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Introduction

Relevance of Thesis Topic
Wireless communication entails data transfer between a minimum of two devices

without the need for physical cables; instead, it relies on establishing connections through
radio waves. The proliferation of computers, cell phones, and tablets has emphasized
the vital role of mobile communication systems, enabling connections between mobile
devices and transmitters like Access Points (APs) and Base Stations (BSs). Over the
past decades, mobile communication systems have evolved from the first generation
(1G) to the fourth generation (4G), with ongoing developments in fifth generation (5G)
and Beyond 5G (B5G) communication networks. Unlike 4G networks, the primary
goal of 5G and B5G networks is to achieve a capacity increase of up to 1,000 times, en-
abling speeds of up to 10 Gbps. These advanced networks also aim to minimize latency
to almost imperceptible levels and establish ubiquitous connectivity, among other note-
worthy features. Compared to existing 4G technology, 5G systems exhibit enhanced
spectral efficiency, allowing for higher data transmission rates in a given area. Fur-
thermore, 5G systems enhance communication reliability, supporting a larger number
of simultaneous device connections while consuming less power. They also facilitate
a higher number of concurrent and instantaneous device connections. The concept of
the Internet of Things (IoT) refers to a platform that fosters collaborative connectivity
among a wide array of devices.
Numerous studies have acknowledged the significant challenge posed to network re-

source management due to the exponential increase in the quantity of network devices
and data generated. Several technological measures have been suggested to address
this issue. These measures include strategies for efficient resource allocation, advance-
ments in data compression algorithms, and improvements in channel coding systems.
This thesis focuses on optimizing resource allocation techniques while recognizing the
complexity and impracticality of resolving all approaches. In a wireless communication
system, resources typically encompass bandwidth, power, frequency, and time. The
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capacity of a wireless communication system is constrained by both the available re-
sources and the resource allocation method employed by the transmitter. These factors
collectively determine the amount of information that can be received by a receiver.
Various resource allocation techniques offer varying system performances. The pri-
mary goal of an efficient resource allocation method is to judiciously distribute limited
resources to recipients, thereby maximizing the utilization of these scarce resources for
optimal system performance. Consequently, the development of a proficient resource
allocation strategy is of paramount importance.
Overview of Previous Research
Resource optimization in wireless networks, such as power allocation and beamform-

ing, is often formulated as Mixed Integer Nonlinear Programming (MINLP) problems,
which are difficult to solve and are usually NP-hard problems. Various optimization
and learning techniques have been proposed to obtain solutions to MINLP problems,
some of which are listed below:
Model-driven approaches: Fractional Programming (FP) offers a valuable approach

by suggesting quadratic transformations, simplifying ratio-based optimization. It achieves
this by converting the original non-convex problem into a sequence of convex problems
[2]. Another approach, Weighted Minimum Mean-Square Error (WMMSE), leverages
local channel information to identify optimal points that maximize both rate and weight
[3]. Nevertheless, most existing algorithms are primarily designed as partially optimal
solutions. While these algorithms perform admirably in simulation experiments, their
practical implementation in industrial scenarios remains challenging. Their effective-
ness heavily relies on analytical and efficiently solvable mathematical models, which
can be difficult to construct in real-world settings due to specific user distributions and
geographic environments.
Meta-heuristic algorithms: Meta-heuristic algorithms are widely employed stochas-

tic search techniques, offering a robust solution for solving intricate problems. They
excel in situations where precise mathematical models are not readily available, as they
approach optimization problems as black boxes [7]. In the domain of optimal power al-
location for communication systems, various state-of-the-art methods have been devel-
oped. Adaptive Particle SwarmOptimization (PSO) is tailored for resource allocation in
networked wireless sensors [8]. Additionally, an enhanced single-stage Artificial Bee
Colony (ABC) algorithm has been devised to address resource allocation challenges
in D2D communication networks [9]. These algorithms are favored for their relatively
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straightforward implementation, self-sufficiency from detailed system information, and
adaptability to derive practical solutions in real-time. However, it’s worth noting that
their performance can be sensitive to specific parameters, potentially necessitating ad-
justments for different use cases.
Machine learning (ML): ML have gained substantial traction thanks to the expo-

nential growth in wireless devices and the rich datasets they generate. Additionally,
the accessibility of high-performance computing tools, including GPUs, has acceler-
ated the training of these algorithms. Machine learning can be broadly categorized
into deep learning and reinforcement learning (RL), depending on the training process.
Deep learning involves autonomous systems that utilize data to uncover patterns and
make predictions [4]. This domain can be further divided into supervised and unsuper-
vised deep learning. In supervised learning, labeled data samples are employed to learn
mappings within classical optimization algorithms’ input-output spaces. For instance,
Deep Neural Networks (DNNs) are leveraged to approximate the input-output mapping
present in conventional WMMSE algorithms [32]. On the other hand, unsupervised
learning utilizes neural networks to parameterize the resource allocation function, em-
ploying the optimization objective as the loss function directly. This eliminates the
need for solving specific problem instances and does not rely on pre-labeled samples.
However, it’s important to note that unsupervised methods may require longer training
times for model parameterization compared to supervised approaches [6]. However,
traditional deep learning methods do not consider the topology of the network, and the
model requires a large amount of sample data to be trained to achieve satisfactory per-
formance.
Graph Neural Networks (GNNs): GNNs have emerged as valuable tools for ad-

dressing non-Euclidean structured data in communication network problems, offer-
ing efficient use of domain knowledge and the ability to capture spatial information
concealed within network topology. In [11], link scheduling techniques are achieved
through graph embedding rather than relying on perfect Channel State Information
(CSI), demonstrating robust performance even with limited datasets. Message Passing
Graph Neural Network (MPGNN) was introduced to tackle resource allocation issues.
In [12], the WMMSE algorithm enhances convergence by integrating a learning GNN
module. In response to the inherent heterogeneity in modern networks, researchers have
developed the Heterogeneous Graph Neural Network (HetGNN) model for solving RA
challenges in heterogeneous networks. In [13], the Heterogeneous Interference Graph
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Neural Network (HIGNN) was devised to learn Power Control and Beamforming poli-
cies. The communication links between transmitters and receivers are treated as distinct
node types, and HetGNN was employed to learn power control policies. Nonetheless,
many existing deep models overlook both node and edge features, leaving room for im-
provement in their performance, particularly when the size of the hidden network layer
surpasses that of the node and edge features.
Reinforcement learning (RL): RL is an autonomous computational framework that

develops decision-making abilities through a process of iterative experimentation and
subsequent evaluation of outcomes. An agent acquires these decision-making skills
through its interaction with the surrounding environment [14]. Both deep learning and
reinforcement learning are autonomous learning systems. The difference is that deep
learning learns patterns from a training set and applies the learning to a new set. In
contrast, reinforcement learning learns to make decisions dynamically based on feed-
back from interaction with the environment. Note that deep learning and reinforcement
learning can work together. In RL, deep neural networks can be used to learn Q-table
mappings, resulting in Deep Reinforcement Learning (DRL) [53].
Summarizing the above, it is essential and significant to investigate the impact of

heterogeneity, incomplete information and random factors on network formation, in
particular the stable network topologies, players’ interaction patterns along the dynam-
ics, cooperative behavior as well as the equilibrium structure.
The Goal of the Thesis
The main goal of this thesis is to create a set of resource optimization algorithms that

use artificial intelligence and optimization methods to manage and control resources
like power and beamforming while taking into account multiple constraints in real-time
decision-making situations in order to make the best use of all resources in the un-
derlying network. Based on more realistic constraints, the proposed online algorithm
allocates the available resources to the bandwidth and end-to-end delay along the rout-
ing path from the source node to the destination node. In addition, the benefits of the
newly proposed algorithm will be seen in creating real-time requirements for delay-
sensitive 5G applications, in addition to solving the problem of resource allocation for
large-scale networks, using fewer resources, and incurring lower costs. In addition,
the proposed algorithm can adapt to various Quality of Service (QoS) requirements,
guaranteeing high QoS levels and providing high access for higher priority classes in
congestion scenarios.
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Tasks Set to Achieve the Goal
To achieve the overarching objectives of the research, the following specific goals

have been formulated, each requiring corresponding tasks for resolution:

1. To construct a mathematical model of the resource allocation problem in Carte-
sian coordinate system for a variety of complex scenarios of communication net-
works (cellular networks, D2D networks, large-scale ultra-dense networks) that
conforms to the control principles of the communication system, and is used to
simulate the operating parameters and performance of the system in a realistic
environment.

2. To improve and optimize existing meta-heuristic optimization algorithms based on
stochastic search for optimizing the resource allocation problem in homogeneous
cellular networks based on black-box environments.

3. To develop a traditional deep learning based algorithmic framework for optimizing
the resource allocation problem for homogeneous D2D networks with structured
data.

4. To develop an algorithmic framework based on graph deep learning for optimizing
the resource allocation problem for heterogeneous D2D networks with unstruc-
tured data.

5. To develop a reinforcement learning based algorithmic framework for optimizing
the resource allocation problem of heterogeneous D2D networks with large-scale
hyper-dense nature.

Scientific Novelty
The scientific novelty of the thesis lies in the fact that the implemented research

and applied analysis provide new solutions to problems related to resource allocation
and interference management in wireless networks. The scientific novelty of the thesis
research results can be categorized as follows:
1. The heuristic algorithm most suitable for the problem of resource allocation in

communication networks is obtained after comparative tests. A new resource allocation
method based on this heuristic algorithm and deep learning techniques is proposed.
2. The wireless communication network is formulated as a graph optimization prob-

lem. The new method based on graph neural network is proposed to train the model in
supervised and unsupervised manner, respectively.
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3. A new GNN-algorithm is proposed for graph-structured heterogeneous commu-
nication networks. The algorithm stands out as the pioneer in concurrently consider-
ing the edge features within communication interference graphs and the heterogeneous
characteristics of graph elements. It uniquely harnesses both the distinctive edge fea-
tures and the inherent heterogeneity to augment the learning capabilities of graph neural
networks.
4. Amulti-typemulti-agent reinforcement learning algorithm based on themean field

theory is proposed for large-scale ultra-dense networks. This algorithm conceptualizes
transceiver pairs as agents, organizing them into groups based on their connection types.
It employs multi-type mean field reinforcement learning to train these agents, aiming to
derive the optimal policy. Notably, this marks the inaugural application of multi-type,
multi-intelligent mean-field reinforcement learning to address optimization challenges
within communication networks.
Methodology and research technique
The research follow conventional research methodologies commonly used in disser-

tations. These methodologies encompassed various steps, including literature review,
goal setting, selection of appropriate software tools and problem-solving techniques,
software development, experimental testing, and evaluation of the developed solutions.
Furthermore, the study involved the analysis of results obtained from these processes.
In the theoretical section of the thesis, multiple methodologies were applied. These

included the analysis and synthesis of architectural solutions, the use of information
systems, software, and interaction design techniques, the application of object-oriented
and functional programming methods, the use of tools and methodologies for experi-
mental software testing, the implementation of algorithmic modeling, and the applica-
tion of programming techniques for wireless networks. The practical component of the
research focused on the application of algorithmic models and communication system
techniques.
Theoretical and Practical Significance
In practical applications, the study of wireless communication network optimization

and resource allocation strategies is of great significance for improving network quality
and service level. Specifically, it can help communication operators better understand
user needs and provide users with more stable, secure and fast network services. At
the same time, it can also reduce the cost of hardware network resources, improve the
economic efficiency and competitiveness of the operator, so as to better meet the market
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demand.
Theoretically, we improve the existing algorithms and also develop a new framework

of optimization algorithms for scenario-specific complex communication systems. At
the same time, we investigate the nature of the newly developed algorithms. The con-
vergence of the algorithms is demonstrated through the use of mathematical proofs and
complexity analysis, and the robustness of the algorithms is tested through theoretical
analysis and experiments on different data sets.
Verification of Results
The main results of this paper were presented at International Conferences “Stability

and control processes” (Saint Petersburg, 2021); International Conferences “Interna-
tional Conference on Swarm Intelligence” (Shenzhen, 2023).
Publications
Based on the results of the thesis, the following works were published: [7, 84, 85, 87].

The following items [7, 87] are published in peer-reviewed journals from the list of the
Higher Attestation Commission. And [88] is accepted.
Acknowledgments
The author express his deep gratitude to Ovanes Petrosian, Doctor of Physical and

Mathematical Sciences, Professor of St.Petersburg State University, for his support and
guidance in the research work of this paper During the preparation of this paper. The
authors are grateful to their parents for their care, understanding and encouragement in
various situations.
Main Result and Contributions
Motivated by the discussions above, the ML-based resource allocation scheme is a

crucial enabler for realizing 5G and B5G services. By well-training the neural network
model, the performance of approximate heuristic algorithms can be obtained. At the
same time, it also meets the low-latency, real-time decision-making requirements of
communication networks. Therefore, this paper aims to optimize the corresponding re-
source allocation schemes in cellular and D2D networks with ML techniques to expand
the system capacity and improve the quality of service. The main contributions of each
chapter are summarized as follows:
Chapter 1 investigates issues related to power control in cellular network systems.

We briefly introduce the background theory of resource allocation and interferenceman-
agement. The formulated nonconvex problem is treated as a black box, and heuristic
algorithms are used to search for approximate optimal solutions. This chapter provides
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the first comprehensive comparison of today’s popular heuristic algorithms, tests their
performance in network resource optimization problems, and finds the algorithm with
the best performance. With data-driven machine learning algorithms, the training set
determines the upper bound of the model, and the heuristic algorithms in this chapter
can provide near global optimal solutions for subsequent supervised learning [7].
Chapter 2 and Chapter 3 investigates more realistic designs for beamforming and

power allocation in D2D networks. We combine heuristic algorithms with deep learn-
ing to propose supervised allocation algorithms based on DNNs and GNNs, respec-
tively. The channel states and the near-optimal allocations generated by the heuristic
algorithms are used as the training set for deep learning, and the models are trained to
learn the mapping of features to optimization variables in a supervised manner. We
also consider the network’s topology to learn the resource allocation strategy in a graph
learning approach [85,88].
Chapter 4 investigates the heterogeneous D2D communication network scenario.

The graph neural network models are trained through unsupervised learning. We pro-
pose supervised allocation algorithms based on GAT and EGAT, respectively. Com-
pared to the spectral-domain based GNN in the previous chapter, the research in this
chapter focuses on the more generalizable spatial-domain based GAT. also, to enhance
the algorithms’ performance, edge features are introduced to strengthen the learning
process. The goal is to maximize the system sum rate by jointly optimizing the beam-
forming design and power allocation [87].
Chapter 5 investigates the hyperscale, dense heterogeneous communication network

scenario, a typical heterogeneous multi-agent system. This chapter proposes a resource
allocation algorithm based on Multi-intelligent Reinforcement Learning (MARL) with
Mean Field Type Gaming (MFTG). By considering the interactions between each agent
and different types of mean fields, the scalability problem of individual reward compu-
tation is overcome, which leads to efficient resource allocation.
Finally, Chapter coclusion summarizes the paper and further suggests several poten-

tial future research topics.
Research Results to be Defended

1. The new mathematical models of complex communication networks (heteroge-
neous edge informationD2Dnetworks, large-scale ultra-dense heterogeneousD2D
networks) are described and developed. The problem of resource allocation in
communication systems is constructed as a graph representation model of the net-
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work and a pair-typemulti-agent system to learn optimization strategies using neu-
ral network techniques. A new dynamic, interactive simulation environment of the
communication system is built through computer programming.

2. The existing heuristic algorithms which designed to tackle resource allocation
problems are enhanced. The improved algorithms are not reliant on a mathemat-
ical model of the system and can discover approximate optimal solutions through
random search in black-box scenarios. Theirs performance surpasses that of opti-
mization methods based on mathematical models, particularly in large-scale net-
works. Extensive simulation experiments have been conducted to validate the
superior performance and stability of the enhanced algorithm.

3. A new algorithm for solving the resource allocation problem in homogeneous com-
munication networks based on meta-heuristic algorithms and deep learning tech-
niques is developed. The optimization policy obtained by the proposed algorithm
through learning can meet the demand of dynamic resource allocation, and at the
same time, it can achieve the performance of the approximate heuristic algorithm.
The superiority and scalability of the algorithm are verified through simulation
experiments.

4. A new algorithm solving the heterogeneous network resource allocation problem
based on graph-based edge features and graph learning techniques is developed.
The proposed algorithm enhances the learning ability of graph neural networks
through edge features, and its performance exceeds that of traditional graph neural
network algorithms. The superiority and scalability of the proposed algorithm are
verified by simulation experiments.

5. The new multi-type mean-field reinforcement learning algorithms tailored for ac-
quiring optimization strategies in extensive heterogeneous multi-agent commu-
nication auditory systems are developed. Various transceiver pairs are concep-
tualized as distinct sets within the mean field, and interaction strategies among
different sets are explored through mean-field theory. The optimization strate-
gies based on multi-type mean fields in heterogeneous agent systems are shown to
work better than standard mean-field reinforcement learning methods using math-
ematical proofs. The efficacy and robustness of the proposed algorithm are further
substantiated through simulation experiments.
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Chapter 1

Resource allocation in Homogeneous Cellular
Network with Metaheuristic Algorithms

This chapter considers the problem of power allocation in cellular networks. Improve-
ments are made to existing meta-heuristic algorithms, and a series of state-of-the-art
stochastic algorithms are compared with the benchmark algorithms. Simulation results
demonstrate the superiority of the proposed algorithms over the traditional benchmark
algorithms.

1.1 Background

1.1.1 Background Knowledge of Cellular Network

A cellular network is a mobile communications network that derives its name from
how its base station coverage area is arranged, similar to a honeycomb. This type of
network has a base station at its center that divides the communication area into several
small hexagonal or honeycomb-shaped areas, with a single base station serving each
honeycomb. Cellular networks are the basis of mobile communication systems [16].
Cellular networks have the following main components: Base Station (BS): BS is the
core components of a cellular network, which is used to send and receive wireless sig-
nals. Each BS covers a small area known as a cell. Cell: A cell is a coverage area in
a cellular network, usually in the shape of a hexagon or similar. A single BS serves
each cell, which makes it easier to allocate communication resources efficiently. Mo-
bile Devices: Mobile devices, such as cell phones, tablets, and smartwatches, connect
to a cellular network to communicate. They are usually equipped with built-in antennas
to communicate with the base station [1].
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1.1.2 Background Knowledge of Resource Allocation

In the rapidly advancing landscape of wireless technology, mobile applications and ser-
vices have gained significant traction in various aspects of life. These encompass a
broad spectrum of applications, ranging from the streaming of 4K videos to drone oper-
ations and indoor positioning services. It is essential to recognize that these diverse ap-
plications often impose distinct demands on the underlying network infrastructure. For
instance, the realm of autonomous vehicle operation necessitates ultra-low communi-
cation latency to ensure the safe and responsive movement of vehicles. Consequently,
resource allocation plays a pivotal role in catering to the distinctive prerequisites of
these applications.
In practical communication systems, the concept of resource allocation encompasses

a broad and inclusive array of strategies. These strategies encompass the management
of channel access, allocation of power resources, distribution of available bandwidth,
user-device associations, energy management policies, and the design of optimal beam-
forming configurations. This multifaceted approach to resource allocation is indispens-
able for ensuring the efficient operation of communication systems in support of the
diverse requirements posed by modern applications.
Resource allocation is a complex and critical issue in cellular networks, which re-

quires a high degree of optimization and dynamic management. With proper resource
allocation, cellular networks can provide efficient communication services, increase
network capacity, and meet the growing demands of users. Research in this area con-
tinues to drive the development of communication technologies and improve network
performance.

1.2 System Model of of Cellular Network

We consider a classical scenario of downlinkmulticell communication, amassiveMISO
network withM -antennas BSs and single-antenna UEs. The PA problem in the cellular
network is with the setting of interfering multiple-access channels (IMAC) [17]. All
BSs within the network coverage area simultaneously serve all UEs. However, since
different cells use the same frequency, the UEs are still subject to inter-cell and intra-
cell interference. Index the BSs asN = {1, ..., N} and UEs asK = {1, ..., K}. Denote
Dnk as the set of k-th UE’s neighbour UEs in the n-th cell, denote Cn as the set of n-
th cell’s neighbour cells. Assume that n ∈ N , k ∈ K, k′ ∈ Dnk, n′ ∈ Cn, then the
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received signal of the k-th UE from n-th BS in n-th cell can be formulated by

ynk =g
H
n,nkwnk

√
pnksnk︸ ︷︷ ︸

desired signal

+
∑
k′ ̸=k

gHn,nkwnk′
√
pnk′snk′︸ ︷︷ ︸

intra−cell interference

+
∑
n′ ̸=n

∑
k′

gHn′,nkwn′k′
√
pn′k′sn′k′︸ ︷︷ ︸

inter−cell interference

+ znk,
(1.1)

where gn,nk denote the the channel response from n-th BS to k-th UE in n-th cell, pnk
denote the corresponding transmit power. snk ∼ U (0, 1) is the transmit signal. znk ∼
N
(
0, σ2

)
is the additive white Gaussian noise (AWGN). The coordinated beamforming

(CB) vector from n-th BS to k-th UE is denoted as wnk.
The literature onCoordinatedMulti-Point (CoMP)CBhas exploredmultiple schemes.

In this study, we have opted to utilize the zero-forcing beamforming scheme to simplify
the problem. Then the signal-to-interference-plus-noise ratio (SINR) of k-th UE can be
calculated as

γnk =
gnk,nkpnk∑

k′ ̸=k gnk,nk′pnk′ +
∑

n′ ̸=n

∑
k gnk,n′k′pn′k′ + σ2

, (1.2)

where gnk,nk =
∣∣gHn,nkwnk

∣∣2 denote independent channel gain of desired signal. gnk,nk′ =∣∣gHn,nkwnk′
∣∣2 denote channel gain of intra-cell interference from neighbour UEs in n-th

cell. gnk,n′k′ =
∣∣gHn′,nkwn′k′

∣∣2 denote channel gain of inter-cell interference from neigh-
bour UEs in n-th cell’s adjacent cells.
The downlink rate of communication link nk can be expressed in terms of normalized

bandwidth as
Cnk = log2 (1 + γnk) . (1.3)

The primary aim of this study is to identify the ideal power level that optimizes the
overall network sum rate, while adhering to the limitation of a maximum power limit
for each transmitter. The provided problem may be expressed as

max
pnk,wnk

N∑
n=1

K∑
k=1

log2 (1 + γnk)

s.t. 0 ≤ pnk ≤ pmax, ∀n ∈ N , k ∈ K.

(1.4)

The objective function presents a challenging obstacle in the form of a nonconvex
nonlinear optimization problem, which is further complicated by the presence of con-
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Figure 1.1: Example of wireless cellular network.

straints. As a result, finding the global optimal solution becomes a complex endeavor.
Heuristic algorithms has the capability to approximate solutions that are globally opti-
mum, but at the cost of substantial computing resources. In order to cater to the demand
for real-time applications that require low-complexity solutions, we suggest using deep
learning techniques to parameterize these solutions. Although attaining theoretical op-
timality for learnt solutions may pose challenges, actual evidence continually shows
that deep learning methods often produce extremely satisfying performance results.
For model-driven approaches, it is generally hard to evaluate the performance gap

from the optimal solution, and practical implementation is limited because of the im-
perfect mathematical model. Furthermore, it is hard to adapt the model-based method
to heterogeneous cellular networks because of the imperfect mathematical model in real
communication scenarios. Thus, model-free metaheuristic algorithms are discussed in
the following section.

1.3 Metaheuristic Algorithms

To find an efficient approach for this optimization problem, we consider various com-
petitions in global optimization to select the best algorithms from feasible techniques.
Moreover, the competitive process generates novel ideas that can be developed into
practical solutions. We consider the Special Session and Competition on Large-Scale
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Global Optimization in the past ten years and concentrate on different mathematical op-
timization methods with one objective. We select nine metaheuristics algorithms from
the winning rank, such as Artificial Bee Colony (ABC), Self-adaptive Differential Evo-
lution (jDE and iDE), Particle Swarm Optimization Generational (GPSO), Extended
Ant Colony Optimization (EACO), Differential Evolution (DE), Particle Swarm Opti-
mization (PSO), Simulated Annealing (SA), Monotonic basin hopping (MBH), Covari-
ance matrix adaptation evolution strategy (CMA-ES). We consider nine metaheuristic
algorithms from four primary types. A brief description of these algorithms is as fol-
lows:

1.3.1 Swarm Intelligence Algorithms

Artificial Bee Colony

The Artificial Bee Colony (ABC) algorithm is a stochastic search technique based on
the intelligent foraging behavior of honey bee swarms. In this algorithm, each candidate
solution indicates the location of the food source in the search space, and the quality of
the food source is employed as a fitness evaluator.
The model involves three essential elements: employed bees, onlookers, and food

sources. The amount of employee bees is equal to the food sources. Employed bees
depart from the hive to search for a food source and collect information about the quality
of the other food sources in the neighborhoods of discovered location. Once back in
the hive, they transmit information about the explored food source to the onlookers.
Onlookers evaluate a new location from the information provided by the employed bees
according to the selection probability of quality and prefer the food source with high
fitness value. Onlooker becomes an employed bee when it selects a new food source to
explore. The employed bee switches to the scout bee and randomly searches for new
food resources in the search space when its explored food source is abandoned. This
process is repeated until the optimal food source is found.
Advantages of ABC: it requires few parameters, performs robustly, converges fast,

and is highly flexible. Disadvantages of ABC: it may converge prematurely in the phase
of its search, and the classification accuracy of the best value it obtains may not meet
the requirement.



19

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a swarm intelligence technique. The initial idea
of PSO is inspired by the population behavior of bird flocking and fish schooling. PSO
and evolutional strategic techniques have many standard features [18]. This algorithm
simulates the behavior of members’ information interaction and collaboration. The dif-
ference with the genetic algorithm is that PSO does not require evolution operators like
crossover and mutation. In the model, there is a population of candidate solutions called
particles. These particles move around in the search space over their position and ve-
locity. Each particle’s movement is guided toward the best-explored positions in the
search space, updated as other particles find better positions. This is expected to move
the swarm toward the best solutions. The PSO process can be formulated as:

vt+1
id = vtid + c1 ∗ rand (0, 1) ∗

(
ptid − xtid

)
+ c2 ∗ rand (0, 1) ∗

(
ptgd − xtid

)
,

and
xt+1
id = xtid + vtid,

where xtid and xtid represent the position and velocity of each particle, The parameter d
is the population size, i is the index of the each particle and t is the number of iterations.
c1 and c2 are learning factors. pi represents value explored by ith particle, pg represents
value explored by neighbours of the ith particle. PSO can be implemented as Algorithm
1:

Algorithm 1 Particle Swarm Optimisation
Require: Generate initial individual
Ensure: The best vector
while Termination condition not met do do

for Each particle x with position pi do
Calculate fitness value
if fitness value is greater than the current best value pbest then

Set current best value as pbest
end if

end for
Select the particle with the overall best fitness value and set it as gbest
for Each particle do

Calculate particle velocity
Update position of particle

end for
end while
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Advantages of PSO: it has a simple calculation without overlapping and mutation.
Disadvantages of PSO: it may fall into local optimum in high-dimensional space and
has a low convergence rate in the iteration.

Generational Particle Swarm Optimization

Generational Particle Swarm Optimization (GPSO) is a variant of the standard PSO al-
gorithm [19]. In the PSO algorithm, velocity is one of the most significant parameters;
if the particles’ velocity in the swarm is updated effectively, no search effort will be
wasted by searching in the wrong directions. The procedure of PSO is to move the par-
ticle to search for the positions of optimal solutions. The velocity at which the particles
change positions is usually adjusted by multiplying the velocity by a factor. Unlike the
standard algorithm, the velocity is first calculated for all particles; then the position is
updated.
GPSO can handle stochastic optimization problems according to iterative random

seed schema. But it is not suitable for multi-objective problems.

Extended Ant Colony Optimization

Ant Colony Optimization (ACO) is a classical bio-inspired technique which based for-
aging behavior of natural ants [20]. The ACO algorithm simulates the process a colony
of ants seeking for the shortest path from nest to the food source. In the model, a group
of simulation agents imitate the foraging behavior of natural ants to search for the min-
imum value of function. Each agent depart from the nest in search of food source and
arrive at the nest as the end of the trial. Each agent leaves a marker which called the
pheromone on the path they take in search of food source. The pheromone concentra-
tion on each path is used to evaluate the distance of the path and the quality of the food
source. The information implied by the pheromone on the path plays an important role
in the subsequent agent’s selection to the path. The higher the fitness value of the path
evaluation, the higher the probability that the path be accepted. Extended ACO improve
the original algorithm by using the multi-kernel gaussian distribution which based on
three parameters which are computed depending on the quality of each previous solu-
tion. The objective function value are ranked through an oracle penalty method.
Advantages of EACO: its parallel process can search solutions independently and

simultaneously. Disadvantages of EACO: its probability distribution iteration changes
and the convergence time is not stable.



21

1.3.2 Differential Evolution algorithms

Differential Evolution

The Differential Evolution (DE) algorithm is one of the most popular techniques for
continuous optimization problems. DE is based on the evolution strategy but not in-
spired by the natural paradigm like common ones [21]. It is proposed to search for
the minimum value of non-differentiable and nonlinear continuous functions. Classical
DE has two significant features to be adjusted: the learning strategy and the control
parameters. The learning strategy comprises the primary type of operators in genetic
algorithms, such as mutation, crossover, and selection. A basic variant of the DE al-
gorithm works by having a population of candidate solutions. These agents are moved
around in the search space to combine the positions of existing agents from the popula-
tion. If the value of an agent’s new position is improved, it is accepted and forms part
of the population. And it is excepted but not guaranteed that a global optimal solution
will eventually be found.
In the mutation, a mutant vector is generated as follows:

vi,G+1 = xr,G + F (xr,G − xr,G)

whereF represent the scaling factor,G is the number of iterations. xr,1, xr,2, and xr,3 are
random searched vectors in current iteration. In the crossover, a trail vector is produced
by combining the parent vector with a mutated vector.

ui,G+1 =

{
vi,G+1 if randj ⩽ Cr

xr,G if randj > Cr

where Cr represent the crossover rate. j is random number in the resulting array. vi is
current best value, xi is best searched value. DE can be implemented as Algorithm 2:
Advantages of DE: it can handle optimization problems with high computational

complexity. Disadvantages of DE: it requires parameter tuning and its convergence is
not stable.

Variants of Differential Evolution

These are two different variants of the DE algorithm based on the mechanism of self-
adaptation. The learning strategies and control parameters involved in the standard
DE algorithm highly rely on the specific optimization problem. This process may cost
amount of time to select the strategy and adjust the parameters to make the model have
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Algorithm 2 Differential Evolution
Require: Generate initial population;
Ensure: The best vector;
while Termination condition not met do do

for Each solution xi in population do
Generate new solution si;
if fitness((si)) >= fitness((xi)) then

Retain si in population;
else

Retain xi in population;
end if

end for
Evaluate fitness of the new population
Update the best solution

end while
Return best solution

a good performance. Many different proposals have been made to self-adapt both the
CR and the F parameters of the original differential evolution algorithm. There are
many different proposals that have been proved to adapt the CR and F parameters. The
first variant (jDE) does not use the DE operators to update parameters F and CR, the
procedure is more like parameter control rather than self-adaptation [22]. The second
variant (iDE) uses a variation of the selected DE operator to update CR and F parameters
for each individual [23].

1.3.3 Random Search Algorithms

Simulated Annealing

Simulated Annealing is a stochastic global search optimization technique to search.
This algorithm emulates the statistical annealing procedure of the crystals growing to
reach the global optimal internal energy configuration [24]. The annealing process
works by first exciting the atoms in the material at a high temperature. This step can
push atoms to heat up and accelerate their motion. And next step is to slowly cool
down the temperature to reduce their excitability, making atoms convert into a more
stable configuration. The essential component to implementing this simulated anneal-
ing process is to initialize a random solution in the neighborhood of the current optimal
solution and evaluate the objective functions. Once the fitness value of the cost func-
tion is smaller than its current best value, the solution is accepted, and the new best
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fitness value is updated. Once the fitness value is higher than the current best value, the
point is accepted or rejected with probability. A parameter temperature is introduced
to calculate the probability. In the cooling schedule, the temperature is reduced with
the acceptance probability converging to zero. And the whole annealing process is ter-
minated after a large number of trials. This strategy avoids being trapped in the local
optimal solution.
Advantages of SA: it can handle the problem with arbitrary systems and cost func-

tions. Disadvantages of SA: it requires parameter tuning and is possible to be trapped
into local minima.

Monotonic Basin Hopping

Monotonic Basin Hopping (MBH) is a stochastic global optimization technique. This
algorithm is a two-phase approach that combines the global stepping algorithm with
the local minimization procedure at each iteration [25]. The algorithm model uses ran-
dom perturbations to jump basins and a local search algorithm to optimize each basin.
The model iterates as follows: The first phase uses random perturbation to jump basins
of coordinates. The second phase uses a local optimization procedure to evaluate the
new coordinates and to decide accepted or reject the coordinates based on the min-
imized function value. This algorithms original idea is to map the objective function
into searching the local minima from the initial point. This mechanism can significantly
improve the efficiency of problem-solving. Main idea ofMBH is mapping the objective
function f (x0) into the local minima found starting from x0, MBH can be implemented
as Algorithm 3:

Algorithm 3Monotonic basin hopping
Require: x0← Generate initial solution
Ensure: optimal x, f (x)
x0← generate initial solution g0 = 0 and d0 = 0

x0← minimize (f, x0)
repeat

y← perturb(x)
y← minimize (f, y)
x← acceptance (x, z)

until termination condition met

In this chapter, we combine this concept’s original generalization, resulting in a meta-
algorithm that operates on any population using a suitable algorithm. The actual method



24

is recovered when a population containing a single individual is used and coupled with
a local optimizer.

1.3.4 Evolution Strategy Algorithms

Covariancematrix adaptation evolution strategy (CMA-ES) is a stochastic technique for
involuting non-linear non-convex continuous black-box optimization problems [26]. It
is based on the idea of self-adaptation in evolution strategies. The mechanism of this
algorithm is to construct parametric distribution on the searching space in which feature
functions are defined in advance. A population of solution candidates is selected from
this parametric searching distribution. Then, these candidates are evaluated by a black-
box function. Given the function values at the sampled points, updating and storing
the covariance matrix dominates the time and space complexity in each iteration of
the algorithm. The covariance matrix where time and space complexity dominates is
updated and stored at each iteration of the algorithm.
Advantages of CMA-ES: it is suitable for small-scale non- separable optimization

problems Disadvantages of CMA-ES: high complexity and premature stagnation.

1.4 Simulations

1.4.1 Environment Setting

Algorithm deployment has a high requirement for low computational complexity and it
is considered here. The configuration of the simulation platform is expressed as: CPU
Intel i7 10750H and RAM 16 GB. A series of simulation experiments are executed to
compare the performance of these meta-heuristic algorithms and to find the best algo-
rithm for the power allocation issue.
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Table 1.1: Simulation parameters of cellular network.

Notation Simulation Parameter Value
N Number of BS 4, 9, 16
M Average users per cell 2, 4, 8
K Total Number of user MN

fd The Doppler frequency 10 HZ
Pmin Minimum allocated power 5 dBm
Pmax Maximum allocated power 38 dBm
Rmin Inner space distance 0.01 km
Rmax Half cell-to-cell distance 1 km
T Time period 20 ms
σ2 Noise power spectral density − 114 dBm/Hz
z Shadowing 8 dB standard deviation

We consider wireless cellular networks of different scales, with cell populations of
2 × 2, 3 × 3, and 4 × 4. In each cell, users distributed randomly and uniformly in
range r ∈ [Rmin, Rmax]. The small-scale fading follows Rayleigh distribution, and the
Jakes model is adopted with fd. The large-scale fading is formula as β = −120.9 −
37.6 log10 (d) + 10 log10 (z) dB according to the Long-Term Evolution (LTE) standard,
where z is shadow effect element, and d is the transmitter-to-receiver distance (km).
Table 2.1 collects the primary parameters of the network. The maximum number of
iterations is determined as 1000 based on the simulation results. In general, Meta-
heuristic algorithms use randomized search techniques, in which optimization perfor-
mance highly relies on the initial value and fine parameter tuning. Hence, reproducible
optimization results obtained under the same conditions cannot be guaranteed. There-
fore, we conducted 20 repeated trials and performed a statistical analysis of the results
to compare the performance of the proposed algorithms. The performance of the com-
pared methods is evaluated by averaging 20 trial runs.

1.4.2 Numerical Results

In this section, we present the simulation results to indicate the performance of the
metaheuristic algorithms. We use a simple generation-evaluation method for the meta-
heuristic algorithm for tuning the parameters. A set of a priori candidate configurations
is generated. Then, each of these configurations is evaluated to find its optimal config-
uration. Furthermore, we explore the computation capability of the above algorithms
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Figure 1.2: Average rate during fitness evaluation (N=4).

Figure 1.3: Average rate during fitness evaluation (N=9).
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Figure 1.4: Average rate during fitness evaluation (N=16).

on different network scales. And the length of the search process is 50000 evaluations.
Meanwhile, three benchmark algorithms which are FP, WMMSE, and random strategy
(RAND) stated before are tested as comparisons.
Figure 1.2, 1.3 and 1.4 indicate the searching process for metaheuristic algorithms

with different N values. The network’s average sum rate is expressed as the value
of the objective function based on the number of fitness evaluations. According to
the rate of rising fitness value, we intercept two intervals from the searching range,
which are [8000, 15000] and [37000, 43000]. We can observe that the Differential
Evolution algorithms always have good performance when the rapidly rising, and the
Swarm Intelligence Algorithms always have good performance when the slow rising.
The results statistically indicate that the performances of the proposed algorithms are
similar after fixed generations.
Table 1.2 shows Obtained solution of the numerical experiments.We focus on the

average performance of the above algorithms for 20 trials. Based on the previous results,
Swarm Intelligence Algorithms: PSO and GPSO perform the best when N = 4 and
N = 16 respectively. Differential Evolution algorithms: jDE&iDE perform the best
when N = 9.
Figure 1.5, 1.6 and 1.7 shows the corresponding distribution of the best fitness for

metaheuristic algorithms. CMA-ES is the most robust technique based on the average
most minor standard deviation of best values.
We also obtain a numerical example result of experiment trials with different user
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Figure 1.5: Distribution of best fitness over 20 trials. (N=4).

Figure 1.6: Distribution of best fitness over 20 trials. (N=9).
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Figure 1.7: Average rate during fitness evaluation (N=16).

Figure 1.8: The average rate versus user number per cell.
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Table 1.2: Obtained solution (bps/Hz) of the numerical experiments.

Algorithms
N=4 N=9 N=16
max mean std max mean std max mean std

ABC 4.241 3.694 0.224 2.612 2.231 0.197 1.769 1.638 0.067
jDE&iDE 4.747 4.221 0.222 3.002 2.524 0.181 2.063 1.821 0.093
GPSO 4.768 4.238 0.402 2.871 2.456 0.169 2.278 1.867 0.143
EACO 5.153 4.160 0.345 2.695 2.474 0.118 2.026 1.825 0.083
DE 4.670 4.252 0.275 2.750 2.484 0.122 2.058 1.805 0.100
PSO 4.999 4.303 0.313 2.748 2.467 0.151 1.968 1.820 0.089
SA 4.198 3.454 0.268 2.510 2.128 0.177 1.844 1.648 0.090
MBH 4.987 4.147 0.292 2.700 2.458 0.131 1.960 1.825 0.083
CMAES 4.114 3.655 0.216 2.605 2.373 0.103 2.048 1.839 0.086

Figure 1.9: The average rate versus number of cells.

densities and scales of the network. Compared with the values of averaged sum-rate
in Figure 1.8 and Figure 1.9, the performance of metaheuristic algorithms is not stable,
especially depending on the specific solution scale effects. Additionally, the best fit-
ness value of the metaheuristic algorithms decreases significantly with the increase of
the solution’s computation scale compared to the result of the conventional algorithm.
In large-scale scenarios, this type of approach costs much more than the other algo-
rithms over time, which means that there is still potential to improve the performance
of metaheuristic algorithms.
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1.5 Conclusion to Chapter 1

The optimal power allocation problem in the cellular network with IMAC has been
investigated, and the model-free metaheuristic approaches have been implemented to
handle this problem. To be consistent with the optimization objectives of the PA prob-
lem, the network’s sum-rate SINR is used as the objective function. Then a range of
metaheuristic algorithms are proposed, and these algorithms work as a black-box solver
to search for the optimal power allocation under constraints with specific CSI.
The Simulation results show that the proposed meta-heuristic algorithms outperform

the conventional benchmark algorithms in different scenarios. We can observe that
metaheuristic algorithms have good generalization abilities with simulated communi-
cation networks. The experiment results statistically demonstrate that it is hard to deter-
mine the overall winner algorithms. The metaheuristic methods perform well generally,
and the actual performance gap is related to the solution scales. Covariancematrix adap-
tation evolution strategy (CMA-ES) is themost robust technique. Differential Evolution
algorithms (DE, jDE&iDE) and Swarm Intelligence Algorithms (GPSO, PSO) excel in
general scenarios.
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Chapter 2

Resource allocation in Homogeneous D2D
Network with Deep Learning in Supervised

Manner

In this chapter, we combines heuristic algorithms with deep neural networks to pro-
pose a resource allocation scheme called PSO-DNN. The focus is on end-to-end learn-
ing, where the input-output mapping of the problem is learned directly by considering
the optimization algorithm as a black box. Simulation results show that the trained
DNN-based model can provide solutions that approach the performance of heuristic
algorithms and meet the requirements of real-time resource allocation.

2.1 Background

2.1.1 Background Knowledge of Device-to-Device Networks

Device-to-Device (D2D) networks are wireless communication systems where end de-
vices establish direct connections, eliminating the need for relaying through conven-
tional base stations or infrastructure. In this context, terminal devices establish direct
links with one another, reducing communication delays and enhancing operational ef-
ficiency [27].
To optimize communication effectiveness, resources such as spectrum and bandwidth

are shared among users. D2D communication has the potential to boost network capac-
ity, reduce the burden on base stations, and accommodate more devices and users. This
direct communication approach offers increased flexibility and efficiency within wire-
less communication systems.
Beamforming serves as a foundational technique in wireless communications for the
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efficient allocation of resources and the management of interference, especially in sce-
narios involving multiple antennas. In the context of D2D communications, the central
goal of beamforming design is to maximize the overall data transmission rate by op-
timizing the beamforming strategy for each D2D pair while operating within the con-
straints of maximum transmit power. Addressing this challenge involves tackling a
continuous optimization problem.

2.1.2 Background Knowledge of Machine Learning

While heuristic algorithms offer approximate optimal solutions, their computation times
still fall short of meeting the increasingly stringent time requirements of 5G and future
networks. To address this challenge, machine learning techniques have gained promi-
nence in solving optimal control problems, effectively accelerating the convergence of
traditional algorithms toward accurate solutions. In this chapter, heuristic algorithms
are treated as black boxes, enabling the direct learning of input-outputmappings through
an end-to-end learning approach [56]. End-to-end learning streamlines the process by
employing a single model to capture direct mappings, eliminating the need for domain
expertise and making implementation relatively straightforward.
Machine learning-based methods have proven successful in expediting resource al-

location in wireless networks. These endeavors demonstrate that machine learning not
only significantly reduces time complexity but also achieves high-performance out-
comes closely aligned with traditional algorithms. This performance enhancement is a
crucial feature, particularly relevant for the demands of 5G and other wireless commu-
nication domains.
Machine learning encompasses two fundamental learningmethodologies: supervised

learning and unsupervised learning. The primary distinction between these twomethod-
ologies is the need for labeled datasets for model training.
Supervised learning necessitates a substantial number of labeled datasets to facili-

tate the training procedure, hence demanding the expertise of individuals to provide
appropriate examples [29]. The application of supervised learning has proven effec-
tive in addressing channel assignment difficulties. A neural network can be used to
learn how to find a link between the features of a D2D pair (such as their geometric
distances or channel state information) and a binary decision in the context of the D2D
link scheduling problem. The parameters of the neural network are typically updated
using the labeled outputs and targets. The cross-entropy loss function is employed to
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calculate discrepancies between the measurements.
Unsupervised learning refers to a learning paradigm that does not necessitate using

labeled data during the training process [30]. Unsupervised training can address com-
plex continuous optimization problems, including power allocation and beamforming
design. An unsupervised learningmethod can be employed to discover the optimalmap-
ping of channel state information to beamforming in the context of D2D beamforming
design. Typically, the negative sum rate is used as a loss function to determine the ap-
propriate timing for updating the neural network. In this scenario, the use of labeled
training samples is optional.
Since this chapter primarily focuses on machine learning-enhanced resource alloca-

tion, it begins with a brief overview of machine learning fundamentals. This introduc-
tion covers distinctions between supervised and unsupervised learning, classical ma-
chine learning techniques, and key metrics for assessing learning performance.

2.2 System Model of D2D Networks

We investigated a single-cell D2D network like Figure 2.1 in which several transceiver
pairs compete for a fixed amount of bandwidth B. We assume that a single data stream
may be sent and received simultaneously across each connection. This throughput op-
timization problem aims to design a beamformer transmitter for each data stream on
each live connection [31]. Consider there are K = {1, ..., k} communication links; in
other words, k transmit antennas serve k single-antenna user equipment (UEs). The
channel response from the link transmitter j to the receiver i is hij . i and j is index of
receiver and transmitter. Let xi be the beamforming vector for the i connection. Ac-
cordingly, the signal received at receiver i is the superposition of signals from numerous
transmitters, as described by

yi = hH
ii
xi +

∑
j ̸=i

hH
ij
xj + ni, (2.1)

where ni ∼ N
(
0, σ2

i

)
denotes the additive white Gaussian noise. The achievable sum

rate of link i can be expressed as the function:

Ri (X) = W log

1 +

∥∥∥hH
ii
xi
∥∥2
2∑

j ̸=i

∥∥∥hH
ij
xj

∥∥∥2
2
+ σ2i

 , (2.2)
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Figure 2.1: Example of D2D network with 2 transceiver pairs.

where X is a set of all beamforming vectors, and X = (x1, ..., xk). When a single
antenna is utilized at transmitters, the beamforming design simplifies to a problem of
power distribution.
Typically, the aggregate performance of the communication system is determined

by a utility function of the possible connection rates. Weighted sum rate is the utility
function used here. Given each transmitter’s power restriction, the optimization issue
is formulated as

max
X

∑
i

wiRi (X)

s.t. ∥xi∥22 ≤ Pmax , ∀i,
(2.3)

where wi denotes the weight of link i, and Pmax indicate the transmit power constraint
of each communication link. When all connection weights are set to 1, the problem can
be considered a sum rate maximization problem.

2.3 Architecture of Learning Based Method

In this section, we build an efficient DNN-based framework for solving resource allo-
cation issues in MIMO networks. In order to achieve a near-global optimal sum rate
in real-time, we presented a two-step DNN-based power allocation technique. In the
initial phase, we employ a heuristic random search approach to identify the optimal
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Figure 2.2: Performance versus pairwise distances.

power allocation that optimizes the system sum rate for each static channel state. In
the second phase, we predict the allocated powers in real-time online applications us-
ing a well-trained DNN model. The following describes the introduction of the PSO
algorithm and the design of the DNN framework for optimal beamforming:

2.3.1 Deep Neural Networks

We develop a fully-connected deep neural network (DNN) architecture that predicts the
optimal resource allocation for K downlink UEs [13]. The objective is to discover a
policy P (·) that simulates the mapping of PSO which denoted by F to estimate the
optimal allocated resource P̂ ≜ {p̂k}. We select a DNN parameterization of the policy
P (·)with learnable parameters, and beamforming vectors are estimated as P̂ = Pθ (F ).
In the first stage of the process, offline supervised learning, the computationally de-

manding PSO algorithm determines the best-allocated strategy and employs it as the
output label. The interference relations characterized as a set of channel coefficients
{hij}, the communication relation characterized as a set of channel coefficients {hii}.
Note that h is a complex function consisting of a real part and a complex part. We take
these two parts as features and input them into the neural network. Z0 represents the
input layer’s feature vector. R is set of real number. The input feature of DNN can be
formulaed as:

Z0 =
[
hcomplex
ii , ..., hrealii , ..., hcomplex

ij , ..., hrealij , ...
]
, (2.4)

where L0 = 2k2 is the dimension of input feature. Scaling and vectorization of input
features are applied at the inputs of the proposed DNN. We use the largest absolute
proportion to the optimal distributed strategy, which is similar to the input features.
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Similar to the the input features, we utilize the maximum absolute scaling technique for
the optimal beamforming vectors in the following manner:

x̄k =
xoptimal
k

max
(
xoptimal
1 , ..., xoptimal

k

) ∈ [0, 1] . (2.5)

To handle the non-linear computations, we employ the rectified linear unit (ReLU) as
activation function at the hidden layers. There are Li neurons at the i-th hidden layer,
where i = 1, 2, 3. Z0 is the input factor, the output of the ith hidden layer is determined
as Zi = fr (wi−1Zi−1 + bi−1) ∈ RLi, where fr (Z) = max (0, Z) are the weight matrix
and bias vector, respectively. To match the output layer predictions between 0 and 1 as
stated by the output labels, the sigmoid function fσ (Z) = 1

1+e−Z is used at the output
layer [83]. The dimension of output facter is k. Thus, the predicted resource allocation
for K downlink UEs using the DNN framework are expressed as follows:

[x̂1, x̂2, · · ·, x̂k] = fσ (W3Z3 + b3) , (2.6)

whereWi is the weight matrices and bi is bias vectors which are adjusted to reduce the
loss and more accurately forecast the optimal power allocation values. We evaluate the
loss functions based on the predicted and ideal power values: mean square error (MSE).
The formula for the MSE loss function is:

LMSE =
1

K

K∑
k=1

(x̄k − x̂k)2. (2.7)

Back-propagation is a process in which the gradient of the loss function is transmitted
from the output layer to the input layer. As a result, the weight matrixWi and the bias
vector bi are updated in order to decrease the loss, which allows for more effective
learning of samples and more accurate prediction of the optimal resource allocation
strategy.

2.3.2 Dataset Generation and Model Training

We create a dataset for the offline supervised learning procedure with the number of
samples S = 5 × 105. The channel gains, and UE locations with respect to the BS
are randomly distributed in the area to produce the channel vector for each UE. The
PSO algorithm is used to determine the associated optimally assigned powers, which
are calculated and stored in the dataset.
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The complete available dataset is split into 80% training and 20% validation sets
during the offline learning process. After the supervised learning, a brand-new test
dataset evaluates the online power allocation in time-varying scenes. The proposed
algorithmic technique is implemented using open-source deep learning framework in
PyTorch.

2.4 Simulation

2.4.1 Environment Setting

In order to assess the performance of the DNN-based algorithm, we primarily compare it
to theWMMSE-based approach, which serves as a common benchmark in the literature
for sum rate maximization problems. We also consider the following benchmarks for
comparison. Please note that all results related to the test performance of WMMSE are
averaged across 100 independent trials. The system settings and DNN hyperparameters
is shown in Table 2.1. And the benchmarks are as follows:

• WMMSE [3]:An approach based on optimization that converts the problem of
weighted mean square error reduction from the sum rate maximization difficulties
in interfering broadcast channels.

• WMMSE-NN [32]: A 3-layer supervisedDNN that learns themapping of classical
WMMSE.

• PSO [33]: An iterative stochastic optimization technique based on swarm intelli-
gence.
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Figure 2.3: Percentage performance of PSO for models with different number of convolutional layers
and hidden layer sizes on datasets of different sizes.

Table 2.1: System setting and DNN hyperparameters

Parameter Value
Square area radius 500 m
BS transmit power 20 dBm

D2D Pairwise distance 2-50 m
Path loss exponent η= 3.76

Noise PSD −174 dBm/Hz
Channel bandwidth 5 MHz
Hidden layer size (512-512-512-256)

Epoch size 30
Batch size 32

Learning rate 1× 10−3

Dropout rate 0.5
Optimizer ADAM

2.4.2 Numerical Results

Figure 2.3 demonstrates the comparative performance of DNN with different structures
in relation to the size of the training set. Either by adding more convolution layers
or by parameterizing with larger MLPs, the performance of DNN could be boosted.
To demonstrate the benefits of expanding MLPs, we show the results of DNNs with
layer numbers (2 and 3) and the hidden size of MLPs (256 and 512). When 5 × 105
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Figure 2.4: General sum rate for DNN with different UEs density.

Figure 2.5: Average run time for 100 trials.
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samples are input, the relative performance of a 3-layer DNN with a hidden size of 512
is 91.5 percent. Adding extra hidden layers to the DNN does not result in a substantial
improvement; rather, it can easily lead to overfitting. In order to balance performance
and complexity, we use this DNN structure in the subsequent trials.
Figure 2.4 and Figure 2.5 depict the sum-rate and runtime findings in relation to

the number of UEs. As seen in Figure 2.4, the DNN-based approach outperforms its
WMMSE counterpart as the number of UEs increases. The relative sum-rate perfor-
mance of DNN compared to the optimal PSO algorithm is 91.5 percent.
Moreover, Figure 2.5 illustrates the runtime comparison between PSO, WMMSE-

NN, and WMMSE for 1000 system states. AI inference is performed on an Nvidia
2070s development card using offline-trained DNN architecture. We observe that the
proposed DNN approach outperforms the computationally intensive WMMSE tech-
nique by drastically lowering its execution time. In the case of K = 12 UEs, for ex-
ample, WMMSE requires 1,056 seconds whereas DNN requires only 0.08 seconds. For
iterativeWMMSE, the running time increases dramatically with the size of the problem
dimension. In contrast, DNN-based power allocation requires less processing time and
is much less variable. For a trained DNN model, the number of computations is con-
stant. The processing time fluctuation comes from the uncertainty of the computation of
different floating point numbers and the read system time. For the heuristic algorithm,
the time fluctuations mainly come from the different initializations, i.e., different search
starting points can lead to significant differences in the time required to find the optimal
solution.

2.5 Conclusion to Chapter 2

In this chapter, we’ve introduced a supervised learning-based framework, the PSO-
DNN model, which is designed for solving resource allocation challenges in D2D net-
works, particularly in complex, real-world wireless communication scenarios. We’ve
demonstrated the effectiveness of this solution within specific network setups and use
cases, highlighting its ability to approximate heuristics. It’s worth noting that these fea-
tures, such as heuristics’ approximations, are generally applicable to a broad range of
networks and scenarios. DNNs have been shown to have the capacity to approximate
virtually any function with adequate training, making this framework versatile.
Our results show that the trained PSO-DNN model outperforms the WMMSE-based



42

algorithm, especially in terms of computational time, while its performance is only
slightly worse than that of the PSO algorithm (by 92%). This is a significant improve-
ment, given that it saves 99% in computational time.
However, there are some challenges that we haven’t fully addressed in this study,

and further research is necessary. Determining the optimal DNN structure is a critical
aspect, and this structure heavily depends on the specifics of the large-scale D2D com-
munication system setup and the choice of hyperparameters. Additionally, DNNs don’t
efficiently utilize the communication network’s topology, which can affect learning ef-
ficiency. In the next chapter, we explore optimal solution structures for more complex
power allocation problems and integrating them into a deep learning-based framework.
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Chapter 3

Resource allocation in Homogeneous D2D
Network with Graph Learning in Supervised

Manner

As discussed in chapter 2, DL models have found widespread application in various
communication networks, proving highly effective for addressing a range of issues like
network design, traffic prediction, and resource allocation. Nonetheless, many of these
studies have only made partial use of the network’s topology. This limitation arises
because most deep neural networks are tailored for handling data structured in a Eu-
clidean manner. In recent years, graph-based deep learning techniques, exemplified by
GNNs, have emerged to address this gap, offering solutions for non-Euclidean struc-
tured data. GNNs have demonstrated a capacity to excel in solving problems within
communication networks. Their strength lies in their ability to efficiently capture hid-
den spatial information within the network topology and generalize effectively even in
cases where the network is dynamic or possesses invisible topologies. In this chapter,
we introduce two PSO-based supervised graph neural learning frameworks.

3.1 Background Knowledge of Graph Learning

Graph is a foundational mathematical concept used to depict universal relationships,
consisting of sets of nodes and the connections that link them. In recent times, graphs
have found extensive use in representing a wide array of real-life scenarios, resulting
in their broad acceptance as fundamental data structures. Within the realm of machine
learning, approaches rooted in graph structures, commonly known as graph machine
learning, involve methods like graph embeddings and neural networks [34].
Graph embedding refers to transforming the nodes or edges of a graph into a vector
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space with reduced dimensions. This process is alternatively referred to as network em-
bedding or graph representation learning [35]. In order to maintain the integrity of the
graphs structure and characteristics, the voluminous, multi-dimensional, diverse, intri-
cate, and ever-changing data is transformed into a standardized, reduced-dimensional,
and compact vector representation. The related study aims to accomplish tasks such
as node classification and clustering, link prediction, graph reconstruction, and visual-
ization. The proposed technique is designed to have a low computational complexity.
Hence, graph embedding is categorized as a preparatory step in real scenarios.
Graph Neural Network (GNN) is a neural network tailored for the analysis and pro-

cessing of graph-based data [38]. GNN models are adept at handling input data char-
acterized by diversity in scale, heterogeneity, and complex topological features. Their
demonstrated capability to efficiently extract intricate topological information, iden-
tify critical and complex data aspects, and perform swift data processing is both com-
pelling and reliable. The GNN framework includes a range of model types, including
Graph Convolutional Networks (GCN), Graph Attention Networks (GAT), Graph Au-
toencoders (GAE), and Graph Spatiotemporal Networks (GSTN).
In graph theory, a simple graph is defined as G = (V,E), where V is the set of

nodes and E represents the edges connecting these nodes. Based on the connectivity
relationship, N (vi) signifies the set of neighboring nodes of vi, and each element in
the degree matrix D is Dii = N (vi). The Laplacian matrix of the undirected graph is
introduced and defined asL = D−A. Furthermore, the normalized Laplacian matrix is
defined as L = IN −D−

1
2AD

1
2 , whereN stands for the number of nodes, and IN is the

identity matrix with dimensionN . The node feature matrix of the graph is expressed as
X ∈ RN×d, where d represents the dimension of the node feature vector.
The graph embedding (GE) paradigm is introduced initially. In mathematics, embed-

ding refers to a mapping function denoted as f : X → Y , which facilitates the transfer
of points from one space X to another space Y . Typically, embeddings are performed
by mapping data from a high-dimensional abstract space to a lower-dimensional space.
This practice is motivated by the fact that neural networks are more adept at processing
data with lower dimensions, resulting in improved efficiency.
GCNs are inspired by the principles of convolutional neural network (CNN) models

[36]. The primary objective in achieving the final neural network model entails the
incorporation of variable parameters, followed by the utilization of gradient descent
to optimize their performance. The spectral-based graph convolution method utilizes
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concepts from signal processing to represent the attributes of nodes in a graph. The
aforementioned technique can be classified as a convolutional transformation within
the Fourier transform. The processing procedure involves the integration of the time
domain signal with the Laplace eigenfunction.
The graph convolution operation, denoted as X∗, in GCN is precisely defined as

follows:
X∗ = W

(
IN +D−

1
2AD

1
2

)
X, (3.1)

where W denotes the learnable weight matrix. To address the concern of potential
gradient explosion, an additional transformation is applied to the graph convolution
process as

X∗ = W
(
D̃−

1
2 ÃD̃

1
2

)
X, (3.2)

where Ã = IN + A and D̃ii =
∑

j Ãij .
On the contrary, spatial-based GCNs establish convolution operations according to

the graph’s topology. For instance, the Message-Passing Neural Network (MPNN) sug-
gests using a message-passing function, which encompasses a message-passing phase
and a readout phase [39]. The message-passing phase is defined as follows:

mt
vi
=

∑
vj∈N (vi)

Mt
(
X t−1

i , X t−1
j , eij

)
, (3.3)

where mt
vi
denotes the message aggregated from the neighboring node of vi, andMt

denotes the aggregation function, and t is the number of iteration. The message readout
process is subsequently defined as follows:

X t
i = ut

(
X t−1

i ,mt
vi

)
, (3.4)

where denotes ut the message readout function.
The graph attention networkmodel presents a novel approach to handle graph-structured

data by leveraging the attention mechanism [37]. Attention mechanism can selectively
concentrate on the most crucial information amongst a vast quantity of data. The pri-
mary objective of Graph Attention Networks (GAT) is to calculate the latent represen-
tation of each node inside a graph by prioritizing the surrounding nodes in its vicinity
by utilizing the attention mechanism. The proposed approach is a graph convolution
technique that operates space-based, determining the weights of adjacent nodes based
on their respective degrees. Therefore, it is suitable for inductive learning issues and has
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Figure 3.1: Example of D2D network’s graph representation.

the potential to be applied to tasks involving hidden graphs. GAT integrates the attention
mechanism into the propagation step and employs a multi-head attention mechanism to
enhance the robustness of the model. The formulation of GAT is as follows:

X t
i = σ

 1

K

K∑
k=1

∑
j∈N (vi)

αk
(
X t−1

i , X t−1
j

)
W t−1X t−1

j

 (3.5)

where σ denotes the activation function, and αk denotes the k-th attention mechanism.

3.2 Graph Representation of D2D Networks

We formulate the sum rate optimization as learning over a direct homogeneous graph.
Tuples G = (V,E) provide a formal description of the network, where V and E rep-
resent the set of vertices and edges. The index of each communication link and inter-
ference link is denoted as a vertex i ∈ V and an edge (i, j) ∈ E. A vertex i is the
intersection of an entity and an edge (i, j) specifies a directed relationship between ver-
tices i and j. The neighboring set of vertex i is denoted by Ni = {j ∈ V |(j, i) ∈ E}.
vi and eij define the attributes of vertex i and edge ij, respectively. A simple network
and its graph representation is shown in Figure 3.1.
Considering multiple types of vertices or edges in the heterogeneous graph. Denote

the set of vertex types as S, the set of edge types as T . The graph can be represented by
twomapping functions that map each vertex to its corresponding vertex typeφ : V → S
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Figure 3.2: Architecture of the PA-GNN framework.

and each edge to its corresponding edge type ψ : E → T . Denote the i-th vertex
as vi, Ni = {j ∈ V |(j, i) ∈ E} is the set of i’s adjacent vertices. Node features are
represented by V ≜ {vi}i. Edge features are aggregated in E ≜ {eij}i,j , if edge (j, i)
exists and 0 otherwise.
Each vertex’s attributes contain its weight wi, straight channel response hii and noise

variance σ2i . Each vertex’s attributes contain its channel response eij = [hij, hji] from
the interfering transmitters to the interfered receivers. Furthermore, because there are
various connection kinds with unique numbers of send and receive antennas, the size
of the graph features may change.

3.3 Architecture of Graph Learning Based Methods

The GNN-based framework trained in a supervised manner has two steps: (i) The first
step searches through a heuristic algorithm for the labeled optimal assignment values
and the corresponding network states as a dataset and trains the learning model. (ii)
The second step runs the trained model in a real-time online application to predict the
optimal assignment [45].

3.3.1 Learning Model 1: Message Passing Neural Network

GNNs have hierarchical neural network construction, like conventional MLPs. The
MPNNs aggregate the features of the edges and adjacent nodes to update the represen-
tation of each node in each layer. The updating schema of the i-th node at layer l in
GNNs is expressed as follows:

Aggregation : α(l)
v = ϕα

({
β(l−1)
u : u ∈ N (v)

})
, (3.6)
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Combination : β(l)
v = ϕβ

(
β(l−1)
v , α(l)

v

)
, (3.7)

where α(l)
v represent the feature aggregated by node v from its adjacent node at layer l.

β
(l)
v denote the feature of node v at layer l. ϕα is a parameterized function that encodes
vertex and edge attributes for each edge (j, i). Then each vertex i aggregates the updates
of edges. ϕβ represents the combination function used to derive the vertex update by
combining the aggregated edge update α(l)

v with the vertex’s current attributes β(l−1)
v .

Message transmission is completed when each vertex’s knowledge is embedded in edge
updates and consequently assimilated by its adjacent vertices.
With permutation invariance operations (e.g., sum, mean, and maximum), neighbor-

hood aggregation can capture the permutation invariance attributes of the interference
channel. Since the size of edge features varies with the number of antennas, features
from different relations cannot be directly processed by ordinary GNN and these fea-
tures should be treated separately. Therefore, we assign separate update functions to
each relation using MLPs for parameterization. First, message transmission is per-
formed in each relation. The target vertex then samples and aggregates partial updates
from multiple relations to achieve its final update. Define the update at vertex i as:

e
(l)
ij = ϕe

(
v
(l−1)
j , e

(0)
ij

)
(3.8)

v
(l)
i = ϕv

(
v
(l−1)
i ,max

j∈Ni

e
(l)
ij

)
(3.9)

The initial edge attributes e(0)ji are maintained in all edge update stages. This aids
in maintaining performance stability. The attributes of each vertex are used as initial
inputs in the forward calculation process, and then several iterations are performed to
achieve the beamforming vector.

3.3.2 Learning Model 2: Graph Attention Networks

It is necessary to map these vectors to a high-dimensional space using the GAT layer to
enhance the network topology information contained in the original low-dimensional
features nk obtained from the network. The input to the GAT network contains a set of
node features denoted as n = (n1, n2, .., nK) , ni ∈ RdV , where each ni is the feature of
existing BS-to-UE pair vi
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Theoretically, GAT can use all nodes other than the central node to calculate the sim-
ilarity with that central node. The dimensions of the node and edge feature spaces may
vary. To enhance the expression of the node features, the layer of parameter-sharing
neural networks is added to linearly transform the features (whether for nodes or edges),
and the network is denoted by Att. DefineW ∈ RdV×d′V as the learnable weight matrix
transforming input features linearly into high-level features, the dimension for feature
vector of the node is made to change from dV to d′V . The self-attention mechanism cal-
culates the similarity between the central node and the neighbor nodes, where a layer of
the neural network calculates the similarity. The parameters are denoted by βT , and the
two transformed feature vectors are fed into this network after stitching. The importance
coefficient of node vi to node vj is expressed as

ci,j = Attention (Wni,Wnj) . (3.10)

We employ the mask attention technique to exclusively focus on the adjacent nodes
of the first order, including the node itself. It computes the correlation between the
nodes and their neighboring nodes and subsequently applies the softmax regularisation
method. The coefficient can be formulated as

Attention (Wni,Wnj) = βTLeakyReLU
(
βT [Wni ∥Wnj]

)
. (3.11)

Throughout this process, the features are jointly combined, with their respective pa-
rameters governed by the attention vector βT and the activation function LeakyReLU .
The resulting weight, which is normalized using the softmax function for node vj is
expressed as

αi,j = softmaxj (ci,j) =

(
exp

(
σ
(
βT [Wni ∥Wnj ]

))∑
k∈Ni

exp (σ (βT [Wnnk ∥Wnk ]))

)
, (3.12)

where βT
n ∈ R2d′V denotes the attention vector for node-based neighbors. The attention

mechanism is implemented as a single-layer feedforward neural network, characterized
by the parametersW and β. This neural network utilizes the LeakyReLU nonlinearity
with a negative slope 0.2. The variable αi,j refers to the attention score that is used to
quantify the significance of a neighboring node vj concerning node vi.
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Figure 3.3: Performance versus size of dataset.

3.4 Simulation

In this section, the performance of PSO-MPNN and PSO-GAT are evaluated with dif-
ferent system parameters. We compare it with state-of-the-art baselines, including het-
erogeneous network embedding and graph neural network-based methods, to validate
the proposed method’s effectiveness.

3.4.1 Environment Setting

To assess the effectiveness of the proposed supervised Graph Neural Network (GNN),
we employ the same homogeneous D2D network environment as described in Chapter
2. The computational device employed for conducting the simulations in this investiga-
tion is equipped with a central processing unit (CPU) of Intel(R) Core CPU i7-12700H,
Graphics processing unit (GPU) of Nvidia rtx 2070s and a random access memory
(RAM) capacity of 32 GB. The experimental methodology utilized the Deep Graph
Library (DGL) and PyTorch framework as the foundation.

3.4.2 Numerical Results

The training efficiency of the learning-based approach is initially examined. As shown
in Figure 3.3, the performance of the GNN gradually improves as the training sam-
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Figure 3.4: Performance versus number of D2D pairs.

Figure 3.5: Performance versus pairwise distances.
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Figure 3.6: Execution time of different benchmarks.

ple size increases. Overall, there isn’t a significant difference in performance between
supervised and unsupervised trained GNNs, and supervised GNNs with fewer sam-
ples tend to perform better, possibly because our proposed method’s input features in-
clude prior knowledge of the near-global optimal allocation. Furthermore, classical
supervised Deep Neural Networks (DNNs) perform the worst among all the methods.
Given the data-driven nature of supervised DNNs, they typically require large training
datasets. Due to their superior sample efficiency, GNNs are often recommended for
solving real-world problems in wireless networks, especially when collecting ample
training data might be costly or inconvenient.
Next, we assess the scalability of the proposed method in networks with varying pair-

wise distances and densities. As shown in Figure 3.4, we examine the performance of
the proposed method alongside benchmarks for different network sizes and link densi-
ties. When there are 12 pairs in the network, the performance of MPGNN and GAT is
quite similar and differs from the near-global optimal solution of PSO by only 0.05. In
the same environment, where the number of links is successively increased by factors
of 2, 4, and 8, and the area of the region is similarly expanded, the normalization ratio
of MPGNN remains consistently higher than 0.97, while that of GAT only stays at 0.95.
This suggests that supervised GNN is not the best solution in this particular case. Pos-
sible reasons why MPGNN slightly outperforms GAT are that, in comparison to GAT
which primarily focuses on the node features during training, MPGNN concurrently
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aggregates edge weights as additional information within the nodes. This supplemen-
tation to the sample features contributes to its slightly superior performance compared
to GAT.
In Figure 3.5, we can observe the performance of the GNN-based algorithm across

different D2D pairing distances. Notably, the GNN-based algorithm consistently main-
tains an average normalization rate above 0.96 compared to the PSO algorithm, even as
the distribution of pairing distances varies. This robust performance can be attributed to
the GNN’s ability to incorporate channel gain dependencies on distance by embedding
geometric information of the wireless network into the node features. Consequently, the
GNN-based optimization framework outperforms the other benchmark schemes across
all three tested parameter settings.
As shown in Figure 3.6, PSO and WMMSE take up a lot of time as the number of

D2D pairs increases and the problem becomes more complex as the network scales.
Traditional RA algorithms are usually very time-consuming and unsuitable for real-
time applications. In contrast, the optimization problem in D2D networks is greatly
helped by the GNN-based approach. It is more than 100 times faster than standard
algorithms and more than 1000 times faster than the heuristic algorithm PSO. This sig-
nificant speedup of the proposed method augurs well for its real-time implementation
on wireless networks. Since the proposedMPGNNmethod has the same network struc-
ture and input features as GAT, its runtime performance is comparable. DNN obtains
better runtime performance than GNN due to ignoring graph features, but its terminal
performance and sampling efficiency are poor.

3.5 Conclusion to Chapter 3

In this chapter, we have developed two scalable GNN-based neural network frame-
works, namely MPGNN and GAT, to tackle the resource allocation problem in homo-
geneous D2D wireless networks. Our focus has been on crafting neural structures that
meet crucial performance criteria such as minimal training cost, high computational
efficiency, and strong generalizability, which are paramount in contemporary learning-
based approaches.
We also seamlessly integrated heuristic and learning-based optimization techniques

into our approach. In this paper, our proposition revolves around a GNN model that
leverages supervised learning for parameter updates. This approach is distinctive from
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the majority of other GNN methods, as it effectively utilizes node and edge features to
illustrate the deep components’ interactions, enhancing the model’s expressiveness.
Our simulations have demonstrated that the proposed PSO-GNN method outper-

forms other DNN-based methods in maximizing the sum rate. This is primarily at-
tributed to its effective utilization of a priori knowledge concerning the optimized solu-
tions sought by heuristic algorithms. Furthermore, by observing the performance dif-
ference between MPGNN and GAT, we’ve gained insights into the influence of edge
features on the models performance, which paves the way for our future research.
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Chapter 4

Resource allocation in Heterogeneous D2D
Network with Edge Feature Enhanced Graph
Attention Network in Unsupervised Manner

Graph-based deep learning methods have emerged as a promising approach for address-
ing network resource allocation challenges. Given the inherently topological nature of
mobile networks, leveraging GNNs proves advantageous in handling data structured as
graphs. However, a predominant limitation of these methods lies in their emphasis on
node features during the learning process, often neglecting or oversimplifying the role
of edge features, which are equally vital. In this chapter, we introduce a novel design
known as Heterogeneous Edge Feature Enhanced Graph Attention Network (HEGAT).
This design directly connects the evolving network topology with the optimal resource
allocation strategies during the learning phase. Through extensive simulations, we es-
tablish the exceptional performance and robust generalization capabilities of HEGAT
in cellular networks characterized by diverse parameter settings.

4.1 Background Knowledge of Heterogeneous Graph

Previous chapters have underscored the necessity for resource allocation techniques
to align more effectively with the underlying structure of communication networks.
Conventional deep neural networks are explicitly designed for processing data orga-
nized in Euclidean structures, such as images and videos. In response to this limitation,
the field has witnessed the emergence of GNNs, a class of graph-based deep learning
models capable of handling non-Euclidean structured data, aiming to bridge this gap.
While GNNs have made substantial progress in addressing resource allocation chal-
lenges within communication systems, they encounter two significant challenges. One
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noteworthy observation is that the majority of prior research has predominantly empha-
sized node features while overlooking the potential value embedded in edge features.
There is also a pressing need for a more comprehensive assessment of the significance
of neighborhood structures and the evaluation of connections between edges and nodes.
There are also some graph edge related studies as follows:
Message-Passing Neural Networks (MPNNs) contain multiple message-passing and

readout phases. It is a paradigm that fully incorporates node features. At the same
time, edge features are also used to characterize the network, and this feature updating
mechanism has been proposed to predict node features [39]. Although MPNN adds
edge information in the message-passing phase, its passing mechanism cannot learn the
topological relationship between nodes and edges. Relational Graph Convolution Net-
works (RGCN) use forward-passing rules to add extra edge weights to the rule weight
matrix [40]. However, experiments have shown that this simple aggregation is difficult
to compute and does not significantly improve performance. Exploiting Edge Feature
Graph Neural Network (EGNN) employs the aggregation function to combine node fea-
tures while training separate attention weights for each dimension feature. The resulting
dimensional outputs are then concatenated [44]. However, this phenomenon also leads
to the loss of edge information.
On the other hand, real-world graphs often consist of various node and edge types and

are collectively known as Heterogeneous Information Networks (HINs) [40]. Through-
out this paper, we will refer to them as heterogeneous graphs for simplicity. Hetero-
geneity is a fundamental characteristic of these graphs, involving diverse node and edge
types, each having distinct features residing in various feature spaces. These heteroge-
neous graphs, enriched with comprehensive information, find applications in numerous
data mining tasks. Due to their intricacy, conventional graph neural networks cannot be
straightforwardly employed to address the unique challenges posed by heterogeneous
graphs. In light of these considerations, designing a graph neural network architecture
with an attention mechanism for heterogeneous graphs must meet several new require-
ments. For example: The Heterogeneous Interference Graph Neural Network (HIGNN)
is designed to handle heterogeneous network circumstances [13]. The communication
connections between D2Ds serve as the nodes, and the nodes are classified according to
the number of antennas on the transmitters in their links. In D2D downlink systems, this
method is used to allocate power. The Heterogeneous Ultra-Dense Network (HUDN)
is introduced to solve the resource allocation issue in communication scenarios with a
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blend of D2D networks and cellular networks [45]. The communication links are re-
garded as nodes, and the nodes are categorized according to the types of devices they
connect. Heterogeneous Graph Neural Network (HetGNN) is introduced to discover
the power allocation policy for multi-cell multi-user systems. But these works did not
consider the edge characteristics of the graph.

4.2 SystemModel andGraphRepresentation ofHeterogeneousD2D
Networks

4.2.1 System Model

This section considers a heterogeneous wireless network and simulates a downlink
transmission scenario comprising numerous single-hop D2D pairs, as depicted in Fig-
ure 4.1. The main objective of this work is to optimize the resource management policy
of each D2D pair in real time according to users’ requirements. In contrast to prior
research, the present study focuses on a practical scenario involving heterogeneous net-
works that incorporate multiple link types to establish communication connections. It
is crucial to note that this scheme considers the presence of transmitters with varying
numbers of antennas and receivers with a single antenna within the network.
A heterogeneous D2D network is considered with the transceiver pairs sharing the

same spectrum of bandwidth B. DenoteM ≜ {1, ...,M} as the set of link types and
m,n ∈ M. The quantity indicating the number of transmit antennas for link type
n is denoted as An. Let jn index the j-th link of type n, hjnjn ∈ CAn×1 denote the
communication link channel between the transmitter and receiver of link im, hjnim ∈
CAm×1 denote the interference link channel from the transmitter of link im to receiver
of link jn. xjn ∈ CAn represent the beamforming vector of link jn. Then, the received
signal at the receiver of the link jn is given by

yjn = hHjnjnxjnsjn +
∑
im ̸=jn

hHjnimximsim + zjn, (4.1)

where zjn ∼ N
(
0, σ2

jn

)
denote the additive white Gaussian noise (AWGN), sjn ∼

CN (0, 1) denote the desired symbol of link jn. Let X ≜ {xjn}jn denote the matrix of
beamforming vector for all communication links. The data rate to a receiver of jn is
formulated as:
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Figure 4.1: Graph modeling of D2D network with two types of links.

ξjn (X) = B log

1 +

∥∥∥∥hHjnjn
xjn
∥∥∥2
2∑

im ̸=jn

∥∥∥hH
jnim

xim
∥∥∥2
2
+ σ2jn

 . (4.2)

The weighted sum rate is used to evaluate the system’s performance. The object
function for beamforming design to maximize the sum rate can be expressed as follows:

max
X

∑
jn

wjnξjn (X)

s.t. ∥xjn∥
2
2 ≤ pmax , ∀j, n,

(4.3)

where pmax represents the maximum transmit power constraint of the communication
link, and wim denotes the weight of link im.

4.2.2 Graph Representation

Using a fully connected graph, we establish a representation of the D2D interference
channel. The D2D pairs are regarded as nodes, while the interference links are regarded
as edges. As shown in Figure 4.1, there are two types of nodes, depending on their
communication type, and three types of edges, depending on the type of node they
connect to.
The jn-th transmitter-receiver pair is the j-th node of type n, denoted as vjn. The
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Figure 4.2: Graph representation.

node attribute contains the state of the direct channel, the weight, and the communica-
tion type. An edge ejnim connecting two nodes, vjn and vim, represents the interference
link, where the attribute contains the states of the interference channels and types. In
wireless networks, the attributes of both nodes and edges are as important as the network
topology. To incorporate these attributes, we define the heterogeneous network graph
as G = (V,E), where V represents the set of nodes and E ⊂ {{jn, im} |jn, im ∈ V }
represents the set of edges. The mapping of nodes and edges to their respective features
is denoted by R : ϕ→ CdV and S : ψ → CdE , where dV and dE denote the dimension
of feature space for node and edge, respectively.

4.3 Heterogeneous Graph Attention Networks

In this section, we present the framework of the proposed HNENN. The framework
employs a hierarchical fusion of heterogeneous node-level and edge-level attention,
allowing it to learn corresponding node and edge embeddings. The node and edge
features are updated by aggregating information from the neighborhood.

4.3.1 Heterogeneous Transformation Process

In the heterogeneous graph, the node-based neighborNi of a given node i can be defined
as the collection of nodes directly connected to node i. It should be noted that a given
node’s neighbors include the node itself. Similarly, the node-based neighbor Nij of a
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Figure 4.3: The architecture of the proposed HNENN for graph embedding. HNENN’s layered attention
mechanism, a node-level attention layer and an edge-level attention layer, alternate learning node, and
edge embeddings.

given edge ij can be defined as the collection of nodes directly connected to edge ij.
As shown in Figure 4.2, circles represent nodes, and squares represent edges. In the

node-level attention layer, the neighbors of node v11 based nodes are v11 and v21 of type
1, and v12 and v22 of type 2. In the edge-level attention layer, the neighbors of edge e1121
based nodes are v11 and v21 of type 1.
In the heterogeneous graph, the edge-based neighbor Ei of a given node i can be

defined as the collection of edges directly connected to node i. Similarly, the edge-
based neighbor Eij of a given edge ij can be defined as the edges in the line graph
directly connected to node edge ij. It should be noted that a given edge’s neighbors
include the edge itself.
As shown in Figure 4.2, in the node-level attention layer, the edge-based neighbors

of node v11 are e1121 of type 1, e1112 and e1122 of type 2. In the edge-level attention layer,
the edge e1121-based neighbors are e1121 of type 1, e1112, e1122, e2112 and e2122 of type 2.
In advance of aggregating information about the neighbors of nodes or edges in a

communication network, it is essential to acknowledge that each node’s or edge’s neigh-
bors may play distinct roles and exhibit varying importance in learning node or edge
embeddings for resource allocation. We propose the incorporation of node-level and
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edge-level attention, which effectively learns the significance of each node’s or edge’s
neighbors within a heterogeneous graph. Using the proposed attention mechanism, we
can combine the representations of these influential neighbors to build node or edge
embeddings that show how they contribute to allocating resources.
Due to the heterogeneity of nodes and edges, different types of nodes or edges have

varying feature space dimensions. The feature consists of attribute and type; the former
are continuous complex variables, and the latter are discrete. We employ the type-
specific transformation matrix M proposed in [89] for each node or edge type. This
matrix facilitates the transformation of features from different types of nodes into a
unified feature space. Denote nattri as the vector of node i’s attribute, and ntypei as the
vector of node i’s type. The transformation process of node can be mathematically rep-
resented as nattri = Mκnattri . Note that we reused the nattri to simplify the formulation.
The feature of node i can be represented as ni =

[
nattri

∥∥ntypei

]
, which is obtained by

concatenating its transformed node attribute and type information. Similarly, we can
obtain the transformation process of edge as eattrij = Mχeattrij , The feature of edge ij can
be represented as eij =

[
eattrij

∥∥etypeij

]
. The node-level and edge-level attention mecha-

nism can handle arbitrary types of nodes or edges using heterogeneous transformation
operations.

4.3.2 Node-level Attention Layer

The node-level attention layer in HNENN is specifically designed to learn node embed-
dings by utilizing valuable information from heterogeneous edge features. It is evident
that different neighbors of each node play distinct roles and have varying degrees of
significance in generating the node embedding. To address this issue, we propose in-
troducing a node-level attention mechanism. This mechanism determines neighbors’
importance coefficients based on nodes and edges for node i.
In the l-th layer of HNENN, the input feature comprises a collection of node features

denoted as n = {ni |i ∈ [1, ..., |V |]}, where ni represents the feature vector of node i.
Additionally, there exists a collection of edge features denoted as e = {eij |i, j ∈ [1, ..., |V |]},
where eij corresponds to the feature of the edge pointing from node j to node i. The
importance of node j or edge ij with respect to node i can be expressed as follows:

cnij = Attnnode (Wnni,Wnnj) , (4.4)

cei,ij = Attenode (Wnni,Weeij) , (4.5)
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where Attnnode and Attenode represent the node-level attention performed by the deep
neural network. For any given node i, the relationships formed with all its node-based
neighbors share the Attnode. The weight of neighboring nodes or edges concerning
a particular node depends on their features. Notably, the importance is asymmetric,
meaning the importance of node i or edge ij to node j may not necessarily equal the
importance of node j to node i or node i to edge ij. This observation highlights that
node-level attention can preserve its asymmetric nature, which is an essential prop-
erty in the context of heterogeneous graphs. Similarly, this property can be extended
to edge-level attention. Wn and We are learnable weight matrices that transform the
vertex features from low to high dimensions using linear mapping, a common feature
augmentation method.
The incorporation of structural information is accomplished through masked atten-

tion, ensuring that embedding a specific node i is solely influenced by its neighboring
nodes j or edges ij. Consequently, the importance coefficient of node j to node i is
normalized using the softmax function as

αn
ij = softmaxj

(
cnij
)
=

(
exp

(
σ
(
aTn [Wnni ∥Wnnj ]

))∑
k∈Nj

exp (σ (aTn [Wnni ∥Wnnk ]))

)
, (4.6)

where an ∈ R2dl+1
v denotes the node-level attention vector of node-based neighbors. It

maps concatenated high-dimensional features to a real number. Specifically, this paper
implements this mapping through a single-layer feedforward neural network. And σ
denotes the LeakyReLU activation. The importance coefficient of edge ij to node i is
normalized using the softmax function as

αe
i,ij = softmaxij

(
cei,ij
)
=

(
exp

(
σ
(
aTe [Wnni ∥Weeij ]

))∑
st∈Ei exp (σ (a

T
e [Wnni ∥Weest ]))

)
, (4.7)

where ae ∈ Rdl+1
v +dl+1

e denotes the node-level attention vector of edge-based neighbors.
Upon collecting the information regarding the significance coefficients αn

ij and αe
i,ij ,

the aggregation process of embedding node i can be executed by considering the respec-
tive importance coefficients. Let nl+1

i denote the feature output of node i for node-based
neighbors. It can be expressed as a linear combination of the features,

nli [Ni] = σ

∑
j∈Ni

αn
ijWnnlj

 . (4.8)
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The heterogeneous nature of the graph data results in a high variance, mainly due to
its scale-free characteristics. To enhance the stability of the self-attention learning pro-
cess [90], we extend the node-level attention to multi-head attention [91]. This entails
repeating the node-level attention for K times and connecting the learned embeddings
to generate the following output feature representation:

nli [Ni] = σ

 1

K

K∑
k=1

∑
j∈Ni

αn,k
ij W

k
nnlj

 . (4.9)

Similarly, the feature output of node i for edge-based neighbors can be expressed as:

nli [Ei] = σ

 1

K

K∑
k=1

∑
ij∈Ei

αe,k
i,ijW

k
e elij

 . (4.10)

Consequently, the embedding of node i in layer (l + 1) is obtained by combining
the edge-based neighbor embedding nl+1

i [Ei] and the node-based neighbor embedding
nl+1
i [Ni] as:

nl+1
i = concat

(
nli [Ni] , nli [Ei]

)
(4.11)

where nl+1
i is the updated embedding for node i with node-level attention mechanism

at the l-th layer.

4.3.3 Edge-level Attention Layer

Edge features enhance the node embeddings within the node-level attention layer. Sim-
ilarly, the edge-level attention layer utilizes the same approach to acquire the edge em-
beddings by fusion of node features. To update the edge embeddings, the initial step
involves acquiring knowledge regarding the significance of both node and edge neigh-
bors for each edge.
The importance of node j or edge ij with respect to node i can be expressed as

follows:

cnij,i = Attnedge (Weeij,Wnni) , (4.12)

ceij,ik = Atteedge (Weeij,Weeik) , (4.13)

The importance coefficient of edge ij to node i is normalized using the softmax
function as
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βn
ij,i = softmaxi

(
cnij,i
)
=

(
exp

(
σ
(
qTn [Weeij ∥Wnni ]

))∑
k∈Nij

exp (σ (qTn [Weeij ∥Wnnk ]))

)
, (4.14)

where qn ∈ Rdl+1
v +dl+1

e denotes the edge-level attention vector of node-based neighbors.
The importance coefficient of edge ij to edge ik is normalized using the softmax func-
tion as

βe
ij,ik = softmaxij

(
ceij,ik

)
=

(
exp

(
σ
(
qTe [Weeij ∥Weeik ]

))∑
st∈Eij exp (σ (q

T
e [Weeij ∥Weest ]))

)
, (4.15)

where qe ∈ R2dl+1
e denotes the edge-level attention vector of edge-based neighbors.

Then, the feature output of edge ij for node-based neighbors can be expressed as

elij [Nij] = σ

 1

K

K∑
k=1

∑
i∈Nij

βn,k
ij,iW

k
nnl

i

 . (4.16)

The feature output of edge ij for node-based neighbors can be expressed as

elij [Eij] = σ

 1

K

K∑
k=1

∑
ik∈Eij

βe,k
ij,ikW

k
e elik

 . (4.17)

Consequently, the embedding of edge ij in layer (l + 1) is obtained by combining
the edge-based neighbor embedding elij [Eij] and the node-based neighbor embedding
elij [Nij] as

el+1
ij = concat

(
elij [Nij] , elij [Eij]

)
(4.18)

To facilitate a better understanding of the aggregation process involving the edge-
level attention layer and node-level attention layer, a concise illustration is presented
in Figure 4.3. The ultimate embedding is synthesized by aggregating both node and
edge embeddings. Subsequently, this ultimate embedding can be utilized in various
tasks, and different loss functions can be designed accordingly. The pseudocode of the
proposed framework is shown in Algorithm 4.

4.3.4 Loss Function

During the forward computation, each node i takes its initial features ni [0] as input
and generates the embedding n1i . When layer l > 1, the node-level attention layer
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Algorithm 4 Heterogeneous Node and Edge Graph Neural Network
Input: The heterogeneous graph G = (V,E)

The features of nodes and edges.
Output: The node-level attention weight α,
The edge-level attention weight β,
Final node embeddings nli.
while l ⩽ L do

for Each node i ∈ V do
Find the node-based neighbors Ni and edge-based neighbors Ei.
Do heterogeneous transformation nattri = Mκnattri .
Concate attributes and types nj =

[
nattri

∥∥ntypei

]
Calculate the importance coefficient αn

ij andαe
i,ij , obtain the embedding of node based neigh-

bors nli [Ni] and edge based neighbors nli [Ei].
nl+1
i = concat

(
nli [Ni] , nli [Ei]

)
end for
for Each edge ij ∈ E do

Find the node based neighbors Nij and edge based neighbors Eij .
Do heterogeneous transformation eattrij = Mχeattrij .
Concate attributes and types eij =

[
eattrij

∥∥etypeij

]
.

Calculate the importance coefficient βn
ij,i and βe

ij,ik, obtain the embedding of node based neigh-
bors elij [Nij] and edge based neighbors elij [Eij].

el+1
ij = concat

(
elij [Nij] , elij [Eij]

)
end for

end while
Minimize the loss function L.
Back propagation and update θ in HNENN

recursively generates updated features nli by aggregaing nl−1i . Subsequently, nl−1i is
passed to the output layer to obtain an estimate of the beamforming vector x̂im = nli.
The loss function L is defined as the negative expectation of the utility function across
various channel realizations:

L (θ) = −EH

∑
i,m

B log

1 +

∥∥∥∥hHimim
x̂im
∥∥∥2
2∑

jn ̸=im

∥∥∥hH
imjn

x̂jn
∥∥∥2
2
+ σ2im


 . (4.19)

The backpropagation technique is utilized to update the model parameters θ of the
HNENN in an unsupervisedmanner based on the formulation above. As a consequence,
a graph neural network model is obtained through training.
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4.4 Simulation

In this section, the performance of HNENN is evaluated with different system param-
eters. We compare it with state-of-the-art baselines, including heterogeneous network
embedding and graph neural network-based methods, to validate the proposed method’s
effectiveness.

4.4.1 Environment Setting

We conducted simulations on a heterogeneous D2D network. The network consists of
two types of transmitters: one with a single transmit antenna and the other with two
transmit antennas. Additionally, there are two link types, SISO (Single-Input Single-
Output) and MISO (Multiple-Input Single-Output), with a ratio set at 2:1.
For the simulation setup, the transmitters of each D2D pair were randomly generated

using a uniform distribution within a square region with a side length of D. Corre-
spondingly, the receivers were uniformly distributed at a specified pairwise distance
from the transmitters. The computation of the channel response is formulated as fol-
lows: hjnim =

√
βjnimgjnim, where βjnim is a real number, and gjnim is a complex number

representing the contributions of the large-scale fading and small-scale fading compo-
nents, respectively. We employ a distance-dependent path loss model to capture the
large-scale fading effect, while a Rayleigh fading model with a zero mean and unit vari-
ance represents the small-scale fading [32]. In particular, independent and identically
distributed zero-mean complex Gaussian variables describe the small-scale decay. In
the large-scale fading effect, the path loss and shadowing are measured using a model
for scaled distance correlation. The channel response is a complex vector. Hence, it
must be normalized to separate its real and imaginary components. After that, each of
these elements is added individually to the GNN model.
The simulation experiments were executed using the TensorFlow framework with an

NVIDIA RTX 2080 Ti GPU configuration. A 4-layer HNENN architecture was im-
plemented. We allocate the same training, validation, and test sets for all baselines to
ensure fairness. The datasets for all molecular networks were divided into training,
validation, and test sets in an 8:1:1 ratio. The model is executed three times, and each
experiment’s average performance is recorded. System settings and GNN hyperparam-
eters are summarized in Table 4.1.
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Table 4.1: System setting and GNN hyperparameters

Parameter Value
Area length D 500

D2D pair distance [dmin, dmax] [2 m, 5 m]

Transmit power range [pmin, pmax] [10 dBm, 30 dBm]

Pass loss model 148 + 40 log10 (d [km])

Learning rate 0.0001
Number of layers of GNN 4

Optimizer ADAM
Batch size 64
Epoch count 300

4.4.2 Benchmarks

We compare the proposed method with several graph representation learning methods:
the MPGNN, NENN, Random Edge Graph Neural Network (REGNN), and Random
Strategy (RAND).

• MPGNN (2021) [86]: The presented approach represents a state-of-the-art learning-
based method that relies on the message passing mechanism and is specifically
designed for heterogeneous networks.

• NENN (2020) [73]:The proposed approach utilizes a hierarchical mechanism, in-
corporating both node-level and edge-level attention, to enhance the embeddings
of nodes and edges across multiple neural network layers. It is specifically de-
signed for homogeneous networks.

• REGNN (2021) [42]: It uses special REGNN architectures and forward-passing
nonlinear graph convolution to combine spatial weights with channel coefficients.
This makes it adaptable to networks with different types of connections.

• RAND: It selects variables within the constraints according to the uniform distri-
bution.

4.4.3 Numerical Results

Comparsion with Different Network Scale

To compare the performance of different algorithms across a wider range, we set the
parameters within the range of [2m, 50m] with 1600 training samples. While keeping
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Figure 4.4: Performance comparisons with expanding spatial areas.

the link density constant, each doubling of the number of links results in the square
region’s sides expanding by a factor of p2 of the previous length. As depicted in Fig-
ure 4.4, the sum rate achieved by HNENN consistently outperforms other methods as
the region expands. Specifically, when the number of links increases to 12, 24, 48, and
96, HNENN demonstrates a superior sum rate, surpassing state-of-the-art MPGNN by
8.9%, 8.4%, 7.3%, and 6.8%, respectively.
Subsequently, we assess the performance of different algorithms under varying link

densities, with the number of links exponentially increasing while maintaining a fixed
region side length. As shown in Figure 4.5, all algorithms exhibit a decline in link
performance compared to the results in Figure 4.4. This is attributed to links being more
closely spaced in congested environments, leading to more severe channel interference.
When the number of links increases to 12, 24, 48, and 96, the performance improvement
of HNENN relative to MPGNN is 4.2%, 3.8%, 4.5%, and 5.7%, respectively, and the
performance gap widens with the increase in link density.

Comparsion with Different Network Parameters

Figure 4.6 illustrates the performance comparison results for 48 D2D pairs with differ-
ent numbers of training samples. When the number of training samples is 200, 400,
800, and 1600, the performance of HNENN is improved by 1.8%, 2.4%, 3.2%, and
4.5% compared to MPGNN. Because HNENN is designed for heterogeneous graphs,
it additionally considers the features of neighboring nodes and edges as embedded fea-
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Figure 4.5: Performance comparisons with higher link density.

tures in the feature aggregation. Such high sample-efficiency features are very relevant
for practical problems in wireless networks because the computational cost of obtaining
enough training samples is expensive. Furthermore, HNENN can obtain high perfor-
mance with fewer training samples, which has the potential for practical applications.
Figure 4.7 compares the performance between HNENN and benchmark methods un-

der various D2D pairing distances. Notably, even when the distribution of D2D com-
munication distances varies, the performance of HNENN consistently outperforms the
benchmark schemes. This can be attributed to the heavy dependence of channel gain on
distance, where shorter distances reduce the channel gain’s attenuation. Consequently,
HNENN’s performance advantage is maintained across different D2D pairing distances.

Running Time Comparsion

As shown in Figure 4.8, the proposed HNENN has the same order of magnitude runtime
as other benchmark algorithms because they share similar network structures and input
features. However, HNENN consumes more time than other benchmark methods be-
cause the former requires extra time to acquire and aggregate the embedding features of
nodes and edges, where each node iteratively updates the embedding features of itself
and all its neighboring nodes and edges. When the number of links is 96, the running
time of HNENN is 0.002s, much less than the required time for decision-making inwire-
less systems (0.02s), and satisfies the need for real-time decision-making. Therefore the
proposed method is effective for real-time implementation in wireless networks.
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Figure 4.6: Performance comparisons with various number of training samples.

Figure 4.7: Performance comparisons with various pairwise distances.



71

Figure 4.8: Running time comparison with various numbers of D2D links.

4.5 Conclusion to Chapter 4

This chapter presents a formulation of the wireless network resource management prob-
lem on a heterogeneous graph. The graph is a mapping function that relates node and
edge features to variables associated with the resource management problem. These
variables, whose values are yet to be determined, are defined on the nodes and edges
of the graph. We propose the HNENN framework to address the challenges of hetero-
geneity. The HNENNmodel effectively integrates node and edge features, significantly
enhancing the embedding of both nodes and edges across multiple neural network lay-
ers. It employs a sequential arrangement of node-level and edge-level attention layers to
capture the importance of neighboring nodes and edges. Simulation results demonstrate
that the proposed framework achieves superior sum rates. Additionally, the efficacy and
robustness of this framework have been validated across diverse scenarios.
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Chapter 5

Mean Field Reinforcement Learning for
Optimal Resource Allocation in Heterogeneous

D2D Network

Heterogeneous networks andD2D communication technologies have emerged as promis-
ing solutions for handling the growing mobile traffic [46]. However, the exponential
growth of the state and action space in heterogeneous D2D networks renders tradi-
tional learning approaches impractical [49]. In this chapter, we propose an enhanced
approach that combinesMulti-agent Reinforcement Learning (MARL) withMean-field
TypeGame (MFTG) theory tomodel approximate interactions between different classes
of users in heterogeneous D2D networks [82]. Through extensive experimentation, we
demonstrate that our proposed multitype Mean-field Double Deep Q Network (MTMF-
Q) approach outperforms benchmark methods in terms of performance, highlighting its
potential for practical implementation in ultra-dense communication network scenarios.

5.1 Background Knowledge of Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) techniques, particularly MARL, have gained at-
tention as effective approaches for developing artificial intelligence (AI)-enabled solu-
tions to wireless network resource allocation problems [47]. The interaction between
a network entity acting as an agent and a dynamic and unpredictable network environ-
ment is often modeled as a partially observable Markov Decision Process (POMDP)
[59] to learn optimal selection strategies. Huang et al. [58] proposed a cost-aware
collaborative task execution scheme based on Multi-agent Deep Deterministic Policy
Gradients (MADDPG) for energy-harvesting D2D networks with limited computing,
network, and battery capacity. This scheme facilitates collaboration among multiple
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energy-harvestingmobile devices to minimize task execution. Guo et al. [62] addressed
the credit distribution issue using multi-agent proximal policy optimization (MAPPO),
which marginalizes the actions of the current user equipment (UE) while keeping the
actions of other UEs fixed. To ensure robust and stable learning, Mseddi et al. [61] pro-
posed a collaborative approach based on QMIX [63], which employs hybrid networks
conforming to monotonicity constraints. These studies highlight the use of DRL and
MARL techniques in addressing resource allocation challenges in wireless networks,
showcasing their potential for achieving efficient and collaborative solutions.
Managing scenarios with a large number of agents presents challenges as classical

MARL techniques are limited in handling more than a dozen or tens of agents [76].
The scalability of multi-agent systems encounters two significant obstacles: The num-
ber of interactions between agents grows proportionally to the square of the number of
agents. This leads to increased computational complexity and makes policy learning
more challenging. The strength of interactions varies among agents and changes over
time, posing difficulties in achieving convergence of the loss function [80]. These ob-
stacles highlight the complexities involved in scaling up the number of agents inMARL
systems and emphasize the need for novel approaches and techniques to address these
challenges effectively [79].
Mean-field Game (MFG) theory is a practical approach for addressing problems in-

volving a large number of agents. In such scenarios, each agent interacts with the envi-
ronment by considering its interactions with the collective behavior of the other agents
[65]. This approach significantly reduces the computational complexity associated with
analyzing multi-agent systems. The integration of MFG and MARL shows great po-
tential for applications in the field of communication. Ye et al. [48] utilized DRL tech-
niques to train spiking neural networks (SNNs). They combinedmean-field multi-agent
reinforcement learning (MFRL) and Spiking Proximal Policy Optimization (S-PPO) to
facilitate channel selection and power control. Yang et al. [66] proposed User Cluster
Matching (UCM) that leverages variations in the user channel gain algorithm. They
addressed the resource allocation problem in densely deployed user scenarios using the
Mean-field Deep Deterministic Policy Gradient (MFDDPG) method. Chen et al. [67]
introduced the Mean field Trust Domain Policy Optimization (MFTRPO) approach,
which optimizes trust domain policies and neural network feature embedding methods
for energy allocation to maximize communication efficiency. It is crucial to note that
the use of MFG theory assumes agent homogeneity, implying that the properties of
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agents should be similar. However, in real network environments, multiple types of
agents with different attributes are often encountered [81].
To address the limitations of MFG and accommodate heterogeneous agents, a more

adaptable game structure called MFTG has been proposed. In MFTG, agents are not
required to be homogeneous, and interactions between agents and the environment are
formulated by considering the interactions between collective behaviors within the same
category and across different categories. In the field of communication, MFTG has been
explored in various studies. For example, Zhang et al. [68] propose a heterogeneous
MFMARL framework for routing resource allocation to optimize the communication
energy efficiency of the Space-air-ground Integrated Network (SAGI-Net). Different
types of devices, such as ground devices and Unmanned Aerial Vehicles (UAVs), are
treated as heterogeneous agents in the framework. Li et al. [69] address the power
control and trajectory design problem by modeling it as a discrete MFTG. They use a
clustering algorithm to classify devices into different categories and propose a Mean-
field Q Learning (MF-Q) algorithm to solve the joint optimization problem. Overall,
the MFTG model is more suitable for tackling optimization problems in heterogeneous
networks, where agents have diverse characteristics and behaviors.

5.2 System Model of Heterogeneous D2D Network

We investigate a downlink D2D wireless network featuring multiple types of commu-
nication links, each potentially exhibiting diverse attributes within heterogeneous en-
vironments. In this scenario, we assume that each receiver is equipped with a single
antenna. However, it’s important to note that the number of transmit antennas may
vary across different links. All connections within the system follow a MISO configu-
ration. It’s noteworthy that the exact number of multiple antennas is not standardized
and can vary between different links.
In a square region with an edge length of d, where each D2D pair is randomly dis-

tributed, all pairs share the same spectrum denoted asB. We describe the link types with
M ≜ {1, ...,M}, where each type m has a different number of transmit antennas rep-
resented byAm. Each link within the system is indexed as im for the i-th link of typem,
with im ∈ I and the total number of links denoted as I . The channel responses, himim,
signify the communication channel characteristics between the transmitter and receiver
of link im, while himjn represents the interference channel response from the transmitter
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Figure 5.1: An instance of a heterogeneous D2D network with two distinct types of links.

of link jn to the receiver of link im. These channel responses are of paramount impor-
tance in determining communication quality and interference levels within the network.
At time t, the independent channel coefficient of the receiver for link im is expressed
as:

yim (t) =hHimim
(t)wim (t)

√
pim (t)uim

+
∑
jn ̸=im

hHimjn
(t)wjn (t)

√
pim (t)ujn + zim,

(5.1)

where zim ∼ N
(
0, σim

2
)
represents the additive white Gaussian noise (AWGN) uim

is the signal symbol with zero mean and unit variance. The beamforming vector used
by the transmitter of link im to send the signal uim ∈ C to the receiver is denoted as
vim ∈ CAm. pim represents the transmit power of link im, and we denote the set of
transmit powers as P = {pim}im. The normalized beamforming vector is wim, and we
denote the set of these normalized vectors asW = {wim} im. The beamforming vector
can be expressed as vim = wim

√
pim. At time slot t, the data rate to receiver i of typem

is formulated as:
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ξim (W (t) , P (t)) =

B log

1 +

∥∥∥∥hHimim
(t)wim (t)

√
pim (t)uim

∥∥∥2
2∑

jn ̸=im

∥∥∥hHimjn
(t)wim (t)

√
pjn (t)ujn

∥∥∥2
2
+ σ2im

 ,
(5.2)

Especially in cases where the connection type is single-input-single-output (SISO),
the beamforming design simplifies into a power control problem. Here, pmax represents
the power constraint. Over a time period T , the objective function of the optimization
problem can be calculated as:

max
wim(t),pim(t)

1

T

T∑
t=1

∑
im

ξim (t) (wim (t) , pim (t))

s.t.
∥∥wim

√
pim
∥∥2
2
≤ pmax , ∀ i ∈ I,m ∈M.

(5.3)

Our primary research objective is to optimize the beamforming and power allocation
policy to achieve an optimal sum rate in a D2D heterogeneous network. The sum rate
signifies the total achievable data rate in the network. To ensure a fair comparison and
analysis, we normalize the data rate by dividing it by the channel bandwidth, resulting
in a unit of bits per second per hertz. Solving this optimization problem is crucial for
enhancing the overall performance and efficiency of the network.

5.3 Problem Formulation of Resource Allocation Problem

The optimization problem modeled in the previous section is an integer nonlinear pro-
gramming problem, which is a non-deterministic polynomial (NP) problem that is dif-
ficult to optimize in terms of polynomial time complexity approaches

5.3.1 Partially Observable Markov Decision Processes

In the decentralized architecture, multiple single-agent systems are integrated to create
a multi-agent system. As the system’s scale increases, information sharing can lead to
significant signaling congestion, rendering it impractical. We employ a MARL system
with Partially Observable Markov Decision Processes (POMDP) to model spectrum
and power allocation problems, aiming to maximize the sum rate for the D2D commu-
nication network. A POMDP with I agents can be described using the tuple:
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(
S,A1, ...,AI , r1, ..., rI ,P , γ

)
, where S denote state space which is a finite set of

states, Ai, i ∈ {1, ..., I} is action space of agent i, ri is reward function of agent i, P is
the transition distribution.
In this system, every D2D pair functions as an independent learning agent, each with

its decision-making strategy. These agents engage in ongoing interactions with the
dynamic environment, which furnishes feedback concerning the performance of the
agents’ policies based on their historical actions. The state of the environment’s evo-
lution and the reward function acquired by each agent are contingent on the collective
actions of all agents. Consequently, each agent must factor in not only the environment
but also the interactions with other learning agents when adapting and optimizing its
strategy.

5.3.2 Environment State

The concept of environment state is a comprehensive description of the system’s state,
and it fully captures the system’s condition at any time step. The environment state
in POMDP is a whole, unrestricted state containing every possible state. However, in
POMDP, D2D must estimate or infer the present environmental state from observation
rather than directly observe it.
Let S represent the complete, unconstrained state space of the environment state. It

is feasible to express the state transition probability as P (st+1,a, st) = Pr (s′ |s,a),
where s is current step state, s′ is next step state for joint action a.

5.3.3 Observation Space

As mentioned above, only the local information of the global environment is visible to
each agent. At time step t, the observation of agent i is denote by:

Oi (t) = (pi (t) , wi (t) , ξi (t) , ηi (t) , ϖi (t)) , (5.4)

where ηi (t) denotes channel gain,ϖi (t) denotes sum of interference-noise power. Ac-
cordingly, both notations are expressed as:

ηi (t) =
∣∣∣hHii (t)wi (t)

√
pi (t)

∣∣∣2 , (5.5)

ϖi (t) =
∑
j ̸=i

∣∣∣hHij (t)wj (t)
√
pi (t)

∣∣∣+ zi. (5.6)
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Each D2D pair does not have a priori knowledge of the power allocation, beamform-
ing, and achievable rates of other D2D pairs. Therefore, the D2Ds cannot take action to
maximize the sum rate of the network. With a dynamic channel environment and un-
certainty in channel interference, this POMDP problem can be formulated as a stochas-
tic game in which each D2D chooses mutually independent beamforming vectors and
transmit power strategies as a function of their own local observations.

5.3.4 Action Space

The action space specifies the limits or boundaries of the set of actions that an agent
can choose when interacting with the environment. We consider the specific beam-
forming and transmission power as the action space of each agent. Unlike conventional
algorithm-based power control schemes that take continuous values to meet practical
circuit constraints and facilitate learning, we use discrete power levels between 0 and
pmax. The transmit power is quantified as the L level. The set of available discrete
power is given by: {

Pmax
L

,
2pmax
L

, ..., Pmax

}
. (5.7)

As mentioned above, the dimension of the beamforming vector is determined by the
number of transmit antennas. Thus, the size of the action space of agents with type m
is |A| = Am×L, and the D2D chooses the appropriate beam direction and power level
and is immediately rewarded for evaluating its action.

5.3.5 Reward Function

The reward function in RL is designed based on the objective function of the optimiza-
tion problem. Each agent makes a joint decision on beam direction and power level to
maximize the system and rate. The learning goal of the entire multi-intelligent system
is to find the optimal strategy to maximize the cumulative discount reward function,
and we define the long-term reward ri for time step t as the cumulative and discount
reward as:

5.4 Multi Type Mean Field Muti Agent Reinforcement Learning

Mean Field Game has been widely employed in multi-agent environments, and its core
concept is built on the aggregated information of other agents. Instead of the MFG,



79

which requires that all agents fulfill the homogeneous requirements, the MFTG theory
is more appropriate for real-world engineering application scenarios. The agents in the
MFTG scenario might be heterogeneous, and the impact of a single agent on the mean-
field term and the overall effect is taken into account. This part presents the proposed
problem as Multi-type Mean-field MARL (MTMFRL) formulation.

5.4.1 Multi Type Mean Field Formulation

Agents adjacent to agent i can be classified intoM types. Each agent is assigned to a
specific type, and each type comprises of Xm agents. We assume that the Q function
(action-value function) can be additionally decomposed into subsets based on the di-
vision of agents, each subset containing agents of the same type. Let akim represent the
action of agent ki belonging to typem and interact with agent j. Assume that

Qj (s,a) = Qj
(
s, aj, ak11 , ..., a

kX1
1 , ..., ak1M , ..., a

kXM

M

)
, (5.8)

can be factorized into the average of interactions within one type of agent, which is
decomposable further pairwise. This decomposition can be seen as a generalization of
the pairwise decomposition to multiple types in MFRL since each component depends
on the representation of each type. Thus, the standard Q function is formulated as:

Qj (s,a) =
M∑

m=1

Qj
(
s, aj, ak1m , ..., a

kXm
m

)
=

M∑
m=1

1

Xm

Xm∑
i=1

Qj
(
s, aj, akim

)
. (5.9)

5.4.2 Multi Type Mean Field Approximation

We employ the one-hot representations in Yang et al. for actions, the action of agent k
belonging to typem can be represented as akm = ajm + δj,k, where ajm denotes the mean
action of adjacent agents of j and δj,k denotes the difference between an agent’s action
and the mean action of its subsets. Let ajm = 1

Xm

∑Xm

i=1 a
ki
m, the mean-field theorem

enables the approximation of the Q function by the Taylor approximation as:

Qj (s,a) ≈ Qj
(
s, aj1, a

j
2, ..., a

j
M

)
. (5.10)

This hierarchical mean-field emphasizes interactions between types because agents
of the same type have identical properties, and their interactions can be estimated us-
ing a standard mean field. We modified the mean field Q function to include a finite
number of types, each with a corresponding mean-field, in light of the fact that agents
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of distinct types exhibit greater variation. This approximation reduces the intricacy of
agent interactions and the variance of the Q function while implicitly maintaining the
global interactions between any two agents.

5.4.3 Multi Type Mean Field Update

At time slot t, the mean field Q function for agent j can be updated iteratively:

Qj
t+1

(
s, aj1, ..., a

j
M

)
= (1− α)Qj

t

(
s, aj1, ..., a

j
M

)
+ α

[
rj + γV j

t (s′)
]
, (5.11)

where α denotes the learning rate. The mean-field value function of agent j at time
step t is estimated as:

V j
t (s′) =

∑
aj

πjt

(
aj
∣∣∣s, aj1, ..., ajM )Ea−j∼π−j

t

[
Qj

t

(
s′, aj, aj1, ..., a

j
M

)]
, (5.12)

where πjt represents the action policy of agent j. The Boltzmann policy chooses the
strategy for each agent j:

πjt

(
aj
∣∣∣s, aj1, ..., ajM ) =

exp
(
φQj

t

(
s, aj, aj1, ..., a

j
M

))
∑

aj′∈Aj exp
(
φQj

t

(
s, aj, aj1, ..., a

j
M

)) , (5.13)

where φ is the Boltzmann softmax hyper-parameter. Through iterative equations,
all agents’ mean actions and corresponding strategies are continually updated. It will
eventually converge to a fixed point close to the Nash equilibrium. The convergence
was proved in.

5.4.4 Multi Type Mean Field Solution

A DDQN-based algorithm is proposed to estimate the Multi Type Mean Field (MTMF)
Q function. The framework is illustrated in Figure 5.2, DDQN employs two neural
networks to guarantee network performance stability . The target Q network with pa-
rameter θ− has the same network structure as the training Q network with parameter θ.
θ is updated at each step, but θ− is updated to the value of θ at each of several steps,
after which the parameter values are fixed for the remaining steps.
Experience replay enhances learning efficiency by reusing training data and mini-

mizing serial data correlation . At each time step t, after the transition experience data
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Figure 5.2: Illustration of the multi-agent DDQN framework.

et = (st,at, rt+1, st+1) is collected by agent i into its replay memory, each D2D agent
uniformly samples a mini-batch of experiences e from the memory pool and updates
the weights of its Q network using stochastic gradient descent. The loss function is
formulated as follows:

Lθj =
(
yj −Qj (s,a, θ)

)2
, (5.14)

where a =
[
aj, aj1, ..., a

j
M

]
denotes the mean field joint action, and

yit = rjt+1 + γQj

(
st+1, argmax

a′
Qj
(
st+1,a′, θ

)
, θ−
)
, (5.15)

denotes the mean field value calculated by the update of the target network. It is used to
calculate the Temporal Difference (T.D.) error. Thus, the gradient of the loss function
is calculated as:

∇θjLθj = 2
(
yj −Qj (s,a, θ)

)
×∇θjQ

j (s,a, θ) . (5.16)

Algorithm 5 describes the step of MTMF-Q algorithm.

5.5 Simulation

To analyze and evaluate the performance of the proposed algorithm, we compare it with
the MF-Q, DDQN, and random strategy under the same environment.
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Algorithm 5Multi Type Mean Field Double Deep Q Network.
Initialize replay memory D.
Initialize target Q and estimate Q network with parameters θ− and θ.
for Episode ={1, ..., E} do do

for Step = {1, ..., T} do do
Select action ajt according to Q-value with greedy ε for each agent.
Caculate new mean action aj1, ..., a

j
M for each type.

Excute joint action and observe reward rj
t and next state s

j
t+1.

Store tuple ⟨st,a, r, st+1⟩ in replay buffer.
Sample random mini-batch from D.
Perform gradient decent on loss function wrt θ in estimate Q.
Set yit
Update θ− = θ every C steps

end for
end for

5.5.1 Environment Setting

In this section, we simulate a single-cell scenario for a heterogeneous D2D wireless
network, considering two types of D2D links: 1) SISO links and 2) 2 × 1 MISO links
randomly distributed in a circular area with a radius of 500m. The maximum trans-
mit power Pmax and noise power are set to 30 dBm and -174 dBm, respectively. The
communication distance of each link is limited between dmin = 2m and dmax = 50m.
Large-scale fading is modeled as β = −120.9 − 37.6 log10 (d) + 10 log10 (z) through
telecommunications long-term evolution (LTE) standard [77]. Small-scale fading is
represented by a complex Gaussian variable with zero mean and one variance. Using
the distance-dependent scaling model in [73], the path loss and shadowing caused by
large-scale fading are calculated. In experiments evaluating the performance of the pro-
posed method under different system parameters, the ratio of SISO and MISO links is
set to 1:1, while the network topology for each D2D sample is determined indepen-
dently. Hyperparameters of DDQN are summarized in Table 5.1
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Figure 5.3: Training performances with 8 agents.

Table 5.1: DDQN hyperparameters

Parameter Value
Number of Episode 3000
Time step per Episode 50
Size of the mini-batch 32
Size of the memory step 500

Learning rate 0.001
Learning rate decay factor 0.0001

Discount factor 0.99
Hidden layers 5

Activation function ReLU

5.5.2 Performance Comparison

We conducted a study deploying various numbers of D2D links to evaluate the per-
formance of the proposed MTMF-Q algorithm in heterogeneous networks. Figure 5.3,
Figure 5.4, Figure 5.5 and Figure 5.6 illustrates the episode rewards obtained during the
training phase, with the random strategy considered as a lower bound for comparison
purposes. It is important to note that in our experiments, none of the algorithms con-
sidered credit distribution or inter-agent communication. Each agent solely relied on
local observations to update its actions. We realize each algorithm with various initial



84

Figure 5.4: Training performances with 16 agents.

Figure 5.5: Training performances with 32 agents.
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Figure 5.6: Training performances with 64 agents.

random seeds and smooth the curves in each plot to enhance readability.
When the network size is small, the performance of different classes of RL algorithms

is comparable. However, as the network size grows, the DDQN algorithm proves to be
inferior to the MF-based approach and faces challenges in convergence. This can be at-
tributed to the limited observation information available to each agent, which hampers
the effectiveness of individual agent updates. On the other hand, the MF-based algo-
rithm leverages the mean field of the two agent classes (MISO, SISO) as the decision-
making factor. TheQ values used for action selection are influenced by internal changes
in the action parameters. Notably, the MTMF-Q algorithm outperforms the standard
MFQ algorithm, and the performance gap between the two widens as the number of
D2Ds increases. The MTMF-Q approach excels in handling the multi-type mean field
of heterogeneous agents with distinct action spaces, benefiting from its foundation in
MFTG theory. The efficiency of the proposed algorithm is demonstrated by the stable
and rapid increase in rewards observed in large-scale agent networks.
Figure 5.7 provides insights into the performance of the D2D network in relation to

different power levels. We varied the power level of the D2D network, while keeping
other parameters fixed (D2D=32), to assess the effectiveness of the proposed method in
a large action space. When the action space is small, there is no significant difference
in performance between the MF-based approach and DDQN. However, as the power
level becomes more finely divided, resulting in increased action space, the MF-based
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Figure 5.7: Network’s sum rate versus power level

Figure 5.8: Network’s sum rate versus maximum transmit power.
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method achieves higher average rewards. Notably, the MTMF-Q algorithm continues
to outperform the other algorithms in terms of improving the network’s sum rate.
Figure 5.8 depicts the sum rate of the D2D network as a function of different maxi-

mum transmit powers. The curve exhibits a slow rise within the range of 10 dBm to 30
dBm and stabilizes within the range of 30 dBm to 40 dBm. In the range of 10 dBm to
30 dBm, the gradual growth of the curve can be attributed to the limited total achievable
rate resulting from the low available transmit power. As the transmit power increases
within the range of 30 dBm to 40 dBm, although higher transmission power becomes
available for the D2D links, the interference from other devices, incorporated in the
reward function of the sum rate, also increases. Consequently, the marginal benefit
of power on the sum rate improvement diminishes significantly. Overall, the MTMF
algorithm exhibits effectiveness and stability across different network parameters.
We propose a novel graph neural network called Heterogeneous Edge Feature En-

hanced Graph Attention Networks (HEGAT) to address the above challenges. HEGAT
considers both graph heterogeneity as well as edge features. It combines node and edge
features based on a two-layer attention mechanism, including node-level and edge-level
attention. Specifically, we want to know how vital node-based and edge-based neigh-
bors are and how each node fits into the node-level attention layer. Similarly, the em-
bedding of each edge is generated in the edge-level attention layer.

5.6 Conclusion to Chapter 5

This chapter focuses on the beamforming and power control problems in heterogeneous
D2D networks with multiple link types, with the objective of maximizing the sum rate
of the network. As the number and types of D2D devices increase, calculating rewards
individually for each device leads to significant performance degradation, which is not
desirable when applying existing MFRL methods. To tackle this challenge, we propose
an enhanced MFRL approach called MTMF-Q, which integrates MFTG theory with
MARL in heterogeneous networks to achieve optimal joint beamforming and power
allocation. The MTMF-Q algorithm is designed to address the limitations of tradi-
tional MARL techniques in scenarios with a large number of agents. By considering
the interactions between each agent and different types of mean fields, the algorithm
achieves efficient resource allocation and overcomes the scalability issues of individual
reward calculations. Through experimental evaluations, we demonstrate that MTMF-Q
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outperforms the state-of-the-art MF-Q method in large-scale scenarios. Moreover, the
proposed algorithm exhibits stable performance across networks with different param-
eters, enhancing its effectiveness in practical deployments.
In conclusion, our proposed approach has the potential to overcome the limitations

of traditional MARL techniques, allowing for the deployment of ultra-dense D2D com-
munication networks. In future research, we aim to explore communication networks
with a greater variety of device types, moving closer to realistic scenarios. Additionally,
we plan to investigate the application of MF-MARL in allocating other communication
resources, thus further enhancing the practical value and applicability of the algorithm.
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Conclusion and Future Works

This chapter serves as the concluding section of the dissertation, summarizing the re-
search results and contributions made during my PhD, as well as outlining potential
future research directions.

5.7 Conclusion

The research primarily focuses on two key techniques in wireless networks: 1) heuris-
tic algorithms and 2) machine learning. The paper is organized around the theme of
resource allocation, and the conclusions of each chapter are presented below. The main
results of the work are as follows:

1. Chapter 1 introduces the fundamentals and methods of resource allocation in cel-
lular networks. The problem addressed in this paper lacks closed-form expres-
sions for optimization variables, making heuristic algorithms a suitable approach.
Simulation experiments demonstrate the advantages of metaheuristic algorithms
in resource allocation and interference management. However, they often require
numerous stochastic searches to attain satisfactory solutions, which may not meet
the real-time decision-making demands of communication networks.

2. In Chapter 2, the beamforming design problem in more complex D2D networks is
investigated. A PSO-based supervised learning framework is developed to tackle
continuous optimization issues in wireless networks. This framework leverages
the robust learning capabilities of residual networks and the rapid processing speeds
of deep learning. Additionally, a workflow for addressing general resource allo-
cation problems is presented, involving the generation of labeled datasets through
optimization techniques and their offline training usingmachine learningmethods.
Deep neural networks exhibit significant potential for shifting time-consuming
computations to offline training and solving complex, hard-to-model problems.
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Nevertheless, they necessitate substantial datasets for improved learning of re-
source allocation policy mappings.

3. Chapter 3 explores a supervised learning framework based on graph neural net-
works, building upon the workflow introduced in Chapter 2. The offline-trained
DNN models are replaced by MPGNN and GAT, effectively harnessing the infor-
mation embedded in the communication network’s topology. Experimental results
reveal that suboptimal model performance can be achieved with only a few train-
ing samples.

4. In Chapter 4, the resource allocation problem in more intricate, heterogeneous
D2Dwireless networks is investigated. An unsupervised learning algorithm named
HEGAT is developed to jointly optimize beamforming and power allocation strate-
gies. This model considers different types of communication networks and edge
information while using an attention mechanism to determine the most critical
edges and nodes. The deep learning approach presented here is versatile and sur-
passes the performance of the best graph learning-based resource optimization
methods.

5. Chapter 5 delves into the resource allocation problem in D2D wireless networks
with large-scale heterogeneity. The machine learning-based methods proposed
in the previous chapters concentrate decision-making, which is often infeasible
for real-world applications in large-scale networks. A combination of mean-field
games and multi-agent reinforcement learning is employed to achieve decentral-
ized decision-making for D2D resource allocation with limited CSI. This approach
demonstrates the potential to operate in large networks and handle partially miss-
ing input features.

These machine-learning approaches offer significant enhancements to radio resource
allocation, including real-time execution, scalability, generalization, and decentralized
implementation.

5.8 Future Works

Based on the work presented in this paper, several promising future research directions
are worth exploring, which are summarized below:
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5.8.1 Further Extension of GNN Approach

The proposed GNN method is currently implemented in a centralized manner for solv-
ing the wireless resource allocation problem. However, centralized approaches may
raise privacy concerns. The simulation results have demonstrated the GNN’s excel-
lent capabilities, including scalability to large-scale networks, generalization to differ-
ent system settings without retraining, and robustness to corrupted input features. To
preserve these desirable features and address privacy concerns, exploring a distributed
deployment of GNNs is essential. Such an approach is more suitable for wireless com-
munication applications than centralized deployment. One potential direction is to com-
bine GNN with MARL to achieve this goal.

5.8.2 Further Extension of RL Approach

The RL approach proposed in this paper serves as a preliminary step toward realiz-
ing resource allocation for large-scale D2D networks. Several aspects can be further
investigated, as outlined below:

1. The proposed RL method currently operates in a supervised manner, relying on
labeled datasets for training. The experience playback stores data in the form of
tuples in the experience pool but does not fully utilize the topological information
of the communication network, resulting in suboptimal learning efficiency. Inves-
tigating how to effectively leverage the topological information of communication
networks is a promising research direction.

2. The scalability of the RL method can be enhanced. The RL model in this paper
only considers a relatively smaller action state space, involving discretization pro-
cessing to train the model and jointly optimize beamforming and power allocation
strategies. It would be valuable to explore a decentralized RL approach capable of
handling a broader range of network resources, such as memory, link scheduling,
and latency. Additionally, investigating large-scale action state spaces is another
promising research direction.
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