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Introduction

Relevance of the work

This dissertation is devoted to the description of photon scattering processes
(and, as a consequence, emission or absorption) on simple atomic systems. The
simple systems are hydrogen atom or muonic hydrogen, light hydrogen-like
ions, and helium atom. The description of one- and multiphoton scattering pro-
cesses is carried out in the framework of the quantum electrodynamics (QED)
theory of bound states and the so-called 𝑆-matrix formalism. QED theory is
widely spread, being the most rigorous way to describe the processes of radi-
ation and the effects causing the shift of energy levels in neutral and ionized
atomic systems. The QED theory, which has become «classical» in scientific
research of this kind, is presented in textbooks intended for senior students.
As basic books one can refer to such monographs as [1–4] and others. The
theory presented in these books provided the basis for further research, which
led to the rapid development of atomic physics. Theoretical calculations of the
effects associated with photon scattering processes are inherently accompanied
by experimental advances aimed at improving the accuracy of measurements
and vice versa. Comparison of theoretical and experimental results, in its turn,
stimulates further development of theory and methods allowing to carry out
competent investigations of this kind.

Since the early days of quantum mechanics (QM), the study of the atomic
characteristics [5, 6], such as the energy of bound states, has played a key role
in the development of modern quantum field theory and its practical appli-
cations in various fields of physics. Subsequent experimental observations and
their increasing accuracy required the calculation not only of relativistic correc-
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tions, but also the calculation of more complicated effects, such as, for example,
various radiative QED corrections [1–4].

Theoretical calculations carried out in the framework of QED and pertur-
bation theory based on certain methods and approaches [7–10] are justified not
only by competing experiments in terms of accuracy. The description of increas-
ingly subtle effects in atoms is a means of understanding physical processes,
serving, for example, to define fundamental physical constants, see, e.g., [11].
In this regard, experiments conducted with different atomic systems are by far
the most accurate. As an example of the success of QED theory one can refer
to the work on the calculation and measurement of the 𝑔-factor of the electron
in multi-charged ions (HCI) [12–15], which allowed to refine the electron mass
by an order of magnitude [16]. Improvements are desired for further precision
testing of the Standard Model of particle physics [17], as well as determin-
ing the value of physical constants such as the fine structure constant, 𝛼, and
the Rydberg constant, 𝑅∞). With the help of measurements of the 𝑔-factor
of the electron, one can also establish the constraints on the interaction be-
tween the electron and light bosons, which are the basis for the search for «new
physics» [18,19].

Currently, the most accurate atomic experiments can be attributed to mea-
surements of transition frequencies in hydrogen [20, 21] with a relative error
of 4.2 × 10−15, see also [22], in helium [23, 24], where the experimental accu-
racy reaches the level of 10−12, and in atomic clocks with a precision of about
10−17 [25–27]. Such precise experiments required theoretical calculations of var-
ious QED effects at 𝛼6𝑚2/𝑀 and 𝛼7𝑚, see [11], where 𝛼 is the fine structure
constant, 𝑚 and 𝑀 are the electron and nucleus masses, respectively. In ad-
dition to accurate theoretical calculations of binding energies in the hydrogen
atom, the fine structure and isotopic shift of low-lying helium states generally
serve as an independent tool to test fundamental interactions. As in the case
of well-studied one-electron atomic systems, measured transition frequencies
should be compared with theoretical calculations in search of possible discrep-
ancies [28].

The reconciliation of theoretical and experimental studies reveals difficul-
ties, to the solution of which considerable efforts are made. One of the most
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prominent ones is the "proton radius puzzle" [29]. Since 2010, the question of
the discrepancy between the values of the proton radius obtained by measur-
ing the transition frequencies in electron (H) and muon (𝜇H) hydrogen atoms
has been the reason for a detailed theoretical and experimental finding and
analysis of the effects to eliminate the discrepancy. At the same time, start-
ing from the work of [29] and subsequent works of [30, 31], the charge radius
of the proton extracted from experiments with muon hydrogen remains un-
changed. As a result, the puzzle was mostly solved after the publication of data
from the experiment [32], matching the value of the proton radius for electron
and muon hydrogen. A good agreement of the values was achieved by experi-
mentally accounting for the quantum interference effect (QIE). The latter is the
dominant contribution of the nonresonant (NR) corrections arising in the deter-
mination of the transition frequency from the cross section of photon scattering
on atoms, see the fundamental works in this direction [33–43]and subsequent
works [44–53].

Another example is the comparison of theoretical and experimental results
in simple atomic systems such as the positronium atom (Ps) and the helium
atom (He). Within the framework of QED theory, both atoms are among the
most thoroughly studied objects. Comparison of experimental data with the
theoretical results, however, revealed significant discrepancies. Since the theory
fails to identify the source of possible calculation error and/or to discover (ex-
perimentally and theoretically) effects that eliminate such discrepancies, such
differences in transition frequencies are used to construct hypotheses about
«new physics» and to verify fundamental interactions, see, for example, the
work on the helium atom [54–57]. In turn, the positronium atom is the most
attractive to theorists, being a purely lepton bound two-charge system. The
precision experiments with the Ps atom can be divided into measurements of
ortho- and para-positronium lifetime [58], and determination of the frequencies
of fine [59] or hyperfine splitting [60] transitions. A comparative analysis of the
measured and calculated values in the Ps atom also reveals the discrepancies
between theory and experiment [59,61].

The relevance of the work is emphasized by the fact that in one part of this
dissertation a number of applications that can be directly related to precision
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spectroscopic measurements of transition frequencies in hydrogen-like atoms
will be considered. Due to the parametric estimates given, the effects consid-
ered can be applied to light hydrogen-like ions. The restriction to ions with
small nuclear charge 𝑍 is due to the nonrelativistic limit used in the calcu-
lations. Additionally, in this paper the photon scattering process is described
in the framework of the dipole approximation, although the discussion of the
higher multipole moments of the photon will also be touched upon. The non-
relativistic and dipole approximations used permit us to carry out the leading
order estimates of the effects. The relevance of the results obtained is discussed
in each respective section, but can be immediately highlighted by the fact that
the frequency shifts obtained are at the level of experimental error. Thus, sub-
sequent increases in experimental accuracy will inevitably encounter the issues
discussed in the thesis. Detection of such effects is also relevant in connection
with the research on the search for dark matter based on precision spectroscopic
experiments [62–65].

Among the equally important issues discussed in this dissertation are studies
devoted to a detailed comparison of the spectra of hydrogen and anti-hydrogen
atoms. The presented theoretical results in this direction are of particular im-
portance in connection with recent outstanding experimental achievements on
the synthesis and confinement of anti-hydrogen atoms (H̄) [66]. The latter al-
lowed a number of spectroscopic experiments in anti-proton helium (one of
the electrons is replaced by an anti-proton) [67], stimulating the corresponding
theoretical studies [68, 69]. The continuous development of experimental tech-
niques for synthesizing anti-hydrogen atoms [70–72] makes it possible to carry
out precision experimental measurements of Lyman-𝛼 energies, hyperfine, etc.
transitions [73–75]. All studies of this kind, on direct comparison of matter and
anti-matter spectra, are straight related to the verification of CPT invariance
(C-charge, P-space and T-time, respectively) and/or to the search for effects
breaking this global symmetry.

Another, no less interesting, direction touched upon in the presented thesis
is the description of photon scattering (along with just radiation processes)
in application to astrophysical problems. In particular, the considered effects
can be related to the study of the cosmic microwave background (CMB). The
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theory describing CMB necessarily contains radiation/absorption processes, see,
e.g., [76]. Detailed investigations of the properties of the cosmic microwave
background were started quite a long time ago [77–79], but only recently the
theoretical predictions have been confirmed experimentally, see the RELICT
[80] and COBE [81] experiments (the latter was awarded the 2006 Nobel Prize).

By the time the cosmological recombination of the early Universe began,
the relict radiation was represented by the Planck frequency distribution, and
accounting for the contributions of bound-free and bound-bound transitions in
the emerging atomic systems leads to anisotropy in CMB at the 10−5 − 10−6

level, see [77–79]. At the same time, to describe the ionization/recombination
processes in the hydrogen atom, the «three-level» approximation - the ground
1𝑠, the excited 2𝑠 states, and the continuum - was used in the above works. As
in the case of laboratory studies, the experiments [80, 81] (and the subsequent
ones based on the WMAP spacecraft - Wilkinson Microwave Anisotropy Probe),
having achieved a measurement accuracy of 1%, stimulated the need to develop
theoretical methods and calculations. A detailed theory of recombination of hy-
drogen, singly ionized and neutral helium atoms is given in [76], where the mul-
tilevel approximation of atoms was already used, bound-bound and bound-free
transitions are included. Since this key work, in this direction foreign and do-
mestic scientists (see the works of the authors: R.A. Sunyaev, V.K. Dubrovich,
E.E. Kholupenko, A.V. Ivanchik, D.A. Varshalovich, J. Chluba, C. Hirata, etc.)
have been working intensively, with the need to include effects contributing up
to the order of 0.1%. To achieve such precision in theoretical calculations, a
detailed description and analysis of radiation processes within the framework
of atomic physics is required, see, for example, [82–84].

All the above-mentioned directions of research are summarized by the ne-
cessity to use the most rigorous theory in describing the processes of emission,
absorption and scattering of photons on atoms. In the presented thesis, the
theoretical description of the considered effects is given in the framework of the
QED theory based on the Line Profile Approach (LPA), see [8]. This approach
has the distinct advantage that it was originally formulated with the goal of
describing the spectral line profile [85] as accurately as possible. Since most of
the thesis is devoted to the study of the effects that cause asymmetry in the
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observed line shape, the use of the LPA method is thematically appropriate.

Tasks and objectives of the thesis work

The main objective of this thesis is to determine the fundamental princi-
ples, detailed description and application to modern precision experiments of
the effects associated with the scattering process on simple atomic systems.
In addition to laboratory measurements, this thesis aims to discuss a number
of issues relevant to astrophysical research involving multiphoton atomic pro-
cesses. Generally, in the framework of spectroscopic measurements, the use of
a resonant spectral line profile is sufficient. The corresponding profile can be
correlated to an emission or absorption process. However, the achieved level of
accuracy of spectroscopic experiments in conjunction with high-precision QED
calculations has led to the need to take into account more and more subtle ef-
fects. Their identification, as well as the evaluation of their contribution to the
determination of the transition frequency, has become an indispensable part
of the determination of fundamental physical constants. Thus, it has recently
been shown that the determination of the transition frequency from measured
data is significantly refined by theoretical processing of the observed spectral
line. As predicted theoretically, a large influence of effects arising outside the
resonance approximation has been found experimentally. In turn, a detailed
comparison of matter and anti-matter spectra (transition frequencies in par-
ticular) is a direct observation of CPT invariance and/or its violation. Similar
goals can be set in the astrophysical context, where a detailed description of
CMB and its anisotropy necessitates a neat theoretical description of scattering
processes. Without solving these problems, the realization of the new physics
expected in atomic resonance spectroscopy in the near future, beyond the res-
onance approximation, is impossible.

The following problems had to be solved in order to achieve the goal:

1) In the framework of the strict QED theory, give a detailed description of
the process of photon scattering on the atom. Generalize the LPA method
to the case of going beyond the resonance approximation.
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2) Using the constructed theory within the framework of known approaches
and approximations, identify the effects influencing the determination
of the transition frequency. To carry out corresponding calculations in
applications to modern precision spectroscopic experiments.

3) Carry out theoretical calculations and evaluate the influence of nonreso-
nant and multiphoton radiation processes in astrophysical problems re-
lated to the formation of CMB and its anisotropy.

4) Investigate the influence of nonresonant contributions and multiphoton
emission processes in an external electric field on the precision determi-
nation of transition frequencies in hydrogen and anti-hydrogen atoms.

Scientific novelty of the work

1) As part of the thesis work, an analytical derivation and corresponding
numerical calculations of the nonresonant corrections to the transition
frequency arising in the total scattering cross section have been presented.

2) For the first time, from the first principles of the QED theory, the fre-
quency dependence for the atomic level width was taken into account. The
effect was considered for the calculation of the corresponding shift of the
resonance frequency, as well as for the detailed description of the spectral
line profile in applications to laboratory experiments and astrophysical
problems.

3) Within the framework of the developed approach, the asymmetry of the
spectral line profile for the differential scattering cross section was ana-
lyzed both analytically and numerically, and the corresponding shifts of
the resonance transition frequency were calculated.

4) Using the methods and approaches developed during the thesis work,
the influence of broadening effects (due to pressure and external thermal
radiation) on the precision determination of the transition frequency has
been evaluated.
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5) A comparative analysis of the different definitions of transition frequency
arising in different approaches has been carried out.

6) For the first time the impossibility of unambiguous separation of radiation
and absorption processes is demonstrated (separation is possible only in
the framework of the resonance approximation).

7) The thesis presents for the first time results on the study of absorption
profile asymmetry induced by cascade radiation processes.

8) Cascade radiation processes in the context of astrophysical research are
discussed in detail. In the framework of this issue, the QM and QED
approaches are compared, the inseparability of cascade and «pure» radi-
ation, and the interpretation of the contributions of cascade-free «two-
photon widths» in cascade processes is discussed.

9) The probabilities of one- and two-photon emission in an external electric
field have been calculated. The results are used to compare the spectral
characteristics of hydrogen and anti-hydrogen atoms.

10) A comparative analysis of NR effects arising in an external electric field
for hydrogen and anti-hydrogen atoms has been carried out.

11) The work considers two-photon emission processes taking into account
higher photon multipoles and for highly excited states; its astrophysical
application is discussed.

12) The effect of electromagnetic induced transparency (EIT) in the context
of astrophysical conditions is investigated for the first time.

Practical significance

The theoretical and practical significance of the thesis is determined, first of
all, by the development of the LPA method and its generalization to studies
of processes beyond the resonance approximation. The detailed description of
photon scattering processes on atoms has gained special importance in the last
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few years. Their study has led to the fact that the data obtained in the course
of precision spectroscopic experiments must necessarily take into account the
effects of spectral line contour asymmetry. As a consequence, the practical valid-
ity of the obtained results is expressed in their direct application to experiments
on the measurement of transition frequencies. The latter can be achieved in sev-
eral ways: a) by calculating the corresponding frequency shifts (and then taking
them into account in the final result); b) by processing the experimental data
by a matched selection of an asymmetric fitting contour and then determining
the transition frequency. Being equal (see discussion in the thesis), these two
approaches should be used for precise determination of fundamental physical
constants.

The description of simple atomic systems (hydrogen atom, hydrogen-like
atomic systems, helium) is especially important because in the corresponding
experiments the accuracy reaches the level of 10−13 relative magnitude (and
higher) of [21, 32]. It is shown in the thesis that in order to achieve a higher
level of accuracy, consideration of nonresonant effects is required with necessity.
It is worth noting that the accuracy of measurements in the hydrogen atom in
combination with the available theory makes it possible to accurately determine
the fundamental physical constants, and the search for effects contributing at
the level of several kilohertz is one of the main goals for solving the problem
called the «proton radius puzzle». Finally, it has recently become especially
popular to construct theoretical hypotheses and their subsequent experimental
verification in search for «new physics». Mainly, such hypotheses are based
on detection of discrepancies between the results of theoretical calculations
and experimental measurements of transition frequencies. As an example, it is
enough to refer to such works as [28] for the helium atom, for positronium [59]
and paper establishing experimental constraints on dark matter using atomic
clocks [62]. Thus, revealing the effects that remove such divergences is of great
practical importance for the further development of fundamental physics.

The second, but no less important circumstance indicating the practical
value of the results is the question of a detailed comparison of the spectra
of hydrogen and antihydrogen atoms. The studies presented in this work show
that even insignificant values of the external electric field available in laboratory
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conditions can lead to significant differences in the spectral characteristics in
such systems. Thus, when studying the global CPT symmetry and the processes
violating it, the examples given demonstrate the necessity of taking into account
the presence of stray fields. No less valuable is the question about the search of
antimatter in the Universe.

Finally, the astrophysical applications of the theory developed in the thesis
should be emphasized. In particular, astrophysical studies have shown the pres-
ence of dark matter and dark energy, the search for which is now directed by the
efforts of many scientists. As a separate area of research, the thesis deals with
a number of effects affecting the formation of anisotropy of cosmic microwave
radiation. In particular, the paper proposes new approaches in the description
of photon scattering (emission/absorption) processes on the hydrogen atom. As
a result of such studies, the question of the influence of appropriate corrections
on the recombination of the early Universe is discussed [76].

Methods

Theoretical investigations aimed at studying the spectroscopic properties of
various atomic systems, be they ions (with a large or small number of bound
electrons) or neutral atoms, use rather well established methods. The theoret-
ical basis for the development of such methods is represented by the QM or
QED approaches, see [1–6, 86]. At the same time, there is a number of meth-
ods developed by different scientific groups. As the main approaches for solving
problems on calculation of energies of atomic levels and/or description of pro-
cesses accompanied by radiation, the following can be mentioned. Historically,
the first and most adapted for these purposes is the adiabatic 𝑆-matrix method
developed in the [87, 88]. This approach is based on the relativistic quantum
field theory presented in the key paper of [89]. A clear advantage of the adi-
abatic theory (in contrast to the widely used formalism of the «common» 𝑆-
matrix) is its application to both the case of irreducible and reducible graphs
in the framework of the Feynman diagrammatic technique, see [3,90]. Another
method of calculating the energy corrections corresponding to the reduced and
irreducible Feynman diagrams, which has become widely used, is the «Two-time
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Green’s function method» (TTGF) [2, 7, 91]. At present, this approach is the
leader in calculations of the atomic structure of highly charged ions [7]. Alter-
native methods for calculating the spectroscopic properties of atoms and ions
are also «covariant evaluation operator method» (CEO) [9,92] and «line profile
approach» (LPA) [8]. Within the scope of the presented thesis, the adiabatic
𝑆-matrix method and the spectral line profile approach will be used mainly.

These works, however, represent only a basis for the corresponding calcula-
tions and the solution of the stated problems (see section Aims and Objec-
tives of the Thesis). The large variety of studies of photon scattering processes
on atomic systems available in the modern literature should be extended to the
case of nonresonant effects. As a rule, studies of this kind are carried out as
follows. First, a theoretical description of the one- or multiphoton scattering
process for the atomic system under consideration is given, for example, in the
framework of the 𝑆-matrix formalism. As a next step, the dominant (resonance)
contribution is identified in the obtained expressions. It is usually represented
by a singular term in the scattering amplitude. Then, by the methods of QED
theory, it is regularized [85]. Finally, the remaining contributions are sequen-
tially evaluated. The corresponding calculations apply to an arbitrary scatter-
ing process (e.g., with or without the presence of cascade radiation). Obviously,
increasing the number of photons complicates the theoretical description. Prob-
lems relating only to radiation processes have another significant simplification.
As will be shown later, see, for example, [8], within the resonance approxima-
tion, a part of the scattering process (in this case absorption) can be discarded,
subjecting to a detailed study the phenomena arising only in the registered
radiation. Thus, for example, in astrophysical applications it is the latter cir-
cumstance that is used, i.e., the separation of the scattering process into distinct
parts, i.e., absorption and emission. As a rule, such approximation is sufficient
at the level of modern measurements. A discussion of the validity of such a
separation with respect to precision laboratory experiments will be presented
in the main text of the thesis.

As part of the research conducted by the author of this thesis, it was shown
that well-known effects, for example, in atomic spectroscopy, can also be in-
teresting and important in astrophysical studies of CMB and the interstellar
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medium, as well as used to search for antimatter in the Universe. Thus, the
density matrix method and the corresponding Liouville quantum equation have
been used to apply the EIT [93–95] effect to the search for contributions to the
CMB anisotropy, see, e.g., [96,97] and many others. The stationary (steady state
approximation) approximation [98] was used to solve the above equations. In
the framework of this theory, one can directly obtain the absorption profile for
the transition in the system under consideration, which is then utilized in the
theory of radiative transfer [76,99] by means of the Sobolev approximation [100].

Throughout the thesis, methods of mathematical physics are used and nu-
merical calculations are performed. As a rule, during the whole work analytical
expressions are derived, which acquire the most convenient form in the non-
relativistic approximation. On the basis of the nonrelativistic approximation
it becomes more simple to carry out numerical calculations, for example, by
means of the Green’s function method [101]. At the same time for revealing the
main contribution in light atomic systems the nonrelativistic approximation is
well justified. The thesis will also discuss the dipole approximation and going
beyond it (taking into account higher multipoles), and will use the method of
𝐵-splines with the imposed condition of dual kinetic balance for summing over
the intermediate states of the Dirac energy spectrum [102].

Validity and approbation of the results

The validity of the obtained results is based on the exact correspondence with
many conclusions presented in the scientific literature by other authors. Two
types of correspondence can be distinguished: a) the result obtained during our
research was later confirmed, and b) the effects and values considered earlier by
other authors were confirmed in our research in order to further develop them. In
addition, the result of the experiment [32], which clearly indicated the presence
of line profile asymmetry, its significance and the role of nonresonant effects in
precision spectroscopic experiments, should be mentioned separately. Most of
the results discussed in this thesis can be attributed to theoretical predictions.
The magnitude of the contributions described by the effects is at or close to
the level of the present-day precision of the experiments, which allows us to
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assert that it is necessary to take them into account. On the other hand, the
insignificance of the obtained values relative to the experimental error is also
important and shows that the corresponding measurements are not subject to
such effects. As such, nonresonant effects that are significant for measurements
of transition frequencies in the hydrogen atom and are irrelevant for muonic
hydrogen. As an example, one can point out the studies of two-photon emission
processes for highly excited states, which qualitatively assess the possibility of
limiting the number of transitions necessary for a detailed description of the
processes of formation of the cosmic microwave background. Another example
can be the results of studies of the electromagnetic induced transparency effect
in cosmological conditions of the early Universe or interstellar medium. It was
shown that the phenomenon of electromagnetic induced transparency can lead
to a distortion of the cosmic background at the level of 1% (the latter represents
the modern level of accuracy of the ISM measurements). Finally, studies of
radiation processes in an external electric field for the anti-hydrogen atom show
that even insignificant ("stray") field values can lead to significant differences
between the spectra of the anti-matter and ordinary hydrogen atom. To reveal
this effect, the results of well-known works obtained for other purposes were
used (see the main text of the thesis and [103–105]).

The results of the work have been repeatedly reported at scientific semi-
nars of the Division of Quantum Mechanics, Department of Physics, SPbSU,
working seminars of separate scientific groups of ITMO University, scientific
seminars at the theoretical department of PNPI, scientific seminars of foreign
universities (Technical University of Dresden and Heidelberg University), as
well as at international and domestic conferences:

∙ «One-, two- and three-photon transitions between 2s-, 2p- and 1s-levels
for hydrogen and anti-hydrogen atoms in an external electric field and
without it», 22-23 January, 2008, International Workshop "Fock Read-
ings. Modern Problems of Physics", St. Petersburg State University, De-
partment of Physics, St. Petersburg, Russia

∙ «Two-photon transitions in hydrogen atom: beyond the dipole approx-
imation», Paris Workshop on Cosmological Recombination, Jule 08-10,
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2009, Universite Paris-Sud, Paris, France

∙ «Multiphoton radiation processes with the presence of cascades in cos-
mological recombination for the atom», 3rd All-Russian Meeting "Preci-
sion Physics and Fundamental Physical Constants", The Ioffe Physical-
Technical Institute of the Russian Academy of Sciences, 6-10 December
2010, Sankt-Peterburg, Russia.

∙ «Multiphoton processes in atomic physics and astrophysics», Workshop
on the Proton Radius Puzzle, Europian Centre for Theoretical Studies
in Nuclear Physics and Related Areas, October 29 - November 2, 2012,
Trento, Italy

∙ «Quantum Optics Effects in Astrophysics», 11th International Collo-
quium on Atomic Spectra and Oscilator Strengths for Astrophysical and
Laboratory Plasmas, University of Mons, August 5-9, 2013, Mons, Bel-
gium

∙ «Нуdrogen and Antihydrogen spectra in presence of external fields»,
Meeting on Precision Physics and Fundamental Physical Constants, 1-
5 December, 2014, Dubna, Russia

∙ «QED derivation of energy shift and line broadening induced by the BBR
for bound electron», «Dark Ages and White Nights (Cosmic Microwave
Background Spectroscopy)», 21 June 2016, St. Petersburg, Russia

∙ «Thermal QED effects in problems of atomic physics and astrophysics»,
52nd PNPI Winter School, 26 February - 4 March, 2018, Roshchino, Rus-
sia

∙ «Recombination cross-section for the hydrogen atom in presence of
blackbody radiation», 13 th International Colloquium on Atomic Spec-
tra and Oscillator Strengths for Astrophysical and Laboratory Plasmas
(ASOS2019), 23-27 June, 2019, Fudan University, Shanghai, China

∙ «Thermal QED theory for bound states», International Conference on
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Natural Sciences and Humanities - «Science SPbU - 2020», 25 December
2020, SPbSU, St. Petersburg, Russia.

∙ «Thermal shift of atomic levels in hydrogen: influence on the determi-
nation of the proton radius», LXXI International Conference on Nuclear
Physics « Nucleus-2021. Physics of atomic nucleus and elementary parti-
cles. Nuclear Physics Technologies», 20-25 September 2021, St. Petersburg
State University, St. Petersburg, Russia.

∙ «The recombination process of a hydrogen atom in the presence of black-
body radiation», LXXI «Physics and Astrophysics - from Fundamen-
tal Constants to Cosmology, In Memory of D.A. Varshalovich», 27-28
September 2021, The Ioffe Physical-Technical Institute of the Russian
Academy of Sciences, St. Petersburg, Russia.

∙ «Thermal QED theory for bound states», School-Conference «Modern
Problems of Chemical Physics and Theoretical Chemistry», 25-29 July
2022, Irkutsk, Bolshiye Koty, Russia.

∙ «Thermal QED theory for bound states», International Conference on
Natural Sciences and Humanities - «Science SPbU - 2022», 21 November
2022, SPbU, St. Petersburg, Russia.

∙ «Radiative corrections to the bound electron g-factor and level width in
the presence of a magnetic field combined with blackbody radiation»,
International Summer Conference on Theoretical Physics (ISCTP-2023),
3-7 July 2023, MIPT Abrikosov Centre for Theoretical Physics, Dolgo-
prudny, Russia. Abrikosov Centre for Theoretical Physics, Dolgoprudny,
Russia.

The results of research have been repeatedly reported in co-authorship by
Associate Professor T.A. Zalyalyutdinov, postgraduate student A.A. Anikin,
student D.A. Danilov.
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Publications

The results presented in the thesis are contained in the form of 39 published
articles in peer-reviewed foreign and domestic journals from the list of Scopus,
Web of Science and VAK RF. In total, the author has published more than
70 papers in refereed foreign and domestic journals cited by Scopus, Web of
Science and VAK RF databases.

The author of the dissertation has developed and registered «Program for
calculation of cross sections and recombination coefficients to an arbitrary state
of hydrogen atom», registration date 3 March 2020, №2020612747. Right holder:
Federal State Budgetary Educational Institution of Higher Professional Edu-
cation "Saint-Petersburg State University" (SPbSU). Authors: D.A. Solovyev
and Y.V. Triaskin.

Personal contribution of the author

The work was carried out at St. Petersburg State University. A number of
studies were carried out jointly with A.A. Anikin, T.A. Zalyalyutdinov, G.
Plunien, G. Soff and L.N. Labzovsky. Most of the research results presented in
the thesis have been published in a hardly separable co-authorship; to exclude
ambiguity in the paper, the corresponding references are indicated with a full
list of names. At the same time, the presented and put forward for discussion
in the theses were obtained personally by the author.

The structure of the dissertation

The thesis consists of an introduction, 10 chapters, a conclusion, a list of ab-
breviations and symbols, 28 figures, 26 tables, a bibliography of 280 titles and
a list of the author’s publications of 39 titles. Each chapter discusses the main
results obtained. The volume of the thesis is 290 pages.
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Thesis statements to be defended

∙ Nonresonant expansion of the Lorentz contour

∙ Nonresonant corrections to the total photon scattering cross section

∙ Nonresonant corrections to the photon scattering differential cross section

∙ Natural asymmetry of the spectral line profile

∙ The quantum interference effect

∙ Relevance of transition frequency definitions beyond the resonance ap-
proximation

∙ Angular correlations in application to precision spectroscopy of the hy-
drogen atom

∙ Angular correlations for muonic hydrogen and helium atoms

∙ Angular correlations in two-photon spectroscopy

∙ The effect of thermal broadening in nonresonant corrections

∙ Influence of radiation on the absorption profile beyond the resonance
approximation

∙ Two-photon (multipole) radiation processes

∙ Two-photon decay processes in an external electric field

∙ Two-photon decays of highly excited states

∙ Spectra of hydrogen and anti-hydrogen atoms in an external electric field

∙ Nonresonant corrections in an external electric field

∙ Probabilities of two-photon decay with the presence of cascades

∙ Inseparability of cascade and «pure» radiation
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∙ Two-photon width of the atomic level as an imaginary part of the energy
shift

∙ Electromagnetically induced transparency effect in cosmological condi-
tions of the early Universe

∙ Electromagnetically induced transparency effect - 21 cm line profile in a
hydrogen atom

Principal scientific results

∙ Nonresonant Lorentz contour extension, see the second chapter in
arXiv:2204.12199 [physics.atom-ph], 26 Apr 2022 from the list of publica-
tions of the thesis author (all analytical calculations performed personally
by the thesis author)

∙ Nonresonant corrections to the total photon scattering cross section, see
Refs. [8, 35–37,40–42,106] (personal contribution of at least 80%)

∙ Nonresonant corrections to the photon scattering differential cross sec-
tion, see chapter four in arXiv:2204.12199 [physics.atom-ph], 26 Apr 2022
and papers [42,52,53,107] (personal contribution of at least 80%)

∙ Natural asymmetry of the spectral line profile, see [8, 37] from the list of
publications of the author of the thesis (in particular the third paragraph
in [37] and section 3.8 in [8]; all analytical and numerical calculations
were carried out personally by the author of the thesis)

∙ Quantum interference effect, see Chapter 4 in arXiv:2204.12199
[physics.atom-ph], 26 Apr 2022; arXiv: 2311.12606 [physics.atom-ph], 21
Nov 2023 (from the list of publications of the thesis author) and pa-
pers [52,53,108] (personal contribution of at least 80%)

∙ For consistency of definitions of the transition frequency beyond the reso-
nance approximation, see Section 4.3 in arXiv:2204.12199 [physics.atom-
ph], 26 Apr 2022; and arXiv: 2311.12606 [physics.atom-ph], 21 Nov 2023
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(from the list of publications of the thesis author, all analytical and nu-
merical calculations were performed personally by the thesis author), pa-
pers [52,53,108]

∙ The method of moments adapted to the determination of transition fre-
quencies, see [109] (all analytical and numerical calculations were per-
formed personally by the author of the thesis)

∙ Angular correlations in application to precision spectroscopy of the hy-
drogen atom, see sections 4.2, 5.1, 5.2 in arXiv:2204.12199 [physics.atom-
ph], 26 Apr 2022; arXiv: 2311.12606 [physics.atom-ph], 21 Nov 2023 and
papers [52,53,108] (personal contribution of at least 80%)

∙ Angular correlations with respect to muonic hydrogen and helium atoms,
see sections 4.4, 4.5, 5.3 in arXiv:2204.12199 [physics.atom-ph], 26 Apr
2022 (personal contribution of at least 80%)

∙ Angular correlations in two-photon spectroscopy, see sections 5.1, 5.2,
and 5.3 in arXiv:2204.12199 [physics.atom-ph], 26 Apr 2022, and [53,107]
(personal contribution is at least 80%)

∙ For the effect of thermal broadening in nonresonant corrections, see Sec-
tion 5.4 in arXiv:2204.12199 [physics.atom-ph], 26 Apr 2022 (all analytical
calculations performed personally by the author of this thesis)

∙ For the effect of radiation on the absorption profile beyond the res-
onance approximation, see Section 3 of the paper arXiv: 2311.12606
[physics.atom-ph], 21 Nov 2023 (all analytical calculations performed per-
sonally by the author of this thesis)

∙ Two-photon (multipole) radiation processes, see [82,83,110–118] (all ana-
lytical calculations were performed personally by the author of the thesis,
the total contribution can be estimated to be at least 80%)

∙ One- and two-photon decay processes in an external electric field, see
[106, 112–114, 119] (all analytical calculations performed personally by
the author of this thesis)
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∙ Two- and multiphoton decays of highly excited states, see Refs. [82–84,
115–125] (personal contribution is at least 80%).

∙ Spectral characteristics of hydrogen and anti-hydrogen atoms in an ex-
ternal electric field, see [38, 39, 106, 112–114, 119, 126, 127] (personal con-
tribution is at least 80%)

∙ Nonresonant corrections in the external electric field, see [38, 126] (all
analytical and numerical calculations were performed personally by the
author of the thesis)

∙ Two-photon decay probabilities with the presence of cascades, see [82,84,
115,116,118,120,121] (personal contribution is at least 80%)

∙ Inseparability of cascade and «pure» radiation, see [82,120,121] (personal
contribution is at least 80%).

∙ «Two-photon approximation» in multiphoton decays, see papers [115,
116, 118, 120] (all analytical calculations were performed personally by
the author of the thesis, total contribution is at least 80%)

∙ Two-photon atomic level width as an imaginary part of the energy shift,
see papers [84,121] (personal contribution is at least 80%)

∙ The effect of electromagnetically induced transparency in cosmological
conditions of the early Universe, see [128,129] (all analytical calculations
were performed personally by the author of the thesis, the total contri-
bution is at least 80%)

∙ Electromagnetic induced transparency effect - 21 cm line profile in the
hydrogen atom, see [130] (all performed personally by the author of this
thesis)
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Chapter 1.

The role of line profile
asymmetry in precision
spectroscopy: a review of
existing approaches

The quantum mechanical derivation of the natural line profile in atomic physics
was introduced by Weisskopf and Wigner [131]. With the development of rela-
tivistic quantum field theory, this derivation was revised within the framework
of quantum electrodynamics theory (QED) and the 𝑆-matrix formalism for
one-electron atoms in the pioneering paper by F. Low [85]. Later, the QED
theory of the line profile was also reformulated for many-electron atoms [132]
and applied to overlapping resonance lines in highly charged ions (HCI) [133].
The combination of these approaches and the corresponding development of the
methods started in the [87, 89] was successfully applied to theoretical calcula-
tions of radiative QED corrections to energy levels and transition probabilities
in atoms and ions in the framework of the Spectral Line Approach (LPA) [8].

The further development of the line profile theory is closely related to the
experimental successes in measuring the transition frequency in the hydrogen
atom [20, 21, 134], where the absolute value of the 1𝑠 − 2𝑠 frequency of the
two-photon transition was established with an accuracy of the order of 10−15
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relative magnitude. Such experiments stimulated interest in theoretical studies
of effects beyond the resonant approximation, based on results obtained earlier
for the HCI [33, 34]. The theoretical analysis of the photon scattering process
(within which the QED determination of the spectral line profile arises [85])
was resumed for the hydrogen atom in [35]. One of the most important con-
sequences of LPA theory is the introduction of nonresonant (NR) corrections
to the transition frequency arising from nonresonant terms in the scattering
amplitude. Various applications of the corresponding corrections to the total
cross section can be found in [8, 84], although for the hydrogen atom they are
rather beyond the current experimental precision.

NR effects have attracted special interest of researchers in the last decade
and have been discussed in a number of theoretical papers [35–37,43,135,136].
This was primarily facilitated by advances in precision spectroscopic experi-
ments [21,134,137]. In particular, the experiment [21] to measure the frequency
of the 1𝑠 − 2𝑠 transition is one of the most accurate ever performed in the
optical domain, with a resulting absolute error of about 10 Hz. The evaluation
of the corresponding NR corrections within the framework of the QED theory
and LP approach was performed in [37, 40]. An important experimental result
was also presented in [137], where the Lyman-𝛼 (Ly𝛼) 1𝑠− 2𝑝 transition in the
hydrogen atom was measured. The corresponding estimates of nonresonant cor-
rections to the frequency of the 1𝑠−2𝑝 transition were made in [35–37,43,136].
Later, similar calculations were performed taking into account the interference
between neighbouring hyperfine components of the 2𝑝 [41] level.

The continuous development of theory and experiment leads to the appear-
ance of new problems. One of the most striking examples is the problem known
in the literature as the «proton radius puzzle», which arose as a result of spec-
troscopic experiments on muonic hydrogen [29]. The first success in solving
this problem was achieved in [32], where the asymmetry of the observed line
profile for the 2𝑠− 4𝑝 transition in hydrogen was taken into account, bringing
the charge radius of the proton almost in agreement with the value extracted
from muon hydrogen experiments. More recent proton-electron scattering ex-
periments and Lamb shift measurements by [138, 139] also came close to the
result of [29].
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While the results of the work [32] represent significant progress made by
taking into account nonresonant effects in the scattering cross section and, in
particular, quantum interference as their most significant part, the issue of
similar effects on other precision spectroscopic experiments is widely discussed
in the scientific literature at present [51, 140–142]. For example, results from
recent work measuring the 2𝑠 − 8𝑑 transition energy in hydrogen again point
to inconsistencies in the definitions of the proton charge radius [143]. Similar
problems remain in two-photon spectroscopy in measuring the 1𝑠− 3𝑠 interval
[22, 144]. The influence of the quantum interference effect (QIE) within two-
photon spectroscopy in determining the frequency of the 1𝑠 − 3𝑠 transition
in the hydrogen atom has been studied in detail in [53, 145, 146]. A similar
analysis has also been performed for one-photon spectroscopy of the hydrogen
atom in [51] and its application to measurements of the Lamb shift and the
fine structure of the helium triplet. A detailed analysis of QIE as part of NR
effects can be addressed to the papers [50,147,148]. In particular, it was shown
in [50] that for muonic hydrogen, deuterium, and helium-3 these effects turn out
to be either negligible or well below the level of experimental precision. More
recently, the line profile asymmetry analysis presented in [49] showed that there
are "magic angles" at which quantum interference vanishes (see also [46, 47]).
Recently, the effect of quantum interference was also discussed in [148] in an
application to spectroscopy of lithium-like highly charged ions.

In spectroscopic studies of many-electron systems, light two-electron atomic
systems should be emphasised. The recently achieved accuracy of measurements
of the transition frequencies between the energy levels of the helium atom has
stimulated a number of theoretical studies on the calculation of QED corrections
up to the order of 𝑚𝛼7 [54,149]. A comparative analysis of the theoretical and
experimental values revealed a significant discrepancy between the correspond-
ing results for the transition frequency 23𝑆1−33𝐷1 [54]. The corresponding NR
corrections for the energy intervals 23𝑆1−𝑛3𝐷1 (𝑛 = 3, 4, 5) were estimated to
be [54]. In particular, the analyses revealed that the effect of quantum interfer-
ence, previously unaccounted for, can at least partially eliminate the existing
imbalance between theory and experiment [56].

The study of multiphoton scattering processes and line profile asymmetry
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applied to astrophysical problems is also of considerable interest [150–152]. As
a powerful tool to investigate the dynamics of the evolution of the Universe
at an early stage, accurate calculations of radiative transfer in the interstellar
and intergalactic medium with the corresponding estimation of scattering cross
sections and derivation of line profiles are extremely important [76, 99]. Until
recently, the solution of problems related to radiative transfer was considered
only in the resonant approximation [153–155]. In [153] it was shown that the
asymmetry of the Ly𝛼 line profile can lead to an underestimation of the redshift
of some currently observed astrophysical sources. Accounting for nonresonant
effects can lead to redshift bias reaching values of the order of 𝛿𝑧 ∼ 10−3−10−4

[156]. In the same context, the effect of electromagnetic induced transparency,
which leads to a distortion of the absorption profile has been discussed in [128–
130].

The keynote papers [33,35,37,42,85] opened up a whole new field of research
devoted to NR effects and their role in modern spectroscopy. Since then, various
authors and research groups have been working in this direction [41, 43]. The
most important results concern not only the spectroscopy of hydrogen and
helium atoms, but also of highly charged ions and mesoatoms. Subsequently,
numerous works, see e.g. [36,40,41], have confirmed all the previously predicted
features of the NR corrections. Importantly, there is also an influence of the
registration method on the measured frequency value [42]. The dependence of
the NR corrections on the experimental conditions was also studied in [50, 52,
53,148].

Since precision spectroscopy of atomic systems is of great importance in
modern physics, pursuing the goal, for example, of precision determination of
fundamental physical constants, it is becoming increasingly important to take
into account not only QED corrections but also NR effects. In the following,
recent advances in the study of nonresonant effects and line profile asymmetry
using the rigorous theory of quantum electrodynamics are discussed.
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Chapter 2.

Spectral line profile
asymmetry and nonresonant
effects

One of the important features of the line profile theory in QED is the appearance
of nonresonant corrections. They were first introduced in [85], where the QED
theory of the natural (Lorentzian) line profile was formulated in the application
to atomic physics. The NR corrections indicate the limit of applicability of the
resonance approximation when only the dominant (resonance) term remains
in the process amplitude, for more details see [8, 84]. If the distortion of the
Lorentz profile caused by NR contributions is small, the correction can be con-
sidered as an additional energy shift of the transition frequency. Unlike all other
energy corrections, this correction depends on the specific process of measuring
the energy difference between levels, and therefore it should be theoretically
calculated each time according to the process used in the experiment.

Below the fully relativistic derivation of the differential and total photon
scattering cross sections in the framework of QED theory and the 𝑆-matrix
formalism is considered, which gives a comprehensive account of nonresonant
effects and their influence on the determination of the transition frequency.
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2.1. Scattering amplitude of a photon on an atom

First, it is convenient to consider the process of photon scattering on a one-
electron atom [85,157]. Following the theory described in [2], the corresponding
Feynman diagrams are shown in Fig. 2.1. Here 𝑖, 𝑛, and 𝑓 denote the initial,
intermediate, and final states of the electron, and {𝜔𝑗𝛾𝑚𝛾𝑠} and {{𝜔′𝑗′𝛾𝑚

′
𝛾𝑠

′}
are the quantum numbers of the initial and final photons, respectively. Here 𝜔
is the frequency, 𝑗𝛾𝑚𝛾𝑚𝛾 denotes the angular momentum of the photon and its
projection, and 𝑠 defines the parity of the photon state.

Figure 2.1. Photon scattering on a bound electron. The wavy line denotes ab-
sorption, if the arrow is directed to the vertex, or emission, if the arrow is
directed away from the vertex, of a photon, and the double solid line denotes
a bound electron in the field of the nucleus (Furry picture); 𝜔1, 𝜔2 are the
frequencies of absorbed and emitted photons, 𝑖, 𝑛, and 𝑓 denote the initial,
intermediate, and final states of the electron, respectively.

Then the 𝑆-matrix element of the scattering process, see [2], is equal to

𝑆
(2)
𝑓𝑖 = (−i𝑒)2

∫︁
𝑑4𝑥𝑑4𝑦

[︁
𝜓𝑓(𝑥)𝛾𝜇𝐴(𝑘2,𝜆2)*

𝜇 (𝑥)𝑆(𝑥, 𝑦)𝛾𝜈𝐴(𝑘1,𝜆1)
𝜈 (𝑦)𝜓𝑖(𝑦) + (2.1)

𝜓𝑓(𝑥)𝛾𝜈𝐴(𝑘1,𝜆1)
𝜈 (𝑥)𝑆(𝑥, 𝑦)𝛾𝜇𝐴(𝑘2,𝜆2)*

𝜇 (𝑦)𝜓𝑖(𝑦)
]︁
.

Here 𝜓𝐴(𝑥) = 𝑒−i𝐸𝐴𝑡𝜓(𝑥) is the solution of the Dirac equation for the bound
electron in state 𝐴 and

𝐴(𝑘,𝜆)
𝜇 (𝑥) =

√︂
2𝜋

𝜔
𝑒(𝜆)𝜇 𝑒−i𝑘𝑥, (2.2)

represents the wave function of the photon in the coordinate representation,
where 𝜔 = ||𝑘| and 𝑒

(𝜆)
𝜇 are the polarisation components of the photon. The

complex conjugation of the photon wavefunctions in equation (2.1) means that
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the photon is emitted. The normalisation factor in (2.2),
√︀

2𝜋/𝜔, is chosen so
as to obtain the Coulomb interaction (for the zero component) between the
electron and the nucleus as 𝑍𝑒2/𝑟.

In the expression (2.1), 𝑆(𝑥, 𝑦) denotes the Feynman propagator of the
atomic electron [2], which can be represented using the expansion:

𝑆(𝑥, 𝑦) =
i

2𝜋

∫︁ −∞

∞
𝑑Ω𝑒iΩ(𝑡𝑥−𝑡𝑦)

∑︁
𝑛

𝜓𝑛(𝑥)𝜓𝑛(𝑦)

𝐸𝑛(1 − i0) + Ω
. (2.3)

Here the summation is performed over the entire Dirac spectrum of the electron
in the field of the nucleus. Consideration of real photons leads to the transverse
condition with the photon polarisation given by the 3-vector 𝑒 and the corre-
sponding wave function

𝐴𝑘,𝑒(𝑟) =

√︂
2𝜋

𝜔
𝑒𝑒−i𝑘𝑟. (2.4)

Integration over time variables and frequency Ω in equation (2.1) gives

𝑆
(2)
𝑓𝑖 = −2𝜋i𝛿(𝐸𝑖 + 𝜔1 − 𝐸𝑓 − 𝜔2)𝑈

(2)
𝑓𝑖 , (2.5)

where 𝑈 (2)
𝑓𝑖 represents the amplitude of the one-photon scattering process 𝑖 +

𝛾 → 𝑓 − 𝛾 [8, 84]

𝑈
(2)
𝑓𝑖 = 𝑒2

[︃∑︁
𝑛

(︁
𝛼𝐴*

𝑘2,𝑒2

)︁
𝑓𝑛

(︁
𝛼𝐴𝑘1,𝑒1

)︁
𝑛𝑖

𝐸𝑛(1 − i0) − 𝐸𝑖 − 𝜔1
+
∑︁
𝑛

(︁
𝛼𝐴𝑘1,𝑒1

)︁
𝑓𝑛

(︁
𝛼𝐴*

𝑘2,𝑒2

)︁
𝑛𝑖

𝐸𝑛(1 − i0) − 𝐸𝑓 + 𝜔1

]︃
.(2.6)

Here we introduce the following notations: 𝛼𝐴𝑘,𝑒 and 𝛼𝐴*
𝑘,𝑒 - photon absorp-

tion and emission operators, respectively. Then the differential cross section of
the process is defined by the relation:

𝑑𝜎𝑓𝑖 = 2𝜋
⃒⃒
𝑈

(2)
𝑓𝑖

⃒⃒2
𝛿(𝐸𝑖 + 𝜔1 − 𝐸𝑓 − 𝜔2)

𝑑3𝑘2
(2𝜋)3

. (2.7)

where 𝑑3𝑘2 = 𝜔2
2𝑑𝜔2𝑑𝑛𝑘2, 𝜔2 = |𝑘2| is the frequency of the photon and 𝑛𝑘2 =

𝑘2/|𝑘2| defines the unit direction vector of the photon (the latter will also often
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be denoted by 𝜈).
The matrix elements (2.6) can be computed using partial decomposition:

𝑒𝑒−i𝑘𝑟 =
∑︁
𝑗𝛾𝑚𝛾𝑠

[︀
𝑒𝑌

(𝑠)
𝑗𝛾𝑚𝛾

(𝑛𝑘)
]︀
𝐴

(𝑠)*
𝑗𝛾𝑚𝛾

(𝑛𝑟), (2.8)

where 𝑛𝑟 = 𝑟/|𝑟| and 𝐴
(𝑠)
𝑗𝛾𝑚𝛾

are the components of the vector potential

𝐴
(−1)
𝑗𝛾𝑚𝛾

(𝑛𝑟) =

√︃
𝑗𝛾

2𝑗𝛾 + 1
𝑔𝑗𝛾−1(𝑘𝑟)𝑌 𝑗𝛾𝑗𝛾−1𝑚𝛾

(𝑛𝑟) + (2.9)√︃
𝑗𝛾 + 1

2𝑗𝛾 + 1
𝑔𝑗𝛾+1(𝑘𝑟)𝑌 𝑗𝛾𝑗𝛾+1𝑚𝛾

(𝑛𝑟),

𝐴
(0)
𝑗𝛾𝑚𝛾

(𝑛𝑟) = 𝑔𝑗𝛾(𝑘𝑟)𝑌 𝑗𝛾𝑗𝛾𝑚𝛾
(𝑛𝑟), (2.10)

𝐴
(+1)
𝑗𝛾𝑚𝛾

(𝑛𝑟) =

√︃
𝑗𝛾 + 1

2𝑗𝛾 + 1
𝑔𝑗𝛾−1(𝑘𝑟)𝑌 𝑗𝛾𝑗𝛾−1𝑚𝛾

(𝑛𝑟) + (2.11)√︃
𝑗𝛾

2𝑗𝛾 + 1
𝑔𝑗𝛾+1(𝑘𝑟)𝑌 𝑗𝛾𝑗𝛾+1𝑚𝛾

(𝑛𝑟),

and 𝑌
(𝑠)
𝑗𝑚 are components of the spherical tensor:

𝑌
(−1)
𝑗𝛾𝑚𝛾

(𝑛𝑘) =

√︃
𝑗𝛾

2𝑗𝛾 + 1
𝑌 𝑗𝛾𝑗𝛾−1𝑚𝛾

(𝑛𝑘) −

√︃
𝑗𝛾 + 1

2𝑗𝛾 + 1
𝑌 𝑗𝛾𝑗𝛾+1𝑚𝛾

(𝑛𝑘), (2.12)

𝑌
(0)
𝑗𝛾𝑚𝛾

(𝑛𝑘) = 𝑌 𝑗𝛾𝑗𝛾𝑚𝛾
(𝑛𝑘), (2.13)

𝑌
(+1)
𝑗𝛾𝑚𝛾

(𝑛𝑘) = −

√︃
𝑗𝛾 + 1

2𝑗𝛾 + 1
𝑌 𝑗𝛾𝑗𝛾−1𝑚𝛾

(𝑛𝑘) −

√︃
𝑗

2𝑗 + 1
𝑌 𝑗𝛾𝑗𝛾+1𝑚𝛾

(𝑛𝑘). (2.14)
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The vector spherical harmonic 𝑌 𝑗𝑙𝑚 in equations (2.12)-(2.14) is defined as
follows:

𝑌 𝑗𝛾 𝑙𝛾𝑚𝛾
(𝑛𝑘) =

∑︁
𝑚𝛾𝜇

𝐶
𝑗𝛾𝑚𝛾

𝑙𝛾𝑚𝛾1𝜇
𝑌𝑙𝛾𝑚𝛾

(𝑛𝑘)𝜒𝜇. (2.15)

Here 𝜒𝜇 is the spin part of the function of the particle with spin one, and 𝑌𝑙𝑚
is the spherical harmonic. The function 𝑔𝑗𝛾(𝑘𝑟) in expressions (2.9)-(2.11) is
related to the spherical Bessel function 𝑗𝑗𝛾(𝑘𝑟)

𝑔𝑗𝛾(𝑘𝑟) = 4𝜋i𝑗𝛾𝑗𝑗𝛾(𝑘𝑟). (2.16)

Using the expressions (2.9)-(2.11), the operator included in the formula (2.6)
can be written as a multipole expansion:

𝛼𝐴*
𝑘,𝑒 =

√︂
2𝜋

𝜔

∑︁
𝑗𝛾𝑚𝛾𝑠

[︀
𝑒𝑌

(𝑠)
𝑗𝛾𝑚𝛾

(𝑛𝑘)
]︀
𝛼𝐴

(𝑠)*
𝑗𝛾𝑚𝛾

. (2.17)

Finally, by introducing the notation

𝐶
𝑗𝛾1𝑚𝛾1

𝑠1
𝑗𝛾2𝑚𝛾2

𝑠2
(𝑒1,𝑛𝑘1

; 𝑒2,𝑛𝑘2
) =

[︀
𝑒1𝑌

(𝑠1)
𝑗𝛾1𝑚𝛾1

(𝑛𝑘1
)
]︀[︀
𝑒2𝑌

(𝑠2)
𝑗𝛾2𝑚𝛾2

(𝑛𝑘2
)
]︀*
, (2.18)

the transition amplitude (2.6) takes the form [158]:

𝑈
(2)
𝑓𝑖 = 𝑒2

2𝜋
√
𝜔1𝜔2

[︃ ∑︁
𝑗𝛾1𝑚𝛾1

𝑠1
𝑗𝛾2𝑚𝛾2

𝑠2

𝐶
𝑗𝛾1𝑚𝛾1

𝑠1
𝑗𝛾2𝑚𝛾2

𝑠2
(𝑒1,𝑛𝑘1

; 𝑒2,𝑛𝑘2
) × (2.19)

{︃∑︁
𝑛

(︁
𝛼𝐴

(𝑠2)*
𝑗𝛾2𝑚𝛾2

)︁
𝑓𝑛

(︁
𝛼𝐴

(𝑠1)
𝑗𝛾1𝑚𝛾1

)︁
𝑛𝑖

𝐸𝑛(1 − i0) − 𝐸𝑖 − 𝜔1
+
∑︁
𝑛

(︁
𝛼𝐴

(𝑠1)
𝑗𝛾1𝑚𝛾1

)︁
𝑓𝑛

(︁
𝛼𝐴

(𝑠2)*
𝑗𝛾2𝑚𝛾2

)︁
𝑛𝑖

𝐸𝑛(1 − i0) − 𝐸𝑖 − 𝜔2

}︃]︃
,

where photons of a certain type are given by the sums in equation (2.19).
In the resonant approximation, it is assumed that in the process 𝑖 + 𝛾1 →

𝑓 + 𝛾2 there is an intermediate state 𝑏 for which the frequency of the absorbed
photon 𝜔1 is equal to the energy difference 𝐸𝑏 −𝐸𝑖, and the main contribution
to the scattering cross section is given by the term with 𝑛 = 𝑏 in the first sum in
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the curly braces of the expression (2.19). The resulting divergent contribution
should be regularised by including an infinite set of Feynman graphs represent-
ing the one-loop self-energy (SE) correction for the bound electron [85]. Thus,
the natural level width Γ𝑏 appears in the energy denominator, and the square of
the modulus of the resonant regularised contribution determines the line profile
of the corresponding emission or absorption process [8].

2.2. QED derivation of the Lorentz profile for the
atomic spectral line

To obtain the standard Lorentz form for the spectral line profile in the frame-
work of QED theory, one can consider the resonance process of elastic scattering
of a photon on an atomic electron in the state 𝑎. According to the construction
of perturbation theory within the QED formalism, the state 𝑎 should be repre-
sented by the (meta-)stable (ground) energy level of the atom. In the framework
of the resonance approximation, however, this circumstance can be neglected.
Using the 𝑆-matrix formalism in the Furry picture [2,3,159], in the framework
of the resonance approximation, the amplitude of the process shown in Fig. 2.1,
see Eq. (2.19), can be reduced to the form:

𝑈 sc
𝑎𝑎 =

⟨𝑎|𝛼𝐴𝑘2,𝑒2|𝑏⟩⟨𝑏|𝛼𝐴*
𝑘1,𝑒1

|𝑎⟩
𝐸𝑏 − 𝐸𝑎 − 𝜔

. (2.20)

According to the expression (2.20), the radiation amplitude, 𝑈 em
𝑏𝑎 , can be rep-

resented as follows:

𝑈 em
𝑏𝑎 =

⟨𝑏|𝛼𝐴*
𝑘2,𝑒2

|𝑎⟩
𝐸𝑏 − 𝐸𝑎 − 𝜔

. (2.21)

It is assumed that the absorption and emission processes are separated within
the resonant approximation, see the discussion in [8], and 𝑏 represents the ex-
cited state defined by the energy conservation law (the frequency of the ab-
sorbed photon).

For the resonant excitation process, this expression has a singularity at
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𝜔 = 𝐸𝑏 − 𝐸𝑎. The regularisation is performed according to the procedure
proposed in [85], i.e. by inserting an infinite number of one-loop diagrams for
the self-energy of the electron (SE), "loop by loop". The result reduces to a
geometric progression [3], which finally leads to the expression

𝑈 em
𝑏𝑎 =

⟨𝑏|𝛼𝐴*
𝑘2,𝑒2

|𝑎⟩
𝐸𝑏 − 𝐸𝑎 − 𝜔 + ⟨𝑏|Σ̂ (𝐸𝑏) |𝑏⟩

. (2.22)

Here ⟨𝑏|Σ̂ (𝐸𝑏) |𝑏⟩ is the diagonal matrix element of the operator corresponding
to the one-loop diagram for the electron self-energy, Σ̂ (𝐸𝑏):

⟨𝑏|Σ̂ (𝐸𝑏) |𝑏⟩ =
𝑒2

2𝜋i

∑︁
𝑛

⟨𝑏𝑛|1 −𝛼1𝛼2

𝑟12
𝐼𝑛 (𝑟12;𝐸𝑏) |𝑛𝑏⟩. (2.23)

The multiplier 1 −𝛼1𝛼2 arises from the product of 𝛾𝜇𝑔𝜇𝜈𝛾𝜈 (see [3]) and

𝐼𝑛 (𝑟12;𝐸𝑏) =

∞∫︁
−∞

𝑒i|Ω|𝑟12𝑑𝜔

𝐸𝑛(1 − i0) − 𝐸𝑏 − Ω
. (2.24)

Hereinafter the matrix element ⟨𝑐𝑑 |𝑋| 𝑑𝑐⟩ means

⟨𝑐𝑑 |𝑋| 𝑑𝑐⟩ = ⟨𝑐(1)𝑑(2) |𝑋(1, 2)| 𝑑(1)𝑐(2)⟩ (2.25)

where the indices 1, 2 refer to the two electron variables in the corresponding
vertices of the SE diagram, 𝛼1,2 represent the Dirac matrices acting on the
electron wave functions in the 1 and 2 vertices, 𝑟12 = |𝑟1 − 𝑟2|. Finally, the
summation is performed over the entire Dirac spectrum.

The real part ⟨𝑏|Σ̂ (𝐸𝑟) |𝑏⟩ diverges and requires a corresponding renormal-
isation [92]. The renormalisation results in an energy shift that determines the
Lamb shift in the leading order (for the hydrogen atom):

Re⟨𝑏|Σ̂REN (𝐸𝑏) |𝑏⟩ = 𝐿SE
𝑏 . (2.26)

In our case this circumstance is not important. What is important is that
the imaginary part of the matrix element ⟨𝑏|Σ̂ (𝐸𝑟) |𝑏⟩ is different from zero.
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Analytical calculations for the imaginary part can be found in [3], the result is

Im⟨𝑏|Σ̂REN (𝐸𝑏) |𝑏⟩ = −Γ𝑏

2
, (2.27)

where Γ𝑏 represents the natural width of the excited atomic state (details of the
regularisation of the divergent resonance contribution are also presented in [8]).

Substitution of (2.26), (2.27) into (2.22) gives

𝑈 em
𝑏𝑎 =

⟨𝑏|𝛼𝐴*
𝑘2,𝑒2

|𝑎⟩
𝐸𝑏 + 𝐿SE

𝑏 − 𝐸𝑎 − i
2Γ𝑏 − 𝜔

. (2.28)

The regularised expression (2.28) can be modified both for the case of the
state energy shift 𝑎 and for other QED corrections (not SE), see details in
[8, 84]. In the following it will be assumed that the energies include all known
atomic level energy shifts. When a transition between two excited states is
considered, the widths are represented by the sum of the natural widths. In turn,
this gives a clear picture that, when observing a spectral line, the transition
frequency includes all "standard" shifts and can be directly compared with the
corresponding theoretical value.

To obtain the emission line profile, the amplitude modulus (2.28) should
be squared, multiplied by the phase volume 𝑑3𝑘′/(2𝜋)3, integrated along the
photon emission directions, and summed over the polarisation. The absorption
profile can be obtained in a similar way: in this case, the matrix element of the
transition 𝑎 → 𝑏 is left in the numerator of the expression (2.20). In the non-
relativistic limit, which is obviously valid for the hydrogen atom, ⟨𝑏|𝛼𝐴*

𝑘,𝑒|𝑎⟩ =
𝑒√
𝜔
⟨𝑏|𝑒𝑝|𝑎⟩, where 𝑝 is the electron momentum operator and 𝑚 is the mass of

the electron. The coefficient 1√
𝜔

arises from normalising the vector-potential
[2, 3]. Then the standard expression for the Lorentz profile is:

𝜑L(𝜔)𝑑𝜔 =
1

ℵ
∑︁
𝑒

∫︁
𝜔𝑑𝜔𝑑𝑛𝑘

(2𝜋)3
|𝑈 em

𝑏𝑎 | =
1

ℵ
𝑊𝑏𝑎𝑑𝜔

(𝜔0 − 𝜔)2 + 1
4Γ2

𝑏

, (2.29)

where

𝑊𝑏𝑎 =
4

3
𝑒2𝜔0|⟨𝑏|𝑝|𝑎⟩|2 (2.30)
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corresponds to the transition probability 𝑏 → 𝑎 + 𝛾, 𝜔0 is the resonance fre-
quency equal to 𝜔0 = 𝐸𝑏 − 𝐸𝑎 and ℵ represents the normalisation factor.

In expressions (2.29), (2.30) we put 𝜔 = 𝜔0 in 𝑊𝑏𝑎 and Γ𝑏 and take into
account that the difference of the Lamb shifts 𝐿SE

𝑎 and 𝐿SE
𝑏 can be simply

included in the definition of 𝜔0. If there are no decay channels other than 𝑏→ 𝑎

for state 𝑏, then the transition probability coincides with the partial width of
level 𝑏, 𝑊𝑏𝑎 = Γ𝑏𝑎 and transforms to Γ𝑏𝑎 = Γ𝑏 in the case of excited state 𝑎.
The normalisation factor is defined as follows:∫︁

𝜑L (𝜔) = 1. (2.31)

In the resonance approximation, the integration interval in (2.31) can be
extended to 𝜔 ∈ (−∞,∞). Then integration in the complex plane gives
ℵ = ℵ(0) ≡ 1/2𝜋.

2.3. Nonresonant extension of the Lorentz profile

Three types of nonresonant contributions that distort the standard Lorentz
profile (2.29) can be distinguished. The first type corresponds to distortion
effects arising in external fields. Thus, in an external field, mixing of states of
opposite parity [103] occurs. For example, an external electric field leads to
overlap of transitions 1𝑠1/2 → 2𝑝1/2 and 1𝑠1/2 → 2𝑠1/2 [160]. The second type
is represented by the remaining terms in the scattering amplitude (2.19). The
study of this set of nonresonant effects is of particular interest in the current
experiments [22, 32], as it represents the dominant contribution to the shift of
the resonant transition frequency.

In this part of the thesis, a third type occurring for the resonant term
is presented. These corrections arise when the frequency dependence in the
expression (2.29) is considered for both the transition probability 𝑊𝑏𝑎 and the
natural width Γ𝑏. The nonresonant expansion of 𝑊𝑏𝑎 is trivial (see [3]): equation
(2.30) should be replaced by

𝑊𝑏𝑎(𝜔) =
4

3
𝑒2𝜔 |⟨𝑏|𝑝|𝑎⟩|2 . (2.32)
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How to determine the dependence of Γ𝑏 on the frequency 𝜔 can be found
in [3], and the corresponding application to the definition of NR corrections can
be found in [8, 37, 160]. In turn, the estimation of the SE contribution should
also take into account that initially, within the QED theory, the matrix element
⟨𝑏|Σ̂ (𝐸𝑎 + 𝜔) |𝑏⟩ depends on frequency:

⟨𝑏|Σ̂ (𝐸𝑏 + 𝜔) |𝑏⟩ =
𝑒2

2𝜋

∑︁
𝑛

⟨𝑏𝑛|1 −𝛼1𝛼2

𝑟12
𝐼𝑛 (𝑟12, 𝐸𝑏 + 𝜔) |𝑛𝑏⟩. (2.33)

Then, the Lorentz profile is represented as:

𝜑L(𝜔) =
1

ℵ
𝑊𝑏𝑎(𝜔)

(𝜔0 − 𝜔)2 + 1
4Γ2

𝑏(𝜔)
. (2.34)

To obtain the dependence Γ𝑏(𝜔) in explicit form, the integral 𝐼𝑛 (𝑟12;𝐸𝑏 + 𝜔)

should be transformed:

𝐼𝑛 (𝑟12;𝐸𝑏 + 𝜔) =

∞∫︁
−∞

𝑒i|Ω|𝑟12𝑑Ω

𝐸𝑛(1 − i0) − 𝐸𝑏 − 𝜔 + Ω
(2.35)

=

∞∫︁
−∞

𝑒iΩ𝑟12𝑑Ω

𝐸𝑛(1 − i0) − 𝐸𝑏 − 𝜔 + Ω
−

0∫︁
−∞

2i sin(Ω𝑟12)𝑑Ω

𝐸𝑛(1 − i0) − 𝐸𝑏 − 𝜔 + Ω
.

Here we assume 𝐸𝑛−𝐸𝑏−𝜔 < 0. In this case, the first contribution (2.35) can
be integrated over the variable Ω, closing the contour in the upper half-plane.
Then the negative spectrum of Dirac energies does not give a contribution.

It also follows from physical considerations that the wings of the Lorentzian
profile cannot be extended to the region of the next (nearest) resonance. Hence,
the infinite integration interval for (2.31) should be restricted, 𝜔 ∈ [0, 𝜔max],
where 𝜔max = 𝜔0 + 1

2∆𝐹𝑆, ∆FS represents the fine splitting interval (for exam-
ple). Choosing 𝐸𝑛−𝐸𝑏−𝜔 < 0 and 𝜔 6 𝜔max leads to contributions only from
the positive Dirac spectrum and states below the resonance excited atomic level
𝑏. For the hydrogen atom in the state 𝑏 = 2𝑝1/2 only 𝑛 = 1𝑠1/2 is possible.

Finally, the contribution of the second summand in (2.35) is a purely imag-
inary quantity. Under the above conditions, the denominator is always different
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from zero and, hence, the infinitesimal term in it can be discarded. Hence, the
second summand does not contribute to the width Γ(𝜔). Acting in a similar
way, one can obtain that in the case 𝐸𝑛 − 𝐸𝑎 − 𝜔 > 0 the integral (2.35) is
zero. A careful calculation of 𝐼𝑛 (𝑟12;𝐸𝑏 + 𝜔), see [3], leads to the expression:

Γ𝑏(𝜔) = −2𝑒2
∑︁

𝐸𝑛<𝐸𝑏

⟨𝑏𝑛|1 −𝛼1𝛼2

𝑟12
sin ((𝐸𝑏 − 𝐸𝑛 + 𝜔)𝑟12) |𝑛𝑏⟩. (2.36)

In the nonrelativistic limit one can give the following parametric estimates
(in relativistic units): 𝐸𝑛 ≈ 𝑚(𝛼𝑍)2, 𝑟12 ≈ 1/𝑚𝛼𝑍. Here 𝑍 is the charge
number of the nucleus, 𝛼 is the fine structure constant. In the case of decay to
the ground state, 𝑛 = 𝑎, and hence sin ((𝐸𝑏 − 𝐸𝑛 + 𝜔)𝑟12) = sin (𝜔𝑟12).Since
the integration interval is bounded, 𝜔 6 𝜔max ≈ 𝑚(𝛼𝑍)2, we can decompose
sin (𝜔𝑟12) into a Taylor series. Further, we take into account that there are
two contributions in the expression (2.36): dependent and independent of the
𝛼-matrices.

Using the decomposition of sin it is easy to see that by the property of
orthogonality the summand proportional to 𝑟212 = 𝑟21 + 𝑟22 − 2(𝑟1𝑟2) is different
from zero. The result is

Γ′
𝑏(𝜔) = −2

3
𝑒2𝜔3 |⟨𝑏|𝑟|𝑎⟩|2 . (2.37)

It is worth noting the − assignment in (2.37), it is the one that leads to the
correct 4/3 factor in the total contribution (certainly positive).

Finally, in the summand depending on 𝛼-matrices (by order of magnitude)
it is enough to restrict to the first term of the expansion sin. Then, in the non-
relativistic limit, using the commutation relation ⟨𝑏 |𝑝| 𝑎⟩ = −i𝜔0⟨𝑏 |𝑟| 𝑎⟩ will
result:

Γ
′′

𝑏(𝜔) = 2𝑒2𝜔𝜔2
0 |⟨𝑏 |𝑟| 𝑎⟩|

2 . (2.38)
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Putting together (2.37) and (2.38), the natural level width is represented as:

Γ𝑏(𝜔) = Γ′
𝑏(𝜔) + Γ

′′

𝑏(𝜔) = (2.39)

= 2𝑒2𝜔

[︂
𝜔2
0 −

1

3
𝜔2

]︂
|⟨𝑏 |𝑟| 𝑎⟩|2 3

2

𝜔

𝜔0

(︂
1 − 1

3

𝜔2

𝜔2
0

)︂
Γ
(0)
𝑏 .

Here Γ
(0)
𝑏 = 4

3𝜔
3
0 |⟨𝑏 |𝑟| 𝑎⟩|

2 at the resonance point (see expression (2.32)).
Thus, the imaginary additive in the denominator of the amplitude (2.28)

is determined by the linear and cubic in frequency 𝜔 contributions, cf. [161].
Introducing the dimensionless variable 𝑥 = 𝜔/𝜔0, the Lorentz profile with re-
spect to the frequency-dependent level width (Extended) can be represented as
follows:

𝜑E(𝑥) =
1

ℵ
𝑥Γ

(0)
𝑏𝑎

𝜔2
0(𝑥− 1)2 + 9

16𝑥
2
(︀
1 − 1

3𝑥
2
)︀2 (︁

Γ
(0)
𝑏

)︁2 . (2.40)

The normalisation factor 1/ℵ is determined from the ratio:

𝜔0

𝜔0𝑥max∫︁
0

𝜑E(𝑥)𝑑𝑥 = 1, (2.41)

where 𝑥max = 𝜔max/𝜔0.
In principle, radiative energy corrections can also depend on frequency, for

example, 𝐿SE
𝑏 (𝜔). Hence, accounting for such a dependence will also distort the

Lorentz profile. The expression for 𝐿SE
𝑏 (𝜔) is more complicated, see Eq. [8],

although its 𝜔-dependent part does not diverge and does not require additional
renormalisation. However, further the corresponding modification is neglected
due to the smallness of the contributions.

The expression (2.40) is a rigorous QED result for the Lorentz profile ex-
tended to the "nonresonant case". It may be noted in advance that this non-
resonant contour expansion depends only on frequency and therefore cannot be
avoided (see the following sections 3, 5, 6). The analytic dependence of Γ𝑏 on 𝜔
outside resonance has recently been discussed in [161]. Other forms for the ex-
tended Lorentz contour are also presented in the literature [154,162,163]. They



42

are mostly obtained within the framework of the theory of quantum mechanics,
i.e. phenomenologically.

2.4. Nonresonant contribution to the red wing
profile for the Ly𝛼transition in the expanding
Universe

As an application of the modified spectral line contour (2.40), one can consider
the cosmological recombination of the hydrogen atom (H) in the early Universe.
The breaking of the balance between the original atoms and radiation as the
Universe expanded led to the formation of the cosmic microwave background
(CMB). One of the most important channels of radiation escape is the shift
of the photon frequency towards the red wing of the Lorentz profile for the
Ly𝛼 line of the [164, 165]. When the photon frequency reaches a critical value
𝜔𝑐, below which the absorption probability becomes too small, the photon no
longer participates in scattering processes on atoms. Mainly, the redshift of the
photon frequency occurs during the propagation of the photon from one atom
to another. Consequently, the escape probability should depend on the den-
sity of hydrogen atoms during the cosmological recombination period. Strictly
speaking, the study of the radiation escape from matter is a separate complex
problem, which are carried out in the framework of the theory of radiation
transfer, see, for example, [166]. However, the task can be greatly simplified by
the fact that the spectral line profile is directly included in the definition of
the optical depth [100]. Consequently, the influence of the extended profile can
be analysed by comparing it with the "standard" profile. Such a comparison
allows us to point out the significance of nonresonant effects for the theory of
cosmological recombination.

A detailed analysis of photon scattering in the Ly𝛼 and 21 cm lines covers
a wide range of studies related to the evolution of the Universe [167, 168].
An important characteristic of photon scattering on hydrogen clouds in the
interstellar medium (ISM) is the optical depth, 𝜏 , which depends directly on
the line profile and is proportional to the column density of atoms (neutral
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hydrogen in this case). In the standard analysis of radiation transfer in the Ly𝛼
line in the expanding Universe from a source with redshift 𝑧𝑠 to an observer
with redshift 𝑧0 = 0, the following expression is used [162,169]:

𝜏(𝑧) = 𝑁HI

𝑧s∫︁
0

𝑑𝑧𝜎(𝑛)(1 + 𝑧)2
[︂
𝐻(𝑧)

𝐻0

]︂−1

. (2.42)

Here 𝑁HI is the characteristic mean column density of atomic hydrogen, 𝜎(𝑛)

is the scattering cross section, 𝑛 = 𝑐(1 + 𝑧)/𝜆obs, 𝐻0 is the Hubble constant
and 𝐻(𝑧) is the Hubble factor. In the case of Ly𝛼 scattering the cross section
𝜎(𝑛) in the vicinity of resonance is equal to

𝜎(𝜔) =
3𝜆2𝛼Γ2𝑝

4
𝜑(𝜔), (2.43)

where 𝜑 denotes the line profile of a single atom, and 𝜆𝛼 = 𝑐/𝜔0 is the wave-
length of the 2𝑝→ 1𝑠 transition. Several approximations [77,153–155,163,170]
have been proposed in the last decade to describe the line profile with large
redshift. Then, the profiles obtained under the different approximations are
compared.

In the classical theory, the natural line broadening is described by a damped
harmonic oscillator with a periodic dipole driving force. Then the angular in-
tegration of the time-averaged intensity gives the known 𝜔4 dependence for
Rayleigh scattering

𝜑R(𝜔) =
1

2𝜋

Γ2𝑝(4𝜔
4/𝜔2

0)

(𝜔2
0 − 𝜔2)2 + Γ2

2𝑝𝜔
2
. (2.44)

Another form of 𝜑, based on the two-level approximation, was introduced in
the [77]:

𝜑P(𝜔) =
1

2𝜋

Γ2𝑝(𝜔/𝜔0)
4

(𝜔0 − 𝜔)2 + Γ2
2𝑝(𝜔/𝜔0)6/4

. (2.45)

Recently, the Ly𝛼 scattering cross section of a photon was obtained in the
framework of QM nonstationary perturbation theory in [154, 163]. As a conse-
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quence, the expression (2.45) was modified as follows:

𝜑QM(𝜔) = 𝜑R(1 + 𝑓(𝜔)) = 𝜑L
4(𝜔/𝜔0)

4

(1 + 𝜔/𝜔0)2
(1 + 𝑓(𝜔)), (2.46)

where 𝑓(𝜔) = 𝑎(1 − 𝑒−𝑏𝑥) + 𝑐𝑥 + 𝑑𝑥2, 𝑎 = 0.376, 𝑏 = 7.666, 𝑐 = 1.922,
𝑑 = −1.036, and 𝑥 = 𝜔/𝜔0 as before. The absorption profiles (2.29), (2.40) and
(2.44), (2.45), (2.46) are presented in the graph 2.2 (was constructed by T.A.
Zalialialiutdinov). In particular, it follows from Fig. 2.2 that the red wing of
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Figure 2.2. Comparison of Ly𝛼 line profiles in the red wing for the absorption
profiles given by the expressions (2.29), (2.40), (2.44), (2.45), (2.46) as a function
of the wavelength 𝜆. The normalisation factor ℵ = 2𝜋 is chosen for profiles
defined according to (2.29) and (2.40). The peak corresponds to the resonance
wavelength 𝜆𝛼 = 1216 Å.

the Lorentz profile extended to the nonresonant case, 𝜑E(𝜔), lies much higher
than in the previously proposed models. The 𝜑E(𝜔) contour is obtained in the
framework of the QED theory and agrees with [161].
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Chapter 3.

Nonresonant effects for the
total Ly𝛼-scattering cross
section

3.1. Nonresonant contributions in the total scat-
tering cross section

In this section nonresonant corrections arising for the total cross section of
the one-photon scattering process on the hydrogen atom are considered. If to
neglect the hyperfine structure, the set of quantum numbers for a particular
atomic state is 𝑛𝑙𝑗𝑚, where 𝑛 is the principal quantum number, 𝑙 is the angular
momentum of the electron, 𝑗 is the total angular momentum (𝑗 = 𝑙 + 𝑠) and
𝑚𝑗 its projection.

The total cross section of the single-photon scattering process is obtained by
integrating the expression (2.19) along the directions of the emitted photon 𝑛𝑘2

and summing over the photon polarisation. If the incident radiation is isotropic
and unpolarised, then an additional integration over 𝑛𝑘1

and averaging over the
polarisation 𝑒1 should be performed. Integrating along the photon directions,
summing over the photon polarisations and projections of the final state 𝑚𝑗𝑓 ,
averaging also over the projections of the initial state 𝑚𝑗𝑓 , the total photon
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scattering cross section on an atom is reduced to the form:

𝜎𝑓𝑖(𝜔) = 𝐶
∑︁

𝑚𝑗𝑓
𝑚𝑗𝑖

∑︁
𝑗𝛾1𝑚𝛾1

𝑠1
𝑗𝛾2𝑚𝛾2

𝑠2

⃒⃒⃒⃒
⃒∑︁

𝑚𝑎

(︁
𝛼𝐴

(𝑠2)*
𝑗𝛾2𝑚𝛾2

)︁
𝑓𝑎

(︁
𝛼𝐴

(𝑠1)
𝑗𝛾1𝑚𝛾1

)︁
𝑎𝑖

𝐸𝑎 − 𝐸𝑖 − 𝜔 − i
2Γ𝑎

(3.1)

+
∑︁
𝑛 ̸=𝑎

(︁
𝛼𝐴

(𝑠2)*
𝑗𝛾2𝑚𝛾2

)︁
𝑓𝑛

(︁
𝛼𝐴

(𝑠1)
𝑗𝛾1𝑚𝛾1

)︁
𝑛𝑖

𝐸𝑛 − 𝐸𝑖 − 𝜔
+
∑︁
𝑛

(︁
𝛼𝐴

(𝑠1)
𝑗𝛾1𝑚𝛾1

)︁
𝑓𝑛

(︁
𝛼𝐴

(𝑠2)*
𝑗𝛾2𝑚𝛾2

)︁
𝑛𝑖

𝐸𝑛 − 𝐸𝑓 + 𝜔

⃒⃒⃒⃒
⃒
2

,

𝐶 =
𝑒4

(2𝜋)3
𝜔(𝜔0 − 𝜔)

(2𝑗𝑖 + 1)(2𝑗𝛾2 + 1)
.

Here and further (unless separately specified) 𝑎 means the resonance atomic
level, 𝜔0 ≡ 𝐸𝑎−𝐸𝑖 (it is implied that the energies take into account all possible
relativistic and QED corrections). Also, the frequency dependence of the natural
width Γ𝑎 is discarded further. The influence of the Γ𝑎(𝜔) dependence on the
precision determination of the transition frequency will be shown in one of the
following sections of the thesis.

After extracting the resonant summand (and appropriate regularisation) in
the scattering amplitude, the total scattering cross section can be represented
as two summands:

𝜎𝑓𝑖(𝜔) = 𝜎
(0)
𝑓𝑖 (𝜔) + 𝜎

(1)
𝑓𝑖 (𝜔), (3.2)

where 𝜎(0)𝑓𝑖 refers to the resonance contribution

𝜎
(0)
𝑓𝑖 (𝜔𝑗𝑠) =

𝑒4𝜔𝑎𝑖𝜔𝑎𝑓

(2𝜋)4
2𝑗𝑎 + 1

(2𝑗𝛾 + 1)(2𝑗𝑖 + 1)

Γ𝑓𝑎𝑊𝑖𝑎(𝑗𝑠)

(𝜔0 − 𝜔)2 + Γ2
𝑎

4

, (3.3)

and 𝜎(1)𝑓𝑖 is the corresponding nonresonant contribution:

𝜎
(1)
𝑓𝑖 (𝜔𝑗𝑠) = 2𝑒4

𝜔𝑎𝑖𝜔𝑎𝑓

(2𝜋)4
2𝑗𝑎 + 1

(2𝑗𝛾 + 1)(2𝑗𝑖 + 1)
× (3.4)

ℜ

[︃∑︁
𝑛 ̸=𝑎

Γ𝑎𝑓 ;𝑓𝑛𝑊𝑖𝑎;𝑛𝑖(𝑗𝑠)

(𝜔0 − 𝜔 − i
2Γ𝑎)(𝐸𝑛 − 𝐸𝑎)

+
∑︁
𝑛

Γ𝑎𝑓 ;𝑛𝑖𝑊𝑖𝑎;𝑓𝑛(𝑗𝑠)

(𝜔0 − 𝜔 − i
2Γ𝑎)(𝐸𝑛 − 𝐸𝑓 + 𝜔0)

]︃
.
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In the expressions (3.3) and (3.4), see [35], the following notations are intro-
duced:

𝑊𝑎𝑏;𝑐𝑑(𝑗𝛾𝑠) =
2𝜋

2𝑗𝑑 + 1

∑︁
𝑚𝑎𝑚𝑏
𝑚𝑐𝑚𝑑

∑︁
𝑚𝛾

(︀
𝛼𝐴

(𝑠)*
𝑗𝛾𝑚𝛾

)︀
𝑎𝑏

(︀
𝛼𝐴

(𝑠)
𝑗𝛾𝑚𝛾

)︀
𝑐𝑑
, (3.5)

𝑊𝑎𝑏 ≡ 𝑊𝑎𝑏;𝑏𝑎(𝑗𝛾𝑠), (3.6)

Γ𝑎𝑏;𝑐𝑑 =
∑︁
𝑗′𝑠′

𝑊𝑎𝑏;𝑐𝑑(𝑗
′
𝛾𝑠

′), (3.7)

so that Γ𝑎𝑏;𝑏𝑎 ≡ Γ𝑎𝑏 is the partial width of level 𝑎, ℜ denotes the real part of
the expression given in square brackets.

The resonant frequency of the transition 𝑖+𝛾1 → 𝑎 can be determined from
the condition of the maximum of the scattering cross section 𝜎𝑓𝑖(𝜔). In the case
of the resonance approximation, 𝜎𝑓𝑖(𝜔) → 𝜎

(0)
𝑓𝑖 (𝜔), the resonant frequency is

strictly equal to 𝜔0. However, given the second summand in (3.2), see [35, 43],
there is an additive to 𝜔0 - the NR correction:

𝛿NR = −1

4

Γ2
𝑎

Γ𝑓𝑎𝑊𝑖𝑎
ℜ

[︃∑︁
𝑛 ̸=𝑎

Γ𝑎𝑓 ;𝑓𝑛𝑊𝑖𝑎;𝑛𝑖(𝑗𝛾𝑠)

𝐸𝑛 − 𝐸𝑎
+
∑︁
𝑛

Γ𝑎𝑓 ;𝑛𝑖𝑊𝑖𝑎;𝑓𝑛(𝑗𝛾𝜆)

𝐸𝑛 − 𝐸𝑓 + 𝜔0

]︃
. (3.8)

The parametric estimate of 𝛿NR in relativistic units is given by the relation:

|𝛿NR| ∼
[︀
𝑚𝛼(𝛼𝑍)4

]︀2
𝑚(𝛼𝑍)2

= 𝑚𝛼2(𝛼𝑍)6, (3.9)

where the denominator estimates the energy difference in (3.8) and the numer-
ator represents a parametric estimate of the width (partial transition probabil-
ity).

For the Ly𝛼 transition in the hydrogen atom (𝑖 = 𝑓 = 1𝑠1/2, 𝑎 = 2𝑝1/2),
the calculation of the resulting expression (3.8) was performed in [35]. The
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numerical value of the NR correction is

𝛿NR ≡ 𝛿
(2𝑝1/2)
1𝑠,1𝑠 = −2.93 Hz. (3.10)

Since the Ly𝛼 resonance corresponds to two transitions to different levels of fine
structure (𝑗𝑎 = 1/2, 3/2), as an example, calculations were performed for the
transition 2𝑠1/2 → 2𝑝3/2 → 1𝑠1/2:

𝛿
(2𝑝3/2)
2𝑠,1𝑠 = −1.51 Hz. (3.11)

The values given in (3.10) and (3.11) are an order of magnitude lower than
the highest accuracy of modern measurements of the transition frequencies in
the hydrogen atom. For instance, the frequency of the 2𝑠 − 1𝑠 two-photon
transition is determined with an experimental error of the order of 10 Hz (the
relative error is a few fractions of 10−15 [20,21]). In turn, the Ly𝛼 transition was
measured with a much larger error (about 1 MHz) [137]. Applying the formula
(3.8) for the 2𝑠 − 1𝑠 transition, a negligibly small value of the NR correction
can be found, see [37]. Thus, one can conclude that the corrections in the total
scattering cross section lead to effects that are negligibly small compared to the
present level of experimental precision.

3.2. Green function method

It is worth mentioning separately a very efficient method for performing sum-
mation over intermediate states arising in the framework of second-order per-
turbation theory (see, for example, the expression (3.8) and expressions for
the probabilities of two-photon transitions below). The Green function method
(GFM) can be used not only in appropriate numerical calculations, but has
also been shown to be effective in analytical calculations. The Green func-
tion method was intensively developed at the end of the last century and can
be found in many textbooks, see, for example, [101, 171]. Applications of this
method to the calculation of the nonresonant correction (3.8) and other effects
can be found in [172]. In this thesis the use of GFM is restricted to the non-
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relativistic case, since its applications are considered for the hydrogen atom, but
it is worth noting the relativistic approach as well, see for example [173–176]
(as well as the thesis of [177] and the relevant references therein).

The Coulomb Green’s function, 𝐺𝐸(𝑟, 𝑟′), is a solution of(︁
�̂� − 𝐸

)︁
𝐺𝐸(𝑟, 𝑟′) = 𝛿 (𝑟 − 𝑟′) , (3.12)

where the standard notations for the Hamilton operator, �̂�, energy 𝐸 and 𝛿-
function are introduced. The Coulomb Green’s function can be represented as
a spectral decomposition:

𝐺𝐸(𝑟, 𝑟′) =
∑︁
𝑛

𝜓*
𝑛(𝑟)𝜓𝑛(𝑟′)

𝐸𝑛 − 𝐸
. (3.13)

The sum extends to the entire spectrum of the Hamiltonian �̂�, including the
continuous spectrum.

The expression (3.13) is not much suitable for practical purposes. For most
applications, it is desirable to have close expressions for the radial part of the
function 𝐺𝐸(𝑟, 𝑟′) defined by the partial wave decomposition:

𝐺𝐸(𝑟, 𝑟′) =
∑︁
𝑙𝑚

1

𝑟 𝑟′
𝐺𝐸𝑙(𝑟, 𝑟

′)𝑌 *
𝑙𝑚(Ω)𝑌𝑙𝑚(Ω′). (3.14)

Omitting for brevity the intermediate calculations, the following representation
for the radial part of the Coulomb Green’s function can be found (see [101]):

1

𝑟 𝑟′
𝐺𝐸𝑙(𝑟, 𝑟

′) ≡ 𝑔𝑙(𝐸; 𝑟, 𝑟′) =
𝑍

𝜈

∞∑︁
𝑚=𝑙+1

𝑚4

𝑚− 𝜈
𝑅𝑚𝑙

(︂
2𝑍𝑟

𝜈

)︂
𝑅𝑚𝑙

(︂
2𝑍𝑟′

𝜈

)︂
,(3.15)

where 𝜈 = 𝑍/
√
−2𝐸. The radial functions 𝑅𝑚𝑙(𝑥), 𝑥 = 2𝑍𝑟/𝜈, can be repre-

sented as

𝑅𝑚𝑙(𝑥) =
2

𝑚2

√︃
(𝑚− 𝑙 − 1)!

(𝑚+ 𝑙)!
𝑥𝑙𝑒−

𝑥
2𝐿2𝑙+1

𝑚−𝑙−1(𝑥), (3.16)

𝐿𝑎
𝑛(𝑥) is the connected Laguerre polynomial [178].
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The expression (3.15) has poles of the Green’s function corresponding to
hydrogen energy levels (as in the case of resonance in the amplitude (3.1)). In
this connection, the representation for the "reduced" Green’s function, in which
the " resonant" state is singled out, is very convenient. The final expression
corresponding to (3.15) can be represented in the form, [101]:

𝑔
(𝑛)
𝑙 (𝐸; 𝑟, 𝑟′) =

𝑍

𝑛

∑︁
𝑚=𝑙+1
�̸�=𝑛

𝑚4

𝑚− 𝜈
𝑅𝑚𝑙(𝑥)𝑅𝑚𝑙(𝑥

′) + (3.17)

𝑛2𝑅𝑛𝑙(𝑥)

[︂
5

4
𝑅𝑛𝑙(𝑥

′) + 𝑥′
𝑑

𝑑𝑥′
𝑅𝑛𝑙(𝑥

′)

]︂
+ 𝑛2𝑅𝑛𝑙(𝑥

′)

[︂
5

4
𝑅𝑛𝑙(𝑥) + 𝑥

𝑑

𝑑𝑥
𝑅𝑛𝑙(𝑥)

]︂
.

The representation of the Coulomb Green’s function in the form of an expansion
by connected Laguerre polynomials is convenient for several reasons. First, in
the case of an integer value of 𝜈, the radial functions 𝑅𝑚𝑙(𝑥) coincide with the
corresponding hydrogen functions. Second, the series on 𝑚 converges absolutely
as 1/𝑚3/2 for real values of 𝜈.

It is the decompositions (3.17) and (3.15) that were used to calculate the
first and second summands in (3.8), respectively. Using the first eight summands
of 𝑚, an accuracy of the order of five significant digits was obtained.

3.3. "Quadratic" nonresonant correction in the
total scattering cross section due to fine
structure of levels

For the full scattering cross section, the "quadratic" nonresonant correction can
be found (it does not disappear after integration over the angles of the incident
photon). As was noted in [43], being dependent on the energy difference in the
denominator, the NR correction can be significant for close values of 𝐸𝑛 and
𝐸𝑎. By discarding the interference terms in the expression (3.1) and considering
only the corresponding squared modulus for the levels separated by the fine
structure [36,37], one can obtain the NR correction to the transition frequency
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𝜔0 in the form:

𝛿
(sq)
NR =

Γ4
𝑎

16∆3
, (3.18)

where ∆ corresponds to the interval of fine splitting of atomic levels. For
hydrogen-like atoms, the parametric estimate of this correction is given by the
relation:

𝛿
(sq)
NR ∼

[︀
𝑚𝛼(𝛼𝑍)4

]︀4
[𝑚(𝛼𝑍)4]3

= 𝑚𝛼4(𝛼𝑍)4. (3.19)

Thus, on the order of smallness, the NR correction 𝛿
(sq)
NR is the same as 𝛿NR,

according to the estimate (3.9) for the hydrogen atom (𝑍 = 1).
For Ly𝛼 resonance in hydrogen, see [8, 36,37], the result for 𝛿(sq)NR is

𝛿
(sq)
NR = 4.70 Hz. (3.20)

3.4. Nonresonant correction in the total scatter-
ing cross section due to the frequency depen-
dence of Γ𝑎(𝜔)

Considering the Ly𝛼 transition in the hydrogen atom as the simplest example
(there is only one decay channel), the dependence of the natural width on the
frequency should be taken into account. According to section 2.3, in the frame-
work of QED theory, this dependence can be obtained from the imaginary part
of the one-loop SE of the bound electron correction. However, for simplicity of
presentation and revealing of the leading order, it is sufficient to restrict our-
selves to the linear dependence, which immediately follows from the definition
of the level width as the sum of probabilities of transitions to lower states,
see [8, 37]. We note at once that the order of magnitude of such a correction is
similar to (3.9) for the hydrogen atom.

Consider that in the radiation theory the transition probability is deter-
mined by an expression in the velocity form. Then for the Ly𝛼 transition in
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the hydrogen atom Γ𝑎(𝜔0) = (2/3)8𝑚𝛼(𝛼𝑍)4 (in relativistic units) should be
replaced by Γ𝑎(𝜔) = 𝜔 (211/39)𝑚𝛼(𝛼𝑍)4 [8,37]. Leaving only the resonant scat-
tering cross section 𝜎(0)𝑓𝑖 and substituting the width in the numerator according
to the above, it follows from the extremum condition that

𝛿
(fr)
NR =

1

8
Γ𝑎(𝜔0)

[︂
𝑑Γ𝑎(𝜔)

𝑑𝜔

]︂
𝜔=𝜔0

. (3.21)

The parametric estimate 𝛿(fr)NR is immediately obtained similarly with (3.9). Its
numerical value is

𝛿
(fr)
NR = 1.007 Hz. (3.22)

Accounting for the frequency dependence in the denominator according to sec-
tion 2.3 leads to a much smaller NR correction to the resonant frequency of the
Ly𝛼 transition.

Thus, the total contribution for the line 2𝑝1/2 − 1𝑠1/2 is determined by

𝛿Σ = 𝛿NR + 𝛿
(sq)
NR + 𝛿

(fr)
NR = −2.93𝑍6 + 4.70𝑍4 + 1.007𝑍6 Hz. (3.23)

3.5. Nonresonant correction for hyperfine struc-
ture (HFS)

An important case for the precise determination of the frequency of the Ly𝛼
transition in the hydrogen atom is the consideration of the hyperfine structure
(HFS). Line profile distortion estimates were first presented in [41], see also [40].
As an example, the process used in [137] to measure the frequencies of the two
transitions 1𝑠1/2(𝐹 = 1) → 2𝑝3/2(𝐹 = 1) and 1𝑠1/2(𝐹 = 0) → 2𝑝3/2(𝐹 = 1)

(𝐹 is the total atomic moment, 𝐹 = 𝑗 + 𝐼, 𝐼 is the spin of the nucleus, and 𝑗
is the total angular momentum of the atom as before). The hyperfine structure
of the 2𝑝3/2 level is experimentally intractable for the reason that the splitting
corresponding to HFS is much smaller than the natural width of the atomic
level: Γ2𝑝 ≈ 100 MHz, whereas ∆HFS(2𝑝3/2) = 𝐸(2𝑝3/2, 𝐹 = 2)−𝐸(2𝑝3/2, 𝐹 =
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1) ≈ 23.7 MHz. This is a typical case of overlapping resonances of two hyperfine
sublevels, see the theory in [133]. However, due to the presence of interference
terms, the line shape is different from the overlap of just two Lorentz profiles.
The corresponding line shape can be represented by the expression:

𝜑HFS(𝜔) ≈ 𝑓(𝐹, 𝐹 ′)

(𝜔 − 𝜔0)2 + 1
4Γ2

2𝑝

+
𝑓(𝐹, 𝐹 ′′)

(𝜔 − 𝜔0 − ∆HFS)2 + 1
4Γ2

2𝑝

(3.24)

+2ℜ 𝑔(𝐹, 𝐹 ′, 𝐹 ′′)

(𝜔 − 𝜔0 − i
2Γ2𝑝)(𝜔 − 𝜔0 − ∆HFS − i

2Γ2𝑝)
,

where 𝜔0 = 𝐸(2𝑝3/2, 𝐹 = 1) − 𝐸(1𝑠1/2, 𝐹 = 1), 𝐹, 𝐹 ′, 𝐹 ′′ denote the to-
tal atomic momentum including the spin of the nucleus for the corresponding
state. In (3.24) 𝑓 , 𝑔 represent the factors arising in the framework of angular
momentum theory (see [179]). A detailed calculation of the coefficients 𝑓 , 𝑔 was
carried out by G. Shchedrin and presented in Refs. [40, 41].

Angular factors play a crucial role in determining the line shape (3.24). The
result can be represented as: 𝑓(1, 2) : 𝑓(1, 1) : 𝑔(1, 2, 1) = 181 : 1 : 0.307.
Thus, the spectral line shape exhibits a single-peak structure to a high degree
(the larger peak completely screens the smaller one - 181 : 1, and the inter-
ference contribution is even an order of magnitude smaller). The asymmetry
due to the overlap of the two Lorentz profiles is determined by the interference
term and can be estimated on the order of magnitude as 0.307/181 ≈ 0.17%.
Then the NR correction to the transition frequency 𝐸(2𝑝3/2)−𝐸(1𝑠1/2, 𝐹 = 1)

can be estimated as follows: 0.0017Γ2𝑝 ≈ 0.17 MHz. The existence of an inter-
ference contribution distorting closely lying resonant lines is well known (see,
e.g., [180]). However, in [180] this distortion has been included in the range
of experimental error in determining the transition frequency, by analogy with
other contributions of purely technical origin, such as, for example, the distri-
bution and spread of atomic velocities. At present, the technical capabilities of
the experiment have grown considerably and allow a significant suppression of
these effects. It is worth noting that the contribution of the effect represented
by the expression (3.24) is close in magnitude to the esperimental error, ∼ 6

MHz [137], and is thus observable. The main conclusion, however, is that using
the "correct" line contour (e.g., the expression (3.24) for the experiment [137])
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can significantly increase the accuracy of the experimental determination of the
transition frequency. A detailed discussion of the latter will be presented in the
following sections of the thesis.

3.6. Conclusion on NR corrections for the Ly𝛼
line in the total scattering cross section

The resonant approximation, which reduces the description of the spectral line
profile to the usual Lorentz contour, represents an important milestone of all
modern measurements of the transition frequency in resonance experiments. In
the resonant approximation, the line profile is described by two parameters: the
resonant frequency 𝜔0 and the natural width of the atomic level (Γ𝑎 in the above
cases). According to the resonant approximation, the resulting Lorentz profile
is symmetric about 𝜔0. As pointed out in [85], the resonant approximation is
valid only up to a certain accuracy limit, which is given by nonresonant cor-
rections. Beyond this limit, the line profile acquires an asymmetric shape and
the determination of the transition frequency becomes ambiguous. In addition,
the NR corrections depend on the process used in the experiment. The latter
determines the limit of achievable accuracy of the resonant frequency measure-
ment. Beyond this limit, the spectral line profile can no longer be described by
two parameters (𝜔0 and Γ𝑎); only the line profile itself (but not the frequency)
remains an observable quantity to be compared with the corresponding theo-
retical calculations.

The magnitude of the NR corrections according to F. Low [85] turns out
to be small, ∼ 𝛼6 for the hydrogen atom. However, the order of magnitude
is competitive with the "usual" relativistic QED corrections, the calculation
of which is necessary at the current level of experimental precision, see e.g.
[28, 54, 69, 149, 181]. In the last two decades, NR corrections have played an
important role and have been investigated both in a number of theoretical and
direct experimental works [32,43,46,47,50,51,145–148] (see also the works of the
author of this thesis and the relevant references therein). The reassessment of
the importance of NR effects in the early 2000s was triggered by high-precision
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experiments [134,137,182]. In particular, the experiments [134,182] are the most
accurate in the optical domain: with an absolute accuracy for the frequency of
the 1𝑠 − 2𝑠 transition of about ±46 Hz or a relative accuracy of the order of
10−14. At present, the accuracy of the measurement of the frequency of the
1𝑠 − 2𝑠 transition is of the order of 10 Hz or ∼ 10−15 relative magnitude
[20,21]. However, the experimental scheme for measuring the 1𝑠−2𝑠 transition
frequency in the hydrogen atom poses serious difficulties for the theoretical
description of the line contour asymmetry. Relevant estimates will be given in
the following sections of the thesis.

An important experimental result was obtained in [137], where the Lyman-
alpha 2𝑝− 1𝑠 transition was measured for the first time with an accuracy that
allowed one to observe the natural line profile and to determine its character-
istics. These measurements had a resonant character. Due to the absence of
external fields, the estimation of NR corrections and the determination of the
corresponding asymmetry are simpler in this case and were carried out in theo-
retical works [35–37,40–43]. As a result, the potential for experimental precision
achievable within the framework of experiments [137] was underestimated.



56

Chapter 4.

Nonresonant effects for the
1𝑠− 2𝑠 transition frequency

The experimental measurement of the 1𝑠 − 2𝑠 transition frequency represents
a significant result, since the achieved accuracy of 10−14 − 10−15 is currently
unrivalled for the hydrogen atom [183]. From the point of view of theoretical de-
scription, the scheme of the experiment [134,182] has not undergone significant
changes at the present time [20, 21]. Thus, according to experiments [134, 182]
hydrogen atoms are excited by laser radiation by two-photon absorption from
the ground 1𝑠 state to the 2𝑠 state. This excitation occurs in a region in which
there are no external fields. Within about 10−3 𝑠, the excited atoms move to
another region where they are subjected to a weak electric field. In the pres-
ence of such a field, the 2𝑠 and 2𝑝 states mix, and the atoms decay via the
Ly𝛼 2𝑝− 1𝑠 transition. The corresponding emission is detected as a function of
the frequency of the incident laser radiation, thus forming the absorption line
profile. In the case of the rest frame of an atom, this looks like excitation occurs
in the absence of an electric field and then the electric field is switched on. In
terms of quantum electrodynamics, the initial and final states of the atom are
described by the time-dependent Hamiltonian �̂�(𝑡) with different Hamiltonians
�̂�in and �̂�in at asymptotic times 𝑡in and 𝑡out, respectively.
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4.1. NR corrections to the 1𝑠 − 2𝑠 transition
frequency for spontaneous decay combined
with decay in an external electric field

In [36, 37], estimates of NR corrections to the 1𝑠 − 2𝑠 transition frequency
were presented on the basis of the effect of mixing of 2𝑠 and 2𝑝 states for an
atom in an external electric field. For the total scattering cross section, the NR
corrections were negligibly small (as in the case of the decay of the 2𝑠 state
unstimulated by an external field (spontaneous)), i.e., of the order of 10−14 Hz
and less.

So for spontaneous decay, i.e., the process schematically depicted in Fig. 4.1,
the expression for the NR correction can be estimated as

Figure 4.1. The process of two-photon absorption accompanied by spontaneous
decay. The transition to the metastable state 2𝑠 of a hydrogen atom (𝑛 = 2𝑠 in
the notations of Fig. 2.1) is considered, the lifetime of the state 2𝑠 𝜏 = 1/8.229
seconds, the initial and final states are represented by the ground state 1𝑠.

|𝛿| =
Γ2
2𝑠,2𝛾

∆𝐸
∼
[︀
𝑚𝛼2(𝛼𝑍)6

]︀2
𝑚(𝛼𝑍)2

= 𝑚𝛼4(𝛼𝑍)10. (4.1)

This estimate was given in [43], and, in particular, it is pointed out that such
an NR correction for the 1𝑠+2𝛾 → 2𝑠 transition turns out to be of the order of
10−14 Hz and is thus negligible at the current and predicted level of experimental
accuracy.

The correction (4.1) corresponds to the process described by the Feyn-
man graph shown in Fig. 4.1. However, the experiment is based on a dif-
ferent process. In it, the width of the 2𝑠 level is determined by the travel
time to the region where the external electric field leads to an impurity 2𝑝
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state. As a result, a photon corresponding to the Ly𝛼 transition 2𝑝 − 1𝑠 is
emitted. For a weak electric field, the Stark parameter (mixing parameter) is
𝜉S = ⟨2𝑠|𝑑ℰ|2𝑝⟩/∆𝐸𝐿 ≪ 1, where 𝑑 is the electric dipole moment operator, ℰ
is the electric field strength, ∆𝐸𝐿 is the Lamb shift for the states 2𝑠 and 2𝑝.
In the experiments [20, 21, 134, 182] the excitation region is separated in space
from the signal detection region. Therefore, the Stark shift is not included in
the excitation condition: 2𝜔 = 𝐸2𝑠 −𝐸1𝑠. The width of the resonance is deter-
mined by the time delay required for the atom to reach the detection region:
at 𝜉S ∼ 0.1 the damping time in the electric field is 𝜉−2

S Γ−1
2𝑝,1𝛾 ∼ 10−7 s. This

is a very small time compared to the fly-by time: the characteristic velocities
of the atoms are 104 cm/s, and the spatial separation of the excitation and
registration regions is of the order of 13 cm [134, 182]. Thus, the time delay is
about 10−3 s - this corresponds to the experimental resonance width Γexp ∼ 1

kHz.
The main nonresonant contribution (differential cross section) is given by

the level 2𝑝. By order of magnitude, it is defined by the relation:

|𝛿| =
Γ2
exp

∆𝐸𝐿
∼ 10−3 Hz. (4.2)

In turn, considering an atom placed in an external electric field, we can
represent the excited state as 2𝑠′ = 2𝑠+𝜉S2𝑝. Then the scattering cross section
can be written as [37]:

𝜎 ∼ Γ2𝑠,2𝛾Γexp

(𝐸2𝑠 − 𝐸1𝑠 − 2𝜔)2 + 1
4Γ2

exp

+
Γ2𝑝′,2𝛾Γ2𝑝,1𝛾

(𝐸2𝑝 − 𝐸1𝑠 − 2𝜔)2 + 1
4Γ2𝑝,1𝛾

. (4.3)

Here, the second summand represents the nonresonant contribution arising due
to mixing 2𝑝′ = 2𝑝 + 𝜉S2𝑠, and Γ2𝑝′,2𝛾 is the two-photon level width 2𝑝. The
interference contribution between the resonant and nonresonant summands is
absent in the total cross section, but may be present in the differential cross
section.

In the case of measuring the total cross-section, the correction from the
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expression (4.3) can be found in the form:

|𝛿| =
Γ2𝑝′,2𝛾Γ2𝑝,1𝛾

Γ2𝑠,2𝛾Γexp

(︀
1
2Γ2

exp

)︀4
∆𝐸3

𝐿

(4.4)

and turns out to be negligibly small.
For the differential scattering cross section one can find

|𝛿| =
1

2

(︂
Γ2𝑝′,2𝛾Γ2𝑝,1𝛾

Γ2𝑠,2𝛾Γexp

)︂ 1
2 Γ2

exp

∆𝐸𝐿
∼ 10−2 Hz. (4.5)

Thus, a correction ∼ 10−2 [37] was obtained for the differential scattering
cross section, which is three orders of magnitude lower than the experimental
error. Nevertheless, the above estimates for the NR corrections are rather rough.
The main reason for this statement is the separated excitation and de-excitation
regions of the atom in the experiments [20, 21, 134, 182]. Next, the evaluation
of the NR correction carried out in the framework of the strict QED approach
at "finite times" will be presented. In this part of the paper a formalism was
used when the external field potentials are "off" at 𝑡in (initial state) and "on"
at 𝑡out (final state), and they correspond to different �̂�in and �̂�out, see [184].

4.2. In and out QED formalism

The QED theory with different in and out Hamiltonians was developed by
Fradkin, Gitman, and Shvartsman [184]. In the framework of this theory it
becomes possible to operate with two complete sets of eigenfunctions belonging
to in and out Hamiltonians. This theory follows the standard QED approach in
a generalised form: the 𝑆-matrix, field operators in Fock space, four-dimensional
perturbation decomposition for elements of the 𝑆-matrix, Wick’s theorem and
Feynman diagrammatic technique. In fact, the only new element to be used
in the framework of the problems is the generalised electron propagator. This
propagator connects two vertices described by in and out Hamiltonians.

Applied to the case of two-photon 1𝑠− 2𝑠 resonant absorption [20,21,134,
182], this means the absence or presence of an electric field in �̂�in and �̂�out,
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respectively. Then the electron propagator, 𝑆FGS, looks like

𝑆FGS(𝑥1, 𝑥2) = 𝜃(𝑡1 − 𝑡2)
∑︁
�̃�,𝑛

𝐸�̃�,𝑛>0

𝜓�̃�(𝑥1)𝜔�̃�,𝑛𝜓𝑛(𝑥2) − (4.6)

𝜃(𝑡2 − 𝑡1)
∑︁
�̃�,𝑛

𝐸�̃�,𝑛<0

𝜓𝑛(𝑥1)𝜔𝑛,�̃�𝜓�̃�(𝑥2).

The first sum in (4.6) describes the propagation of the electron from the space-
time point 𝑥2, where there is no additional external field (in-space), to the
spacetime point 𝑥1, where the field is included (out-space). The eigenfunctions
𝜓𝑛, 𝜓𝑚 correspond to in- and out-spaces: 𝜓𝑚(𝑥) are solutions of the Dirac equa-
tion for the electron in the field of the nucleus and the external electric field,
𝜓𝑛(𝑥) represent solutions in the absence of the field, 𝐸𝑚 and 𝐸𝑛 are the cor-
responding eigenvalues. The matrices 𝜔𝑚,𝑛 are defined according to [184] (see
also [42]):

𝜔�̃�,𝑛 = ⟨· · · �̃� · · · |ˆ̃𝑎†�̂�| · · ·𝑛 · · · ⟩, (4.7)

where ⟨· · · �̃� · · · | denotes the out-state vector in Fock space with an electron in
state �̃�, | · · ·𝑛 · · · ⟩ denotes the in-state vector in Fock space with an electron in
state 𝑛, ˆ̃𝑎† is the creation operator in out- Fock space, and �̂� is the annihilation
operator in in- Fock space.

In the simple case when electric fields do not create particles, the matrix
𝜔�̃�,𝑛 reduces to the overlap integral:

𝜔�̃�,𝑛 =

∫︁
𝑑𝑥𝜓†

�̃�(𝑥)𝜓𝑛(𝑥) ≡ ⟨�̃�|𝑛⟩. (4.8)

In the nonrelativistic limit, obviously valid for the neutral hydrogen atom, the
Dirac wave functions are replaced by the Schr?dinger ones and the contribution
of negative energies to (4.6) is discarded.

An important question is the definition of the transition probability in the
framework of [184] theory. In particular, how to relate an element of the 𝑆-
matrix to the decay probability (or cross section of the process)? In standard
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QED this problem is solved as follows: due to the law of conservation of energy,
the 𝑆-matrix element between the initial 𝑖 and final 𝑓 states can always be
reduced to the process amplitude by the relation

𝑆𝑖𝑓 = −2𝜋i𝛿(𝐸𝑖 − 𝐸𝑓)𝑈𝑖𝑓 , (4.9)

where 𝐸𝑖, 𝐸𝑓 are the energies of the initial and final states, and 𝑈𝑖𝑓 is the
amplitude of the process. The square of 𝛿(𝐸𝑖 − 𝐸𝑓) is represented as

𝛿(𝐸𝑖 − 𝐸𝑓)
1

2𝜋

𝑇/2∫︁
−𝑇/2

𝑑𝑡 𝑒i(𝐸𝑖−𝐸𝑓 )𝑡 =
𝑇

2𝜋
𝛿(𝐸𝑖 − 𝐸𝑓). (4.10)

Here 𝑇 can be interpreted as the observation time. Then the transition rate
(transition probability per unit time) can be determined by the formula:

𝑑𝑊𝑖𝑓 =
|𝑆𝑖𝑓 |2

𝑇
= 2𝜋𝛿(𝐸𝑖 − 𝐸𝑓) |𝑈𝑖𝑓 |2 . (4.11)

In the in- and out-formalism the energy is not conserved and the definition
(4.11) for the transition probability is in principle not fulfilled. However, in
the case of a weak field, if one neglects the Stark shifts, energy conservation
is actually realised. Then one can retain the standard formulation (4.11) for
the estimation of transition probabilities and the standard Feynman diagram
technique, using, however, wave functions perturbed by the electric field.

In the following, the usual Feynman diagrams will be used, taking into ac-
count the propagator (4.6). The solid line will represent the electron in the
nucleus field only, and the double solid line will describe the electron propagat-
ing in the nucleus field together with an additional external electric field. The
vertex corresponding to the Hamiltonian �̂�out is further denoted by the "nor-
mal" point, and the vertex corresponding to the Hamiltonian �̂�in is denoted by
the "punched out" point. The new diagram element is shown in Fig. 4.2.

The applicability of the [184] theory to the problem of delayed decay of the
resonance state in an atom is determined by two inequalities: 𝜏at ≪ 𝜏field ≪ 𝜏d.
Here 𝜏field is the time showing how fast the field changes in the rest frame
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Figure 4.2. Schematic representation of the electron propagator 𝑆FGS(𝑥1, 𝑥2)
(4.6) in coordinate space. The double solid line and the "normal" dot represent
a vertex and an electron propagating in out-space. the single solid line and the
"punched out" dot represent a vertex and an electron propagating in in-space.
It is assumed that the corresponding in and out states are characterised by the
same set of quantum numbers.

of the atom, 𝜏at is the characteristic atomic time required for the formation of
stationary atomic states, 𝜏d is the decay time of the atomic level. The inequality
𝜏at ≪ 𝜏field means that the field changes slowly enough not to destroy the
stationary states of the atom. The other inequality 𝜏field ≪ 𝜏d implies that the
field varies rather sharply in space (and, consequently, in time in the atom’s
rest frame), so that the recorded signal has a peak structure that allows us to
accurately determine the frequency. Obviously, the second inequality 𝜏field ≪ 𝜏d

is fulfilled in the experiments [20, 21, 134, 182]. To estimate 𝜏at, one has to
consider that the decay time of the 2𝑝 level is about 10−9 s (𝜏2𝑝 = 1/Γ2𝑝 ≈
1/(6.26 × 108) c); the same damping time has 2𝑠 level in the critical field
ℰ𝑐 = 475 V/cm (full mixing of 2𝑠, 2𝑝 levels [103]). Assuming that the "weak
field" in the experiments of [134,182] is an order of magnitude smaller than ℰ𝑐,
and considering that the admixture of the 2𝑠 state in the external electric field
is proportional to ℰ2, we obtain 𝜏d ∼ 10−7 s. Thus, both inequalities mentioned
above are compatible [42].

In the framework of the [184] theory, the cross section of resonance scattering
of two equivalent laser photons with frequency 𝜔 by a hydrogen atom followed
by "delayed" decay in an external electric field, 𝑎+ 2𝛾 → 𝑎′, �̃�′ → �̃�+ 𝛾, is as
follows (see [40–42]):

𝑑𝜎
(FGS)
�̃�𝑎 =

1

2𝜋

𝑊
(em)
�̃� �̃�′ |⟨�̃�′|𝑎′⟩|2𝑊 (2𝛾 abs)

𝑎′ 𝑎

(𝐸𝑎′ − 𝐸𝑎 − 2𝜔)2 + 1
4Γ2

𝑎′
𝑆2𝛾
𝑎 𝑎′. (4.12)

Here 𝑊
(2𝛾 abs)
𝑎′ 𝑎 is the two-photon absorption probability, 𝑊 (em)

�̃� �̃�′ is the decay
probability of the �̃�′ state, 𝑆2𝛾

𝑎 𝑎′ is the angular coefficient requiring computation,
and tildes denote states for an atom in an external field. The resonance condition
is satisfied by 𝐸𝑎′ − 𝐸𝑎 = 2𝜔.
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This theory is then used to describe the NR corrections in the two-photon
1𝑠− 2𝑠 resonance experiment.

4.3. Two-photon 1𝑠−2𝑠 excitation followed by de-
cay in an external electric field

The computations of the matrix elements presented in this part of the thesis
were performed jointly with G. Shchedrin and E. Chernovskaya. A detailed de-
scription of the photon scattering process on an atom, including two-photon
scattering followed by "delayed" decay in an external electric field, was pre-
sented in the most general form in [42]. In this part of the thesis, the latter is
discussed.

The process of resonant scattering of two photons on an atom with subse-
quent "delayed" decay in an external electric field can be represented by the
following Feynman diagram, Fig. 4.3:

Figure 4.3. The process of two-photon excitation of a 1𝑠 − 2𝑠 hydrogen atom
with subsequent decay in an external electric field. The single solid lines describe
the wave functions of the electron and the propagator in the absence of an
external electric field. The compound inner electron line represents the electron
propagator in the framework of the theory [184], see Fig. 4.2. The outer double
solid line corresponds to an atomic electron propagating in an external electric
field. As in the standard theory, the wavy lines describe photons. The two
absorbed photons are laser photons with frequency 𝜔 = 1/2(𝐸2𝑠 −𝐸1𝑠), where
𝐸𝑖 are the energies of the atomic electron states in the absence of an external
field (eigenstates of the in-Hamiltonian). The emitted photon has frequency 𝜔′.
The designations of states with a tilde (�̃� = 1𝑠, �̃�′ = 2𝑠) correspond to the
electronic states in an external field (eigenstates of the out-Hamiltonian); in
particular, the 2𝑠 state arises from the 2𝑠 state in the presence of a field.

The main contribution to the NR corrections comes from the interference
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of the resonant and nonresonant terms in the expression for the scattering
amplitude [35, 43]. Only nonresonant terms with the same symmetry as the
resonant term have been included in the [35] (see section 3). As noted in [43], the
most important contribution arises from the interference between the resonant
term and nonresonant terms with a different symmetry: as an example, the
contribution of the 2𝑝3/2 nonresonant state to the 1𝑠 − 2𝑝1/2 resonance was
considered. It was found that this contribution arises only for the differential
cross section of resonant photon scattering on the atom (depending on the
directions of the incoming and emitted photons). It is further shown that for
the case of two-photon 1𝑠−2𝑠 excitation with subsequent decay in the external
electric field NR contributions of this type are preserved both in the differential
and in the total cross section, provided that the shape of the resonance line
is quite natural (see the applicability of the theory of [184] in the previous
section). It is also assumed that the external electric field is weak and one can
neglect the Stark shifts and the corresponding level splitting. The criterion for
a weak field is ℰ ≪ ℰ𝑐 = 475 V/cm, where ℰ is the electric field strength. In
the field ℰ = ℰ𝑐, the matrix element for the linear Stark shift is equal to the
Lamb splitting, and the levels 2𝑠 and 2𝑝 are completely mixed [5].

Taking into account nonresonant contributions, the scattering cross section
of two equivalent photons with subsequent "delayed" decay in an external elec-
tric field can be represented as follows:

𝑑𝜎
(FGS)
�̃�𝑎 =

1

2𝜋

𝑊
(em)
�̃� �̃�′ |⟨�̃�′|𝑎′⟩|2𝑊 (2𝛾 abs)

𝑎′ 𝑎

(𝐸𝑎′ − 𝐸𝑎 − 2𝜔)2 + 1
4Γ2

𝑎′
𝑆2𝛾
𝑎 𝑎′ + (4.13)

1

2𝜋
2ℜ

[︃
𝐴

(em)*
�̃� �̃�′ ⟨�̃�′|𝑎′⟩*𝐴(em)

�̃� �̃�′′ ⟨�̃�′′|𝑎′′⟩𝐴
(2𝛾 abs)*
𝑎′ 𝑎 𝐴

(2𝛾 abs)
𝑎′′ 𝑎

(𝐸𝑎′ − 𝐸𝑎 − 2𝜔 − i
2Γ𝑎′)(𝐸𝑎′′ − 𝐸𝑎 − 2𝜔 − i

2Γ𝑎′′)
𝑆2𝛾
𝑎 𝑎′′

]︃
,

where 𝐴(2𝛾 abs)*
𝑎′ 𝑎 , 𝐴(2𝛾 abs)

𝑎′′ 𝑎 are the reduced two-photon amplitudes obtained by
the Eckart-Wigner theorem [179].
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In a weak electric field

𝜓�̃� = 𝜓𝑎, (4.14)

𝜓�̃�′ = 𝜓𝑎′ + |𝜉S|𝜓𝑎′′,

𝜓�̃�′′ = 𝜓𝑎′′ − |𝜉S|𝜓𝑎′.

Here the sign of the modulus for the ratio of the Stark shift to the Lamb shift,
𝜉S (see above for the definition) stands for the corresponding number to be
positive. Then the overlap integrals in (4.13) ⟨�̃�′|𝑎′⟩ = ⟨�̃�′′|𝑎′′⟩ = 1.

Next, introducing the notation 𝐸𝑎′ − 𝐸𝑎 ≡ 𝜔0, we find 𝐸𝑎′′ − 𝐸𝑎 − 2𝜔 =

𝐸𝑎′′ − 𝐸𝑎 − 2𝜔 ± 𝐸𝑎′ = 𝜔0 − ∆𝐸𝐿 − 2𝜔 for the second denominator in the
nonresonant summand of the expression (4.13). The ∆𝐸𝐿 in the general case is
identically equal to 𝐸𝑎′′−𝐸𝑎′ and represents the Lamb shift for the excitation of
the 2𝑠 state (further the contribution of the hyperfine level splitting to the Lamb
shift is neglected in view of the estimative nature of the correction). Considering
the excitation process 1𝑠1/2 + 2𝛾 → 2𝑠1/2, one should set 𝑎 = �̃� = 1𝑠1/2,
𝑎′ = 2𝑠1/2, 𝑎′′ = 2𝑝1/2, and the tilde states are defined according to (4.14). The
above choice is schematically illustrated in Fig. 4.4.

Figure 4.4. Level scheme of the two-photon 1𝑠−2𝑠 transition taking into account
the hyperfine splitting. Vertical double dashed lines denote allowed two-photon
transitions. Vertical double dashed lines denote two-photon transitions forbid-
den by the Landau-Yang theorem [122, 124, 125]. The contribution to the NR
correction to the 1𝑠 − 2𝑠 transition frequency arises from the permitted tran-
sition 1𝑠− 2𝑝.

For the following evaluations, it is considered that ∆𝐸𝐿 ≈ 109 Hz, the level
width Γ𝑎′ is determined by the experimental conditions and Γ𝑎′ = Γexp ≈ 103

Hz. Given the expressions (4.14), the amplitudes included in (4.13), can be
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estimated as follows: 𝐴(em)
�̃� �̃�′ ≈ |𝜉S|Γ1/2

2𝑝 , 𝐴(em)
�̃� �̃�′′ ≈ Γ

1/2
2𝑝 , where Γ2𝑝 is the natural

width of the 2𝑝 level in the hydrogen atom.Then the maximum of the line profile
(4.14) can be found shifted from the frequency 𝜔0 (in modulus) by

𝛿(FGS) ≈ 1

4

Γ2
exp

∆𝐸𝐿

(︃
𝑊

(2𝛾)
1𝑠,2𝑝

𝑊
(2𝛾)
1𝑠,2𝑠

)︃1/2

1

𝜉S

𝑆2𝛾
𝑎 𝑎′′

𝑆2𝛾
𝑎 𝑎′

. (4.15)

The coefficients 𝑆2𝛾
𝑎 𝑎′, 𝑆

2𝛾
𝑎 𝑎′′ were calculated for the case 𝐹 = 𝐹 ′ = 𝐹 ′′ = 1

[41]: their ratio is 𝑆2𝛾
𝑎 𝑎′′/𝑆

2𝛾
𝑎 𝑎′ = 18/11. An estimate of the ratio of the two-photon

absorption probabilities can be calculated taking into account the calculations
carried out in [110] (see also the following sections of the thesis, works [83,106,
111,112,114,117] and references therein): the well-known two-photon absorption
probability𝑊 (2𝛾)

1𝑠,2𝑠 ≈ 8.226 s−1, and𝑊 (2𝛾)
1𝑠,2𝑝 = 𝑊

(𝐸1𝑀1)
1𝑠,2𝑝 +𝑊

(𝐸1𝐸2)
1𝑠,2𝑝 ≈ 1.089×10−5

s−1. Then, at 𝜉S = 0.1 (in the field ℰ ≈ 47.5 V/cm),

𝛿(FGS) ≈ 10−5 Hz. (4.16)

The choice of the total atomic momentum (taking into account the spin of the
nucleus) for the states 𝑎, 𝑎′, 𝑎′′ 𝐹 = 𝐹 ′ = 𝐹 ′′ = 1 is due, firstly, to experiments
on measuring the frequency of the 1𝑠 − 2𝑠 transition [20, 21, 134, 182], and,
second, by the fact that the transfer of the total momentum of two photons
equal to unity is strictly forbidden according to the Landau-Yang theorem [122,
124,125].

It is also important to note that the 1/𝜉S dependence in (4.15) cannot be
used in the zero-field case. The implied limit here is given by the field in which
the decay rate of the 2𝑠 level due to the 2𝑝 state admixture becomes equal to
the natural decay width of the 2𝑠 state. This limiting field strength will be so
small that it cannot be used in a real experiment.

The situation in hydrogen appears to be very fortunate for an accurate
measurement of the resonance frequency because of the absence of a transi-
tion to another hyperfine sublevel (𝐹 ′ = 𝐹 ′′ = 0) of the 2𝑠 or 2𝑝 states.
For comparison, in deuterium, where the values of the total angular momen-
tum of the atom for levels 1𝑠 and 2𝑠 are 𝐹 = 1/2, 3/2, respectively, transi-
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tions with different total atomic momenta are allowed (for 𝐹 = 3/2 we have
|3/2− 0(2)| ≤ 𝐹 ′ ≤ 3/2 + 0(2) ⇒ 𝐹 ′ = 1/2, 3/2, 5/2, 7, 2). The NR correction
for a similar experiment (see [185]) is of order of magnitude equal to

𝛿(D) ∼ 1

4

Γ2
exp

∆𝐸HFS
, (4.17)

where ∆𝐸
(D)
HFS = 𝐸2𝑠1/2(𝐹=3/2) − 𝐸2𝑠1/2(𝐹=1/2) ≈ 40.9 MHz is the hyperfine

structure interval for the 2𝑠 level in the deuterium atom (according to [186]
∆𝐸

(D)
HFS = 40 924 454(7) Hz). Taking the same value of Γexp ≈ 103 as for the

hydrogen atom, a rough estimate (4.17) leads to 𝛿(D) ∼ 10−2 Hz, which is three
orders of magnitude larger than for hydrogen. This is not that far from the
experimental accuracy of about 7 Hz [186].

4.4. Conclusion on NR corrections to the 1𝑠− 2𝑠

two-photon excitation frequency

The estimates of the asymmetry of the observed spectral line arising for the
1𝑠 − 2𝑠 transition in the hydrogen atom carried out in sections 4.1, 4.3 have
shown their insignificance. Thus, the upper limit of the nonresonant contribu-
tion is at 10−2, which is three orders of magnitude smaller than the measure-
ment error (about 10 Hz) in modern spectroscopic experiments [20,21,134,182].
This is primarily due to the specificity of the metastable 2𝑠 atomic level and,
secondly, to the absence of close lying states that can be efficiently excited in
a "two-photon" way. Since the NR corrections to the transition frequency are
proportional to the square of the width and inversely proportional to the split-
ting energy of neighbouring resonance states (in leading order), and Γ2𝑠 ≈ 1.31

Hz, their smallness is understandable. The main difficulty for the accurate cal-
culation of NR corrections to the 1𝑠−2𝑠 transition frequency is the experimen-
tal conditions. According to [20, 21, 134, 182], in such experiments the excita-
tion and deexcitation regions are spatially separated, which makes "standard"
methods unsuitable for analysis. Therefore, the QED formalism with in- and
out-Hamiltonians was used [184]. Calculations of NR corrections for frequency
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measurements based on two-photon excitation of the 1𝑠−2𝑠 transition followed
by decay in an external electric field were presented in Refs. [37, 40–42].

Two types of possible resonant optical experiments should be distinguished.
All processes consist of three stages: excitation of a certain intermediate state,
its propagation and its decay. The coherence in the sum over the intermediate
state can be destroyed by collisions (the first type of experiments) or preserved
(the second type of experiments). The analysis shows that the NR corrections
in the case of the first type of resonance experiments are significantly smaller
than for the second type of experiments [42]. However, in the limiting case
where a natural line profile can be observed and there are no distortions due
to the above effects, the two types of resonance experiments actually coincide
and the NR corrections to the frequency for both experiments are the same.
In the thesis only this situation is considered with the following reasoning:
when the natural line profile is not observed, i.e., shielded by collision, time-of-
flight, Doppler broadening, etc. [134,182], then it is these effects that determine
the possible uncertainty in the experimental determination of the transition
frequency. This uncertainty is obviously larger than the nonresonant profile
asymmetry, but it can be reduced by technical improvements. The distortion of
the line profile caused by nonresonant effects is an inevitable systematic effect
that requires a case-by-case theoretical analysis of the measurement process
used in the experiment.

The work of [42] (with the valuable contribution of E. Chernovskaya) is
worth mentioning because it presents the results of analytical calculations of the
total and differential cross sections of one-photon scattering for both arbitrary
parity (electric and magnetite types) and arbitrary multipoles of photons. The
derived expressions can be used in the corresponding NR corrections analysis.
In the following sections, specific examples of the calculation of NR corrections
arising from the differential scattering cross section and, as a consequence,
depending on angles will be discussed. In addition, taking into account the
effect of an external electric field on the transition frequency measurements
has opened up the possibility of a different kind of research. A comparative
analysis of the spectral characteristics (transition frequency and level width)
of hydrogen atoms (H) and anti-hydrogen atoms (H̄) exposed to an external



69

electric field will be presented in one of the next sections of the thesis.
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Chapter 5.

The quantum interference
effect (QIE)

5.1. Differential scattering cross section: two
close resonances

The photon scattering amplitude, see (2.19), can be conveniently represented
as:

𝑈
(2)
𝑓𝑖 =

∑︁
𝑗𝛾1𝑚𝛾1

𝑠1
𝑗𝛾2𝑚𝛾2

𝑠2

𝐶
𝑗𝛾1𝑚𝛾1

𝑠1
𝑗𝛾2𝑚𝛾2

𝑠2
(𝑒1,𝑛𝑘1

; 𝑒2,𝑛𝑘2
)

⎡⎢⎣∑︁
𝑚𝑎

(︁
𝛼𝐴

(𝑠2)*
𝑗𝛾2𝑚𝛾2

)︁
𝑓𝑎

(︁
𝛼𝐴

(𝑠1)
𝑗𝛾1𝑚𝛾1

)︁
𝑎𝑖

𝐸𝑎 − 𝐸𝑖 − 𝜔1 − i
2Γ𝑎

+ (5.1)

∑︁
𝑛 ̸=𝑎

(︁
𝛼𝐴

(𝑠2)*
𝑗𝛾2𝑚𝛾2

)︁
𝑓𝑛

(︁
𝛼𝐴

(𝑠1)
𝑗𝛾1𝑚𝛾1

)︁
𝑛𝑖

𝐸𝑛 − 𝐸𝑖 − 𝜔1
+
∑︁
𝑛

(︁
𝛼𝐴

(𝑠1)
𝑗𝛾1𝑚𝛾1

)︁
𝑓𝑛

(︁
𝛼𝐴

(𝑠2)*
𝑗𝛾2𝑚𝛾2

)︁
𝑛𝑖

𝐸𝑛 − 𝐸𝑖 − 𝜔2

⎤⎥⎦ 2𝜋𝑒2
√
𝜔1𝜔2

.

Here in the nonresonant summands, the infinitesimal parts (1 − 𝑖0) in the
denominators are omitted because there are no divergent contributions. In the
resonance approximation, it is assumed that Γ𝑎 is independent of 𝜔1, and the
photon emission operators given by the expression (2.17) are taken at fixed
transition energies, i.e., at 𝜔1 = 𝐸𝑎−𝐸𝑖 and 𝜔2 = 𝐸𝑎−𝐸𝑓 . Keeping only the first
(resonance) term in (5.1), after integrating over 𝜔2 in (2.7), the corresponding
scattering cross section presents a line profile symmetric with respect to the
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resonance frequency 𝜔0 ≡ 𝐸𝑎 − 𝐸𝑖:

𝑑𝜎𝑓𝑖(𝜔1)

𝑑𝑛𝑘2

= const
𝑓
(1𝛾)
𝑓𝑖 (𝑎, 𝑎)

(𝜔1 − 𝜔0)2 + Γ2
𝑎

4

, (5.2)

where

𝑓
(1𝛾)
𝑓𝑖 (𝑎, 𝑎′) = (5.3)⎛⎜⎜⎝ ∑︁

𝑗𝛾1𝑚𝛾1
𝑠1

𝑗𝛾2𝑚𝛾2
𝑠2

𝐶
𝑗𝛾1𝑚𝛾1

𝑠1
𝑗𝛾2𝑚𝛾2

𝑠2
(𝑒1,𝑛𝑘1

; 𝑒2,𝑛𝑘2
)
∑︁
𝑚𝑎

(︁
𝛼𝐴

(𝑠2)*
𝑗𝛾2𝑚𝛾2

)︁
𝑓𝑎

(︁
𝛼𝐴

(𝑠1)
𝑗𝛾1𝑚𝛾1

)︁
𝑎𝑖
×

⎞⎟⎟⎠
⎛⎜⎜⎜⎝ ∑︁

𝑗′𝛾1𝑚
′
𝛾1
𝑠′1

𝑗′𝛾2𝑚
′
𝛾2
𝑠′2

𝐶
𝑗′𝛾1𝑚

′
𝛾1
𝑠′1

𝑗′𝛾2𝑚
′
𝛾2
𝑠′2

(𝑒1,𝑛𝑘1
; 𝑒2,𝑛𝑘2

)
∑︁
𝑚𝑎′

(︁
𝛼𝐴

(𝑠′2)*
𝑗′𝛾2𝑚

′
𝛾2

)︁
𝑓𝑎′

(︁
𝛼𝐴

(𝑠′1)
𝑗′𝛾1𝑚

′
𝛾1

)︁
𝑎′𝑖

⎞⎟⎟⎟⎠
*

.

Here "const" - is a constant of no interest for further calculations. Thus, when
only the resonance term is taken into account, the spectral line profile has a
Lorentzian shape with a maximum at 𝜔 = 𝜔0. The frequency of the resonance
transition 𝜔res can be defined as the maximum of the expression (5.2). For a
symmetric profile, the definitions through the maximum and the "line centre"
(see [32]) coincide.

Taking into account the other (nonresonant) terms in (5.1) leads to the
asymmetry of the line profile. If the asymmetry is negligible, the resonance
transition frequency 𝜔res can be determined from 𝑑𝜎𝑖𝑓 as 𝜔res = 𝜔max, where
𝜔max corresponds to the maximum value of 𝜎𝑖𝑓(𝜔), see [43,49,50,53,148]. As long
as the line profile is symmetric about 𝜔 = 𝜔max, the definition of the maximum
remains equivalent to any other way of extracting 𝜔res from the line profile. In
the case of small asymmetry, the extremum condition leads to an biased value,
i.e., 𝜔max = 𝜔res+𝛿NR, where 𝛿NR is determined by the nonresonant terms in Eq.
(5.1). The restriction imposed on the determination of the resonance frequency
in the presence of asymmetry follows from the relation 𝛿NR ≪ Γ𝑎.

It is assumed that in the process of resonant absorption 𝑖 + 𝛾1 → 𝑎 the
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selection rules also allow another (close) transition 𝑖 + 𝛾1 → 𝑎′ [122, 124, 125].
Then two summands can be distinguished in (5.1) - resonant and near-resonant:

𝑈
(2)
𝑓𝑖 = 𝑒2

2𝜋
√
𝜔1𝜔2

∑︁
𝑗𝛾1𝑚𝛾1

𝑠1
𝑗𝛾2𝑚𝛾2

𝑠2

𝐶
𝑗𝛾1𝑚𝛾1

𝑠1
𝑗𝛾2𝑚𝛾2

𝑠2
(𝑒1,𝑛𝑘1

; 𝑒2,𝑛𝑘2
) × (5.4)
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𝛼𝐴

(𝑠2)*
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𝑗𝛾1𝑚𝛾1

)︁
𝑎′𝑖

𝐸𝑎′ − 𝐸𝑖 − 𝜔1

+
∑︁
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𝛼𝐴
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𝑗𝛾2𝑚𝛾2

)︁
𝑓𝑛

(︁
𝛼𝐴

(𝑠1)
𝑗𝛾1𝑚𝛾1

)︁
𝑛𝑖

𝐸𝑛 − 𝐸𝑖 − 𝜔1
+
∑︁
𝑛

(︁
𝛼𝐴

(𝑠1)
𝑗𝛾1𝑚𝛾1

)︁
𝑓𝑛

(︁
𝛼𝐴

(𝑠2)*
𝑗𝛾2𝑚𝛾2

)︁
𝑛𝑖

𝐸𝑛 − 𝐸𝑖 − 𝜔2

]︃
,

The last two terms in (5.4) represent nonresonant contributions to the ampli-
tude. Their consideration in the determination of the transition frequency was
presented in section 3.1 (see the expression (3.8) for 𝛿NR). Here and below they
can be neglected. After integrating over 𝜔2 in (2.7), the corresponding cross
section can be reduced to the form:

𝑑𝜎𝑓𝑖
𝑑𝑛𝑘2

= const

⎛⎝ 𝑓
(1𝛾)
𝑓𝑖 (𝑎, 𝑎)

(𝜔0 − 𝜔1)2 + Γ2
𝑎

4

+
2𝑓

(1𝛾)
𝑓𝑖 (𝑎, 𝑎′)(𝜔0 − 𝜔1)(︁

(𝜔0 − 𝜔1)2 + Γ2
𝑎

4

)︁
(𝜔0 − 𝜔1 + ∆)

⎞⎠ ,(5.5)

where ∆ ≡ 𝐸𝑎′ − 𝐸𝑎, and only the interference contribution besides the
quadratic contribution from the second summand in (5.4) is left.

The nonresonant leading-order correction to the transition frequency 𝑖 +

𝛾1 → 𝑎 arises from the extremum condition and is equal to

𝑑𝜎𝑖𝑓(𝜔1)

𝑑𝜔1
= − 1

(𝜔0 − 𝜔1 + ∆)2
(︁

(𝜔1 − 𝜔0)2 + Γ2
𝑎

4

)︁2 × (5.6)

8

[︂
𝑓
(1𝛾)
𝑓𝑖 (𝑎, 𝑎′)

(︂
(𝜔1 − 𝜔0)

2 − Γ2
𝑎

4

)︂
∆ − 2𝑓

(1𝛾)
𝑓𝑖 (𝑎, 𝑎′)(𝜔1 − 𝜔0)

3+

𝑓
(1𝛾)
𝑓𝑖 (𝑎, 𝑎)(𝜔1 − 𝜔0)(𝜔0 − 𝜔1 + ∆)2∆

]︁
.

Expanding the numerator in (5.6) into a Taylor series in the vicinity of 𝜔0, in
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the leading order one can set

−8𝑓
(1𝛾)
𝑓𝑖 (𝑎, 𝑎′) Γ2

𝑎 ∆ − 32𝑓
(1𝛾)
𝑓𝑖 (𝑎, 𝑎) (𝜔1 − 𝜔0) ∆2 = 0. (5.7)

Finally, solving the equation (5.7) with respect to 𝜔1, the following is obtained

𝜔max = 𝜔0 − 𝛿NR, (5.8)

𝛿NR =
𝑓
(1𝛾)
𝑓𝑖 (𝑎, 𝑎′)

𝑓
(1𝛾)
𝑓𝑖 (𝑎, 𝑎)

Γ2
𝑎

4∆
. (5.9)

The expression (5.9) arises as the higher order of the Γ𝑎/∆ expansion and rep-
resents a part of the NR corrections arising due to the interference of transitions
to nearby (with resonance) states. Due to the origin, the effect is called quantum
interference (QIE). The approximations used above assume that the parameter
Γ𝑎/∆ < 1 is small, e.g. for close neighbouring components of the fine structure
(see specific examples below). The parameter Γ𝑎/∆ can also be small for two
neighbouring hyperfine sublevels and in this case requires a special study, see
section 3.5 and [42].

The next-order contribution can be obtained (see section 3.3) by retaining
the remaining terms in (5.6) and taking into account the square of the second
summand in (5.4). Then the nonresonant correction to the transition frequency
can be found in the form:

𝛿NR =
𝑓
(1𝛾)
𝑓𝑖 (𝑎, 𝑎′)

𝑓
(1𝛾)
𝑓𝑖 (𝑎, 𝑎)

Γ2
𝑎

4∆
−

(︁
𝑓
(1𝛾)
𝑓𝑖 (𝑎, 𝑎′)

)︁2 (︁
2𝑓

(1𝛾)
𝑓𝑖 (𝑎, 𝑎) + 𝑓

(1𝛾)
𝑓𝑖 (𝑎, 𝑎′)

)︁
𝑓
(1𝛾)
𝑓𝑖 (𝑎, 𝑎)3

Γ4
𝑎

16∆3
. (5.10)

The first term in (5.10) coincides with (5.9), and the second term is proportional
to the ratio Γ4

𝑎/(16∆3). In most cases, the second contribution is a small addi-
tion to the leading-order NR correction (5.9). The expressions (5.9), (5.10) can
be used to estimate the magnitude of the corrections given that Γ𝑎 ∼ 𝑚𝛼(𝛼𝑍)4

and the fine splitting interval ∆ ∼ 𝑚(𝛼𝑍)4 are in relativistic units (electron
mass is given for clarity). Then Γ2

𝑎/∆ ∼ 𝑚𝛼2(𝛼𝑍)4, and Γ4
𝑎/∆

3 ∼ 𝑚𝛼4(𝛼𝑍)4,
i.e. 𝛼2 times smaller. Although the factors in (5.10) are dimensionless, they
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can vary considerably and should be calculated for each case separately. An-
other way to estimate the corrections in (5.10) corresponds to the direct use of
tabulated values of level widths and splitting intervals.

As follows from expression (5.8), the NR correction depends on the ex-
perimental setup, i.e., on the angular and polarisation correlations between
incident and escaping photons. All information about such correlations is given
by the relation 𝑓 (1𝛾)𝑓𝑖 (𝑎, 𝑎′)/𝑓

(1𝛾)
𝑓𝑖 (𝑎, 𝑎). Since the coefficients in (5.3) depend on

the quantum numbers (angular momenta) of particular atomic states and the
mutual orientation of the vectors 𝑒1, 𝑛𝑘1

, 𝑒2, 𝑛𝑘2
, the resulting value of the

NR correction is determined by the geometry of the experiment and the pho-
ton registration method [43,52]. Before proceeding to particular examples, it is
necessary to write down the scattering amplitude. In the nonrelativistic limit
and the dipole approximation [2, 3]:

𝑈
(2)
𝑓𝑖

2𝜋𝑒2
√
𝜔1𝜔2

=
∑︁
𝑛

(︁
𝑟𝑒*2

)︁
𝑓𝑛

(︁
𝑟𝑒1

)︁
𝑛𝑖

𝐸𝑛(1 − i0) − 𝐸𝑖 − 𝜔1
+
∑︁
𝑛

(︁
𝑟𝑒1

)︁
𝑓𝑛

(︁
𝑟𝑒*2

)︁
𝑛𝑖

𝐸𝑛(1 − i0) − 𝐸𝑓 + 𝜔1
, (5.11)

where now the summation is performed over the Schr?dinger spectrum.

5.2. Angular correlations: the effect of quantum
interference

Unlike the resonant transition frequency value, the NR corrections depend on
the excitation and deexcitation processes of the atomic level, the type of ex-
periment, and the way the transition frequency value is extracted from the
experimental data. For all cases mentioned in the previous sections, the NR
corrections were found to be negligible. In particular, according to [42], this was
also the case for the measurement of the frequency of the 1𝑠 − 2𝑠 two-photon
transition in hydrogen. The situation changed when the results of high-accuracy
measurements of the frequencies of the 2𝑠𝐹=0

1/2 → 4𝑝𝐹=1
1/2 and 2𝑠𝐹=0

1/2 → 4𝑝𝐹=1
3/2

transitions in the hydrogen atom were presented [32]. The uncertainty of these
measurements is much smaller than the observed effects of quantum interfer-
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ence. To achieve an accuracy of a few kilohertz, the observed asymmetric line
profile has been fit with the corresponding theoretical contour (see [43]). The
result is the extraction of the symmetric part and the subsequent determina-
tion of the "line centre". According to the line profile theory, this indicates the
existence of nonresonant corrections.

In this section, the expressions for the cross section of resonant one-photon
scattering on the hydrogen atom are presented, taking into account the fine
and hyperfine structure of the atomic levels [32]. The corresponding expressions
for the amplitudes contain dependences on the directions and polarisations of
incident (absorbed) and outgoing (emitted) photons. Thus, they can be used to
describe different experiments, with different correlations between the directions
and/or polarisations of photons. The scattering cross sections arising from the
amplitudes are used to obtain NR corrections. The influence of the latter on
the determination of the transition frequency is the main objective.

Following [52], the NR corrections arising from taking into account the
adjacent components of the fine structure levels are considered. According to
the experiment [32], the mutual influence of the transitions 2𝑠𝐹=0

1/2 → 4𝑝𝐹=1
1/2

and 2𝑠𝐹=0
1/2 → 4𝑝𝐹=1

3/2 was detected and accounted for according to the theory,
presented in the supplementary materials of [32] and is in good agreement with
the theoretical analysis presented in [43]. First, consider the NR corrections to
the 2𝑠𝐹=0

1/2 → 4𝑝𝐹=1
1/2 transition due to quantum interference with the 2𝑠𝐹=0

1/2 →
4𝑝𝐹=1

3/2 transition. The corrections to the other transition 2𝑠𝐹=0
1/2 → 4𝑝𝐹=1

3/2 are
found in a similar way. Thus it will be shown that the NR corrections for
transitions to a fixed final hyperfine sublevel do not depend on the type of
experiment and the "geometry" of the experiment. However, they depend on the
choice of the decay channel: the NR corrections are different if the registration
process ends with states with 𝐹 = 0, 1 or 2. When the frequency of the escaping
photon is not recorded at all, the measurement result starts to depend both on
the type of experiment and on the experiment scheme (geometry), which is in
good agreement with [32].

Once again, the type of experiments can be graded. In the first type of
experiment, the directions of photon propagation are fixed: the direction of
the incident photon 𝑛𝑘1 coincides with the direction of the laser beam, and
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the direction of the exiting photon 𝑛𝑘2 is determined by the detector position.
In the second type of experiments, the polarisation of the incident photon 𝑒1

and the direction of the outgoing photon 𝑛𝑘2 are fixed; this is the case in the
experiment [32].

In the nonrelativistic limit the matrix elements of the scattering amplitude
defined by expressions (5.11) do not depend explicitly on directions of photons
𝑛𝑘1 and 𝑛𝑘2. This dependence arises from the transversality condition. Since
the transversality condition will be fulfilled automatically in the laser beam, the
direction of this beam in the experiment of type 2 can be chosen arbitrarily.
The dependence on 𝑛𝑘1, 𝑛𝑘2 becomes explicit after summing over the photon
polarisations. Then, for the experiment of type 1 one needs to derive

∑︀
𝑒1,𝑒2

𝑑𝜎𝑖𝑓 ,

and for the experiment of type 2 one needs to obtain
∑︀
𝑒2

𝑑𝜎𝑖𝑓 , where the differ-

ential cross section is defined according to (5.5). In the nonrelativistic limit the
corresponding factors 𝑓𝑓𝑖(𝑎, 𝑎′) in the cross section (5.5) for the experiment of
the first and the second type are given by the following expressions [52]:

𝑓
(1)
𝑓𝑖 (𝑎, 𝑎′) = 36

∑︁
𝑥𝑦

(−1)𝐹𝑎′−𝐹𝑎+𝑥+𝑦Π2
𝑥Π𝑦

{︃
1 𝑥 1

𝐹𝑎′ 𝐹𝑓 𝐹𝑎

}︃{︃
1 𝑥 1

𝐹𝑎′ 𝐹𝑖 𝐹𝑎

}︃
(5.12)

×

{︃
1 1 𝑦

1 1 𝑥

}︃{︃
1 1 𝑥

1 1 1

}︃2{︂{︁
𝑣
(1)
1 ⊗ 𝑤

(1)
1

}︁
𝑦
⊗
{︁
𝑣
(1)
1 ⊗ 𝑤

(1)
1

}︁
𝑦

}︂
00

×⟨𝑛𝑓 𝑙𝑓𝑗𝑓𝐹𝑓 ||𝑟||𝑛𝑎𝑙𝑎𝑗𝑎𝐹𝑎⟩⟨𝑛𝑎𝑙𝑎𝑗𝑎𝐹𝑎||𝑟||𝑛𝑖𝑙𝑖𝑗𝑖𝐹𝑖⟩
×⟨𝑛𝑖𝑙𝑖𝑗𝑖𝐹𝑖||𝑟||𝑛𝑎′𝑙𝑎′𝑗𝑎′𝐹𝑎′⟩⟨𝑛𝑎′𝑙𝑎′𝑗𝑎′𝐹𝑎′||𝑟||𝑛𝑓 𝑙𝑓𝑗𝑓𝐹𝑓⟩,

𝑓
(2)
𝑓𝑖 (𝑎, 𝑎′) = 6

∑︁
𝑥𝑦

(−1)𝐹𝑎′−𝐹𝑎+𝑦Π2
𝑥Π𝑦

{︃
1 𝑥 1

𝐹𝑎′ 𝐹𝑓 𝐹𝑎

}︃{︃
1 𝑥 1

𝐹𝑎′ 𝐹𝑖 𝐹𝑎

}︃
(5.13)

×

{︃
1 1 𝑦

1 1 𝑥

}︃{︃
1 1 𝑥

1 1 1

}︃{︂{︁
𝑣
(2)
1 ⊗ 𝑤

(2)
1

}︁
𝑦
⊗
{︁
𝑣
(2)
1 ⊗ 𝑤

(2)
1

}︁
𝑦

}︂
00

×⟨𝑛𝑓 𝑙𝑓𝑗𝑓𝐹𝑓 ||𝑟||𝑛𝑎𝑙𝑎𝑗𝑎𝐹𝑎⟩⟨𝑛𝑎𝑙𝑎𝑗𝑎𝐹𝑎||𝑟||𝑛𝑖𝑙𝑖𝑗𝑖𝐹𝑖⟩
×⟨𝑛𝑖𝑙𝑖𝑗𝑖𝐹𝑖||𝑟||𝑛𝑎′𝑙𝑎′𝑗𝑎′𝐹𝑎′⟩⟨𝑛𝑎′𝑙𝑎′𝑗𝑎′𝐹𝑎′||𝑟||𝑛𝑓 𝑙𝑓𝑗𝑓𝐹𝑓⟩,

where 𝑣(1)1 = 𝑛𝑘1, 𝑣
(2)
1 = 𝑒1, 𝑤

(1)
1 = 𝑤

(2)
1 = 𝑛𝑘2 and Π𝑥 =

√
2𝑥+ 1. In (5.12),
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(5.13) the coefficient
{︁
𝑣
(1,2)
1 ⊗ 𝑤

(1,2)
1

}︁
𝑦

denotes the tensor product of rank 𝑦 for

two tensors 𝑣(1,2)1 and 𝑤(1,2)
1 of rank 1 each [179]. This tensor product completely

determines the angular correlations in the scattering cross section.
Determining the transition frequency through the extremum condition for

the cross section, the corresponding leading-order NR correction takes the form:

𝛿
(1,2)
NR =

𝑓
(1,2)
𝑓𝑖 (𝑎, 𝑎′)

𝑓
(1,2)
𝑓𝑖 (𝑎, 𝑎)

Γ2
𝑎

4∆
. (5.14)

Here ∆ = 𝐸𝑎′ −𝐸𝑎 represents the fine splitting for the levels 4𝑝𝐹=1
1/2 and 4𝑝𝐹=1

3/2 .
The correction (5.14) may depend on the experimental setup, i.e., on the angle
between the vectors 𝑛𝑘1 and 𝑛𝑘1 in a type 1 experiment or on the angle between
the vectors 𝑒𝑘1 and 𝑛𝑘2 in a type 2 experiment. This dependence was discussed
in detail in [52]; it is usually reduced to 1 + 3 cos 2𝜗 for dipole electric photons
when the fine structure of the levels is taken into account [43]. However, be-
ing determined by the set of quantum numbers of the particular states under
consideration, taking into account the hyperfine structure can violate the latter
(see below).

5.3. Application to hydrogen spectroscopy

To determine the transition frequency 2𝑠𝐹=0
1/2 → 4𝑝𝐹=1

1/2 taking into account NR
corrections originating from the neighbouring 4𝑝𝐹=1

3/2 level [32, 52] one should
consider for the initial state 𝑛𝑖𝑙𝑖 = 2𝑠, 𝑗𝑖 = 1/2, 𝐹𝑖 = 0, the resonant state is
defined by the set 𝑛𝑎𝑙𝑎 = 4𝑝, 𝑗𝑎 = 1/2, 𝐹𝑎 = 1, and, correspondingly, for the
closest state leading to QIE 𝑗𝑎′ = 3/2, 𝐹𝑎′ = 1. The numerical values of the
nonresonant corrections in 2𝑠𝐹𝑎=0

1/2 → 4𝑝𝐹𝑎=1
1/2 (4𝑝

𝐹𝑎′=1
3/2 ) → 𝑓 photon scattering

process with a fixed final state 𝑓 are presented in Table 5.1.
To calculate the NR corrections (5.12), (5.13), and (5.14), the theoretical

values given in the [187], which include relativistic QED corrections, corrections
for hyperfine structure, and finite nucleus size, were used. The same is valid for
the fine structure interval ∆ = 𝐸

4𝑝
𝐹𝑎′=1

3/2

− 𝐸
4𝑝

𝐹𝑎′=1

1/2

= 1367433.3 kHz, the width
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Table 5.1. NR corrections in kHz to the transition frequency 2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

1/2

(𝜈1/2 in [32]) taking into account the interfering transition to the 4𝑝
𝐹𝑎′=1
3/2 state

for the type 2 experiment (𝑒1𝑛𝑘2 correlation) and 2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

3/2 (𝜈𝐹𝑎=1
3/2 (𝜈3/2

in the notation [32]) taking into account the condition 4𝑝
𝐹𝑎′=1
1/2 . The same values

are obtained for the type 1 experiment (𝑛𝑘1𝑛𝑘2 correlation).

Final state 𝑓 𝛿
(2)
NR to 𝜈1/2 (kHz) 𝛿

(2)
NR to 𝜈3/2 (kHz)

1𝑠
𝐹𝑓=0

1/2 60.7127 -15.1782

1𝑠
𝐹𝑓=1

1/2 -30.3563 30.3563

2𝑠
𝐹𝑓=0

1/2 60.7127 -15.1782

2𝑠
𝐹𝑓=1

1/2 -30.3563 30.3563

3𝑠
𝐹𝑓=0

1/2 60.7127 -15.1782

3𝑠
𝐹𝑓=1

1/2 -30.3563 30.3563

3𝑑
𝐹𝑓=1

3/2 30.3563 30.3563

3𝑑
𝐹𝑓=2

3/2 6.0713 -151.7819

value Γ𝑎 = Γ4𝑝𝐹𝑎=1
1/2

= 1.2941× 107 Hz. These values give a reasonably accurate
result for 𝛿NR, to four digits after the decimal point. The parameter Γ𝑎/∆ in
this case is 0.00946, so the expansion by powers of this parameter is valid.

As it turned out, the NR corrections to the transition frequency 2𝑠𝐹𝑖=0
1/2 →

4𝑝𝐹𝑎=1
1/2 do not depend on the type of experiment and, moreover, on the "geom-

etry" (angles) of the experiment. However, these corrections strongly depend
on the method of frequency registration, i.e., on the choice of the state into
which the 4𝑝𝐹𝑎=1

1/2 excited level finally decays. Moreover, this dependence is de-
termined only by the quantum numbers of the final state, and the result is
practically independent of the frequency of the outgoing photon. The latter cir-
cumstance is understandable, since according to (5.14) the NR corrections are
proportional to the ratio 𝑓nr/𝑓res, where the corresponding energy differences
are compensated. When the hyperfine structure of finite levels is resolved, the
NR corrections differ only in the values of the total angular momentum 𝐹𝑓 of
the final hyperfine sublevel. This can be seen from the closed expressions (5.12),
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(5.13), (5.13), (5.14) defined via 6𝑗-symbols.
The obtained transition frequencies for the partial channels are summarised

in Table 5.2, which shows the partial scattering channels to different final states
(first column), the transition frequencies 𝜔0 as eigenvalues of the Hamiltonian
[187] (second column), the nonresonant corrections (third column) see Table 5.1.
in Table 5.1, and the resulting transition frequencies 𝜔max (1,2)

res (fourth column).
Results are presented for both measured in [32] transition frequencies 𝜈1/2 →
2𝑠𝐹𝑖=0

1/2 − 4𝑝
𝐹𝑎′=1
1/2 and 𝜈3/2 → 2𝑠𝐹𝑖=0

1/2 − 4𝑝
𝐹𝑎′=1
3/2 (top and bottom of Table 5.2,

respectively).
Focusing on the frequency 𝜈1/2, for the transition 2𝑠𝐹𝑖=0

1/2 → 4𝑝𝐹𝑎=1
1/2 three

different values of 𝜔max (1,2)
res corresponding to 𝐹𝑓 = 0, 1, 2, can be obtained

for both types of experiment using 𝜔0 from the [187] and NR corrections from
Table 5.1:

𝐹𝑓 = 0 𝜔max (1,2)
res = 616520152619.2 kHz, (5.15)

𝐹𝑓 = 1 𝜔max (1,2)
res = 616520152528.1 kHz,

𝐹𝑓 = 2 𝜔max (1,2)
res = 616520152564.6 kHz.

The values above can equally be used as a determination of the 2𝑠𝐹=0
1/2 → 4𝑝𝐹=1

1/2

transition frequency (by the maximum of the line profile - the most probable
frequency), i.e., they represent an unambiguously reproducible result for strictly
defined conditions (fixed final state). Then, the three transition frequencies in
(5.15) differ from each other by more than 50 kHz. This is 15 times greater than
the accuracy of the measurements in [32] (3 kHz) and shows the applicability
region of the resonance approximation. Moreover, the frequency difference in
(5.15) demonstrates the ambiguity in determining the transition frequency from
the observed line profile due to the existence of nonresonant contributions in
the scattering cross section. It is worth noting that a similar conclusion will
follow for the frequency corresponding to the full-width-half-maximum of the
observed contour, see [43]. It will be shown below that this fact is only relevant
to the question of definition.

However, 𝜔0 is of interest, since this value should correspond to the the-
oretical value (the difference of eigenvalues of the Hamiltonian). Exactly 𝜔0
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Table 5.2. Numerical values of the frequency 𝜔max (1,2)
res . The first column indi-

cates the partial scattering channel, the second column gives the values of 𝜔0

used in the calculations for 𝜈1/2 and 𝜈3/2, see [187], the third column shows the
corresponding nonresonant correction values, and the last column shows the
𝜔max values. All values are given in kHz.

Transition, 𝜈1/2 𝜔0, kHz [187] 𝛿
(1,2)
NR , kHz 𝜔

max (1,2)
res , kHz

2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

1/2 → 1𝑠
𝐹𝑓=0

1/2 616520152558.5
60.7127 616520152619.2

2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

1/2 → 1𝑠
𝐹𝑓=1

1/2 −30.3563 616520152528.1

2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

1/2 → 2𝑠
𝐹𝑓=0

1/2 616520152558.5
60.7127 616520152619.2

2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

1/2 → 2𝑠
𝐹𝑓=1

1/2 −30.3563 616520152528.1

2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

1/2 → 3𝑠
𝐹𝑓=0

1/2 616520152558.5
60.7127 616520152619.2

2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

1/2 → 3𝑠
𝐹𝑓=1

1/2 −30.3563 616520152528.1

2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

1/2 → 3𝑑
𝐹𝑓=1

3/2 616520152558.5
−30.3563 616520152528.1

2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

1/2 → 3𝑑
𝐹𝑓=2

3/2 6.0713 616520152564.6

Transition, 𝜈3/2 𝜔0, kHz [187] 𝛿
(1,2)
NR , kHz 𝜔

max (1,2)
res , kHz

2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

3/2 → 1𝑠
𝐹𝑓=0

1/2 616521519991.8
−15.1782 616521519976.6

2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

3/2 → 1𝑠
𝐹𝑓=1

1/2 30.3563 616521520022.2

2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

3/2 → 2𝑠
𝐹𝑓=0

1/2 616521519991.8
−15.1782 616521519976.6

2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

3/2 → 2𝑠
𝐹𝑓=1

1/2 30.3563 616521520022.2

2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

3/2 → 3𝑠
𝐹𝑓=0

1/2 616521519991.8
−15.1782 616521519976.6

2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

3/2 → 3𝑠
𝐹𝑓=1

1/2 30.3563 616521520022.2

2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

3/2 → 3𝑑
𝐹𝑓=1

3/2 616521519991.8
30.3563 616521520022.2

2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

3/2 → 3𝑑
𝐹𝑓=2

3/2 −151.7819 616521519840.0

should be used for, e.g., determination of fundamental physical constants. All
three numbers in (5.15) can be reduced to 𝜔0 by simple subtraction of 𝛿NR.
This is possible because the correction does not depend on any angles, which in
turn demonstrates the advantage of recording the radiation corresponding to a
transition to a particular final state.

If in the process of frequency measurement radiation is registered without
fixing its frequency, then summation over all final states should be performed.
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This summation is as follows:

𝛿
(1,2)
NR =

∑︀
𝑛𝑓 𝑙𝑓 𝑗𝑓𝐹𝑓

𝑓
(1,2)
nr∑︀

𝑛𝑓 𝑙𝑓 𝑗𝑓𝐹𝑓

𝑓
(1,2)
res

Γ2
𝑎

4∆
. (5.16)

Now the NR correction depends on the type of experiment and on the angle
between the vectors 𝑛𝑘1, 𝑛𝑘2 in the experiment of the first type or between
the vectors 𝑒1, 𝑛𝑘2 in the experiment of the second type. For a set of quantum
numbers 𝑛𝑖𝑙𝑖 = 2𝑠, 𝑗𝑖 = 1/2, 𝐹𝑖 = 0, 𝑛𝑎𝑙𝑎 = 4𝑝, 𝑗𝑎 = 1/2, 𝐹𝑎 = 1, 𝑗𝑎′ = 3/2,
𝐹𝑎′ = 1, one can find 𝛿(2)NR ≈ −0.23983(1 + 3 cos 2𝜗)Γ2

𝑎/∆. For brevity, only the
result for the second type of experiment is written out here, the details are given
in [52], and the numerical factor arises from the radial integrals. Solving the
equation 1+3 cos 2𝜗 = 0 for the variable 𝜗, it is easy to find that the correction
goes to zero at angles 𝜗 = (1/2)(± arccos (1/3) + 2𝜋𝑛) (with arbitrary integer
n). This result can be obtained for the scattering of photons corresponding to
a dipole transition with an arbitrary set of quantum numbers of initial and
intermediate states. The difference will be in the numerical multiplier. The
latter means that nonresonant corrections should be considered separately for
each particular transition. The corrections 𝛿(1,2)NR in the expression (5.16) as a
function of the angle 𝜗 are shown in Fig. 5.1 for the transition 2𝑠𝐹𝑖=0

1/2 → 4𝑝𝐹𝑎=1
1/2 .
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-30

-20

-10

0

10

θ [grad]

δ
ω

[k
H
z
]

Figure 5.1. NR correction to the transition frequency 2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

1/2 as a
function of the angle between vectors 𝑛𝑘1, 𝑛𝑘2 for experiment type 1 (solid
line) and as a function of the angle between vectors 𝑒1, 𝑛𝑘2 in experiment type
2 (dashed line) according to the expression (5.16).
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According to the above, the NR correction is zero for certain ("magic")
angles 𝜃1 = 54.7∘ and 𝜃2 = 125.3∘, which are the same for both types of experi-
ment. The possible use of "magic angles" to determine transition frequencies in
atoms was pointed out in [51,187]. It was pointed out in [51] that the method of
extracting the transition frequency value from experimental data used in [32] is
actually equivalent to using "magic angles". Specifically, the amplitude (5.11)
was used to construct the fitting contour in [32] (see also [51]), the first sum-
mand in which leads to the symmetric part of the profile. The non symmetric
part of the profile was obtained in the linear approximation, see [43], by taking
the resonant term in the amplitude (5.11) as a common factor and expand-
ing the additional term (nonresonant) in a series on the parameter ∆. Then, a
convolution of the profile derived in this way (Fano profile) with a Gaussian con-
tour (Fano-Voigt profile) [188] was taken. With this in mind, the "theoretical"
profile much more accurately fit the observed profile, allowing the asymmetry
parameters to be determined. In turn, the arising asymmetry parameters are
zero for the "magic angle" and define the " line centre", which was determined
as the transition frequency in [32].

Calculations of atomic transition frequencies using "magic angles" were con-
sidered in [49], which coincide with those given above for corresponding transi-
tions. The value of the transition frequency 2𝑠𝐹𝑖=0

1/2 − 4𝑝𝐹𝑎=1
1/2 (5.16) for "magic

angles" and the theoretical values of 𝜔0, Γ𝑎 and ∆ are equal to

𝜔max (1,2)
res = 616520152558.5 kHz. (5.17)

Similarly, for the transition frequency 2𝑠𝐹𝑖=0
1/2 − 4𝑝𝐹𝑎=1

3/2 one can find

𝜔max (1,2)
res = 616521519991.8 kHz. (5.18)

5.4. Relationship between the definitions of tran-
sition frequency

According to the theory presented in the previous section, the transition fre-
quency can be determined by various experiments. In one of them it is proposed
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to record the radiation associated with a fixed final hyperfine state. Obviously,
it is preferable to use some sublevel of the ground state, since its hyperfine split-
ting is experimentally resolvable [137]. The advantage in this case is the angle-
independent nonresonant correction, which can be simply subtracted from the
determined result for the most probable transition frequency. However, in the
experiment [32] a different scheme was used: the whole emission was recorded.
Consequently, the resulting asymmetry of the line profile becomes angle depen-
dent (in the experiment [32] it corresponds to the angle between the polarisation
vector of the incident photon and the direction vector of the emitted photon).
Since this angle is not fixed, a different interpretation of the experimental data is
required. In other words, the nonresonant correction calculated at a fixed angle
cannot be subtracted from the experimentally determined transition frequency.

To avoid the problems associated with an asymmetric line profile, in [32]
the observed profile was fit with a Fano-Voigt profile. As a result of this
treatment, the "line centre" of the symmetric part of the line profile was de-
fined as the transition frequency. Finally, the values determined in [32] for
𝜈1/2 = 616 520 152 555.1(3.0) kHz (numbers in brackets denote the established
experimental error) and 𝜈3/2 = 616 521 519 990.8(3.0), were used to calculate
the weighted average hyperfine centroid 𝜈2𝑠−4𝑝 corrected for hyperfine shift (de-
noted here as ∆HFS).

𝜈2𝑠−4𝑝 =
1

3
𝜈1/2 +

2

3
𝜈3/2 − ∆HFS = 616 520 931 626.8 kHz, (5.19)

∆HFS = 132 552.092(75) kHz.

The values of 𝜈1/2, 𝜈3/2 agree with the values of (5.17), (5.18) within the exper-
imental error.

Thus, two methods are available to determine the transition frequency. The
first method corresponds to the theory discussed above and involves identifying
the peak of the line profile, determining the transition frequency as the most
probable, followed by estimating nonresonant corrections. The second method
is based on the "symmetrization" procedure described in [32,51]. At first glance,
these definitions may seem completely different and lead to deviations in transi-
tion frequency values of the order of tens of kHz (before subtracting nonresonant
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corrections, as shown in (5.15)). Moreover, a direct comparison of the exper-
imental results for 𝜈1/2 and 𝜈3/2 and the values of (5.17) and (5.18) shows a
significant discrepancy. Currently, this discrepancy may play a decisive role in
determining the Rydberg constant and the charge radius of the proton.

To demonstrate the absence of a contradiction in these definitions, one can
use the averaging procedure for 𝜔max corresponding to a fixed finite hyper-
fine sublevel, see Table 5.2. By emphasizing their angular independence, it is
assumed that measurements can be made for each specific transition. The de-
termined values can then be averaged in various ways. For example,

𝜔av =
∑︁
𝐹𝑓 ,𝑗𝑓

2𝐹𝑓 + 1

(2𝑗𝑓 + 1)(2𝐼 + 1)
𝜔max, (5.20)

where 𝐼 is the spin of the nucleus.
Another scheme can be used with the same success. When estimating non-

resonant corrections, additional averaging can be carried out over the projec-
tions of the total moment of the resonant state 𝑗𝑎. Then, according to the
expression (5.8),

𝜔av = 𝜔0 +
1

2𝑗𝑎 + 1

∑︁
𝐹𝑓 ,𝑗𝑓

2𝐹𝑓 + 1

(2𝑗𝑓 + 1)(2𝐼 + 1)
𝛿NR. (5.21)

Averaging (5.21) is due to the fact that practically in experiment one observes
radiation for which the resonant state is "pseudo-initial".

Turning again to the case of a fixed final state 1𝑠
𝐹𝑓=0

1/2 , the averaged
centroid (5.20) can be found according to the expression (5.19): 𝜈2𝑠−4𝑝 =

616 520 931 638.7 kHz with the same result for the 1𝑠
𝐹𝑓=1

1/2 state (for 𝛿NR val-
ues see Table 5.1). Additional averaging over the 𝑗𝑟 projections for the non-
resonant correction leads to 𝜈

(𝐹𝑓=0)
2𝑠−4𝑝 = 616 520 931 630.5 kHz and 𝜈

(𝐹𝑓=1)
2𝑠−4𝑝 =

616 520 931 628.6 kHz, and therefore 𝜈2𝑠−4𝑝 = 616 520 931 629.1 kHz. Finally,
the center of gravity averaged as (5.21) for frequencies (5.17), (5.18) can be
found equal to 616 520 931 628.6 kHz. All these values, within the error, agree
with the value (5.19) obtained experimentally.

Thus, there is a range of options for determining the transition frequency.



85

The first is to determine the maximum of the observed profile and then sub-
tract the nonresonant shift from the resulting value. However, in view of possible
angular correlations caused by the interference effect, from all the observed ra-
diation it is worth choosing the one that corresponds to a specific hyperfine
sublevel of the final state. This can be achieved by detecting photons of only
a certain frequency. In this case, the nonresonant shift is a constant and can
be determined theoretically. Another option is to average the measured values.
Finally, one can apply the "symmetrization" procedure described in [32,43]. Av-
eraging experimentally determined transition frequencies is preferable because
subtraction is always less accurate. All of them have their own difficulties asso-
ciated with the accuracy of the described process for determining the transition
frequency. In turn, these problems are caused by going beyond the resonant ap-
proximation, when it is necessary to take into account the asymmetry of the
observed spectral line profile. However, the main conclusion that follows from
the above discussion is the consistency of definitions through the "maximum"
or "line center". Deviations of the corresponding values (albeit coinciding with
high accuracy) are precisely associated with going beyond the limits of the
resonant approximation.

Another, no less important, circumstance indicating the advantage of the
partial decay channel (namely, the detection of radiation corresponding to decay
into a certain hyperfine sublevel of the ground state) is discussed in the next
section.

5.5. Participation of the emission process in de-
termining the absorption frequency

The fundamental principles governing the detailed description of the observed
line profile require careful consideration of all processes involved in the mea-
surements. For example, evaluation of nonresonant contributions to the photon
scattering cross section shows a clear difference for the cases when all outgoing
photons are detected or when a partial scattering process is used to deter-
mine the transition frequency [52]. The QED formulation of the line profile
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theory itself and the use of the resonant approximation for the photon scat-
tering cross section require consideration of the process from stable state to
stable state. To a fairly good approximation, the use of a metastable state is
also permissible (the lifetime of the metastable state should significantly exceed
the measurement time). In turn, the determination of the 2𝑠 − 4𝑝 absorption
frequency is not limited to the 2𝑠 → 4𝑝 → 1𝑠(2𝑠) scattering process, but also
involves transitions to the 3𝑠 and 3𝑑 states, which then decay through two-
photon emission (including cascade and "pure" radiation) into a stable state
1𝑠 (metastable state 2𝑠) [32]. A discussion about the ambiguity of separating
cascades from "pure" (see [82]) two-photon radiation will be presented in one
of the following sections of the thesis. Here this circumstance is neglected, as-
suming that the interference between these two types of probabilities is small.
Accordingly, the determination of the frequency of the 2𝑠 − 4𝑝 transition can
be correctly described only taking into account the following cascade processes:
2𝑠 + 𝛾 → 4𝑝 → 3𝑠(3𝑑) + 𝛾 → 2𝑝(3𝑝) + 𝛾 → 1𝑠(2𝑠) + 𝛾. Next, the case of
cascade radiation only into the 1𝑠 state is considered, but in conjunction with
accounting for the hyperfine structure of levels.

It can be noted at once that the cascade radiation is also subject to the quan-
tum interference effect if we consider the interference for the corresponding hy-
perfine sublevels of the fine structure (similarly 4𝑝𝐹=1

1/2 and 4𝑝𝐹=1
3/2 ). In the frame-

work of the above approximations (see also [49,50]) the detailed description of
the cascade transition 2𝑠+ 𝛾 → 4𝑝→ 3𝑠(3𝑑) + 𝛾 → 2𝑝(3𝑝) + 𝛾 → 1𝑠(2𝑠) + 𝛾

should include the states 4𝑝𝐹=1
1/2 , 4𝑝𝐹=1

3/2 as resonant (denoted below as state
𝑟), states 3𝑠1/2 and 3𝑑3/2, 3𝑑5/2 as the first cascade state (denoted below as
state 𝑎), and then levels 2𝑝1/2, 2𝑝3/2, 3𝑝1/2, 3𝑝3/2 (denoted below as state 𝑏).
In further calculations, the summation on the total atomic momentum 𝐹 for
states 𝑎 and 𝑏 is carried out. Leaving a resonance term in the cross section for
the transition to the 4𝑝𝐹=1

1/2 or 4𝑝𝐹=1
3/2 state, for details see [189], the influence

of quantum interference in the cascade can be described by considering in the
amplitude, in addition to the resonance (cascade) states, also the states nearest
in energy. The amplitude will now contain three energy denominators, each of
which can be reduced to the denominator of the absorption resonance using the
energy conservation law. Then QIE due to cascade radiation arises for states
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𝑎 and 𝑏 in the same way as for states 𝑟 with corresponding widths and energy
intervals between resonant and neighbouring nonresonant states.

Considering first the cascade through the 3𝑠 state, it can be found that the
absorption frequency, determined from the extremum condition [189], is

𝜔max = 𝜔0 + 𝛿𝜔𝑟 + 𝛿𝜔𝑎 + 𝛿𝜔𝑏, (5.22)

where 𝜔0 represents 𝜈1/2 or 𝜈3/2, according to the notations in [32], and 𝛿𝜔𝑖 is
defined by the expression:

𝛿𝜔𝑖 =
𝑓
(𝑐)
nr

𝑓
(𝑐)
res

Γ2
𝑟

4∆𝑖
Υ, (5.23)

Υ =
(Γ𝑟 + Γ𝑎)

2(Γ𝑎 + Γ𝑏)
2

(Γ𝑟 + Γ𝑎)2(Γ𝑎 + Γ𝑏)2 + (Γ𝑟 + Γ𝑎)2Γ2
𝑟 + (Γ𝑎 + Γ𝑏)2Γ2

𝑟

.

Here 𝑖 is one of the states labelled 𝑟, 𝑎, 𝑏. The value 𝑓 (𝑐)res is defined through
the numerator of the resonant amplitude. In the case of a cascade passing
through the 3𝑠1/2 state, this amplitude corresponds to 2𝑠𝐹=0

1/2 +𝛾 → 4𝑝𝐹=1
1/2(3/2) →

3𝑠1/2 +𝛾 → 2𝑝1/2 +𝛾 → 1𝑠1/2 +𝛾 transition and 𝑓 (𝑐)nr corresponds to one of the
nonresonant contributions 2𝑠1/2 +𝛾 → 4𝑝𝐹=1

1/2(3/2) → 𝑎+𝛾 → 𝑏+𝛾 → 1𝑠1/2 +𝛾,
∆𝑖 represents the energy splitting between the 𝑟 states, 𝑎 or 𝑏 (as, for example,
∆𝑟 ≡ 𝐸4𝑝𝐹=1

3/2
− 𝐸4𝑝𝐹=1

1/2
), and the correction 𝛿𝜔𝑖 is written out in leading order.

Assuming that all outgoing photons are directed to the same detector (i.e.,
the photon direction vectors, 𝜈, are co-directional, 𝜈4𝑝−3𝑠 ‖ 𝜈3𝑠−2𝑝(3𝑝) ‖ 𝜈2𝑝−1𝑠),
the NR corrections are

𝛿𝜔𝑟 = −1

2
(1 − 3 cos 2𝜃)

Γ2
𝑟

4∆𝑟
Υ, (5.24)

𝛿𝜔𝑎 = 0,

𝛿𝜔𝑏 = 2
Γ2
𝑟

4∆𝑏
Υ.

Here and below 𝜃 denotes the angle between the incident photon polarisation
vector and the direction vector of the emitted photons (this corresponds to the
conditions of the experiment [32]), and the numerical factors arise from the ratio
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of the radial parts of the amplitudes. It can be noted that when 𝐹𝑓 is fixed, the
results of [52] are recovered. The angular dependence in the expression (5.24)
is due to the summation over the total atomic moments in the 𝑓 (𝑐)res and 𝑓 (𝑐)nr .

Thus, it is obtained that the correction 𝛿𝜔𝑎 is equal to zero. This holds only
when the photons are registered in one direction, otherwise the correction is
different from zero. It also follows from (5.24) that 𝛿𝜔𝑏 is independent of the
correlation angle, 𝜃. Using the values Γ𝑟 = 1.2941 × 107 Hz, ∆𝑟 = 1 367 433.3

kHz, Γ3𝑑 = 1.0295 × 107 Hz, Γ3𝑝 = 3.0208 × 106 Hz, Γ3𝑠 = 1.0054 × 106 Hz,
Γ2𝑝 = 9.97624× 107 Hz, ∆3𝑝 = 3 241 327.3 kHz, ∆2𝑝 = 10 939 469.7 kHz [187],
frequency shifts are given in Table 5.3 for different angles 𝜃.

As follows from (5.24), the correction 𝛿𝜔𝑟 is zero at angles 𝜃 =

±1/2 arccos(1/3) + 𝜋𝑘 (𝑘 is an integer), instead of the magic angle 𝜃m =

arccos(1/
√

3). By solving the equation for the total correction 𝛿𝜔Σ(𝜃0) =

𝛿𝜔𝑟 + 𝛿𝜔2𝑝 = 0, one can find the angle at which it goes to zero (if it exists).
According to [32], the fraction of the cascade process is about 4% of all photons
detected by the detector. The corresponding value can be found as the ratio
of the partial transition probability to the level width: 𝑊4𝑝−3𝑠/Γ4𝑝 ≈ 0.0377,
𝑊4𝑝−3𝑑/Γ4𝑝 ≈ 0.0043, which were used to calculate the total contribution 𝛿𝜔Σ.

Repeating the calculations for the cascade transition through the state 3𝑑3/2

for the frequency 𝜈1/2, one obtains

𝛿𝜔𝑟 =
1

20
(1 − 3 cos 2𝜃)

Γ2
𝑟

4∆𝑟
Υ, (5.25)

𝛿𝜔𝑎 = 0,

𝛿𝜔𝑏 =
1

5

Γ2
𝑟

4∆𝑏
Υ.

Here, the resonant amplitude corresponds to 2𝑠𝐹=0
1/2 + 𝛾 → 4𝑝𝐹=1

1/2 → 3𝑑3/2 +

𝛾 → 2𝑝1/2 + 𝛾 → 1𝑠1/2 + 𝛾 and nonresonant amplitudes are related to i)
2𝑠𝐹=0

1/2 + 𝛾 → 4𝑝𝐹=1
3/2 → 3𝑑3/2 + 𝛾 → 2𝑝1/2 + 𝛾 → 1𝑠1/2 + 𝛾, ∆𝑟 ≡ 𝐸4𝑝𝐹=1

3/2
−

𝐸4𝑝𝐹=1
1/2

and ii) 2𝑠𝐹=0
1/2 + 𝛾 → 4𝑝𝐹=1

1/2 → 3𝑑3/2 + 𝛾 → 2𝑝3/2 + 𝛾 → 1𝑠1/2 + 𝛾 →

1There is no decay to the 3𝑝3/2 state.
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Table 5.3. Numerical values of nonresonant shifts and the total contribution
𝛿𝜔Σ multiplied by the cascade fraction factor 𝑊4𝑝−𝑛𝑎𝑙𝑎/Γ4𝑝. The angle at which
the maximum (𝜃max), minimum (𝜃min) values are reached, and NR correction
at the "magic angle" (𝜃m) are given. The highlighted line shows the values of
the angle at which the total contribution is zero (𝜃0), if it exists, the cascade
fractions and the process under consideration. All values are given in kHz.
Angle 𝛿𝜔𝑟 + 𝛿𝜔3𝑝 (kHz) 𝛿𝜔𝑟 + 𝛿𝜔2𝑝 (kHz) 𝛿𝜔Σ (kHz)

2𝑠𝐹=0
1/2 → 4𝑝𝐹=1

1/2 → 3𝑠1/2 → 2𝑝1/2 → 1𝑠1/2; 𝜃0 = ±0.403619;
2𝑠𝐹=0

1/2 → 4𝑝𝐹=1
1/2 → 3𝑠1/2 → 3𝑝1/2 → 1𝑠1/2; 𝑊4𝑝−3𝑠/Γ4𝑝 ≈ 0.0377

𝜃min = 0 −3.388 −17.342 −0.781

𝜃max = 𝜋/2 61.587 52.008 4.282

𝜃m 39.942 28.898 2.595

2𝑠𝐹=0
1/2 → 4𝑝𝐹=1

1/2 → 3𝑑3/2 → 2𝑝1/2 → 1𝑠1/2; 𝜃0 = ±0.403605;
2𝑠𝐹=0

1/2 → 4𝑝𝐹=1
1/2 → 3𝑑3/2 → 3𝑝3/2 → 1𝑠1/2; 𝑊4𝑝−3𝑠/Γ4𝑝 ≈ 0.0043

𝜃min = 0 −0.339 −1.734 −9.× 10−3

𝜃max = 𝜋/2 6.164 5.203 4.9 × 10−2

𝜃m 3.997 2.890 3.0 × 10−2

2𝑠𝐹=0
1/2 → 4𝑝𝐹=1

1/2 → 3𝑠1/2 → 2𝑝3/2 → 1𝑠1/2
1;

𝜃0 = ±0.637414; 𝑊4𝑝−3𝑑/Γ4𝑝 ≈ 0.0377

𝜃min = 0 −− −21.679 −0.817

𝜃max = 𝜋/2 −− 43.343 1.634

𝜃m −− 21.675 0.817

2𝑠𝐹=0
1/2 → 4𝑝𝐹=1

1/2 → 3𝑑3/2 → 2𝑝3/2 → 1𝑠1/2;
2𝑠𝐹=0

1/2 → 4𝑝𝐹=1
1/2 → 3𝑑3/2 → 3𝑝3/2 → 1𝑠1/2; 𝑊4𝑝−3𝑑/Γ4𝑝 ≈ 0.0043

𝜃max = 0 −224.435 −74.460 −1.285

𝜃min = 𝜋/2 −218.192 −67.534 −1.229

𝜃m −220.274 −69.843 −1.247

1𝑠1/2 + 𝛾, ∆𝑏 ≡ 𝐸2𝑝3/2 − 𝐸2𝑝1/2, 𝐸3𝑝3/2 − 𝐸3𝑝1/2 decay channels. The numerical
values multiplied by a factor of 0.0043 according to the contribution of the
cascade in the transition frequency measurements in [32] are collected in the
second segment of Table 5.3. When the resonant channel is considered as passing
through the 2𝑝3/2(3𝑝3/2) state, numerical results are presented in the third and
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fourth segments of Table 5.3 (the corresponding graphs are presented in the
appendix of the paper [189]).

From the values given in the table, one can conclude that the contribution
of QIE due to the cascade is in general significant, but is suppressed by the
relative fraction of the cascade process in the total emission. Nevertheless, the
interfering links in the cascade process affect the absorption line profile at the
level of a few kilohertz. This asymmetry can be expressed through a nonreso-
nant correction to the transition frequency, defined here through the maximum
of the line profile (as the most probable value). These corrections do not vanish
at the magic angle, see Table 5.3. Practically, this means that the symmetriza-
tion procedure applied in [32] reduced the contribution of the cascading ECI to
the value estimated here for the magic angle, since an appropriate asymmetry
parameter was used. Although the 𝛿𝜔Σ value is within the experimental uncer-
tainties, a frequency shift at the kHz level can be expected for the "central"
value with the same uncertainty.

An analysis of the measurement of the transition frequency 𝜈1/2 was pre-
sented above as a demonstration. Similar calculations can be performed for the
transition frequency 𝜈3/2. Omitting for brevity the details of the calculations,
the numerical results are presented in Table 5.4.

In addition to the results above, it is necessary to point out the importance
of the QIE arising in cascade emission for measuring the frequencies of two-
photon transitions: 𝑛𝑖𝑠 + 2𝛾 → 𝑛𝑎𝑠/𝑛𝑎𝑑 → 1𝑠. Recently, the corresponding
calculations were performed and published in Ref. [190].

However, the main conclusion of this section, which follows from the analy-
sis of the cascade QIE, is that the Fano profile obtained by the cascade process
should be taken into account in the symmetrization procedure [32]. For exam-
ple, in order to best fit the experimental data, several parameters related to
the asymmetry of the line profile due to different processes should be used. The
asymmetry parameters do not necessarily depend equally on the angle and, in
principle, can be considered as independent of each other. In fact, it can be

2There is no decay to the 3𝑝3/2 state.
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Table 5.4. Numerical values of nonresonant shifts for given cascade transitions
corresponding to the frequency 𝜈3/2 = 𝐸4𝑝𝐹=1

3/2
−𝐸2𝑠𝐹=0

1/2
and the total contribution

𝛿𝜔Σ multiplied by the factor 𝑊4𝑝−𝑛𝑙/Γ4𝑝. The designations are the same as in
Table 5.3. All values are in kHz.
Angle 𝛿𝜔𝑟 + 𝜔3𝑝 (kHz) 𝛿𝜔𝑟 + 𝜔2𝑝 (kHz) 𝜔Σ (kHz)

2𝑠𝐹=0
1/2 → 4𝑝𝐹=1

3/2 → 3𝑠1/2 → 2𝑝1/2 → 1𝑠1/2;
2𝑠𝐹=0

1/2 → 4𝑝𝐹=1
3/2 → 3𝑠1/2 → 3𝑝1/2 → 1𝑠1/2; 𝑊4𝑝−3𝑠/Γ4𝑝 ≈ 0.0377

𝜃max = 0 39.954 28.902 2.596

𝜃min = 𝜋/2 7.446 −5.780 6.3 × 10−2

𝜃m 11.058 −1.927 0.344

2𝑠𝐹=0
1/2 → 4𝑝𝐹=1

3/2 → 3𝑠1/2 → 2𝑝3/2 → 1𝑠1/2
2; 𝜃0 = 0.528655;

𝜃max = 0 −− 21.679 0.817

𝜃min = 𝜋/2 −− −13.006 −0.490

𝜃m −− −9.152 −0.345

2𝑠𝐹=0
1/2 → 4𝑝𝐹=1

3/2 → 3𝑑3/2 → 2𝑝1/2 → 1𝑠1/2; 𝜃0 = 0.651478;
2𝑠𝐹=0

1/2 → 4𝑝𝐹=1
3/2 → 3𝑑3/2 → 3𝑝1/2 → 1𝑠1/2; 𝑊4𝑝−3𝑠/Γ4𝑝 ≈ 0.0043

𝜃max = 0 9.571 8.836 7.9 × 10−2

𝜃min = 𝜋/2 −106.438 −114.926 −0.952

𝜃m −16.235 −18.690 −0.150

2𝑠𝐹=0
1/2 → 4𝑝𝐹=1

3/2 → 3𝑑3/2 → 2𝑝3/2 → 1𝑠1/2;
2𝑠𝐹=0

1/2 → 4𝑝𝐹=1
3/2 → 3𝑑3/2 → 3𝑝3/2 → 1𝑠1/2; 𝑊4𝑝−3𝑠/Γ4𝑝 ≈ 0.0043

𝜃max = 0 −37.927 −6.192 −0.190

𝜃min = 𝜋/2 −153.437 −129.889 −1.218

𝜃m −63.665 −33.709 −0.419

stated that modern spectroscopic experiments represent a frontier leading to
the next generation of experiments in which the problem of resonance approx-
imation will play a crucial role.

As a consequence, consideration of the cascade process affecting the deter-
mination of the absorption transition frequency shows the inseparability of the
absorption and emission processes in describing the line profile beyond the res-
onance approximation. The "central" value can be expected to be shifted at the
kHz level. Summarising the results of this study, it can be seen that the photon
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scattering process used in the [32] experiment is quite complex and should in-
clude, with necessity, an analysis of the observed asymmetry of the line profile.
This asymmetry is caused not only by the effect of quantum interference at res-
onant absorption, but also by cascade emission processes. Assuming the need
to increase the accuracy of the experiment (e.g., for the precise determination
of physical constants), the analysis of cascade processes will be increasingly
required for experiments of the type [32] (when all radiation is detected). How-
ever, for the measured 2𝑠− 4𝑝 line in the experiment [32], one can distinguish
a case that is not affected by the QIE in the cascade. The main contribution
to the emission comes from the 4𝑝− 1𝑠 emission line, which lacks the cascade.
Hence, this scattering channel is the preferred one for determining the transition
frequency. An appropriate experiment can be performed by recording emitted
photons with a certain energy equal to 4𝑝 − 1𝑠. Such experiments should be
more accurate.

5.6. Application to muon hydrogen spectroscopy

Following the analyses in 5.2 and 5.3, here we consider QIE in the framework of
one-photon fluorescence spectroscopy of muonic hydrogen using the example of
the 2𝑠𝐹𝑖=0,1

1/2 → 2𝑝𝐹𝑎

𝑗𝑎
transitions. In this particular case, nonresonant corrections

to the transition frequencies arise due to interference between 2𝑝𝐹𝑟

𝑗𝑟
sublevels

(states of fine and hyperfine structure), for which dipole (according to the se-
lection rules) transitions 2𝑠𝐹𝑖=0,1

1/2 → 2𝑝𝐹𝑎

𝑗𝑎
and 2𝑠𝐹𝑖=0,1

1/2 → 2𝑝
𝐹𝑎′
𝑗𝑎′

are possible,
𝑗𝑎′𝐹𝑎′ ̸= 𝑗𝑎𝐹𝑎. The physical process described here includes one-photon scatter-
ing, see 2.1. The hyperfine states of muonic hydrogen are separated by several
hundred GHz [191–193] and have line widths of several tens of GHz [194]. In
particular, the natural widths 2𝑝 of the fine and hyperfine sublevels are roughly
equivalent: Γ2𝑝𝐹=1

3/2
≈ Γ2𝑝𝐹=1

1/2
≈ Γ2𝑝𝐹=2

3/2
≈ Γ2𝑝𝐹=0

1/2
= 116.49 × 109 s−1 or 18.54

GHz. The energies of the atomic states of muonic hydrogen used are listed in
Table 5.5.

As in the case discussed in section 5.2, the description of one-photon scat-
tering on muon hydrogen is related to the geometry of the experiment when the
polarisation vector 𝑒1 of the incident photon is fixed. Then the NR correction
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Table 5.5. Energies of atomic states of muonic hydrogen in meV (10−3 eV) and
Hz. All values are borrowed from [194].

State meV Hz
1𝑠𝐹=0

1/2 −2047.75 −4.95144 × 1014

1𝑠𝐹=1
1/2 −1865.3 −4.51028 × 1014

2𝑠𝐹=0
1/2 −244.37 −5.90804 × 1013

2𝑠𝐹=1
1/2 −221.532 −5.35662 × 1013

2𝑝𝐹=0
1/2 −30.9524 −7.48426 × 1012

2𝑝𝐹=1
1/2 −23.3505 −5.64613 × 1012

2𝑝𝐹=1
3/2 −18.7182 −4.52604 × 1012

2𝑝𝐹=2
3/2 −15.6775 −3.7908 × 1012

can be found to depend on the angle 𝜃 between the vector 𝑒1 and the direction
of emitted photon 𝑛𝑘2. Table 5.6 collects the results for the NR correction to
the transition frequency 2𝑠𝐹𝑖=0, 1

1/2 → 2𝑝𝐹𝑎

𝑗𝑎
for different final states and angles

𝜃 = 0, 𝜋/2.
Thus, for muonic hydrogen, the effect of quantum interference plays a minor

role (it is at the level of experimental error [30, 31]) and cannot be the source
of the so-called "proton radius puzzle" [29], see also [50]. Nevertheless, this
systematics requires careful evaluation and amounts, as the result is close to
the sixth-order QED corrections [195].

5.7. Spectroscopy of the 3He isotope

The interest in the two-electron helium-3 atom, 3He, as well as in 4He, is pri-
marily due to the estimation of the rms charge radii of the nuclei and the
present discrepancy between experimental results and theory for the transition
frequencies, see, e.g., [196–198]. In this section an analysis of NR effects is pre-
sented with respect to the experiment [196], where transitions between different
hyperfine sublevels of the atom were observed.

Following the work of [196], the atomic level of the helium isotope is labelled
as follows: 𝑛𝜅𝐿𝐹

𝐽 , where 𝑛 is the principal quantum number and 𝜅 = 2𝑆 + 1 is
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Table 5.6. The partial contributions 𝛿NR(𝑖 → 𝑎[𝑎′]) to the total correction for
the singlet (𝐹𝑖 = 0) and triplet (𝐹𝑖 = 1) lines 𝑖 → 𝑎 arising from interference
with the 𝑖→ 𝑎′ transition in the muon hydrogen atom. The angle between the
polarisation vector of the incident photon and the propagation vector of the out-
going photon is denoted 𝜃, which corresponds to a type II experiment according
to section 5.2, the energy splitting is defined as ∆ ≡ 𝐸𝑛𝑎𝑙𝑎𝑗𝑎′𝐹𝑎′ −𝐸𝑛𝑎𝑙𝑎𝑗𝑎𝐹𝑎

. Re-
sults are presented for two different cases: 1) when the final states are assumed
to be fixed; 2) summation over all resolved final states is performed. The cases
independent of 𝜃 are given without specifying the angle.

𝑖 𝑎 𝑎′ 𝑓 ∆, Hz 𝛿NR(𝑖→ 𝑎[𝑎′]), Hz 𝛿NR(𝑖→ 𝑎[𝑎′]), meV

2𝑠𝐹𝑖=0
1/2 2𝑝𝐹𝑎=1

3/2 2𝑝
𝐹𝑎′=1
1/2 1𝑠

𝐹𝑓=0

1/2 −1.12009 × 1012 −3.71 × 107 −1.53 × 10−4

− − − 1𝑠
𝐹𝑓=1

1/2 7.41 × 107 3.06 × 10−4

− − − 2𝑠
𝐹𝑓=0

1/2 −3.60 × 107 −1.49 × 10−4

− − − 2𝑠
𝐹𝑓=1

1/2 7.18 × 107 2.97 × 10−4

− − −
∑︀

𝑛=1,2
𝐹𝑓=0,1

𝑛𝑠
𝐹𝑓

1/2, 𝜃 = 0 7.40 × 107 3.06 × 10−4

− − −
∑︀

𝑛=1,2
𝐹𝑓=0,1

𝑛𝑠
𝐹𝑓

1/2, 𝜃 = 𝜋
2 −1.94 × 107 −8.02 × 10−5

2𝑠𝐹𝑖=1
1/2 2𝑝𝐹𝑎=2

3/2 2𝑝
𝐹𝑎′=1
3/2 1𝑠

𝐹𝑓=1

1/2 , 𝜃 = 0 −7.35238 × 1011 2.63 × 107 1.09 × 10−4

− − − 1𝑠
𝐹𝑓=1

1/2 , 𝜃 = 𝜋
2 −7.28 × 106 −3.01 × 10−5

− − − 2𝑠
𝐹𝑓=1

1/2 , 𝜃 = 0 2.58 × 107 1.07 × 10−4

− − − 2𝑠
𝐹𝑓=1

1/2 , 𝜃 = 𝜋
2 −7.13 × 107 −2.95 × 10−4

− − −
∑︀

𝑛=1,2
𝑛𝑠

𝐹𝑓=1

1/2 , 𝜃 = 0 2.63 × 107 1.09 × 10−4

− − −
∑︀

𝑛=1,2
𝑛𝑠

𝐹𝑓=1

1/2 , 𝜃 = 𝜋
2 −7.27 × 106 −3.01 × 10−5

2𝑠𝐹𝑖=1
1/2 2𝑝𝐹𝑎=2

3/2 2𝑝
𝐹𝑎′=1
1/2 1𝑠

𝐹𝑓=1

1/2 , 𝜃 = 0 −1.85532 × 1012 2.01 × 107 8.31 × 10−5

− − − 1𝑠
𝐹𝑓=1

1/2 , 𝜃 = 𝜋
2 −5.55 × 106 −2.29 × 10−5

− − − 2𝑠
𝐹𝑓=1

1/2 , 𝜃 = 0 1.91 × 107 7.90 × 10−5

− − − 2𝑠
𝐹𝑓=1

1/2 , 𝜃 = 𝜋
2 −5.28 × 106 2.18 × 10−5

− − −
∑︀

𝑛=1,2
𝑛𝑠

𝐹𝑓=1

1/2 , 𝜃 = 0 2.00 × 107 8.27 × 10−5

− − −
∑︀

𝑛=1,2
𝑛𝑠

𝐹𝑓=1

1/2 , 𝜃 = 𝜋
2 −5.54 × 106 2.29 × 10−5

2𝑠𝐹𝑖=1
1/2 2𝑝𝐹𝑎=2

3/2 2𝑝
𝐹𝑎′=0
1/2 1𝑠

𝐹𝑓=1

1/2 , 𝜃 = 0 −3.69345 × 1012 6.30 × 106 2.61 × 10−5

− − − 1𝑠
𝐹𝑓=1

1/2 , 𝜃 = 𝜋
2 −1.74 × 106 −7.20 × 10−6

− − − 2𝑠
𝐹𝑓=1

1/2 , 𝜃 = 0 5.68 × 106 2.35 × 10−5

− − − 2𝑠
𝐹𝑓=1

1/2 , 𝜃 = 𝜋
2 −1.57 × 106 −6.49 × 10−6

− − −
∑︀

𝑛=1,2
𝑛𝑠

𝐹𝑓=1

1/2 , 𝜃 = 0 6.28 × 106 2.60 × 10−5

− − −
∑︀

𝑛=1,2
𝑛𝑠

𝐹𝑓=1

1/2 , 𝜃 = 𝜋
2 −1.73 × 106 −7.15 × 10−6
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the level multiplicity (𝑆 is the total spin momentum), 𝐿 is the total orbital mo-
mentum of the two electrons, 𝐽 is the total angular momentum of the electrons
and 𝐹 is the total angular momentum of the atom (𝐹 = 𝐽 + 𝐼, where 𝐼 is the
spin of the nucleus (equal to 1/2 for helium-3). In the case of the 23𝑆 − 23𝑃

transition, quantum interference arises due to transitions from the 23𝑆 state to
hyperfine components of the fine structure of the 23𝑃 level. Since the experi-
ment [196] concerns a one-electron excitation, the use of the expressions (5.12),
(5.13), and (5.14) is justified in the evaluation of the NR correction for 3He.
The latter arises as

𝛿NR(23𝑆𝐹𝑖
1 − 23𝑃 𝐹𝑟

𝐽𝑟
) =

∑︁
𝐽𝑎′𝐹𝑎′ ̸=𝐽𝑎𝐹𝑎

𝛿NR(23𝑆𝐹𝑖
1 → 23𝑃 𝐹𝑎

𝐽𝑎
[23𝑃

𝐹𝑎′
𝐽𝑎′

]), (5.26)

where 𝛿NR(23𝑆𝐹𝑖
1 → 23𝑃 𝐹𝑎

𝐽𝑎
[23𝑃

𝐹𝑎′
𝐽𝐽𝑎′

]) denotes the partial contributions from the
interference of one-photon transitions to sublevels with 𝐽𝑎𝐹𝑎 and 𝐽𝑎′𝐹𝑎′.

The energies of 3He from the [199] and natural level widths taken from the
NIST Atomic Spectra Database3 were used to calculate the corresponding NR
corrections, listed in Table 5.7.

Table 5.7. Energies in MHz and natural widths in Hz for some states of 3He.
State Energy, MHz Level width, Hz

23𝑃
𝐹=1/2
0 5068832675.730 1625926.899

23𝑃
𝐹=1/2
1 5068804582.860

1626002.179
23𝑃

𝐹=3/2
1 5068800070.670

23𝑃
𝐹=3/2
2 5068805250.892

1625932.103
23𝑃

𝐹=5/2
2 5068798289.789

Restricting ourselves to the second type of experiment, see section 5.3, all
possible 23𝑆−23𝑃 transitions are considered below, and the NR corrections are
evaluated according to the expressions (5.12), (5.13), and (5.14). The numerical
results are presented in the form of graphs shown in Fig. 5.2.

Seven dipole transitions were observed in the 23𝑆−23𝑃 transition (the inten-
sity of two lines is strongly suppressed due to the dominance of the hyperfine in-

3https:// www.nist.gov/pml/atomic-spectra-database
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Figure 5.2. NR corrections in kHz for the [196] transitions studied in the exper-
iment as a function of the angle between the polarisation vector of the absorbed
photon and the propagation vector of the emitted photon, 𝑒1, 𝑛𝑘2

. The graphs
corresponding to 23𝑆

3/2
1 → 23𝑃

1/2
0 and 23𝑆

1/2
1 → 23𝑃

1/2
0 are omitted due to

their smallness.

teraction over the fine structure interaction [200]) [196]. It follows from the anal-
ysis that for the transitions 23𝑆

𝐹𝑖=3/2
1 → 23𝑃

𝐹𝑎=1/2
0 and 23𝑆

𝐹𝑖=1/2
1 → 23𝑃

𝐹𝑎=1/2
0

the NR corrections are negligible (therefore the corresponding plots are omit-
ted). As before, all values of 𝛿NR are proportional to the factor 1 + 3 cos 2𝜃, so
the intersection of all curves occurs at values of the angle equal to the magic
angle. Comparing the values of the NR corrections presented in Fig. 5.2 with
the Zeeman shift and the corresponding experimental errors (about 0.5 and 2

kHz, respectively, see [196]), one can find that nonresonant effects lead to a
comparable shift.

Using the energy values for the hyperfine components of the fine structure
of the 23𝑆 and 23𝑃 levels, the so-called "centroid" energy can be obtained.
According to [196] it is given by the expression:

𝐸 (𝑛𝜅𝐿) =

∑︀
𝐽,𝐹 (2𝐹 + 1)𝐸

(︀
𝑛𝜅𝐿𝐹

𝐽

)︀
(2𝐼 + 1) (2𝑆 + 1) (2𝐿+ 1)

. (5.27)

Performing the corresponding averaging to obtain the "centroids" of the levels
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23𝑆, 23𝑃 , the transition frequency is determined by the expression:

∆𝐸
3He
centr ≡ 𝐸

(︀
23𝑃

)︀
− 𝐸

(︀
23𝑆
)︀

= (5.28)

1

6

{︃
1

3

[︁
𝜔
(︁

23𝑃
1/2
1 − 23𝑆

1/2
1

)︁
+ 𝜔

(︁
23𝑃

1/2
0 − 23𝑆

1/2
1

)︁
+ 𝜔

(︁
23𝑃

1/2
1 − 23𝑆

3/2
1

)︁
+

𝜔
(︁

23𝑃
1/2
0 − 23𝑆

3/2
1

)︁ ]︁
+

4

3

[︁
𝜔
(︁

23𝑃
3/2
2 − 23𝑆

1/2
1

)︁
+ 𝜔

(︁
23𝑃

3/2
1 − 23𝑆

3/2
1

)︁ ]︁
+

2𝜔
(︁

23𝑃
5/2
2 − 23𝑆

3/2
1

)︁}︃
= 276 702 827 204 .8 kHz,

where 𝜔
(︁

23𝑃 𝐹𝑎

𝐽𝑟
− 23𝑆𝐹𝑖

𝐽𝑖

)︁
denotes the frequency of the partial 23𝑃 𝐹𝑎

𝐽𝑟
− 23𝑆𝐹𝑖

𝐽𝑖

transition. Further, assuming that each of the seven values of 𝜔 included in
(5.28) incorporates the corresponding NR correction 𝛿NR, the total "centroid"
energy shift can be calculated. The corresponding correction 𝛿centr is equal to

𝛿centr ≡
1

6

{︃
1

3

[︁
𝛿NR

(︁
23𝑃

1/2
1 − 23𝑆

1/2
1

)︁
+ 𝛿NR

(︁
23𝑃

1/2
0 − 23𝑆

1/2
1

)︁
(5.29)

+𝛿NR

(︁
23𝑃

1/2
1 − 23𝑆

3/2
1

)︁
+ 𝛿NR

(︁
23𝑃

1/2
0 − 23𝑆

3/2
1

)︁ ]︁
+

+
4

3

[︁
𝛿NR

(︁
23𝑃

3/2
2 − 23𝑆

1/2
1

)︁
+ 𝛿NR

(︁
23𝑃

3/2
1 − 23𝑆

3/2
1

)︁ ]︁
+

2𝛿NR

(︁
23𝑃

5/2
2 − 23𝑆

3/2
1

)︁}︃
,

where each value of 𝛿NR for the specified partial transition can be calculated
according to the expression (5.14) in section 5.1.

It is easy to notice that 𝛿centr, as well as partial NR corrections (5.26) are
equal to zero at the "magic angle". Being much lower than the relativistic and
QED corrections, the values of 𝛿NR are close to 1 kHz (see Fig. 5.2) and approach
the contribution from the polarisability of the nucleus, which is −1.1 kHz for the
"centroid" energy, 23𝑃 − 23𝑆, see [196], "screening" the latter. It is important
to note that the value of 𝛿NR also depends on experimental parameters such as
the density of atoms in the beam, blackbody radiation, etc., see below.
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Chapter 6.

Two-photon spectroscopy of
hydrogen and helium

Following the analysis of nonresonant effects in one-photon spectroscopy de-
scribed in 5.2, special attention should be paid to the interference arising in the
measurement of the two-photon frequency of 2𝑠→ 𝑛𝑠/𝑛𝑑 (𝑛 = 4, 6, 8, 12 is the
principal quantum number) transitions in the hydrogen atom. In such experi-
ments, atoms in the beam are populated into the 2𝑠𝐹𝑖=1

1/2 state and then excited
to the 𝑛𝑠𝐹𝑎=1

1/2 or 𝑛𝑑𝐹𝑎=2
3/2 state by absorption of two polarised laser photons prop-

agating in opposite directions. The detection of the excited 𝑛𝑠/𝑛𝑑 fraction of
atoms can be observed by its fluorescence (i.e., decay to the 2𝑝 state) [201] or
by the decreasing registration of atoms in the 2𝑠 state [202, 203].In both cases
there is interference between different fine sublevels of 𝑛𝑑𝐹𝑎=2

3/2 and 𝑛𝑑
𝐹𝑎′=2
5/2 ,

which leads to asymmetry of the line profile. It has been shown in [201] that
detection of the excited 𝑛𝑠/𝑛𝑑 fraction of atoms by their fluorescence has a
much higher potential accuracy than experiments to control the extinction rate
of metastable states [204, 205]. The latter is limited by the large background
of unexcited 2𝑠 atoms. Recently, it has been shown in [107] that nonresonant
corrections to the frequency of the 2𝑠𝐹𝑖=1

1/2 − 𝑛𝑑𝐹𝑎=2
3/2(5/2) transition measured in

experiments like [204, 205] reach the level of several kHz. Their combination
with the extrapolation of the hyperfine structure performed in [187] turns out
to be important for the determination of the proton charge radius 𝑟𝑝 and the
Rydberg constant 𝑅∞ (although the NR corrections contribute in the following
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order with respect to HFS).
This part of the thesis was carried out with the inseparable participation of

T.A. Zalialiutdinov and A.A. Anikin.

6.1. Amplitude and cross section of two-photon
scattering followed by one-photon emission

In 5.2, it was shown that for certain geometries the influence of NR effects in
one-photon spectroscopy can be significantly reduced [43, 49, 52]. Developing
this approach, here expressions for the cross section of the corresponding res-
onant two-photon scattering on the hydrogen atom are presented, taking into
account the fine and hyperfine structure of the levels. As before, these expres-
sions depend on the directions and polarisations of the incident (absorbed) and
outgoing (emitted) photons. Therefore, the different correlations between di-
rections and polarisations should be considered within the framework of the
three-photon scattering process (two photons are absorbed and one is emitted).
The results of the evaluation are then used to obtain NR corrections to the two-
photon absorption cross section and to determine the frequencies of 2𝑠−𝑛𝑠/𝑛𝑑
transitions.

In full analogy with the results of section 5.2, such a scattering process is
described by the Feynman diagram shown in Fig. 6.1, which corresponds to the
process of two-photon absorption by an atom followed by emission of a photon.

The corresponding 𝑆-matrix element is

𝑆
(3)
𝑓𝑖 = (−i𝑒)3

∫︁
𝑑4𝑥3𝑑

4𝑥2𝑑
4𝑥1𝜓𝑓(𝑥3)𝛾𝜇3

𝐴*
𝜇3

(𝑥3) × (6.1)

𝑆(𝑥3, 𝑥2)𝛾𝜇2
𝐴𝜇2

(𝑥2)𝑆(𝑥2, 𝑥1)𝛾𝜇1
𝐴𝜇1

(𝑥1)𝜓𝑖(𝑥1),

with all notations given in 2.1. Integration over the time variables in (6.1) leads
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Figure 6.1. Two-photon excitation process of a bound electron. A wavy line
indicates absorption or emission of a photon. The double solid line denotes the
bound electron; 𝜔1, 𝜔2 are the frequencies of the absorbed photons, and 𝜔3 is
the frequency of the emitted photon. The indices 𝑖, 𝑛, 𝑘, 𝑓 correspond to the
initial, two intermediate, and final states of the electron, respectively. According
to Feynman’s rules, there are 5 more diagrams related to photon permutations,
which are omitted here for brevity.

to the amplitude:

𝑈
(3)
𝑓𝑖 = 𝑒3

∑︁
𝑛𝑘

⟨𝑓 |𝛼𝐴*
𝑘3,𝑒3

|𝑛⟩⟨𝑛|𝛼𝐴𝑘2,𝑒2|𝑘⟩⟨𝑘|𝛼𝐴𝑘1,𝑒1|𝑖⟩
(𝐸𝑛 − 𝐸𝑓 − 𝜔3)(𝐸𝑘 − 𝐸𝑖 − 𝜔2)

+(5 terms from photon permutations). (6.2)

The permutations in (6.2) should be understood as all possible permutations
of the indices 1, 2, 3 denoting the corresponding photons. Then, the differential
cross section of the scattering process is defined by the expression:

𝑑𝜎𝑓𝑖
𝑑𝑛𝑘3

= 2𝜋𝛿(𝐸𝑓 − 𝐸𝑖 + 𝜔3 − 𝜔1 − 𝜔2)
⃒⃒⃒
𝑈

(3)
𝑓𝑖

⃒⃒⃒2 𝜔2
2𝑑𝜔2

(2𝜋)3
𝜔2
3𝑑𝜔3

(2𝜋)3
. (6.3)

Here 𝑛𝑘 denotes the solid angle in 𝑘-space for the corresponding photon. In
the framework of the nonrelativistic limit and the dipole approximation (in the
length form, see, e.g., [84])

𝑈
(3)
𝑓𝑖 = 𝑒3(2𝜋)3/2

√
𝜔1𝜔2𝜔3

∑︁
𝑛𝑘

⟨𝑓 |𝑒*3𝑟|𝑛⟩⟨𝑛|𝑒2𝑟|𝑘⟩⟨𝑘|𝑒1𝑟|𝑖⟩
(𝐸𝑛 − 𝐸𝑓 − 𝜔3)(𝐸𝑘 − 𝐸𝑖 − 𝜔2)

+ . . . . (6.4)

The case when two incident photons are absorbed into the resonant state 𝑛,
i.e., 𝜔1+𝜔2 = 𝐸𝑛−𝐸𝑖, is of interest. In the resonance approximation, this inter-
mediate state gives the dominant contribution, and the remaining nonresonant
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terms in the scattering amplitude can be omitted. Such an approximation is
justified by the fact that the corresponding nonresonant corrections are beyond
the accuracy of the experiments [84]. Then, assuming that the frequencies of
two incident laser photons are equal, i.e., 𝜔1 = 𝜔2 ≡ 𝜔, the cross section (6.3)
with the scattering amplitude (6.4) can be reduced to

𝑑𝜎𝑓𝑖
𝑑𝑛𝑘3

=
𝑒6

(2𝜋)5
𝜔6(𝐸𝑖 + 2𝜔 − 𝐸𝑓)3

⃒⃒⃒⃒
⃒∑︁

𝑛𝑘

⟨𝑓 |𝑒*3𝑟|𝑛⟩
𝐸𝑛 − 𝐸𝑖 − 2𝜔 − i

2Γ𝑛

× (6.5)(︃
⟨𝑛|𝑒2𝑟|𝑘⟩⟨𝑘|𝑒1𝑟|𝑖⟩
𝐸𝑛 − 𝐸𝑖 − 𝜔

+
⟨𝑛|𝑒1𝑟|𝑘⟩⟨𝑘|𝑒2𝑟|𝑖⟩
𝐸𝑘 − 𝐸𝑛 + 𝜔

)︃⃒⃒⃒⃒
⃒
2

,

where the divergent denominator regularisation procedure and the relation
⟨𝑎|p|𝑏⟩ = i(𝐸𝑎 − 𝐸𝑏)⟨𝑎|r|𝑏⟩ [8] were used. The appearance of the imaginary
part leads to the formation of the absorption line profile [8]. The regularisation
in the case of two-photon absorption repeats the "one-photon calculations", see
section 2.2, and allows nonresonant extension, see section 2.3.

To introduce the leading-order nonresonant correction for the cross section
given by the expression (6.5), in the sum over 𝑛 the nearest-energy terms should
be considered, i.e., in the case of two neighbouring states it is 𝑛 = 𝑎 (the main
resonant term to which the NR correction applies) and 𝑛 = 𝑎′ (the one closest
in energy to the resonant state) [33, 35, 37, 43]. The set of quantum numbers
for the 𝑎′ state has to permit the absorption of two electric dipole photons
(as for the resonance state) and hence has to be allowed by the two-photon
selection rules. Then, using the same approximations as for the one-photon
correction, i.e., neglecting the quadratic nonresonant contribution (see (5.10)),
the dominant contribution can be found quite simply.

Further, the standard set of quantum numbers for atomic states in (6.5) is
assumed: the principal quantum number 𝑛, the electron orbital momentum 𝑙,
the electron total angular momentum 𝑗, the atomic angular momentum 𝐹 and
its projection 𝑀𝐹 . After summing over the projections of the total momentum
in the final state and averaging over the projections of the initial state [84], the
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cross section has the form:

𝑑𝜎𝑓𝑖
𝑑𝑛𝑘3

=
𝑒6

2𝐹𝑖 + 1

[︃
𝑓
(2𝛾)
𝑓𝑖 (𝑎, 𝑎)

(𝜔0 − 2𝜔)2 + Γ2
𝑎

4

+
2𝑓

(2𝛾)
𝑓𝑖 (𝑎, 𝑎′)(𝜔0 − 2𝜔)(︀

(𝜔0 − 2𝜔)2 + Γ2
𝑎

4

)︀(︀
𝜔0 − 2𝜔 + ∆

)︀]︃,(6.6)

where ∆ = 𝐸𝑎′ − 𝐸𝑎 and

𝑓
(2𝛾)
𝑓𝑖 (𝑎, 𝑎′) =

∑︁
𝑀𝐹𝑖

𝑀𝐹𝑓

𝑇𝑓𝑎𝑖

(︁𝜔0

2

)︁
𝑇 *
𝑓𝑎′𝑖

(︁𝜔0

2

)︁
, (6.7)

𝑇𝑓𝑛𝑖(𝜔) = 𝜔3(𝐸𝑖 − 𝐸𝑓 + 2𝜔)3/2
∑︁
𝑀𝐹𝑛

⟨𝑓 |𝑒*3𝑟|𝑛⟩ × (6.8)

∑︁
𝑘

[︃
⟨𝑛|𝑒2𝑟|𝑘⟩⟨𝑘|𝑒1𝑟|𝑖⟩
𝐸𝑎 − 𝐸𝑖 − 𝜔

+
⟨𝑛|𝑒1𝑟|𝑘⟩⟨𝑘|𝑒2𝑟|𝑖⟩
𝐸𝑎 − 𝐸𝑛 + 𝜔

]︃
.

The coefficients (6.7), as before, determine the angular dependences. In the
nonrelativistic limit, the matrix elements in (6.6) do not depend explicitly on
the photon directions 𝑛𝑘3

, 𝑛𝑘2
and 𝑛𝑘1

. The dependence on these arises through
the transversality conditions for photons. To completely eliminate the first-order
Doppler effect, two opposing Gaussian laser beams are used to excite the 𝑛𝑠/𝑛𝑑
states [202, 203]. Thus, without restriction of generality, one can assume that
in the experiment the incident photons propagate in opposite directions with
fixed polarisation vectors 𝑒1 and 𝑒2, and the emitted photon has polarisation
𝑒3 and fixed direction 𝑛𝑘3

. Then, denoting the angles between any pair of two
vectors as 𝜃𝑖𝑗 (𝑖, 𝑗 = 1, 2, 3), the interference contribution to (6.6) corresponds
to a situation similar to experiments based on the one-photon scattering process
(the angle between incident photons can be set equal to 𝜋 or zero) [145,146].

In the resonance approximation (i.e., keeping only the first term in Eq. (6.6),
it immediately follows from the extremum condition 𝜔res = 𝜔max = 𝜔𝑎𝑖/2 =

(𝐸𝑛𝑎𝑙𝑎𝑗𝑎𝐹𝑎
−𝐸𝑛𝑖𝑙𝑖𝑗𝑖𝐹𝑖

)/2. However, retaining the interference term in (6.6), from
the extremum condition for the cross section as a function of 𝜔, 𝜔max is obtained
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equal to

𝜔max = (𝜔𝑎𝑖 − 𝛿NR)/2, (6.9)

𝛿NR =

∑︀
𝑓

𝑓
(2𝛾)
𝑓𝑖 (𝑎, 𝑎′)∑︀

𝑓

𝑓
(2𝛾)
𝑓𝑖 (𝑎, 𝑎)

Γ2
𝑎

4∆
.

In a similar way to the one-photon scattering case discussed in 5.2, the NR
correction (6.9) is represented as a dominant contribution following from the
series expansion of Γ𝑎/∆ when this parameter is small. Angular correlations are
obtained from the relation 𝑓 (2𝛾)𝑓𝑖 (𝑎, 𝑎′)/𝑓

(2𝛾)
𝑓𝑖 (𝑎, 𝑎) and represent the dependence

on the angles between each pair of vectors 𝑛𝑘1, 𝑒2 and 𝑒3.

6.2. Two-photon spectroscopy of hydrogen

In this section, specific examples of NR corrections to the frequencies of
two-photon 2𝑠 − 𝑛𝑠/𝑛𝑑 (𝑛 = 4, 6, 8, 12) transitions in the hydrogen atom
are discussed. Considering first the interference of 2𝑠𝐹𝑖=0

1/2 → 𝑛𝑠𝐹𝑎=0
1/2 and

2𝑠𝐹𝑖=1
1/2 → 𝑛𝑠𝐹𝑎=1

1/2 transitions it is assumed that the hyperfine structure of the
initial 2𝑠 state is resolvable in experiments [32,134,204,206,207]. According to
two-photon selection rules, electric dipole two-photon transitions with spin flip
2𝑠𝐹𝑖=0

1/2 → 𝑛𝑠𝐹𝑎=1
1/2 or 2𝑠𝐹𝑖=1

1/2 → 𝑛𝑠𝐹𝑎=0
1/2 are strongly suppressed by [122,124,125].

Therefore, interference with close 𝑛𝑑 states is only possible for the transitions
2𝑠𝐹𝑖=1

1/2 → 𝑛𝑠𝐹𝑎=1
1/2 and 2𝑠𝐹𝑖=1

1/2 → 𝑛𝑑
𝐹𝑎′=1
3/2 , 2𝑠𝐹𝑖=1

1/2 → 𝑛𝑑
𝐹𝑎′=2
3/2 , 2𝑠𝐹𝑖=1

1/2 → 𝑛𝑑
𝐹𝑎′=2
5/2 ,

2𝑠𝐹𝑖=1
1/2 → 𝑛𝑑

𝐹𝑎′=3
5/2 [22]. Then for the resonance 2𝑠𝐹𝑖=1

1/2 → 𝑛𝑠𝐹𝑎=1
1/2 one can set

𝑛𝑖𝑙𝑖 = 2𝑠, 𝑗𝑖 = 1/2, 𝐹𝑖 = 1, 𝑛𝑎𝑙𝑎 = 𝑛𝑠, 𝑛𝑎′𝑙𝑎′ = 𝑛𝑑 (𝑛𝑎 = 𝑛𝑎′ = 4, 6, 8, 12),
𝑗𝑎 = 1/2, 𝐹𝑎 = 1.

In experiments [145,146], the polarisations of laser photons 𝑒1 and 𝑒2 were
fixed parallel to each other. Then the NR correction (6.9), depends on only one
angle between the polarisation of the emitted photon 𝑒3 and one of the two
parallel vectors 𝑒1 or 𝑒2 . Summing over the polarisation 𝑒3 leads to a depen-
dence on the propagation direction vector 𝑛𝑘3. Denoting the angle between the
vectors 𝑒1 (or 𝑒2) and 𝑛𝑘3 by 𝜃, after the necessary calculations (for details see
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Eq. in [53]) one can find that for the frequency 2𝑠𝐹𝑖=1
1/2 → 𝑛𝑠𝐹𝑎=1

1/2 transition, the
correction (6.9) is proportional to (1 + 3 cos 𝜃). The corresponding numerical
results are presented in Fig. 6.2. As in the case of NR corrections to the fre-
quencies of the one-photon transition, there are "magic angles" at which the
correction (6.9) is zero: 𝜃 = 54.7∘ и 𝜃 = 125.3∘.
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Figure 6.2. NR corrections 𝛿NR/2 (in Hz) to measure the frequencies of
2𝑠𝐹𝑖=1

1/2 − 𝑛𝑠𝐹𝑎=1
1/2 (𝑛 = 4, 6, 8, 12) transitions in hydrogen as a function of the

angle between the polarisation vector 𝑒1 of the absorbed photon (or 𝑒2, since
in experiments 𝑒1|||𝑒2) and the propagation vector 𝑛𝑘3

of the emitted photon.

Recently, similar interference effects for measuring the frequency of the two-
photon 1𝑠 − 3𝑠 transition were studied in [146]. It was found that for the
two-photon laser-induced transition 1𝑠𝐹𝑖=1

1/2 → 3𝑠𝐹𝑎=1
1/2 NR correction due to

interference with four neighbouring transitions 1𝑠𝐹𝑎=1
1/2 → 3𝑑

𝐹𝑎′=1
3/2 , 1𝑠𝐹𝑖=1

1/2 →
3𝑑

𝐹𝑎′=2
3/2 , 1𝑠𝐹𝑖=1

1/2 → 3𝑑
𝐹𝑎′=2
5/2 and 1𝑠𝐹𝑖=1

1/2 → 3𝑑
𝐹𝑎′=3
5/2 is smaller than the experimental

uncertainty. The expression (6.9) can be easily extended to the case of 1𝑠𝐹𝑖=1
1/2 →

3𝑠
𝐹𝑎′=1
1/2 by substituting 2𝑠𝐹𝑖=1

1/2 ↔ 1𝑠𝐹𝑖=1
1/2 and 𝑛𝑎 = 𝑛𝑎′ = 3. Then the correction

can be found in the form:

𝛿NR(1𝑠𝐹𝑖=1
1/2 − 3𝑠𝐹𝑎=1

1/2 ) = −225.61(1 + 3 cos 2𝜃) Hz. (6.10)

The corresponding angular correlation is shown in Fig. 6.3.
For other transitions 2𝑠𝐹𝑖=0

1/2 → 𝑛𝑠𝐹𝑎=0
1/2 there is interference with 2𝑠𝐹𝑖=0

1/2 →
𝑛𝑑

𝐹𝑎′=2
3/2 and 2𝑠𝐹𝑖=0

1/2 → 𝑛𝑑
𝐹𝑎′=2
5/2 . The estimation results are presented in Fig. 6.4.
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Figure 6.3. NR correction 𝛿NR/2 to the transition frequency 1𝑠𝐹𝑖=1
1/2 → 3𝑠𝐹𝑎=1

1/2

in hydrogen (in Hz). The notations are the same as for Fig. 6.2.
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Figure 6.4. NR correction 𝛿NR/2 to 2𝑠𝐹𝑖=0
1/2 → 𝑛𝑠𝐹𝑎=0

1/2 (𝑛 = 4, 6, 8, 12) in Hz.
The same notations as in the previous graphs are used.

Estimates of NR corrections to the frequencies of 2𝑠𝐹𝑖=1
1/2 → 𝑛𝑑𝐹𝑎=2

3/2 (𝑛 =

4, 6, 8, 12) two-photon transitions taking into account the neighbouring 𝑛𝑑𝐹𝑎′=2
5/2

level can be carried out similarly. For this purpose in all expressions one should
set 𝑛𝑖𝑙𝑖 = 2𝑠, 𝑗𝑖 = 1/2, 𝐹𝑖 = 1, 𝑛𝑎𝑙𝑎 = 𝑛𝑎′𝑙𝑎′ = 𝑛𝑑 (𝑛𝑎 = 4, 6, 8, 12), 𝑗𝑎 = 3/2,
𝐹𝑎 = 2, 𝑗𝑎′ = 5/2,𝐹𝑎′ = 2. Unlike the previous cases, it turned out that the NR
corrections do not depend on the angle between the vectors 𝑛𝑘1, 𝑒2 and 𝑒3:

𝛿NR(2𝑠𝐹=1
1/2 − 4𝑑𝐹=2

3/2 ) = 967.75 Hz, (6.11)

𝛿NR(2𝑠𝐹=1
1/2 − 6𝑑𝐹=2

3/2 ) = 296.48 Hz, (6.12)

𝛿NR(2𝑠𝐹=1
1/2 − 8𝑑𝐹=2

3/2 ) = 127.31 Hz, (6.13)

𝛿NR(2𝑠𝐹=1
1/2 − 12𝑑𝐹=2

3/2 ) = 38.38 Hz. (6.14)
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In addition to the corrections (6.11)-(6.14) arising from the neighbouring
𝑛𝑑𝐹𝑎=2

3/2 and 𝑛𝑑
𝐹𝑎′=2
5/2 states, it is necessary to consider the interference with

the transitions 2𝑠𝐹𝑖=1
1/2 → 𝑛𝑑𝐹𝑎=2

3/2 and 2𝑠𝐹𝑖=1
1/2 − 𝑛𝑠

𝐹𝑎′=1
1/2 [53]. According to the

expression (6.9), one can write

𝛿NR(2𝑠𝐹𝑖=1
1/2 − 𝑛𝑑𝐹𝑎=2

3/2 ) =

∑︀
𝑗𝑓𝐹𝑓

𝑓nr(𝑛𝑑
𝐹𝑎=2
3/2 , 𝑛𝑠

𝐹𝑎′=1
1/2 )∑︀

𝑗𝑓𝐹𝑓

𝑓res(𝑛𝑑
𝐹𝑎=2
3/2 , 𝑛𝑑𝐹𝑎=2

3/2 )

Γ2
𝑛𝑑3/2

4∆′′′ , (6.15)

where ∆′′′ = 𝐸𝑛𝑑𝐹𝑎=2
3/2

− 𝐸
𝑛𝑠

𝐹𝑎′=1

1/2

. Then,

𝛿NR(2𝑠𝐹𝑖=1
1/2 − 4𝑑𝐹𝑎=2

3/2 ) = −232.602
1 + 3 cos 2𝜃

5 + 3 cos 2𝜃
Hz, (6.16)

𝛿NR(2𝑠𝐹𝑖=1
1/2 − 6𝑑𝐹𝑎=2

3/2 ) = 107.937
1 + 3 cos 2𝜃

5 + 3 cos 2𝜃
Hz, (6.17)

𝛿NR(2𝑠𝐹𝑖=1
1/2 − 8𝑑𝐹𝑎=2

3/2 ) = 68.697
1 + 3 cos 2𝜃

5 + 3 cos 2𝜃
Hz, (6.18)

𝛿NR(2𝑠𝐹𝑖=1
1/2 − 12𝑑𝐹𝑎=2

3/2 ) = 25.582
1 + 3 cos 2𝜃

5 + 3 cos 2𝜃
Hz. (6.19)

The total correction to the transition frequencies 2𝑠𝐹𝑖=1
1/2 → 𝑛𝑑𝐹𝑎=2

3/2 is de-
termined by the sum of the respective contributions: angle independent (6.11)-
(6.14) and angle dependent (6.16)-(6.19). The total frequency shifts 𝛿NR/2 are
shown in Fig. 6.5. The denominator in the expressions (6.11)-(6.14) is always
non-zero and positive, while the numerator still converts these corrections to
zero when 𝜃 equals the "magic angle".

In conclusion, the NR corrections arising from the differential cross section
disappear after integration over the angles, i.e., for the total cross section (when
the radiation is registered in the whole solid angle 4𝜋). However, this is true
only when the corrections depend on the angle. For example, integrating the
expression 1 + 3 cos 2𝜃 with sin 𝜃 from the Jacobian over the angle immediately
yields zero, while contributions like (6.11)-(6.14) are preserved. Integration over
the angle 𝜃 should be performed for the cross section and not the NR correction,
which leads, therefore, to the disappearance of the interference contribution (if
it is not constant) and a non-vanishing resonance term. The latter can be clearly
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Figure 6.5. The total frequency shift 𝛿NR/2 (in Hz) for the frequencies
2𝑠𝐹𝑖=1

1/2 − 𝑛𝑑𝐹𝑎=2
3/2 (𝑛 = 4, 6, 8, 12) transitions in hydrogen, see expressions

(6.11)-(6.14) and (6.16)-(6.19). All notations are similar to Fig. 6.4.

seen from the expressions (6.16)-(6.19), where the denominator represents the
non-zero contribution of the resonance term. In addition, it is worth noting that
in the experiments there is no strictly defined direction of photon departure;
the radiation is registered in some solid angle. This circumstance can be taken
into account by integrating the corresponding expressions (in the case of the
formulas (6.16)-(6.19), separately the numerator and separately the denomina-
tor with subsequent dividing) according to the experimental conditions, which
eventually leads to a non-zero result for the NR corrections.

6.3. Experiments registering a decrease in the
population density of the 2𝑠 state

There is another type of spectroscopic experiments using the two-photon ab-
sorption process and based on the quenching rate of the 2𝑠 state [107,204–207].
For such experiments, the initially prepared metastable state of hydrogen atoms
is excited to 𝑛𝑠/𝑛𝑑 states (𝑛 = 4, 6, 8, 12) by absorbing two laser photons. In
this case, only a part of the atoms populated in the 2𝑠 state is excited in the
atomic beam. When an external homogeneous static electric field is applied
behind the excitation region, the levels of opposite parity 2𝑠 and 2𝑝 mix, after
which the Ly𝛼 line luminescence appears. The dependence of the intensity of
this line on the frequency of absorbed photons can be observed experimentally.
The Ly𝛼 line is absent if two-photon resonance is achieved.
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In experiments of this type it is sufficient to consider only the two-photon
excitation process itself and not to take into account the subsequent emission
process, in contrast to the method of recording the fluorescence signal. Following
[107], the process amplitude can be considered only as the part corresponding
to absorption in the scattering amplitude (6.5):

𝑈
(abs)
𝑛𝑖 =

𝑒22𝜋𝜔

𝐸𝑖 + 2𝜔 − 𝐸𝑛

∑︁
𝑘

(︂
⟨𝑛|𝑒1𝑟|𝑘⟩⟨𝑘|𝑒2𝑟|𝑖⟩
𝐸𝑛 − 𝐸𝑘 − 𝜔

+
⟨𝑛|𝑒2𝑟|𝑘⟩⟨𝑘|𝑒1𝑟|𝑖⟩
𝐸𝑖 − 𝐸𝑘 + 𝜔

)︂
, (6.20)

where the equality of the absorbed frequencies is already taken into account,
𝜔1 = 𝜔2 = 𝜔. The formula (6.20) is written in a general form, but with a
discarded factor corresponding to the radiation process. In the framework of
the resonance approximation, this is warranted since the corresponding matrix
element enters the amplitude (6.20) by a common factor [8].

Omitting for brevity the intermediate calculations involving integration over
angles and summation over projections [107], each term in (6.20) can be reduced
to the expression

∑︁
𝑘

⟨𝑎|𝑒2𝑟|𝑘⟩⟨𝑘|𝑒1𝑟|𝑖⟩
𝐸𝑖 + 𝜔 − 𝐸𝑘(1 − i0)

= (−1)𝑙𝑘+𝑙𝑖+𝑗𝑎+2𝑗𝑘+𝐹𝑎+𝑗𝑖+𝐹𝑘Π𝑙𝑖Π𝑙𝑘Π𝑗𝑖Π𝑗𝑎Π𝑗𝑘 × (6.21){︃
𝑙𝑘 𝑠 𝑗𝑘

𝑗𝑎 1 𝑙𝑎

}︃{︃
𝑙𝑖 𝑠 𝑗𝑖

𝑗𝑘 1 𝑙𝑘

}︃{︃
𝑗𝑘 𝐼 𝐹𝑘

𝐹𝑎 1 𝑗𝑎

}︃{︃
𝑗𝑖 𝐼 𝐹𝑖

𝐹𝑘 1 𝑗𝑘

}︃
×

Π𝐹𝑘
Π𝐹𝑖

𝐶 𝑙𝑎0
𝑙𝑘010

𝐶 𝑙𝑘0
𝑙𝑖010

∑︁
𝑞1,𝑞2

(−1)𝑞1+𝑞2𝐶𝐹𝑎𝑀𝑎

𝐹𝑘𝑀𝑘1−𝑞1
𝐶𝐹𝑘𝑀𝑘

𝐹𝑖𝑀𝑖1−𝑞2
𝑒1𝑞1𝑒2𝑞2𝑔𝑙𝑘(𝐸𝑖 + 𝜔).

Here the summation over 𝑘 in the left-hand side means all necessary summations
over quantum numbers not included in the right-hand side, 𝑒1𝑞 , 𝑒2𝑞 are the
spherical components of the polarisation vectors, and 𝑔𝑙𝑘(𝐸𝑖+𝜔) represents the
corresponding integrals with the radial part of the Coulomb Green’s function,
see section 3.2.

The absorption profile can be obtained from the differential cross section

𝑑𝜎
(abs)
𝑎𝑖 = 𝑑3𝑘1

(2𝜋)3
𝑑3𝑘2
(2𝜋)3

⃒⃒⃒
𝑈

(abs)
𝑎𝑖

⃒⃒⃒2
. According to [43], the most significant nonresonant

contribution arises when the fine structure of the excited levels is taken into
account. Then the amplitude (6.20) should include states with the same orbital
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momentum but different total angular momenta (e.g., levels 𝑛𝑑3/2 and 𝑛𝑑5/2

in hydrogen). Leaving only these terms [107] in the amplitude, the absorption
profile can be written as follows:

𝑑𝜎
(abs)
𝑎𝑖

𝑑𝜔𝑑Ω1𝑑Ω2
∼ 𝐶𝑎

(2𝜔 − 𝜔0)2 + 1
4Γ2

𝑎

+
𝐶𝑎𝑎′

(2𝜔 − 𝜔0)2 + 1
4Γ2

𝑎

2(2𝜔 − 𝜔0)

2𝜔 − 𝜔0 − ∆fs
. (6.22)

Here Ω𝑖, 𝑖 = 1, 2 are solid angles in the phase spaces of the absorbed photons,
Γ𝑎 is the natural line width of the resonance state, ∆fs denotes the energy
interval of the fine structure, and 𝜔0 = 𝐸𝑎 − 𝐸𝑖. The factor 𝐶𝑎 corresponds to
the resonance transition 𝑖→ 𝑎 interfering with 𝑖→ 𝑎′ and leading to the factor
𝐶𝑎𝑎′. The factors 𝐶𝑎, 𝐶𝑎𝑎′ are calculated using the expressions (6.20), (6.21).

Considering the interfering 2𝑠𝐹𝑖=1
1/2 → 𝑛𝑑𝐹𝑎=2

3/2 , 2𝑠𝐹𝑖=1
1/2 → 𝑛𝑑

𝐹𝑎′=2
5/2 transitions

for 𝑛 = 4, 6, 8, 12, ∆fs = 𝐸𝑛𝑑𝐹𝑎=2
3/2

−𝐸
𝑛𝑑

𝐹𝑎′=2

5/2

and denoting the level width as Γ𝑛𝑑,

the results of the calculated NR corrections are shown in Table 6.1.

Table 6.1. Nonresonant corrections (fourth column) in Hz for the interfering
transitions 2𝑠𝐹𝑖=1

1/2 → 𝑛𝑑𝐹𝑎=2
3/2 and 2𝑠𝐹𝑖=1

1/2 → 𝑛𝑑
𝐹𝑎′=2
5/2 for 𝑛 = 4, 6, 8, 12. The

splitting energies of the fine structure in Hz are given in the second column,
the natural widths of the lines in Hz are given in the third column. The last
column shows the frequency determination uncertainties for the corresponding
transitions.

Statw ∆fs, Hz Γ𝑛𝑑, Hz 𝛿NR, Hz Unc., Hz
4𝑑 4.557026 × 108 4.40503 × 106 −8691.82 24.× 103

6𝑑 1.350231 × 108 1.33682 × 106 −2701.67 10.× 103

8𝑑 5.69628 × 107 5.72382 × 105 −1174.02 6.4 × 103

12𝑑 1.68779 × 107 1.72261 × 105 −358.88 7.0 × 103

As can be seen from Table 6.1, the NR correction contributions are of the
order of the experimental error, see [11] and decrease with increasing principal
quantum number 𝑛. One can also conclude from the results of the previous
section that the corrections for this type of experiments are larger than for
the same transitions in experiments where the fluorescence signal 𝑛𝑑 − 2𝑝 is
recorded, see Fig. 6.4-6.5. It is important to note that a recent new experi-
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mental measurement of the 2𝑠1/2 − 8𝑑5/2 transition frequency is based on the
type of experiments discussed in 6.2. As indicated in [143], the nonresonant
contributions due to QIE are negligible. However, the NR correction for this
transition was found to be −1174.02 Hz, which corresponds to an experimental
error of the order of 2 kHz.

6.4. Two-photon spectroscopy of helium

Significant progress in the spectroscopy of one-electron systems has stimulated
the study of nonresonant corrections to transition energies in many-electron
systems [46–48, 50]. Although helium has been studied theoretically and ex-
perimentally for many years, nonresonant effects and QIE, as their dominant
part [43], have not been taken into account in spectroscopic measurements of
transition frequencies until recently [47,50].

The energies of atomic levels in helium are usually expressed as a sum of non-
relativistic energies, leading-order relativistic corrections, Lamb shift, etc., in-
cluding quantum electrodynamics corrections and higher-order relativistic con-
tributions. Recent calculations of QED effects at the 𝛼7𝑚 level have improved
the theoretical predictions of the energy levels of helium atoms, leading to
strong agreement with the measured transition frequency of the 23𝑆−23𝑃 [208].
However, as was found in [208], such calculations do not eliminate the discrep-
ancy between the theoretical predictions and the experimental result for the
23𝑆1 − 33𝐷1 transition [55].

Using the results of the previous sections, this section presents an analysis of
the QIE arising for neighbouring sublevels of the fine structure when measuring
the 23𝑆1−33𝐷1 transition energy in a helium atom. In the experiment described
in [56], the helium atoms in the beam are in the 23𝑆1 metastable state and then
excited to the 33𝐷1 state by absorbing two photons with equal frequencies,
𝜔1 = 𝜔2, having parallel polarisations e1 and e2 and propagating in opposite
[207] directions. Detection of the excited fraction of 33𝐷1 atoms is observed
by fluorescence (i.e., decay into 23𝑃 states) with emission of a photon with
frequency 𝜔3, polarisation e*3 in the 𝑛𝑘3 direction. Accordingly, interference
should occur between the 33𝐷1, 33𝐷2, and 33𝐷3 sublevels of the fine structure.
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This experimental situation is similar to that previously discussed in 6.2, see
also [53]. Following the setting of the experiment [56], it is necessary to analyse
the nonresonant corrections due to interference between different fine sublevels,
33𝐷𝐽𝑛, for the scattering process 23𝑆1 + 2𝛾(𝐸1) → 33𝐷𝐽𝑛 → 23𝑃𝐽𝑓 + 𝛾(E1),
where 𝐽𝑛 = 1, 2, 3 and the frequency of absorbed photons 𝜔1 = 𝜔2 = (𝐸33𝐷𝐽𝑛

−
𝐸23𝑆1

)/2.
Repeating the calculations given in the previous sections, we can find similar

expressions for the nonresonant correction. Then, substituting the values of the
natural line width Γ33𝐷1

= 11.35(6) MHz [209] corresponding to the energy
difference ∆12 = 1325.025(33) MHz, ∆13 = 1400.290(33) MHz [55] into the
expression (6.9), the correction to the transition frequency 23𝑆1−33𝐷1 is equal
to

𝛿NR = 0.0124(4) MHz. (6.23)

Calculations of the expressions (6.6)-(6.9) show that similar to the NR cor-
rection to the frequency of the 2𝑠𝐹𝑖=1

1/2 → 𝑛𝑑𝐹𝑎=2
3/2(5/2) (cf. (6.11)-(6.14)) transition

in hydrogen [53, 107], the effect considered is also independent of the angle
between any pair of vectors 𝑛𝑘3, 𝑒1 and 𝑒2. An important result of these calcu-
lations, which include the natural level width, is that the magnitude of the effect
is at the 0.056 MHz experimental error level [56]. However, the experimentally
observed Γexp width of the spectral line profile differs significantly from the nat-
ural Γnat due to different broadening mechanisms [210]. In fact, the level width
in (6.9) should be related to the experimental value of [205]. In [56], the main
effect of line broadening is due to pressure and transit time. Denoting the latter
two contributions as Γpb and Γtt, respectively, the full-width-half-maximum can
be expressed as the sum of the three contributions:

Γexp = Γnat + Γpb + Γtt. (6.24)

According to [56], the pressure-dependent broadening is parameterised as
Γpb/𝑝 = 35.7(1.7) [ MHz/Torr], where 𝑝 is the pressure in Torr. Typically, the
absorption signal is measured at various values of 𝑝 and the result is then ex-
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trapolated to zero pressure (values of 𝑝 were used in the range 0.05 − 0.5 Torr
in [56]). The value of the broadening, Γtt, due to the atomic beam transit time
is not presented in the experiment of [56]. However, it can be roughly estimated
as the difference between the experimental width extrapolated to zero pressure
Γexp = 11.33(19) MHz and the natural width Γnat = 11.26 MHz calculated
theoretically in [211]: Γtt = 0.07(19) MHz. Finally, for 𝑝 pressures between
0.05 and 0.5 Torr, the experimental width in (6.24) corresponds to the interval
Γexp ∈ [13.2(4), 29.2(4)] MHz. Substituting these values into the expression
(6.9) results in an NR correction in the range 𝛿NR ∈ [0.016(1), 0.082(19)] MHz.
The latter value partially eliminates the present discrepancy between the the-
oretical and experimental value of the frequency of the 23𝑆1 − 33𝐷1 transition,
which is about 0.5 MHz [208].

The observed fluorescence signal was recorded at 𝑝 = 0.151 Torr (see Figure
1 in [56]). The NR correction corresponding to 𝑝 = 0.151 Torr is 𝛿NR = 0.027

MHz. This value still does not eliminate the discrepancy between theoretical
calculations and experiment found in [208], but reaches the experimental error
level 𝐸exp(23𝑆1 − 33𝐷1) = 786 823 850.002(56) MHz [56]. Since the resulting
experimental value of the frequency of the 23𝑆1 − 33𝐷1 transition in [56] is
obtained by extrapolating the line position to zero pressure, it is necessary
to "reconstruct" the centre of the line taking into account the NR correction
at each pressure value. The result can be expected to be different (see Fig.
2b in [56]) and at least partially eliminate the present discrepancy with the
theory [108].

Similar NR correction calculations can be performed for the 23𝑆1 − 43𝐷1

and 23𝑆1 − 53𝐷1 transition frequencies measured in [212]. These experiments
were performed using the same technique as the [56], resulting in values of
∆𝐸exp(23𝑆1 − 43𝐷1) = 947 000 197.11(1.8) MHz and ∆𝐸exp(23𝑆1 − 53𝐷1) =

102 112 869 7.31(2.4) MHz. The broadening of the 23𝑆1 − 43𝐷1 and 23𝑆1 −
53𝐷1 lines were determined as Γpb/𝑝 = 68.1(2.7)[MHz/Torr] and Γpb/𝑝 =

78.5(2.7)[MHz/Torr], respectively (see Table III in [212]), while the broadening
due to transit time can still be considered negligible. Using the values of the
corresponding fine structure intervals ∆12 = 𝐸43𝐷1

−𝐸43𝐷2
= 555.231(7) MHz,

∆13 = 𝐸43𝐷1
− 𝐸43𝐷3

= 591.253(6) MHz [199], and for the natural level width
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Γnat
43𝐷1

= 4.96274 MHz [213], one finds NR corrections to the transition frequency
23𝑆1−43𝐷1 ranging from 0.350(23) to 2.65(2) MHz for pressures 𝑝 = 0.5−1.5

Torr. The indicated corrections are at or above the experimental error for the
transition frequency 23𝑆1 − 43𝐷1, which is 1.8 MHz. Similarly, the correction
values for the transition frequency 23𝑆1 − 53𝐷1 start at 0.79(5) and end at
6.6(4) MHz given the energy intervals ∆12 = 𝐸53𝐷1

−𝐸53𝐷2
= 283.560(8) MHz,

∆13 = 𝐸53𝐷1
− 𝐸53𝐷3

= 302.781(8) MHz [199] and natural width Γnat
53𝐷1

=

2.61381 MHz [213]. The results for all considered examples are summarised in
Table 6.2.

Table 6.2. The range of nonresonant corrections to the transition frequencies
23𝑆1 − 𝑛3𝐷1 (𝑛 = 3, 4, 5) (𝑛 = 3, 4, 5) (5th column). The experimental tran-
sition frequency values are given in the second column, the theoretical values
in the third column, and the range of experimental level width values in the
fourth column. All values are given in MHz. The uncertainties are given in
parentheses.

Transition Experiment, MHz [56,212] Theory, MHz [55,208] Width Γexp, MHz 𝛿NR, MHz
23𝑆1 − 33𝐷1 786 823 850.002(56) 786 823 849.540(57) 13.2(4) − 29.2(4) 0.016(1) − 0.082(19)

23𝑆1 − 43𝐷1 947 000 197.11(1.8) 947 000 194.44(5) 39(1.4) − 107(4) 0.350(23) − 2.65(2)

23𝑆1 − 53𝐷1 102 112 869 7.31(2.4) 102 112 869 8.36(5) 41.9(1.4) − 120(4) 0.79(5) − 6.6(4)

Although the presented analysis cannot completely eliminate the current
discrepancies between experimental and theoretical values for the transition
frequencies, nonresonant corrections in experiments of the type [56,212] should
be accurately taken into account. One can expect that the agreement between
experiment and theory is likely to be related to the issue of more careful mea-
surement and appropriate extrapolation (taking into account nonresonant con-
tributions) of experimental results.

6.5. Thermal broadening effect

In view of the discussion presented in the previous section 6.4, the observed
linewidth plays a crucial role in determining the transition frequency. This con-
clusion follows directly from the expression for the nonresonant correction (6.9).
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The proportionality of the ∼ Γ2 correction makes it sensitive to the width of
the spectral line observed in the experiment. There are a number of factors that
lead to spectral line broadening, such as transit time, pressure, residual electric
and magnetic fields, and many others. In principle, all these effects require the
use of a specific line profile, but in the simplest way such consideration can be
reduced to a parameter characterising the width of the line contour defined by
the sum of the respective contributions, see (6.24). Reducing the role of these
effects allows a more accurate determination of transition frequencies by nar-
rowing the observed spectral bands to lines of natural width, but is accompanied
by a significant complication of the experiment. Another obvious way to avoid
the corresponding error is to carry out appropriate theoretical calculations of
these "subtle" effects.

In this section, attention is drawn to another effect of line broadening, which
is also well known and has been considered by many authors, namely thermal
broadening. The theoretical description of these effects is reduced to the cal-
culation of probabilities of transitions induced by blackbody radiation (BBR).
The latter can be realised in the nonrelativistic limit and in the dipole approx-
imation by means of the following expression (see, for instance, [214–216]):

Γ𝛽
𝑎 =

4

3
𝑒2
∑︁
𝑛

⃒⃒
⟨𝑎|𝑟|𝑛⟩

⃒⃒2
𝑛𝛽
(︀
𝜔𝑎𝑛

)︀
𝜔3
𝑎𝑛, (6.25)

where 𝜔𝑎𝑏 = 𝐸𝑎 − 𝐸𝑏 is the energy difference between the states of atom 𝑎

and 𝑏 (resonance transition frequency), 𝑘𝐵 is the Boltzmann constant, 𝑇 is the
temperature in kelvin, 𝑛𝛽(𝜔) is the Planck distribution function,

𝑛𝛽(𝜔) =
1

𝑒
𝜔

𝑘𝐵𝑇 − 1
. (6.26)

The summation in (6.25) runs over the whole spectrum of the Schr?dinger
equation and includes higher states. At low temperatures, the partial contribu-
tions from the continuum energy spectrum are negligible. At room temperature,
the numerical values of the BBR radiation-induced widths for the 𝑛𝑠/𝑛𝑑 levels
(𝑛 = 4, 6, 8, 12) in hydrogen are given in Table 6.3, where the natural widths
are also given for comparison. The effect of thermal line broadening on NR
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Table 6.3. Natural and induced by radiation BBR line widths for 𝑛𝑠/𝑛𝑑 states
in the hydrogen atom at 𝑇 = 300 K. All values are given in Hz. The summation
over 𝑛 in (6.25) is restricted to the discrete spectrum and 𝑛 = 300 only, which
is justified by the rather small coefficient 𝑘𝐵𝑇 ≈ 9.5 × 10−4 in atomic units.
The values are given in Hz. The fraction of the contribution to the nonresonant
correction, 𝑥 (dimensionless value), is also given.

n
𝑛𝑠 𝑛𝑑

Γ𝛽
𝑛𝑠, [214] Γ𝛽

𝑛𝑠 Γnat
𝑛𝑠 𝑥 = 2Γ𝛽

𝑛𝑠/Γ
nat
𝑛𝑠 Γ𝛽

𝑛𝑑, [214] Γ𝛽
𝑛𝑑 Γnat

𝑛𝑑 𝑥 = 2Γ𝛽
𝑛𝑑/Γ

nat
𝑛𝑑

4 2.54966 2.53778 7.03 × 105 7.22 × 10−6 4.30037 4.2809 4.41 × 106 1.94 × 10−6

6 1120.13 1119.48 2.98 × 105 0.075 1530.75 1529.73 1.34 × 106 0.0023

8 4036.17 4036.93 1.44 × 105 0.056 5026.11 5027.23 5.72 × 105 0.018

12 5718.44 5721.15 4.77 × 104 0.24 6434.63 6437.68 1.72 × 105 0.075

corrections can be accounted for by substituting the full widths of the atomic
levels Γtot

𝑎 ≡ Γ𝛽
𝑎 + Γnat

𝑎 , into the expression (6.9) for the resonance state 𝑎.
Since Γ𝛽

𝑎 is smaller than Γnat
𝑎 , the order of magnitude of the thermally induced

nonresonant correction can be estimated as the ratio 𝑥 = 2Γ𝛽
𝑎/Γ

nat
𝑎 relative

to the value given by the natural level width. The values of 𝑥 are given in
Table 6.3 and can be used by multiplying the results of the previous sections
by this factor. In particular, it follows from the values of 𝑥 that the thermally
induced broadening becomes significant for highly excited 𝑛𝑠 states, leading to
an additional contribution of the order of a quarter of the "natural" one.

6.6. Conclusion on the NR corrections

In conclusion, spectroscopic measurements of transition frequencies in various
atomic systems form a significant part of modern physics. They allow one to
test fundamental interactions, determine physical constants and study funda-
mental symmetries found in nature with unprecedented accuracy. Studies based
on two-photon spectroscopy of simple atoms represent some of the most pre-
cise experiments to date. The verification of precision experimental results is
largely supported by theoretical analyses, which are most rigorous for light non-
relativistic atoms and ions. In the last decade much attention in the scientific
literature has been paid to the study of the effect of quantum interference in
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hydrogen and hydrogen-like atomic systems. This has allowed us to significantly
reduce the experimental error in determining the corresponding transition fre-
quencies. The theoretical description of QIE refers to the consideration of in-
terfering transitions arising for states close to the resonance level. Thus, studies
of the influence of nonresonant processes, including the need to take into ac-
count the emission process on the formation of the absorption profile, are an
integral part of spectroscopic measurements. More recently, calculations have
been performed showing the need to account for the QIE in cascade emission
(similar to the results of the section 5.5) to accurately determine the frequency
of the absorption transition to highly excited states in two-photon spectroscopic
experiments [190].

Finally, for the [32] experiment, the effect of line profile asymmetry can be
schematically illustrated by the plots shown in Fig. 6.6.

Figure 6.6. Schematic illustration of the line profile asymmetry arising beyond
the resonance approximation for the experiment [32].

The graphs are given in arbitrary units on the ordinate axis, while the abscissa
axis shows the frequency in units of the natural width of the resonance state.
The upper left panel shows the symmetric (dashed curve) and asymmetric (solid
curve) profiles, indistinguishable to the naked eye. The same is shown in loga-
rithmic scale in the upper right panel. The part of the line profile close to the
region of the line maximum is shown in logarithmic scale in the lower left panel.
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The difference between symmetric and asymmetric profiles depending on the
angle between the polarisation of the incident photon and the direction of the
emitted photon is shown in the lower right panel. The scale of profile values is
set so that the effect is visible (normalisation factor is used), the same with the
choice of frequency scale.

6.7. Adapted method of moments for determin-
ing the transition frequency

This section is devoted to the search for alternative possibilities of determin-
ing spectroscopic standards of atomic frequency. Leaving aside the discussion
of nonresonant effects, the search for alternative ways to compare theoretical
results with experimental results becomes one of the significant tasks of preci-
sion atomic spectroscopy. For example, if the profile of the observed line can be
measured in detail, a thorough comparison of the theoretical and experimental
spectral distributions can be proposed as one of the methods for such a deter-
mination. Then, having estimated the dispersion of the two spectral functions,
it is possible to determine the transition frequency, width, amplitude, etc. by
the minimum of their deviation:

(𝑆exp(𝜔𝑖) − 𝑆theor(𝜔𝑖))
2 −

(︁
𝑆exp(𝜔𝑖) − 𝑆theor(𝜔𝑖)

)︁2
. (6.27)

Here 𝑆exp(𝜔𝑖) is the value of the observed spectral distribution at point 𝜔𝑖, and
𝑆theor(𝜔𝑖) is the theoretically estimated spectral distribution at the same point
𝜔𝑖.

The ordinary procedure for determining the transition frequency in atomic
and molecular spectroscopy is to fit the observed spectral line with a Lorentz,
Gauss, Voigt, or other profile. The Lorentz line profile describes the process
of one-photon emission (absorption) taking into account the natural width of
levels due to radiative decay of the excited state. However, in more general
cases, the experimentally observed linewidth is much larger than the natural
linewidth. The broadening of spectral lines is due, for example, to Doppler and
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collision effects, to the influence of external fields, etc. The Gaussian profile
can be used to extrapolate experimental data in case of significant distortion of
the spectral line. In turn, the combined natural and "external" (e.g., collisional
and Doppler) broadening is described by the Voigt profile. As a consequence,
the maximum (or frequency value at half-height) of the observed line shape is
interpreted as the transition frequency.

The choice of fitting contour corresponds to different physical conditions and
is not limited to these three [217] profiles. Each of the profiles serves its purpose
and should be used to describe in detail the physical processes occurring in the
experiment. The most problematic case arises when describing experimental
data with a poor signal-to-noise ratio. Assuming that the effects described in,
for example, [217] are minimised by routine theoretical calculations inextricably
linked to the experimental simulations of [218], the theoretical description pre-
sented below is limited to Lorentz, Gauss and Voigt profiles. The main purpose
of this section is to demonstrate various possibilities for carefully extracting
the transition frequency from the observed asymmetric profile (see [109] for
details).

An experimentally observed spectral line can be described by one of three
different profiles:

𝐿(𝜔) =
𝑓 2

(𝜔 − 𝜔0)2 + 𝛼2
𝐿

, 𝐺(𝜔) = 𝑓 2𝑒
− (𝜔−𝜔0)

2

2𝛼2
𝐷 ,

𝑉 (𝜔) =

∞∫︁
−∞

𝐺(𝜔′)𝐿(𝜔 − 𝜔′)𝑑𝜔′ =

∞∫︁
−∞

𝑓 2𝑒
− 𝜔′2

2𝛼2
𝐷 𝑑𝜔′

(𝜔 − 𝜔0 − 𝜔′)2 + 𝛼2
𝐿

. (6.28)

Here 𝛼𝐿 ≡ Γ/2, Γ is the natural width of the atomic level, 𝛼𝐷 is the Gaussian
half-width at half-maximum, 𝜔0 is the theoretical value of the energy difference
between atomic levels, and 𝑓 represents the transition amplitude depending
on all possible quantities (in particular, quantum numbers and angles). Such
notations are introduced for convenience and do not affect the generality of the
calculations. The first line form is the Lorentz profile, the second is the Gaussian
function, and the third line form is called the Voigt line profile. These distribu-
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tion functions should be normalised to unity:
∞∫︀

−∞
[𝐿(𝜔), 𝐺(𝜔), 𝑉 (𝜔)] 𝑑𝜔 = 1.

The functions (6.28) can be used to define well-known moments: the zero
moment is the overall probability, the first moment is the mean, the second
central moment is the variance, the third moment is the skewness (a numerical
characteristic of the symmetry of the distribution), and the fourth moment is
the kurtosis (how heavy the tails of the distribution are). The zero moment
gives the normalisation constant, and the first moment reproduces the mean
frequency, which coincides with the theoretical value 𝜔0:

𝜔 ≡ 𝜇1 =

∞∫︀
−∞

𝑑𝜔 𝜔 [𝐿(𝜔), 𝐺(𝜔), 𝑉 (𝜔)]

∞∫︀
−∞

𝑑𝜔 [𝐿(𝜔), 𝐺(𝜔), 𝑉 (𝜔)]

= 𝜔0. (6.29)

The evaluation of any moments for the Gaussian distribution is not difficult,
and the result (6.29) for Lorentz or Voigt profiles deserves a separate discussion.
Calculations for both can be performed using the principal value of the integrals
when the upper and lower limits of integration equally tend to infinity. For
higher moments, however, this procedure is violated. The characteristic function
of the corresponding distribution can be used to solve this problem.

The result (6.29) can be easily adapted to the processing of experimental
data, i.e. using a data table with values of frequencies and spectral functions.
Then the average frequency value (first moment) is equal to

𝜔exp =

∑︀
𝑖

𝜔𝑖 [𝐿(𝜔𝑖), 𝐺(𝜔𝑖), 𝑉 (𝜔𝑖)]∑︀
𝑗

[𝐿(𝜔𝑗), 𝐺(𝜔𝑗), 𝑉 (𝜔𝑗)]
, (6.30)

where the summation is performed over all available values. Then the mean
frequency 𝜔exp should coincide with the theoretical value 𝜔0 and be close to
the frequency found as the maximum of the observed line shape (symmetric
profile).

The expression (6.30) can be compared to a fitting procedure: (i) it is based
on experimental data only; (ii) the expression (??) is independent of the theo-
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retical line shape model, i.e., Lorentz, Gauss or Voigt profiles lead to the same
result; (iii) the accuracy of the determination of 𝜔exp is limited by the uncer-
tainty of the measured values of 𝜔𝑖 and 𝐿(𝜔𝑖), 𝐺(𝜔𝑖), or 𝑉 (𝜔𝑖). Some results of
the adaptation of this method for several close smooth (non-noisy) lines, which
are of most interest in precision spectroscopy, are shown below.

Applying the "Lorentz model" for two neighbouring lines gives the

𝑁𝐿 =

∞∫︁
−∞

𝑑𝜔𝐿(𝜔) = 𝜋

[︂
𝑓 21
𝛼𝐿1

+
𝑓 22
𝛼𝐿2

]︂
,

∞∫︁
−∞

𝑑𝜔 𝜔𝐿(𝜔) = 𝜋
𝛿𝑓 22𝛼𝐿1 + 𝑓 21𝛼𝐿2𝜔0 + 𝑓 22𝛼𝐿1𝜔0

𝛼𝐿1𝛼𝐿2
, (6.31)

𝜔exp
𝐿 ≡ 𝜇𝐿1 = 𝜔0 + 𝛿

𝑓 22𝛼𝐿1

𝑓 21𝛼𝐿2 + 𝑓 22𝛼𝐿1
,

where 𝛿 is the shift of the second maximum relative to the first (in the case
of the experiment [32] is the splitting energy of the fine structure), 𝛼𝐿1(2) and
𝑓1(2) are the widths and amplitudes of the levels for the 1, 2 resonance lines,
respectively. The spectral function 𝐿(𝜔) has the form:

𝐿(𝜔) =

⃒⃒⃒⃒
𝑓1

𝜔 − 𝜔0 − i𝛼𝐿1
+

𝑓2
𝜔 − 𝜔0 − 𝛿 − i𝛼𝐿2

⃒⃒⃒⃒2
, (6.32)

i.e., takes into account the interference and "quadratic" contributions of the
two resonant lines. Finding the following moments, it is possible to compose a
system of independent equations for all unknowns in (6.31).

There is another possibility to determine the frequency of 𝜔0 from experi-
mental data (not only for two peaks). It can be expressed by the formula:

𝜔exp ≈ 𝜔0 =

∑︀
𝑖

𝜔𝑖 [𝐿(𝜔𝑖), 𝐺(𝜔𝑖), 𝑉 (𝜔𝑖)]
𝑛∑︀

𝑗

[𝐿(𝜔𝑗), 𝐺(𝜔𝑗), 𝑉 (𝜔𝑗)]
𝑛 , (6.33)

where 𝑛 → ∞. In this case, the factor in the summand proportional to 𝛿 (see
(6.31)) tends to zero at 𝑓1 ̸= 𝑓2. In practice, this means that the distribution of
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the highest peak tends to a delta function and hence this procedure corresponds
to the definition of maximum. This definition can be used with the desired
accuracy; larger values of 𝑛 should be used to achieve greater accuracy.

A detailed analysis of the different profile models, as well as a validation of
the method for some transitions in different atomic systems based on the NIST
Atomic Spectra Database, was presented in [109]. Omitting further details of
the calculations, the application of the method of moments can be illustrated
on "real" (unprocessed) experimental data.

The isolated Raman scattering line of polycrystalline silicon was considered
as the first test system. The silicon optical phonon band at 520.7 cm−1 serves
as a standard in vibrational spectroscopy. Therefore, it is of interest to precisely
determine its position [219–221]. Experimental data for this band are shown in
Fig. 6.7 for four spectra recorded with different signal-to-noise ratios.
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Figure 6.7. Experimental profile of the optical phonon band for Raman scat-
tering of polycrystalline silicon. The 𝑥 values show the signal-to-noise ratio.
Here and below, spectra were measured on a LabRam HR-800 spectrometer
with 632.8 nm laser line excitation from a He-Ne source, 100 micron confocal
aperture, and 1800 deg/mm diffraction grating. The measurement error is 0.35
cm−1. The signal-to-noise ratio was varied by using neutral density filters in
the laser path.

Using the table of experimental data, the frequency values corresponding
to the peak (maximum) were found: 520.63± 0.35 cm−1 and 520.74 calculated
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Table 6.4. Maximum of the Raman bandwidth of silicon obtained from cal-
culations and fitting (wave numbers, 𝜈, in cm−1). The first column shows the
signal-to-noise ratio 𝑥, while the second column shows the experimental error.
The values obtained using the Gaussian, 𝜈𝐺max, and Lorentz approximations,
𝜈𝐿max, are given in the third and fourth columns, respectively. The results of the
calculations by the method of moments are given in the fifth column. Finally,
the last column shows the values calculated in the approximation (6.33) with
the difference between 𝑛 = 20 and 𝑛 = 40 in parentheses.
𝑥 Ubc., cm−1 𝜈𝐺max, cm−1 𝜈𝐿max, cm−1 𝜈, cm−1 𝜈(𝑛), cm−1

23 ±0.35 520.70 520.69 520.47 520.65(1)
68 ±0.35 520.75 520.76 520.55 520.84(4)
135 ±0.35 520.75 520.76 520.59 520.80(1)
252 ±0.35 520.72 520.72 520.63 520.74(1)

according to (6.29) and in approximation (6.33) for the signal-to-noise ratio
parameter 𝑥 = 252. The result is in excellent agreement with the [221]. To verify
the effectiveness of the method for different signal-to-noise ratios 𝑥, Table 6.4
is presented showing the wavelength values calculated for different 𝑥, as well as
the values obtained by the profile fitting procedure.

First of all, it should be noted that the values found by approximation
by Gaussian or Lorentz contours gave the same results for the data presented
in Fig. 6.7. The results for the Voigt profile approximation are not given in
Table 6.4, assuming its apparent validity, since 𝜆𝐺max = 𝜆𝐿max. In turn, the results
corresponding to the calculations by the method of moments agree with them
within the experimental uncertainty. As expected, as the parameter 𝑥 increases,
the values determined by the method of moments tend towards the tabulated
value (520.70 cm−1 [221]), but even at 𝑥 = 23 an acceptable agreement within
the measurement error can be found. Furthermore, the estimated full width at
half height (FWHM) is 2.64 cm−1 at 𝑥 = 252, and the fitting procedure gives
2.89 cm−1, which are in agreement with each other given the accuracy of the
numerical calculations, estimated by a frequency step of about 0.3 cm−1.

As another example, consider a double line around 219 cm−1 for sulphur,
which is also used as a reference sample in Raman spectroscopy. The rele-
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vant data are shown in Fig. 6.8, including the results of the approximation
by two Lorentz profiles. As for the single silicon line discussed above, the

Figure 6.8. Experimental 𝛼 band profile for double-structured sulfur at about
219 cm−1, fitted according to the Lorentzian model. The measurement error is
±0.35 cm−1.
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Envelope curve
Lorentz fit - 219.15 cm-1
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measurement error is 0.35 cm−1. The values of the two observed maxima
found by fitting are 219.15 and 214.68 cm−1. The wave number of the higher
peak agrees well with the database results https://www.chem.ualberta.ca/ mc-
creery/ramanmaterials.html, i.e., 219.1 cm−1 with a standard deviation of 0.57

cm−1, see also [222]. In turn, applying the method of moments, the values turn
out to be 219.15 and 214.63 cm−1, respectively. The calculated FWHM values
of 1.59 and 1.55 cm−1 are in agreement with the fitting results of 1.63 and 1.54

cm−1.
Finally, Fig. 6.9 illustrates the results of another double sulphur band

around 473 cm−1, characterised by a more blurred structure. The tabular value
of this frequency is 473.2±0.49 cm−1 (see https://www.chem.ualberta.ca/ mc-
creery/ramanmaterials.html), and the values obtained by approximating the
experimental data are 473.08 ± 0.35 and 467.59 ± 0.35 cm−1 for the high and
low peaks, respectively. This case is of particular interest because there is a
strong overlap between the two bands. The method of moments gives values of
473.10 and 467.67 cm−1, which agree with the fitting result within the experi-
mental error. In turn, the widths correlate as 4.52 and 4.92 for the higher peak,

https://www.chem.ualberta.ca/~mccreery/ramanmaterials.html
https://www.chem.ualberta.ca/~mccreery/ramanmaterials.html
https://www.chem.ualberta.ca/~mccreery/ramanmaterials.html
https://www.chem.ualberta.ca/~mccreery/ramanmaterials.html
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Figure 6.9. Observed band profile for sulfur with blurred double structure at
473 cm−1. A Lorentz model was used to approximate the experimental data.
The measurement error is equal to ±0.35 cm−1.

473 cm-1

Si
gn

al
 in

 c
ps

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

Si
gn

al
 in

 c
ps

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

Wavenumber in cm-1
450 460 470 480 490

450 460 470 480 490

data table
Envelope curve
Lorentz fit - 473.08 cm-1

Lorentz fit - 467.59 cm-1

5.31 and 5.61 for the lower peak, found by fitting and numerically in cm−1,
respectively.

The results demonstrate the possibility of using the method of moments
to determine the characteristics of spectral lines, such as transition frequency,
amplitudes, widths, etc. This can be achieved by calculating the corresponding
moments in the data table with the experimental values of the observed spec-
tral distribution.The method of moments can be compared to the ingrained
fitting procedure. It is important to note that, firstly, the frequency value is
independent of the choice of model, i.e. it is the same for Lorentz, Gaussian or
Voigt line shapes. Second, the method of moments also uses only experimental
data: calculations are performed only within the experimentally obtained table
of values, based on the above theory. Third, the method has shown good accu-
racy for overlapping resonances. Fourth, it does not matter whether the lines
are due to radiation or other processes. Finally, the presented results are limited
to the presence of two resonances, but can be extended to a larger number of
spectral lines.

However, the method of moments has its drawbacks. The first (and most
problematic) is that the system of equations is completely nonlinear. As a re-
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sult, the method of finding solutions or selecting approximations becomes more
complicated. Nevertheless, one may find that all the nonlinearity arises from
considering the widths of the levels. Then, assuming that the level widths are
small compared to the transition frequencies and the energy splitting of the
lines, the solution can be found in the approximation of equivalent widths (or,
in a simpler case, corresponds to zero widths), see details in [109]. It can also
be a problem to choose a solution. But again, using experimental data, one can
determine the corresponding values of the maxima as a zero approximation.
It can be expected that there should not be a large discrepancy between this
method and the search for maxima (the line centre).

Thus, the presented analysis establishes the fundamental possibility of using
the method of moments for processing experimental spectral data and deter-
mining transition frequencies. At least, the method of moments can be used to
control the accuracy of the required parameters by comparing the correspond-
ing moments estimated from the table of experimental data and from the data
obtained by fitting according to (6.27).

Experimental data were provided by E. Solovyeva (co-author of the paper
[109]).
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Chapter 7.

Spectroscopy of the
anti-hydrogen atom

Advances in the production of anti-hydrogen atoms have enabled spectroscopic
studies of their properties [66,70,72,223–226]. A detailed comparison of the spec-
troscopic properties of anti-hydrogen (H̄) with the precisely measured properties
of hydrogen atom spectrum (H) can provide information on the possible viola-
tion of the CPT and Lorentz invariance [227]. According to the CPT-theorem,
the spectra of matter and antimatter atoms should be identical. Nevertheless, it
has been shown that violations of CPT and Lorentz symmetries on the Planck
scale could be observed in the framework of hydrogen and anti-hydrogen spec-
troscopy [227]. Effects of this type can appear in the spectra of H and H̄ at zero
order on the fine structure constant and can be detected not only in the 1𝑠−2𝑠

line but also in the hyperfine transition with spin flip. Moreover, extra-accurate
measurements of the transition frequency in hydrogen (see, e.g., [20, 137, 228])
have stimulated the development of spectroscopic experiments with anti-matter
atoms. To date, the accuracy of the latter is at the level of 10−8 relative mag-
nitude [73–75].

The spectra of hydrogen and anti-hydrogen atoms in an external electric
field differ because of the presence of terms linear in the electric field in the
expressions for the transition probabilities [103–105]. Such terms are absent in
the energy due to the conservation of spatial (P) and time (T) parities. However,
they can enter the expression for the line profile, since the latter is proportional
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to the transition probability. The Lorentz line profile at resonant scattering
of a photon on an atomic electron in the presence of an external electric field
remains symmetric with respect to the resonant frequency 𝜔0. This symmetry
is broken when nonresonant corrections are taken into account. NR corrections
have been discussed in the sections above. In contrast to the "standard" energy
corrections, it has been shown that they can depend linearly on the electric
field and thus differ for hydrogen and anti-hydrogen atoms. Such effects reveal
a specific difference in the spectra of H and H̄ atoms in the presence of an
external electric field.

This chapter is devoted to theoretical aspects related to the consideration
of external fields in the comparative analysis of the spectra of atoms H and
H̄. In particular, estimates of the corrections affecting the determination of the
transition frequency and arising from the asymmetry of the observed line profile
are first given, and then a comparative analysis of the distinctive features of
the emission (absorption) lines in the presence of an external magnetic field is
presented. The latter is addressed to the possibility of searching for H̄ atoms
in the interstellar medium. The importance of the presented analysis can be
emphasised by the recent experiments [66,73,74] aimed at a detailed comparison
of hydrogen and anti-hydrogen spectra. It can be expected that the results
obtained can serve to further experimentally improve such measurements.

7.1. Estimates of the NR correction in the exter-
nal electric field to the frequency of the Ly𝛼
line in H̄

In this section it is shown that nonresonant corrections to the transition fre-
quency can contain terms linear in the electric field. In particular, the process
of elastic resonant scattering of photons on the ground state of a hydrogen or
anti-hydrogen atom placed in a weak electric field is considered. The frequency
of the incident photons is close to the transition energy Ly𝛼. It is assumed that
a natural profile of the 1𝑠−2𝑝 transition line can be observed, as first reported
in [137]. The external electric field is assumed to be "weak". It will be shown
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that the existence of linear field terms does not violate PT-parity and leads
to a difference in the resonance spectroscopic measurements of hydrogen and
anti-hydrogen atoms in an external electric field.

Adapting the expression (6.6) and the formalism used in section 4.1 as an
estimate of the NR correction, the cross section for one-photon scattering for
the Ly𝛼 transition in the hydrogen atom can be reduced to the form (see [126]):

𝜎 ∼
𝑊2𝑝′1/2

(𝑘′)𝑊2𝑝′1/2
(𝑘)

𝑥2 + 1
4Γ2

2𝑝′1/2

+ 2ℜ
𝑊2𝑝′1/2;2𝑝

′
3/2

(𝑘′)𝑊2𝑝′1/2;2𝑝
′
3/2

(𝑘)(︁
𝑥− i

2Γ2𝑝′1/2

)︁
(𝑥+ ∆fs)

, (7.1)

where 𝑥 ≡ 𝜔−𝜔0, 𝑘′, 𝑘′ denote the absorbed and emitted photons, respectively.
𝑊2𝑝′1/2

is the differential probability of the 1𝑠 − 2𝑝 transition, and 𝑊2𝑝′1/2;2𝑝
′
3/2

is the "mixed" (due to interference for the 2𝑝1/2 and 2𝑝3/2 states) transition
probability, see [43]. The character strokes indicate the states for which the
admixture of a state of opposite parity arising in the external electric field is
taken into account [103–105].

In the following it is considered that the influence of the external electric
field on the energies is negligible and only the 2𝑝1/2 and 2𝑠 states are effectively
mixed. According to (4.14), it follows directly that

𝜓2𝑝′1/2
= 𝜓2𝑝1/2 − 𝜉S𝜓2𝑠, (7.2)

𝜓2𝑠′ = 𝜓2𝑠 + 𝜉S𝜓2𝑝1/2,

where the states are defined by the Stark parameter 𝜉S. As before for a small
electric field 𝜉S = ⟨2𝑠|𝑑ℰ|2𝑝⟩/∆𝐸𝐿 ≪ 1. For the 2𝑝3/2 state, the Lamb shift
∆𝐸𝐿 should be replaced by the corresponding fine structure interval, which is
much larger than ∆𝐸𝐿. Then it is assumed that 2𝑝′3/2 ≡ 2𝑝3/2. Also an impor-
tant circumstance is the existence of differential transition probabilities 𝑊2𝑝′1/2

,
since the total probability (integrated over all possible directions), which coin-
cides in this case with the level width, depends on the field only quadratically.
This result will be obtained explicitly in the following sections.

Using for simplicity the extremum condition, the nonresonant correction
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can be found in the form:

𝑥NR =
1

4

Γ2
2𝑝

∆fs

𝑊2𝑝′1/2;2𝑝3/2
(𝑘′)𝑊2𝑝′1/2;2𝑝3/2

(𝑘)

𝑊2𝑝′1/2
(𝑘′)𝑊2𝑝′1/2

(𝑘)
(7.3)

Passing to a completely nonrelativistic description, the angular momenta in
(7.3) can be totally omitted. It is also taken into account that the admixture of
2𝑠 states weakly changes the natural width of the level 2𝑝 and, hence, Γ2𝑝′1/2

≈
Γ2𝑝′ ≈ Γ2𝑝.

A linear dependence on the external field can be obtained by taking into
account the results obtained in [103–105], where, in particular, the differential
probability of emission was reduced to the form:

𝑊2𝑠′ = 𝑊2𝑠 −
√

3
𝑒Γ2𝑝

∆𝐸2
𝐿

(𝑘ℰ)
√︀
𝑊2𝑝𝑊2𝑠. (7.4)

Here the electron charge, 𝑒, is explicitly written out, and 𝑊2𝑝 and 𝑊2𝑠 are
independent of 𝑘 and represent the emission probabilities of the corresponding
states in the absence of field. Also in (7.4) the quadratic field contribution is
neglected. Accordingly, one can obtain (see details in [126])

𝑊2𝑝′ = 𝑊2𝑠 +
√

3
𝑒Γ2𝑝

∆𝐸2
𝐿

(𝑘ℰ)
√︀
𝑊2𝑝𝑊2𝑠, (7.5)

𝑊2𝑝′;2𝑝 = 𝑊2𝑝 +

√
3

2

𝑒Γ2𝑝

∆𝐸2
𝐿

(𝑘ℰ)
√︀
𝑊2𝑝𝑊2𝑠. (7.6)

When the correlation (𝑘ℰ) is of interest, i.e., the dependence on the an-
gle between the direction vector of the emitted photon and the field, one can
consider the following 𝑊2𝑝′(𝑘

′) = 𝑊2𝑝′;2𝑝(𝑘
′) = 𝑊2𝑝. Then, according to (7.5),

(7.6), the series expansion of the denominator in (7.3) gives

𝑥NR =
1

4

Γ2
2𝑝

∆fs

[︃
1 − 𝑒

√
3

2

Γ2𝑝

∆𝐸2
𝐿

√︃
Γ2𝑠

Γ2𝑝
(𝑘ℰ)

]︃
(7.7)

= 𝑥
(0)
NR + 𝛿𝑥NR.
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Here 𝑥(0)NR is exactly the same as the result of [43], and 𝛿𝑥NR represents the
field-dependent contributions.

The linear dependence of the NR correction on the electric field does not
imply the existence of a linear Stark effect. It should be remembered that such
corrections are not shifts of the energy of atomic levels in the literal sense; they
represent corrections to be made to compare the results of frequency measure-
ments with theoretical calculations of energy levels [35, 43].

The formal T-invariance of the factor (𝑘ℰ) (𝑘, ℰ are T odd and T odd
vectors, respectively) is compensated by a linear dependence on Γ2𝑝 in (7.7).
Such a simulation of T-noninvariance in unstable systems was predicted by Zel-
dovich [229]. The above T-noninvariance is contained already in the expression
(7.4) and can be explained as follows [103,104]. The expression (7.4) describes
the emission of a photon with momentum 𝑘. In the time-reversed process, i.e.,
the absorption of a photon with momentum −𝑘, it is also necessary to change
the sign of Γ in the energy denominators of the amplitude, which depend on the
boundary conditions determining the pole position in the electron propagator
of the electrons (2.3). Then, the expressions (7.4) and (7.7) are invariant with
respect to time reversal.

Considering a weak electric field when 𝜉S = 0.1 (the corresponding
value of field strength ℰ = 47.5 V/cm), consider that ∆fs = 0.03𝑚(𝛼𝑍)4,
∆𝐸𝐿 = 0.4𝑚𝛼(𝛼𝑍)4 and Γ2𝑝 = 0.04𝑚𝛼(𝛼𝑍)4, Γ2𝑠 = 10−3𝑚𝛼(𝛼𝑍)10 (the
expression (7.7) includes one-photon probabilities/amplitudes). Then 𝛿𝑥NR ≃
−𝑒10−4 (𝑘𝜀) Hz (𝜀 ≡ ℰ/ℰ is the unit field direction vector). The proportion-
ality of the electron charge, written out explicitly for clarity, demonstrates the
difference for atoms H and H̄.

The estimate (7.7), while being rough (indicating only an order of magni-
tude) and assuming that the effect may be larger, demonstrates the fundamental
importance of monitoring the external electric field in experiments related to the
analysis of the spectral characteristics of the atom H̄. The order of magnitude of
this effect shows that it is hardly to be observed in resonant photon scattering
at the 1𝑠 − 2𝑝 transition in the near future: the frequency measurement error
in this process is about MHz [74,137].
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7.2. Linear in the field "quadratic" NR correction
to the frequency of Ly𝛼 line

Considering that in an external electric field due to mixing of 2𝑠, 2𝑝 levels
(see (7.2)) one-photon absorption can effectively pass to the 2𝑠′ state (e.g.,
the Stark coefficient 𝜉S = 1 indicates complete mixing of the closely adjacent
2𝑠, 2𝑝 states [103, 104]). The Ly𝛼 scattering cross section of a photon can be
represented as quadratic contributions (see [38,39]):

𝜎 ∼
𝑊2𝑝′1/2

(𝑘′)𝑊2𝑝′1/2
(�⃗�)

𝑥2 + 1
4Γ2

2𝑝′1/2

+
𝑊2𝑠′1/2

(𝑘′)𝑊2𝑠′1/2
(�⃗�)

(𝑥+ ∆𝐸𝐿)2
. (7.8)

Here, as before, 𝑊2𝑝′1/2
(𝑘′) and 𝑊2𝑠′1/2

(𝑘′) denote the differential absorption
probabilities (corresponding to the "hatched" photon), and𝑊2𝑝′1/2

(𝑘),𝑊 𝑒
2𝑠′1/2

(𝑘)

are the differential emission probabilities (corresponding to the " non-hatched"
photon) for the transitions 2𝑝′1/2 ↔ 1𝑠 and 2𝑠′1/2 ↔ 1𝑠, respectively. Similarly,
one can set Γ2𝑝′1/2

≡ Γ2𝑝, since even for 𝜉S = 1 the width of Γ2𝑝′ is weakly
susceptible to modification (due to the smallness of the 2𝑠 level width). The
first term in (7.8) represents the resonant contribution (the Lorentz line profile),
while the second term provides a nonresonant correction.

Accounting for the NR contribution to (7.8) in leading order gives

𝑥NR = − 1

16

Γ4
2𝑝

∆𝐸3
𝐿

𝑊2𝑠′(𝑘
′)𝑊2𝑠′(𝑘)

𝑊2𝑝′(𝑘
′)𝑊2𝑝′(𝑘)

. (7.9)

In the absence of electric field (𝜉 = 0) for the total cross section, the nonresonant
correction (7.9) is vanishingly small. In this case, Γ2𝑝 = 0.04𝛼3, ∆𝐸𝐿 = 0.4𝛼3,
𝑊2𝑝 ≈ Γ2𝑝 and 𝑊2𝑠 ≈ Γ2𝑠 = 10−3𝛼9 (in atomic units). This then yields 𝑥NR ≈
−10−22 Hz. The main contribution to the shift of the 𝑥NR maximum in the
absence of field comes from the interference terms between the 1𝑠− 2𝑝1/2 and
1𝑠 − 𝑛𝑝1/2 transitions and from the quadratic 1𝑠 − 2𝑝3/2 contribution (see
previous sections). However, in the presence of an electric field 𝜉S = 1, the
correction (7.9) becomes the largest: 𝑥NR ≈ −6.4 kHz.

Being interested in the linear field contribution, one can make calculations
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similar to the previous section (see also [38]). The series expansion of the de-
nominator in (7.9) gives

𝑥NR = − 1

16

Γ4
2𝑝

∆𝐸3
𝐿

𝜉4S

[︃
1 − 𝑒

(︂
𝜉S +

1

𝜉S

)︂
Γ2𝑝

∆𝐸𝐿

(︂
𝑊2𝑠

𝑊2𝑝

)︂1/2

(𝑘ℰ)

]︃
. (7.10)

Here the charge of the bound particle is again written out explicitly for clarity.
For 𝜉S = 1 NR correction linear in the field is defined by the formula:

𝛿𝑥NR = −𝑒1

8

Γ5
2𝑝

∆𝐸4
𝐿

(︂
𝑊2𝑠

𝑊2𝑝

)︂1/2

(𝑘ℰ) (7.11)

The numerical result reduces to the estimation of |𝛿𝑥NR| ≈ 10−4 Hz.
Thus, a direct observation of this difference also seems very improbable at

present. Note, however, that the part of the correction 𝑥NR independent of the
field direction and therefore equal for atoms H and H̄ is only three orders of
magnitude smaller than the experimental error [137].

7.3. Two-photon 1𝑠 − 2𝑠 resonance: H and H̄
atoms in an external electric field

In this section, the NR correction to the transition frequency for the 1𝑠 − 2𝑠

two-photon resonance in H and H̄ atoms is calculated. Measurements made
in the hydrogen atom with an accuracy of about 46 Hz are considered as an
experimental basis for this kind of study [134,182].

In [182], a simplified quantum mechanical approach based on the density
matrix formalism was used to describe the shape of the resonance line of the
1𝑠 − 2𝑠 two-photon excitation process with delayed fluorescence registration
due to the application of an electric field. In [37], an estimate of 𝑥NR based
on purely phenomenological considerations was presented (see section 4 of the
thesis). In this part of the thesis a description of the opposite process to the one
considered in the [43]: two-photon 1𝑠− 2𝑠 excitation and decay in an external
electric field is presented. The case considered here will correspond to 𝜉S = 1,
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and the case of [43] corresponds to 𝜉S = 0.
It should be emphasised that the process considered here also differs from

the real experiment [134, 182], where the electric field is present only in the
region of fluorescence registration, not in the "excitation part". The process
with the constant presence of the electric field, of course, loses much of the ad-
vantages of the experimental approach developed in the [134, 182], and should
provide much lower precision. However, it is this approach that is more realistic
in experiments aimed at finding the difference between the spectral character-
istics of H and H̄ atoms [73,74].

Using the previous approximations, including the neglect of Stark shifts of
atomic levels, the cross section of the process was represented in [38] as follows:

𝜎 ∼ 𝑊2𝑠′,2𝛾(𝑘′)𝑊2𝑠′,1𝛾(𝑘)

𝑥2 + 1
4Γ2

2𝑠′
+
𝑊2𝑝′,2𝛾(𝑘′)𝑊2𝑝′,1𝛾(𝑘)

(𝑥+ ∆𝐸𝐿)2
. (7.12)

Indeces 2𝛾, 1𝛾 denote two- and one-photon absorption and emission processes
2𝑠′ ↔ 1𝑠+2𝛾, 2𝑝′ ↔ 1𝑠+2𝛾, 2𝑠′ ↔ 1𝑠+𝛾, 2𝑝′ ↔ 1𝑠+𝛾, and 𝑥 = 𝐸2𝑠′−𝐸1𝑠−𝜔
(as before).

Repeating the calculations outlined in section 7.1, the following expression
arises for the nonresonant correction:

𝑥NR = − 1

16

Γ4
2𝑠′

∆𝐸3
𝐿

𝑊2𝑝′,2𝛾(𝑘′)𝑊2𝑝′,1𝛾(𝑘)

𝑊2𝑠′,2𝛾(𝑘′)𝑊2𝑠′,1𝛾(𝑘)
(7.13)

The maximum nonresonant contribution corresponds to the case 𝜉S = 1.
Then, by considering Γ2𝑠′ = Γ2𝑝 and 𝑊2𝑝′,2𝛾(𝑘′) ≈ 𝑊2𝑠′,2𝛾(𝑘′), 𝑊2𝑝′,1𝛾(𝑘) ≈
𝑊2𝑠′,1𝛾(𝑘) ≈ Γ2𝑝, the same result as for the one-photon 1𝑠− 2𝑝 transition can
be obtained: the field direction-independent correction is 𝑥NR ≈ −6.4 kHz. The
same result is obtained for the correction that depends on the field direction:
|𝛿𝑥NR| ≈ 10−4 Hz.

Thus, it is shown that the resonance spectra in an external electric field are
different for H and H̄ atoms. Estimates show that the positions of the maxima
of the line profiles for the Ly𝛼 resonances in H and H̄ atoms are shifted relative
to each other by ∼ 2×10−4 Hz. The same applies to the two-photon transitions
in the 1𝑠+2𝛾 → 2𝑠 absorption processes occurring in an external electric field.
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Moreover, in an electric field with 𝜉S = 1, the nonresonant corrections inde-
pendent of the field direction appear to be several orders of magnitude larger
than the nonresonant corrections in the absence of the field. This enhancement
is due to the overlap of resonances with the same quantum numbers. The latter
has been theoretically studied for highly charged ions in [133]. In the case of
hydrogen and anti-hydrogen atoms the levels 2𝑝′, 2𝑠′ in the field 𝜉S = 1 do
not actually overlap, but in contrast to the levels 2𝑝, 2𝑠 they have the same
quantum numbers. Since these levels are still close to each other, their mutual
influence leads to large NR corrections.

It is also worth mentioning another effect that looks different in atoms H
and H̄ placed in an external electric field. This is the effect of quantum beats
in Ly𝛼 radiation. It has been investigated theoretically and experimentally by
many authors, see, for example, [230–232] and the corresponding references in
these papers. In the case of hydrogen and anti-hydrogen atoms, the effect of
quantum beats was considered in Refs. [233,234].

In conclusion on the NR corrections in the external electric field, it is worth
noting that the above estimates are rather rough and indicate only an or-
der of magnitude of the spectral line asymmetry. The presence of an external
electric field in experiments related to the measurement of frequencies in the
anti-hydrogen atom [73, 74] is rather insignificant at this stage [73]. Moreover,
measurements of transition frequencies in H̄ have an error on the order of a
few MHz [74] for the Ly𝛼 line and fractions of MHz for the hyperfine splitting
of the ground state [73]. This circumstance makes the results presented above
rather unobservable at present. However, a detailed comparison of the spectra
of H and H̄ atoms is extremely important for the verification of, e.g., CPT
symmetry, and hence improving the experimental accuracy is a priority. Thus,
on the basis of the fact that the field-linear effects of spectral line asymmetry
lead to opposite profile distortions, one can conclude the importance of these
results.
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7.4. Atoms H and H̄ in an external magnetic field

This section deals with the atoms H and H̄ in an external field. The main goal
here is to investigate possible spectroscopic differences between hydrogen and
anti-hydrogen atoms. Electric and magnetic fields are actually applied in all
experiments on the synthesis of anti-hydrogen atoms [66,70,72,223]. Therefore,
it is necessary to study all spectroscopic properties of the H̄ atom to search
for contributions in expressions for energy level splittings, shifts, or transition
probabilities that may provide a distinction between H and H̄ atoms.

The Hamiltonian of a hydrogen atom (anti-hydrogen) in homogeneous elec-
tric and magnetic external fields has the form:

�̂� = �̂�0 − �̂�ℰ − �̂�ℋ, (7.14)

where �̂�0 is the Hamiltonian in the absence of external fields, �̂� = ∓|𝑒|𝑟 is
the electric dipole moment operator of the electron (positron), 𝑟 is the radius-
vector of the light particle, |𝑒| is the absolute value of the electron charge, �̂� =

−𝜇0(�̂�+ 2�̂�) is the magnetic dipole moment operator, �̂� and �̂� are the orbital
and spin operators of the electron (positron) momentum, 𝜇0 = ∓|𝑒|~/2𝑚𝑐 is the
Bohr magneton, 𝑚 is the mass of the light particle, and finally, ℰ and ℋ are the
strengths of the external electric and magnetic fields. In expression (7.14), the
quadratic contributions in the magnetic field are neglected. The Hamiltonian
�̂�0 is invariant with respect to charge conjugation, but the full Hamiltonian �̂�
breaks this symmetry. This circumstance can lead to differences in the spectra
of atoms H and H̄. Of interest are the contributions that depend linearly on the
field strength, since they are proportional to the charge of light particles and,
therefore, of opposite sign for hydrogen and anti-hydrogen atoms.

The linear Stark effect ∆𝐸 = −ℰ⟨�̂�⟩, where ⟨�̂�⟩ is the averaged dipole
moment operator, is forbidden due to symmetry in the combined charge-space
parity (CP) transformation, or time reversal (T) transformation if there is no
CPT violation. If ⟨�̂�⟩ ≠ 0, then the proportionality ⟨�̂�⟩ ∼ �̂� should exist, but
then it violates P and T invariance. The linear Stark effect in the hydrogen
atom is actually pseudo-linear, because the splitting between the 2𝑠 and 2𝑝
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states in an external electric field is proportional to ⟨2𝑠|�̂�ℰ|2𝑝⟩ =
√

3𝑒𝑎0ℰ
(Stark coefficient), where 𝑎0 is the Bohr radius. This effect occurs when the

formula for the energy shift ∆𝐸 =
√︁

⟨2𝑠|�̂�ℰ|2𝑝⟩2 + ∆𝐸2
𝐿 neglects the Lamb

shift ∆𝐸𝐿. So ∆𝐸 is the same for atoms H and H̄.
A comparison of the spectra of hydrogen and anti-hydrogen atoms based on

the Zeeman effect for the Ly𝛼 transition was carried out in [39], see also [235].
Zeeman splitting is proportional to 𝜇0, which has opposite signs for electrons
and positrons, respectively. Thus, the splitting pattern is the same for atoms
H and H̄, but the upper and lower Zeeman components correspond to differ-
ent values of the electron angular momentum projections. This is the simplest
spectroscopic difference between hydrogen and anti-hydrogen atoms in exter-
nal fields. The experimental observation of this effect requires only an analysis
of the polarisation of the radiation and depends on the number of available
atoms H̄. If the direction of photon emission coincides with the direction of
the magnetic field, the high-frequency component of the Zeeman doublet has a
left circular polarisation and the low-frequency component has a right circular
polarisation. The picture is opposite for H atom [39,235].

A more complicated situation arises in the presence of external electric and
magnetic fields. Referring to the works of [39, 103, 235] this analysis is not
carried out further. It should be emphasised, however, that the case of parallel
fields (electric and magnetic) makes it possible to distinguish spectroscopically
between hydrogen and anti-hydrogen atoms. As a consequence, in [127] it was
proposed to use this phenomenon to search for anti-matter in the Universe.

In particular, the 21 cm absorption line (HFS of the ground state) in the
hydrogen atom, which is of particular importance in the study of the factors and
mechanisms responsible for the formation of gas-dust clouds in the interstellar
medium (ISM), their role in stellar evolution, etc., can serve this purpose. [236].
The precision of the observations achieved gives a detailed picture of the 21 cm
absorption line profile, see, e.g., [237]. In this case, the most important fact is
that the Zeeman splitting can be resolved in such observations [238].

The analysis of the polarisation of the 21 cm line radiation is reduced to the
calculation of the matrix element corresponding to the transition between the
hyperfine components of the ground state in the hydrogen atom. Assuming the
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registration of radiation along the field direction (see details in [127]), it was
found that

⟨𝑛 1𝑀𝐹 |𝑒[𝑘 × 𝜇]|𝑛 0 0⟩ = −i

√︂
2

3
(−1)𝑀𝐹

∑︁
𝑟

𝐶1−𝑀𝐹
1𝑟 00 𝑒𝑟 𝑘0 ⟨𝑛

1

2
||𝜇1||𝑛

1

2
⟩.(7.15)

Here the matrix element from the magnetodipole radiation operator [6] is ob-
tained for an arbitrary value of the principal quantum number 𝑛 and corre-
sponds to the transition from the upper sublevel of the hyperfine structure
(with total atomic momentum 𝐹 = 1 and projection 𝑀𝐹 ) of the one-electron
state of the atom with orbital momentum equal to zero to the sublevel with
𝐹 ′ = 0 and, therefore, 𝑀𝐹 ′ = 0. For the ground state of the hydrogen atom,
this transition is shown in Fig. 7.1 and corresponds to the 21 cm line.

The reduced matrix element (see [179]) in (7.15), as well as the common
factor, are not important for further analysis. What is important is that the
Clebsch-Gordan coefficient, 𝐶1−𝑀𝐹

1𝑟 00 , is different from zero at 𝑟 = −𝑀𝐹 ̸= 0.
Circular polarisation with 𝑟 = ±1 (clockwise and anticlockwise) occurs at
the transition between the lower (𝑀𝐹 = −1) or upper (𝑀𝐹 = +1) Zee-
man components of the excited (𝐹 = 1) and ground (𝐹 ′ = 0) hyper-
fine sublevels. Linear polarisation corresponds to the transition 𝑛10 → 𝑛00

(𝐹 = 1𝑀𝐹 = 0 → 𝐹 ′ = 0𝑀𝐹 ′ = 0) [5].
Considering that the lowest-order splitting in the magnetic field is defined

according to 𝜇0 𝑔𝑀𝐹ℋ, where 𝑔 is the Landé factor, 𝑀𝐹 is the magnetic quan-
tum number of the corresponding state, the values of 𝑀𝐹 for the lower and
upper components of the Zeeman splitting for atoms H and H̄ have opposite
signs at a fixed field direction. Therefore, the blue and red wings of the line
profile have different polarisation for hydrogen and anti-hydrogen atoms with
the same field direction, see Fig. 7.1. The maximum of the effect corresponds
to the case of completely separated Zeeman sublevels (non-overlapping Zeeman
absorption/emission lines).

For typical magnetic fields of the order of 10−5 Gs, the distance between hy-
perfine sublevels is much smaller than the 21 cm linewidth. The corresponding
Zeeman splitting in a field of 10−5 Gs is about 14 Hz, and the line width ex-
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Figure 7.1. Level scheme of the ground 1𝑠1/2 state in hydrogen (H) and an-
tihydrogen (H̄) atoms. The levels are depicted taking into account the spin
of the nucleus ( the total momentum 𝐹 ) and the Zeeman splitting corre-
sponding to the splitting of degenerate sublevels with different magnetic quan-
tum numbers 𝑀𝐹 . The linear polarisation corresponding to the transition
𝐹 𝑀𝐹 = 1 0 → 𝐹 ′𝑀𝐹 ′ = 0 0, is shown by the up-down arrow. The left and
right circular polarisations are indicated by circles with arrows.

ceeds kHz at a temperature of 100 K because of the large Doppler broadening.
Therefore, absorption lines are usually chosen to detect the Zeeman effect; ab-
sorption lines occur in colder gas and hence have smaller widths. The weakness
of the Zeeman splitting in the interstellar medium allows it to be observed only
in regions where the interstellar fields are stronger and the gas temperature is
lower than average, i.e., in sufficiently dense clouds. Thus, the observation of
two separate peaks of the line profile is generally speaking difficult. At the same
time, there are situations when the Zeeman effect is detected in the 21 cm [239]
line. The polarisation of hyperfine sublevels is potentially measurable if the
magnetic field strength is such that the magnitude of the difference between
the left and right polarisations exceeds the detector noise [240]. Thus, in prin-
ciple, it is not necessary to observe Zeeman splitting to find an anti-hydrogen
atom; it would be sufficient to detect different polarisations in the blue and red
wings of the 21 cm line profile.

Another effect that also allows one to distinguish between hydrogen and
anti-hydrogen atoms in a magnetic field is the Faraday rotation, that is, the
rotation of the plane of linear polarisation around the direction of propagation
of light. The central component of the 21 cm line profile corresponding to the
transition 𝑀𝐹 = 0 → 𝑀𝐹 ′ = 0 (see Fig. 7.1) is linearly polarised, and the
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plane of this polarisation rotates around the direction of light propagation in
opposite directions for atoms H and H̄. Thus, the Faraday effect on this central
line can also be used to distinguish between atoms H and H̄, provided that the
direction of the external magnetic field is known. Faraday rotation is often used
to observe the polarisation and emission geometry of pulsars, see, e.g., [241].



140

Chapter 8.

One- and two-photon
transition rates

This chapter is mainly devoted to the calculation of one- and two-photon tran-
sitions both in the absence (spontaneous emission) and in the presence of an
external electric field. The chapter starts with general statements and refers to
the material presented in the book [242]. Nevertheless, in view of the use of the
latter to verify the results, a summary of these basics seems appropriate. Fur-
thermore, in contrast to the previous sections, a different and also well known
representation for the multipole expansion of the photon wave function will be
used here, namely the multipole operators for the photon will be represented
in terms of the polarisation and wave vector of the photon [243]. This repre-
sentation is convenient for revealing the influence of the external electric field
on the transition probabilities and the corresponding comparative analysis of
the spectra of atoms H and H̄. In addition to the calculation of one- and two-
photon transition probabilities as applied to H and H̄ atoms, problems related
to astrophysical studies of cosmic microwave background radiation (CMB) are
considered.
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8.1. Transition probabilities in different forms
and gauges

This section describes different calibrations combined with different "forms" for
the one-photon transition probability [242]; the atomic system of units ~ = 𝑒 =

𝑚 = 1 is used.
The probability of emission of a photon with a certain angular momentum

and parity in an arbitrary gauge can be described in the first order of pertur-
bation theory as follows:

𝑊𝐴𝐴′ =
∑︁
𝑘𝑞

[︁
|⟨𝐴′| (𝛼 e𝐴𝜔𝑘𝑞(𝑟)) + Φ𝜔𝑘𝑞(𝑟)|𝐴⟩|2 + |⟨𝐴′|𝛼m𝐴𝜔𝑘𝑞(𝑟)|𝐴⟩|2

]︁
,(8.1)

where e𝐴𝜔𝑘𝑞 and m𝐴𝜔𝑘𝑞 denote the electric and magnetic vector potentials, and
Φ𝜔𝑘𝑞 corresponds to the scalar potential; 𝜔 is the photon frequency, 𝑘, 𝑞 are
the momentum and projection of the emitted photon. The states |𝐴⟩ and ⟨𝐴′|
are stationary solutions of the Dirac equation (wave functions) with energies
𝐸𝐴 and 𝐸𝐴′, and 𝛼 denote the Dirac matrices.

In the momentum representation these potentials take the form:

e𝐴𝜔𝑘𝑞(𝑘) =
4𝜋2𝑐3/2

𝜔3/2
𝛿
(︁
𝑘 − 𝜔

𝑐

)︁
(e𝑌 𝑘𝑞(𝑛𝑘) + 𝒦𝑛𝑘𝑌𝑘𝑞(nk)) , (8.2)

m𝐴𝜔𝑘𝑞 (𝑘) =
4𝜋2𝑐3/2

𝜔3/2
𝛿
(︁
𝑘 − 𝜔

𝑐

)︁
m𝑌 𝑘𝑞(𝑛𝑘) , (8.3)

Φ𝜔𝑘𝑞 (𝑘) =
4𝜋2𝑐3/2

𝜔3/2
𝛿
(︁
𝑘 − 𝜔

𝑐

)︁
𝒦𝑌𝑘𝑞(𝑛𝑘) . (8.4)

Here 𝑘 denotes the variable in the momentum representation, the speed of light
𝑐 is written out for clarity. The functions e𝑌 𝑘𝑞 and m𝑌 𝑘𝑞 are vector spherical
harmonics of electric and magnetic type, respectively, 𝑌𝑘𝑞 is the ordinary spheri-
cal harmonic, and 𝒦 is the gauge constant. The potentials e𝐴𝜔𝑘𝑞(𝑘), m𝐴𝜔𝑘𝑞 (𝑘)

in the momentum representation are related to the expressions (2.12)-(2.14).
Using the Fourier transform, they can be defined in the coordinate representa-
tion according to (2.9)-(2.11), see e.g. [244] (here and below 𝑘 = 𝑗𝛾).

Two gauges are commonly used: the so-called Coulomb gauge, corresponding
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to the conditions ∇ · A = ∇ · eA = 0 and characterised by the choice of the
gauge parameter 𝒦 = 0; another convenient gauge is determined by the value
of the parameter 𝒦 = −

√︁
𝑘+1
𝑘 𝑘. The calculations are usually carried out in

several gauges: "length", 𝒦 = 0, and "velocity", 𝒦 = −
√︁

𝑘+1
𝑘 𝑘), which serves

as an independent test of the correctness of the result (the final answer has to
be gauge invariant).

However, using the integral relation for the wave functions of the Dirac
equation [2],

i

∫︁
𝜓*
𝐴′ (𝛼∇𝜒)𝜓𝐴 𝑑

3𝜏 =
𝜔

𝑐

∫︁
𝜓*
𝐴′𝜒𝜓𝐴 𝑑

3𝜏, (8.5)

where 𝜒 is an arbitrary function, two expressions can be obtained for the emis-
sion probability of the E𝑘-photon (see details in [242] as well as [114]):

𝑊E𝑘
𝐴𝐴′ =

2(𝑘 + 1)𝜔3

𝑘(2𝑘 + 1)𝑐

⃒⃒⃒⃒
⃒⟨𝐴′|𝑟𝑂(𝑘)

−𝑞 + 𝒦
√︂

𝑘

𝑘 + 1

[︂
1

𝜔
𝑣𝑂

(𝑘)
−𝑞 − 𝑟𝑂

(𝑘)
−𝑞

]︂
|𝐴⟩

⃒⃒⃒⃒
⃒
2

, (8.6)

𝑊E𝑘
𝐴𝐴′ =

2(𝑘 + 1)𝜔

𝑘(2𝑘 + 1)𝑐

⃒⃒⃒⃒
⃒⟨𝐴′|𝑣𝑂(𝑘)

−𝑞 + 𝒦
√︂

𝑘

𝑘 + 1

[︁
𝑣𝑂

(𝑘)
−𝑞 − 𝜔𝑟𝑂

(𝑘)
−𝑞

]︁
|𝐴⟩

⃒⃒⃒⃒
⃒
2

, (8.7)

where the relativistic radiation operators are defined according to

𝑣𝑂
(𝑘)
−𝑞 = −i

[︃
𝑘

√︂
2𝑘 + 3

𝑘 + 1
𝑔𝑘+1(𝜔𝑟)

[︁
𝐶(𝑘+1) × 𝛼(1)

]︁(𝑘)
−𝑞

(8.8)

+
√︀
𝑘(2𝑘 − 1)𝑔𝑘−1(𝜔𝑟)

[︁
𝐶(𝑘−1) × 𝛼(1)

]︁(𝑘)
−𝑞

]︂
,

𝑟𝑂
(𝑘)
−𝑞 = −2𝑘 + 1

𝜔

[︃
𝑔𝑘(𝜔𝑟)𝐶

(𝑘)
−𝑞 + i

√︂
2𝑘 + 3

𝑘 + 1

[︁
𝐶(𝑘+1) × 𝛼(1)

]︁(𝑘)
−𝑞
𝑔𝑘+1(𝜔𝑟)

]︃
.(8.9)

The notations used here are: 𝐶(𝑘)
−𝑞 =

𝑠𝑞𝑟𝑡 4𝜋
2𝑘+1𝑌𝑘−𝑞, [𝑎(𝑠1) × 𝑏(𝑠2)]

(𝑠)
𝑞 is the tensor product of two irreducible spherical

tensors of rank 𝑠1 and 𝑠2, related to a spherical tensor of rank 𝑠 with components
𝑞 (notation is preserved according to [242]). The second expression, (8.7), was
obtained using (8.5), and the relativistic radiation operators (8.8), (8.9) in the
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nonrelativistic limit reduce to the well-known expressions for the multipole
decomposition of the photon wave function [244].

Thus, there are two different (equivalent) forms of the E𝑘-transition prob-
ability (expressions (8.6) and (8.7)) together with an arbitrary choice of the
gauge constant 𝒦. Choosing 𝒦 = 0, the operator in (8.6) corresponds to a
transition operator in the "velocity" form, and when 𝒦 = −

√︁
𝑘+1
𝑘 it is related

to a transition operator in the "length" form. However, the consistency of a
certain choice of gauge with a certain type of transition operator is not unique.
Taking into account the expression (8.7), one can specify that the choice of
𝐾 = 0 transforms the emission operator into "length" and 𝐾 = −

√︁
𝑘+1
𝑘 into

the form of "velocity". Finally, as the main conclusion of this section, it can be
deduced that the transformation (8.5) for the wave function can be used along
with the gradient transformation of the radiation operator to verify the result.
Nevertheless, in the following, the commonly accepted treatment of this issue is
used: the gradient transformation of the radiation operator to verify the results
of calculations of transition probabilities.

8.2. Probability of one-photon radiation in the
Pauli approximation

In this section we consider the process of one-photon radiation in a one-electron
atom. The Pauli approximation [243] is used for the radiation operator. Using
the "standard" fully relativistic 𝑆-matrix formalism, the radiation amplitude
can be obtained as follows. According to [2], the process of one-photon radiation
can be described by the 𝑆-matrix element

𝑆𝐴𝐴′ = 𝑒

√︂
4𝜋

2𝜔

∫︁
𝑑4𝑥𝜓𝐴′(𝑥)𝑒(𝜆)*𝜇 𝛾𝜇𝑒−i(𝑘𝑟−𝜔𝑡)𝜓𝐴(𝑥), (8.10)

where the relativistic system of units and notations corresponding to the pre-
vious sections are used. After integration on the time variable, the amplitude
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of the transverse photon emission is reduced to (see [106])

𝐴𝐴𝐴′(𝑘, 𝑒) =
(︁√

2𝜋𝜔/𝑒
)︁
𝑈𝐴𝐴′ = ⟨𝐴′|𝑒𝛼𝑒−i𝑘𝑟|𝐴⟩. (8.11)

The expression for the transition probability integrated over the emission
angles of photons 𝜈 = 𝑘/𝜔 and summed over polarisations 𝑒 is given by the
expression:

𝑊
(1𝛾)
𝐴𝐴′ =

𝑒2𝜔𝐴𝐴′

2𝜋

∑︁
𝑒

∫︁
𝑑𝜈 |𝐴𝐴𝐴′(𝑘, 𝑒)|2 . (8.12)

Here, the integration over frequency is removed due to the 𝛿-function arising
after integration over the time variables. As a consequence, 𝜔 = |𝑘| = 𝜔𝐴𝐴′ =

𝐸𝐴 − 𝐸𝐴′ (it is assumed that the final state 𝐴′ is located below the initial
state 𝐴, hence 𝜔𝐴𝐴′ > 0). The energies 𝐸𝐴′ and 𝐸𝐴 are the Dirac energies of
the atomic levels 𝐴′ and 𝐴, respectively. The integral over 𝑑𝜈 comes from the
phase volume 𝑑𝑘 = 𝜔2𝑑𝜔𝑑𝜈. For summation on polarisations of the photon 𝑒

the following relation can be employed:∑︁
𝑒

𝑒𝑖𝑒𝑘 = 𝛿𝑖𝑘 − 𝜈𝑖𝜈𝑘, (8.13)

and the integral
∫︀
𝑑𝜈 can be calculated using ∫︁

𝑑𝜈 = 4𝜋, (8.14)∫︁
𝑑𝜈𝜈𝑖 =

∫︁
𝑑𝜈𝜈𝑖𝜈𝑘𝜈𝑘 =

∫︁
𝑑𝜈odd = 0,∫︁

𝑑𝜈𝜈𝑖𝜈𝑘 =
4𝜋

3
𝛿𝑖𝑘,∫︁

𝑑𝜈𝜈𝑖𝜈𝑘𝜈𝑗𝜈𝑙 =
4𝜋

15
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑙𝛿𝑘𝑗).

Calculation of photon absorption (emission) amplitudes in the Pauli ap-
proximation (denoted hereafter by the upper index 𝑃 ) transforms the formula



145

(8.12) to

𝑊
(1𝛾)
𝐴𝐴′ =

𝑒2𝜔𝐴𝐴′

2𝜋

∑︁
𝑒

∫︁
𝑑𝜈
⃒⃒
𝐴𝑃

𝐴𝐴′(𝑘, 𝑒)
⃒⃒2
, (8.15)

где амплитуда 𝐴𝑃
𝐴𝐴′(𝑘, 𝑒) (см. [243]) определена следующим выражением:

𝐴𝐴𝐴′(𝑘, 𝑒) =
(︀
[(𝑒𝑝) + i[𝑘 × 𝑠]] 𝑒−i𝑘𝑟

)︀
𝐴𝐴′ . (8.16)

Here 𝑝 = −i∇ is the non-relativistic momentum operator, 𝑠 = 𝜎/2 is the
electron spin operator, and 𝜎 is the Pauli matrices. The brackets (. . . )𝐴𝐴′ mean
that the matrix element is calculated using nonrelativistic wave functions. In
the case of the dipole approximation 𝑒𝑥𝑝(−i𝑘𝑟) ≈ 1, the first summand of the
matrix element (8.16) describes the emission of the E1 photon (electric dipole
photon), and the second summand corresponds to the magnetic M1 transition
(magnetic dipole photon). Possible transitions between atomic levels are defined
according to the selection rules [6].

Higher multipoles can be obtained by considering the exponent decomposi-
tion in (8.16). In particular, it can be obtained (see [112,114])

𝐴𝑃 (𝑒,𝑘) = ((𝑒*𝑝) + 𝑖(𝑒*[𝑘 × 𝑠]))𝑒−𝑖𝑘𝑟 (8.17)

≈ 𝑖𝑚

~
[𝐻, 𝑒*𝑟] +

𝑚

2~
[𝐻, (𝑒*𝑟)(𝑘𝑟)] +

𝑖

2
(𝑒*[𝑘 × ([𝑟 × 𝑝] + 2𝑠)]) .

The first term in this expression represents the electric dipole moment of the
emitted photon, the second term is the electric quadrupole moment, and the last
term in (8.17) represents the magnetic dipole moment of the emitted photon,
proportional to the magnetic moment operator ∼ 𝑙 + 2𝑠, 𝑙 ≡ [𝑟 × 𝑝]. For
brevity, the details of the transformations are omitted, as well as the following
contributions.

The order of magnitude of the corresponding multipole radiation contri-
butions can be estimated in the standard way. For instance, for the atomic
electron, the following relation holds: 𝑟 ∼ 𝑎0 = 1/𝑚𝛼𝑍 (𝑎0 is the Bohr radius,
𝑚 is the electron mass, 𝛼 ≈ 1/137 is the fine structure constant), the charac-
teristic transition frequency 𝜔 ≈ 𝑚(𝛼𝑍)2 and hence 𝑘𝑟 ∼ 𝛼𝑍. Averaging (8.17)
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on the wave functions according to (8.16), the action of the Hamilton operator
𝐻 (hats omitted for brevity) reduces to the energy difference or (which is the
same as well) to the transition frequency 𝜔𝐴𝐴′.

As an example, one can calculate the one-photon 2𝑠− 1𝑠 transition in the
hydrogen atom (see [106, 243] and related references). This electron transition
is accompanied by the emission of a M1 photon. For the calculation one should
use, respectively, the third summand in (8.17) and the wave function in the
Pauli approximation in the form:

𝜓𝑛𝑗𝑙𝑚(𝑟) =
∑︁
𝑚𝑙,𝑚𝑠

𝐶𝑗𝑚
𝑙𝑚𝑙 𝑠𝑚𝑠

𝑅𝑛𝑙(𝑟)𝑌𝑙𝑚𝑙
(𝑛𝑟)𝜒𝑚𝑠

. (8.18)

Here the atomic state is given by the following set of quantum numbers: 𝑛
is the principal quantum number, 𝑗𝑚 is the total angular momentum of the
electron and its projections (respectively) and the orbital momentum 𝑙. Since
one-electron states will be considered, the electron spin is always equal to 1/2.
The spin part of the wave function of the electron is given by 𝜒𝑚𝑠

, and the
summation is carried out by the projections of the orbital momentum 𝑚𝑙 and
spin 𝑚𝑠. The amplitude of the transition is

𝐴𝑃
2𝑠1/2𝑚,1𝑠1/2𝑚′ = −i𝑘2⟨𝑚|𝑒[𝑘 × 𝜎]|𝑚′⟩𝑅2𝑠,1𝑠, (8.19)

𝑅2𝑠,1𝑠 =

∞∫︁
0

𝑑𝑟 𝑟4𝑅2𝑠(𝑟)𝑅1𝑠(𝑟).

The integral 𝑅2𝑠,1𝑠 arises taking into account the relativistic correction to the
wave function (see [243] for details). Taking into account the estimates above,
the final result is

𝑊
(1𝛾)
2𝑠,1𝑠 =

1

972
𝑚𝛼(𝛼𝑍)10 = 2.8 × 10−6 с−1. (8.20)

To conclude the section, it is worth noting that the representation of the
radiation operator in the form (8.17) turns out to be convenient when the
external field is taken into account, since it allows one to determine quite simply
the correlation of the direction of the emitted photon (𝑘 = 𝜔𝜈) with the field
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direction. The latter is expressed by the scalar product (𝑘ℰ).

8.3. Two-photon decay probabilities of 2𝑠 and 2𝑝

states in the hydrogen atom

An important continuation of the previous section is the calculation of proba-
bilities of two-photon emission processes. In particular, it is well known that the
dominant decay channel of the 2𝑠 state in the hydrogen atom (hydrogen-like
atomic systems) is 𝐸1𝐸1 two-photon radiation (emitting two electric dipole
photons, see (8.17)). A careful calculation in the framework of the nonrelativis-
tic theory was presented in [245] (see also relevant references to earlier papers).
𝐸1𝐸1 two-photon emission has played an essential role in many studies, in-
cluding the astrophysics (see, for example, [77, 79]) and laboratory problems
(see, for example, [134, 182]). Calculations of two-photon multipole transitions
based on the results of sections 3.2, 8.1 were carried out in [111], and a careful
fully relativistic calculation was presented in [110], where the probabilities of
two-photon 𝐸1𝐸1, 𝐸1𝐸2, and 𝐸1𝑀1 transitions were calculated.

In the nonrelativistic approximation, using the expansion of the Coulomb
Green’s function through the eigenfunctions (3.14), (3.15), the probability of
the two-photon decay process for arbitrary electric photons 𝐸𝑘 and 𝐸𝑘′ takes
the form:

𝑑𝑊𝐸𝑘𝐸𝑘′

𝐴𝐴′ =
2𝜋

2𝑙𝐴 + 1

∑︁
𝑞𝑞′𝑚𝐴𝑚𝐴′

⃒⃒⃒⃒
⃒∑︁
𝑙𝑚𝑙

∫︁ ∫︁
𝑑𝑟1𝑑𝑟2𝑅𝑛𝐴′ 𝑙𝐴′(𝑟1)𝑌

*
𝑙𝐴′𝑚𝐴′(𝑛𝑟1)× (8.21)

𝑉 E𝑘(𝑟1)𝑔𝑙(𝜈; 𝑟1, 𝑟2)𝑌𝑙𝑚𝑙
(𝑛𝑟1)𝑌

*
𝑙𝑚𝑙

(𝑛𝑟2)𝑉
E𝑘′(𝑟2)𝑅𝑛𝐴𝑙𝐴(𝑟2)𝑌𝑙𝐴𝑚𝐴

(𝑛𝑟2)+∑︁
𝑙𝑚𝑙

∫︁ ∫︁
𝑑𝑟1𝑑𝑟2𝑅𝑛𝐴′ 𝑙𝐴′(𝑟1)𝑌

*
𝑙𝐴′𝑚𝐴′(𝑛𝑟1)𝑉

E𝑘′(𝑟1)𝑔𝑙(𝜈
′; 𝑟1, 𝑟2)𝑌𝑙𝑚𝑙

(𝑛𝑟1)

×𝑌 *
𝑙𝑚𝑙

(𝑛𝑟2)𝑉
E𝑘(𝑟2)𝑅𝑛𝐴𝑙𝐴(𝑟2)𝑌𝑙𝐴𝑚𝐴

(𝑛𝑟2)
⃒⃒2
𝑑𝜔,

where 𝑉 𝐸𝑘(𝑟) =
√︀

(𝑘 + 1)/𝑘(2𝜔𝑘+1/2/(2𝑘 + 1)!!)𝑟𝑘𝑌𝑘−𝑞 represents the cor-
responding photon multipole written in the gauge 𝒦 = −

√︀
(𝑘 + 1)/𝑘, 𝜈 =

𝑍/
√︀
−2(𝐸𝐴 − 𝜔), 𝜈 ′ = 𝑍/

√︀
−2(𝐸𝐴 − 𝜔′), and photon frequencies are related
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according to the energy conservation law by the relation 𝜔′ = 𝐸𝐴 − 𝐸𝐴′ − 𝜔

[111,112,114].
For the case of 𝐸1𝐸1 two-photon radiation, all calculations can be per-

formed analytically, except for the finite integration over the 𝜔 frequency. The
final result can be represented in the form:

𝑊𝐸1𝐸1
2𝑠,1𝑠 =

1

2

𝜔0∫︁
0

𝑑𝑊𝐸1𝐸1
2𝑠,1𝑠 (𝜔) = 0.00131823 (𝛼𝑍)6 a.u., (8.22)

𝑊𝐸1𝐸1
2𝑠,1𝑠 = 8.22932 c−1 (𝑍 = 1),

where 𝜔0 = 𝐸2𝑠−𝐸1𝑠. The expression (8.22) specifies the 𝑍-dependence of the
transition probability 𝑊𝐸1𝐸1

2𝑠,1𝑠 . The numerical value of (8.22) coincides perfectly
with the most accurate result [246].

8.3.1. Two-photon 𝐸1𝐸2 decay for the state 2𝑝

The expression (8.21) is general for arbitrary two-photon transitions. The re-
sult for the 𝐸1𝐸2 (dipole-quadrupole two-photon emission) transition can be
obtained as follows. By setting the states 𝐴 = 2𝑝, 𝐴′ = 1𝑠 and considering that
in this case the angular momentum of the photon can take values 𝑘 = 1, 2, four
different summands arise due to photon permutations in the radiation ampli-
tude. After angular integration and summation over projections, see [114], it
turns out

𝑑𝑊𝐸1𝐸2
2𝑝,1𝑠 (𝜔) =

22𝜔3𝜔′3

3352𝜋

[︁
𝜔′2 |𝐼1(𝜔′) + 𝐼2(𝜔)|2 + 𝜔2 |𝐼1(𝜔) + 𝐼2(𝜔

′)|2
]︁
𝑑𝜔, (8.23)

where

𝐼1(𝜔) =
1√
6

∞∫︁
0

∞∫︁
0

𝑑𝑟1𝑑𝑟2 𝑟
3
1𝑟

5
2 𝑒

−𝑟1− 𝑟2
2 𝑔1(𝐸𝐴 − 𝜔; 𝑟1, 𝑟2), (8.24)

𝐼2(𝜔) =
1√
6

∞∫︁
0

∞∫︁
0

𝑑𝑟1𝑑𝑟2 𝑟
4
1𝑟

4
2 𝑒

−𝑟1− 𝑟2
2 𝑔2(𝐸𝐴 − 𝜔; 𝑟1, 𝑟2), (8.25)
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Substituting again the expression for the radial part of the Coulomb Green’s
function (3.15), the radial integrals in (8.24) and (8.25) can be calculated ana-
lytically.

As a result, the final output is

𝑊𝐸1𝐸2
2𝑝,1𝑠 =

1

2

𝜔0∫︁
0

𝑑𝑊𝐸1𝐸2
2𝑝,1𝑠 = 1.98896 × 10−5 (𝛼𝑍)8 a.u., (8.26)

𝑊𝐸1𝐸2
2𝑝,1𝑠 = 6.61197 × 10−6 с−1 (𝑍 = 1),

where 𝜔0 = 𝐸2𝑝 − 𝐸1𝑠 and the dependence on the nuclear charge 𝑍 is given.
Comparison with the fully relativistic calculation gives a relative deviation in
the "length" gauge at the level of 0.1% [110].

The calculation of the two-photon 𝐸1𝐸2 decay in the nonrelativistic "ve-
locity" form, is more complicated. Now the gauge constant should be chosen
either 𝐾 = −

√︁
𝑘+1
𝑘 for the form (8.7), or 𝐾 = 0 for the form (8.6) [242].

Choosing 𝐾 = 0 for (8.7) and substituting the corresponding potential into
(8.21), after integration over angular variables and summation over projections,
it can be found that

𝑑𝑊𝐸1𝐸2
2𝑝,1𝑠 (𝜔) =

24𝑑𝜔

3352𝜋
𝜔′𝜔

[︁
𝜔2 |𝐼1(𝜔) + 𝐼2(𝜔

′)|2 + 𝜔′2 |𝐼1(𝜔′) + 𝐼2(𝜔)|2
]︁
,(8.27)

𝐼1(𝜔) =
1√
6

∞∫︁
0

∞∫︁
0

𝑑𝑟𝑑𝑟′ 𝑟2𝑟′3 𝑒−𝑟− 𝑟′
2

[︂
1 − 9𝑖

2
− 𝑟′

2

]︂ [︂
𝜕

𝜕𝑟
− 2𝑖

𝑟

]︂
𝑔1(𝜈; 𝑟, 𝑟′), (8.28)

𝐼2(𝜔) =
1√
6

∞∫︁
0

∞∫︁
0

𝑑𝑟𝑑𝑟′ 𝑟3𝑟′2 𝑒−𝑟− 𝑟′
2

[︂
1 − 5𝑖− 𝑟′

2

]︂ [︂
𝜕

𝜕𝑟
− 3𝑖

𝑟

]︂
𝑔2(𝜈; 𝑟, 𝑟′). (8.29)

Here 𝜈 = 𝑍/
√︀

−2(𝐸2𝑝 − 𝜔), 𝜈 ′ = 𝑍/
√︀
−2(𝐸2𝑝 − 𝜔′), and 𝜔 + 𝜔′ = 𝐸𝐴 −𝐸𝐴′.

Integration over 𝑟 and 𝑟′ leads to a rather long analytic expressions. Finally,
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the final integration over frequency gives

𝑊𝐸1𝐸2
2𝑝,1𝑠 =

1

2

𝜔0∫︁
0

𝑑𝑊𝐸1𝐸2
2𝑝,1𝑠 (𝜔) = 3.6896 × 10−6 (𝛼𝑍)8 a.u. (8.30)

𝑊𝐸1𝐸2
2𝑝1𝑠 ≃ 1.227 × 10−6 с−1 (𝑍 = 1),

The value (8.30) differs from the result obtained in the framework of the fully
relativistic calculation in the "velocity" gauge, [110] by about 0.5%. This dis-
crepancy exceeds the relativistic corrections (of the relative order of 𝛼2) and
can be explained by purely numerical uncertainties. The most important con-
clusion, however, is the comparison of the values of (8.30) and (8.26). The gauge
invariance of the result is restored only by taking into account the negative en-
ergy spectrum when summing over the intermediate states in (8.21). In contrast
to the "length" form, the negative energy contribution is no longer negligible
when using the "velocity" form. The contribution (8.30) does not coincide with
equation (8.26) and represents only the positive energy contribution to 𝑊𝐸1𝐸2

2𝑝,1𝑠

in the "velocity" gauge. Therefore, the value of 1.227×10−6 should be compared
with the positive energy contribution calculated in the [110]. In the nonrela-
tivistic limit, the contribution of the negative energy in the "velocity" gauge,
for small values of 𝑍 was estimated analytically in [110].

8.3.2. The negative energy contribution to the 𝐸1𝑀1 and

𝐸1𝐸2 probabilities of 2𝑝− 1𝑠 transitions in the "ve-

locity" gauge, for small values of 𝑍

In this section an explicit expression for the negative-energy contribution to the
𝐸1𝑀1 and 𝐸1𝐸2 probabilities of 2𝑝− 1𝑠 transitions in the "velocity" gauge,
for small values of 𝑍, is obtained. This conclusion can be used to test the
validity of numerical nonrelativistic calculations. The derivation is carried out
with a different set of photon characteristics, namely the photon momentum
𝑘 and the polarisation vector 𝑒. Without distinguishing between 𝐸1𝑀1 and
𝐸1𝐸2 transitions the following estimate can be considered as a correction to
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the dominant dipole transition.
As an initial formula one can use (2.1) with the corresponding replacement

of the absorbed photon by the emitted one (conjugate from the mathemati-
cal point of view). All analytical calculations are repeated in complete analogy
with the scattering amplitude. An important consequence in this case is the
presence of summation over intermediate states in the amplitude (2.6), includ-
ing the negative energy spectrum (see the expressions for the propagator of the
atomic electron (2.3). Then, keeping only the sum only on the negative energy
states in the expression for the process amplitude, the corresponding energy de-
nominators in the nonrelativistic limit can be replaced by −2𝑚, neglecting also
the photon frequencies limited by the value 𝜔𝑖𝑓 = 𝐸𝐴−𝐸𝐴′ (equal in the case of
(8.30) to the energy difference 𝐸2𝑝 −𝐸1𝑠) [2]. Also, consider a series expansion
of the exponents included in the wave function of the photon (2.5), replacing
one of them by one and leaving only the next term of the expansion in the
other. After summing over the polarisations and integrating over the directions
of the emitted photons, a leading-order correction will arise. The contribution
of the negative spectrum to the emission probability can be represented by the
following expressions(in relativistic units 𝑒4 = 𝛼2):

𝑊
(−)
𝑖𝑓 =

𝛼2

(2𝜋)3

∑︁
𝑒,𝑒′

∫︁
𝑑𝜈

∫︁
𝑑𝜈 ′
⃒⃒⃒
𝑈

(−)
𝑖𝑓

⃒⃒⃒2
, (8.31)

𝑈
(−)
𝑖𝑓 ≈ − i

2𝑚

∑︁
𝑛(−)

[︁
⟨𝑖|(𝑒𝜎)(𝑘𝑟)|𝑛(−)⟩⟨𝑛(−)|(𝑒′𝜎)|𝑓⟩+

⟨𝑖|(𝑒𝜎)|𝑛(−)⟩⟨𝑛(−)|(𝑒′𝜎)(𝑘′𝑟)|𝑓⟩ + [𝑒,𝑘 ↔ 𝑒′,𝑘′]
]︁
.

The expression (8.31) corresponds to the "velocity" gauge. Here 𝜎 are Pauli
matrices, and the summation is carried out over the set of Dirac equation so-
lutions for an electron in the field of a nucleus with negative energy. In the
nonrelativistic limit this set becomes a complete set of the Schr?dinger equa-
tion for the positron in the field of the nucleus. Then using the completeness
condition

𝑈
(−)
𝑖𝑓 = −i

(𝑒𝑒′)

𝑚
⟨𝑖|(𝑘𝑟) + (𝑘′𝑟)|𝑓⟩. (8.32)
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Summing over polarisations and integration over directions of photon emission
is carried out according to (8.13), (8.14).

As a result, the following can be arrived at:

𝑊
(−)
𝑖𝑓 =

4𝛼2

9𝜋𝑚2
|⟨𝑖|𝑟|𝑓⟩|2

𝜔𝑖𝑓∫︁
0

𝑑𝜔 𝜔(𝜔𝑖𝑓 − 𝜔
(︀
𝜔2 + (𝜔𝑖𝑓 − 𝜔)2

)︀
) (8.33)

=
2𝛼2𝜔5

𝑖𝑓

45𝜋𝑚2
|⟨𝑖|𝑟|𝑓⟩|2 .

The order of magnitude and scaling factor for the 2𝑝−1𝑠 two-photon transition
in the "velocity" gauge are given by the relation

𝑊
𝐸1𝑀1(−)
2𝑝,1𝑠 +𝑊

𝐸1𝐸2(−)
2𝑝,1𝑠 = 5.625 × 10−5 (𝛼𝑍)8 a.u. (8.34)

This result can be compared with the value obtained in the framework of the
fully relativistic approach [110] (also in the "velocity" gauge):

𝑊
𝐸1𝑀1(−)
2𝑝,1𝑠 +𝑊

𝐸1𝐸2(−)
2𝑝,1𝑠 = 5.806 × 10−5 (𝛼𝑍)8 a.u. (8.35)

The discrepancy (3.1%) exceeds the expected due to relativistic corrections
(∼ 𝛼2 for 𝑍 = 1). However, as an estimate, the value (8.34) is quite satisfactory,
showing the necessity to take into account the negative energy spectrum in
the "velocity" gauge in calculations of two-photon probabilities of transitions
involving "higher" multipoles. For 𝐸1𝐸1 transitions, the contribution of the
negative energy spectrum remains negligibly small both in the "length" and
"velocity" gauges, see [110].
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8.3.3. Two-photon 𝐸1𝑀1 decay for the state 2𝑝

For the two-photon 𝐸1𝑀1 transition, the emission probability can be expressed
as follows:

𝑑𝑊𝐸1𝑀1
𝐴𝐴′ =

∑︁
𝑀𝐸𝑀𝑀𝑚𝐴𝑚𝐴′

⃒⃒⃒⃒
⃒∑︁

𝑛

⟨𝐴′|𝑉 𝐸1(𝜔)|𝑛⟩⟨𝑛|𝑉 𝑀1(𝜔′)|𝐴⟩
𝐸𝑛 − 𝐸𝐴 + 𝜔

+ (8.36)

⟨𝐴′|𝑉 𝑀1(𝜔′)|𝑛⟩⟨𝑛|𝑉 𝐸1(𝜔)|𝐴⟩
𝐸𝑛 − 𝐸𝐴 + 𝜔′ +

⟨𝐴′|𝑉 𝐸1(𝜔′)|𝑛⟩⟨𝑛|𝑉 𝑀1(𝜔)|𝐴⟩
𝐸𝑛 − 𝐸𝐴 + 𝜔′ +

⟨𝐴′|𝑉 𝑀1(𝜔)|𝑛⟩⟨𝑛|𝑉 𝐸1(𝜔′)|𝐴⟩
𝐸𝑛 − 𝐸𝐴 + 𝜔

⃒⃒⃒⃒2
𝑑𝜔.

Here 𝑉 𝐸1(𝜔) = 4
3𝜔

3/2𝑟𝑌1𝑀𝐸
, 𝑉 𝑀1(𝜔) =

√︁
4
3𝜇0𝜔

3/2 (𝑗1𝑀𝑉
+ 𝑠1𝑀𝑀

), 𝑌1𝑀 is a
spherical function with unit momentum and projection 𝑀 , 𝜇0 = 𝛼

2 is the Bohr
magneton, 𝑗1𝑀𝑀

and 𝑠1𝑀𝑀
are the spherical components of the total angular

momentum and spin momentum of the electron, respectively. These potentials
belong to the non-relativistic limit obtained in the "length" gauge. Since the
magnetic photon potential includes the total angular momentum and the spin
operator, one should use wave functions with the set of quantum numbers
𝑛𝑙𝑠𝑗𝑚, see (8.18).

It is worth noting that the matrix elements of the magnetic moment "cut
out" from the summation over intermediate states only 𝑛 = 𝐴 or 𝐴′ by the
condition of orthogonality of the radial parts of the wave functions [179]. After
angular integration and summation over all projections,

𝑑𝑊𝐸1𝑀1
2𝑝,1𝑠 (𝜔) =

28𝜇20
𝜋

(︂
2

3

)︂12

𝜔𝜔′3𝑑𝜔 (8.37)

and, therefore,

𝑊𝐸1𝑀1
2𝑝,1𝑠 =

1

2

3/8∫︁
0

𝑑𝑊𝐸1𝑀1
2𝑝,1𝑠 (𝜔) =

25

𝜋

(︂
2

3

)︂12

𝛼8

3/8∫︁
0

𝜔

(︂
3

8
− 𝜔

)︂3

𝑑𝜔. (8.38)
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Finally, the final result is

𝑊𝐸1𝑀1
2𝑝,1𝑠 =

25

𝜋

(︂
2

3

)︂12
243

655360
(𝛼𝑍)8 a.u. = 9.6769 × 10−6 с−1 (𝑍 = 1). (8.39)

The 𝑍-dependence of the transition probability𝑊𝐸1𝑀1
2𝑝,1𝑠 is again indicated. Com-

parison with the result of the fully relativistic calculation [110] reveals a dis-
crepancy about 0.1%.

The calculations of the probabilities of two-photon transitions are directly
related to the calculation, for example, of the NR corrections (see the pre-
vious sections). The theory and corresponding numerical calculations in the
framework of the fully relativistic approach for the probabilities of three-photon
emission were presented in [123] (omitted for brevity). Multiphoton emission
(absorption) processes can also serve to test the fundamental properties of
bosons. For example, two electric dipole photons do not carry a momentum
equal to unity (Landau-Yang theorem), see [122–125]. Separately, it is worth
noting the result of the [117], which can also be used to verify the numerical
results. Omitting the details of calculations, mainly related to the angular al-
gebra, the connection between the probabilities of multiphoton transitions and
the partial decay channels of fine (hyperfine) sublevels of a given state was es-
tablished. Expressions analogous to one-photon transitions were derived, see,
e.g., [6]. The theory presented here will be further used to elucidate a number of
questions related to astrophysical studies of CMB and to compare the spectral
characteristics of hydrogen and anti-hydrogen atoms.

8.3.4. Two-photon decay of highly excited states in H

Recent advances in observations of the temperature anisotropy of the cosmic
microwave background (CMB) and its polarisation, see [247,248], have led to a
revision of the details of the theoretical description of the cosmological history
of hydrogen recombination. In turn, the corresponding analyses necessitatively
require correct knowledge of the two-photon decay processes of hydrogen (see,
e.g., [77, 79, 164] and many others). For example, the 𝐸1𝐸1 two-photon decay
of the metastable 2𝑠 level in the hydrogen atom of [77, 79] is of fundamental
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importance, since this is the dominant decay channel. Two-photon emission
is characterised by the fact that the frequency of a single photon (out of the
available two) is not sufficient to excite a neighbouring atom (absorption in the
wing of the absorption profile is suppressed) and thus the radiation "escapes"
from the substance, leading to the final recombination of atoms.

Within the framework of the study of one- and two-photon radiation pro-
cesses in the astrophysical context, several questions are considered in this the-
sis. The first will be discussed in the next section and relates to the possibility
of separating two-photon radiation of highly excited states into "pure", lead-
ing to direct radiation "escape", and cascade radiation. The cascade (resonant)
radiation is effectively reabsorbed, and the esape mechanism of such radiation
is described in detail, for example, in [165, 167, 168].The careful separation of
"pure" radiation from cascade radiation is of fundamental importance and re-
quires the use of various mechanisms of radiation "escape".

Another question can be formulated as follows. In the works [76, 99] for
an accurate description of the cosmological recombination epoch of the early
Universe, the importance of taking into account, if possible, the whole spectrum
of atomic states was emphasised. In view of the obvious difficulties of using
the full set of atomic states in the theory of radiative transfer, it becomes
necessary to define an admissible restriction on their number. This concerns not
only one-photon transitions, but also other possible (two-, three-, etc.) decay
channels. It should be emphasised that, despite the rather small probability,
the two-photon decays of the 2𝑝 level considered in the previous sections can
be attributed to "pure" radiation. Thus, a study of the behaviour of "pure"
radiation with increasing principal quantum number of the excited state can
provide an appropriate answer. The study was presented in [83], where it was
determined that effectively any two-photon transitions (𝐸1𝐸1, 𝐸1𝐸2, 𝐸1𝑀1,
as well as 𝐸2𝐸2, 𝑀1𝑀1, 𝐸1𝑀2) for 𝑛𝑠, 𝑛𝑝 states decrease as 1/𝑛3. It is worth
noting that, as for one-photon transitions, this asymptotic behaviour for some
transitions has been obtained analytically. Thus, it is possible to determine with
high accuracy the number of states required for accounting.

Another goal of the work [83] was to search for effects beyond the dipole ap-
proximation (cases when the usually used dipole approximation is insufficient)
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in the astrophysical context. For this purpose fully relativistic calculations were
carried out. The gauge invariance served as a test of calculations. Nonrelativistic
calculations were carried out in the "length" gauge and directly compared with
the results of relativistic calculations obtained in the "length" and "velocity"
gauges (gauge invariant).

The dipole approximation can be characterised by taking into account only
the first term in the expansion of the photon wave function when the argument
is small (see above). However, for highly excited states the argument of the
photon wave function grows with increasing principal quantum number, since
𝜔𝑛𝑙,1𝑠⟨𝑟⟩ ∼ 𝑛2 (⟨𝑟⟩ the mean value of the orbital radius in the 𝑛 state). The
search for effects beyond the nonrelativistic dipole approximation consisted in
comparing the contributions of the nonrelativistic and relativistic dipole photon
emission operator. It was also supposed that at large values of the argument of
the Bessel function the subsequent terms of the expansion, beyond the dipole
approximation, can be comparable to the first one. The 𝐸2𝐸2 and 𝑀1𝑀1

transition probabilities represent the next order of such an approximation for
two-photon 𝑛𝑠/𝑛𝑑−1𝑠 radiation processes. To avoid the issue of cascade emis-
sion, the calculations were performed at a frequency equal to half of the energy
interval. The result of the study is that the dipole approximation works quite
well for the 𝑛𝑠/𝑛𝑝/𝑛𝑑→ 1𝑠+2𝛾 transitions in the hydrogen atom. For obvious
reasons this fact is violated with increasing of the charge number of the nucleus,
see [110,123].

8.4. Two-photon decay of excited levels in hy-
drogen: ambiguity of separation into cascade
and "pure" two-photon emission

There is a fundamental difference between the decay of highly excited 𝑛𝑠 levels
(similarly to 𝑛𝑑, 𝑛 > 2) and 2𝑠 levels, which consists in the presence of cascade
transitions as dominating decay channels. For the 2𝑠 level there are no cascade
transitions. Since cascade photons can be effectively re-absorbed, the problem
of separating the "pure" two-photon contribution from the cascade contribution
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arises. The interference between the two decay channels, i.e., the product of the
amplitudes of the "pure" and the cascade two-photon decay, should also be
taken into account.

A similar problem arose much earlier in the framework of the theory of
two-electron HCI, see [249] and related references. Typically, the "pure" two-
photon contribution is isolated by subtracting the Lorentz contour as a cascade
contribution from the total two-photon decay frequency distribution, see for ex-
ample the works of [250,251]. The existence of interference terms was recognised
in [250,251], but only approximately included in the Lorentz approximation as
an asymmetric deviation of the line contour. A rigorous QED approach to es-
timate the two-photon decay width with the presence of cascades for HCI was
performed in [249] (see also [8]). This approach was based on the standard es-
timation of the width as the sum of the transition probabilities to lower levels.
In the case of cascades, the integral over the frequency distribution of emit-
ted photons becomes divergent due to singular terms corresponding to cascade
resonances. To avoid such singularity, a regularisation was performed in [249]
according to the theory in [85]. In [250, 251] the level widths in the singular
energy denominators were also taken into account, albeit purely phenomeno-
lically. In a similar way, i.e., by introducing the level widths into the singular
energy denominators, the two-photon decay of the excited levels 𝑛𝑠 and 𝑛𝑑 in
hydrogen was recently estimated in the astrophysical works of [164,252].

In [249], the ambiguity of the separation between "pure" two-photon decay
and cascades for HCI was revealed for the first time. In particular, it was shown
that interference terms can contribute significantly to the total decay probabil-
ity. In [164, 252], the ambiguity of the separation of "pure" two-photon decay
was neither emphasised nor demonstrated explicitly. This will be addressed
in this section, which focuses on the 3𝑠 − 1𝑠 two-photon decay, see [82], and
also [118]. The numerical results for the 3𝑠-level in hydrogen are in agreement
with recent calculations performed in [164]. However, they strongly disagree
with the value obtained in [253]. The [253] result follows from an "alternative"
approach to the two-photon decay estimation developed in [254–256]. This "al-
ternative" approach is based on the estimation of the imaginary part of the
two-loop contribution to the Lamb shift for the 3𝑠-level, see the reasons for
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this approach in [88, 257]. In [254–256] it was argued that there is no singu-
larity in the integration over the photon frequency distribution for two-photon
decay and thus the finite integral represents directly the probability of "pure"
two-photon decay. Further it will be shown that, in fact, the value calculated in
the [253] has a completely different interpretation and should have the meaning
of a radiative correction to the full width of the excited level [121].

Also, to verify the correctness of the conclusion about the inseparability of
two-photon emission in the presence of cascades, an analysis of the derivation
of the two-photon decay width through the imaginary part of the second-order
Lamb shift will be presented below. A consequence of the "optical theorem" for
the adiabatic 𝑆-matrix will be used [89]. The results of the analysis show that
the estimation of the two-photon decay width through the imaginary part of
the Lamb shift gives the same expressions as the standard description of QED
by summing the transition probabilities (see above, and e.g. [117]). The integra-
tion over the frequency of emitted photons for two-photon decay with cascades
remains divergent and requires the introduction of level widths in the singu-
lar energy denominators [85]. Calculations using both methods (summation of
transition probabilities and estimation of the imaginary part of the Lamb shift)
are presented. The results clearly demonstrate the ambiguity of the separation
of the "pure" two-photon and cascade contributions with a precision higher
than that required for modern astrophysical studies (the last ∼ 1%).

8.4.1. Two-photon decay involving cascade: 3𝑠− 2𝑝− 1𝑠

The expression for the two-photon 𝐸1𝐸1 decay of the 2𝑠 state is well known
and can be easily found in the academic literature, see, e.g., [101, 244]. Since
the derivation of the expression in the framework of the 𝑆-matrix formalism
for 𝑛𝑠 (𝑛 > 2) is completely identical, for the sake of brevity it can be written
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immediately as follows

𝑑𝑊𝑛𝑠,1𝑠(𝜔) =
8𝜔3(𝜔0 − 𝜔)3

27𝜋
𝑒4 |𝑆1𝑠,𝑛𝑠(𝜔) + 𝑆1𝑠,𝑛𝑠(𝜔0 − 𝜔)|2 𝑑𝜔, (8.40)

𝑆1𝑠,𝑛𝑠(𝜔) =
∑︁
𝑛′𝑝

⟨𝑅1𝑠|𝑟|𝑅𝑛′𝑝⟩⟨𝑅𝑛′𝑝|𝑟|𝑅𝑛𝑠⟩
𝐸𝑛′𝑝 − 𝐸𝑛𝑠 + 𝜔

, (8.41)

⟨𝑅𝑛′𝑙′|𝑟|𝑅𝑛𝑙⟩ =

∞∫︁
0

𝑟3𝑅𝑛′𝑙′(𝑟)𝑅𝑛𝑙(𝑟)𝑑𝑟, (8.42)

where 𝜔0 = 𝐸𝑛𝑠 − 𝐸1𝑠, 𝑅𝑛𝑙(𝑟) is the radial part of the nonrelativistic wave
function of hydrogen, and 𝐸𝑛𝑙 is the corresponding energy of the 𝑛𝑙 level. The
expression (8.40) is written in the nonrelativistic limit in the "length" gauge.

The total probability of a two-photon transition can be obtained by inte-
gration in the frequency interval

𝑊𝑛𝑠,1𝑠 =
1

2

𝜔0∫︁
0

𝑑𝑊𝑛𝑠,1𝑠(𝜔). (8.43)

The limit of integration over frequency is determined by the energy conserva-
tion law. In the case 𝑛 = 2, there are no cascade transitions, the frequency
distribution (8.40) is not singular, and the integral (8.43) converges.

In the presence of cascade transitions (𝑛 > 2), some terms in (8.41) become
singular and the integral (8.43) diverges. For example, fixing 𝑛 = 3 in (8.40)
there is a divergence at 𝑛′ = 2. For the summand written as (8.41), the di-
vergence corresponds to the transition 3𝑠 → 2𝑝, for the second summand in
(8.40) the transition 2𝑝→ 1𝑠. This divergence has a physical origin: the emitted
photon corresponds to a resonance. So the divergence can only be avoided by
introducing the width of this resonance. This situation was studied in [249] for
HCI. The same recipe can be used in the case of the hydrogen atom. Following
the prescriptions given in the previous sections, one should extract the reso-
nance terms (corresponding to the cascades) in the sum over the intermediate
states of the expression (8.40) and then apply the regularization procedure [85].
Practically, this leads to the appearance of energy level widths in the energy de-
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nominators. Then Lorentz profiles for the resonance terms in the expression for
the probability arise. However, the Lorentz profile is valid only near resonance
and cannot be extended too far from the resonance frequency value. As for any
multichannel processes, this separation is an approximate procedure because of
the existence of interference terms.

According to this, the integration over the frequency interval [0, 𝜔0] in (8.43)
should be divided into several subintervals. In the case of the frequency distri-
bution for the two-photon decay of the 3𝑠 level, it is convenient to introduce
5 subintervals, see Fig. 8.1. The first interval (I) extends from 𝜔 = 0 to the

Figure 8.1. Frequency distribution 𝑑𝑊 (2𝛾)
3𝑠;1𝑠/𝑑𝜔 for the full 3𝑠→ 1𝑠+2𝛾 two-pho-

ton transition, including cascade and "pure" two-photon transitions as a func-
tion of frequency (in atomic units). The values 𝑑𝑊 (2𝛾)

3𝑠;1𝑠/𝑑𝜔 divided by 𝛼6 (𝛼
is the fine structure constant) are presented as a function of frequency in the
interval [0, 𝜔0], 𝜔0 = 𝐸3𝑠 −𝐸1𝑠. The boundaries of the frequency intervals I-V
are indicated by vertical lines.

lower boundary of the second interval (II). The latter contains the value of
the resonance frequency 𝜔1 = 𝐸3𝑠 − 𝐸2𝑝. In the interval (II), the resonance
term 𝑛 = 2 in (8.41) should be subtracted from the sum over the intermedi-
ate states and replaced by a term with a modified energy denominator. This
modified denominator is 𝐸2𝑝 − 𝐸3𝑠 + 𝜔 − i

2Γ, where Γ = Γ2𝑝 + Γ3𝑠. The third
interval (III) extends from the upper boundary of the interval (II) to the lower
boundary of the interval (IV), the latter containing one more value of the res-
onant frequency 𝜔2 = 𝐸2𝑝 − 𝐸1𝑠. Inside the interval (IV), again the resonance
term 𝑛 = 2 in (8.41) should be replaced by a term with a modified denomi-
nator 𝐸2𝑝 − 𝐸1𝑠 − 𝜔 − i

2Γ2𝑝. Finally, the fifth interval (V) extends from the
upper boundary of the interval (IV) to the maximum frequency value 𝜔0. It
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is worth noting that the frequency distribution 𝑑𝑊3𝑠,1𝑠(𝜔) is symmetric about
𝜔 = 𝜔0/2 with an accuracy of 1% (the asymmetry is due to the difference
between Γ = Γ2𝑝 + Γ2𝑠 and Γ2𝑝, respectively). The choice of the size of the
intervals (II) and (IV), which determines the sizes of the other intervals, as
well as further approximations, is discussed below.

Keeping in (8.41) only the resonance term in the second and fourth fre-
quency intervals, it is possible to calculate the cascade contribution to the total
two-photon decay rate of the 3𝑠 level according to an expression similar to
(8.43). Taking the ratio to the total width of the 3𝑠 level Γ3𝑠, the absolute
probability or branching ratio 𝑊 (cas)

3𝑠,1𝑠/Γ3𝑠 ≡ 𝑏
(cas)
3𝑠−2𝑝−1𝑠 is obtained for the cas-

cade transition. The contributions to 𝑏(cas)3𝑠−2𝑝−1𝑠 from intervals (I), (III), (V) are
assumed to be zero. Then

𝑊
(cas 1𝛾)
3𝑠,1𝑠 =

4

27𝜋

∫︁
(II)

𝜔3𝜔′3

⃒⃒⃒⃒
⃒⟨𝑅3𝑠(𝑟)|𝑟|𝑅2𝑝(𝑟)⟩⟨𝑅2𝑝(𝑟

′)|𝑟′|𝑅1𝑠(𝑟
′)⟩

𝐸2𝑝 − 𝐸3𝑠 + 𝜔 − i
2Γ

⃒⃒⃒⃒
⃒
2

𝑑𝜔 (8.44)

+
4

27𝜋

∫︁
(IV)

𝜔3𝜔′3

⃒⃒⃒⃒
⃒⟨𝑅3𝑠(𝑟)|𝑟|𝑅2𝑝(𝑟)⟩⟨𝑅2𝑝(𝑟

′)|𝑟′|𝑅1𝑠(𝑟
′)⟩

𝐸2𝑝 − 𝐸1𝑠 − 𝜔 − i
2Γ2𝑝

⃒⃒⃒⃒
⃒
2

𝑑𝜔,

𝜔0 − 𝜔 ≡ 𝜔′.
Accordingly, the "pure" two-photon decay probabilities within each interval,

Fig. 8.1, are as follows:

𝑑𝑊
(pure2𝛾)
3𝑠,1𝑠 =

4

27𝜋
𝜔3𝜔′3

⃒⃒⃒
𝑆
(2𝑝)
1𝑠;3𝑠(𝜔) + 𝑆1𝑠;3𝑠(𝜔

′)
⃒⃒⃒2
𝑑𝜔, 𝜔 ∈ II (8.45)

𝑑𝑊
(pure2𝛾)
3𝑠,1𝑠 =

4

27𝜋
𝜔3𝜔′3

⃒⃒⃒
𝑆1𝑠;3𝑠(𝜔) + 𝑆

(2𝑝)
1𝑠;3𝑠(𝜔

′)
⃒⃒⃒2
𝑑𝜔, 𝜔 ∈ IV (8.46)

𝑑𝑊
(pure2𝛾)
3𝑠;1𝑠 =

4

27𝜋
𝜔3𝜔′3 |𝑆1𝑠;3𝑠(𝜔) + 𝑆1𝑠;3𝑠(𝜔

′)|2 𝑑𝜔, 𝜔 ∈ I, III,V.(8.47)

Here 𝑆(2𝑝)
1𝑠,3𝑠(𝜔) is an expression (8.41) with excluded term 𝑛 = 2.

In contrast to the cascade, all intervals contribute to the "pure" two-photon
emission. The branching coefficient for the 3𝑠→ 2𝛾+1𝑠 transition is determined
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as follows

𝑏
(pure2𝛾)
3𝑠−1𝑠 =

1

2

1

Γ3𝑠

𝜔0∫︁
0

𝑑𝑊
(pure2𝛾)
3𝑠;1𝑠 (𝜔). (8.48)

It remains to introduce the interference contribution. This contribution occurs
only for the 2nd and 4th intervals. The corresponding distribution functions
have the form:

𝑑𝑊
(inter)1
3𝑠;1𝑠 =

4𝜔3(𝜔0 − 𝜔)3

27𝜋
ℜ

[︃
⟨𝑅3𝑠(𝑟)|𝑟|𝑅2𝑝(2𝑟)⟩⟨𝑅2𝑝(𝑟

′)|𝑟′|𝑅1𝑠(𝑟
′)⟩

𝐸2𝑝 − 𝐸3𝑠 + 𝜔 − i
2Γ2𝑝

]︃
(8.49)

×
[︁
𝑆
(2𝑝)
1𝑠;3𝑠(𝜔) + 𝑆1𝑠;3𝑠(𝜔0 − 𝜔)

]︁
𝑑𝜔,

𝑑𝑊
(inter)2
3𝑠;1𝑠 =

4𝜔3(𝜔0 − 𝜔)3

27𝜋
ℜ

[︃
⟨𝑅3𝑠(𝑟)|𝑟|𝑅2𝑝(2𝑟)⟩⟨𝑅2𝑝(𝑟

′)|𝑟′|𝑅1𝑠(𝑟
′)⟩

𝐸2𝑝 − 𝐸1𝑠 − 𝜔 − i
2Γ2𝑝

]︃
(8.50)

×
[︁
𝑆1𝑠;3𝑠(𝜔) + 𝑆

(2𝑝)
1𝑠;3𝑠(𝜔0 − 𝜔)

]︁
𝑑𝜔,

(ℜ means the real part of the expression in brackets), and the branching coef-
ficient is equal to

𝑏
(inter)
3𝑠;1𝑠 =

1

2Γ3𝑠

∫︁
(II)

𝑑𝑊
(inter)1
3𝑠;1𝑠 +

1

2Γ3𝑠

∫︁
(IV)

𝑑𝑊
(inter)2
3𝑠;1𝑠 . (8.51)

The results are presented in Table 8.1. The size ∆𝜔 of the second interval
is conveniently defined as 𝑙-fold the total width Γ = Γ2𝑝 + Γ3𝑠, i.e., ∆𝜔 = 2𝑙Γ

and similarly for the fourth interval as ∆𝜔 = 2𝑙Γ2𝑝.
Table 8.1 summarizes the results for various values of 𝑙 ranging from 𝑙 ≃ 105

to 𝑙 ≃ 107. The upper limit of the interval (II) is 𝜔1 + 𝑙Γ = 5
72 + 𝑙Γ (in atomic

units), and the lower limit of the interval (IV) is 𝜔2 − 𝑙Γ2𝑝 = 3
8 − 𝑙Γ2𝑝. The

different rows in Table 8.1 present the branching ratios and probabilities of the
"pure" two-photon, and "interference" channels, respectively. For a more de-
tailed analysis, the contributions of the "pure" two-photon transition rate for
each frequency interval are also summarized. The branching ratio and transi-
tion probability of the cascade contribution can be obtained from the relation



163

Table 8.1. Branching ratios and transition probabilities (in s−1) for different
decay channels of the 3𝑠 level of the hydrogen atom with different frequency
intervals (𝑙).
𝑙 104 105 2.5 × 105 5 × 105 106 1.5 × 106 4.53 × 106 1.00256 × 107

𝑏(pure2𝛾) 3.2003 × 10−5 3.5091 × 10−6 1.6270 × 10−6 1.0239 × 10−6 7.6765 × 10−7 7.2201 × 10−7 9.1487 × 10−6 1.2567 × 10−6

𝑊
(pure2𝛾)
I 53.054 7.0547 3.5743 2.1898 1.27737 0.85130 2.4979 × 10−6 0

𝑊
(pure2𝛾)
II 0.006247 0.06247 0.15614 0.31201 0.62183 0.92718 2.4666 3.9810

𝑊
(pure2𝛾)
III 95.536 7.8778 2.7928 1.4517 1.0457 1.0031 0.86005 0

𝑊
(pure2𝛾)
IV 0.006185 0.061847 0.15458 0.30890 0.61569 0.91813 2.4523 3.9575

𝑊
(pure2𝛾)
V 53.561 7.1101 3.5999 2.2056 1.2886 0.861254 3.1665 × 10−4 0

𝑊 (pure2𝛾) 202.16 22.167 10.278 6.4680 4.8492 4.5609 5.7792 7.9385

𝑏(inter) −1.4342 × 10−9 −1.4343 × 10−8 −3.5852 × 10−8 −7.1665 × 10−8 −1.4302 × 10−7 −2.1376 × 10−7 −6.0829 × 10−7 −1.0459 × 10−6

𝑊 (inter) −0.0090599 −0.090602 −0.22647 −0.45270 −0.90346 −1.3503 −3.8426 −6.6067

𝑏
(cas)
3𝑠−2𝑝−1𝑠 + 𝑏

(pure2𝛾)
2𝑠,1𝑠 + 𝑏

(inter)
3𝑠,1𝑠 = 1. This relation is satisfied with high accuracy,

since the only neglected decay channel is the very weak direct one-photon 𝑀1-
transition 3𝑠→ 1𝑠+𝛾. The following conclusions can be drawn from Table 8.1:
as in the case of HCI [249], the "pure" two-photon, and cascade contributions
to the total decay probability are inseparable. Varying the size of the ∆𝜔 in-
terval yields quite different values for 𝑑𝑊 (pure2𝛾)

3𝑠,1𝑠 ranging from 202.16 s−1 (for
𝑙 = 104) to 7.9385 s−1 (for 𝑙 = 1.00256 × 107).

Moreover, according to the calculations, depending on the interval size, the
interference contribution can also become very large, comparable in magnitude
to the "pure" two-photon contribution. Thus, even the order of magnitude of
the "pure" two-photon decay probability of the 3𝑠-state in hydrogen cannot be
reliably predicted.

For the "non-resonant" contribution calculated in the [164], a value of 10.556

s−1 was given, which plays the role of the "pure" two-photon decay probabil-
ity in astrophysical applications. This value is within the range of the results
given in Table 8.1. However, the value of 2.08 s−1 obtained for the "pure" two-
photon decay probability in the [253] is in strong contradiction with the present
analysis.

Finally, both the standard QED approach based on the line profile theory
[249–251] and an "alternative" approach based on the two-loop theory [254–256]
were presented in [258]. A reasonable agreement between the two methods was
found. However, it is clear from the analysis that using the imaginary part of
the Lamb shift gives exactly the same results as the standard QED approach.
A more detailed comparison between this approach and the "alternative" ap-
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proach is presented in a later section.

8.4.2. Two-photon decay 4𝑠− 1𝑠

The calculations of the two-photon 4𝑠− 1𝑠 transition in [118] were carried out
in a similar way. The integration over the frequency on the interval [0, 𝜔0] in
this case should be divided into 9 subintervals. The first interval starts from 0 to
the lower boundary of the second interval. The latter covers the vicinity of the
first resonance corresponding to the frequency 𝜔𝑟𝑒𝑠 1

4𝑠−3𝑝 = 7/288 (in atomic units).
Within the interval (II), the resonance term 𝑛 = 3 in (8.41) should be separated
from the sum over all intermediate states and replaced by an expression with
a regularized energy denominator. Such denominator is 𝐸3𝑝 − 𝐸4𝑠 + 𝜔 − i

2Γ,
where Γ = Γ3𝑝 +Γ4𝑠. The third interval (III) extends from the upper boundary
of the interval (II) to the lower boundary of the interval (IV), which, in its
turn, corresponds to another resonance with frequency 𝜔𝑟𝑒𝑠 2

4𝑠−2𝑝 = 3/32. Inside
the interval (IV), the resonance term in (8.41) should again be replaced by a
similar one with a modified denominator 𝐸2𝑝−𝐸4𝑠+𝜔− i

2Γ, where Γ = Γ2𝑝+Γ4𝑠.
Further, the interval (V) extends from the upper boundary of the interval (IV)
to the lower boundary of the interval (VI), which defines the vicinity of the
second "link" 𝜔𝑟𝑒𝑠 3

2𝑝−1𝑠 = 3/8 of the second cascade. Inside this interval, the
energy singular denominator should be replaced by 𝐸2𝑝 − 𝐸1𝑠 − 𝜔 − 𝑖

2Γ2𝑝.
The next interval (VII) is defined from the upper boundary of the interval
(VI) to the lower boundary of the interval (VIII). The interval (VIII) defines
the vicinity of the second "link" for the first cascade and corresponds to the
frequency 𝜔𝑟𝑒𝑠 4

3𝑝−1𝑠 = 4/9. Inside this interval, the singular energy denominator
is 𝐸3𝑝−𝐸1𝑠−𝜔− i

2Γ3𝑝. Finally, the last interval (IX) is bounded by the upper
limit of the interval (VIII) and the maximum frequency 𝜔0 = 15/32 in the
case of two-photon decay of the 4𝑠 level in the hydrogen atom. The frequency
distribution function is symmetric with respect to the frequency 𝜔 = 𝜔0/2 with
1% accuracy (due to the difference in the denominator widths).

The contribution of cascade radiation, as before at 𝑛 = 3, arises, leaving
only the resonance terms in the second, fourth, sixth, and eighth frequency
intervals (see Fig. 8.2).
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Figure 8.2. The frequency distribution function 𝑑𝑊
(2𝛾)
4𝑠,1𝑠/𝑑𝜔 for the total

two-photon 4𝑠→ 1𝑠+ 2𝛾 transition, including resonant and nonresonant tran-
sitions. 𝑑𝑊 (2𝛾)

4𝑠,1𝑠/𝑑𝜔 is plotted in atomic units as a function of frequency in the
interval [0, 𝜔0], 𝜔0 = 𝐸4𝑠 − 𝐸1𝑠; the probability values are divided by 𝛼6 (𝛼
is the fine structure constant) for clarity. The boundaries of the subintervals
(I)-(IX) are marked by vertical lines.

Omitting for brevity the corresponding expressions for the cascade, "pure"
and interference contributions, the results of numerical calculations are pre-
sented in Table 8.2.

It is convenient to define the size ∆𝜔 of the second interval as the prod-
uct of some integer 𝑙 and the width Γ = Γ3𝑝 + Γ4𝑠, i.e., ∆𝜔 = 2𝑙Γ. Also,
the fourth, sixth, and eighth intervals are defined as ∆𝜔 = 2𝑙Γ, ∆𝜔 = 2𝑙Γ2𝑝,
and ∆𝜔 = 2𝑙Γ3𝑝, respectively. In Table 8.2, the numbers are given for dif-
ferent values of 𝑙 from 𝑙 = 104 to 𝑙 ≈ 107. The upper bound of the interval
(II) is 𝜔𝑟𝑒𝑠 1 + 𝑙Γ = 7/288 + 𝑙Γ (in atomic units), and the lower bound of
the interval (IV) is 𝜔𝑟𝑒𝑠 1 − 𝑙Γ = 7/288 − 𝑙Γ. The remaining (fourth, sixth,
and eighth) intervals are defined similarly. The rows in Table 8.2 correspond
to the relative (𝑏) (branching factor) and absolute (𝑊 ) transition probabil-
ities of the "pure" and interference channels, respectively. For a more de-
tailed analysis, the contributions of the probabilities of the "pure" two-photon
transitions are also given for each frequency interval. The branching ratio
and transition probability for the cascade can be obtained from the relation:
𝑏
(cas)
4𝑠−3𝑝−1𝑠 + 𝑏

(cas)
4𝑠−2𝑝−1𝑠 + 𝑏

(pure2𝛾)
4𝑠,1𝑠 + 𝑏

(inter)
4𝑠,1𝑠 = 1. This relation is fulfilled with high
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Table 8.2. The transition probabilities in s−1, as well as their relative magni-
tudes, for different two-photon decay channels of the 4𝑠 level in the subintervals
(I)-(IX) as a function of the interval sizes (𝑙-fold of the corresponding width,
see in the text). The last column of the table refers to the limiting case where
the intervals II,IV,VI and VIII are closed to each other using two parameters
𝑙1 = 3.48×106, 𝑙2 = 3.52×106. This case corresponds to the calculation method
in [164,252].
𝑙 104 105 5 × 105 106 2 × 106 3.47 × 106 𝑙1, 𝑙2

𝑏(pure2𝛾) 3.0233 × 10−5 3.1750 × 10−6 8.0662 × 10−7 5.5264 × 10−7 4.9533 × 10−7 5.6681 × 10−7 7.2829 × 10−7

𝑊
(pure2𝛾)
I 13.35220 1.73703 0.52511 0.30539 0.14332 0.04029 0

𝑊
(pure2𝛾)
II 0.00145 0.01449 0.07243 0.14468 0.28785 0.49154 0.52825

𝑊
(pure2𝛾)
III 33.47500 3.61406 0.82795 0.41625 0.14812 0.00036 0

𝑊
(pure2𝛾)
IV 0.00184 0.01842 0.09193 0.18293 0.35780 0.57374 1.08139

𝑊
(pure2𝛾)
V 39.08470 3.17576 0.51206 0.33606 0.31441 0.29873 0

𝑊
(pure2𝛾)
VI 0.00183 0.01829 0.09129 0.18167 0.35545 0.57088 1.08164

𝑊
(pure2𝛾)
VII 33.91020 3.65639 0.83566 0.42000 0.15043 0.00204 0

𝑊
(pure2𝛾)
VIII 0.00142 0.01416 0.07078 0.14140 0.28140 0.48093 0.52414

𝑊
(pure2𝛾)
IX 13.64800 1.76918 0.53400 0.31152 0.14813 0.04396 0

𝑊 (pure2𝛾) 133.47664 14.01778 3.56123 2.43989 2.18690 2.50247 3.21542

𝑏(inter) −1.08815 × 10−9 −1.08822 × 10−8 −5.43989 × 10−8 −1.08722 × 10−7 −2.16848 × 10−7 −3.73758 × 10−7 −5.87950 × 10−7

𝑊 (inter) −0.00480 −0.04804 −0.24017 −0.48001 −0.95738 −1.65014 −2.59248

accuracy because only the very weak one-photon 𝑀1 transition 4𝑠 → 1𝑠 + 𝛾

is neglected. The following conclusions can be drawn from Table 8.2: as in the
case of HCI [249] and in the case of the 3𝑠 → 1𝑠 + 2𝛾 two-photon transition,
the contributions of "pure" two-photon (nonresonant), and cascade (resonant)
radiation to the decay probability are inseparable. By varying the size of the
∆𝜔 intervals, significantly different values of 𝑑𝑊4𝑠,1𝑠 are obtained, ranging from
133.47664 s−1 (for 𝑙 = 104 ) to 2.50247 s−1 (for 𝑙 = 3.47 × 106 ). Moreover, in
the calculations that depend on the interval size, the interference contribution
is also quite significant with respect to the "pure" two-photon decay. Thus, the
value of the "pure" two-photon decay for the 4𝑠 state of the hydrogen atom can-
not be strictly determined. In [253], a value of 11.951 s−1 was obtained for the
nonresonant contribution to the 4𝑠 → 1𝑠 + 2𝛾 transition. This value is within
the range of the data values in Table 8.2, but, as shown above, cannot serve
as an unambiguous determination of the magnitude of the "pure" two-photon
decay.



167

8.4.3. Decay width via the 𝑆-matrix adiabatic formalism

In this section, the adiabatic 𝑆-matrix formalism (𝑆𝜂) and the formula for the
energy shift ∆𝐸𝐴 [89] of the excited atomic state are used 𝐴:

∆𝐸𝐴 = lim
𝜂→0

i𝜂

2

𝑒 𝜕
𝜕𝑒⟨𝐴|𝑆𝜂|𝐴⟩
⟨𝐴|𝑆𝜂|𝐴⟩

. (8.52)

The adiabatic 𝑆𝜂-matrix differs from the "ordinary" matrix by the presence
of an adiabatic (exponential) factor 𝑒−𝜂|𝑡| at each vertex (for each interaction).
This refers to the concept of adiabatic on/off interaction, formally introduced
by the substitution �̂�int(𝑡) → �̂�𝜂

int(𝑡) = 𝑒−𝜂|𝑡| �̂�int(𝑡). A symmetrized version
of the adiabatic formula containing 𝑆𝜂(∞,−∞), more convenient for QED
calculations, was proposed in [87]. The first application of the formula (8.52)
to QED calculations for bound states was made in [259]. In particular, it was
shown how to handle the adiabatic exponential multiplier when evaluating the
real part of the corrections to the energy levels (8.52), see also [3]. The imaginary
part (8.52) can be calculated by the same methods. It is worth noting that the
first application of the adiabatic 𝑆-matrix theory to the estimation of level
widths was given in [88], albeit in a slightly different way than in [82] (see
below).

For a free atom (or ion) in the |𝐴⟩ state interacting with the photon vacuum
|0𝛾⟩ (i.e., |𝐴, 0𝛾⟩ = |𝐴⟩|0𝛾⟩ in the absence of external fields), the complex energy
correction (8.52) contains only diagonal elements of the 𝑆-matrix of even order,
since ⟨0𝛾|𝑆(1)

𝜂 |0𝛾⟩ = ⟨0𝛾|𝑆(3)
𝜂 |0𝛾⟩ = 0, etc. To extract the imaginary part of the

energy shift ∆𝐸
(2𝑖)
𝐴 of a given order 2𝑖, it is more convenient to visualize the

expression (8.52) as a series of perturbations of the form (with exactness up to
terms 𝑒4) [3]:

∆𝐸𝐴 = lim
𝜂→0

i𝜂
[︁
⟨𝐴|𝑆(2)

𝜂 |𝐴⟩ +
(︁

2⟨𝐴|𝑆(4)
𝜂 |𝐴⟩ − ⟨𝐴|𝑆(2)

𝜂 |𝐴⟩2
)︁

+ . . .
]︁
. (8.53)

For the adiabatic matrix 𝑆𝜂 the standard decomposition by powers of the in-
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teraction constant 𝑒 is used

𝑆𝜂(∞,−∞) = 1 +
∞∑︁
𝑖=1

𝑆(𝑖)
𝜂 (∞,−∞), (8.54)

which permits to separate real and imaginary parts of matrix elements in any
given order of perturbation theory, i.e.

⟨𝐴|𝑆(𝑖)
𝜂 |𝐴⟩ = ℜ⟨𝐴|𝑆(𝑖)

𝜂 |𝐴⟩ + iℑ⟨𝐴|𝑆(𝑖)
𝜂 |𝐴⟩. (8.55)

Here ℜ, ℑ means the real and imaginary parts of the corresponding expression.
The second summand in (8.55) gives the width of the one-photon decay:

ℑ∆𝐸
(2)
𝐴 = lim

𝜂→0
𝜂𝑅𝑒⟨𝐴|𝑆(2)

𝜂 |𝐴⟩. (8.56)

Comparing all fourth-order terms that describe the two-photon decay width,
as well as the part representing radiative corrections (one-loop) to the one-
photon width, one obtains

ℑ∆𝐸
(4)
𝐴 = lim

𝜂→0
𝜂

[︂
2ℜ⟨𝐴|𝑆(4)

𝜂 |𝐴⟩ +
⃒⃒⃒
⟨𝐴|𝑆(2)

𝜂 |𝐴⟩
⃒⃒⃒2
− 2

(︁
ℜ⟨𝐴|𝑆(2)

𝜂 |𝐴⟩
)︁2]︂

, (8.57)

where the last two summands come from ⟨𝐴|𝑆(2)
𝜂 |𝐴⟩2.

The total width Γ𝐴 of the excited state 𝐴 (specifying the initial state as
|𝐴, 0𝛾⟩ ≡ |𝐴⟩) has to follow (by definition) from the imaginary part of the total
shift according to

Γ𝐴 = −2ℑ∆𝐸𝐴. (8.58)

Accordingly, after decomposition of ∆𝐸𝐴 up to 𝑒4

Γ𝐴 = lim
𝜂→0

(−2𝜂)
[︁
ℜ⟨𝐴|𝑆(2)

𝜂 |𝐴⟩ + 2ℜ⟨𝐴|𝑆(4)
𝜂 |𝐴⟩ (8.59)

+
⃒⃒⃒
⟨𝐴|𝑆(2)

𝜂 |𝐴⟩
⃒⃒⃒2
− 2

(︁
ℜ⟨𝐴|𝑆(2)

𝜂 |𝐴⟩
)︁2]︂

.

The formulas (8.56), (8.57), and (8.59) give definitions for the one-photon and
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two-photon widths, Γ
(1𝛾)
𝐴 and Γ

(2𝛾)
𝐴 , within the adiabatic 𝑆𝜂 matrix formalism.

Further results are based on the "optical theorem". Omitting the details
(see [82]), it can be formulated using the relations 𝑆 = 1 + i𝑇 [260] and, as a
consequence, ℜ⟨𝐼|𝑆(𝑖)|𝐼⟩ = −ℑ⟨𝐼|𝑇 (𝑖)|𝐼⟩:

−2ℜ⟨𝐼|𝑆(2𝑖)|𝐼⟩ =
∑︁
𝐹

⃒⃒⃒
⟨𝐹 |𝑆(𝑖)|𝐼⟩

⃒⃒⃒2
+
∑︁
𝐹,𝑗<𝑖

2ℜ⟨𝐼|𝑆(𝑗) †|𝐹 ⟩⟨𝐹 |𝑆(2𝑖−𝑗)|𝐼⟩ .(8.60)

Then, collecting the second order terms, there appears the relation

−2ℜ⟨𝐼|𝑆(2)|𝐼⟩ =
∑︁
𝐹 ̸=𝐼

⃒⃒⃒
⟨𝐹 |𝑆(1)|𝐼⟩

⃒⃒⃒2
, (8.61)

where only non-diagonal such as ⟨𝐹 ||𝑆(1)|𝐼⟩ matrix elements contribute. For
the fourth-order term

−2ℜ⟨𝐼|𝑆(4)|𝐼⟩ =
⃒⃒⃒
⟨𝐼|𝑆(2)

𝜂 |𝐼⟩
⃒⃒⃒2

+
∑︁
𝐹 ̸=𝐼

⃒⃒⃒
⟨𝐹 |𝑆(2)|𝐼⟩

⃒⃒⃒2
(8.62)

+
∑︁
𝐹 ̸=𝐼

2ℜ⟨𝐼|𝑆(1)
𝜂 |𝐹 ⟩⟨𝐹 |𝑆(3)|𝐼⟩.

The last summand in (8.62) obviously represents radiative corrections to the
one-photon width. These corrections were estimated by directly calculating the
corresponding imaginary part of the two-loop diagram (Lamb shift) in [88].
It is worth noting that the 𝐹 = 𝐼 term in the sum over 𝐹 is absent in this
contribution, since ⟨𝐼|𝑆(1)|𝐼⟩ = ⟨𝐼|𝑆(3)|𝐼⟩ = 0.

As indicated above, the adiabatic 𝑆-matrix, 𝑆𝜂, arises after the introduction
of the adiabatic factor 𝑒−𝜂|𝑡|. Assuming that no dynamical excitations of the
system occur when the interaction is switched on and off, the adiabatic 𝑆-
matrix remains unitary [1, 184]. Thus all observables calculated on the basis
of the adiabatic approach should not depend on a particular kind of adiabatic
factor in the limit 𝜂 → 0. Therefore, the relations of the "optical theorem"
(8.61) and (8.62) can be applied to the adiabatic formulas (8.56), (8.57) and
(8.59). In the future it will also be necessary to fix not only the state of the
electron in the atom, but also the number of photons.
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Then it follows from (8.56), (8.57) and (8.59) that for the initial state 𝐼 =

𝐴, 0𝛾 (photons are absent) the one-photon width is defined by the following
expression:

Γ
(1𝛾)
𝐴 = lim

𝜂→0
𝜂
∑︁

𝐹 ̸=𝐴,0𝛾

⃒⃒⃒
⟨𝐹 |𝑆(1)

𝜂 |𝐴, 0𝛾⟩
⃒⃒⃒2
, (8.63)

and the two-photon width

Γ
(2𝛾)
𝐴 = lim

𝜂→0
𝜂

⎡⎣2
∑︁

𝐹 ̸=𝐴,0𝛾

⃒⃒⃒
⟨𝐹 |𝑆(2)

𝜂 |𝐴, 0𝛾⟩
⃒⃒⃒2

+ 4
(︁
ℜ⟨𝐴, 0𝛾|𝑆(2)

𝜂 |𝐴, 0𝛾⟩
)︁2⎤⎦ . (8.64)

Hereinafter the remaining fourth-order summand (∼ 𝑒4)

Γrad
𝐴 = lim

𝜂→0
𝜂
∑︁

𝐹 ̸=𝐴,0𝛾

2ℜ⟨𝐴, 0𝛾|𝑆(1)
𝜂 |𝐹 ⟩⟨𝐹 |𝑆(3)

𝜂 |𝐴, 0𝛾⟩ (8.65)

is discarded since it represents corrections to the single-photon width.
Using (8.61), Γ

(2𝛾)
𝐴 reduces to the form:

Γ
(2𝛾)
𝐴 = lim

𝜂→0
𝜂

⎡⎣2
∑︁

𝐹 ̸=𝐴,0𝛾

⃒⃒⃒
⟨𝐹 |𝑆(2)

𝜂 |𝐴, 0𝛾⟩
⃒⃒⃒2

+ 2
∑︁
2𝛾

⃒⃒⃒
⟨𝐴, 2𝛾|𝑆(2)

𝜂 |𝐴, 0𝛾⟩
⃒⃒⃒2

(8.66)

+

⎛⎝ ∑︁
𝐹 ′ ̸=𝐴,0𝛾

⃒⃒⃒
⟨𝐹 ′|𝑆(1)

𝜂 |𝐴, 0𝛾⟩
⃒⃒⃒2⎞⎠2

⎤⎥⎦ .
In the expression (8.66) it is necessary to distinguish between the final states
(𝐹 ) and (𝐹 ′) for two-photon and one-photon transitions. Importantly, the con-

tribution
⃒⃒⃒
⟨𝐴, 0𝛾|𝑆(2)

𝜂 |𝐴, 0𝛾⟩
⃒⃒⃒2

available in (8.64) is reduced. The penultimate
term in (8.66), represents the clearly unphysical transition 𝐴→ 𝐴+ 2𝛾, but is
formally present in the sum over the 𝐹 states. It will be necessary for further
calculations and will be reduced in the final expression (see below). The nota-
tion

∑︀
2𝛾

means here integration over the frequencies of the two photons. In the

following, the basic expressions for the widths of one- and two-photon decays
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will be presented using the expressions (8.63) and (8.66).

8.4.4. Width of one-photon decay according to the optical

theorem

The one-photon width Γ
(1𝛾)
𝐴 , (8.63), can be obtained from the adiabatic 𝑆𝜂-

matrix:

⟨𝐴′,𝑘, 𝑒|𝑆(1)
𝜂 |𝐴, 0𝛾⟩ = 𝑒

∫︁
𝑑4𝑥𝜓𝐴′(𝑥)𝛾𝜇𝐴

*
𝜇(𝑥)𝜓𝐴(𝑥)𝑒−𝜂|𝑡|. (8.67)

Now integration over the time variable gives essentially a representation of the
𝛿-function:

∞∫︁
−∞

𝑑𝑡𝑒𝑖(𝐸𝐴−𝐸𝐴′−𝜔)𝑡−𝜂|𝑡| =
2𝜂

(𝜔𝐴𝐴′ − 𝜔)2 + 𝜂2
≡ 2𝜋 𝛿𝜂(𝜔𝐴𝐴′ − 𝜔), (8.68)

where lim
𝜂→0

𝛿𝜂(𝑥) = 𝛿(𝑥). The next step is to perform integration over the photon

frequency. For the square of the modulus (8.68) multiplied by 𝜔, the result is

4𝜂2
∞∫︁
0

𝜔𝑑𝜔

[(𝜔𝐴𝐴′ − 𝜔)2 + 𝜂2]2
= 4𝜂2

[︂
𝜋𝜔𝐴𝐴′

4𝜂3
+

1

2𝜂2
+
𝜔𝐴𝐴′

2𝜂3
arctg

(︂
𝜔𝐴𝐴′

𝜂

)︂]︂
. (8.69)

Then, in the limit 𝜂 → 0,

4𝜂2
∞∫︁
0

𝜔𝑑𝜔

[(𝜔𝐴𝐴′ − 𝜔)2 + 𝜂2]2
=

2𝜋𝜔𝐴𝐴′

𝜂
. (8.70)

Taking into account the normalization factor of the photon wave function,
as well as the factor from the phase volume, and multiplying by 𝜂 (see (8.63),
the final expression for the level width 𝐴 is given by

Γ
(1)
𝐴 =

𝑒2

2𝜋

∑︁
𝐴′ (𝐸𝐴′<𝐸𝐴)

𝜔𝐴𝐴′

∑︁
𝑒

∫︁
𝑑𝜈
⃒⃒(︀

(𝑒*𝛼)𝑒−i𝑘𝑟
)︀
𝐴′𝐴

⃒⃒2
. (8.71)
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In the above derivation, operations with 𝛿-functions have been excluded. Multi-
plication by the adiabatic parameter 𝜂 in (8.63) plays the same role as dividing
the result by time 𝑇 (see, e.g., (4.10)): the adiabatic factor 𝜂 has dimension s−1.
It is worth noting that this approach does not automatically exclude (see [244])
transitions to states higher than 𝐴 when summing over 𝐹 , and to avoid them
we have to refer to the energy conservation law.

8.4.5. Width of two-photon cascade-free decay according

to the optical theorem

Omitting for brevity the analytical calculations for the two-photon amlitude
case, see details in [82], the following expression can be obtained:

⟨𝐴′,𝑘′, 𝑒′;𝑘, 𝑒|𝑆(2)
𝜂 |𝐴, 0𝛾⟩ = − 4𝜂

[(𝜔0 − 𝜔 − 𝜔′)2 + 4𝜂2]
× (8.72)∑︁

𝑛

⟨𝐴′|�⃗�𝐴*
𝑘′,𝑒′|𝑛⟩⟨𝑛|𝛼𝐴*

𝑘,𝑒|𝐴⟩
𝐸𝑛 − 𝐸𝐴 + 𝜔

,

and, taking into account the permutation symmetry of photons,

⟨𝐴′|𝑆(2)
𝜂 |𝐴, 0𝛾⟩ = − 4𝜂

[(𝜔0 − 𝜔 − 𝜔′)2 + 4𝜂2]
× (8.73)[︃∑︁

𝑛

⟨𝐴′|𝛼𝐴*
𝑘′,𝑒′|𝑛⟩⟨𝑛|𝛼𝐴*

𝑘,𝑒|𝐴⟩
𝐸𝑛 − 𝐸𝐴 + 𝜔

+
∑︁
𝑛

⟨𝐴′|𝛼𝐴*
𝑘,𝑒|𝑛⟩⟨𝑛|𝛼𝐴*

𝑘′,𝑒′|𝐴⟩
𝐸𝑛 − 𝐸𝐴′ − 𝜔

]︃
.

In matrix elements of photon emission operators, in contrast to 𝑆-matrix el-
ements, the abbreviations |𝐴⟩ are introduced instead of |𝐴, 0𝛾⟩, since in this
case it is difficult to expect misunderstandings in the notations.

Substitution (8.73) into the first term in the right-hand side of the expression
(8.66) in the nonrelativistic limit leads to

Γ
(2𝛾),1
𝐴 = lim

𝜂→0
2𝜂 (

√
2𝜋)4

𝑒4

(2𝜋)6

∑︁
𝑒,𝑒′

∫︁
· · ·
∫︁

𝑑𝜈𝑑𝜈 ′𝑑𝜔𝑑𝜔′𝜔𝜔′(4𝜂)2

[(𝜔0 − 𝜔 − 𝜔′)2 + 4𝜂2]2
× (8.74)

⃒⃒⃒⃒
⃒∑︁

𝑛

⟨𝐴′|𝛼𝐴*
𝑘′,𝑒′|𝑛⟩⟨𝑛|𝛼𝐴*

𝑘,𝑒|𝐴⟩
𝐸𝑛 − 𝐸𝐴 + 𝜔

+
∑︁
𝑛

⟨𝐴′|𝛼𝐴*
𝑘,𝑒|𝑛⟩⟨𝑛|𝛼𝐴*

𝑘′,𝑒′|𝐴⟩
𝐸𝑛 − 𝐸𝐴′ − 𝜔

⃒⃒⃒⃒
⃒
2

.
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Integration over 𝜔, 𝜔′ in (8.74) can be performed using a similar method as in
the previous section. One can first integrate over 𝜔′, i.e., on the interval (∞, 0)

or even on (−∞,∞), which in this case is actually equivalent. The second
integration over 𝜔 should be carried out in the interval [0, 𝜔0] (according to the
energy conservation law).

Thus, for the integral over 𝜔′ the following relation (in the limit 𝜂 → 0) can
be used:

(4𝜂)2
∞∫︁
0

𝜔′𝑑𝜔′

[(𝜔0 − 𝜔 − 𝜔′)2 + 4𝜂2]2
=
𝜋(𝜔0 − 𝜔)

𝜂
. (8.75)

Then integration over directions of emitted photons and summation over po-
larizations give in the nonrelativistic limit (in the "velocity" gauge):

Γ
(2𝛾),1
𝐴 =

4𝑒4

9𝜋

𝜔0∫︁
0

𝜔(𝜔0 − 𝜔)𝑑𝜔
3∑︁

𝑖,𝑘=1

|(𝑈𝑖𝑘(𝜔))𝐴′𝐴|
2 , (8.76)

(𝑈𝑖𝑘)𝐴′𝐴 =
∑︁
𝑛

⟨𝐴′|𝑝𝑖|𝑛⟩⟨𝑛|𝑝𝑘|𝐴⟩
𝐸𝑛 − 𝐸𝐴 + 𝜔

+
∑︁
𝑛

⟨𝐴′|𝑝𝑘|𝑛⟩⟨𝑛|𝑝𝑖|𝐴⟩
𝐸𝑛 − 𝐸𝐴′ − 𝜔

,

where 𝑝𝑖 ≡ (𝑝)𝑖. For 𝐴 = 2𝑠, 𝐴′ = 1𝑠, going to the "length" gauge (using
the relation 𝜔𝐴′𝐴(𝑟)𝐴′𝐴 = i

𝑚(𝑝)𝐴′𝐴) the expression exactly the same as (8.40)
appears.

8.4.6. Reducing divergences

In contrast to the expression (8.63) for the one-photon width, in (8.66) there
are two more summands diverging in the limit 𝜂 → 0. It is further shown,
they are exactly reducible. Thus for the last summand in (8.66) it can be seen
that in the case of no cascades (intermediate state between 𝐴 and 𝐴′) the only
contribution to the sum over 𝐹 ′ is 𝐹 ′ = 𝐴′, 1𝛾. Then, omitting all necessary
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calculations, one can come to

lim
𝜂→0

𝜂

⎛⎝ ∑︁
𝐹 ′ ̸=𝐴,0

⃒⃒⃒
⟨𝐹 ′|𝑆(1)|𝐴, 0𝛾⟩

⃒⃒⃒2⎞⎠2

= lim
𝜂→0

1

𝜂

(︁
Γ
(1)
𝐴

)︁2
. (8.77)

This divergent contribution can only be eliminated by the "non-physical" (sec-

ond in (8.66)) 2
∑︀
2𝛾

⃒⃒⃒
⟨𝐴, 2𝛾|𝑆(2)

𝜂 |𝐴, 0𝛾⟩
⃒⃒⃒2

. The latter looks exactly like (8.74),

with 𝐴′ replaced by 𝐴. Assuming 𝑛 = 𝐴′ to sum over 𝑛 in 2⟨𝐴, 2𝛾|𝑆(2)
𝜂 |𝐴, 0𝛾⟩,

one obtains the same set of matrix elements as in (8.77). This contribution also
turns out to be divergent, ∼ 𝜂−1, and eliminates the divergence (8.77).

The latter can be demonstrated as follows.∑︁
2𝛾

⃒⃒⃒
⟨𝐴, 2𝛾|𝑆(2)

𝜂 |𝐴, 0𝛾⟩
⃒⃒⃒2

=
𝑒4

(2𝜋)4

∑︁
𝑒,𝑒′

∫︁
· · ·
∫︁

(4𝜂)2𝜔𝜔′𝑑𝜈𝑑𝜈 ′𝑑𝜔𝑑𝜔′

[(𝜔0 − 𝜔 − 𝜔′)2 + 4𝜂2]2
(8.78)

×

⃒⃒⃒⃒
⃒⟨𝐴|𝛼𝐴*

𝑘′,𝑒′|𝐴
′⟩⟨𝐴′|𝛼𝐴*

𝑘,𝑒|𝐴⟩
𝐸𝐴′ − 𝐸𝐴 + 𝜔 + i𝜂

+
⟨𝐴|𝛼𝐴*

𝑘,𝑒|𝐴′⟩⟨𝐴′|𝛼𝐴*
𝑘′,𝑒′|𝐴⟩

𝐸𝐴′ − 𝐸𝐴 − 𝜔 + i𝜂

⃒⃒⃒⃒
⃒
2

.

In this expression, it is necessary to keep i𝜂 in the energy denominators to keep
track of all divergences. In summary

2𝜂
∑︁
2𝛾

⃒⃒⃒
⟨𝐴, 2𝛾|𝑆(2)

𝜂 |𝐴, 0𝛾⟩
⃒⃒⃒2

=
2𝜂𝑒4

(2𝜋)4

∑︁
𝑒,𝑒′

∫︁
𝑑𝜈𝑑𝜈 ′ ⃒⃒⟨𝐴|𝛼𝐴*

𝑘,𝑒|𝐴′⟩
⃒⃒4 ×

(︂
−𝜋
𝜂

)︂∫︁
𝜔2𝑑𝜔

⃒⃒⃒⃒
1

𝐸𝐴′ − 𝐸𝐴 + 𝜔 + i𝜂
+

1

𝐸𝐴′ − 𝐸𝐴 − 𝜔 + i𝜂

⃒⃒⃒⃒2
. (8.79)

Finally, the expression (8.79) can be written in the form:

lim
𝜂→0

2𝜂
∑︁
2𝛾

⃒⃒⃒
⟨𝐴, 2𝛾|𝑆(2)

𝜂 |𝐴, 0𝛾⟩
⃒⃒⃒2

= − lim
𝜂→0

1

2𝜋

(︁
Γ
(1)
𝐴

)︁2
𝐹 (𝜂), (8.80)

where

𝐹 (𝜂) = 4𝜔2
0

∫︁
𝑑𝜔

(𝜔2
0 − 𝜂2 − 𝜔2)2 + 4𝜂2𝜔2

0

. (8.81)
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By performing the necessary calculations (see details in [82]), it can be found
that

𝐹 (𝜂) =
4𝜋𝑖

2𝑖𝜂
=

2𝜋

𝜂
. (8.82)

Substituting the obtained result into (8.80), the contribution of the second
summand to (8.66) is exactly equal and opposite in sign to (8.77) (the last
summand in (8.66)). The remaining 𝑛 summands with 𝑛 ̸= 𝐴′ in the expression
for 2⟨𝐴, 2𝛾|𝑆(2)

𝜂 |𝐴, 0𝛾⟩, can be ignored because they do not satisfy the energy
conservation law.

Thus, the second and third terms in (8.66) in the absence of cascades com-
pensate each other, and the two-photon width is determined entirely by the
first term, Γ

(2𝛾),1
𝐴 = Γ

(2𝛾)
𝐴 . Then, (8.76) coincides exactly with the standard

QED expression for the two-photon decay width in the absence of cascades,
see, e.g., (8.40) for the case of 2𝑠.

8.4.7. Two-photon decay width in the presence of cascade

radiation

The derivation of the expression for the two-photon decay width in the presence
of cascades does not differ in principle from the previous one. The expression
(8.74) is valid in this case as well. Considering that there is only one cascade
channel (e.g., 3𝑠 − 2𝑝 − 1𝑠 in the case of decay of the 3𝑠 level in hydrogen),
the only difference is the existence of an additional divergence at 𝑛 = 𝑟 in
the sum over 𝑛 in (8.74): 𝜔 = 𝐸𝐴 − 𝐸𝑟 (𝑟 is the resonance state). In view of
the energy conservation, this also implies the existence of another resonance
(the lower branch of the cascade): 𝜔′ = 𝐸𝑟 − 𝐸𝐴′. Now (8.76) contains two
divergences as 𝜂−1: for 𝐹 ′ = 𝐴′, 1𝛾 (this divergence is analogous to the case of
no cascades) and 𝐹 ′ = 𝑟, 1𝛾 (additional divergence due to the existence of a
cascade). The first one is compensated by the term 𝑛 = 𝐴′ in the "unphysi-
cal contribution" ⟨𝐴, 2𝛾|𝑆(2)

𝜂 |𝐴, 0𝛾⟩, and the latter is similarly compensated by
the 𝑛 = 𝑟 summand in the expression for ⟨𝐴, 2𝛾|𝑆(2)

𝜂 |𝐴, 0𝛾⟩. However, in the
presence of a cascade, a third divergence arises directly when summing over 𝑛
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(when 𝑛 = 𝑟) in expression (8.79). This divergence cannot be eliminated by
any counter term because it is proportional to the special product of the ele-
ments: |⟨𝐴′|𝑝𝑖|𝑟⟩⟨𝑟|𝑝𝑘|𝐴⟩|2, there is no counter term containing such a product
in the expression (8.66). One can eliminate this remaining divergence only by
taking into account (at a given order of perturbation theory) radiative correc-
tions to the level width. Equivalently, one can introduce a level width, as was
done in [85]. Thus, evaluating the two-photon decay width in the presence of
cascades reveals the same expressions with the same problems discussed above
(see section 8.4.1).

8.4.8. Two-photon decay width as an imaginary part of

the two-loop radiative correction

The separation of "pure" radiation for two-photon decays of highly excited
states (with 𝑛 > 2), required in astrophysical studies, led to the appearance of
the so-called "alternative" approach, see, for example, [256]. This approach is
based on calculating the imaginary part of the two-loop diagram to the self-
energy of the electron. Thus, in [256] it was shown that the divergence arising
in this case can be eliminated by means of the integral

𝐼1 =

1∫︁
0

⃒⃒⃒⃒
1

𝑎− 𝜔 + 𝑖𝜖

⃒⃒⃒⃒2
𝑑𝜔 =

𝜋

𝜖
+

1

𝑎(𝑎− 1)
+𝑂(𝜖2) (8.83)

where 0 < 𝑎 < 1 and the result is written out in lowest order by 𝜖→ 0 (and, of
course, 𝜖 ≪ 𝑎). The convergent second summand in (8.83) was used to obtain
a finite number that was interpreted as the width of the "pure" two-photon
emission. Omitting for brevity the details of the evidence for the ineligibility
of this interpretation presented in [82], this section present another reason for
this. It fully utilizes the theory presented in the [253–256], but leads to different
conclusions on the results obtained.

It should be pointed out that the determination of the excited level width
through the imaginary part of the one-loop correction to the self-energy of the
bound electron can be proved completely analytically [244]. The calculation
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reduces to the so-called cutting of the diagram. The result can be obtained in
the form:

Γ𝐴 = −2ℑ∆𝐸𝐴. (8.84)

These widths are contributed by the sum of the probabilities of one-photon
transitions to lower levels (one-photon width Γ

(1𝛾)
𝐴 ). One would expect that

the imaginary part of the two-loop contributions, see Fig. 8.3, should contain
two-photon widths. In case Γ𝐴 also coincides with the sum of two-photon decay

Figure 8.3. A set of two-loop Feynman diagrams used to calculate the "two-pho-
ton width". Depending on how the diagram is "cut", corrections to the one-
and two-photon decay widths arise (a detailed description is given in [121]). The
standard notations are used here: the state for which the correction is needed
is denoted by 𝐴, the wavy line denotes the photon propagator, the double solid
line denotes the electron propagator. Diagrams a), b) are irreducible, while c)
is reducible. The latter requires the use of the adiabatic theory of the 𝑆-matrix
to eliminate additionally arising divergences due to "reference" states.

probabilities (including cascades), see, e.g., (8.40), the perturbation theory for
the imaginary part of the radiative shift of energy levels would not exist: the
cascade contributions are always of the same order (parametrically) as the one-
photon widths. The present analysis shows that this is not the case. In the case
of two loops, the expression (8.40) does not arise. Instead of the square of the
modulus, the real part appears, as obtained in [256]. Details of the calculations
can be found in [84,121].

The imaginary part of the two-photon radiative corrections to the self-
energy of the electron arises from the corresponding "cutting" of the diagrams
in Fig. 8.3. Not all possible such procedures will lead to two-photon contribu-
tions: corrections to one-photon widths will also appear. It should be noted that
one should not "cut" the vacuum loops, since the corrections to the vacuum
polarization do not give a contribution to the imaginary part of the energy. The
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result for the case of the two-photon contribution is

Γ̃
(2𝛾)
3𝑠,1𝑠 = 𝑒4 lim

𝜂→0
ℜ
∑︁
𝑒,𝑒′

∫︁
𝑑𝜈

∫︁
𝑑𝜈 ′

𝜔0∫︁
0

𝑑𝜔
𝜔(𝜔0 − 𝜔)

24𝜋3
× (8.85)

[︃∑︁
𝑛1

⟨𝐴′|𝛼𝐴*
𝑘′,𝑒′|𝑛1⟩⟨𝑛1|𝛼𝐴*

𝑘,𝑒|𝐴⟩
𝐸𝑛1

− 𝐸𝐴 + 𝜔
+
∑︁
𝑛2

⟨𝐴′|𝛼𝐴*
𝑘,𝑒|𝑛2⟩⟨𝑛2|𝛼𝐴*

𝑘′,𝑒′|𝐴⟩
𝐸𝑛2

− 𝐸𝐴′ − 𝜔

]︃
×[︃∑︁

𝑛3

⟨𝐴′|𝛼𝐴*
𝑘′,𝑒′|𝑛3⟩⟨𝑛3|𝛼𝐴*

𝑘,𝑒|𝐴⟩
𝐸𝑛3

− 𝐸𝐴 + 𝜔
+
∑︁
𝑛3

⟨𝐴′|𝛼𝐴*
𝑘,𝑒|𝑛3⟩⟨𝑛3|𝛼𝐴*

𝑘′,𝑒′|𝐴⟩
𝐸𝑛3

− 𝐸𝐴′ − 𝜔

]︃*
.

As mentioned above, (8.85) has a real part, which immediately shows the
difference with the standard expression (8.40), which has the square of the
modulus of the radiation amplitude. "Dangerous" denominators do not require
regularization and reduce to finite terms, so that the two-photon contribution
Γ̃
(2𝛾)
𝐴𝐴′ does not violate perturbation theory. In turn, the two-photon transition

probability contains a singularity corresponding to the cascade and requires
regularization. Thus, the value Γ̃

(2𝛾)
3𝑠,1𝑠 is no longer the two-photon level width

(the sum of probabilities of transitions to lower states). Numerical results for
Γ̃
(2𝛾)
3𝑠,1𝑠 are presented in Table 8.3.

The main conclusion from Table 8.3 is that the Γ̃
(2𝛾)
𝐴𝐴′ widths cannot be

regarded as "pure" two-photon emission widths (or probabilities of "pure" two-
photon transitions to a particular final state), but are two-photon corrections
to the total level width. This claim is supported by the fact that some values
of Γ̃

(2𝛾)
𝐴𝐴′ turn out to be negative: 4𝑑− 2𝑠 and 5𝑠− 3𝑑 transitions, see Table 8.3.

This makes it impossible to consider Γ̃
(2𝛾)
𝐴𝐴′ as transition probabilities and hence

to use them in radiative transfer theory [76,99].
In the analysis it is necessary to point out the weighty contribution of T.

Zalialiutdinov.
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Table 8.3. Two-photon contributions Γ̃
(2𝛾)
𝐴𝐴′ , (8.85), to the total atomic level

width for the hydrogen atom. The values are given in s−1.
State 𝑛′

𝑛𝑙 𝑛′𝑙 1 1, [256] 2 3 4

2𝑠 𝑛′𝑠 8.229355 8.229352 - - -
3𝑠 𝑛′𝑠 2.083086 2.082853 0.064531 - -
3𝑑 𝑛′𝑠 1.042708 1.042896 0.000776 - -
4𝑠 𝑛′𝑠 0.699717 0.698897 0.016843 0.002925 -
4𝑠 𝑛′𝑑 - - - 9.69 × 10−6 -
4𝑝 𝑛′𝑝 - - 0.015623 0.002503 -
4𝑑 𝑛′𝑠 0.598406 0.598798 −0.007319 0.000030 -
4𝑑 𝑛′𝑑 - - - 0.001685 -
4𝑓 𝑛𝑝 - - 0.031754 0.000044 -
5𝑠 𝑛′𝑠 0.288117 0.287110 0.081741 0.000704 0.000298

5𝑠 𝑛′𝑑 - - - −0.000028 1.82 × 10−6

8.5. Two-photon approximation in multiphoton
decay processes

Within the framework of the study of multiphoton radiation processes, the
question of the inseparability of cascade and "pure" radiation from full prob-
ability has led to the following problem. It can be seen that in multiphoton
processes involving cascade radiation there are transitions belonging to the
"two-photon link". For example, one can point to the decay of the 3𝑝 state in
the hydrogen atom. In addition to the dominant one-photon decay directly to
the ground state, there is a three-photon process. Such transitions (𝐸1𝐸1𝐸1)
are allowed according to the selection rules, although they are small. The or-
der of magnitude of the probabilities of 𝐸1𝐸1𝐸1 transitions is determined by
the estimate 𝑐3𝛾𝛼(𝛼𝑍)8 (in atomic units). Calculations (see, e.g., [114]) show
that the numerical coefficient 𝑐3𝛾 is also found to be small, for 2𝑝 → 1𝑠 + 3𝛾

𝑐3𝛾 ≈ 0.263 × 10−4 atomic units [114]. A more detailed study of three-photon
(cascade-free) emission processes was presented in [123], where calculations in
hydrogen-like ions were performed for a wide set of values of the nuclear charge
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𝑍. Cascade-free processes may be interesting due to the fact that they cannot
be effectively reabsorbed, and thus should lead to direct radiation escape from
matter. The probability of cascade processes (see the previous section) is of
the same order as the one-photon decay directly to the ground state, ∼ 𝛼3𝑍4

atomic units. Consequently, one can ask what is the probability of detecting a
"pure" two-photon emission process in a cascade decay with the presence of a
two-photon link in it.

It should be noted that in the context of studying only the radiation process
one can inquire about the dependence of the initial state on the process of its
formation (see the previous sections). In principle, the QED treatment of any
process is absolutely certain only when this process begins with a stable state
and ends also with a stable (metastable) state. Then the question about the
preparation process of an excited state does not arise. In this context, all atomic
states can be considered as metastable, since the widths of energy levels are al-
ways smaller than the intervals between levels. Of course, the formulation of the
problem of the transition probability from some initial excited state is always
an idealization. Such a formulation is possible provided that in the process of
creation of the initial state the nonresonant corrections can be considered neg-
ligible. The NR corrections depend on the excitation process; however, it can
be stated with high accuracy that they are relatively small for all types of exci-
tation processes. Consequently, one can safely assume that the creation history
of the initial state has no influence on the estimates of cascade transitions. The
presence of interference should also be noted. According to previous discussions
(see on the inseparability of cascade and "pure" radiation), this phenomenon is
quite insignificant, since interference should be considered for an equal number
of photons, i.e., with "pure" three-photon radiation ∼ 10−4𝛼(𝛼𝑍)8 at 𝑍 = 1.
The above circumstances refer to the basic approximations used to determine
the probability of transition from level 𝐴 to the ground state by cascade decay.
By registering a frequency with energy related to a two-photon link (e.g. 3𝑝−2𝑝

or 2𝑠− 1𝑠 for the decay of the 3𝑝 state), the decay rate may not coincide with
the natural width of the 𝐴 level.

As a first example, consider the three-photon transition from the 3𝑝 state
to the 1𝑠 ground level of the hydrogen atom. It has several cascade channels:
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3𝑝 → 2𝑝 + 2𝛾 → 1𝑠 + 𝛾 and 3𝑝 → 2𝑠 + 𝛾 → 1𝑠 + 2𝛾. Both involve "pure"
two-photon emission ("two-photon link") associated with the 3𝑝 → 2𝑝 + 2𝛾

and 2𝑠 → 1𝑠 + 2𝛾 transitions. The decay process of the 3𝑝 state, including
three-photon cascade emission, is schematically depicted in Fig. 8.4.

Figure 8.4. Schematic representation of the 3𝑝→ 1𝑠+ 3𝛾(𝐸1) transition. The
triple vertical line with arrow (a)) denotes the total three-photon contribution
consisting of a "pure" three-photon decay to the 1𝑠 state (b), a one-photon
transition to the 2𝑠 state followed by a two-photon link (c), and a two-photon
3𝑝− 2𝑝 link followed by a one-photon decay d).

Using the standard 𝑆-matrix formalism to describe the three-photon emis-
sion process (see details in [115]), in the framework of the resonance approxi-
mation (see above), the contribution to the 2𝑠 and 2𝑝 states, Fig. 8.4 (c), (d),
respectively, should be distinguished in the emission amplitude. Using the reg-
ularization of the resonance contributions according to the procedure described
in [8,85], as well as carrying out all the necessary intermediate calculations, the
following expression can be obtained:

𝑊
(total)
3𝑝,1𝑠 = 𝑊

(1𝛾)
3𝑝,1𝑠 +𝑊

(3𝛾)
3𝑝,1𝑠 = 𝑊

(1𝛾)
3𝑝,1𝑠 +

𝑊
(1𝛾)
2𝑝,1𝑠

Γ2𝑝
𝑊

(2𝛾)
3𝑝,2𝑝 +

𝑊
(1𝛾)
3𝑝,2𝑠

Γ3𝑝
𝑊

(2𝛾)
2𝑠,1𝑠, (8.86)

where the integration over the frequency of the one-photon link in the cascade
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radiation was also performed. The result of integration of the corresponding
Lorentz contour is the appearance of the branching ratio in front of the two-
photon emission probabilities in (8.86). The coefficient in the second summand
is equal to one in the highest order, but is retained to demonstrate its emer-
gence from the three-photon process. It is worth noting that the 3/4 coefficient
obtained in [115] is incorrect and must be replaced by one as in (8.86). The
latter was noted in [121]. The numerical values for the last two summands in
(8.86) give

𝑊
(1𝛾)
2𝑝,1𝑠

Γ2𝑝
𝑊

(2𝛾)
3𝑝,2𝑝 = 0.0475 s−1, (8.87)

𝑊
(1𝛾)
3𝑝,2𝑠

Γ3𝑝
𝑊

(2𝛾)
2𝑠,1𝑠 = 0.9738 s−1,

which turns out to be significant compared to the order of magnitude of the
10 s−1 two-photon contribution to the 2𝛾-decay probability of the 3𝑠 level
[164,252].

The calculations for the four-photon emission probability 4𝑠→ 1𝑠+4𝛾 were
carried out in a similar way. The decay process with the presence of two-photon
links is schematically depicted in Fig. 8.5. Within the same approximations,
given the correct coefficient, the final result can be represented as

𝑊
(total)
4𝑠,1𝑠 = 𝑊

(2𝛾)
4𝑠,1𝑠 +𝑊

(4𝛾)
4𝑠,1𝑠 = 𝑊

(2𝛾)
4𝑠,1𝑠 + (8.88)

𝑊
(1𝛾)
3𝑠,2𝑝

Γ3𝑠

𝑊
(1𝛾)
2𝑝,1𝑠

Γ2𝑝
𝑊

(2𝛾)
4𝑠,3𝑠 +

𝑊
(1𝛾)
4𝑠,3𝑝

Γ4𝑠

𝑊
(1𝛾)
2𝑝,1𝑠

Γ2𝑝
𝑊

(2𝛾)
3𝑝,2𝑝 +

𝑊
(1𝛾)
4𝑠,3𝑝

Γ4𝑠

𝑊
(1𝛾)
43𝑝,2𝑠

Γ3𝑝
𝑊

(2𝛾)
2𝑠,1𝑠.

The corresponding numerical result:

𝑊
(1𝛾)
2𝑝,1𝑠

Γ2𝑝

𝑊
(1𝛾)
3𝑠,2𝑝

Γ3𝑠
𝑊

(2𝛾)
4𝑠,3𝑠 = 0.0029 s−1, (8.89)

𝑊
(1𝛾)
4𝑠,3𝑝

Γ4𝑠

𝑊
(1𝛾)
2𝑝,1𝑠

Γ2𝑝
𝑊

(2𝛾)
3𝑝,2𝑝 = 0.0199 s−1,

𝑊
(1𝛾)
4𝑠,3𝑝

Γ4𝑠

𝑊
(1𝛾)
3𝑝,2𝑠

Γ3𝑝
𝑊

(2𝛾)
2𝑠,1𝑠 = 0.4076 s−1.
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Figure 8.5. Schematic representation of the 4𝑠 → 1𝑠+ 4𝛾(𝐸1) transition with
the presence of two-photon links. The notations are similar to Fig. 8.4.

Finally, in [116], the case of four-photon decay of the decay of the 4𝑑 state
was considered with result

𝑊
(total)
4𝑑,1𝑠 = 𝑊

(2𝛾)
4𝑑,1𝑠 +

𝑊
(1𝛾)
3𝑠,2𝑝

Γ3𝑠

𝑊
(1𝛾)
2𝑝,1𝑠

Γ2𝑝
𝑊

(2𝛾)
4𝑑,3𝑠 +

𝑊
(1𝛾)
3𝑑,2𝑝

Γ3𝑑

𝑊
(1𝛾)
2𝑝,1𝑠

Γ2𝑝
𝑊

(2𝛾)
4𝑑,3𝑑 (8.90)

+
𝑊

(1𝛾)
4𝑑,3𝑝

Γ4𝑑

𝑊
(1𝛾)
2𝑝,1𝑠

Γ2𝑝
𝑊

(2𝛾)
3𝑝,2𝑝 +

𝑊
(1𝛾)
4𝑑,3𝑝

Γ4𝑑

𝑊
(1𝛾)
3𝑝,2𝑠

Γ3𝑝
𝑊

(2𝛾)
2𝑠,1𝑠,

𝑊
(1𝛾)
3𝑠,2𝑝

Γ3𝑠

𝑊
(1𝛾)
2𝑝,1𝑠

Γ2𝑝
𝑊

(2𝛾)
4𝑑,3𝑠 = 6.045 × 10−6 s−1,

𝑊
(1𝛾)
3𝑑,2𝑝

Γ3𝑑

𝑊
(1𝛾)
2𝑝,1𝑠

Γ2𝑝
𝑊

(2𝛾)
4𝑑,3𝑑 = 0.0017 s−1,

𝑊
(1𝛾)
4𝑑,3𝑝

Γ4𝑑

𝑊
(1𝛾)
2𝑝,1𝑠

Γ2𝑝
𝑊

(2𝛾)
3𝑝,2𝑝 = 0.0121 s−1,

𝑊
(1𝛾)
4𝑑,3𝑝

Γ4𝑑

𝑊
(1𝛾)
3𝑝,2𝑠

Γ3𝑝
𝑊

(2𝛾)
2𝑠,1𝑠 = 0.2477 s−1.

The paper [120], where a detailed calculation of the scattering process of
1𝑠+ 𝛾 → 3𝑝→ 1𝑠+ 3𝛾 (from stable to stable state) was performed, should be
emphasized. As before, a cascade with the presence of two-photon links in the
radiation process was considered. The aim of the study was, first, to investigate
the influence of the state preparation on the emission process (in the framework
of the resonance approximation, as expected, no such influence was found) and,
second, to compare in detail the QM and QED approaches to regularize the
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resonance contributions. It was shown that the QM approach also produces a
sum of widths for the cascade (resonance) state. The result for the scattering
process was obtained in the form:

𝑏
(3𝛾)
3𝑝−1𝑠(3𝑝− 2𝑠− 1𝑠) =

𝑊
(1𝛾)
3𝑝−2𝑠𝑊

(2𝛾)
2𝑠−1𝑠

Γ3𝑝Γ2𝑠
, (8.91)

where 𝑏3𝛾3𝑝−1𝑠(3𝑝− 2𝑠− 1𝑠− 1𝑠) represents the branching ratio.
Several remarks should be made at once. The first one refers to the fact

that in the case of the description of the scattering process instead of simply
radiation there appears a dimensionless branching ratio 𝑏. This is the result of
integration over the frequency of the absorbed photon and the corresponding
resonance profile (the latter appears as an additional absorption amplitude
and energy denominator), see [120] for details. The second remark refers to
the fact that the width Γ2𝑠 is highly determined by the probability 𝑊 (2𝛾)

2𝑠−1𝑠 in
the hydrogen atom, and hence in the expression (8.91) their ratio could be
put equal to one. The exclusion of this coefficient leads, it would seem, to a
contradiction with the previous results. However, it should be pointed out that
the dimensionless coefficient 𝑏 makes it possible to determine the probability of
a two-photon transition in a cascade radiation process as follows.

The value 𝑏 should determine the probability of the 3𝑝 → 1𝑠 + 3𝛾 tran-
sition through the 3𝑝 → 2𝑠 + 𝛾 → 1𝑠 + 2𝛾 channel, which is much smaller
than the main decay channel of the 3𝑝 state, i.e., 𝑊 (1𝛾)

3𝑝−1𝑠. Considering that the
value 𝑏3𝛾3𝑝−1𝑠(3𝑝−2𝑠−1𝑠) is the branching ratio for the three-photon transition
probability 𝑊 (3𝛾)

3𝑝,1𝑠(3𝑝− 2𝑠− 1𝑠) to the two-photon transition width Γ2𝑠, from
(8.91) follows

𝑊
(3𝛾)
3𝑝,1𝑠(3𝑝− 2𝑠− 1𝑠) =

𝑊
(1𝛾)
3𝑝−2𝑠

Γ3𝑝
𝑊

(2𝛾)
2𝑠−1𝑠. (8.92)

Similarly for the cascade 3𝑝→ 2𝑝+ 2𝛾 → 1𝑠+ 3𝛾:

𝑏
(3𝛾)
3𝑝−1𝑠(3𝑝− 2𝑝− 1𝑠) =

𝑊
(1𝛾)
2𝑝,1𝑠𝑊

(2𝛾)
3𝑝,2𝑝

Γ2𝑝Γ3𝑝
. (8.93)
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In contrast to 𝑏3𝑔𝑎𝑚𝑚𝑎
3𝑝,1𝑠 (3𝑝− 2𝑠− 1𝑠), the value (8.93) should be viewed as the

branching ratio for the transition probability over a 3𝑝 → 2𝑝 + 2𝛾 → 1𝑠 + 𝛾

channel to the total 3𝑝 width of the level, i.e., Γ3𝑝. Then

𝑊
(3𝛾)
3𝑝,1𝑠(3𝑝− 2𝑝− 1𝑠) =

𝑊
(1𝛾)
2𝑝,1𝑠

Γ2𝑝
𝑊

(2𝛾)
3𝑝,2𝑝, (8.94)

leading to the same result as (8.86).
Thus, we can formulate a two-photon approximation that permits to distin-

guish cascade radiation with two-photon links. This type of cascade contributes
to two-photon transitions (i.e., to the radiation escape) comparable to the con-
tribution of "direct" two-photon transitions. The calculations of two-photon
transition probabilities were performed within the framework of these studies
in the nonrelativistic approximation by the Coulomb Green’s function method
and are in good agreement with the corresponding fully relativistic values (at
the level ≤ 0.01%). The basic formulas for such calculations were presented
in [111,117], where the method of calculating the multiphoton emission proba-
bilities for the sublevels corresponding to the fine structure of the atomic state
is also presented.
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Chapter 9.

Emission probabilities in an
external electric field

9.1. Probability of 2𝑠 level decay in a hydrogen
atom in an external electric field

According to the theory presented in section 8.2, it is quite simple to calculate
the probability of one-photon decay of the 2𝑠 state in a hydrogen atom placed in
an external electric field. The corresponding probability was studied in detail
in [103] in order to reveal effects imitating violating spatial parity (see also
another application of the phenomenon in [104,105]).

To address this issue, within the framework of analytical calculations, see,
e.g., [106], the wave function can be represented as:

|2𝑠,𝑚𝑠⟩ = |2𝑠,𝑚𝑠⟩ + 𝜂
∑︁
𝑚′

𝑠

⟨2𝑝1/2,𝑚′
𝑠|𝑒(ℰ𝑟)|2𝑠1/2,𝑚𝑠⟩|2𝑝1/2,𝑚′

𝑠⟩. (9.1)

The matrix element due to the dipole interaction with the external electric field
ℰ refers, as before, to the Stark coefficient (see previous sections of the thesis).
However, a more accurate notation for the 𝜂 coefficient is used in the following
calculations: 𝜂 = (∆𝐸𝐿+iΓ2𝑝/2)−1. The result of the calculations [106,112–114]
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is

𝑑𝑊2𝑠,1𝑠 = 𝑊0 [1 ∓ 𝛽(ℰ)(𝜈ℰ)/ℰ ] 𝑑𝜈, (9.2)

where the notations are introduced (see [103]):

𝑊0 = 𝑑𝑊
(1𝛾)
2𝑠,1𝑠 +

𝑒2ℰ2

(∆𝐸𝐿)2 + 1
4Γ2

2𝑝

𝑑𝑊
(1𝛾)
2𝑝1/2,1𝑠

, (9.3)

𝛽(ℰ) = |𝑒|ℰ
Γ2𝑝

√︁
𝑊

(1𝛾)
2𝑠,1𝑠𝑊

(1𝛾)
2𝑝1/2,1𝑠

𝑊
(1𝛾)
2𝑠,1𝑠

(︀
∆𝐸2

𝐿 + 1
4Γ2

2𝑝

)︀
+ 𝑒2ℰ2𝑊

(1𝛾)
2𝑝1/2,1𝑠

.

The ∓ sign in the formula (9.2) corresponds to hydrogen (−) and anti-
hydrogen (+) atoms. Hence, the function 𝛽(ℰ) determines the difference be-
tween H and H̄ in the probability of a 2𝑠− 1𝑠 transition in an external electric
field. The maximum value of 𝛽(ℰ), see [103], is reached in the field with the
strength of

ℰmax =
1

|𝑒|

⎯⎸⎸⎷ 𝑊
(1𝛾)
2𝑠,1𝑠

𝑊
(1𝛾)
2𝑝1/2,1𝑠

(︂
∆𝐸2

𝐿 +
1

4
Γ2
2𝑝

)︂
≈ 0.3 × 10−4 V/cm (9.4)

and, then, 𝛽max ≡ 𝛽(ℰmax) = Γ2𝑝

√︁
∆𝐸2

𝐿 + Γ2
2𝑝/4 ≈ 1/20. The relative differ-

ence of one-photon 2𝑠 − 1𝑠 transition probabilities of atoms H and H̄ in an
external electric field ℰmax is equal to

∆
(︀
𝑑𝑊2𝑠,1𝑠

)︀
𝑑𝑊2𝑠,1𝑠

=
2𝑊0𝛽max

𝑑𝑊2𝑠,1𝑠
=

1

5
cos𝜑, (9.5)

where 𝜑 is the angle between the vectors ℰ and 𝜈. Thus, only in very weak
fields (9.4) this difference is close to 20% and it can be detected in experiments
like [134,182].
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9.2. Two-photon decay of 2𝑠 and 2𝑝 hydrogen
states in an external electric field

In this part of the thesis, the probabilities of two-photon 2𝑠− 1𝑠 and 2𝑝− 1𝑠

transitions for the hydrogen atom in the presence of an external electric field
are considered. As in the previous chapter 7 and section 9.1, only the mixing
of 2𝑠 and 2𝑝 states is considered here. This level mixing leads to additional
two-photon decays 𝐸1𝐸2 and 𝐸1𝑀1 in addition to the dominant two-photon
𝐸1𝐸1 transition. As shown in the previous sections, the probabilities of the
two-photon 𝐸1𝐸2 or 𝐸1𝑀1 transition are about (𝛼𝑍)2 times smaller than
the probability of the 𝐸1𝐸1 transition. However, given the rapidly increasing
precision of spectroscopic experiments, the probabilities of two-photon 𝐸1𝐸2

or 𝐸1𝑀1 transitions can be considered as a correction to the 𝐸1𝐸1 decay.
Moreover, as was shown in [112,114], in the presence of an external electric field,
contributions linear in the field are added to the 𝐸1𝐸1 transition probability
due to interference. The description of two-photon decays in an external electric
field can be addressed to experiments of the type [182], which use the influence
of an external electric field to register the absorption process.

Omitting for brevity the analytical calculations presented in [112, 114] and
based on the theory outlined above, the final result can be represented as:

𝑑𝑊
(2𝛾)

2𝑠,1𝑠

𝑑𝜈𝑑𝜈 ′ = 𝑊0

[︀
1 ± 𝛽1(ℰ) [𝜈ℰ𝜈 + 𝜈ℰ𝜈

′] (1 + (𝜈𝜈 ′)2) (9.6)

±𝛽2(ℰ) [𝜈ℰ𝜈 + 𝜈ℰ𝜈
′] (1 + 𝜈𝜈k′)] ,

where 𝑊0 = 𝑊
(2𝛾)
2𝑠 + ̃︁𝑊 (2𝛾)

2𝑝 𝑒2ℰ2/∆2, ̃︁𝑊 (2𝛾)
2𝑝 is the sum of 𝐸1𝐸2 and 𝐸1𝑀1

transition probabilities, 𝜈ℰ = ℰ/ℰ and ∆ =
√︁

∆𝐸2
𝐿 + Γ2

2𝑝/4. The functions
𝛽1(ℰ) and 𝛽2(ℰ) are defined as follows

𝛽1(ℰ) =
0.000230135(𝛼𝑍)7

𝑊0𝜋3
|𝑒|ℰΓ2𝑝

∆2
, (9.7)

𝛽2(ℰ) =
0.0000340919(𝛼𝑍)7

𝑊0𝜋3
|𝑒|ℰΓ2𝑝

∆2
.
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The maximum values of 𝛽1 (or 𝛽2) are reached at the value of field strength

ℰmax =
𝑤2𝛾∆

|𝑒|
≈ ±0.000018 a.u. ≈ ±57 kV/cm. (9.8)

Here 𝑤2𝛾 = 𝑊
(2𝛾)
2𝑝 /𝑊

(2𝛾)
2𝑠 , and the signs (−) and (+) refer to the atoms H and

H̄, respectively.
Then the maximum value of 𝑑𝑊 (2𝛾)

2s 1s
is expressed as

𝑑𝑊
(2𝛾)

2𝑠,1𝑠

𝑑𝜈𝑑𝜈 ′ = 𝑊0(ℰmax)
[︀
1 ± 0.00024397 [𝜈ℰ𝜈 + 𝜈ℰ𝜈

′] (1 + (𝜈𝜈 ′)2) (9.9)

±0.00003614 [𝜈ℰ𝜈 + 𝜈ℰ𝜈
′] (1 + 𝜈𝜈 ′)] .

Integration over the directions of emitted photons 𝜈 and 𝜈 ′ leads to a value for
the two-photon 𝐸1𝐸1 decay probability of the 2𝑠 state, since the interference
terms give zero. But for the differential transition probability, the interference
terms clearly show a linear dependence on the external electric field ℰ . Thus,
the total two-photon transition probability 𝑊 (2𝛾)

2𝑠,1𝑠
, integrated over the photon

directions, is equal to

𝑊
(2𝛾)

2𝑠 1𝑠
(ℰmax) = 𝑊0(ℰmax) = 𝑊

(2𝛾)
2𝑠 +

̃︁𝑊 (2𝛾)
2𝑝 𝑒2ℰ2

max

∆2
(9.10)

≈ 3.98116 × 10−16 a.u. ≈ 16.4585 s−1,

i.e. twice as much as in the absence of the field.
In principle, the dependence on the external electric field in the transition

probability 𝑊
(2𝛾)

2𝑠 1𝑠
can be regarded as a correction that does not vanish after

integration over the photon emission directions. If we refer to the radiative cor-
rection considered in [246], it is easy to see that the radiative correction (expres-
sion (36) in [246]) 𝛿Γ2𝑠/Γ2𝑠 = −2.020536𝛼

𝜋 (𝛼𝑍)2 ln
[︀
(𝛼𝑍)−2

]︀
= −2.4594×10−6

corresponds to a field value of |ℰ r| ≈ ℰmax

√︀
𝛿Γ2s/Γ2s ≈ 2.8 × 10−8 a.u. ≈ 90

V/cm. Such fields are often used in spectroscopic experiments, so this effect
should also be taken into account.

The relative difference in the two-photon decay probabilities of hydrogen
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and anti-hydrogen atoms at the maximum value of ℰmax is equal to

𝑑𝑊
(2𝛾)

2𝑠,1𝑠
(H)

𝑊0(ℰmax)𝑑𝜈𝑑𝜈 ′ −
𝑑𝑊

(2𝛾)

2𝑠,1𝑠
(H̄)

𝑊0(ℰmax)𝑑𝜈𝑑𝜈 ′ = (9.11)

2𝛽1(ℰmax)(𝜈ℰ𝜈 + 𝜈ℰ𝜈
′)(1 + (𝜈𝜈 ′)2) + 2𝛽2(ℰmax)(𝜈ℰ𝜈 + 𝜈ℰ𝜈

′)(1 + 𝜈𝜈) =

(𝜈ℰ𝜈 + 𝜈ℰ𝜈
′)(0.000280111 + 0.00024397(𝜈𝜈 ′) + 0.0000361414(𝜈𝜈 ′)).

This ratio is close to 0.028% and is a small effect, reflecting the difference
between matter and antimatter even at maximum field strengths ℰmax.

Finally, it is possible to perform similar calculations for the case 2p →
1s + 2𝛾. The mixing of states is expressed as follows

|2𝑝, 𝜇′′⟩ = |2𝑝, 𝜇′′⟩ − 𝜂
∑︁
𝜇

⟨2𝑠, 𝜇′′|𝑒ℰr|2𝑝, 𝜇⟩|2𝑠, 𝜇′′⟩. (9.12)

In this case, the two-photon transition without an external electric field will
be provided by the sum of the decays 𝐸1𝐸2 and 𝐸1𝑀1, and the interference
terms will be the same. The result reduces to

𝑑𝑊
(2𝛾)

2𝑝,1𝑠
=

[︂
𝑑𝑊

(𝐸1𝐸2)
2𝑝,1𝑠 + 𝑑𝑊

(𝐸1𝑀1)
2𝑝,1𝑠 +

9𝑒2ℰ2

∆2
𝑑𝑊

(𝐸1𝐸1)
2𝑠,1𝑠 + (9.13)

0.000230135

𝜋3
Γ2𝑝

∆2
[𝑒ℰ𝜈 + 𝑒ℰ𝜈 ′]

(︀
1 + (𝜈𝜈 ′)2

)︀
(𝛼𝑍)7+

0.0000340919

𝜋3
Γ2𝑝

∆2
[𝑒ℰ𝜈 + 𝑒ℰ𝜈 ′] (1 + 𝜈𝜈 ′) (𝛼𝑍)7

]︂
𝑑𝜈𝑑𝜈 ′,

𝑑𝑊
(2𝛾)

2𝑝,1𝑠

𝑑𝜈𝑑𝜈 ′ = 𝑊0

[︀
1 ∓ 𝛽1(ℰ) [𝜈ℰ𝜈 + 𝜈ℰ𝜈

′] (1 + (𝜈𝜈 ′)2) (9.14)

∓𝛽2(ℰ) [𝜈ℰ𝜈 + 𝜈ℰ𝜈
′] (1 + 𝜈𝜈 ′)] ,

where 𝑊0 = 𝑊
(𝐸1𝐸2)
2𝑝,1𝑠 +𝑊

(𝐸1𝑀1)
2𝑝,1𝑠 +9𝑒2𝐷2𝑊

(𝐸1𝐸1)
2𝑠 1𝑠 /∆2,and the functions 𝛽1(𝐷),

𝛽2(𝐷) are defined as before (9.10). The signs (+) and (−) refer to hydrogen
and anti-hydrogen atoms, respectively.
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The maximum values of 𝛽1 (or 𝛽2) are achieved for

ℰmax =
∆

3|𝑒|𝑤2𝛾
≈ 7.1 × 10−11 a.u. ≈ 0.23 V/cm. (9.15)

The corresponding maximum value of 𝑑𝑊 (2𝛾)

2𝑝,1𝑠
is equal to

𝑑𝑊
(2𝛾)

2𝑝,1𝑠

𝑑𝜈𝑑𝜈 ′ = 𝑊0(ℰmax)
[︀
1 ∓ 0.00048613 [𝜈ℰ𝜈 + 𝜈ℰ𝜈

′] (1 + (𝜈𝜈 ′)2) (9.16)

∓0.000720147 [𝜈ℰ𝜈 + 𝜈ℰ𝜈
′] (1 + 𝜈𝜈 ′)] .

After integration over the photon emission directions, the field quadratic
contribution is equal to

𝑊
(2𝛾)

2𝑝,1𝑠
(ℰmax) = 𝑊

(𝐸1𝐸2)
2𝑝,1𝑠 +𝑊

(𝐸1𝑀1)
2𝑝,1𝑠 +

9𝑒2ℰ2
max𝑊

(𝐸1𝐸1)
2𝑠,1𝑠

∆2
(9.17)

≈ 4.09 × 10−22 a.u. ≈ 1.69 × 10−5 s−1.

The maximum relative probability difference (in the field ℰmax) is equal to

𝑑𝑊
(2𝛾)

2𝑝,1𝑠

𝑊0(ℰmax)𝑑𝜈𝑑𝜈 ′ (H) −
𝑑𝑊

(2𝛾)

2𝑝,1𝑠

𝑊0(ℰmax)𝑑𝜈𝑑𝜈 ′ (H̄) = (9.18)

2𝛽1(ℰmax)(𝜈ℰ𝜈 + 𝜈ℰ𝜈
′)(1 + (𝜈𝜈 ′)2) + 2𝛽2(ℰmax)(𝜈ℰ𝜈 + 𝜈ℰ𝜈

′)(1 + 𝜈𝜈 ′)

= (𝜈ℰ𝜈) + 𝜈ℰ𝜈
′)(0.0111629 + 0.0097226(𝜈𝜈 ′)2 + 0.00144029(𝜈𝜈 ′).

This ratio turns out to be close to 1%. However, any direct observation of this
difference should be difficult because of the prevailing background from the
one-photon transition 2𝑝→ 1𝑠+ 𝛾.

9.3. Decay of highly excited states in an external
electric field

In the previous sections of the thesis, see 9.1, 9.2, it was shown that the linear
field contribution arising in the differential transition probability leads to a sig-
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nificant difference between the spectra of H and H̄. This deviation disappears
after integration over the photon emission directions, i.e., in the total transi-
tion probability. Nevertheless, the difference arising in the electric field can be
observed in experiments when the photon emission is registered in a given di-
rection. According to [66], the formation of anti-hydrogen atoms in low-lying
states is very difficult, and, therefore, theoretical analysis of highly excited state
decays can be used to identify possible differences in H and H̄ atoms.

Using the technique [106, 112–114], in this section the estimates of decay
probabilities of highly excited states are given. In particular, a comparison of
the differential transition probabilities of hydrogen and anti-hydrogen atoms
is illustrated using the example of mixing states 𝑛𝑠, 𝑛𝑝. Then the total decay
probabilities (the same for atoms H and H̄) of mixed states 𝑛𝑠 for arbitrary
principal quantum numbers of the initial and final states are calculated. The
choice of 𝑛𝑠 and 𝑛𝑝 states is mainly due to the fact that the mixing is stronger
for close states of opposite parity. In this case, the Lamb shift acts as a parame-
ter that allows the 𝑛𝑠 and 𝑛𝑝 states to be completely mixed in very weak fields,
which can be associated with "residual" fields. The main goal is to demonstrate
the difference in the spectra of hydrogen and anti-hydrogen atoms for Rydberg
states, which can mimic the effects of CPT-symmetry breaking.

According to perturbation theory, the wave function of an atomic level sub-
jected to an external electric field [103,104] can be written as

|𝑛𝑠𝑚𝑗𝑠⟩ = |𝑛𝑠𝑚𝑗𝑠⟩ + 𝜂𝑛
∑︁
𝑚𝑗𝑝

⟨𝑛𝑝𝑚𝑗𝑝|𝑒ℰ𝑟|𝑛𝑠𝑚𝑗𝑠⟩|𝑛𝑝𝑚𝑗𝑝⟩,

𝜂𝑛 =
1

∆𝐸
(𝑛)
𝐿(𝑓) + iΓ𝑛𝑝/2

, (9.19)

where 𝑚𝑗𝑠(𝑝) corresponds to the projection of the total angular momentum of
the electron (𝑗𝑠(𝑝)) of the 𝑛𝑠(𝑝) state, 𝑛 is the principal quantum number of the
hydrogen state, ∆𝐸

(𝑛)
𝐿(𝑓) is the Lamb shift (𝐿-index) or fine structure splitting

(𝑓) of the 𝑛-th atomic state, Γ𝑛𝑝 is the 𝑛𝑝-level width, 𝑒 is the electron charge.
The matrix element ⟨𝑛𝑝𝑚𝑗𝑝|𝑒ℰ𝑟|𝑛𝑠𝑚𝑗𝑠⟩ represents the dipole interaction of an
atomic electron with an external electric field with strength ℰ , 𝑟 is the radius-
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vector of the atomic electron.
Carrying out the corresponding analytical calculations, it can be found

⟨𝑛𝑝𝑚𝑗𝑝|𝑒ℰ𝑟|𝑛𝑠𝑚𝑗𝑠⟩ =

√
3

2
𝑛
√︀
𝑛2 − 1

∑︁
𝑞

(−1)𝑞+𝑗𝑠+𝑗𝑝𝑒ℰ𝑞𝐶
𝑗𝑝 𝑚𝑗𝑝

𝑗𝑠 𝑚𝑗𝑠 1−𝑞, (9.20)

where 𝐶𝑗 𝑚
𝑗1 𝑚1 𝑗2 𝑚2

is the Clebsch-Gordan coefficient with the total angular mo-
mentum 𝑗 and its projection 𝑚 determined by the summing rule of the angular
momenta 𝑗1, 𝑗2 and their projections 𝑚1, 𝑚2 [179], ℰ𝑞 - spherical component 𝑞
of the electric field strength vector ℰ .

Restricting ourselves to the consideration of one-photon transitions in an
external electric field (see section 9.1), the mixing of low-lying states has to
be taken into account as well. The total amplitude of the one-photon emission
process should include 𝑛𝑠→ 𝑘𝑠+ 1𝛾 and 𝑛𝑠→ 𝑘𝑝+ 1𝛾(𝐸1) decay channels:

𝑈𝑃
𝑛𝑠𝑚,𝑘𝑠𝑚′ = 𝑈𝑃

𝑛𝑠𝑚, 𝑘𝑠𝑚′ + (9.21)

𝜂𝑛
∑︁
𝑚𝑗𝑝

⟨𝑛𝑠𝑚|𝑒ℰ𝑟|𝑛𝑝𝑚𝑗𝑝⟩𝑈𝑃
𝑛𝑝𝑚𝑗𝑝 , 𝑘𝑠𝑚

′ + 𝜂𝑘
∑︁
𝑚𝑗𝑝

⟨𝑘𝑝𝑚𝑗𝑝|𝑒ℰ𝑟|𝑘𝑠𝑚′⟩𝑈𝑃
𝑛𝑠𝑚, 𝑘𝑝𝑚𝑗𝑝

,

where the 𝑘𝑠 state admixture to the 𝑘𝑝 level is discarded due to its insignif-
icance (the corresponding magnetic transition leads to an essential smallness,
see (8.20)), and the index 𝑃 , as before, stands for the Pauli approximation. The
projections 𝑚 and 𝑚′ refer to the angular momenta of the initial 𝑛𝑠 and final
𝑘𝑠 states, respectively. Carrying out the necessary calculations, the transition
probability is reduced to the form:

𝑑𝑊
(1𝛾)

𝑛𝑠,𝑘𝑠

𝑑𝜈
=

3

8𝜋

𝑑𝑊
(1𝛾)
𝑛𝑠,𝑘𝑠

𝑑𝜈

[︃
1 − (−1)𝑗𝑠+𝑗𝑝𝑒ℰ(𝜈ℰ𝜈)

𝑛
√
𝑛2 − 1

2
√

3

Γ𝑛𝑝

w1∆2
1

− (9.22)

(−1)𝑗𝑠+𝑗𝑝𝑒ℰ(𝜈ℰ𝜈)
𝑘
√
𝑘2 − 1

6

Γ𝑘𝑝

w2∆2
2

+
𝑒2ℰ2

w 2
1∆2

1

𝑛2(𝑛2 − 1)

12
+

𝑒2ℰ2

w 2
2∆2

2

𝑘2(𝑘2 − 1)

36

]︃
.

Here 𝜈ℰ - unit vector of field direction (𝜈ℰ ≡ ℰ/ℰ , ℰ - field amplitude), and
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parameters ∆𝑖 and w𝑖 (𝑖 = 1, 2) are defined as

∆1 =

√︂(︁
∆𝐸

(𝑛)
𝐿(𝑓)

)︁2
+

1

4
Γ2
𝑛𝑝, ∆2 =

√︂(︁
∆𝐸

(𝑘)
𝐿(𝑓)

)︁2
+

1

4
Γ2
𝑘𝑝, (9.23)

w1 =

⎯⎸⎸⎷𝑊
(1𝛾)
𝑛𝑠,𝑘𝑠

𝑊
(1𝛾)
𝑛𝑝,𝑘𝑠

и w2 =

⎯⎸⎸⎷𝑊
(1𝛾)
𝑛𝑠,𝑘𝑠

𝑊
(1𝛾)
𝑛𝑠,𝑘𝑝

.

Here it is taken into account that the state width 𝑛𝑝 Γ𝑛𝑝 = Γ𝑛𝑝1/2 = Γ𝑛𝑝3/2 [117].
The notations 𝑊 (1𝛾)

𝑛𝑠,𝑘𝑠, 𝑊
(1𝛾)
𝑛𝑝,𝑘𝑠, and 𝑊

(1𝛾)
𝑛𝑠,𝑘𝑝 represent the one-photon transition

probabilities for the corresponding 𝑛𝑠 and 𝑛𝑝 levels. The sign (−1)𝑗𝑠+𝑗𝑝 in the
expression (9.22) shows the opposite contribution of the 𝑛𝑝1/2 and 𝑛𝑝3/2 states.
This difference arises because the 𝑛𝑠 state is between 𝑛𝑝3/2 and 𝑛𝑝1/2 for the
hydrogen atom.

In expression (9.22), the last two terms do not depend on the direction
of the emitted photon or the direction of the electric field. In contrast to the
linear field contributions, the quadratic field contributions are retained after
averaging over the photon emission directions. It should be noted that the
formal T-noninvariance of the factor (𝜈ℰ𝜈) in (9.22) (𝜈ℰ - T-even and 𝜈ℰ - T-
odd vectors) is compensated by the dependence on Γ𝑛(𝑘)𝑝 [229].

According to the expression (9.22), the differential transition probability
𝑑𝑊

(1𝛾)

𝑛𝑠,𝑘𝑠
(𝜈) is lined up as follows: the first term corresponds to the unper-

turbed decay 𝑛𝑠 → 𝑘𝑠 + 1𝛾(𝑀1), the additional terms (linear and quadratic
in the electric field ℰ) represent the interference 𝑀1, 𝐸1 photons and emis-
sion probabilities for the decays 𝑛𝑠 → 𝑘𝑠 + 1𝛾(𝑀1) and 𝑛𝑠 → 𝑘𝑝 + 1𝛾(𝐸1),
𝑛𝑝→ 𝑘𝑠+1𝛾(𝐸1). The linear terms are proportional to the electron charge, so
they have opposite signs for hydrogen and anti-hydrogen atoms. All other terms
in (9.22) are identical for hydrogen and anti-hydrogen. The observation of con-
trast in the spectra of hydrogen and anti-hydrogen becomes sharper when the
emission of photons is registered at an angle in (opposite to) the field direction.
Accordingly, in the perpendicular direction the effect is nullified.

It is more convenient to compare differential transition probabilities by
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rewriting the expression (9.22) in the form:

𝑑𝑊
(1𝛾)

𝑛𝑠,𝑘𝑠
=

3

8𝜋
𝑑𝑊

(1𝛾)
𝑛𝑠,𝑘𝑠

(︀
1 + 𝑒2ℰ2

0𝑎
2
)︀ [︂

1 ± (−1)1+𝑗𝑠+𝑗𝑝
𝑒ℰ(𝜈ℰ𝜈)𝑏

1 + 𝑒2ℰ2
0𝑎

2

]︂
𝑑𝜈, (9.24)

where the sign ± in (9.24) corresponds to hydrogen (+) and anti-hydrogen
(−), and the electron charge 𝑒 enters in modulus. The coefficients 𝑎 and 𝑏 are
determined by the relations:

𝑎 =

√︃
𝑛2(𝑛2 − 1)

12w 2
1∆2

1

+
𝑘2(𝑘2 − 1)

36w 2
2∆2

2

, (9.25)

𝑏 =
𝑛
√
𝑛2 − 1

2
√

3

Γ𝑛𝑝

w1∆2
1

+
𝑘
√
𝑘2 − 1

6

Γ𝑘𝑝

w2∆2
2

.

The second summand in square brackets of the expression (9.24) represents
the expected difference in the spectra of atoms H and H̄ in an external field
(when the signal is registered at a certain angle). Acting similarly to the previous
sections, it is possible to determine the field value at which the maximum
difference will be achieved:

𝑒ℰmax =
1

𝑎
. (9.26)

The relative difference 𝑑𝑊 (1𝛾)

𝑛𝑠,𝑘𝑠
(H) and 𝑑𝑊 (1𝛾)

𝑛𝑠,𝑘𝑠
(H̄) for the H и H̄ atoms in the

field (9.26) is

𝛿(ℰmax) =
𝑑𝑊

(1𝛾)

𝑛𝑠,𝑘𝑠
(H) − 𝑑𝑊

(1𝛾)

𝑛𝑠,𝑘𝑠
(H̄)

3
8𝜋𝑊

(1𝛾)
𝑛𝑠,𝑘𝑠 (1 + 𝑒2ℰ2𝑎)

(9.27)

= (−1)1+𝑗𝑠+𝑗𝑝(𝜈ℰ𝜈)
𝑏

𝑎
= (−1)1+𝑗𝑠+𝑗𝑝(𝜈ℰ𝜈)

𝑛
√
𝑛2−1Γ𝑛𝑝

2
√
3w1Δ2

1

+
𝑘
√
𝑘2−1Γ𝑘𝑝

6w2Δ2
2√︁

𝑛2(𝑛2−1)
12w2

1Δ
2
1

+ 𝑘2(𝑘2−1)
36w2

2Δ
2
2

.

The case 𝑛 = 2 and 𝑘 = 1 (the case of mixing 2𝑠 and 2𝑝 states) leads to the
result [114], see the previous section. Note that the admixture of states 𝑛𝑝1/2 and
𝑛𝑝3/2 gives a contribution to 𝛿(ℰmax) with opposite sign. However, the impurity
of the 𝑛𝑝3/2 state is smaller because ∆𝐸

(𝑛)
𝐿 ≪ ∆𝐸

(𝑛)
𝑓 . Thus, the splitting of the
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fine structure with respect to the Lamb shift can be neglected. Moreover, the
expression (9.27) can be significantly simplified by series expansion over powers
of 1/𝑛. The dominant contribution in both cases 𝑘 ≪ 𝑛 and 𝑘 ∼ 𝑛 is equal to

𝛿(ℰmax) ≈ (𝜈ℰ𝜈)
Γ𝑛𝑝

∆1
≈ (𝜈ℰ𝜈)

Γ𝑛𝑝

∆𝐸
(𝑛)
𝐿

, (9.28)

assuming Γ𝑛𝑝 ≪ 𝐸
(𝑛)
𝐿 .

The results (9.27), (9.28) enable the spectral difference between H and H̄
atoms to be determined as a function of the principal quantum numbers 𝑛, 𝑘
of the initial and final states, respectively. Table 9.1 summarizes the values of
the dimensionless function 𝛿(ℰ) defined according to (9.27) as a function of the
principal quantum numbers 𝑛 and 𝑘 for the electric field ℰmax (9.26) and 500

V/m. In the last column of Table 9.1, the electric field strength is related to
the experimental value. It should be noted that the ℰmax values in Table 9.1
are rather values that can be attributed to "stray" fields.

Table 9.1. The numerical values of 𝛿(ℰ) for different values of the principal
quantum numbers of the initial, 𝑛, and final, 𝑘, states are presented. The third
column presents the value of ℰmax in V/m as a function of the principal quantum
numbers 𝑛 and 𝑘. The fourth and fifth columns show the values of 𝛿(ℰmax) and
𝛿(ℰ) at ℰ = 500 V/m in the case (𝜈ℰ𝜈ℰ) = 1, i.e. when photon detection occurs
in the field direction.

𝑛 𝑘 ℰmax, V/m 𝛿(ℰmax) 𝛿(ℰ) at 𝐷0 = 500 V/m

2 1 0.005 0.094 1.97 · 10−6

3 1 0.0009 0.087 3.14 · 10−7

3 2 0.0001 0.094 3.77 · 10−8

4 1 0.0002 0.097 7.94 · 10−8

4 2 0.00003 0.098 1.18 · 10−7

4 3 5.9 · 10−6 0.11 2.60 · 10−9

100 1 1.6 · 10−11 0.099 6.33 · 10−15

100 2 4.2 · 10−11 0.099 1.65 · 10−14

100 3 7.2 · 10−11 0.099 2.85 · 10−14
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Thus, it is shown that a significant difference (∼ 0.1%) arises for the differen-
tial transition probabilities in very weak electric fields. This difference vanishes
after integration over the photon emission directions, i.e., in the total decay
probability. There are also field quadratic terms that contribute to the total
decay rate. This leads to a strong modification of the corresponding level width.
According to the selection rules, the one-photon 𝑛𝑠 → 1𝑠 decay is determined
by the emission of a magnetic dipole photon of an isolated atom. However, the
impurity of the 𝑛𝑝 state allows the emission of an electric dipole (E1) photon
directly into the ground state. In the case when the 2𝑠, 2𝑝 states are mixed,
this channel gives the main contribution to the level width [103–105]. At critical
field strength ℰ𝑐 = 475 V/cm, the state width 2𝑠 is equal to the level width 2𝑝.
For highly excited states, the field strength should be significantly smaller than
ℰ𝑐, since the Lamb shift decreases with increasing principal quantum number.
Thus, one can expect a significant reduction of the lifetimes of the Rydberg
states in a weak electric field.

There are two ways to determine the level widths: a) calculation of the imag-
inary part of the self-energy correction [8,121], and b) summation of all partial
transition probabilities to the underlying levels. In the following, the second
one is used. Namely, it follows from the expression (9.22) that the additional
damping rate due to electric dipole radiation is given as follows:

𝑊
(𝐸1)

𝑛𝑠,𝑘𝑠

𝑒2ℰ2
=
𝑛2(𝑛2 − 1)

12∆2
1

𝑊
(𝐸1)
𝑛𝑝,𝑘𝑠 +

𝑘2(𝑘2 − 1)

36∆2
2

𝑊
(𝐸1)
𝑛𝑠,𝑘𝑝. (9.29)

The determination of the level widths of highly excited states requires the
consideration of cascade transitions, which can be approximated by one-photon
decays into intermediate atomic levels [82, 120]. In this case, a sum over all
partial transition probabilities 𝑊 (1𝛾)

𝑛𝑠,𝑘𝑝 arises for an isolated atom. Therefore, in
the presence of an electric field one should write

Γtot = Γ𝑛𝑠 + Γ𝑛𝑠 =
𝑛−1∑︁
𝑘=1

𝑊
(1𝛾)
𝑛𝑠 𝑘𝑝 +

𝑛−1∑︁
𝑘=1

𝑊
(1𝛾)
𝑛𝑠 𝑘𝑠 +

𝑛−1∑︁
𝑘=1

𝑊
(𝐸1)

𝑛𝑠 𝑘𝑠
, (9.30)

where Γ𝑛𝑠 is the natural width of the 𝑛𝑠 level, i.e., the sum of partial transition



198

probabilities from the initial state 𝑛𝑠 to all underlying atomic levels 𝑘𝑝, and
Γ𝑛𝑠 in (9.30) represents the contribution of additional decay channels arising
in the electric field. The transition probability 𝑊

(1𝛾)
𝑛𝑠,𝑘𝑠 corresponds to the 𝑀1

transition and leads to a negligible contribution to the Γtot level width (see,
e.g., Table 9.2).

In principle, the summation over 𝑘 in expression (9.30) can be performed
using Gordon’s formula for the transition probabilities 𝑊 1𝛾

𝑛𝑠,𝑘𝑝, 𝑊
(1𝛾)
𝑛𝑝,𝑘𝑠 [5]. How-

ever, the dependence on the principal quantum number 𝑘 should be taken into
account in the factor ∆2. In addition, the applicability of the formula (9.19) to
calculate transition probabilities requires analyzing the magnitude of the field
strength ℰ . Perturbation theory is valid when⃒⃒⃒⃒

⃒ ⟨𝑛𝑝|𝑒ℰ𝑟|𝑛𝑠⟩
∆𝐸

(𝑛)
𝐿 + 𝑖Γ𝑛𝑝/2

⃒⃒⃒⃒
⃒ < 1 (9.31)

and, therefore, |⟨𝑛𝑝|𝑒ℰ𝑟|𝑛𝑠⟩| < ∆𝐸
(𝑛)
𝐿 . Taking into account that ∆𝐸

(𝑛)
𝐿 ∼ 1/𝑛3

[5], one can find

ℰ (𝑛)
𝑐 ∼ 1

𝑛5
ℰ𝑐, (9.32)

where ℰ𝑐 defines the field strength when 100% mixing of the 2𝑠 and 2𝑝 states in
the hydrogen atom occurs, i.e., ℰ𝑐 = 475 V/cm. The scaling of the field strength
according to (9.32) is known as the Inglis-Teller limit [261]. Thus, the complete
mixing of the states 𝑛𝑠 and 𝑛𝑝 should arise in a very weak electric field.

Estimating the electric field strength using the formula (9.32) for each 𝑛th
initial state, numerical results for partial probabilities, natural widths, and
values induced by the external electric field are given in Tables 9.2, 9.3. Ta-
ble 9.2 shows the contribution of the field-quadratic summands (9.29) as func-
tions of the principal quantum numbers 𝑛 and 𝑘. The one-photon transition
probabilities 𝑊 (1𝛾)

𝑛𝑠,𝑘𝑠, 𝑊
(1𝛾)
𝑛𝑠,𝑘𝑝, 𝑊

(1𝛾)
𝑛𝑝,𝑘𝑠 and 𝑊1 ≡ 𝑛2

12(𝑛2 − 1)𝑒2𝐷
(𝑛)2

𝑐 𝑊
(1𝛾)
𝑛𝑝,𝑘𝑠/∆

2
1,

𝑊2 ≡ 𝑘2

36(𝑘2 − 1)𝑒2𝐷
(𝑛)2

𝑐 𝑊
(1𝛾)
𝑛𝑠,𝑘𝑝/∆

2
2 are given in inverse seconds. The calcula-

tions of the probabilities of spontaneous one-photon decay are carried out in
the framework of standard quantum electrodynamics and their values can be
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found, for example, in [262–264].
In particular, it follows from Table 9.2 that the transition probabilities 𝑊1

and 𝑊2 arising in the field contribute at the level of partial probabilities of
one-photon decay of 𝑛𝑝 states. Thus, the width of the mixed 𝑛𝑠 state becomes
comparable to the natural width of Γ𝑛𝑝 in a very weak field ℰ (𝑛)

𝑐 and exceeds
the natural width of the 𝑛𝑠 state of an isolated atom. For example, the field
strength for the 𝑛 = 100 state is estimated to be 4 · 10−7 V/cm, and the
corresponding Γ100𝑠 level width is approximately 8.5 × 103 c−1. Consequently,
the width of the mixed atomic level 100𝑠 is an order of magnitude larger than
the natural width of Γ100𝑠, and the lifetime is shorter in the presence of a very
weak field, which may be due to "residual" ("stray") fields.

The contribution of quadratic in-field terms, as a function of the principal
quantum number 𝑘, for the initial state 55𝑠 at a field strength of ℰ (55)

𝑐 ≈
3 × 10−5 V/cm is examined in more detail. The results in Table 9.3 show
that the mixing of the lower states becomes significant for transitions between
the nearest atomic levels, while the main contribution follows from the first
summand in the right-hand side of the expression (9.29). Summing all the
partial transition probabilities in Table 9.3, it can be found that Γ55𝑠 ≈ 6.5×103

s−1, Γ55𝑝 ≈ 3.2 × 104 s−1, and the width induced by the electric field is Γ55𝑠 ≈
1.4 × 104 s−1.

The values in Tables 9.2, 9.3 should be compared to the level widths esti-
mated in [265–267]. The main result of the [265–267] calculations is that the
value of the corresponding widths can exceed the value of the largest Lyman-
𝛼 transition probability ∼ 6 · 108 𝑠−1 in fields violating the relation (9.32),
see, e.g., [268]. However, the field strengths considered in our paper correspond
rather to very weak fields. Using the electric field in the form (9.32) in the
semiempirical expression for the ionization probability Γ𝑛𝑛1𝑛2𝑚 [269], one can
obtain quite insignificant values.
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Table 9.2. Numerical values of 𝑊1 ≡ 𝑛2(𝑛2−1)
12 𝑒2ℰ2𝑊

(1𝛾)
𝑛𝑝,𝑘𝑠/∆

2 and

𝑊2 ≡ 𝑘2(𝑘2−1)
36

𝑒2ℰ2𝑊
(1𝛾)
𝑛𝑠,𝑘𝑝

Δ2
2

for different values of the principal quantum numbers
of the initial 𝑛 and final 𝑘 states (in inverse seconds). The first and second
columns contain the values of the principal quantum numbers 𝑛 and 𝑘. The
third column corresponds to the values of the transition probabilities 𝑊 (1𝛾)

𝑛𝑠,𝑘𝑠,
and the values of 𝑊 (1𝛾)

𝑛𝑝,𝑘𝑠 in 𝑠−1 are given in the fourth column [262–264]. The
fifth column presents the𝑊 (1𝛾)

𝑛𝑝,𝑘𝑠 values of the transition probability. The used
values of the Lamb shift ∆𝐸𝐿 in 𝑀𝐻𝑧 are given in the sixth column. The
natural level widths Γ𝑛𝑝 and Γ𝑛𝑠 are given in the seventh and eighth columns,
respectively. Γ𝑛𝑝 and Γ𝑛𝑠 are obtained as the sum of all partial 𝐸1 transition
probabilities to lower states. The ninth and tenth columns represent the contri-
butions of the quadratic terms in (9.29). The field strength used is ℰ (𝑛)

𝑐 , which
approximates the complete mixing of 𝑛𝑠 and 𝑛𝑝 states. All values are given in
inverse seconds (except for the Lamb shift).
𝑛 𝑘 𝑊

(1𝛾)
𝑛𝑠 𝑘𝑠 𝑊

(1𝛾)
𝑛𝑠 𝑘𝑝 𝑊

(1𝛾)
𝑛𝑝 𝑘𝑠 ∆𝐸

(𝑛)
𝐿 Γ𝑛𝑝 Γ𝑛𝑠 𝑊1 𝑊2

2 1 2.495 · 10−6 — 6.265 · 108 1057.911 6.265 · 108 8.229 2.063 · 108 0
3 1 1.109 · 10−6 — 1.672 · 108 344.896 1.897 · 108 6.314 · 106 5.394 · 106 0
3 2 1.877 · 10−9 6.314 · 106 2.245 · 107 344.896 — — 7.2398 · 106 1.2021 · 105

4 1 5.303 · 10−7 — 6.819 · 107 133.084 8.092 · 107 4.414 · 106 2.771 · 107 0
4 2 1.617 · 10−9 2.578 · 106 9.668 · 106 133.084 — — 3.929 · 106 276.37

4 3 2.047 · 10−11 1.836 · 106 3.065 · 106 133.084 — — 1.246 · 106 1.111 · 104

100 1 3.949 · 10−11 — 4.185 · 103 1.058 · 10−3 ≈ 5.25 · 103 ≈ 0.476 · 103 6.371 · 103 0
100 2 2.033 · 10−13 153.31 613.19 1.058 · 10−3 — — 933.7 1.077 · 10−17

100 3 9.195 · 10−15 101.105 206.37 1.058 · 10−3 — — 314.2 4.011 · 10−16

100 4 — 66.866 96.728 1.058 · 10−3 — — 147. 5.937 · 10−15

100 5 — 46.506 54.171 1.058 · 10−3 — — 82.48 3.989 · 10−14

100 6 — 33.856 33.896 1.058 · 10−3 — — 51.61 1.821 · 10−13

100 7 — 25.580 22.877 1.058 · 10−3 — — 34.84 6.474 · 10−13

100 8 — 19.916 16.311 1.058 · 10−3 — — 24.84 1.925 · 10−12

100 9 — 15.890 12.123 1.058 · 10−3 — — 18.46 5.005 · 10−12

100 10 — 12.938 9.3092 1.058 · 10−3 — — 14.17 6.225 · 10−12
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Table 9.3. The designations are the same as in Table 9.2, the value
𝐷

(55)
𝑐 ≈ 3 · 10−5 V/cm is used.
𝑛 𝑘 𝑊

(1𝛾)
𝑛𝑠 𝑘𝑠 𝑊

(1𝛾)
𝑛𝑠 𝑘𝑝 𝑊

(1𝛾)
𝑛𝑝 𝑘𝑠 𝑊1 𝑊2

55 1 2.372 · 10−10 — 2.516 · 104 1.104 · 104 —
55 2 1.219 · 10−12 921.77 3.686 · 103 1.617 · 103 4.09 · 10−13

55 3 5.499 · 10−14 608.11 1.241 · 103 544.3 1.52 · 10−11

55 4 — 402.39 581.47 255.2 2.26 · 10−10

55 5 — 280.06 325.7 142.9 1.52 · 10−9

55 6 — 204.06 203.86 89.46 6.93 · 10−9

55 7 — 154.33 137.64 60.41 2.47 · 10−8

55 8 — 120.3 98.19 43.09 7.35 · 10−8

55 9 — 96.111 73.028 32.05 1.91 · 10−7

55 10 — 78.372 56.12 24.63 4.48 · 10−7

55 15 — 35.0001 20.657 9.066 1.16 · 10−5

55 30 — 8.7556 4.05 1.777 2.98 · 10−3

55 40 — 5.2734 2.2317 0.979 0.032
55 45 — 4.5069 1.8316 0.804 0.089
55 50 — 4.2245 1.6413 0.721 0.238
55 54 — 4.4807 1.6496 0.724 0.546

9.4. Conclusions on one- and two-photon decays
in an external electric field

Thus, this section shows the difference in the emission of the Rydberg atoms
H and H̄. The field-linear terms vanish in the total transition probability af-
ter integration over the photon emission directions, which corresponds to the
detection of photons in all directions simultaneously. However, spectral mea-
surements are mainly concerned with the detection of photon emission at a
given angle or at a given solid angle. The latter can be accounted for by in-
tegrating the cosine corresponding to the product (𝜈ℰ𝜈) in expression (9.22),
and will lead to a nonzero result.

A discussion of experiments on the detection of radiation asymmetry in
the electric field of metastable hydrogen and deuterium atoms can be found,
for example, in [270]. The main purpose of such experiments is to determine
the Lamb shift. Later, the author of [104] extended these ideas to experiments
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to measure the Lamb shift for ions with large 𝑍. Linear (asymmetric) terms
give field strength-dependent contributions of opposite sign to the intensity
in directions parallel and antiparallel to the electric field. In contrast, at a
fixed field direction, the contributions linear in the field have opposite sign
for the H and H̄ atoms, i.e., an increase in the relative emission intensity of
the hydrogen atom should be accompanied by a proportional decrease in the
relative emission intensity of the anti-H atom. The recent development of the fly-
through spectroscopy experiment of antihydrogen atoms [271] makes it possible
to compare the spectra of H and H̄ in an electric field.

It should be emphasized that the [66] experiments do not measure the spec-
trum of the anti-hydrogen atoms, but determine the quenching of the lumines-
cence, thus estimating the lifetimes of the Rydberg states. As reported in [66],
the retention time of anti-hydrogen is about 1000 s, which is an important step
towards precision spectroscopy of anti-atoms [271]. The high-resolution compar-
ison of both systems provides sensitive tests of CPT symmetry. Any measured
difference would indicate a violation of the CPT [271]. Thus, a theoretical study
of the effects that can mimic such a violation is extremely important. The differ-
ence appearing in the spectra of atoms H and H̄ in the presence of an external
electric field can mimic the effects of CPT symmetry breaking. The differ-
ence in the spectra depends on the direction of photon emission registration:
(a) the maximum difference occurs when photon emission is registered in the
along (opposite) field direction (𝜈ℰ𝜈) = ±1 and (b) the difference disappears
when photon emission is registered in the direction perpendicular to the field
(𝜈ℰ𝜈) = 0. The electric field strength ℰmax, when this effect has a maximum
for the Rydberg states, can be related to the "residual" fields.

Values of the maximum difference of decay probabilities 𝛿(ℰmax) leads to
a discrepancy of up to 10% in the Rydberg spectra of H and H̄ atoms. Two
competing contributions lead to the same effect: 1) mixing of the initial states
𝑛𝑠, 𝑛𝑝 and 2) mixing of the final states 𝑘𝑠, 𝑘𝑝. Mixing of the lower atomic
levels should lead to more significant deviations in the spectra of hydrogen
and anti-hydrogen atoms in the case of stronger fields. Taking into account
the experiments of [271], the example of the decay of the 55𝑠 state has been
considered in more detail. The calculation of the total transition probabilities for
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the different decay channels of highly excited states permits the determination
of the corresponding level widths as a sum over all partial channels. The most
interesting conclusion that follows from the above estimates is that even in the
presence of a very weak uniform electric field the 𝑛𝑠 and 𝑛𝑝 states become
indistinguishable in spectroscopic experiments. This is primarily because 𝑛𝑠→
1𝑠+1𝛾(𝐸1) decay is strongly suppressed by the selection rules, but emission of
an electric dipole photon is allowed in the presence of an external electric field.
"Additional" 𝐸1 decay channels into the ground and intermediate atomic levels
are described by summands that are quadratic in the field. They are comparable
to the partial decay probabilities of the 𝑛𝑝→ 𝑘𝑠+1𝛾(𝐸1) or 𝑛𝑠→ 𝑘𝑝+1𝛾(𝐸1)

transitions for an isolated atom. For example, 100% mixing of the 100𝑠 and 100𝑝

states occurs in a field of the order of 4 × 10−7 V/cm, making the decays of
these states identical in rate. The presence of an external electric field should be
taken into account for both the initial and final (intermediate) states, leading
to a significant change in the width of the levels.

In conclusion, it should be noted that even very weak fields can lead to sig-
nificant changes in the emission spectra of hydrogen and anti-hydrogen atoms
in the Rydberg states. First, the maximum asymmetry (the same for any 𝑛𝑠-
states) in the spectra of hydrogen and anti-hydrogen occurs in fields of order
ℰmax, see Table 9.1. Second, the results in Tables 9.2, 9.3 show that the 100%-
mixing of 𝑛𝑠 and 𝑛𝑝 states occurring in a field of order ℰ𝑐 significantly increases
the decay rate of the Rydberg 𝑛𝑠-states. To estimate the maximum contribu-
tion of both effects, the field strengths ℰmax and ℰ𝑐 were calculated for each
𝑛𝑠 state, which can vary significantly. Thus, the results impose significant con-
straints on the experimental conditions. Effective control of external electric
fields or photon emission angles is required. Registering photon emission in the
perpendicular to the field direction will nullify the asymmetry of the spectra of
H and H̄. The results of these studies were published in the author’s work [119].
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Chapter 10.

Line profile distortion in
multiphoton processes:
astrophysical applications

In view of the significant advances in experimental observations of the cosmic
microwave background (CMB), close attention has been paid to the theoretical
description of the processes occurring in the cosmological recombination epoch
of the early Universe. In order to accurately describe CMB, it is necessary
to take into account the various processes of photon emission and absorption,
photon-electron scattering, etc. Special attention is paid to the spectral char-
acteristics of atomic radiation. The polarizability and cross sections of the pro-
cesses due to various phenomena are of special interest from the astrophysical
point of view. As a rule, in standard calculations of such problems the quan-
tum mechanical approach for an isolated atom is applied. However, taking into
account the atom-field interaction may be important in the case of astrophys-
ical experiments, in which, in particular, the observational accuracy is about
1% [247, 248] and is expected to be ∼ 0.1%. The interaction of an atom with
external fields can lead to effects such as inversion of atomic populations, viola-
tion of "stability" stationary solutions, changes in line strengths, cross sections,
susceptibility, polarizability, etc. [272,273].

In this chapter of the thesis, the theory of the statistical operator (density
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matrix) [96] is used to study the atom-field system. The application of the den-
sity matrix formalism in the three-level approximation seems to be simpler and
more appropriate in this case. A description of the density matrix theory and its
applications, such as spontaneous emission, line broadening (power-law broad-
ening and saturation, line broadening due to collisions, Doppler broadening,
etc.) can be found, for example, in [274].

The theory of radiative transfer, which is usually applied in the study of
the cosmic microwave background, was proposed in the works of [77, 79]. In
particular, within the framework of the three-level model, it was found that the
2𝑠 ↔ 1𝑠 transition can significantly control the dynamics of cosmological hy-
drogen recombination. Moreover, distortions of CMB of the order of 10−6 were
predicted in [79]. Recently, the radiative transfer theory during the recombina-
tion epoch of the early Universe has been intensively reviewed in [76, 99] and
by many other authors in subsequent papers (a review of the relevant literature
is omitted for brevity). An important consequence of radiative transfer the-
ory is the determination of the absorption coefficient calculated per atom. The
influence of electromagnetic radiation on the absorption coefficient is widely in-
vestigated at present. As an example, one can refer to the work of [275], where
the effect of powerful high-frequency electromagnetic radiation on the absorp-
tion coefficient in the low-frequency line in a three-level Λ-atom is considered.
In this chapter, another kind of multiphoton process, namely the phenomenon
of electromagnetic induced transparency (EIT), is considered. The nature of the
EIT phenomenon can be investigated by evaluating the response of a multilevel
system to the presence of an external radiation field. Electromagnetic induced
transparency leads to a significant modification of the absorption profile of the
atom. A description of the EIT effect for a three-level "ladder" (Ξ) level scheme
of an atomic system interacting with two near-resonant monochromatic fields
can be found, for example, in [93,95]. A detailed study of the three-level ladder
atom, the absorption and emission spectra, and the response of the Ξ-atom was
presented in [276]. This chapter presents a study of the response of the hydrogen
atom in the three-level approximation to the external field created by photons
in the recombination epoch of the early Universe. Estimates of the line profile
distortion leading to corrections to the absorption coefficient determined in the
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framework of radiative transfer theory are given. The physics of the atom inter-
acting with photon fields can be understood on the basis of the description of
"interfering paths" which corresponds to a multiphoton process defined through
a power series expansion in terms of field amplitudes (see, e.g., [93, 95, 276]).
The question of the influence of radiation from powerful sources of radiation on
the line profile of the HFS of the hydrogen atom is also discussed.

10.1. Effect EIT: Ξ-scheme of levels

ВThis section considers a three-level ladder Ξ-level scheme to describe a hy-
drogen atom subjected to external electromagnetic fields. It is assumed that
hydrogen atoms formed during the recombination epoch in the early Universe
reach their ground states by emitting photons in all spectral lines corresponding
to atomic free-bond and bond-bond transitions. All emitted photons generate
an external field of the medium, which acts back on the hydrogen atom. The
study of this "self-consistent" scenario under conditions of cosmic expansion is
the main goal. The limitation of the problem also applies to the consideration
of only spontaneous radiation probabilities. Collisional excitation and ioniza-
tion can be excluded, since at appropriate temperatures and densities they are
negligibly small for a three-level hydrogen atom [99].

To reveal the possible effect, an atom exposed to two external fields belong-
ing to two neighboring spectral lines, namely the Ly𝛼 and H𝛼 lines, is considered
with an initial condition corresponding to the full population of the ground state
of the atom. Next, the standard density matrix formalism is applied, which can
be found, e.g., in [95]. The details of this section were presented in [128] (the
paper [128] was chosen by the editors of the Journal of Physics B: Atomic,
Molecular and Optical Physics in compilation "Highlights of 2012").

A typical three-level ladder system is shown in Fig. 10.1.
Solving the density matrix equations using steady-state approximation and

rotating-wave approximation, when neglecting fast oscillating contributions to
the Hamiltonian and time dependence in the equations on the statistical oper-
ator, gives the following set of equations for the corresponding density matrix



207

Figure 10.1. The considered scheme of the three-level atom is a ladder Ξ-scheme.
The three levels correspond to the hydrogen states: |1⟩ → |1𝑠⟩, |2⟩ → |2𝑝⟩, and
|3⟩ → |3𝑠⟩, respectively. The frequencies 𝜔𝛼, 𝜔𝛽 are the frequencies of the ex-
ternal fields corresponding to the "probe" (probe) and "controlled" (controlled)
laser [95] fields. The fields 𝐸𝛼, 𝐸𝛽 stimulate the 1𝑠−2𝑝 and 2𝑝−3𝑠 transitions
(𝛼-Lyman and Balmer lines). The possible detunings ∆𝛼 and ∆𝛽 for the field
frequencies are also given.

elements [95]:

𝜌21 =
i

2

Ω𝛼(𝜌22 − 𝜌11) − Ω*
𝛽𝜌31

𝛾21 − i∆𝛼
,

𝜌32 =
i

2

Ω𝛽(𝜌33 − 𝜌22) + Ω*
𝛼𝜌31

𝛾32 − i∆𝛽
,

𝜌31 =
i

2

Ω𝛼𝜌32 − Ω𝛽𝜌21
𝛾31 − i(∆𝛼 + ∆𝛽)

,

𝜌22 =
i

2Γ2
(Ω*

𝛼𝜌21 − Ω𝛼𝜌12),

𝜌33 =
i

2Γ3
(Ω*

𝛽𝜌32 − Ω𝛽𝜌23).

(10.1)

The levels of the system are given by the following hydrogen states |1⟩ =

|1𝑠⟩, |2⟩ = |2𝑝⟩ and |3⟩ = |3𝑠⟩. The frequencies 𝜔21 and 𝜔32 belong to transi-
tions |1⟩ → |2⟩ and |2⟩ → |3⟩, respectively. The system is driven by a probe
field with amplitude 𝐸𝛼 at frequency 𝜔𝛼 and a controlled field with amplitude
𝐸𝛽 and frequency 𝜔𝛽. ∆𝛼 = 𝜔𝛼 − 𝜔21, ∆𝛽 = 𝜔𝛽 − 𝜔32 determines the corre-
sponding frequency detuning, Ω𝛽 = 2𝑑32𝐸𝛽 and Ω𝛼 = 2𝑑21𝐸𝛼 are the Rabi
frequencies, which are determined by the atomic dipole matrix element 𝑑𝑖𝑗. All
these expressions are given in atomic units. Neglecting the effects of collisional
dephasing, the decay probability is given by the expression 𝛾𝑖𝑗 = (Γ𝑖 + Γ𝑗)/2,
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where Γ𝑖 is the natural width of the level |𝑖 >.
In the limit of a weak probe field and 𝜌11 ≈ 1, 𝜌22 ≈ 𝜌33 ≈ 0 (full occupancy

of the ground state of the atom), the solution of the equations on 𝜌21 at first
order for the probe field and at all orders for the controlled field was found
in [93,95]. However, the complete solution for 𝜌21 can be obtained in the form:

𝜌21 =
−iΩ𝛼

2

(︁
Ω2

𝛼

4 + 𝐴
)︁

Ω2
𝛽

4

(︁
Ω2

𝛼

4Γ2
−𝐵

)︁
−
(︁
− Ω2

𝛼

4Γ2
+ 𝛾21 − i∆1

)︁(︁
Ω2

𝛼

4 + 𝐴
)︁ ,

𝐴 = 𝐵 (𝛾31 − i(∆1 + ∆2)) , 𝐵 =
Ω2

𝛽

4Γ3
+ 𝛾32 − i∆2,

(10.2)

which is easily transformed in the weak field approximation to expression (2)
in [95].

The physics of the system’s response to external fields can be understood
by decomposing the solution (10.2) into a power series on the variables Ω𝛼 and
Ω𝛽. The authors of [95] derived a series containing terms up to third order on
Ω𝛼 and Ω𝛽 at zero detuning. For further purposes, however, it is important to
keep the non-zero detuning and, as before, in the weak field approximation, to
represent the expression (10.2) in the form of a power series over Ω𝛼 and Ω𝛽.

The obtained expression for 𝜌21 is considerably simplified in the case of
exact two-photon resonance, i.e., when the frequencies of the two external fields
coincide exactly with the transition frequency 𝜔31 = 𝐸3 −𝐸1. In this case, the
equality ∆𝛼 + ∆𝛽 = 0 is satisfied and the series expansion takes the form:

𝜌21 =
iΩ𝛼/2

𝛾21 − i∆𝛼

[︃
1 −

Ω2
𝛽/4

𝛾31(𝛾21 − i∆𝛼)
+

Ω2
𝛼/4

Γ2(𝛾21 − i∆𝛼)
+ (10.3)

Ω2
𝛼/4 · Ω2

𝛽/4

(𝛾21 − i∆𝛼)2(𝛾32 − i∆𝛽)

(Γ2 + 𝛾31)(𝛾21 − i∆𝛼) − 2𝛾31(𝛾32 − i∆𝛽)

Γ2𝛾231
+ ...

]︃
,

where . . . denote the higher order terms of Ω𝛼, Ω𝛽, and the product of Ω𝛼 ·
Ω𝛽. The series expansion is performed under the conditions Ω𝛽/𝛾𝑖𝑗 ≪ 1 and
Ω𝛼/𝛾𝑖𝑗 ≪ 1.

As it was shown in [95], the common factor in (10.3) corresponds to the
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one-photon absorption process, and the quadratic terms are related to the two-
photon absorption and subsequent emission processes. The products Ω2

𝛼 · Ω2
𝛽

represent the terms of the "interfering paths", see Fig. 10.2. Thus, the matrix

Figure 10.2. Schematic of the transitions occurring in the three-level ladder
system corresponding to the expression (10.3): part (a) of the figure corresponds
to one-photon absorption processes (the common factor in (10.3)); parts (b)
and (c) represent the second and third summands, and part (d) describes the
"interfering paths" (the fourth summand in (10.3)).

element 𝜌21 describes multiphoton processes of the atom-field interaction. A
detailed analysis of the expression (10.3) is presented in Ref. [95].

It follows from (10.3) that the density matrix can be used to determine the
line profile (in this case for the 1 − 2 absorption line). The imaginary part,
ℑ{𝜌21} of the first summand leads to the Lorentz contour. It may be noted
at once that this is a purely quantum mechanical description and its QED
extension was presented in section 2.3 by the expression (2.40). The remaining
terms in (10.3) represent the effect of electromagnetic induced transparency
(EIT). From an observational point of view, the added contributions can lead
to a significant distortion of the line contour. Since studies of the EIT effect
are widely presented in the scientific literature, the essence of the effect can
be simplified to the following. The photon corresponding to the "probe" field
is effectively absorbed in the 1 − 2 transition. If the "controlled" field moves
the system to the 3 state, see Fig. 10.2 b), then the next photon at the 1 − 2

transition will "escape" - the system is transparent to the test field and there is
an additional "output" (escape) of radiation. Other cases can be explained in a
similar way. Further it will be shown how this effect can be taken into account
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in astrophysical studies of CMB.

10.2. Absorption coefficient and photon escape
probability in the Sobolev approximation

Radiation transfer theory for multilevel atoms is presented in the [99] as a direct
application to the formation of CMB. This theory uses the concept of photon
escape probability in the Sobolev approximation (local changes in the velocity
gradient are negligible compared to those at longer lengths) [100]. Using the
escape probability method, a simple solution to the radiative transfer problem
for bound transitions can be found. The Sobolev escape probability 𝑝𝑖𝑗 (𝑗 refers
to the upper level and 𝑖 to the lower level of a multilevel atom) is the probability
that the photons associated with this transition will "escape" without further
scattering or absorption. If 𝑝𝑖𝑗 = 1, the photons originating at the transition
can escape to infinity - they do not cause distortion of the radiation field. If
𝑝𝑖𝑗 = 0, the photons cannot go to infinity; they are all re-absorbed and the line
becomes optically thick. In the general case, assuming a hydrogen atom in the
ground state, 𝑝𝑖𝑗 ≪ 1 for Lyman lines and 𝑝𝑖𝑗 ≈ 1 for all other transitions. The
Sobolev escape probability is included in the direct astrophysical equations of
radiative transfer, see, e.g., expression (25) in [99].

According to Section 2.3.3 in [99], the photon escape probability can be
represented as

𝑝𝑖𝑗 =
1 − 𝑒𝑥𝑝(−𝜏𝑆)

𝜏𝑆
, (10.4)

where 𝜏𝑆 is the Sobolev optical thickness. Optical thickness is a measure of
the damping or absorption coefficient up to a certain "depth". In other words,
optical thickness expresses the amount of light removed from a beam as a result
of scattering or absorption during its passage through a medium. It is defined
according to the expression:

𝜏𝑆 =
𝜆𝑖𝑗𝑘

|𝑣′|
. (10.5)
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Here 𝑘 is the integral absorption coefficient of the line, and 𝜆𝑖𝑗 is the wave-
length of the line center. The monochromatic absorption coefficient (opacity or
attenuation coefficient) is 𝑘 = 𝑘𝜑(𝜈𝑖𝑗) (𝜈𝑖𝑗 is the frequency of a given transition,
and 𝜑(𝜈𝑖𝑗) is the normalized line profile), 𝑣′ is the velocity gradient determined
by the Hubble expansion rate 𝐻(𝑧).

The absorption coefficient strongly depends on external conditions and re-
quires special consideration in each case. In the presence of an external field, it
can be related to the imaginary part of the elements of the density matrix 𝜌𝑖𝑗
as follows:

𝑘 =
𝑁𝑑2𝑖𝑗𝜔𝑖𝑗

2𝜀0Ω𝑖𝑗
ℑ
{︀
𝜌𝑖𝑗
}︀
, (10.6)

where 𝜀0 is the dielectric permittivity of vacuum and 𝑁 is the number of atoms.
Using the expression (10.3) to determine the imaginary part of 𝜌21, it can

be found that

ℑ
{︀
𝜌21
}︀

=
𝛾21Ω𝛼/2

∆2
𝛼 + 𝛾221

[︀
1 + 𝑓(Ω2

𝛼,Ω
2
𝛽,∆𝛼,∆𝛽)

]︀
(10.7)

together with the dimensionless function

𝑓(Ω2
𝛼,Ω

2
𝛽,∆𝛼,∆𝛽) =

∆2
𝛼 − 𝛾221

∆2
𝛼 + 𝛾221

[︃
Ω2

𝛽

4𝛾21𝛾31
− Ω2

𝛼

4Γ2𝛾21

]︃
+(︀

𝛾421𝛾32 − 𝛾32∆
4
𝛼 − 2𝛾321𝛾

2
32 + 2𝛾21∆

2
𝛼(3𝛾232 + ∆𝛽(3∆𝛽 − ∆𝛼))

)︀
Ω2

𝛼Ω2
𝛽

16Γ2𝛾21𝛾31(∆2
𝛼 + 𝛾221)

2(∆2
𝛽 + 𝛾232)

+(10.8)(︀
𝛾221𝛾32 − 𝛾32∆

2
𝛼 − 2𝛾21∆𝛼∆𝛽

)︀
Ω2

𝛼Ω2
𝛽

16𝛾21𝛾231(∆
2
𝛼 + 𝛾221)(∆

2
𝛽 + 𝛾232)

+ ...

To determine the integral absorption coefficient of the line in (10.7), the line
profile is extracted as a common factor, which corresponds to the monochro-
matic absorption coefficient, see expression (31) in [99], and the function 𝑓

depends on the fixed parameters ∆𝛼 and ∆𝛽, ∆𝛼 = 𝜔𝛼 − 𝜔21.
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Thus, the integral absorption coefficient of the line can be represented as:

𝑘21 =
𝜋𝑑221𝑁𝜔21

4𝜀0

[︀
1 + 𝑓(Ω2

𝛼,Ω
2
𝛽,∆𝛼,∆𝛽)

]︀
(10.9)

with line profile 𝜑(𝜈21) = 𝛾21/
[︀
(𝜔𝛼 − 𝜔21)

2 + 𝛾221
]︀
. According to the theory

in [99], the line profile should be normalized in the interval [0,∞], this accounts
for the 𝜋 coefficient. Thus, the probability of photon escape in the 2− 1 line is
given by the expression:

𝑝12 =
1 − 𝑒𝑥𝑝

(︀
−𝜏𝑆[1 + 𝑓(Ω2

𝛼,Ω
2
𝛽,∆𝛼,∆𝛽)]

)︀
𝜏𝑆[1 + 𝑓(Ω2

𝛼,Ω
2
𝛽,∆𝛼,∆𝛽)]

, (10.10)

where 𝜏𝑆 can be taken in the form (10.5). For rough estimates, it is sufficient to
restrict ourselves to considering the function 𝑓(Ω2

𝛼,Ω
2
𝛽,∆𝛼,∆𝛽). Decomposing

the expression (10.10) into a series over the small additive 𝑓 , one can obtain the
approximate equality 𝑝12 ≈ 𝑝

(0)
12 (1−𝑓(Ω2

𝛼,Ω
2
𝛽,∆𝛼,∆𝛽)), where 𝑝(0)12 corresponds

to the "standard" approach used in [99]. The function 𝑓 depends strongly on
the parameters Ω2

𝛼,Ω
2
𝛽,∆𝛼,∆𝛽. Estimates of the field amplitudes can be de-

rived from the distribution of cosmic microwave radiation corresponding to the
hydrogen recombination epoch in the early Universe.

10.3. Numerical results: Ξ-scheme of levels

As the Universe continued to expand and cool, electrons and protons tended
to form hydrogen atoms. The temperature at this epoch is very well known
from laboratory physics: 𝑇 ≈ 3000−4500 K. After recombination, the released
photons could travel through the Universe relatively undisturbed and formed
the primary background radiation. However, this photon environment (back-
ground) should have affected the hydrogen atom. The field amplitudes for a
circularly polarized wave can be obtained from the spectral energy density

𝑐𝜀0|𝐸|2

4𝜋
=

2ℎ𝜈3𝑖𝑗∆𝜈𝑖𝑗

𝑐2
1

𝑒
ℎ𝜈𝑖𝑗
𝑘𝐵𝑇𝑒 − 1

, (10.11)
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where 𝑐 is the speed of light, 𝑘𝐵 is Boltzmann’s constant, ℎ is Planck’s constant
and for further evaluations the temperature value 𝑇𝑒 = 3000 K is used. The
right-hand side of the above equation corresponds to the blackbody distribution
of CMB, and the left-hand side defines the (electric) energy density.

To avoid the problem of unphasing, it should be selected ∆𝜈𝑖𝑗 ∼ Γ𝑖. Hence,
for spectral lines 𝜈21 = 𝜈𝛼 (Ly𝛼 line) and 𝜈32 = 𝜈𝛽 (H𝛼 line) it can be found
that

𝐸𝛼 ≈ 0.000068802 V/m = 1.33799 × 10−16 a.u.,

𝐸𝛽 ≈ 52.8636 V/m = 1.02803 × 10−10 a.u. (10.12)

The field magnitudes (10.12) are small; one should compare the Rabi fre-
quencies with the corresponding level widths. The probabilities of one-photon
transitions, which give the main contribution to the level widths, are well
known. For the hydrogen atom, the dominant transition probability is Ly𝛼,
Γ2𝑝 ∼ 10−8 in atomic units, and hence a power series (10.3) can be used. More-
over, the estimates given in (10.12) show that all terms of order Ω2

𝛼 and higher
can be neglected.

Then the function 𝑓(Ω2
𝛼,Ω

2
𝛽,∆𝛼,∆𝛽) can be evaluated numerically. In the

case when the detunings are defined by ∆𝛼 ≡ Γ2𝑝 and ∆𝛽 ≡ Γ2𝑝 + Γ3𝑠, the
function 𝑓 is given in the form:

𝑓(Ω2
𝛼,Ω

2
𝛽,∆𝛼,∆𝛽) ≈ −1.30494 · 1015Ω2

𝛼 − 2.08127 · 1030Ω4
𝛼

+8.67218 · 1014Ω2
𝛽 + 5.15573 · 1029Ω4

𝛽 + 2.42665 · 1044Ω6
𝛽 (10.13)

+3.22916 · 1029Ω2
𝛼 − 1.08979 · 1047Ω2

𝛼Ω4
𝛽 − 6.18661 · 1044Ω4

𝛼Ω2
𝛽

−1.63588 · 1062Ω4
𝛼Ω4

𝛽 + 2.92629 · 1063Ω2
𝛼Ω6

𝛽 − 4.88545 · 1078Ω4
𝛼Ω6

𝛽.

Taking into account the estimates(10.12)

Ω𝛼 ≈ 1.99343 · 10−16 a.u.,

Ω𝛽 ≈ 1.92942 · 10−10 a.u.,

𝑓 ≈ 0.0000322844. (10.14)
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For the case of exact resonances (∆𝛼 = 0 and ∆𝛽 = 0)

𝑓 ≈ −0.015814. (10.15)

Finally, in the case of exact two-photon resonance, when ∆𝛼 + ∆𝛽 = 0 in
combination with ∆𝛼 = Γ2𝑝, the function 𝑓 takes a value:

∆𝛼 = Γ2𝑝 = −∆𝛽 ∼ 10−8 a.u.,

𝑓 ≈ 0.00952743. (10.16)

Thus, the value of the function 𝑓(Ω2
𝛼,Ω

2
𝛽,∆𝛼,∆𝛽) is about 1%; in the case

of exact one-photon resonances about 1.5%, respectively about 0.95% if the
detunings are non-zero but of opposite sign. In quantum optics this effect is
well known in the study of electromagnetic induced transparency for different
kinds of systems (two-, three-, or four-level systems with Λ-, 𝑉 -, or Ξ-scheme
of levels). The calculation results for different detuning values are summarized
in Table 10.1 and graphically represented in Figs. 10.3 and 10.4.

Figure 10.3. Dependence of the function 𝑓(Ω2
𝛼,Ω

2
𝛼,∆𝛼,∆𝛼,∆𝛽) on the detun-

ings ∆𝛼 and ∆𝛽 at fixed values of the external fields (??), Ω𝛽/𝛾𝑖𝑗 ≪ 1, and
Ω𝛼/𝛾𝑖𝑗 ≪ 1. Detunings ∆𝛼 and ∆𝛽 vary within the range of [−Γ2𝑝,Γ2𝑝].

In astrophysical studies of the processes of cosmic microwave background
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Table 10.1. Numerical values of the function 𝑓(Ω𝛼,Ω𝛽,∆𝛼,∆𝛽) at different
detunings. The first column shows the different values of 𝑓(Ω𝛼,Ω𝛽,∆𝛼,∆𝛽), in
the second and third columns - detunings and corresponding field magnitudes.

𝑓 (Ω𝛼,Ω𝛽,∆𝛼,∆𝛽)

∆𝛼, s−1 |𝐸𝛼|, V/m
∆𝛽, s−1 |𝐸𝛽|, V/m

∆𝜈𝑖𝑗 = |∆𝛼|, |∆𝛽| in (10.11)

6.48635 · 10−7 𝑊21 = 6.26826 · 108 6.8802 · 10−5

𝑊32 = 6.31696 · 106 5.30686

0.0000326097
𝑊21 = 6.26826 · 108 6.8802 · 10−5

𝑊21 +𝑊32 = 6.33143 · 108 53.1293

0.00952743
𝑊21 = 6.26826 · 108 6.8802 · 10−5

−𝑊21 = −6.26826 · 108 52.8636

0.00952743
−𝑊21 = −6.26826 · 108 6.8802 · 10−5

𝑊21 = 6.26826 · 108 52.8636

0.0000324474
−𝑊21 = −6.26826 · 108 6.8802 · 10−5

−𝑊21 = −6.26826 · 108 52.8636

0.0000326097
−𝑊21 = −6.26826 · 108 6.8802 · 10−5

−𝑊21 −𝑊32 = 6.33143 · 108 53.1293

4.06852 · 10−6 10𝑊21 = −6.26826 · 109 2.1757 · 10−4

10(𝑊21 +𝑊32) = 6.33143 · 109 168.01

formation, the Lorentz line profile is used to determine the absorption coeffi-
cient. This line profile is the dominant contribution to ℑ

{︀
𝜌21
}︀
, and is identified

by the common factor in (10.7). From Table 10.1 and the results of (10.15),
(10.6), it follows that the function 𝑓(Ω2

𝛼,Ω
2
𝛽,∆𝛼,∆𝛽) should be included in

astrophysical calculations according to the expression (10.10). In reality, the
escape probability dependence 𝑝𝑖𝑗(𝜏𝑆) for a photon in the wing of the line due
to the expanding Universe may have a more complicated form. The Sobolev
approximation works for a certain phase, which is well known. In more compli-
cated cases one has to apply the diffusion approximation [277]. However, the
description of the EIT effect presented above can serve as estimates of the EIT
influence on radiative transfer.
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Figure 10.4. Two-dimensional graph section for the function 𝑓(Ω2
𝛼,Ω

2
𝛽,∆𝛼,∆𝛽)

(see 10.3) when ∆𝛽 = 0. The remaining tuning parameter ∆𝛼 varies within the
range of [−3Γ2𝑝, 3Γ2𝑝].

10.4. Numerical results: Ξ-scheme of levels taking
into account fine structure

In this section, the function 𝑓(Ω𝛼,Ω𝛽,∆𝛼,∆𝛽) is calculated numerically. The
physical meaning of 𝑓 can be found using Fig. 10.2. The processes correspond-
ing to the function 𝑓 are illustrated in Fig. 10.2 (b), (c) and (d). Namely,
graph a) corresponds to the "standard" Sobolev escape probability. However,
the "controlled" field leads to a delay of the electron on the excited states and
prevents the final recombination due to additional processes, see plots b)-d).
The function 𝑓 is dimensionless, it represents the contribution of the multipho-
ton processes b)-d) with respect to the one-photon absorption process a). The
1𝑠 − 2𝑝 − 3𝑠 cascade scheme for the hydrogen atom was considered in [128].
It is shown that in the case of exact resonances (when both the ∆𝛼 and ∆𝛽

detunings are zero) the maximum value of 𝑓 is about 1.5% and reaches 0.95%

for the exact two-photon resonance.
Similar to the [128], a cascade scheme is considered here, but taking into

account the fine structure of the hydrogen atom. Taking into account the Lamb
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shift, the three-level ladder scheme can be defined as follows: |1 >≡ |1𝑠 >,
|2 >≡ |2𝑝1/2 > and |3 >≡ |2𝑠 >. Substituting the corresponding widths and
frequencies Γ2𝑠 = 8.229 s−1, Γ2𝑝 = 6.26826 × 108 s−1 and 𝜈31 = 2.4674 × 1015

Hz, 𝜈23 = 1.057911 × 109 Hz, at ∆𝜈𝑖𝑗 = Γ2𝑝, see [129], the following estimates
can be obtained:

𝐸𝛼 ≈ 0.000068802 V/m = 1.33799 × 10−16 a.u., (10.17)

𝐸𝛽 ≈ 0.0017496 V/m = 3.40242 × 10−15 a.u.,

Ω𝛼 ≈ 9.96713 × 10−17 a.u.,

Ω𝛽 ≈ 1.02073 × 10−14 a.u..

Numerical results of the 𝑓 function for different detuning values are collected
in Table 10.2.

Table 10.2. Numerical values of the function 𝑓(Ω𝛼,Ω𝛽,∆𝛼,∆𝛽) for different
values of detunings. The first column shows 𝑓(Ω𝛼,Ω𝛽,∆𝛼,∆𝛽), the second and
third columns show the detunings.

𝑓(Ω𝛼,Ω𝛽,∆𝛼,∆𝛽) ∆𝛼, s−1 ∆𝛽, s−1

−1.38066 × 10−4 0 0

−1.38066 × 10−4 Γ2𝑠 = 8.229 −Γ2𝑠 = −8.229

8.28426 × 10−5 Γ2𝑝 = 6.26826 × 108 −Γ2𝑝 = −6.26826 × 108

−8.12364 × 10−6 Γ2𝑠 = 8.229 Γ2𝑠 = 8.229

7.25115 × 10−13 Γ2𝑝 = 6.26826 × 108 Γ2𝑠 = 8.229

3.62557 × 10−13 Γ2𝑝 = 6.26826 × 108 Γ2𝑝 = 6.26826 × 108

In particular, in the case of exact resonances, the maximum value of 𝑓 is
−1.38066 × 10−4, i.e., 0.01%. In the case of the exact two-photon resonance
∆𝛼 + ∆𝛽 = 0, when the field frequencies are close but insignificantly different
from the corresponding resonances, 𝑓 ≈ 0.0083%. Thus, in contrast to the
results of [128], the maximum value of the 𝑓 function is beyond the required
accuracy of the CMB calculations. It should also be noted that if ∆𝜈𝑖𝑗 = Γ2𝑠,
then the maximum value of 𝑓 is of the order of 10−12. Thus, it can be concluded
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that the EIT phenomenon does not require the consideration of a fine structure
for the Ξ-scheme.

10.5. Λ-scheme of levels

To describe the Λ-scheme of levels it is necessary to make the substitution
∆𝛽 → −∆𝛽 and set |1 >≡ |1𝑠 >, |3 >≡ |2𝑠 >, |2 >≡ |3𝑝 > in conjunction
with 𝜈21 = 2.4674 × 1015 Hz, 𝜈31 = 2.9243 × 1015 Hz, Γ3 ≡ Γ2𝑠 = 8.229 с−1

and Γ2 ≡ Γ3𝑝 = 1.89802 × 108 c−1, assuming also ∆𝜈31 ≈ Γ2𝑠 and ∆𝜈32 ≈ Γ3𝑝.
Then,

𝐸𝛼 ≈ 2.45765 × 10−18 a.u., (10.18)

𝐸𝛽 ≈ 1.17805 × 10−14 a.u.,

Ω𝛼 ≈ 7.33142 × 10−19 a.u.,

Ω𝛽 ≈ 2.08452 × 10−14 a.u.

The numerical values of 𝑓 (Ω𝑝,Ω𝑐,∆𝑝,∆𝑐) are given in Table 10.3 for different
detunings of transition frequencies (see [129] for details).

Table 10.3. Numerical values of the function 𝑓(Ω𝛼,Ω𝛽,∆𝛼,∆𝛽) for different
values of detunings. The first column shows 𝑓(Ω𝛼,Ω𝛽,∆𝛼,∆𝛽), the second and
third columns show the detunings.

𝑓 (Ω𝛼,Ω𝛽,∆𝛼,∆𝛽) ∆𝛼, s−1 ∆𝛽, s−1

−0.00189829 0 0

−0.00189829 Γ2𝑠 = 8.229 Γ2𝑠 = 8.229

0.00113955 Γ3𝑝 = 1.89802 × 108 Γ3𝑝 = 1.89802 × 108

−0.000112064 Γ2𝑠 = 8.229 −Γ2𝑠 = −8.229

3.29832 × 10−11 Γ3𝑝 = 1.89802 × 108 Γ2𝑠 = 8.229

1.64916 × 10−11 Γ3𝑝 = 1.89802 × 108 −Γ3𝑝 = −1.89802 × 108

According to estimates in [129], assuming ∆𝜈31 ≈ Γ2𝑠 and ∆𝜈32 ≈ Γ2𝑠, one
can get Ω𝛼 ≈ 1.52655×10−22 and Ω𝛽 ≈ 2.08452×10−14 (in atomic units). The
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final numerical values are similar to Table 10.3, since Ω𝛼 can still be neglected.
In the case of ∆𝜈31 ≈ Γ3𝑝 and ∆𝜈32 ≈ Γ3𝑝, it can be found that

Ω𝛼 ≈ 7.33142 × 10−19 a.u., (10.19)

Ω𝛽 ≈ 1.00111 × 10−10 a.u.

These estimates show that one can neglect the higher order terms of Ω𝛼. How-
ever, the approximation is satisfied under the condition Ω𝑖/𝛾𝑖𝑗 ≪ 1, which is
violated for Ω𝛽/𝛾13. Then the solution of the equations on the density matrix
should be used without series expansion. For the matrix element 𝜌21 it can be
written as

𝜌21 ≈ − 𝑖Ω𝛼

𝛾23 + i∆𝛼 +
Ω2

𝛽

𝛾13+i𝛿

. (10.20)

The corresponding values of 𝑓 are given in Table 10.4.

Table 10.4. The notations are the same as in Table 10.2.

𝑓 (Ω𝛼,Ω𝛽,∆𝛼,∆𝛽) ∆𝛼, c−1 ∆𝛽, c−1

0.000761156 Γ3𝑝 = 1.89802 × 108 Γ2𝑠 = 8.229

0.000380479 Γ3𝑝 = 1.89802 × 108 −Γ3𝑝 = −1.89802 × 108

−9.04486 × 10−7 Γ2𝑠 = 8.229 Γ3𝑝 = 1.89802 × 108

According to the results of Tables 10.3, 10.4, the maximum value of 𝑓 can
be found close to 0.2%. The contribution of this order is comparable to the
present-day accuracy of the observations of CMB.

Taking into account the fine structure of the levels for the Λ scheme, one can
set |1 >≡ |1𝑠 >, |2 >≡ |2𝑝3/2 >, |3 >≡ |2𝑠 > and hence 𝜈31 ≈ 2.46741 × 1015

Hz, 𝜈32 ≈ 9.96903×109 Hz, Γ2 ≡ Γ2𝑝 = 6.26826×108 s−1 and Γ3 ≡ Γ2𝑠 = 8.229

s−1. To evaluate the field amplitudes, ∆𝜈21 ∼ Γ2𝑝, ∆𝜈31 ∼ Γ2𝑠 are used. Then,

Ω𝛼 ≈ 9.96632 × 10−17 a.u., (10.21)

Ω𝛽 ≈ 1.10204 × 10−10 a.u.
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Numerical values of 𝑓 are small and for the sake of brevity are not given (sim-
ilarly for the ∆𝜈21 ∼ Γ2𝑠 and ∆𝜈31 ∼ Γ2𝑠 [129]).

However, for ∆𝜈21 ∼ Γ2𝑝 and ∆𝜈31 ∼ Γ2𝑝 it is possible to find

Ω𝛼 ≈ 9.96632 × 10−17 a.u., (10.22)

Ω𝛽 ≈ 9.61828 × 10−14 a.u.

The numerical values for the function 𝑓 are collected in Table 10.5.

Table 10.5. The notations are the same as in Table 10.2.

𝑓 (Ω𝛼,Ω𝛽,∆𝛼,∆𝛽) ∆𝛼, c−1 ∆𝛽, c−1

−0.0121124 0 0

−0.0121124 Γ2𝑠 = 8.229 Γ2𝑠 = 8.229

0.00729051 Γ2𝑝 = 6.26826 × 108 Γ2𝑝 = 6.26826 × 108

−0.000729015 Γ2𝑠 = 8.229 −Γ2𝑠 = −8.229

6.43847 × 10−11 Γ2𝑝 = 6.26826 × 108 Γ2𝑠 = 8.229

3.21924 × 10−11 Γ2𝑝 = 6.26826 × 108 −Γ2𝑝 = −6.26826 × 108

As follows from Table 10.5, the maximum value of the function 𝑓 reaches
the level of 1%. The contribution of this order is sufficiently large and should
therefore be taken into account in the theoretical description of the cosmic
microwave background.

10.6. 𝑉 -scheme of hydrogen levels

For the 𝑉 -scheme of levels, see [129], the states are defined as follows: |1 >≡
|3𝑝 >, |2 >≡ |2𝑝 > and |3 >≡ |1𝑠 >. Then, 𝜈23 = 2.4674 × 1015 Hz, 𝜈13 =

2.9243× 1015 Hz, Γ2 ≡ Γ2𝑝 = 6.26826× 108 s−1 and Γ1 ≡ Γ3𝑝 = 1.89802× 108

s−1. Setting ∆𝜈23 ≈ Γ2𝑝 and ∆𝜈13 ≈ Γ3𝑝,

Ω𝛼 ≈ 7.33142 × 10−19 a.u., (10.23)

Ω𝛽 ≈ 9.96713 × 10−17 a.u.
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The corresponding numerical values for the function 𝑓 are presented in Ta-
ble 10.6.

Table 10.6. The notations are the same as in Table 10.2.

𝑓 (Ω𝛼,Ω𝛽,∆𝛼,∆𝛽) ∆𝛼, s−1 ∆𝛽, s−1

−5.70837 × 10−16 0 0

4.8248 × 10−16 Γ3𝑝 = 1.89802 × 108 Γ3𝑝 = 1.89802 × 108

4.52944 × 10−16 Γ3𝑝 = 1.89802 × 108 −Γ3𝑝 = −1.89802 × 108

4.14603 × 10−16 Γ2𝑝 = 6.26826 × 108 Γ2𝑝 = 6.26826 × 108

−1.14167 × 10−16 Γ3𝑝 = 1.89802 × 108 Γ2𝑝 = 6.26826 × 108

1.76641 × 10−17 Γ2𝑝 = 6.26826 × 108 −Γ2𝑝 = −6.26826 × 108

Finally, taking into account the fine structure, assuming |1 >≡ |2𝑝3/2 >,
|2 >≡ |2𝑝1/2 >, and |3 >≡ |1𝑠 >, there are 𝜈23 = 2.4674 × 1015 Hz, 𝜈13 =

2.46741×1015 Hz, Γ2 ≡ Γ2𝑝1/2 = 6.26826×108 s−1 and Γ1 ≡ Γ2𝑝3/2 = 6.26826×
108 s−1. In [129], the corresponding numerical values of 𝑓 were found to be
negligibly small. In the case of ∆𝜈13 ≈ Γ2𝑝 and ∆𝜈23 ≈ Γ2𝑝, 𝑓 ∼ 10−16.
Thus, in the context of the processes of CMB formation the phenomenon of
electromagnetic induced transparency does not matter for the 𝑉 -scheme of
levels.

10.7. Full occupancy of 2𝑠 states

The process of two-photon 2𝑠 → 1𝑠 decay can significantly control the dy-
namics of cosmological recombination of hydrogen, allowing about 57% of all
hydrogen atoms in the Universe to recombine through this channel [77, 79].
Taking into account the complete occupation of the 2𝑠 state in hydrogen, it
is worth considering the influence of the EIT phenomenon on the processes of
CMB radiation formation. Then the conditions (see section 10.1) should be re-
placed by 𝜌2𝑠(0) = 1, and the others are zero. For the cascade scheme, it was
obtained that for the full population of the 2𝑠 state, the maximum value of 𝑓
is about 0.03%, see Table 10.7.
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Table 10.7. The notations are the same as in Table 10.2.

𝑓 (Ω𝛼,Ω𝛽,∆𝛼,∆𝛽) ∆𝛼, s−1 ∆𝛽, s−1

−0.000276132 0 0

−0.000276132 Γ2𝑠 = 8.229 Γ2𝑠 = −8.229

−0.0000552386 Γ2𝑝 = 6.26826 × 108 −Γ2𝑝 = −6.26826 × 108

0.00003314 −Γ2𝑝 = −6.26826 × 108 Γ2𝑝 − Γ2𝑠 = 6.26826 × 108

−0.0000162473 Γ2𝑠 = 8.229 Γ2𝑠 = 8.229

7.25115 × 10−13 Γ2𝑝 = 6.26826 × 108 Γ2𝑝 = 6.26826 × 108

For the Λ-scheme, the maximum value of 𝑓 (Ω𝛼,Ω𝛽,∆𝛼,∆𝛽) is of the order
of 10−12 [129]. Taking into account the fine structure of the levels it is possible
to obtain the maximum value of the function 𝑓 at the level of 10−8. It should
be emphasized that in the case of full population of the 2𝑠 state, the matrix
element 𝜌31 is suppressed by the factor Ω𝛼Ω2

𝛽 and, therefore, the effect remains
negligible for the Ly𝛼 line.

To conclude this section, it is worth noting that despite rather detailed and
accurate calculations that take into account various "subtle" effects (see, for ex-
ample, [164,252]), the influence of the external field on the characteristics of the
environment has not yet been taken into account in the framework of radiation
transfer theory. As a demonstration of the importance of the relevant effects,
estimates of the electromagnetic induced transparency phenomenon have been
presented. It is shown that EIT manifests itself under the conditions of CMB
formation and can reach the 1% level. Even though rough estimates of the EIT
effect strongly depend on the "field parameters" and temperature in particular.
All the estimates presented above correspond to an equilibrium temperature of
3000 K, when recombination has already effectively ended. Thus, the effect can
be expected to be stronger for higher temperatures.
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10.8. Analysis of the absorption line profile at 21
cm wavelength of hydrogen atom in the in-
terstellar medium

According to the theory presented in section 10.1, the consideration of adjacent
transitions in determining any transition frequency can be decisive. Based on
the results of the previous sections, it may be pointed out that the most signif-
icant modification of the line profile under astrophysical conditions is found for
the Ξ-scheme of levels. In this section, the absorption line profile at wavelength
21 cm of a hydrogen atom in the interstellar medium (ISM) is analyzed. The
hydrogen atom is considered as a three-level system illuminated by a powerful
light source at neighboring resonances corresponding to the hyperfine splitting
of the ground state and the Ly𝛼 transition. The field acting on the resonances
induces physical processes that can be explained as interfering paths between
the different transitions. The section considers special cases where the 21 cm
line profile is significantly modified by the Ly𝛼 transition. A correction for the
optical depth is presented. It is shown that the correction can be significant and
should be taken into account when determining the column density of hydrogen
atoms in ISM. The effects of the non-Doppler broadening and frequency shift
are also discussed.

The Ξ-scheme of levels of the hydrogen atom (three-level ladder (cascade)
system), where the states |1⟩ and |2⟩ are two hyperfine sublevels of the ground
state, and |3⟩ is the excited state 2𝑝, is presented in Fig. 10.5.

10.8.1. Correction to the optical depth for the three-level

Ξ-scheme

As before, it is assumed that the hydrogen atom is subject to probe and con-
trolled fields with corresponding frequencies 𝜔𝑝 → 𝜔21 = |1⟩ ↔ |2⟩ for the 21

cm line and Ly𝛼 transition 𝜔𝑐 → 𝜔32 = |2⟩ ↔ |3⟩. The set of equations of the
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Figure 10.5. Schematic representation of energy levels in the hydrogen atom.
The lower states correspond to the ground state with hyperfine sublevels for the
total angular momenta of the atom 𝐹 = 1 and 𝐹 = 0. The wavelength of the
resonance transition between the hyperfine sublevels is 21 cm. The upper state
is represented by an excited 2𝑝 state corresponding to the Lyman-𝛼 transition.
The Ω𝑝 and Ω𝑐 denote the corresponding Rabi frequencies for the probe and
controlled fields (Ω𝛼 and Ω𝛽 in the previous notations) from an external source.

ladder scheme has the form:

𝜌21 =
i

2

(Ω𝑝(𝜌22 − 𝜌11) − Ω*
𝑐𝜌31)

𝛾21 − i𝛿𝑝
, (10.24)

𝜌32 =
i

2

(︀
Ω𝑐(𝜌33 − 𝜌22) + Ω*

𝑝𝜌31
)︀

𝛾32 − i𝛿𝑐
,

𝜌31 =
i

2

(Ω𝑝𝜌32 − Ω𝑐𝜌21)

𝛾31 − i(𝛿𝑝 + 𝛿𝑐)
,

𝜌22 =
i

2Γ2
(Ω*

𝑝𝜌21 − Ω𝑝𝜌12),

𝜌33 =
i

2Γ3
(Ω*

𝑐𝜌32 − Ω𝑐𝜌23),

where the detunings for the probing and controlling fields are 𝛿𝑝 = 𝜔𝑝 − 𝜔21,
𝛿𝑐 = 𝜔𝑐 − 𝜔32, respectively, and 𝜔21, 𝜔32 represent the resonance values of the
transition frequencies. The Rabi frequencies are denoted by Ω𝑐 = 2𝑑32𝐸𝑐/~ and
Ω𝑝 = 2𝜇21𝐵𝑝/~. Since the transition between hyperfine sublevels corresponds
to the emission (absorption) of the magnetic dipole 𝑀1, the Rabi frequency Ω𝑝

is written through the magnetic field strength 𝐵𝑝 and magnetic moment 𝜇𝑖𝑗.
𝐸𝑐 represents the electric field strength for the Ly𝛼 transition, and 𝑑𝑖𝑗 is the
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dipole matrix element. The wave functions for the |3⟩, |2⟩, and |1⟩ states can be
taken as the solution of the Schr?dinger equation. In the absence of collisions,
𝛾𝑖𝑗 = (Γ𝑖 + Γ𝑗)/2, where Γ𝑖 is the natural width of the 𝑖th level. The set of
equations (10.24) is written in the same approximations as before.

Using the definition for the absorption coefficient (10.6), the line profile can
be found in the form (10.7). Taking into account the relation 𝑘 = 𝑘𝜑(𝜔), the
monochromatic optical depth is defined according to

𝑑𝜏(𝜔𝑖𝑗) = −𝑘𝜑(𝜔𝑖𝑗)𝑑𝑙 = −𝜏𝜑(𝜔𝑖𝑗)
𝑑𝑙

𝐿
, (10.25)

where 𝑙 is the distance along the beam (𝐿 = 𝑣th/𝑣
′, 𝑣th is the thermal velocity,

and 𝑣′ is the gradient of 𝑣th) [99, 100].
In the usual case, the monochromatic optical depth corresponds to a one-

photon resonance process, which reduces to the evaluation of a two-level atomic
system. Then the one-photon absorption process is described by the Lorentz
line profile:

ℑ{𝜌(0)21 } = −𝛾21Ω𝑝/2

𝛿2𝑝 + 𝛾221
, (10.26)

where 𝛿𝑝 can be considered as a variable. A more precise solution of the equa-
tions (10.24) corresponds to taking into account the second field acting on the
neighboring resonance. Then, in the limit of a weak "probe" field [93], the ma-
trix element 𝜌21 in the first order on it and in all orders on the "controlled"
field is equal to

𝜌21 =
iΩ𝑝/2

i𝛿𝑝 − 𝛾21 + Ω2
𝑐/4

𝑖(𝛿𝑝+𝛿𝑐)−𝛾31

. (10.27)

The expression (10.27) depends on the field parameters Ω𝑐 and 𝛿𝑐 and reduces
to (10.26) in the limit Ω𝑐 → 0, i.e., when the influence of the field on the
neighboring resonance is negligible. In this case, corrections to the "usual"
definition (10.27) can be found by series expansion of Ω𝑝(𝑐) at zero detunings
𝛿𝑝(𝑐). Then the transition amplitudes associated with the paths |1⟩ → |2⟩ and
|2⟩ → |3⟩ lead to destructive interference and decrease the total probability
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that the trial ("probe") photon will be absorbed [95].
However, a series expansion in Rabi frequencies cannot be used in this case

because of the smallness of the level width Γ2 ≈ 2.85×10−15 s−1. Nevertheless,
see [130], the imaginary part of 𝜌21 can be extracted

−ℑ{𝜌21} ≡ −ℑ{𝜌(1)21 } − ℑ{𝜌(2)21 } = (10.28)
𝛾21Ω𝑝/2(︁

𝛿𝑝 − (𝛿𝑝+𝛿𝑐)Ω2
𝑐/4

(𝛿𝑝+𝛿𝑐)2+𝛾2
31

)︁2
+
(︁
𝛾21 + 𝛾31Ω2

𝑐/4
(𝛿𝑝+𝛿𝑐)2+𝛾2

31

)︁2 +

𝛾31Ω𝑝Ω
2
𝑐/8[︂(︁

𝛿𝑝 − (𝛿𝑝+𝛿𝑐)Ω2
𝑐/4

(𝛿𝑝+𝛿𝑐)2+𝛾2
31

)︁2
+
(︁
𝛾21 + 𝛾31Ω2

𝑐/4
(𝛿𝑝+𝛿𝑐)2+𝛾2

31

)︁2]︂
((𝛿𝑝 + 𝛿𝑐)2 + 𝛾231)

.

The first summand here is a one-photon process |1⟩ → |2⟩ (21 cm), the second
summand can be associated with an additional process |1⟩ → |2⟩ → |3⟩ → |2⟩.
In the absence of the second field Ω𝑐 = 0, the second summand in (10.28)
vanishes and the usual definition of (10.26) can be found. The effect of (10.28)
can be represented as in Fig. 10.3.

Thus, the absorption coefficient and the optical depth, respectively, cannot
be described by a single Lorentz contour (10.26) with the subsequent transfor-
mation into the Voigt profile. One can also note that the first term correspond-
ing to the absorption in the 21 cm line has a broadening and a a priori line
profile shift.

The dimensionless correction to the optical depth (10.25) arising in the
context of expression (10.28) can be defined as follows:

𝜏 = 𝜏0(1 + 𝛿𝜏), (10.29)

where 𝜏0 refers to the profile ℑ{𝜌(1)21 }, and the correction 𝛿𝜏 is equal to

𝛿𝜏 =
ℑ{𝜌21} − ℑ{𝜌(1)21 }

ℑ{𝜌(1)21 }
≡ ℑ{𝜌(2)21 }

ℑ{𝜌(1)21 }
. (10.30)
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The expression (10.30) reduces to

𝛿𝜏 =
𝛾31
𝛾21

Ω2
𝑐

4((𝛿𝑝 + 𝛿𝑐)2 + 𝛾231)
. (10.31)

The expression (10.31) is resonant but independent of the probe field Ω𝑝 acting
in the line 21 cm.

10.8.2. Non-Doppler broadening and frequency shift

According to (10.28) one can determine the broadening and frequency shift
due to the presence of multiphoton processes at neighboring resonances, i.e.,
having a purely non-Doppler origin. The non-Doppler line broadening for the
|1⟩ → |2⟩ transition follows from the denominator in the first summand and is
proportional to Ω𝑐. This broadening can be expressed as an additional term to
the natural width 𝛾21:

𝛾 = 𝛾21 +
𝛾31Ω

2
𝑐/4

(𝛿𝑝 + 𝛿𝑐)2 + 𝛾231
= 𝛾21 + 𝛾broad. (10.32)

The maximum value of 𝛾broad is achieved for the exact two-photon resonance
𝛿𝑝 + 𝛿𝑐 = 0:

𝛾broad =
Ω2

𝑐

4𝛾31
. (10.33)

For a very powerful light source and small distances between the absorber and
the source, the 𝛾broad value can be expected to exceed the natural level width
𝛾21.

Taking into account the motion of the interstellar gas cloud, the resonant
frequency is expected to be shifted. This Doppler shift results in 𝛿𝑐 → 𝛿𝑐 +
𝜐
𝑐𝜔𝑐, where 𝑐 is the speed of light. The velocity of hydrogen clouds can be on
the order of several hundred km/s, and in some cases can reach thousands of
kilometers per second. Then the sum of the detunings 𝛿𝑝 + 𝛿𝑐 can be estimated
as (10−3− 10−2)𝜔𝑐 ∼ (104− 105)𝛾31, where 𝛾31 = 1

2Γ2𝑝 = 1
26.265× 108 s−1 and

the Ly𝛼 transition frequency is 𝜔𝑐 = 2.466 × 1015 s−1. Thus, the Doppler shift



228

results in a suppression of 𝛾broad. Nevertheless, since the emission spectrum of
the source has a continuum character, it is always possible to isolate the case
of an exact two-photon resonance. It should be emphasized that this discussion
is consistent with 𝛾broad and does not invalidate the Doppler broadening [130].

The expression (10.28) also permits the frequency shift for the transition
|1⟩ → |2⟩ to be found. For this purpose, the detuning 𝛿𝑝 can be considered as
a "scanning" parameter (variable). Then the resonance condition will be

𝛿𝑝 −
(𝛿𝑝 + 𝛿𝑐)Ω

2
𝑐/4

(𝛿𝑝 + 𝛿𝑐)2 + 𝛾231
= 0. (10.34)

Now the frequency shift is zero for the exact two-photon resonance, 𝛿𝑝 +𝛿𝑐 = 0.
In the case when the two-photon resonance is detuned 𝛿𝑝 + 𝛿𝑐 = 𝛾31/2, the
frequency shift can be found as follows

𝛿shift =
Ω2

𝑐

4𝛾31
. (10.35)

Here the 𝛾31 level width acts as a natural parameter of the resonant excitation
of the atom.

Another result arises under the assumption that 𝛿𝑝 ∼ 𝛾21 ≪ 𝛿𝑐 ∼ 𝛾31 ( one-
photon resonances). Then, neglecting 𝛿𝑝 in the second term of the expression
(10.34), the frequency shift is equal to

𝛿shift =
𝛿𝑐Ω

2
𝑐

4𝛿2𝑐 + 4𝛾231
. (10.36)

The motion of the hydrogen cloud can be accounted for by utilizing the param-
eter 𝛽: 𝛿𝑐 = 𝜐/𝑐 · 𝜔𝑐 ≡ 𝛽𝛾31. Therefore,

𝛿𝛽shift =
Ω2

𝑐

4𝛾31

𝛽

1 + 𝛽2
≈ Ω2

𝑐

4𝛾31

1

𝛽
. (10.37)

The shift is negligibly small and the maximum shift can be achieved for two-
photon resonance with detuning 𝛿𝑝 + 𝛿𝑐 = 𝛾31/2, (10.35).
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10.8.3. Numerical results

To estimate the contribution of the non-Doppler broadening, frequency shift,
and optical depth correction, the Rabi frequency Ω𝑐 needs to be found. This can
be done using the flux density or brightness of the light sources and the distance
between the source and absorber. For this purpose data from observations of
damped Lyman-𝛼 systems at 1216 Å the line in hydrogen [237,278] and many
others have been used (see references in [130]).

𝑟 =
𝑐

𝐻0
(𝑧em − 𝑧abs), (10.38)

𝐼abs =
𝐿*

4𝜋(1 + 𝑧em − 𝑧abs)4𝑟2
,

where 𝐿* is the luminosity of the star (measured in units of W/Hz), independent
of distance, 𝐻0 = 2.3 × 10−18 s−1 is the Hubble constant, 𝑧em, 𝑧abs are the
redshifts of the source and absorber, respectively. For the observed flux density
𝑆 at frequency 𝜈, the intensity at the absorber is equal to

𝑆abs = 𝑆0 𝜈0
𝑧2em(1 + 𝑧em)4

(𝑧em − 𝑧abs)2(1 + 𝑧em − 𝑧abs)4
, (10.39)

where 𝑆0 is the measured flux density and 𝜈0 is the frequency of the correspond-
ing transition.

The line flux density Ly𝛼 can be expressed in terms of the electric field
strength 𝐸𝛼 as

𝑆𝛼 =
1

2

√︂
𝜖0
𝜇0
𝑐𝐸2

𝑐 , (10.40)

where 𝜖0 is the dielectric permittivity of vacuum and 𝜇0 is the vacuum perme-
ability. In principle, the Rabi frequency for the transition 21 cm can be defined
analogously, i.e. as 𝑆21 = 1

2

√︁
𝜖0
𝜇0
𝑐𝐵2

𝑝 .
The data used in the calculations are collected in Table 10.8.
Using the data in Table 10.8, the line broadening and frequency shift were

estimated. The correction to optical depth 𝛿𝜏 for zero and non-zero detuning
is calculated using the formula (10.31). The Doppler effect can be accounted
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Table 10.8. The first column contains the names of the sources. The second and
third columns present the redshifts of the star and absorber, respectively, where
the 21 cm absorption combined with Ly𝛼 absorption was observed. The next
column shows the density flux at 1.4 GHz (hyperfine splitting of the ground
state of the hydrogen atom, |1⟩ ↔ |2⟩ transition). The fifth column summarizes
the flux density and luminosity values at Ly𝛼. The values of the hydrogen
velocity at the 21 cm line are given in the sixth column. Finally, the optical
depth values are summarized in the last column of the table. For references to
the data used, see [130].

Name 𝑧em 𝑧abs 𝑆1.4ГГц, Jy 𝑙𝑜𝑔𝐿𝛼, W/Hz 𝜐, km/s 𝜏0

0235+164 0.94 0.523869 1.7 𝑙𝑜𝑔[𝜈𝑓 ] ≈ −12.5 erg/(cm2s) 125 ( 1𝑓 )
∫︀
𝜏𝑑𝜐 = 13 ± 0.6

3C 190 1.1946 1.19565 2.47 0.17, Jy −37.1 0.0027 ± 0.0002

3C 216 0.668 0.63 3.4 22.699 102 0.38

J0414+0534 2.6365 0.9586 1.82 22.188 205 0.0212(16)

J0414+0534 2.6365 2.63534 3.31 22.188 −94 (0.015 ± 0.002)

0902+343 3.398 3.3968 1.2 22.422 120 –
3C 49 0.621 0.6207 7.28 20.777 −138 0.036 ± 0.003

3C 286 0.849 0.692153 14.7 2.7, Jy 4.2 0.280 ± 0.004

0118-272 0.559 0.558 0.93 0.95, Jy – 𝑙𝑜𝑔[𝑁𝐻𝐼 ] = 20.3

0405-331 2.570 2.562 0.63 0.56, Jy – 𝑙𝑜𝑔[𝑁𝐻𝐼 ] = 20.6

0537-286 3.104 2.976 0.862 0.90, Jy – (0.41 ± 0.22) × 1022

0957+561A 1.413 1.391 0.59 0.15, Jy 25 𝑁𝐻𝐼 = 7 × 1019 ± 30%

0248+430 1.31 0.3939 1.4 1.5, Jy 40 𝑁𝐻𝐼 = (3.6 ± 0.4) × 1019

0336-017 3.197 3.0619 0.60 0.15, Jy 13 𝑙𝑜𝑔[𝑁𝐻𝐼 ] = 21.25, 𝜏0 < 0.2

0528-250 2.813 2.8110 1.16 0.59, Jy 5 𝑙𝑜𝑔[𝑁𝐻𝐼 ] = 21.3 ± 0.1

2128-123 0.501 0.430 1.8 0.7, Jy 75 𝑙𝑜𝑔[𝑁𝐻𝐼 ] = 19.37 ± 0.08, 𝜏𝐿𝐿 ≃ 150
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Table 10.9. The first column lists the names of the sources according to Ta-
ble 10.8. The second column gives the values for the underdoppler broadening.
The frequency shift 𝛿shift for the |1⟩ ↔ |2⟩ transition is presented in the third
column. The fourth column shows the relative contributions 𝛿𝜏 at detunings
𝛿𝑝 ≪ 𝛿𝑐 = 𝜐

𝑐𝜔32. The values of 𝛿𝜏0 are given in the last column, in which the
values of the correction to the optical depth specified in the Table 10.8 are given
after the comma.

Name 𝛾broad, s−1 𝛿𝛽shift, s−1 𝛿𝜏 at 𝛿𝜏0, 𝛿𝜏0 · 𝜏0
vs Γ2 = 2.85 × 10−15, s−1 𝛿𝑐 = 𝜐

𝑐𝜔32

0235+164 9.28 × 10−20 3.87 × 10−23 1.53 × 10−13 6.51 × 10−5, 8.46 × 10−4

3C 216 2.34 × 10−17 7.97 × 10−21 5.805 × 10−11 0.0164, 6.23 × 10−3

J0414+0534(𝑧𝑎𝑏𝑠 = 0.9586) 4.93 × 10−24 3.37 × 10−27 3.02 × 10−18 3.46 × 10−9, 7.33 × 10−11

J0414+0534(𝑧𝑎𝑏𝑠 = 2.63534) 5.59 × 10−16 1.75 × 10−19 1.63 × 10−9 0.392, 5.88 × 10−3

0902+343 8.502 × 10−16 3.403 × 10−19 1.52 × 10−9 0.597

3C 49 3.07 × 10−16 1.41 × 10−19 4.15 × 10−10 0.215, 7.74 × 10−3

0248+430 6.38 × 10−16 8.51 × 10−20 1.03 × 10−8 0.448

2128-123 1.32 × 10−14 3.31 × 10−18 6.07 × 10−8 0.108, 16.1

3C 190 3.08 × 10−11 3.798 × 10−15 5.79 × 10−4 4.63 × 10−5, 1.25 × 10−7

3C 286 8.398 × 10−14 1.18 × 10−18 1.23 × 10−4 0.0169, 0.00475

0118-272 1.72 × 10−10 – – 8.29 × 10−6

0405-331 8.95 × 10−10 – – 1.59 × 10−6

0537-286 2.07 × 10−11 – – 6.88 × 10−5

0957+561A 1.89 × 10−12 1.58 × 10−16 7.81 × 10−5 7.53 × 10−4, 0.0753

0336-017 3.69 × 10−12 1.60 × 10−16 5.63 × 10−4 3.86 × 10−4, 7.72 × 10−5

0528-250 2.41 × 10−8 4.02 × 10−13 0.0402 5.91 × 10−8

for using the sixth column in Table 10.8. It should be noted that due to the
smallness of the frequency 𝜔21 with respect to Ly𝛼, the detuning 𝛿𝑝 can be set
to zero, since 𝛿𝑝 = 𝛽𝜔𝑝 ≪ 𝛿𝑐 = 𝛽𝜔𝑐. The numerical results are summarized in
Table 10.9, with the designations 𝛿𝜏0 and 𝛿𝜏 corresponding to zero and non-zero
detuning, respectively.

10.8.4. Results analysis

Correction to optical depth.
Thus, it is shown that the absorption line profile of the |1⟩ ↔ |2⟩ transition is
formed by two contributions: ℑ{𝜌(1)21 } and ℑ{𝜌(2)21 }. The additional contribution
to the line profile is proportional to Ω𝑝 and Ω𝑐, the Rabi frequencies of the
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|1⟩ ↔ |2⟩ and |2⟩ ↔ |3⟩ transitions, respectively. Its physical interpretation
was given in [95] as interfering transitions in the atom. Using this modification,
the correction to the optical depth can be found by the formula (10.31). The
correction should be small for Ω𝑐 ≪ 𝛾21. However, due to the smallness of the
level width 𝛾21 the condition is fulfilled for a very distant source and absorber,
while for 𝑧em ≈ 𝑧abs the opposite situation is observed (for a very powerful
light source). In this case, the main contribution to the line profile is given by
the second term ℑ{𝜌(2)21 }, and the correction to the optical thickness should be
taken as the inverse of the first contribution. Table 10.9 is conditionally divided
into two parts, representing just both cases (strongly and slightly distant source
and absorber). The numerical results of the correction for optical depth at zero
detuning in the cases Ω𝑐 ≪ 𝛾21 and 𝛾21 ≪ Ω𝑐 are collected in the first and
second parts of Table 10.9 in the form of 𝛿𝜏0.

Although it is always possible to distinguish the case of zero detuning,
since the emission of the light source has a continuum character, for a detailed
description of the 21 cm absorption line profile in the interstellar medium, the
cloud velocity should be taken into account. The latter can be expressed by
the approximate equality 𝛿𝑝 + 𝛿𝑐 ≈ 𝜐

𝑐𝜔32, where the values of 𝜐 are given in
Table 10.8. Numerical results for 𝛿𝜏 are also given in Table 10.9.

In particular, it follows from Table 10.9 that the 𝛿𝜏0 contribution can be
substantial and exceed the accuracy of the experimental determination of 𝜏0.
Although the above analysis is rather rough and does not include the Voigt pro-
file fitting, the main conclusion is that the two-level approximation of the atom
is not sufficient. Already in the three-level approximation, additional processes
occurring in the atom have to be taken into account with an appropriate fit of
the absorption profile. The medium parameters extracted from such a fit can
be corrected with the help of the expressions (10.28), (10.31).

Non-Doppler broadening and frequency shift.
According to the expression (10.28), the absorption line profile can be analyzed
in terms of line broadening. Regardless of the dominant contribution, ℑ{𝜌(1)21 }
or ℑ{𝜌(2)21 }, the absorption line arising from the density matrix element changes
by a width 𝛾broad, see (10.32). The maximum broadening can be estimated as
Ω2

𝑐/4𝛾31, (10.33). The values of 𝛾broad at zero detunings are given in Table 10.9.
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It is found that the broadening can be significant and several orders of magni-
tude larger than the natural line width.

A significant interest of such studies is the determination of the frequency
shift and hence the refinement of light source distances and cloud sizes. The
accuracy of redshift determination is at the level of 10−10 [279], and in some
cases as high as 10−11 [280]. The procedure for determining the redshift can be
reduced to finding the maximum of the corresponding line contour. The fre-
quency shift, expression (10.37), was obtained in the same way. The maximum
frequency shift occurs when 𝛿𝑝 + 𝛿𝑐 = 𝛾31/2. The numerical values are listed in
Table 10.9 in the third column for 𝛿𝛽shift and are equal to 𝛾Broad at maximum
(see the second column of Table 10.9). Then, the redshift uncertainty 𝛿𝑧shift can
be estimated from the frequency shift 𝛿shift as follows:

𝛿𝑧shift =
𝛿shift(1 + 𝑧abs)

𝜈0
, (10.41)

where 𝜈0 is the transition frequency. The values given in Table 10.9 show that
this effect is very insignificant and can be excluded from the corresponding
analysis.

Thus, although the frequency shift is negligibly small, the width of the line
profile can be several orders of magnitude larger than natural. The most signif-
icant effect occurs for the optical depth. In particular, the optical depth error
for the J0414+0534 source is about 13%, see Table 10.8, while the contribution
(10.31) turns out to be about 39%. The same result can be obtained for the 3C
49 light source: the error and correction are about 8% and 20%, respectively.
The magnitude of the correction to the optical depth and hence to the column
density of hydrogen can be as high as 60%, see Table 10.9. At 𝑧 ≈ 𝑧abs, fitting
the observed line profile with a one-photon contour for the isolated resonance
may overestimate the corresponding values.

In conclusion of this chapter, it is worth paying attention to the fact that
the processes of one-photon scattering on the hydrogen atom do not fully reflect
the phenomena related to radiation transfer [76, 99]. In the framework of the
density matrix formalism, it is shown that the absorption (emission) line profile
undergoes significant changes. In particular, the density matrix theory permits
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a detailed description of the processes of emission (absorption) by an atom
exposed to external radiation. The profile of the one-photon absorption line
in this case can be obtained in the framework of the two-level approximation
of the atomic system, which is the zero approximation. However, additional
emission (absorption) processes should be taken into account. These processes
can be evaluated in the framework of the three-level approximation. It is shown
that additional interfering transitions lead to a modification of the profile (the
line contour is obtained explicitly) of the corresponding line. Also, based on the
Sobolev approximation, it is shown how the theory of radiation transfer can be
modified to take into account the phenomenon of EIT.
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Conclusion

The results presented in the thesis refer to the theoretical study of one- and mul-
tiphoton emission and/or absorption processes. As a consequence, the detailed
theoretical description presented in the thesis makes it possible to explicitly
take into account the role of natural line asymmetry and asymmetry caused
by external fields. The application of the obtained results can be attributed at
once to three broadest areas of modern physics.

The first of them includes spectroscopy of the hydrogen atom and preci-
sion measurements of transition frequencies. Due to the achieved accuracy in
spectroscopic experiments for the hydrogen atom, the identification of effects af-
fecting the precision determination of the frequency is extremely important. In
particular, the theoretical description of experiments to measure the frequency
of the 1𝑠− 2𝑠 transition in hydrogen has shown that the line asymmetry does
not play a decisive role. The experimental error in determining the frequency is
several orders of magnitude larger than the expected shift due to the asymme-
try of the line profile. However, the picture changes significantly for measuring
frequencies for excited states with the principal quantum number 𝑛 > 2. In
this case, the role of the line asymmetry may have a crucial role in determining
the transition frequency. Within the framework of the theory presented in this
thesis, a number of effects leading to asymmetry of the spectral line profile
for both the total and differential scattering cross sections have been consid-
ered. The most significant is the effect of quantum interference obtained for
the differential scattering cross section. In addition to the calculation of the
resonant frequency shifts arising due to states close to the resonance state, it
is shown that there is an influence of the radiation process on the formation
of the absorption profile. In the framework of the one-photon absorption pro-
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cess, the role of the profile asymmetry due to the cascade radiation process is
clearly demonstrated. Moreover, on the basis of a detailed theoretical analy-
sis, possibilities for further improvement of the experimental accuracy related
to the measurement of the transition frequencies for highly excited states are
pointed out. Both one- and two-photon absorption processes are discussed in
the framework of hydrogen atom spectroscopy.

Another, no less important, area includes the effects arising in the external
electric field. Thus, it is shown that the linear field contributions arising in
the emission probabilities can lead to a significant difference in the spectral
characteristics of hydrogen and anti-hydrogen atoms. At the same time, the
analysis presented in the thesis concerns not only the metastable 2𝑠 state, but
also highly excited (Rydberg) states. The latter is due to the experimental
conditions. Within the framework of the studies in this direction, it was found
that even extremely weak ("stray") fields can lead to the detection of differences
in the spectra of H and H̄. In addition, it is shown how the differences in the
spectra of H and H̄ atoms arising in external fields can be used to search for
anti-matter in the Universe.

The study of the role of the spectral line asymmetry (natural or induced by
external fields) necessitates a detailed calculation of two-photon transitions. A
non-relativistic theory using different forms and gauges for the corresponding
quantities is presented in the framework of the thesis, and estimates of the con-
tribution of the negative energy spectrum are presented. The calculated values
are in good agreement with completely relativistic calculations; an appropriate
comparative analysis for different gauges is given.

Finally, to the third area, to which the conducted research is applied, belong
astrophysical studies of the microwave cosmic background and the interstellar
medium. Within the framework of these questions, not only "pure" multiphoton
emission processes (discussed in detail in the thesis), but also cascade processes
and spectral line asymmetry play a role. In particular, the thesis presents a more
"correct" line profile arising from a strictly QED description, demonstrates the
impossibility of separating "pure" radiation (leading to a direct "detachment"
of radiation), investigates the role of two-photon multipole processes in the
emission of highly excited states, and shows the possibility of separating the
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two-photon link (in the resonance approximation) in the multiphoton cascade
decay. Finally, as an astrophysical application, the influence of external radia-
tion on the line profile is considered; a modified contour is explicitly obtained
and a method of accounting for the corresponding effects is shown, accompanied
by numerical evaluations.

Acknowledgements
The author of this thesis considers it his honorable responsibility to ex-

press his deepest gratitude to his colleagues Labzovsky L.N., Dubrovich V.K.,
Andreev O.Y., Volotka A.V., Glazov D.A., Kozhedub Yu.S., Plunien G., Soff
G. and others. A number of studies were performed jointly with Zalialiutdi-
nov T.A., Anikin A.A., Shchedrin G. and Chernovskaya E., whose contribution
should not be underestimated. Prof. Labzovsky L.N. is the founder of line con-
tour asymmetry research and a scientific mentor, without whose guidance this
research would not have been possible. This work was supported by grants from
the Russian Foundation for Basic Research, the Russian Science Foundation,
research funds from SPbSU, grants from the Max Planck Institute (Germany),
and other non-commercial funds and programs.



238

List of Figures

2.1 Photon scattering on a bound electron. The wavy line denotes
absorption, if the arrow is directed to the vertex, or emission,
if the arrow is directed away from the vertex, of a photon, and
the double solid line denotes a bound electron in the field of the
nucleus (Furry picture); 𝜔1, 𝜔2 are the frequencies of absorbed
and emitted photons, 𝑖, 𝑛, and 𝑓 denote the initial, intermediate,
and final states of the electron, respectively. . . . . . . . . . . 31

2.2 Comparison of Ly𝛼 line profiles in the red wing for the absorption
profiles given by the expressions (2.29), (2.40), (2.44), (2.45),
(2.46) as a function of the wavelength 𝜆. The normalisation factor
ℵ = 2𝜋 is chosen for profiles defined according to (2.29) and
(2.40). The peak corresponds to the resonance wavelength 𝜆𝛼 =

1216 Å. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 The process of two-photon absorption accompanied by sponta-
neous decay. The transition to the metastable state 2𝑠 of a hy-
drogen atom (𝑛 = 2𝑠 in the notations of Fig. 2.1) is considered,
the lifetime of the state 2𝑠 𝜏 = 1/8.229 seconds, the initial and
final states are represented by the ground state 1𝑠. . . . . . . . 57

4.2 Schematic representation of the electron propagator 𝑆FGS(𝑥1, 𝑥2)

(4.6) in coordinate space. The double solid line and the "normal"
dot represent a vertex and an electron propagating in out-space.
the single solid line and the "punched out" dot represent a vertex
and an electron propagating in in-space. It is assumed that the
corresponding in and out states are characterised by the same
set of quantum numbers. . . . . . . . . . . . . . . . . . . . . . 62



239

4.3 The process of two-photon excitation of a 1𝑠−2𝑠 hydrogen atom
with subsequent decay in an external electric field. The single
solid lines describe the wave functions of the electron and the
propagator in the absence of an external electric field. The com-
pound inner electron line represents the electron propagator in
the framework of the theory [184], see Fig. 4.2. The outer double
solid line corresponds to an atomic electron propagating in an ex-
ternal electric field. As in the standard theory, the wavy lines de-
scribe photons. The two absorbed photons are laser photons with
frequency 𝜔 = 1/2(𝐸2𝑠 − 𝐸1𝑠), where 𝐸𝑖 are the energies of the
atomic electron states in the absence of an external field (eigen-
states of the in-Hamiltonian). The emitted photon has frequency
𝜔′. The designations of states with a tilde (�̃� = 1𝑠, �̃�′ = 2𝑠) cor-
respond to the electronic states in an external field (eigenstates
of the out-Hamiltonian); in particular, the 2𝑠 state arises from
the 2𝑠 state in the presence of a field. . . . . . . . . . . . . . . 63

4.4 Level scheme of the two-photon 1𝑠−2𝑠 transition taking into ac-
count the hyperfine splitting. Vertical double dashed lines denote
allowed two-photon transitions. Vertical double dashed lines de-
note two-photon transitions forbidden by the Landau-Yang theo-
rem [122,124,125]. The contribution to the NR correction to the
1𝑠−2𝑠 transition frequency arises from the permitted transition
1𝑠− 2𝑝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 NR correction to the transition frequency 2𝑠𝐹𝑖=0
1/2 → 4𝑝𝐹𝑎=1

1/2 as
a function of the angle between vectors 𝑛𝑘1, 𝑛𝑘2 for experiment
type 1 (solid line) and as a function of the angle between vec-
tors 𝑒1, 𝑛𝑘2 in experiment type 2 (dashed line) according to the
expression (5.16). . . . . . . . . . . . . . . . . . . . . . . . . . 81



240

5.2 NR corrections in kHz for the [196] transitions studied in the
experiment as a function of the angle between the polarisation
vector of the absorbed photon and the propagation vector of the
emitted photon, 𝑒1, 𝑛𝑘2

. The graphs corresponding to 23𝑆
3/2
1 →

23𝑃
1/2
0 and 23𝑆

1/2
1 → 23𝑃

1/2
0 are omitted due to their smallness. 96

6.1 Two-photon excitation process of a bound electron. A wavy line
indicates absorption or emission of a photon. The double solid
line denotes the bound electron; 𝜔1, 𝜔2 are the frequencies of the
absorbed photons, and 𝜔3 is the frequency of the emitted photon.
The indices 𝑖, 𝑛, 𝑘, 𝑓 correspond to the initial, two intermedi-
ate, and final states of the electron, respectively. According to
Feynman’s rules, there are 5 more diagrams related to photon
permutations, which are omitted here for brevity. . . . . . . . . 100

6.2 NR corrections 𝛿NR/2 (in Hz) to measure the frequencies of
2𝑠𝐹𝑖=1

1/2 − 𝑛𝑠𝐹𝑎=1
1/2 (𝑛 = 4, 6, 8, 12) transitions in hydrogen as a

function of the angle between the polarisation vector 𝑒1 of the
absorbed photon (or 𝑒2, since in experiments 𝑒1|||𝑒2) and the
propagation vector 𝑛𝑘3

of the emitted photon. . . . . . . . . . 104
6.3 NR correction 𝛿NR/2 to the transition frequency 1𝑠𝐹𝑖=1

1/2 → 3𝑠𝐹𝑎=1
1/2

in hydrogen (in Hz). The notations are the same as for Fig. 6.2. 105
6.4 NR correction 𝛿NR/2 to 2𝑠𝐹𝑖=0

1/2 → 𝑛𝑠𝐹𝑎=0
1/2 (𝑛 = 4, 6, 8, 12) in Hz.

The same notations as in the previous graphs are used. . . . . . 105
6.5 The total frequency shift 𝛿NR/2 (in Hz) for the frequencies

2𝑠𝐹𝑖=1
1/2 − 𝑛𝑑𝐹𝑎=2

3/2 (𝑛 = 4, 6, 8, 12) transitions in hydrogen, see
expressions (6.11)-(6.14) and (6.16)-(6.19). All notations are sim-
ilar to Fig. 6.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.6 Schematic illustration of the line profile asymmetry arising be-
yond the resonance approximation for the experiment [32]. . . . 116



241

6.7 Experimental profile of the optical phonon band for Raman scat-
tering of polycrystalline silicon. The 𝑥 values show the signal-to-
noise ratio. Here and below, spectra were measured on a LabRam
HR-800 spectrometer with 632.8 nm laser line excitation from a
He-Ne source, 100 micron confocal aperture, and 1800 deg/mm
diffraction grating. The measurement error is 0.35 cm−1. The
signal-to-noise ratio was varied by using neutral density filters in
the laser path. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.8 Experimental 𝛼 band profile for double-structured sulfur at
about 219 cm−1, fitted according to the Lorentzian model. The
measurement error is ±0.35 cm−1. . . . . . . . . . . . . . . . . 123

6.9 Observed band profile for sulfur with blurred double structure
at 473 cm−1. A Lorentz model was used to approximate the
experimental data. The measurement error is equal to ±0.35

cm−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.1 Level scheme of the ground 1𝑠1/2 state in hydrogen (H) and anti-
hydrogen (H̄) atoms. The levels are depicted taking into account
the spin of the nucleus ( the total momentum 𝐹 ) and the Zeeman
splitting corresponding to the splitting of degenerate sublevels
with different magnetic quantum numbers 𝑀𝐹 . The linear polar-
isation corresponding to the transition 𝐹 𝑀𝐹 = 1 0 → 𝐹 ′𝑀𝐹 ′ =

0 0, is shown by the up-down arrow. The left and right circular
polarisations are indicated by circles with arrows. . . . . . . . 138

8.1 Frequency distribution 𝑑𝑊
(2𝛾)
3𝑠;1𝑠/𝑑𝜔 for the full 3𝑠 → 1𝑠 + 2𝛾

two-photon transition, including cascade and "pure" two-photon
transitions as a function of frequency (in atomic units). The val-
ues 𝑑𝑊 (2𝛾)

3𝑠;1𝑠/𝑑𝜔 divided by 𝛼6 (𝛼 is the fine structure constant)
are presented as a function of frequency in the interval [0, 𝜔0],
𝜔0 = 𝐸3𝑠 − 𝐸1𝑠. The boundaries of the frequency intervals I-V
are indicated by vertical lines. . . . . . . . . . . . . . . . . . . 160
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8.2 The frequency distribution function 𝑑𝑊 (2𝛾)
4𝑠,1𝑠/𝑑𝜔 for the total two-

photon 4𝑠 → 1𝑠 + 2𝛾 transition, including resonant and non-
resonant transitions. 𝑑𝑊 (2𝛾)

4𝑠,1𝑠/𝑑𝜔 is plotted in atomic units as a
function of frequency in the interval [0, 𝜔0], 𝜔0 = 𝐸4𝑠 −𝐸1𝑠; the
probability values are divided by 𝛼6 (𝛼 is the fine structure con-
stant) for clarity. The boundaries of the subintervals (I)-(IX) are
marked by vertical lines. . . . . . . . . . . . . . . . . . . . . . 165

8.3 A set of two-loop Feynman diagrams used to calculate the "two-
photon width". Depending on how the diagram is "cut", correc-
tions to the one- and two-photon decay widths arise (a detailed
description is given in [121]). The standard notations are used
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𝐴, the wavy line denotes the photon propagator, the double solid
line denotes the electron propagator. Diagrams a), b) are irre-
ducible, while c) is reducible. The latter requires the use of the
adiabatic theory of the 𝑆-matrix to eliminate additionally arising
divergences due to "reference" states. . . . . . . . . . . . . . . 177

8.4 Schematic representation of the 3𝑝 → 1𝑠 + 3𝛾(𝐸1) transition.
The triple vertical line with arrow (a)) denotes the total three-
photon contribution consisting of a "pure" three-photon decay to
the 1𝑠 state (b), a one-photon transition to the 2𝑠 state followed
by a two-photon link (c), and a two-photon 3𝑝−2𝑝 link followed
by a one-photon decay d). . . . . . . . . . . . . . . . . . . . . . 181

8.5 Schematic representation of the 4𝑠 → 1𝑠 + 4𝛾(𝐸1) transition
with the presence of two-photon links. The notations are similar
to Fig. 8.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
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10.1 The considered scheme of the three-level atom is a ladder Ξ-
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2𝑝 − 3𝑠 transitions (𝛼-Lyman and Balmer lines). The possible
detunings ∆𝛼 and ∆𝛽 for the field frequencies are also given. . . 207

10.2 Schematic of the transitions occurring in the three-level ladder
system corresponding to the expression (10.3): part (a) of the
figure corresponds to one-photon absorption processes (the com-
mon factor in (10.3)); parts (b) and (c) represent the second and
third summands, and part (d) describes the "interfering paths"
(the fourth summand in (10.3)). . . . . . . . . . . . . . . . . . 209

10.3 Dependence of the function 𝑓(Ω2
𝛼,Ω

2
𝛼,∆𝛼,∆𝛼,∆𝛽) on the de-

tunings ∆𝛼 and ∆𝛽 at fixed values of the external fields (??),
Ω𝛽/𝛾𝑖𝑗 ≪ 1, and Ω𝛼/𝛾𝑖𝑗 ≪ 1. Detunings ∆𝛼 and ∆𝛽 vary within
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10.4 Two-dimensional graph section for the function
𝑓(Ω2

𝛼,Ω
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𝛽,∆𝛼,∆𝛽) (see 10.3) when ∆𝛽 = 0. The remain-

ing tuning parameter ∆𝛼 varies within the range of [−3Γ2𝑝, 3Γ2𝑝]. 216
10.5 Schematic representation of energy levels in the hydrogen atom.

The lower states correspond to the ground state with hyperfine
sublevels for the total angular momenta of the atom 𝐹 = 1

and 𝐹 = 0. The wavelength of the resonance transition between
the hyperfine sublevels is 21 cm. The upper state is represented
by an excited 2𝑝 state corresponding to the Lyman-𝛼 transition.
The Ω𝑝 and Ω𝑐 denote the corresponding Rabi frequencies for the
probe and controlled fields (Ω𝛼 and Ω𝛽 in the previous notations)
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List of abbreviations and
symbols

𝑅∞ = 10973731.568 . . . - Rydberg constant

𝑍 nuclear charge

𝛼 ≈ 1/137.036 . . . - fine structure constant

H̄ anti-hydrogen atom

𝜇H muonic hydrogen atom

BBR blackbody radiation

CEO covariant evaluation operator method

CMB cosmic microwave background

EIT electromagnetically induced transparency

GFM Green’s function method

H hydrogen atom

HCI multicharged ions

He helium atom

HFS hyperfine structure
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ISM interstellar medium

LPA Line Profile Approach

NR nonresonant

Ps positronium atom

QED quantum electrodynamics

QIE quantum interference effect

QM quantum mechanics

SE self-energy

TTGF two-time Green’s function method

The thesis mainly uses the relativistic system of units, in which ~ = 𝑐 =

𝑚 = 1, and the atomic system of units ~ = 𝑒 = 𝑚 = 1, where 𝑐 is the speed
of light, 𝑒 is the electron charge, ~ is Planck’s reduced constant, and 𝑚 is the
electron mass.
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