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Introduction

Overview of the current state-of-the art

Studies in modern aerospace science, high-speed aerodynamics, low­
temperature plasma applications, environmental science require reliable models
of fluid dynamics coupled to detailed kinetics of physical and chemical processes
both in the gas phase and on the surface. The latter is particularly important for
designing thermal protection systems of re-entry space vehicles.

At high altitudes, strongly nonequilibrium gas flows are commonly modeled
using the Direct Monte–Carlo simulations (DSMC) [1—6] since traditional
continuum approaches are not capable to describe strong deviations from equilibrium
and rarefaction effects. On the other hand, advanced continuum approaches such
as state-to-state (STS) models taking into account coupled vibrational-chemical
kinetics, fluid dynamics and transport processes [7—9] may significantly extend the
limits of validity of continuum modeling [10; 11].

State-to-state simulations of vibrational-chemical kinetics in non-equilibrium
reacting flows represent one of the most advanced tools for modeling in the
practical areas mentioned above. The approach is capable to capture fine non­
equilibrium effects in a flow and evaluate their influence on fluid dynamics and
mass and heat transfer; in the absence of experimental data, it can be used for
verification of reduced fluid-dynamic models. The STS approach is now widely
used for modeling spatially homogeneous [10; 12—14], one-dimensional (1-D) and
quasi-one-dimensional problems such as shock heated flows [15—23], supersonic
nozzle expansions [24; 25], stagnation-line flows [26—32] and some two-dimensional
flows [33—38]. However, implementation of the STS approach for simulation of
viscous reacting 2-D and 3-D flows is still limited by several factors. First, evaluation
of state-specific transport coefficients is prohibitively computationally expensive [7;
9], especially for polyatomic gases [39; 40]. This limitation can be partially overcome
by using simplified transport models [8; 41; 42] providing satisfactory agreement with
the exact ones. Another issue of the approach is the absence of formal kinetic-theory
methods for deriving boundary conditions (BCs) for the macroscopic flow variables
including, in the STS approach, populations of all vibrational states.
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As is known, the continuum model of the gas breaks down in the Knudsen
layer adjacent to the surface of a solid body. However, in many cases, the use of
the continuum approach can offer certain benefits when modeling non-equilibrium
rarefied flows near solids. For an accurate description of such flows, it is crucial to
capture rarefaction effects in the layer and the influence of heterogeneous reactions,
which can be achieved through kinetic modeling. However, such modeling near solids
demands high computational resources. The specific boundary conditions allow to
overcome this issue of using expensive kinetic approaches. The conditions provide
solutions at the external edge of the Knudsen layer that would match the solution of
the Navier–Stokes equations in the bulk outer flow [43]. It is worth mentioning that
these boundary conditions extend the applicability of the continuum approximation
only to gas flows in the slip flow regime (Knudsen numbers within the approximate
range of 0.001–0.25). Nevertheless, numerous applications exist where gas mixtures
operate within such a regime, and the consideration of interaction with surface
effects and heterogeneous processes is essential.

When accounting for complex physical effects caused by gas-surface
interactions, kinetic approaches simply require specification of a scattering
kernel. The commonly used models can be found in Refs. [44—49]. Discussion
of applicability limits for the models can be found in works [47; 50—53]. The
most widely used models are the Maxwell model [44], the Cercignani–Lampis (CL)
one [47] and the Lord extension to the CL model [49; 54]. In the mentioned models
knowledge of several accommodation coefficients is required. The latter could be
determined through experimental measurements [55—57] or obtained via molecular
dynamics simulations [58; 59]. Still, these scattering models are generally not
adequate to reproduce the details of gas dynamics, as demonstrated by comparing
the distributions obtained by them and by Molecular Dynamics (MD) trajectories
[60; 61]. Unfortunately the applicability of molecular-dynamic calculations is limited
by high computational costs. There are numerous extensions of these models, such
as those discussed in [62; 63], but they still have certain limitations due to the
difficulty of capturing interactions across a wide range of gases and surfaces.

Modeling heterogeneous reactions in DSMC is challenging due to the necessity
of obtaining reaction probabilities, which are extracted from macroscopic, but not
microscopic data. Advanced approaches successfully dealing with this problem can
be found in [64—66]. For instance in [66], probabilities of adsorption and Eley–Rideal
recombination are based on individual properties of each particular molecule
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and frequencies of desorption whereas the Langmuir–Hinshelwood recombination
probabilities are derived from macroscopic reaction rates.

As for continuum approaches, the physical effects of gas–solid interactions
can be captured by the so-called slip conditions of macroscopic velocity and
temperature (velocity slip and temperature jump). Deviations of these gas
macroscopic parameters from those of the surface strongly depend on gas rarefaction,
and with rising Knudsen number may cause a significant change in gas-dynamic
parameters, which is commonly referred to as the «slip effect». The effect occurs due
to the presence of gradients of macroscopic parameters near the wall, which leads
to significant deviations of the velocity distribution function from the equilibrium
distribution. Since these effects are obviously dependent on the scattering of particles
by the solid wall, knowledge of the scattering kernel for modeling is required.

In the STS simulations, the temperature jump condition was taken into
account using the assumption that the effects of the gaseous particle collisions inside
the Knudsen layer can be neglected, because the layer width is comparable with the
mean free path [67], and that the Fourier heat flux entering the Knudsen layer is
equal to the heat flux in contact with the wall [68]. From the equality of these
fluxes it is possible to calculate the temperature jump; the heat flux on the wall
becomes proportional to the temperature jump itself as well as to the molecular and
atomic number densities and thermal velocities [69]. Such a simplified description
may provide rough estimates for the slip effect.

Heterogeneous reactions in the context of continuum techniques are commonly
represented by boundary conditions for mass fluxes of gas mixture species. In the
case of neglecting these processes, the mass fluxes are equal to zero. The surface of
a solid body, where heterogeneous reactions are neglected, is commonly referred to
as a non-catalytic surface. Otherwise, when the reactions are included in modeling,
the surface is mentioned to be catalytic (or partially catalytic). At the macroscopic
scale, coupled surface catalyticity and fluid dynamics are considered in [55; 70;
71] in the frame of one-temperature and multi-temperature approaches, and in the
state-to-state approach — in [27; 28; 72]. However, in the STS simulations, a simple
phenomenological model for the concentration jump was applied whereas both the
temperature jump and velocity slip were commonly neglected. The only exception
is the work [69] where the phenomenological approach for the temperature jump
was implemented.



7

The boundary conditions for velocity, temperature and species populations,
which in the state-to-state approximation include the populations of all vibrational
states — velocity slip, temperature jump and wall mass fluxes expressions — are
commonly referred to as slip boundary conditions. This terminology will also be
applied throughout this work.

There are various techniques available to obtain slip boundary conditions
capturing physical effects of gas-surface interactions. First, they can be modeled
using slip coefficients, which are obtained from gas-surface simulations in the frame of
kinetic or continuum modeling [73—76]; or found theoretically by numerical analysis
of a flow in the Knudsen layer [77—79]. Secondly, the boundary conditions can be
derived based on theoretical methods [80—84]. Additionally, the expressions can be
obtained by numerical solution of the model Boltzmann equation in the Knudsen
layer [85; 86]. Besides all the variety of the approaches, the slip conditions can be
extracted from other simulations or experiments conducted near the solid wall.

In this study, the focus is on theoretical techniques. Such approaches include
the half-flux method, initially proposed by Patterson [81] and developed by
Shidlovskiy [87]; Grad’s approach, based on the boundary condition for distribution
function of reflected particles [80]; approach based on the kinetic boundary
condition [88—90], developed in this work; and method, based on the analysis of
the Knudsen layer adjacent to the boundary developed by Sone [91; 92].

Initially, in all the above mentioned theoretical methods a single-component
gas with no internal degrees of freedom and specular-diffusive model has been
considered (in some works only specular or diffusive scattering). The generalization
for a multi-component gas mixture described in the frame of the one-temperature
approach can be found in Refs. [43; 82; 93—95], for the multi-temperature case in
Refs. [71; 96—98]. For the CL model, the temperature jump and velocity slip are
obtained in Refs. [50; 95]. It is worth mentioning that in the majority of theoretical
studies, the boundary conditions are derived for the model kinetic equation and not
for the full Boltzmann equation; the exception are studies [71; 82; 96] based on the
Chapman–Enskog formalism.

Including heterogeneous processes in strongly non-equilibrium fluid-dynamic
problems is far more complicated, especially in the state-to-state approach. The
first attempt to account for the chemical reactions in the slip equations was made
by Scott [93]. On the basis of Maxwell kernel, he made an assumption that some
part of diffusely reflected particles may recombine or dissociate on the surface and
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used the recombination coefficient to describe such a model. Later, this approach was
applied in works [71; 82; 96]. Surface recombination rate coefficients can be measured
experimentally [55; 99—101] or calculated using molecular dynamics methods along
with quasi-classical trajectory calculations [72; 102—104]; it is worth mentioning
that in Refs. [72; 103], the recombination coefficients are vibrational state-specific.
More rigorous kinetic theory to account for surface chemical reactions on crystal
surfaces was developed in [83; 84] by taking into account physisorbed-gas species
and chemisorbed species. Such an approach is based on kinetic equations for gas
particles interacting with a potential field of surface particles [105; 106]. Additionally,
there exist numerous phenomenological models of heterogeneous processes, e.g. [70;
107; 108]. However, most of them do not account for detailed vibrational kinetics.
An exception is the Barbato model, developed in [109; 110]. The latter model was
applied to investigate the influence of heterogeneous recombination on stagnation­
line flow parameters [28; 32; 72; 111].

To account for the coupled effect of heterogeneous reactions and surface
particle scattering in slip boundary conditions, there have been attempts to
include these processes in theoretical methods within the one-temperature
approximation [43; 82; 93; 94]. Nevertheless, the developed techniques were not
accurately implemented and generalized for state-specific models, as stated in [90;
112]. This work presents that novel approach, which addresses known challenges
in modeling surface reactions.

The key points of the present study are: 1) to summarize problems in known
theoretical approaches for slip boundary conditions in non-equilibrium flows with
surface reactions; 2) to develop a new self-consistent approach for deriving slip
boundary conditions in gas mixtures with gas-phase state-to-state vibrational­
chemical kinetics and heterogeneous processes; 3) to derive macroscopic boundary
conditions on a partially catalytic wall; 4) to implement the new model to the
computational fluid-dynamic code and assess the influence of different slip condition
models on the air flow along the stagnation line, in particular, to evaluate the
coupled effect of temperature jump and heterogeneous reaction models on the air
flow kinetics, dynamics and heat transfer.
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General characteristics and structure of work

Relevance of the topic lies in the necessity for accurate and self-consistent
models that capture effects of non-equilibrium rarefied gas flows interaction with
solid surfaces. These models are crucial for entry of space vehicles into planetary
atmospheres and modeling gas flows in microchannels problems. Furthermore,
the models are required in situations where accounting for non-equilibrium
heterogeneous processes, such as wall catalyticity, ablation, and ionization effects
during interaction with a solid body is essential. Rigorously developed models can
accurately capture the influence of rarefaction effects, as well as both homogeneous
and heterogeneous processes on gas flow characteristics near the surface, including
the heat flux. The accuracy of the latter is crucial, as it can significantly impact the
design of thermal protection systems for re-entry vehicles.

The aim and objectives of the research:
1. Construction of the approach that allows to obtain slip boundary conditions

for fluid-dynamic variables within the frame of the state-to-state approach.
Derivation of slip conditions, considering specific models of particles
scattering by solid wall.

2. Comparison of the approach with other known theoretical, such as the Grad
technique and the Patterson–Shidlovskiy method. Identification of benefits
of the developed approach.

3. Further extension of the approach to accurately incorporate the influence
of heterogeneous processes, including adsorption/desorption, vibrational
excitation/deactivation and chemical reactions on the boundary conditions.

4. Validation of the advanced approach involving the theoretical comparison of
wall mass fluxes with reliable phenomenological models and the comparison
of the obtained effective heterogeneous recombination rates with those from
ab initio molecular dynamics simulations.

5. Implementation of the developed models of slip boundary conditions to the
fluid-dynamic solver for modeling dynamics and state-to-state air kinetics
in the boundary layer near stagnation point.

6. Analysis of the impact of gas rarefaction, along with different types of slip
conditions and wall catalytic effects on the boundary layer flow parameters.
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Reliability of the results is ensured by the use of rigorous theoretical models
within the frame of kinetic theory. The slip conditions are derived from the kinetic
boundary condition constructed from first principles for the distribution function.
Besides that, a rigorous comparison with other known slip conditions is provided,
and it is proven that the general form of the conditions within the advanced
approach is compatible with some phenomenological models and those obtained
from accurate theoretical techniques; the latter can be obtained as limit cases of
our general approach. The validity of the derived conditions is further confirmed by
comparing the obtained air flow parameters in the boundary layer in the vicinity of
the stagnation point with the results from other calculations. Furthermore, under
the conditions of this air flow, the effective recombination rates derived within the
framework of the developed generalized approach exhibit the best agreement with
the coefficients obtained from MD simulations.

The scientific value of the dissertation is as follows:
— The approach that enables the derivation of state-specific slip boundary

conditions for an arbitrary case of particle scattering by a solid wall,
capturing the influence of non-equilibrium heterogeneous processes, is
formulated.

— The analysis of well-known models for heterogeneous processes is conducted,
emphasizing a general expression that ensures the accurate implementation
of these processes.

— The impact of heterogeneous recombination models on silica surface, as well
as the influence of gas rarefaction on the air flow parameters in the boundary
layer are examined.

— The effects of diffusion model in the boundary conditions and the
accommodation coefficient in the specular-diffusive scattering kernel on the
mixture composition and the transport properties are investigated.

Practical value of the dissertation is as follows:
— Slip conditions are presented for specific cases of particles scattering by a

solid wall, and the methods for their implementation into computational
fluid dynamics (CFD) codes are discussed.

— Recommendations regarding the choice of the boundary conditions model,
which includes the implementation or neglect of the temperature jump, are
provided.
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— The influence of the models on the total heat flux is discussed in detail, and
the recommendation to avoid using phenomenological models of the flux is
given, which is supported by numerical calculations.

The main results of the research are as follows:
1. Self-consistent and rigorous approach for obtaining slip boundary conditions

from the developed kinetic boundary condition is formulated ([88], pp.
9—12).

2. Problems associated with the inclusion of heterogeneous reactions in known
theoretical techniques are identified through theoretical analysis ([90], pp.
2—4). The problems are in the fact that the mass fluxes on the wall do
not take into account the contributions of particles of different species. The
latter is also confirmed by numerical calculations ([112], pp. 10—16).

3. The extension of the kinetic boundary condition, which includes the loss
and gain in the number of particles due to heterogeneous processes is
constructed ([90], pp. 2—4; [112], pp. 4—5).

4. State-specific slip boundary conditions, which are velocity slip, temperature
jump, and expressions for species wall mass fluxes, are derived based
on Maxwell and Cercignani–Lampis models of particles scattering by the
surface ([88], pp. 11—14; [90], pp. 6—9; [112], pp. 5—7).

5. The dependence of the derived slip boundary conditions on the diagonal
terms of the stress tensor — the bulk viscosity and relaxation pressure,
capturing rapid inelastic translational-rotational energy exchange during
particles interaction with the solid surface ([88], pp. 5—8; [89], pp. 4—6).

6. Influence of gas rarefaction, heterogeneous recombination models, and
temperature jump on the air flow parameters in the boundary layer near
stagnation point is examined. It is demonstrated that temperature jump
significantly affects fluid-dynamic parameters and surface heat flux, while
the impact of heterogeneous reactions on the silica surface is weaker ([112],
pp. 10—16).

7. The effects of various diffusion velocity models in the slip boundary
conditions are studied. It is shown that models influence particles
concentrations and heat flux near the surface ([113], pp. 9—15).

Provisions to be defended:
1. Kinetic boundary condition for the distribution function modified to the

state-to-state approach. Formulation of the method to obtain slip boundary
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conditions using this modification. Verification of the equivalence of the
proposed method to the Grad and Patterson–Shidlovskiy techniques in the
one-temperature approximation.

2. Extension of the kinetic boundary condition and normalization condition
for an arbitrary scattering kernel to account for the loss and gain in
the number of particles resulting from adsorption/desorption, vibrational
excitation/deactivation processes and heterogeneous chemical reactions.

3. Expressions for slip boundary conditions within the framework
of the developed approach and its modification for Maxwell and
Cercignani–Lampis scattering kernels. Demonstration of the independence
of the boundary conditions for species number fluxes on the scattering
model.

4. Identification of the general form of expression for mass fluxes on the surface
that allows to capture correctly the influence of specified heterogeneous
processes. Based on this statement, verification of the incapability of the
other approaches to capture these processes.

5. Results of numerical simulations of air flow in the boundary layer in the
vicinity of stagnation point. Assessment of the influence of different wall
catalyticity models, supporting conclusions regarding the use of developed
self-consistent extension.

6. Results of the study of the effects of gas rarefaction, diffusion model and
accommodation coefficient on the air flow in the boundary layer. Estimation
of the necessity to include temperature jump for different Knudsen numbers.
Investigation of different processes contributions to the total wall heat flux.

Publications. The results presented in the dissertation are published in
papers [1*–12*] of which 1 is in journal included in the list of peer-reviewed
scientific journals recommended by the Higher Attestation Commission, 4 — in peer­
reviewed publications indexed in the international citation databases Web of Science
and Scopus, 7 — in conference proceedings indexed in the RSCI. The personal
contribution of the author to the preparation of publications is described in the
Appendix А.

Approbation of work. The results of work on the dissertation were reported at
the All-Russian and international conferences:

1. XXII International Conference on Computational Mechanics and Modern
Applied Software Systems CMMASS’2021 (Alushta, 2021);
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2. 32nd International Symposium on Rarefied Gas Dynamics RGD32 (Seoul,
South Korea);

3. 21st International Conference on the Methods of Aerophysical Research
ICMAR-2022 (Novosibirsk, 2022);

4. XXIV International Conference on Applied Mathematics and Mechanics in
the Aerospace Industry AMMAI’2022 (Alushta, 2022)

5. All-russian Scientific Symposium on Problems of Aeromechanics and Gas
Dynamics, Dedicated to the 100th Anniversary of the Birth of Academician
G. G. Cherny (Moscow, 2023);

6. XIII All-russian Congress on Theoretical and Applied Mechanics (St.
Petersburg, 2023);

7. XXIII International Conference on Computational Mechanics and Modern
Applied Software Systems CMMASS’2023 (Divnomorskoe, 2023).

Structure and scope of work. The dissertation work consists of an
introduction, 3 chapters a conclusion, a bibliography of 153 entries and 1 appendix
The total volume of the dissertation is 120 pages, including 44 figures and 6 tables.
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Chapter 1. State-specific slip boundary conditions

In this chapter, the boundary conditions for fluid-dynamic parameters of
strongly non-equilibrium multi-component gas mixture flows in slip regime are
derived systematically by two different approaches. The first theoretical approach
uses the technique proposed by Grad whereas the second one is based on the kinetic
boundary condition. In the case of specular-diffusive scattering by solid wall it is
shown that the two approaches are equivalent. At the same time, the approach based
on the kinetic boundary condition provides more rigorous mathematical description
of the problem and can be easily applied for other scattering kernels and gas­
surface interaction models. The expressions for slip boundary conditions are given
for two common types of scattering kernels, Maxwell, or specular-diffusive, and
Cercignani–Lampis. The results provided in this chapter are published in [88; 89].

The chapter is organized as follows. First, the set of governing equations for a
multi-component reacting gas mixture flow is presented in Sec. 1.1. The boundary
conditions for velocity, temperature and number densities are obtained by the Grad’s
approach in Sec. 1.2 and by the approach, based on the kinetic boundary condition,
in Sec. 1.3. In Sec. 1.3 the equivalence of both methods is shown and advantages of
the second approach are discussed. Further simplifications of the obtained equations
are presented in Sec. 1.4.

1.1 Governing equations for a non-equilibrium flow in the
state-to-state approach

Kinetic equation

In this work, we consider the mixture of gases with translational, rotational,
vibrational degrees of freedom and take into account internal energy transitions and
chemical reactions. The distribution function 𝑓𝑐𝑖𝑗(r,u,𝑡) is introduced for chemical
species 𝑐, vibrational level 𝑖, and rotational level 𝑗 (r is coordinate, u is the particle
velocity, 𝑡 is the time). The electronic excitation is neglected.
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Neglecting the influence of mass and electromagnetic forces, the Boltzmann
kinetic equations for distribution functions 𝑓𝑐𝑖𝑗(r,u,𝑡) can be written in the Wang
Chang–Uhlenbeck form [9]:

𝜕𝑓𝑐𝑖𝑗
𝜕𝑡

+ u𝑐 · ∇𝑓𝑐𝑖𝑗 = 𝐽𝑐𝑖𝑗,

𝑐 = 1, . . . , 𝐿, 𝑖 = 0, . . . , 𝑁𝑐, 𝑗 = 0, . . . , 𝑁𝑐𝑖,
(1.1)

where ∇ = 𝜕/𝜕r, 𝐿 is the number of chemical species, 𝑁𝑐 is the number of
vibrational levels for 𝑐 species, 𝑁𝑐𝑖 is the number of rotational levels of molecules 𝑐
on the vibrational level 𝑖. 𝐽𝑐𝑖𝑗 is the integral operator responsible for the variation of
the distribution function resulting from collision. In the general case, 𝐽𝑐𝑖𝑗 includes
contributions of elastic and inelastic collisions, and chemical reactions:

𝐽𝑐𝑖𝑗 = 𝐽el
𝑐𝑖𝑗 + 𝐽 int

𝑐𝑖𝑗 + 𝐽 react
𝑐𝑖𝑗 . (1.2)

Under strong nonequilibrium conditions, the collision operator can be split to
the operators of rapid and slow processes [9]

𝐽𝑐𝑖𝑗 = 𝐽 rap
𝑐𝑖𝑗 + 𝐽 sl

𝑐𝑖𝑗. (1.3)

To approximately solve the integro-differential equations, first, the corresponding
dimensionless kinetic equations need to be written, and their form is as follows:

𝜕𝑓𝑐𝑖𝑗
𝜕𝑡

+ u𝑐 · ∇𝑓𝑐𝑖𝑗 =
1

ε
𝐽 rap
𝑐𝑖𝑗 + 𝐽 slow

𝑐𝑖𝑗 , (1.4)

where ε is the small parameter specified by the ratio of characteristic times of rapid
and slow processes, ε ≈ τrap/τslow.

In this study, the generalized Chapman-Enskog method developed in [9] is
applied. The distribution function is represented as a generalized Chapman–Enskog
series in the small parameter ε:

𝑓𝑐𝑖𝑗 =
∑︁
𝑟

ε𝑟𝑓
(𝑛)
𝑐𝑖𝑗

(︀
u, ρλ(r,𝑡),∇ρλ(r,𝑡),∇2ρλ(r,𝑡), . . .

)︀
. (1.5)

Here, 𝑟 is the order (𝑟 = 0,1, . . . ) and ρλ(r,𝑡) are the macroscopic gas
parameters, required for a closed flow description (their number is defined by
independent collision invariants). To obtain the equations for unknown functions,
the expansion (1.5) needs to be substituted into Eq. (1.4).

In order to develop a closed macroscopic fluid-dynamic model, it is necessary
to establish first the kinetic scaling.
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State-to-state kinetic scaling and collision invariants

The gas mixture flow from here on is described in the framework of the
state-to-state model for coupled detailed vibrational and chemical kinetics. However,
all the assumption suggested can be as well applied for less detailed one- and multi­
temperature approximations.

The main peculiarity of the state-to-state approach is that gas dynamics, mass
and energy transport are fully coupled to non-equilibrium vibrational and chemical
kinetics since the characteristic time scale of vibrational energy transitions τvibr and
chemical reactions τreact is the same as the fluid-dynamic time scale θ:

τtr ∼ τrot ≪ τvibr ∼ τreact ∼ θ, (1.6)

where τtr, τrot are the characteristic times of translational and rotational relaxation.
According to this kinetic scaling, the collisional operator is divided into rapid

and slow processes as following:

𝐽 rap
𝑐𝑖𝑗 = 𝐽 tr

𝑐𝑖𝑗 + 𝐽 rot
𝑐𝑖𝑗 ; 𝐽 sl

𝑐𝑖𝑗 = 𝐽vibr
𝑐𝑖𝑗 + 𝐽 react

𝑐𝑖𝑗 . (1.7)

Taking into account considered characteristic time scale (1.6), the scalar
collision invariants of rapid processes in the state-to state approach ψ(ν)

𝑐𝑖𝑗 [9], are
the momentum and particle total energy:

ψ
(ν)
𝑐𝑖𝑗 = 𝑚𝑐u𝑐,

𝑚𝑐𝑢
2
𝑐

2
+ ε𝑐𝑖𝑗 + ε𝑐𝑖 + ε𝑐, ν = 1,2,3,4; (1.8)

along with additional invariants of the most frequent collisions:

ψ
(ν+4)
𝑐𝑖 = 𝑎𝑐𝑖, ν = 1, . . . ,𝐿, 𝐿 =

𝐿𝑀∑︁
𝑐=1

𝑁𝑐 + 𝐿𝐴. (1.9)

Here 𝑚𝑐, u𝑐 is the mass of chemical species 𝑐, ε𝑐𝑖𝑗 , ε𝑐𝑖 , ε𝑐 are the rotational, vibrational
energy and the energy of formation. 𝐿𝑀 , 𝐿𝐴 are the numbers of molecular and
atomic species, 𝐿 is the number of gas mixture chemical components. The last
set of invariants (1.9) appears because vibrational energy transitions and chemical
reactions are frozen in the rapid processes time scale.

The formal kinetic theory for the STS approach is developed in [7; 9] in
the framework of the generalized Chapman–Enskog method. The model includes
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extended fluid-dynamic equations and their closure based on the zero- and first-order
distribution functions as well as algorithms for the transport coefficients evaluation.
A brief discussion of this developed theory will be provided in this section.

Definitions of macroscopic parameters and transport terms

First of all, it is necessary to specify parameters of the gas flows at the
macroscopic scale. These macroscopic parameters are defined as the moments of
the distribution functions [9]. The main parameters necessary for a comprehensive
description of non-equilibrium gas flows are introduced below.

The population (number density) of molecular species 𝑐 for the vibrational
level 𝑖 per unit volume, 𝑛𝑐𝑖:

𝑛𝑐𝑖(r,𝑡) =
∑︁
𝑗

∫︁
𝑓𝑐𝑖𝑗(r,u,𝑡) du𝑐, (1.10)

where the integration is performed in particles velocity phase space. The total
number density of the gas mixture is defined as a sum of 𝑛𝑐𝑖:

𝑛(r,𝑡) =
∑︁
𝑐𝑖𝑗

∫︁
𝑓𝑐𝑖𝑗(r,u,𝑡) du𝑐 =

∑︁
𝑐𝑖

𝑛𝑐𝑖. (1.11)

The macroscopic velocity, v(r,𝑡), of the gas flow is introduced by the following
moment of the distribution function:

ρv(r,𝑡) =
∑︁
𝑐𝑖𝑗

𝑚𝑐

∫︁
u𝑐𝑓𝑐𝑖𝑗(r,u,𝑡) du𝑐, (1.12)

where ρ is the mixture density, ρ =
∑︀
𝑐𝑖

𝑚𝑐𝑛𝑐𝑖.

The specific total internal energy, 𝑈(r,𝑡), of the mixture components is defined
as the sum of energies:

𝑈(r,𝑡) = 𝐸tr + 𝐸rot + 𝐸vibr + 𝐸f, (1.13)

which are the specific translational energy, 𝐸tr:

ρ𝐸tr =
∑︁
𝑐𝑖𝑗

∫︁
𝑚𝑐𝑐

2
𝑐

2
𝑓𝑐𝑖𝑗(r,u,𝑡) du𝑐; (1.14)
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the specific rotational energy, 𝐸rot:

ρ𝐸rot =
∑︁
𝑐𝑖𝑗

ε𝑐𝑖𝑗

∫︁
𝑓𝑐𝑖𝑗(r,u,𝑡) du𝑐; (1.15)

the specific vibrational energy, 𝐸vibr:

ρ𝐸vibr =
∑︁
𝑐𝑖𝑗

ε𝑐𝑖

∫︁
𝑓𝑐𝑖𝑗(r,u,𝑡) du𝑐 =

∑︁
𝑐𝑖

ε𝑐𝑖𝑛𝑐𝑖; (1.16)

and the specific formation energy, 𝐸f:

ρ𝐸f =
∑︁
𝑐𝑖𝑗

ε𝑐

∫︁
𝑓𝑐𝑖𝑗(r,u,𝑡) du𝑐 =

∑︁
𝑐

ε𝑐𝑛𝑐. (1.17)

In the above relations c𝑐 is the peculiar velocity of the 𝑐-th species, c𝑐 = u𝑐 − v,
𝑛𝑐 is the number density of chemical species 𝑐, 𝑛𝑐 =

∑︀
𝑖

𝑛𝑐𝑖. The values ρ𝐸tr, ρ𝐸rot,

ρ𝐸vibr, and ρ𝐸f represent the corresponding energy per unit volume.
Note that under nonequilibrium conditions, the specific internal energy (1.13)

is a function of not only temperature but also depends on additional macroscopic
parameters that differ for various deviations from equilibrium. In the state-to-state
approach 𝑈 is a function of 𝑇 and 𝑛𝑐𝑖. Therefore, the gas cannot be treated as
calorically perfect.

The transport terms required in the state-to-state approach include the
diffusion velocity of molecular species 𝑐 on the vibrational level 𝑖, V𝑐𝑖(r,𝑡), the
stress tensor, P(r,𝑡), and the total heat flux, q(r,𝑡), defined as follows:

𝑛𝑐𝑖V𝑐𝑖(r,𝑡) =
∑︁
𝑗

∫︁
c𝑐𝑓𝑐𝑖𝑗(r,u,𝑡) du𝑐; (1.18)

P(r,𝑡) =
∑︁
𝑐𝑖𝑗

∫︁
𝑚𝑐c𝑐c𝑐𝑓𝑐𝑖𝑗(r,u,𝑡) du𝑐; (1.19)

q(r,𝑡) =
∑︁
𝑐𝑖𝑗

∫︁ (︂
𝑚𝑐𝑐

2
𝑐

2
+ ε𝑐𝑖𝑗 + ε𝑐𝑖 + ε𝑐

)︂
c𝑐𝑓𝑐𝑖𝑗(r,u,𝑡) du𝑐. (1.20)

The heat flux is convenient to represent as the sum of several terms [9]:

q = 𝑞F + 𝑞TD + 𝑞MD + 𝑞DVE. (1.21)

The first term is the heat conduction (Fourier) flux due to the transfer of
translational and rotational energy, 𝑞F, the second one is the thermal diffusion flux,
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𝑞TD, the third one includes contributions of mass diffusion flux, 𝑞MD, and the last
term — vibrational energy transferred by excited molecules diffusion flux, 𝑞DVE.
These latter terms can be written explicitly only in the case of binary mixtures.
While 𝑞F, 𝑞TD and 𝑞MD appear also in both one-temperature and multi-temperature
formulations, the term 𝑞DVE is a particular feature of the state-to-state approach [25].

State-to-state zero- and first-order distribution functions

Omitting the details of the technique for obtaining the distribution
functions [9], here, the first two terms — zero- and first-order — in the expansion (1.5)
are presented. The other terms are not taken into account since their influence is
relatively small in the considered slip flow regime.

In the zero-order approximation, the distribution function couples the Maxwell
distribution over velocities and the Boltzmann distribution over rotational energy
levels 𝑗 multiplied by non-equilibrium number densities of vibrational states 𝑛𝑐𝑖 [9]:

𝑓
(0)
𝑐𝑖𝑗 =

𝑛𝑐𝑖

𝑍rot,𝑐𝑖

(︃
𝑚𝑐

2π𝑘𝑇

)︃3/2

𝑠𝑐𝑖𝑗 exp

(︃
−
𝑚𝑐𝑐

2
𝑐

2𝑘𝑇
−
ε𝑐𝑖𝑗

𝑘𝑇

)︃
, (1.22)

where 𝑘 is the Boltzmann constant, 𝑍rot,𝑐𝑖 is the rotational partition function
depending on the vibrational state 𝑖, 𝑠𝑐𝑖𝑗 is the statistical weight for a molecule
𝑐 on the 𝑗-th rotational and 𝑖-th vibrational levels.

The first-order distribution function is obtained as a linear combination of
gradients of fluid-dynamic variables with unknown coefficients A𝑐𝑖𝑗, D𝑑𝑘

𝑐𝑖𝑗, B𝑐𝑖𝑗, 𝐹𝑐𝑖𝑗,
𝐺𝑐𝑖𝑗 depending on the peculiar velocity and, implicitly, on the macroscopic flow
parameters [9]:

𝑓𝑐𝑖𝑗 = 𝑓
(0)
𝑐𝑖𝑗 +

𝑓
(0)
𝑐𝑖𝑗

𝑛

(︃
−A𝑐𝑖𝑗 · ∇ ln𝑇 −

∑︁
𝑑𝑘

D𝑑𝑘
𝑐𝑖𝑗 · d𝑑𝑘 −B𝑐𝑖𝑗 : ∇v

− 𝐹𝑐𝑖𝑗∇ · v −𝐺𝑐𝑖𝑗

)︃
,

(1.23)

where d𝑐𝑖 is the state-specific diffusive driving force for species 𝑐𝑖,

d𝑐𝑖 = ∇(𝑛𝑐𝑖/𝑛) + (𝑛𝑐𝑖/𝑛− ρ𝑐𝑖/ρ)∇ ln 𝑝, (1.24)
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ρ𝑐𝑖 = 𝑛𝑐𝑖𝑚𝑐 is the density of species 𝑐𝑖 and 𝑝 is the pressure.
According to the generalized Chapman-Enskog method [9], unknown functions

A𝑐𝑖𝑗, D𝑑𝑘
𝑐𝑖𝑗, B𝑐𝑖𝑗, 𝐹𝑐𝑖𝑗, 𝐺𝑐𝑖𝑗 are found from linear integral equations complemented

with constraints derived from the normalizing conditions for the distribution
function. Solving the integral equations can be reduced to solving the systems of
linear algebraic equations obtained by expanding the unknown functions in the series
of orthogonal polynomials: Sonine polynomials 𝑆(𝑟)

ν

(︀
𝑚𝑐𝑐

2
𝑐/2𝑘𝑇

)︀
over dimensionless

velocity and Waldmann–Trübenbacher polynomials over discrete values of rotational
energy 𝑃

(𝑝)
𝑗

(︀
ε𝑐𝑖𝑗 /𝑘𝑇

)︀
. Based on the integral equations, the following expansions are

proposed [9]:

A𝑐𝑖𝑗 = −
𝑚𝑐c𝑐

2𝑘𝑇

∑︁
𝑟𝑝

𝑎𝑐𝑖,𝑟𝑝𝑆
(𝑟)
3/2𝑃

(𝑝)
𝑗 , (1.25)

D𝑑𝑘
𝑐𝑖𝑗 =

𝑚𝑐c𝑐

2𝑘𝑇

∑︁
𝑟

𝑑𝑑𝑘𝑐𝑖,𝑟𝑝𝑆
(𝑟)
3/2, (1.26)

B𝑐𝑖𝑗 =
𝑚𝑐

2𝑘𝑇

(︃
c𝑐c𝑐 −

1

3
𝑐2𝑐I

)︃∑︁
𝑟

𝑏𝑐𝑖,𝑟𝑆
(𝑟)
5/2, (1.27)

𝐹𝑐𝑖𝑗 =
∑︁
𝑟𝑝

𝑓𝑐𝑖,𝑟𝑝𝑆
(𝑟)
1/2𝑃

(𝑝)
𝑗 , (1.28)

𝐺𝑐𝑖𝑗 =
∑︁
𝑟𝑝

𝑔𝑐𝑖,𝑟𝑝𝑆
(𝑟)
1/2𝑃

(𝑝)
𝑗 . (1.29)

In the above relations, 𝑎𝑐𝑖,𝑟𝑝, 𝑑𝑑𝑘𝑐𝑖,𝑟𝑝, 𝑏𝑐𝑖,𝑟, 𝑓𝑐𝑖,𝑟𝑝, 𝑔𝑐𝑖,𝑟𝑝 are the expansion coefficients. It
is worth noting that different polynomial systems for different unknown functions in
the first-order correction are used, even for the functions of the same tensor order.
The set of polynomials is chosen accordingly to the right-hand sides of corresponding
integral equations, see [9]. For instance, integral equations for vector functions A𝑐𝑖𝑗

include rotational energy whereas equations for D𝑑𝑘
𝑐𝑖𝑗 do not. This allows one to use

solely Sonine polynomials in the expansion of D𝑑𝑘
𝑐𝑖𝑗 which is not possible for A𝑐𝑖𝑗,

whose expansion requires the product of the Sonine and Waldmann–Trübenbacher
polynomials. Such an approach is equivalent to choosing double polynomial sets for
both A𝑐𝑖𝑗 and D𝑑𝑘

𝑐𝑖𝑗, but provides more straightforward derivation of linear transport
systems for the multi-component diffusion coefficients.
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Retaining only the first non-vanishing terms in expansions (1.25)–(1.29), the
distribution function can be written in the form

𝑓𝑐𝑖𝑗 = 𝑓
(0)
𝑐𝑖𝑗

[︃
1 +

𝑚𝑐

2𝑛𝑘𝑇
c𝑐 · ∇ ln𝑇

(︁
𝑎𝑐𝑖,00𝑆

(0)
3/2𝑃

(0)
𝑗 + 𝑎𝑐𝑖,10𝑆

(1)
3/2𝑃

(0)
𝑗

+𝑎𝑐𝑖,01𝑆
(0)
3/2𝑃

(1)
𝑗

)︁
− 𝑚𝑐

2𝑛𝑘𝑇

∑︁
𝑑𝑘

𝑑𝑑𝑘𝑐𝑖,0c𝑐 · d𝑑𝑘𝑆
(0)
3/2

− 𝑚𝑐

2𝑛𝑘𝑇
𝑏𝑐𝑖,0𝑆

(0)
5/2

(︀
c𝑐c𝑐 : ∇v − 1

3 𝑐
2
𝑐∇ · v

)︀
− 1

𝑛

(︁
𝑓𝑐𝑖,10𝑆

(1)
1/2𝑃

(0)
𝑗 + 𝑓𝑐𝑖,01𝑆

(0)
1/2𝑃

(1)
𝑗

)︁
∇ · v

− 1

𝑛

(︁
𝑔𝑐𝑖,10𝑆

(1)
1/2𝑃

(0)
𝑗 + 𝑔𝑐𝑖,01𝑆

(0)
1/2𝑃

(1)
𝑗

)︁]︃
,

(1.30)

with

𝑆(0)
ν = 𝑃

(0)
𝑗 = 1, 𝑆(1)

ν = 1 + ν−
𝑚𝑐𝑐

2
𝑐

2𝑘𝑇
, 𝑃

(1)
𝑗 =

⟨
ε𝑐𝑖𝑗

𝑘𝑇

⟩
rot

−
ε𝑐𝑖𝑗

𝑘𝑇
. (1.31)

Here ⟨. . . ⟩rot denotes averaging over rotational energy with local equilibrium
Boltzmann distribution.

Governing equations for fluid-dynamic variables

The set of governing equations for the unknown STS-specific macrospocic
parameters is obtained multiplying the Boltzmann equation (1.1) by the collision
invariants (1.8)–(1.9), integrating over velocities and summing over 𝑐, 𝑖, 𝑗 (for the
additional invariants, summation is carried out only over the rotational states 𝑗).
Thus, extended fluid-dynamic equations take the form [9]:

𝑑𝑛𝑐𝑖

𝑑𝑡
+ 𝑛𝑐𝑖∇ · v +∇ · (𝑛𝑐𝑖V𝑐𝑖) = 𝑅vibr

𝑐𝑖 +𝑅react
𝑐𝑖 , (1.32)

ρ
𝑑v

𝑑𝑡
+∇ ·P = 0, (1.33)

ρ
𝑑𝑈

𝑑𝑡
+∇ · q+P : ∇v = 0. (1.34)

Here, 𝑖 = 0, . . . ,𝑁𝑐, 𝑐 = 1, . . . ,𝐿, 𝑅vibr
𝑐𝑖 and 𝑅react

𝑐𝑖 are state-specific production
terms due to vibrational-vibrational (VV), vibrational-translational (VT) transitions
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and chemical reactions. The closure of the above set of equations depends on the
one-particle distribution function 𝑓𝑐𝑖𝑗(r,u,𝑡) (see Eqs. (1.22), (1.30)).

Transport terms

Substituting distribution function (1.22) into the transport term
definitions (1.18)–(1.20) yields zero heat flux and diffusion velocities (q = V𝑐𝑖 = 0),
and the stress tensor in the form P = 𝑝I, with the pressure 𝑝 and the unit tensor
I. The set of governing equations is reduced to the Euler equations coupled to the
equations of chemical-vibrational kinetics for each vibrational state population.

The closure of governing equations (1.32)–(1.34) in the first-order
approximation of the generalized Chapman–Enskog method is carried out
substituting distribution function (1.30) into the definitions of the transport and
production terms. Thus, the following constitutive relations are obtained [9]:

P = (𝑝− ζ∇ · v − 𝑝rel)I− 2µS, (1.35)

V𝑐𝑖 = −
∑︁
𝑑𝑘

𝐷𝑐𝑖𝑑𝑘d𝑑𝑘 −𝐷𝑇,𝑐𝑖∇ ln𝑇, (1.36)

q = −λ′∇𝑇 − 𝑝
∑︁
𝑐𝑖

𝐷𝑇,𝑐𝑖d𝑐𝑖 +
∑︁
𝑐𝑖

𝑛𝑐𝑖V𝑐𝑖

(︂
5

2
𝑘𝑇 + ⟨ε𝑐𝑖𝑗 ⟩rot + ε

𝑐
𝑖 + ε𝑐

)︂
, (1.37)

where µ and ζ are shear and bulk viscosity coefficients, 𝑝rel is the relaxation
(dynamic) pressure, S is the traceless symmetric part of the strain rate tensor,
λ′ is the partial thermal conductivity coefficient of translational and rotational
degrees of freedom, 𝐷𝑐𝑖𝑑𝑘 and 𝐷𝑇,𝑐𝑖 are multi-component state-specific diffusion and
thermal diffusion coefficients. The peculiarity of mass and energy transfer in the
STS approach is that diffusion of vibrational energy is governed by the gradients
of vibrational level populations and thus does not rely on any quasi-stationary
vibrational distributions. Thermal conductivity and bulk viscosity coefficients
include contributions of rotational energy but do not depend on the vibrational
energy, whose transport is driven by the diffusion of vibrational states.
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Using expansions (1.25)–(1.29) one can rewrite the above constitutive relations
in terms of the expansion coefficients:

P = 𝑝I− 𝑘𝑇
∑︁
𝑐𝑖

𝑛𝑐𝑖

𝑛
[𝑏𝑐𝑖,0S − (𝑓𝑐𝑖,10∇ · v + 𝑔𝑐𝑖,10)I] , (1.38)

V𝑐𝑖 =−
1

2𝑛

(︃∑︁
𝑑𝑘

𝑑𝑑𝑘𝑐𝑖,0d𝑑𝑘 − 𝑎𝑐𝑖,00∇ ln𝑇

)︃
, (1.39)

q =−
∑︁
𝑐𝑖

𝑛𝑐𝑖

𝑛

[︂(︂
5

4
𝑘𝑎𝑐𝑖,10 +

𝑚𝑐

2
𝑐rot,𝑐𝑖𝑎𝑐𝑖,01

)︂
∇𝑇 − 𝑝

2𝑛𝑐𝑖
𝑎𝑐𝑖,00d𝑐𝑖

+
1

2

(︃∑︁
𝑑𝑘

𝑑𝑑𝑘𝑐𝑖,0d𝑑𝑘 − 𝑎𝑐𝑖,00∇ ln𝑇

)︃ (︂
5

2
𝑘𝑇 + ⟨ε𝑐𝑖𝑗 ⟩rot + ε

𝑐
𝑖 + ε𝑐

)︂]︂
.

(1.40)

In the above expressions, 𝑐rot,𝑐𝑖 is the rotational specific heat depending on the
vibrational state. Note that the first-order production terms in Eq. (1.32) are also
connected to the normal mean stress and can be expressed in terms of the expansion
coefficients 𝑓𝑐𝑖,𝑟𝑝 and 𝑔𝑐𝑖,𝑟𝑝, see [114; 115].

The transport coefficients are functions of the expansion coefficients:

𝐷𝑐𝑖𝑑𝑘 =
1

2𝑛
𝑑𝑑𝑘𝑐𝑖,0; (1.41)

𝐷𝑇,𝑐𝑖 =− 1

2𝑛
𝑎𝑐𝑖,00; (1.42)

λ′ =
∑︁
𝑐𝑖

𝑛𝑐𝑖

𝑛

(︃
5

4
𝑘𝑎𝑐𝑖,10 +

𝑚𝑐

2
𝑐rot,𝑐𝑖𝑎𝑐𝑖,01

)︃

=
∑︁
𝑐𝑖

𝑛𝑐𝑖

𝑛

(︀
λ′𝑐𝑖,tr + λ𝑐𝑖,rot

)︀
=
∑︁
𝑐𝑖

𝑛𝑐𝑖

𝑛
λ′𝑐𝑖;

(1.43)

µ =
∑︁
𝑐𝑖

𝑛𝑐𝑖

𝑛

𝑘𝑇

2
𝑏𝑐𝑖,0 =

∑︁
𝑐𝑖

𝑛𝑐𝑖

𝑛
µ𝑐𝑖; (1.44)

ζ =−
∑︁
𝑐𝑖

𝑛𝑐𝑖

𝑛
𝑘𝑇𝑓𝑐𝑖,10 =

∑︁
𝑐𝑖

𝑛𝑐𝑖

𝑛
ζ𝑐𝑖; (1.45)

𝑝𝑟𝑒𝑙 =−
∑︁
𝑐𝑖

𝑛𝑐𝑖

𝑛
𝑘𝑇𝑔𝑐𝑖,10 =

∑︁
𝑐𝑖

𝑛𝑐𝑖

𝑛
𝑝rel,𝑐𝑖. (1.46)

For the convenience, the effective transport coefficients λ′𝑐𝑖, µ𝑐𝑖, ζ𝑐𝑖, 𝑝rel,𝑐𝑖 have been
defined here, which are not the true mixture transport coefficients but are needed
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to facilitate physical interpretation of the boundary conditions. Note that thermal
diffusion coefficients 𝐷𝑇,𝑐𝑖 can be expressed also in terms of coefficients 𝑑𝑑𝑘𝑐𝑖,1 instead
of 𝑎𝑐𝑖,00; both formulations are equivalent [116].

The procedure for evaluating expansion coefficients 𝑎𝑐𝑖,𝑟𝑝, 𝑑𝑑𝑘𝑐𝑖,𝑟, 𝑏𝑐𝑖,𝑟, 𝑓𝑐𝑖,𝑟𝑝, 𝑔𝑐𝑖,𝑟𝑝
is described in detail in [9], where the transport linear systems are derived. The
efficient algorithms for evaluating these coefficients in dilute polyatomic gas mixtures
using advanced computational methods can be found in [117]. Solution of these
systems requires knowledge of the collision integrals depending on the cross sections
of rapid processes and rotational energy relaxation times. State-resolved algorithms
developed in [9; 41] are implemented in the software KAPPA [118] for air species and
therefore, in further derivation, it will be assumed that the expansion coefficients
are known functions of temperature, vibrational state, and mixture composition.

Concluding this section, it is worth emphasizing that at this step, a closed set of
extended fluid-dynamic equations in both inviscid and viscous flow approximations,
constitutive relations for the transport terms and expressions for the transport
coefficients have been defined. These sets of governing equations at the present
work are complemented by the thermally perfect gas equation of state (𝑝 =

𝑛𝑘𝑇 ) and calorically non-perfect gas model assuming explicit computation of the
specific energy as a function of 𝑇 and non-equilibrium vibrational level populations
𝑛𝑐𝑖 (1.13). The next step is to specify the boundary conditions for the set of
macroscopic variables 𝑛𝑐𝑖, v, 𝑇 .

1.2 Boundary conditions on a partially catalytic surface by the Grad’s
technique

In the present section, the boundary conditions on the external edge of the
Knudsen layer are obtained using Grad’s technique. Initially, the technique has been
proposed for a singe-component gas without internal degrees of freedom and non­
equilibrium chemical reactions [80]. In the study performed by Zade et al. [82] the
approach has been applied for a multi-component gas mixture. Here the approach
is applied for a gas mixture with internal degrees of freedom and STS coupled
vibrational-chemical kinetics. In the present section, the specular-diffusive scattering
model of particles interaction with the solid wall is considered as well. The calculation
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procedure for the slip/jump equations is considered in detail, which allows one to
apply the technique for other models of the gas flows.

In order to apply the technique, the distribution function of reflected particles
𝑓+ should be expressed in terms of the distribution function of incident particles
𝑓−. For the Maxwell model and in the case of partial catalytic wall, 𝑓+ can be
written as [88]:

𝑓+
𝑐𝑖𝑗(r,u𝑐,𝑡) = (1− σ𝑐𝑖)𝑓−

𝑐𝑖𝑗(r,u𝑐 − 2𝑢𝑐𝑛n,𝑡) + (σ𝑐𝑖 − γ𝑐𝑖)𝑓 (0),𝑤
𝑐𝑖𝑗 , (1.47)

𝑓
(0),𝑤
𝑐𝑖𝑗 =

𝑛𝑤
𝑐𝑖𝑠

𝑐𝑖
𝑗

𝑍rot,𝑐𝑖

(︁ 𝑚𝑐

2π𝑘𝑇𝑤

)︁3/2
exp

(︃
−𝑚𝑐𝑢

2
𝑐

2𝑘𝑇𝑤
−
ε𝑐𝑖𝑗

𝑘𝑇𝑤

)︃
. (1.48)

Here 𝑓+
𝑐𝑖𝑗(r,u𝑐,𝑡), 𝑓−

𝑐𝑖𝑗(r,u𝑐,𝑡) are distribution functions of incident and reflected
particles; u𝑐 is the velocity of reflected particle; 𝑢𝑐𝑛 is the normal component of
velocity (𝑢𝑐𝑛 > 0); n is the normal to the surface; 𝑇𝑤 is the wall temperature; 𝑛𝑤

𝑐𝑖

is the number density of molecules of species 𝑐𝑖 prior to chemical reactions on the
surface; γ𝑐𝑖 is the state-resolved extended recombination coefficient for the formation
of a chemical species 𝑐 in the vibrational state 𝑖; σ𝑐𝑖 is the accommodation coefficient
for 𝑐𝑖 species, which represents the fraction of particles of 𝑐𝑖 species that are diffusely
reflected. Relation (1.47), when reduced to the one-temperature approximation,
corresponds to those in works [80; 82]. In Eq. (1.47), coordinates r of distribution
functions of reflected and incident particles are assumed to be positioned at the
external edge of the Knudsen layer.

The extended recombination coefficient γ𝑐𝑖 of 𝑐𝑖 species is defined as the
fractions that are involved in recombination (γ𝑐𝑖 < 0), dissociation (γ𝑐𝑖 > 0)
reactions or VT and VV energy transitions on the wall. The formal naming of this
coefficient as the "recombination coefficient"follows from works of Scott [43; 93],
and work [82], where this coefficient also describes heterogeneous recombination and
dissociation. However, in the present study γ𝑐𝑖 is responsible not only for chemical
reactions but also for the vibrational energy transitions. The coefficient can be
written in terms of the normal to the surface mass flux of recombining/dissociating
(involved in vibrational deactivation/excitation) reflected molecules of 𝑐𝑖 species 𝐹𝑤

𝑐𝑖

and the normal to the surface mass flux of incident molecules of 𝑐𝑖 species 𝐹 ′
𝑐𝑖:

γ𝑐𝑖 =
𝐹𝑤
𝑐𝑖

𝐹 ′
𝑐𝑖

. (1.49)

The first term in the 𝑓+ expression (1.47) is responsible for specular reflection,
whereas the second is associated with diffusive reflection with the local equilibrium
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Maxwell–Boltzmann distribution (1.48). Because of the mechanism of specular­
diffusive particles reflection, it is assumed that only diffusely reflected particles can
react on the surface.

1.2.1 Technique description

To obtain the boundary conditions using the Grad’s approach, one should
multiply the distribution function of reflected particles by the corresponding
microscopic characteristics and integrate over the half-space 𝑢𝑐𝑛 > 0. The procedure
is conducted under the assumption that the distribution function variations are
small in the Knudsen layer, thus the fluxes of mass, momentum and energy
are constant. The microscopic characteristics are connected with the independent
collision invariants of rapid processes (1.8), (1.9). The obtained equations represent
the balance of mass, momentum and energy normal fluxes near the solid surface.
Here, the distribution function in the form of Eq. (1.47) is considered and the
summation over internal energy levels and chemical species (or rotational states,
for the vibrational level populations) is carried out.

Before rigorously applying the procedure, it is necessary to include some
discussion regarding the positioning of distribution functions in Eq. (1.47), and,
consequently, the slip boundary conditions, at the outer boundary of the Knudsen
layer. In the procedure, the first-order generalized Chapman–Enskog method
distribution function is applied. This distribution function cannot describe the
particles distribution in the layer due to non-equilibrium gas behavior and the
nonlinear stress/strain-rate relation. Nevertheless, the first-order distribution can
be considered in the bulk outer flow, and near the external edge of the layer for
gases in the slip regime. Furthermore, in the presence of heterogeneous reactions,
the incident and reflected particles distributions cannot be assumed to be the same in
the layer. However, outside the layer, the distribution of gas species resulting from
surface recombination/dissociation and vibrational deactivation/excitation can be
considered as a local non-equilibrium.

All of these restrictions make it impossible to apply the Grad’s technique in the
case of the above-mentioned assumptions and heterogeneous processes. Nonetheless,
if the spatial coordinates in Eq. (1.47) are taken outside the Knudsen layer, then the
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technique can be applied, and the resulting slip boundary conditions will capture
the physical effects of gas-surface interactions and heterogeneous reactions.

In the Grad’s approach it is assumed that the normal component of the
macroscopic velocity, 𝑣𝑛, is equal to zero near the solid wall [80]. To obtain the
relations for the wall number densities 𝑛𝑤

𝑐𝑖, it is assumed that prior to chemical
reactions, the fraction of recombining/deactivating particles is equal to zero, which
is equivalent to recombination coefficients being equal to zero. The latter assumption
leads to zero values of normal components of diffusion velocity:

𝑛𝑐𝑖𝑉𝑐𝑖,𝑛 =
∑︁
𝑗

∫︁
(𝑢𝑐𝑛 − 𝑣𝑛)𝑓𝑐𝑖𝑗du𝑐 =

∑︁
𝑗

∫︁
𝑢𝑐𝑛>0

𝑢𝑐𝑛𝑓
+
𝑐𝑖𝑗(u𝑐)du𝑐

+
∑︁
𝑗

∫︁
𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑗(u

′
𝑐)du𝑐 = −

∑︁
𝑗

(1− σ𝑐𝑖)
∫︁

𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑗du

′
𝑐

+
∑︁
𝑗

σ𝑐𝑖

∫︁
𝑢𝑐𝑛>0

𝑢𝑐𝑛𝑓
(0),𝑤
𝑐𝑖𝑗 du𝑐 +

∑︁
𝑗

∫︁
𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑗du𝑐

=
∑︁
𝑗

σ𝑐𝑖

∫︁
𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑗du

′
𝑐 +
∑︁
𝑗

σ𝑐𝑖

∫︁
𝑢𝑐𝑛>0

𝑢𝑐𝑛𝑓
(0),𝑤
𝑐𝑖𝑗 du𝑐

= σ𝑐𝑖

[︃∑︁
𝑗

∫︁
𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑗du

′
𝑐 + 𝑛𝑤

𝑐𝑖

√︃
𝑘𝑇𝑤

2π𝑚𝑐

]︃
= 0,

(1.50)

where u′
𝑐 is the velocity of incident particle. From the above relation the expression

for the wall number density of 𝑐𝑖 species 𝑛𝑤
𝑐𝑖 can be written as follows

𝑛𝑤
𝑐𝑖 = −

√︃
2π𝑚𝑐

𝑘𝑇𝑤

∑︁
𝑗

∫︁
𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑗du

′
𝑐. (1.51)

The above equation for 𝑛𝑤
𝑐𝑖 is similar to the common expression [44; 80] for the

case when internal degrees of freedom are not considered (summation over 𝑗 is
additional).

The number densities on the wall coincide with the number densities of incident
particles 𝑛′

𝑐𝑖, if normal component of the incident diffusion velocity is equal to
zero and normal component of macroscopic incident velocity v′ (𝑣′𝑛 < 0) is the mean
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thermal velocity with the wall temperature:

𝑣′𝑛 = −

√︃
𝑘𝑇𝑤

2π𝑚𝑐
; (1.52)

𝑉 ′
𝑐𝑖,𝑛 = 0. (1.53)

1.2.2 Concentration jump

When considering chemical reactions on the surface, the typical mass flux
equal to zero relations for each species are no longer valid. Consequently, the
boundary conditions for number densities that can capture the influence of
heterogeneous reactions are required. Such conditions are commonly referred to as
the «concentration jump». Quantitatively it can be represented through the ratio of
number densities 𝑛𝑐𝑖 on the external edge of the Knudsen layer and the number
densities on the wall 𝑛𝑤

𝑐𝑖, 𝑛𝑐𝑖/𝑛
𝑤
𝑐𝑖, and the transport coefficients along with the

gradients of macroscopic parameters [93]. Following the described technique, with
corresponding microscopic characteristic as the normal component of momentum
𝑚𝑐𝑢𝑐𝑛, the general equation for the concentration jump of 𝑐𝑖 species for the Maxwell
model of gas-surface interaction is derived:∑︁

𝑗

∫︁
𝑢𝑐𝑛>0

𝑢𝑐𝑛𝑓
+
𝑐𝑖𝑗(u𝑐)du𝑐 =− (1− σ𝑐𝑖)

∑︁
𝑗

∫︁
𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑗(u𝑐)du′

𝑐

+ (σ𝑐𝑖 − γ𝑐𝑖)
∑︁
𝑗

∫︁
𝑢𝑐𝑛>0

𝑢𝑐𝑛𝑓
(0),𝑤
𝑐𝑖𝑗 du𝑐.

(1.54)

Another common way to obtain the concentration jump equation is connected with
the net mass flux 𝐹𝑐𝑖 of reflected particles [43; 82; 93]. In the state-to-state approach
it can be written as:

𝐹𝑐𝑖 =
∑︁
𝑗

𝑚𝑐

∫︁
𝑢𝑐𝑛>0

𝑢𝑐𝑛
(︀
𝑓+
𝑐𝑖𝑗(u𝑐)− 𝑓−

𝑐𝑖𝑗(u𝑐 − 2𝑢𝑐𝑛n)
)︀
du𝑐. (1.55)

𝐹𝑐𝑖 represents the mass flux of recombined/dissociated or vibrationally
excited/deactivated molecules of 𝑐𝑖 species. For gas particles that are not involved
in recombination/dissociation reactions or VT and VV energy transitions (γ𝑐𝑖 = 0)
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it turns to zero. On the other hand, 𝐹𝑐𝑖 can be determined as a normal component
of the diffusion flux ρ𝑐𝑖V𝑐𝑖 · n. Thus, another form of the concentration jump
equation for 𝑐𝑖 species can be written as follows:∑︁

𝑗

∫︁
𝑢𝑐𝑛>0

𝑢𝑐𝑛
(︀
𝑓+
𝑐𝑖𝑗(u𝑐)− 𝑓−

𝑐𝑖𝑗(u𝑐 − 2𝑢𝑐𝑛n)
)︀
du𝑐 = 𝑛𝑐𝑖V𝑐𝑖 · n. (1.56)

Based on the above expression for the distribution function (1.30) and first-order
diffusion velocity in the STS approach (1.39), both equations (1.54) and (1.56) can
be written in terms of the expansion coefficients in the following form:

𝑛𝑤
𝑐𝑖

𝑛𝑐𝑖

√︃
𝑇𝑤

𝑇
=

σ𝑐𝑖

σ𝑐𝑖 − γ𝑐𝑖

(︃
1−

1

2𝑛
𝑏𝑐𝑖,0 𝑆𝑛𝑛 +

1

2𝑛
(𝑓𝑐𝑖,10∇ · v + 𝑔𝑐𝑖,10)

)︃

+
2− σ𝑐𝑖

2(σ𝑐𝑖 − γ𝑐𝑖)𝑛

√︃
π𝑚𝑐

2𝑘𝑇

(︃
𝑎𝑐𝑖,00

𝜕 ln𝑇

𝜕𝑛
−
∑︁
𝑑𝑘

𝑑𝑑𝑘𝑐𝑖,0d𝑑𝑘 · n

)︃
,

(1.57)

here 𝑐 = 1, . . . ,𝐿, 𝑖 = 0, . . . ,𝑁𝑐 and 𝑆𝑛𝑛 = 𝜕𝑣𝑛
𝜕𝑛 − ∇·v

3 .
The analysis of the above equations shows that all the expansion coefficients

in (1.38)–(1.40), except for those, that are connected with the thermal conductivity,
contribute to the equations for number densities on the surface, as well as the
temperature jump 𝑇/𝑇𝑤. The first part in the right-hand side of the above equations
corresponds to the contribution of the shear and normal mean stress (viscosity,
bulk viscosity and relaxation pressure), while the second part is proportional to
the diffusion velocity. The terms 𝑓𝑐𝑖,10 and 𝑔𝑐𝑖,10 connected with the effective bulk
viscosity and relaxation pressure coefficients have been found in the concentration
jump for the first time. It is also worth mentioning that these terms depend on the
effects of slow processes on transport properties in the gas phase, confirming the
development of a closed problem statement.

1.2.3 Velocity slip

The expression for the macroscopic velocity in the direction τ1 in the tangent
plane can be found by multiplying (1.47) by 𝑚𝑐𝑢𝑐𝑛𝑐𝑐τ1; integrating over the half­
space of the velocity 𝑢𝑐𝑛 > 0; and summing over rotational and vibrational energy
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levels and chemical species:∑︁
𝑐𝑖𝑗

𝑚𝑐

∫︁
𝑢𝑐𝑛>0

𝑢𝑐𝑛𝑐𝑐τ1𝑓
+
𝑐𝑖𝑗(u𝑐)du𝑐 =−

∑︁
𝑐𝑖𝑗

𝑚𝑐(1− σ𝑐𝑖)
∫︁

𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑐𝑐τ1𝑓
−
𝑐𝑖𝑗(u𝑐)du′

𝑐

+
∑︁
𝑐𝑖𝑗

𝑚𝑐(σ𝑐𝑖 − γ𝑐𝑖)𝑚𝑐

∫︁
𝑢𝑐𝑛>0

𝑢𝑐𝑛𝑐𝑐τ1𝑓
(0),𝑤
𝑐𝑖𝑗 du𝑐.

(1.58)

Substituting the distribution function (1.23) into above expression, the velocity slip
𝑣1 (velocity component in the direction τ1) is obtained in the form:√︂

𝑇𝑤

𝑇

∑︁
𝑐𝑖

𝑛𝑤
𝑐𝑖

√
𝑚𝑐(σ𝑐𝑖 − γ𝑐𝑖)𝑣1 =

∑︁
𝑐𝑖

𝑛𝑐𝑖

2𝑛

[︃
(2− σ𝑐𝑖)

√︂
π𝑘𝑇

2
𝑏𝑐𝑖,0 𝑆1𝑛

− σ𝑐𝑖
√
𝑚𝑐

(︃
2𝑎𝑐𝑖,00 − 𝑎𝑐𝑖,10

2

𝜕 ln𝑇

𝜕τ1
−
∑︁
𝑑𝑘

𝑑𝑑𝑘𝑐𝑖,0d𝑑𝑘 · τ1

)︃]︃
.

(1.59)

The left-hand side of the above relation represents the analogy of the mass flux
of diffusely reflected and recombined/dissociated particles with macroscopic gas
velocity 𝑣1. The first term in the right-hand side is connected with the shear viscosity
and is proportional to the component of the deformation rate tensor 𝑆1𝑛 = 𝜕𝑣1

𝜕𝑛 +
𝜕𝑣𝑛
𝜕τ1

.
The second term is the analogy of the τ1 component of diffusion mass flux and the
term, connected with translational thermal conductivity λ′tr, associated with the
elastic collisions energy exchanges. Rotational thermal conductivity coefficient λrot,
responsible for the energy transfer associated with inelastic translational-rotational
(TR) and rotational-rotational (RR) energy exchanges, does not contribute to the
velocity slip expression.

Equation (1.59) can be simplified, if number densities on the wall are excluded.
Taking into account (1.57), the following expression for the velocity component in
the direction τ1 is obtained:

𝑣1 =

√︁
π𝑘𝑇
2

∑︀
𝑐𝑖

(2− σ𝑐𝑖) 𝑛𝑐𝑖

2𝑛 𝑏𝑐𝑖,0𝑆1𝑛 −
∑︀
𝑐𝑖

σ𝑐𝑖
𝑛𝑐𝑖

2𝑛

√
𝑚𝑐𝑋𝑐𝑖,1 · τ1

−
√︀

π
2𝑘𝑇

∑︀
𝑐𝑖

(2− σ𝑐𝑖)𝑚𝑐𝑛𝑐𝑖

2𝑛

(︂
𝑎𝑐𝑖,00

𝜕 ln𝑇
𝜕𝑛 −

∑︀
𝑑𝑘

𝑑𝑑𝑘𝑐𝑖,0d𝑑𝑘 · 𝑛
)︂
+𝑋2

, (1.60а)

𝑋𝑐𝑖,1 =
(︀
𝑎𝑐𝑖,00 − 𝑎𝑐𝑖,10

2

)︀
∇ ln𝑇 −

∑︁
𝑑𝑘

𝑑𝑑𝑘𝑐𝑖,0d𝑑𝑘; (1.60б)

𝑋2 =
∑︁
𝑐𝑖

σ𝑐𝑖
𝑛𝑐𝑖

√
𝑚𝑐

2𝑛 (2𝑛− 𝑏𝑐𝑖,0𝑆𝑛𝑛 + 𝑓𝑐𝑖,10∇ · v + 𝑔𝑐𝑖,10) . (1.60в)
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Similarly, the expression for 𝑣2 (velocity component in the direction τ2) can be
derived:

𝑣2 =

√︁
π𝑘𝑇
2

∑︀
𝑐𝑖

(2− σ𝑐𝑖) 𝑛𝑐𝑖

2𝑛 𝑏𝑐𝑖,0𝑆2𝑛 −
∑︀
𝑐𝑖

σ𝑐𝑖
𝑛𝑐𝑖

2𝑛

√
𝑚𝑐𝑋𝑐𝑖,1 · τ2

−
√︀

π
2𝑘𝑇

∑︀
𝑐𝑖

(2− σ𝑐𝑖) 𝑚𝑐𝑛𝑐𝑖

2𝑛

(︂
𝑎𝑐𝑖,00

𝜕 ln𝑇
𝜕𝑛 −

∑︀
𝑑𝑘

𝑑𝑑𝑘𝑐𝑖,0d𝑑𝑘 · 𝑛
)︂
+𝑋2

. (1.61)

It can be seen that velocity slip expressions (1.60) and (1.61), unlike the
concentration jump, do not explicitly depend on the recombination coefficients. Both
Eqs. (1.60) and (1.61) depend on the shear and bulk viscosity coefficients, relaxation
pressure, diffusion velocity of vibrational states and the component of the heat flux
responsible for the transport of translational energy.

1.2.4 Temperature jump

The expression for the gas temperature 𝑇 on the external edge of the Knudsen
layer can be obtained by the similar procedure. The microscopic characteristic is
represented by the total energy of a particle 𝑢𝑐𝑛(𝑚𝑐𝑐

2
𝑐/2 + ε

𝑐𝑖
𝑗 + ε𝑐𝑖 + ε𝑐). Following

the Grad’s technique:

∑︁
𝑐𝑖𝑗

∫︁
𝑢𝑐𝑛>0

(︃
𝑚𝑐𝑐

2
𝑐

2
+ ε𝑐𝑖𝑗 + ε𝑐𝑖 + ε𝑐

)︃
𝑢𝑐𝑛𝑓

+
𝑐𝑖𝑗du𝑐

=−
∑︁
𝑐𝑖𝑗

(1− σ𝑐𝑖)
∫︁

𝑢′
𝑐𝑛<0

(︃
𝑚𝑐𝑐

2
𝑐

2
+ ε𝑐𝑖𝑗 + ε𝑐𝑖 + ε𝑐

)︃
𝑢′𝑐𝑛𝑓

−
𝑐𝑖𝑗du

′
𝑐

+
∑︁
𝑐𝑖𝑗

(σ𝑐𝑖 − γ𝑐𝑖)
∫︁

𝑢𝑐𝑛>0

(︃
𝑚𝑐𝑐

2
𝑐

2
+ ε𝑐𝑖𝑗 + ε𝑐𝑖 + ε𝑐

)︃
𝑢𝑐𝑛𝑓

(0),𝑤
𝑐𝑖𝑗 du𝑐.

(1.62)

The above equation accounts for the influence of the internal energy on the
temperature jump. For the first-order distribution function, with excluded number
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densities on the wall, the following relation is obtained:

𝑇

𝑇𝑤
=

∑︀
𝑐𝑖

(2− σ𝑐𝑖) 𝑛𝑐𝑖

𝑛

(︁
1 + 𝑚𝑐𝑣

2

4𝑘𝑇𝑤

)︁(︂
𝑎𝑐𝑖,00

𝜕 ln𝑇
𝜕𝑛 −

∑︀
𝑑𝑘

𝑑𝑑𝑘𝑐𝑖,0d𝑑𝑘 · n
)︂
+
√︁

2𝑘𝑇
π
𝑌1∑︀

𝑐𝑖

5(2−σ𝑐𝑖)𝑛𝑐𝑖

4𝑛

(︂
𝑎𝑐𝑖,00

𝜕 ln𝑇
𝜕𝑛 −

∑︀
𝑑𝑘

𝑑𝑑𝑘𝑐𝑖,0d𝑑𝑘 · n
)︂
− 𝑌3

𝑘
𝜕 ln𝑇
𝜕𝑛 +

√︁
2𝑘𝑇
π
(𝑌2 + 𝑌4)

,

(1.63а)

𝑌1 =
∑︁
𝑐𝑖

σ𝑐𝑖
𝑛𝑐𝑖

𝑛
√
𝑚𝑐

(︁
1 + 𝑚𝑐𝑣

2

4𝑘𝑇𝑤

)︁
· (2𝑛− 𝑏𝑐𝑖,0𝑆𝑛𝑛 + 𝑓𝑐𝑖,10∇ · v + 𝑔𝑐𝑖,10) ; (1.63б)

𝑌2 =
∑︁
𝑐𝑖

σ𝑐𝑖
𝑛𝑐𝑖

𝑛

√
𝑚𝑐

𝑐rot,𝑐𝑖
𝑘 (𝑓𝑐𝑖,01∇ · v + 𝑔𝑐𝑖,01); (1.63в)

𝑌3 =
∑︁
𝑐𝑖

(2− σ𝑐𝑖) 𝑛𝑐𝑖

2𝑛

(︀
5
2 𝑘𝑎𝑐𝑖,10 +𝑚𝑐𝑐rot,𝑐𝑖𝑎𝑐𝑖,01

)︀
; (1.63г)

𝑌4 =
∑︁
𝑐𝑖

3σ𝑐𝑖𝑛𝑐𝑖

𝑛
√
𝑚𝑐

(︁
2𝑛
3 − 𝑏𝑐𝑖,0

2 𝑆𝑛𝑛 + 𝑓𝑐𝑖,10∇ · v + 𝑔𝑖,10

)︁
. (1.63д)

The temperature jump, as well as the velocity slip, depend on the accommodation
coefficients and does not include recombination coefficients. The expression also
depend on all the expansion coefficients in (1.38)–(1.40). Thus, the contribution of
surface reactions to the velocity slip and temperature jump is not explicit. Such
implicit dependence on heterogeneous processes in the temperature and velocity
expressions at the wall is connected to the fact that these macroparameters
are defined by rapid processes, forming local equilibrium. Otherwise, the
macroparameters would depend explicitly on heterogeneous processes.

The appearance of term (1.63в) and the second part of the term (1.63г) is
associated with included rotational energy. The vibrational energy and the energy
of formation do not explicitly contribute to the temperature jump. It is worth
noting that the first attempt to account for the influence of the internal degrees
of freedom for the multi-component gas mixture was made in Ref. [82]. In order
to account for such an influence, the additional terms were included to the fluxes
of translational energy. The additional terms consisted of mass fluxes of incident
(or reflected) species, multiplied by the average internal energy carried by each
molecule. However, it was done inconsistently since the contributions of internal
energy appear neither in the first-order distribution function nor in the heat flux
and normal stress. Therefore, no internal thermal conductivity and bulk viscosity
arise in the temperature jump.
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1.2.5 Discussion of the obtained slip/jump equations

The boundary conditions for number densities, velocity and temperature
outside the Knudsen layer are obtained for the Maxwell model of particles
scattering by the solid wall. The equations can be reduced to previously obtained
expressions [43; 82; 93], if internal states of particles and slow processes are not
taken into account. In this case the first-order distribution function for the particles
of 𝑐 chemical species can be written in the conventional form [116]:

𝑓𝑐 = 𝑓 (0)
𝑐

[︃
1− 1

𝑛

[︃
A𝑐 · ∇ ln𝑇 +

∑︁
𝑑

D𝑑
𝑐 · d𝑑 +B𝑐 : ∇v

]︃]︃
, (1.64)

𝑓 (0)
𝑐 = 𝑛𝑐

(︃
𝑚𝑐

2π𝑘𝑇

)︃3/2

exp

(︃
−
𝑚𝑐𝑐

2
𝑐

2𝑘𝑇

)︃
. (1.65)

For the functions A𝑐, D𝑑
𝑐 , B𝑐 the following expansions in the series of Sonine

polynomials 𝑆
(𝑟)
ν are proposed [9]:

A𝑐 = −𝑚𝑐c𝑐
2𝑘𝑇

∑︁
𝑟

𝑎𝑐,𝑟𝑆
(𝑟)
3/2, (1.66)

D𝑑
𝑐 =

𝑚𝑐c𝑐
2𝑘𝑇

∑︁
𝑟

𝑑𝑑𝑐,𝑟𝑆
(𝑟)
3/2, (1.67)

B𝑐 =
𝑚𝑐

2𝑘𝑇

(︃
c𝑐c𝑐 −

1

3
𝑐2𝑐I

)︃∑︁
𝑟

𝑏𝑐,𝑟𝑆
(𝑟)
5/2. (1.68)

Considering only the first terms in the above expansions, the distribution
function (1.64) is in the form

𝑓𝑐 = 𝑓 (0)
𝑐

[︃
1 +

𝑚𝑐c𝑐
2𝑛𝑘𝑇

·

(︃
𝑎𝑐,0 + 𝑎𝑐,1

(︃
5

2
−

𝑚𝑐𝑐
2
𝑐

2𝑘𝑇

)︃)︃
∇𝑇

−
𝑚𝑐c𝑐
2𝑛𝑘𝑇

·
∑︁
𝑑

𝑑𝑑𝑐,0d𝑑 −
𝑚𝑐𝑏𝑐,0

2𝑛𝑘𝑇

(︃
c𝑐c𝑐 : ∇v −

1

3
𝑐2𝑐∇ · v

)︃]︃
.

(1.69)
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For the distribution function (1.69), the set of equations (1.57), (1.60), (1.61)
and (1.63) can be rewritten in the form:

𝑛𝑤
𝑐

𝑛𝑐

√︃
𝑇𝑤

𝑇
=

σ𝑐

σ𝑐 − γ𝑐

(︃
1−

1

2𝑛
𝑏𝑐,0𝑆𝑛𝑛

)︃

+
2− σ𝑐

2(σ𝑐 − γ𝑐)𝑛

√︃
π𝑚𝑐

2𝑘𝑇

(︃
𝑎𝑐,0

𝜕 ln𝑇

𝜕𝑛
−
∑︁
𝑑𝑘

𝑑𝑑𝑘𝑐,0d𝑑𝑘 · n

)︃
.

(1.70)

𝑣𝑙 =

√︁
π𝑘𝑇
2

∑︀
𝑐
(2− σ𝑐) 𝑛𝑐

2𝑛𝑏𝑐,0𝑆𝑙𝑛 − X̄1 · τ𝑙√︀
π

2𝑘𝑇

∑︀
𝑐
σ𝑐

𝑚𝑐𝑛𝑐

2𝑛

(︂
𝑎𝑐,0

𝜕 ln𝑇
𝜕𝑛 −

∑︀
𝑑

𝑑𝑑𝑐,0d𝑑𝑘 · 𝑛
)︂
+ 𝑋̄2

, 𝑙 = 1,2, (1.71а)

X̄1 =
∑︁
𝑐

σ𝑐
𝑛𝑐

2𝑛

√
𝑚𝑐

(︃(︀
𝑎𝑐,0 − 𝑎𝑐,1

2

)︀
∇ ln𝑇 −

∑︁
𝑑

𝑑𝑑𝑐,0d𝑑

)︃
; (1.71б)

𝑋̄2 =
∑︁
𝑐

σ𝑐
𝑛𝑐

2𝑛

√
𝑚𝑐 (2𝑛− 𝑏𝑐,0𝑆𝑛𝑛) . (1.71в)

𝑇

𝑇𝑤
=

∑︀
𝑐
(2− σ𝑐) 𝑛𝑐

𝑛

(︁
1 + 𝑚𝑐𝑣

2

4𝑘𝑇𝑤

)︁(︂
𝑎𝑐,0

𝜕 ln𝑇
𝜕𝑛 −

∑︀
𝑑

𝑑𝑑𝑐,0d𝑑 · n
)︂
+
√︁

2𝑘𝑇
π
𝑌1∑︀

𝑐
(2− σ𝑐) 5𝑛𝑐

4𝑛

(︂
𝑎𝑐,0

𝜕 ln𝑇
𝜕𝑛 −

∑︀
𝑑

𝑑𝑑𝑐,0d𝑑 · n
)︂
− 𝑌2 +

√︁
2𝑘𝑇
π
𝑌3

, (1.72а)

𝑌1 =
∑︁
𝑐

σ𝑐
𝑛𝑐

𝑛
√
𝑚𝑐

(︁
1 + 𝑚𝑐𝑣

2

4𝑘𝑇𝑤

)︁
· (2𝑛− 𝑏𝑐,0𝑆𝑛𝑛) ; (1.72б)

𝑌2 =
∑︁
𝑐

(2− σ𝑐) 5𝑛𝑐

4𝑛 𝑎𝑐,1
𝜕 ln𝑇
𝜕𝑛 ; (1.72в)

𝑌3 =
∑︁
𝑐

σ𝑐
3𝑛𝑐𝑖

2𝑛
√
𝑚𝑐

(4/3𝑛− 𝑏𝑐,0𝑆𝑛𝑛) . (1.72г)

Here, 𝑐 = 1, . . . 𝐿, and 𝐿 is the number of chemical species. The
equations (1.70)–(1.72) are written in the form, similar to the one, obtained
in Ref. [82]. Differences appear only due to the chosen expansions of terms in
distribution function (1.69) in the Sonine polynomials. Therefore, in the limit
case of particles without internal modes and reactions, the approach yields the
well-known solution.

The Grad’s method provides a simple procedure to derive the slip/jump
equations. Similar procedure can be carried out by the half-flux method, and the
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slip conditions derived by both methods will be the same. However, the use of
these methods leads to some issues. The first issue occurs due to including in the
distribution function of reflected particles the number densities on the wall 𝑛𝑤

𝑐𝑖 (or
𝑛𝑤
𝑐 ). This terms have no clear physical meaning, and their calculation remains an

open question. Additionally, these terms cause certain calculation difficulties when
excluded from the velocity slip and the temperature jump expressions. Another issue
is connected with the choice of velocity for microscopic characteristics. Common
mistake is to chose peculiar velocity instead of particle velocity and opposite. Goniak
and Duffa [119] have pointed out that in the half-flux method microscopic velocity
u𝑐 should be used in the definition of fluxes, while the reference velocity c𝑐 should
be used in Grad’s technique. However, this mistake still can be found in recent
works [95].

Both methods can be generalized for other models of particles scattering with
solid surfaces if the distribution function of reflected particles allows expression in
terms of distribution function of incident particles. For the processes accounting
for surface inner geometry, such as adsorption and emission, the above procedure
becomes rather complicated. In order to overcome these issues, a more rigorous
approach based on the kinetic boundary condition is suggested. The following section
is devoted to the formulation of the mentioned approach for the STS model.

1.3 Approach based on the kinetic boundary condition

In this section, the problem formulation for deriving slip conditions from
kinetic boundary condition is introduced. The conditions are presented for the
Maxwell scattering model.

1.3.1 Kinetic boundary condition in the STS approach

Assuming that a collision of a particle with the surface is a rapid process
and, thereby, neglecting possible change in vibrational and chemical state, as a slow
processes, the known kinetic boundary conditions for a gas mixture with rapid and
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slow processes can be modified to the following form:

𝑓+
𝑐𝑖𝑗(r,u𝑐,𝑡)𝑢𝑐𝑛|𝑢𝑐𝑛>0 = −

∑︁
𝑙

∫︁
𝑢′
𝑐𝑛<0

𝑓−
𝑐𝑖𝑙(r,u

′
𝑐,𝑡)𝑢

′
𝑐𝑛𝑇

𝑐𝑖𝑗
𝑙 (u𝑐,u′

𝑐)du
′
𝑐, (1.73)

where 𝑇 𝑐𝑖𝑗
𝑙 (u𝑐,u′

𝑐) is the scattering kernel, which represents the gas-solid body
interaction model and is defined as a probability density function on the half-space
𝑢𝑐𝑛 > 0. 𝑇 𝑐𝑖𝑗

𝑙 (u𝑐,u′
𝑐)du𝑐 is the probability, that incident molecule in the 𝑐𝑖𝑙 state

with u′
𝑐 velocity will be reflected in the 𝑐𝑖𝑗 state with u𝑐 velocity in the interval

du𝑐. The spatial coordinate in the above kinetic boundary condition is assumed to
be placed at the external edge of the Knudsen layer, as in the BC for distribution
function of reflected particles (1.47).

The scattering kernel 𝑇 𝑐𝑖𝑗
𝑙 must satisfy the non-negativeness, reciprocity and

normalization conditions [120; 121]. In the case of multi-component gas mixture
with internal degrees of freedom the reciprocity and normalization conditions can
be written as:

1. The reciprocity relation:

|𝑢′𝑐𝑛|𝑓
(0)
𝑐𝑖𝑙 (𝑇

𝑤)𝑇 𝑐𝑖𝑗
𝑙 (u𝑐,u′

𝑐) = |𝑢𝑐𝑛|𝑓 (0)
𝑐𝑖𝑗 (𝑇

𝑤)𝑇 𝑐𝑖𝑙
𝑗 (−u′

𝑐,− u𝑐). (1.74)

The equation above states that if the gas mixture is in equilibrium with the
surface, the incident and reflected molecules distribution is the local equilibrium
Maxwell–Boltzmann distribution with the surface temperature 𝑇𝑤.

2. The normalization condition, which, without accounting for adsorption/desorption
on the solid wall and, as well, processes with chemical reactions has the form:∑︁

𝑗

∫︁
𝑢𝑐𝑛>0

𝑇 𝑐𝑖𝑗
𝑙 (u𝑐,u′

𝑐)du𝑐 = 1. (1.75)

If processes with chemical reactions are included, such as recombination/dissociation
and VT/VV energy transitions, equation (1.75) is not valid. Similar expression can
be introduced with the mentioned earlier extended recombination coefficient γ𝑐𝑖:∑︁

𝑗

∫︁
𝑢𝑐𝑛>0

𝑇 𝑐𝑖𝑗
𝑙 (u𝑐,u′

𝑐)du𝑐 = 1− γ𝑐𝑖. (1.76)

From relation (1.76) it can be seen that the coefficient γ𝑐𝑖 should include all the
processes that can change state of a particle of 𝑐𝑖 species. Therefore, the coefficient
for each species is the sum of the coefficients γ𝑝𝑐𝑖 of surface processes (γ𝑐𝑖 =

∑︀
γ𝑝𝑐𝑖).
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It is supposed that γ𝑝𝑐𝑖 > 0 if the particles of species 𝑐𝑖 change their vibrational
or/and chemical state due to the 𝑝 process; γ𝑝𝑐𝑖 < 0 if the particles of species 𝑐𝑖

are formed as a result of the 𝑝 process.
Considering normalization condition (1.76) for the scattering kernel, the

following relation for the normal component of macroscopic velocity is fulfilled

ρ𝑣𝑛 =
∑︁
𝑐𝑖𝑗

𝑚𝑐

∫︁
𝑢𝑐𝑛>0

𝑢𝑐𝑛𝑓
+
𝑐𝑖𝑗du𝑐 +

∑︁
𝑐𝑖𝑗

𝑚𝑐

∫︁
𝑢𝑐𝑛<0

𝑢𝑐𝑛𝑓
−
𝑐𝑖𝑗du𝑐

=−
∑︁
𝑐𝑖𝑗

𝑚𝑐

∫︁
𝑢𝑐𝑛>0

∑︁
𝑙

∫︁
𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑙𝑇

𝑐𝑖𝑗
𝑙 du′

𝑐 +
∑︁
𝑐𝑖𝑗

𝑚𝑐

∫︁
𝑢𝑐𝑛<0

𝑢𝑐𝑛𝑓
−
𝑐𝑖𝑗du𝑐

=−
∑︁
𝑐𝑖𝑙

𝑚𝑐(1− γ𝑐𝑖)
∫︁

𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑙du

′
𝑐 +
∑︁
𝑐𝑖𝑙

𝑚𝑐

∫︁
𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑙du

′
𝑐

=
∑︁
𝑐𝑖𝑙

𝑚𝑐γ𝑐𝑖

∫︁
𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑙du

′
𝑐.

(1.77)

One can notice that in the case of wall catalyticity being neglected, the velocity
normal component is equal to zero. In the case of heterogeneous reactions, similarly
to the Grad’s approach, it is assumed that 𝑣𝑛 = 0, which leads to the following
expression: ∑︁

𝑐𝑖𝑙

𝑚𝑐γ𝑐𝑖

∫︁
𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑙du

′
𝑐 = 0. (1.78)

The latter expression is valid, e.g., if the diffusion velocity normal component of
all the incident particles along with the directed to the surface normal macroscopic
velocity component are equal to zero. It can also be approximated as zero if these
normal components are small, and the solid surface is a low-catalytic material.
Nonetheless, this relation does not offer a clear physical interpretation. A more
appropriate expression will be introduced in the subsequent chapter as a part of the
extension of the present approach .

Boundary conditions for fluid-dynamic parameters can be obtained by the
approach, similar to the generalized Chapman–Enskog method [9; 116]. For the gas
with internal degrees of freedom in slip regime, kinetic boundary condition (1.73) is
multiplied by the independent collision invariants ψ(ν)

𝑐𝑖𝑗 (1.8)–(1.9), then integrated
over the half-space 𝑢𝑐𝑛 > 0 and summed over 𝑐,𝑖,𝑗. Summation for ψ(ν+4)

𝑐𝑖𝑗 (1.9) is
only carried out over rotational energy levels 𝑗. The collision invariants depend on
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the velocity of the particle u𝑐, while corresponding microscopic characteristics in
the Grad’s approach on the peculiar velocity c𝑐.

1.3.2 Specular-diffusive scattering kernel

For the specular-diffusive, or Maxwell, model of particle interaction with solid
wall the scattering kernel has the following form:

𝑇 𝑐𝑖𝑗
𝑙 (u𝑐,u′

𝑐) =(1− σ𝑐𝑖)δ𝑙𝑗δ(u′
𝑐 − u𝑐 + 2𝑢𝑐𝑛n) + (σ𝑐𝑖 − γ𝑐𝑖)

×
2

π

(︃
𝑚𝑐

2𝑘𝑇

)︃2
𝑠𝑐𝑖𝑗

𝑍rot,𝑐𝑖(𝑇𝑤)
exp

(︃
−
𝑚𝑐𝑢

2
𝑐

2𝑘𝑇𝑤
−
ε𝑐𝑖𝑗

𝑘𝑇𝑤

)︃
𝑢𝑐𝑛.

(1.79)

The first part of the kernel is responsible for the specular reflection, whereas the
second corresponds to the diffusive reflection with the local equilibrium distribution.
The kernel (1.79) satisfies relations (1.74) and (1.76).

It should be noted that expression (1.79), despite being appropriate
generalization, still has a disadvantage in being unable to describe various
mechanisms of rotational state change of a molecule due to the wall impinging.
One of the possible ways to overcome this is to introduce the probabilities of
rotational state change due to specular and diffusive scattering, depending on the
wall temperature and solid wall characteristics.

Substituting scattering kernel (1.79) into kinetic boundary condition (1.73)
divided by 𝑢𝑐𝑛, and considering expression (1.51) for the wall number densities, the
same expression for 𝑓+ as in Eq. (1.47) is obtained.

1.3.3 Boundary conditions for number densities

In order to find the expressions for 𝑛𝑐𝑖, the generalized Chapman—Enskog
method for boundary condition (1.73) with the additional invariants of the most
frequent collisions 𝑎𝑐𝑖 (1.9) is applied. As one can see, the approach provides the
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relation for number densities independent of scattering model :∑︁
𝑗

∫︁
𝑢𝑐𝑛>0

𝑢𝑐𝑛𝑓
+
𝑐𝑖𝑗du𝑐 =−

∑︁
𝑗,𝑙

∫︁
𝑢𝑐𝑛>0

∫︁
𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑙(r,u

′
𝑐,𝑡)𝑇

𝑐𝑖𝑗
𝑙 (u𝑐,u′

𝑐)du
′
𝑐

=− (1− γ𝑐𝑖)
∑︁
𝑙

∫︁
𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑙(r,u

′
𝑐,𝑡)du

′
𝑐.

(1.80)

Eq. (1.80) was obtained due to the normalization condition for kernel (1.76).
However, for a thorough comparison with the Grad’s technique in the case of

specular scattering, it is essential to employ the procedure that takes into account
kernel form (1.79). This will lead to the following integral relation∑︁

𝑗

∫︁
𝑢𝑐𝑛>0

𝑢𝑐𝑛𝑓
+
𝑐𝑖𝑗du𝑐 =− (1− σ𝑐𝑖)

∑︁
𝑗

∫︁
𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑗du

′
𝑐

− (σ𝑐𝑖 − γ𝑐𝑖)
∑︁
𝑙

∫︁
𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑙du

′
𝑐.

(1.81)

Substituting in the right-hand side of the above equations the number densities on
the wall 𝑛𝑤

𝑐𝑖 given by relations (1.51), as expected, Eq. (1.54) is derived:

∑︁
𝑙

∫︁
𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑙du

′
𝑐 = −𝑛𝑤

𝑐𝑖

√︂
𝑘𝑇𝑤

2π𝑚𝑐
= −

∑︁
𝑗

∫︁
𝑢𝑐𝑛>0

𝑢𝑐𝑛𝑓
(0),𝑤
𝑐𝑖𝑗 du𝑐. (1.82)

Thus the concentration jump, obtained by the second approach, can be written
in the form (1.57). However, as is mentioned above, the equations with included
number densities on the wall are not convenient for practical simulations. In order
to exclude them, the same terms in the right hand side of (1.81) should be reduced,
which obviously leads to Eq. (1.80). Substituting the distribution function to (1.80)
yields the following boundary condition for number density of 𝑐𝑖 species:(︃

1−
γ𝑐𝑖

2

)︃
𝑛𝑐𝑖

2𝑛

(︃
𝑎𝑐𝑖,00

𝜕 ln𝑇

𝜕𝑛
−
∑︁
𝑑𝑘

𝑑𝑑𝑘𝑐𝑖,0d𝑑𝑘 · n

)︃
= −γ𝑐𝑖𝑛𝑐𝑖

√︃
𝑘𝑇

2π𝑚𝑐

×

(︃
1−

1

2𝑛
𝑏𝑐𝑖,0𝑆𝑛𝑛 +

1

2𝑛
(𝑓𝑐𝑖,10∇ · v + 𝑔𝑐𝑖,10)

)︃
.

(1.83)

The above equation can also be derived from expression (1.57) with 𝑛𝑤
𝑐𝑖 calculated

from Eq. (1.51). The second approach gives the relations with no need for further
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simplifications, connected with 𝑛𝑤
𝑐𝑖. It is obvious that similar situation occurs for

both the velocity slip and temperature jump expressions. Equation (1.83) in the
one-temperature approach correspond to relations previously obtained in studies [43;
82; 93]. In [82], the concentration jump equations are reduced to the expressions for
number densities 𝑛𝑐𝑖 in terms of the expansion coefficients. The expressions are not
valid due to the incorrect determination of the diffusion coefficients in terms of the
expansion coefficients. The other two works report expressions similar to (1.83).

One can notice, that 𝑛𝑐𝑖 can be eliminated from (1.83). However, this
expression can still be referred to as the boundary condition for number density
due to the dependence of the diffusive driving force, d𝑐𝑖𝑘, on this macroparameter
gradient. Besides that, 𝑛𝑐𝑖 is not excluded since the LHS of Eq. (1.83) includes
the mass flux of 𝑐𝑖 species. As already mentioned, it is conventional to express
the species boundary conditions in terms of these mass fluxes, and this would be
done later in Sec. 1.4.

Thus, the inclusion of the ratio 𝑛𝑤
𝑐𝑖/𝑛𝑐𝑖 with no exact physical meaning

in (1.83) has been eliminated. As a result, designation of boundary conditions for
number densities as the concentration jump equations is no longer appropriate. The
conditions should be treated as the relations for number or mass fluxes of species,
expressed in terms of molar fractions 𝑛𝑐𝑖/𝑛, temperature 𝑇 , and velocity v, along
with their gradients.

1.3.4 Velocity slip and temperature jump

Expression for the velocity in the direction τ1 can be derived when the
independent collision invariant 𝑚𝑐𝑢𝑐1 (1.8) is applied in the procedure. For the
Maxwell model (1.79):∑︁

𝑐𝑖𝑗

𝑚𝑐

∫︁
𝑢𝑐𝑛>0

𝑢𝑐𝑛𝑢𝑐1𝑓
+
𝑐𝑖𝑗du𝑐 = −

∑︁
𝑐𝑖𝑗

𝑚𝑐(1− σ𝑐𝑖)
∫︁

𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑢𝑐1𝑓
−
𝑐𝑖𝑗du

′
𝑐. (1.84)
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Despite the differences between the equations (1.58) and (1.84) for the velocity slip,
expression (1.84) can be reduced to Eq. (1.58):∑︁

𝑐𝑖𝑗

𝑚𝑐

∫︁
𝑢𝑐𝑛>0

𝑢𝑐𝑛𝑐𝑐1𝑓
+
𝑐𝑖𝑗du𝑐 + 𝑣1

∑︁
𝑐𝑖𝑗

𝑚𝑐

∫︁
𝑢𝑐𝑛>0

𝑢𝑐𝑛𝑓
+
𝑐𝑖𝑗du𝑐

=−
∑︁
𝑐𝑖𝑗

𝑚𝑐(1− σ𝑐𝑖)
∫︁

𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑐𝑐1𝑓
−
𝑐𝑖𝑗du

′
𝑐

− 𝑣1
∑︁
𝑐𝑖𝑗

𝑚𝑐(1− σ𝑐𝑖)
∫︁

𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑗du

′
𝑐.

(1.85)

Substituting expression (1.80) to the right-hand side of the above equation yields∑︁
𝑐𝑖𝑗

𝑚𝑐

∫︁
𝑢𝑐𝑛>0

𝑢𝑐𝑛𝑐𝑐1𝑓
+
𝑐𝑖𝑗du𝑐 = 𝑣1

∑︁
𝑐𝑖𝑗

𝑚𝑐(σ𝑐𝑖 − γ𝑐𝑖)
∫︁

𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑗du

′
𝑐

−
∑︁
𝑐𝑖𝑗

𝑚𝑐(1− σ𝑐𝑖)
∫︁

𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑐𝑐1𝑓
−
𝑐𝑖𝑗du

′
𝑐.

(1.86)

Due to relation (1.51), equation (1.86) coincides with (1.58). Another way to show
that the expressions for velocity slip coincide is to integrate equation (1.84). When
carrying out such a procedure, the expression (1.60) is obtained.

The relation for the velocity slip in the direction τ2 can be obtained in the
same way. The above procedure with 𝑚𝑐𝑢𝑐𝑛 as the independent collision invariant
gives the boundary condition for pressure 𝑝. Since 𝑝 is not in the set of independent
fluid-dynamic variables required for a closed flow description, the pressure jump is
not considered here.

Boundary condition for the gas temperature can be obtained from the following
equation:

∑︁
𝑐𝑖𝑗

∫︁
𝑢𝑐𝑛>0

(︃
𝑚𝑐𝑢

2
𝑐

2
+ ε𝑐𝑖𝑗 + ε𝑐𝑖 + ε𝑐

)︃
𝑢𝑐𝑛𝑓

+
𝑐𝑖𝑗du𝑐

=−
∑︁
𝑐𝑖𝑗

(1− σ𝑐𝑖)
∫︁

𝑢′
𝑐𝑛<0

(︃
𝑚𝑐𝑢

2
𝑐

2
+ ε𝑐𝑖𝑗 + ε𝑐𝑖 + ε𝑐

)︃
𝑢′𝑐𝑛𝑓

−
𝑐𝑖𝑗du

′
𝑐

−
∑︁
𝑐𝑖𝑗

(σ𝑐𝑖 − γ𝑐𝑖)
(︀
2𝑘𝑇𝑤 + ⟨ε𝑐𝑖⟩𝑟𝑜𝑡 + ε𝑐𝑖 + ε𝑐

)︀ ∫︁
𝑢′
𝑐𝑛<0

𝑢′𝑐𝑛𝑓
−
𝑐𝑖𝑗du

′
𝑐.

(1.87)



42

Integration of the above equation yields (1.63). Another way to obtain the same
expression is to reduce the equation (1.87) to (1.62). The procedure is the same as
for the velocity slip expressions.

Therefore, the equivalence between the two approaches for the Maxwell model
has been demonstrated. However, establishing a general equivalence for an arbitrary
scattering kernel is complicated due to the unknown distribution function of reflected
particles.

1.4 Further discussion and simplifications

In the previous sections it was shown that the obtained boundary conditions
for the set of macroscopic parameters under some assumptions can be reduced
to the ones obtained for a multi-component gas mixture in the one-temperature
approach. Nonetheless, for practical applications considerable simplifications still
have to be done. The initial step in this direction is to write the expressions in a
more physical form.

1.4.1 Expressions in terms of transport coefficients

First, it is useful to rewrite equations (1.60), (1.61), (1.63) and (1.83) in
terms of the effective transport coefficients and transport terms. Taking into
account expressions (1.35)–(1.37) and (1.41)–(1.46), the boundary conditions can
be rewritten in the following form

V𝑐𝑖 · n =
− γ𝑐𝑖

(2− γ𝑐𝑖)𝑛
√
2π𝑚𝑐𝑘𝑇

(2𝑝− 2µ𝑐𝑖𝑆𝑛𝑛 − ζ𝑐𝑖∇ · v − 𝑝rel,𝑐𝑖) , (1.88)
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𝑣𝑙 =

√︁
2π
𝑘𝑇

∑︀
𝑐𝑖

(2−σ𝑐𝑖)𝑛𝑐𝑖

𝑛 2µ𝑐𝑖𝑆𝑙𝑛 +𝑋1√︁
2π
𝑘𝑇

∑︀
𝑐𝑖

σ𝑐𝑖𝑚𝑐𝑛𝑐𝑖

2 V𝑐𝑖 · n +
∑︀
𝑐𝑖

σ𝑐𝑖
√
𝑚𝑐𝑛𝑐𝑖

2𝑛𝑘𝑇 (2𝑝− 2µ𝑐𝑖𝑆𝑛𝑛 − ζ𝑐𝑖∇ · v − 𝑝rel,𝑐𝑖)
,

(1.89а)

𝑋1 =
∑︁
𝑐𝑖

σ𝑐𝑖𝑛𝑐𝑖
√
𝑚𝑐

(︃(︁
𝐷𝑇𝑐𝑖 +

λ′tr,𝑐𝑖
5𝑘𝑛

)︁
𝜕 ln𝑇
𝜕τ𝑙

+
∑︁
𝑑𝑘

𝐷𝑐𝑖𝑑𝑘d𝑑𝑘 · τ𝑙

)︃
, (1.89б)

𝑇

𝑇𝑤
=

∑︀
𝑐𝑖

(2− σ𝑐𝑖)𝑛𝑐𝑖

(︁
1 + 𝑚𝑐𝑣

2

4𝑘𝑇𝑤

)︁
V𝑐𝑖 · n +

√︁
2
π𝑘𝑇 𝑌1∑︀

𝑐𝑖

(2− σ𝑐𝑖) 5𝑛𝑐𝑖

4 V𝑐𝑖 · n − 𝑌3

2𝑘
𝜕 ln𝑇
𝜕𝑛 +

√︁
2
π𝑘𝑇 (𝑌2 + 𝑌4)

, (1.90а)

𝑌1 =
∑︁
𝑐𝑖

σ𝑐𝑖
𝑛𝑐𝑖

2𝑛
√
𝑚𝑐

(︁
1 + 𝑚𝑐𝑣

2

4𝑘𝑇𝑤

)︁
(2𝑝− 2µ𝑐𝑖𝑆𝑛𝑛 − ζ𝑐𝑖∇ · v − 𝑝rel,𝑐𝑖) ; (1.90б)

𝑌2 =
∑︁
𝑐𝑖

σ𝑐𝑖
3𝑛𝑐𝑖

2𝑛
√
𝑚𝑐

(2/3𝑝− µ𝑐𝑖𝑆𝑛𝑛 − ζ𝑐𝑖∇ · v − 𝑝rel,𝑐𝑖) ; (1.90в)

𝑌3 =
∑︁
𝑐𝑖

(2− σ𝑐𝑖) 𝑛𝑐𝑖

𝑛

(︀
λ′tr,𝑐𝑖 + λrot,𝑐𝑖

)︀
; (1.90г)

𝑌4 = 𝑇
∑︁
𝑐𝑖

σ𝑐𝑖
𝑛𝑐𝑖

2𝑛

√
𝑚𝑐

𝑐rot,𝑐𝑖
𝑘 (𝑓𝑐𝑖,01∇ · v + 𝑔𝑐𝑖,01). (1.90д)

Here, 𝑐 = 1, . . . ,𝐿, 𝑖 = 0, . . . ,𝑁𝑐, 𝑙 = 1,2. From the above expressions, one
can clearly see the contribution of various transport processes to the boundary
conditions. It also should be noted that the expressions reduce to the common
expressions in the zero-order approximation: 𝑣 = 0, 𝑇 = 𝑇𝑤 (in this case all the
transport coefficients vanish).

It is common to express the boundary conditions for species concentrations
in terms of the mass fluxes of the mixture component 𝑐𝑖, J𝑐𝑖, which can be written
in terms of the diffusion velocity:

J𝑐𝑖 = ρ𝑐𝑖V𝑐𝑖. (1.91)

In such a case, the expression (1.88) for each species is transformed into the following
formula:

J𝑐𝑖 · n =
− γ𝑐𝑖ρ𝑐𝑖

(2− γ𝑐𝑖)𝑛
√
2π𝑚𝑐𝑘𝑇

(2𝑝− 2µ𝑐𝑖𝑆𝑛𝑛 − ζ𝑐𝑖∇ · v − 𝑝rel,𝑐𝑖) . (1.92)
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Assuming that the accommodation coefficients are independent of the
vibrational level and chemical species of a particle, the velocity slip (1.89) and
temperature jump (1.90) equations can be written as follows

𝑣𝑙 =

√︁
2π
𝑘𝑇

2−σ
σ

2µ𝑆𝑙𝑛 −
∑︀
𝑐𝑖

𝑛𝑐𝑖
√
𝑚𝑐 V𝑐𝑖 · τ𝑙 +

∑︀
𝑐𝑖

𝑛𝑐𝑖
√
𝑚𝑐

5𝑘𝑛 λ′tr,𝑐𝑖
𝜕 ln𝑇
𝜕τ𝑙

1
𝑘𝑇

∑︀
𝑐𝑖

𝑛𝑐𝑖

2𝑛

√
𝑚𝑐 (2𝑝− 2µ𝑐𝑖𝑆𝑛𝑛 − ζ𝑐𝑖∇ · v − 𝑝rel,𝑐𝑖)

, (1.93)

𝑇

𝑇𝑤
=

(2− σ)
∑︀
𝑐𝑖

𝑛𝑐𝑖V𝑐𝑖 · n + σ
√︁

2
π𝑘𝑇 𝑌1

(2− σ)
∑︀
𝑐𝑖

5𝑛𝑐𝑖

4 V𝑐𝑖 · n − (2−σ)λ′
2𝑘

𝜕 ln𝑇
𝜕𝑛 + σ

√︁
2
π𝑘𝑇 (𝑌2 + 𝑌4)

, (1.94а)

𝑌1 =
∑︁
𝑐𝑖

𝑛𝑐𝑖

2𝑛
√
𝑚𝑐

(︁
1 + 𝑚𝑐𝑣

2

4𝑘𝑇𝑤

)︁
(2𝑝− 2µ𝑐𝑖𝑆𝑛𝑛 − ζ𝑐𝑖∇ · v − 𝑝rel,𝑐𝑖) ; (1.94б)

𝑌2 =
∑︁
𝑐𝑖

3𝑛𝑐𝑖

2𝑛
√
𝑚𝑐

(2/3𝑝− µ𝑐𝑖𝑆𝑛𝑛 − ζ𝑐𝑖∇ · v − 𝑝rel,𝑐𝑖) ; (1.94в)

𝑌4 = 𝑇
∑︁
𝑐𝑖

𝑛𝑐𝑖

2𝑛

√
𝑚𝑐

𝑐rot,𝑐𝑖
𝑘 (𝑓𝑐𝑖,01∇ · v + 𝑔𝑐𝑖,01). (1.94г)

The above relations are more practical than Eqs. (1.89), (1.90) since there is a
general lack of data for the accommodation coefficient depending on 𝑐,𝑖 and even
on the chemical species.

For a non-catalytic surface, the wall mass flux and temperature jump
expressions (velocity slip does not change in this case) take the form:

J𝑐𝑖 · n = 0, (1.95)

𝑇

𝑇𝑤
=

√︁
2
π𝑘𝑇

∑︀
𝑐𝑖

𝑛𝑐𝑖

2𝑛
√
𝑚𝑐

(︁
1 + 𝑚𝑐𝑣

2

4𝑘𝑇𝑤

)︁
(2𝑝− 2µ𝑐𝑖𝑆𝑛𝑛 − ζ𝑐𝑖∇ · v − 𝑝rel,𝑐𝑖)

−2−σ
σ

λ′

2𝑘
𝜕 ln𝑇
𝜕𝑛 +

√︁
2
π𝑘𝑇 (𝑌2 + 𝑌4)

. (1.96)

The set of equations for a fully catalytic wall case (all the atoms that reach the wall
are a part of surface recombination process) can be obtained similarly. In this case
γ𝑐𝑖 are assumed to be equal to unity in (1.92).

1.4.2 Slip/jump equations for a single-component gas

In this section, a single-component gas under the strongly non-equilibrium
conditions is considered as a particular case of the obtained boundary conditions.
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In this case, the set of equations (1.92), (1.93)–(1.94) is following:

J𝑖 · n =
− γ𝑖ρ𝑖

(2− γ𝑖)𝑛
√
2π𝑚𝑘𝑇

(2𝑝− 2µ𝑖𝑆𝑛𝑛 − ζ𝑖∇ · v − 𝑝rel,𝑖) , (1.97)

𝑣𝑙 =

√︁
2π

𝑚𝑘𝑇
2−σ
σ

2µ𝑆𝑙𝑛 +
1
5𝑘λ

′
tr
𝜕 ln𝑇
𝜕τ𝑙

1
2𝑘𝑇 (2𝑝− 2µ𝑆𝑛𝑛 − ζ∇ · v − 𝑝rel)

, (1.98)

𝑇

𝑇𝑤
=

−
√︁

2
π𝑘𝑇

(︁
1 + 𝑚𝑣2

4𝑘𝑇𝑤

)︁
(2𝑝− 2µ𝑆𝑛𝑛 − ζ∇ · v − 𝑝rel)

(2−σ)
√
𝑚λ′

σ𝑘
𝜕 ln𝑇
𝜕𝑛 −

√︁
2
π𝑘𝑇

(︁
2𝑝− 3µ𝑆𝑛𝑛 − 3(ζ∇·v+𝑝rel)

2

)︁, (1.99)

where 𝑖 = 1, . . . ,𝑁𝑀 and 𝑁𝑀 is the number of vibrational states of the gas molecule
and γ𝑖 is the vibrational deactivation/excitation coefficient. The expression (1.99)
is simplified with the use of the following relation [9]:∑︁

𝑖

𝑚𝑛𝑖

𝑛
𝑐rot,𝑖(𝑓𝑖,01∇ · v + 𝑔𝑖,01) = −

∑︁
𝑖

𝑚𝑛𝑖

𝑛
𝑐tr(𝑓𝑖,10∇ · v + 𝑔𝑖,10)

= −𝑘
∑︁
𝑖

3𝑛𝑖

2𝑛
(𝑓𝑖,10∇ · v + 𝑔𝑖,10).

(1.100)

It can be observed that, in the considered gas case, the expressions explicitly depend
on the transport coefficients without the necessity of defining effective ones.

If internal states of particles and slow processes are not taken into the account,
the velocity slip and temperature jump are returned to the following relations

𝑣𝑙 =

√︁
2π

𝑚𝑘𝑇
2−σ
σ

2µ𝑆𝑙𝑛 +
1
5𝑘λ

′ 𝜕 ln𝑇
𝜕τ𝑙

1
2𝑘𝑇 (2𝑝− 2µ𝑆𝑛𝑛)

, (1.101)

𝑇

𝑇𝑤
=

σ
√︁

2
π𝑘𝑇

(︁
1 + 𝑚𝑣2

4𝑘𝑇𝑤

)︁
· (2𝑝− 2µ𝑆𝑛𝑛)

−(2− σ)
√
𝑚 λ′

𝑘
𝜕 ln𝑇
𝜕𝑛 + σ

√︁
2
π𝑘𝑇 (2𝑝− 3µ𝑆𝑛𝑛)

. (1.102)

Assuming that only 𝜕𝑣𝑙/𝜕𝑛 (𝑙 = 1,2) derivatives of the velocity components are
not equal to zero, it is found that

𝑣𝑙 =
2− σ
σ

√︃
2π

𝑚𝑘𝑇

µ

𝑛

𝜕𝑣𝑙

𝜕𝑛
+
λ′

5𝑘𝑛

𝜕 ln𝑇

𝜕τ𝑙
, (1.103)

𝑇 − 𝑇𝑤 =
2− σ
2σ

√︂
π𝑚

2𝑘𝑇

λ′

𝑛𝑘

𝜕𝑇

𝜕𝑛
+

𝑚𝑣2

4𝑘
. (1.104)

The velocity derivative 𝜕𝑣𝑛/𝜕τ𝑙 can be neglected if the effects of surface curvature
and roughness are not considered. The above equations are the well-known
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expressions for velocity slip and temperature jump for a single-component gas in
the case of specular-diffusive scattering [50; 122].

1.4.3 Cercignani-Lampis model of particles interaction with a wall

In this section, the conditions are presented for another commonly applied
model of particles interaction with the solid wall, the Cercignani-Lampis (CL)
model [47]. Generalization of the CL kernel for the case of reacting gas flows with
rapid and slow processes can be introduced by the following relation:

𝑇 𝑐𝑖𝑗
𝑙,CL(u𝑐,u′

𝑐) =
2

π

(︃
𝑚𝑐

2𝑘𝑇𝑤

)︃2
𝑠𝑐𝑖𝑗

𝑍rot,𝑐𝑖(𝑇𝑤)

1

α𝑛ατ
𝑢𝑐𝑛

× 𝐼0

(︃
2𝑚𝑐

√
1− α𝑛𝑢𝑐𝑛𝑢

′
𝑐𝑛

2𝑘𝑇𝑤α𝑛

)︃
exp

(︃
−
𝑚𝑐(𝑢

2
𝑐𝑛 + (1− α𝑛)𝑢

′2
𝑐𝑛)

2𝑘𝑇𝑤α𝑛

)︃

× exp

(︃
−
𝑚𝑐(u𝑐τ −

√
1− ατu′

𝑐τ)
2

2𝑘𝑇𝑤ατ

)︃
exp

(︃
−
ε𝑐𝑖𝑗

𝑘𝑇𝑤

)︃
,

(1.105)
where u𝑐τ is the tangential velocity and 𝐼0 is the zeroth order modified Bessel
function:

𝐼0(𝑥) =
1

π

π∫︁
0

𝑒𝑥 cos θ dθ. (1.106)

The coefficients α𝑛, ατ should be treated as the normal and tangential energy
accommodation coefficients. The kernel also can be written in terms of normal and
tangential momentum coefficients, but here for the convenience the first option
is preferred. The coefficients in Eq. (1.105) are assumed to be independent of
gas mixture species. This assumption is made once again since identifying the
values of these coefficients for each species is extremely challenging in practical
applications, and because the resulting form of the obtained slip conditions occurs
too complicated. The above kernel, as the previous Maxwell one (1.79), is not capable
to describe the change of rotational state of a molecule while it is scattered from
the surface. Similarly, this issue may be resolved by introducing the probability of
the vibrational state change.
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The kernel does not include surface processes via the recombination
probability, γ𝑐𝑖. However, similar to the previous Maxwell model, these processes
can be included by adding the diffusive kernel to Eq. (1.105), multiplied by (−γ𝑐𝑖).
The latter will allow the kernel to satisfy the normalization condition (1.76). The
additional term here as well indicates that not all particles of the given species were
reflected, some of them changed their species as a result of heterogeneous reactions,
which also lead to the appearance of additional particles of the same species.

For the considered model of particles interaction with the solid wall (1.105),
the boundary conditions should be obtained only for velocity and temperature since
the wall mass fluxes remain the same regardless of scattering kernel considered. The
procedure yields the same velocity slip as the Maxwell model (1.93), which is in
agreement with other works [50; 95]. However, the temperature jump is different:

(︂
𝑇

𝑇𝑤

)︂
CL

=

(ατ + α𝑛)
∑︀
𝑐𝑖

𝑛𝑐𝑖

2𝑛V𝑐𝑖 · n +
√︁

2
π𝑘𝑇𝑍1

(10− 2ατ − 3α𝑛)
∑︀
𝑐𝑖

𝑛𝑐𝑖

4𝑛V𝑐𝑖 · n − 𝑍2 +
√︁

2
π𝑘𝑇 (𝑍3 + 𝑍4) + 𝑍5

, (1.107а)

𝑍1 =
∑︁
𝑐𝑖

𝑛𝑐𝑖

2𝑛
√
𝑚𝑐

(︁
ατ𝑚𝑐𝑣

2

2𝑘𝑇𝑤 + ατ + α𝑛

)︁
(2𝑝− 2µ𝑐𝑖𝑆𝑛𝑛 − ζ𝑐𝑖∇ · v − 𝑝rel,𝑐𝑖) ;

(1.107б)

𝑍2 =
(10−2ατ−3α𝑛)λ

′
tr+5λ′rot

5𝑘
𝜕 ln𝑇
𝜕𝑛 ; (1.107в)

𝑍3 =
∑︁
𝑐𝑖

𝑛𝑐𝑖
√
𝑚𝑐

𝑛 𝑐rot,𝑐𝑖𝑇 (𝑓𝑐𝑖,01∇ · v + 𝑔𝑐𝑖,01); (1.107г)

𝑍4 =
∑︁
𝑐𝑖

𝑛𝑐𝑖

2𝑛
√
𝑚𝑐

((α𝑛 + ατ)(2𝑝− 3ζ𝑐𝑖∇ · v − 3𝑝rel,𝑐𝑖)− 6α𝑛µ𝑐𝑖𝑆𝑛𝑛) ;

(1.107д)

𝑍5 =
√
1−ατµ
𝑘𝑇 (𝑆1𝑛𝑣1 + 𝑆2𝑛𝑣2) . (1.107е)

The above expression is already written in terms of effective transport coefficients
and transport terms. Contrary to the Maxwell model, the temperature jump for the
CL scattering kernel depends on two accommodation coefficients, and due to that
has more complex expression.
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1.5 Conclusions of Chapter 1

In this chapter macroscopic slip boundary conditions are derived for the
extended set of fluid-dynamic equations in the frame of the state-to-state model for
fully coupled vibrational-chemical kinetics, gas dynamics and transport processes.
The boundary conditions are obtained by taking into account the surface chemical
and vibrational non-equilibrium processes. Two approaches are applied in order to
obtain the slip conditions: the one proposed by Grad, generalized for reacting gases
with both rapid and slow processes, and the approach developed in this thesis based
on the kinetic boundary condition. For the Maxwell gas-surface interaction model
it is shown that the resulting conditions are equivalent. Yet, the latter approach
has multiple advantages. The approach based on the kinetic boundary condition
provides a more rigorous mathematical description of the problem and can be easily
generalized for other scattering kernels and gas-surface interaction models. This will
allow taking into account more complex accommodation on the surface, including
translational and different types of internal energy accommodation.

The obtained set of boundary conditions includes conditions for the mass
fluxes of each species, accounting for molecular vibrational level populations and
chemical number densities; velocity slip and temperature jump. All these quantities
are expressed in terms of the effective state-specific transport coefficients: diffusion,
thermal diffusion, thermal conductivity of translational and rotational degrees of
freedom, shear and bulk viscosity, and relaxation pressure. The effect of the normal
mean stress components (bulk viscosity and relaxation pressure) on the boundary
conditions is shown for the first time. Under thermal equilibrium conditions,
the derived expressions reduce to known relations obtained earlier in the one­
temperature approach. It is worth noting that implementation of the new boundary
conditions to simulations of non-equilibrium flows is straightforward since they
depend on the same expansion coefficients as the transport coefficients, and therefore
additional complexity in the numerical code is not required.

Slip boundary conditions were implemented as a program code module within
the framework of project № 075-15-2024-544 «Mathematical models and numerical
methods as the basis for the development of robotic systems, new materials and
intelligent design technologies».
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Chapter 2. Advanced approach for deriving boundary conditions
accounting for surface processes

In the present chapter, a generalization of the theoretical approach developed
in the previous chapter is proposed. Gaseous mixture here as well is described on
the basis of the detailed state-to-state model. The proposed extension provides a
more accurate representation of heterogeneous reactions and enables the derivation
of boundary conditions in terms of macroparameters and transport coefficients,
similar to the previous form of the approach. However, the new slip conditions
depend on more physically appropriate processes probabilities, rather than empirical
processes coefficients. Expressions for velocity slip, temperature jump, and mass
fluxes of species on the wall are derived on the basis of the advanced kinetic
boundary condition taking into account gain and loss of particles in surface
processes. As in the previous chapter, the scattering models chosen are the ones
of Maxwell and Cercignani–Lampis. Additionally, the comparison of theoretical and
phenomenological expressions for the mass fluxes obtained in the frame of various
approaches is performed. The outcomes discussed in this chapter have been published
in [90; 112; 113].

The structure of the chapter is the following: after a brief formulation of
challenges in the description of heterogeneous reactions in Section 2.1, the extension
of the kinetic boundary condition approach in order to account for these reactions
is proposed in Section 2.2. The slip conditions based on the new approach are
presented in Section 2.3. Another variation of the kinetic boundary condition,
designed to ensure the total mass flux conservation, is introduced in Sec. 2.4.
The simplifications of the derived slip conditions, based on the two developed
kinetic boundary conditions, can be found in 2.5. In Section 2.6, the mass fluxes
on the surface derived in the frame of different approaches taking into account
heterogeneous reactions are examined.
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2.1 Limitations of known theoretical approaches for modeling surface
processes

In the previous chapter, slip conditions based on the kinetic boundary
condition for the distribution function were derived, and the advantages of this
approach were demonstrated. The expressions were obtained in the case of the STS
description of nonequilibrium flow dynamics fully coupled to vibrational-chemical
kinetics. It was shown on the basis of specular-diffusive scattering that the proposed
approach is equivalent to other commonly applied theoretical techniques such as the
Grad [80] and Patterson–Shidlovsky half-flux [81; 87] methods. The main differences
are in the form of the obtained conditions, which require no further simplifications,
in more precise theoretical justification of the approach, and in its applicability to
state-to-state flow simulations.

Nonetheless, the approach has an issue with correct accounting for the
influence of chemical surface processes on gas dynamics. The effect of these processes
on gas dynamics near the wall is introduced via the boundary conditions for species
concentrations, written as the relations for the normal components of the mass fluxes
near the wall. In the above mentioned approach, if recombination/dissociation and
vibrational excitation/deactivation are considered, the corresponding conditions can
be written in the form (1.92):

J𝑐𝑖 · n|𝑠 = −𝑘𝑤𝑐𝑖ρ𝑐𝑖, (2.1)

where J𝑐𝑖 · n|𝑠 is the mass flux of a given species 𝑐𝑖 normal component on the
external edge of the Knudsen layer, 𝑘𝑤𝑐𝑖 is the rate coefficient of wall heterogeneous
processes affecting 𝑐𝑖 species. The latter relation means that the mass flux of the
species 𝑐𝑖 depends solely on the density ρ𝑐𝑖 of that given species (and not densities
of other species). Additionally, it is independent of the chosen model of particles
interaction with the solid wall.

Equation (2.1) has a limited value in the case of heterogeneous processes, when
different species may contribute to the mass flux of a given species. Additionally,
this relation cannot account for the formation of particles resulting from surface non­
equilibrium processes with initial zero concentration near the wall. Since the model
developed in Section 1.3 is related to other known theoretical techniques [43; 80—82;
87; 93], the same problem arises for them either. Here an approach allowing to
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overcome the mentioned issue will be presented. The main idea is in including to the
kinetic boundary condition an additional term responsible for heterogeneous surface
processes and by modifying the normalization condition for the scattering kernel.

2.2 Extension of the developed approach

First, it is essential to revisit the fundamentals of the approach developed
in 1.3. In order to obtain the slip conditions, the kinetic boundary condition, i.e. the
relation connecting the distribution functions of incident and reflected by solid wall
particles, has to be specified. It can be expressed, after integration over the half-space
𝑢𝑐𝑛 > 0, as a relation between the number flux of reflected particles and the number
flux of incident particles in the elementary area near the solid wall. This area distance
from the surface in the normal direction is of the order of the mean free path (external
edge of the Knudsen layer). For the STS approximation, if only scattering is taken
into account, the kinetic boundary condition has the following form:

𝑓+
𝑐𝑖𝑗𝑢𝑐𝑛|𝑢𝑐𝑛>0 = −

∑︁
𝑙

∫︁
𝑢′
𝑐𝑛<0

𝑓−
𝑐𝑖𝑙(r,u

′
𝑐,𝑡)𝑢

′
𝑐𝑛𝑇

𝑐𝑖𝑗
𝑙 (u𝑐,u′

𝑐)du
′
𝑐. (2.2)

The kernel 𝑇 𝑐𝑖𝑗
𝑙 (u𝑐,u′

𝑐), as the probability density, must satisfy a normalization
condition, which in the state-specific form is written as follows:∑︁

𝑗

∫︁
𝑢𝑐𝑛>0

𝑇 𝑐𝑖𝑗
𝑙 (u𝑐,u′

𝑐)du𝑐 = 1. (2.3)

Boundary conditions (2.2), (2.3) imply that during scattering, particles only change
their velocities and rotational levels since scattering is a rapid process. The
probability of such a transition is defined by the kernel. The generalization for
heterogeneous processes can be included in the above relation (2.3). This can be
done by modifying the right-hand side by the sum of mentioned earlier coefficients∑︀
γ𝑝𝑐𝑖. It is supposed that γ𝑝𝑐𝑖 > 0 if particles of species 𝑐𝑖 change their vibrational

or chemical state due to the surface process 𝑝; γ𝑝𝑐𝑖 < 0 if particles of species 𝑐𝑖

are formed as a result of the 𝑝 process. These coefficients are an extension of the
common recombination coefficients initially adapted in the slip conditions by Scott
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[93]. The normalization condition (2.3) with such an assumption is rewritten as∑︁
𝑗

∫︁
𝑢𝑐𝑛>0

𝑇 𝑐𝑖𝑗
𝑙 (u𝑐,u′

𝑐)du𝑐 = 1−
∑︁
𝑝

γ𝑝𝑐𝑖. (2.4)

However, as previously noted, this approach fails to accurately describe all types
of non-equilibrium surface processes.

The next step is to present an alternative method for accounting for the loss
and gain in the number of particles. The formulas below present such an alternative
and include the modified kinetic BC:

𝑓+
𝑐𝑖𝑗(r,u𝑐,𝑡)𝑢𝑐𝑛|𝑢𝑐𝑛>0 =−

∑︁
𝑙

∫︁
𝑢′
𝑐𝑛<0

𝑓−
𝑐𝑖𝑙(r,u

′
𝑐,𝑡)𝑢

′
𝑐𝑛𝑇

𝑐𝑖𝑗
𝑙 (u𝑐,u′

𝑐)du
′
𝑐

+
∑︁

𝑑𝑘,𝑑𝑘 ̸=𝑐𝑖

γ𝑐𝑖𝑑𝑘𝑓
+
𝑐𝑖𝑗(r,u𝑐,𝑡)𝑢𝑐𝑛|𝑢𝑐𝑛>0,

(2.5)

as well as the modified normalization condition for the scattering kernel 𝑇 𝑐𝑖𝑗
𝑙 :∑︁

𝑗

∫︁
𝑢𝑐𝑛>0

𝑇 𝑐𝑖𝑗
𝑙 (u𝑐,u′

𝑐)du𝑐 = 1−
∑︁

𝑑𝑘,𝑑𝑘 ̸=𝑐𝑖

γ𝑑𝑘𝑐𝑖 . (2.6)

Here, γ𝑐𝑖𝑑𝑘 is the independent of the rotational state of a molecule probability that
particle of chemical species 𝑑 with vibrational level 𝑘 changes its state to 𝑐𝑖. The term
on the LHS of the expression (2.5), after the integration over half-space, represents
the number flux of particles reflected by the solid wall. Relation implies that this
number flux consists of: 1) the number flux of scattered particles, transformed by the
kernel 𝑇 𝑐𝑖𝑗

𝑙 ; 2) the flux of particles obtained as a result of heterogeneous chemical
reactions and vibrational deactivation/excitation due to the wall impinging. It is
assumed that the latter particles are then desorbed into the gas phase with the
known distribution function 𝑓+

𝑐𝑖𝑗(r,u𝑐,𝑡).
An obvious disadvantage of the proposed scheme (2.5), (2.6) is that it depends

on the known distribution of reflected particles involved in surface reactions. This
distribution might be obtained through rigorous and numerically expensive kinetic
modelling, specific to a given set of gas mixture components and solid body surface
structure. To avoid these challenges, the model distribution function can be applied.
However, the latter would not account for the distribution of incident particles before
their change of state. Furthermore, the proposed scheme cannot provide information
on how the change of state of 𝑐𝑖𝑗 particles affects the number flux of reflected
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particles of other species involved in surface chemical processes with 𝑐𝑖𝑗 particles.
Additionally, the normal components of wall mass fluxes are written in the form
similar to that presented in Eq. (2.1), i.e. the mass flux of a given species normal
component near the wall, J𝑐𝑖 · n|𝑠, depends solely on the density ρ𝑐𝑖 of a given
species: J𝑐𝑖 ·n|𝑠 = −𝑘𝑤𝑐𝑖ρ𝑐𝑖. Here, the rate constants 𝑘𝑤𝑐𝑖 differ from the ones, written
for the initial scheme (2.2), (2.4). Thus, the problem of incorrect description of
non-equilibrium surface processes remains.

The issue of independence from the distribution function of incident particles
can be resolved by the following modification of (2.5):

𝑓+
𝑐𝑖𝑗(r,u𝑐,𝑡)𝑢𝑐𝑛|𝑢𝑐𝑛>0 =−

∑︁
𝑙

∫︁
𝑢′
𝑐𝑛<0

𝑓−
𝑐𝑖𝑙(r,u

′
𝑐,𝑡)𝑢

′
𝑐𝑛𝑇

𝑐𝑖𝑗
𝑙 (u𝑐,u′

𝑐)du
′
𝑐

−
∑︁

𝑑𝑘𝑙,𝑑𝑘 ̸=𝑐𝑖

γ𝑐𝑖𝑑𝑘

∫︁
𝑢′
𝑐𝑛<0

𝑓−
𝑐𝑖𝑙(r,u

′
𝑑,𝑡)𝑢

′
𝑐𝑛𝑇

𝑐𝑖𝑗
𝑙 (u𝑐,u′

𝑐)du
′
𝑐,

(2.7)

where kernels 𝑇 𝑐𝑖𝑗
𝑙 and 𝑇 𝑐𝑖𝑗

𝑙 satisfy normalization conditions (2.3) and (2.6),
correspondingly. The above scheme, with such assumptions, is equivalent to the
initially considered (2.2), (2.4). However, it is evident that the second term in the
right-hand side of equation (2.7) does not represent an actual increase in the number
of particles of the given species because it considers the number flux of particles
of the same species. This statement explains the reason why the initial approach
provided above mentioned limitations for the wall mass fluxes expressions. Finally,
to overcome the aforementioned issues with the schemes (2.5), (2.6) and (2.7), the
kinetic boundary condition should be rewritten correspondingly:

𝑓+
𝑐𝑖𝑗(r,u𝑐,𝑡)𝑢𝑐𝑛|𝑢𝑐𝑛>0 =−

∑︁
𝑙

∫︁
𝑢′
𝑐𝑛<0

𝑓−
𝑐𝑖𝑙(r,u

′
𝑐,𝑡)𝑢

′
𝑐𝑛𝑇

𝑐𝑖𝑗
𝑙 (u𝑐,u′

𝑐)du
′
𝑐

−
∑︁

𝑑𝑘𝑙,𝑑𝑘 ̸=𝑐𝑖

γ𝑐𝑖𝑑𝑘

∫︁
𝑢′
𝑑𝑛<0

𝑓−
𝑑𝑘𝑙(r,u

′
𝑑,𝑡)𝑢

′
𝑑𝑛𝑇

𝑐𝑖𝑗
𝑑𝑘𝑙(u𝑐,u′

𝑑)du
′
𝑑.

(2.8)

In the scheme (2.8) the number flux of reflected particles of 𝑐𝑖𝑗 consists of the
number flux of scattered particles, transformed by the kernel 𝑇 𝑐𝑖𝑗

𝑙 , and the fluxes of
particles of different species that are transformed into particles of given species due
to the wall chemical reactions or vibrational state change. The probability of such a
transformation is γ𝑐𝑖𝑑𝑘, and subsequent reflection into the gas phase is described by the
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kernel 𝑇 𝑐𝑖𝑗
𝑑𝑘𝑙 . From here on, it will be assumed that 𝑇 𝑐𝑖𝑗

𝑑𝑘𝑙(u𝑐,u′
𝑑) is the diffusive kernel:

𝑇 𝑐𝑖𝑗
𝑑𝑘𝑙(u𝑐,u′

𝑑) =
2

π

(︃
𝑚𝑐

2𝑘𝑇𝑤

)︃2
𝑠𝑐𝑖𝑗

𝑍rot,𝑐𝑖(𝑇𝑤)
exp

(︃
−
𝑚𝑐𝑢

2
𝑐

2𝑘𝑇𝑤
−
ε𝑐𝑖𝑗

𝑘𝑇𝑤

)︃
𝑢𝑐𝑛, (2.9)

with the below normalization condition:∑︁
𝑗

∫︁
𝑢𝑐𝑛>0

𝑇 𝑐𝑖𝑗
𝑑𝑘𝑙(u𝑐,u′

𝑑)du𝑐 = 1. (2.10)

The diffusive scattering model, chosen for its simplicity, can be justified by the fact
that the particle, which is trapped by the surface before chemical reaction, spends
some time on the surface and the consequent diffusive reflection occurs as a result
of the energy accommodation [123]. The loss of the particles of given species is
specified on the basis of normalization condition (2.6) for the kernel 𝑇 𝑐𝑖𝑗

𝑙 (u𝑐,u′
𝑐).

Here as well it is connected with the fact that not all particles are scattered, some
of them are involved in non-equilibrium surface processes — heterogeneous reactions
and vibrational excitation/deactivation.

Is it worth noting that in the above approach, only binary collisions of gas
particles near and on the solid wall are considered. This does not considerably affect
its generality since both Eley–Rideal and Langmuir–Hinshelwood recombination
mechanisms are based on binary collisions of atoms and adsorbed atoms.

The adsorption and desorption processes should also be considered, so the
scheme could better capture the surface chemistry effect on gas dynamics. The first
can be included on the basis of sticking coefficient S𝑐𝑖, described as the fraction
of incident particles impinging on a surface that are really adsorbed [70]. Since
adsorption initiates the loss of particles that might be scattered at the given time
and position, then the process can be included via the normalization condition for
the kernel ∑︁

𝑗

∫︁
𝑢𝑐𝑛>0

𝑇 𝑐𝑖𝑗
𝑙 (u𝑐,u′

𝑐)du𝑐 = 1−
∑︁

𝑑𝑘,𝑑𝑘 ̸=𝑐𝑖

γ𝑑𝑘𝑐𝑖 − S𝑐𝑖. (2.11)

Desorption, on the opposite, initiates gain in the number of particles that are
reflected, and can be included in condition (2.7) by introducing the desorption
coefficient D𝑤𝑐𝑖, defined as the ratio of the number flux of desorbed particles to the
number flux of incident particles. The distribution of desorbed into the gas phase
particles at the given time can be, for example, considered as the local equilibrium
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Maxwell-Boltzmann distribution 𝑓+,𝑀
𝑐𝑖𝑗 (r,u𝑐,𝑡) (1.22):

𝑓+
𝑐𝑖𝑗(r,u𝑐,𝑡)𝑢𝑐𝑛|𝑢𝑐𝑛>0 =−

∑︁
𝑙

∫︁
𝑢′
𝑐𝑛<0

𝑓−
𝑐𝑖𝑙(r,u

′
𝑐,𝑡)𝑢

′
𝑐𝑛𝑇

𝑐𝑖𝑗
𝑙 (u𝑐,u′

𝑐)du
′
𝑐

−
∑︁

𝑑𝑘𝑙,𝑑𝑘 ̸=𝑐𝑖

γ𝑐𝑖𝑑𝑘

∫︁
𝑢′
𝑑𝑛<0

𝑓−
𝑑𝑘𝑙(r,u

′
𝑑,𝑡)𝑢

′
𝑑𝑛𝑇

𝑐𝑖𝑗
𝑑𝑘𝑙(u𝑐,u′

𝑑)du
′
𝑑

+ D𝑐𝑖𝑓
+,𝑀
𝑐𝑖𝑗 (r,u𝑐,𝑡)𝑢𝑐𝑛|𝑢𝑐𝑛>0.

(2.12)

It is worth mentioning that the distribution of desorbed particles from the
surface 𝑓+,𝑀

𝑐𝑖𝑗 (r,u𝑐,𝑡) depends on the wall temperature, but not on the one, considered
on the external edge of the Knudsen layer.

The above relation does not consider the distribution of particles prior to their
adsorption. Nevertheless, if necessary, this distribution can be accounted for. In such
a case, the time particles spend on the surface must also be considered, leading to
increased complexity in the expressions and required modification of the kinetic BC.
In this section, the simplified approach (2.12) will be considered, which affects the
surface balance equation.

It should be emphasized that the scheme considered here is noticeably different
from the one, applied in the previous chapter. As is shown later, it allows one
to overcome the mentioned issues in the wall mass fluxes description and obtain
conditions that account for the complex surface mechanisms.

2.3 Slip conditions

In this section boundary conditions for the STS set of fluid-dynamic
variables [9] will be obtained for two most widely used models, which are those
proposed by Maxwell [44] and Cercignani–Lampis [47].
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2.3.1 Expressions for the wall mass fluxes

The procedure described in Sec. 1.3 to obtain the slip conditions in the case
of the new kinetic boundary condition (2.12) will be applied for the first-order state­
specific distribution function (1.30). As in the initial approach, it is assumed that
the velocity component along the normal, 𝑣𝑛, is zero in the vicinity of the surface.
Such an assumption provides the following balance law at the wall:

∑︁
𝑐𝑖

𝑛𝑐𝑖V𝑐𝑖 · n =
∑︁
𝑐𝑖

S𝑐𝑖

2

[︃
𝑛𝑐𝑖V𝑐𝑖 · n −

√︂
𝑘𝑇

2π

𝑛𝑐𝑖

𝑛
√
𝑚𝑐

(︃
2𝑛− 𝑏𝑐𝑖,0𝑆𝑛𝑛

+ 𝑓𝑐𝑖,10∇ · v + 𝑔𝑐𝑖,10

)︃]︃
+

√︂
𝑘𝑇

2π

∑︁
𝑐𝑖

D𝑐𝑖
𝑛𝑐𝑖√
𝑚𝑐

.

(2.13)

Here as well the notation that all the terms are taken on the external edge of
the Knudsen layer, |𝑠, is omitted. When adsorption and desorption are neglected, a
simplified relation is derived, which can be interpreted as the conservation of number
flux near the wall within the introduced scheme (2.12):∑︁

𝑐𝑖

𝑛𝑐𝑖V𝑐𝑖 · n = 0. (2.14)

The above expression significantly differs from the one obtained in the previous form
of the approach (1.78). In the present case, expressions (2.13) and (2.14) provide a
clear interpretation of the effects of heterogeneous processes and an understanding
of how the considered form of the BC for the distribution function affects the total
number flux near the wall.

The expressions for species wall number fluxes, as in the previous approach,
are independent of the chosen model for the scattering kernel. They are influenced
by the type of kinetic boundary condition and the considered approximation of the
distribution function. Implementing the procedure from Chapter 1 for the particles
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distribution (1.23) results in the following expressions for the new scheme (2.12):

(︂
2−

∑︁
𝑑𝑘,𝑑𝑘 ̸=𝑐𝑖

γ𝑑𝑘𝑐𝑖 − S𝑐𝑖

)︂
J𝑐𝑖 · n =−

(︃ ∑︀
𝑑𝑘,𝑑𝑘 ̸=𝑐𝑖

γ𝑑𝑘𝑐𝑖 + S𝑐𝑖

)︃
ρ𝑐𝑖

𝑛
√
2π𝑚𝑐𝑘𝑇

(𝑝+ 𝑃𝑛𝑛,𝑐𝑖)

+

√︃
2𝑘𝑇

π𝑚𝑐
ρ𝑐𝑖D𝑐𝑖 −

∑︁
𝑑𝑘,𝑑𝑘 ̸=𝑐𝑖

γ𝑐𝑖𝑑𝑘
𝑚𝑐

𝑚𝑑
J𝑑𝑘 · n

+
1

√
2π𝑘𝑇

∑︁
𝑑𝑘,𝑑𝑘 ̸=𝑐𝑖

γ𝑐𝑖𝑑𝑘
𝑚𝑐ρ𝑑𝑘

𝑛
√︀

𝑚3
𝑑

(𝑝+ 𝑃𝑛𝑛,𝑑𝑘) ,

(2.15)

where 𝑐 = 1, . . . ,𝐿, 𝑖 = 0, . . . ,𝑁𝑐. The expressions are presented in a more compact
form already in terms of the mass fluxes, the effective transport coefficients and
normal stresses for specific species 𝑐𝑖, 𝑃𝑛𝑛,𝑐𝑖 = 𝑝 − 2µ𝑐𝑖𝑆𝑛𝑛 − ζ𝑐𝑖∇ · v − 𝑝rel,𝑐𝑖.
The difference from the expressions (1.92), is in the last three additional terms
appearing in the RHS of Eq. (2.15) and the accounted fraction of particles loss
before scattering

∑︀
𝑑𝑘

γ𝑑𝑘𝑐𝑖 + S𝑐𝑖. This sum has replaced the sum of coefficients
∑︀
γ𝑝𝑐𝑖,

which allowed to account for both loss and gain in the particles number (2.4). The
obtained relation implies that the mass flux of particles of given species near the
surface ρ𝑐𝑖V𝑐𝑖 · n consists of: 1) the mass flux of desorbed particles with the mean
non-slip velocity

√︁
2𝑘𝑇
π𝑚𝑐

; 2) the opposite mass flux of particles of given species that
change their state due to surface processes; 3) fluxes of particles that are a part
of 𝑐𝑖 species formation.

2.3.2 Maxwell model

In the case of the state-to-state approximation and in the frame of newly
obtained normalization condition (2.11), the specular-diffusive kernel can be
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expressed as follows:

𝑇 𝑐𝑖𝑗
𝑙,M(u𝑐,u′

𝑐) =(1− σ𝑐𝑖)δ𝑙𝑗δ(u′
𝑐 − u𝑐 + 2𝑢𝑐𝑛n)

+

⎛⎝σ𝑐𝑖 − ∑︁
𝑑𝑘,𝑑𝑘 ̸=𝑐𝑖

γ𝑑𝑘𝑐𝑖 − S𝑤𝑐𝑖

⎞⎠𝑇 𝑐𝑖𝑗
𝑙,diff(u𝑐,u′

𝑐),
(2.16)

𝑇 𝑐𝑖𝑗
𝑙,diff(u𝑐,u′

𝑐) =
2

π

(︃
𝑚𝑐

2𝑘𝑇𝑤

)︃2
𝑠𝑐𝑖𝑗 𝑢𝑐𝑛

𝑍rot,𝑐𝑖(𝑇𝑤)
exp

(︃
−
𝑚𝑐𝑢

2
𝑐

2𝑘𝑇𝑤
−
ε𝑐𝑖𝑗

𝑘𝑇𝑤

)︃
. (2.17)

In the above kernel, the detailed rotational state change is neglected. However,
as mentioned in Sec. 1.3.2, this can be addressed by introducing probabilities of
rotational state change. In the given kernel, the accommodation coefficients are
species-dependent. Nonetheless, the boundary conditions will be derived without
this assumption for the sake of simplification and comparison reasons.

The procedure to obtain the slip conditions, performed for the Maxwell
scattering kernel 𝑇 𝑐𝑖𝑗

𝑙,M, yields the following boundary condition for velocity
component 𝑣𝑙 (𝑙 = 1,2):

𝑣𝑙 =

(2− σ)
√︀

π
2𝑘𝑇

∑︀
𝑐𝑖

𝑛𝑐𝑖

𝑛 2µ𝑐𝑖𝑆𝑙𝑛 + σ
∑︀
𝑐𝑖

𝑛𝑐𝑖
√
𝑚𝑐

(︁
λ′tr,𝑐𝑖
5𝑘𝑛

𝜕 ln𝑇
𝜕τ𝑙

− V𝑐𝑖 · τ𝑙

)︁
σ
∑︀
𝑐𝑖

𝑛𝑐𝑖

2𝑛𝑘𝑇

√
𝑚𝑐 (𝑝+ 𝑃𝑛𝑛,𝑐𝑖)−

∑︀
𝑐𝑖

𝑛𝑐𝑖
√
𝑚𝑐D𝑐𝑖

. (2.18)

The difference in velocity slip, compared to the relation obtained from the initial
form of the approach (1.93), is expressed by the denominator term associated
with desorption coefficients. Therefore, if the desorption process is neglected, the
velocity slip coincides with that derived in the frame of the initial scheme. When
the desorption coefficient is non-zero, the term associated with this coefficient
contributes to an increase in the velocity slip value.

The temperature jump in the context of the presented approach remains
unchanged. However, this statement is no longer valid if the distribution of particles
desorbed into the gas phase takes place at a temperature different from 𝑇𝑤.
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2.3.3 Cercignani–Lampis model

Generalization of the CL kernel for the case of reacting gas flows with rapid
and slow processes can be introduced by the following relation:

𝑇 𝑐𝑖𝑗
𝑙,CL(u𝑐,u′

𝑐) =
2

π

(︃
𝑚𝑐

2𝑘𝑇𝑤

)︃2
𝑠𝑐𝑖𝑗

𝑍rot,𝑐𝑖(𝑇𝑤)

𝑢𝑐𝑛

α𝑛,𝑐𝑖ατ,𝑐𝑖
exp

(︃
−
ε𝑐𝑖𝑗

𝑘𝑇𝑤

)︃

× 𝐼0

(︃
2𝑚𝑐

√︀
1− α𝑛,𝑐𝑖𝑢𝑐𝑛𝑢

′
𝑐𝑛

2𝑘𝑇𝑤α𝑛,𝑐𝑖

)︃
exp

(︃
−
𝑚𝑐(u𝑐τ −

√︀
1− ατ,𝑐𝑖u′

𝑐τ)
2

2𝑘𝑇𝑤ατ,𝑐𝑖

)︃

× exp

(︃
−
𝑚𝑐(𝑢

2
𝑐𝑛 + (1− α𝑛,𝑐𝑖)𝑢

′2
𝑐𝑛)

2𝑘𝑇𝑤α𝑛,𝑐𝑖

)︃
−

(︃∑︁
𝑑𝑘

γ𝑑𝑘𝑐𝑖 + S𝑤𝑐𝑖

)︃
𝑇 𝑐𝑖𝑗
𝑙,diff(u𝑐,u′

𝑐),

(2.19)

where in the summation 𝑑𝑘 ̸= 𝑐𝑖 and 𝑇 𝑐𝑖𝑗
𝑙,diff is defined from (2.17). The above kernel,

as the previous Maxwell one, is not capable to describe the change of rotational
state of a molecule while it is scattered from the surface. Similarly, this issue may
be resolved by introducing the probability of the rotational state change. The CL
kernel here is introduced similarly to the one of Chapter 1 — (1.105).

Within the framework of the initial approach, the velocity slip for the
Cercignani–Lampis kernel coincides with the Maxwell kernel when replacing the
energy accommodation coefficients with the tangential and normal momentum
accommodation coefficients. This statement is also valid for the new approach,
resulting in the velocity slip for the current kernel being governed by Eq. (2.18).

The expression for the temperature jump in the new approach is the same
as that in the initial approach (1.107). This statement remains true only if the
accommodation coefficients are the same for all gas mixture components.

Consequently, within the framework of the new kinetic boundary condition,
both kernels yield the same temperature boundary conditions as those from the
initial form of the kinetic BC. Nonetheless, as will be demonstrated below, the
temperature conditions can be simplified in a manner that was not available in
the previous approach.
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2.4 Further extension of the technique to ensure the constraint of zero
wall mass flux

The approach developed in this chapter ensures the total normal number flux
conservation (2.14) at the external edge of the Knudsen layer, under the assumption
of neglected adsorption and desorption processes, while considering only vibrational
excitation/deactivation and heterogeneous chemical reactions. The relation implies
that at the external edge, the number flux of incident particles to the surface
coincides with the number flux of particles scattered by the surface. This is due
to the assumption that these surface processes occur immediately for both the gas
and surface particles, resulting in the equivalence of the mentioned fluxes. However,
in most cases, only the conservation of mass flux is required, which can be achieved
numerically within this approach but cannot be derived theoretically.

Therefore, it is useful to develop an approach that ensures mass flux
conservation. Such an approach can be based on the following kinetic boundary
condition:

𝑚𝑐𝑓
+
𝑐𝑖𝑗(r,u𝑐,𝑡)𝑢𝑐𝑛|𝑢𝑐𝑛>0 = −𝑚𝑐

∑︁
𝑙

∫︁
𝑢′
𝑐𝑛<0

𝑓−
𝑐𝑖𝑙(r,u

′
𝑐,𝑡)𝑢

′
𝑐𝑛𝑇

𝑐𝑖𝑗
𝑙 (u𝑐,u′

𝑐)du
′
𝑐

−
∑︁

𝑑𝑘𝑙,𝑑𝑘 ̸=𝑐𝑖

𝑚𝑑 γ
𝑐𝑖
𝑑𝑘

∫︁
𝑢′
𝑑𝑛<0

𝑓−
𝑑𝑘𝑙(r,u

′
𝑑,𝑡)𝑢

′
𝑑𝑛𝑇

𝑐𝑖𝑗
𝑑𝑘𝑙(u𝑐,u′

𝑑)du
′
𝑑.

(2.20)

The normalization conditions for the kernels are the same. After integrating over
the half-space, the left-hand side of Eq. (2.20) can be expressed as a relation in the
elementary area near the solid wall, regarding the mass flux of reflected particles.
This mass flux includes both the mass flux of scattered particles and the mass flux
of particles that are transformed into the 𝑐𝑖 particles. One can easily notice that
this kinetic boundary condition is similar to the one of the generalized approach of
Section 2.2. The difference is that in Eq. (2.20), mass fluxes are considered instead
of number fluxes.

Neglecting the normal velocity component near the wall results in the following
balance law for this approach: ∑︁

𝑐𝑖

ρ𝑐𝑖V𝑐𝑖 · n = 0. (2.21)
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This balance law ensures the required conservation of the normal mass flux near
the wall. However, in the presence of adsorption and desorption processes included
in the scheme, it will no longer be valid.

The wall mass fluxes relations here as well are independent of the chosen
model of particles scattering by the wall, defined by the kernel 𝑇 𝑐𝑖𝑗

𝑙 . Nevertheless,
they depend on the selected reflection of particles affected by non-equilibrium surface
processes, defined by the kernel 𝑇 𝑐𝑖𝑗

𝑑𝑘𝑙 , also assumed to be diffusive. The procedure
described in Capter 1 yields the following relations for the mass fluxes:(︃

2−
∑︁

𝑑𝑘,𝑑𝑘 ̸=𝑐𝑖

γ𝑑𝑘𝑐𝑖

)︃
J𝑐𝑖 · n = −

∑︀
𝑑𝑘,𝑑𝑘 ̸=𝑐𝑖 γ

𝑑𝑘
𝑐𝑖 ρ𝑐𝑖

𝑛
√
2π𝑚𝑐𝑘𝑇

(𝑝+ 𝑃𝑛𝑛,𝑐𝑖)

−
∑︁

𝑑𝑘,𝑑𝑘 ̸=𝑐𝑖

γ𝑐𝑖𝑑𝑘J𝑑𝑘 · n +
1

√
2π𝑘𝑇

∑︁
𝑑𝑘,𝑑𝑘 ̸=𝑐𝑖

γ𝑐𝑖𝑑𝑘
ρ𝑑𝑘

𝑛
√
𝑚𝑑

(𝑝+ 𝑃𝑛𝑛,𝑑𝑘) .

(2.22)

The above expression for 𝑐𝑖 species is written in a form similar to the one in which
mass fluxes were given by the extended approach (2.15). The difference between
these relations is given by the additional fraction of masses, 𝑚𝑐/𝑚𝑑, appearing in
the two last summation terms on the right-hand side of Eq. (2.15).

When considering only specular-diffusive scattering by the solid wall, it is
demonstrated that the velocity slip is the same for both considered approaches.
Temperature jump, on the other hand, is different, with the following form:

𝑇

𝑇𝑤
=

(2− σ)
∑︀
𝑐𝑖

ρ𝑐𝑖V𝑐𝑖 · n + σ
√︁

2
π𝑘𝑇

∑︀
𝑐𝑖

ρ𝑐𝑖
2𝑛

√
𝑚𝑐

(︁
1 + 𝑚𝑐𝑣

2

4𝑘𝑇𝑤

)︁
· (𝑝+ 𝑃𝑐𝑖,𝑛𝑛)

(2− σ)
∑︀
𝑐𝑖

5ρ𝑐𝑖
4 V𝑐𝑖 · n − (2− σ)

∑︀
𝑐𝑖

ρ𝑐𝑖
𝑛
λ′𝑐𝑖
2𝑘

𝜕 ln𝑇
𝜕𝑛 + σ

√︁
2
π𝑘𝑇 𝑌

, (2.23а)

𝑌 =
∑︁
𝑐𝑖

3ρ𝑐𝑖
2𝑛

(︃
−𝑝

3+µ𝑐𝑖𝑆𝑛𝑛+𝑃𝑐𝑖,𝑛𝑛√
𝑚𝑐

+
√
𝑚𝑐𝑐rot,𝑐𝑖𝑇 (𝑓𝑐𝑖,01∇·v+𝑔𝑐𝑖,01)

3

)︃
. (2.23б)

The difference here is in the presence of the species densities, ρ𝑐𝑖, instead of the
number densities, 𝑛𝑐𝑖. As a result, only the effective thermal conductivity coefficients
appear in the above relation, while the thermal conductivity coefficient, as in
Eq. (1.94), is not present.
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2.5 Simplifications of obtained expressions

In practical applications, the sticking coefficient, S𝑤𝑐𝑖, and the desorption
coefficient, D𝑤𝑐𝑖, are often quite hard to determine. Despite the importance of
modeling the desorption and adsorption processes, and their substantial influence on
heterogeneous reactions, in this chapter and the following chapter, these processes
will be neglected. Therefore, simplified boundary condition expressions for this case
are required.

First, the temperature jump will be presented under the mentioned
assumption. In the case of the approach based on the extended kinetic boundary
condition 2.2, the expressions for the Maxwell and CL kernels are the following:

(︂
𝑇

𝑇𝑤

)︂
M
=

σ
√︁

2
π𝑘𝑇

∑︀
𝑐𝑖

𝑛𝑐𝑖

2𝑛
√
𝑚𝑐

(︁
1 + 𝑚𝑐𝑣

2

4𝑘𝑇𝑤

)︁
· (𝑝+ 𝑃𝑐𝑖,𝑛𝑛)

− (2−σ)λ′
2𝑘

𝜕 ln𝑇
𝜕𝑛 + σ

√︁
2
π𝑘𝑇

∑︀
𝑐𝑖

3𝑛𝑐𝑖

2𝑛

(︁
−𝑝

3+µ𝑐𝑖𝑆𝑛𝑛+𝑃𝑐𝑖,𝑛𝑛√
𝑚𝑐

+
√
𝑚𝑐𝑐rot,𝑐𝑖𝑇 (𝑓𝑐𝑖,01∇·v+𝑔𝑐𝑖,01)

3

)︁ ,
(2.24)

(︂
𝑇

𝑇𝑤

)︂
CL

=

√︁
2
π𝑘𝑇

∑︀
𝑐𝑖

𝑛𝑐𝑖

2𝑛
√
𝑚𝑐

(︁
ατ

𝑚𝑐𝑣
2

2𝑘𝑇𝑤 + ατ + α𝑛

)︁
(𝑝+ 𝑃𝑛𝑛,𝑐𝑖)

− (10−2ατ−3α𝑛)λ′tr+5λ′rot
5𝑘

𝜕 ln𝑇
𝜕𝑛 +

√︁
2
π𝑘𝑇 (𝑍1 + 𝑍2) +

√
1−ατµ
𝑘𝑇 (𝑆1𝑛𝑣1 + 𝑆2𝑛𝑣2)

,

(2.25а)

𝑍1 =
∑︁
𝑐𝑖

𝑛𝑐𝑖
√
𝑚𝑐

𝑛
𝑐rot,𝑐𝑖𝑇 (𝑓𝑐𝑖,01∇ · v + 𝑔𝑐𝑖,01); (2.25б)

𝑍2 =
∑︁
𝑐𝑖

𝑛𝑐𝑖

2𝑛
√
𝑚𝑐

((α𝑛 + ατ)(2𝑝− 3ζ𝑐𝑖∇ · v − 3𝑝rel,𝑐𝑖)− 6α𝑛µ𝑐𝑖𝑆𝑛𝑛) .

(2.25в)

The above equations were obtained from Eqs. (1.94), (1.107) under the assumption
that desorption and adsorption processes are neglected (2.14). This can be done
since the new approach provides the same BCs for temperature. However, the latter
expressions in the frame of the previous approach could not be simplified to such a
form, as the balance law (2.14) is only applicable in the context of the new approach.

In the case of the subsequent extension of the developed approach to ensure
the mass flux conservation 2.4, the relation for the temperature at the external edge
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of the Knudsen layer is as follows:

(︂
𝑇

𝑇𝑤

)︂
M
=

σ
√︁

2
π𝑘𝑇

∑︀
𝑐𝑖

ρ𝑐𝑖
2𝑛

√
𝑚𝑐

(︁
1 + 𝑚𝑐𝑣

2

4𝑘𝑇𝑤

)︁
· (𝑝+ 𝑃𝑐𝑖,𝑛𝑛)

−(2− σ)
∑︀
𝑐𝑖

ρ𝑐𝑖
𝑛
λ′𝑐𝑖
2𝑘

𝜕 ln𝑇
𝜕𝑛 + σ

√︁
2
π𝑘𝑇 𝑌

, (2.26а)

𝑌 =
∑︁
𝑐𝑖

3ρ𝑐𝑖
2𝑛

(︃
−𝑝

3+µ𝑐𝑖𝑆𝑛𝑛+𝑃𝑐𝑖,𝑛𝑛√
𝑚𝑐

+
√
𝑚𝑐𝑐rot,𝑐𝑖𝑇 (f𝑐𝑖,01∇·v+g𝑐𝑖,01)

3

)︃
. (2.26б)

The equation above was simplified using balance law (2.21).
As for boundary conditions for species densities (2.15), the expressions in the

case of neglected adsorption and desorption processes are the following:

(︂
2−

∑︁
𝑑𝑘

γ𝑑𝑘𝑐𝑖

)︂
J𝑐𝑖 · n =−

∑︀
𝑑𝑘

γ𝑑𝑘𝑐𝑖 ρ𝑐𝑖

𝑛
√
2π𝑚𝑐𝑘𝑇

(𝑝+ 𝑃𝑛𝑛,𝑐𝑖)−
∑︁
𝑑𝑘

γ𝑐𝑖𝑑𝑘
𝑚𝑐

𝑚𝑑
J𝑑𝑘 · n

+
1

√
2π𝑘𝑇

∑︁
𝑑𝑘

γ𝑐𝑖𝑑𝑘
𝑚𝑐ρ𝑑𝑘

𝑛
√︀

𝑚3
𝑑

(𝑝+ 𝑃𝑛𝑛,𝑑𝑘) ,

(2.27)

in the summations, terms where 𝑑𝑘 ̸= 𝑐𝑖 are omitted. The remaining probabilities,
γ𝑐𝑖𝑑𝑘, within the framework of the STS approximation, are associated with either
recombination/dissociation or vibrational excitation/deactivation. The latter
process obviously influences only the mass fluxes of molecular components and
are defined by the probabilities γ𝑀(𝑘)

𝑀(𝑖) (𝑀(𝑖) corresponds to a molecule in the
vibrational state 𝑖 and the probability defines transition of this molecule from
state 𝑖 to state 𝑘). Neglecting surface chemical reactions for these mass fluxes
yield the below expressions:

J𝑀(𝑖) · n =−
∑︀

𝑘,𝑘 ̸=𝑖 γ
𝑀(𝑘)
𝑀(𝑖) ρ𝑀(𝑖)(︁

2−
∑︀

𝑘,𝑘 ̸=𝑖 γ
𝑀(𝑘)
𝑀(𝑖)

)︁
𝑛
√
2π𝑚𝑀𝑘𝑇

(︀
𝑝+ 𝑃𝑛𝑛,𝑀(𝑖)

)︀
− 1

2−
∑︀

𝑘,𝑘 ̸=𝑖 γ
𝑀(𝑘)
𝑀(𝑖)

∑︁
𝑘,𝑘 ̸=𝑖

γ
𝑀(𝑖)
𝑀(𝑘) J𝑀(𝑘) · n

+
1(︁

2−
∑︀

𝑘,𝑘 ̸=𝑖 γ
𝑀(𝑘)
𝑀(𝑖)

)︁√
2π𝑘𝑇

∑︁
𝑘,𝑘 ̸=𝑖

γ
𝑀(𝑖)
𝑀(𝑘)

ρ𝑀(𝑘)

𝑛
√
𝑚𝑀

(︀
𝑝+ 𝑃𝑛𝑛,𝑀(𝑘)

)︀
,

(2.28)
where 𝑖 = 0, . . . ,𝑁𝑀 . To obtain the mass flux for a given species, one has to solve
the system of linear equations.
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It is important to mention that obtaining accurate probabilities of vibrational
deactivation on the surface is extremely challenging, and the effect of such processes
in the case of simplified models is found to be negligible [72]. Therefore, it is common
practice to focus only on heterogeneous recombination/dissociation. In this case,
the expressions for atomic and molecular mass fluxes for diatomic molecules are
the following:

J𝐴 · n =−
∑︀

𝑀,𝑘 γ
rec,𝑀(𝑘)
𝐴 ρ𝐴(︁

2−
∑︀

𝑀,𝑘 γ
rec,𝑀(𝑘)
𝐴

)︁
𝑛
√
2π𝑚𝐴𝑘𝑇

(𝑝+ 𝑃𝑛𝑛,𝐴)

− 1

2−
∑︀

𝑀,𝑘 γ
rec,𝑀(𝑘)
𝐴

∑︁
𝑀,𝑘

γdiss,𝐴
𝑀(𝑘)

𝑚𝐴

𝑚𝑀
J𝑀(𝑘) · n

+
1(︁

2−
∑︀

𝑀,𝑘 γ
rec,𝑀(𝑘)
𝐴

)︁√
2π𝑘𝑇

∑︁
𝑀,𝑘

γdiss,𝐴
𝑀(𝑘)

𝑚𝐴ρ𝑀(𝑘)

𝑛
√︀

𝑚3
𝑀

(︀
𝑝+ 𝑃𝑛𝑛,𝑀(𝑘)

)︀
,

(2.29)

J𝑀(𝑖) · n =−
∑︀

𝐴 γ
diss,𝐴
𝑀(𝑖) ρ𝑀(𝑖)(︁

2−
∑︀

𝐴 γ
diss,𝐴
𝑀(𝑖)

)︁
𝑛
√
2π𝑚𝑀𝑘𝑇

(︀
𝑝+ 𝑃𝑛𝑛,𝑀(𝑖)

)︀
− 1

2−
∑︀

𝐴 γ
diss,𝐴
𝑀(𝑖)

∑︁
𝐴

γ
rec,𝑀(𝑖)
𝐴

𝑚𝑀

𝑚𝐴
J𝐴 · n

+
1(︁

2−
∑︀

𝐴 γ
diss,𝐴
𝑀(𝑖)

)︁√
2π𝑘𝑇

∑︁
𝐴

γ
rec,𝑀(𝑖)
𝐴

𝑚𝑀ρ𝐴

𝑛
√︀

𝑚3
𝐴

(𝑝+ 𝑃𝑛𝑛,𝐴) .

(2.30)

Here, γrec,𝑀(𝑖)
𝐴 and γdiss,𝐴

𝑀(𝑖) are the recombination and dissociation probabilities,
respectively. In the first case, an atom 𝐴 participates in a recombination reaction
where a molecule 𝑀 on the vibrational level 𝑖 is formed. In the second case, the
molecule 𝑀(𝑖) is decomposed into two atoms, one of which is the atom 𝐴. In this
case, in order to obtain the expression for the mass flux of a given species, the
system of linear equations must be solved as well.

In the present work, the focus is solely on recombination on the solid surface
since, in practical applications, it is common to consider only this specific process.
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The above expressions in such case can be rewritten in the form:

J𝐴 · n =−
∑︀

𝑀,𝑘 γ
rec,𝑀(𝑘)
𝐴

2−
∑︀

𝑀,𝑘 γ
rec,𝑀(𝑘)
𝐴

ρ𝐴

𝑛
√
2π𝑚𝐴𝑘𝑇

(𝑝+ 𝑃𝑛𝑛,𝐴) ; (2.31)

J𝑀(𝑖) · n =−
∑︁
𝐴

γ
rec,𝑀(𝑘)
𝐴

2

𝑚𝑀

𝑚𝐴
J𝐴 · n

+
1

√
2π𝑘𝑇

∑︁
𝐴

γ
rec,𝑀(𝑘)
𝐴

2

𝑚𝑀ρ𝐴

𝑛
√︀
𝑚3

𝐴

(𝑝+ 𝑃𝑛𝑛,𝐴) ,

(2.32)

where 𝐴 = 1, . . . ,𝐿𝐴 and 𝑀 = 1, . . . ,𝐿𝑀 , 𝑖 = 0, . . . ,𝑁𝑀 . By substituting the atomic
mass fluxes (2.31) into Eq. (2.32) and performing some simplifications, the above
system is written in the form (2.37)-(2.38).

In the following section, the obtained BCs will be compared with those
from the previous Chapter under the same simplifications and with some other
phenomenological models.

2.6 Comparison of slip condition models with respect to
heterogeneous reactions

In the frame of the present approach, non-equilibrium surface processes (except
desorption) have explicit influence only on the boundary conditions for species
concentrations. Such expressions are conventionally written in terms of normal
components of mass fluxes near the wall. The latter, when calculated, can be included
in the temperature jump and the velocity slip.

In this section slip boundary conditions for species concentrations are
presented for a particular case when adsorption/desorption processes are neglected,
and only recombination is taken into account. It should be emphasized that
adsorption and desorption are neglected for the sake of simplification, due to high
complexity of evaluating their rate coefficients and lack of available data. In practical
applications, these processes can play an important role and, therefore, one should
employ the general forms of the expression from this Chapter. Besides that, the above
assumptions are made in order to compare the results with some phenomenological
models, which in most cases are written with respect to the chosen heterogeneous
process. In the frame of the present work three different models are considered: the
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model developed initially in previous chapter 1.3, the present model 2.2, and the
model proposed by Barbato in [109; 110].

2.6.1 Model, developed in previous chapter

When considering only recombination as a single heterogeneous process, the
state-specific boundary conditions obtained within the framework of the approach
developed in [88; 89] (reported in section 1.3) take the following form:

J𝐴 · n =−
∑︀

𝑀,𝑖 γ
rec,𝑀(𝑖)
𝐴

2−
∑︀

𝑀,𝑘 γ
rec,𝑀(𝑘)
𝐴

𝑝+ 𝑃𝑛𝑛,𝐴

𝑛
√
2π𝑚𝐴𝑘𝑇

ρ𝐴, (2.33)

J𝑀(𝑖) · n =

∑︀
𝐴 γ

rec,𝑀(𝑖)
𝐴

2 +
∑︀

𝐴 γ
rec,𝑀(𝑖)
𝐴

𝑝+ 𝑃𝑛𝑛,𝑀(𝑖)

𝑛
√
2π𝑚𝑀𝑘𝑇

ρ𝑀(𝑖), (2.34)

where 𝐴 = 1, . . . ,𝐿𝐴 and 𝑀 = 1, . . . ,𝐿𝑀 , 𝑖 = 0, . . . ,𝑁𝑀 . To compare with
commonly used models, Eqs. (2.33) and (2.34) can be written in a conventional
form using effective reaction rate constants, as shown below:

J𝐴 · n =−
∑︁
𝑀,𝑖

𝑘𝑤,rec𝐴,𝑀(𝑖) ρ𝐴, (2.35)

J𝑀(𝑖) · n =
∑︁
𝐴

˜̃𝑘𝑤,rec𝐴,𝑀(𝑖)ρ𝑀(𝑖). (2.36)

Here, 𝑘𝑤,rec𝐴,𝑀(𝑖) and ˜̃𝑘𝑤,rec𝐴,𝑀(𝑖) are the effective wall recombination rate coefficients. The
main drawback, as already specified above, is the dependence of the molecular
component mass flux near the wall solely on the density of the same molecular
component.

The formulas, when simplified to the one-temperature approximation with no
internal degrees of freedom, are similar to other known theoretical expressions [43;
82; 93; 94]. Such conditions were derived in the frame of the Grad [80] or
Patterson–Shidlovskiy [81; 87] methods, which in the present form do not provide
correct implementation of heterogeneous reactions.

The model described here will be further referred to as «Model I».
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2.6.2 Improved model

The technique introduced in the present chapter yields the normal particle
flux in the form of Eq. (2.15), which under the above mentioned simplifications
can be written as:

J𝐴 · n =−
∑︀

𝑀,𝑘 γ
rec,𝑀(𝑘)
𝐴

2−
∑︀

𝑀,𝑘 γ
rec,𝑀(𝑘)
𝐴

𝑝+ 𝑃𝑛𝑛,𝐴

𝑛
√
2π𝑚𝐴𝑘𝑇

ρ𝐴, (2.37)

J𝑀(𝑖) · n =
1

√
2π𝑘𝑇

∑︁
𝐴

γ
rec,𝑀(𝑖)
𝐴

2

𝑚𝑀

𝑚𝐴

𝑝+ 𝑃𝑛𝑛,𝐴

𝑛
√
𝑚𝐴

×

[︃
1 +

∑︀
𝑀,𝑘 γ

rec,𝑀(𝑘)
𝐴

2−
∑︀

𝑀,𝑘 γ
rec,𝑀(𝑘)
𝐴

]︃
ρ𝐴.

(2.38)

The above expressions are obtained by simplifying Eqs. (2.31)–(2.32). One can notice
that the general form of atomic component mass flux (2.37) is the same as in the
previous form (2.35). On the contrary, the molecular component mass fluxes differ
from (2.36). Correspondingly, Eq. (2.38) can be rewritten as follows:

J𝑀(𝑖) · n =
∑︁
𝐴

𝑘𝑤,rec𝐴,𝑀(𝑖) ρ𝐴. (2.39)

The latter expression corresponds to the phenomenological one reported in [108;
124], and the theoretically derived one in [84]. Though in the developed approach
there is an exact expression for the effective recombination rate coefficient. This rate
coefficient can also be taken from phenomenological approximations or obtained
from experiments.

This model will be called hereafter «Present model».

2.6.3 Barbato model

A simpler model adopted to take into account surface catalycity, without
considering the rarefaction effects such as velocity slip and temperature jump, is
the one commonly used in the literature [28; 32; 109; 110; 125]. In this model the
surface derivatives of the molecular vibrational distributions and of atomic mass
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fractions are written in the form:

d𝑦𝐴
d𝑛

=

∑︀
𝑀,𝑖 γ

rec,𝑀(𝑖)
𝐴

𝐷𝐴

√︃
𝑘𝑇

2π𝑚𝐴
𝑦𝐴, (2.40)

d𝑦𝑀(𝑖)

d𝑛
=−

∑︁
𝐴

γ
rec,𝑀(𝑖)
𝐴

𝐷𝐴

√︃
𝑘𝑇

2π𝑚𝐴
𝑦𝐴, (2.41)

where 𝑦𝐴,𝑦𝑀(𝑖) are atomic and molecular species mass fractions, respectively (𝑦𝑐 =
ρ𝑐/ρ). The above formulas can be approximately written in terms of mass fluxes if
the Fick law (ρ𝑐𝑖V𝑐𝑖 ≈ −ρ𝐷𝑐𝑖∇𝑦𝑐) is applied for the diffusion velocity:

J𝐴 · n =−
∑︁
𝑀,𝑖

γ
rec,𝑀(𝑖)
𝐴

√︃
𝑘𝑇

2π𝑚𝐴
ρ𝐴 = −

∑︁
𝑀,𝑖

𝑘𝑤,rec𝐴,𝑀(𝑖) ρ𝐴, (2.42)

J𝑀(𝑖) · n =
∑︁
𝐴

γ
rec,𝑀(𝑖)
𝐴 𝐷𝑀(𝑖)

𝐷𝐴

√︃
𝑘𝑇

2π𝑚𝐴
ρ𝐴 =

∑︁
𝐴

¯̄𝑘𝑤,rec𝐴,𝑀(𝑖) ρ𝐴. (2.43)

One can notice that the generic conventional form of Eqs. (2.42)–(2.43) is the same
as that of developed extended approach (see Eqs. (2.37) and (2.38)). The effective
recombination reaction rate constants are, however, different.

The above model will be further referred to as «Barbato model».

2.7 Conclusions of Chapter 2

In the present Chapter, the generalized approach allowing to obtain slip
boundary conditions for the state-specific set of macroparameters, is developed in
the viscous flow approximation. The proposed technique is based on the extension
of the kinetic boundary condition, which enables to account for various surface
non-equilibrium processes, such as adsorption-desorption, vibrational excitation­
deactivation and heterogeneous reactions in a correct form, unlike the previous form
of the approach. Besides that, the proposed scheme retains all the advantages of
its initial form from the previous Chapter: 1) the slip conditions depend only on
macroparameters, accommodation coefficients and probabilities of surface processes
without required further simplification, as in half-flux and Grad’s methods; 2) the
approach should not cause any additional computational costs if all coefficients
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of surface processes are known; 3) the procedure can be easily adapted for one-
and multi-temperature approximations, and for the first one, the conditions can be
already written based on the provided formulas.

Surface processes directly affect the boundary conditions for species
concentrations. The general form of the latter in terms of the mass fluxes is in
accordance with known phenomenological models, however, effective recombination
coefficients are calculated theoretically. Slip boundary conditions were derived for
the Maxwell and Cercignani–Lampis scattering kernels, and differences between
them in the frame of the new scheme appear only in the temperature jump. Non­
equilibrium surface processes do not affect explicitly velocity and temperature values
near the wall, except for desorption, which appears in the velocity slip. Under the
neglected adsorption assumption, the temperature and velocity boundary conditions
are the same as those obtained in the case of the initial form of the approach.

Additionally, in this Chapter, another improved version of the kinetic boundary
condition is proposed to ensure the conservation of the mass flux near the surface in
the case of heterogeneous recombination reactions and vibrational energy transitions.
Using this boundary condition and the Maxwell scattering kernel, wall mass fluxes,
velocity slip, and temperature jump are derived. It is demonstrated that only the
velocity slip remains unchanged under the considered scheme.

A system of boundary conditions in the one-temperature approximation was
obtained and implemented within the framework of project № 075-15-2024-544
«Mathematical models and numerical methods as the basis for the development
of robotic systems, new materials and intelligent design technologies».
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Chapter 3. Air flow in a boundary layer in the vicinity of stagnation
point

The models of slip boundary conditions developed in previous chapters are
assessed in the present chapter. The set of boundary conditions is transformed using
the Lees–Dorodnitsyn coordinate system to be implemented in the fluid-dynamic
solver for modeling the dynamics and state-to-state air kinetics in the boundary
layer near stagnation point. Several scenarios of various degree of gas rarefaction are
considered. Recombination probabilities and effective reaction rates are calculated
and compared to recent molecular-dynamic simulations. The influence of the slip
boundary conditions model on the flow parameters is assessed by comparing the
results of seven types of test cases. For each set, temperature jump is either
neglected or accounted for, and one of the three different models of solid wall
catalyticity is considered (see 2.6). The impact of the scattering model, diffusion
model, and different types of approach generalizations (see 2.2 and 2.4) on the flow
characteristics in the boundary layer is examined as well. The results of this chapter
can be found in papers [112; 113]. This work was carried out in collaboration with
Dr. Iole Armenise.

The chapter is structured in the following manner. Initially, the problem
statement and kinetic schemes used in simulations are given in Sec. 3.1. Test cases
description is provided in 3.2.1 subsection. The results 3.2 are organized as follows:
first, the models are examined based on the distributions of fluid-dynamic variables
along stagnation line 3.2.4; a detailed description of wall heat fluxes is presented
in Section 3.2.5, including a comparison with some phenomenological models; the
influence of the accommodation coefficient, diffusion model, and approaches based
on different types of kinetic boundary conditions is analysed in 3.2.6 and 3.2.7.

3.1 Problem statement

Description of the rarefied gaseous mixture flow in a boundary layer near
stagnation point of a body moving at supersonic speed can be reduced to a one­
dimensional problem using Lees–Dorodnitsyn coordinates [125]. The transformation
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formulas are following [39]:

ξ =

∫︁ 𝑥

0

ρ𝑒µ𝑒𝑣𝑒𝑟
2𝑑𝑥, η =

𝑣𝑒𝑟√
2ξ

∫︁ 𝑦

0

ρ𝑑𝑦, (3.1)

where ξ and η are the coordinates parallel and normal to the body surface; 𝑥 and
𝑦 are the initial Cartesian coordinates; 𝑟 is the vertical coordinate measured from
the centerline of an axisymmetric body; the subscript ’e’ refers to the external edge
of the boundary layer.

The coordinate ξ in Eq (3.1) represents the longitudinal direction, while
η, depending on ξ, is the new transverse coordinate. The advantage of this
transformation is that in the (ξ,η) reference system, the velocity component along
the surface, 𝑣𝑛, only depends on the transverse coordinate, i.e., 𝑣𝑛(ξ,η) becomes
𝑣𝑛(η), so that the velocity profile along the normal to the surface, η, does not
depend on the point on the surface in which it is observed. In the case of flow
near the stagnation point of an axisymmetric body, additional simplifications can
be made, and the dependence of all parameters on ξ vanishes [125]. Therefore, all
the parameters in the boundary layer are assumed to be dependent only on the
η coordinate.

3.1.1 Governing equations

The general system of state-to-state fluid-dynamic equations, given by
Eqs. (1.32)–(1.34), for the hypersonic boundary layer of a body flying in a
N2/N/O2/O/NO mixture in the Lees-Dorodnitsyn coordinates, is as follows [39]:

𝜕2𝑦𝑖
𝜕η2

+ 𝑓 Sc
𝜕𝑦𝑖
𝜕η

= 𝑆𝑖, 𝑖 = 1,...,𝐿;

𝜕2𝑇/𝑇𝑒

𝜕η2
+ 𝑓 Pr

𝜕𝑇/𝑇𝑒

𝜕η
= 𝑆𝑇 .

(3.2)

The first 𝐿 equations are 155 continuity equations, one for each species 𝑖, whose
mass fraction is 𝑦𝑖; thus, there are one continuity equation for the atomic nitrogen,
one for the atomic oxygen and 61, 44, 48 continuity equations for the vibrational
levels of N2, O2 and NO, respectively. The last equation is the energy conservation
equation, in which the unknown is the temperature 𝑇 normalized to its value 𝑇𝑒
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at the external boundary layer edge. On the left-hand side of the equations the
Schmidt (Sc) and Prandtl (Pr) numbers appear as well as the stream function,
𝑓 = 𝑓(η) [125]. On the right-hand side 𝑆𝑖 and 𝑆𝑇 are the source terms corresponding
to the gas-phase state-to-state vibrational and chemical kinetics. Two important
parameters are included in these latter terms: the pressure, 𝑝𝑒, and the derivative
of the external edge velocity component along the body surface with respect to the
coordinate along the body surface itself, β, measuring the inverse of the residence
time of a fluid element in a particular point of the boundary layer [125]. Details
on this hypersonic boundary layer system and, in particular, on the construction
of 𝑆𝑖 and 𝑆𝑇 are given in Ref. [39].

Starting from the temperature and species mass fractions, i.e. the atomic
mass fractions and the mass fractions of the different molecular vibrational levels,
unknowns of the system (3.2), the transport properties are obtained by means of
the modified Chapman-Enskog theory [7; 8] (see also Section 1.1).

3.1.2 Non-equilibrium processes

Gas-phase reactions and state-resolved rates models

The gas-phase state-to-state vibrational and chemical kinetic processes
considered in this study are: the vibrational-vibrational, VV, and vibrational­
translational, VT𝑚, energy transitions due to the collisions between two molecules,
that also include the dissociation-recombination reactions by means of the ladder
climbing model and the assumption, in the dissociation rates calculation, of a
vibrational level, representing the atoms, above the last bound molecular vibrational
level [126—132]

N2(𝑖1) + N2(𝑖2) ⇌ N2(𝑖1 + 1) + N2(𝑖2 − 1), (3.3)

O2(𝑖1) + O2(𝑖2) ⇌ O2(𝑖1 + 1) + O2(𝑖2 − 1), (3.4)

N2 + N2(𝑖1) ⇌ N2 + N2(𝑖1 − 1), (3.5)

O2 + O2(𝑖1) ⇌ O2 + O2(𝑖1 − 1); (3.6)
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the vibrational-translational, VT𝑎, energy transitions due to the collisions between
an atom and a molecule [111; 132—135]

N + N2(𝑖1) ⇌ N + N2(𝑖2), (3.7)

O + O2(𝑖1) ⇌ O + O2(𝑖2), (3.8)

N + O2(𝑖1) ⇌ N + O2(𝑖2); (3.9)

the direct dissociation caused by the collisions between an atom and a molecule
[111; 132—134; 136]

N + N2(𝑖) ⇌ 3N, (3.10)

O + O2(𝑖) ⇌ 3O, (3.11)

O + N2(𝑖) ⇌ O + 2N, (3.12)

N + O2(𝑖) ⇌ N + 2O; (3.13)

and finally the exchange Zeldovich reactions [111; 132; 136]

O + N2(𝑖1) ⇌ N + NO(𝑖2), (3.14)

N + O2(𝑖1) ⇌ O + NO(𝑖2). (3.15)

State-specific rate coefficients of processes (3.4)–(3.15) are obtained using quasi­
classical trajectory calculations performed in [111; 127—130; 132—136].

Heterogeneous reactions and recombination probabilities

Unlike the gas-phase processes, the heterogeneous state-to-state reactions
considered in the present work are not directly included in the boundary layer
system (3.2). Instead, they are incorporated in the boundary conditions at the
surface, following various models of wall mass fluxes discussed in Section 2.6.

The reactions at the surface are recombination reactions according to the
Eley–Rideal impact mechanism, where desorption of a newly obtained particle is
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assumed to be a part of the mechanism:

N + N* γNN(𝑖)−−−→ N2(𝑖) + *, (3.16)

O + O* γOO(𝑖)−−−→ O2(𝑖) + *, (3.17)

O + N* γON(𝑖)−−−→ NO(𝑖) + *, (3.18)

N + O* γNO(𝑖)−−−→ NO(𝑖) + *, (3.19)

where * is an active adsorption site of the surface, N* and O* are nitrogen and
oxygen adatoms, i.e. atoms adsorbed on the surface. Adsorption and desorption as
separate processes are not included to the present work. It is worth noting that the
heterogeneous recombination Eley–Rideal mechanism is chosen due to its simplicity.

The recombination coefficients γNN(𝑖), γOO(𝑖), γNO(𝑖) and γON(𝑖), for a SiO2

surface, are calculated at each iteration up to convergence [28] (see also 3.2.2) due
to their dependence on both the surface properties and the impinging flux [109;
110]. To be precise, the global (i.e. independent of vibrational level) heterogeneous
recombination coefficients are calculated, then they are uniformly spread on the
corresponding molecule vibrational ladders. To argue the reason of this uniform
spread is beyond the aim of the present work, however it was discussed in [111]
based on the studies [103; 131; 137—140].

It is important to stress that in each model investigated in the present work,
i.e. Model I, Present model and Barbato model (see Sec. 2.6), the recombination
coefficients are calculated using the approach proposed in [109; 110]. The choice
of the mentioned approach is due to its ability to account for the dependence of
the recombination probability not only on the surface temperature but also on the
flow characteristics.

3.1.3 Diffusion velocity models

All introduced in Sec. 2.6 boundary conditions for species mass fluxes depend
on the diffusion velocity. The rigorous state-specific relation (1.36) requires the
knowledge of numerous parameters. Moreover, in such a case, the boundary
conditions will form a system of non-linear equations that must be solved at each
iteration. For the sake of simplicity, it is preferable to employ simplified models for
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the diffusion velocity. One of the commonly used models is the Fick law:

ρ𝑐𝑖V𝑐𝑖 = −ρ𝐷𝑐𝑖∇ ·

(︃
ρ𝑐𝑖

ρ

)︃
, 𝐷𝑐𝑖 =

1− 𝑛𝑐𝑖/𝑛∑︀
𝑑𝑘

𝑛𝑑𝑘/(𝑛𝒟𝑐𝑖𝑑𝑘)
, (3.20)

where 𝐷𝑐𝑖 is the effective diffusion coefficient, 𝒟𝑐𝑖𝑑𝑘 are binary diffusion coefficients
for each pair of chemical-vibrational species, 𝑐𝑖 and 𝑑𝑘.

The Hirschfelder-Curtiss (HC) [141] approximation is another simplified model
for the diffusion velocity, which can be used as an alternative to (3.20):

𝑛𝑐𝑖V𝑐𝑖 = −𝑛𝐷*
𝑐𝑖d𝑐𝑖, 𝐷*

𝑐𝑖 =
1− ρ𝑐𝑖/ρ∑︀

𝑑𝑘,𝑑𝑘 ̸=𝑐𝑖

𝑛𝑑𝑘/(𝑛𝒟𝑐𝑖𝑑𝑘)
. (3.21)

The Fick law is commonly used in fluid dynamics but originally it was limited
to binary mixtures [142; 143]; expression (3.20) represents its generalization
for the STS approach. However, it still neglects thermal and barodiffusion
as well as cross-coupling between gradients of various species mass fractions.
The Hirschfelder–Curtiss law partially overcomes these limitations since it
includes species molar fractions and diffusive driving forces, similarly to initial
definition (1.36). Thus, the HC law is treated here as more accurate. However,
neither of these relations can provide the global mass conservation

∑︀
𝑐𝑖 ρ𝑐𝑖V𝑐𝑖 = 0.

This constraint can be satisfied by adding a correction to the diffusion velocity
expressions [142].

3.2 Results and discussion

In this section, results of numerical modeling of a five-component air mixture
flow in the boundary layer in the vicinity of the stagnation point are presented.
Different models of slip boundary conditions are implemented and assessed.

For the readability of the following figures, it is useful to specify that coordinate
η, when equal to 0, corresponds to the surface, and η = η𝑀𝑎𝑥 = 8 corresponds to
the boundary layer external edge.



76

3.2.1 Test cases description

To numerically solve the system (3.2), the flow parameters at the external edge
of the boundary layer need to be specified. The chosen datasets are presented in
Table 1. The considered sets correspond to the parameters after the detached shock

Table 1 — External edge flow parameters and surface temperature.

Notation 𝑇𝑒, K 𝑇𝑤, K 𝑝𝑒, Pa β, 1/s
EP1 (85 km) 7000 1000 1000 5000
EP2 (60 km) 9500 1150 17600 3086

wave near a hypersonic re-entry vehicle. The altitudes for the considered cases are
approximately equal to 85 km and 60 km, respectively. Mach number of the free
steam flow for both sets is equal to 15. The varying parameters are the temperature
𝑇𝑒, the pressure 𝑝𝑒, and the parameter β, dependent on the vehicle nose radius.
The air mixture composition at the external edge is 78.58% N2+N, 21.38% O2+O,
0.04% NO. Both nitrogen and oxygen at the boundary layer external edge are split
between the respective molecules and atoms following the chemical equilibrium at
the external temperature 𝑇𝑒, and the molecular vibrational distributions are the
Boltzmann ones. The silica surface wall temperature values 𝑇𝑤 are 1000 K and
1150 K, correspondingly to the chosen set of external edge parameters.

For the first set of parameters (EP1), the Knudsen number at the external
edge is approximately 0.007. The other set of external flow conditions corresponds
to a less rarefied gas scenario, with Kn estimated as 0.0006.

Numerical modeling for each set of external edge parameters is performed
for different test cases of slip boundary conditions considered. The test cases are
summarized in Table 2. Starting from this point, the subsequent assumptions are
made: 1) the velocity slip is neglected in all the cases since its effect in the stagnation
region is small; 2) the temperature jump is considered based on the specular-diffusive
(Maxwell) kernel and is given by Eq. (1.94), the mass fluxes in the expression
are calculated according to the models introduced in Table 2; the accommodation
coefficient σ for the cases considered is set to 0.5 unless stated otherwise (its values
will be varied later in Sec. 3.2.7); 3) the diffusion velocity is chosen according to
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Table 2 — Test cases for considered catalytic model and temperature jump (TJ).

Notation Description
TC0: Barbato Eqs. (2.40)-(2.41), no temperature jump
TC1: TJ Non-catalytic surface, temperature jump
TC2: Model I+TJ Eqs. (2.33)-(2.34), temperature jump
TC3: Barbato+TJ Eqs. (2.40)-(2.41), temperature jump
TC4: No-Slip Non-catalytic surface, no temperature jump
TC5: Present+TJ Eqs. (2.37)-(2.38), temperature jump
TC6: Present Eqs. (2.37)-(2.38), no temperature jump

models described in 3.1.3, and for the test cases of Table 2, the Fick law is applied;
however, another model is tested as well in Section 3.2.6.

3.2.2 Numerical scheme

Before reporting the outcomes of the modeling, it is essential to include some
discussion about the numerical scheme used in this study. The numerical simulation
of the considered problem was conducted in collaboration with Dr. I. Armenise (CNR
ISTP, Bari) using the scheme reported in [39]. A brief overview of the method is
provided below.

To solve the boundary layer system of equations (3.2), an iterative finite­
difference numerical method is applied. The coordinate normal to the surface, η,
is uniformly divided into 160 nodes of the grid (see below for the discussion of grid
convergence). Then, the equations are discretized using central finite differences on
this grid. The slip conditions are discretized accordingly. At the initial stage, the
Gauss iterative method is employed to solve the system of discretized equations with
a triangular matrix, using the initial conditions for the parameters 𝑦𝑖 and θ = 𝑇/𝑇𝑒

at each grid node. This allows recalculating the parameter values, and these updated
values are then inserted both into the coefficient matrix and the known vector. The
system is then solved again to obtain new values of 𝑦𝑖 and θ. This process is repeated
until a steady-state flow is achieved.
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As for slip BCs, simplified models for diffusion velocity are applied (see 3.1.3),
eliminating the need to solve a system of equations for discretized boundary
conditions. However, this is faithful since the square root of the temperature
boundary value in species concentrations and temperature BCs is obtained from the
previous iteration. Otherwise, solving a system of non-linear equations is required,
which is even more complex when rigorous diffusion velocity models are applied.
The latter will also be necessary in the case of finite-volume methods. In such cases,
the values of macroscopic parameters in fictitious cells are obtained, and then the
system of equations needs to be solved.

Grid convergence

The equations of system (3.2) are discretized by central differences on a
uniform grid containing 160 nodes. The chosen number of grid nodes has been
verified by repeating the calculations for EP1 conditions (see Table 1) and test
case TC5 (see Table 2) on two finer grids of 320 and 640 nodes, respectively. By the
results for different variables obtained for the three grids on the nodes corresponding
to the 160-nodes grid, the Richardson Extrapolation has been performed and the
corresponding values 𝑅𝐸𝑛 (𝑛 is the node number index) have been obtained. Such a
technique was used in [144]. Finally, by comparing these extrapolated values with the
values originally obtained on the 160 nodes grid, 𝑂𝑛, the χ2 test has been calculated:

χ2 =
𝑁∑︁
𝑛=1

(𝑂𝑛 −𝑅𝐸𝑛)
2

𝑅𝐸𝑛
. (3.22)

To give some examples, the χ2 values are 0.15 for the N2 density, 1.28 · 10−2 for the
N density, 3.86 ·10−6 for the O2 density, 8.47 ·10−3 for the O density and 4.13 ·10−4

for the NO density, much less than 𝑁 = 160. To summarize, a grid of 160 nodes
returns a good approximation to the results.
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3.2.3 Rates of heterogeneous reactions

Heterogeneous recombination probabilities that correspond to the surface
processes (3.16)-(3.19), as is already mentioned, are calculated on the basis of the
approach proposed in [28; 109]. Different values of the probabilities depending on
the chosen test case of slip boundary conditions are presented in Table 3 for the first
set of external edge parameters and the wall temperature value of 1000 K. Test cases

Table 3 — Recombination probabilities calculated for different test cases.

Test case γNN γOO γON γNO

TC0: Barbato 1.955e-3 1.264e-2 4.236e-3 8.213e-3
TC2: Model I+TJ 6.875e-3 5.961e-3 1.49e-2 3.874e-3
TC3: Barbato+TJ 3.316e-3 1.079e-2 7.185e-3 7.013e-3
TC5: Present+TJ 6.607e-3 6.324e-3 1.432e-2 4.111e-3
TC6: Present 6.573e-3 6.371e-3 1.424e-2 4.141e-3

TC1 and TC4 corresponding to a non-catalytic surface are not included in this table.
One can see that, according to the Barbato model, the maximum probabilities are
obtained for heterogeneous oxygen recombination (3.17) and NO formation (3.19).
For all other models, the dominating surface reaction is NO recombination (3.18)
involving nitrogen adatoms and gas-phase oxygen atoms; recombination probabilities
calculated for test cases 2, 5 and 6 are in close agreement. The effect of the
temperature jump on recombination probabilities is weak; for the Present model
its contribution is within 1%. The effect of the approach (Model I versus Present
model) is also weak although the difference is slightly greater.

It is interesting to compare effective recombination coefficients obtained for
various models. Table 4 presents the coefficient for oxygen recombination (3.17),
which appears in different models for the molecular mass fluxes discussed in
Section 2.6. One can notice that the expressions for effective reaction rate coefficients
of the Model I and the Present model under the assumptions made in Section 3.2.1
are close to the ones of the Barbato model. However, upon closer examination,
despite the similarities in their expressions, there exist noticeable differences in the
actual values. These values were obtained from the TC5 simulations using the same
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Table 4 — Effective rate coefficient for heterogeneous oxygen recombination (3.17).

Model 𝑘𝑤,recO,O2
, cm/s, 85 km 𝑘𝑤,recO,O2

, cm/s, 60 km

Model I 156.7 249.5
Present model 444.7 709.6
Barbato model 193.6 318.9
Molecular dynamics [145] 451.1 631.1

macroscopic parameters and recombination probabilities. The results are compared
with recent molecular-dynamic (MD) simulations carried out in [145]. It is worth
mentioning that the calculations were conducted on the basis of the simplified impact
recombination mechanism since here the same mechanism 3.1.2 is considered, and
the certain parameters associated with other mechanisms are unavailable.

One can see that the effective recombination rates are strongly affected by the
model: the Barbato model and Model I yield a considerably lower value of 𝑘𝑤,recO,O2

compared to the Present model. The best agreement with MD simulations [145] is
provided by the Present model. This indicates the importance of correct evaluation
of normal mass fluxes on the surface. Model I underestimates the mass flux since
it does not take into account contribution of different molecular species to J𝑀(𝑖).
The phenomenological Barbato model does not account for rarefaction effects and
uses simplified expressions for the mass flux. The Present model is based on a more
reliable kinetic boundary condition and shows good accuracy. Based on this analysis,
the results of TC5 simulations are chosen as benchmark for the further discussion.

In addition to the Present model mentioned here, the developed approach
allowed for another extension, as discussed in Section 2.4. Its distinctive feature
is the ability to ensure the total mass flux conservation near the wall in the
case of neglected adsorption/desorption processes. It is worth noting that the
approach was constructed synthetically, and conservation is not necessarily required
at every moment in time due to the dependence of heterogeneous reactions on
adsorption/desorption processes. The effective recombination coefficient, 𝑘𝑤,recO,O2

, for
this model is two times smaller than that of the Present model, although it remains
higher than those provided by Model I and Barbaro formulas. This difference arises
from variations in their wall mass fluxes relations, given by equations (2.27) and
(2.22). In the Present model (2.27), additional terms involving the ratio of particle
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masses 𝑚𝑑/𝑚𝑐 are introduced. The observed value of the effective recombination
coefficient also supports the choice of the Present model as a benchmark. However,
due to extreme similarities in the models, an extended comparison is recommended,
and this will be done in Section 3.2.6.

3.2.4 Fluid-dynamic variables

First of all, it is essential to compare the distributions of fluid-dynamic
variables across the boundary layer.

Temperature

To start with, the temperature jump on the surface for different test cases
need to be evaluated. In Table 5, the gas temperature near the surface (at η = 0)
is given for several test cases taking into account temperature jump (TJ) and two
sets of external flow conditions corresponding to a different rarefaction degree. All

Table 5 — The effect of temperature jump on 𝑇 at η = 0.

Test case 𝑇 (η = 0), K (85 km) 𝑇 (η = 0), K (60 km)
TC4: No-Slip 1000 1150
TC1: TJ 1437 1368
TC2: Model I+TJ 1452 1379
TC3: Barbato+TJ 2590 1731
TC5: Present+TJ 1485 1390

models except the one of Barbato yield close values of the temperature jump. The
latter model (TC3) considerably overpredicts the gas temperature near the surface;
this is confirmed by DSMC [1] and viscous shock layer simulations [146] providing
the TJ values similar to those obtained for the Present model. It is not surprising
that for higher altitude (higher rarefaction), the temperature jump is larger. Thus,
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Figure 3.1 — Temperature profiles as functions of η. Top panel: case EP1 (85 km).
Bottom panel: EP2 (60 km). Left plots: comparison between TC1–TC5; right plots:

more detailed comparison between the Barbato and Present models.

for the altitude of 85 km the average gas temperature variation near the surface is
about 45% of 𝑇𝑤 whereas for 60 km, it is about 12%.

Temperature distributions as functions of η are reported in Fig. 3.1. For
Model I and Present model, the temperature profiles are rather close, showing
some discrepancy near the surface (η < 1.5) due to the temperature jump for
the case EP1 (85 km); for the less rarefied gas (60 km), the effect of TJ and
surface processes model is almost negligible. Situation is quite different for the
Barbato model, which yields larger temperature jump, sharp increase in 𝑇 near
the surface and considerably higher temperature at η < 2.5, which alters gas-phase
chemical reaction mechanisms. For the case EP2 (60 km), the shape of temperature
distribution is non-uniform across the layer, with change of convexity in the middle
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Figure 3.2 — Species mass fractions as functions of η. Case EP1 (85 km).

of the boundary layer. The reasons for such behaviour may be associated with strong
coupling of fluid-dynamic and chemical processes and possibly mutual effect of gas­
phase and heterogeneous reactions for this model.

Mass fractions

Mass fraction distributions across the boundary layer are plotted in
Figs. 3.2–3.3. Whereas the mass fraction of nitrogen decreases monotonically
from the external edge towards the surface, fractions of other species may behave
non-monotonically, depending on the model and altitude. For the Barbato model,
there is a strong competition between gas-phase and surface reactions; this explains
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Figure 3.3 — Species mass fractions as functions of η. Case EP2 (60 km).

𝑦O maxima occurring at η < 1. Analysis of gas-phase reactions shows that for the
Barbato model, the contribution of reaction (3.15) in the gas phase is high, which
leads to a sharp decrease of 𝑦N towards the wall with corresponding increase in
the mass fractions of O and NO, partially compensated near the wall by surface
recombination. Such a chemical mechanism is associated with the temperature
distribution across the boundary layer, which, for the Barbato model significantly
differs from other models. This effect is especially pronounced for lower altitude (case
EP2, 60 km). All other models yield qualitatively similar distributions of the species
mass fractions in the boundary layer, with a noticeable difference near the surface.
The results obtained using the Model I are close to those for a non-catalytic wall.
Therefore, this «weakly catalytic» model underpredicts the catalytic effects caused
by the contributions of all molecules to the mass flux of a given molecular species.
The effect of the temperature jump for the case EP2 (60 km) is small; it increases
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Figure 3.4 — N2 and NO vibrational distributions at the wall (η = 0) as functions
of vibrational energy. Top panel: case EP1 (85 km). Bottom panel: EP2 (60 km).

with the altitude and is expected to be much greater for lower Knudsen numbers.
Note that for a non-catalytic wall, taking into account the temperature jump yields
some decrease in the NO and O2 surface mass fractions for the case EP1 (85 km).

Vibrational energy distributions

Molecular state-to-state vibrational distributions near the surface are reported
in Fig. 3.4 for two sets of external flow parameters and different models of catalytic
properties and slip boundary conditions. For the case EP1 (85 km), vibrational
distributions of nitrogen show gradual decreasing with the energy. For a non­
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catalytic surface and weakly catalytic Model I, one can see some perturbations
and depopulation of high states due to gas-phase dissociation processes; these
processes are compensated by heterogeneous reactions when the Barbato and
Present model are used. For these models the distributions vary smoothly with the
vibrational energy per molecule εvib. Oxygen vibrational distributions show similar
behaviour as those of nitrogen. NO vibrational distributions for non-catalytic (TC1,
TC4) and weakly catalytic (TC2) models have a more sophisticated shape with
a kind of inversion of level populations at intermediate energies. For the catalytic
models (TC3, TC5), higher levels are more populated due to more efficient surface
recombination processes; for the Barbato model, additional contribution is from
the gas-phase Zeldovich reaction. For the case EP2 (60 km) with lower rarefaction,
vibrational distributions of O2 keep the same qualitative behaviour, distributions
of N2 (except for the Barbato model) become close to each other at the low and
intermediate states and show some discrepancy for high energy, when the Present
model is used. For these models, NO distributions are qualitatively similar to those
obtained in the EP1 case but are found to be higher. The Barbato model yields
essentially different vibrational distributions for N2 and NO, which are perturbed by
the mutual effect of gas-phase and heterogeneous reactions. The temperature jump
considerably affects the vibrational distributions (compare cases TC1 and TC4) for
the case EP1 but weakly influences level populations for the EP2 case, which is in
agreement with the results for the mixture composition discussed above.

3.2.5 Heat fluxes

In this subsection, the total heat flux values and the contributions of various
transport processes to the energy flux across the boundary layer are discussed.
Fig. 3.5 shows the total heat flux across the boundary layer calculated for two
sets of external flow parameters and different models for boundary conditions. For
both altitudes, the Barbato model overestimates the heat flux, both at the surface
and in a flow, especially when the temperature jump is neglected. Including the
temperature jump to the slip boundary conditions causes a significant decrease in
the surface heat flux; the difference is larger for a more rarefied flow. A similar
conclusion is drawn in [146]; some quantitative estimates are discussed hereafter in
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Figure 3.5 — Total heat flux as a function of η. Top panel: case EP1 (85 km).
Bottom panel: EP2 (60 km). Left plots: comparison between TC1–TC5; right plots:

more detailed comparison between the Barbato and Present models.

this section. The effect of surface catalyticity is not that high as expected (except
for the Barbato model). The reason for such a small effect may be associated to the
competition of mass diffusion and vibrational energy diffusion discussed hereafter.

Contributions of thermal conduction (Fourier), thermal diffusion (TD), mass
diffusion (MD), and vibrational energy diffusion (DVE) to the total heat flux are
plotted in Figs. 3.6 and 3.7 as functions of η for different test cases. Note that the
latter process occurs only in the state-to-state approach; in the multi-temperature
models it is rather connected with gradients of vibrational temperatures. As is shown
in [26; 32], the contribution of thermal diffusion is of the same order as the Fourier
flux; this process has to be taken into account in the stagnation line flow simulations.
For the Barbato model, the mass diffusion flux is of the same order as the Fourier
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flux for the EP2 case and about three times lower for the EP1 case. For other
models, the MD contributions are found much lower compared to the Fourier flux.
An interesting effect is that the contribution of vibrational energy diffusion is close to
the MD contribution but has the opposite sign, which causes strong compensation
effects for these two transport processes.

Table 6 — Stagnation point wall heat fluxes, obtained from the different test cases
and some phenomenological models.

Model EP1 (85 km) EP2 (60 km)
q𝑤, MW/m2 q𝑤, MW/m2

TC0: Barbato 0.9084 3.654
TC1: TJ 0.1836 1.740
TC2: Model I+TJ 0.1822 1.726
TC3: Barbato+TJ 0.4021 3.025
TC4: No-Slip 0.2675 2.202
TC5: Present+TJ 0.2012 2.017
TC6: Present 0.2967 2.506
Fay-Riddel, non-catalytic [147] 0.2524 1.6997
Goulard [148] 0.6937 2.7210
Fenster [149] 0.0915 0.3545
Sutton-Graves [150] 1.2916 8.7795

In Table 6, the stagnation point surface heat fluxes calculated for different test
cases are presented and compared with the results obtained on the basis of semi­
empirical expressions widely used in the computational fluid dynamics. Approximate
calculations of the heat flux were performed using the data of the benchmark TC5
case, and, as one can notice, show significant scatter in 𝑞𝑤 values. The surface heat
flux calculated using the Fay–Riddel formula for a non-catalytic wall [147] agrees
well with the flux calculated for the non-catalytic surface without temperature
jump (TC4) for both considered cases of gas rarefaction. The value provided by
the formula is about 6% smaller for the more rarefied gas case, and in the case of
high-enthalpy flow at 60 km altitude, the value differs by approximately 22%. Such
results are consistent with the recent analysis of this expression [151]. The Fay-Riddel
formula for a fully catalytic surface cannot be used in the present study since it is
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limited to the case when the Lewis number is greater than unity; in the simulations
performed, Le may be less than 1. The Goulard heat flux [148], representing an
improvement of the Fay–Riddel formula by including the wall catalytic activity in
more detail, overestimates the heat flux. For the set of EP1 parameters the Goulard
formula provides a relatively high 𝑞𝑤 value, comparable to the data provided by
the Barbato model. In the less rarefied gas regime, it still yields a high value, but
comparable to the result of TC6. The results of the other models by Fenster [149]
and Sutton-Graves [150] yield extreme deviations in the heat flux values. Based on
the above information, it is not recommended to use the mentioned formulas for
heat fluxes when dealing with low-density gases and surfaces with small catalytic
activity. Besides the mentioned phenomenological formulas and the exact solutions
for heat fluxes from kinetic theory, there exist other theoretical approaches to
find approximate heat flux expressions, e.g., within the framework of the viscous
shock layer (VSL) and thin VSL theories [152; 153]. However, these expressions
are provided for higher altitudes (from 90 km) of the Earth’s atmosphere and are
not compared here.

It is interesting to evaluate separately the contribution of the temperature
jump (TJ) and heterogeneous reactions (HR) to 𝑞𝑤 for the Present
model (TC4–TC6). One can see that in the considered flow regimes, the TJ­
effect is more important than that of HR, even for the case EP2 corresponding
to the altitude of 60 km. Although formal inclusion of surface reactions increases
𝑞𝑤 up to 10–15% (compare the results for TC4 and TC6), taking into account
the temperature jump decreases the wall heat flux to a greater extent. Thus, for
EP1 (85 km), the HR contribution of about 10% is compensated by about 30%
decrease in 𝑞𝑤 due to the temperature jump; the overall decrease in the wall heat
flux is about 25% when both TJ and HR are included self-consistently. For the less
rarefied case EP2, the HR positive contribution of about 14% is compensated by
the negative effect of TJ (around 21%), which yields an overall decrease in 𝑞𝑤 of
about 8%. With rising Knudsen number, the contribution of weak surface chemistry
decreases whereas the role of temperature jump becomes dominating.

It is worth emphasizing that the Present model used for TC5 simulations
takes into account both TJ and HR effects self-consistently, and can be used in the
continuum and slip flow regimes up to rather high Kn ∼ 0,1 − 0,2.

As for other models of heterogeneous reactions, it can be seen that the
Model I underestimates the effect of surface chemistry. Contrarily, the Barbato
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Figure 3.6 — Different contributions to the total heat flux as functions of η. Case
EP1 (85 km).

model overpredicts the surface heat flux due to heterogeneous reactions. Such an
important role of HR is not confirmed in flight experiments and other simulations
based on the Scott recombination model [146]. In the latter work it was shown
that for high altitudes, the results obtained for catalytic and non-catalytic surfaces
become close, which is not the case for the Barbato model.

3.2.6 Influence of different formulations of slip BC

In this section, both Fick (3.20) and Hirschfelder–Curtiss (HC) (3.21) diffusion
models are assessed. Additionally, different forms of the approach developed in



91

Figure 3.7 — Different contributions to the total heat flux as functions of η. Case
EP2 (60 km).

Chapter 2 — extension I (Eqs. (2.27) and (2.24)) and extension II (Eqs. (2.22)
and (2.23)) are examined in the boundary layer near stagnation point. The
difference between these two developed extensions lies in fulfilling the balance
laws when neglecting adsorption/desorption processes. The first one guarantees the
conservation of the total number flux on the surface, while the second ensures the
conservation of the total mass flux.

The velocity slip is neglected here as well, and the Maxwell model of particles
scattering is chosen, with the accommodation coefficient set to 0.5. The notation is
different from the previous sections: TC5 or TC6 from Sec. 3.2.1 correspond here
for the extension I, but are denoted as I<Diffusion model>, <TJ case>; the similar
notation is also applied for the extension II.
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Figure 3.8 — Temperature profiles. Left – EP1 (85km) case, right – EP2 (60km)
case.

Temperature profiles across the boundary layer are presented in Fig. 3.8, and,
as can be seen, are barely affected by the chosen type of slip conditions and diffusion
velocity model. The most significant difference is observed with the HC model,
resulting in an approximate 2% increase in the wall temperature value.

Mass fraction variation in the boundary layer is plotted in Fig. 3.9 for N,
N2 particles. The impact of diffusion model is evaluated for nitrogen atoms and
molecules as this effect is primarily observed for the chosen types of mixture species.
First of all, it can be concluded that using original and modified kinetic boundary
conditions yields similar results; maximum variation of up to 7% is observed in N
mass fraction at the wall when the temperature jump is taken into account; for other
fluid-dynamic variables, the effect is weaker. The impact of the diffusion model is
much more significant, with N2 showing changes up to 30% in the more rarefied
gas case, EP1. Moreover, the diffusion effect is even more important than that
of the temperature jump. Based on this analysis, it can be stated that using the
Fick law may lead to noticeable inaccuracy in the mixture composition evaluation.
Implementation of the kinetic theory diffusion model (Eq. (1.36)) or the relation
with correction [142] requires further work and should be studied more thoroughly.

As for the total heat flux in the boundary layer (Fig. 3.10), the two types (I and
II) of slip conditions have relatively minor effects, while the influence of the diffusion
model is more significant. The difference is approximately 5% when considering or
neglecting the temperature jump for the case of less rarefied gas scenario.
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Figure 3.9 — N and N2 mass fractions. Top – EP2 (60km) case, bottom – EP1
(85km) case.

3.2.7 Impact of accommodation coefficient

In this section, the accommodation coefficient, σ, appearing in the
specular–diffusive model of particles scattering by solid wall is varied. Its influence
on the air flow parameters in the boundary layer is examined for this set of values
— {0, 0.1, 0.25, 0.5, 0.75, 1}. The notation for the test cases considered is the same,
as in the previous section.

To begin with, as usual, the models impact on temperature should be
evaluated. From Figs. 3.8 (1st one) and 3.11, one can notice that the influence
of the accommodation coefficient is rather high. As the accommodation coefficient
decreases, the temperature jump increases; this effect is stronger for σ < 0.5. This
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Figure 3.10 — Total heat flux, EP2 (60km) case.

Figure 3.11 — Temperature profile for the EP2 (60km) case.

situation corresponds to the conditions when specular scattering dominates over
diffuse scattering; σ = 0 corresponds to purely specular scattering by a solid wall.
In the latter case, there is no energy exchange with the wall, which consequently is
thermally insulated, therefore, the temperature remains constant along the boundary
layer. The effects of temperature jump are stronger near the wall in the more rarefied
case (EP1), as expected.

Distributions of oxygen atoms and molecules mass fractions through the
boundary layer are presented in Fig. 3.12. The effects of the gas-surface interaction
model on the fraction profiles are not as significant as observed for the temperature.
The mass fractions show a monotonic behaviour for all species, except for oxygen
molecules. In the case of oxygen, the fractions on the wall decrease with a decrease
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Figure 3.12 — O and O2 mass fractions. Top – EP2 (60km) case, bottom – EP1
(85km) case.

in the accommodation coefficient. An interesting effect obtained for σ = 0 (purely
specular scattering) may be observed for oxygen molecules. In this case, the
distributions exhibit a consistent decrease near the wall. A similar effect is also
observed for NO distributions (see Fig. 3.13). This behaviour is connected to the
fact that the temperature is constant across the boundary layer, so the main influence
is provided by the heterogeneous recombination, resulting in the observed profiles.
Here as well, the temperature jump model provides stronger effects with increasing
gas rarefaction.

The effect of different σ values on the total fluxes (Fig. 3.14) is opposite to
their influence on temperature profiles: the total flux decreases with an increase in
σ values. As expected, when σ = 0, the total heat flux becomes zero since the wall
is thermally insulated and the temperature is constant across the layer.
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Figure 3.13 — NO mass fractions. Left – EP2 (60km) case, right – EP1 (85km) case.

Figure 3.14 — Total heat fluxes. Left – EP1 (85km) case, right – EP2 (60km) case.

From the results provided in this section, it is clear that the variations
in the accommodation coefficient values significantly impact the parameters of
the hypersonic boundary layer airflow. This observation requires an additional
justification of the coefficient value of 0.5 used in the previous sections. This
justification runs out from the other studies on the boundary layer near a re-entry
vehicle with a silica surface, conducted using DSMC and VSL methods [1; 146]. In
these studies, a coefficient value of approximately 0.5 yielded the best agreement
with experimental data from the Space Shuttle.
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3.3 Conclusions of Chapter 3

In this Chapter, several theoretical approaches to derive state-specific slip
boundary conditions are assessed, and the advantages of the self-consistent model
developed in Chapter 2 are highlighted on the basis of numerical simulations of air
flow in the boundary layer near stagnation point. The developed model has been
chosen as a benchmark since it provided the best agreement with recombination rate
coefficients obtained recently by molecular dynamic simulations.

Two cases corresponding to various gas rarefaction have been considered.
The effect of gas-surface interaction models was evaluated by comparing the fluid­
dynamic variables: temperature and mass fractions; vibrational energy distributions
and heat fluxes. It is shown that the temperature jump is barely affected by
heterogeneous recombination (its contribution is below 3%), except for the Barbato
model. The values of the temperature jump itself, provided by the developed
models, are similar to the DSMC results. The distributions of mass fractions and
vibrational level populations noticeably depend on the model; the Barbato model
yields qualitatively different distributions compared to other models.

As to the heat fluxes, whereas heterogeneous processes tend to increase the
heating, the temperature jump causes a significant decrease in the surface heat flux.
Moreover, the effect of temperature jump is dominating compared to the influence
of heterogeneous reactions. This observation is confirmed by flight experiments
and some other simulations by means of DSMC and VSL. For different degree of
gas rarefaction, all the models retain key characteristics: with a lower degree of
rarefaction the influence of wall catalyticity increases; on the opposite, the effects
of temperature jump decrease.

Additionally, two diffusion models are assessed: the approximate Fick law and a
more accurate Hirschfelder–Curtiss model. It is shown that using simplified diffusion
models may considerably alter mixture composition near the surface. As for different
types of extensions of the Chapter 2 model, it was shown that the discrepancy
is small, less than the effect of diffusion model. The choice of accommodation
coefficients strongly affects gas properties near the wall: fluid-dynamic variables
vary considerably for σ < 0.5 (when specular scattering dominates), but with
further increase in σ they remain almost unchanged. The effect of temperature
jump becomes stronger for more rarefied flows.
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Conclusions

This thesis focused on achieving a specific goal: development of a theoretical
approach for deriving a closed set of slip boundary conditions for state-specific
macroscopic parameters of reacting gas mixture flows. While being obtained, the
slip conditions were designed to capture the effects of both physical and chemical
interaction of non-equilibrium gas with the surface of a solid body. Coupling of
physical-chemical processes in the gas phase and on the surface with non-equilibrium
rarefied gas dynamics posed significant difficulties. Despite the initially derived
boundary conditions being equivalent to other known and widely applied models in
the limit case of local thermal equilibrium and chemical non-equilibrium and under
some other simplifications, they appeared insufficient in describing heterogeneous
reactions. The theoretical analysis of this situation unexpectedly revealed issues
with the initial formulation of the approach, which obviously needed to be extended
to fulfill the established expectations. The present Conclusions Chapter of the thesis
will provide a brief description of the path followed to achieve the posed goal and
the results obtained along the way.

The initial step was to develop an approach that would allow derivation of
boundary conditions for the state-to-state set of macroscopic variables. For this
objective, the state-specific kinetic boundary condition along with the normalization
condition for the scattering kernel were developed. The approach was subsequently
formulated. It introduces procedure for obtaining the boundary conditions in
the same way, as the transport equations are derived from the Boltzmann
equation, differing only in the integration procedure. Heterogeneous processes were
incorporated into the approach through a modified normalization condition for the
kernel. This modification accounts for the fact that not all particles are scattered;
some are gained or lost due to surface processes.

Additionally, the Grad’s technique was extended to the STS approximation
as well. Both approaches were then applied to derive the slip boundary conditions
under the assumption of the Maxwell gas-surface interaction model. It was shown
that the resulting conditions are equivalent, as well as the approaches. The obtained
boundary conditions consist of species mass fluxes, including fluxes of molecular
vibrational level populations and chemical number densities, velocity slip, and
temperature jump. The latter were also derived for the Cercignani-Lampis scattering
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kernel by means of the new approach. The slip conditions for both considered kernels
differ only in the temperature jump. In all the expressions, the impact of normal
mean stress components, such as bulk viscosity and relaxation pressure, is introduced
for the first time. Implementing these conditions in non-equilibrium flow simulations
can be done with no additional difficulties, as they depend on the same expansion
coefficients as transport coefficients, minimizing code complexity.

Although the proposed approach provided an ability, with minimal changes,
to obtain state-specific expressions for macroscopic parameters on the boundary of
a solid body for an arbitrary type of scattering kernel, the theoretical analysis of
wall mass fluxes revealed an issue related to the impact of heterogeneous reactions.
More precisely, the wall mass fluxes expressions, though equivalent to those obtained
by means of other commonly applied approaches, did not correctly account for the
increase in the number of particles due to surface processes. So reconsideration of
the approach was required.

The proposed extension of the approach was based on the modification
of the kinetic boundary condition. Furthermore, the proposed scheme retains
all the advantages of the former one: 1) the slip conditions depend only on
macroparameters, accommodation coefficients, and surface process probabilities
without requiring further simplification; 2) there are no additional computational
costs when all the transport coefficients and processes probabilities are known; 3)
the procedure can be easily adapted to the one-temperature thermal equilibrium
approximation.

Surface processes directly impact boundary conditions for species
concentrations. The general form of the latter, when heterogeneous recombination
is only considered, is similar to other known phenomenological and theoretical
models designed to account for this process, although effective recombination
coefficients are calculated theoretically. Non-equilibrium surface processes are not
explicitly accounted for in the expressions for velocity and temperature on the
wall, except for desorption, which affects velocity slip. Neglecting desorption,
conditions for temperature and velocity, identical to those derived in the initial
approach, are obtained.

The theoretical analysis of the BCs for species concentrations, along with the
similarity of their general form to some known successfully applied phenomenological
models, provided confidence that the approach is constructed correctly, thus
confirming the reliability of the approach. However, to validate the assumptions
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made, rigorous numerical calculations needed to be conducted. For this purpose,
the problem of an air flow in the boundary layer near stagnation point was chosen.
On the basis of this problem, the developed theoretical approaches to derive state­
specific slip boundary conditions were assessed for two cases of gas rarefaction.
Various test cases of slip conditions were implemented, considering three models
for heterogeneous processes: the initial one, the extended model, and the Barbato
model; in certain cases the temperature jump was taken into account whereas in
other cases it was neglected.

First, the heterogeneous recombination models were compared with the results
of recent molecular dynamic simulations by means of the effective recombination
rate coefficients. The extended approach demonstrated the best agreement and was,
therefore, selected as the benchmark.

The influence of the model on the wall temperature is following: the
temperature jump is barely affected by heterogeneous recombination (its
contribution is below 3%), except for the Barbato model; the values of the jump
itself, provided by the developed models, are similar to the DSMC results, where the
same Maxwell model was applied and the tangential momentum accommodation
coefficient was selected to fit the experimental data.

The distributions of mass fractions are noticeably affected by the chosen type
of model. The initial approach, whether with or without temperature jump, yields
values that are nearly identical to those obtained when including no-slip conditions,
supporting the critique of the approach and other associated theoretical models. All
other cases of slip conditions provide different behavior of the species mass fractions
near the surface, with qualitatively different distributions from the Barbato model.

Regarding the heat fluxes, the results obtained using the benchmark model and
the Barbato model are in disagreement. The presence of heterogeneous processes
increases the heat flux values near the silica surface, with the extended model
showing a difference of about 25%, while the Barbato model shows an increase
of over 200%. When the temperature jump is considered, it plays a major role in the
heat flux values near the wall in the developed models, contrasting with the influence
of heterogeneous reactions. This observation is supported by flight experiments and
other simulations. The overall decrease in the wall heat flux in such cases may
reach about 25%. The Barbato surface catalytic model, however, still provides an
extreme increase in heat flux value, reaching up to 50%. Such a high catalytic effect
cannot be confirmed.



101

If to compare results obtained for different gas rarefaction cases, then all the
models retain key characteristics observed: with a lower degree of rarefaction the
influence of wall catalyticity increases; on the opposite, the effects of temperature
jump decrease.

Moreover, for the same flow, two diffusion models were evaluated in slip
conditions: the simplified Fick law and the more accurate Hirschfelder–Curtiss
model. The study revealed that the use of simplified diffusion models can
significantly affect the mixture composition near the surface. Furthermore, it is
crucial to consider that the choice of accommodation coefficients has a substantial
impact on gas properties near the wall, emphasizing the recommendation to apply
reliable data on this coefficient.

Overall, the conducted research provided an ability to obtain state-specific slip
boundary conditions, accounting for rarefaction effects in the gas mixture, the way of
particles scattering by the solid wall, and the influence of chemical processes on the
surface. Further, in addition to theoretical analysis, the impact of these boundary
conditions is studied in detail on the basis of an air flow in the boundary layer
of a re-entering vehicle with a silica-based thermal protection system. The main
conclusion of this research is that, when modeling non-equilibrium rarefied gas flows
near solids, it is recommended to use detailed, self-consistent models coupled with
the developed closed set of slip boundary conditions. Aforementioned conclusion is
supported by the obtained results.

This study can be extended in various ways. The slip conditions can be
derived for more advanced models of particles scattering by the solid wall, such
as the Epstein model, and for the kernels that allows rotational state change
of molecules during scattering. Additionally, the approach can be applied to
obtain conditions in the case of multi-temperature models, accounting for all the
surface processes considered in this study. Vibrational relaxation during particles
interaction with the solid surface will be considered on the basis of «vibrational
temperatures jumps». Such an approach, while providing some loss in accuracy,
will significantly reduce computational costs. Besides that, there is a necessity
for studying more carefully the influence of particles scattering model and the
accommodation coefficients, and including adsorption and desorption in simulations.
The implementation of detailed models of diffusion velocity for calculations is
also crucial. Furthermore, the incorporation of a more advanced heterogeneous
recombination Langmuir–Hinshelwood mechanism is essential, especially for the
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range of wall temperatures considered in this study. Also, it is important to
account for the pressure dependence of the recombination probabilities. Neglecting
this results in a small increase in probability values from the actual ones. The
last but not least extension goes far beyond this study. Specifically, it involves
constructing models that can capture ablation processes. In the current form, the
presented kinetic boundary condition is not capable of accounting for this process.
Its modification and consideration of time-dependence are required to address the
mentioned problem.
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