 3.1, ..., 3.(m-

1). Let’s consider substep 3.m. Let’s fix an arbitrary node i ∈ Nh−m+2. By the assumption of

induction p̃σ(i) ≥ 0, λσ(i) ∈ [0, 1], therefore q̃iσ(i) ∈ ∆Siσ(i)(p̃σ(i)), which in the case of {i, σ(i)} /∈ R

is equivalent to

q̃iσ(i) ∈
(
(∆Si)

−1 + enexiσ(i)

)−1
(p̃σ(i)) ⇔ p̃σ(i) ∈

(
(∆Si)

−1 + enexiσ(i)

)
(q̃iσ(i)) ⇔

⇔ p̃σ(i) ∈ (∆Si)
−1(q̃iσ(i)) + enexiσ(i)(q̃iσ(i)) ⇔ 0 ∈ (∆Si)

−1(q̃iσ(i))−
(
p̃σ(i) − enexiσ(i)(q̃iσ(i))

)
⇔

⇔ (∆Si)
−1(q̃iσ(i)) ∩

(
p̃σ(i) − enexiσ(i)(q̃iσ(i))

)
̸= ∅.

Note that the function ∆Si(pi) is not defined for pi < 0, therefore (∆Si)
−1(q̃iσ(i)) ⊆ [0,+∞),

this means that for {i, σ(i)} /∈ R action 2) of this substep is correct, and p̃i ≥ 0. In the case

of {i, σ(i)} ∈ R, the situation is similar. Also, this action implies the fulfillment of condition

(1.18) for node i and the inclusion of p̃i ∈ (∆Si)
−1(q̃iσ(i)). From the latter it follows that q̃iσ(i) ∈

∆Si(p̃i) ⇔ p̃i ∈
[
min(∆Si(p̃i)),max(∆Si(p̃i))

]
, therefore λi ∈ [0, 1], which means the validity of

the ratios ṽi ∈ Si(p̃i) and ṽdi ∈ Di(p̃i). Thus, the induction assumption is proved for step 3.m and

properties (1.17, 1.18) are met.

Now let’s prove that

ṽdi = vdi (
−→
q̃ ,

−→
ṽ ) for any i ∈ N. (1.19)

Consider the difference vdi (
−→
q̃ ,

−→
ṽ ) − ṽdi for an arbitrary node i ∈ N and show that it is equal to
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zero. Indeed, denoting qmin = min(∆Si(p̃i)), qmax = max(∆Si(p̃i)), we get:

vdi (
−→
q̃ ,

−→
ṽ )− ṽdi = ṽi −

∑
j∈Z(i)

q̃ij − ṽdi = ṽi − ṽdi +
∑

j∈σ−1(i)

q̃ji − q̃iσ(i) =

= [(1− λi) ·min(Si(p̃i)) + λi ·max(Si(p̃i))]− [λi ·min(Di(p̃i)) + (1− λi) ·max(Di(p̃i))] +

+
∑

j∈σ−1(i)

[(1− λi) ·min(∆Sji(p̃i)) + λi ·max(∆Sji(p̃i))]− q̃iσ(i) =

= (1− λi) ·

min(Si(p̃i)) + min(−Di(p̃i)) +
∑

j∈σ−1(i)

min(∆Sji(p̃i))

+

+ λi ·

max(Si(p̃i)) + max(−Di(p̃i)) +
∑

j∈σ−1(i)

max(∆Sji(p̃i))

− q̃iσ(i) =

= (1− λi) ·min(∆Si(p̃i)) + λi ·max(∆Si(p̃i))− q̃iσ(i) = (1− λi) · qmin + λi · qmax − q̃iσ(i) =

= λi · (qmax − qmin) + qmin − q̃iσ(i) =

 qmin − q̃iσ(i), qmin = qmax,

(q̃iσ(i) − qmin) + qmin − q̃iσ(i), qmin < qmax

= 0.

In these transitions, the ratios (1.3, 1.14, 1.16) and obvious equalities q̃ij = −q̃ji, −max(Di(p̃i)) =

min(−Di(p̃i)), −min(Di(p̃i)) = max(−Di(p̃i)) were used, as well as the property q̃iσ(i) ∈ ∆Si(p̃i).

Thus, the conditions (1.17-1.19) are met. Note that in this case the obtained values also

satisfy the relations (1.12, 1.13), therefore (
−→
p̃ ,

−→
ṽ ,

−→
q̃ ) ∈ X̃comp(R). Taking into account theorem

2, the inclusion (
−→
q̃ ,

−→
ṽ ) ∈ X̃(R) is also valid. ■

1.3.7. Estimation of the complexity of the algorithm for the case of piecewise

linear functions

Let’s call a monotone regular point-multiple mapping G(x) with a domain of definition X

piecewise linear if its graph Gr(G) = {(x, g) | x ∈ X, g ∈ G(x)} is represented as a union of a

finite number of segments and rays. Let’s call a point A ∈ Gr(G) the vertex of a piecewise linear

map G(x) if there is no segment [A1, A2] ⊆ Gr(G) for which A is an internal point.

Consider a special case of a problem with piecewise linear functions Si(pi), Di(pi), enexij (qij),

eexij (qij) (or, equivalently, with piecewise quadratic functions ci(vi), Ui(v
d
i ), Ev

{i,j}(∆Q{i,j})) and

estimate the complexity of the described algorithm for solving the auxiliary problem for this case.

It is of particular interest because any of the initial functions Si(pi), Di(pi), enexij (qij), eexij (qij) can
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be approximated with the necessary degree of accuracy by some piecewise linear function, which

enables approximate solution of the auxiliary problem (1.6) for arbitrary source functions.

Theorem 4. Let each of the initial functions Si(pi), Di(pi), enexij (qij), eexij (qij) be piecewise linear

for any i ∈ N , {i, j} ∈ L, and the number of vertices of each such function does not exceed some

predefined parameter. Then the complexity of the developed algorithm for solving the auxiliary

problem (1.6) is O(|N |2).

Proof. Let’s prove that the complexity of step 1 is O(|N |2). The complexity of operation Ñ =

Ñ \Nk does not exceed O(|Nk| · |N |), so the total complexity of all such operations does not exceed

O

(
h+1∑
k=1

|Nk| · |N |
)

= O(|N |2). It remains to be noted that any other operation of step 1 has a

complexity not exceeding O(|N |) and is applied no more than |N | times.

Let’s estimate the complexity of the second step. It is proved by induction that all functions of

the form ∆Si(pi), ∆Si(pi) and ∆Siσ(i)(pσ(i)) are also piecewise linear, like the original functions.

This follows from the fact that the operations of inversion, addition and subtraction introduced

in paragraph 1.3.1., do not derive from the class of piecewise linear functions. Any non-

decreasing piecewise linear function G(x) can be described by the trinity (Al, (A1, ..., Ak), A
r), where

(A1, ..., Ak) is an ascending set of points Al ∈ Gr(G) (for any Al = (xl, gl), Al+1 = (xl+1, gl+1)

the following is met: xl ≤ xl+1, gl ≤ gl+1) defining the segments [A1, A2] ⊆ Gr(G), ...,

[Ak−1, Ak] ⊆ Gr(G), and Al, Ar are the points defining the directions of the left [A1A
l) ⊆ Gr(G)

and the right [AkA
r) ⊆ Gr(G) rays. If Al = A1, then we assume that [A1A

l) = ∅, i.e. there is no

left ray. We assume the same for the right ray. These segments and rays form graph of the function

G(x): Gr(G) = [A1A
l)∪

k−1⋃
l=1

[Al, Al+1]∪ [AkA
r). Thus, the non-decreasing piecewise linear function

with k vertices can be described by k+2 points. Let’s denote by M the parameter from the condition

of the theorem, which limits the number of vertices from above for any of the original functions.

Therefore, any function of the form Si(pi), −Di(pi), enexij (qij), eexij (qij) is definitely determined by

M + 2 points, which, we assume, are fed to the algorithm.

Let’s show how for arbitrary non-decreasing piecewise linear functions G(x), G1(x),

G2(x), given by sets of points (Al, (A1, ..., Ak), A
r), (Al

1, (A11, ..., A1k1), A
r
1), (Al

2, (A21, ..., A2k2), A
r
2)

accordingly, the functions G−1 and G1+G2, are calculated, and we estimate the complexity of these

operations. To find the function G−1, replace each point A = (x, g) from set (Al, (A1, ..., Ak), A
r)

with point (g, x), while the complexity of such an operation is O(k), and the number of points in

the set of function G−1 coincides with the number of points in the set of function G.

To calculate the function G1 + G2 it is sufficient to make one traversal of sets

(Al
1, (A11, ..., A1k1), A

r
1) and (Al

2, (A21, ..., A2k2), A
r
2) from left to right, simultaneously processing



40

the points of both sets in ascending order of the abscissa x, thereby defining the vertices of the

function G1+G2 and forming its set. When processing some point A = (x, g) of a set for one of the

original functions, it is checked whether x belongs to the definition domain of the second original

function, after which, if this condition is met, the values m1 = min(G1(x)), m2 = min(G2(x)),

M1 = max(G1(x)), M2 = max(G2(x)) are found (because to find these values, it is enough to use

the last processed point of each set and the point closest to it A′ = (x′, g′), for which x′ > x, then

the complexity of such an operation is O(1)). Then (G1 + G2)(x) = [m1 +m2,M1 +M2], so two

points are added to the desired set (x,m1 +m2) and (x,M1 +M2), if m1 +m2 < M1 +M2, or one

point (x,m1 + m2), if m1 + m2 = M1 + M2. Also, when forming the desired set, it is necessary

to correctly determine the extreme points that set the directions of the rays, which also happens

during a single crawl. Thus, the complexity of the summation operation is O(k1 + k2), and the

number of points in the desired set, it can be noted, does not exceed k1+k2+6 or k′
1+k′

2+2, where

k′
l = kl + 2 is the number of points in the set of the original function Gl(x), l ∈ {1, 2}. Next, we

assume that the functions in the second step of the algorithm are calculated in the described way.

According to the above made conclusions, the number of points in the set of any function

∆Si(pi) = Si(pi)+(−Di(pi)) does not exceed 2M+6. Let’s denote by Λ(j) the set of nodes included

in the subtree with the root j ∈ N : Λ(j) = {i ∈ N | ∃ l ≥ 0 : σl(i) = j}, and through λ(j) = |Λ(j)|

the number of such nodes. Let zj, zij be the number of points in the sets of functions ∆Sj(pj) and

∆Sij(pj) respectively. We prove by induction that

zj ≤ λ(j)(3M + 14)− (M + 6), zij ≤ λ(i)(3M + 14)− 2. (1.20)

For an arbitrary final node j ∈ N1, the induction assumption is met, because in this case zj ≤

2M+6 < 2M+8 = λ(j)(3M+14)−(M+6). Let (1.20) be true for j ∈ N1∪...∪Nk−1. Consider an

arbitrary node j ∈ Nk. Taking into account (1.14, 1.15, 1.20) and the fact that when the function

is reversed, the number of points in the set does not change, the following estimates are true:

zij ≤ zi + (M + 2) + 2 = λ(i)(3M + 14)− (M + 6) + (M + 4) = λ(i)(3M + 14)− 2, i ∈ σ−1(j);

zj ≤ (2M + 6) +
∑

i∈σ−1(j)

(zij + 2) ≤ (2M + 6) +
∑

i∈σ−1(j)

λ(i)(3M + 14) =

= (2M + 6) + (3M + 14)
∑

i∈σ−1(j)

λ(i) = (2M + 6) + (3M + 14)(λ(j)− 1) =

= λ(j)(3M + 14)− (M + 8) < λ(j)(3M + 14)− (M + 6).
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Thus, the assumption of induction is proved for node j, which means that inequalities (1.20) are

fulfilled, therefore zj = O(λ(j) ·M), zij = O(λ(i) ·M).

The complexity of the second step of the algorithm is determined by the number of inversion

and summation operations in (1.14-1.16), as well as their complexity. The number of inversion

operations is 2|N | − 2, addition operations is 3|N | − 2 (taking into account the operations used

in calculating the functions ∆Sj(pj)). It follows from the proved estimates (1.20) that for any

of these operations, the number of points in the set of the resulting function does not exceed

|N |(3M + 14) − (M + 6), which means that the complexity of the second step does not exceed

(5|N | − 4) ·O(|N |(3M + 14)− (M + 6)) = O(|N |2).

The complexity of each of the O(|N |) operations of the third step does not exceed

O(log2(|N |)), so the complexity of this step is o(|N |2). ■

The proved quadratic estimation of the complexity of the developed algorithm for solving

the auxiliary problem (1.6) enables asserting its advantage over standard iterative methods13 of

convex optimization.

1.4. Complementary and competitive lines. The flow structure

invariance condition

Let’s return to the original problem (1.5), which reduces to the problem of finding the

optimal set of expanded lines (1.7). Let’s introduce some additional concepts that will be needed

when building an algorithm for solving this problem.

Definition 5. Line l is called complementary (respectively competitive) to line r ̸= l, if ∀ M ⊆

L \ {l, r} the inequality

W̃ ((M ∪ {l}) ∪ {r})− W̃ (M ∪ {l}) ≥ (≤) W̃ (M ∪ {r})− W̃ (M)

holds. It follows from the definition that the relations of complementarity and

competitiveness are symmetric, i.e. if the line l is complementary (competitive) to line r, then r is

complementary (competitive) to l. Let L+(l) and L−(l) be sets of complementary and competitive

lines to l respectively. The following statement is true (Vasin A. A., Grigorieva O. M., Tsyganov N.

13 We are talking about such approximate methods as gradient, Newtonian and quasi-Newtonian (Sukharev A.
G., Timokhov A. V., Fedorov V. В., 1985, [55]).
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I., 2017, [41]).

Theorem 5. For any line l ∈ L the difference W̃ (L+∪L−∪{l})− W̃ (L+∪L−) does not decrease

by the set L+ ⊆ L+(l) and does not increase by the set L− ⊆ L−(l).

Thus, if each pair of lines is in relations of complementarity or competitiveness, and these

relations are established, then this theorem enables excluding from consideration some obviously

suboptimal subsets of R ⊆ L when solving the problem (1.7).

Denote by Q⃗0 = (Q0
{i,j} | {i, j} ∈ L) the vector of initial transmission capacity. Consider

for an arbitrary vector Q⃗ = (Q{i,j} | {i, j} ∈ L), Q⃗ ≥ Q⃗0, the initial market with modified initial

transmission capacity equal to Q⃗, without the possibility of increasing transmission capacity. Let’s

denote by q̃(Q⃗) the set of all possible equilibrium flows
−→
q̃ corresponding to such a market. They

are determined from (1.12, 1.13) for Q⃗0 = Q⃗ and R = ∅. Similarly, we introduce a set of all possible

equilibrium prices p̃(Q⃗).

Definition 6. Let’s call the vector of directions vector d⃗ = (dij | {i, j} ∈ L), for which dij ∈

{−1, 1}, dij = −dji, {i, j} ∈ L. In this case, dij = 1 corresponds to the direction from node i to

node j, and dij = −1 - corresponds to the opposite direction.

Definition 7. The considered model of the market satisfies the flow structure invariance condition

(FSIC), if there is such a directions vector d⃗, that for any Q⃗ ≥ Q⃗0,
−→
q̃ ∈ q̃(Q⃗) the following

conditions are met:

sgn(q̃ij) ∈ {0, dij}, {i, j} ∈ L,

where

sgn(x) =


−1, x < 0,

0, x = 0,

1, x > 0.

Thus, when performing a FSIC, with any increase in the transmission capacity for all lines,

the directions of the equilibrium flows are preserved. Consider two arbitrary lines l and r, l ̸= r.

In graph G = (N,L) characterizing the transport structure of the market, there is a single simple

path starting with l and ending with r.

Definition 8. Line l = {l1, l2} is called initially complementary (respectively initially competitive)

for the line r = {r1, r2} if there are directions dl1l2 , dr1r2 ∈ {−1, 1} such that at initial transmission

capacities
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1) any equilibrium flows are consistent with these directions: ∀
−→
q̃ ∈ q̃(Q⃗0) the inclusions

sgn(q̃l1l2) ∈ {0, dl1l2}, sgn(q̃r1r2) ∈ {0, dr1r2} are met;

2) these directions are the same (respectively opposite) relative to the path connecting lines l

and r.

If the directions of equilibrium flows are known at initial transmission capacities, then all

initially complementary and initially competitive lines are easily determined for each line (figure

10).

initially competitive lines

initially complementary lines

Fig. 10. Initially complementary and initially competitive lines. The arrows indicate the directions
of equilibrium flows at initial transmission capacities

Denote by Q⃗∞ the vector of dimension |L|, all components of which are equal to plus infinity.

Let for each line l = {i, j} ∈ L the direction dij of the equilibrium flow at initial transmission

capacities be uniquely determined, and L0
+(l) and L0

−(l) are sets of initially complementary and

initially competitive lines to l respectively. Then the following criterion for the implementation of

FSIC is valid (Vasin A. A., Grigorieva O. M., Tsyganov N. I., 2017, [41]).

Theorem 6. The market satisfies the FSIC if and only if for any line l = {i, j} ∈ L and for any

equilibrium flows
−→
q̃ ∈ q̃

(
Q⃗0

L0
+(l)

+ Q⃗∞
L0
−(l)

)
the ratio sgn(q̃ij) ∈ {0, dij} is met, where Q⃗0

L0
+(l)

and

Q⃗∞
L0
−(l)

are the projections of vectors Q⃗0 and Q⃗∞ on the subspaces L0
+(l) and L0

−(l) respectively. If

this condition is met, L+(l) = L0
+(l), L−(l) = L0

−(l) for ∀ l ∈ L.

Theorem 6 enables establishing the relations of complementarity and competitiveness for

lines. It is worth noting that if for some line {i, j} the inequality et{i,j} > 0 is true, then ∀ Q⃗ ≥ Q⃗0,
−→
q̃ 1,

−→
q̃ 2 ∈ q̃(Q⃗) condition sgn(q̃ 1

ij) · sgn(q̃ 2
ij) ≥ 0 is true, i.e. two different equilibrium flows cannot

have opposite directions, which simplifies the application criteria. The definition of FSIC and

the invariance criterion are equivalent to those described in [41] (Vasin A. A., Grigorieva O. M.,

Tsyganov N. I., 2017).
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Let’s assume that for the market, the transport structure of which is shown in figure 11,

FSIC is implemented, and the directions of equilibrium flows are marked with arrows.

1

2

3
5

6

7 8

4

Fig. 11. An example of the transport structure of the market. The arrows indicate the directions
of equilibrium flows

Example 1. Let’s write out a sufficient condition under which the extension of line 1 is obviously

optimal. We can find the set of complementary and competitive lines using the figure:

• L+(1) = {3, 5, 6, 8} is a set of lines that are complementary to 1;

• L−(1) = {2, 4, 7} is a set of lines that are competitive to 1.

According to theorem 5, ∀ M ⊆ L \ {1} the inequality

W̃ (L−(1) ∪ {1})− W̃ (L−(1)) ≤ W̃ (M ∪ {1})− W̃ (M)

holds, which means that when

W̃ (L−(1) ∪ {1})− W̃ (L−(1)) ≥ 0 ⇔ W̃ ({2, 4, 7}) ≤ W̃ ({1, 2, 4, 7}) (1.21)

∀ M ⊆ L \ {1}, the inequality

W̃ (M) ≤ W̃ (M ∪ {1}),

is true, that is, the extension of line 1 is obviously optimal. In (1.21), the values of the social welfare

function are considered when expanding only lines competitive to line 1. If in such a «worst-case»

for this line, with its extension, the welfare does not decrease, then it will not decrease in any other

case. Similarly, a condition is written out in which, on the contrary, the absence of an extension

of line 1 is obviously optimal. It already expands the lines complementary to line 1 (the «best»

case), and compares the welfare values with the extension and absence of extension of line 1. This
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condition has the following form:

W̃ ({1, 3, 5, 6, 8}) ≤ W̃ ({3, 5, 6, 8}).

1.5. Special cases of the problem for which polynomial solving

algorithms exist

Although the original problem (1.5), as proved in paragraph 1.2., is NP-hard, there are

polynomial algorithms for solving it for some transport structures. Let’s name by «chain» a type

of market in which nodes are connected sequentially and numbered from 1 to n = |N | (figure 12):

N = {1, ..., n}, L = {{1, 2}, ..., {n− 1, n}}.

1 2 3 n

Fig. 12. Chain-type market

In the work of Vasin A. A. and Dolmatova M. S. [31] a chain-type market is considered,

in which the initial transmission capacity Q0
{i,i+1} is zero, and the initial equilibrium prices p̃i are

monotonous with respect to i for ∀
−→
p̃ ∈ p̃(Q⃗0). An algorithm for solving the problem for such a

market is described. It boils down to solving no more than n(n−1)
2

auxiliary problems (1.6).

In this section, the following two generalizations of the case considered in [31] are considered:

1) a chain-type market with zero initial transmission capacity;

2) a chain-type market with initial equilibrium prices monotonous with respect to i.

For each case, an algorithm of polynomial complexity is described for solving the problem of finding

the optimal set of expanded lines (1.7), which the original problem (1.5) reduces to. Complexity

refers to the number of auxiliary problems to be solved (1.6).

1.5.1. Chain-type market with zero initial transmission capacity

Let’s consider a chain-type market in which Q0
l = 0 for ∀ l ∈ L. Such a market has the

following feature: if some line {i, i+ i} ∈ L obviously does not expand, then the original market is

divided into two isolated sub-markets with nodes N1 = {1, ..., i− 1}, N2 = {i+ 1, ..., n} and lines
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L1 = {{1, 2}, ..., {i− 1, i}}, L2 = {{i+1, i+2}, ..., {n− 1, n}} respectively, therefore the problem

(1.7) for the initial market is reduced to solving two similar problems of smaller dimension for the

sub-markets, the maximum welfare for the source market is equal to the sum of the maximum

welfare for the sub-markets.

Denote by i1 ↔ i2 an isolated sub-market with sets of nodes {i1, ..., i2} and lines {{i1, i1 +

1}, ..., {i2 − 1, i2}}, 1 ≤ i1 ≤ i2 ≤ n. Let’s denote the following values for the sub-market i1 ↔ i2:

W ∗
i1↔i2

- maximum welfare, L∗
i1↔i2

- optimal set of expanded lines.

The algorithm for solving the problem (1.7) for such a market consists in calculating the

values W ∗
i1↔i2

, L∗
i1↔i2

numbered in ascending order i2 − i1: first, the sub-markets with one node

are considered, then with two, etc. As a result, the desired maximum welfare and the optimal set

of expandable lines for the initial market are equal, to W ∗
1↔n and L∗

1↔n respectively.

The algorithm consists of the following steps.

Step 1. For ∀ i ∈ N :

1) the value of W ∗
i↔i is calculated (the auxiliary problem (1.6) is solved for sub-market i ↔ i

with R = ∅);

2) assignment L∗
i↔i = ∅ is performed.

Step k, k=2, ..., n. For each sub-market i1 ↔ i2 such that i2 − i1 = k − 1:

1) the maximum welfare W i1↔i2 is calculated for sub-market i1 ↔ i2 with the expansion of

all its lines (the auxiliary problem (1.6) is solved for this sub-market with R = Li1↔i2 ≡

{{i1, i1 + 1}, ..., {i2 − 1, i2}});

2) for each node j ∈ [i1, i2−1] the maximum welfare W ∗
i1↔i2,j

and the optimal set of expandable

lines L∗
i1↔i2,j

for sub-market i1 ↔ i2 are calculated with an obvious non-expansion of the line

{j, j + 1}, in this case sub-market i1 ↔ i2 is divided into two isolated sub-markets i1 ↔ j

and j + 1 ↔ i2:

W ∗
i1↔i2,j

= W ∗
i1↔j +W ∗

j+1↔i2
, L∗

i1↔i2,j
= L∗

i1↔j ∪ L∗
j+1↔i2

;

3) for the obtained pairs

Ai1↔i2 =
{(

W i1↔i2 , Li1↔i2

)
,
(
W ∗

i1↔i2,i1
, L∗

i1↔i2,i1

)
, ...,

(
W ∗

i1↔i2,i2−1, L
∗
i1↔i2,i2−1

)}
the one for which welfare is maximized is chosen:

W ∗
i1↔i2

= max
(W,L′)∈Ai1↔i2

W, L∗
i1↔i2

∈
{
L′ ∣∣ (W ∗

i1↔i2
, L′) ∈ Ai1↔i2

}
.
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As a result, L∗ = L∗
1↔n is the optimal set of expanded lines for the entire market, and

W ∗ = W ∗
1↔n is maximum public welfare. The correctness of the algorithm follows from the fact

that when calculating the W ∗
i1↔i2

considered i2− i1+1 cases in paragraphs 1 and 2 of step k cover

all possible variants of sets of expandable lines.

Theorem 7. The complexity of this algorithm in terms of the number of auxiliary problems to be

solved (1.6) is equal to O (|N |2).

Proof. Indeed, the number of auxiliary problems (1.6) to be solved is the same as the number of

different sub-markets i1 ↔ i2, 1 ≤ i1 ≤ i2 ≤ n, and is equal to C2
n = n(n−1)

2
. ■

The complexity of the remaining operations14 of the algorithm is O (|N |4). The complexity

can be lowered to O (|N |3) if

1) the calculation of the set L∗
i1↔i2,j

in substep 2 of step k (k=2, ..., n) for fixed i1, i2, j is

eliminated;

2) saving the node j in substep 2 of step k (k=2, ..., n) is added as the second element of the

pair instead of L∗
i1↔i2,j

;

3) in substep 3 of step k (k=2, ..., n) after finding W ∗
i1↔i2

the calculation of the set L∗
i1↔i2

is

added using the saved node of the selected pair.

1.5.2. Chain-type market with monotonous initial equilibrium prices

Let’s consider a chain-type market in which the initial equilibrium prices p̃i are monotonic

with respect to i for ∀
−→
p̃ ∈ p̃(Q⃗0). According to the dissertation of Dolmatova M. S. [32], FSIC is

performed for it, and all equilibrium flows are unidirectional (figure 13) and go towards increasing

the equilibrium price, which means that any two lines l, r ∈ L, l ̸= r, are mutually complementary.

1 2 3 n

Fig. 13. A chain-type market with unidirectional flows

Without limiting generality, we assume that the equilibrium flows are directed from node 1

to node n. For a fixed set of expandable lines R ⊆ L, we call a line {i, i+ 1} ∈ L \R saturated if

any equilibrium flow q̃i,i+1 from node i to node i+1 coincides with the initial transmission capacity

14 Without taking into account the operations necessary to solve auxiliary problems.
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Q0
{i,i+1}, i.e. the restriction by the amount of the stream is active. Let’s denote by Lfull(R) the set

of all saturated lines. This market satisfies the following property: if l ∈ Lfull(R), then l ∈ Lfull(R′)

for any R′, R ⊆ R′ ⊆ L \ {l}. Thus, the saturation property is preserved when other lines are

expanded.

It follows from this property that if, for a certain set of obviously expanded lines R, the

obviously non-expanded line {i, i + 1} belongs to Lfull(R), then this line is obviously saturated,

which means that regardless of the specific set of expanded lines for any equilibrium flows
−→
q̃ the

condition q̃i,i+1 = Q0
{i,i+1} is met, therefore the initial market is divided into two pseudo-isolated

submarkets with nodes N1 = {1, ..., i−1}, N2 = {i+1, ..., n} and lines L1 = {{1, 2}, ..., {i−1, i}},

L2 = {{i+1, i+2}, ..., {n− 1, n}}, respectively, which enables reducing the problem (1.7) for the

initial market to solving two similar problems of smaller dimension for the sub-markets taking

into account the boundary condition qi,i+1 = Q0
{i,i+1}, while the maximum welfare for the initial

market is equal to the sum of the maximum welfare for the sub-markets minus transportation

costs for the boundary line Ei,i+1(Q
0
{i,i+1}).

For convenience, we introduce fictitious lines {0, 1}, {n, n + 1} with initial transmission

capacity Q0
{0,1} = Q0

{n,n+1} = 0, as well as fictitious streams q0,1 = qn,n+1 = 0. Let’s denote through

i1 → i2, 1 ≤ i1 ≤ i2 ≤ n, a pseudo-isolated sub-market with sets of nodes {i1, ..., i2} and inner

lines {{i1, i1+1}, ..., {i2−1, i2}}, for which boundary lines {i1−1, i1} and {i2, i2+1} are obviously

saturated with flows Q0
{i1−1,i1} and Q0

{i2,i2+1} respectively (figure 14).

i1 i2

Q{i -1,i }
0
1 1

Q{i ,i +1}
0
2 2

boundary lines

internal lines
Fig. 14. Pseudo-isolated sub-market i1 → i2

We denote the following values for the sub-market i1 → i2: W ∗
i1→i2

is maximum welfare

(excluding transport costs for boundary lines), L∗
i1→i2

is the optimal set of expandable internal

lines.

An algorithm for finding the optimal set of expandable lines (i.e. solving the problem (1.7))

for this market consists in the sequential calculation of values W ∗
i1→i2

, L∗
i1→i2

in ascending order

i2 − i1: first, the sub-markets with one node are considered, then with two, etc. As a result, the
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desired maximum welfare and the optimal set of expandable lines for the initial market are equal

to W ∗
1→n and L∗

1→n respectively.

Let’s denote for the sub-market i1 → i2 by Li1→i2 = {{i1, i1 + 1}, ..., {i2 − 1, i2}} the set

of internal lines, and through Lfull
i1→i2

(R) and W̃i1→i2(R) the set of all saturated internal lines and

maximum welfare, respectively, for a fixed set of expandable lines R ⊆ Li1→i2 . It is worth noting

that if the condition is satisfied for a certain set of obviously expanded lines R ⊆ Li1→i2 , condition

Lfull
i1→i2

(R) = ∅ is met, then R is the optimal set of expanded internal lines. This is obvious, because

in the absence of saturated lines, there is no need to expand.

The algorithm consists of the following steps.

Step 1. For ∀ i ∈ N :

1) the value W ∗
i→i is calculated (the auxiliary problem (1.6) is solved for the sub-market i → i

with R = ∅ and boundary conditions qi−1,i = Q0
{i−1,i}, qi,i+1 = Q0

{i,i+1});

2) assignment L∗
i→i = ∅ is performed.

Step k, k=2, ..., n. For each sub-market i1 → i2 such that i2 − i1 = k − 1:

1) assignments Ri1→i2 = ∅, Ai1→i2 = ∅ are performed (the variable Ri1→i2 defines a set of

obviously extensible inner lines, Ai1→i2 is a set of pairs of the form (W,L′), where W =

W̃i1→i2(L
′), L′ ⊆ Li1→i2);

2) the set of saturated lines Lfull
i1→i2

(Ri1→i2) and the social welfare W̃i1→i2(Ri1→i2) are calculated

(the auxiliary problem (1.6) is solved for sub-market i1 → i2 with R = Ri1→i2 and boundary

conditions qi1−1,i1 = Q0
{i1−1,i1}, qi2,i2+1 = Q0

{i2,i2+1});

3) if Lfull
i1→i2

(Ri1→i2) ̸= ∅, then the saturated line {j, j+1} ∈ Lfull
i1→i2

(Ri1→i2) is randomly selected,

after which two cases are considered sequentially:

3.1) the line {j, j + 1} does not expand: in this case, sub-market i1 → i2 is divided into

i1 → j and j+1 → i2, so a pair
(
W ∗

i1→j − Ej,j+1(Q
0
{j,j+1}) +W ∗

j+1→i2
, L∗

i1→j ∪ L∗
j+1→i2

)
is added to Ai1→i2 ;

3.2) the line {j, j + 1} is expanded: the line{j, j + 1} is added to the set Ri1→i2 ; a return to

substep 2 occurs;

if Lfull
i1→i2

(Ri1→i2) = ∅, then the pair
(
W̃i1→i2(Ri1→i2), Ri1→i2

)
is added to Ai1→i2 ;

4) for the found pairs Ai1→i2 the one for which the welfare is maximum is selected:

W ∗
i1→i2

= max
(W,L′)∈Ai1→i2

W, L∗
i1→i2

∈
{
L′ ∣∣ (W ∗

i1→i2
, L′) ∈ Ai1→i2

}
.

As a result, L∗ = L∗
1→n is the optimal set of expanded lines for the entire market, and W ∗ =

W ∗
1→n is maximum public welfare. The correctness of the algorithm follows from the properties of
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this type of market described above.

Theorem 8. The complexity of this algorithm in terms of the number of auxiliary problems to be

solved (1.6) is equal to O (|N |3).

Proof. Indeed, the number of sub-markets considered i1 → i2, 1 ≤ i1 ≤ i2 ≤ n, is equal to

C2
n = n(n−1)

2
, and for each sub-market i1 → i2, no more than i2 − i1 + 1 ≤ |N | auxiliary problems

are solved (1.6). ■

The complexity of the remaining operations15 of the algorithm is O (|N |4).

1.6. Solving the problem when the flow structure invariance condition

is met

In this section, we consider the markets for which FSIC is met, i.e. the directions

of equilibrium flows are preserved. In such markets, any pair of lines is in a relationship

of complementarity or competitiveness, which can be established based on known directions.

Consideration of this case requires special attention, since in practice, flows often have known

directions for existing and potential lines and go from producing nodes (for example, gas or oil

fields) to consuming ones (industrial centers, cities, etc.).

Algorithms for solving the problem of finding the optimal set of expandable lines (1.7) are

described below for various transport structures. The idea of all the presented algorithms is based

on the application of theorem 5. These algorithms are not polynomial, therefore, to assess their

effectiveness, an indicator such as the average statistical complexity is used - the average number

of solved auxiliary tasks (1.6) for a set of randomly generated initial tasks. We assume that for

each line l ∈ L, the direction of the equilibrium flow and the set of complementary L+(l) and

competitive L−(l) lines are known.

1.6.1. Chain-type market

Let’s consider a chain-type market with sets of nodes N = {1, ..., n} and lines L =

{{1, 2}, ..., {n − 1, n}}. We divide the set of lines into two subsets: L1 with flow directions from
15 Without taking into account the operations necessary to solve auxiliary problems.
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node 1 and L2 with flow directions to node 1 (figure 15). In this case, two arbitrary lines are

mutually complementary if they belong to the same subset, and mutually competitive otherwise.

1 2 3 4 5 6

L1

L2

Fig. 15. An example of a chain-type market with L1 = {{1, 2}, {2, 3}, {4, 5}}, L2 = {{3, 4}, {5, 6}}

Let’s proceed to the construction of an algorithm for finding the optimal set of expanded

lines L∗. For any R ⊆ L, we denote L1(R) = L1 ∩ R, L2(R) = L2 ∩ R. Then the desired set L∗ is

represented as a union of sets L∗
1 = L1(L

∗) and L∗
2 = L2(L

∗). The algorithm works with lower Lmin
1

and upper Lmax
1 estimates of the set L∗

1, as well as the lower Lmin
2 and the upper Lmax

2 estimates

of the set L∗
2 and is based on the sequential application of the steps of two types. In the first type

of steps, attempts are made to expand the set Lmin
1 and narrow the set Lmax

2 . In the second type

of steps, attempts are made to narrow the set Lmax
1 and expand the set Lmin

2 . Let’s call a line

included , if it belongs to one of the current lower estimates, and excluded , if it does not belong to

any of the current upper estimates. Let’s call a line defined , if it is included or excluded. If for the

current estimates for a step of the first type, the number of lines defined on it is no more than for

a step of the second type, then a step of the first type is performed. Otherwise, the second type

of step is performed. As a result, the optimal set L∗ is searched for in the form of L∗
1 ∪ L∗

2, where

Lmin
1 ⊆ L∗

1 ⊆ Lmax
1 , Lmin

2 ⊆ L∗
2 ⊆ Lmax

2 .

The validity of the following statement follows from theorem 5.

Theorem 9. Let Lmin
1 and Lmax

1 be the current lower and upper bounds of the set L∗
1, and Lmin

2 and

Lmax
2 - the current lower and upper estimates of the set L∗

2. Let S1 ⊆ Lmax
1 \Lmin

1 , S2 ⊆ Lmax
2 \Lmin

2 ,

S = S1 ∪ S2.

1) If the inequality

W̃
(
(Lmin

1 ∪ S1) ∪ (Lmax
2 \ S2)

)
≥ W̃

(
Lmin
1 ∪ Lmax

2

)
is met and for each nonempty set R ⊂ S

W̃
(
(Lmin

1 ∪ L1(R)) ∪ (Lmax
2 \ L2(R))

)
< W̃

(
Lmin
1 ∪ Lmax

2

)
,
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then the set S1 can be added to the lower estimate Lmin
1 , and the set S2 can be subtracted

from the upper estimate Lmax
2 : Lmin

1,r = Lmin
1 ∪ S1, Lmax

2,r = Lmax
2 \ S2, where Lmin

1,r , Lmax
2,r are

adjusted estimates.

2) If the inequality

W̃
(
(Lmax

1 \ S1) ∪ (Lmin
2 ∪ S2)

)
≥ W̃

(
Lmax
1 ∪ Lmin

2

)
is met and for each nonempty set R ⊂ S

W̃
(
(Lmax

1 \ L1(R)) ∪ (Lmin
2 ∪ L2(R))

)
< W̃

(
Lmax
1 ∪ Lmin

2

)
,

then the set S1 can be subtracted from the upper estimate Lmax
1 , and the set S2 can be added

to the lower estimate Lmin
2 : Lmax

1,r = Lmax
1 \S1, Lmin

2,r = Lmin
2 ∪S2, where Lmax

1,r , Lmin
2,r are adjusted

estimates.

Proof. Let’s prove point 1. Point 2 is proved similarly. Let the specified inequalities be satisfied.

It is enough to show that for any S ′
1 ⊆ Lmax

1 \ Lmin
1 , S ′

2 ⊆ Lmax
2 \ Lmin

2 the following ratio is true:

W̃
(
((Lmin

1 ∪ S ′
1) ∪ S1) ∪ ((Lmax

2 \ S ′
2) \ S2)

)
≥ W̃

(
(Lmin

1 ∪ S ′
1) ∪ (Lmax

2 \ S ′
2)
)
. (1.22)

Let’s denote S ′′
1 = S ′

1 \S1, S ′′
2 = S ′

2 \S2. Let’s number the elements of the following sets: S1 \S ′
1 =

{l11, ..., l
m1
1 }, S2 \ S ′

2 = {l12, ..., l
m2
2 }. Let’s consider the difference of the expressions from (1.22):

W̃
(
((Lmin

1 ∪ S ′
1) ∪ S1) ∪ ((Lmax

2 \ S ′
2) \ S2)

)
− W̃

(
(Lmin

1 ∪ S ′
1) ∪ (Lmax

2 \ S ′
2)
)
=

= W̃
(
((Lmin

1 ∪ S1) ∪ S ′′
1 ) ∪ ((Lmax

2 \ S2) \ S ′′
2 )
)
−

− W̃
(
((Lmin

1 ∪ (S1 ∩ S ′
1)) ∪ S ′′

1 ) ∪ ((Lmax
2 \ (S2 ∩ S ′

2)) \ S ′′
2 )
)
=

= W̃
(
((Lmin

1 ∪ S1) ∪ S ′′
1 ) ∪ ((Lmax

2 \ S2) \ S ′′
2 )
)
±

±
m1∑
k=1

W̃
(
((Lmin

1 ∪ (S1 \ {l11, ..., lk1})) ∪ S ′′
1 ) ∪ ((Lmax

2 \ S2) \ S ′′
2 )
)
±

±
m2−1∑
k=1

W̃
(
((Lmin

1 ∪ (S1 ∩ S ′
1)) ∪ S ′′

1 ) ∪ ((Lmax
2 \ (S2 \ {l12, ..., lk2})) \ S ′′

2 )
)
±

− W̃
(
((Lmin

1 ∪ (S1 ∩ S ′
1)) ∪ S ′′

1 ) ∪ ((Lmax
2 \ (S2 ∩ S ′

2)) \ S ′′
2 )
)
.

By rearranging the terms in the last expression, applying the theorem 5 m1+m2 times and making

reductions, it can be proved that the last expression is not less than

W̃
(
(Lmin

1 ∪ S1) ∪ (Lmax
2 \ S2)

)
− W̃

(
(Lmin

1 ∪ (S1 ∩ S ′
1)) ∪ (Lmax

2 \ (S2 ∩ S ′
2))
)
≥ 0,
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from which validity of (1.22) follows. The last transition takes into account the inclusions S1∩S ′
1 ⊆

S1, S2 ∩ S ′
2 ⊆ S2 and the initial inequalities. ■

1.6.1.1. Algorithm

Let’s describe an algorithm for finding the optimal set of expanded lines. It uses the

following variables: Lmin
1 , Lmax

1 , Lmin
2 , Lmax

2 - the current lower and upper estimates for sets L∗
1 and

L∗
2; k1 and k2 - the number of defined lines for the steps of the first and second type respectively;

L is the set of lines not yet defined; T ∈ {1, 2} is the type of the current step; s is the step number.

1) Assignments are performed: L = L, Lmin
1 = Lmin

2 = ∅, Lmax
1 = L1, Lmax

2 = L2, k1 = k2 = 1,

s = 1.

2) Assignment is performed: T =

 1, k1 ≤ k2,

2, k1 > k2.

3) If s = n− 1, then the optimal set is chosen according to

L∗ ∈ Arg max
R∈{Lmin

1 ∪Lmax
2 ,Lmax

1 ∪Lmin
2 }

W̃ (R),

after that the algorithm shuts down.

4) If T = 1, then:

4.1) all sets S for which S ⊆ L, |S| = k1, are considered sequentially; for each such set, the

inequality

W̃
(
(Lmin

1 ∪ L1(S)) ∪ (Lmax
2 \ L2(S))

)
≥ W̃

(
Lmin
1 ∪ Lmax

2

)
is checked, if successful, the following assignments are performed without considering

the remaining sets: Lmin
1 = Lmin

1 ∪ L1(S), Lmax
2 = Lmax

2 \ L2(S), L = L \ S, k1 = 1,

s = s+ 1, then a return to step 2 occurs;

4.2) assignments k1 = k1+1, s = s+1 are performed, after which a return to point 2 occurs.

If T = 2, then:

4.1) all sets S, for which S ⊆ L, |S| = k2, are considered sequentially; for each such set, the

inequality

W̃
(
(Lmax

1 \ L1(S)) ∪ (Lmin
2 ∪ L2(S))

)
≥ W̃

(
Lmax
1 ∪ Lmin

2

)
is checked, if successful, the following assignments are performed without considering

the remaining sets: Lmax
1 = Lmax

1 \ L1(S), Lmin
2 = Lmin

2 ∪ L2(S), L = L \ S, k2 = 1,
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s = s+ 1, then a return to step 2 occurs;

4.2) assignments k2 = k2+1, s = s+1 are performed, after which a return to point 2 occurs.

Note that if for the set S the inequality W̃
(
(Lmin

1 ∪ L1(S)) ∪ (Lmax
2 \ L2(S))

)
≥

W̃
(
Lmin
1 ∪ Lmax

2

)
holds, then, according to theorem 9, the set L1(S) can be added to the lower

estimate Lmin
1 , and the set L2(S) can be subtracted from the upper estimate Lmax

2 . Indeed, every

nonempty set R ⊂ S has already been considered in the previous steps and satisfies the inequality

W̃
(
(Lmin

1 ∪ L1(R)) ∪ (Lmax
2 \ L2(R))

)
< W̃

(
Lmin
1 ∪ Lmax

2

)
(otherwise, the set L1(R) would have

already been added to the lower estimate Lmin
1 , and the set L2(R) would have already been

subtracted from the upper estimate Lmax
2 ). For the second type of steps, similar reasoning is true.

This implies the correctness of the algorithm.

1.6.1.2. Estimation of the average complexity of the algorithm

The described algorithm enables significantly reducing the number of auxiliary problems

(1.6) to be solved when solving the problem (1.7). To assess the dependence of the number

of auxiliary problems to be solved on the number of nodes n a computational experiment was

conducted, during which a set of initial problems was randomly generated for a different number

of nodes, after which each problem was solved by the developed algorithm.

Let’s describe the market model used in the experiment. Nodes are characterized by

piecewise linear supply and demand functions of the following types:

Si(pi) =


1

2
ci · pi, pi ≤ 2

dfi
ci
,

−dfi + ci · pi, pi > 2
dfi
ci
,

Di(pi) =


dfi −

1

2
ci · pi, pi ≤ 2

dfi
ci
,

0, pi > 2
dfi
ci
.

(1.23)

These functions correspond to the linear functions of net supply ∆Si(pi) ≡ Si(pi) − Di(pi) =

−dfi +ci ·pi, i ∈ N . For each line l ∈ L, the function of variable costs for increasing the transmission

capacity is quadratic and is characterized by the parameter eql :

Ev
l (∆Ql) = eql ·∆Q2

l . (1.24)

Let’s denote by p0i the equilibrium price in node i ∈ N in the case of its isolation (with zero

transmission capacity), and by ∆p0i the difference between the equilibrium prices for isolated

nodes i and i + 1: ∆p0i = p0i+1 − p0i , {i, i + 1} ∈ L. Let p0min = min
i∈N

p0i . Then the initial market is
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uniquely determined by the following parameters: n, p0min, d
f
i (i ∈ N), ∆p0i (i ∈ {1, ..., n− 1}), Q0

l ,

etl , e
q
l , E

f
l (l ∈ L). In this case, the equilibrium prices p0i , i ∈ N , are found from the system


p0i+1 − p0i = ∆p0i , {i, i+ 1} ∈ L,

min
i∈N

p0i = p0min,

and ci =
dfi
p0i

, i ∈ N (we assume that p0min > 0, dfi > 0 ∀ i ∈ N).

Throughout the conducted experiment, the parameters p0min, dfi , |∆p0i |, etl , eql , Ef
l ,

characterizing the problem were randomly generated in accordance with a uniform distribution

(table 1), the initial transmission capacities Q0
l was taken to be 0, and for any line {i, i+1} ∈ L the

sign of ∆p0i+1 coincided with the sign of ∆p0i with a probability of 0.9, at the same time ∆p01 > 0.

Table 1. Parameters of probability distributions of quantities p0min, d
f
i , |∆p0i |, etl , e

q
l , E

f
l for a chain-

type market

Model parameter Minimum value Maximum value
p0min 0 (not including 0) 10

dfi 10 20

|∆p0i | 0 (not including 0) 10

etl 0 4

eql 0 4

Ef
l 0 4

In order for the market to satisfy the FSIC, for each line {i, i+1} ∈ L the modified functions

of marginal transport costs enex,mi,i+1 (qi,i+1) and eex,mi,i+1(qi,i+1) were used. If sgn(∆p0i ) > 0, then

enex,mi,i+1 (qi,i+1) =


(
−∞,max

(
enexi,i+1(0)

)]
, qi,i+1 = 0,

enexi,i+1(qi,i+1), qi,i+1 > 0;

(1.25)

eex,mi,i+1(qi,i+1) =


(
−∞,max

(
eexi,i+1(0)

)]
, qi,i+1 = 0,

eexi,i+1(qi,i+1), qi,i+1 > 0.

(1.26)

If sgn(∆p0i ) < 0, then

enex,mi,i+1 (qi,i+1) =

 enexi,i+1(qi,i+1), qi,i+1 < 0,[
min

(
enexi,i+1(0)

)
,+∞

)
, qi,i+1 = 0;

(1.27)



56

eex,mi,i+1(qi,i+1) =

 eexi,i+1(qi,i+1), qi,i+1 < 0,[
min

(
eexi,i+1(0)

)
,+∞

)
, qi,i+1 = 0.

(1.28)

The modified functions (1.25-1.28) have limited definition areas, preventing the flow from going

in the wrong direction. It is worth noting that this modification does not in any way violate the

validity of the previously obtained results and the correctness of the developed algorithms.

The number of nodes n varied from 1 to 65. For each n 1 000 problems were generated, each

of which was solved by the described algorithm. Figure 16 shows the obtained dependence of the

number of auxiliary problems (1.6) to be solved on the number of nodes n.

number of nodes

number of solved auxiliary problems

Fig. 16. The results of a numerical experiment for a chain-type market. Each point corresponds
to a solved problem

Let’s denote the average number of auxiliary problems solved by yav. The resulting

dependence of yav on n is shown in 17. The following approximation of the average number

of solved auxiliary problems is obtained by the least squares method: yav(n) = 0.251n2 + 1.771

(figure 18). The corresponding coefficient of determination R2 is 0.6357.
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number of nodes

average number of solved auxiliary 
problems

maximum number of solved auxiliary 
problems

Fig. 17. Average (bottom) and maximum (top) numbers of solved auxiliary problems for the chain-
type market
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number of nodes

average number of solved auxiliary problems

obtained values

approximation

Fig. 18. Approximation of the average number of solved auxiliary problems for a chain-type market

Thus, for the conducted computational experiment, the average number of solved auxiliary

problems (1.6) is well approximated by a quadratic function depending on the number of nodes.

This suggests that the initial task (1.5) for this type of market can be solved in a reasonable time,

although, as previously proved, it is NP-hard in the general case.

1.6.2. Star-type market

Let’s consider a market of the «star» type, which consists of a central node 0 and a set of

nodes adjacent to it. We divide the set of lines L into subsets L1 with directions to the central

node and L2 with directions from the central node (figure 19). In this case, two arbitrary lines are

mutually complementary if they belong to different subsets, and mutually competitive otherwise.

Let’s denote by N1 = {i ∈ N | {i, 0} ∈ L1} the set of producing nodes, and through N2 = {i ∈

N | {0, i} ∈ L2} - the set of consuming nodes.
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0

L1

L2

Fig. 19. An example of a star-type market

Let’s proceed to the construction of an algorithm for finding the optimal set of expanded

lines L∗. The algorithm works with lower Lmin and upper Lmax estimates of the set L∗. Just as

for the chain-type market, attempts are being made to expand the lower and narrow the upper

estimates. Let’s call a line included , if it belongs to the current lower estimate, and excluded ,

if it does not belong to the current upper estimate. Let’s call a line defined , if it is included or

excluded. As a result, the optimal set L∗ satisfies the condition Lmin ⊆ L∗ ⊆ Lmax.

Theorem 10. Let Lmin and Lmax be the current lower and upper estimates, and l ∈ Lmax \ Lmin

be some line that has not yet been defined.

1) If the inequality

W̃
(
Lmin ∪ (L−(l) ∩ Lmax) ∪ {l}

)
≥ W̃

(
Lmin ∪ (L−(l) ∩ Lmax)

)
(1.29)

is met, then a line l can be added to the lower estimate Lmin: Lmin
r = Lmin ∪ {l}, where Lmin

r

is the adjusted lower estimate.

2) If the inequality

W̃
(
Lmin ∪ (L+(l) ∩ Lmax)

)
≥ W̃

(
Lmin ∪ (L+(l) ∩ Lmax) ∪ {l}

)
(1.30)

is met, then a line l can be excluded from the upper estimate Lmax: Lmax
r = Lmax

1 \ {l}, where

Lmax
r is the adjusted upper estimate.
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Proof. Let’s prove point 1. Point 2 is proved similarly. Let the specified inequality holds. It is

enough to show that for any S ⊆ Lmax \ Lmin the relation

W̃
(
Lmin ∪ S ∪ {l}

)
≥ W̃

(
Lmin ∪ S

)
(1.31)

is true. If l ∈ S, then (1.31) obviously holds. Let l /∈ S. Let’s split the set S into subsets S+ =

L+(l) ∩ S and S− = L−(l) ∩ S, then S = S1 ∪ S2. Let’s consider the difference of the expressions

from (1.31):

W̃
(
Lmin ∪ S ∪ {l}

)
− W̃

(
Lmin ∪ S

)
= W̃

(
Lmin ∪ S− ∪ S+ ∪ {l}

)
− W̃

(
Lmin ∪ S− ∪ S+

)
≥

≥ W̃
(
Lmin ∪ (L−(l) ∩ Lmax) ∪ {l}

)
− W̃

(
Lmin ∪ (L−(l) ∩ Lmax)

)
≥ 0.

The inclusions S+ ⊆ L+(l), S− ⊆ L−(l), S− ⊆ Lmax, theorem 5 and the initial inequality were

used here. ■

Definition 9. Let Lmin and Lmax be the current lower and upper estimates, and (l, r) be some

pair of not yet defined lines: l, r ∈ Lmax \ Lmin, l ̸= r.

Let’s define by l ⇒ r the implication «if l is contained in the optimal set L∗, then r is also

contained in L∗», and through \l ⇒ \r - the implication «if l is not contained in the optimal set

L∗, then r is also not contained in L∗». Two more implications, l ⇒ \r and \l ⇒ r, are defined

similarly.

The validity of the implications is established by the following theorem.

Theorem 11. Let Lmin and Lmax be the current lower and upper estimates. For any pair of lines

not yet defined (l, r), l, r ∈ Lmax \ Lmin, l ̸= r,

1) the implication l ⇒ r is met if

W̃
(
Lmin ∪ (L−(r) ∩ Lmax) ∪ {l, r}

)
> W̃

(
Lmin ∪ (L−(r) ∩ Lmax) ∪ {l}

)
; (1.32)

2) the implication \l ⇒ \r is met if

W̃
(
Lmin ∪ (L+(r) ∩ Lmax \ {l})

)
> W̃

(
Lmin ∪ (L+(r) ∩ Lmax \ {l}) ∪ {r}

)
; (1.33)

3) the implication l ⇒ \r is met if

W̃
(
Lmin ∪ (L+(r) ∩ Lmax ∪ {l})

)
> W̃

(
Lmin ∪ (L+(r) ∩ Lmax ∪ {l, r})

)
; (1.34)



61

4) the implication \l ⇒ r is met if

W̃
(
Lmin ∪ (L−(r) ∩ Lmax \ {l}) ∪ {r}

)
> W̃

(
Lmin ∪ (L−(r) ∩ Lmax \ {l})

)
. (1.35)

The proof of this statement is based on the application of theorem 5 and is similar to the

proof of theorem 10.

1.6.2.1. Algorithm

Let’s describe an algorithm for finding the optimal set of expanded lines. It uses the

following variables: Lmin, Lmax - the current lower and upper estimates of the optimal set L∗; L -

the set of lines not yet defined.

Step A. Initialization of variables. Assignments are performed: Lmin = ∅, Lmax = L,

L = L.

Step B1. Inclusion and exclusion of undefined lines. Inequalities (1.29), (1.30) are

checked for each undefined line l ∈ L. If one of them holds:

1) the current estimates Lmin, Lmax are adjusted according to theorem 10 (if both inequalities

are satisfied, then the adjustment is carried out according to one of two possible options);

2) the assignment L = L \ {l} is performed;

3) this step is repeated from the beginning.

Step B2. Checking for completion. If Lmin = Lmax, then the optimal set is Lmin, the

algorithm terminates.

Step C. Construction of a set of implications.

1) For the current estimates Lmin, Lmax the set of valid implications I is calculated according to

theorem 11, for which, for each pair of undefined lines (l, r) ∈ L×L, l ̸= r, the implications

l ⇒ r, \l ⇒ \r (if l and r are mutually complementary) or l ⇒ \r, \l ⇒ r (if l and r are

mutually competitive) are checked. At the same time, in addition to the fair implications

themselves, equivalent implications are added to the set I. For example, for l ⇒ r such

implication is \r ⇒ \l.

2) The set I is calculated, where I is the transitive closure of the set I, which additionally

includes all the implications following from I. For example, if I = {1 ⇒ 3, \3 ⇒ \1, 3 ⇒

\5, 5 ⇒ \3}, then I = I ∪ {1 ⇒ \5, 5 ⇒ \1}.

It is worth noting that for the pair (l, r) it makes no sense to check inequalities (1.32, 1.33),
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if l and r are mutually competitive, and (1.34, 1.35), if l and r are mutually complementary, since

they obviously do not hold (otherwise the line r would have already been defined at step B1).

Step D. Splitting a task into two subtasks.

1) For each undefined line l ∈ L the following values are calculated sequentially:

1.1) F in
in (l) and F ex

in (l) are sets of obviously expanded and obviously non-expanded lines

when line l is extended:

F in
in (l) =

{
r ∈ L

∣∣ (l ⇒ r) ∈ I
}
∪ {l}, F ex

in (l) =
{
r ∈ L

∣∣ (l ⇒ \r) ∈ I
}
;

at the same time, if F in
in (l)∩F ex

in (l) ̸= ∅, then a contradiction is obtained, i.e. the absence

of an extension of the line l is obviously optimal;

1.2) F in
ex (l) и F ex

ex (l) - sets of obviously expanded and obviously non-expanded lines in the

absence of an extension of line l:

F in
ex (l) = {r ∈ L | (\l ⇒ r) ∈ I}, F ex

ex (l) = {r ∈ L | (\l ⇒ \r) ∈ I} ∪ {l};

at the same time, if F in
ex (l) ∩ F ex

ex (l) ̸= ∅, then a contradiction is obtained, i.e. the

extension of line l is obviously optimal;

1.3) Fin(l) = F in
in (l) ∪ F ex

in (l), Fex(l) = F in
ex (l) ∪ F ex

ex (l) - sets of obviously defined lines with

and without extension of line l;

1.4) cin(l) and cex(l) are bulkhead complexities for modified tasks with and without

extension of line l:

cin(l) =

 2|L\Fin(l)|, F in
in (l) ∩ F ex

in (l) = ∅,

0, F in
in (l) ∩ F ex

in (l) ̸= ∅,

cex(l) =

 2|L\Fex(l)|, F in
ex (l) ∩ F ex

ex (l) = ∅,

0, F in
ex (l) ∩ F ex

ex (l) ̸= ∅.

2) The undefined line l∗, for which the total complexity of the two modified problems with

extension and lack thereof for this line is minimal, is calculated:

l∗ ∈ Arg min
l∈L

(cin(l) + cex(l)) .

3) The following two cases are considered:
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3.1) line l∗ is extended, in this case the set F in
in (l

∗) is added to the current lower estimate,

and the set F ex
in (l

∗) is subtracted from the current upper estimate:

Lmin = Lmin ∪ F in
in (l

∗), Lmax = Lmax \ F ex
in (l

∗), L = L \ Fin(l
∗),

then, for the adjusted estimates, the algorithm is run starting from step B1; let L∗
in be

the optimal set found;

3.2) line l∗ is not extended, in this case the set F in
ex (l

∗) is added to the current lower estimate,

and the set F ex
ex (l

∗) is subtracted from the current upper estimate:

Lmin = Lmin ∪ F in
ex (l

∗), Lmax = Lmax \ F ex
ex (l

∗), L = L \ Fex(l
∗),

then, for the adjusted estimates, the algorithm is run starting from step B1; let L∗
ex be

the optimal set found.

4) The optimal set of expanded lines is selected according to

L∗ ∈ Arg max
R∈{L∗

in,L
∗
ex}

W̃ (R).

Substeps 3 and 4 of step D are performed as described if F in
in (l

∗)∩F ex
in (l

∗) = ∅ and F in
ex (l

∗)∩

F ex
ex (l

∗) = ∅. If one of these ratios is incorrect, then the corresponding case cannot be optimal and

should not be considered, which means that the optimal set of expandable lines coincides with the

found optimal set for the only case considered.

The correctness of the algorithm follows from theorems 10-11. The benefit of using multiple

implications and splitting the task into two subtasks using the selected line l∗, rather than just

an arbitrary line, is especially evident in the case of the presence of a small number of large

producing or consuming nodes on the market, since the inclusion/exclusion of incident lines is

more likely to define some lines, as opposed to inclusion/exclusion of other lines. In general, the

point of constructing implications is the ability to look «one step ahead» in order to choose the

best line for dividing into subproblems at the cost of solving O(|L|2) auxiliary problems. However,

it is also possible that none of the implications will be met. Therefore, to improve the quality of

the algorithm, it makes sense to initially sort the lines in descending order of their «significance»

in an expert way and, in the case of an ambiguous choice, use a line with the larger value of this

parameter for splitting.
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1.6.2.2. Estimation of the average complexity of the algorithm

To estimate the average statistical complexity of the described algorithm, a computational

experiment was conducted, similar to the experiment for the chain-type market, with piecewise

linear functions of supply and demand (1.23) and quadratic functions of variable costs for

increasing transmission capacity (1.24).

Let’s denote by p0i the equilibrium price in node i ∈ N in the case of its isolation (with

zero transmission capacity), and by ∆p0i the difference between the equilibrium prices for isolated

nodes 0 and i: ∆p0i = p00 − p0i , i ∈ N \ {0}. Let p0min = min
i∈N

p0i . Then the initial market is uniquely

determined by the following parameters: N1, N2, p0min, d
f
i (i ∈ N), ∆p0i , Q0

{i,0}, e
t
{i,0}, e

q
{i,0}, E

f
{i,0}

(i ∈ N \ {0}). In this case, the equilibrium prices p0i , i ∈ N , are found from the system


p00 − p0i = ∆p0i , i ∈ N \ {0},

min
i∈N

p0i = p0min,

and ci =
dfi
p0i

, i ∈ N (we assume that p0min > 0, dfi > 0 ∀ i ∈ N).

During the experiment, the parameters p0min, dfi , |∆p0i |, etl , eql , Ef
l characterizing the

problem were randomly generated in accordance with uniform distributions (table 2), the initial

transmission capacity Q0
{i,0} was taken to be 0, and for any i ∈ N \ {0}

∆p0i =

 |∆p0i |, i ∈ N1,

−|∆p0i |, i ∈ N2.

Table 2. Parameters of probability distributions of quantities p0min, d
f
i , |∆p0i |, etl , e

q
l , E

f
l for the

star-type market

Model parameter Minimum value Maximum value
p0min 0 (not including 0) 10

dfi 10 20

|∆p0i | 0 10

etl 0 4

eql 0 4

Ef
l 0 4
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In order for the market to satisfy the FSIC, for each line {i, 0} ∈ L the modified functions of

marginal transport costs enex,mi0 (qi0) and eex,mi0 (qi0) were used: for i ∈ N1 the type of modification

is similar to (1.25, 1.26), and for i ∈ N2 it is similar to (1.27, 1.28).

The number of nodes |N | varied from 3 to 51, and the number of producing nodes coincided

with the number of consuming ones. For each number of nodes 100 tasks were generated, which

were solved by the described algorithm. Figure 20 shows the dependence of the number of auxiliary

problems (1.6) to be solved on the number of nodes |N |.

number of solved auxiliary problems

number of nodes

Fig. 20. Results of a numerical experiment for a star-type market. Each point corresponds to a
solved problem

Let’s denote the average number of auxiliary problems solved by yav. The resulting

dependence of yav on |N | is shown in figure 21. The following approximation of the average

number of solved auxiliary problems was obtained by the least squares method: yav(|N |) =

0.842 |N |2 − 14.776 |N |+54.187 (figure 22). The corresponding coefficient of determination R2 is

0.496.
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number of nodes

maximum number of solved auxiliary 
problems

average number of solved auxiliary 
problems

Fig. 21. Average (bottom) and maximum (top) numbers of solved auxiliary problems for the star-
type market

average number of solved auxiliary problems

number of nodes

approximation

obtained 
values

Fig. 22. Approximation of the average number of solved auxiliary problems for a star-type market

Thus, the average number of solved auxiliary problems (1.6) is no longer as well

approximated by a quadratic function as for the chain-type market, which can be explained by a

smaller number of generated problems (100 problems for each number of nodes instead of 1 000).

However, it can be seen from the figures that the initial problem (1.5) for this type of market can
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also be solved in a reasonable time.

1.6.3. Star-chain-type market

Now let’s consider the star-chain-type market, which is a generalization of the markets from

paragraphs 1.6.1. and 1.6.2. (figure 23). This market is obtained from the star-type market by

joining a chain-type market to the central node 0. Let’s break down the set of lines L into subsets

Ls =
{
{0, i} ∈ L

∣∣ deg(i) = 1
}

of the lines of the «star» part and Lc = L \Ls lines of the «chain»

part. Here deg(i) is the degree16 of node i.

0

L1

L3 L4

L2

Fig. 23. An example of a star-chain-type market

Let’s divide the lines of the «star» part into subsets L1 with directions to the central node

(exporting) and L2 with directions from the central node (importing). The lines of the «chain»

16 The degree of a node is the number of incident lines.
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part, in turn, we divide into subsets L3 with directions from the central node and L4 with directions

to the central node. The ratio of two arbitrary lines l and r, l ̸= r, is determined according to

table 3.

Table 3. The ratio of two arbitrary lines l and r for the star-chain-type market, l ̸= r

r ∈ L1 r ∈ L2 r ∈ L3 r ∈ L4

l ∈ L1 competitive complementary complementary competitive
l ∈ L2 complementary competitive competitive complementary
l ∈ L3 complementary competitive complementary competitive
l ∈ L4 competitive complementary competitive complementary

The algorithm for finding the optimal set of expanded lines L∗ works with the lower Lmin

and upper Lmax estimates of the set L∗ and almost completely coincides with the corresponding

algorithm for a star-type market. The difference lies only in one additional step, at which attempts

are made to define several lines from the «chain» part. It is worth noting that theorems 10 and

11 remain true for this type of market. For any R ⊆ L denote Lk(R) = Lk ∩R, k ∈ {1, 2, 3, 4}.

Theorem 12. Let Lmin and Lmax be the current lower and upper estimates. Let’s denote Lmin
k =

Lk(L
min), Lmax

k = Lk(L
max), k ∈ {1, 2, 3, 4}. Let S3 ⊆ Lmax

3 \ Lmin
3 , S4 ⊆ Lmax

4 \ Lmin
4 , S = S3 ∪ S4

be some sets of undefined lines from the «chain» part.

1) If the inequality

W̃
(
(Lmin

1 ∪ Lmin
3 ∪ S3) ∪ (Lmax

2 ∪ Lmax
4 \ S4)

)
≥ W̃

(
(Lmin

1 ∪ Lmin
3 ) ∪ (Lmax

2 ∪ Lmax
4 )

)
is met and for each nonempty set R ⊂ S

W̃
(
(Lmin

1 ∪ Lmin
3 ∪ L3(R)) ∪ (Lmax

2 ∪ Lmax
4 \ L4(R))

)
<

< W̃
(
(Lmin

1 ∪ Lmin
3 ) ∪ (Lmax

2 ∪ Lmax
4 )

)
, (1.36)

then the set S3 can be added to the lower estimate Lmin, and the set S4 can be subtracted

from the upper estimate Lmax: Lmin
r = Lmin ∪ S3, Lmax

r = Lmax \ S4, where Lmin
r , Lmax

r are

adjusted estimates.

2) If the inequality

W̃
(
(Lmax

1 ∪ Lmax
3 \ S3) ∪ (Lmin

2 ∪ Lmin
4 ∪ S4)

)
≥ W̃

(
(Lmax

1 ∪ Lmax
3 ) ∪ (Lmin

2 ∪ Lmin
4 )

)
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is met and for each nonempty set R ⊂ S

W̃
(
(Lmax

1 ∪ Lmax
3 \ L3(R)) ∪ (Lmin

2 ∪ Lmin
4 ∪ L4(R))

)
<

< W̃
(
(Lmax

1 ∪ Lmax
3 ) ∪ (Lmin

2 ∪ Lmin
4 )

)
, (1.37)

then the set S3 can be subtracted from the upper estimate Lmax, and the set S4 can be added

to the lower estimate Lmin: Lmax
r = Lmax\S3, Lmin

r = Lmin∪S4, where Lmax
r , Lmin

r are adjusted

estimates.

The proof of this statement is based on the application of theorem 5 and is similar to the

proof of theorem 9.

1.6.3.1. Algorithm

Let M be some maximum number of simultaneously defined lines, which is a parameter of

the algorithm. The algorithm for finding the optimal set of expandable lines for a given type

of market is obtained from the algorithm for the star-type market by adding the following step

between steps B1 and B2.

Step B1.2. Inclusion and exclusion of several undefined lines from the «chain»

part. We consider all possible subsets S of set
(
L3(L

max) \ L3(L
min)

)
∪
(
L4(L

max) \ L4(L
min)

)
for

which 2 ≤ |S| ≤ M is satisfied, in order of ascending |S|: pairs of lines are considered first, then

trinities, etc. For each such S:

1) the values S3 = L3(S), S4 = L4(S), Lmin
k = Lk(L

min), Lmax
k = Lk(L

max) are calculated,

k ∈ {1, 2, 3, 4};

2) the following inequality is checked:

W̃
(
(Lmin

1 ∪ Lmin
3 ∪ S3) ∪ (Lmax

2 ∪ Lmax
4 \ S4)

)
≥ W̃

(
(Lmin

1 ∪ Lmin
3 ) ∪ (Lmax

2 ∪ Lmax
4 )

)
,

if successful, the following assignments are performed without considering the remaining

subsets: Lmin = Lmin ∪S3, Lmax = Lmax \S4, L = L \S, after which there is a return to step

B1;

3) the following inequality is checked:

W̃
(
(Lmax

1 ∪ Lmax
3 \ S3) ∪ (Lmin

2 ∪ Lmin
4 ∪ S4)

)
≥ W̃

(
(Lmax

1 ∪ Lmax
3 ) ∪ (Lmin

2 ∪ Lmin
4 )

)
,
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if successful, the following assignments are performed without considering the remaining

subsets: Lmax = Lmax \S3, Lmin = Lmin ∪S4, L = L \S, after which there is a return to step

B1.

Note that when considering the set S in step B1.2, for any non-empty R ⊂ S inequalities

(1.36, 1.37) are met, because otherwise the lines from the set R would have already been defined

(since the set R was considered before S earlier in this step), and in this case the set S would not

have been considered. This means that this step is correct.

1.6.3.2. Estimation of the average complexity of the algorithm

To estimate the average statistical complexity of the described algorithm, a computational

experiment was conducted, similar to the experiments in paragraphs 1.6.1. and 1.6.2., with

piecewise linear functions of supply and demand (1.23) and quadratic functions of variable costs

for increasing transmission capacity (1.24).

Let’s denote by p0i the equilibrium price in node i ∈ N in the case of its isolation (with

zero transmission capacity), and by ∆p0ij the difference between the equilibrium prices for isolated

nodes i and j: ∆p0ij = p0j − p0i , {i, j} ∈ L. Let p0min = min
i∈N

p0i . As a result, the initial market is

uniquely determined by the following parameters: L1 ∪ L2, L3 ∪ L4, p0min, ci (i ∈ N), ∆p0ij, Q0
{i,j},

et{i,j}, e
q
{i,j}, E

f
{i,j} ({i, j} ∈ L). In this case, the values p0i , i ∈ N are found from the system


p0j − p0i = ∆p0ij, {i, j} ∈ L,

min
i∈N

p0i = p0min,

and dfi = ci · p0i , i ∈ N (we assume that p0min > 0, ci > 0 ∀ i ∈ N). In order not to be tied to

one method of generating parameters, in this experiment it was decided to slightly change this

method by randomly choosing coefficients ci instead of dfi (this is acceptable, since the purpose of

conducting computational experiments is not to compare average efficiencies for different types of

markets).

Throughout the experiment, the parameters p0min, ci, |∆p0ij|, et{i,j}, e
q
{i,j}, E

f
{i,j} were randomly

generated in accordance with a uniform distribution (table 4), the initial transmission capacity

Q0
{i,j} was taken to be 0, the number of lines of the «star» part coincided with the number of lines

of the «chain» part (|L1| + |L2| = |L3| + |L4|), in the «star» part the number of exporting lines
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coincided with the number of importing lines (|L1| = |L2|), for each line of the «chain» part the

direction was chosen randomly with probabilities (1/2, 1/2), and for any {i, j} ∈ L the sign ∆p0ij

corresponded to the selected directions:

∆p0ij =

 |∆p0ij|, the direction from node i to node j,

−|∆p0ij|, the direction from node j to node i.

Table 4. Parameters of probability distributions of quantities p0min, ci, |∆p0ij|, et{i,j}, e
q
{i,j}, E

f
{i,j} for

the star-chain-type market

Model parameter Minimum value Maximum value
p0min 0 (not including 0) 10

ci 1 5

|∆p0ij| 0 10

et{i,j} 0 4

eq{i,j} 0 4

Ef
{i,j} 0 4

In order for the market to satisfy the FSIC, in the experiment, for each line {i, j} ∈ L

modified functions of marginal transmission costs enex,mij (qij) and eex,mij (qij) were used: in the case

of the selected direction from node i to node j the type of modification is similar (1.25, 1.26),

otherwise it is similar to (1.27, 1.28).

The number of nodes |N | varied from 5 to 73. For each |N | 10 000 problems were generated,

which were solved by the described algorithm with M = 10. Let’s denote the average number of

auxiliary problems solved by yav. The resulting dependence of yav on |N | is shown in figure 24. The

following approximation of the average number of solved auxiliary problems was obtained by the

least squares method: yav(|N |) = 0.0175 |N |2+3.4262 |N |−3.3184 (figure 25). The corresponding

coefficient of determination R2 is equal to 0.9998.
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number of nodes

average number of solved auxiliary 
problems

maximum number of solved auxiliary 
problems

Fig. 24. Average (bottom) and maximum (top) numbers of solved auxiliary problems for the star-
chain-type market
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number of nodes

average number of solved auxiliary problems

approximation

obtained 
values

Fig. 25. Approximation of the average number of solved auxiliary problems for a star-chain-type
market

It can be seen from the figures that the average number of solved auxiliary problems (1.6) is

very well approximated by the resulting quadratic function. Such high accuracy compared to the

approximations from paragraphs 1.6.1. and 1.6.2. can be explained, firstly, by the larger number

of generated problems (10 000 problems for each number of nodes instead of 1 000 and 100

respectively), вand secondly, by a slightly modified experiment.

1.6.4. Tree-type market

In the master’s thesis by Silaev I. I. [56] the market of the general tree-type is considered, for

which an algorithm for finding the optimal set of expanded lines L∗ is proposed17. This algorithm

is a generalization of the algorithm for the star-type market (see paragraph 1.6.2.). Theorems 10

17 The results described in this paragraph do not belong to the author of this work and are provided for
completeness.
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and 11 remain true for the tree-type market.

Let’s divide the set of all lines L into the minimum number of disjoint subsets L1, ..., LK in

such a way that

1) each subset Lk, together with incident nodes, formed a chain-type market (i.e., a connected

market in which the degree of each node does not exceed 2);

2) for any two different subsets Lk1 and Lk2 , k1 ̸= k2, the corresponding sub-markets could only

intersect with the end nodes.

Figure 26 shows an example of such a split. Let’s divide each set Lk, k ∈ {1, ..., K}, into

two subsets L1
k, L2

k in accordance with the directions of the equilibrium flows (the directions of

the equilibrium flows coincide if the lines belong to the same subset, and are opposite otherwise).

For any m ∈ {1, 2} and k ∈ {1, ..., K} the set Lm
k has the following property: ∀ l, r ∈ Lm

k , l ̸= r,

the equalities L+(l)∪{l} = L+(r)∪{r}, L−(l) = L−(r) are valid. Let’s denote by L−(L
1
k), L−(L

2
k)

the sets of competitive lines for lines from the sets L1
k and L2

k respectively. For any k ∈ {1, ..., K},

R ⊆ L let’s denote L1
k(R) = L1

k ∩R, L2
k(R) = L2

k ∩R.

L1

L2

L3

L4

L5

Fig. 26. An example of a tree-type market

Unlike the star-chain-type market, the tree-type market can contain several «chain» parts,

for each of which an analogue of theorem 12 can be applied, allowing several lines to be determined

simultaneously when the corresponding inequalities hold. Here is the corresponding statement.

Theorem 13. Let Lmin and Lmax be the current lower and upper estimates, and k ∈ {1, ..., K}.

Let S1
k ⊆ (Lmax \Lmin)∩L1

k, S2
k ⊆ (Lmax \Lmin)∩L2

k, Sk = S1
k ∪S2

k be some sets of undefined lines

included in Lk.
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1) If the inequality

W̃
(
(Lmin ∪ S1

k) ∪ (L−(L
1
k) ∩ Lmax \ S2

k)
)
≥ W̃

(
Lmin ∪ (L−(L

1
k) ∩ Lmax)

)
(1.38)

is met and for each nonempty set R ⊂ Sk

W̃
(
(Lmin ∪ L1

k(R)) ∪ (L−(L
1
k) ∩ Lmax \ L2

k(R))
)
<

< W̃
(
Lmin ∪ (L−(L

1
k) ∩ Lmax)

)
,

then the set S1
k can be added to the lower estimate Lmin, and the set S2

k can be subtracted

from the upper estimate Lmax: Lmin
r = Lmin ∪ S1

k, Lmax
r = Lmax \ S2

k, where Lmin
r , Lmax

r are

adjusted estimates.

2) If the inequality

W̃
(
(Lmin ∪ S2

k) ∪ (L−(L
2
k) ∩ Lmax \ S1

k)
)
≥ W̃

(
Lmin ∪ (L−(L

2
k) ∩ Lmax)

)
(1.39)

is met and for each nonempty set R ⊂ Sk

W̃
(
(Lmin ∪ L2

k(R)) ∪ (L−(L
2
k) ∩ Lmax \ L1

k(R))
)
<

< W̃
(
Lmin ∪ (L−(L

2
k) ∩ Lmax)

)
,

then the set S1
k can be subtracted from the upper estimate Lmax, and the set S2

k can be added

to the lower estimate Lmin: Lmax
r = Lmax \ S1

k, Lmin
r = Lmin ∪ S2

k, where Lmax
r , Lmin

r are

adjusted estimates.

Let M be some maximum number of simultaneously defined lines, which is a parameter of

the algorithm. The algorithm for finding the optimal set of expandable lines for a given type

of market is obtained from the algorithm for the star-type market by adding the following step

between steps B1 and B2.

Step B1.2. Inclusion and exclusion of several undefined lines from one «chain»-

part. All possible sets of undefined lines S ⊆ Lmax \ Lmin, such that 2 ≤ |S| ≤ M and ∃

k ∈ {1, ..., K}: S ⊆ Lk, are considered in increasing |S| order: pairs of lines are considered first,

then triples, etc. For each such S and the corresponding k:

1) the values S1
k = L1

k(S), S2
k = L2

k(S) are calculated;

2) the inequality (1.38) is checked, if successful, without considering the remaining subsets,
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assignments Lmin = Lmin ∪ S1
k , Lmax = Lmax \ S2

k , L = L \ S are performed, after which a

return to step B1 occurs;

3) the inequality (1.39) is checked, if successful, without considering the remaining subsets, the

assignments Lmax = Lmax \ S1
k , Lmin = Lmin ∪ S2

k , L = L \ S are performed, after which a

return to step B1 occurs.

The correctness of this step is explained in the same way as for the star-chain-type market. To

estimate the average statistical complexity of the described algorithm, a computational experiment

was conducted similar to the experiment in paragraph 1.6.3. 1 000 problems were generated for

each number of nodes. As a result of the experiment, the following linear approximation of the

average number of solved auxiliary tasks was obtained depending on the number of nodes in the

market: yav(|N |) = 3.6127 |N | − 4.3794. The corresponding coefficient of determination R2 is

0.9999.

1.6.5. Comparison of algorithms for different types of markets

If we compare the considered types of markets in terms of the capabilities of algorithms, it is

important to note the following feature of markets that contain parts of the «chain» part. For each

«chain», the set of lines belonging to it is divided into 2 classes in accordance with the directions of

equilibrium flows, and any line outside this «chain» is complementary for all lines of one of these

classes and competitive for all lines of another class. It is these properties that explain the existence

of theorems 9, 12 and 13 for such markets, which allow several lines to be defined simultaneously.

Note that there is no analog of these theorems for the star-type market. Thus, when using the

developed algorithms to optimize markets with «chain» parts, there is an advantage in the form

of an additional possibility of defining several lines using the stated theorems. However, of course,

this does not mean at all that the number of auxiliary problems solved for such markets is always

less, since ultimately the number of auxiliary problems solved (1.6) is strongly influenced by the

characteristics of nodes and lines, not only by the transport structure of the market.
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Conclusions to the first chapter

In this chapter, the problem of optimizing the transport system of a multi-node energy

market of a homogeneous product in terms of maximizing social welfare was investigated, and its

NP-hardness was proved. It is shown that the initial problem is reduced to the problem of finding

the optimal set of expandable lines, to which an auxiliary problem with a fixed set of expandable

lines acts as a sub-problem.

The concept of competitive equilibrium is introduced. It is shown how it is related to

the solution of an auxiliary problem. To solve the latter, an algorithm has been developed, the

complexity of which for the case of piecewise linear initial functions depends quadratically on the

number of nodes in the market.

Two particular cases of a chain-type market are considered: with zero initial capacity and

with monotonous initial equilibrium prices. Polynomial algorithms for solving the initial problem

have been developed for them. They have quadratic and cubic difficulties, respectively.

The markets of the «chain», «star», «star-chain» types are considered separately if the

flow structure invariance condition is met. Algorithms for solving the initial problem have been

developed for them. These algorithms are based on the use of the properties of the social welfare

function, which enable finding lines the expansion of which (or, conversely, lack of expansion) is

obviously optimal. Computational experiments were conducted to estimate the average complexity

of these algorithms. They showed that for each type of market considered, the average number of

auxiliary problems solved is well approximated by a quadratic function depending on the number

of nodes in the market. The algorithm and the results of similar computational experiments for

the tree-type market, obtained in another study, are also presented.

Based on the results of the experiments, it can be concluded that the developed algorithms

allow solving the initial problem (1.5) in an acceptable time even for markets with a large number

of nodes, which was not at all obvious at the initial stage of the study of this problem, since it is

NP-hard in the general case.
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Chapter 2. Application of the developed algorithms to assess

the prospects of gasification of Russian regions

This chapter discusses issues related to the practical use of the model and algorithms

described in the first chapter. In order for the proposed model to be used for planning the

development of transport systems in real energy markets, it is necessary to be able to assess the

initial parameters of the model for such markets - the functions of production costs, consumption

utility and transmission costs. It is also necessary to be able to identify promising transport lines

and take into account the possibility of their construction in the model.

In general, the way to solve the above-mentioned problems depends on the type of energy

resource used and the specifics of the market. This chapter examines the Russian natural gas

market, but the proposed models and methods can be adapted for other markets.

Paragraph 2.1. describes the main areas of application of natural gas, paragraph 2.2. provides

the structure of natural gas consumption in the Russian Federation.

Paragraph 2.3. is devoted to the problem of estimating the transport cost function for a

new gas pipeline. Two types of gas pipelines are considered: main and distribution pipelines. For

each type, an estimate of the transmission cost function is derived, depending on the capacity and

length of the gas pipeline.

In paragraph 2.4. the problem of modelling the production cost function for a gas field

is considered. An overview of one well-known model describing the dynamics of natural gas

production from a gas deposit, depending on the rate of commissioning of producing wells and the

selected technological mode of their operation, is given. It is shown how, based on these parameters,

the total costs for the operation of a gas deposit are calculated. A simplified model for estimating

the production cost function is also proposed, and an appropriate estimate is derived.

Paragraph 2.5. is devoted to the problem of forecasting the demand for natural gas in a

node that is an arbitrary non-gasified region or municipality of the Russian Federation. The main

potential gas consumers are divided into several groups. A mathematical model is described for

each group to evaluate the corresponding component of the demand function18.

In the last paragraph 2.6. the developed algorithms and methods are used to assess the

prospects of gasification of Irkutsk Oblast. The possibility of connecting thermal power plants

18 Although the initial parameters of the model describing consumers are not demand functions, but consumption
utility functions, there is a one-to-one correspondence for these functions (1.11).
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and boiler houses in the region to the main gas pipeline «Power of Siberia» is being considered,

while determining the optimal plan for the development of the gas network in terms of maximizing

social welfare. For calculations, real data from official sources are used: a database of indicators

of municipalities published on the website of the Federal State Statistics Service [73], a database

of the socio-economic situation of the subjects of the Russian Federation [74], as well as decrees

of the governor of Irkutsk Oblast on approval of schemes and programmes for the development of

the electric power industry [2–4].

2.1. About natural gas

Natural gas is one of the most economically significant energy resources in Russia and on

the planet. The advantage of natural gas over other types of organic fuels lies in its low cost and

environmental friendliness, and its proven reserves in Russia, according to the statement of Energy

Minister Alexander Novak, will last for more than 100 years [65]. At the same time, Russia is the

world leader in natural gas reserves (in 2019, its share was 19%, [66]).

The main use of natural gas is related to energy [75]. It can be used directly as an energy

source or converted into other types of energy. The main applications of natural gas as a direct

source of energy are industrial production, transportation and household consumption. As for

conversion to other types of energy, in Russia natural gas is the main fuel for thermal power

plants, combined heat and power plants and boiler houses. The use of alternative fuels (mainly

coal) is generally associated with the lack of access to pipeline gas in specific areas of the country.

Natural gas is also widely used as a raw material for processing into other fuels and in the

production of chemical and other non-fuel products. In addition to methane, which is the main

component of natural gas (80-90%) used as fuel, it contains valuable impurities: pentane, hexane,

butane, propane, ethane, nitrogen and helium. These elements are separated at specially created

gas processing plants, one of the largest of which in Russia is the Amur Gas Processing Plant,

launched in 2021 [76]. The possibilities of using the obtained substances are extensive: from the

production of plastics and paints to the creation of parts for MRI machines and liquid crystal

screens.

It is worth noting that the use of methane instead of gasoline as an automobile fuel is

becoming increasingly popular due to its low price (in terms of the cost of fuel per kilometer,

methane is 2-3 times cheaper), which indicates an increase in the potential of natural gas. The
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average annual growth in global natural gas consumption in 2008-2019 was about 2.5% [66].

2.2. Natural gas consumption in the Russian Federation

According to official data [75], in 201919, the volume of consumption of Russian natural gas

amounted to 851.9 million tons, of which 254.6 million tons were exported, the rest was domestic

consumption. The structure of domestic consumption of natural gas is shown in figure 27.

46.8 %

Transformation to other 
types of energy

Final consumption as fuel 
or energy

Production of chemical 
and other non-fuel 

products

Processing into other 
types of fuel

Using as material for non-
fuel needs

Losses at the stage of 
consumption

35.4 %

8.9 %
5.7 %

1.8 % 1.4 %

Fig. 27. Structure of natural gas consumption by industrial production in the Russian Federation
in 2019

The figure shows that over 90% of natural gas is spent on conversion to other types of

energy (primarily electrical and thermal), final consumption as fuel or energy, and the production

of chemical and other non-fuel products. Also, about 6% of the gas consumed is processed into

other fuels and about 2% is used as a material for non-fuel needs. Gas losses are less than 1.5%.

Of the total final consumption of natural gas as fuel or energy, the following main components

can be distinguished (figure 28): supply to the population (43.2%), industrial production (31%),

transportation and storage (18.8%), construction (2.5%).

In industrial production, 71.8% of natural gas is consumed by processing industries, 27.3%

- in the extraction of minerals (mainly crude oil, natural gas and metal ores), less than 1 % - by

other industries (figure 29).

19 At the time of the study, data for later years were not available.
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storage
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Fig. 28. The structure of final consumption of natural gas as fuel or energy, divided by type of
economic activity in the Russian Federation in 2019

71.8 %

Manufacturing Extraction of minerals Provision of electrical energy, gas, steam; air 
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27.3 %
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Fig. 29. The structure of natural gas consumption by industrial production in the Russian
Federation in 2019

2.3. Estimation of the transmission cost function for a new gas

pipeline

Later in this chapter, for convenience, the volume of natural gas and energy are measured

in tons of conventional fuel (t.c.f.). Conventional fuel is the standard unit of accounting for the

calorific value of fuel. It is assumed that when 1 conventional fuel is completely burned, 29.3 MJ

(7 000 kcal) of heat is released. To convert the volume of natural gas into an equivalent mass of

conventional fuel, the coefficient kg→c.f. = 1.154× 10−3 t.c.f./m3 is used, and to convert the mass

of conventional fuel into energy, the coefficient kc.f.→j = 29.3× 109 (J/t.c.f.).
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2.3.1. Main gas pipelines

The main gas pipeline is used to transport large volumes of natural gas over long distances.

It consists of large diameter pipes in which high pressure is maintained due to compressor stations

located on the path of the gas pipeline. According to the set of rules [1] approved by the Ministry

of Construction and Housing and Communal Services of the Russian Federation and establishing

the basic requirements for the production and acceptance of construction and installation works

during the construction and reconstruction of the linear part of the main pipelines, the main costs

during the construction of the main gas pipeline can be divided into 5 categories:

• costs for the purchase and delivery of pipes;

• costs of off-piste work (construction of access roads, power lines, energy supply systems and

residential towns of builders; preparation of construction sites and equipment storage sites;

construction of bridges along the route for delivery of construction equipment and cargo;

other work);

• the cost of carrying out long-distance along-track work, minus the cost of purchasing

and delivering pipes (clearing the construction strip from forest vegetation, draining the

construction strip, arranging crossings over water barriers, building crossings under roads and

railways, cutting steep longitudinal slopes, construction of underwater and tunnel crossings,

protection of the territory of the construction strip from adverse natural phenomena,

earthworks, pipe laying and welding, quality control, etc.);

• costs for the construction of compressor stations;

• other costs (for design, lease or purchase of land, etc.).

A significant proportion of all costs are fixed costs that do not depend on the total capacity of

the gas pipeline. Such costs include the costs of designing, renting or buying land, most of the

costs of off-piste and along-track work, as well as fixed costs for the construction of compressor

stations. We assume that the remaining costs are proportional to the capacity, and also that all

these costs are proportional to the length of the gas pipeline. The cost of operating a gas pipeline

can be considered proportional to its capacity and length.

When estimating the function of transmission costs, we neglect the influence of such factors

as the geographical location of the territory of the gas pipeline, its relief, the average annual

temperature, the height difference, the size of the water sections crossed by the route, etc. In this

case, the transmission cost function of the main gas pipeline depends only on its capacity and
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length and has the following form:

E
m
(q, l) =

 0, |q| = 0,

(em,f + em,l · |q|) · l, |q| > 0.

(2.1)

Here |q| is the volume of natural gas transferred (t.c.f./year), l is the length of the gas

pipeline (km). The value of Em
(q, l) is an estimate of total transmission costs (rubles/year), which

takes into account the cost of natural gas transmission and the reduced capital costs for the

construction of the gas pipeline. Capital expenditures are adjusted to an annual period of time,

taking into account the expected service life of the gas pipeline, the interest rate on bank deposits

and the inflation rate (see paragraph 1.1.2. and (1.1)). It is assumed that the capacity of the gas

pipeline is proportional to the transmitted volume |q| and exceeds it, creating a reserve that takes

into account the annual uneven consumption.

The parameters em,f and em,l should be set expertly, since the publicly available data related

to the cost of construction of individual main gas pipelines of the Russian Federation are very

general and vary greatly for different projects. For this study, open data on the «Power of Siberia»

gas pipeline are used [77,78]. As of April 27, 2018, the project cost amounted to 1.1 trillion rubles,

the planned transmission volume is 4220 billion m3 (48.47 million t.c.f.) per year, the length of

the gas pipeline is 2963.5 km. Thus, the cost of building a kilometer of the gas pipeline amounted

to 371 million rubles on the specified date. Assuming the share of fixed costs of 25%, the service

life of the gas pipeline of 50 years and the equality of expected interest rates on bank deposits

to inflation levels, we obtain that in prices at the beginning of 2022, the annual cost of building

a kilometer of the gas pipeline consists of a fixed component equal to 2.25 million rubles and a

variable component equal to 0.139 rub. for each ton of conventional fuel in the capacity.

To estimate the cost of gas transmission, we will take into account the statement of a

representative of Gazprom [79], according to which the cost of pumping 1 thousand m3 of natural

gas from independent producers per 100 km in 2017 was 69.2 rubles. Thus, in prices at the

beginning of 2022, the transportation of 1 t.c.f. of natural gas per 1 km costs 0.739 rubles.

As a result, the following parameter estimates are obtained: em,f = 2.25 × 106

(rub./(km×year)), em,l = 0.878 (rub./(t.c.f.×km)), while the function of transmission costs for

20 Taking into account the gas consumption of the Amur gas processing plant.
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the main gas pipeline in prices at the beginning of 2022 takes the form

E
m
(q, l) =

 0, |q| = 0,

(2.25× 106 + 0.878 · |q|) · l, |q| > 0.

(2.2)

2.3.2. Gas pipelines of distribution networks

Gas pipelines of distribution networks (hereinafter referred to as distribution pipelines) are

designed to transport natural gas from gas distribution stations to the final consumer. Such gas

pipelines have a short length and small diameter, and the pressure in gas distribution stations

is reduced to the level necessary to supply consumers. Compared to main pipelines, distribution

gas pipelines are less efficient, and the requirements for their construction are much lower, so the

construction and operation costs for these two types of gas pipelines differ greatly.

Estimation of the transmission cost function for a new gas pipeline in a form similar to the

assessment for the main gas pipeline:

E
d,1
(q, l) =

 0, |q| = 0,

(ed,f + ed,l · |q|) · l, |q| > 0.

(2.3)

The parameters ed,f and ed,l should be set expertly. To assess the parameters ed,f and ed,l,

we will take into account data from the official website of the unified gasification operator of the

Russian Federation [80], according to which, in accordance with the connection programme «Social

Gasification», the approximate cost of construction and installation works for underground laying

of a kilometer of a distribution gas pipeline with a capacity limit of up to 7 m3/hour in Irkutsk

Oblast is 1.13421 million rubles. Data on other areas are also available. Assuming a fixed cost

share of 25%22, the service life of the distribution gas pipeline of 30 years, the equality of expected

interest rates on bank deposits to inflation levels and disregard for the costs of operating the gas

pipeline, we obtain that in prices at the beginning of 2022, the estimate of the transmission cost

21 For May 2022.
22 The value of the fixed cost share of 25% is highlighted only as an example, this value should be set expertly.

The estimate of the transport cost function obtained below based on this value is not used in analyzing the
prospects for gasification of Irkutsk Oblast.
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function for the distribution gas pipeline in Irkutsk Oblast has the following form:

E
d,1
(q, l) =

 0, |q| = 0,

(8.595× 103 + 364.4 · |q|) · l, |q| > 0.

Thus, ed,f = 8.595× 103 (rub./(km×year)), ed,l = 364.4 (rub./(t.c.f.×km)).

We will also construct an estimate of the transport cost function for a distribution gas

pipeline without a fixed component:

E
d,2
(q, l) = ed · |q| · l. (2.4)

This estimate can later be used instead of the estimate E
d,1
(q, l) in cases where, according to

the specifics of the model, the transport cost function should be convex (functions E
m
(q, l) and

E
d,1
(q, l) are not convex in q due to the presence of fixed components em,f and ed,f respectively).

It is implied that the accuracy of this estimate is worse23 than the estimates Ed,1
(q, l). For Irkutsk

Oblast, it takes the following form:

E
d,2
(q, l) = 485.8 · |q| · l,

that is, ed = 485.8 (rubles./(t.c.f.×km)).

It is worth noting that all the estimates of the transmission cost function obtained are in

some way overestimated, since they include the profits of contractors engaged in the construction

of the gas pipeline. It also makes sense to take this profit into account in the function of social

welfare, for which it is recommended to set the evaluation parameters expertly. For the purposes

of this study, the estimates obtained are considered acceptable.

2.4. Estimation of the production cost function for a gas deposit

The development of a natural gas field is a complex technological process that includes

the following main stages: exploration, assessment of gas reserves, preparation for industrial

production, industrial production, liquidation. Carrying out each of these stages requires significant

economic investments, the amount of which strongly depends on the characteristics of a particular

23 When making estimates correctly, during which the range of variation of the variable q is taken into account,
the error of the estimate E

d,2
(q, l) relative to the estimate E

d,1
(q, l) does not exceed the value ed,f · l.
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field.

The longest and most expensive are the stages of preparation for industrial production and

industrial production itself, during which wells are built and natural gas reserves are extracted

from the bowels of the earth. The physical basis of the principle of gas extraction is the difference

(depression) between the pressures in the gas-bearing reservoir and at the bottom of the producing

well, causing the movement of gas from the reservoir to the bottom of the well and its further

elevation to the surface of the earth.

It is worth noting that the process of field development is not easy (Yushkov I. R.,

Khizhniak G. P., Ilyushin P. Yu., 2013, [57]; Minkhanov I. F., Dolgikh S. A., Varfolomeev M. A.,

2019, [58]). So, in addition to producing wells that perform the main function of gas extraction,

there are injection, exploration, observation, control, evaluation and reserve wells, while the shape

and inclination of the wells are divided into vertical, directional, horizontal, multi-barrel and multi-

hole. The systems for placing wells on the gas-bearing area also differ: square, triangular, circular,

etc.

Among the modes of operation of gas-bearing formations, two main ones should be noted:

gas and water-pressure [57]. In the gas regime, the flow of gas to the faces of producing wells occurs

only due to its elastic expansion, therefore the volume of the pore space occupied by gas practically

does not change. Under the water pressure regime, the flow of gas to the well faces is additionally

influenced by groundwater surrounding the deposit and displacing gas, thereby slowing down the

rate of reduction of reservoir pressure and maintaining the flow rate (gas production rate) at a

high level.

Also, when developing a gas field, various methods of increasing the flow rate can be used,

such as hydraulic fracturing or acid treatment (Dake L. P., 2009, [59]). In the case of a gas

condensate field, periodic reverse injection of dry gas (cycling process) is sometimes used, as a

result of which the reservoir pressure is maintained at a high level above the dew point pressure,

which does not allow the gas to condense.

2.4.1. A dynamic model for the functioning of a gas deposit

Let’s define a deposit as an underground accumulation of natural gas, all parts of which

are hydrodynamically connected, i.e. development in one part of the deposit manifests itself in a

change in reservoir pressure throughout the deposit. This hydrodynamic connection can extend
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for tens of kilometers or more, supported by groundwater (Zakirov S. N., Lapuk B. B., 1974, [60]).

When modelling the process of developing a gas deposit, the «average well» method is often

used, in which it is assumed that all producing wells have the same characteristics, average for the

deposit: average depth, average plume length, average allowable flow rate and depression, average

coefficient of filtration resistance, etc. The reservoir pressure is also assumed to be equal to the

average for the deposit.

When modelling a gas deposit, the following basic equations must be taken into account [60]:

1) material balance for a gas deposit;

2) the technological operation mode of the producing well;

3) gas inflow to the bottom of the well;

4) the relationship between the number of gas wells, production and flow rate of wells.

These equations underlie the Advanced Gas Production Planning System for a group of gas fields

(AGPPS), which was actively used to carry out calculations for many groups of gas fields in the

USSR (Margulov R. D., Khachaturov V. R., Fedoseev A. V., 1992, [61]). Each of these equations

is described in detail below.

Equation of the material balance for a gas deposit

p(t)

z(p(t))
=

p0 · V (t)

z(p0) · V0

(2.5)

describes the relationship between the average reservoir pressure p(t) and the remaining gas reserve

in the deposit V (t). Here t is time, z(p) is the coefficient of super-compressibility, taking into

account the imperfection of natural gas, p0 and V0 are the initial values of reservoir pressure and

gas reserve, respectively. It is worth noting that equation (2.5) does not take into account the

displacement of gas by water, which occurs under the water pressure regime. We assume that the

deposit is functioning in gas mode.

The remaining gas reserve V (t) is associated with marginal production Q(t) and total

production Qtot(t):

Qtot(t) = V0 − V (t),

Q(t) = Qtot
′(t), Qtot(t) =

t∫
0

Q(t)dt. (2.6)

The equations of the technological mode of operation of a producing well can be

different, since the technological mode is set taking into account the action of limiting geological,

technical, technological, environmental and other factors. In general, a technological mode is chosen
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in which the maximum possible flow rate is ensured while respecting the limiting factors. The

following main technological modes can be noted: constant depression on the formation, constant

flow rate, constant pressure gradient, constant downhole pressure, constant wellhead pressure,

constant flow velocity. The constant debit mode is often used:

q(t) = q0,

where q(t) is the well flow rate, q0 is the initial flow rate. It is assumed that the technological

regime is the same for all producing wells, and the wells themselves are identical.

Equation of gas inflow to the bottom of the well

p2(t)− p2wf (t) = A · q(t) +B · q2(t) (2.7)

connects the well flow rate q(t), reservoir pressure p(t) and bottom hole pressure pwf (t). Here A

and B are the coefficients of filtration resistance, depending on the composition of the gas, the

properties of the porous medium and other parameters.

The equation of the relationship between the number of gas wells, production

and flow rate of wells. The last equation relates the number of producing wells N(t), the

marginal production Q(t) and the flow rate q(t):

N(t) = Q(t)/q(t). (2.8)

Here it is assumed that N(t) is a real number. This simplification is acceptable, since for large

deposits, the number of wells can reach several tens or even hundreds by the period of constant

production.

There are three stages in the development of a gas deposit: increasing, constant and falling

production [57, 61]. At the stage of increasing production, production wells are being built, the

field is being developed and production is reaching a constant level. At the end of this stage,

the total gas production is 20-25% of the initial reserves. At the stage of continuous production,

marginal production is maintained at a constant level due to the introduction of new wells and an

increase in the capacity of booster compressor stations (BCS). The stage ends when further drilling

of the deposit and increasing the capacity of the BCS becomes economically impractical. During

the first two stages, the main reserves of the deposit are selected (about 60%). At the stage of

declining production, the well stock usually remains unchanged, while the reservoir pressure drops

significantly. The third stage ends when mining becomes unprofitable. Approximately 10-15% of
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the initial reserves remain untreated.

In the case of using the constant flow rate mode, the following scheme is usually used to

calculate the main technological indicators of the first two stages [61]: first, the required number

of wells N(t) is calculated using (2.8) for a given marginal production Q(t) and well flow rate q0,

then using (2.5-2.6), reservoir pressure p(t) is found, after which the bottom-hole pressure pwf (t)

is found according to (2.7), which is further used to determine the required capacities of the BCS.

At the stage of declining production, the number of producing wells is usually constant,

so the marginal production decreases in proportion to the well flow rate. But since information

about the coefficients of filtration resistances A and B and the operating mode at the last stage of

development is very inaccurate or not known at all in advance, it is proposed to use the following

empirical formula in the AGPPS to calculate the maximum production at this stage instead of

(2.5-2.8):

Q(t) = Q · e−
Q

V
(t−t), (2.9)

where Q is the maximum production at the second stage, t is the end time of the second stage,

V = V (t) is the remaining gas reserve in the deposits at the end of the second stage. The formula

(2.9) is used until the remaining gas reserve reaches the value V , after which production stops.

It is assumed that V = β · V0, V = β · V0, where β, β are the set parameters. The β parameter

actually depends on the marginal production at the second stage of Q: the higher Q, the lower β.

However, to simplify the model, this dependence is not taken into account.

In [61], an aggregated model of the deposit is proposed, for which the following additional

assumptions are introduced:

• the wells are operated in a constant flow rate mode;

• the stage of falling production occurs at moment t: V (t) = V ;

• at the stage of falling production, the marginal production changes according to (2.9);

• the input of the BCS is not taken into account.

As a result, the behaviour of a gas deposit is described by the following system of differential
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equations: 

Ṅ = n,

V̇ = −q ·N,

q̇ =


0, V > V ,

−q0

V
· q ·N, V ≤ V ,

N(0) = 0, V (0) = V0, q(0) = q0.

Here, the rate of well entry n(t) ≥ 0 is a control, and the following restriction must be met for it:

n(t) = 0, if V (t) ≤ V .

The remaining values are calculated according to the following ratios:

p(t)

z(p(t))
=

p0
z(p0)

· V (t)

V0

,

Q(t) =

 q(t) ·N(t), V > V ,

0, V ≤ V ,

pwf (t) =
√

p2(t)− A · q(t)−B · q2(t).

Thus, marginal production Q(t) depends on the rate of well entry n(t):

Q(t) ≡ Q̂(n(·), t). (2.10)

In (2.10) n(·) is considered as a parameter function. By varying the n(·) function, different

production dynamics can be obtained. Additional restrictions can be imposed on the management

due to various technical reasons (for example, a limit on the rate of well entry: n(t) ≤ nmax).

The work [61] also provides for the construction of reserve wells, which, in addition to the

reserve wells themselves, can include observation and other non-producing wells. It is assumed

that the well reserve is created evenly during the period of continuous production. In this paper,

we assume that the construction of reserve wells takes place simultaneously with producing wells,

and the rate of input of reserve wells np(t) is proportional to the rate of input of producing wells

and is described by the reserve coefficient kp:

np(t) = kp · n(t).
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The reserve ratio can be assumed to be 10-20%. Let’s denote via cI capital investments in the

construction of one well, and via ce the cost of producing a unit of volume of gas. At the same

time, we assume that construction costs are charged continuously, and marginal production costs

do not depend on reservoir pressure, technological mode of well operation and other values (in

particular, on the current capacity of BCS). As a result, the following function of marginal costs

for the operation of a gas deposit is obtained:

c(n(·), t) = cI · (1 + kp) · n(t) + ce ·Q(n(·), t).

Taking into account the coefficient δ - the difference between the interest rate on bank deposits

and the inflation rate, the total costs given at the initial time are equal to the following value:

C(n(·)) =
+∞∫
0

[cI · (1 + kp) · n(t) + ce ·Q(n(·), t)]e−δtdt.

2.4.2. Simplified model for the functioning of a gas deposit

Now let’s consider a simplified model of the functioning of a gas deposit. Let’s introduce

the following assumptions:

• the initial reserves of natural gas in the deposits are so large that at the considered

planning interval, reducing gas reserves and reservoir pressure in the deposits are considered

insignificant;

• all the wells being introduced have the same characteristics, the number of wells can be

considered substantial, and the construction of wells takes place instantly.

Let’s enter the following parameters:

• q0 - initial well flow rate (t.c.f./year);

• ce - the cost of producing a unit of gas volume (rub./t.c.f.);

• cI - the specified capital investments in the construction of one well (rubles/year); reduction

is carried out to an annual period of time, taking into account the expected service life of

the well, the interest rate on bank deposits and the inflation rate (similar to paragraph 1.1.2.

and (1.1));

• kp > 0 is the reserve coefficient for well construction.

In this case, the flow rate of each well does not change over time, and the production cost



92

function for a gas deposit is linear and has the following form:

c(v) =

(
(1 + kp) ·

cI
q0

+ ce

)
· v,

where v ≥ 0 is the annual constant volume of natural gas production (t.c.f./year). The unit of

measurement of the value of c(v) is rub./year.

2.4.3. Estimation of the production cost function

Let’s build an estimate of the production cost function for a gas field according to a simplified

model. Let’s assume that the field consists of one large deposit. According to [81], as of June 1,

2016, the cost of producing 1 000 m3 of natural gas from Gazprom was $20 (1 320 rubles at the

exchange rate on the same date). Thus, in prices at the beginning of 2022, the cost of production

of 1 t.c.f. of natural gas is approximately 1 467 rubles.

To estimate the capital costs for the construction of wells, we use data on the construction

of the Chayandinsky field (Yakutia). According to official sources [77, 82], the projected annual

productivity of the field is 25 billion m3 of natural gas, and as of April 27, 2018, the cost of

developing the field was estimated at 450 billion rubles (543.3 billion rubles in prices at the

beginning of 2022). Assuming a well life of 30 years and the equality of expected interest rates on

bank deposits and inflation levels, we obtain the following estimate of production costs reduced

to the annual period in prices at the beginning of 2022:

c(v) = 2 095 · v, (2.11)

that is, the marginal production costs are 2 095 rubles./t.c.f.

2.5. Estimation of the demand function for natural gas in a

non-gasified node

This paragraph proposes a method for estimating the gas demand function in a node that

is an arbitrary non-gasified entity or municipality (MO) of the Russian Federation. Smaller units
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such as thermal power plants, boiler houses, boiler house groups, etc. can also act as nodes.

The method under consideration is based on the division of the main gas consumers into several

groups, for each of which an independent assessment of the demand function is carried out. At

the same time, long-term changes in gas demand associated with the possible restructuring24 of

the electricity market in the node as a whole are not taken into account.

2.5.1. Overview of potential gas consumers on a non-gasified territories

During the gasification of the territory, the most economically significant transformations are

the substitution of gas for other economically less profitable energy resources used in the territory

and the development of the chemical industry using gas as a raw material. Let’s highlight the

following components among the main potential transformations:

• conversion of thermal power plants (TPP) and combined heat and power plants (CHP) to

gas fuel;

• conversion of thermal boilers to gas fuel;

• conversion of enterprises to gas fuel;

• connection to the gas supply of the rural population;

• connection to the gas supply of the urban population (not included in the model);

• the development of the chemical industry (not taken into account in the model).

Transformations from this list imply the implementation of capital investments for the following

purposes:

• laying of gas lines to the place of consumption;

• switching to new equipment (or upgrading an existing one) capable of working with a new

type of fuel if gas is used as an energy source;

• construction and development of chemical enterprises, if gas is used as a raw material.

If gas is used as an energy source, then a full or partial transition to gas is carried out, and

the fuel used before with the necessary equipment can remain as a backup. The expected economic

benefit of such transformations is based on a reduction in fuel costs. When assessing the economic

benefits, it is also possible to take into account the environmental component associated with a

change in the amount of environmental pollution during the transition to a new type of fuel.

Components related to the connection to the gas supply of the urban population and the

24 This restructuring may be a consequence of the gasification of the node.
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development of the chemical industry, it was decided to exclude from consideration when assessing

the demand function for natural gas for the following reasons. Connecting to the gas supply of the

urban population is fraught with significant problems. The main problem is that, in fact, for multi-

storey buildings located on a non-gasified territory, the possibility of connecting them to pipeline

gas was not initially envisaged. Therefore, in order to prepare houses for connection, significant

capital investments are needed to connect gas pipes to apartments, modernize the ventilation

system and other necessary transformations, which are often economically impractical.

The second problem is related to security. As you know, gas is explosive and poses a serious

threat to residents of apartment buildings. Everyone remembers the sad news from the media

about explosions in residential buildings, as a result of which entire entrances collapsed, while

human casualties were measured in dozens of people. Therefore, currently there is a tendency

to move away from gas stoves in apartment buildings, new buildings are mostly built without

connection to gas, even in gasified areas.

As for the chemical industry, there are currently about 15 large gas processing enterprises

operating in Russia, providing over 90% of the total processing. Decisions on the construction of

such enterprises and their location are usually made at the highest level, while the demand for

the final products of such enterprises is often not determined by the needs of a particular region,

therefore it is difficult to estimate this component of gas demand in advance.

2.5.2. Mathematical model for estimating the demand function for natural gas

In general, the demand for natural gas at node i ∈ N is represented as a function

Di(pi, p
1
1, ..., p

K
i ), where pi is the price of natural gas at this node, and p1i , ..., pKi are prices for

other energy sources. The following describes a somewhat simplified consumption model in which

the demand for natural gas depends only on the price of it.

Let’s build a mathematical model of consumption based on the transformations components

introduced in paragraph 2.5.1., while not taking into account the components associated with

connecting the urban population to gas and the development of the chemical industry. Let’s split

the total demand in node i ∈ N in accordance with these components, in this case the demand

function Di(pi) is represented as the sum of demand functions for various components of the node:

• DTPS
i (pi) - for thermal power plants and CHP;

• DB
i (pi) - for thermal boilers;
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• DInd
i (pi) - for enterprises;

• DVil
i (pi) - for the rural population.

Boiler units. Let’s denote by R the set of all alternative fuels to natural gas, and by A

the set of types of boiler units that are used by consumers and allow converting fuel into thermal

energy. Each type a ∈ A is defined by the following parameters:

• ra ∈ R is the type of fuel that the boiler uses;

• V max
a is capacity (t.c.f./ year), i.e. the maximum amount of useful thermal energy generation

in the case of maximum load; in the case of boilers for thermal power plants and CHP,

capacity is understood as the maximum possible annual amount of energy transferred to the

working steam;

• ηa ∈ [0, 1] is the efficiency of the boiler unit, which is equal to the ratio of the generated

useful thermal energy to the initial fuel energy.

Thermal power plants and CHP. In this paragraph, for brevity, we will call thermal

power plants and CHP by plantsplant. Large plants should be separated into separate nodes or

placed in the center of the node, and transportation costs for the gas pipeline sections suitable for

them should be estimated using the function E
m
(q, l) according to (2.1). Small plants can also be

separated into separate nodes (in this case, the function E
d,1
(q, l) is used to estimate the transport

costs for the underwater section to this plant, if the plant is not an intermediate node between

large nodes (see (2.3))), or taken into account as one of the components the node. In the latter

case, the plant is connected to the «center» of the node by a section of the gas pipeline, and the

function E
d,2
(q, l) is used to estimate the corresponding transport costs (see (2.4)). The center of

the node is understood as the geographical point at which the sections of gas pipelines connecting

the node with adjacent nodes are connected, as well as from where the gas distribution network of

the node comes out. When considering a plant as one of the components of a node, the accuracy

of estimates decreases, but at the same time, the exhaustive complexity of the initial optimization

problem also decreases. Let TPSi be the set of active plants in node i ∈ N .

General model. Let the plant s ∈ TPSi be characterized by the following parameters:

• ds is the current total heating capacity of the plant’s boilers (t.c.f./year);

• ζs ≥ 1 is the reserve coefficient of the plant, equal to the ratio of the maximum possible daily

heating capacity of the plant to the average daily one; this coefficient takes into account the

unevenness in the output volumes of the plant associated with the influence of weather and

time conditions on consumption volumes, as well as other factors;

• ns,a is the number of available boilers of type a ∈ A;

• cs,r is the cost of extraction and delivery of a unit of fuel r ∈ R to the plant, (rub/t.c.f.); this
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also includes all costs associated with fuel preparation: transportation, processing, storage;

• cg,bs is the reduced capital costs for increasing the capacity of gas boilers per unit

((rub/year)/(t.c.f./year) = rub/t.c.f.);

• ηgs ∈ [0, 1] is the efficiency of a gas boiler unit, which is equal to the ratio of the generated

useful thermal energy to the initial fuel energy;

• ls is the distance from the center of the node to the plant (km); if the plant is allocated to

a separate node, then this value is zero.

Capital expenditures are adjusted to an annual period of time, taking into account the

expected service life of the gas pipeline, the interest rate on bank deposits and the inflation rate

(see paragraph 1.1.2. and (1.1)).

Let’s denote by cgs the internal costs of using a unit of natural gas (rubles /t.c.f.), which

include the following: the cost of transporting a unit of gas from the center of the node to the

plant, the maximum reduced capital costs for laying the corresponding underwater section of

the gas pipeline, the maximum reduced capital costs for preparing boilers, taking into account

redundancy:

cgs = ed · ls + ζs · cg,bs .

Denote by a1, ..., an the types of boilers available at the plant, sorted in order of increasing

cost of producing a unit of heat ci =
cs,rai
ηai

(rubles/t.c.f.). In Vi =
ns,ai ·V

max
ai

ζs
(t.c.f./year), we denote

the maximum amount of thermal energy generation using type ai boilers available at the plant,

taking into account redundancy. Let’s consider the task of minimizing the cost of maintaining the

total heating capacity ds of the boilers of the plant. Let the demand function Ds(pi) determine

the dependence of the optimal volume of natural gas consumed by the plant s (t.c.f./year) from

the nodal price pi for natural gas (rubles/t.c.f.) in terms of this problem. Let’s denote

D̂s(p̂) ≡ max(0, Ds(p̂)), (2.12)
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where

Ds(p̂) =



ds, p̂ ∈ [0, c1),

[ds − V1, ds], p̂ = c1,

ds − V1, p̂ ∈ (c1, c2),

[ds − (V1 + V2), ds − V1], p̂ = c2,

...

[ds −
n∑

i=1

Vi, ds −
n−1∑
i=1

Vi], p̂ = cn,

ds −
n∑

i=1

Vi, p̂ ∈ (cn,+∞).

(2.13)

Theorem 14. The demand function Ds(pi) for natural gas from the plant s of node i is calculated

as follows:

Ds(pi) =
1

ηgs
· D̂s

(
pi + cgs

ηgs

)
. (2.14)

Proof. According to the welfare theorem [7], the optimal output volumes of boilers are equal to the

volumes corresponding to a competitive equilibrium in a model with a single price for the generated

thermal energy, a consumer with a fixed consumption volume ds and a producer who can dispose

of the corresponding boilers. These boilers, together with the volume of heat consumed ds form a

piecewise constant function of the residual demand for thermal energy (2.12), where p̂ is the price

of the generated thermal energy (rubles/t.c.f.).

Without the use of natural gas, the equilibrium price p̃ is equal to the minimum price p̂,

satisfying the condition D̂s(p̂) = 0. The benefit of using gas is equal to
+∞∫

pi + c
g
s

η
g
s

D̂s(p̂)dp̂, where

pi is the price of natural gas at node i (rub/t.c.f.). Here, the value pi + cgs
ηgs

is equal to the cost

of producing thermal energy using natural gas (rub/t.c.f.). Thus, the optimal volume of thermal

energy generated using natural gas is equal to D̂s

(
pi + cgs

ηgs

)
, and the dependence Ds(pi) of the

optimal volume of natural gas consumed (t.c.f./year) on the nodal price pi is a piecewise constant

function and is found using the ratio (2.14). ■

The graph of the function D̂s(p̂) is shown in figure 30. The function Ds(pi) is obtained from

the function D̂s(p̂) by sequentially applying the following operations:

1) shifting the graph of the function to the left by cgs;

2) stretching the graph of the function along the abscissa axis by a factor of ηgs ;

3) narrowing the graph of the function along the ordinate axis by a factor of ηgs .
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The total demand in node i generated by all plants is equal to

DTPS
i (pi) =

∑
s∈TPSi

Ds(pi).

D̂( )p̂s

v1

v2

v3

ds

c1 c2 c3 p̂p~

Fig. 30. Type of residual demand function D̂s(p̂) for thermal power plants and CHP

Simplified model. Now let’s consider a simplified model. Let’s assume that the plant is

allocated to a separate node, and it uses only one type of fuel. We introduce the following

parameters characterizing the plant s:

• vs - annual fuel consumption at the plant (t.c.f./year);

• cs - the cost of extracting and delivering a unit of the fuel type used to the plant (similar to

the general model, rub/t.c.f.).

Suppose that when switching to natural gas, the same boilers are used with a small upgrade, while

maintaining the efficiency of the boilers, and the capital costs of modernization are insignificant

and therefore not taken into account. The process of converting solid fuel boilers to natural gas is

described, for example, in [62].

For such a simplified model, switching to natural gas becomes beneficial if the cost of buying

a unit of gas is less than the cost of producing and delivering a unit of currently used fuel. Thus,
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the natural gas demand function for plant s has the following form:

Ds(pi) =


vs, pi ∈ [0, cs),

[0, vs], pi = cs,

0, pi ∈ (cs,+∞),

(2.15)

where pi is the price of natural gas at node i (rub/t.c.f.). Since the plant is allocated to a separate

node, the total demand DTPS
i (pi) generated by all plants coincides with Ds(pi).

Thermal boilers. The process of converting boiler houses to natural gas is generally similar

to the process of converting thermal power plants and CHP. The only significant difference is that

the capacity of boiler units in boiler houses, as a rule, is much less than similar capacities for

thermal power plants and CHP. Denote by Bi the set of operating boiler houses in node i ∈ N .

General model. In general, the parameters characterizing the boiler house are similar to

those characterizing a thermal power plant or CHP, therefore, the demand for gas from the thermal

boiler house is determined similarly to the previous paragraph. Let’s denote the demand function

of boiler house b ∈ Bi by Db(pi). The total demand in node i generated by all plants is equal to

DB
i (pi) =

∑
b∈Bi

Db(pi).

Simplified model. Now let’s consider a simplified model. Let node i under consideration be

a territory or a municipality characterized by the following parameters:

• vbi - total fuel consumption by boiler houses (t.c.f./year);

• cbi - the average cost of extraction and delivery to the boiler house of a unit of the type of

fuel used (rub/t.c.f.);

• Sb
i - the area of the node’s territory (km2).

Let’s make the following assumptions:

• boiler houses are characterized by approximately the same fuel consumption, boiler efficiency

and the cost of extraction, delivery and preparation of a unit of fuel;

• when converting boilers to natural gas, the same boilers are used with a small upgrade, while

maintaining the efficiency of boilers, and the capital costs of modernization are insignificant

and therefore not taken into account.

To estimate the demand function DB
i (pi), it is necessary to take into account the transport

costs associated with the construction and operation of the gas distribution network connecting

the center of the node with the boiler houses. To estimate transport costs, we use the formula
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(2.4).

A node in the shape of a circle. Let’s consider an idealized case in which the territory

of the node has the shape of a circle, the center of the node coincides with the center of the circle,

and an infinite number of boiler houses are distributed evenly over the territory of the node25.

Theorem 15. The demand function DB
i (pi) for natural gas from the rural population of node i

for this idealized case is calculated as follows. If cbi < ed
√

Sb
i

π
, then

DB
i (pi) =


π · vbi
Sb
i · ed

2

(
cbi − pi

)2
, pi ∈ [0, cbi ],

0, pi ∈ (cbi ,+∞).

(2.16)

If cbi ≥ ed
√

Sb
i

π
, then

DB
i (pi) =



vbi , pi ∈
[
0, cbi − ed

√
Sb
i

π

]
,

π · vbi
Sb
i · ed

2

(
cbi − pi

)2
, pi ∈

(
cbi − ed

√
Sb
i

π
, cbi

]
,

0, pi ∈ (cbi ,+∞).

(2.17)

Proof. The radius of the circle representing the territory of the node is equal to
√

Sb
i

π
. For boilers

located at a distance r ∈ [0,

√
Sb
i

π
] from the center of the node, the marginal cost of heat generation

for the available fuel is equal to cbi , and in the case of using natural gas - (pi + ed · r), where pi

is the price of natural gas in node i (rub/t.c.f.). It follows that switching to gas is beneficial if

r ≤ cbi − pi
ed

. Consider a strip of boiler houses of infinitely small width ∆r, located at a distance r

from the center of the node (figure 31). Its area is equal to 2π · r ·∆r, which means that the fuel

consumption of the boilers of this strip is vbi ·
2π · r ·∆r

Sb
i

(t.c.f./year).Thus, the demand for natural

gas from the boiler houses of the node is calculated as follows:

DB
i (pi) =

min

(
max

(
cbi−pi

ed
,0

)
,

√
Sb
i
π

)
∫
0

vbi ·
2π · r
Sb
i

dr =
π · vbi
Sb
i

(
min

(
max

(
cbi − pi
ed

, 0

)
,

√
Sb
i

π

))2

.

25 This assumption is highly simplifying, but it is acceptable, taking into account the absence of a fixed component
in the used estimate of the transport cost function for gas pipelines (2.4) (the estimate of the gas demand
function for evenly dispersed boiler houses in a small area with total fuel consumption v is approximated by
the estimate of the gas demand function for one boiler house with fuel consumption v located in the center in
this area).
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The latter ratio implies fairness (2.16, 2.17). ■

√S ib/

Π

r

Δr

stripe of boilers, located at distance r 
from the center of the node

center of 
the node

Fig. 31. The territory of the node is in the form of a circle with an infinite number of boiler houses
distributed evenly over the territory of the node

The estimates obtained (2.16, 2.17) can also be applied to an arbitrary shape of the site and

any number of boiler houses as a simplification.

A node in the shape of a circle. Now let’s consider the case in which the territory of

the node has the shape of a rectangle of length w and width Sb
i /w. Suppose that the center of

the node coincides with the center of the rectangle, and an infinite number of boiler houses are

distributed evenly over the territory of the node, similar to the case of a node in the shape of a

circle. Let’s denote

R(pi) ≡
cbi − pi
ed

.

Theorem 16. The demand function DB
i (pi) for natural gas from the boiler houses of node i or

this case is calculated as follows. If R(pi) ≤ 0, then DB
i (pi) = 0. Otherwise, the following cases

are possible.

1. If (w/2)2 +
(
Sb
i

2w

)2

≤ R(pi)
2, then

DB
i (pi) = vbi . (2.18)
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2. If w/2 ≥ R(pi),
Sb
i

2w
≥ R(pi), then

DB
i (pi) =

π · vbi ·R(pi)
2

Sb
i

. (2.19)

3. If w/2 ≤ R(pi),
Sb
i

2w
≥ R(pi), then

DB
i (pi) =

vbi
Sb
i

·

[
w ·
√

R(pi)2 −
w2

4
+ 2 ·R(pi)

2 · arcsin
(

w

2 ·R(pi)

)]
. (2.20)

4. If (w/2)2 +
(
Sb
i

2w

)2

≥ R(pi)
2, w/2 ≤ R(pi),

Sb
i

2w
≤ R(pi), then

DB
i (pi) =

vbi
w

·

√
R(pi)2 −

(
Sb
i

2w

)2

+
vbi
Sb
i

·

[
w ·
√

R(pi)2 −
w2

4
+ 2 ·R(pi)

2 · arcsin
(

w

2 ·R(pi)

)]

− 2 · vbi ·R(pi)
2

Sb
i

· arccos
(

Sb
i

2 · w ·R(pi)

)
. (2.21)

5. If w/2 ≥ R(pi),
Sb
i

2w
≤ R(pi), then

DB
i (pi) =

vbi
w

·

√
R(pi)2 −

(
Sb
i

2w

)2

+
2 · vbi ·R(pi)

2

Sb
i

· arcsin
(

Sb
i

2 · w ·R(pi)

)
. (2.22)

Proof. Similarly to the case of a node in the form of a circle, it is shown that the conversion of

an arbitrary boiler unit to gas is advantageous if the distance from it to the center of the node does

not exceed
cbi − pi
ed

, where pi is the price of natural gas in node i (rub/t.c.f.). Thus, the intersection

of a circle of a radius R(pi) ≡
cbi − pi
ed

centered in the center of the node and a rectangle of length

w and width Sb
i /w centered in the center of the node defines the area for those boilers that benefit

from switching to gas. Figure 32 shows this area on a coordinate system with the origin in the

center of the node. The part of the boundary of this circle belonging to the first quarter of the

coordinate plane is described by the ratio y =
√
R(pi)2 − x2.

Consider a rectangular boiler house area of infinitesimal width ∆x and length ∆y belonging

to a node. Its area is equal to ∆x · ∆y, which means that the fuel consumption of boilers in this

area is vbi ·
∆x ·∆y

Sb
i

(t.c.f./year). Thus, the demand for natural gas from the boiler houses of the
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0 x

-
___

y = pR(   )i 22√ x

w/2

y

S ib

2w
___

pR(   )i

area of boilers, to which transition 
to gas is profitable

Fig. 32. The territory of the node is in the form of a circle with an infinite number of boiler houses
distributed evenly over the territory of the node

node is calculated as follows:

DB
i (pi) = 4 ·

min (w/2, R(pi))∫
0


min

(
Sb
i

2w
,
√

R(pi)2 − x2

)
∫
0

vbi · dy
Sb
i

 dx

=
4 · vbi
Sb
i

·

min (w/2, R(pi))∫
0

min

(
Sb
i

2w
,
√
R(pi)2 − x2

)
dx.

Let’s consider five cases of the relative position of the rectangle characterizing the territory of the

node and the circle defining the area for those boiler houses that benefit from switching to gas

(figure 33).
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Fig. 33. Various cases of the relative position of the rectangle characterizing the territory of the
node and the circle defining the area for those boilers that benefit switching to gas: 1) (w/2)2 +(
Sb
i

2w

)2

≤ R(pi)
2; 2) w/2 ≥ R(pi),

Sb
i

2w
≥ R(pi); 3) w/2 ≤ R(pi),

Sb
i

2w
≥ R(pi); 4) (w/2)2 +(

Sb
i

2w

)2

≥ R(pi)
2, w/2 ≤ R(pi),

Sb
i

2w
≤ R(pi); 5) w/2 ≥ R(pi),

Sb
i

2w
≤ R(pi)

Case 1: (w/2)2 +
(
Sb
i

2w

)2

≤ R(pi)
2. In this case, the rectangle is entirely within the circle

and DB
i (pi) =

4 · vbi
Sb
i

·

w/2∫
0

Sb
i · dx
2w

=
4 · vbi
Sb
i

· S
b
i

2w
· w/2 = vbi , that is, all boiler houses benefit from

switching to gas.

Case 2: w/2 ≥ R(pi),
Sb
i

2w
≥ R(pi). In this case

DB
i (pi) =

4 · vbi
Sb
i

·

R(pi)∫
0

√
R(pi)2 − x2 · dx

=
4 · vbi
Sb
i

·
[
x

2
·
√

R(pi)2 − x2 +
R(pi)

2

2
· arcsin

(
x

R(pi)

)]∣∣∣∣R(pi)

x = 0

=
4 · vbi
Sb
i

·
[
R(pi)

2

2
· π
2

]
=

π · vbi ·R(pi)
2

Sb
i

.
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Case 3: w/2 ≤ R(pi),
Sb
i

2w
≥ R(pi). In this case

DB
i (pi) =

4 · vbi
Sb
i

·

w/2∫
0

√
R(pi)2 − x2 · dx

=
4 · vbi
Sb
i

·
[
x

2
·
√

R(pi)2 − x2 +
R(pi)

2

2
· arcsin

(
x

R(pi)

)]∣∣∣∣w/2
x = 0

=
4 · vbi
Sb
i

·

[
w

4
·
√

R(pi)2 −
w2

4
+

R(pi)
2

2
· arcsin

(
w

2 ·R(pi)

)]

=
vbi
Sb
i

·

[
w ·
√

R(pi)2 −
w2

4
+ 2 ·R(pi)

2 · arcsin
(

w

2 ·R(pi)

)]
.

Case 4: (w/2)2 +
(
Sb
i

2w

)2

≥ R(pi)
2, w/2 ≤ R(pi),

Sb
i

2w
≤ R(pi). In this case

DB
i (pi) =

4 · vbi
Sb
i

·



√
R(pi)2−

(
Sb
i

2w

)2∫
0

Sb
i

2w
· dx+

w/2∫
√

R(pi)2−
(

Sb
i

2w

)2

√
R(pi)2 − x2 · dx


=

2 · vbi
w

·

√
R(pi)2 −

(
Sb
i

2w

)2

+
4 · vbi
Sb
i

·
[
x

2
·
√

R(pi)2 − x2 +
R(pi)

2

2
· arcsin

(
x

R(pi)

)]∣∣∣∣w/2
x=

√
R(pi)2−

(
Sb
i

2w

)2

=
2 · vbi
w

·

√
R(pi)2 −

(
Sb
i

2w

)2

+
2 · vbi
Sb
i

·
[
x ·
√

R(pi)2 − x2 +R(pi)
2 · arcsin

(
x

R(pi)

)]∣∣∣∣w/2
x=

√
R(pi)2−

(
Sb
i

2w

)2 =
2 · vbi
w

·

√
R(pi)2 −

(
Sb
i

2w

)2

+
vbi
Sb
i

·

[
w ·
√

R(pi)2 −
w2

4
+ 2 ·R(pi)

2 · arcsin
(

w

2 ·R(pi)

)]

− 2 · vbi
Sb
i

·


√
R(pi)2 −

(
Sb
i

2w

)2

· S
b
i

2w
+R(pi)

2 · arcsin


√

R(pi)2 −
(

Sb
i

2w

)2
R(pi)




=
vbi
w

·

√
R(pi)2 −

(
Sb
i

2w

)2

+
vbi
Sb
i

·

[
w ·
√

R(pi)2 −
w2

4
+ 2 ·R(pi)

2 · arcsin
(

w

2 ·R(pi)

)]

− 2 · vbi ·R(pi)
2

Sb
i

· arccos
(

Sb
i

2 · w ·R(pi)

)
.
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Case 5: w/2 ≥ R(pi),
Sb
i

2w
≤ R(pi). In this case

DB
i (pi) =

4 · vbi
Sb
i

·



√
R(pi)2−

(
Sb
i

2w

)2∫
0

Sb
i

2w
· dx+

R(pi)∫
√

R(pi)2−
(

Sb
i

2w

)2

√
R(pi)2 − x2 · dx


=

2 · vbi
w

·

√
R(pi)2 −

(
Sb
i

2w

)2

+
4 · vbi
Sb
i

·
[
x

2
·
√

R(pi)2 − x2 +
R(pi)

2

2
· arcsin

(
x

R(pi)

)]∣∣∣∣R(pi)

x=

√
R(pi)2−

(
Sb
i

2w

)2

=
2 · vbi
w

·

√
R(pi)2 −

(
Sb
i

2w

)2

+
2 · vbi
Sb
i

·
[
x ·
√
R(pi)2 − x2 +R(pi)

2 · arcsin
(

x

R(pi)

)]∣∣∣∣R(pi)

x=

√
R(pi)2−

(
Sb
i

2w

)2

=
2 · vbi
w

·

√
R(pi)2 −

(
Sb
i

2w

)2

+
π · vbi ·R(pi)

2

Sb
i

− 2 · vbi
Sb
i

·


√
R(pi)2 −

(
Sb
i

2w

)2

· S
b
i

2w
+R(pi)

2 · arcsin


√

R(pi)2 −
(

Sb
i

2w

)2
R(pi)




=
vbi
w

·

√
R(pi)2 −

(
Sb
i

2w

)2

+
π · vbi ·R(pi)

2

Sb
i

− 2 · vbi ·R(pi)
2

Sb
i

· arcsin


√

R(pi)2 −
(

Sb
i

2w

)2
R(pi)



=
vbi
w

·

√
R(pi)2 −

(
Sb
i

2w

)2

+
2 · vbi ·R(pi)

2

Sb
i

· arccos


√

R(pi)2 −
(

Sb
i

2w

)2
R(pi)


=

vbi
w

·

√
R(pi)2 −

(
Sb
i

2w

)2

+
2 · vbi ·R(pi)

2

Sb
i

· arcsin
(

Sb
i

2 · w ·R(pi)

)
.

Validity of (2.18-2.22) follows from the cases considered. ■

Enterprises. Large enterprises with high fuel consumption should be separated into

separate nodes or placed in the center of the node. Medium and small enterprises can be accounted

for either as a separate node, or as one of the components of the node (similar to the case of thermal

power plants and CHP). Let Indi be the set of enterprises in node i ∈ N that require thermal

energy to produce their own goods.
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General model. Let enterprise m ∈ Indi be characterized by the following parameters:

• pm - the external price of the goods produced by the enterprise (rubles/unit);

• vm - the amount of thermal energy consumed, which ensures the output of a unit of goods

(t.c.f./unit);

• cm - non-thermal costs in the production of a unit of goods (rub./unit);

• V max
m - capacity, i.e. the maximum output volume (units/year);

• nm,a, cm,r, cg,bm , ηgm, lm - similar to thermal power plants and CHP.

Let’s denote by cgm the internal costs of using a unit of natural gas (rub. / t.c.f.), which

include the following: the cost of transporting a unit of gas from the center of the node to the

plant, the maximum reduced capital costs for laying the corresponding underwater section of the

gas pipeline, the maximum reduced capital costs for preparing boilers:

cgm = ed · lm + cg,bm .

Let’s consider the task of maximizing the profit of enterprise m. Suppose that cm < pm

(otherwise, it is not profitable to produce goods at any nodal gas price, i.e. there is no demand

for gas). As for the case of thermal power plants and CHP, we will arrange the boilers a1, ..., an

at the disposal of the enterprise by non-decreasing costs of producing a unit of heat ci ≡
cm,rai

ηai

(rub./t.c.f.). Let’s denote by Vi ≡ nm,ai · V max
ai

(t.c.f./year) the maximum volume of thermal

energy generation using the type ai boilers available at the enterprise. Let the demand function

Dm(pi) determine the dependence of the optimal volume of natural gas consumed by enterprise

m (t.c.f./year) from the nodal price pi for natural gas (rub./t.c.f.) in terms of this task.

Let’s denote

D̂m(p̂) ≡

 Dm(p̂), if Dm(p̂) ≥ 0 and p̂ ≤ pm−cm
vm

,

0, otherwise,
(2.23)

where Dm(p̂) is defined similarly to (2.13) with substitution ds to vm · V max
m (figure 34).

Theorem 17. The demand function Dm(pi) for natural gas from enterprise m of node i is

calculated as follows:

Dm(pi) =
1

ηgm
· D̂m

(
pi + cgm

ηgm

)
.

Proof. The proof of this theorem is generally similar to the proof of theorem 14. It is only necessary

to take into account that
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1) the piecewise constant function of the residual demand for thermal energy for this case has

the form (2.23);

2) the value pm−cm
vm

(rub./t.c.f.) is equal to the price of thermal energy, at which it becomes

unprofitable for the enterprise to produce goods;

3) the value vm · V max
m (t.c.f./year) is equal to the amount of thermal energy required to fully

load production.

■

D̂ ( )p̂
v1

v2

v3

c1 c2 c3 p̂

Vmax
mvm

.   

vm

pm c- m

m

Fig. 34. Type of residual demand function D̂m(p̂) for enterprises

Total demand in node i generated by all plants is equal to

DInd
i (pi) =

∑
m∈Indi

Dm(pi).

Simplified model. The simplified model for estimating demand for an enterprise is completely

identical to the similar model for thermal power plants and CHP. We assume that the enterprise

m ∈ Indi is allocated to a separate node and is set by the parameters vm and cm - annual fuel

consumption (t.c.f./year) and the cost of extraction and delivery of a fuel unit used (rub./t.c.f.),

respectively. The natural gas demand function for enterprise m has the following form:

Dm(pi) =


vm, pi ∈ [0, cm),

[0, vm], pi = cm,

0, pi ∈ (cm,+∞),
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where pi is the price of natural gas at node i (rub./t.c.f.). The total demand DInd
i (pi) generated

by all enterprises of the node coincides with Dm(pi).

Rural population. Rural settlements should be separated into separate nodes. We assume

that for each locality it is possible to connect residential buildings to gas for heating and cooking

purposes, and all residential buildings have approximately the same characteristics and are evenly

distributed throughout the node. In the case of gasification, an apartment building (in which,

presumably, one family of hVil people live) is supplied with a gas boiler, the characteristics of which

are common to all nodes: CVil,br (rub./year) - the cost reduced to the annual period (reduction is

carried out similarly to paragraph 1.1.2.), ηVil,br - efficiency. During the gasification of a settlement,

we assume that a distribution network is being built inside the settlement, while each residential

building is connected by a gas pipeline to the center of the node26.

We assume that the rural population of node i ∈ N is characterized by the following

parameters:

• vVili - the current total final volume of thermal energy consumed by the settlement

(t.c.f./year);

• ηVili - average efficiency of available fuel combustion equipment;

• cVili - average current marginal costs for the extraction and delivery of fuel necessary for the

generation of thermal energy (rub/t.c.f.);

• SVil
i - the area of the node’s territory (km2).

• GVil
i - population size.

To estimate the transport costs during the construction and operation of the distribution

network, we use the formula (2.4).

A node in the shape of a circle. Let’s consider an idealized case, as in the simplified

model for estimating demand from boiler houses, in which the territory of the node has the shape

of a circle, the center of the node coincides with the geographical center of the circle, and an infinite

number of residential buildings are distributed evenly throughout the territory of the node.

Let’s denote

cVili = ηVil,br
(
cVili

ηVili

− cVil,bri

)
, (2.24)

where

cVil,bri =
CVil,br ·GVil

i

vVili · hVil
. (2.25)

26 The assumption that each residential building is connected to the center of the node by a gas pipeline is highly
simplifying, but it is acceptable, taking into account the absence of a fixed component in the used estimate of
the transport cost function for gas pipelines (2.4) (the estimate of transport costs for laying K gas pipelines for
K residential houses located close to each other is approximated by the estimate of transport costs for laying
one common gas pipeline used by all these houses).
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Theorem 18. The demand function DVil
i (pi) for natural gas from the rural population of node i

for this idealized case is calculated as follows.

If
cVili

ηVili

< cVil,bri , then

DVil
i (pi) = 0. (2.26)

If 0 ≤ cVili < ed
√

SVil
i

π
, then

DVil
i (pi) =

1

ηVil,br
·


π · vVili

SVil
i · ed2

(
cVili − pi

)2
, pi ∈

[
0, cVili

]
,

0, pi ∈
(
cVili ,+∞

)
.

(2.27)

If cVili ≥ ed
√

SVil
i

π
, then

DVil
i (pi) =

1

ηVil,br
·



vVili , pi ∈
[
0, cVili − ed

√
SVil
i

π

]
,

π · vVili

SVil
i · ed2

(
cVili − pi

)2
, pi ∈

(
cVili − ed

√
SVil
i

π
, cVili

]
,

0, pi ∈
(
cVili ,+∞

)
.

(2.28)

Proof. The number of residential buildings in the node is equal to
GVil

i

hVil
, therefore, with full

gasification of the settlement, the total costs for the purchase of gas boilers are equal to
CVil,br ·GVil

i

hVil

(rub./year), and the cost of a gas boiler in recalculation per unit of generated heat is expressed by

the value (2.25).

When applying reasoning similar to that used in estimating demand for thermal boilers,

taking into account the cost of gas boilers and the population, the following formula is derived to

estimate the demand function for natural gas from the rural population:

DVil
i (pi) =

1

ηVil,br
· π · vVili

SVil
i

min

max

ηVil,br
(
cVili

ηVili

− cVil,bri

)
− pi

ed
, 0

 ,

√
SVil
i

π




2

.

The latter ratio implies that (2.26-2.28) hold. ■

The obtained estimates (2.26-2.28) can also be applied to an arbitrary shape of the site and

any number of boiler houses as a simplification.

A node in the shape of a circle. Now let’s consider the case in which the territory of

the node has the shape of a rectangle of length w and width Sb
i /w. Suppose that the center of
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the node coincides with the center of the rectangle, and an infinite number of boiler houses are

distributed evenly over the territory of the node, similar to the case of a node in the shape of a

circle. Let’s denote

R(pi) ≡
cVili − pi

ed
,

where cVili is defined similarly (2.24).

Theorem 19. The demand function DVil
i (pi) for natural gas from the rural population of node

i for this case is calculated as follows. If R(pi) ≤ 0, then DVil
i (pi) = 0. Otherwise, the following

cases are possible.

1. If (w/2)2 +
(
Sb
i

2w

)2

≤ R(pi)
2, then

DVil
i (pi) =

vbi
ηVil,br

. (2.29)

2. If w/2 ≥ R(pi),
Sb
i

2w
≥ R(pi), then

DVil
i (pi) =

π · vbi ·R(pi)
2

ηVil,br · Sb
i

. (2.30)

3. If w/2 ≤ R(pi),
Sb
i

2w
≥ R(pi), then

DVil
i (pi) =

vbi
ηVil,br · Sb

i

·

[
w ·
√
R(pi)2 −

w2

4
+ 2 ·R(pi)

2 · arcsin
(

w

2 ·R(pi)

)]
. (2.31)

4. If (w/2)2 +
(
Sb
i

2w

)2

≥ R(pi)
2, w/2 ≤ R(pi),

Sb
i

2w
≤ R(pi), then

DVil
i (pi) =

vbi
ηVil,br · w

·

√
R(pi)2 −

(
Sb
i

2w

)2

+
vbi

ηVil,br · Sb
i

·

[
w ·
√

R(pi)2 −
w2

4
+ 2 ·R(pi)

2 · arcsin
(

w

2 ·R(pi)

)]

− 2 · vbi ·R(pi)
2

ηVil,br · Sb
i

· arccos
(

Sb
i

2 · w ·R(pi)

)
. (2.32)
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5. If w/2 ≥ R(pi),
Sb
i

2w
≤ R(pi), then

DVil
i (pi) =

vbi
ηVil,br · w

·

√
R(pi)2 −

(
Sb
i

2w

)2

+
2 · vbi ·R(pi)

2

ηVil,br · Sb
i

· arcsin
(

Sb
i

2 · w ·R(pi)

)
. (2.33)

The proof of the theorem is based on the application of reasoning similar to those used in

the proofs of theorems 16 and 18.

It is worth noting that this model does not assume the presence of centralized heating in

rural settlements. If there is one, then the corresponding demand for centralized boilers should be

considered according to the model described in the subparagraph «thermal boilers». At the same

time, when calculating demand related to individually heated houses, the parameters vVili and GVil
i

described above should be adjusted, removing from consideration the part of the population using

centralized heating.

Total demand and utility of consumption. The gas demand function in the node is

equal to the sum of the components obtained:

Di(pi) = DTPS
i (pi) +DB

i (pi) +DInd
i (pi) +DVil

i (pi).

The consumption utility function Ui(v
d
i ) is related to the total demand function Di(pi) by

the ratios (1.11).

2.6. Analysis of gasification prospects in Irkutsk Oblast

Despite the obvious advantages of natural gas over other hydrocarbons, many regions of

Russia are still not gasified. The rapid development of the domestic gas sector in the last decade,

the experience gained in the implementation of such large-scale gas transportation projects as the

«Power of Siberia» and «Nord Stream 2», as well as the refusal of some Western countries from

Russian gas, give reason to consider the possibility of connecting new regions and cities of our

country to pipeline gas. In this regard, the task of identifying the most promising schemes for the

development of the Russian gas transmission network becomes urgent. To solve this problem, it is

necessary to be able to assess the economic potential of gasification in specific areas of the country.

This paragraph evaluates the prospects for gasification of Irkutsk Oblast. Most of the data used

in it is taken from the decrees of the governor of Irkutsk Oblast on the approval of schemes and
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programmes for the development of the electric power industry [2–4].

Irkutsk Oblast is located on the territory of 767.9 thousand km2 with a population of

2 35727 thousand people. The population is characterized by a low density (3.07 people/km2 with

a national average of 8.58 people./km2) and extremely uneven distribution. The southern and

southwestern parts of the region are most densely populated along the banks of the Angara River

and along the Trans-Siberian Railway. The urban population is 73%.

Water resources, among which it is worth highlighting the large rivers Lena, Angara, Nizhny

Tunguska, as well as Lake Baikal, provide the region with fresh water, fish, hydropower and are

the most important transport component (water transport accounts for about 10% of the region’s

cargo turnover). The most developed economic activities are metallurgy, mining and petrochemical

industries, timber industry and transport. Agriculture and the service sector are poorly developed.

The main fuel in the Siberian Federal District is coal. This is due, firstly, to the development

of coal mining in the region, and secondly, to the lack of access to pipeline gas. The Kovyktinskoye

gas condensate field is located on the territory of Irkutsk Oblast - the largest in terms of gas reserves

in eastern Russia (1.8 trillion m3, [84]). This field, together with Chayandinsky (Yakutia), form

a resource base for gas supplies to China via the «Power of Siberia» gas pipeline. The field is

scheduled to be brought to full capacity in 2033.

Irkutsk Oblast was included in the gasification programme of the regions of Russia only

in [85]. At the St. Petersburg International Economic Forum in June 2022, the Governor of Irkutsk

Oblast, Igor Kobzev, and the Chairman of the «Gazprom» Management Board, Alexey Miller,

signed an updated programme for the development of gas supply and gasification of Irkutsk Oblast

for 2021-2025 [86].

2.6.1. Overview of the main potential natural gas consumers in the region

Thermal power plants and CHP. Centralized electricity production in the region is

carried out by 4 hydroelectric power plants and 14 thermal power plants, while HPPs account for

69.7% of the capacity, and CHP plants account for 30.3%. The total capacity of all power plants

is 13 065.8 MW. All thermal power plants in the region use steam boilers and turbine units, while

99% of the fuel used is solid fuel (mainly coal). There are also about 40 small power plants in the

region that supply settlements isolated from the centralized energy system (CES). Their combined

27 As of January 1, 2022, [83].
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capacity is 19.1 MW.

When converting CHP plants from solid fuel to natural gas, it is necessary to ensure the

preservation of the following three parameters of steam boilers: steam capacity, steam outlet

pressure and steam outlet temperature. In this case, only the part of the CHP equipment that is

responsible for steam generation is subject to modernization. It should be noted separately that it

is also possible to use coal-fired boilers with minor modernization. In the latter case, the efficiency

of boilers, we assume, does not change.

In 2021, the HPPs and CHP plants of Irkutsk Oblast produced 65 040 million kW·h, of

which 11 650 million kW·h were generated at CHP (17.9%). During the same year, the electricity

consumption in the Central Heating system of Irkutsk Oblast amounted to 59 256.2 million kW·h.

In addition to electricity, CHP produced 25.25 million Gcal of thermal energy in 2021 (68.9%

of the total output in the region, excluding electric boiler installations and individual heating

furnaces).

About 7 829.128 thousand t.c.f. of coal and other solid fuels (firewood, wood chips) were

consumed as fuel at the CHP in 2021, the rest (about 1%) is liquid fuel and gas. Assuming that

the efficiency of the boiler equipment is maintained, 6.78 billion m3 of gas per year will be required

to completely replace coal and other solid fuels at CHP with gas. Detailed data on all thermal

power plants in Irkutsk Oblast are shown in table 5.

28 This value is approximate, since data for 2021 were not available for 2 of the 14 CHP plants, data for previous
years were used for them.
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Table 5. Indicators of thermal power plants of Irkutsk Oblast for 2021

Name Coordinates

Consumption
of coal and other
solid fuels,
t.c.f.(vs)

Electricity
generated,
million
kWt·ч

Heat release,
Gcal

Installed
electrical
power,
MW

Installed
thermal
capacity
GCal/h

Novo-Ziminskaya TPP (NZTPP) 54.032, 102.032 564 022 1 086.30 1 570 277 260 818.7

Novo-Irkutsk TPP (NITPP) 52.247, 104.204 1 286 090 2 615.16 5 141 745 708 1 729.1

TI&TS Sector of the Irkutsk
CHP-6 (CHP-7)

56.306, 101.725 216 998 65.35 1 356 475 12 300.8

Shelekhovsky section of
Novo-Irkutskaya TPP (TPP-5)

52.182, 104.093 119 824 88.82 632 154 18 346.7

Irkutsk TPP-6 56.122, 101.602 517 992 646.92 2 291 939 270 1 442.6

Irkutsk TPP-9 52.532, 103.936 1 404 918 1 790.02 6 159 389 540 2398.6

Irkutsk TPP-10 52.461, 103.978 1 164 752 2 991.47 325 176 1 110 563.0

Irkutsk TPP-11 52.782, 103.603 340 706 543.43 948 676 320.3 1 056.9

Irkutsk TPP-12 53.124, 103.134 67 588 51.80 363 545 12 217.5

Irkutsk TPP-16 56.570, 104.141 97 072 77.23 530 208 18 322.5

Ust-Ilimskaya TPP 58.049, 102.806 438 623 779.40 1 810 627 515 1 015.0

TPP LLC «Teplosnabzhenie»
(Baikal TPP)

51.515, 104.182 51 247 59.13 n/a 24 282.8

TPP of JSC «Ilim Group»
in Bratsk

56.111, 101.457 919 729 (estimate) 500.80 n/a 101 n/a

TPP of JSC «Ilim Group
in Ust-Ilimsk

58.043, 102.805 639 520 (estimate) 348.88 n/a 44.4 n/a

Total 7 829 081 11 644.71 21 130 211 3 952.7 10 494.2

Thermal boilers. In Irkutsk oblast, at the beginning of 2021, 991 boiler houses and a large

number of heat recovery units (HRU) and individual heating furnaces (IHF) are involved in the

production of thermal energy, in addition to thermal power plants. Of the total heat generated in

2021 (excluding electric boiler installations and IHF), amounting to 36.66 million Gcals of thermal

energy, 11.41 million Gcals (31.1%) were generated by boilers and IHF.

Boiler houses of Irkutsk Oblast consumed 1 137.2 thousand t.c.f. of coal, 112.0 thousand

t.c.f. of liquid fuel, 21.0 thousand t.c.f. of electricity, 7.5 thousand t.c.f. of gas and 82.0 thousand

t.c.f. of other solid fuels in 201929. To completely replace coal and other solid fuels in boilers with

natural gas, 1.06 billion m3 of gas per year will be required. Detailed data on boiler houses are

given in table 6.

29 At the time of the study, data on fuel consumption by boiler houses in Irkutsk Oblast for later years were not
available.
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Table 6. Indicators of boiler houses of Irkutsk Oblast for 2019

Name of the
municipality

Coordinates

The area
of the
municipality,
km2 (2020, Sb

i )

Number of
boiler houses,
pcs. (2019)

Coal
consumption,
tons (2019)

Consumption
of other
olid fuels,
(tons, 2019)

Consumption
of coal and
other solid
fuels, t.c.f.
(assessment,
2019, vbi )

Bratsk 56.152, 101.634 432 7 96 508 1 499 59 063

Zima 53.921, 102.049 53 11 31 024 0 18 859

Irkutsk 52.290, 104.281 277 34 401 378 0 243 987

Svirsk 53.067, 103.342 39 4 45 474 0 27 642

Tulun 54.557, 100.578 134 24 108 399 0 65 893

Ust-Ilimsk 57.959, 102.735 227 3 0 0 0

Cheremkhovo 53.137, 103.090 119 19 12 170 0 7 398

Angarsk district 52.349, 103.695 1 149 3 0 0 0

Balagansky district 54.668, 102.888 6 347 21 3 899 1 927 2 883

Bodaibinsky district 58.522, 115.853 92 171 22 77 418 0 47 060

Bratsky district 55.720, 101.761 30 838 56 96 127 12 985 61 888

Zhigalovsky district 54.945, 105.364 21 818 14 3 114 2 774 2 631

Zalarinsky district 53.281, 101.570 7 617 30 35 659 0 21 676

Ziminsky district 53.760, 101.539 7 019 27 11 427 0 6 946

Irkutsk district 52.172, 104.897 11 688 36 33 221 1 251 20 527

Kazachinsko-Lensky
district

55.781, 107.836 33 276 11 40 069 2 497 25 021

Katanga district 60.832, 107.434 139 163 8 0 0 0

Kachugsky district 54.109, 106.627 31 395 42 3 837 20 326 7 741

Kirensky district 57.978, 109.212 43 905 18 10 285 52 940 20 339

Kuytunsky district 54.529, 101.600 11 147 44 11 795 2 608 7 864

Mamsko-Chuisky
district

58.106, 112.291 43 134 9 27 027 0 16 429

Nizhneilimsky
district

56.865, 103.759 18 879 26 16 651 105 205 38 115

Nizhneudinsky
district

54.589, 99.106 49 564 79 92 715 11 028 59 294

Olkhonsky district 53.091, 107.194 15 895 13 5 500 1 200 3 663

Slyudyansky district 51.657, 103.718 6 301 21 149 802 0 91 061

Taishet district 55.553, 97.814 27 725 63 203 194 0 123 516

Tulunsky district 54.178, 100.275 13 870 38 12 421 1 060 7 833

Usolsky district 52.416, 103.215 6 252 37 33 099 244 20 185

Ust-Ilimsky district 57.593, 101.640 36 596 13 23 753 20 485 19 889

Ust-Kutsky district 56.950, 105.911 34 604 21 152 743 57 173 108 061

Ust-Udinsky district 55.135, 103.890 20 110 18 6 435 3 550 4 856

Cheremkhovsky
district

52.772, 102.282 9 926 23 40 995 1 040 25 196

Chunsky district 56.765, 99.702 28 036 31 47 845 8 377 31 313

Shelekhovsky district 52.029, 103.848 2 014 16 6 464 0 3 929

Alarsky district 53.318, 102.759 2 651 36 9 921 0 6 030

Bayandaevsky
district

53.138, 105.571 3 756 20 3 358 0 2 041

Bokhansky
district

53.151, 103.920 3 678 32 4 900 0 2 979

Nukutsky district 53.751, 102.881 2 473 22 4 082 0 2 481

Osinsky district 53.603, 104.042 4 402 18 1 300 0 790

Ehirit-Bulagatsky
district

52.922, 104.919 5 153 25 6 777 0 4 120

Total 995 1 870 785 308 169 1 219 200
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The rest of the consumption. In 202030, the consumption of coal and other solid fuels

in Irkutsk Oblast, excluding consumption by thermal power plants and boiler houses, amounted

to only 60331 thousand. t.c.f. At the same time, there is no detailed consumption in the available

data for various settlements and enterprises. Therefore, when estimating the demand function for

natural gas for Irkutsk Oblast, it was decided not to take into account potential consumption by

enterprises and rural populations.

2.6.2. Preparation of the initial task parameters

To assess the prospects for gasification of Irkutsk Oblast, we will build a model of the

natural gas market consisting of producers, consumers and the transport system. We assume that

the expected interest rates on bank deposits are equal to the levels of inflation. The calculation is

carried out in prices at the beginning of 2022.

As production nodes, we use two gas fields that are the resource base for the «Power of

Siberia» gas pipeline: Kovyktinskoye and Chayandinskoye (table 7). Let’s estimate the function

of production costs by the ratio (2.11), i.e. we consider that the marginal production costs are

constant and equal to 2 095 rub./t.c.f.

Table 7. Producing nodes of the natural gas market of Irkutsk Oblast

Node number Producer Coordinates (approximate location)
1 Kovyktinskoye field 55.385, 106.124

2 Chayandinskoye field 59.826, 110.919

We will consider 14 thermal power plants and 40 municipalities of the region as consumers.

For the latter, we will take into account the demand from boiler houses. We will set the demand

functions for natural gas according to formulas (2.15) and (2.16, 2.17), using the estimate obtained

in paragraph 2.3.2. for marginal transport costs for gas pipelines of distribution networks ed =

485.8 (rub./(t.c.f.×km)) and information from tables 5 and 6. To estimate the cost of extraction

and delivery of a fuel unit used (parameters cs and cbi), we take into account data from [87],

according to which in 2011 the cost of coal supply for the CHPP of Irkutsk Oblast was 347-1 042

rub. per ton, while prices differed for various types of coal and different deposits. In prices at the

30 At the time of the study, data for later years were not available.
31 This value is approximate, since there are significant statistical discrepancies in the data on resource consumption

in [2].
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beginning of 2022, the cost of coal supply would be 1 140-3 425 rub./t.c.f. Thus, the average cost32

of extracting and delivering a unit of coal, excluding the producer’s margin, can be taken to be

1 500-2 500 rub./t.c.f.

It is also worth considering the environmental component associated with the fact that the

level of environmental pollution when using coal significantly exceeds similar indicators for natural

gas, which is considered an environmentally friendly type of fuel. Let’s take this component into

account by adding a penalty modifier to the parameters cs and cbi . Let’s consider 7 options for the

values of these parameters: 1 500, 2 000, 2 500, 3 000, 3 500, 5 000, 7 000 (rub./t.c.f.).

To estimate the penalty modifier, you can use the amount of the carbon tax used in many

countries. This tax is levied when carbon dioxide (CO2) is released into the atmosphere and is

proportional to the volume of emissions. The rate of this tax can vary greatly for different countries.

For example, as of April 1, 2022, the tax rate in France was 45 euros per ton of CO2 [88]. It is

known that to generate the same amount of thermal energy, coal combustion emits more CO2

into the atmosphere than natural gas combustion. According to [63], this difference is 1 171 kg.

CO2 per t.c.f. of generated heat. This means that with a tax rate of 45 euros per ton of CO2,

this difference corresponds to a tax of 52.7 euros or 4486 rubles (according to the exchange rate

as of January 1, 2022), which, when taking into account the costs of mining and shipping a unit

of coal, corresponds to scenarios 6-7. However, it must be borne in mind that burning coal also

leads to the release of other pollutants into the atmosphere, in addition to carbon dioxide. These

emissions can also be taken into account in the penalty modifier.

We will divide all consuming nodes into three categories according to the total fuel

consumption:

• consumption of over 100 000 t.c.f./year (category 1);

• consumption in the range of 20 000-100 000 t.c.f./year (category 2);

• consumption is less than 20 000 tons per year (category 3).

Data on consuming nodes are presented in tables 8 and 9.

32 When estimating average costs, the influence of the remoteness of the consuming node from the coal mining site
was not taken into account, thus the average cost of purchasing tons of coal was assumed to be the same for all
nodes.
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Table 8. Consuming nodes of the Irkutsk Oblast natural gas market (TTP)
Node
number

Consumer Coordinates
vs (fuel consumption
per plant, t.c.f./year)

Category

3 Novo-Ziminskaya TPP (NZTPP) 54.032, 102.032 564 022 1
4 Novo-Irkutskaya TPP (NITPP) 52.247, 104.204 1 286 090 1
5 TI&TS of the Irkutsk TPP-6 (TPP-7) 56.306, 101.725 216 998 1
6 Shelekhovsky section of Novo-Irkutskaya TPP (TPP-5) 52.182, 104.093 119 824 1
7 Irkutsk TPP-6 56.122, 101.602 517 992 1
8 Irkutsk TPP-9 52.532, 103.936 1 404 918 1
9 Irkutsk TPP-10 52.461, 103.978 1 164 752 1
10 Irkutsk TPP-11 52.782, 103.603 340 706 1
11 Irkutsk TPP-12 53.124, 103.134 67 588 2
12 Irkutsk TPP-16 56.570, 104.141 97 072 2
13 Ust-Ilimskaya TPP 58.049, 102.806 438 623 1
14 TPP LLC «Teplosnabzhenie» (Baikal TPP) 51.515, 104.182 51 247 2
15 TPP of JSC «Ilim Group» in Bratsk 56.111, 101.457 919 729 (estimate) 1
16 TPP of JSC «Ilim Group in Ust-Ilimsk 58.043, 102.805 639 520 (estimate) 1

Total 7 829 081
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Table 9. Consuming nodes of the natural gas market of Irkutsk oblast (boiler houses)

Node
number

Consumer Coordinates ed
√

Sb
i

π

(
rub.
t.c.f.

)
π · vbi
Sb
i · ed

2

(
t.c.f.3

rub.2 × year

) vbi (total fuel
consumption
of the boiler
houses,
t.c.f./year)

Category

17 Bratsk 56.152, 101.634 5 699 1.818× 10−3 59 063 2
18 Zima 53.921, 102.049 1 993 4.750× 10−3 18 859 3
19 Irkutsk 52.290, 104.281 4 565 1.171× 10−2 243 987 1
20 Svirsk 53.067, 103.342 1 703 9.528× 10−3 27 642 2
21 Tulun 54.557, 100.578 3 167 6.569× 10−3 65 893 2
22 Ust-Ilimsk 57.959, 102.735 4 127 0 0 3
23 Cheremkhovo 53.137, 103.090 2 985 8.303× 10−4 7 398 3
24 Angarsk district 52.349, 103.695 9 289 0 0 3
25 Balagansky district 54.668, 102.888 21 836 6.046× 10−6 2 883 3
26 Bodaibinsky district 58.522, 115.853 83 211 6.797× 10−6 47 060 2
27 Bratsky district 55.720, 101.761 48 131 2.672× 10−5 61 888 2
28 Zhigalovsky district 54.945, 105.364 40 484 1.605× 10−6 2 631 3
29 Zalarinsky district 53.281, 101.570 23 921 3.788× 10−5 21 676 2
30 Ziminsky district 53.760, 101.539 22 963 1.317× 10−5 6 946 3
31 Irkutsk district 52.172, 104.897 29 632 2.338× 10−5 20 527 2

32
Kazachinsko-Lensky
district

55.781, 107.836 49 997 1.001× 10−5 25 021 2

33 Katanga district 60.832, 107.434 102 246 0 0 3
34 Kachugsky district 54.109, 106.627 48 564 3.282× 10−6 7 741 3
35 Kirensky district 57.978, 109.212 57 430 6.167× 10−6 20 339 2
36 Kuytunsky district 54.529, 101.600 28 938 9.391× 10−6 7 864 3

37
Mamsko-Chuisky
district

58.106, 112.291 56 924 5.070× 10−6 16 429 3

38
Nizhneilimsky
district

56.865, 103.759 37 659 2.688× 10−5 38 115 2

39
Nizhneudinsky
district

54.589, 99.106 61 019 1.592× 10−5 59 294 2

40 Olkhonsky district 53.091, 107.194 34 555 3.067× 10−6 3 663 3
41 Slyudyansky district 51.657, 103.718 21 757 1.924× 10−4 91 061 2
42 Taishet district 55.553, 97.814 45 637 5.930× 10−5 123 516 1
43 Tulunsky district 54.178, 100.275 32 279 7.517× 10−6 7 833 3
44 Usolsky district 52.416, 103.215 21 671 4.298× 10−5 20 185 2
45 Ust-Ilimsky district 57.593, 101.640 52 432 7.235× 10−6 19 889 3
46 Ust-Kutsky district 56.950, 105.911 50 986 4.157× 10−5 108 061 1
47 Ust-Udinsky district 55.135, 103.890 38 868 3.215× 10−6 4 856 3

48
Cheremkhovsky
district

52.772, 102.282 27 306 3.379× 10−5 25 196 2

49 Chunsky district 56.765, 99.702 45 892 1.487× 10−5 31 313 2
50 Shelekhovsky district 52.029, 103.848 12 299 2.597× 10−5 3 929 3
51 Alarsky district 53.318, 102.759 14 112 3.028× 10−5 6 030 3

52
Bayandaevsky
district

53.138, 105.571 16 798 7.234× 10−6 2 041 3

53
Bokhansky
district

53.151, 103.920 16 622 1.078× 10−5 2 979 3

54 Nukutsky district 53.751, 102.881 13 631 1.336× 10−5 2 481 3
55 Osinsky district 53.603, 104.042 18 185 2.390× 10−6 790 3

56
Ehirit-Bulagatsky
district

52.922, 104.919 19 675 1.064× 10−5 4 120 3

Total 1 219 200

We will build a transport system for the market using the section of the «Power of Siberia»

gas pipeline passing through the Kovyktinskoye and Chayandinskoye fields. We assume that this
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section has a sufficient reserve capacity, and the cost of transporting 1 t.c.f. of natural gas per 1

km along it is 0.739 rub. (see paragraph 2.3.1.). Let’s combine all the producing and consuming

nodes into a single tree network in three stages. First, we connect the consuming nodes of the first

category with the producing nodes, while sequentially connecting the nearest isolated consuming

node to the network. After that, we will perform a similar procedure for consuming nodes of the

second and third categories. The resulting scheme of the transport system consists of 6 existing

and 76 potential lines and is shown in figures 35-40. Nodes numbered 57-83 are intermediate.

- main gas pipeline «Power of Siberia»

 - potential transportation line

- producing node

- consuming node of the category 3

- consuming node of the category 2

- consuming node of the category 1

- intermediate node

Irkutsk oblast

Kovykta field

Chayandinskoye field

China

Fig. 35. The scheme of the transport system of the natural gas market of Irkutsk Oblast (complete)
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- main gas pipeline «Power of Siberia»

 - potential transportation line

- producing node

- consuming node of the category 3

- consuming node of the category 2

- consuming node of the category 1

- intermediate node

Fig. 36. The scheme of the transport system of the natural gas market of Irkutsk Oblast (enlarged)
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- main gas pipeline «Power of Siberia»

 - potential transportation line

- producing node

- consuming node of the category 3

- consuming node of the category 2

- consuming node of the category 1

- intermediate node

Fig. 37. The scheme of the transport system of the natural gas market of Irkutsk Oblast (Ust-
Ilimsk)

- main gas pipeline «Power of Siberia»

 - potential transportation line

- producing node

- consuming node of the category 3

- consuming node of the category 2

- consuming node of the category 1

- intermediate node

Fig. 38. The scheme of the transport system of the natural gas market of Irkutsk Oblast (Bratsk)
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- main gas pipeline «Power of Siberia»

 - potential transportation line

- producing node

- consuming node of the category 3

- consuming node of the category 2

- consuming node of the category 1

- intermediate node

Fig. 39. The scheme of the transport system of the natural gas market of Irkutsk Oblast (Tulun)

- main gas pipeline «Power of Siberia»

 - potential transportation line

- producing node

- consuming node of the category 3

- consuming node of the category 2

- consuming node of the category 1

- intermediate node

Fig. 40. The scheme of the transport system of the natural gas market of Irkutsk Oblast (Irkutsk)



125

As functions of transport costs for potential lines, we use the estimate (2.2), while assuming

that the length of each line is 25% longer than the shortest distance between its incident nodes.

Detailed descriptions of the lines are provided in the Appendices (tables 11, 12).

2.6.3. Calculation results

This section describes the results of applying the developed algorithms described in the

first chapter of the work to optimize the constructed model of the natural gas energy market in

Irkutsk Oblast. For 7 scenarios with different values of the cost of extraction and delivery of a

fuel unit used, taking into account the environmental component (parameters cs and cbi), the main

calculation results are presented in table 10. Detailed results are presented in the Appendices

(tables 13-15).

Table 10. Main results of optimization of the transport system of the natural gas market of Irkutsk
Oblast for various scenarios
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n
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io
4

S
ce

n
ar

io
5
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6
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ce

n
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io
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Cost of extraction and delivery
of a fuel unit used, taking into account
the environmental component, rub./t.c.f.

1 500 2 000 2 500 3 000 3 500 5 000 7 000

Economic effect, mln rub./year 0 656.4 11 841.7 27 599.3
Number of expandable lines 0 10 33 38
Total length of expandable lines, km 0 686.5 1 348.5 1 511.4
Total flow on all lines, mln (t.c.f.×km)/year 0 1 944.7 8 829.5 9 115.8
Number of nodes with positive consumption 0 6 16 20
Total consumption of natural gas, thousand
t.c.f. per year

0 2 732.9 7 750.4 8 023.5

The average number of auxiliary problems
solved

305 1 169 71 285 27 667 15 659

As can be seen from the table, with low costs for the extraction and delivery of a unit of the

type of fuel used (scenarios 1-4), gasification of Irkutsk Oblast is impractical. At costs from 3 500

rub./t.c.f. gasification brings a positive annual effect, which is equal to 656.4 mln rub., 11.8 billion

rub. and 27.6 billion rub. for scenarios 5, 6 and 7, respectively. However, these three scenarios are

implemented only if the environmental component is taken into account.

Figures 41, 42 show a diagram of a transport system consisting only of lines the expansion
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of which is optimal for scenario 7. For this scenario, the optimal plan for the development of the

transport system involves connecting all thermal power plants with the Kovyktinskoye field, except

for Baikal, the cities of Bratsk, Zima, Irkutsk, Svirsk, Cheremkhovo, as well as Nizhneilimsky and

Ust-Kutsky districts. At the same time, the CHP is undergoing a complete transition to natural

gas, and cities and districts are partially gasified.

The estimates obtained are rather rough due to the numerous simplifications and

assumptions that had to be made, including due to the lack of access to up-to-date detailed data.

Therefore, the results of the analysis of the prospects for gasification of Irkutsk oblast should not

be taken as a kind of recommendation, rather as an example of using the developed algorithms

and methods.

It is also worth paying attention to the number of auxiliary tasks to be solved, which directly

affects the time to solve the original problem33. This number is the largest for scenario 5 (71 285

≈ 216). In the case of a complete search of all possible sets of expandable lines, this number would

be 276 ≈ 1023 (76 is the number of potential transmission lines). Thus, the calculations performed

showed that the developed algorithms can be used to plan the development of real energy markets

with a large number of nodes and find the optimal plan for the development of the transport

system, maximizing social welfare, in a reasonable time34.

33 As it was proved in paragraph 1.3.7., when certain conditions are met, the complexity of the algorithm for
solving the auxiliary problem is proportional to the square of the number of nodes in the market.

34 Scenario 5 was calculated in 6.5 seconds on the personal computer of the study’s author.
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- main gas pipeline «Power of Siberia»

 - potential transportation line

- producing node

- consuming node of the category 3

- consuming node of the category 2

- consuming node of the category 1

- intermediate node

Fig. 41. Optimal set of expandable lines for Irkutsk Oblast natural gas market for scenario 7
(complete; non-expandable lines were removed from the original scheme)
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- main gas pipeline «Power of Siberia»

 - potential transportation line

- producing node

- consuming node of the category 3

- consuming node of the category 2

- consuming node of the category 1

- intermediate node

Fig. 42. The optimal set of expandable lines for Irkutsk Oblast natural gas market for scenario 7
(Irkutsk; non-expandable lines were removed from the original scheme)
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Conclusions to the second chapter

In this chapter, methods for estimating the initial parameters for the energy market model

studied in the work were proposed. These parameters are the functions of production costs, demand

and transmission costs. Although these methods have been developed for the natural gas market,

they can also be adapted for other markets.

Two types of gas pipelines are considered: main and distribution pipelines. For each type,

an estimate of the transport cost function for the construction of a new gas pipeline is derived.

This estimate depends on the capacity and length of the gas pipeline.

For a gas field, the problem of modelling the production cost function is investigated. It

is proposed to calculate production costs according to one of two models. The first model was

actively used to perform calculations for many groups of gas fields in the USSR. The second

model is simplified, it assumes that marginal production costs are constant. The corresponding

estimate is derived for the latter.

To assess the demand function in a node that is an arbitrary non-gasified entity or

municipality of the Russian Federation, a method has been developed based on dividing the main

gas consumers into several groups and evaluating the corresponding component of the demand

function for each group.

The developed algorithms and methods were applied to assess the prospects of gasification

of Irkutsk Oblast. The possibility of connecting thermal power plants and boiler houses in the

region to the main gas pipeline «Power of Siberia» was considered. According to the calculations

based on data on the characteristics of thermal power plants and boiler houses in the region for

2021-2022, gasification brings a positive effect only if the environmental component is taken into

account, expressed in the form of a fine for burning each unit of coal currently used in the region.

The calculations also showed that the algorithms developed in the first chapter of the work enable

solving the initial problem of maximizing social welfare in a reasonable time, even for a large

number of nodes, which enables using these algorithms to plan the development of real energy

markets.
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Conclusion

In the course of the study, the following main scientific results were obtained:

1) • for a multi-node energy market of a single resource of the star-type (and the more

general case of the tree-type market), in which fixed costs are present when expanding

transport lines that do not depend on the volume of expansion, the initial task of

optimizing the transport system in terms of maximizing social welfare is NP-hard;

2) • for the auxiliary task of optimizing a transport system with a fixed set of expandable

lines, which is a convex programming problem, a special solution algorithm has been

developed;

• its complexity is estimated for the case of piecewise linear initial functions: the number

of computational operations of the algorithm does not exceed the value of some

predetermined quadratic function of the number of nodes in the market;

3) • algorithms for solving the initial problem for various transport structures have been

developed for the case of the flow structure invariance condition being met, in which the

directions of flows in transmission lines are constant and do not depend on transmission

capacities; algorithms have been developed for the following transport structures:

«chain», «star», «star-chain»;

• the average statistical complexity of these algorithms is investigated: for computational

experiments with random generation of initial problems for each of the three cases, even

for a large number of nodes (more than 50), the initial problem is solved in a reasonable

time, and the dependence of the average number of solved auxiliary problems on the

number of nodes in the market is approximated by a quadratic function;

4) • for the natural gas market, methods have been developed for estimating the demand

functions for non-gasified nodes;

5) • the developed algorithms and methods are applied to assess the prospects of gasification

of Irkutsk oblast with the possibility of connecting thermal power plants and boiler

houses of the region to the main gas pipeline «Power of Siberia»;

• according to the calculations based on data on the characteristics of thermal power

plants and boiler houses in the region for 2021-2022, gasification brings a positive effect

only if the environmental component is taken into account, expressed in the form of a

fine for burning each unit of coal currently used in the region;
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• the calculations performed showed that the developed algorithms can be used in

planning the development of real energy markets and allow solving the initial problem

in a reasonable time.

Thus, in the course of the study, methods of effective planning for the development of

transport systems of energy markets were developed, and also, using the example of Irkutsk

Oblast, it is shown how these methods can be used to assess the prospects for gasification of

specific regions of the Russian Federation. The results obtained correspond to the purpose of

the study and can be used in planning the development of real gas or oil transportation energy

systems.
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List of acronyms and symbols

• AGPPS - Advanced Gas Production

Planning System;

• AS USSR - Academy of Sciences of the

USSR;

• BCS - booster compressor station;

• CEMI RAS - Central Economic and

Mathematical Institute of the Russian

Academy of Sciences;

• CHP - combined heat and power;

• etc. - so on;

• FAS - Federal Antimonopoly Service;

• FSIC - the flow structure invariance

condition;

• Gcal - gigacalory;

• GPP - gas processing plant;

• HAC - Higher Attestation Commission;

• HPS - hydroelectric power station;

• HRU - heat recovery unit;

• IEEE - Institute of Electrical and Electronics

Engineers;

• IHF - individual heating furnace;

• IMP RAS - Institute of Management

Problems of the Russian Academy of

Sciences;

• J - joule;

• JSC - joint-stock company;

• kcal - kilocalory;

• kg - kilogram;

• km - kilometer;

• km2 - square kilometer;

• kW - kilowatt;

• LLC - limited liability company;

• m3 - cubic meter;

• MJ - megajoule;

• MRI - magnetic resonance imaging;

• MW - megawatt;

• n. - number;

• NITPP - Novo-Irkutskaya TPP;

• NP - non-deterministic polynomial;

• NPP - nuclear power plant;

• NZTPP - Novo-Ziminskaya TPP;

• p. - page;

• REC - Russian Economic Congress;

• RES - renewable energy sources;

• RF - Russian Federation;

• rub. - ruble;

• t - ton;

• t.c.f. - ton of conventional fuel;

• TPP - thermal power plant;

• USA - United States of America;

• USSR - Union of Soviet Socialist Republics;

• vol. - volume;

• № - number.
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1874.

[9] Wald, A. Uber einige Gleichungssysteme der mathematischen Okonomie // Zeitschrift fur

Nationalokonomie. Vol. 7. 1936. P. 637–670, translated as «On Some Systems of Equations of

Mathematical Economics» // N.Y.: Econometrica. Vol. 19. October, 1951. P. 368–403.

[10] Debreu, G. Valuation Equilibrium and Pareto Optimum // Proceedings of the National

Academy of Sciences of the USA. 1954. Vol. 40. N. 7. P. 588–592.

[11] Crew, M. A. The Theory of Peak-Load Pricing: A Survey / M. A. Crew, C. Fernando,

P. R.Kleindorfer // Journal of Regulatory Economics. 1995. Vol. 8. P. 215–248.

[12] Davidson, M. R. Mathematical model of the competitive wholesale electricity market in Russia

/ M. R. Davidson, Yu. V. Dogadushkina, E. M. Kreines et al. // M.: Bulletin of the Academy

of Sciences (Izvestiya Akademii Nauk). Theory and control systems. 2004. № 3. P. 72–83.

[13] A mathematical model of energy system management in the conditions of a competitive

wholesale electricity and capacity market in Russia / M. R. Davidson [et al.] // M.: Izvestiya

RAS. Theory and control systems. 2009. Vol. 2. P. 84–94.

[14] Davidson, M. R. Mathematical Model of Power System Management in Conditions of

a Competitive Wholesale Electric Power (Capacity) Market in Russia / M. R. Davidson,

Y. V.Dogadushkina, E. M. Kreines, N. M. Novikova, A. V. Seleznev, Y. A. Udaltsov, L. V.

Shiryaeva // M.: Journal of Computer and Systems Sciences International. 2009. N. 48. P. 243–

253.

[15] Hogan, W. Competitive electricity market design: a wholesale primer: tech. rep. / W. Hogan.

Massachusetts: Harvard Electricity Policy Group. 1998.

[16] Vasin, A. A. Electricity Markets Analysis and Design / A. A. Vasin, P. A. Vasina. Working

Paper 2006/053: tech. rep. / Moscow New Economic School. 2006.

[17] Vogelsang, I. Price Regulation for Independent Transmission Companies / I. Vogelsang //

Journal of Regulatory Economics. 2001. Vol. 20. N. 2. P. 141–165.

[18] Edoli, E. Optimization Methods for Gas and Power Markets: Theory and Cases / E. Edoli,

S. Fiorenzani, T. Vargiolu. Palgrave Macmillan, Basingstoke. 2016. XVII. 192.



135

[19] Wu, F. Adaptive convex relaxations for gas pipeline network optimization / F. Wu, N. Harsha,

A. Zlotnik, R. Sioshansi, A. M. Rudkevich // IEEE Conference Proceedings. 2017. Vol. 2017.

P. 4710–4716.

[20] Roger, Z. R.-M. Optimization problems in natural gas transportation systems: a state-of-

the-art review /Z. R.-M. Roger, B.-S. Conrado // Appl. Energy, 147(1). 2015. P. 536–555.

[21] Rosellon, J. Different Approaches Towards Electricity Transmission Expansion / J. Rosellon

// Review of Network Economics. 2003. Vol. 2. №. 3. P. 238–269.

[22] Joskow, P. L. Transmission Rights and Market Power on Electric Power Networks /

P. L. Joskow, J. Тirole // RAND Journal of Economics. 2000. Vol. 31. P. 450–487.

[23] Levit, B. Yu. Nonlinear network transport problems / B. Yu. Leviticus, V. N. Livshits.

Moscow, 1972. 144 p.

[24] Gomes, P. V. Hybrid genetic algorithm for multi-objective transmission expansion planning

/ P. V. Gomes, J. T. Saraiva // IEEE International Energy Conference (ENERGYCON).

Belgium, 2016. April 4–8.

[25] Zhao, H.-S. Optimal computation of the transmission system expansion planning using the

branch and bound method / H.-S. Zhao, L. Chen, T. Wu // Asia-Pacific Power and Energy

Engineering Conference. 2009.

[26] Choi, J. A method for transmission system expansion planning considering probabilistic

reliability criteria. / J. Choi, T. Tran, A. A. El-Keib, R. Thomas, H. S. Oh, R. Billinton

// IEEE Trans. Power Syst. 2005. 20(3). P. 1606–1615.

[27] Soleimani, K. Considering FACTS in optimal transmission expansion planning engineering /

K. Soleimani, J. Mazloum // Technol. Appl. Sci. Res. 7(5). 2017. P. 1987–1995.

[28] Jabr, R. A. Optimization of AC transmission system planning / R. A. Jabr // IEEE Trans.

Power Syst. 28(3). 2013. P. 2779–2787.

[29] Vasin, A. А. A two-node market in conditions of imperfect competition / A. А. Vasin, E. А.

Daylova. MTIP. 6:3 (2014). P. 3–31.

[30] Daylova, E. А. Game-theoretic models of forward and network markets of homogeneous

goods: dis. ... candidate of Physical and Mathematical Sciences: 01.01.09; defended: 23.12.2014;

approved: 17.10.2014 / Ekaterina Alexandrovna Daylova. Moscow, 2014. 116 p.



136

[31] Vasin, A. Optimization of transmission capacities for multinodal markets / A. Vasin,

M.Dolmatova // Procedia Computer Science. 91, 2016. P. 238–244.

[32] Dolmatova, M. S. Game-theoretic models and optimization problems of energy markets:

dissertation ... Candidate of Physical and Mathematical Sciences: 01.01.09; defended:

26.06.2017; approved: 05.04.2017 / Marina Stanislavovna Dolmatova. Moscow, 2017. 95 p.

[33] Khachaturov, R. V. Algorithms for maximizing supermodular functions and their application

to optimize the grouping of regions in the region / R. V. Khachaturov // J. calculation. matem.

and math. phys. 39:1 (1999). P. 33–44; Comput. Math. Math. Phys. 39:1 (1999). Р. 29–39.

[34] Khachaturov, R.V. Basic properties of cube lattices, algorithms for their construction and

possibilities of application in discrete optimization / R.V. Khachaturov // J. calc. matt. and

mathematical phys. 2015. Vol. 55. No. 1. P. 121–134.

[35] Cherenin, V. P. The solution of some combinatorial optimal planning problems by the method

of sequential calculations / V. P. Cherenin // Scientific and methodological materials of the

economic and mathematical seminar of the LEMM Academy of Sciences of the USSR. Moscow,

1962. Vol. 2.

[36] Khachaturov, V. R. Mathematical methods of regional programming / V.R.Khachaturov. M.,

1989. 297 p.

[37] Carmanov, V. G., Mathematical programming / V. G., Carmanov. Moscow: Nauka, 1986.

[38] Gary, M. Computing machines and intractable problems / M. Gary, D. Johnson. Moscow:

Mir, 1982.

[39] Kantorovich, L. V. Application of mathematical methods in the analysis of cargo flows / L. V.

Kantorovich, M. K. Gavurin // Compendium of articles Problems of improving the efficiency

of transport. USSR Academy of Sciences. 1949. P. 110–138.

[40] Guisewite, G. M. Minimum concave-cost network flow problems: applications, complexity,

and algorithms / G. M. Guisewite, P. M. Pardalos // Ann. Oper. Res. 25(1). 1990. P. 75–99.

[41] Vasin, A. А. Optimization of the energy market transport system / A. А. Vasin, O. M.

Grigorieva, N. I. Tsyganov // Reports of the Academy of Sciences. 2017. Vol. 475. No. 4. P.

377–381.



137

[42] Vasin, A. A. Optimization of Transmission Systems for Chain-Type Markets / A. A. Vasin,

N. I. Tsyganov // Сборник «Communications in Computer and Information Science, серия

Optimization and Applications. OPTIMA 2018», Springer International Publishing Cham,

2019. Vol. 974, P. 482–493.

[43] Vasin, A. A. A model for optimization of transport infrastructure for some homogeneous goods

markets / A. A. Vasin, O. M.Grigoryeva, N. I. Tsyganov // Journal of Global Optimization.

2020. Vol. 76. № 3. P. 499–518.

[44] Vasin, A. A. Energy markets: Optimization of transmission networks / A. A. Vasin,

O. M. Grigoryeva, N. I. Tsyganov // International Journal of Public Administration. 2019.

Vol. 42. № 15. P. 1311–1322.

[45] Tsyganov, N. I. Methods for assessing the prospects of gasification of the country’s regions /

N. I. Tsyganov, A. A. Vasin // Procedia computer science. 2022. Vol. 214. P. 883–891.

[46] Tsyganov, N. I. Optimization of the transport system for «chain»-type markets /

N. I.Tsyganov // Compendium of abstracts «Sociophysics and socioengineering 2018».

Proceedings of the Second All-Russian Interdisciplinary Conference, May 23-25, 2018, Moscow:

IMP RAS. P. 373–374.

[47] Vasin, A. A. Energy markets: optimization of transportation system / A. A. Vasin, O.

M.Grigoryeva, N. I. Tsyganov // Compendium «IX Moscow International Conference on

Operations Research (ORM2018)». Moscow: OOO «MAX Press», October 22-27, 2018 Vol.

1, P. 183–190.

[48] Tsyganov, N. I. Optimization of the transport network for the «star-type» energy market / N.

I. Tsyganov // Compendium «Tikhonov readings»: scientific conference: abstracts of reports.

Moscow: «MaxPress» LLC. 2019. P. 69.

[49] Vasin, A. А. Algorithms for optimizing the transmission network of some energy markets

/ A. А. Vasin, N. I. Tsyganov // Compendium «Lomonosov readings-2020». Theses.

Section «Computational Mathematics and Cybernetics», Series «Section of Computational

Mathematics and Cybernetics». Moscow: Publishing House of Moscow University (Moscow),

P. 43–45.

[50] Tsyganov, N. I. Algorithms for optimizing the transport structure of the energy market of

the «tree»-type / N. I. Tsyganov, I. I. Silaev // Compendium «Tikhonov readings»: scientific

conference: abstracts of reports. Moscow: «MaxPress» LLC. 2021. P. 109.



138

[51] Vasin, A. А. Game theory and models of mathematical economics / A. А. Vasin, V. V.

Morozov. Moscow: «MaxPress» LLC. 2005.

[52] Stoft, S. Power System Economics: Designing Markets for Electricity / S. Stoft. N. Y.: Wiley,

2002.

[53] Kleinberg, J. Algorithm Design / J. Kleinberg, E. Tardos. L.: Pearson Education. 2006.

[54] Vasiliev, F. P. Numerical methods for solving extreme problems / F. P. Vasiliev. Moscow:

Nauka, 1988.

[55] Sukharev, A. G., Course of optimization methods / A. G., Sukharev, A. V. Timokhov, V. V.

Fedorov. Moscow: Nauka, 1985.

[56] Silaev, I. I. Methods of optimization of the transport structure of the energy market of the

«tree» type: final qualification work (master’s thesis) / Ivan I. Silaev. Lomonosov Moscow State

University. Faculty of Computational Mathematics and Cybernetics. Department of Operations

Research. Scientific supervisor: А. Vasin. Moscow, 2022. 32 p.

[57] Yushkov, I. R. Development and operation of oil and gas fields: method. textbook / I.

R. Yushkov, G. P. Khizhniak, P. Yu. Ilyushin. Perm: Publishing House of Perm. National

Research. Polytech. University, 2013. 177 p.

[58] Minkhanov, I. F. Development of oil and gas fields: method. textbook / I. F. Minkhanov, S.

A. Dolgikh, M. A. Bartholomew. Kazan: KFU, 2019. 96 p.

[59] Dake, L. P. Fundamentals of the development of oil and gas fields - Fundamentals of Reservoir

Engineering / L. P. Dyke; ed. E. M. Simkin; translated from English. B. L. Falaleev. Moscow:

«Premium Engineering», 2009. 572 p.

[60] Zakirov, S. N. Design and development of gas fields / S. N. Zakirov, B. B. Lapuk. M.: Nedra.

1974. 376 p.

[61] Margulov, R. D. System analysis in the long-term planning of gas production / R. D.Margulov,

V. R. Khachaturov, A. V. Fedoseev. Moscow: Nedra, 1992. 287 p.

[62] Bryukhanov, O. N. Gasified boiler units: Textbook / O. N. Bryukhanov, V. А. Kuznetsov.

Moscow: INFRA-M, 2005. 392 p.



139

[63] Salovaar, J. Coal to natural gas fuel switching and CO2 emissions reduction // Harvard

College. 2011. 93 p.

Digital resources

[64] The head of the Ministry of Natural Resources said when Russia will run

out of oil and gas // RBC. Business. 11.05.2021. - [Digital resource]. URL:

https://www.rbc.ru/business/11/05/2021/609971fe9a7947e065f63cd4 (date of reference

01.05.2022).

[65] Novak estimated gas and oil reserves in Russia // RIA Novosti. 27.02.2019. - [Digital resource].

URL: https://ria.ru/20190227/1551393861.html (date of reference 01.05.2022).

[66] Fuel and Energy Complex of Russia - 2019: stat. compendium// Analytical Center

under the Government of the Russian Federation. Issue June. 2020. 62 p. - [Digital

resource]. URL: https://ac.gov.ru/uploads/2-Publications/TEK_annual/TEK.2019.pdf (date

of reference 01.05.2022).

[67] Renewables 2021 // Global status report. 2021. 371 p. - [Digital resource]. URL:

https://www.enerdata.net/about-us/case-study/renewable-global-status-ren21-2021.pdf (date

of reference 01.05.2022).

[68] Renewables 2011 // Global status report. 2021. 116 p. - [Digital resource].

URL: https://www.ren21.net/Portals/0/documents/Resources/GSR2011_FINAL.pdf (date

of reference 01.05.2022).

[69] World energy outlook 2021 // International energy agency. 2021. 386 p. - [Digital

resource]. URL: https://iea.blob.core.windows.net/assets/88dec0c7-3a11-4d3b-99dc-

8323ebfb388b/WorldEnergyOutlook2021.pdf (date of reference 01.05.2022).

[70] World nuclear performance report 2021 // World nuclear association. 2021. 68 p. -

[Digital resource]. URL: https://www.world-nuclear.org/getmedia/891c0cd8-2beb-4acf-bb4b-

552da1696695/world-nuclear-performance-report-2021.pdf.aspx (date of reference 01.05.2022).

[71] Advantages of nuclear energy // Rosatom. About the nuclear industry. - [Digital resource].

URL: https://www.rosatom.ru/about-nuclear-industry/preimushchestva-atomnoy-energetiki/

(date of reference 01.05.2022).



140

[72] The head of Rosatom spoke about the world’s uranium reserves for nuclear power plants

// Digital Information Agency «Prime». Energy. 11.11.2021. - [Digital resource]. URL:

https://1prime.ru/energy/20211111/835194106.html (date of reference 01.05.2022).

[73] Database of indicators of municipalities. Federal State Statistics Service. - [Digital resource].

URL: https://www.gks.ru/dbscripts/munst/ (date of reference 01.05.2022).

[74] The socio-economic situation of the subjects of the Russian

Federation. Federal State Statistics Service. - [Digital resource]. URL:

https://rosstat.gov.ru/storage/mediabank/sep_region1.htm (date of reference 01.05.2022).

[75] The balance of energy resources for 2019 - [Digital resource]. URL:

https://rosstat.gov.ru/storage/mediabank/2EuHouQF/en_balans2019.htm (date of reference

01.05.2022).

[76] Putin took part in the launch ceremony of the first line of the Amur Gas

Processing Plant // RBC. Business. 09.06.2021. - [Digital resource]. URL:

https://www.rbc.ru/rbcfreenews/60c0a7c89a7947613db96bd3 (date of reference 01.05.2022).

[77] The cost of construction of the «Power of Siberia» gas pipeline exceeded

1 trillion rubles. // RBC. Business. 27.04.2018. - [Digital resource]. URL:

https://www.rbc.ru/business/27/04/2018/5ae344799a794785d0b58ea9? (date of reference

01.05.2022).

[78] The «Power of Siberia» gas pipeline is the largest gas transportation system in Eastern

Russia. - [Digital resource]. URL: https://www.gazprom.ru/projects/power-of-siberia/ (date

of reference 01.05.2022).

[79] «Gazprom» has proposed to increase the tariff for pumping

competitors’ gas // RBC. 28.06.2017. - [Digital resource]. URL:

https://quote.rbc.ru/news/article/5ae098132ae5961b67a1b2a8? (date of reference 01.05.2022).

[80] The official portal of the Unified Gasification Operator of the Russian Federation. - [Digital

resource]. URL: https://connectgas.ru (date of reference 01.05.2022).

[81] The real price for a cubic meter is now known: official data // Southern federal. 01.06.2016.

- [Digital resource]. URL: https://u-f.ru/News/economics/u28/2016/06/01/101063? (date of

reference 01.05.2022).



141

[82] The Chayandinskoye field is a resource base for the «Power of Siberia» gas pipeline. -

[Digital resource]. URL: https://www.gazprom.ru/projects/chayandinskoye/ (date of reference

01.05.2022).

[83] The estimate of the permanent population as of January 1, 2022 and the

average for 2021 (people). Federal State Statistics Service. - [Digital resource].

URL: https://rosstat.gov.ru/storage/mediabank/Popul_Comp2022_site.xls (date of reference

01.05.2022).

[84] The «Power of Siberia»: a strategic project. Infographics. December 2, 2019 - [Digital

resource]. URL: https://www.gazprom.ru/press/media/2019/962535/ (date of reference

01.05.2022).

[85] The programme of gasification of the regions of Russia 2021-2025. - [Digital resource]. URL:

https://www.gazprommap.ru/program/ (date of reference 01.05.2022).

[86] Igor Kobzev and Alexey Miller signed an updated programme for the development

of gas supply in Irkutsk Oblast// IIA «Baikal». 20.06.2022. - [Digital resource]. URL:

http://www.38rus.com/more/87066 (date of reference 22.06.2022).

[87] Vostsibugol will supply 19.7 million tons of coal for Irkutskenergo in 1.5 years // Baikal24.

30.11.2010. - [Digital resource]. URL: https://baikal24.ru/text/30-11-2010/197/ (date of

reference 01.05.2022).

[88] Carbon Taxes in Europe - [Digital resource]. URL: https://taxfoundation.org/data/all/eu/carbon-

taxes-in-europe-2022/ (date of reference 04.11.2023).



142

List of illustrations

1. An example of a tree-type transport market structure . . . . . . . . . . . . . . . . 17

2. Example of the transport cost function Eij(qij) with ∆Qmax
{i,j} = +∞ . . . . . . . . 20

3. Consumption utility function U0(v
d
0) . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4. An example of a piecewise linear production cost function ci(vi) (left) and the

corresponding supply function Si(pi) (right) . . . . . . . . . . . . . . . . . . . . . 28

5. An example of a piecewise linear utility function of consumption Ui(v
d
i ) (left) and

its corresponding demand function Di(pi) (right) . . . . . . . . . . . . . . . . . . . 29

6. Example of marginal transmission cost functions enexij (qij) (left) and eexij (qij) (right)

with ∆Qmax
{i,j} = +∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7. An example of a transport market structure . . . . . . . . . . . . . . . . . . . . . 33

8. Root tree of the minimum height for the market shown in figure 7 . . . . . . . . . 34

9. An example of calculating the auxiliary coefficient λi0 in item 2 of substep 3.1 (left)

and using it to calculate the equilibrium volume of production ṽi0 in item 3 of the
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Appendixes

Table 11. Characteristics of transport lines of the Irkutsk Oblast natural gas market (part 1)

Line
number

Number of the
first node

Number of the
second node

Shortest distance
between nodes, km

l (line length, km)

1 1 61 92 115

2 61 60 53 66

3 60 59 199 249

4 59 58 102 128

5 58 2 125 156

6 2 57 176 220

7 57 26 256 320

8 2 33 223 279

9 58 37 167 209

10 59 35 18 23

11 61 32 71 89

12 1 28 69 86

13 60 46 97 121

14 46 62 105 131

15 62 38 79 99

16 38 12 40 50

17 62 63 69 86

18 63 64 47 59

19 64 16 1.6 2

20 16 13 0.683 0.854

21 64 22 10 13

22 22 45 77 96

23 63 5 198 248

24 5 65 18 23

25 65 17 0.736 0.92

26 65 7 3.7 4.625

27 7 15 9.1 11

28 15 66 25 31

29 66 67 63 79

30 67 49 99 124

31 67 42 149 186

32 66 68 48 60

33 68 27 32 40

34 68 69 106 133

35 69 21 75 94

36 21 70 19 24
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Table 12. Characteristics of transport lines of the Irkutsk Oblast natural gas market (part 2)

Line
number

Number of the
first node

Number of the
second node

Shortest distance
between nodes, km

l (line length, km)

37 70 43 42 53

38 70 39 78 98

39 69 71 19 24

40 71 36 13 16

41 71 72 6.3 7.875

42 72 25 72 90

43 25 47 83 104

44 72 3 54 65

45 3 73 11 14

46 73 18 6.6 8.24

47 18 30 38 48

48 73 74 48 60

49 74 54 26 33

50 74 75 34 43

51 75 51 9.4 12

52 75 76 32 40

53 76 11 2.4 3

54 11 77 1.6 2

55 77 23 2.9 3.625

56 77 48 68 85

57 48 29 74 93

58 76 78 13 16

59 78 20 5.3 6.625

60 78 79 16 20

61 79 53 42 53

62 53 55 51 64

63 53 56 72 90

64 56 52 50 63

65 52 80 65 81

66 80 40 44 55

67 80 34 111 139

68 79 10 20 25

69 10 81 15 19

70 81 44 46 58

71 81 8 21 26

72 8 9 8.4 11

73 9 24 23 29

74 9 82 27 34

75 82 19 0.603 0.754

76 19 31 44 55

77 82 4 7.1 8.875

78 4 6 10 13

79 6 83 22 28

80 83 50 8.5 11

81 83 41 41 51

82 41 14 36 45
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Table 13. Results of optimization of the transport system of Irkutsk Oblast natural gas market
for various scenarios (production volumes, thousand t.c.f./year)

Node number Producer S
ce

n
ar

io
1

S
ce

n
ar

io
2

S
ce

n
ar

io
3

S
ce

n
ar

io
4

S
ce

n
ar

io
5

S
ce

n
ar

io
6

S
ce

n
ar

io
7

1 Kovyktinskoye field 0 2 732.9 7 750.4 8 023.5
2 Chayandinskoye field 0

Table 14. Results of optimization of the transport system of Irkutsk Oblast natural gas market
for various scenarios (consumption volumes, thousand t.c.f./year)

Node number Consumer S
ce

n
ar

io
1

S
ce

n
ar

io
2

S
ce

n
ar

io
3

S
ce

n
ar

io
4

S
ce

n
ar

io
5

S
ce

n
ar

io
6

S
ce

n
ar

io
7

3 Novo-Ziminskaya TPP (NZTPP) 0 564.0
4 Novo-Irkutskaya TPP (NITPP) 0 1 286.0
5 TI&TS of the Irkutsk TPP-6 (TPP-7) 0 217.0
6 Shelekhovsky section of Novo-Irkutskaya TPP (TPP-5) 0 119.8
7 Irkutsk TPP-6 0 518.0
8 Irkutsk TPP-9 0 1 404.9
9 Irkutsk TPP-10 0 1 164.8
10 Irkutsk TPP-11 0 340.7
11 Irkutsk TPP-12 0 67.6
12 Irkutsk TPP-16 0 97.0
13 Ust-Ilimskaya TPP 0 438.6
14 TPP LLC «Teplosnabzhenie» (Baikal TPP) 0
15 TPP of JSC «Ilim Group» in Bratsk 0 919.7
16 TPP of JSC «Ilim Group in Ust-Ilimsk 0 639.5
17 Bratsk 0 9.1 32.6
18 Zima 0 18.9
19 Irkutsk 0 32.7 157.7
20 Svirsk 0 27.6
21− 22 Tulun, Ilimsk 0
23 Cheremkhovo 0 7.4

24− 37

Angarsk district, Balagansky district, Bodaibinsky district,
Bratsky district, Zhigalovsky district, Zalarinsky district,
Ziminsky district, Irkutsk district, Kazachinsko-Lensky district,
Katanga district, Kachugsky district, Kirensky district,
Kuytunsky district, Mamsko-Chuisky district

0

38 Nizhneilimsky district 0 0.535

39− 45

Nizhneudinsky district, Olkhonsky district, Slyudyansky district,
Taishet district, Tulunsky district, Usolsky district,
Ust-Ilimsky district

0

46 Ust-Kutsky district 0 0.056 0.295 0.905

47− 56

Ust-Udinsky district, Cheremkhovsky district, Chunsky district,
Shelekhovsky district, Alarsky district, Bayandaevsky district,
Bokhansky district, Nukutsky district, Osinsky district,
Ehirit-Bulagatsky district

0

Total 0 2 732.9 7 750.4 8 023.5
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Table 15. Results of optimization of the transport system of Irkutsk Oblast natural gas market
for various scenarios (flows, thousand t.c.f./year)

Line S
ce

n
ar

io
1

S
ce

n
ar

io
2

S
ce

n
ar

io
3

S
ce

n
ar

io
4

S
ce

n
ar

io
5

S
ce

n
ar

io
6

S
ce

n
ar

io
7

1 (1 → 61), 2 (61 → 60), 13 (60 → 46) 0 2 732.9 7 750.4 8 023.5
3 (60 → 59), 4 (59 → 58), 5 (58 → 2), 6 (2 → 57),
7 (57 → 26), 8 (2 → 33), 9 (58 → 37), 10 (59 → 35),
11 (61 → 32), 12 (1 → 28)

0

14 (46 → 62) 0 2 732.9 7 750.1 8 022.6
15 (62 → 38) 0 97.6
16 (38 → 12) 0 97.0
17 (62 → 63) 0 2 732.9 7 750.1 7 925.0
18 (63 → 64), 19 (64 → 16) 0 1 078.1
20 (16 → 13) 0 438.6
21 (64 → 22), 22 (22 → 45) 0
23 (63 → 5) 0 1 654.7 6 672.0 6 846.9
24 (5 → 65) 0 1 437.7 6 455.0 6 629.9
25 (65 → 17) 0 9.0 32.6
26 (65 → 7) 0 1 437.7 6 445.9 6 597.2
27 (7 → 15) 0 919.7 5 927.9 6 079.2
28 (15 → 66), 32 (66 → 68), 34 (68 → 69), 39 (69 → 71),
41 (71 → 72), 44 (72 → 3)

0 5 008.2 5 159.5

29 (66 → 67), 30 (67 → 49), 31 (67 → 42), 33 (68 → 27),
35 (69 → 21), 36 (21 → 70), 37 (70 → 43), 38 (70 → 39),
40 (71 → 36), 42 (72 → 25), 43 (25 → 47)

0

45 (3 → 73) 0 4 444.2 4 595.5
46 (73 → 18) 0 18.9
47 (18 → 30) 0
48 (73 → 74), 50 (74 → 75), 52 (75 → 76) 0 4 444.2 4 576.6
49 (74 → 54), 51 (75 → 51) 0
53 (76 → 11) 0 67.6 75.0
54 (11 → 77), 55 (77 → 23) 0 7.4
56 (77 → 48), 57 (48 → 29) 0
58 (76 → 78) 0 4 376.6 4 501.7
59 (78 → 20) 0 27.6 27.6
60 (78 → 79), 68 (79 → 10) 0 4 348.9 4 474.0
61 (79 → 53), 62 (53 → 55), 63 (53 → 56), 64 (56 → 52),
65 (52 → 80), 66 (80 → 40), 67 (80 → 34)

0

69 (10 → 81), 71 (81 → 8) 0 4 008.2 4 133.3
70 (81 → 44) 0
72 (8 → 9) 0 2 603.3 2 728.4
73 (9 → 24) 0
74 (9 → 82) 0 1 438.6 1 563.6
75 (82 → 19) 0 32.7 157.7
76 (19 → 31) 0
77 (82 → 4) 0 1 405.9
78 (4 → 6) 0 119.8
79 (6 → 83), 80 (83 → 50), 81 (83 → 41), 82 (41 → 14) 0


