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INTRODUCTION

Topicality of the topic and degree of development of the

problem in the literature

One of the essential problems in the geometric design of roads, watercourses,

pipelines and other transportation networks is the determination of the opti-

mal path [63] in terms of construction cost. Problems of this type naturally

arise before various private organizations, government agencies and military

structures, is a subject of study for many researchers. Such problems are not

only found in civil engineering, but also in other fields such as robotics, space

exploration, etc. [47, 89]. Due to the high importance of the problem, many

effective methods have been developed to solve the problem. These methods

are usually based on graph theory. Here we can, for example, mention the

Cost Path Analysis method popular among engineers, which is based on the

construction and analysis of a cost lattice. One of the most frequently used is

Dykstra’s [62] algorithm. To improve the accuracy of the solution when apply-

ing this algorithm, we have to increase the density of the lattice. This leads to

a sharp increase in computation time and in many cases makes this approach

practically inapplicable. To overcome this drawback, various heuristic methods

have been proposed, such as the A* [50,91,95] algorithm, which is a modifica-

tion of Dijkstra’s algorithm that uses a heuristic function to reduce the number

of computations. Another idea is based on constructing random trees in such

a way that they expand rapidly to cover the domain under study. Here we can

mention RRT [64, 76], RRT* [100], RRT connect [77], T-RRT [71] and others

using the same approach [79, 94]. There are many other heuristic procedures

for solving the [46,56,69,93,101] problem. Such methods lead to a satisfactory

result, the quality of which usually cannot be guaranteed. In this dissertation
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study, we propose a method for solving the problem that ensures the optimality

of the obtained path, based on variational principles.

Purpose of the study

The purpose of this study is mathematical modeling of the cost of building

a road connecting two given points: the starting point, from which the con-

struction materials necessary for laying the path are transported, and the final

point. Such a model allows us to rigorously formulate the problem of finding

the cost-optimal path. Also the purpose of the work is to analyze the obtained

model with the conclusion of the conditions that must be satisfied by the desired

trajectory, as well as the construction of methods and algorithms for solving

the resulting problem, as well as proving the existence and uniqueness of its

solution. Summarizing the above, the global goal of the work is to present

mathematical tools for structures and decision makers in issues related to road

construction or areas that allow similar mathematical formalization, for more

efficient use of resources.

Main tasks

One of the main problems that this dissertation research is aimed at solving is

the construction of a mathematical model for the problem of obtaining a cost-

optimal path connecting two given points. In order to mathematically formalize

the problem, it is necessary to identify the main characteristics on which the

path cost depends.

The model is specified by means of an integral cost functional, which defines

a mapping between admissible curves and their cost. For this functional, we

need to obtain a necessary minimum condition by which the desired optimal

path can be determined. We need to propose methods for solving the resulting

condition, as well as to study the existence and uniqueness of its solution.
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Scientific novelty

In this dissertation work, the problem of finding the optimal construction cost

of a path connecting two given points is reduced to a variational calculus prob-

lem. The integral cost functional that defines the developed model takes into

account the delivery cost of construction materials and the cost of their instal-

lation as the main quantities on which the final cost of the entire path depends.

The resulting functional contains a summand with a double integral, which is

reduced to a simpler form after additional transformation. For the problem

obtained in this way, the necessary condition of minimum is derived using the

apparatus of calculus of variations, which has the form of an integro-differential

equation. Thus, it is shown that the optimal trajectory satisfies the specified

integro-differential equation and two boundary conditions. Under some addi-

tional conditions, the uniqueness of the solution is proved, and the question

of its existence is investigated with the help of Schauder’s fixed point princi-

ple. Approximate methods for solving the resulting boundary value problem

are developed, allowing to obtain the answer in the form of an algebraic or

trigonometric polynomial, and a numerical method of solution is constructed,

using the ideas of linearization, the shooting method, and the finite difference

method.

Research Methods

With the help of mathematical modeling apparatus, an integral cost functional

is constructed, the argument in which is a function describing the pathway

trajectory. For the formation of the functional, the main values affecting the

cost of the path are selected - the cost of delivery of construction materials

and the cost of works on their laying. The natural assumption that the cost of

laying a unit of road length depends on the distance from the starting point,

which is taken as a material base, is used. The apparatus of calculus of vari-

ations, methods of higher algebra, algorithms from the field of mathematical

programming, numerical methods, theory of differential equations and func-

tional analysis are used to find the optimal function. Optimality conditions

that take into account the specificity of the constructed functional are derived.
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They are analogous to the classical Euler-Lagrange conditions, but lead not to

differential but to integro-differential equations. Numerical methods of find-

ing solutions to systems of nonlinear algebraic equations, decomposition of the

desired trajectory by a system of basis functions, as well as the means of the

MATLAB mathematical package and the Python programming language are

used in the construction of methods for solving the resulting boundary value

problem. To prove the existence and uniqueness of the solution, the concepts

of uniformly continuous operator, uniform continuity and uniform boundedness

and compactness of the set of functions are used.

Theoretical significance and practical relevance

The results obtained in this paper were obtained by the author personally and

have theoretical significance for research in the field of civil engineering and

other areas in which the problems of constructing an optimal in one sense or

another trajectory arise. The approach proposed in the paper makes it possible

to lay cost-optimal railroads, highways, pipelines and other transportation in-

frostructure objects connecting two given points. This makes it possible to

solve one of the most important tasks of planning the construction of these

objects in the most cost-effective way. On the basis of the constructed model

and developed methods it is possible to create a modern software product that

allows to obtain a theoretically justified optimal solution of the problem under

study.

As it has already been noted, problems from other fields, such as robotics

[78,90] for example, can lead to similar mathematical formulations. Therefore,

the results obtained in this paper can be applied not only in the framework of

road construction, but also for a wider range of problems.

Boundaries of the study

The study is conducted under the assumption that the height difference on

the terrain is insignificant and can be neglected. At the same time, it should

be noted that within the framework of the proposed model the terrain can be

taken into account by using the construction cost function, which depends on
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the terrain.

Subject of the study

The subject of the paper is the problem of obtaining the optimal construction

cost of a trajectory connecting two given points.

Object of study

The object of the study is the integral functional of track construction cost.

The paper deals with the problems of construction of this functional, as well as

methods of its minimization.

Provisions for defense

Let us formulate the main results obtained in the paper:

� A method of mathematical modeling of building a cost-optimal road con-

necting two given points is developed. A mathematical formalization is

proposed, within the framework of which a model defined by an integral

cost functional is constructed.

� A necessary condition for the minimum of the constructed functional,

which takes into account its specificity, is formulated and proved. This

condition has the form of an integro-differential equation.

� The existence and uniqueness theorems of the obtained integro-differential

equation are formulated and proved.

� Approximate and numerical methods for solving the obtained equation

based on the approaches of functional analysis, as well as the apparatus of

computational mathematics are developed. The software implementation

of the algorithms in MATLAB mathematical package and Python pro-

gramming language is proposed.
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Approbation of the results

The main results of the dissertation work were published in highly rated scien-

tific journals

� Bulletin of St. Petersburg University. Applied mathematics. Informatics.

Control processes,

� Mathematical Modeling (M.V. Keldysh Institute of Applied Mathematics

of the Russian Academy of Sciences),

and also reported at international conferences

� International Conference «XIV International Conference "Optimization

and Applications" (OPTIMA-2023)», Petrovac, Montenegro, September

18-22, 2023.

� 5th International Conference on Problems of Cybernetics and Informatics

(PCI 2023), Baku, Azerbaijan, 28-30 August 2023.

� The 8th International Conference on Control and Optimization with In-

dustrial Applications (COIA-2022), Baku, Azerbaijan 24-26 August 2022

and seminars

� Workshop on the intersections of computation and optimisations, Can-

berra, Australia, November 24, 2021.

� Seminar of the Department of 13 "General Scientific Disciplines" of the

Military Academy of Logistics named after Army General A. V. Khrulev,

St. Petersburg, Russia, November 25, 2021. V. Khrulev Military Academy

of Logistics, St. Petersburg, Russia, November 25, 2021.

In addition, this research was supported by the experts of the Russian Science

Foundation, who supported the project 23-21-00027 "Search for optimal trajec-

tory using artificial intelligence algorithms".
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Publications

The results have been published in three articles in Russian and international

peer-reviewed scientific journals (see [1–3]) and in several abstracts of inter-

national scientific conferences (see [38–40]), the list of which is presented above.

Main scientific results

� The method of mathematical modeling of construction of a cost-optimal

road connecting two given points, see item 1 of the paper [3], work item

2 [2], work item 2 [1], work [38] from the list of publications of the author

of the dissertation (proposed personally by the author of the dissertation)

� For the mathematical formalization within which the model defined by the

integral cost functional is constructed, see paragraph 1 of the [3] paper,

item 2 of the work [2], item 2 of the work [1] from the list of publications of

the author of the thesis (proposed personally by the author of the thesis)

� The necessary condition for the minimum of the constructed functional,

which takes into account its specificity. This condition takes the form of

an integro-differential equation, see item 2 of the paper [3] from the list of

publications of the author of the thesis (personal contribution is at least

80%).

� Existence and uniqueness theorems for the obtained integro-differential

equation, see item 3 of the paper [1] from the list of publications of the

author of the thesis (personal contribution is at least 80%).

� Approximate and numerical methods for solving the obtained equation,

based on the approaches of functional analysis, as well as the apparatus

of computational mathematics, see item 3 of the work [3], items 3 and 4

of the work [2], items 2, 3, 4 of the work [1], the work [39] from the list of

publications of the author of the thesis (personal contribution is at least

80%).
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� Program implementation of the constructed algorithms in MATLABmath-

ematical package and Python programming language, see item 3 of [3],

item 4 of [2], item 4 of [1] from the list of publications of the disserta-

tion author, as well as Appendix A.1 in the dissertation itself (personal

contribution is at least 80%).

Provisions for defense

Let us formulate the main results obtained in the paper:

� A method of mathematical modeling of building a cost-optimal road con-

necting two given points is developed. A mathematical formalization is

proposed, within the framework of which a model defined by an integral

cost functional is constructed.

� A necessary condition for the minimum of the constructed functional,

which takes into account its specificity, is formulated and proved. This

condition has the form of an integro-differential equation.

� The existence and uniqueness theorems of the obtained integro-differential

equation are formulated and proved.

� Approximate and numerical methods for solving the obtained equation

based on the approaches of functional analysis, as well as the apparatus

of computational mathematics are developed. The software implementa-

tion of the algorithms in MATLAB mathematical package and Python

programming language is proposed.
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CHAPTER 1

Supporting information

Let us first briefly summarize the supporting information necessary for further

exposition.

1.1 Some background on functional analysis

We’ll be working in the next normalized prostranzas:

� The space of continuous functions C[0, 𝑙] with norm

||𝑥|| = max
𝑡∈[0,𝑙]

|𝑥(𝑡)|.

� The space C𝑘[0, 𝑙] 𝑘- times continuously differentiable functions with

norm

||𝑥||C𝑘[0,𝑙] =
𝑘∑︁

𝑖=0

max
𝑡∈[0,𝑙]

|𝑥𝑖(𝑡)|.

� The space ̃︁L𝑝[0, 𝑙] of functions continuous on [0, 𝑙] with norm

||𝑥||𝑝 =
(︂∫︁ 𝑙

0

|𝑥(𝑡)|𝑝 𝑑𝑡
)︂ 1

𝑝

, 𝑝 ∈ [1,∞).

Definition 1.1.1 Let 𝐴,𝐵 be two sets of the normalized space X. 𝐴 is called

dense in 𝐵 if 𝐵 ⊂ 𝐴, where 𝐴 –the closure of set 𝐴. 𝐴 is called everywhere

dense if E = 𝐴.
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Let E – Euclidean space

Definition 1.1.2 A system of elements {𝑥𝑖} ⊂ E is called complete if and

only if the set of all possible linear combinations of its elements is everywhere

dense in E.

Definition 1.1.3 The complete orthogonal system {𝑥𝑖} of the Euclidean space

E is called an orthogonal basis.

The space ̃︁L2 [0, 𝑙] of functions continuous on [0, 𝑙] is Euclidean. of functions

is Euclidean. In it we can introduce the scalar product as follows:

⟨𝑥, 𝑦⟩ =
∫︁ 𝑙

0

𝑥(𝑡)𝑦(𝑡) 𝑑𝑡.

The most important orthogonal basis in this space is the trigonometric system

consisting of functions

1

2
, cos

2𝜋𝑘

𝑙
𝑡, sin

2𝜋𝑘

𝑙
𝑡, 𝑘 = 1, 2, . . . .

Definition 1.1.4 A function 𝑥(𝑡) defined on [0, 𝑙] is called finite if there exists

[𝑎; 𝑏] : 0 < 𝑎; 𝑏 < 𝑙 outside of which 𝑥(𝑡) ≡ 0 (the function is finite on

(−∞; +∞) if it is zero outside some segment).

Theorem 1.1.1 The set of finite, infinitely differentiable on [0, 𝑙] of functions

is dense in ̃︁L𝑝 [0, 𝑙].

Inquiry 1.1.1.1 The set of finite, continuously differentiable on [0, 𝑙] of func-

tions is dense in ̃︁L𝑝 [0, 𝑙].

A detailed statement and proofs of the above results can be found in [18,

21,25,31].
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1.2 Some information from higher algebra

Definition 1.2.1 Let’s 𝑥1, . . . , 𝑥𝑛+1 ∈ R. Matrix

𝑉 (𝑥1, . . . , 𝑥𝑛+1) =

⎛⎜⎜⎜⎜⎝
1 𝑥1 𝑥21 . . . 𝑥𝑛1
1 𝑥2 𝑥22 . . . 𝑥𝑛2
. . . . . . . . . . . . . . .

1 𝑥𝑛+1 𝑥2𝑛+1 . . . 𝑥𝑛𝑛+1

⎞⎟⎟⎟⎟⎠
is called the Vandermonde matrix.

Vandermonde’s definition

det𝑉 (𝑥1, . . . , 𝑥𝑛+1) =
∏︁

1≤𝑗<𝑖≤𝑛

(𝑥𝑖 − 𝑥𝑗).

For the Vandermonde determinant to be zero, it is necessary and sufficient that

there exists at least one pair (𝑥𝑖, 𝑥𝑗) such that 𝑥𝑖 = 𝑥𝑗 at 𝑖 ̸= 𝑗.

A detailed statement and proofs of the above results can be found in [11,

14,22,23].

1.3 Some information from calculus of variations

Let 𝐹 (𝑥, 𝑦, 𝑦′) be given a function 𝐹 (𝑥, 𝑦, 𝑦′), continuous together with its

partial derivatives on all three arguments 𝑥, 𝑦, 𝑦′ inclusive. Let also be given

two points 𝐴(𝑥1, 𝑦1) and 𝐵(𝑥2, 𝑦2) in the plane 𝑂𝑥𝑦. Any curve expressed by

the equations

𝑦 = 𝑦(𝑥),

where 𝑦 ∈ C1[𝑥1, 𝑥2], passing through the points 𝐴 and 𝐵 (𝑦(𝑥1) = 𝑦1,

𝑦(𝑥2) = 𝑦2) will be called admissible. Let us formulate the simplest prob-

lem of variational calculus. Among all admissible curves, we need to determine

the one along which the integral

𝐽 =

∫︁ 𝑥2

𝑥1

𝐹 (𝑥, 𝑦, 𝑦′)𝑑𝑥
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takes the largest value.

The method of variations is used to solve this problem. Let us briefly

describe it. Let 𝜂(𝑥)– a continuously differentiable finite function defined on

the segment [𝑥1, 𝑥2]. The variation of the functional 𝐽 in 𝑦 is called the quantity

𝛿𝐽 =
𝑑

𝑑𝑡
𝐽(𝑦 + 𝑡𝜂)

⃒⃒⃒
𝑡=0

.

Theorem 1.3.1 For an admissible function 𝑦 = 𝑦(𝑥) to be a minimum of a

functional 𝐽 , it is necessary that the variation

𝛿𝐽 = 0

for any finite continuously differentiable function on the segment [𝑥1, 𝑥2].

A detailed presentation and proofs of the above results can be found, for

example, in [9, 15,24,34–36,84,88].



16

CHAPTER 2

Problem statement and necessary conditions of

minimization

The main subject of this study is the problem of obtaining the optimal cost-

optimized cost-optimal track path construction. Such problems arise in solv-

ing a wide range of practical tasks, such as, for example, road construction,

robotics, laying pipelines and other transport networks, and therefore arise

before various private organizations, government agencies and military orga-

nizations. There are a large number of methods used by researchers to solve

the problem, most of which are heuristic in nature. For example, one of the

most popular engineering approaches to solving this problem is the "textitCost

Path Analysis" method, which is based on the construction and analysis of

a cost lattice (see [?, 52, 98]). This paper proposes a different path based on

the ideas, apparatus and approaches of mathematical modeling. We propose a

mathematical formalization of the original problem, which leads to the problem

of minimizing the integral cost functional, the argument of which is a function

describing the path trajectory. The obtained functional is rewritten in a sim-

pler form after some additional transformations. Thus, the problem is reduced

to a variational calculus problem, for which we can derive a necessary optimal-

ity condition that takes into account the specificity of the given functional. of

this functional. It should be noted that this condition is not differential, as

the classical Euler-Lagrange conditions are. Euler-Lagrange conditions, but of

an integro-differential equation, which requires the construction of methods for

its solution, as well as the elucidation of conditions ensuring the existence and

uniqueness of the solution. All these questions constitute the essence of the

present work.
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Let us begin with the problem statement, as well as with the formulation

and discussion of the basic assumptions under which the model is constructed

and the integral cost functional is derived.

2.1 Problem statement and basic assumptions

Let the coordinates of the start and end points 𝑂 and 𝐴 be given, which

need to be connected by a road, spending a minimum amount of money on

construction. It is natural to assume that the total construction cost consists

of two components:

� delivery costs of building materials;

� paving costs.

To calculate these components, we need additional assumptions. Let us

formulate them.

� Delivery of construction materials is always carried out from the from the

starting point and on an already constructed road section.

We consider that construction materials are brought from point 𝑂, which

serves as a material base. In this case, their transportation to the current

location of the construction site is carried out exclusively along the already

completed road section, i.e. takes place in the same conditions throughout the

construction process. It should also be noted that the price of delivery depends

on the distance from the base and the volume of transported material.

� The road construction technology is the same at any point along the

trajectory.

Since the road paving technology is the same at any point along the tra-

jectory, the amount of materials required to construct a unit length of road is

constant. Therefore, it is possible to introduce a constant 𝛼 equal to the deliv-

ery cost per unit of path length (from the base) of the amount of construction

materials required to pave a unit of road length.
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� The elevation difference in the area where the road is being constructed

is insignificant.

This assumption makes it possible to neglect the height difference in the

considered area and to carry out further constructions in a two-dimensional

coordinate system.

� Construction conditions vary from point to point.

We assume that each point has its own construction conditions due to re-

lief, landscape and other factors. Therefore, we can introduce a function 𝛽 of

construction cost per unit of path length.

Let us introduce a Cartesian coordinate system with origin at point 𝑂.

Without loss of generality, we may assume that the endpoint 𝐴 has coordinates

(𝑙, 0). Let 𝑦 : R → R is an arbitrary twice continuously differentiable function

satisfying the boundary conditions

𝑦(0) = 0, 𝑦(𝑙) = 0.

Any such curve will be called an admissible curve.

Under the formulated assumptions, the functional of road construction cost

defined by the function 𝑦(𝑥) has the following form

𝐽(𝑦) =

𝑙∫︁
0

𝛼

√︁
1 + 𝑦′2(𝑥)

𝑥∫︁
0

√︁
1 + 𝑦′2(𝜉) 𝑑𝜉 𝑑𝑥+

+

𝑙∫︁
0

𝛽(𝑥, 𝑦)

√︁
1 + 𝑦′2(𝑥) 𝑑𝑥,

(2.1)

where 𝛼–a constant defining the cost of delivery, and 𝛽 : R2 → R a given non-

negative function with continuous partial derivatives up to and including second

order defining the cost of paving work.

Let us further assume that there exists twice continuously differentiable

admissible curve 𝑦*(𝑥), which gives a minimum to the functional (2.1). It and

determines the optimal trajectory of the road of the road.

Thus, we obtain a variational calculus problem with with fixed ends.



19

2.2 Derivation of necessary minimum conditions for the

cost functional

The results stated in this paragraph are obtained by the author in [3]. Let us

first formulate and prove an auxiliary result.

Lemma 2.2.1 For an arbitrary function 𝑓(𝑥) ∈ C[0, 𝑙] equality is true

𝑙∫︁
0

𝑓(𝑥)

𝑥∫︁
0

𝑓(𝜉) 𝑑𝜉 𝑑𝑥 =
1

2

⎛⎝ 𝑙∫︁
0

𝑓(𝑥) 𝑑𝑥

⎞⎠2

. (2.2)

Proof The left part of the equality (2.2) is a double integral

𝑙∫︁
0

𝑥∫︁
0

𝑓(𝜉)𝑓(𝑥) 𝑑𝜉 𝑑𝑥 =

∫︁∫︁
𝐺1

𝑓(𝜉)𝑓(𝑥) 𝑑𝜉 𝑑𝑥,

where the region 𝐺1 is depicted by the vertical shading in Fig. 2.1. By changing

the order of integration, we obtain

∫︁∫︁
𝐺1

𝑓(𝜉)𝑓(𝑥) 𝑑𝜉 𝑑𝑥 =

𝑙∫︁
0

𝑙∫︁
𝜉

𝑓(𝜉)𝑓(𝑥) 𝑑𝑥 𝑑𝜉.

Taking advantage of the fact that the variables 𝑥 and 𝜉 are symmetrically into

the subintegral expression in the right-hand side, we swap them places

𝑙∫︁
0

𝑙∫︁
𝜉

𝑓(𝜉)𝑓(𝑥) 𝑑𝑥 𝑑𝜉 =

𝑙∫︁
0

𝑙∫︁
𝑥

𝑓(𝑥)𝑓(𝜉) 𝑑𝜉 𝑑𝑥 =

∫︁∫︁
𝐺2

𝑓(𝜉)𝑓(𝑥) 𝑑𝜉 𝑑𝑥.
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Figure 2.1: Illustration of the areas over which the integration is performed.

Thus, we obtain that the integral over the region 𝐺2, depicted in Fig. 2.1

by horizontal shading, is equal to the integral over the region 𝐺1∫︁∫︁
𝐺1

𝑓(𝜉)𝑓(𝑥) 𝑑𝜉 𝑑𝑥 =

∫︁∫︁
𝐺2

𝑓(𝜉)𝑓(𝑥) 𝑑𝜉 𝑑𝑥.

Therefore, we can write∫︁∫︁
𝐺1

𝑓(𝜉)𝑓(𝑥) 𝑑𝜉 𝑑𝑥 =
1

2

∫︁∫︁
𝐺1

⋃︀
𝐺2

𝑓(𝜉)𝑓(𝑥) 𝑑𝜉 𝑑𝑥 =

=
1

2

𝑙∫︁
0

𝑙∫︁
0

𝑓(𝜉)𝑓(𝑥) 𝑑𝜉 𝑑𝑥 =

=
1

2

𝑙∫︁
0

𝑓(𝑥) 𝑑𝑥

𝑙∫︁
0

𝑓(𝜉) 𝑑𝜉 =
1

2

⎛⎝ 𝑙∫︁
0

𝑓(𝑥) 𝑑𝑥

⎞⎠2

,

which completes the proof.

Using the lemma 2.2.1, we can rewrite the the functional (2.1) as

𝐽(𝑦) =
𝛼

2

⎛⎝ 𝑙∫︁
0

√︁
1 + 𝑦′2(𝑥)𝑑𝑥

⎞⎠2

+

𝑙∫︁
0

𝛽(𝑥, 𝑦)

√︁
1 + 𝑦′2(𝑥) 𝑑𝑥. (2.3)
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The following theorem, which was derived in [3], gives a necessary condition

for the minimum of this functional.

Theorem 2.2.1 In order for the minimum of the cost functional 𝐽 on the

admissible curve 𝑦*(𝑥) ∈ C2[0, 𝑙] reaches the minimum of the cost functional 𝐽

it is necessary that

𝑦′′*(𝑥)

1 + 𝑦′*
2(𝑥)

(︂
𝛼

𝑙∫︁
0

√︁
1 + 𝑦′*

2(𝑥)𝑑𝑥+ 𝛽(𝑥, 𝑦*(𝑥))

)︂

+ 𝑦′*(𝑥)
𝜕𝛽(𝑥, 𝑦*(𝑥))

𝜕𝑥
− 𝜕𝛽(𝑥, 𝑦*(𝑥))

𝜕𝑦
= 0.

(2.4)

Proof For convenience, we keep the notation

𝐹 (𝑦′) =
√︀
1 + 𝑦′2.

Then

𝐽(𝑦) =
𝛼

2

⎛⎝ 𝑙∫︁
0

𝐹 (𝑦′(𝑥))𝑑𝑥

⎞⎠2

+

𝑙∫︁
0

𝛽(𝑥, 𝑦)𝐹 (𝑦′(𝑥)) 𝑑𝑥.

Let 𝛿(𝑥) — continuously differentiable finite function on [0, 𝑙], and 𝜀 — scalar

quantity. Let us write out (see para. 1.3) the variation of the functional

𝛿𝐽(𝑦*) =
𝑑

𝑑𝜀
𝐽(𝑦* + 𝜀𝛿)|𝜀=0.

According to Theorem 1.3.1, the admissible curve 𝑦*, yielding a minimum

of of the functional 𝐽 satisfies equality

𝛿𝐽(𝑦*) = 0.
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Hence we obtain

𝛿𝐽(𝑦*) =
𝑑

𝑑𝜀

[︃
𝛼

2

⎛⎝ 𝑙∫︁
0

𝐹 (𝑦′* + 𝜀𝛿′)𝑑𝑥

⎞⎠2

+

+

𝑙∫︁
0

𝛽(𝑥, 𝑦* + 𝜀𝛿)𝐹 (𝑦′* + 𝜀𝛿′) 𝑑𝑥

]︃⃒⃒⃒⃒
⃒
𝜀=0

=

=𝛼

𝑙∫︁
0

𝜕𝐹

𝜕𝑦′
𝛿′ 𝑑𝑥

𝑙∫︁
0

𝐹 (𝑦′*) 𝑑𝑥+

𝑙∫︁
0

𝜕𝛽

𝜕𝑦
𝐹 (𝑦′*)𝛿 𝑑𝑥+

𝑙∫︁
0

𝛽
𝜕𝐹

𝜕𝑦′
𝛿′ 𝑑𝑥.

Using formula of integration by parts, let us consider separately the expressions

in the of the summands in the right-hand side of this equality.

𝑙∫︁
0

𝜕𝐹

𝜕𝑦′
𝛿′ 𝑑𝑥 =

𝜕𝐹

𝜕𝑦′
𝛿

⃒⃒⃒⃒𝑙
0

−
𝑙∫︁

0

𝑑

𝑑𝑥

(︂
𝜕𝐹

𝜕𝑦′

)︂
𝛿 𝑑𝑥 = −

𝑙∫︁
0

𝑑

𝑑𝑥

(︂
𝜕𝐹

𝜕𝑦′

)︂
𝛿 𝑑𝑥,

𝑙∫︁
0

𝛽
𝜕𝐹

𝜕𝑦′
𝛿′ 𝑑𝑥 = 𝛽

𝜕𝐹

𝜕𝑦′
𝛿

⃒⃒⃒⃒𝑙
0

−
𝑙∫︁

0

𝑑

𝑑𝑥

(︂
𝛽
𝜕𝐹

𝜕𝑦′

)︂
𝛿 𝑑𝑥 = −

𝑙∫︁
0

𝑑

𝑑𝑥

(︂
𝛽
𝜕𝐹

𝜕𝑦′

)︂
𝛿 𝑑𝑥.

Then, taking into account the obtained results, we can write the necessary

condition of minimization in the form

𝛿𝐽(𝑦*) =

𝑙∫︁
0

(︂
− 𝛼

𝑑

𝑑𝑥

(︂
𝜕𝐹

𝜕𝑦′

)︂ 𝑙∫︁
0

𝐹 (𝑦′*) 𝑑𝑥+
𝜕𝛽

𝜕𝑦
𝐹 (𝑦′*)−

− 𝑑

𝑑𝑥

(︂
𝛽
𝜕𝐹

𝜕𝑦′

)︂)︂
𝛿 𝑑𝑥 = 0.

The function under the integral, which is the quotient of 𝛿, belongs to C[0, 𝑙].
Since C[0, 𝑙] ⊂ ̃︁L2[0, 𝑙], and the set of continuously of finite functions differen-

tiable on [0, 𝑙] according to Theorem 1.1.1 is everywhere dense in ̃︁L2[0, 𝑙], from

the last equality follows

−𝛼
𝑑

𝑑𝑥

(︂
𝜕𝐹

𝜕𝑦′

)︂ 𝑙∫︁
0

𝐹 (𝑦′*) 𝑑𝑥+
𝜕𝛽

𝜕𝑦
𝐹 (𝑦′*)−

𝑑

𝑑𝑥

(︂
𝛽
𝜕𝐹

𝜕𝑦′

)︂
= 0.
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Substituting into this equality 𝐹 (𝑦′) =
√︀
1 + 𝑦′2, and also

𝑑

𝑑𝑥

(︂
𝜕𝐹

𝜕𝑦′

)︂
= 𝑦′′*(1 + 𝑦′*

2
)−

3
2 ,

we get

𝑦′′*(𝑥)

1 + 𝑦′*
2(𝑥)

(︂
𝛼

𝑙∫︁
0

√︁
1 + 𝑦′*

2(𝑥)𝑑𝑥+ 𝛽(𝑥, 𝑦*(𝑥))

)︂
+

+ 𝑦′*(𝑥)
𝜕𝛽(𝑥, 𝑦*(𝑥))

𝜕𝑥
− 𝜕𝛽(𝑥, 𝑦*(𝑥))

𝜕𝑦
= 0,

which completes the proof.

■

Remark 2.2.1 Note that we can obtain the same condition (2.4) using the

classical results of the calculus of variations. To do this, we need to represent

the functional (2.3) in a form suitable for the direct application of the Euler-

Lagrange conditions.
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CHAPTER 3

Approximate methods for solving the problem

This chapter deals with approximate methods for solving the problem of ob-

taining the optimal road trajectory in terms of construction cost. Analytical

expressions for the approximate solution will be obtained in the form of al-

gebraic or trigonometric polynomials. This approach in some cases may be

convenient for processing and further study of the obtained results.

The results presented in this chapter were obtained by the author in [2, 3,

38,40].

3.1 Method based on polynomial interpolation

According to Theorem 2.2.1, to obtain an admissible curve satisfying the nec-

essary minimum condition, we need to solve the integro-diphysical algebraic

equation

𝑦′′

1 + 𝑦′2

⎛⎝𝛼

𝑙∫︁
0

√︁
1 + 𝑦′2𝑑𝑥+ 𝛽

⎞⎠+ 𝑦′𝛽𝑥 − 𝛽𝑦 = 0, (3.1)

the numerical solution of which is an independent problem. It can be solved by

considering the values of the function in the nodes as variables, using them to

construct an interpolation polynomial. This way leads to a nonlinear system

of algebraic equations with respect to the values of the function at the nodes.

In [5], we develop an algorithm that realizes the above idea for solving the

integro-differential equation under given initial conditions. To apply a similar

approach to our problem, we can modify the above algorithm for problems with

boundary conditions.

So, let us describe the adaptation of the method from the [5] that takes into
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account the boundary conditions given in our case.

On the segment [0, 𝑙] we introduce a uniform grid containing 𝑛 + 1 node.

Having the values of the second derivatives of the desired function at the nodes

of the grid we can construct an interpolation polynomial for 𝑦′′(𝑥) of degree 𝑛.

Integrating the obtained polynomial and using the values of the of the function

in the first and last nodes of the grid (ends of the segment [0, 𝑙]), we obtain

interpolation polynomials of degree 𝑛+1 and 𝑛+2 for the functions 𝑦′(𝑥) and

𝑦(𝑥), respectively. Applying any quadrature formula to calculate the integral

𝑙∫︁
0

√︁
1 + 𝑦′(𝑥)2𝑑𝑥,

reduce Eq. (3.1) to the problem of solving a system of of nonlinear equations

with respect to the values of the second derivatives at the nodes of the grid.

Let us denote by 𝑝 = (𝑝1, . . . , 𝑝𝑛+1)
𝑇 the vector of coefficients of the of the

interpolation polynomial for 𝑦′′(𝑥), and

𝑦(2) =
(︁
𝑦
(2)
1 , . . . , 𝑦

(2)
𝑛+1

)︁𝑇
vector whose components are equal to the value of the function 𝑦′′(𝑥) at the

grid nodes, i.e.

𝑦
(2)
𝑖 = 𝑦′′ (𝑥𝑖) , 𝑥𝑖 = (𝑖− 1)

𝑙

𝑛
, 𝑖 = 1, . . . , 𝑛+ 1.

Consider the Vandermonde matrix

𝑍 =

⎛⎜⎜⎜⎜⎝
1 𝑥1 𝑥21 . . . 𝑥𝑛1
1 𝑥2 𝑥22 . . . 𝑥𝑛2
. . . . . . . . . . . . . . .

1 𝑥𝑛+1 𝑥2𝑛+1 . . . 𝑥𝑛𝑛+1

⎞⎟⎟⎟⎟⎠ .

We have

𝑦(2) = 𝑍𝑝,
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whence, by virtue of nondegeneracy 𝑍 (see 1.2) we obtain

𝑝 = 𝑍−1𝑦(2).

Hence

𝑦′′(𝑥) = 𝑋𝑍−1𝑦(2),

где 𝑋 = (1, 𝑥, . . . , 𝑥𝑛). Integrating the last equality in the range from 𝑥1 to 𝑥𝑖

for each of 𝑖 = 1, . . . , 𝑛+ 1, we obtain

𝑦(1) = 𝐼𝑦′(𝑥1) + 𝑆𝑦(2),

here 𝐼 = (1, . . . , 1)𝑇 — 𝑛-dimensional unit vector, 𝑦(1) — vector whose com-

ponents are equal to the the value of the function 𝑦′(𝑥) at the nodes of the

grid,

𝑆 = 𝐵𝑍−1,

and the matrix

𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0

𝑥2 − 𝑥1
𝑥22 − 𝑥21

2

𝑥32 − 𝑥31
3

. . .
𝑥𝑛+1
2 − 𝑥𝑛+1

1

𝑛+ 1
. . . . . . . . . . . . . . .

𝑥𝑛+1 − 𝑥1
𝑥2𝑛+1 − 𝑥21

2

𝑥3𝑛+1 − 𝑥31
3

. . .
𝑥𝑛+1
𝑛+1 − 𝑥𝑛+1

1

𝑛+ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Denoting 𝑦 — a vector whose components are equal to the the value of the

function 𝑦(𝑥) at the nodes of the grid, we similarly arrive at

𝑦 = 𝐼𝑦(𝑥1) + 𝑆𝐼𝑦′(𝑥1) + 𝑆2𝑦(2).

Given that in our problem we know the value of the desired function 𝑦(𝑥) at

the point 𝑥𝑛+1 (at the right end of the segment) 𝑦𝑛 = 𝑦(𝑥𝑛+1), and not 𝑦′(𝑥1),

from the last equality express the value we need

𝑦′(𝑥1) =
𝑦(𝑥𝑛+1)− 𝑦(𝑥1)−

[︀
𝑆2𝑦(2)

]︀
𝑛+1

[𝑆𝐼]𝑛+1

,
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где
[︀
𝑆2𝑦(2)

]︀
𝑛+1

и [𝑆𝐼]𝑛+1 denote 𝑛+ 1-th components of vectors 𝑆2𝑦(2) and

𝑆𝐼, respectively. Assuming 𝑛 is even, calculate the integral using Simpson’s

formula (see, e.g., [6, 7, 16])

𝑙∫︁
0

√︁
1 + 𝑦′2𝑑𝑥 ≈

𝑙∫︁
0

𝐹 (𝑦′(𝑥))𝑑𝑥 =

=
𝑙

3𝑛

𝑛/2∑︁
𝑖=1

(︁
𝐹 (𝑦

(1)
2𝑖−1) + 4𝐹 (𝑦

(1)
2𝑖 ) + 𝐹 (𝑦

(1)
2𝑖+1)

)︁
.

Thus, we finally arrive at a nonlinear system of 𝑛+ 1 equations with respect

to 𝑛 variables 𝑦
(2)
1 , . . . , 𝑦

(2)
𝑛+1⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑦
(2)
𝑗

1 +
(︁
𝑦
(1)
𝑗

)︁2 [︁𝛼Φ(𝑦(1)) + 𝛽(𝑥𝑗, 𝑦𝑗)
]︁
+ 𝑦

(1)
𝑗 𝛽𝑥(𝑥𝑗, 𝑦𝑗)− 𝛽𝑦(𝑥𝑗, 𝑦𝑗) = 0,

𝑗 = 1, . . . , 𝑛+ 1,

where

𝑦′(𝑥1) =
𝑦(𝑥𝑛+1)− 𝑦(𝑥1)−

[︀
𝑆2𝑦(2)

]︀
𝑛+1

[𝑆𝐼]𝑛+1

,

𝑦(1) = 𝐼𝑦′(𝑥1) + 𝑆𝑦(2),

𝑦 = 𝐼𝑦(𝑥1) + 𝑆𝐼𝑦′(𝑥1) + 𝑆2𝑦(2),

Φ(𝑦(1)) =
𝑥𝑎
3𝑛

𝑛/2∑︁
𝑖=1

(︁
𝐹 (𝑦

(1)
2𝑖−1) + 4𝐹 (𝑦

(1)
2𝑖 ) + 𝐹 (𝑦

(1)
2𝑖+1)

)︁
.

Primer 3.1.1 Consider the problem in which 𝛼 = 0.1, 𝑙 = 𝑦𝑙 = 1, and the

function

𝛽(𝑥, 𝑦) = 1 + sin 5𝑥 · sin 𝑦.

For ease of interpretation, we can assume that the function 𝛽(𝑥, 𝑦) defines the

equation of the terrain surface, i.e., the cost of paving the the higher the point

is located above the 𝑂𝑥𝑦 plane.

Let’s use the approach described above with the application of MatLab1 the

1see appendix A.1.
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cost-optimal trajectory connecting points 𝑂 and 𝐴. trajectory connecting points

𝑂 and 𝐴. Assuming 𝑛 = 26 (where. it is obvious that the desired curve 𝑦 is

approximated by a polynomial of degree of degree 28), we obtain the numerical

results given in the Table 3.1.

𝑥 0 0.0385 0.0769 0.1154 0.1538 0.1923 0.2308 0.2692 0.3077
𝑦 0 0.0110 0.0218 0.0333 0.0453 0.0588 0.0728 0.0880 0.1058

𝑥 0.3462 0.3846 0.4231 0.4615 0.5000 0.5385 0.5769 0.6154 0.6538
𝑦 0.1228 0.1424 0.1635 0.1859 0.2103 0.2363 0.2645 0.2956 0.3282

𝑥 0.6923 0.7308 0.7692 0.8077 0.8462 0.8846 0.9231 0.9615 1.0000
𝑦 0.3668 0.4061 0.4532 0.5087 0.5739 0.6533 0.7500 0.8526 1.0000

Table 3.1: Calculation results.

In Fig. 3.1.1 и 3.2 the resulting trajectory is depicted on surface

𝑧 = 𝛽(𝑥, 𝑦).

The curve is expected to "pass" elevations.

Figure 3.1: The resulting trajectory in Example 3.1.1.
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Figure 3.2: View from another point on the obtained trajectory in Example
3.1.1.

Note that the presented method leads to unsatisfactory results with a large

number of nodes (numerically unstable with a high degree of the interpolation

polynomial). Therefore, there is a need to develop other approaches that allow

us to obtain a solution of the equation (4.1) with any desired accuracy.

3.2 Ritz method

To solve our integro-differential equation (3.1) in the previous paragraph, we

used a numerical method based on approximating the the desired function and

its derivatives by algebraic polynomials. Due to the computational error in-

creases with the degree of the polynomial (see, for example, [6]). this approach

becomes practically inapplicable for finding solutions with high degree of accu-

racy. In this paragraph, in order to to find the minimum of the cost functional,

we consider the Ritz method Ritz [8, 13, 26, 27]. It is shown how it can be

used to the problem under study can be solved. In addition, a more general

formulation of the problem is considered and solved here, in which the cost of

material delivery is not a constant value, but depends on the coordinates of a

point.

First, we briefly summarize the basic idea of the Ritz method in the general
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form [19], and then specify it for the problem under study. then we will specify

it for the problem under study.

Consider the problem of minimization of the functional

𝐼(𝑦) =

𝑙∫︁
0

𝐹 (𝑥, 𝑦, 𝑦′) 𝑑𝑥,

where 𝐹 is a continuous function of its arguments, and 𝑦 ∈ C1[0, 𝑙] under the

condition

𝑦(0) = 𝑦(𝑙) = 0. (3.2)

Let’s

𝜑(𝑥, 𝑎1, . . . , 𝑎𝑛), 𝑛 = 1, 2, . . . , (3.3)

a sequence of 𝑛-parameterized families of functions, each of which is wider than

the previous one by adding an additional parameter, and the conditions (3.2)

are satisfied for all parameter values. For each family we can set the problem

of minimizing the function of 𝑛 arguments

𝐼(𝑎1, . . . , 𝑎𝑛) =

𝑙∫︁
0

𝐹 (𝑥, 𝜑(𝑥, 𝑎1, . . . , 𝑎𝑛), 𝜑
′(𝑥, 𝑎1, . . . , 𝑎𝑛)) 𝑑𝑥, (3.4)

which reduces to solving the system of equations

𝜕𝐼

𝜕𝑎𝑖
= 0, 𝑖 = 1, . . . , 𝑛. (3.5)

We denote by 𝑎1, . . . , 𝑎𝑛 the optimal set of parameters, and

𝑦𝑛 = 𝜑(𝑥, 𝑎1, . . . , 𝑎𝑛)

the corresponding family function. Due to the expansion of the class of admissi-

ble functions as 𝑛 grows, the sequence {𝐼(𝑦𝑛)}∞𝑛=1 is monotonically decreasing:

𝐼(𝑦1) ≥ 𝐼(𝑦2) ≥ . . . .

If the set of functions forming the considered system of families (3.3) is
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dense in the set of functions from C1[0, 𝑙] for which the conditions (3.2) are

satisfied (see [2, 8]), then we obtain that

lim
𝑛→∞

𝐼(𝑎𝑛) = 𝐼(𝑦*), (3.6)

where 𝑦* is– the function which gives the minimum to the functional 𝐼. Indeed,

let any continuously differentiable function 𝑦 defined on [0, 𝑙] and going to zero

at the ends of this interval can be approximated in the norm of the space C1[0, 𝑙]

by a function belonging to one of the families. Then for any 𝛿 > 0 we can choose

𝑛 and 𝑦*𝑛 = 𝜑(𝑥, 𝑎*1, . . . , 𝑎
*
𝑛) such that the inequality

‖𝑦* − 𝑦*𝑛‖C1[0,𝑙] ≤ 𝛿.

Due to the continuity of 𝐹 , for any 𝜀 > 0 we can find 𝛿 > 0 such that for any

‖𝑦* − 𝑦*𝑛‖C1[0,𝑙] ≤ 𝛿

the inequality

𝐼(𝑦*𝑛)− 𝐼(𝑦*) ≤ 𝜀.

is satisfied

Thus, for any 𝜀 > 0, the chain of inequalities

𝐼(𝑦*) ≤ 𝐼(𝑦𝑛) ≤ 𝐼(𝑦*𝑛) ≤ 𝐼(𝑦*) + 𝜀,

whence, due to the arbitrariness of the choice of 𝜀, follows (3.6). Relying on

the Weierstrass theorem on approximation by a trigonometric polynomial, we

can show that the required density property as well as the boundary conditions

(3.2) will be satisfied, in particular, by the system

𝜑(𝑥, 𝑎1, . . . , 𝑎𝑛) =
𝑛∑︁

𝑘=1

𝑎𝑘 sin
𝜋𝑘

𝑙
𝑥, 𝑛 = 1, 2, . . . .

Let 𝑛 be a fixed number. Let us introduce a notation for the vector of
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coefficients 𝑎 = (𝑎1, . . . , 𝑎𝑛)
𝑇 , as well as the derivatives of the function 𝜑:

𝜑𝑥(𝑥, 𝑎) =
𝜕𝜑(𝑥, 𝑎)

𝜕𝑥
=

𝑛∑︁
𝑘=1

𝑎𝑘
𝜋𝑘

𝑙
cos

𝜋𝑘

𝑙
𝑥,

𝜑𝑎𝑘(𝑥, 𝑎) =
𝜕𝜑(𝑥, 𝑎)

𝜕𝑎𝑘
= sin

𝜋𝑘

𝑙
𝑥, , 𝑘 = 1, . . . , 𝑛,

𝜑𝑥𝑎𝑘(𝑥, 𝑎) =
𝜕2𝜑(𝑥, 𝑎)

𝜕𝑥𝜕𝑎𝑘
=

𝜋𝑘

𝑙
cos

𝜋𝑘

𝑙
𝑥, 𝑘 = 1, . . . , 𝑛.

The functional (3.4) for the chosen system of functions will be written as follows:

𝐼(𝑎) =
𝛼

2

⎛⎝ 𝑙∫︁
0

√︀
1 + 𝜑2

𝑥(𝑥, 𝑎) 𝑑𝑥

⎞⎠2

+

𝑙∫︁
0

𝛽(𝑥, 𝜑(𝑥, 𝑎))
√︀

1 + 𝜑2
𝑥(𝑥, 𝑎) 𝑑𝑥,

and the extremum conditions (3.5) reduce to a system of nonlinear algebraic

equations with respect to 𝑎1, . . . , 𝑎𝑛

𝜕𝐼(𝑎)

𝜕𝑎𝑘
= 𝛼

⎛⎝ 𝑙∫︁
0

√︀
1 + 𝜑2

𝑥(𝑥, 𝑎) 𝑑𝑥

⎞⎠ 𝑙∫︁
0

𝜑𝑥𝑎𝑘(𝑥, 𝑎)𝜑𝑥(𝑥, 𝑎)√︀
1 + 𝜑2

𝑥(𝑥, 𝑎)
𝑑𝑥 +

+

𝑙∫︁
0

𝜕𝛽(𝑥, 𝜑(𝑥, 𝑎))

𝜕𝑦
𝜑𝑎𝑘(𝑥, 𝑎)

√︀
1 + 𝜑2

𝑥(𝑥, 𝑎) 𝑑𝑥 +

+

𝑙∫︁
0

𝛽(𝑥, 𝜑(𝑥, 𝑎))
𝜑𝑥𝑎𝑘(𝑥, 𝑎)𝜑𝑥(𝑥, 𝑎)√︀

1 + 𝜑2
𝑥(𝑥, 𝑎)

𝑑𝑥 = 0, 𝑘 = 1, . . . , 𝑛.

Finding the solution 𝑎 = (𝑎1, . . . , 𝑎𝑛)
𝑇 of this of this system, we get an approx-

imate solution 𝜑𝑥(𝑥, 𝑎) of the original problem.

The considered approach allows to find an approximate solution for the

problem formulated in a more general form, namely, for the situation when the

delivery price 𝛼 is not constant, but varies from point to point due to different

construction conditions. For example, a road may require a smaller amount of

materials to build a road on hard ground than on swampy terrain. In this case,

for the chosen system of functions, the integral cost functional will have the
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following form

𝐼(𝑎) =

𝑙∫︁
0

𝛼(𝑥, 𝜑(𝑥, 𝑎))
√︀

1 + 𝜑2
𝑥(𝑥, 𝑎)

𝑥∫︁
0

√︁
1 + 𝜑2

𝜉(𝜉, 𝑎) 𝑑𝜉 𝑑𝑥 +

+

𝑙∫︁
0

𝛽(𝑥, 𝜑(𝑥, 𝑎))
√︀

1 + 𝜑2
𝑥(𝑥, 𝑎) 𝑑𝑥,

which leads to the following system of nonlinear algebraic equations for search

𝑎1, . . . , 𝑎𝑛

𝜕𝐼(𝑎)

𝜕𝑎𝑘
=

𝑙∫︁
0

𝜕𝛼(𝑥, 𝜑(𝑥, 𝑎))

𝜕𝑦
𝜑𝑎𝑘(𝑥, 𝑎)

√︀
1 + 𝜑2

𝑥(𝑥, 𝑎)

𝑥∫︁
0

√︁
1 + 𝜑2

𝜉(𝜉, 𝑎) 𝑑𝜉 𝑑𝑥 +

+

𝑙∫︁
0

𝛼(𝑥, 𝜑(𝑥, 𝑎))
𝜑𝑥𝑎𝑘(𝑥, 𝑎)𝜑𝑥(𝑥, 𝑎)√︀

1 + 𝜑2
𝑥(𝑥, 𝑎)

𝑥∫︁
0

√︁
1 + 𝜑2

𝜉(𝜉, 𝑎) 𝑑𝜉 𝑑𝑥 +

+

𝑙∫︁
0

𝛼(𝑥, 𝜑(𝑥, 𝑎))
√︀
1 + 𝜑2

𝑥(𝑥, 𝑎)

𝑥∫︁
0

𝜑𝜉𝑎𝑘(𝜉, 𝑎)𝜑𝜉(𝜉, 𝑎)√︁
1 + 𝜑2

𝜉(𝜉, 𝑎)
𝑑𝜉 𝑑𝑥 +

+

𝑙∫︁
0

𝜕𝛽(𝑥, 𝜑(𝑥, 𝑎))

𝜕𝑦
𝜑𝑎𝑘(𝑥, 𝑎)

√︀
1 + 𝜑2

𝑥(𝑥, 𝑎) 𝑑𝑥 +

+

𝑙∫︁
0

𝛽(𝑥, 𝜑(𝑥, 𝑎))
𝜑𝑥𝑎𝑘(𝑥, 𝑎)𝜑𝑥(𝑥, 𝑎)√︀

1 + 𝜑2
𝑥(𝑥, 𝑎)

𝑑𝑥 = 0, 𝑘 = 1, . . . , 𝑛.

Note finally that at nonzero boundary conditions we can consider the system

of functions

𝜑(𝑥, 𝑎1, . . . , 𝑎𝑛) = 𝑦(0)+
𝑦(𝑙)− 𝑦(0)

𝑙
𝑥+

𝑛∑︁
𝑘=1

𝑎𝑘 sin
𝜋𝑘

𝑙
𝑥, 𝑛 = 1, 2, . . . . (3.7)

In this case in the above reasoning only the expression for 𝜑𝑥(𝑥, 𝑎):

𝜑𝑥(𝑥, 𝑎) =
𝑦(𝑙)− 𝑦(0)

𝑙
+

𝑛∑︁
𝑘=1

𝑎𝑘
𝜋𝑘

𝑙
cos

𝜋𝑘

𝑙
𝑥,
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and the rest will remain unchanged.

Note that the Ritz method is a powerful tool for solving applied problems,

which is used by many researchers [37,41,42,59,61,67,74,81,82,86,96,99].

Examples of programs implementing the Ritz method for constant and vari-

able 𝛼 are given in the appendices A.2 и A.3 соответственно.

Primer 3.2.1 Consider the problem in which 𝛼 = 0.1, 𝑙 = 1,

𝛽(𝑥, 𝑦) = 1 + sin 5𝑥 · sin 𝑦,

and the boundary conditions are

𝑦(0) = 0, 𝑦(𝑙) = 1.

For ease of understanding the results, we will assume that the function 𝛽(𝑥, 𝑦)

defines the terrain surface, i.e., the cost of the is directly proportional to the

height of a point above the 𝑂𝑥𝑦 plane. Using the MatLab math package, the

following results were obtained for 𝑛 = 5:

𝑎 = (−0.31397, 0.07367,−0.03138, 0.01212,−0.00396)𝑇 .

На the approximate solution found, which is given as (3.7), we have

𝐼(𝑎) = 1.279.

Applying the algorithm described in 3.1 and based on approximation of the

desired curve by an algebraic polynomial of degree 𝑚, for 𝑚 = 26 leads to a

solution on which the functional is 1.325. In Fig. 3.3 and 3.4 shows the surface

𝑧 = 𝛽(𝑥, 𝑦), where the trajectory constructed using the Ritz method (𝑛 = 5)

is highlighted in white, and the solution obtained by the algorithm from 3.1 is

shown in black. (𝑚 = 26).
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Figure 3.3: View from the starting point on the obtained in the example 3.2.1
траектории.

Figure 3.4: View from the endpoint to the ones obtained in the example 3.2.1
траектории.
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Primer 3.2.2 Let’s 𝑙 = 1,

𝛼(𝑥, 𝑦) = cos2 5𝑥 · cos2 𝑦,

𝛽(𝑥, 𝑦) = 1 + sin 5𝑥 · sin 𝑦,

boundary conditions have the form

𝑦(0) = 0, 𝑦(𝑙) = 1.

We are looking for a solution in the form of (3.7) using the Ritz method.

Using the mathematical package MatLab, at 𝑛 = 5 we obtain the following

results:

𝑎 = (−0.32611, 0.11689,−0.0671, 0.03071,−0.01276)𝑇 .

On the approximate solution found, we have

𝐼(𝑎) = 1.44536.

The constructed solution is shown in Fig. 3.5.

Fig. 3.5: The solution in the example 3.2.2 shown on the surface 𝑧 = 𝛽(𝑥, 𝑦).

The considered approach to solving the problem allows to obtain the result
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in the form of a trigonometric polynomial, which with a relatively small number

of summands (in the example 3.2.1 there were 5) gives better results, than

the solution based on approximation of the desired function by an algebraic

polynomial of high degree, proposed by the method of point 3.1 (in the example

3.1.1 this degree was 26). The convergence of the proposed algorithm follows

from the convergence of the Ritz method.

3.3 Galerkin method

Let us first describe the basic idea of the Galerkin method (see, e.g., [19]).

Consider the operator

𝐿(𝑦) =
𝑦′′

1 + 𝑦′2

(︂
𝛼

𝑙∫︁
0

√︁
1 + 𝑦′2𝑑𝑥+ 𝛽(𝑥, 𝑦)

)︂
+ 𝑦′

𝜕𝛽(𝑥, 𝑦)

𝜕𝑥
− 𝜕𝛽(𝑥, 𝑦)

𝜕𝑦
,

describing the necessary condition of minimum

𝐿(𝑦) = 0. (3.8)

We will look for the solution in the form

𝑦 =
𝑦𝑙
𝑙
𝑥+

∞∑︁
𝑘=1

𝑎𝑘𝜑𝑘(𝑥), (3.9)

where {𝜑𝑘(𝑥) | 𝑘 = 1, 2, . . . } – is a system of basis functions in the space

𝐶2
0 [0, 𝑙] of twice continuous, finite functions on the segment [0, 𝑙]. Obviously,

the function (3.9) satisfies the boundary conditions

𝑦(0) = 𝑦(𝑙) = 0.

You can, for example, use the functions

𝜑𝑘(𝑥) = sin
𝑘𝜋𝑥

𝑙
, 𝑘 = 1, 2, . . . . (3.10)

or

𝜑𝑘(𝑥) = (𝑙 − 𝑥)𝑥𝑘, 𝑘 = 1, 2, . . . , (3.11)
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which follows directly from the approximation theorems of Weierstrass.

Let’s look at the problem (3.8) in space L2[0, 𝑙]. Obviously, the function 𝑦*

satisfies the equation (3.8) if and only if 𝐿(𝑦*) is orthogonal to all functions of

the system {𝜑𝑘(𝑥) | 𝑘 = 1, 2, . . . }. However, if we work exclusively with the

sum of the first 𝑛 terms of a series (3.9), we can satisfy only 𝑛 orthogonality

conditions, i.e.

𝑙∫︁
0

𝐿(𝑦*(𝑥))𝜑𝑘(𝑥)𝑑𝑥

=

𝑙∫︁
0

𝐿

(︃
𝑦𝑙
𝑙
𝑥+

𝑛∑︁
𝑘=1

𝑎𝑘𝜑𝑘(𝑥)

)︃
𝜑𝑘(𝑥)𝑑𝑥 = 0, 𝑘 = 1, . . . , 𝑛.

These equations are used to find the unknown coefficients of the basis

function decomposition of the solution. More detailed information about the

method can be found, for example, in [19].

The Galerkin method and its modifications are used by many researchers

to solve the applied [43–45,48,53,57,66,68,70,72,75,80,83,85,87].

Let us consider numerical examples in which we will assume that the terrain

surface on which the road is to be built is given by the function 𝛽. This

assumption allows us to obtain a clear graphical illustration and interpretation

of the results. Examples of programs implementing the Galerkin method for

the systems of basis functions (3.10) and (3.11) are given in the appendices A.4

and A.5, respectively.

Primer 3.3.1 Пусть 𝛼 = 0.1, 𝑙 = 1, 𝑦𝑙 = 1 и 𝛽 : R2 → R

𝛽(𝑥, 𝑦) = 1 + sin 5𝑥 · sin 𝑦.

First, we use the system of functions (3.10) and find the solution in the

form of

𝑦(𝑥) =
𝑦𝑙
𝑙
𝑥+

5∑︁
𝑘=1

𝑎𝑘 sin
𝜋𝑘

𝑙
𝑥. (3.12)
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Using the Galerkin method, we obtain (black curve in Fig. 3.6)

𝑎1 = −0.31489, 𝑎2 = 0.07442, 𝑎3 = −0.03199, 𝑎4 = 0.01256, 𝑎5 = −0.00424.

Recall that for the same problem, the Ritz method, discussed in the para-

graph 3.2, led us (see Example 3.2.1) to a solution whose cost is also equal to

1, 279. As we can see in Fig. 3.6, these two solutions are almost identical.

Figure 3.6: Graphs of solutions of the form (3.12) obtained by Galerkin (black
curve) and Ritz (white curve) methods in Example 3.3.1.

Now let us use the system (3.11) and find the solution in the form of

𝑦(𝑥) =
𝑦𝑙
𝑙
𝑥+

5∑︁
𝑘=1

𝑎𝑘𝑥
𝑘(1− 𝑥). (3.13)

Applying Galerkin’s method, we obtain

𝑎1 = −0.31489, 𝑎2 = 0.07442, 𝑎3 = −0.03199, 𝑎4 = 0.01256, 𝑎5 = −0.00424.

Fig. 3.7 shows solutions of the form (3.13) obtained by the Galerkin and



40

Ritz method. The cost of the solution (i.e., the value of the functional 𝐽) on

the solution obtained

𝑎1 = −0, 66947, 𝑎2 = −1, 03044, 𝑎3 = 0, 4348, 𝑎4 = 0, 51721, 𝑎5 = −2, 37822,

amounts to 1, 2798.

Figure 3.7: Graphs of solutions of the form (3.13), obtained by Galerkin (black
curve) and Ritz (white curve) methods in Eq. 3.3.1.

Primer 3.3.2 Пусть 𝛼 = 0.5, 𝑙 = 1, 𝑦𝑙 = 1 и 𝛽 : R2 → R

𝛽(𝑥, 𝑦) = 5 + 2 cos 2𝑥 · sin 𝑦.

In Fig. 3.8 an approximate solution of the form (3.13), obtained by Galerkin’s

method, where

𝑎1 = −0.13852, 𝑎2 = 0.02332, 𝑎3 = −0.01159, 𝑎4 = 0.00629, 𝑎5 = −0.03046.

The cost of the solution (value of the functional 𝐽) is equal to 7.964.
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Figure 3.8: Graph of a solution of the form (3.13), obtained by the Galerkin
method in Example 3.3.2.

Primer 3.3.3 Пусть 𝛼 = 0.1, 𝑙 = 1, 𝑦𝑙 = 1 и 𝛽 : R2 → R

𝛽(𝑥, 𝑦) =
√︀

2.75− (𝑥− 0.5)2 − 10(𝑦 − 0.5)2.

Galerkin’s method leads us to a solution of the form (3.13), where

𝑎1 = −0, 78479, 𝑎2 = 0, 02804, 𝑎3 = 4, 52723, 𝑎4 = −3, 25439, 𝑎5 = 0, 2608.

This solution is shown in Fig. 3.9 and has a value (value of the functional

𝐽) 1, 941.

Primer 3.3.4 Let’s 𝛼 = 0.5, 𝑙 = 1, 𝑦𝑙 = 1 и 𝛽 : R2 → R

𝛽(𝑥, 𝑦) =
√︀
0.5 + 10(𝑥− 0.5)2 − (𝑦 − 0.5)2.

Galerkin’s method gives us a solution of the form (3.13), where

𝑎1 = −0.43003, 𝑎2 = 0.07392, 𝑎3 = −7.33056, 𝑎4 = 25.32797, 𝑎5 = −20.57708.
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Figure 3.9: Graph of the solution of the form (3.13) obtained by Galerkin’s
method in Example 3.3.3.

This solution is shown in Fig. 3.10 and has a cost (value of the functional

𝐽) 2, 1.

Figure 3.10: Graph of the solution of the form (3.13) obtained by Galerkin’s
method in Example 3.3.4.
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CHAPTER 4

Numerical solution of the problem. Existence

and uniqueness of the solution

In this chapter, we describe a numerical method for solving the integro-differential

3.1 based on the well-known and thoroughly studied in the literature shooting

method. Under additional assumptions, the existence of the solution is proved

using Schauder’s fixed point principle. The question of the singularity of the

solution is investigated.

The results presented in this chapter were obtained by the author in the

paper [1].

4.1 Shooting method for finding the optimal trajectory

Obtaining the optimal trajectory using the approximate methods described in

the previous paragraph can be time-consuming, so it is of particular interest to

develop numerical methods for solving the integro-differential equation (3.1).

The main purpose of this paragraph is to construct an iterative algorithm for

finding the solution of the equation (3.1), combining the ideas of linearization

and the shooting method.

Thus, it follows from Theorem 2.2.1 that the desired optimal trajectory

𝑦*(𝑥) must satisfy the integro-differential equation

𝑦′′
(︂
𝛼

∫︁ 𝑙

0

√︁
1 + 𝑦′2𝑑𝑥+ 𝛽(𝑥, 𝑦)

)︂
+ (1 + 𝑦′

2
) (𝑦′𝛽𝑥(𝑥, 𝑦)− 𝛽𝑦(𝑥, 𝑦)) = 0,



44

which can be rewritten as

𝑦′′ = −(1 + 𝑦′2) (𝑦′𝛽𝑥(𝑥, 𝑦)− 𝛽𝑦(𝑥, 𝑦))

𝛼

∫︁ 𝑙

0

√︁
1 + 𝑦′2𝑑𝑥+ 𝛽(𝑥, 𝑦)

, (4.1)

where 𝑦(0) = 0 и 𝑦(𝑙) = 0.

One of the main problems in the numerical solution of this equation is the

calculation of the integral in the denominator of the right-hand side (4.1). On

the one hand, when applying the ideas of classical finite-difference schemes, the

equation must be used to calculate sequentially the values of the function in

the nodes of the grid used, and on the other hand, the values of the function

in all nodes must be known in advance to calculate the integral.

In this paragraph, an iterative algorithm based on linearization and the

shooting method is proposed. The latter is well studied and described in detail

in the literature and is often used in solving applied problems [6, 10, 49, 51, 54,

55,58,60,65,73,73,92]. Linearizing the original problem in the neighborhood of

some approximation 𝑦𝑛(𝑥) of the solution serves two purposes: first, we can use

𝑦𝑛(𝑥) to compute the integral in the denominator of the right-hand side (4.1),

and, secondly, it is possible to apply the shooting method to the obtained linear

boundary value problem to obtain the next approximation. 𝑦𝑛+1(𝑥).

Let us denote the right-hand side (4.1) by 𝑓(𝑥, 𝑦, 𝑦′) and suppose that an

approximate solution is given 𝑦𝑛(𝑥). Then in the neighborhood of 𝑦𝑛(𝑥) the

decomposition takes place

𝑓(𝑥, 𝑦, 𝑦′) ≈ 𝑓
(︁
𝑥, 𝑦𝑛, 𝑦

′
𝑛

)︁
+

𝜕𝑓

𝜕𝑦

(︁
𝑥, 𝑦𝑛, 𝑦

′
𝑛

)︁
(𝑦 − 𝑦𝑛) +

𝜕𝑓

𝜕𝑦′

(︁
𝑥, 𝑦𝑛, 𝑦

′
𝑛

)︁
(𝑦′ − 𝑦′𝑛)

For convenience, we introduce the notations

𝑓𝑛0(𝑥) = 𝑓(𝑥, 𝑦𝑛, 𝑦
′
𝑛), 𝑓𝑛1(𝑥) =

𝜕𝑓

𝜕𝑦
(𝑥, 𝑦𝑛, 𝑦

′
𝑛), 𝑓𝑛2(𝑥) =

𝜕𝑓

𝜕𝑦′
(𝑥, 𝑦𝑛, 𝑦

′
𝑛),

where

𝑓𝑛0(𝑥) = −(1 + 𝑦′𝑛
2) (𝑦′𝑛𝛽𝑥(𝑥, 𝑦𝑛)− 𝛽𝑦(𝑥, 𝑦𝑛))

𝛼

∫︁ 𝑙

0

√︁
1 + 𝑦′𝑛

2𝑑𝑥+ 𝛽(𝑥, 𝑦𝑛)

,
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𝑓𝑛1(𝑥) =− 1(︂
𝛼

∫︁ 𝑙

0

√︁
1 + 𝑦′𝑛

2𝑑𝑥+ 𝛽(𝑥, 𝑦𝑛)

)︂2

[︂(︁
(1 + 𝑦′𝑛

2
) (𝑦′𝑛𝛽𝑥𝑦(𝑥, 𝑦𝑛)− 𝛽𝑦𝑦(𝑥, 𝑦𝑛))

)︁
×
(︂
𝛼

∫︁ 𝑙

0

√︁
1 + 𝑦′𝑛

2𝑑𝑥+ 𝛽(𝑥, 𝑦𝑛)

)︂
− 𝛽𝑦(𝑥, 𝑦𝑛)(1 + 𝑦′𝑛

2
)

× (𝑦′𝑛𝛽𝑥(𝑥, 𝑦𝑛)− 𝛽𝑦(𝑥, 𝑦𝑛))

]︂
,

(4.2)

𝑓𝑛2(𝑥) =− 1(︂
𝛼

∫︁ 𝑙

0

√︁
1 + 𝑦′𝑛

2𝑑𝑥+ 𝛽(𝑥, 𝑦𝑛)

)︂2

[︂(︁
2𝑦′𝑛 (𝑦

′
𝑛𝛽𝑥(𝑥, 𝑦𝑛)− 𝛽𝑦(𝑥, 𝑦𝑛))

+ (1 + 𝑦′𝑛
2
)𝛽𝑥(𝑥, 𝑦𝑛)

)︁(︂
𝛼

∫︁ 𝑙

0

√︁
1 + 𝑦′𝑛

2𝑑𝑥+ 𝛽(𝑥, 𝑦𝑛)

)︂
− 𝛼

(︁
(1 + 𝑦′𝑛

2
) (𝑦′𝑛𝛽𝑥(𝑥, 𝑦𝑛)− 𝛽𝑦(𝑥, 𝑦𝑛))

)︁∫︁ 𝑙

0

𝑦′𝑛√︀
1 + 𝑦′𝑛

2
𝑑𝑥

]︂
.

(4.3)

Then the new approximation 𝑦𝑛+1(𝑥) can be found as the solution of the fol-

lowing boundary value problem

𝑦′′𝑛+1(𝑥) =𝑓𝑛0(𝑥) + 𝑓𝑛1(𝑥)(𝑦𝑛+1(𝑥)− 𝑦𝑛(𝑥))+

+ 𝑓𝑛2(𝑥)(𝑦
′
𝑛+1(𝑥)− 𝑦′𝑛(𝑥)),

𝑦𝑛+1(0) = 0, 𝑦𝑛+1(𝑙) = 0.

(4.4)

The grid analog of the problem (4.1) looks like

𝑦𝑘+1 − 2𝑦𝑘 + 𝑦𝑘−1

ℎ2
= 𝑓(𝑥𝑘, 𝑦𝑘, 𝑦′𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝑦0 = 0, 𝑦𝑁 = 0,

where

ℎ = 𝑙/𝑁, 𝑥𝑘 = 𝑘ℎ,
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and 𝑦𝑘 is an approximation of 𝑦(𝑥𝑘). Let

𝑦𝑘𝑛, 𝑘 = 0, . . . , 𝑁

be the set of values forming the 𝑛th approximation to the solution. In the

neighborhood of this approximation the decomposition is valid

𝑓(𝑥𝑘, 𝑦𝑘, 𝑦′𝑘) ≈𝑓(𝑥𝑘, 𝑦𝑘𝑛, 𝑦
′𝑘
𝑛)+

+
𝜕𝑓

𝜕𝑦
(𝑥𝑘, 𝑦𝑘𝑛, 𝑦

′𝑘
𝑛)(𝑦

𝑘 − 𝑦𝑘𝑛) +
𝜕𝑓

𝜕𝑦′
(𝑥𝑘, 𝑦𝑘𝑛, 𝑦

′𝑘
𝑛)(𝑦

′𝑘 − 𝑦′
𝑘
𝑛) =

=𝑓𝑛0(𝑥
𝑘) + 𝑓𝑛1(𝑥

𝑘)(𝑦𝑘 − 𝑦𝑘𝑛) + 𝑓𝑛2(𝑥
𝑘)(𝑦′

𝑘 − 𝑦′
𝑘
𝑛) =

=𝑓𝑘
𝑛0 + 𝑓𝑘

𝑛1(𝑦
𝑘 − 𝑦𝑘𝑛) + 𝑓𝑘

𝑛2(𝑦
′𝑘 − 𝑦′

𝑘
𝑛).

Hence, the next approximation can be found from the grid analog of the bound-

ary value problem (4.4)

𝑦𝑘+1
𝑛+1 − 2𝑦𝑘𝑛+1 + 𝑦𝑘−1

𝑛+1

ℎ2
= 𝑓𝑘

𝑛0 + 𝑓𝑘
𝑛1(𝑦

𝑘
𝑛+1 − 𝑦𝑘𝑛) + 𝑓𝑘

𝑛2(𝑦
′𝑘
𝑛+1 − 𝑦′

𝑘
𝑛),

𝑘 = 1, . . . , 𝑁 − 1,

𝑦0𝑛+1 = 0, 𝑦𝑁𝑛+1 = 0.

(4.5)

Substituting the symmetric difference derivative in place of 𝑦′𝑘𝑛+1 and 𝑦′𝑘𝑛 in

(4.5) we arrive at the discrete problem

𝑦𝑘+1
𝑛+1 =

𝑓𝑘
𝑛0 + 𝑓𝑘

𝑛1(𝑦
𝑘
𝑛+1 − 𝑦𝑘𝑛)−

𝑓𝑘
𝑛2

2ℎ

(︀
𝑦𝑘−1
𝑛+1 + 𝑦𝑘+1

𝑛 − 𝑦𝑘−1
𝑛

)︀
+ 2𝑦𝑘𝑛+1 − 𝑦𝑘−1

𝑛+1

1− ℎ𝑓𝑘
𝑛2

2

,

𝑘 = 1, . . . , 𝑁 − 1,

𝑦0𝑛+1 = 0, 𝑦𝑁𝑛+1 = 0.

(4.6)

Note that the integrals in

𝑓𝑘
𝑛𝑖, 𝑖 = 1, 2, 3

can be calculated numerically, e.g., by the rule of trapezoids.

The boundary value problem (4.6) can be solved by the shooting method.

Let 𝑦𝑘𝑛, 𝑘 = 1, . . . , 𝑁 be given. We obtain ̃︀𝑦𝑘𝑛+1, 𝑘 = 1, . . . , 𝑁 as the solution
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of the following problem

̃︀𝑦𝑘+1
𝑛+1 =

𝑓𝑘
𝑛0 + 𝑓𝑘

𝑛1(̃︀𝑦𝑘𝑛+1 − 𝑦𝑘𝑛)−
𝑓𝑘
𝑛2

2ℎ

(︀̃︀𝑦𝑘−1
𝑛+1 + 𝑦𝑘+1

𝑛 − 𝑦𝑘−1
𝑛

)︀
+ 2̃︀𝑦𝑘𝑛+1 − ̃︀𝑦𝑘−1

𝑛+1

1− ℎ𝑓𝑘
𝑛2

2

,

𝑘 = 1, . . . , 𝑁 − 1,̃︀𝑦0𝑛+1 = 0, ̃︀𝑦1𝑛+1 = 𝑦1𝑛,

(4.7)

and ̂︀𝑦𝑘𝑛+1, 𝑘 = 1, . . . , 𝑁

as the solution of the corresponding homogeneous problem

̂︀𝑦𝑘+1
𝑛+1 =

𝑓𝑘
𝑛1̂︀𝑦𝑘𝑛+1 −

𝑓𝑘
𝑛2

2ℎ
̂︀𝑦𝑘−1
𝑛+1 + 2̂︀𝑦𝑘𝑛+1 − ̂︀𝑦𝑘−1

𝑛+1

1− ℎ𝑓𝑘
𝑛2

2

,

𝑘 = 1, . . . , 𝑁 − 1,̂︀𝑦0𝑛+1 = 0, ̂︀𝑦1𝑛+1 = 𝑦1𝑛.

(4.8)

The general solution (4.6) has the form

𝑦𝑘𝑛+1 = ̃︀𝑦𝑘𝑛+1 + 𝑐̂︀𝑦𝑘𝑛+1,

where 𝑐 is a constant. Hence, we can choose the constant such that the bound-

ary condition

𝑦𝑁𝑛+1 = 0,

that is

𝑐 = −
̃︀𝑦𝑁𝑛+1̂︀𝑦𝑁𝑛+1

.

Finally, as an initial approximation we can choose, for example, a straight

line satisfying the boundary conditions

𝑦𝑘0 = 0, 𝑘 = 1, . . . , 𝑁 (4.9)

and terminate the calculations as soon as the inequality for some small positive
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𝜀 is satisfied

|𝐽(𝑦𝑛+1)− 𝐽(𝑦𝑛)| ≤ 𝜀 (4.10)

4.2 Existence and uniqueness of the solution

We will discuss the questions of existence and uniqueness of the solution of the

problem (4.1). We will need auxiliary information (see [18,21,25,31]).

Definition 4.2.1 Functions from the set 𝑈 ⊂ C1[0, 𝑙] are called uniformly

bounded if there exists 𝑝 > 0 such that

|𝑦(𝑥)|+ |𝑦′(𝑥)| ≤ 𝑝

for any 𝑦(𝑥) ∈ 𝑈 and any 𝑥 ∈ [0, 𝑙].

Definition 4.2.2 Functions from the set 𝑈 ⊂ C1[0, 𝑙] are called equivariantly

continuous if for any 𝜀 > 0 there exists 𝛿 > 0 such that for any 𝑥1, 𝑥2 of [0, 𝑙]

for which |𝑥1 − 𝑥2| < 𝛿 and for all 𝑦(𝑥) ∈ 𝑈 the inequality holds

|𝑦(𝑥1)− 𝑦(𝑥2)|+ |𝑦′(𝑥1)− 𝑦′(𝑥2)| < 𝜀.

Theorem 4.2.1 (Arzel’s theorem) Let 𝑈 ⊂ C1[0, 𝑙] be a set of continuously

differentiable functions. For 𝑈 to be compact, it is necessary and sufficient that

the functions from the set 𝑈 are uniformly bounded and equally continuous.

Note that this theorem is a consequence of the classical theorem of Arzel for

C[0, 𝑙] and the theorem on honorable differentiation of functional sequences.

Definition 4.2.3 A continuous operator 𝐴 defined on a set 𝑈 of a linear nor-

malized space 𝐸 with a region of values located in 𝑈 is called quite continuous

if every bounded subset of 𝑈 it maps into a compact subset.

Theorem 4.2.2 (Schauder’s fixed point principle) If a semicontinuous op-

erator 𝐴 maps a bounded closed convex set 𝑆 of Banach space onto its part,

then there exists a fixed point of this mapping, i.e., a point 𝑥 ∈ 𝑆 such that

𝐴𝑥 = 𝑥.
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Let us now proceed to the proof of existence of the solution of the problem

(4.1).

Theorem 4.2.3 Let’s 𝑀 ≥ 1

2𝑙
, and exists

𝑐 ≤ 𝛼

32𝑙2𝑀 2
,

such that the function 𝛽(𝑥, 𝑦) in the domain of its definition satisfies the con-

dition

max{|𝛽𝑥(𝑥, 𝑦)|, |𝛽𝑦(𝑥, 𝑦)|} ≤ 𝑐.

Then in the area

𝐺 = {𝑦 | max
𝑥∈[0,𝑙]

|𝑦(𝑥)| = ‖𝑦‖C[0,𝑙] ≤ 2𝑙2𝑀, ‖𝑦′‖C[0,𝑙] ≤ 2𝑙𝑀}

there is a single solution to the problem (4.1).

Proof Note that the original problem (4.1) is equivalent to the operator equa-

tion 𝐴𝑦(𝑥) = 𝑦(𝑥), where the operator 𝐴 mapping C1[0, 𝑙] to C1[0, 𝑙] is defined

as follows:

𝐴𝑦(𝑥) =

∫︁ 𝑥

0

𝑑𝜉

∫︁ 𝜉

0

𝑓(𝜂, 𝑦(𝜂), 𝑦′(𝜂))𝑑𝜂 − 𝑥

𝑙

∫︁ 𝑙

0

𝑑𝜉

∫︁ 𝜉

0

𝑓(𝜂, 𝑦(𝜂), 𝑦′(𝜂))𝑑𝜂.

If the sequence 𝑦𝑛(𝑥) belonging to the set 𝐺 converges in the sense of the

norm of the space C1[0, 𝑙] to the function 𝑦(𝑥) belonging, obviously, to the same

set, then by the continuity of the function 𝑓(𝑥, 𝑦, 𝑦′) we have 𝑓(𝑥, 𝑦𝑛, 𝑦
′
𝑛) →

𝑓(𝑥, 𝑦, 𝑦′) uniformly on [0, 𝑙]. Hence, due to the possibility of passing to the

limit under the sign of the integral at uniform convergence, we obtain 𝐴𝑦𝑛 →
𝐴𝑦, i.e., the operator 𝐴 is continuous on 𝐺.

We prove that if 𝑦 belongs to 𝐺, then 𝐴𝑦 is also contained in 𝐺. Indeed,

given that 𝛽 ≥ 0, for any 𝑦 of 𝐺 and all 𝑥 of [0, 𝑙] we have

|𝑓(𝑥, 𝑦, 𝑦′)| =

⃒⃒⃒⃒
⃒ (1 + 𝑦′2)(𝑦′𝛽𝑥 − 𝛽𝑦)

𝛼
∫︀ 𝑙

0

√︀
1 + 𝑦′2𝑑𝑥+ 𝛽

⃒⃒⃒⃒
⃒ ≤ (1 + (2𝑙𝑀)2)(1 + 2𝑙𝑀)𝑐

𝛼𝑙
.
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Given that

1 ≤ 2𝑙𝑀,

we obtain

|𝑓(𝑥, 𝑦, 𝑦′)| ≤ 𝑀,

whence for any 𝑥 ∈ [0, 𝑙] the following inequalities are satisfied

|𝐴𝑦(𝑥)| ≤
∫︁ 𝑥

0

𝑑𝜉

∫︁ 𝜉

0

|𝑓(𝜂, 𝑦(𝜂), 𝑦′(𝜂))|𝑑𝜂+

+
𝑥

𝑙

∫︁ 𝑙

0

𝑑𝜉

∫︁ 𝜉

0

|𝑓(𝜂, 𝑦(𝜂), 𝑦′(𝜂))|𝑑𝜂 ≤ 2𝑙2𝑀,

(4.11)

⃒⃒⃒⃒
𝑑

𝑑𝑥
𝐴𝑦(𝑥)

⃒⃒⃒⃒
≤
∫︁ 𝑥

0

|𝑓(𝜂, 𝑦(𝜂), 𝑦′(𝜂))|𝑑𝜂+

+
1

𝑙

∫︁ 𝑙

0

𝑑𝜉

∫︁ 𝜉

0

|𝑓(𝜂, 𝑦(𝜂), 𝑦′(𝜂))|𝑑𝜂 ≤ 2𝑙𝑀.

(4.12)

Thus 𝐴𝑦(𝑥) ∈ 𝐺, and hence the operator 𝐴 transforms this set into itself.

Let 𝑥1, 𝑥2 be arbitrary points of the segment [0, 𝑙], then the following in-

equalities are true

|𝐴𝑦(𝑥1)− 𝐴𝑦(𝑥2)| ≤ 2𝑙𝑀 |𝑥1 − 𝑥2|, (4.13)⃒⃒⃒⃒
𝑑

𝑑𝑥
𝐴𝑦(𝑥1)−

𝑑

𝑑𝑥
𝐴𝑦(𝑥2)

⃒⃒⃒⃒
≤ 𝑀 |𝑥1 − 𝑥2|. (4.14)

Inequalities (4.11), (4.12), (4.13), (4.14) by virtue of the above theorem of

Arzell show that the operator 𝐴 transforms 𝐺 into a compact set.

It is also obvious that the set 𝐺 is bounded, closed and convex.

Thus all conditions of Schauder’s theorem are satisfied, so there exists a

fixed point of the operator 𝐴, which completes the proof.

■

Let us turn to the question of the uniqueness of the solution. It, as a rule,

is proved on the basis of the Lipschitzianity of the right part of the equation

under study [4, 28–30,32,33].

We will still consider the problem on the domain 𝐺 under the condition

that the function 𝛽(𝑥, 𝑦) and all its first and second order partial derivatives
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are bounded. From (4.2) and (4.3) we see that under the assumptions made,

the function 𝑓(𝑥, 𝑦, 𝑦′) satisfies the Lipschitz condition on its last two variables

for any 𝑥 in the segment [0, 𝑙]. That is, there is a constant 𝐿 such that for any

𝑥 of the given segment the inequality holds for any 𝑥 of the given segment

|𝑓(𝑥, 𝑦1, 𝑦′1)− 𝑓(𝑥, 𝑦2, 𝑦
′
2)| ≤ 𝐿 (|𝑦1(𝑥)− 𝑦2(𝑥)|+ |𝑦′1(𝑥)− 𝑦′2(𝑥)|) . (4.15)

Theorem 4.2.4 Let all conditions of Theorem 2 be satisfied and the partial

derivatives of 𝛽𝑥𝑦(𝑥, 𝑦), 𝛽𝑦𝑦𝑦(𝑥, 𝑦) be bounded. Then the solution of the problem

(4.1) in the domain 𝐺 is singular.

Proof Suppose that in 𝐺 there exists another solution 𝑧(𝑥) to the problem

(4.1) besides 𝑦(𝑥). Let the point 𝑥0 ∈ [0, 𝑙] be such that

𝑦(𝑥) = 𝑧(𝑥), 𝑦′(𝑥) = 𝑧′(𝑥)

for any 𝑥 ∈ [0, 𝑥0], but

𝑦(𝑥) ̸= 𝑧(𝑥), 𝑦′(𝑥) ̸= 𝑧′(𝑥) (4.16)

in any open right neighborhood of the point 𝑥0. Let us take an arbitrary small

𝜀 > 0. Since there are points in the segment [𝑥0, 𝑥0+ 𝜀] for which (4.16) holds,

the function

|𝑦(𝑥)− 𝑧(𝑥)|+ |𝑦′(𝑥)− 𝑧′(𝑥)|

reaches on it at some point 𝛾 its largest value 𝜃 > 0. Obviously 𝛾 ̸= 𝑥0. The

following equations are true

𝑦(𝑥) =

∫︁ 𝑥

0

𝑑𝜉

∫︁ 𝜉

0

𝑓(𝜂, 𝑦(𝜂), 𝑦′(𝜂))𝑑𝜂 − 𝑥

𝑙

∫︁ 𝑙

0

𝑑𝜉

∫︁ 𝜉

0

𝑓(𝜂, 𝑦(𝜂), 𝑦′(𝜂))𝑑𝜂.

𝑧(𝑥) =

∫︁ 𝑥

0

𝑑𝜉

∫︁ 𝜉

0

𝑓(𝜂, 𝑧(𝜂), 𝑧′(𝜂))𝑑𝜂 − 𝑥

𝑙

∫︁ 𝑙

0

𝑑𝜉

∫︁ 𝜉

0

𝑓(𝜂, 𝑧(𝜂), 𝑧′(𝜂))𝑑𝜂.

Let us subtract one of these equalities from the other and use the Lipschitz
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condition for estimation (4.15).

|𝑦(𝛾)− 𝑧(𝛾)|+|𝑦′(𝛾)− 𝑧′(𝛾)| = 𝜃 ≤∫︁ 𝛾

𝑥0

𝑑𝜉

∫︁ 𝜉

𝑥0

|𝑓(𝜂, 𝑦(𝜂), 𝑦′(𝜂))− 𝑓(𝜂, 𝑧(𝜂), 𝑧′(𝜂))|𝑑𝜂+

+
𝛾

𝑙

∫︁ 𝑙

𝑥0

𝑑𝜉

∫︁ 𝜉

𝑥0

|𝑓(𝜂, 𝑦(𝜂), 𝑦′(𝜂))− 𝑓(𝜂, 𝑧(𝜂), 𝑧′(𝜂))|𝑑𝜂 ≤

≤2(𝛾 − 𝑥0)

∫︁ 𝑙

𝑥0

𝐿(|𝑦(𝜂)− 𝑧(𝜂)|+ |𝑦′(𝜂)− 𝑧′(𝜂)|)𝑑𝜂 ≤

≤2𝐿𝑙𝜀𝜃.

Thus,

𝜃 ≤ 2𝐿𝑙𝜀𝜃,

whence, by virtue of the positivity of 𝜃 > 0, we obtain the inequality

1 ≤ 2𝐿𝑙𝜀,

leading to a contradiction, since 𝜀 can be chosen as small as desired.

■

In conclusion, let us illustrate the work of the 4.1 method constructed in

paragraph 4.1 with an example. An example program implementing the method

proposed in this chapter is given in the appendix A.6.

Primer 4.2.1 Assume that the construction cost is directly proportional to the

elevation of the terrain, and that the terrain surface is defined by the function

𝑧 = 𝛽(𝑥, 𝑦). Let 𝑙 = 1, 𝛼 = 1 and the function 𝛽 : R2 → R has the form

𝛽(𝑥, 𝑦) = 1 +
1

100
sin 5𝑥 · sin 𝑦.

Here we can put 𝑀 = 0.5, and 𝑐 is obviously equal to 0.05. Thus, the

conditions of Theorems 2 and 3 are satisfied, so in the region of

𝐺 = {𝑦 | ‖𝑦‖C[0,𝑙] ≤ 1, ‖𝑦′‖C[0,𝑙] ≤ 1}

the solution to the problem exists and is unique.



53

Applying the proposed method for 𝑁 = 1000, initial approximation (4.9)

and stopping criterion (4.10) at 𝜀 = 10−6 we come to the solution (see Fig.

4.1) for 𝑛 = 3 iterations and 0.17 seconds1. The value of the cost functional

on the obtained solution is 1.5.

Ritz method, in which the approximate solution is sought in the form of

𝑦(𝑥) =
5∑︁

𝑘=1

𝑎𝑘 sin
𝜋𝑘

𝑙
𝑥, (4.17)

leads to a solution (see Fig. 4.1) in 0.57 seconds. The following coefficients

are obtained

𝑎1 = −0.0002, 𝑎2 = −0.0001, 𝑎3 = 0.00002, 𝑎4 = 0, 𝑎5 = 0,

and the value of the cost functional on the obtained solution is equal to 1.5.

Figure 4.1: Images of visually indistinguishable solutions obtained by the Ritz
and gunning methods in Example 4.2.1.

1Calculations were performed in the program MatLab R2022b on a PC with Core Duo P8600 processor

and 4Gb RAM
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In this study, we develop a method for finding the cost-minimal trajec-

tory that uses ideas and approaches of calculus of variations and, therefore,

guarantees the optimality of the obtained solution. The cost functional is con-

structed and the necessary condition of its minimum, which has the form of

an integro-differential equation, is derived. Methods of approximate and nu-

merical solution of this equation are proposed. Using the Schuader fixed point

principle, the existence theorem of the solution is proved, and the question of

its uniqueness is investigated.
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Conclusion

We give a brief overview of the results obtained in the paper.

The introduction gives a review of the literature on the topic of the work,

discusses the relevance of the study, its theoretical and practical value, and

scientific novelty.

The first chapter summarizes the main definitions and auxiliary results from

functional analysis, higher algebra, calculus of variations, which are used in the

further presentation.

In the second chapter, the formulation of the problem of searching for a

cost-optimal trajectory is considered, and the assumptions under which the

mathematical model is constructed are introduced. The problem is reduced to

the search for the function on which the minimum of the integral cost functional

is achieved. To solve this problem of calculus of variations, a necessary condition

for the minimum of the constructed functional is derived. This condition has

the form of an integro-differential equation.

In the third chapter, approximate methods for solving the problem are pro-

posed. Thus, the integro-differential equation obtained in the first chapter is

solved using a method based on polynomial approximation, as well as using the

Galerkin method. This chapter also considers a problem formulation in which

the delivery cost varies from point to point. It is shown how an approximate

solution can be obtained for the problem of minimizing the cost functional

obtained for this case using the Ritz method.

The fourth chapter is devoted to the study of existence and uniqueness of

the solution of the problem. The existence theorem is proved using Schauder’s

fixed point principle. In this section, an iterative also method for solving the

integro-differential equation based on linearization and the method of shooting.

The appendices also contain program listings that implement the methods

of solving the problem proposed in this study.
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Further research can be carried out in the direction of model refinement,

as well as the study of the problem with constraints. Indeed, an important

and of great practical interest is the situation when there are «restricted» areas

on the relief, in which there are swamps, ponds, rivers, etc. natural obstacles

and obstacles. This problem as well as the one considered in this paper re-

quires derivation of necessary conditions and construction of methods for their

solution.
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APPENDIX A

Appendices

A.1 Listing of MatLab program implementing the method

based on polynomial approximation

function z = beta(x,y)

z=1+sin(5*x)*sin(y);

end

function z = betax(x,y)

z=5*cos(5*x)*sin(y);

end

function z = betay(x,y)

z=sin(5*x)*cos(y);

end

function z=diff1(S,y)

m=length(y);

y1=diffy1(S,y);

z=ones(m,1)*y1+S*y;

end

function z=diffy1(S,y)

m=length(y);

A=(S*S)*y;
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B=S*ones(m,1);

z=(1-A(m))/B(m);

end

function z=func_y(S,y)

m=length(y);% m=n+1

y1=diffy1(S,y);

z=S*ones(m,1)*y1+(S*S)*y;

end

function J = J(z,n)

alpha=0.1;

h=1/n;

sum1=0;

for i=1:n

sum1=sum1+sqrt(h^2+(z(i+1)-z(i))^2);

end

sum2=0;

for i=1:n

sum2=sum2+sqrt(h^2+(z(i+1)-z(i))^2)*beta((i-1)*h,z(i));

end

J=0.5*alpha*sum1^2+sum2;

end

function F = root(S,yd2)

m = length(yd2);

h=1/(m-1);

z1=diff1(S,yd2);

y=func_y(S,yd2);

intgrl=simpson(S,yd2);

for i=1:m

F(i)=(yd2(i)/(1+(z1(i))^2))*(0.1*intgrl+beta(i*h,y(i)))...

+(z1(i))*betax(i*h,y(i))-betay(i*h,y(i));

end
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end

function z = simpson(S,y)

z = 0;

m=length(y);

h=1/(m-1);

z1=diff1(S,y);

for i = 1:(m-1)/2

z = z+(1+(z1(2*i-1))^2)^0.5+4*(1+(z1(2*i))^2)^0.5+...

(1+(z1(2*i+1))^2)^0.5;

end

z = h*z/3;

end

clear all

clc

n=23; %degree of the approximation polynomial

tic

h=1/n;

x = 0:h:n*h;

Zz=fliplr(vander(x));

for i=1:n+1

for j=1:n+1

B(i,j)=(x(i)^j-x(1)^j)/j;

end

end

B;

S=B/Zz;

[X,Y] = meshgrid([0:0.05:1]);

Z = 1+sin(5*X).*sin(Y);

surf(X,Y,Z);

hold on

w0=zeros(n+1,1);

y0=fsolve(@(y)root(S,y),w0);
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y = (func_y(S,y0))’;

toc

x=0:h:n*h;

z=1+sin(5*x).*sin(y);

hPlot = plot3(x,y,z,’k’);

set( hPlot, ’LineWidth’,2);

J(y,n)

A.2 Listing of the MatLab program that implements the

Ritz method at constant 𝛼.

function z = beta(x,y)

z=1+sin(5*x).*sin(y);

end

function y = myfunc(x,a)

l=1;

ya=1;

n=length(a);

y = ya*x/l;

for k=1:n

y=y+a(k)*sin(x*k*pi/l);

end

end

function y = myIntegrand(x,c)

l=1;

ya=1;

n=length(c);

z=ya/l;

for k=1:n

z=z+c(k)*k*pi/l*cos(x*k*pi/l);
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end

y=sqrt(1+z.^2);

end

function F = myIntegrand2(x,c)

l=1;

ya=1;

n=length(c);

y = ya*x/l;

for k=1:n

y=y+c(k)*sin(x*k*pi/l);

end

F=myIntegrand(x,c).*beta(x,y);

end

function F = Costfunc(c)

alpha=0.1;

l=1;

q1 = integral(@(x) myIntegrand(x,c),0,l);

q2=integral(@(x) myIntegrand2(x,c),0,l);

F=q1*q1*alpha/2+q2;

end

clear all

clc

format long

c0=rand(1,5);

tic

[sol,F1]=fminunc(@(c)Costfunc(c),c0);

toc

x=(0:0.05:1)’;

y=myfunc(x,sol);

z=1+sin(5*x).*sin(y);

hPlot = plot3(x,y,z,’w’);
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set( hPlot, ’LineWidth’,2);

hold on

[X,Y] = meshgrid([0:0.05:1]);

Z = 1+sin(5*X).*sin(Y);

surf(X,Y,Z);

Costfunc(sol)

sol

A.3 Listing of MatLab program that implements the Ritz

method with variable 𝛼.

function z = alpha(x,c)

y=phi(x,c);

z=(cos(5*x).*cos(y)).^2;

end

function z = beta(x,c)

y=phi(x,c);

z=1+sin(5*x).*sin(y);

end

function y = phi(x,c)

l=1;

ya=1;

n=length(c);

z=ya*x/l;

for k=1:n

z=z+c(k)*sin(x*k*pi/l);

end

y=z;

end

function y = myIntegrand(x,c)
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l=1;

ya=1;

n=length(c);

z=ya/l;

for k=1:n

z=z+c(k)*k*pi/l*cos(x*k*pi/l);

end

y=sqrt(1+z.^2);

end

function q1 = firstsummandint(c)

l=1;

fun = @(x,y) alpha(x,c).*myIntegrand(x,c).*myIntegrand(y,c);

xmin = 0;

xmax = l;

ymin = 0;

ymax = @(x) x;

q1 = integral2(fun,xmin,xmax,ymin,ymax,’Method’,’tiled’);

end

function q2 = secondsummandint(c)

l=1;

F=@(x) myIntegrand(x,c).*beta(x,c);

q2=integral(F,0,l);

end

function F = Costfunc(c)

l=1;

q2=secondsummandint(c);

F=firstsummandint(c)+q2;

end

clear all
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clc

format long

c0=rand(1,5);

[sol,F1]=fminunc(@(c)Costfunc(c),c0);

x=(0:0.05:1)’;

y=phi(x,sol);

z=1+sin(5*x).*sin(y);

hPlot = plot3(x,y,z,’w’);

set( hPlot, ’LineWidth’,4);

hold on

[X,Y] = meshgrid([0:0.05:1]);

Z = 1+sin(5*X).*sin(Y);

surf(X,Y,Z);

Costfunc(sol)

sol

A.4 Listing of a Pyton program implementing Galerkin’s

method for a system of trigonometric polynomials

import sympy

import scipy

from scipy import optimize

import matplotlib.pyplot as plt

import numpy as np

import math

from math import *

from sympy import *

from scipy.optimize import fsolve

def f(x, u1, u2, u3, u4, u5):

f = [0, 0, 0, 0, 0]

f1 = u1(x[0], x[1], x[2], x[3], x[4])

f2 = u2(x[0], x[1], x[2], x[3], x[4])

f3 = u3(x[0], x[1], x[2], x[3], x[4])
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f4 = u4(x[0], x[1], x[2], x[3], x[4])

f5 = u5(x[0], x[1], x[2], x[3], x[4])

f[0] = f1

f[1] = f2

f[2] = f3

f[3] = f4

f[4] = f5

return f

def trapec(f, a, b , n):

h = (b-a)/n

k = (f.subs(x, a) + f.subs(x, b))/2

while(a<b-h):

a = a+h

k = k + f.subs(x, a)

return(k*h)

xa=1

ya=1

a = 0.1

x, a1, a2,a3,a4,a5,y = symbols("x a1 a2 a3 a4 a5 y")

yn = ya*x/xa + a1*(sin(math.pi*x/xa)) + a2*(sin(2*math.pi*x/xa))\

+a3*(sin(3*math.pi*x/xa))+ a4*(sin(4*math.pi*x/xa))\

+a5*(sin(5*math.pi*x/xa)) #функция n=5

b = 1 + sin(5*x)*sin(yn) #функция рельефа местности

bstr = 1 + sin(5*x)*sin(y)

bx = 5*sin(yn)*cos(5*x)

by = sin(5*x)*cos(yn)

print(yn)

ynp = yn.diff(x) #первая производная

print(ynp)

yyp =sqrt(1+ sympy.Mul(ynp, ynp)) #умножаем производные

ynp2 = ynp.diff(x) #вторая производная

integr =a * trapec(yyp, 0, xa, 100)#внутренний интеграл
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yob = (sympy.Mul(ynp2, 1/(1 + sympy.Mul(ynp, ynp))))*(integr + b)\

+ ynp*bx - by#общее уравнение

yob1 = yob * (sin(math.pi*x/xa))

yob2 = yob * (sin(2*math.pi*x/xa))

yob3 = yob * (sin(3*math.pi*x/xa))

yob4 = yob * (sin(4*math.pi*x/xa))

yob5 = yob * (sin(5*math.pi*x/xa))

urav1 = trapec(yob1, 0, xa , 5)

urav2 = trapec(yob2, 0, xa , 5)

urav3 = trapec(yob3, 0, xa , 5)

urav4 = trapec(yob4, 0, xa , 5)

urav5 = trapec(yob5, 0, xa , 5)

f1 = lambdify((a1, a2, a3, a4, a5), urav1, ’numpy’)

f2 = lambdify((a1, a2, a3, a4, a5), urav2, ’numpy’)

f3 = lambdify((a1, a2, a3, a4, a5), urav3, ’numpy’)

f4 = lambdify((a1, a2, a3, a4, a5), urav4, ’numpy’)

f5 = lambdify((a1, a2, a3, a4, a5), urav5, ’numpy’)

#print(f(x0, f1, f2, f3, f4, f5))

sol = fsolve(lambda xx: f(xx, f1, f2, f3, f4, f5),\

np.asarray([0.0, 0.0, 0.0, 0.0, 0.0]))

print(sol)

yn = ya*x/xa + sol[0]*(sin(math.pi*x/xa))\

+ sol[1]*(sin(2*math.pi*x/xa)) +sol[2]*(sin(3*math.pi*x/xa))\

+ sol[3]*(sin(4*math.pi*x/xa))+sol[4]*(sin(5*math.pi*x/xa))

#получившася функция

integr1 = trapec(sqrt(1+ sympy.Mul(yn.diff(x),\

yn.diff(x))), 0, xa, 200)

integr2 = trapec((1 + sin(5*math.pi/math.pi*x)*sin(yn))\
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*sqrt(1+ sympy.Mul(yn.diff(x), yn.diff(x))), 0, xa, 200)

res = a/2*integr1*integr1+integr2

print(res)

x0 = np.linspace(0,xa,100)

y0 = np.zeros(100)

z0 = np.zeros(100)

for i in range(len(x0)) :

y0[i]=yn.subs(x, x0[i])

b1=bstr.subs(x,x0[i])

z0[i]=b1.subs(y,y0[i])

fig = plt.figure(figsize =(10, 5))

ax = plt.axes(projection =’3d’)

#ax.plot_trisurf(x0, y0, z0)

x00 = np.linspace(0, xa, 100)

y00 = np.linspace(0, ya, 100)

x00, y00 = np.meshgrid(x00, y00)

z00 = 1 + np.sin(5 * x00) * np.sin(y00)

ax.plot_surface(x00, y00, z00, alpha=0.5)

ax.plot(x0, y0, z0, color = "red")

plt.show()

A.5 Listing of a Pyton program that implements Galerkin’s

method for a system of algebraic polynomials

import sympy

import scipy

from scipy import optimize

import matplotlib.pyplot as plt

import numpy as np

import math

from math import *
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from sympy import *

from scipy.optimize import fsolve

def f(x, u1, u2, u3, u4, u5):

f = [0, 0, 0, 0, 0]

f1 = u1(x[0], x[1], x[2], x[3], x[4])

f2 = u2(x[0], x[1], x[2], x[3], x[4])

f3 = u3(x[0], x[1], x[2], x[3], x[4])

f4 = u4(x[0], x[1], x[2], x[3], x[4])

f5 = u5(x[0], x[1], x[2], x[3], x[4])

f[0] = f1

f[1] = f2

f[2] = f3

f[3] = f4

f[4] = f5

return f

def trapec(f, a, b , n):

h = (b-a)/n

k = (f.subs(x, a) + f.subs(x, b))/2

while(a<b-h):

a = a+h

k = k + f.subs(x, a)

return(k*h)

xa=1

ya=1

a = 0.1

x, a1, a2,a3,a4,a5,y = symbols("x a1 a2 a3 a4 a5 y")

yn = ya*x/xa + a1*x*(1-x) + a2*x**2*(1-x) +a3*x**3*(1-x)+\

a4*x**4*(1-x)+a5*x**5*(1-x) #функция n=5

b = 1 + sin(5*x)*sin(yn)

bstr = 1 + sin(5*x)*sin(y)

bx = 5*sin(yn)*cos(5*x)

by = sin(5*x)*cos(yn)
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print(yn)

ynp = yn.diff(x) #первая производная

print(ynp)

yyp =sqrt(1+ sympy.Mul(ynp, ynp)) #умножаем производные

ynp2 = ynp.diff(x) #вторая производная

integr =a * trapec(yyp, 0, xa, 100)#внутренний интеграл

yob = (sympy.Mul(ynp2, 1/(1 + sympy.Mul(ynp, ynp))))*(integr + b)\

+ ynp*bx - by#общее уравнение

yob1 = yob * (x*(1-x))

yob2 = yob * x**2*(1-x)

yob3 = yob * x**3*(1-x)

yob4 = yob * x**4*(1-x)

yob5 = yob * x**5*(1-x)

urav1 = trapec(yob1, 0, xa , 5)

urav2 = trapec(yob2, 0, xa , 5)

urav3 = trapec(yob3, 0, xa , 5)

urav4 = trapec(yob4, 0, xa , 5)

urav5 = trapec(yob5, 0, xa , 5)

f1 = lambdify((a1, a2, a3, a4, a5), urav1, ’numpy’)

f2 = lambdify((a1, a2, a3, a4, a5), urav2, ’numpy’)

f3 = lambdify((a1, a2, a3, a4, a5), urav3, ’numpy’)

f4 = lambdify((a1, a2, a3, a4, a5), urav4, ’numpy’)

f5 = lambdify((a1, a2, a3, a4, a5), urav5, ’numpy’)

#print(f(x0, f1, f2, f3, f4, f5))

sol = fsolve(lambda xx: f(xx, f1, f2, f3, f4, f5),\

np.asarray([0.0, 0.0, 0.0, 0.0, 0.0]))

print(sol)
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yn = ya*x/xa + sol[0]*x*(1-x) + sol[1]*x**2*(1-x)\

+sol[2]*x**3*(1-x)+ sol[3]*x**4*(1-x)+sol[4]*x**5*(1-x)

#получившася функция

integr1 = trapec(sqrt(1+ sympy.Mul(yn.diff(x),\

yn.diff(x))), 0, xa, 200)

integr2 = trapec((1 + sin(5*math.pi/math.pi*x)\

*sin(math.pi/math.pi*yn))*sqrt(1+ sympy.Mul(yn.diff(x), yn.diff(x))), 0, xa, 200)

res = a/2*integr1*integr1+integr2

print(integr1)

print(integr2)

print(res)

x0 = np.linspace(0,xa,100)

y0 = np.zeros(100)

z0 = np.zeros(100)

for i in range(len(x0)) :

y0[i]=yn.subs(x, x0[i])

b1=bstr.subs(x,x0[i])

z0[i]=b1.subs(y,y0[i])

fig = plt.figure(figsize =(10, 5))

ax = plt.axes(projection =’3d’)

#ax.plot_trisurf(x0, y0, z0)

x00 = np.linspace(0, xa, 100)

y00 = np.linspace(0, ya, 100)

x00, y00 = np.meshgrid(x00, y00)

z00 = 1 + np.sin(5 * x00) * np.sin(y00)

ax.plot_surface(x00, y00, z00, alpha=0.5)

ax.plot(x0, y0, z0, color = "red")

plt.show()
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A.6 Listing of MatLab program that implements the shoot-

ing method

function z = beta(y)

n=length(y)-1;

h=1/n;

x=0:h:1;

z=1+sin(5*x).*sin(y);

z=z(1,1:end-1);

end

function z = betax(y)

n=length(y)-1;

h=1/n;

x=0:h:1;

z=5*cos(5*x).*sin(y);

z=z(1,1:end-1);

end

function z = betaxy(y)

n=length(y)-1;

h=1/n;

x=0:h:1;

z=5*cos(5*x).*cos(y);

z=z(1,1:end-1);

end

function z = betay(y)

n=length(y)-1;

h=1/n;

x=0:h:1;

z=sin(5*x).*cos(y);

z=z(1,1:end-1);
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end

function z = betayy(y)

n=length(y)-1;

h=1/n;

x=0:h:1;

z=-sin(5*x).*sin(y);

z=z(1,1:end-1);

end

function F = Costfunc(y)

alpha=0.1;

k=length(y);

n=k-1;

h=1/n;

z_dify = sqrt(1+diffy(y).^2);

z=[z_dify z_dify(end)];

zz=beta(y).*z_dify;

zz=[zz zz(end)];

w=0;

ww=0;

for i=1:k

w=w+z(i);

ww=ww+zz(i);

end

q1=h*(w-(z(1)+z(end))/2);

q2=h*(ww-(zz(1)+zz(end))/2);

F=q1*q1*alpha/2+q2;

end

function w = denumi(y,dify)

alpha=0.1;

n=length(y)-1;

h=1/n;
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w=alpha*intdy(dify)+beta(y);

end

function z = diffy(y)

n=length(y)-1;

z=ones(1,n);

h=1/n;

z(1)=(y(2)-y(1))/(h);

for i=2:n

z(i)=(y(i+1)-y(i-1))/(2*h);

end

end

function w = intdy(dify)

n=length(dify);

k=n+1;

h=1/n;

z=[dify dify(end)];

z=sqrt(1+z.^2);

w=0;

for i=1:k

w=w+z(i);

end

w=h*(w-(z(1)+z(end))/2);

end

function w = intdy1(dify)

n=length(dify);

k=n+1;

h=1/n;

z=[dify dify(end)];

z=z./sqrt(1+z.^2);

w=0;

for i=1:k
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w=w+z(i);

end

w=h*(w-(z(1)+z(end))/2);

end

function z0 = term0(y,dify)

n=length(y)-1;

z0=(1+dify.^2).*(dify.*betax(y)-betay(y));

end

function z1 = term1(y,dify)

n=length(y)-1;

z1=(1+dify.^2).*(dify.*betaxy(y)-betayy(y)).*...

denumi(y,dify)-betay(y).*(1+dify.^2).*(dify.*betax(y)-betay(y));

end

function z2 = term2(y,dify)

alpha=0.1;

n=length(y)-1;

z2=(2*dify.*(dify.*betax(y)-betay(y))+(1+dify.^2).*betax(y)).*...

denumi(y,dify)-alpha*intdy1(dify).*(1+dify.^2).*...

(dify.*betax(y)-betay(y));

end

clear all

clc

%format long

n=1000;

h=1/n;

%y=[0 1*ones(1,n)/n];

y=0:h:1;

x=0:h:1;

%for k=1:10

eps=1e-6;
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flag=0;

cost_prev=Costfunc(y);

cost_new=Costfunc(y)+1e10*eps;

tic

while abs(cost_prev-cost_new)>eps

z=diffy(y);

d=denumi(y,z);

d2=d.^2;

t0=term0(y,z)./d;

t1=term1(y,z)./d2;

t2=term2(y,z)./d2;

yhom=y;

y_old=y;

for i=2:n

y(i+1)=(-h^2*(t0(i)+t1(i)*(y(i)-y_old(i))-...

t2(i)*(y(i-1)/(2*h)+z(i)))+2*y(i)-y(i-1))/(1+0.5*h*t2(i));

yhom(i+1)=(-h^2*(t1(i)*(yhom(i))-...

t2(i)*(yhom(i-1)/(2*h)))+...

2*yhom(i)-yhom(i-1))/(1+0.5*h*t2(i));

end

c=(1-y(end))/yhom(end);

y=y+c*yhom;

cost_new=Costfunc(y);

cost_prev=Costfunc(y_old);

flag=flag+1;

Costfunc(y)

end

toc

sol=y;

[X,Y] = meshgrid([0:0.05:1]);

Z = 1+sin(5*X).*sin(Y);

surf(X,Y,Z);

hold on
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ksi=1+sin(5*x).*sin(sol);

hPlot = plot3(x,sol,ksi,’k’);

set( hPlot, ’LineWidth’,2);

hold on

sol_gal=galerkin(x);

ksi_gal=1+sin(5*x).*sin(sol_gal);

hPlot = plot3(x,sol_gal,ksi_gal,’g’);

set( hPlot, ’LineWidth’,2);

hold on

Costfunc(sol)

flag
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List of designations

∀ – universality quantum,

∃ – existence quantum,

||.|| – norm,

|.| – unit,

det𝐴 – matrix determiner 𝐴,

C[0, 𝑙] – the space of continuous functions with uniform norm on [0, 𝑙],

C𝑘[0, 𝑙] – the space of 𝑘-fold continuously differentiable functions on [0, 𝑙],̃︁L𝑝[0, 𝑙] – the space of continuous functions with integral norm on [0, 𝑙],

L𝑝[0, 𝑙] – Lebesgue space obtained by augmentation of the space ̃︁L𝑝[0, 𝑙],

‖ · ‖C1[0,𝑙] – space norm C𝑘[0, 𝑙],

‖ · ‖ ̃︁L𝑝[0,𝑙]
– space norm ̃︁L𝑝[0, 𝑙],

𝛿𝐽(·) = 0 – functional variation 𝐽 .
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