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Introduction 

Supersonic gas flows, which realizes in jets, nozzles, air intakes, when flowing 

around various surfaces and at their aerodynamic interference, are accompanied by 

the formation of gasodynamic discontinuities (such as shock waves, slipstreams, 

weak discontinuities, etc.), their reflection and interaction, both regular and irregular. 

When gasodynamic discontinuities reflect and interact, numerous shock-wave 

structures appear [1-3], i.e. the systems of gasodynamic discontinuities which have 

one common point. A widespread example of the shock-wave structure that occurs in 

steady supersonic flows is the triple configuration of steady shocks, which forms, in 

particular, at the irregular (Mach) reflection of an oblique shock from a solid surface, 

symmetry plane or axis. 

The phenomena of regular and irregular reflection of steady shocks (in the 

nonstationary case, of unsteady shock waves) were first described by E. Mach and his 

colleagues ([4, 5], see also [6, 7]). The development of jet aviation, rocket technology 

and cosmonautics, as well as the increased interest in the interactions of strong blast 

waves with various objects and structures caused a splash of interest in this 

phenomenon in the 1940s and 1950s, including one from world-famous scientists 

[8-12]. In particular, J. von Neumann [8] identified two criteria for changing the type 

of reflection of a steady or unsteady shock wave: the criterion of “mechanical 

equilibrium”, later named him (so-called von Neumann criterion), and the 

“detachment criterion”, which can be more correctly called the criterion of the 

maximum angle of flow deflection (on a reflected hock). He also identified the area 

of “dualism of solutions” (“dual solution domain”) – the parameters of the incoming 

flow and the incident shock, in which both regular and Mach reflection are possible. 

The development of the theory of reflection of oblique shocks in the 20th century was 

presented in review articles [13-16] and monographs [17-20]. The consensus 

established by the early 1990s in the scientific community was that the “detachment” 

criterion of maximum flow deflection was applicable to reflection of propagating 

shock waves (for example, relative to an inclined wedge [17]), and the von Neumann 

criterion, associated with the formation of so-called stationary Mach configuration 
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[1, 20] with a normal main (Mach) shock, is primarily applicable to shock reflection 

in steady flows. In this case, the size of the resulting Mach shock (Mach stem) turned 

out to be a continuous function of the problem parameters (in particular, the intensity 

of the incident shock, or its angle of incidence, or the angle of flow deflection on its 

surface) and tended to zero when the von Neumann criterion was fulfilled, which 

corresponded to the continuous transition to regular reflection. Thus, according to the 

established concept, the Mach reflection in steady flows continuously switched to 

regular one and back, and the Mach reflection was also implemented throughout the 

“dual solution domain” of parameters. According to the milestone work [16], the 

problems of estimating the size of the Mach stem and the flow separation at the 

interaction of the incident shock with the surface were declared almost only 

unresolved in the theory of steady shock reflection, but not the problem of criteria 

determining the type of reflection. The theoretical assumptions about the existence of 

hysteresis phenomenon in a reflection type change (regular or Mach one), presented 

in [21], were not confirmed experimentally [22-24] and were temporarily forgotten. 

The development of computational possibilities and, in part, of experimental 

techniques has made it possible to identify hysteresis phenomena in dual solution 

domain, first by numerical simulation [25-34], and then experimentally [34-37]. A 

variety of numerical methods (solving the Euler equations and Navier-Stokes 

equations supplemented by various turbulence models, direct statistical Monte Carlo 

simulation) left no doubt about the existence of hysteresis, which became more 

complete as the Knudsen number increased (the rarefied gas model approximated the 

continuum model). A detailed analysis of the experimental results [25-34] using 

theoretical and numerical methods [36, 37] have shown that the revealed 

incompleteness of the hysteresis loop (manifested in the fact that a sudden transition 

from regular reflection to Mach reflection with a major jump of finite magnitude 

occurs somewhere inside the domain of the dualism of solutions, and not near its 

upper boundary, which corresponds to the detachment criterion) indicates the 

influence of disturbances from aside (i.e., three-dimensionality of the flow) or the 

effects of reflection of disturbances from the walls of a closed supersonic wind tunnel 
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[36, 37]. The effect of three-dimensionality has been studied in detail in [36-40], and 

the completeness of the hysteresis loop currently serves as one of the characteristics 

of the quality of experimental data obtained in wind tunnels [37]. At the same time, 

both regular and Mach reflection, observed in the domain of dual solution, occurred 

resistant to small perturbations of flow parameters [41-46]. However, as shown in 

[28, 29, 46, 47], Mach reflection is more resistant to finite disturbances (such as 

sudden change in flow velocity, gas density, introduction of an obstacle into the 

flowfield with its subsequent removal). It was explained in [41, 48] by a more 

significant increase in the entropy of the gas stream as a whole at Mach reflection 

than at regular reflection. Later, hysteresis phenomena with a change in the type of 

reflection of oblique shocks were mathematically justified by topological methods 

[49, 50]. 

Experimentally and numerically obtained data [26, 28, 29, 31, 32, 34, 43, 46, 

51], as well as the results of the application of various approximate analytical models 

[52-58], indicated that in the domain of dual solution, either regular reflection or 

Mach reflection with some definite height of the main shock is observed, if only the 

parameters of the problem (the shape of the streamlined body, the Mach number of 

the incoming flow, the angle of incidence of the oblique jump, the gas adiabatic 

index, etc.) are uniquely determined. The background of the flowfield (its past) 

influences only the type of shock reflection, but not Mach stem size, if only the Mach 

reflection really occurs. Mach stem height can be determined uniquely both in the 

domain of the problem parameters corresponding only to the Mach reflection, and in 

dual solution domain, if only this type of shock reflection, and not regular reflection 

realizes. In addition, in the problems of supersonic aerodynamics, rocket technology 

and cosmonautics, which have significant practical significance (for example, when a 

supersonic aircraft accelerates [59] or when launch vehicle starts with a 

corresponding decrease in the degree of overexpansion of the expiring jet [27]), there 

is an entry into the dual solution domain from the Mach reflection domain. In this 

direction of changing the parameters (such as external pressure, flight Mach number, 

etc.), according to the established reliable concept, it is the Mach reflection that 
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persists throughout the dual solution domain until the parameters corresponding to 

the von Neumann criterion are reached. This means that of practical interest are only 

those methods for estimating the parameters of the shock-wave structure of flows 

with steady Mach reflection of oblique shocks, in which the Mach stem height is 

determined in a unique way in the entire domain of existence of Mach reflection 

(including the dual solution domain) and tends to zero at the lower boundary of this 

region which corresponds to von Neumann criterion. 

Quick engineering estimation of the height of the main shock, as a key 

parameter which determines the properties of the forming shock-wave structure and 

flow parameters behind it, was declared one of the two key problems in steady shock 

reflection studies already in [16]. The assumptions made in the first approximate 

analytical models [52, 53] led to a significant (by 50-90%) underestimation of the 

Mach stem height compared with experimentally observed values [24, 37, 40]. 

However, they were based on the correct (experimentally and numerically confirmed) 

concept of the formation of a “virtual nozzle” – the flow region behind the Mach 

stem, in which the transition from subsonic flow velocity (immediately after the 

Mach shock) to supersonic one with simultaneous (as in the classical geometric dual-

bell de Laval nozzle) transition from narrowing its cross-section to its expansion, 

which is accompanied by a corresponding turn of the slipstream limiting this area. 

Subsequently, the model [53] was supplemented with various ratios averaging the 

Mach number behind the main shock [57, 58], the shape of the reflected oblique 

shock [60, 61] and turning slipstream [54, 55], which slightly increased the accuracy 

of the results achieved. The model proposed in [56, 62] was based on analytical 

solutions to the problems of overtaking [63] and counter [60, 61] interaction of 

oblique shocks and isentropic waves, conjugation of the quasi-one-dimensional flow 

region with an expansion/compression Prandtl-Meyer wave [64, 65], the incidence of 

a rarefaction wave on the slipstream, taking into account the existence of a reflected 

compression wave. This model [56, 62] differs in the greatest accuracy (compared 

with the results of numerical and physical experiments) of the approximation of the 

supersonic part of the flowfield. In the presented dissertation study, the analytical 
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model summarized in [56] is generalized to the case of the presence of a pulsed 

energy supply (for example, caused by exothermic chemical reactions) and changes 

in the chemical composition of the gas mixture behind the Mach shock [143, 145, 

147]. 

Interest to the analytical models for rapid assessment of the parameters of the 

shock-wave structure of flows with Mach reflection and/or irregular interaction of 

steady shocks has increased markedly in recent years [57, 58, 66-68]. It is probably 

explained by the development of vehicles flying at high supersonic speeds in the 

atmosphere and air intake devices for their propulsion systems. With an accuracy 

acceptable for applied research, a model of a perfect gas with a reduced (compared to 

air) “effective” adiabatic index can be used to describe flows with high supersonic 

velocity whish shock reflections and interactions. It is in such steady flows (along 

with flows of polyatomic gases) that a special shock-wave structure can exist, which 

was discovered by L.G. Gvozdeva [69] and later studied in [70-75] – the Mach 

reflection with a negative (relative to the incoming flow) slope angle of the reflected 

shock. In the presented thesis, the conditions of existence and unambiguity of the 

solution for such structures of “negative”: Mach reflection are analyzed, and the 

corresponding analytical relations are derived [144]. The obtained results are 

compared with the data of a numerical experiment [70, 76], including in the presence 

of the solution ambiguity. 

The triple configuration of steady shocks (a special case of which is the triple 

configuration of the Mach reflection), divides the incoming flow into two streams 

that differ significantly in the values of the velocity and flow Mach number of the 

flow, impulse and dynamic pressure, stagnation pressure and static temperature, and 

many other parameters [76, 78, 79]. This fully applies to triple configurations of 

irregular reflection realized in a flow with large Mach numbers and reduced gas 

adiabatic indices, including “negative” configurations [75]. In particular, the 

supersonic gas flow behind the reflected shock has a significantly higher (sometimes 

in tens of times) stagnation pressure than the subsonic flow behind the Mach stem. 

Under the condition of further deceleration in the system of oblique shocks [80-83], 
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this flow can be effectively used in the thermodynamic cycle of a ramjet engine (the 

Brayton cycle). The subsonic flow behind the main (Mach) stem, despite the small 

value of its total pressure, has another advantage – a significantly higher static 

temperature, which can initiate the detonation of the fuel-air mixture supplied to the 

surface of the main shock and thus stimulates its use in the thermodynamic cycle of a 

ramjet detonation engine (the Fickett-Jacobs cycle [84, 85]). 

The idea of a combined ramjet engine, expressed for the first time in [86], was 

analyzed and justified in the cycle of studies [150-156, 159, 160, 165] which the 

author and her supervisor provided. For its effective implementation, it is necessary 

to separate the streams formed behind the main shock and reflected one after the 

Mach reflection with a pulsed energy supply and a change in the chemical 

composition of the gas mixture at the main shock. Separation along the slipstream 

emanating from the triple point seems most evident. To solve this problem, in turn, it 

is necessary to determine the condition of existence of the Mach reflection, as well as 

the height of the main shock, the shape and other parameters of the slipstream, of 

other gasodynamic discontinuities in the flowfield for any arbitrarily selected 

parameters of the problem. The presented study is largely aimed to solving this 

important problem – the development of an approximate analytical model for rapid 

estimation of the parameters of the shock-wave structure of supersonic flows with 

Mach reflection in the presence of a pulsed energy supply and a change in the 

chemical composition of the gas mixture at the main shock, which thus turns into a 

stationary detonation wave. The small (in comparison with the characteristic lengths 

of technical devices) thickness of the “himpik” (“von Neumann peak”, or “von 

Neumann spike”) zone makes it possible to neglect the kinetics of chemical reactions 

behind the main shock for the sake of derivation of analytical relations. Thus, the 

main shock is considered within the framework of the classical Chapman-Jouguet 

model as an oblique (in general) stationary detonation wave with instantaneous 

energy supply and a change in the chemical composition, manifesting itself primarily 

in a change in its adiabatic index. Using the Chapman-Jouguet model to the Mach 

stem allows us to obtain a number of analytical solutions describing the flowfield. 
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Comparison with numerical simulation data [152, 158, 160, 165], including the 

results of other authors [87-90], shows that the constructed analytical model leads to 

qualitatively correct and quantitatively fairly accurate results. 

To determine the domain of existence of the solution and calculate the flow 

parameters in the vicinity of the triple point of the Mach reflection, this work uses a 

graphical technique of detonation shock polars [91] describing stationary detonation 

waves within the framework of the Champan-Jouguet model. The mathematical 

model of stationary detonation has been repeatedly used (without full parametric 

analysis) to describe the Mach reflection (in [88-90] – in relation to the incident 

shock and the main one, and in [87] – for all jumps in the flowfield). Unlike the 

above-mentioned studies, this work takes into account pulsed energy supply and 

changes in the chemical composition exclusively at the main (Mach) shock. It is 

assumed that, as was shown earlier [76, 79, 92], a significantly higher temperature 

behind the main shock stimulates, first of all, pulsed energy release behind its surface 

in the immediate vicinity of it. 

In this study and, as well as in other publications of its author [145-147, 164, 

167, 169], it is shown that the presence of a pulsed energy supply leads to a 

significant shift in the lower boundary of the region of existence of the Mach 

reflection, which under “normal” conditions corresponds to the von Neumann 

criterion. It leads to a possibility of a Mach reflection of rather weak oblique shocks 

that reflect only regularly under “normal” conditions (if pulsed power supply at the 

main shock is not possible). The decrease in the gas adiabatic index, typical for the 

combustion of a fuel-air mixture, has a similar, but much weaker effect. The results 

of the application of the developed approximate analytical model and their 

computational verification show that a pulsed energy supply (within the limits 

allowing stationary detonation) leads to a noticeable increase in the Mach stem size 

and in the width of the subsonic flow region behind it, potentially suitable for 

subsequent use in the Fickett-Jacobs thermodynamic cycle. In addition, the developed 

analytical model makes it possible to quickly determine the shape of all gasodynamic 

discontinuities in the flowfield, including a slipstream emanating from a triple point. 



12 
 
It can be practically useful for separating flows with different thermal and 

gasodynamic properties. 

Further development of this study can lead to a general theory of shock-wave 

structures (including triple-shock configurations) with pulsed energy release at the 

constituent gasodynamic discontinuities. 

 

General characteristics and structure of the study 

The relevance of the research topic is the need to extend the theory of 

interaction of gasodynamic discontinuities to cases of reflection and interaction of 

those discontinuities with a possible pulsed energy supply and a change in the 

chemical composition of the gas mixture. The need for such an expansion of the 

range of theoretically solvable tasks bases on the development of aviation, rocket and 

space technologies, the design of prospective propulsion systems of aircraft for 

flights with high supersonic speeds. In view of this, it becomes necessary to study the 

interaction of gasodynamic discontinuities in supersonic flows of reactive gas 

mixtures, to analyze the flowfield and to optimize the resulting shock-wave systems 

and structures, rapidly evaluating new aerodynamic schemes and designs of jet 

engines. 

The aim of this study is to analyze shock-wave structures that occur when 

oblique shocks reflects, including under conditions of pulsed energy supply and 

changes in the chemical composition of the gas mixture at the main shock (Mach 

stem), as well as to create a reliable mathematical technique for rapid assessment and 

analysis of the flowfield with resulting shock-wave structures. 

The reliability of the obtained results is ensured applying strict and well-tested 

mathematical apparatus of classical gas dynamics, dynamics of detonation waves, 

compatibility conditions at gasodynamic discontinuities and exact solutions of 

classical problems of their interaction. The author also obtained the data of theoretical 

analysis and numerical simulation which mutually verify each other. The available 

experimental data from other authors also confirm the reliability of the results 

obtained. 
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The scientific novelty of the research is as follows: 

- analytical relations describing shock-wave structures of regular reflection 

with minimal dynamic loading and, for the first time, with minimal thermal loading 

of the affected object are obtained; 

- the areas of ambiguity of the solution for shock wave-structures resulting in 

the reflection of oblique shocks in flows with large Mach numbers and reduced 

adiabatic indices are identified and analytically described; 

- the conditions of existence are revealed and a parametric analysis of triple 

configurations of steady shocks at Mach reflection with pulsed energy supply and a 

change in the chemical composition at the main shock is obtained; 

- for the first time, an approximate analytical model of the flow with Mach 

reflection with the possible presence of a pulsed energy supply and a change in the 

chemical composition of the mixture at the main shock has been developed; 

- the laws of change in the shock-wave structure of the steady Mach reflection 

under conditions of pulsed energy supply at the main shock are analytically and 

numerically revealed. 

The scientific value of the study consists in the following: 

- theoretical analysis and optimization of shock-wave structures of steady 

regular reflection of oblique shocks are obtained according to the criteria of dynamic 

and thermal load on the object of impact, interpretation of the results obtained for 

unsteady reflection of propagating shock waves is given; 

- a theoretical analysis of the ambiguity of solutions for shock-wave structures 

which can form at oblique shock reflection at large Mach numbers and reduced 

adiabatic indices is carried out; 

- a novel approximate analytical model of gas flow with Mach reflection has 

been developed, which allows for a theoretical analysis of flows with energy supply 

and a sudden change in the chemical composition of the gas mixture exclusively at 

the main shock (Mach stem); 

- the analysis of the influence of pulsed energy supply and changes in the 

chemical composition on the feasibility of Mach reflection, as well as on the 
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gasodynamic parameters of the flowfield and on the geometric parameters of the 

shock-wave structure which forms in this case is obtained. 

The practical value of the dissertation is as follows: 

a) the results of the optimization of the shock-wave structure of regular 

reflection can significantly reduce the dynamic and thermal loads on aerodynamic 

surfaces and objects affected by shock and blast waves; 

b) the analyzed ambiguity of solutions for shock-wave structures of Mach 

reflection should be taken into account in the gasodynamic design of supersonic air 

intakes, airframes of aircraft and other technical objects; 

c) model developed for rapid estimation of the parameters of the shock-wave 

structure of the Mach reflection, allowing pulsed power supply and a change in the 

chemical composition of the gas at the main shock, can be used in the design of 

various technical devices, including prospective ramjet engines. 

Publications. The results presented in this study were published in papers 

[148-169] of which 3 are in peer-reviewed scientific journals recommended by the 

Higher Attestation Commission, 8 are indexed in the international citation databases 

Web of Science and SCOPUS, 17 are in conference materials indexed in the Russian 

scientific citation index (RINTs). The author’s personal contribution is described in 

Appendix A. 

Approbation of the results. The results achieved during the study were 

presented at the following national and international conferences, and other scientific 

and technical events: 

 a) All-Russian Youth Scientific and Technical Conference «Start-2018» (Saint 

Petersburg, 2018); 

 b) VII All-Russian Youth Scientific Conference with International 

Participation «Current Issues of Continuum Mechanics and Celestial Mechanics – 

2023» (Tomsk, 2018); 

 c) All-Russian Scientific and Technical Conference «The Eight Utkin’s 

Readings» (Saint Petersburg, 2019); 
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 d) XLIV Academic Space Conference dedicated to the memory of academician 

S.P. Korolev and other outstanding national scientists – pioneers of space exploration 

(Moscow, 2019); 

 e) XXII All-Russian Scientific and Practical Conference “Actual Problems of 

Protection and Security” (Saint Petersburg, 2019); 

 f) the 19th International Conference “Aviation and Cosmonautics” (Moscow, 

2020); 

g) the International Scientific Conference on Mechanics “The Ninth 

Polyakhov’s Reading” (Saint Petersburg, 2021); 

h) International Scientific Conference “PETER 2021: New Models and 

Hydrocodes for Shock Wave Physics” (London, 2021) 

i) the 20th International Conference “Aviation and Cosmonautics” (Moscow, 

2021); 

j) XLV Academic Space Conference dedicated to the memory of academician 

S.P. Korolev and other outstanding national scientists – pioneers of space exploration 

(Moscow, 2021); 

k) the Twenty-Second International Conference on Computational Mechanics 

and Modern Applied Software Systems (CMMASS'2021), Alushta, 2021; 

l) the Second All-Russian Scientific and Technical Conference “Scientific 

Readings in Memory of Academician V.P. Glushko” (Saint Petersburg, 2021); 

m) the 21st International Conference “Aviation and Cosmonautics” (Moscow, 

2022); 

n) XXV All-Russian Scientific and Practical Conference “Actual Problems of 

Protection and Security” (Saint Petersburg, 2022); 

o) XXVI All-Russian Seminar with International Participation on Jet, 

Separated and Unsteady Flows (Saint Petersburg, 2022); 

p) XXXIII Scientific and Technical Conference on Aerodynamics (Zhukovsky, 

2022); 
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q) XLVII Academic Space Conference dedicated to the memory of 

academician S.P. Korolev and other outstanding national scientists – pioneers of 

space exploration (Moscow, 2023); 

r) All-Russian Scientific Symposium on Problems of Aeromechanics and Gas 

Dynamics, Dedicated to the 100th Anniversary of the Birth of Academician Gorimir 

Gorimirovich Cherny (Moscow, 2023); 

s) XXVI All-Russian Scientific and Practical Conference “Actual Problems of 

Protection and Security” (Saint Petersburg, 2023); 

t) Х International Symposium “Space Flight Safety” (Saint Petersburg, 2023); 

u) the XXXIX Siberian Thermophysical Seminar (Novosibirsk, 2023); 

v) the XIIIth All-Russian Congress on Theoretical and Applied Mechanics 

(Saint Petersburg, 2023); 

w) II Seminar School “Mechanics, Chemistry and New Materials” under the 

Guidance of the Corresponding Member of RAS Yu.V. Petrov (Saint Petersburg, 

2023); 

x) VII Minsk International Colloqium on Physics of Shock Waves, 

Combustion and Detonation  (Minsk, 2023). 

The oral lectures which the author presented at events (b), (o) and (u) were 

awarded honorary diplomas. 

The structure and scope of the PhD thesis. The study consists of an 

introduction, three chapters, a conclusion, a list of 169 references and an appendix. 

The total length of the study is 164 pages, including 34 figures and 1 table. 

Main scientific achievements: 

a) The results of optimization of the shock-wave structure of regular reflection, 

analytically obtained in the presented study, which can significantly reduce not only 

dynamic [93], but also thermal loads on bodies subjected to shock-wave action during 

aerodynamic interference, as well as (when reversing motion) – on objects subjected 

to traveling shock and blast waves [148]. Personal contribution of the author in 

obtaining those results: literature analysis, numerical and analytical calculations, 

interpretation of results, writing the article. 
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b) The results [144, 166] of the analysis of the ambiguity of solutions for 

shock-wave structures of Mach reflection (including “negative” triple 

configurations), which must be taken into account in the gasodynamic design of 

various technical devices [149, 151, 157]. In particular, the coexistence of solutions 

for “negative” configurations of Mach reflection, regular reflection, and solutions 

with detached bow shocks can lead to the practical unfeasibility or instability of 

“negative” configurations. [144]. Personal contribution of the author in obtaining 

those results: literature analysis, numerical and analytical calculations, interpretation 

of results, writing articles. 

c) An approximate analytical model of the shock-wave structure of the flow 

with Mach reflection [143, 145, 162, 167, 169], taking into account the possible 

presence of a pulsed energy supply and changes in the chemical composition of the 

gas mixture at the main shock [146, 147, 161, 163, 164], which allows for a fairly 

accurate and reliable assessment of the main flow parameters, including the size of 

the main (Mach) shock, and can be used for the gas dynamic design of various 

technical devices, including advanced ramjet engines [150, 152, 153-156, 165] (all 

analytical calculations were carried out personally by the author of the dissertation, 

the total contribution is at least 80%). 

d) The presence of a pulsed energy supply (within the established limits of the 

solution existence) leads to a significant increase in Mach stem size [147, 158-160], 

as well as to the realization of the Mach reflection in conditions when, in the absence 

of a pulsed energy supply, only regular reflection is realized [146, 169]. The effect of 

changes in the chemical composition of the mixture on the height of the main shock 

and other parameters of the shock-wave structure is significantly weaker [146, 147]. 

Personal participation of the author in obtaining these results: literature analysis, 

numerical and analytical calculations, interpretation of results, writing articles 

(personal contribution is at least 80%). 
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Results submitted for defense 

a) an approximate analytical model of the shock-wave structure of a flow with 

Mach reflection, including in the presence of pulsed energy release and changes in 

the chemical composition of the gas mixture at the main shock; 

b) the presence of pulsed energy release leads to a significant increase in the 

size of the Mach stem and also to the implementation of Mach reflection of oblique 

shocks which can reflect only regularly, if energy realase is impossible; 

c) results of analysis of the ambiguity of solutions for shock-wave structures of 

Mach reflection (including “negative” triple configurations). In particular, the 

coexistence of solutions for “negative” configurations of Mach reflection, regular 

reflection and solutions with separated shock waves; 

d) results of optimization of the shock-wave structure of regular reflection. 

Acknowledgment. The work was supported by the Ministry of Science and 

Higher Education of the Russian Federation (the project “Creating a leading scientific 

and technical reserve in the development of advanced technologies for small gas 

turbine, rocket and combined engines of ultra-light launch vehicles, small spacecraft 

and unmanned aerial vehicles that provide priority positions for Russian companies in 

emerging global markets of the future”, No. FZWF-2020-0015). 

  



19 
 

Chapter 1. Mathematical models and basic relationships 

Modern achievements of the theory of interaction of gas-dynamic 

discontinuities [1, 18, 20, 44, 50, 62, 69], as wel as in the theory of optimal shock-

wave systems and structures [23, 78, 79, 83] make it possible to solve complex 

problems research and control of flows with various types of reflection and 

interaction of gas-dynamic discontinuities analytically and numerically. Chapter 1 

shows the basic terms and relationships used in this study which form the basis of the 

mathematical apparatus. In this case, a thermodynamic model of a perfect gas is used, 

which is also (with the exception of calculations of model flows using the methods of 

computational fluid dynamics) assumed to be inviscid and non-heat-conducting. 

1.1. Steady shock wave 

A normal or oblique steady shock (Figure 1.1) is the surface of a gas-dynamic 

discontuinuity located at a non-zero angle to the direction of upstream flow (so-called 

surface of a normal discontinuity). At the shock wave, a finite break of a number of 

flow parameters occurs. The relations used below that connect the shape of the shock 

and the change in flow parameters on its sides are given below. 

 
Figure 1.1. Diagram of the flow with a steady shock 

One of the main parameters of a shock wave is its intensity (shock strength) J . 

It is the ratio of static pressures behind the shock ( 1p ) and in front of him ( p ), which 
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is related to the angle σ  of the shock slope to the upstream velocity vector by the 

well-known relation 

( ) εσε −+== 22
11 sin1 MppJ .                                    (1.1) 

Here ( ) ( )11 +−= γγε , and γ  is gas adiabatic index (wherever this is not specified 

separately, all examples of calculations correspond to the value 4.1=γ ). In 

particular, the intensity mJ  of a steady shock normal to the oncoming flow is 

( ) εε −+= 21 MJm .                                               (1.2) 

Shock wave which degenerates into a weak disturbance ( 1→J ) is directed at Mach 

angle 

( )M1arcsin=α .                                                   (1.3) 

Angle β  of flow rotation of on the surface of the steady shock is also determined by 

its intensity: 

2

( ) (1 )( 1)arctan
(1 ) (1 )( 1)

mJ M J J
J M J

εβ
ε ε ε

 − − −
= − + + − − − 

. (1.4) 

Relation (1.4) is graphically displayed on the plane (β ; Jln=Λ ) in the form of a 

shock polar (for example, heart-shaped curve I in Figure 1.2). Maximum flow 

deflexction angle for a given fixed Mach number M  at a single shock is achieved at 

shock intensity 

( )( )
22 2

22 2 1 2 1 2
2 2l

M MJ Mε− − = + + + − + 
 

 (1.5) 

and corresponds to the extreme left and right points l  on shock polar I. Those points 

divide the shock polar into its upper (which corresponds to the so-called strong 

shocks) and lower (corresponding to weak shocks) branches. 

 Mach number 1M  of the flow behind the shock is determined by the relation 

( ) ( )( )[ ] ( )[ ]JJJMJM εεε +−−−+= 111 22
1 . (1.6) 

The relation obtained from (1.6) at 11 =M  

( ) ( )
22 2

2
*

1 1 1 1
2 2

M MJ M Mε− − = + + − + 
 

 (1.7) 
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determines the strength of the oblique shock with the critical velocity of the flow 

downstream it. The flow behind the shock wave is supersonic at *JJ <  and subsonic 

in the opposite case (in particular, behind all “strong” waves, since lJJ <*  at the 

same Mach number, and the corresponding point “*”on the shock polar is always 

located slightly below the point l , which corresponds to the maximum flow turn). 

 
Figure 1.2. Graphical representation of stationsry shocks on the plane of shock polars 

 Rankine-Hugoniot adiabat describing the changes in density ( ρ ) and pressure 

at the shock wave, for a perfect gas is written in the following form: 

( ) ( )εερρ ++== JJE 11 . 

It determines the change in static gas temperature (T ) 

( ) ( )εε ++==Θ JJJTT 11 , (1.8) 
speed of sound, acoustic impedance and other thermodynamic parameters. Stagnation 

pressure ratio ( 0p ) for gas flow (so-called coefficient of losses, or coefficient of 

recovery of this total pressure at the shock wave) is determined by the relation 

( ) ε
ε

γ 2
1

001

−
−

== JEppI .                                         (1.9) 

It is a monotonically decreasing function of the shock intensity. 
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 Differential conditions of dynamic compatibility [1, 61-63] make it possible to 

relate the gradients of flow parameters in a non-uniform gas flow (the so-called main 

non-uniformities spN ∂∂= ln1  – flow non-isobaricity, sN ∂∂= θ2  – streamline 

curvature, npN ∂∂= 03 ln  – vorticity degree of the isoenergetic flow) in the most 

convenient form: 

∑
=

=
5

1

~

j
jijii NACN . 

Here iN~  ( 3..1=i ) are the main non-uniformiities in the flow behind the shock, jN  

are the non-uniformiities in front of it, yN δ=4  is the flow symmetry index, 

σKN ≡5  is the geometric curvature of the shock (which is non-zero in the general 

case), 0=δ  in planar flow and 1=δ  in axisymmetric one, y  is the distance from the 

axis or the plane of symmetry, θ  is the flow angle, ( ns, ) are the “natural” 

coordinates associated with the direction of gas flow. 

  

1.2. Stationary shock with pulsed energy release and changes in the chemical 

composition of the gas 

 A significant increase in temperature at a strong shock wave can lead to 

detonation of a reactive gas mixture with a corresponding pulsed energy release and 

a change in chemical composition. The simplest model that allows a qualitative 

analytical study of the reflection and interaction of shock waves with pulsed energy 

release is the Chapman-Jouguet relationship for stationary detonation: 

nn uu 11ρρ = , 2
111

2
nn upup ρρ +=+ , ττ 1uu = ,

1

1

1

1
2
1

2
1

22

1212 ργ
γφ

ργ
γ ττ puupuu nn

−
+

+
=+

−
+

+ . 
(1.10) 

Here, the indices « n » and «τ » refer to the normal and tangential (to the shock 

surface) components of the flow velocity u , the adiabatic index of the gas mixture 

(products of stationary detonation) behind the wave is equal to 1γ , and φ  is pulsed 

energy release per unit mass of a gas mixture, determined by specific heat λ  of fuel 

combustion related to the entire gas mixture in the oncoming flow.  
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 Pulse energy release φ  can be represented by its dimensionless quantity 

( ) ( ) Tcp p1−
==
γ

γφ
ρ

φφ , (1.11) 

where the values of temperature T  and specific isobaric heat capacity pc  refer to the 

mixture in the free flow upstream the shock. 

Model (1.10) transforms the relations (1.1-1.9) on shock waves. In particular, 

the formula [88] 

      ( )
( )






−−
−−

=
1
11arctg 2 JM

FJ
γ

β , ( ) ( ) ( ) ( )( )[ ]
( )( ) ( )( )[ ]11

11
2

21111
1112

γγγ
φγγγγγ

+−+−−
−−−−+−

=
JJ

JMF      (1.12) 

describes the the flow deflection at a strong shock with energy release, transforming 

at γγ =1  and 0=φ  into the formula (1.4). 

 As it is shown in [146], a fairly large pulsed energy release φ  shifts the 

“detonation” polar II ([21], Figure 1.2), displayed by relation (1.12), inside the shock 

polar I, corresponding to the equation (1.4). At the same time, the intensity J  of the 

shock j  (i.e., of the stationary detonation wave) must belong to the gap 

maxmin JJJ ≤≤ .                     (1.13) 

Here, the value maxJJ =  corresponds to a normal steady shock with pulsed energy 

release. Values minJ  and maxJ  are determined by the formula [146] 

( ) ( ) ( ) ( )[ ]
1

112
2

1
1
1

3

2
3

2
3

22
3

42

3
maxmin, +

−−+−−++
⋅

+
+

=
γ

γγγφγγγγ
γ
γ MMMJJ m

 , (1.14) 

where ( ) ( ) εε −+= 21 MMJm . 

Mach number 1M  behind a shock with energy release, instead of (1.6), is 

determined by the relation 

( )
EJ

EM
M

1

2222

1
cossin

γ
σσγ +

= , (1.15) 

where is the dependency 

( ) 21
1arcsin
ME

J
−
−

=
γ

σ  (1.16) 

determines the shock slope angle to the flow in front of it instead (1.1), and 
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( ) ( ) ( )[ ]
( ) ( )J

JE
11

11121
11

11
++−

−−−−−
−=

γγ
φγγγ                          (1.17) 

is the inverse ratio of gas densities on the both shock sides, which converges at 0=φ  

and γγ =1  to the usual Rankine-Hugoniot adiabat.  

 

1.3. Triple-shock configurations 

 Triple shock configurations (TC) are the shock-wave structures consisting of 

three shocks ( 31 jj − , see Fig. 1.3,а-е), which have a common (triple) point (Т), and 

the slipstream (τ ), outcoming from this triple point. 

 Consistency conditions on a slipstream (equality of static pressures and 

collinearity of flow velocity vectors on its sides) connect the intensities of shocks and 

the angles of flow deflection on their sides by the system 

321 JJJ = ,  321 βββ =+                                         (1.18) 

or 

321 Λ=Λ+Λ ,  321 βββ =+ ,                                 (1.19) 

where ii Jln=Λ , 3..1=i , iJ  is the strength of the shock ij , iβ  is angle of flow 

deflection on its surface, determined by a formula similar to (1.4). 

Depending on the directions of flow deflection at individual shocks, there are 

[1, 10] triple configurations of the first type (TC-1, 021 <ββ , 031 <ββ , Figure 1.3,а), 

the second type (ТC-2, 021 <ββ , 031 >ββ , Figure 1.3,c) and the third one (ТC-3, 

021 >ββ , 031 >ββ , Figure 1.3,e) type. It is usually assumed that triple configurations 

of the first type form in some special cases of interaction of counter shocks, 

configuretions of the third type – at interaction of overtaking shocks, and of the 

second type – in the case of irregular (Mach) reflection of a shock 1j . However, in 

complex supersonic flows that occur in real gas-dynamic devices, highly branched 

shock-wave structures with numerous triple configurations of all types occur very 

often. 



25 
 

   

a) b) c) 

   

d) e) f) 
Figure 1.3. Classification of the triple configurations of the steady shocks: a) triple configuration of 
the first type (TC-1); b) stationary Mach configuration (SMC); c) TC-2; d) transitional TC-2-3; e) 

TC-3; f) “negative” triple configuration (NTC) 

Triple-shock configuration with the normal main shock 3j  (stationary Mach 

configuration, or SMC), shown in Figure 1,b, borders TC-1 and TC-2. According to 

the von Neumann criterion for transition of the type of shock reflection, which is 

traditionally used for steady supersonic flows, the formation of SMC corresponds to 

the transition from Mach reflection to regular one, as the main shock 3j  decreases in 

size and disappears. Intensity NJJ =1  for incident shock 1j  which forms the SMC at 

its reflection, obeys the equation [79] 

,0
3

0
=∑

=n

n
NnJE                                                      (1.20) 

ε−=13E ,  ( ) ( )( )[ ],111 2232
2 εεεεεε +−−++−+−= ME  
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( )[ ] ( )[ ]εεεεε +−−⋅−++= 2111 22
1 MME ,  ( )( ) ( )( )εεε −+−−= 22

0 111 MME  

 According to the results of the studies [62, 76, 78, 79], the temperature of the 

flow behind the main shock of the Mach reflection (in TC-2 or SMC) is significantly 

higher than one in the flow behind the reflected shock on the other side of the 

slipstream. This effect is especially pronounced at reduced gas adiabatic indices and 

high free-stream Mach numbers. A significant increase in temperature at the main 

shock can lead to pulsed energy release and a change in the chemical composition of 

the reactive gas mixture. In this case, the angle 3β  of flow deflection at a shock 3j  in 

systems (1.18) or (1.19) is determined by a relation of the form (1.12), and not (1.4), 

and the Mach number behind its surface obeys a formula of the form (1.15), and not 

(1.6), as Mach numbers behind the incident ( 1j ) and reflected ( 2j ) shocks. 

 The transition triple configuration with a direct reflected shock (TC-2-3, see 

Figure 1.3,d) limits the region of existence of the TC-2 configurations formed at 

Mach reflection, from the upper side. Strength TJJ =1  of the shock 1j  which forms 

TCC-2-3, obeys the relation [79] 

( )( ) ( )4 2 1 2 1 0T TM rM J J ε ε− + − + − − = , 
(1.21) 

( )( ) ( ) ( ) ( ) ( ) ( )( )2 21 2 1 1 1T T T T T Tr J J J J J Jε ε ε ε ε ε ε = − + − + + + + + + − +   

The possibility of Mach reflection with the formation of TC-1 or TC-3 (which is 

presumably non-stable) is not considered in this work. 

 In the article [69], triple configurations of steady Mach reflection with a 

negative (to the oncoming flow) inclination angle of the reflected shock (“negative” 

TC, or NTC), were discovered for steady supersonic flows (see Fig. 1.3,f). 

Subsequently, they were studied in [70-77]. It is known from [75] that the NTCs for 

at high free-stream Mach numbers and low (compared to 4.1=γ ) ratios of gas 

specific eats. In the presence of high-temperature effects, the formation of NTC in 

flows of not only polyatomic, but also diatomic gases and their mixtures is not 

excluded. Indeed, the results of [76] indicate a very high temperature of the flow 

behind the main shock of the NTC (compared to the temperature downstream the 
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incident shock and the reflected one). At the same time, the problem of the 

sustainability of the NTCs, the unambiguousness of their formation and the 

conditions of their implementation requires additional thorough research. In 

particular, the conditions for the existence and uniqueness of the solution for triple 

configurations and some other shock-wave structures are considered in the 

Subsection 2.3 of this thesis. 

 

1.4. Quasi-one-dimensional flow region 

 It has been repeatedly shown [40, 52-58, 62] that the flow behind the main 

shock of the Mach reflection (for example, behind the shock 3j  in Figure 1.3,c) in 

nozzle, jet and channel flows is described by the quasi-one-dimensional flow 

(QODF) model with quite satisfactory accuracy. Condition for constant gas mass 

flow rate Q  through an arbitrary cross section F  of such a region 

const== uFQ ρ  

together with the isentropic flow functions [94] lead to an equation relating the width 

( )xy  channel and Mach number M  along it: 

( ) ( ) const=⋅ xyMq ,                                            (1.22) 

or  

( )
( )

( )
( )1

2

2

1

2

1

Mq
Mq

xy
xy

y
y

== , 

or 

( ) ( ) *yMqxy ⋅= . 

Here, the values ( )xy , ( )11 xyy =  and ( )22 xyy =  correspond to the channel width 

with the flow Mach number equal to, respectively, M , 1M  и 2M , *y  is the width of 

the “critical” section with a flow Mach number equal to unity, and 

( ) ( ) 1 221 1q M M M
ε

ε
−

 = ⋅ + −   

is the dimensionless isentropic flow rate function. The change in Mach number along 

the channel determines the corresponding change in static pressure: 
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( )
( )

( )
( )2

1

2

1

2

1

M
M

xp
xp

p
p

π
π

== ,                                         (1.23) 

where 

( )
( )1

211
2

M M
γ γγπ

− −
− = + 

 
 

is the isentropic pressure function. 

 It has been repeatedly shown in [62, 64, 65, 143, 145, 147] that the application 

of a quasi-one-dimensional flow model to a channel of variable width ( )xy  (for 

example, to the “virtual de Laval nozzle” formed behind the Mach stem) is equivalent 

to the following system of ordinary differential equations to describe the change in 

flow parameters: 

θtg=
dx
dy , (1.24) 

( )
( )( )yM

MM
dx

dM
11

tan
2

2

−−
=

ε
θµ , (1.25) 

directly following from the relations (1.22) and (1.23). Here ( ) ( )21 1M Mµ ε= + −  if 

the function of flow Mach number M ; ( )хθ  is the positive or negative angle of 

inclination of the channel boundary to the plane of flow symmetry. If we consider the 

Mach number as an independent variable (which makes sense if the integration is 

carried out up to the value 1=M ), equations (1.24) and (1.25) take the form 

( )( )
( ) θµ
ε

tan
11

2

2

MM
yM

dM
dx −−

= , (1.26) 

( )( )
( ) 2

2 11
MM

yM
dM
dy

µ
ε −−

= . (1.27) 

In this case, as follows from (1.23-1.25), the main non-uniformity spN ∂∂= ln1  

(flow non-isobaricity along the boundary of the QODF region) obeys the expression 

( )yM
M

s
pN

1
sinln

2

3

1 −
−=

∂
∂

=
θγ .          (1.28) 
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1.5. Prandtl-Meyer wave 

 As certain conditions [94, 95] are satisfied, a Prandtl-Meyer flow (an 

expansion wave or a compression one) with straight acoustic characteristics of the 

first or second family forms in a planar  supersonic flow of a perfect gas (Figure 1.4). 

Mach number 2M  on an arbitrary straight acoustic characteristic of such a flow, as 

well as the Mach number 1M  behind the whole wave, depends on the Mach number 

M  in front of the Prandtl-Meyer wave and the angle of the flow deflection on the 

whole wave or on its corresponding part: 

( ) ( ) ( )θθχνν −+= 22 MM , (1.29) 
or  

( ) ( ) ( ) ( ) χβνθθχνν −=−+= MMM 11 . (1.30) 
Here ( ) ( )2 21 arctan 1 arctan 1M M Mν ε ε= − − −  is the Prandtl-Meyer function, 

θ  is the fow angle in front of the wave, 1θ  is the flow angle after it, 2θ  is the flow 

angle on an arbitrary acoustic characteristic with Mach number 2M , 1=χ  and 

1−=χ  for waves with rectilinear acoustic characteristics of the first and second 

families, respectively;β  is the angle of flow deflection on the wave (for example,

0<β  on the expansion wave with straight acoustic characteristics of the first family, 

which is shown in Fig. 1.4). 

 
Figure 1.4. Flow parameters in a Prandtl-Meyer wave bordering the quasi-one-dimensional 

flow region 
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 Static pressure 2p  on an arbitrary straight acoustic characteristic, as well as 

pressure 1p  behind the wave as a whole, relates to pressure p  in front of the wave 

with the corresponding isentropic function: 

( ) ( )MMpp ππ 22 = ,                                        (1.31) 

or 

( ) ( )MMpp ππ 11 = .                                        (1.32) 

In this case, an arbitrary linear characteristic is inclined at an angle 

( )2222 Mχαθχαθ +=+  to the horizontal plane, and the trailing (last, tail) 

characteristic is inclined at an angle ( )11 Mχαθ + , where ( ) ( )MM 1arcsin=α  is the 

Mach angle. 

 It has been repeatedly shown [1] and subsequently used in works [2, 56, 61-65] 

that the flow gradients (in particular, its non-isobaricity 1N  in a Prandtl-Meyer wave) 

are inversely proportional to the distance r  to the center of the wave (if the wave is 

centered) or to the discriminant curve d  of its linear characteristics (see Figure 1.4): 

( )
2

2
2

1
11ln

rM
M

s
pN

−−
=

∂
∂

=
ε

.                                      (1.33) 

This non-isobaricity value is negative or positive for the expansion or compression 

waves, respectively. A similar relationship describes geometric curvature 2N  of an 

arbitrary streamline which crosses a straight acoustic characteristic: 

( )( )
3
2

2
22

2
11

rM
M

s
N −−

=
∂
∂

=
εθ .                                         (1.34) 

At the same time, the main non-uniformity 1N  in the Prandtl-Meyer flow field obeys 

the relation [1]: 

( ) 0221 =Γ− NMN χ . 

Here, ( ) 122 −=Γ MMM γ  is the characteristic complex. 

In many cases of Mach reflection (see [40, 52-58, 62, 143, 145, 147)], the flow 

behind the reflected shock (for example, in region II in Figure 1.4) is described with 

satisfactory accuracy by the Prandtl-Meyer wave flow model, and the flow behind the 
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main shock (in region III) fits for a model of quasi-one-dimensional flow. In this 

case, the flow parameters in regions II and III are related by the condition of equality 

of pressures on the sides of the sleepstream τ , described by the equation ( )xy . It can 

also be assumed that the gas in region II has an adiabatic index 2γ , and the gas in 

region III has a different adiabatic index 3γ  (for example, due to reactions that 

changed the chemical composition of the gas immediately behind the main shock). In 

this case, as 1=χ , the shape ( )xy  of slipstream, angle ( )x2θ  of its inclination and 

change in Mach numbers ( )xM 2  and ( )xM3  on both its sides obeys the ordinary 

differential equations [147], which follow from (1.22), (1.23), (1.29) and (1.31): 

2tanθ=
dx
dy

, (1.35) 

( )yMM
MM

dx
d

1
tan1

2
3

2
22

2
2
2

2
332

−
−

−=
γ

θγθ , (1.36) 

( )[ ]
( ) ( )yMM

MM
dx

dM
11
tan11

2
322

2
2
22

2
332

−+
−+

=
ε

θεγ
, (1.37) 

( )[ ]
( )( )yM

MM
dx

dM
11

tan11
2
33

2
2
33

2
33

−−
−+

=
ε

θε
. (1.38) 

(in this case, equations (1.35) and (1.38) correspond to the previously obtained 

relations (1.24) and (1.25) for the region of quasi-one-dimensional flow). 

If we consider the Mach number 3M  below the slipstream as an independent 

variable, equations (1.35-1.38) look as it follows: 

( )( )
( )[ ] 2

2
33

2
3

2
33

3 tan11
11

θε
ε

−+
−−

=
MM

yM
dM
dx

, (1.39) 

( )( )
( )[ ]11

11
2
33

2
3

2
33

3 −+
−−

=
MM

yM
dM
dy

ε
ε

, (1.40) 

( )
( )[ ]11

11
2
33

2
2

2
233

3

2

−+
−+

−=
MM
MM

dM
d

εγ
εθ , (1.41) 

( ) ( )[ ]
( ) ( )[ ]111

111
2
332

2
233

3

2

−++
−++

=
MM
MM

dM
dM

εε
εε . (1.42) 
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Condition γγγ == 32  of equality of gas adiabatic indices on both sides of the 

slipstream simplifies the system (1.35-1.38) to the following form [56, 62, 64, 65, 

143, 145]: 

2tanθ=
dx
dy

, 
(1.43) 

( )yMM
MM

dx
d

1
tan1

2
3

2
2

2
2
2

2
32

−
−

−=
θθ , 

(1.44) 

( )[ ]
( ) ( )yMM

MM
dx

dM
11
tan11

2
32

2
2
2

2
32

−−
−+

=
ε

θε
, 

(1.45) 

 

( )[ ]
( )( )yM

MM
dx

dM
11

tan11
2
3

2
2
3

2
33

−−
−+

=
ε

θε
, 

(1.46) 

 

and transforms system (1.39-1.42) to the form 

( )( )
( )[ ] 2

2
3

2
3

2
3

3 tan11
11

θε
ε

−+
−−

=
MM

yM
dM
dx

, (1.47) 

( )( )
( )[ ]11

11
2
3

2
3

2
3

3 −+
−−

=
MM

yM
dM
dy

ε
ε

, (1.48) 

( )
( )[ ]11

11
2
3

2
2

2
23

3

2

−+
−−

−=
MM

MM
dM
d

ε
εθ , (1.49) 

( )[ ]
( )[ ]11
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2
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2
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2
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−+

=
MM
MM

dM
dM

ε
ε

. (1.50) 

 Expressions (1.34) and (1.36) determine the distance Ar  from some point A  on 

a slipstream to the corresponding point D  on the discriminant curve: 

( ) ( )
2

2
323

2
3

2
22

sin
111

θγ
ε

MM
yMM

r A
A

−−+
= ,         (1.51) 

so 

( )22cos θα +−= AAD rxx ,                                              (1.52) 

( )22sin θα +−= AAD ryy .                                              (1.53) 

 Relations (1.34), (1.51-1.53) allow us to determine non-uniformity BN2  of the 

Prandtl-Meyer flow at its arbitrary point В  with coordinates ( Bx , 
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( ) ( )22tan θα +−+= ABAB xxyy ) on a straight characteristic AB  with Mach number 

2M : 
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N 23
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∂
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=
εεθ , (1.54) 

where 

( ) A
A yMM

MM
N

1
sin1

2
3

2
2

2
2
2

2
3

2 −
−

−=
θ

. (1.55) 

 Owing to equations (1.54) and (1.55), the derivatives of the flow angle 2θ  in 

any direction ξ  to the horizontal are determined at an arbitrary point В : 
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in particular, in the direction ( 22 αθξ −= ) of incidence of the curvilinear acoustic 

characteristic: 
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 Condition (1.29), together with (1.56) and (1.57), allows us to determine also 

the change in the Mach number of the flow 2M  in any direction ξ : 
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in particular, if ξ  if direction of incidence of the curvilinear characteristic: 
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 Relations (1.39-1.42) or (1.47-1.50) allow, together with variation of the values 

2θ  and 2M  in an arbitrary direction in the Prandtl-Meyer wave, “conjugating” with 

the quasi-one-dimensional flow region, determine the change in the Mach number 

3M  on the other side of the slipstream τ  and the shape ( )xy  of the corresponding 

part of the slipstream. Thanks to this, the flowfield in the “conjugated” wave turns 

out to be completely defined. 
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If the gas adiabatic indices are equal on both sides of the slipstream (i.e.,

γγγ == 32 ), ratios (1.51-1.59) become somewhat simpler. 

 

Conclusions to the Chapter 1 

 The basic concepts and relationships given in the Subsections 1.1-1.5 provide 

the necessary conceptual and mathematical apparatus for the analytical study of the 

shock-wave structure of gas flows with Mach reflection, including one in the 

presence of pulsed energy release and change in the chemical composition of the gas 

mixture at some shock surfaces. 
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Chapter 2. Theoretical analysis of shock-wave systems and structures  

in gas flows with high supersonic velocity 

 

2.1. Extreme regular reflection of oblique steady shocks  

and propagating shock waves 

 2.1.1. Schematic of gas flow with regular shock reflection 

The simplest shock-wave structure (i.e., a set of gas-dynamic discontinuities 

which have a common point) forms at the regular reflection of an oblique steady 

wave or a propagating  shock wave in a perfect gas. In [148], the conditions for the 

extrema of static pressure and gas temperature behind the reflection point of a shock 

of a given intensity are analytically determined depending on the Mach number of the 

free-stream flow. The results obtained are applied to the solution of the equivalent 

problem of the reflection of a propagating shock wave of a given intensity from an 

inclined obstacle. A non-monotonic change in the thermal and mechanical load on the 

target is shown depending on the angle of its surface inclination, and the inclination 

angles corresponding to the pressure and temperature extremes behind the point of 

shock reflection are determined analytically. 

Regular reflection of steady and unsteady shocks from a solid surface or plane 

of symmetry of a gas flow has been known since the 19th century [4-7]. The 

analytical solution [96] for the parameters of a reflected steady or unsteady shock can 

be graphically represented on the plane of shock polars [97, 98]. The conditions for 

the existence of regular reflection and the criteria for the transition to irregular 

(Mach) reflection in both steady and unsteady flows have been well studied [8, 15, 

18, 44]. If the value γ  the gas adiabatic index in a steady flow is known and fixed, 

then the properties of the reflected shock are [1] the functions of the Mach number 

М  of the flow in front of the incident shock (Figure 2.1,a) and of one of the 

parameters of this shock (for example, its intensity 1J , which is the ratio of static 

pressures on its sides, or its amplitude 1p∆ , which is the difference between these 
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pressures and is especially important in problems of blast wave reflection  [19, 44, 

99, 100] with reversal of motion, transforming its leading front into a steady shock). 

 Dependencies determining the intensity (the strength) of the reflected shock 

( )12 , JMJ  or its amplitude ( )12 , pMp ∆∆ , are monotonic with respect to 1J  (or 

amplitude 1p∆ ): with increasing intensity 1J  (amplitude 1p∆ ), as the incident 

disturbance increases, the intensity (amplitude) of the reflected shock increases also. 

It was analytically shown in [148], that the parameters of the reflected shock wave 

are (at fixed values 1J  or 1p∆ ) the non-monotonic functions of the free-stream Mach 

number М ; the conditions for the occurrence of pressure extrema behind the 

reflected shock have been determined. 

    a)             b) 

 
Figure 2.1. Regular reflection of an oblique steady shock (a) and the mechanically equivalent case 

of reflection of a propagating shock wave from an inclined barrier (b) 

The practical value of the analytical solutions obtained in [148] is based on 

their application in equivalent problems of oblique reflection of the propagatins shock 

waves (in particular, blast ons, see Figure 2.1, b). Gas pressure and temperature 

behind the point of regular reflection of an oblique steady shock with a slope angle 

1σ  (Figure 2.1,a) are equal to the pressure and temperature behind the point of 

reflection of an unsteady shock of the same strength (amplitude) from a wedge 

inclined at an angle 12 σπθ −=  to the direction of its propagation (Figure 2.1,b). 

Change in flow Mach number М  in the steady shock reflection problem corresponds 

to a variation in the wedge angle θ  in the problem of unsteady reflection of a moving 

wave of the same strength. From the non-monotonic change in pressure and 
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temperature behind the reflected shock, a non-monotonic dependence of the 

mechanical and thermal load behind the reflected shock on the angle of the obstacle 

inclination follows. 

Next, first of all, we consider the regular reflection of a steady shock 

(Figure 2.1,a) which falls on a solid surface or plane of symmetry in a supersonic 

flow of an inviscid perfect gas. Free-stream flow parameters (Mach number М , 

pressure p , adiabatic index γ ) and angle 1σ  of the shock incidence determine the 

incident shock intensity (1.1): 

( ) εσε −+== 1
22

11 sin1 MppJ , 

its amplitude (1.2): 

( )1111 −⋅=−=∆ Jpppp  

and flow deflection angle 1β  on its surface (1.4): 
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Mach number 1M  of the flow behind the shock is determined by relation (1.6): 

( ) ( )( )
( )11

2
1

2
1

1 1
11

JJ
JMJM

ε
εε

+
−−−+

= ,                               (2.2) 

and the angle 2β  of the flow deflection on a reflected shock depends on its intensity 

and Mach number 1M  flow in front of him: 
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Condition for regular reflection realization, 

021 =+ ββ                                                   (2.4) 

leads, taking into account the relations (2.1-2.3), to the following equation regarding 

intensity 122 ppJ =  of the reflected shock: 

     ,0
3

0
2 =∑

=n

n
nJC                                                    (2.5) 
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( )[ ]2113 1 MJJC ε+= , ( ) ,1 2112 xJJC ⋅+−= ε

( )( ) ( )( ) ( )( )( )( ) ,1112111 3
111

2
1

42
111 −++−+−++++= JJJMxMJJC εεεεε  

( )( ) ( )( ) ( )( ) ( )21
2

1
2

0
4

110 11211 −+−−+−+++−= JJMxMJJC εεεεεε , 

( )( ) ( ) ( ) ( )( ) ( )( )( )211
22

1
2
1

4
12 11122121 −+−−−+−−−+++= JJMJJMJx εεεεεεεεε , 

( )( ) ( ) ( ) ( ) ( )2
1

2
1

23
1

24
11 211224212112 εεεεεεεεε −−−+−−−−−−+= JJJJx , 

( ) ( ) ( )( ) ( )2
1

2
1

323
1

2
0 2121126212 εεεεεεεεε −++−−+−−−+= JJJx ,  

first written down in [97] regarding the reflection shock slope angle 2σ . 

 Thermal loads acting on the obstacle from the flows downstream both shocks 

can be characterized by the temperature ratios 1 1T TΘ =  и 2 2 1T TΘ = . Here, T , 1T  and 

2T  are the temperatures in the undisturbed flow, and after the first and second shocks, 

respectively. According to the Rankine-Hugoniot adiabatic and the equation of state 

of a perfect gas, the temperature ratio (1.8) on the sides of a steady or unsteady shock 

is a monotonic function of intensity:  

                            ( ) ( )1i i i iJ J Jε εΘ = + + ,  1,2i = .                                              (2.6) 

For the same reason, the gas temperature behind the reflection point 

( )( ) ( )( )2 1 2 1 2 1 2 1 21 1T T J J J J T J Jε ε ε ε= Θ Θ = + + + +    

is also a monotonic function of the intensity of the reflected disturbance. As a result, 

if the intensity of the incident steady or unsteady shock, the temperature maxima and 

minima behind the reflected disturbance coincide with the pressure maxima and 

minima behind it. 

Algebraic equation (2.5) has at most two real roots belonging to the range 

( )[ )1;1 MJ m , where ( )1MJ m  is the intensity of a normal steady shock in a flow with 

Mach number 1M . Those solutions exist if only the intensity of the incident shock 

satisfies the condition 

( )MJJ d≤≤ 11 .                                                     (2.7) 

Here, the intensity ( )MJd  corresponds to the so-called maximum reflection angle 

criterion (“detachment criterion”, [9-11]) and is determined from the equation 
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0
5

0
=∑

=n

n
dnJD ,                                                       (2.8) 

( )25 1 ε−=D ,  ( ) ( ) ( )[ ]222
4 54431 εεεεε +−+−+⋅−−= MD ,  

( ) ( )( ) ( )( )22242
3 12322114243 εεεεεεε −−+−+−+++= MMD , 

( ) ( ) ( )( ) ( )( )22426
2 13222114211 εεεεεεεε −−−−−−+++−= MMMD ,   

( )[ ] ( ) ( ) ( )[ ]2242
1 451411211 εεεεεε +−−+++⋅−+−= MMMD , 

( )[ ] ( )[ ]222
0 111 −+⋅−+−= MMD εεε  

(see curve 1 in Fig. 2.2, a; here and below, all calculation examples correspond to the 

gas adiabatic index 4.1=γ ). 

The practice of operating gas-dynamic devices [20], as well as the analysis of 

regular reflection stability to small disturbances [41, 45], show that the smaller of the 

two mentioned roots of the equation (2.5), corresponding to the so-called weak 

branch of the reflected shock polar, realizes at the regular reflection of shock waves 

and shock waves, 

At moderate and high Mach numbers ( aMM > , where 

( ) ( ) 483.112 =−−= εεaM ), the von Neumann criterion (also known as the 

“mechanical equilibrium criterion”) of oblique shock reflection transition is also 

used. Equation (1.20), see curve 2 in Fig. 2a, determines the intensity ( )MJ N  of the 

incident shock, corresponding to this criterion. In the region of parameters of the 

incident shock, located between curves 1 and 2 (“dual solution domain”), there are 

solutions for both regular reflection and Mach one. 
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a) 

 

   b)       c) 

   
Figure 2.2. Conditions for the realizability of regular reflection, extremes of mechanical and thermal 
load behind reflected steady and unsteady shocks: curves 1 are the lower boundaries of the region of 
regular reflection according to the “detachment criterion”, curves 2 correspond to shock reflection 
transition according to the von Neumann (“mechanical equilibrium”)criterion, curves 3 point to the 
local minima of the amplitude of the reflected steady shock (a) or unsteady one (b, c), as well as the 

minima of pressure and temperature behind it 

Numerous experiments [11, 21] reveal that the “mechanical equilibrium 

criterion” (1.20) is preferable when analyzing steady flows, especially in the region 

of solution ambiguity located above the point b  of tangency of curves 1 and 2. Here 

the Mach number 202.2=bM  is the root of the equation [79, 101] 

0
4

0

2 =∑
=n

n
bnMF , 

( )( )43
4 2421 εεεε −+−−=F , 5432

3 41210102010 εεεεε −+−−+−=F , 
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5432
2 61816102412 εεεεε +−++−=F , ( )( )( )22

1 124312 εεεε −+−+−=F , 

( )( )40 11 εε −+=F . 

However, the solutions obtained for steady flows can be subsequently (after 

appropriate reversal of motion [102]) applied to the unsteady reflection of shock 

waves from structural elements, in which an another transition criterion can be used. 

Therefore, below we consider the entire range (2.6) of theoretically possible 

parameters of incident shocks. 

 2.1.2. Schematic of an equivalent unsteady flow with regular reflection of 

a shock wave 

 Regular reflection of a shock wave which falls on a solid surface (plane of 

symmetry) at an incidence angle 1σ  in a flow with Mach number М  (Figure 2.1,a), 

is mechanically equivelent after the motion reversal, to the reflection of an unsteady 

shock of the same intensity 

( ) ( ) εθεεσε −+=−+== 22
1

22
11 cos1sin1 MMppJ ,                 (2.9) 

which propagates through a stagnant medium and reflects from the wedge at an angle 

12 σπθ −=  (Figure 2.1,b). Here, the point R  of the unsteady shock wave reflection 

moves along the surface with the same Mach number М . This method of motion 

reversal was applied to the reflection of steadyand unsteady shocks was used, in 

particular, in [102] to analyze the Mach reflection. The shock Mach number, which 

characterizes the normal (relative to its own front) propagation speed of of the 

incident wave in Figure 2.1,b, is ( ) ( )εεθσ ++=== 1cossin 11 JMMM S , so 

( ) εε −+= 2
1 1 SMJ . In this case, the intensity of the reflected wave and the static 

pressure behind it are the same as in the equivalent case of steady shock reflection. 

In some problems of unsteady reflection of shocks and blast waves, the 

pressure drops on those waves (their amplitudes) and the values of overpressure 

behind the reflection point are of particular importance, because they characterize the 

mechanical load on the target. The amplitude of the incident shock wave is 

( )1111 −⋅=−=∆ Jpppp ,                                   (2.10) 
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the reflected wave amplitude is 

( )121122 −⋅=−=∆ JpJppp , 

and the overpressure behind the reflection point is equal to 

( )1212 −⋅=−=∆ Σ JJpppp .  

As the pressure p  in an undisturbed environment and the intensity 1J  (amplitudes 

1p∆ ) of the incident shock are fixed, the amplitude 2p∆  of the reflected wave and 

overpressure Σ∆p  behind it depend linearly on its intensity 2J , which, in its turn, 

depends on the wedge angle θ  at the unsteady reflection or on Mach number М  in 

the equivalent steady case. Non-monotonic dependence ( )MJ2  with a regular 

reflection of a stationary shock of a fixed intensity means that the overpressure Σ∆p  

and temperature 2T  behind the point of reflection of a propagation shock wave with a 

given amplitude depends non-monotonically on the angle of inclination of the 

reflecting surface. This fact is not outwardly obvious (rather, on the contrary) and 

requires analytical proof. 

 

 
а) б) 

Figure 2.3. Limiting cases of interaction of a propagating shock wave with a surface: 
a) parallel sliding ( °= 901σ , 0=θ ); б) normal reflection ( 01 =σ , °= 90θ ):  

movement of the incident wave (top) and the reflected one (bottom) 
 

The increase in pressure on the target behind the reflected shock wave can, in 

addition, be characterized by the pressure coefficient 

  ( ) ( )11 12122 −−=∆∆= JJppK                                  (2.11) 

or wave amplification factor 
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( ) ( )11 1211 −−=∆∆= ΣΣ JJJppK .                             (2.12) 

Those coefficients are minimal ( 02 =K , 1=ΣK ), if the wave slides parallel to 

the surface (Figure 2.3,a), and there is no reflected wave (it degenerates into a weak 

disturbance, 12 =J ).  

At the normal ( °= 90θ , 01 =σ ) reflection of a shock wave with an amplitude 

1p∆  (Figure 2.3,b), the amplitude 2p∆  of the reflected wave is calculated using the 

Izmaylov-Crussard formula [99, 103] 

( )( )[ ]01112 11 ppppp εε ++∆∆+⋅∆=∆ ,  

so the coefficients of pressure and amplification of the reflected wave 

( )( ) ( ) ( )110112 11111 JJpppK εεε +−+=++∆∆+= ,           (2.13) 

( )( ) ( ) ( )11011 11212 JJpppK εεε +−+=++∆∆+=Σ .          (2.14) 

After the reverse transition to steady flow, the normal reflection of the unsteady 

shock ismechanically equivalent to the reflection of a steady shock of the same 

intensity 1J  in Mach number flow ∞→M . Thus, the analysis of the reflection of 

steady shocks in perfect gas flows with high supersonic Mach numbers without 

considering additional (“hypersonic”) physical effects acquires an obvious practical 

value. This phenomenon is mechanically equivalent to the reflection of unsteady 

shock waves of quite moderate intensity from obstacles that are close to normal to 

shock wave front. This is, for example, the reflection of a shock wave front during a 

near-surface explosion, when a point of regular reflection propagates along the 

surface with a very high speed (at the first moment of normal reflection when 

touching the surface – with an infinitely high speed, see Figure 2.4 and [104]). 

Similar to pressure gaps (shock wave amplitudes), temperature gaps on the 

surfaces of incident and reflected disturbances can be determined as it follows: 

( )1111 −Θ⋅=−=∆ TTTT , ( )121122 −ΘΘ⋅=−=∆ TTTT , ( )1212 −ΘΘ⋅=−=∆ Σ TTTT . 

Here, the relations iΘ  ( 2,1=i ) of the static temperatures are expressed through the 

intensities of the corresponding shocks using relations (2.6). 
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Similarly to the relation 2K  of reflected and incident waves amplitudes (2.11) 

and the coefficient ΣK  of overpressure amplification (2.12), the relation 2H  of 

temperature gaps and the coefficient ΣH  of increase in thermal loads are introduced 

at further: 

( ) ( )11 121122 −Θ−Θ⋅Θ=∆∆= TTH ,                         (2.15) 

( ) ( )11 1211 −Θ−ΘΘ=∆∆= ΣΣ TTH .                           (2.16) 

 
Figure 2.4. Initial stages of reflection of the blast wave front during a near-surface explosion. The 

velocity of movement of the reflection point along the surface is infinitely large at the initial 
moment of normal reflection (point 1A ). It corresponds to the Mach number 1sinσSMM =  at 

regular reflection (point 2A ). In this case, the Mach number SM  ( 1SM , 2SM ) of the movement of 
the wave front is, as a rule, variable and decreases with distance from the explosion epicenter O  

2.1.3. Analytical results determining the extreme reflection of steady and 

unsteady shocks 

Equality of the partial derivative to zero ( 02 =∂∂ MJ ), being applied to 

solution (2.5), determines the conditions for the extreme intensity of the reflected 

disturbance. Those conditions can be written in the form of a cubic equation relative 

to the intensity of the incident shock: 

0
3

0
1 =∑

=n

n
nJG ,                                             (2.17) 
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( )23 1 ε−=G , ( ) ( )[ ]εεε −++⋅−−= 1113 2
2 MG , 

( ) ( )( ) ( )( ) ( )( )[ ]εεεεεεε 21121122311 24
1 −−+−++++⋅−= MMG , 

( )[ ] ( )( ) ( )( )[ ]εεεεεε 21121111 24
0 +−−−+⋅−++−= MMG ,  

or as a similar equation relative to the flow Mach number: 

  0
3

0

2 =∑
=n

n
nMH ,                                                 (2.18) 

( )( )23 121 εε +−=H ,  ( ) ( )[ ]εεε 21231 1
2

2 +++⋅−−= JH , 

( ) ( )[ ]εεε 2121231 1
2
1

2
1 −+−−⋅−= JJH ,  ( ) ( ) ( )εε 21211 1

2
11

2
0 −−−⋅−⋅−−= JJJH . 

Calculations show that the solutions of equations (2.17) or (2.18), shown by curve 3 

in Figure 2.1, really corresponds to regular reflection of the incident shock. 

It is appropriate to consider the equivalent reflection of an unsteady shock 

wave on a plane ( )θ,1p∆ , which in shown in Figure 2.2,b. The amplitude of the 

incident wave is related to its intensity by (2.11), and the angle of obstacle inclination 

relates to the Mach number and intensity by (2.10) at the condition 190 σθ −°= . Here 

and below, for definiteness, it is assumed that the unsteady shock wave propagates 

through an undisturbed stagnant medium with pressure 100=p  kPa.  

The solution for regular reflection of the incident wave exists in the range 

[ )°∈ 90,dθθ . Here dθ  in the wedge angle corresponding to “detachment criterion” 

(2.7), i.e., to the transition to irregular reflection). This limiting angle (2.8) is shown 

by curve 1 in Figure 2.2,b. The wedge angle corresponding to the von Neumann 

criterion (1.20) is shown there by curve 2. Curve 3 corresponds to the minimum 

pressure on the target depending on the angle of its inclination at various fixed 

amplitudes of the incident wave. 

The extrema of the parameters of the reflected unsteady shock wave are also 

shown in Figure 2,c in coordinates ( )θ,SM . Curve 3 corresponds to pressure minima 

behind the shock reflection point with a certain Mach number SM  of its front 
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propagation. It allows to set the angles of inclination of structural elements that 

deliver minimal values of mechanical loads at a given shock wave Mach number. 

Those angles of obstacle inclination corresponding to the pressure minima 

behind the reflected wave, in coordinates ( )θ,SM  obey the equation 

0
3

0
=∑

=n

n
n zZ ,                                             (2.19) 

where  

θσ 2
1

2 cossin ==z , ( ) ( ) ( ) ( ) ( )[ ]εεεε −−+−+⋅−−= 112111 2422
3 SSS MMMZ ,  

( ) ( ) ( ) ( )[ ]εεεε −++−+⋅−−= 112131 242
2 SSS MMMZ ,  

( ) ( )[ ]εεε 21231 2
1 −++⋅−−= SMZ ,  ( ) 6

0 12 SMZ −= ε . 

According to (2.19), in the limiting case of weak shock reflection ( 1→SM ), the 

minimum pressure behind the reflected wave is achieved at 

( ) 225.022122 =−−−= εεz , 

which corresponds to ( ) ( )[ ] °=+=−= − 656.6141arcsin22arcsin 4141 γεθс  (point с  

on curve 3). As 175.2=SM , the minimum pressure corresponds to the von Neumann 

criterion for the transition from Mach reflection to regular one (point e  of 

intersection of curves 2 and 3). Corresponding value ( °= 105.56eθ ) of the obstacle 

inclination angle obeys the relation 

( )( )( )
( )( )( ) 311.0

251231
2052492032131cos 2

4322
2 =

+−−−
+−+−−−−−

==
εεεε

εεεεεεεθeez . 

At 175.2>SM , the optimal (delivering minimum pressure on the target) wedge angle 

corresponds to the region of ambiguity in the type of reflection located between 

curves 1 and 2 (the “dual solution domain”). But, at those parameters of interaction of 

an unsteady  shock wave with an inclined target (in contrast to the steady case), as a 

rule [17 ], it is a regular reflection that is implemented. 
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In another limiting case of reflection of strong shock waves ( ∞→SM ), the 

optimal angle of inclination of the obstacle is determined by the following equation 

for the asymptote of curve 3: 

( )( ) ( ) ( )( ) 0122311311 2232 =−++−+−−−− εεεεεε zzz , 

so 367.0=z , °= 715.52θ . Curve 3 situiates between the horizontal asymptotes of 

curves 1 and 2, corresponding to different criteria for strong shock reflection 

oftransition. The horizontal asymptote of curve 1, which corresponds to the 

“detachment criterion”, obeys the equation 

( ) ( ) ( ) 012111 2232 =++−−−− zzz εεε  

( 413.0=z , °= 029.50θ ), and the horizontal asymptote of curve 2, corresponding to 

the von Neumann “mechanical equilibrium” criterion, obeys the relation 

( ) 138.0
12

243211
2

653232
=

−
+−++−−+−+

=
ε

εεεεεεεεz . 

( °= 231.68θ ). Thus, the angle of inclination of the target, corresponding to the 

minimum of mechanical and thermal loads, for strong shock waves shifts towards the 

lower boundary of the region of existence of regular reflection. 

 2.1.4. Numerical results and discussion 

 Figure 2.5a shows the change in the coefficient (2.11) of reflection of shock 

waves of various amplitudes (curves 1-10) depending on the angle of target 

inclination. The range of this angle variation extends from curve 11, corresponding to 

reflection transition according to criterion (2.7-2.8), to the value °= 90θ , which 

corresponds to normal reflection as a limiting case of regular one. In the latter case, 

the values of the reflection coefficient correspond to the Izmailov-Crussard relation in 

the form (2.13). 

 As can be seen from Figure 2.5,a, the decrease in pressure on the reflected 

shock wave due to the optimal placement of the barrier can be significant. When 

weak shock waves reflects, the amplitude 2p∆  at the appropriate choice of angle θ  is 

almost 50% less than on the left boundary of the region of existence of regular 

reflection. At 501 =∆p  kPa (amplitude of the incident wave corresponding to the 
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lower threshold of barotrauma according to [100, 105]) increase in the wedge angle 

from °= 2.43θ  до °= 1.60θ  leads to a decrease in pressure on the reflected wave 

with 5.1022 =∆p  kPa to 7.672 =∆p  kPa, i.e. by 33.9% (curve 1). For stronger 

incident waves, the range of angles within which a decrease in the pressure of the 

reflected wave is observed gradually decreases. The relative drop in 2p∆  also 

decreases, however, it is still a noticeable value (17.4% at 4001 =∆p  kPa or 12-15% 

at 40007001 −=∆p  kPa), which must be taken into account in engineering 

calculations of explosion-resistant structures. 

      a)           b) 

   
Figure 2.5 – Change in the reflection coefficient (a) and amplification factor (b) for a regularly 
reflecting wave depending on the angle of inclination of the target at different amplitudes of the 

incident shock wave:  501 =∆p  kPa (curves 1), 100 kPa (2), 150 kPa (3), 200 kPa (4), 250 kPa (5), 
300 kPa (6), 350 kPa (7), 400 kPa (8), 450 kPa (9), 500 kPa (10). Curves 11 limit the region of 

existence of regular reflection according to the “detachment criterion”  

According to Fig. 2.5a (see curve 1), the amplitude of the reflected shock at the 

point of the derived minimum is not much less than the amplitude of the normally 

reflected wave described by the Izmaylov-Crussard formula (rightmost points on 

curves 1-10). In the mentioned example ( 501 =∆p kPa, minimum reflected wave 

pressure 7.672 =∆p  kPa at °= 1.60θ ), normal reflection ( °= 90θ ) leads to the 

formation of a reflected wave with an amplitude 7.692 =∆p  kPa. As the incident 

wave intensifies, the relative difference between the pressures of the optimally and 
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normally reflected waves becomes more noticeable (curves 2-10 in Figure 5,a). It is 

about 20-22% at 10001 >∆p  kPa. 

 The change in the amplification coefficient (2.12) of the incident wave under 

the same conditions is shown in Figure 2.5,b. On the right boundary of the 

computational domain ( °= 90θ ), the amplification factors ΣK  correspond to the 

Izmailov-Crussard relation in the form (2.14). Maximum effect of this coefficient 

reduction in the interval from the left boundary of the computational domain 

(curve 11) to its minimum point is 30-32%. It is observed when weak shock waves 

reflect (at 101 <∆p  kPa). When sufficiently strong waves reflect (at 10001 >∆p kPa), 

the effect of reducing the load on the obstacle is about 10%. The pressure on the 

target at normal reflection is greater than when it is optimally inclined: insignificantly 

for weak shock waves and by about 20% for strong waves ( 10001 >∆p kPa). 

 Thus, in a fairly wide range of problem parameters adjacent to the boundary of 

the region of existence of regular reflection, the pressure behind the reflected wave 

decreases as the angle of inclination of the target increases. In particular, when 

1001 =∆p  kPa (the amplitude of the incident wave corresponding to the lower 

threshold of lethal outcomes according to [100, 105]), the amplitude of the reflected 

wave and the overpressure behind the reflection point decrease from 8.2282 =∆p  kPa 

( 8.328=∆ Σp kPa) at the point of its local maximum ( °= 5.47θ ) to the value 

1.1652 =∆p  kPa ( 1.265=∆ Σp kPa) at °= 1.59θ . At the normal reflection of such 

a wave (at °= 90θ ), the overpressures are 0.1742 =∆p  kPa and 0.274=∆ Σp  kPa. 

 It should be noted that the pressure values behind the reflected wave on the left 

boundary of the considered computational domain at the incidence of shock waves of 

low and moderate intensity are some higher than on the right boundary (i.e., at their 

normal reflection). 
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   a)       b) 

     
Figure 2.6. Change in the ratio of temperatures shocks on the reflected and incident shocks (a) and the 

coefficient of increase in thermal loads (b) depending on the angle of inclination of the obstacle at various 
amplitudes of the incident unsteady waves: 501 =∆p  kPa (curves 1), 100 kPa (2), 150 kPa (3), 200 

kPa (4), 250 kPa (5), 300 kPa (6), 350 kPa (7), 400 kPa (8), 450 kPa (9), 500 kPa (10). Curves 11 
limit the region of existence of regular reflection according to the “detachment criterion”  

 Ratio of temperature gaps 2H  (2.15) and coefficient of increase in thermal 

loads ΣH  (2.16) change similarly (see Figure 2.6,a-b). As it was shown earlier, the 

conditions for temperature extrema (minima) behind the reflected shock are also 

described by equation (2.19). However, the difference between the values of the 

temperature coefficients at the derived minimum points is slightly smaller in 

comparison with normal reflection or the limiting case of the transition of regulat 

reflection to Mach one. For example, the difference in values 2T∆  at the normal 

reflection and at the derived minimum point it is 2.92% at 501 =∆p  kPa and 12.8% at 

5001 =∆p  kPa. Similarly, the difference in values 2T∆  at the point of transition to the 

Mach reflection and at the found minimum point is equal to 31.0% at 501 =∆p  kPa 

and 14.3% at 5001 =∆p  kPa. As the intensity (amplitude) of the incident wave 

increases, the temperature difference behind the reflected wave increases 

monotonically, but sometimes weaker than the temperature difference on the incident 

wave, which leads to the intersection of some curves in Figure 2.6,a-b. 

Thus, the parameters of the incident steady shocks, which obtain the minimum 

static pressure and gas temperature behind the reflected one, are described by the 

cubic equation (2.15) or (2.16) in the variables “shock intensity – free-stream Mach 
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number”. A similar cubic equation (2.17), first obtained in [93], analytically 

determines the obstacle inclination angles at which the static pressure behind the 

point of regular reflection of a propagating shock wave of a given amplitude is 

minimal. Those optimal angles of inclination of the reflecting surface exist for all 

theoretically possible parameters of the incident shock. In this case, the optimal 

reflection of the shock wave differs both from normal reflection and from another 

limiting case of transition from regular reflection to Mach one. Calculations show 

that geometric optimization of the interaction of shock (in particular, blast) waves 

with obstacles can significantly reduce mechanical and thermal loads on structural 

elements. For this reason, the obtained theoretical results can be used in the design of 

explosion-proof structures, in the development of blast protection means, in aircraft 

and rocket engineering, in supersonic aerodynamics and in many other applications. 

 

2.2. Approximate analytical model of the shock-wave structure  

of the flow with Mach reflection of steady shocks 

Gradually complicating the research problem, we consider a flow with Mach 

reflection of oblique steady shocks from the plane of symmetry in an inviscid 

supersonic flow of a perfect inviscid gas, which takes place in a narrowing channel 

between two wedges (Figure 2.7,a) or at the planar overexpanded jet flow from 

a supersonic nozzle (Figure 2.7, b). The first of the cases under consideration is a 

model example for the gas-dynamic design of supersonic air intakes, the second is fit 

for jet flows from jet engine nozzles, as well as in the development of jet technology 

devices. 
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a) 

 
b) 

 
Figure 2.7. Flow patterns with Mach reflection: a) in a narrowing channel between two wedges; b) 

in an overexpanded gas jet 

In Figure 2.7, the following notations are adopted: M is Mach number of the 

undisturbed flow; 1 (AT) is oblique shock wave which falls from the edge of the 

nozzle or the leading edge of the wedge; 2 (TB) is the reflected shock; 3 (ТО) is the 

main shock (Mach stem); Т is the triple point of Mach reflection, common to the 

incident, reflected and main shocks; τ  is the slipstream which emanates from the 

triple point and separates the flows behind the reflected and Mach shocks (usually 

supersonic and subsonic ones, respectively); τθ  is variable local slope angle of the 

sleepstream τ  (which is curved in the general case) to the horizontal plane of flow 

symmetry; 1β  and 2β  are the angles of flow deflection at shocks 1 (incident) and 

2 (reflected); 3 3T Tβ θ≡  is the angle of  flow deflection at the main shock 3 in the 
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vicinity of  the triple point T, equal to the angle of inclination of the slipstreame 

manating from this point; 1σ  and 2σ  are the angles of slope of shocks 1 and 2 to the 

flow velocity vectors in front of them; 3Tσ  is the angle of inclination of the shock 3 at 

the triple point Т; h is the width of the outlet section of the jet or channel between the 

wedges; Ty  is the target size of the main shock (the height of the triple point); ( r ,ϕ ) 

are the distance and the polar angle, measured from the horizontal direction, in a 

cylindrical coordinate system centered at point A; HB is the acoustic characteristic of 

the first family, which falls at point B of the exit of the reflected shock to the jet 

boundary or of the beginning of its interaction of the refelected shock with the tail 

rarefaction wave; I is the flow region behind the incident shock 1; II (BTC) is the 

flow region behind the reflected shock (as shown in [56, 62], it can be approximated 

as a simple Prandtl-Meyer expansion wave with straight acoustic characteristics of 

the first family); III is the flow region behind the Mach shock 3 (“virtual nozzle” with 

critical section * *C O , according to terminology [52]); IV is the fan of characteristics 

of an expansion wave descending from the jet boundary (from the point of its 

intersection with the reflected shock 2) or from the trailing edge of the streamlined 

wedge; V is the fan of characteristics of an expansion wave which forms as a result of 

wave IV interaction with curved shock wave 1BB ; VI is the zone of reflection of the 

expansion wave IV or V from a slipstreamτ ,  which turns due to this reflection in the 

horizontal direction and further; VII is the reflected Prandtl-Meyer wave (it is proven 

in [62] that this is a wave of compression); BC is the head acoustic characteristic of 

the first family of rarefaction waves IV or V; 1τ  and 2τ  (Figure 2.7, a) are the weak 

tangential discontinuities limiting the shear layer of variable entropy, formed as a 

result of the counter interaction of the reflected shock wave 2 with a centered 

expansion wave IV; 8 ( 1 2B B , Figure 2.7,a) is the resulting shock wave after the 

interaction of the reflected shock with the expansion wave IV. 
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2.2.1 Local solution of the Mach reflection problem 

It is assumed that the reflection of the shock 1 is the Mach one according to the 

von Neumann criterion. This means that the intensity 1J  of the incident shock (the 

ratio of static pressures behind the shock wave and in front of it) is in the range 

1N TJ J J≤ ≤ . (2.20) 

Intensity NJ , the minimal one for the implementation of the Mach reflection of 

shock 1, corresponds to the formation of the so-called “stationary Mach 

configuration” with a normal main shock. It is determined by equation (1.20). The 

highest permissible intensity 1 TJ J=  corresponds to a triple shock configuration with 

a normal reflected shock 2 (TB). This transition value satisfies the equation (1.21). 

Shock-wave structures that arise when shocks with intensity 1 TJ J>  reflect, are 

known as Guderley and Vasiliev reflections [20, 104]; they usually not realize in 

steady flows, especially at moderate and high Mach numbers. As a rule, instead of 

them, flows with a detached bow shock (at the entrance to a supersonic air intake) or 

with a strong shock that blocks the flow through the nozzle (at excessive expansion 

regimes of the gas jet) arise. The problem of the ambiguity of realized shock-wave 

structures is discussed further in Subsection 2.3. 

As inequality (2.20) is satisfied, a Mach reflection occurs at the triple point T 

with the formation of a triple configuration of the second type according to the 

classification [1, 10, 79]. The conditions of co-directionality of flows and equality of 

static pressures on both sides of the slipstream emanating from the triple point lead to 

the following system of equations that determines the parameters of the reflected 

shock 2 (ТВ) and the main (Mach) shock 3 (ТО): 

1 2 3T Tβ β β+ = , 1 2 3T TJ J J= ,   (2.21) 

Here 2TJ  and 3TJ  are the intensities of shocks 2 and 3 at point Т. The following 

relations (1.4) determine the flow deflection angles 2Tβ  и 3Tβ  from the horizontal 

direction at the triple point: 
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The flow deflection angles are considered positive, as the flow turns 

counterclockwise. Flow Mach numbers ( 1M  is one after the incident shock  1, and 

also 2TM  and 3TM  are Mach numbers after corresponding shocks in the vicinity of 

the triple point) satisfy the formulas (1.6): 
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As usually at Mach reflection of oblique shocks in a steady supersonic flow, it 

is assumed that the flow behind the reflected shock 2 is supersonic (i.e. 2 1M ≥ ). This 

leads to the following limitation for the intensity of the incident shock: 

1N SJ J J≤ ≤ , (2.24) 

which is a little stricter than (2.20). The intensity SJ  of the incident shock 

corresponds to the critical flow velocity behind the irregularly reflected one. Its value 

is determined by the 10th order algebraic equation with respect to 2M  and the 14th 

order equation with respect to SJ . Their numerical solution and analysis of which are 

given in studies [109, 145]. 

Angles 1σ , 2Tσ  and 3Tσ  of the inclination of the corresponding shocks to the 

direction of the flow in front of them relate to their intensities by formula (1.1): 

( ) 2 2
1 11 sinJ Mε σ ε= + − , ( ) 2 2

2 1 21 sinT TJ Mε σ ε= + − , 
(2.25) 

( ) 2 2
3 31 sinT TJ Mε σ ε= + − .  
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Since the reflected shock (2) and the main one (3) have non-zero geometric 

curvature, their intensities ( 2J  and 3J ) are the variable functions that change from the 

values 2TJ  and 3TJ  at the triple point to values 2BJ  and 3OJ  at points B and O, 

respectively. According to (1.4), angles 2β  and 3β  of flow turn at arbitrary points on 

shock fronts 2 and 3 saisfy the relations 

( ) ( )( )
( ) ( )( )

2
1 2 2

2 2
2 1 2

1 1 1
tg

1 1 1
M J J
J M J

ε ε ε
β

ε ε ε
+ − − − −

=
+ + − − −

, 

 
( ) ( )( )

( ) ( )( )
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3 3
3 2

3 3

1 1 1
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1 1 1
M J J
J M J

ε ε ε
β

ε ε ε
+ − − − −

=
+ + − − −

, 

and the angles 2σ  and 3σ  of inclination of the shocks 2 and 3 towards the flow in 

front of them at arbitrary points of shocks obey the relations (1.1) 

( ) 2 2
2 1 21 sinJ Mε σ ε= + − , ( ) 2 2

3 31 sinJ Mε σ ε= + − , 

Similarly to (1.6), Mach numbers 2TM  and 3TM  in regions II and III immediately 

after those curved shocks are also calculated: 

( ) ( )( )
( )

2 2
2 1 2

2
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1 1
1

J M J
M

J J
ε ε

ε
+ − − −

=
+

, 
( ) ( )( )
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Thus, relations (2.21-2.23) with additional restrictions (2.20) or (2.24) make it 

possible to calculate the parameters of all shocks and the flow behind them in the 

vicinity of the triple point of the Mach reflection. For given parameters of the 

oncoming flow and the intensity of the incident shock, the solution at the triple point 

is unique and accurate for the flow of an inviscid gas. It has been well studied 

parametrically [83, 107–109] and is often used in various analytical models [52, 53, 

56–58, 66–68, 110]. At the same time, it does not determine the geometric size of the 

Mach shock and, accordingly, the shape of other resulting shocks and discontinuities. 

Consequently, the integral characteristics of the flow as a whole remain unknown. 

This problem has remained unresolved for quite some time (see [16]). 
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2.2.2. Analytical description and choice of initial approximation for the 

parameters of the flow along the “virtual nozzle” behind the main shock 

Slipstream τ , inclined at an angle 3 3 1 2T T Tθ β β β= = +  to the horizontal plane at 

the triple point T of Mach reflection, limits from above the flow region III behind 

a strong main (Mach) shock, which is initially (immediately behind the main shock) 

subsonic. According to the von Neumann criterion, Mach reflection exists when 

3 0Tθ < . The so-called von Neumann reflection, which theoretically can occur at 

3 0Tθ > , is unstable in real steady flows and does not form in practice [21, 45]. 

Due to the small transverse gradients of flow parameters in region III, this flow 

is usually considered as isentropic and quasi-one-dimensional one, similar to quasi-

one-dimensional flow through a classical supersonic nozzle (“de Laval nozzle”) with 

small surface inclination angles. The analogy with a supersonic nozzle is even more 

complete, since, under the influence of the fan characteristics of the expansion wave 

IV (Fig. 2.7, b) or V (Fig. 2.7, a), a slipstream τ  turns upward, causing its angle of 

inclination τβ  becomes equal to zero at some point *C . As evidenced in laboratory 

[21, 24, 36-38] and numerical [32, 34] research, flow velocity in the subsonic region 

* *TOO C  downstream some line * *O C  (“critical section”) becomes supersonic. Thus, 

the term “virtual nozzle” is an adequate characteristic of the flow in region III after 

the main shock. 

The coincidence of the slipstream turn and of the flow transition behind the 

Mach shock to supersonic speeds is a key condition in various analytical models [40, 

52-58, 66-68, 110, 145] and numerical studies that allow estimating the height Ty  of 

the Mach stem. If the expected height is too low, the gas flow in region III reaches 

the critical speed before the slipstream turns to the horizontal direction; otherwise, if 

the height estimation Ty  is too large, the slipstream turns to a horizontal direction, but 

the flow velocity below it remains subsonic ( 0τβ =  at 3 1M < ). 

Within the framework of a quasi-one-dimensional model of flow in region III 

behind the Mach shock 3, width y  of an arbitrary cross section of this flow region is 
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determined by the flow Mach number 3M τ  in the corresponding section through the 

ratio of flow rate functions like (1.22): 

( )* 3y y q M τ= ,    (2.26) 

so 

( ) ( )3 3Ty y q M q M τ= . (2.27) 

Here ( ) ( ) 1 221 1q M M M
ε

ε
−

 = ⋅ + −   is the dimensionless isentropic flow rate 

function, *y  in (2.26) is the width the “critical section” * *O C  of region III, and 3M  is 

the averaged Mach number of the flow just downstream the curvilinear shock wave 3 

(at a first approximation, 3 3TM M= ). Static pressure p , equal on both sides of the 

sleepstream, as well as other flow parameters on the lower side of this sleepstream, is 

determined by the isentropic flow formulas (1.23): 

( ) ( ) ( ) ( )3 3 2 2T Tp p M M M Mτ τπ π π π= = . (2.28) 

Here ( )
( )1

211
2

M M
γ γγπ

− −
− = + 

 
 is the isentropic pressure function, and 2M τ  is the 

Mach number of the flow at the considered point, but on the upper side of the 

slipstream. 

If the height of the Mach shock is sufficiently large compared to the cross-

sectional size of the flow as a whole, and transverse flow gradients in region III 

cannot be neglected, then some methods for averaging flow parameters can be used 

[111]. First of all, instead of the Mach number 3TM  behind the main shock in the 

vicinity of the triple point, the Mach number 0M  behind the direct main shock at 

point O can be used in (2.26-2.28). Similarly, some averaged (between 0M  and 3TM ) 

values (for example, half the sum of these Mach numbers) can be used. However, 

since it is the Mach number 3TM  in fact, accurately characterizes the initial (in the 

vicinity of the triple point) state of the flow at the lower side of the slipstream, the 

approximation 3 0M M≡  is more controversial. As a compromise, the initial static 

pressure at the left boundary of subsonic zone III can be estimated as the averaged 

integral value according to [52]: 
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( )3 3
0

Ty
l

Tp p y dy y= ∫ , (2.29) 

supplemented with a parabolic approximation of the main shock shape. 

An original method for averaging flow in the subsonic zone was proposed and 

applied in [58] and [67]. Based on a first-order approximation for the flow behind the 

main shock, the following relation is derived in [58, 67] to estimate the initial average 

Mach number in region III: 

( )
( )( )

3 3 3
3

3 3

2 cosT T T O O

T O T O

u u
M

a a
ρ σ ρ
ρ ρ

+
=

+ +
.  (2.30) 

In (2.30), 3Tρ , 3Tu  and 3Ta  are gas density, flow velocity and sound speed in zone III 

immediately after the triple point; Oρ , Ou  and Oa  are the same parameters behind the 

direct shock at point O; 3Tσ  is the slope angle of the Mach shock at the triple point. 

2.2.3. Approximation of the flow behind a reflected shock 

Already in the first work [52], devoted to an approximate analytical model of 

a flow with Mach reflection, it was assumed that the head acoustic characteristic BC  

of the second family of the expansion wave falls on a slipstream in the critical section 

of region III (i.e., *C C≡  in Figure 2.7,a-b), but the sleepstream τ  is geometrically 

straight and has the same angle of inclination as beyond the triple point. Provided that 

all the angles of inclination of all strong and weak discontinuities that form the 

triangle BTC  are constant, it is easy to determine the length of the subsonic part of 

the “virtual nozzle” III and, therefore, the height of the triple point. 

However, comparison with experimental results [21, 24] reveals large (up to 

50–100%) errors in the estimates of the study [52]. The main reasons for 

unacceptable errors are as follows: 

- the slipstream τ  is actually curvilinear. Its angle of inclination is 

variable, and initially (at the triple point) it is quite small. Therefore, even a small 

quantitative error in estimating the angle of inclination of the slipstream significantly 

affects the estimation of the length and width of the subsonic zone. Imagine, for 

example, a variation in the inclination angle τθ  from 3 2Tθ = −   to 10τθ = −   at point 



60 
 
C . If you consider the angle τθ  constant, as in [52-55], it leads to error for length and 

width of the subsonic zone by several times. Thus, neglecting the change in the 

inclination angle leads to a very strong underestimation of the size of the Mach 

shock; 

- the inverse turn of the slipstream τ  under the influence of the incident 

rarefaction wave IV or V does not occur instantly, but along the finite sector *CC . 

Neglecting the finite length of the sector *CC also leads to significant discrepancies. 

Approximation [53] of the flow in region II by the Grib-Ryabinin method 

[112] based on the Legendre tangent transformation significantly complicates the 

mathematical model, but the difference between the results of [52] and [53] is only 

2-4%, as shown in [56], Therefore, the errors in determining the dimensions of the 

Mach stem remained. 

It was first proposed in [56, 62] (subsequent applications in [57, 58, 68, 

145]) to consider the flow in region II behind the reflected shock as a simple 

Prandtl-Meyer wave with straight acoustic characteristics of the first family. The 

proposed model resembles the “shock-expansion method” [113, 114], but is used 

not only to estimate pressure, but also to restore the shape and corresponding 

characteristics of all discontinuities in the flowfield. According to the Prandtl-

Meyer invariant and the condition of equality of pressures across the slipstream τ , 

the following relations (1.35-1.38), proven in [62, 64, 65], can be used: 
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Here 2M τ  and 3M τ  are the local Mach numbers above and below the slipstream, 

respectively; ( ) ( )21 1M Mµ ε= + − ; ( )y xτ  is the slipstream shape equation; ( )xτθ  is 

the local slipstream angle; 1χ = +  is the wave direction coefficient. Relations (2.31) 

and (2.34), describing the region of quasi-one-dimensional flow, are similar to 

equations (1.24) and (1.25), respectively. 

Equations (2.31-2.34) should be integrated to the point of intersection of the 

slipstream with the incident characteristic BC . As it is shown in [65] and follows 

from equations (1.51-1.59), the shape of this curvilinear characteristic can be 

determined by the integration of the equations 
2
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in the direction w  of its incidence (see Figure 2.7,a-b). Here wβ  is local flow angle; 

2wM  is local Mach number; ( )2 2arcsin 1w wMα =  is the Mach angle; 2N  is the local 

curvature of the streamline. The relation following from (1.54), 

( )( ) ( )
( ) ( ) ( )

2 2
2 3 2

2 2 2 2 2
2 2 3 2 3 2

1 1 sin sin

sin 1 1 1 sin
w w w w w

w w w w w w w w

M M
N

M M M M M

ψ ε θ χα θ

θ χψ ε θ χα

− − +
= −

 ⋅Ω + − − − + 

, 

where ( ) ( )
1 3 3C T T wy y q M q MΩ = − , determines the curvature of the streamline at 

some arbitrary point 1C  of the simple Prandtl-Meyer wave. Here 1ψ = + , since flow 

region II is considered as a expansion wave (and not a compression wave, since it is 

adjacent to region III through a slipstream τ , and the static pressure in region III 

decreases downstream). Mach numbers 3wM  depends on 2wM  similarly as 3M τ  

depends on 2M τ , see (2.26-2.28). 
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The results of integration of (2.31-2.34) show that the slipstreamis is always 

convex upward. Therefore, its inclination to the horizontal plane increases along the 

entire sector TC . The characteristic BC  is a weak discontinuity, and therefore the 

instantaneous turn of the slipstream at the point C  from the finite angle of inclination 

(in absolute value it is greater than at the triple point) to the zero value of this angle is 

impossible. As is known, the intersection of the slipstream and the weak discontinuity 

leads to a breakin the curvature of the slipstream, and not to its kink [1, 56]. 

2.2.4. Curvature of the reflected shock and approximation of its shape 

Since the expanding flow in region II influences the previous reflected shock 

TB, the shape of this shock is curvilinear, and its intensity ( 2J ) and the angle of its 

slope to the oncoming flow ( 2σ ) are variable. But, as it is shown, for example, in [9, 

112], the disturbances reflected during the interaction of an oblique shock with the 

subsequent overtaking expansion wave are very small (they have the third order 

compared to similar parameters of the expansion wave, which itself is rather weak in 

the considered case), and their influence can be neglected. Consequently, the shape of 

the reflected shock can be restored as follows: the direction of the flow at any point 

behind the shock must correspond to the flowfield in the downstream overtaking 

expansion wave II. The basics of this method and the corresponding relationships can 

be found in [9, 62]. 

In most practically important cases, variation of the slope angle of the reflected 

shock TB does not exceed 1°. For example, when 5M = , 1 36Tσ =   and 1.4γ =  in the 

problem of jet outflow (dimensionless height of the Mach shock 0.390Ty h =  

according to calculations of the supersonic part of the flowfield by the method of 

characteristics [115]), angle of inclination of the reflected shock at the triple point 

2 40.857Tσ =  , and the angle of inclination of the same shock at point B of its exit to 

the jet boundary 2 40.395Bσ =  . At 5M =  and 1 40Tσ =  , when 0.589Ty h = , the 

corresponding angles of inclination of the shocks are equal 2 47.492Tσ =   and 

2 47.043Bσ =  . For this reason, if we consider the reflected shock wave TB as a 



63 
 
surface with a constant angle of inclination equal to the angle of inclination at the 

triple point, as is customary in numerous studies [52-55, 57, 58, 66-68], it does not 

lead to a significant error in determining the size of the Mach stem and in estimating 

other flow parameters. 

If we do not neglect the curvature of the reflected oblique shock, we can 

propose a method for its conjugation with a subsequent overtaking expansion wave, 

which was discussed in [62, 145]. The shape of the shock 2 is determined in the polar 

coordinate system ( ),r ϕ , associated with a point A, by solving equations: 

( )2 1cotdr r
d

σ β ϕ
ϕ
= ⋅ + − , (2.36) 

( )
2 2

2 1 2sin
d r
d
σ σ
ϕ σ β ϕ β

∂
= ⋅Θ ⋅

+ − ∂
. (2.37) 

Here r  is the distance from point A to the considered point on the shock surface; 2σ  

is shock slope angle to the flow in front of it at this point;

( )2 2 2 2sinSM K α σ βΘ = ⋅ ⋅ − + ; ( )2 2arcsin 1 Mα = ; 2M  is local Mach number behind 

the shock; 2β  is the angle of flow deflection on shock surface; SK  is the curvature of 

the streamline at the point under consideration behind the shock which corresponds to 

(1.56): 

( )( ) ( )
( ) ( ) ( )

2 2
2 3 2

2 2 2 2
2 2 3 2 3 2

1 1 sin sin

sin 1 1 1 sin
S

M M
K

M M M M M

ε θ α θ

θ ε θ α

− − +
= −

 ⋅Ω + − − − + 

; 

where 

( ) ( )( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )( ) ( )

24 4 2 2 2 2 2
1 2 2 1 22

4 4 2 2 2
2 1 2 2 1 2

1 cos 1 2 cos 2 1 sin 1

1 1 cos 1 2 cos 2 1 cos 1 2 1

M M

M M

ε σ ε σ ε ε ε σ εσ
θ ε ε σ ε σ ε ε σ ε ε

− − − − − − − −∂
=

∂  − + − + + − − − − − − 
, 

1 2θ β β= +  is flow angle behind the shock at a considered point, ( )3q M  is flow rate 

function, 3M  depends on 2M  according to the relations (2.26-2.28),

( ) ( )3 3T Ty y q M q MΩ = − , and 3TM  is flow Mach number behind the main shock in 

the vicinity of the triple point. 
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Equations (2.36-2.37) are to be integrated from the value 1Tϕ σ= −  at the triple 

point T (other initial conditions also correspond to the triple point) to a negative value 

1Bϕ θ= , corresponding to the point B. 

The results achieved by integrating equations (2.36) and (2.37) differ 

insignificantly (usually by 0,01-0,02o for value of angle 2Bσ ) from the results of 

calculations of the supersonic part of the flow by the method of characteristics, 

asymptotically obtained at the maximum refinement of the computational grid. All 

other flow parameters behind the reflected shock (for example, flow angle 2Bθ  and 

Mach number 2BM ) are determined simultaneously throughout its entire length. 

2.2.5. Interaction of a reflected shock with an oncoming expansion wave 

There are at least two ways to construct the shape of a reflected shock wave in 

the region of its interaction with a expansion wave IV of the opposite direction (see 

Figures 2.7a and 2.8; the latter one considers this type of interaction separately). The 

first of that methods was proposed in [60, 61] and applied in [54-56] and further 

studies. It assumes equality of static pressure and co-directionality of flow velocity 

vectors behind the outgoing shock 1 2B B  and a refracted expansion wave V, which 

then influences the sleepstreamτ . The second way [61, 63] assumes that the 

outgoing shock 1 2B B  behind the point 2B  is geometrically straight (i.e., it has zero 

geometric curvature). Both methods lead to a second-order ordinary differential 

equation for determining the shock shape 1BB  in the interaction region. In addition, 

they make it possible to determine the flow parameters in a expansion wave V. 
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Figure 2.8. Interaction of an oblique shock with a fan of characteristics of the expansion wave 

(fragment of Fig. 2.7a with additional notations)  

The implementation of the first method [60, 61] is as follows. The so-called 

shear layer, limited by weak tangential discontinuities 1τ  and 2τ , separates the flows 

that have passed through: on one side of the layer – a centered expansion wave IV 

and the resulting (outgoing) shock 8 ( 1 2B B ); on the other side of the shear layer – 

reflected shock 2 (TB ) and the refracted wave V, which is also considered as a 

Prandtl-Meyer flow with straight acoustic characteristics of the second family. The 

conditions for equality of pressures and co-directionality of flows behind the resulting 

shocks and waves are written in the form 

2 5 4 8BJ J J J= , 

2 5 4 8Bβ β β β+ = +  

(2.38) 

(2.39) 

The deflection angles on the shocks considered in (2.38-2.39) depend on their 

strength as it follows (1.4): 

( ) ( )( )
( ) ( )( )

2
1 2 2

2 2
2 1 2

1 1 1
tan

1 1 1
B B

B
B B

M J J
J M J

ε ε ε
β

ε ε ε
+ − − − −

=
+ + − − −

, 
(2.40) 

( ) ( )( )
( ) ( )( )

2
4 8 8

8 2
8 4 8

1 1 1
tan

1 1 1
M J J
J M J

ε ε ε
β

ε ε ε
+ − − − −

=
+ + − − −

. 
(2.41) 

In Prandtl-Meyer waves IV and V, they obey the relations in the form (1.30) и (1.32): 

( ) ( )4 4 1M Mβ ν ν= − , ( ) ( )5 2 2BM Mβ ν ν= − ,  (2.42) 
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( ) ( )4 4 1J M Mπ π= , ( ) ( )5 2 2BJ M Mπ π= . 

Here ( ) ( )2 21 arctan 1 arctan 1M M Mν ε ε= − − −  is the Prandtl-Meyer function. 

In the relations (2.38-2.42), 4M  and 5M  are the Mach numbers of flows after 

the waves IV and V; 8J  and 8β  are the intensity of the outgoing shock 8 at the point 

1B  and corresponding flow deflection angle on its surface. As a result of solving 

(2.38-2.42), the intensity 8J  of the resulting shock wave and its angle of inclination 

are determined, as well as the intensity 5J  of the reflected wave V, flow Mach 

number 5M  downstream it and the angle of inclination of its tail straight acoustic 

characteristic, since it is inclined at a Mach angle to the flow velocity vector. 

In Figure 2.8, which illustrates the counter interaction of an oblique shock with 

a Prandtl-Meyer wave, I is the flow region behind the incident shock wave ( 1M  is the 

Mach number of the flow in this zone); II is flow region behind the reflected shock 2 

incoming to the interaction region; IV is the fan of characteristics of an expansion 

wave coming from the trailing edge of a streamlined wedge (D is its center; ξ  is its 

arbitrary straight characteristic of the second family); V is the fan of characteristics of 

the outgoing expansion wave (ζ  is its arbitrary characteristic of the second family);

1BB  is the curved shock under the influence of a wave IV; 8 ( 1 2B B ) is the outgoing 

shock resulting from this ineraction; 1τ  and 2τ  are the weak tangential discontinuities 

limiting the shear layer of variable entropy between them; 2σ  and 2β  are, 

respectively, the angle of shock slope and the angle of flow deflection at the shock 2; 

2BM  is flow Mach number at point B immediately after that shock. 

Without additional reservations, we can consider the interaction of the shock 

wave not with the entire expansion wave of the opposite direction (so-called counter 

wave), but with part of it up to an arbitrary straight characteristic ξ . This 

characteristic with local Mach number M ξ  is directed at an angle 

( ) ( ) ( )1 1M M Mξ ξβ ν ν α+ − −  to the horizontal. 
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Solving a system completely analogous to expressions (2.38-2.42), up to the 

characteristic ξ , one can obtain: the Mach numbers of the flow on both sides of the 

interacting shock 1BB  at an arbitrary point; the angle of inclination which leads to the 

equation for ( )
1BBy x′ , determining the shape of the shock; angle of inclination of an 

arbitrary characteristic ς  of reflected wave V (see Figure 2.8); flow direction and 

flow Mach number on this characteristic. As it is shown in [61-63], the obtained 

solutions are almost indistinguishably close to the exact one.  

The second method of analysis [61-63] is based on the assumption that the 

outgoing oblique shock wave is almost straight (has zero curvature) immediately 

before the entry point B into the fan of characteristics (shock 2) and immediately 

after the point 1B  of the exit from that fan (shock 8). Differential conditions of the 

dynamic compatibility [1, 63], together with an exact solution to the problem of the 

interaction of an oblique shock with a weak discontinuity [1], make it possible to 

estimate the geometric curvature of the shock 1BB  at its arbitrary point accurately. 

This leads to a second-order ordinary differential equation that determines the shock 

shape, variable shock intensity, Mach numbers and other flow variables on both sides 

of the interacting and outgoing shocks with, as it is shown in [62, 63], with almost the 

same or slightly better accuracy. 

2.2.6. Reflection of a fan of characteristics of the expansion wave, which leads 

to a reverse turn of the slipstream 

Opposite rotation of a slipstream τ  to the horizontal direction at a point *С  

(see Fig. 2.7, a-b) occurs under the influence of an expansion wave IV (Figure 2.7,b) 

or a refracted expansion wave V (Figure 2.7,a).  

An analytical method for study the reflection of a expansion wave from a 

slipstream is discussed in [56, 62, 145]. Limiting ourselves to the reflection of a 

centered wave and maintaining the nomenclature of notations shown in Figure 2.9, 

we discuss below an analytical method that can be generalized to the reflection of an 

uncentered (“simple”) refracted wave in a flow between two wedges. 
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Figure 2.9. Incidence of the expansion wave IV on a slipstream which borders quasi-one-

dimensional flow region III (fragment of Fig. 2.7b with additional notations) 

Here τ  is the slipstream ( Cθ  is its angle of inclination at point C of the 

incidence of the head characteristic of the expansion wave); III is the «virtual nozzle» 

( * *C O is its «critical section»; 3CM  is flow Mach number just below the point C; 3NM  

is flow Mach number at an arbitrary point N just below the slipstream); IV is the 

incident expansion wave (BC is its head characteristic of the second family; BCM  is 

the Mach number on the characteristic BC; 4M  is flow Mach number on an arbitrary 

incident characteristic 1BN ); VI is the interaction area; VII is the reflected wave. 

Calculations of the supersonic part of the flow demonstrate that the gradients of 

gas-dynamic variables in the region behind the reflected shock are small compared to 

the intense variation of  flow parameters in the region IV (see Figure 2.7). For 

example, a sector TC of slow flow deflection at a slipstream is several times longer 

than the sector *СС  of its reversal in the opposite direction to a slightly larger (in 

absolute value) angle. Thus, it is permissible to consider the flow parameters on the 

characteristic BC as averaged and identical. Then, the characteristic BC itself should 

be considered as the straight one, and the flow in the region IV – as a centered 

Prandtl-Meyer wave with straight characteristics of the second family. 

Boundary characteristic BC is also a weak discontinuity: the streamlines 

undergo a finite break in curvature when crossing that line. In particular, the 
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curvature of the slipstream τ  changes sharply and, as a rule, abruptly becomes 

positive at the point С. Thus, the slipstreamτ  becomes convex downwards. 

Average flow Mach number BCM  on the characteristic BC is defined as 

follows: 

( )1 sin arctanBC C xyM nθ π= + ∆ + . (2.43) 

Here 0n =  at C Bx x> ; 1n =  otherwise; ( ) ( )xy C B C By y x x∆ = − − ; Cθ  is flow angle at 

a point C. 

The following relation is valid for an arbitrary internal straight characteristic 

1BN  of the expansion wave IV: 

( ) ( ) ( ) ( ) ( )( )
1 1 4 4tanN B N B C BCy y x x M M Mθ ν ν α− − = + − − . (2.44) 

Here ( )Mν  is the Prandtl-Meyer function. 

Expression (2.44) determines the flow Mach number 4M  on this arbitrary 

characteristic, as well as the angle of its inclination and flow parameters on it not 

only in region IV, but also in the section 1N N  inside zone VI. By relating the angles 

of flow deflection in the incident (IV) and reflected (VII) Prandtl-Meyer waves, it is 

easy to obtain the equation for the shape of the sector DC of the slipstream τ : 

( ) ( ) ( ) ( )( )4tan 2C BC Ny x M M Mτ τ θ ν ν ν′ = + − − , (2.45) 

while an equation similar (2.45), 

( ) ( ) ( ) ( ) ( )( )4 4tanB B C BCy y x x M M Mτ τ θ ν ν α− − = + − − , (2.46) 

determines the flow Mach number 4M  in an incident wave. Mach number NM  on the 

upper side of the slipstream obeys the condition of equality of static pressures which 

is similar to (2.28): 

( ) ( ) ( ) ( )3 3N BC N CM M M Mπ π π π= , (2.47) 

and the Mach number 3NM  on its lower side is determined by the law of mass 

conservation in the form analogous to (1.22): 

( ) ( )3 3N C N Cy y q M q M= . (2.48) 
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Equation (2.45) with restrictions (2.43, 2.44, 2.46-2.48) allows us to construct a 

shape of the slipstream τ  after the point C at least until the flow below it reaches a 

critical speed (i.e., until we meet the condition 3 1NM = ). 

Applying the solution for the interaction of an oblique shock with the fan of 

characteristics of the oncoming expansion wave, it is easy to generalize equations 

(2.43-2.48) to the case of the interaction with a refracted uncentered wave. 

2.2.7. General algorithm for calculating the shock-wave structure of a flow 

with Mach reflection 

The equations discussed above make it possible to calculate and to analyze the 

shock-wave structure of the entire flow under study if the defining conditions are 

specified (i.e., Mach number M  of the undisturbed flow, slope angle 1σ  of the 

incident shock and the ratio of gas specific heats). One unknown quantity (height Ty  

of the main shock) can be assigned quite arbitrarily in a first approximation. It is to be 

refined iteratively. To estimate the height of the Mach stem in jet [56, 62, 145] and 

internal (nozzle, channel) [62, 145] flows most accurately, the following algorithm 

was proposed: 

1. Values M , 1σ  and γ , corresponding to the case under consideration, are set. 

The problem of local calculation of the triple configuration arising at Mach reflection 

of shock 1 is solved. The resulting solution determines the intensities 2J  and 3J  of 

the reflected shock and the main one in the vicinity of the triple point, as well as the 

Mach numbers 2TM  and 3TM  behind those shocks and the initial angle 3Tθ  of 

inclination of the slipstream τ . 

2. Some initial estimated value of Ty  (height of the triple point, also known as 

the size of the Mach stem) is assigned at the first iteration. 

3. Shape of the reflected shock 2 in the section TB  is determined by equations 

(2.36) and (2.37). Those equations must be integrated up to the boundary of the 

overexpanded jet or the point of shock intersection with the first characteristic of the 

oncoming expansion wave (i.e., to point B). Thus, the Mach number of the flow 2BM  

and flow rotation angle 2Bβ  at shock wave 2 at point B are determined. 
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4. Equations (2.31-2.34), which determine the shape of the slipstream τ  in the 

sector TC (as well as flow parameters on both sides), are to be integrated. At the same 

time, equations (2.35) are to be solved, which determine the shape of the first incident 

characteristic BC  (and flow parameters along it) up to the point C  of its intersection 

with the slipstream. 

5. When analyzing the Mach reflection in a narrowing channel between the 

wedges, the problem of the interaction of an oblique shock wave with the fan of 

expansion wave characteristics is also to be solved. Using methods developed by ie 

and Ben-Dor [60], or Meshkov and Omelchenko [61], we determine the shape of the 

interacting shock 1BB  and flow parameters in the outgoing refracted expansion 

wave V. 

6. The flow parameters at the first boundary characteristic of the expansion 

wave incident on the sleepstream are averaged. Equations (2.43-2.48) determine the 

shape of the sector *СС . of the slipstream. Those equations are to be integrated until 

one of the following two conditions is met: complete horizontal rotation of the 

sleepstream τ  (expressed by condition 0τθ = ) or increasing the flow velocity at its 

lower side to a critical value 3( 1)M τ = . In the first case, the height Ty  of the triple 

point considered at this iteration is too large, in the second case it is too small. 

7. Based on the above conclusion about the value of the triple point height, we 

adjust the value of the height Ty  of the Mach shock and return to the step 3. The 

result of the last iteration (if sufficient accuracy is achieved) is considered the final 

one.  

Thus, the problem of calculating the height of the triple point (with the 

corresponding analysis of the entire flowfield and its shock-wave structure) is 

reduced to a boundary value problem for several ordinary differential equations. 

The calculation have shown the absence of numerical instabilities for 

reasonably specified flow parameters, at least in a supersonic jet flow with Mach 

number 2M > , when the strength of the incident shock satisfies the inequality (2.20). 

Iterative calculation of Mach stem size using a conventional PC and selected widely 
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available software (MATLAB 2017) takes about ten second, while solving a similar 

problem when calculating the supersonic part of the flow using the method of 

characteristics of second-order accuracy takes several minutes at each iteration (in 

total, at least several hours). Direct calculation of the flowfield by CFD methods 

using well-known codes (for example, ANSYS Fluent, applied in [150, 151, 152] to 

similar problems) takes about two hours on one computer, but does not allow one to 

estimate the size of the Mach shock and the shape of other gas-dynamic 

discontinuities due to their insufficient resolution, as well as to apply differential 

shock wave analyzers [116] to the resulting flowfields. 

2.2.8. Results of application of the proposed analytical model and its 

experimental verification 

Calculation results for triple point height Ty  (referred to half the width of the 

nozzle exit section h ) in an overexpanded jet flow are presented in Table 2.1 (see 

also Figure 2.10) for the flow Mach number 5M =  and different angles 1σ  of shock 

incidence [145]. The results obtained by the method of characteristics applied to the 

entire supersonic part of the flowfield [115] are presented in the last row of Table 2.1. 

Analytical and numerical data differ by approximately 0.5-1%; the results of their 

comparison are presented in Figure 2.10. Consequently, the proposed approximate 

analytical method has very high accuracy, quite sufficient for quickly solving 

relevant problems arising in aircraft and rocket engine building. Calculation of 

similar characteristics of the shock-wave structure at Mach numbers 3M =  and 

4M =  demonstrated even greater accuracy than presented in Table 2.1. 

As shown in Fig. 2.10, the size of the main (Mach) shock is a continuous 

function of the angle 1σ , starting from value 0Ty =  at 1 30.796σ =   (that corresponds 

to the von Neumann criterion). 
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Figure 2.10. Values of the dimensionless height of the triple point ( Ty h ), determined 

analytically (solid line) and numerically (asterisks) depending on the intensity 1J  of incident shock 
Table 2.1 

Results of calculating the size of the Mach shock Ty h , obtained by two methods 

1,σ   31 35 39 43 47 51 55 59 

Ty h , the proposed 
method 

0.046 0.243 0.363 0.455 0.532 0.602 0.673 0.753 

Ty h , the method 
of characteristics 

0.046 0.245 0.364 0.457 0.536 0.607 0.677 0.756 

We should note that, at large strengths of the incident shock (at 1 57σ =   and 

more), the fan of characteristics of the expansion wave IV does not completely turn 

the flow in the horizontal direction with the simultaneous transition of the flow in 

region III through the critical speed. The presented solutions are based on artificially 

lengthening the fan of characteristics of the expansion wave. It is assumed that the 

gas flow through the “virtual nozzle” can remain subsonic at such a deep 

overexpansion (the separation of the flow inside the nozzle, as well as the occurrence 

of a detached shock upon entering the supersonic air intake, are not studied here, but 

have their chance to be realized in engineering practice). 
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Figure 2.11. Values of the dimensionless height of the main shock wave ( Ty AD ) at Mach 

reflection in a narrowing channel depending on the slope angle 1σ  of the incident shock  

The values of the dimensionless height of the Mach shock that occurs in the 

narrowing channel (model of the supersonic air intake) are shown in Figure 2.11 

depending on the angle 1σ  of slope of the incident shock at flow Mach number 

3.98M = . The results shown in Figure 2.11, are within the measurement errors of 

experimental data [21], while the results of the analytical model [58] differ from them 

by 20-25%, and the approximate model [52] – even to a greater extent (40-90%). 

In Figure 2.11, flow Mach number 3.98M = ; large crosses correspond to 

experimental data [21]; curve 1 was obtained using the engineering approach [52]; 

circles and approximating curve 2 –to the method [53]; curve 3 –to the method [58]; 

4 to the data [145], obtained by applying the proposed analytical method.  

Thus, based on the previously obtained results of solving local problems of the 

interaction of gas-dynamic discontinuities and waves, including the solution for the 

triple configuration of Mach reflection, the conjugation of a Prandtl-Meyer wave with 

a previous overtaking shock, with a counter shock and with a quasi-one-dimensional 

flow, the interaction of an incident centered or simple expansion wave with a 

slipstream, etc., a new complex analytical model of the shock-wave structure of a 

supersonic flow with Mach reflection has been developed. Based on the results 
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obtained for a supersonic overexpanded jet flow or flow in a narrowing channel, its 

high accuracy is demonstrated, especially when determining the size of the main 

shock (Mach stem). 

The next necessary step to adapt this analytical model to real flows is to take 

into account the possible pulsed heat supply at the Mach shock, as well as the effects 

of real gas, which are significant for irregular reflection in flows with high Mach 

numbers. 

 

 

2.3. Ambiguity of solutions for shock-wave structures forming in high-speed gas 

flows with a low adiabatic index 

The analytical model presented in the Subsection 2.2 allows us to estimate the 

height of the triple point, other parameters of the shock-wave structure and the 

flowfield with Mach reflection as a whole with high accuracy. As numerous 

experimental and numerical data show [25-29, 32-37, 40-44], those parameters 

(including the size of the main shock) are the only ones that can be realized if Mach 

reflection actually occurs. 

At the same time, the solution with the Mach reflection of an incident shock of 

a given strength, as is known, is not unique. For example, in a wide domain of 

problem parameters (“dual solution domain”), solutions for both steady regular and 

Mach oblique shock reflection coexist [1, 17-20, 44]. According to modern concepts 

of hysteresis, the Mach reflection is preserved within this region, for example, during 

the jet outflow of an overexpanded jet from the supersonic nozzle of an taking off 

rocket or upon entering the supersonic air intake of an accelerating aircraft, but not in 

reverse directed processes. 

As it is shown below, solutions for the flowfield with a separated (bow) shock 

or for a triple configuration of  overtaking shocks (see, for example, [144]) can 

coexist with the solution for the Mach reflection of a steady shock of a given 

intensity. 
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Problems of stability and ambiguity of solutions for Mach reflection of shock 

waves are especially relevant due to the development of aerospace technologies for 

high supersonic speeds; in this case, strong shocks form, which are more adequately 

described by mathematical models of gas flows with a reduced (compared to 

diatomic gas) “effective” adiabatic index. For such high-speed gas flows with a 

reduced ratio of specific heat capacities, the triple configurations of Mach reflection 

with a negative (relative to the oncoming flow) slope angle of the reflected shock 

were found [69] and theoretically studied [70-77]. The possibility of realizing such 

(“negative”) triple configurations, their stability and the uniqueness of the 

corresponding solutions traditionally seem doubtful. Solutions corresponding to the 

formation of “negative” configurations are usually always very ambiguous [144], and 

it is necessary to confirm their realization (as well as the stability of the emerging 

shock wave structures) in each individual practically important case. 

Thus, for the theory of interaction of gas-dynamic discontinuities and its 

practical applications, it is important to determine the areas of ambiguity in the 

solution for shock-wave structures that can arise under the same parameters of a 

supersonic steady flow and of a branching shock [144, 166]. 

Unless otherwise indicated, gas flows with the adiabatic index 1.2γ =  are 

considered in all calculation examples given in the Subsection 2.3,. 

2.3.1. Mathematical apparatus for studying triple configurations of steady 

shocks 

Triple configurations are the shock-wave systems consisting of three shocks 

and a slipstream emanating from their common (triple) point (T in Fig. 1.3,a-f). Such 

configurations arise in many supersonic flows: in nozzles, jets and air intakes, in 

supersonic flow around bodies, at the interaction of supersonic jets with obstacles, in 

jet technologies and other applications of supersonic aerodynamics and gas dynamics. 

Steady shocks ij  ( 1..3i = , Fig. 1.3,а-f), which form a triple configuration, can 

be straight or oblique ones; in the latter case, they deflect the supersonic flow 

opstream them by a non-zero angle iβ . Depending on the mutual ratio of the angles 
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of flow deflection at the shocks, the configurations of the first type (TC-1, 1 2 0β β < , 

1 3 0β β < , Figure 1.3,а), the second one (ТC-2, 1 2 0β β < , 1 3 0β β > , Figure 1.3,c) and 

the third one (ТC-3, 1 2 0β β > , 1 3 0β β > , Figure 1.3,e) are distinguished. Stationary 

Mach configuration (SMC) with a normal main (“Mach”) shock 3j  ( 3 0β = , 

Figure 1.3,b) is the transitional one between structures of the first and second types; 

in also corresponds to the well-known von Neumann criterion of “mechanical 

equilibrium” [8, 16] of changing the type of reflection of the  shock 1j  from a plane 

of symmetry or a solid surface. Configuration TC-2-3 with normal shock 2j  ( 2 0β = , 

Figure 1.3,d) occupies an intermediate position between ТC-2 and ТC-3. 

It is generally accepted that the configurations of the second type form at 

irregular (Mach) shock reflection, and TC-1 and TC-3 occur in special cases of 

regular interaction of counter and overtaking shocks. Types of Mach shock reflection 

with the formation of TC-1 and TC-3, named after Guderley, von Neumann, Vasiliev, 

realize in steady flows with high supersonic speeds extremely rarely [20, 44]. 

However, the formation of branched shock-wave structures with several triple 

configurations of all three types is possible [1, 18, 20] at any irregular interactions 

between overtaking and counter shocks,. 

The compatibility conditions at the slipstream τ  make it possible to relate the 

intensities iJ  of individual shocks and the angles iβ  of flow deflection by equations 

(1.18). In this case, the expression 1 2 3J J J=  can be written in the form (1.19) 

1 2 3Λ + Λ = Λ , (2.49) 

here lni iJΛ =  ( 1..3i = );angles iβ  of flow deflection and Mach numbers iM  behind 

the shocks are associated with shock intensities iJ  and Mach numbers 1iM −  after 

them by the formulas similar to (1.4) и (1.6): 

( ) ( )( )
( ) ( )( )

2
1

2
1

1 1 1
tg

1 1 1
i i i

i
i i i

M J J
J M J

ε ε ε
β

ε ε ε
−

−

+ − − − −
=

+ + − − −
. (2.50) 

( ) ( )( ) ( )2 2
1 1 1 1i i i i i iM J M J J Jε ε ε−

 = + − − − +     (2.51) 
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( 1iM M− ≡  for shocks 1j  and 3j ). 

To calculate the triple configuration, the parameters of the undisturbed flow 

must be specified (its Mach number and adiabatic exponent γ ), as well as some 

parameter of the branching shock 1j  (for example, its intensity). The resulting 

solution is clearly represented on the plane of shock polars ( );β Λ , shown in Figure 

2.12. Heart-shaped curve (polars) I in Figure 2.12,a-f represents the set of shock 

waves that can form in a flow with a Mach number M , polar II corresponds to the 

similar set of shocks in flow with Mach number 1M , pre-rotated at an angle 1β  on the 

surface of the shock 1j . Point a  on polar I corresponds to the given parameters of the 

first shock, point b  of the intersection of the polars determines the parameters of 

other shocks. The possible presence of several points of intersection of shock polars 

(points b , 'b , ''b  in Figure 2.12, b-c) indicates the solution ambiguity of the system 

(2.21, 2.49-2.51) for given M , 1J  и γ . 

Among the many points on shock polars corresponding to the special 

properties of shocks and flows behind them, the following ones are the most 

significant in this case: 

- point m , corresponding to the formation of a normal shock ij  with zero 

deflection angle ( 0iβ = ) and intensity ( ) 2
11m iJ Mε ε−= + − ; 

- point l , corresponding to an oblique shock with a deflection angle 

( )1,l iMβ γ− , whickh is maximal for a single shock (the total deflection angle of on 

several oblique shocks, according to [62, 118-120], can be significantly greater). 

Intensity ( )1,l iJ M γ−  of such a shock is determined by the expression (1.5): 

( )( )
22 2

22 2 1 2 1 2
2 2l

M MJ Mε− − = + + + − + 
 

; 
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a) 

   

b) c) d) 

  
e) f) 

Figure 2.12. Graphical solution for the triple configurations on the plane of shock polars: a) 
main solution; b) “main” solution and “alternative” one; c) a “main” solution and two “alternative” 

ones; d) absence of solution; e) dualism of regular/Mach reflection at 2hM M= ; f) dualism of 
regular/Mach reflection at 1hM M=  

- point “*”, which corresponds to an oblique shock ij  with a critical flow 

velocity behind it ( )1iM = . Dependence (1.7) in the form 

( ) ( )
22 2

2
*

1 1 1 1
2 2

M MJ M Mε− − = + + − + 
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defines the “critical” intensity ( )* 1,iJ M γ−  of such a shock. 

 2.3.2. Existence conditions and ambiguity of solutions for the triple 

configurations 

The need to implement supersonic flow behind the shock 1j  limits from above 

the area of flow deflection angles 1β  by the curve 1 (Figure 2.13), which corresponds 

to the condition ( )1 * 1,iMβ β γ−= . At high Mach numbers ( M →∞ ), deflection angle 

on the shock with critical flow velocity after it strives to a finite limit:  

( )1 arctan 1 2 56.443β ε ε = − = 
 . (2.52) 

Parametric analysis of shock-wave structures is traditionally performed on a 

plane ( )1;M σ , shown in Figure 2.14. The slope angle iσ  ( 1..3)i =  of the shock ij  to 

the velocity vector of the oncoming flow in front of it relates to the shock intensity by 

(1.1): 

( ) ( ) 2
1arcsin 1i i iJ Mσ ε ε −= + +   . 

Curve 1 in Figure 2.14 corresponds to shocks with “critical” intensity and 

limits the region of existence of triple configurations from above. Coordinates of the 

bottom point c  on this curve correspond to the following branching shock 

parameters:  

( )
5 4 1.683

2 1 2cM ε
ε

−
= =

−
, ( )4 1

arcsin 62.327
5 4c

ε
σ

ε
−

= =
−

 , 

and the horizontal asymptote of curve 1 obeys the relation 

( )1 arcsin 1 1 73.221σ ε= + =  . (2.53) 
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Figure 2.13. Areas of the solution ambiguity on the plane “Mach number of undisturbed flow – 

angle of flow deflection on the incident shock” 

 
Figure 2.14. Areas of solution ambiguity on the plane “Mach number of the unperturbed flow – 

slope angle of the incident shock” 

Curve 2, defined by the relation ( ) ( )1 arcsin 1 M Mσ α= = , where ( )Mα  is the 

Mach angle, is shown in Figure 2.14 as the lower boundary of the region of existence 

of triple configurations. Intensities 2 3J J J= =  of the shocks 2j  and 3j  in this 

extreme ( 1 1J → ) case can be determined from the solution of the problem of the 
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interaction of an oblique shock with a previous weak disturbance (which coincides 

ewith the overtaking or counter acoustic characteristic). They obey the following 

relation [62, 63, 121]: 
3

2

0

0i
i

i

AM
=

=∑ ,   

( ) ( )2 22
3 1 4A J Jε ε ε= + − + , 

( )( )( ) ( ) ( ) ( )( )22 2 2
2 4 1 1 2 1 1 4 1 2 ,A J J J J Jε ε ε ε ε ε= − + − − − − − − +  

( ) ( )( )( ) ( ) ( ) ( )2 22 2
1 1 4 1 2 1 4 1 1 ,A J J J J Jε ε ε ε ε = − ⋅ − − + + + + − −   

( ) ( )( )2 2
0 4 1 1A J Jε ε= − − + − . 

(2.54) 

Implementation of supersonic flow behind a shock 1j  is not enough for the 

existence of a triple configuration at given values M , 1J  and γ . Triple 

configurations form only at shock parameters 1j  which correspond to areas I-III in 

Figures 2.13 and 2.14 (there is no solution in region IV). One (“main”) of the 

solutions of the system (2.21, 2.49-2.51) is continuous throughout the entire zone I-

III. It corresponds to configurations of the first type in region I, of the second type – 

in region II, of the third type – in region III. 

Curve 2, which separates regions I and II, corresponds to stationary Mach 

configurations and is described by a relation in the form (1.20). The beginning of this 

curve corresponds to the Mach number ( ) ( )2 1 1.449TM ε ε= − − = , its highest 

point d  – to the parameters ( 1.687dM = , 1 44.684dσ =  ), which can be determined 

from relation (1.20) and the equation 
5

2

0

0i
i d

i

D M
=

=∑ , 

( ) ( )2 3 4 5 6 7
5 1 2 2 2 2 3 ,D ε ε ε ε ε ε ε= − ⋅ − + + + + +  

( )( )2 3 4 5 6 7
4 1 10 12 17 9 12 17 18 5D ε ε ε ε ε ε ε ε= − − + − − + + − + , 

2 3 4 5 6 7 8
3 12 37 65 49 74 40 97 52 10D ε ε ε ε ε ε ε ε= + − − + + − + − , 

2 3 4 5 6 7 8
2 1 46 4 139 64 103 131 28 10D ε ε ε ε ε ε ε ε= − − + − − + − + , 
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( )( )2 3 4 5 6
1 1 4 50 20 47 59 27 5D ε ε ε ε ε ε ε ε= − − − + + − + − ,  

( ) ( )42 2
0 1 4 3D ε ε ε ε= − − + . 

The horizontal asymptote of curve 2 corresponds to the value

( )
( ) ( ) ( )( ) ( )

1 22 3 3

2 1
arcsin 16.694 .

1 1 1 2 1 2 1

ε ε
σ

ε ε ε ε ε ε ε ε ε ε

−
= =

+ − + + + − − + − − −  



 Region II between curves 2 and 3 corresponds to triple configurations of the 

second type, which form at Mach reflection (Figure 1.3c). Flow behind the resulting 

(Mach) shock 3j  in such configurations is subsonic; flow behind the reflected shock 

2j  can be either subsonic or (in the vast majority of cases) supersonic one. Curve 4 in 

Figures 2.13 and 2.14 divides region II into subregions corresponding to Mach 

reflection with subsonic (below curve 4) or supersonic (above it) flow behind the 

reflected shock. Curve 4 starts at point 1h , which corresponds to stationary Mach 

configuration with a critical flow velocity after the reflected shock. Point 1h  

1( 2.188hM = , 1 1 42.593hσ =  , 1 1 17.664 )hβ =   can be determined from the equations 

for the SMC and the following relation: 
3

2
1

0

0i
i h

i

H M
=

=∑ , 

( )( )2 4
3 1 1 2H ε ε ε ε= − − − + ,  ( )2 3 4 5

2 4 6 2 5 3H ε ε ε ε= − − + + − , 

( )2 3 4
1 4 4 3 7 3H ε ε ε ε ε= − − + − ,  ( )32

0 1H ε ε= − − . 

Horizontal asymptotes of the curve 4 ( 1 72.937σ →  , 1 56.439β →  ) are 

analytically described by cumbersome algebraic equations of high degrees and do not 

coincide with the asymptotes of other curves. 

The formation of an SMC, which corresponds to curve 2, satisfies the von 

Neumann criterion of a transition in the type (regular or Mach) of reflection of the 

shock 1j . The von Neumann criterion is most often used for steady flows, especially 

at moderate and high Mach numbers. When analyzing unsteady flows and steady 

supersonic flows with low Mach numbers, the maximum flow deflection angle 
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(“detachment criterion”) criterion is widely used. According to this criterion, the 

regular reflection of the shock 1j  persists as long as there is a solution to the equation 

( ) ( )1 1 2 1 2, , 0M J M Jβ β+ = , (2.55) 

here 1M  is the Mach number behind the incident shock, determined by relation 

(2.51). Solution of equation (2.55) at ( )2 1lJ J M=  defines curve 5 in Figures 2.13 and 

2.14; in the region above which there is no solution for regular reflection. Curves 2 

and 5, which describe two criteria of reflection transition, do not intersect, but have a 

single point of tangency g  ( 2.030gM = , 1 43.516gσ =  , 1 15.683gβ =  ), determined by 

the equations 
4

2

0

0n
n g

n

G M
=

=∑ , 

( )( )3 4
4 1 2 4 2G ε ε ε ε= − − + − , 

2 3 4 5
3 10 20 10 10 12 4G ε ε ε ε ε= − + − − + − , 

2 3 4 5
2 12 24 10 16 18 6G ε ε ε ε ε= − + + − + , 

( )( )( )22
1 2 1 3 4 2 1G ε ε ε ε= − + − + − , ( )( )4

0 1 1G ε ε= + − . 

 

The horizontal asymptote of curve 5 obeys the same relations (2.52) and (2.53) 

as the asymptote of curve 1. 

In the wide region between curves 2 and 5 (“dual solution domain”) with the 

same shock parameters 1j  solutions that describe both its regular and Mach 

reflections coexist. The type of shock reflection in each specific case may depend on 

many factors, including the flow prehistory (have a hysteretic character). 

If regular reflection of the shock 1j  implements, then the flow behind the 

reflected shock 2j  is usually supersonic, except for the thin region between curves 5 

and 5’. Curve 5’ is determined from equation (2.55) at ( )2 * 1J J M=  and corresponds 

to the critical flow velocity behind a regularly reflected shock. 
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Curves 2 and 5’ have two intersection points ( 1h  и 2h ). Point 1h , such that 

1 2.188hM = , 1 1 44.183hσ =  , 1 1 13.299hβ =  , is determined by the equation for the 

corresponding Mach number: 
6

2
1

0

0i
i h

i

H M
=

=∑ , 

2 3 4 5 6
6 (1 )(1 6 3 8 2 )H ε ε ε ε ε ε ε= − − − + + − − + ,

2 3 4 5 6 7
5 10 44 26 42 42 12 18 6H ε ε ε ε ε ε ε= − + + − − + − , 

2 3 4 5 6 7
4 31 85 16 113 78 39 45 15H ε ε ε ε ε ε ε= − + − − + + − + , 

2 3 4 5 6
3 (1 )(36 44 55 93 16 40 20 )H ε ε ε ε ε ε ε= − − − + + − + , 

2 3 4 5 6
2 (1 )(23 29 48 57 9 30 15 )H ε ε ε ε ε ε ε= − − − − + + − + , 

2 2 3 4
1 (1 )(1 )(11 9 6 12 6 )H ε ε ε ε ε ε= − − − − + − , 5 2

0 (1 ) (1 )H ε ε= − − ⋅ + . 

 

At the parameters of the incident shock  corresponding to the points 1h  and 2h , 

both a stationary Mach configuration and a regular reflection with a critical flow 

velocity behind the reflected shock can occur. If the reflection transition corresponds 

to the point 2h , there is an abrupt change in the parameters of the reflected shock, 

corresponding to the value ∆Λ  (see Figure 2.12,e). If it takes place at the parameters 

of the incident shock corresponding to the point 1h , shock 2j  does not change its 

intensity (Figure 2.12,f). 

The horizontal asymptotes of closely spaced curves 5 and 5’ coincide. 

Curve 3, which corresponds to the transition configurations TC-2-3, obeys the 

equation (1.21). It starts at a point T , and has horizontal asymptotes which obey the 

equations (2.52), (2.53) and coincide with the asymptotes of curve 1. 

Curve 1f , which limits the region of existence of triple configurations from 

above, is determined from the solution of the problem of interaction of a shock with a 

subsequent overtaking weak discontinuity without formation of reflected 

disturbances. It is characterized by the following dependence, common to curves 1f  

and 2f  [62, 79, 120, 122]: 
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( ) 1M A B C ε ε= − +  
,   

( ) ( ) ( )( )2
1 11 1 1 3 4A J Jε ε ε ε = + + − −  , ( )2 2

1 1 2 2B J ε ε ε= − − − , 

( )( )1 12 1C J Jε ε ε ε= + + . 

(2.56) 

Points 1F  and 2F , serving as the beginnings of the corresponding curves, obeys 

the relation ( ) ( )1,2
2 1 1 2FM ε ε= ± ±  ( 1 1.274FM = , 2 1.876FM = ). Asymptotes 

of curves 1, 3 and 1f  coincide at high Mach numbers. 

In a number of cases, the same parameters of the problem (values of M , 1J  

and γ ) corresponds not only to the above-described “basic” solution (point b  in 

Figure 2.12,b-d), but also to “alternative” solutions (points 'b  and ''b ), describing a 

triple configuration of the third type. At the parameters corresponding to the area 

between the curves 2 and 2f  in Figure 2.14 (as well as to the area under the curve 2f  

in Figure 2.13), there is a single solution for the “alternative” TC-3, and in a 

curvilinear triangle 2F vw  there are two such solutions which appear on the curve vw  

from the point of contact of the shock polars. Triple configuration parameters 

corresponding to point v , can be determined by equations (2.56) for the Mach 

number ( 1.790vM = ) and the following equation for strengths of the shocks 2j  and 

3j  ( 2 3J J J= = ): 
8

0

0i
i

i

V J
=

=∑ , 

4
8 (1 )V ε= − ,  2 2 3

7 2(1 ) (1 3 11 )V ε ε ε ε= − − − + − ,  
2 3 4

6 2 (9 44 72 64 35 )V ε ε ε ε ε= − − + − + , 
2 3 4 5

5 4 (7 26 62 78 31 20 )V ε ε ε ε ε ε= − + − + − , 
2 3 4 5 6 7

4 3 18 114 304 275 326 48 32 )V ε ε ε ε ε ε ε= − + − + − + − , 
2 3 4 5 6

3 2 14 100 156 378 118 128V ε ε ε ε ε ε= − + − + − + − ,  
2 3 4

2 4 (3 6 41 20 42 )V ε ε ε ε ε= − − + − + , 
2 2

1 8 (3 2 11 )V ε ε ε= − − + ,  3
0 16V ε= − . 
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Coordinates of the point w  satisfies the equation 
5

2

0

0i
i w

i

W M
=

=∑ , 

2 2
5 4 (1 3 6 )W ε ε ε= − − ,  
2 3 4 5 6

4 (1 7 18 14 53 113 64 )W ε ε ε ε ε ε= − − + + + + − , 
2 3 4 5 6

3 2(1 )(2 4 83 115 13 172 )W ε ε ε ε ε ε ε= − − + − − − − , 
2 2 3 4 5 6

2 (1 ) (5 13 113 249 230 824 256 )W ε ε ε ε ε ε ε= − − − + + + + + , 
3 2 3 4 5

1 4(1 ) (1 6 41 56 154 128 )W ε ε ε ε ε ε= − − − − − − ,  
4 2 3 4

0 4(1 ) (1 8 21 34 64 )W ε ε ε ε ε= − − + + + +  

 

for the corresponding Mach number ( 2.074wM = ) and the expression (2.56), which 

relates the parameters of the triple configuration on the curve 2f . 

At 1.25γ ≥ , the curve 2f , limiting the area of existence of the “alternative” 

TC-3, has the leftmost point u  ( 2.462uM = , 1.515uJ =  при 1.4γ = ), determined by 

the equations 
3

2

0

0i
i u

i

U M
=

=∑ , 

2
3 (1 3 )U ε= − , 2

2 (3 7 )(1 2 5 )U ε ε ε= − − − + , 
2 3

1 (1 )(3 23 25 27 )U ε ε ε ε= − − + + , 2 2
0 (1 ) (1 10 27 )U ε ε ε= − − + − , 

3

0

0i
i u

i

u J
=

=∑ , 

3 1 3u ε= − , 2 (1 11 )u ε ε= − , 2
1 (4 9 )u ε ε ε= − + + , 0 (1 5 )u ε ε= − + . 

 

At 1.25γ < , the leftmost point is absent, and the curve 2f  corresponds to a 

unique solution for any Mach number which exceeds 2FM . Horizontal asymptote of 

the curve 2f  is described as follows: 

1

1 3arcsin 69.732
1

εσ
ε

−
= =

−
 ,  ( )( )

1

1 1 3
arctan 55.902

4
ε ε

β
ε

+ −
= =  . 
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The flow behind the shock 1j  and 2j , arriving to the triple point of an 

“alternative” configuration, is supersonic. Flow behind the resultant shock 3j  is 

subsonic at the parameters of the shock 1j , which correspond to the area to the right 

of curve 6 in Figures 2.13 and 2.14. The leftmost point k  in curve 6 corresponds to 

the values 2.628kM = , 1 31.772kσ =  , 1 12.463kβ =  . The upper branch of the curve 6 

has a horizontal asymptote, determined from the condition 2
1J M C→ . Here, the 

value C  is the root of the equation 
3

0

0i
i

i

E C
=

=∑ , 

2 2
3 (1 ) (1 2 9 )E ε ε ε= − − + , 2 3 4

2 (1 )(3 7 19 11 6 )E ε ε ε ε ε= − − − + + + , 
2 3 4 5

1 (1 )(3 11 22 6 7 )E ε ε ε ε ε ε= + − + − + + , 2 4
0 (1 ) (1 )E ε ε= − + − , 

 

and 

( )1 arcsin 1 64.109Cσ ε= + =   and ( ) ( )1 arctg 1 53.501C C Cβ ε γ = + − − = 
 .  

The lower branch of the curve 6 at high Mach numbers corresponds to a rather weak 

shock 1j  ( 1 1J → , 1 0β → , ( )1 Mσ α→ ). 

Thus, there is a wide range of parameters of the problem, within which the 

followins flow structures can coexist for the same branching shock 1j : 

- Mach reflection with subsonic flow behind the main shock; the flow after the 

reflected shock can be either supersonic or subsonic; 

- regular reflection (usually, one with supersonic flow downstream the 

reflected shock); 

- the “alternative” triple configuration of the third type. In this case, the flow 

behind the resulting shock 3j  is subsonic in most cases. 

The subsonic nature of the flow behind outgoing shocks and the the ambiguity 

of the solution indicates possible instability and dependence of the type of the 

resulting shock-wave structure on external disturbances located downstream, as well 

as on the initial conditions of flowfield formation. 
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2.3.3. Ambiguity of the solution for triple configurations of the second type 

with a negative slope angle of the reflected shock 

At high flow Mach numbers and reduced (compared to 1.4γ = ) gas adiabatic 

indices, the formation of triple configurations with a negative (relative to the free 

stream) slope angle of the reflected shock 2j  is possible (see Figure 1.3,f). Flights at 

high supersonic speeds,  usage of polyatomic hydrocarbon fuels, as well as a decrease 

in the “effective” gas adiabatic index at strong steady and unsteady shocks [8, 17-19] 

make the analysis of the realizability and stability of such (“negative”) triple 

configurations (NTCs) especially relevant. 

The “negative” triple configurations have been theoretically and numerically 

studied in [69-77, 92, 123, 124]. An analytical description of the area of existence of 

the NTCs was first given in [75]. According to the results of [75], the NTC always 

belongs to the second type (ТC-2) and forms at the Mach reflection of the shocks, the 

parameters of which correspond to the region to the right of curve 7 in Figures 2.13 

and 2.14, in gases with reduced adiabatic indices ( 1.392γ < ). Mach number, starting 

from which the formation of NTC is possible (points n  in Figures 2.13 and 2.14), 

grows from rather moderate values ( 3.064nM =  при 1γ → ) to large ones (

4.621kM = , 1 51.486kσ =  , 1 40.087kβ =   at 1.2γ = ) and infinitely large ones (at 

1.392γ → ). The dependence of this, as well as other characteristic values of Mach 

numbers, on gas adiabatic index is presented in Figure 2.15. It shows that the 

overlappng of the regions of existence of various shock-wave structures noted here 

occurs at all small adiabatic indices. 

The upper and lower branches of the curve 7, which limits the region of 

existence of the NTCs, have horizontal asymptotes described by the relations

1 1arcsin 76.562Sσ = =  , 
( ) ( )

( )
1 1

1
1

1 1
arctan 55.731

1 1
S S

S
ε

β
ε

− −
= =

− −
  

for the upper branch, and 
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1 2arcsin 21.901Sσ = =  , 
( ) ( )

( )
2 2

1
2

1 1
arctan 19.808

1 1
S S

S
ε

β
ε

− −
= =

− −
  

for the lower one. Here 1S  and 2S  are, respectively, the larger and smaller of the roots 

of the equation 

( ) ( )( ) ( )( ) ( )
( ) ( )

3 5 2 4 2 3 2 2 2

3 2 3 4 2

1 1 4 5 1 6 2 7 2 2 2

1 3 1 2 0,

S S S S

S

ε ε ε ε ε ε γ ε ε

γ ε ε ε εγ ε ε

− − − − + + − − − − − +

+ + − − − − + =

which belong to the interval ( )0;1 . 

Many flow parameters (stagnation pressure, temperature, flow velocity, 

dynamic pressure) across of the sleepstream τ , emanating from the triple point of the 

OTC, the more different as the closer the parameters of the incident shock are to the 

lower branch of curve 7. For example, according to [76], the ratios of stagnation 

pressures ( 0pI ) and flow dynamical pressures ( dI ) at the utmost ( M →∞ ) case tend 

to the values 

( )0

1
2

1

1

1 1.736
2p

SI
S

ε
εε

ε γ

+

 + −
= = − 

,  ( )1 1 12 3.430dI P S Rγ= − =   , 

on the upper branch of curve 7, and to the values 

( )0

1
2

2

2

1 9861.0
2p

SI
S

ε
εε

ε γ

+

 + −
= = − 

,  ( )2 2 22 437.447dI P S Rγ= − =   . 

on the lower branch of this boundary of the domain of existence of the NTCs. Here  

( ) ( ) ( )( ) ( )22 2 3
1,2 1,2 1,2 1,21 3 2 4 1 3 4 1P S S Sγ ε γ ε ε ε ε ε= + − − − + + − − − ,

( )( ) ( )2 2
1,2 1.2 1,21 1 2 1R S Sγε ε ε ε= − + − + − . 

Thus, a flow with a large difference in the mechanical properties in its various 

parts forms behind the “negative” configuration. The problem of the stability of such 

a flow requires additional research, especially for the parameters of the NTCs 

corresponding to the lower part of its region of existence in Figures 2.13 and 2.14. In 

this case, the differences in flow parameters across the slipstream are especially large 
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and, in addition, there is a “dualism” of solutions for the Mach (with formation of 

NTC) reflection and the regular one. 

The flow behind the main (Mach) shock of the NTC is subsonic. Curve 4, 

which separates the subregions of existence of the Mach reflection with subsonic and 

supersonic flow behind the reflected shock, passes above the region of existence of 

the NTCs. Thus, the gas flow behind the reflected shock at the NTC is always 

supersonic. 

The region of existence of the NTC is embedded in the region under the curve 

2f  for any value of the adiabatic index. This means that any shock 1j , reflected with 

the formation of the NTC, can also form an “alternative” triple configuration of the 

third type (i.e., the configuration of overtaking shocks) with supersonic (in the region 

above the upper branch of curve 6) or subsonic (in the opposite case) flow behind the 

resulting shock 3j . At the same time, the coexistence of the NTC with the 

“alternative” TC-3, the flow behind the resulting shock of which is subsonic, takes 

place in most of the region of existence of the NTC. 

Curve 5, corresponding to the well-known “detachment criterion” of steady 

and unsteady shock reflection transition, divides the region of existence of the NTCs 

into two subregions. In the lower of them (shaded in Figures 2.13 and 2.14) there is a 

dualism of regular and Mach reflection: a shock 1j  can be reflected both irregularly 

(with a negative angle of inclination of the reflected shock) and regularly. In the 

upper subdomain, there is no solution for regular reflection of the shock with 

corresponding parameters. 

The dualism of Mach reflection with the formation of OTC and regular 

reflection was numerically demonstrated in [77]. Oblique shock with parameters 

corresponding to the point 1p  in Figures 2.13 and 2.14 ( 6.5M = , 1 40 )β =  , could not 

reflect regularly. However, its weakening under the influence of the subsequent 

Prandtl-Meyer expansion wave to an intensity that, according to calculations, 

corresponded to 1 35.519β =   (point 2p ), made such a reflection possible and 

implementable at a computational experiment. 
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In addition to the three indicated solutions (Mach reflection with a negative 

angle of inclination of the reflected shock; regular reflection; formation of a triple 

configuration of the overtaking shocks), the others are possible at the interaction of 

a high-speed gas flow with streamlined bodies, associated with a crucial restructuring 

of the flowfield. For example, our calculations show that a change in flow deflection 

angle 1β  in a system of two symmetrical wedges described in [77], from 43  to 45  at 

6.5M =  leads to the formation of a separated bow shock, although a solution with 

a “negative” TC theoretically exists in both cases. Sometimes (with the same 

parameters of the problem), it is not possible during a numerical experiment to 

establish a flow with the formation of NTC (in those cases, the implementation of a 

non-stationary (possibly self-oscillating) regime is assumed [70]). In some cases [71], 

calculations show the existence of more complex, branched configurations 

reminiscent of double Mach reflection in unsteady flows.  

 
Figure 2.15. Dependence of some Mach numbers important for the problem under 

consideration on the value of the gas adiabatic index: 1) ( )TM γ ; 2) ( )gM γ ; 3) ( )
1FM γ ; 4) 

( )
2FM γ ; 5) ( )vM γ ; 6) ( )uM γ ; 7) ( )wM γ ; 8) ( )kM γ ; 9) ( )nM γ  

The overlapping of the regions of existence of various shock-wave structures, 

noted in this subsection, occurs at all small adiabatic indices. For example, all special 

Mach numbers found analytically in this study exist at all ratios of specific heat 

capacities of the gas (see Figure 2.15). 



93 
 

Thus, for all parameters of the branching shock and the oncoming flow, which 

correspond to “negative” configurations, triple configurations of overtaking shocks 

(in most cases, with a subsonic flow behind the main (resulting) shock) can also 

occur. In many cases, the same parameters of the incident shock also correspond to 

its regular reflection (dualism of the solution), as a rule, with a supersonic flow 

behind the reflected shock. In addition, with similar problem parameters in real gas-

dynamic devices (for example, during flow around supersonic air intakes), the 

formation of separated shocks, unsteady flows, as well as more complex and 

branched configurations cannot be excluded. Thus, the solutions corresponding to the 

formation of “negative” configurations are always highly ambiguous, and their 

realization (as well as the stability of the resulting shock-wave structures) must be 

confirmed in each individual practically important case. 

 

2.4. Conclusions to the Chapter 2 

Study of shock-wave systems and structures using the mathematical apparatus 

developed in the works of V.N. Uskov, A.V. Omelchenko, M.V. Chernyshov, 

P.V. Bulat, P.S. Mostovykh and other authors, allows one to obtain theoretically 

important and practically valuable analytical results. 

In particular, in the Section 2 of this study, the parameters of incident shock 

waves are determined, providing a minimum of static pressure and gas temperature of 

behind the reflected shock. They were described by a cubic equation in the variables 

“incident shock intensity – free-stream Mach number”. A similar cubic equation 

analytically determines the angles of inclination of the obstacle at which the static 

pressure and temperature behind the point of regular reflection of an unsteady shock 

wave of a given amplitude are minimal. Those optimal angles of inclination of the 

reflecting surface exist for all theoretically possible parameters of the incident shock. 

In this case, the optimal reflection of the shock wave differs both from normal 

reflection and from another limiting case of transition from regular reflection to Mach 

one. Calculations show that geometric optimization of the interaction of shock (in 

particular, blast) waves with obstacles can significantly reduce mechanical and 
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thermal loads on structural elements. For this reason, the obtained theoretical results 

can be used in the design of blast-resistant structures, the development of blast 

protection equipment, in aircraft and rocket engineering, in supersonic aerodynamics 

and many other applications. 

In addition, based on the previously obtained results of solving individual 

problems of the interaction of gas-dynamic discontinuities and waves, including the 

solution for the triple configuration of Mach reflection, the conjugation of a Prandtl-

Meyer wave with a previous overtaking shock, with a counter shock and with a quasi-

one-dimensional flow, the interaction of an incident centered or simple expansion 

wave with sleepstream, a new analytical model of the shock wave structure of a 

supersonic flow with Mach reflection has been developed in the Chapter 2. Based on 

the results obtained for a supersonic overexpanded jet flow or a flow in a narrowing 

channel, its high accuracy is shown, especially when determining the size of the main 

(Mach) shock. 

When analyzing shock-wave structures that arise under the same parameters of 

an oncoming supersonic flow and a branching shock, it was established that there is a 

wide range of problem parameters, within which the following shock-wave structures 

can coexist for the same branching shock 1j : 

- Mach reflection with subsonic flow after the main shock; the flow 

downstream the reflected shock can be either supersonic or subsonic; 

- regular reflection (usually with supersonic flow behind the reflected shock); 

- the “alternative” triple configuration of the third type which consists of the 

overtaking shocks. In this case, the flow behind the resulting shock 3j  is subsonic in 

most cases. 

The subsonic nature of the flow behind the outgoing shocks and the discussed 

ambiguity of the solution indicates possible instability and dependence of the type of 

the resulting shock-wave structure on external disturbances located downstream, as 

well as on the initial conditions of its formation. 
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For all parameters of the branching shock and the free-stream flow, which 

correspond to “negative” triple-shock configurations (i.e. triple configurations of 

Mach reflection with a negative slope angle of the reflected shock), triple 

configurations of the overtaking shocks can also form (in most cases, with a subsonic 

flow behind the main (resulting) shock) . In many cases, the same parameters of the 

incident shock also correspond to its regular reflection (“dualism” of the solution), as 

a rule, with a supersonic flow behind the reflected shock. In addition, at similar 

problem parameters in real gas-dynamic devices (for example, in a flow around 

supersonic air intakes), the formation of separated bow shocks, the formation of 

unsteady flows, as well as more complex and branched configurations are not 

excluded. Thus, the solutions corresponding to the formation of “negative” 

configurations are always ambiguous, and their feasibility (as well as the stability of 

the emerging shock-wave structures) must be confirmed in each individual practically 

important case. 

The next necessary step is to adapt the obtained theoretical results to the needs 

of engineering practice is to take into account the possible pulsed energy release at 

the Mach shock, as well as the effects of real gas, which are significant for irregular 

reflection in flows with high Mach numbers.  
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Chapter 3. Analysis of Mach reflection in supersonic gas flows  

with the possibility of pulsed energy release at the main shock 

 

3.1. Stationary Mach configurations with pulsed energy release and changes in 

the chemical composition of the gas at the main shock 

 3.1.1. Preliminaries for the study of a stationary Mach configuration with 

energy release at the main shock 

The theory of triple configurations of shock waves formed in supersonic flows 

of a perfect gas should now be considered as almost complete [92]. A classification 

of triple configurations was developed in detail [1, 10], their parametric analysis was 

obtained [1, 79, 106-108], configurations with special properties of individual shocks 

were identified [79] as well as the extreme ratios of parameters across the outgoing 

sleepstream [76, 79]; the solutions obtained are generalized for triple configurations 

of propagating shock waves [125]. Possible additional research in this field in the 

future may be related to the problems of the realizibility of triple configurations of 

Mach reflection with a negative slope angle of the reflected shock [69-71, 76] or to 

the analysis of the differential characteristics of the flowfield using dynamic 

compatibility conditions [1, 126]. 

It was shown in [76, 79, 127] that the gas temperature behind the main (Mach) 

shock 3j  of the triple configuration (in region III in Figure 3.1) can many times 

exceed the temperature of the flow that has passed through the sequence from the 

incident ( 1j ) and reflected ( 2j ) shocks, namely in region II on the other side of the 

slipstream τ . Temperature ratio acrodd the sleepstream III IITI T T=  is especially 

significant at high Mach numbers M  of the oncoming flow. In particular, in extreme 

triple configurations (providing a maximum of this ratio for fixed values of M ), this 

relation tends to the limit   

1 ε 6TI = = .                                                 (3.1) 

at M →∞ . In stationary Mach configurations SMC (configurations with a normal 

main shock 3j , Figure 3.1) it strives to the value [79, 127] 
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( )
( )

3 41 2ε 2ε ε 1 ε
3.363

2ε 2 εT
D

I
+ − + + −

= =
−

,                        (3.2) 

here 

( ) ( ) ( )( ) ( )2 31 ε ε 1 ε 2 1 ε 2 ε ε 1 εD  = + − − + − − −  . 

(hereinafter it is assumed by default that γ 1.4= ). Real gas effects inherent in motion 

at high supersonic speeds and temperatures usually lead to a decrease in the 

“effective” adiabatic index of the flow passing through the main shock and a further 

increase in the values of TI . 

 A sharp temperature increase in a supersonic flow of a combustible gas 

mixture, occurring primarily at the main (Mach) shock, can initiate combustion or 

detonation with a corresponding pulsed energy release. As relations (3.1) and (3.2) 

show, in particular, the excitation of detonation at the main shock (and not behind the 

system of incident and reflected ones) is most effective when flying at high 

supersonic speeds, which corresponds to modern trends in the development of 

aerospace technology. Flow in region II after the reflected shock 2j  (on the other side 

of the slipstream), has a significantly lower temperature, but its total pressure can be 

many times larger. Relation 
0 0II 0IIIpI p p=  of the stagnation pressures across the 

sleepstream behind “extreme” configurations [79] at high Mach numbers tends to the 

limit 

0

1 ε
2εε 529.1pI
+

−
= = ,                                                 (3.3) 

and for the SMCs it strives to the value 

( )
( )0

1 ε
3 4 2ε1 2ε 2ε ε 1 ε

69.72
2ε 2 εp

D
I

+

 + − + + −
= = − 

.                        (3.4) 

 Relations (3.1-3.4) show the applicability of combustible gas flow behind the 

main (Mach) shock according to the scheme of detonation engines (in the Fickett-

Jacobs thermodynamic cycle, including ramjet engines). The peripheral flow behind 

the reflected shock is more convenient to use according to the scheme of the 
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“classical” ramjet t engine (in the Brayton thermodynamic cycle) with flow 

deceleration without energy release and its subsequent supply to the combustion 

chamber [86, 150, 152].  

 
Figure 3.1. Stationary Mach configuration. Here M  is the Mach number of undisturbed flow, 1j  is 

the incident shock, 2j  is the reflected one, 3j  is the main (Mach) shock, I, II and III are the flow 
regions behind the corresponding shocks, T is the triple point, τ  is the slipstream, 1σ  and 2σ  are 

the slope angles of of incident and reflected shocks, 1β  and 2β  are the angles of flow deflection on 
the incident and reflected shocks 

For further attempts to the practical implementation of that combined-type jet 

engines proposed in [86, 150, 152], a theoretical analysis of the conditions of 

existence, stability and flow parameters behind triple configurations that arise during 

irregular (Mach) shock reflection with pulsed energy release at the Mach stem is 

necessary. A model example of such a structure, the simplest one and the most 

accessible one to theoretical analysis, is an SMC with a normal main shock (Figure 

3.1). The formation of SMC corresponds to the well-known von Neumann criterion 

(“mechanical equilibrium criterion”) of the transition from Mach reflection to regular 

reflection [44] and, thus, it corresponds to the minimum intensity of the incident 

shock 1j , at which the Mach reflection occurs (the lower boundary of the region of 

existence of the Mach reflection), including in the presence of pulsed energy release 

and “real gas effects” at the main shock 3j . 
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3.1.2. Basic relations for the stationary Mach configuration 

Compatibility conditions at a slipstream τ , that goes out from the triple point 

T  (Figure 3.1), lead to a system of equations (1.18) relating the parameters of the 

shocks 1j , 2j  and 3j : 

1 2 3β β β+ = ,                                                          (3.5) 

1 2 3J J J= ,                                                               (3.6) 

which is to be solved at 3 0β =  for SMC with normal main shock 3j .  

 Angles 1β  and 2β  of flow deflection on the incident and reflected shocks is 

related to their intensities by the expressions (1.4): 

     ( ) ( )( )
( ) ( )( )

2
12 12 1 12 1

1 2
1 12 12 12 1

1 ε ε 1 ε 1
tan

ε 1 ε 1 ε 1
M J J

J M J
β

+ − − − −
= ⋅

+ + − − −
,            (3.7) 

             ( ) ( )( )
( ) ( )( )

2
12 I 12 2 12 2

2 2
2 12 12 I 12 2

1 ε ε 1 ε 1
tan

ε 1 ε 1 ε 1
M J J

J M J
β

+ − − − −
= ⋅

+ + − − −
.             (3.8) 

Here M  is flow Mach number before the triple configuration, IM  is Mach number in 

the region I behind the shock 1j  (in the future, the subscripts “I-III” correspond to 

various flow parameters in flow zones I-III behind the shocks 1j - 3j ), 

( ) ( )12 12 12ε γ 1 γ 1= − + , and 12γ  is gas adiabatic index in the upper part of the flow 

(above the slipstream). Values of Mach number IM  and IIM  behind the shocks 1j  

and 2j  are determined by the relations (1.6): 

( ) ( )( )
( )

2 2
1 12 12 1

I
1 12 1

ε 1 ε 1
1 ε

J M J
M

J J
+ − − −

=
+

, 
( ) ( )( )

( )

2 2
2 12 I 12 2

II
2 12 2

ε 1 ε 1
1 ε

J M J
M

J J
+ − − −

=
+

.(3.9) 

 Expresions (3.7) and (3.8) can be displayed on the plane (β ; ln JΛ = , Figure 

3.2,a-c) by the shock polars (I and II), which are divided into two parts (“strong” and 

“weak” ones) by the points l , corresponding to the maximum deflection angles of the 

shock. According to (1.5), intensity lJ  of such a shock with a maximum angle of 

flow turn is determined by the Mach number M  of the in front of it: 
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( ) ( )( )
22 2

2
12

M 2 M 2M 1 2ε M 1 2
2 2lJ

 − −
= + + + − + 

 
 

(curve 1 in Figure 3.3), or 

 ( ) ( )( )
22 2

2I I
I 12 I

2 2 1 2ε 1 2
2 2l

M MJ M M
 − −

= + + + − + 
 

. 

         a)               b) 

   
c) 

 
Figure 3.2. Graphic solution on the plane of shock polars: a) at bMM >  ( 5=M in this  case); b) at 

ba MMM <<  (here 8.1=M ); c) at aMM <  (here 2.1=M ). Polars IIIa-IIIf correspond to the 
energy release behind the main shock, equal to, respectively, 15, 30, 45, 60, 75 and 90% of the 

maximum value *φ ; point “* ” corresponds to this maximum value. Vertical arrows show changes in 
the intensity of the main shock (it decreases with increasing energy release). Oblique arrows show 

the change in the intensity of the incident shock in the SMC with increasing energy release (it 
decreases monotonically at bMM > , but at bMM <  it initially increases, and decreases only with 
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further increase of the energy release). Points l correspond to shocks with maximum flow 
deflection, point N points to von Neumann criterion, point d corresponds to the “detachment 

criterion”, point 1s corresponds to the incident shock, that forming the SMC at maximum 
theoretically possible energy release 

 
Figure 3.3. Special intensities of the shocks. Curve 1 corresponds to the shocks with maximum 

flow rotation: ( )MJJ l=1 , curve 2 – to the von Neumann criterion: ( )MJJ N=1 , curve 3 – to the 
“detachment criterion”: ( )MJJ d=1 , curve 4 – to the normal shocks without energy release: 
( )MJJ m=3 , curve 5 – to normal shocks with the maximum possible energy release: ( )MJJ *3 = , curve 

6 – to incident shocks that form the SMC at maximum possible energy release: ( )MJJ S11 = , curve 7 
– to the main shocks in the SMC, when the intensity of the incident shock is maximum, curve 8 – to 
the incident shocks with a critical flow velocity behind them. Curves 2a-2d and 6a-6d correspond to 
the maximum and minimum intensity values of the incident shock in the SMC with energy release 

at different values of the “effective” adiabatic index on the main shock. Points c1-c4 show the 
change in Mach number Mb, in which two main criteria of shock reflection transition coincide, at 

various adiabatic indices on the main shock. 

Gas flow behind shocks which correspond to the upper branch of the polar (at 

l mJ J J≤ < , where ( ) 2
12 121 ε M εmJ = + −  is the intensity of the normal shock), is 

subsonic, and gas stream after the shocks, corresponding to the weak branch (at 

1 lJ J< < ), is usually supersonic. 

Classical relations describing the thermodynamic parameters of a perfect gas at 

shock waves determine gas density, temperature, stagnation pressure, speed of sound, 

acoustic impedance in region II downstream the reflected shock: 

( )II 1 2E Eρ ρ= , II 1 2 1 2T E E J J T= ,  ( )
12

12 12 12

1
2

0II 1 2 1 2 0p J J E E p
ε

γ γ ε
−

−
= ,  
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II 1 2 1 2a a E E J J= ⋅ , ( )II II II 1 2 1 2z a z J J E Eρ= = ⋅ .  

Here ( ) ( )12 121i i iE J Jε ε= + +  is the inverse ratio of gas densities on the sides of the 

incident or reflected shock. The flow velocity in region II and other parameters 

dependent on it, such as specific flow rate per unit cross-sectional area q vρ= , 

velocity head (dynamic pressure) 2 2d vρ= , flow impulse, are determined similarly: 
2f p vρ= + : 

II II II II 1 2 1 2v M a M a E E J J= = ,  ( )II II II II 1 2 1 2q v a M J J E Eρ ρ= = ⋅ ,  

2 2
II II II 12 1 2 II2 γ 2d v J J M pρ= = ,  ( )2 2

II II II II 1 2 12 II1 γf p v J J p Mρ= + = + . 

Ecxpressions relating the pulsed energy release on a shock to its shape, 

changes in flow properties, and flow deflection its surface are given in [87, 88, 91, 

128, 129]. In particular, according to [88], the angle 3β  of flow deflection depends on 

the intensity 3J  of that shock (the ratio of the static pressures on its sides) as it 

follows (1.12): 

( )
( )

3
3 2

III 3

1 1
tan

γ 1
J F
M J

β
− −

=
− −

,                                   (3.10) 

where  

( )( )
( ) ( ) ( ) ( )

( )( )
2

III 3 III

3 III 3 III

γ γ γ 1 1 γ 12
γ 1 1 γ 1 1 2γ

JMF
J J

φγ  − + − − − − =
− − + − +

. 

Here ( )γ γ 1 pp c Tφ φρ φ= = − , according to (1.11); φ  is the specific pulse energy 

release at the shock. Values pс , p , ρ , T , γ  and M  characterize, respectively, the 

specific isobaric heat capacity, the static pressure, gas density, temperature, adiabatic 

index and Mach number of the gas flow before the shock; IIIγ  is the adiabatic index 

corresponding to the thermodynamic properties of gas in the flow behind the surface 

of a strong shock. 

The ratio of gas densities on both shock sides with energy release is written in 

the form (1.17) 
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( ) ( ) ( )
( )( )

3 III III
3

III III III 3

1 γ γ γ 1 γ 1
1 2

2γ γ 1 1
J

E
J

φρ
ρ

− + − − − −
= = −

+ + −
,             (3.11) 

and the temperature ratio has the form [88] 

( )2 2 2 2 2
III III 3 3 3cos sinT T M E Mσ σ= + .                        (3.12) 

In this case, the angle 3σ  of the shock slope to the flow velocity vector in front of it is 

determined by the relation (1.16): 

( ) ( )2
3 3 3 3cot γ 1 tan 1M J Jσ β = − − −  ,                    (3.13) 

and the flow speed IIIv  in region III behind the main shock obeys the dependence [88] 

2 2 2
3 3 3sin cosIIIv v E σ σ= ⋅ + .                                       (3.14) 

When introducing the average (between γ  and IIIγ ), “effective” adiabatic exponent 

3γ , in the first approximation describing the properties of gas at a shock with energy 

release when “real gas effects” manifest themselves, relations (3.10-3.14) and similar 

ones are noticeably simplified: 

                         ( )( )
( ) ( )( )

3 33 3
3 2

3 3 3 3 3

1 ε 1ξtan
ε 1 ε 1 ε 1

m JJ J
J M J

β
− −− −

= ⋅
+ + − − −

,                 (3.15) 

2
3 3

3

2ε γξ
1

M
J

φ
=

−
, ( ) 2

3 3 31 ε εmJ M= + − , 

( ) ( )3 III 3 3 3 3 31 ε 2ε εE J Jρ ρ φ= = + + + ,  

( ) ( )III III 3 3 3 3 3 3γ γ 1 ε 2ε εa a J J Jφ= ⋅ ⋅ + + + ,  

( ) ( )3 3 3 3cot ξ εmJ J Jσ = − − + ,  

( ) ( )( ) ( )2 2
3 3 3 3 3 3 3

III
3 3

1 1 2 1J M J J
v a

J
ε ε ε φ γ

ε
+ − − − − −

=
+

,  

( ) ( )( ) ( )
( )

2 2
3 3 3 3 3 3 3

III
III 3 3 3 3

ε 1 ε 1 2ε 1 γγ
γ 1 ε 2ε

J M J J
M

J J
φ

φ

+ − − − − −
= ⋅

+ +
.  

(here ( ) ( )3 3 3ε γ 1 γ 1= − + ). 
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Relation (3.15) describes the detonation shock polar, the name of which 

suggests that the pulsed energy release at the shock or in the immediate vicinity of it 

occurs as a result of detonation initiated by an increase in temperature on the shock 

surface. Figure 3.2,a-c shows the family of detonation polars IIIa-IIIf, corresponding 

to the effective adiabatic index 3 12γ γ 1.4= =  and various energy release values. In 

the following calculation examples, the default assumption is that 3 12γ γ 1.4= = . 

The intensity 3J  of the chock 3j  with positive pulse energy release ( 0φ > ) at a 

fixed value of the Mach number before the shock belongs to the range 

min 3 maxJ J J≤ ≤ ,                                                   (3.16) 

here 

 min 1 δJ = + ,  max 3 δmJ J= − ,  
( )( )

( )( )

2 2
3 3

22 2
3

1 ε 1 8εδ 1 1
2 1 ε 1

M M
M
φ + −  = − −

 − − 

.  (3.17) 

As it is obvious from relations (3.17), the range (3.16) is narrower than the 

interval 3 m1 J J≤ ≤  of possible change in shock intensity in the absence of energy 

release. This is confirmed by a visual comparison of the shock polars I (with 0φ = ) 

and detonation polars IIIa-IIIf (at 0φ > ), corresponding to the same flow Mach 

number before the shock. Dependencies ( )minJ φ  and ( )maxJ φ  for various Mach 

numbers are given in Figure 4, respectively, as the lower and upper branches of 

curves 1-5. 

At the limiting dimensionless value of energy release 

( )( ) ( )22 2 2
* 3 31 ε 1 8εM Mφ = − − ,           (3.18) 

which corresponds to the dimensional value 

( )( ) ( )22 2
* 31 ε 1 4pM c T Mφ = − − , 

values minJ  and maxJ  are equal: 

( )* min max 1 2mJ J J J= = = + .                                        (3.19) 
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In this case, the detonation polar (3.15) degenerates into the single point “*” (see 

Figure 3.2,a-c, and also Figure 3.4), which corresponds to a critical flow velocity 

behind the normal stationary detonation wave ( III 1M = ). A further increase in energy 

release leads to a loss of stability of shock 3j  and the triple configuration in general. 

 Thus, the system of equations (3.5-3.9, 3.15), solved at 3 0β =  and 3 maxJ J= , 

allows one to find the flow deflection angles and the intensities of the shocks that 

composethe SMC. The parameters of flows beyond the triple point, determined by 

the relations for shock and detonation waves [1, 88], should be compared in future 

studies in order to optimize various gas-dynamic devices, including detonation 

engines [130-133]. 

 
Figure 3.4. Minimum (shown by the lower branches of curves 1-5) and maximum (shown by their 

upper branches) values of the shock intensities at different flow Mach numbers (curves 1-5 
correspond to the values M=2, 3, 4, 5 and 7) depending on the amount of energy release. The “*” 

points correspond to the maximum energy release with degeneration of the shock polar into a single 
point (see also Figure 3.2) 

3.1.3. Analytical description of the domain of existence of a stationary Mach 

configuration 

Three main parameters (free-stream Mach number, pulsed heat release φ  and 

change in adiabatic index 3γ  on the main shock compared to that value γ  in the flow 

before the triple point) affect the region of existence of the SMCs. The method and 

degree of influence of the last two factors is studied in detail in the work [146]. 
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The conditions for the existence of a stationary Mach configuration in a gas 

flow with a constant adiabatic index without physical and chemical transformations 

have been studied in detail in [1, 79, 144]. A stationary Mach configuration exists if 

aM M> , here ( ) ( )2 ε 1 ε 1.483aM = − − = . In this case, the parameters of the the 

reflected shock at bM M>  ( 2.202bM =  at γ 1.4= ) correspond to the lower (weak) 

branch of shock polar II (Figure 3.2,a), and at a bM M M< <  it corresponds to its 

upper (strong) branch (Figure 3.2,b). Parameters of the main (normal) shock 3j  

correspond to the point m  in Fig. 3.2,a-b. At aM M< , there are no solutions 

describing the SMC without energy release at its jumps (see Figure 3.2c). 

Intensity 1 NJ J=  of the incident shock that forms the  SMC at aM M>  is 

determined by equation (1.20) and corresponds to the well-known von Neumann 

criterion of oblique shock reflection transition (see curve 2 in Figure 3.3). Another 

well-known criterion for changing the reflection type (the “detachment criterion”) 

corresponds to the following equation for intensity 1 dJ J=  of the incident shock at all 

1M > : 
5

0
0n

n d
n

D J
=

=∑ ,                                                        (3.20) 

( )2
5 1 εD = − ,  ( ) ( ) ( )2 2 2

4 1 ε 3 4ε ε 4 5ε εD M = − − ⋅ + − + − +  ,  

( ) ( )( ) ( )( )22 4 2 2
3 3 4ε 2ε 4 1 ε 1 2ε ε 2 3 2ε 1 εD M M= + + + − + − + − − , 

( ) ( ) ( )( ) ( )( )26 2 4 2
2 1 ε ε 1 2ε 4ε 1 ε 1 2ε 2 2 3ε 1 εD M M M= − + + + − − − − − − ,   

( ) ( ) ( ) ( )2 4 2 2
1 1 ε 1 2 1 ε ε 1 4ε 1 5ε 4εD M M M   = − + − ⋅ + + + − − +    , 

( ) ( ) 22 2
0 1 ε ε 1 ε 1D M M  = − + − ⋅ + −     

(curve 3 in Figure 3.3). Single point b  of tangency of curves 1 and 2, which 

corresponds to the Mach number bM M= , is defined by the equation 
4

2

0
0n

n b
n

F M
=

=∑ ,                                                     (3.21) 
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( )( )3 4
4 1 ε 2 4ε 2ε εF = − − + − , 2 3 4 5

3 10 20ε 10ε 10ε 12ε 4εF = − + − − + − , 

2 3 4 5
2 12 24ε 10ε 16ε 18ε 6εF = − + + − + , ( )( )( )22

1 2 1 ε 3 4ε 2ε 1 εF = − + − + − , 

( )( )4
0 1 ε 1 εF = + − . 

For all other Mach numbers, the inequality N dJ J<  defines dualism (the existence of 

solutions that describe both regular and Mach reflection for the same parameters of 

the incident shock) in the region between curves 2 and 3 in Figure 3.4. 

 The influence of energy release on the region of existence of a stationary Mach 

configuration manifests as it follows. According to relations (3.16) and (3.17), the 

increase in energy release at the main shock from zero to the limiting value *φ φ=  

(3.18) leads to a monotonic decrease in intensity 3 maxJ J=  of the main shock in the 

SMC from the value ( )mJ M  at 0φ =  (curve 4 in Figure 3.3) to the value ( )*J M , 

defined by expression (3.19), at *φ φ=  (curve 5). If the flow Mach number is 

moderate or high ( bM M≥ ), the intensity 1J  of the incident shock also decreases 

monotonically. In the limiting case ( *φ φ= ), the minimum intensity 1 1sJ J=  of the 

incident shock  forming the SMC, at 3γ γ=  obeys the equation 
5

1
0

0k
k s

k
S J

=

=∑ ,                                                       (3.22) 

( )5 4 1 εS = − ,  ( ) ( )( )22 3 2
4 8 6ε 8ε 2ε 2 4 ε 1 εS M= + − + + − − ,  

( )( ) ( ) ( )( )2 3 4 2 3 4 2 2 3
3 2 1 ε 2 4ε 2ε ε 10 4ε 28ε 14ε 4ε 2 1 ε 3 11ε 5ε εS M M= − + + − + − − − + − − − − + − , 

( ) ( )( ) ( ) ( )( )4 2 2 2
2 1 1 2 ε ε 4 15ε 5ε 4 1 ε 1 3ε εmS J M Mε ε = + + − + − + + − − +  , 

6 4 2
1 3 2 1 0S y M y M y M y= + + + , ( )( )22

3 2 1 ε ε 1 εy = − + + , 

( )( )2 3
2 2 1 ε 1 4ε 7ε 3εy = + − + − , 

2 3 4
1 2 4ε 10ε 22ε 6εy = − + + − + , ( )( )2 3

0 2 1 ε 1 3ε 5ε εy = − − − + − , 

( )( ) ( )( ) ( )2 2
0 1 1 1 ε 1 2ε 2ε 1 εmS M J M = − − + + − − −  . 
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The solution of (3.22) corresponds to curve 6 in Figure 3.4. At bM M≥ , the reflected 

shock in the SMC with energy release always corresponds to the weak branch of the 

shock polar (for example, on curve IIa, see Figure 3.2a), and the flow behind it is, as 

a rule, supersonic. 

 At low Mach numbers ( bM M< ) a small pulsed energy release at the main 

shock leads to the appearance of an SMC with a strong reflected shock (see, for 

example, polars IIa in Figures 3.2, b and 3.2,c, polar IIa in Figure 3.2,c and the 

solution corresponding to the point 31m  in the same Figure). With a gradual increase 

in energy release, the intensity of the main shock decreases from ( )mJ M  (curve 4 in 

Figure 3) to the values corresponding to curve 6; the intensity of the incident shock 

increases from the unity (at aM M≤ ) or from ( )NJ M  (curve 2 in Figure 3.3, at 

a bM M M< < ) to ( )dJ M  (curve 3). With a further increase in energy release, the 

reflected shock in the SMC becomes weak (solutions corresponding to the point m33 

in Figure 3.2, b-c). Intensity 3J  of the Mach stem continues to decrease (from curve 4 

in Figure 3.3 to the values ( )* MJ , shown by curve 5), and the intensity 1J  decreases 

from ( )MdJ  (curve 3 in Figure 3.3) to its minimum value 1 1SJ J=  at *φ φ=  

(curve 6). 
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Figure 3.5. Angles of flow deflection at some special incident shocks. As in Figure 3.3, curve 2 
corresponds to the von Neumann criterion, curve 3 – to the “detachment criterion”, curve 6 – to the 
incident shocks that form the SMC at maximum energy release, curve 8 – to shocks with a critical 

flow velocity behind them. Curves 2a-2d and 6a-6d describe the change in the properties of the 
incident shock as the “effective” adiabatic index on the main shock decreases. Points c1-c4 show 

a shift in the point of coincidence of two reflection transition criteria at a decrease in the “effective” 
adiabatic index 

Thus, the occurrence of energy release behind the main (Mach) shock leads to 

an expansion of the region of existence of SMC, which occur at all Mach numbers of 

the supersonic flow in a wide range of parameters of the incident and main shocks 

(they are marked with straight and oblique shading, respectively, in Figure 3). 

Slope angles ( 1σ ) and flow deflection ( 1β ) on incident shocks, the intensities of 

which correspond to curves 1, 2 and 5 in Figure 3.3, are also shown by the 

corresponding curves in Figures 3.5 and 3.6 (in addition, curve 8 shows the 

parameters of the incident shock with the critical flow velocity behind it, and curve 9 

in Figure 3.6 shows the slope angles of the shock degenerating into a weak 

discontinuity, i.e. the Mach angles). At high flow Mach numbers ( M →∞ ), values 

corresponding to the von Neumann criterion of shock 1j  reflectuion transition, strive 

for the following limits [76]: 

( )
1 2 3 2 3 4 5 6

2ε 1 ε
arcsin 21.769

1 ε ε ε 1 2ε 3ε 4ε ε 2ε ε
Nσ

−
→ =

+ − + + − + + − − +
 , 

( ) ( )3 2 3 2 3 4 5 6

1 2 3 2 3 4 5 6

2ε 1 ε 1 ε ε ε 1 2ε 3ε 4ε ε 2ε ε
arctan 17.961

1 ε 3ε ε 1 2ε 3ε 4ε ε 2ε ε
Nβ

− − + + + − + + − − +
→ =

− + − + − + + − − +
  

The values corresponding to the “detachment criterion” are determined by following 

the relations at large Mach numbers: 

( ) ( ) ( )2 3 2 2
1 1 11 ε sin 1 ε sin 1 2ε sin 1 0d d dσ σ σ− − − − + + = , 

( ) ( ) 2
1 1 1 1tg 1 ε sin cos 1 1 ε sind d d dβ σ σ σ = − − −  , 

here 1 39.971dσ =  , 1 32.018dβ =  . The smallest values of the parameters of the 

incident shock at which the formation of SMC with energy release is possible, at 

M →∞  are described by limits 
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2
1sJ M C→ ,  ( )( )1 arcsin 1 ε 14.815s Cσ → + =  ,  

( ) ( )( )1 arctan 1 ε γ 12.291s C C Cβ → + − − =  , 

where is the coefficient C=0.076 is defined as the positive real root of the equation 

( ) ( ) ( )( ) ( )( )23 2 3 2 2 34 1 ε 2 4 3ε 4ε ε 2 1 ε 2 4ε 2ε ε ε 2 ε 1 ε 0C C C− − + − + + − + − + − − + = . 

 Pulsed energy release and other physical and chemical phenomena, as a rule, 

lead to a decrease in the “effective” adiabatic index, which describes the change in 

flow parameters at a strong main shock.  

 
Figure 3.6. Slope angles of the incident shocks. As in Figures 3.3 and 3.5, curve 2 corresponds to 
the von Neumann criterion, curve 3 – to the “detachment criterion”, curve 6 – to incident shocks 

that form the SMC at maximum energy release at the main shock, curve 8 – to shocks with a critical 
flow velocity behind them. Curve 9 shows the Mach angles, curves 2a-2d and 6a-6d illustrate 

changes in the properties of the incident shock with a decrease in the adiabatic index on the main 
shock, points c1-c4 demonstrate the shift of the point of coincidence of two major reflection 

transition criteria 

 The influence of the adiabatic index on the region of SMC existence is as 

follows. According to relation (3.17), a decrease in the adiabatic index 3γ  and, 

accordingly, in the values ( ) ( )3 3 3ε γ 1 γ 1= − +  leads to a decrease in intensity maxJ , 

which corresponds to the maximum possible pulse energy release. At the same time, 

the minimum intensity 1sJ  of incident shock forming the SMC (defined by relation 

(3.22) at 3γ γ= ) decreases. In Figures 3.3, 3.5 and 3.6, the curves 6a-6d show, 
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respectively, the minimum intensities, slope angles of incident shocks and angles of 

flow deflection on their surface as the value 3γ  decreases from 3 1.4γ γ= =  (curves 6) 

to 3 1.3γ =  (curves 6a), 3 1.2γ =  (6b), 3 1.1γ =  (6с), 3 1γ →  (6d). In the limiting case (

3 1γ → ),the minimum asymptotic (at M →∞ ) parameters of an incident shock obey 

the relations 
2

1 1sJ M C→ ,  ( )( )1 1arcsin 1 ε 13.646s Cσ → + =  ,  

( ) ( )( )1 1 1 1arctan 1 ε γ 11.329s C C Cβ → + − − =  , 

here  the coefficient C1=0.065 can be determined from the equation 

( ) ( ) ( ) ( )3 2 2 2 3
1 1 14 1 ε 2 4 3ε 3ε 2 2 6ε 2ε ε ε 2 ε 0C C C− − + − + + + + − − = . 

 Parameters 1J , 1σ  and 1β  of the incident shock forming the SMC in the 

absence of energy release, also change with a decrease of 3γ  from the values 

corresponding to the von Neumann criterion (curves 2 in Figures 3, 5 and 6) to the 

values shown by curves 2a-2d for 3γ 1.3= , 3γ 1.2= , 3γ 1.1=  and 3γ 1→ , respectively. 

In particular, the intensity 1J  of the shock 1j  and the Mach number of the flow in this 

case are related by the equation 
3

2

0
0k

k
k

N M
=

=∑ , 

( )( ) ( ) 2
3 3 1 1 3 31 ε 1 ε 1 εε 1 ε ε εN J J = + + − − + + −  ,  

3

2 1
0

l
l

l
N x J

=

=∑ ,  

4

1 1
0

l
l

l
N y J

=

=∑ , 

( )( )( ) ( )2 2
0 1 1 1 1 3 31 ε ε 1 ε 1 ε εN J J J J = − − + − + − −  , 

( )2
3 3 31 3ε ε 2ε ε εεx = − − + − − ,  ( )2 3 3 3 3ε 2 ε 5ε ε 2εε ε εx  = + − + + +  , 

( )2 3 2 2
1 3 3 3 3ε ε 3ε 2εε ε 4εε ε ε 1 3εx = − − + + − + + − ,  

2 2 2
0 3 3 3 31 3ε 2ε εε 2ε 3ε εx = + − − + − , 

( )4 3 32 ε 1 ε ε εεy = + − − + ,  ( )2
3 3 3 3 33 3ε ε ε 3ε ε 5εε 2ε εy = − + − + + − + , 

( )2 3 2 2
2 3 3 3 3 32 6ε 2ε 2ε 6εε 2ε 7ε ε ε ε ε 4εy = − + + − + + − + , 

2 3 2 2 3
1 3 3 3 3 31 4ε ε 3ε 4εε ε 2εε 5ε ε 3ε εy = − + − − + − − − + , 

(3.23) 
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( )2
0 3 3 3 3 3ε ε ε εε ε ε ε εy = − − + − − − + . 

At 3γ γ= , the equation (3.23) transforms to the ratio (1.20), which describes the von 

Neumann criterion. The intensities of the shocks corresponding to the equation 

(3.23), decrease monotonically with decreasing adiabatic index, if bM M>  (i.e. at 

moderate and high flow Mach numbers). In the limiting case ( 3 1γ → ), equation 

(3.23) transforms as it follows: 
3

2

0
0k

k
k

Z M
=

=∑ , 

( )( )2
3 1 11 ε 1 ε εZ J J= + − + + , 

( ) ( ) ( )3 3 2 2 2
2 1 1 11 3ε ε ε 2 5ε ε 1 3ε ε 1 2εZ J J J= − + + + − − − + + − , 

( )( ) ( ) ( )( ) ( ) ( )4 2 3 2 2 2 3
1 1 1 1 11 ε 2 ε 3 1 ε ε 2 1 ε 1 2ε ε 1 4ε 3ε ε ε 1 εZ J J J J= + − − − − + − − − − − + + − − , 

( ) ( ) ( )2 2
0 1 1 11 ε 1 εZ J J J= − − − + ,   

and the asymptotic parameters of the shock 1j  corresponding to this solution (for 

M →∞ ) obey the relations 
2

1 2J M C→ ,  ( )( )1 arcsin 1 ε 19.682s Cσ → + =  ,  

( ) ( )( )1 arctan 1 ε γ 16.271s C C Cβ → + − − =  . 

Here, the coefficient C2 =0.132 is determined from the equation 

( ) ( )( ) ( )3 2 3
2 2 21 ε 1 ε 2 ε 1 3ε ε ε 0C C C− − + − + + + − = . 

 A decrease in the “equilibrium” adiabatic index in a high-speed flow without 

energy release can be associated, for example, with ionization and recombination, the 

excitation of additional degrees of freedom of gas molecules. 

At small supersonic Mach numbers (ar bM M< ), parameters of the incident 

shock, determined by equation (3.23) at 3γ γ< , are greater than those corresponding 

to the von Neumann criterion (1.20). The resulting solution corresponds to a strong 

reflected shock 2j  at 1 cM M< ≤  or to a weak shock 2j  at c bM M M< ≤ . Here cM  is 

the Mach number corresponding to the coincidence of the solution of (2.21) with the 
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“detachment criterion” (2.20) (see points 1c , 2c , 3c , 4c  in Figures 3.3, 3.5 and 3.6). It 

is determined by an algebraic equation of the fifth degree with respect to 2
cM  with 

coefficients depending on γ  и 3γ . At 3γ γ= , this equation can be reduced to the 

form (3.21), and c bM M= . At 3γ 1→ , that equation determining the special Mach 

number cM  reduces to form 
5

2

0
0k

k c
k

A M
=

=∑ , 

( )( )2 4
5 1 ε 4 4ε 2ε εA = − − + − ,  ( )( )3 4 5

4 1 ε 20 22ε 5ε 11ε 4εA = − − − + − − , 

2 3 4 5 6 7
3 24 58ε 36ε 18ε 37ε ε 16ε 4εA = − + + − + + + , 

2 3 4 5 6 7
2 12 30ε 16ε 23ε 22ε 23ε 16ε 12εA = − + − − + + − −  

( )( )2 3 4 5 6
1 1 ε 2 2ε 5ε 8ε 13ε 12ε 12εA = − − − + + − − ,  ( )( )

22
0 ε 1 ε 1 2εA  = − − −  , 

(in particular, 
4

1.861cM =  at γ 1.4= ). Mach number cM  corresponds to the 

coincidence of two main criteria of shock reflection transition as the adiabatic index 

changes at the main shock. 

Comparison of the numerical data shown in Figures 3.3, 3.5 and 3.6, leads to 

the conclusion that the decrease in the adiabatic exponent at the main shock is a 

factor that acts in the same direction as the pulsed energy release, but it is an order of 

magnitude weaker. Due to the decrease in the adiabatic index, Mach reflection of 

oblique shocks, that are weaker than shocks corresponding to the von Neumann 

criterion, becomes theoretically possible at moderate and high Mach numbers. At low 

Mach numbers (1 cM M< < ), a decrease in the adiabatic index leads to solutions that 

describe Mach reflection with weak incident shock and strong reflected one. 

An increase in the adiabatic index at the main shock compared to its value in 

the oncoming flow (theoretically possible, for example, during the dissociation of gas 

molecules) leads to the opposite effect: to an expansion of the range of Mach 

numbers of the flow, in which the formation of SMCs is impossible (compared to the 

interval  1 aM M< <  at 3γ γ= ), as well as of the range of Mach numbers 
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a bM M M≤ < , which corresponds to the formation of SMCs with weak incident 

shock and strong reflected one. 

 Thus [146], the pulsed energy release behind the main (Mach) shock, as well 

as, to a much lesser extent, the decrease in the “effective” adiabatic index caused by 

physical and chemical effects, lead to an expansion of the region of existence of 

stationary Mach configurations, which, in the presence of energy release and real gas 

effects, can form at all Mach numbers of supersonic flow. The possibility of energy 

release behind the main shock contributes to the Mach reflection of relatively weak 

incident shocks, which, in the absence of combustion, detonation and other 

physicochemical effects, reflect only regularly. 

A complete parametric analysis of all types of triple shock-wave configurations 

with the possibility of pulsed energy release, which is planned to be obtained in the 

future, may be of interest in the analysis and design of gas-dynamic pulse devices and 

aerospace propulsion systems. In particular, a theoretical analysis of the relationship 

between the parameters of flows formed behind the triple point and separated by 

slipstream, and the identification of triple configurations that are optimal for solving 

the assigned engineering problems are necessary. Of no less interest is the analysis of 

flowfield gradients in the vicinity of the triple point using differential conditions of 

dynamic compatibility. 

In further studies of triple configurations with energy release and significant 

changes in the physicochemical properties of the gas, one should take into account: 

- the existence of modern models of detonation transformations, replacing the 

Chapman–Jouguet model; 

- a more complex nature of physical and chemical transformations at strong 

shock waves, which is not always described by the one-parameter model of the 

“effective adiabatic index” with a sufficient degree of accuracy and reliability; 

- the ambiguity of the solution discussed in the Subsection 2.3 for triple-shock 

configurations forming at high Mach numbers of gas flow with a reduced adiabatic 

index. 
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3.2. Analytical model of the shock-wave structure of a supersonic flow 

with Mach reflection and pulsed energy release at the main shock 

Analysis of flows with irregular (Mach) reflection of oblique shocks is 

important in the gas-dynamic design and optimization of supersonic air intakes [134, 

135], nozzle blocks, jet technology devices, launch complexes, as well as in the 

development of blast technologies and means of suppressing the damaging effects of 

an explosion [92]. According to [76, 79, 92], various flow parameters (stagnation 

pressures, velocities, dynamic pressures, etc.) can vary significantly (at high 

supersonic speeds – in tens of times ) in flows separated by slipstream behind the 

triple point of Mach reflection, which can determine the design of gas-dynamic 

devices. For example, the idea of a new combined ramjet engine was proposed and 

theoretically substantiated in studies [86, 150, 152]. According to this concept, the 

gas flow after the reflected shock 2j  (in region 2 in Figure 3.7,a-b), which has a 

significantly higher full pressure than the flow behind the main (Mach) shock 3j  (in 

region 3), can be used in the thermodynamic cycle of a classic ramjet engine. At the 

same time, the flow behind the main shock has a significantly higher static 

temperature, especially when flying at high supersonic speeds; it can promote 

detonation of the gas mixture, due to which this flow can be used in the 

thermodynamic cycle of a detonation engine. To successfully separate two flows 

beyond the triple point T of the Mach reflection, it is necessary to determine the 

height Ty  of the triple point and shape ( )xy of the slipstream τ  emanating from it, 

and to assess the integral characteristics of a prospective combined engine, as well as 

shape and size of all other gas-dynamic discontinuities. 

One of the first approximate analytical models of planar supersonic flow with 

Mach reflection was formulated in [52]. Within the framework of this model, it was 

quite reasonably assumed [136] that the flow in region 3 forms the so-called “virtual 

convergent-divergent (de Laval) nozzle” with the acceleration of the subsonic flow 

behind the shock 3j  up to critical speed ( 13 =M ) in the narrowest section (CC’ in 

Figure 3.7,b). Reaching the critical speed of sound coincides with the reversal of the 
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slipstream τ  in the horizontal direction (flow angle 0=θ  at the point С) under the 

influence of an expansion wave 4ψ , which falls from the trailing edge of the wedge 

(Figura 3.7,a), or from the boundary of the jet (Figure 3.7,b), or forms in another 

way. However, as discussed in Subsection 2.3, it was unreasonably assumed in [52] 

that theslipstream τ  is straight, and the critical section of the “virtual nozzle” 3 

corresponds to the point of incidence of the first characteristic BD of the expansion 

wave 4ψ . This assumpsion led to large (50-90%) errors in determining the height of 

the triple point and other flow parameters. The application of the Grib-Ryabinin 

transformation [112] to region 2 of supersonic flow, carried out in [53], led to a slight 

refinement of the results while simultaneously complicating the mathematical model. 
a) 
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b) 

 
Figure 3.7. Flow diagram with Mach reflection in a narrowing channel between the wedges (a) and in 

a highly overexpanded jet (b) 

The analytical model, described in detail in [56, 62, 145] and the materials of 

the Subsection 2.3, considers region 2 as a simple (non-centered) Prandtl-Meyer 

expansion wave, related with region 3 by the condition of equality of pressures across 

the upward-convex segment TD of the slipstream τ  (the conjugation problem was 

solved in [64, 65]). Accounting for angle changes θ  of the inclination of the 

slipstream significantly improves the accuracy of calculations of the supersonic part 

of the flow (as shown in [56, 62, 145], the error in determining the height of the triple 

point is on the order of 0.5-1% compared to the results of calculations by the method 

of characteristics). Reverse turn of the slipstream τ  which takes place on its final 

segment DC is calculated based on the solution to the problem of the incidence of an 

expansion wave 4ψ  on the slipstream= 

 Interest in methods for quickly estimating the parameters of the shock wave 

structure of two-dimensional flows with Mach reflection, including asymmetric ones 

[66-68], has noticeably increased recently [58, 66-68]. It is apparently associated with 

the development of aviation and rocket vehicles flying at high supersonic speeds in 

the atmosphere. It is under such conditions that the presence of strong shocks in a 

supersonic flow of a reactive gas (fuel-air) mixture can initiate chemical reactions 

and detonation effects. In this regard, it is necessary to generalize the analytical 
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model [145], which has proven itself well for flows of perfect non-reacting gas, in the 

case of changes in the chemical composition and pulsed energy release at the 

emerging shocks. In [88, 89, 91], classical relations for shock waves are generalized 

to the case of changes in chemical composition and the presence of pulsed energy 

release, described within the Chapman-Jouguet model. In particular, instead of 

classical shock polars, “detonation” polars are constructed [91, 146]; generalized 

criteria for reflection transition of oblique shocks (regular or Mach one) are derived 

and their displacement is analyzed in comparison with a flow without energy release 

and changes in chemical composition. 

Numerical and theoretical results achieved in [88, 89, 91, 128, 129, 146] are 

not always directly applicable in practice. In particular, important analytical 

relationships obtained in [88] are based on the assumption of the presence of 

detonation effects on the incident ( 1j ) and main ( 3j ) shocks. At the same time, as 

shown in [150, 152], a noticeably higher temperature of the gas mixture initiates 

detonation effects at the main shock primarily (see also Figure 3.8). In this case, no 

change in the chemical composition or energy release is observed either on the 

incident shock or on the reflected one, which is taken into account in [146]. The need 

to calculate the chemical kinetics of occurring reactions [128, 129] also does not 

contribute to the development of an approximate analytical technique for fast 

calculations. 

In [143, 147] and, partially, in [161, 163, 164, 167, 169], an approximate 

analytical model of flow with Mach reflection [56, 145], also presented in the 

Subsection 2.3, is generalized to the case of changes in the chemical composition of 

the gas mixture and pulsed energy release at the main shock. Using the example of 

a highly overexpanded jet of methane-air or hydrogen-air mixture, an algorithm for 

calculating the parameters of the shock-wave structure is developed and the primary 

results of its application are shown, and a comparison is made with similar data for an 

overexpanded jet of non-reacting gas. 
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а)       б) 

  
Figure 3.8. Distribution of total pressure (a) and mass fraction of carbon dioxide (b) in the 

flowfield of a stoichiometric methane-air mixture. Mach number of undisturbed flow 6=M , the 
angle at the top of the wedges forming the entrance to the narrowing channel, 241 =β . The 

stagnation pressure from above the slipstream is noticeably greater, but the chemical reactions with 
the formation CO2 occur only after the main shock 

 3.2.1. Mathematical model of flow and algorithm for its application 

 Calculation of parameters in the vicinity of the triple point. As a sufficiently 

strong oblique shock wave 1j  falls in flow with Mach number M  (Figure 3.7), 

a triple configuration of the second type (TC-2) is formed according to the 

classification [1, 10]. Parameters osf steady shocks 31 jj −  at their common (triple) 

point T are related by the conditions of equality of static pressures and co-direction of 

flows across the slipstream τ  as in (1.18): 

321 JJJ = ,            (3.24) 

321 βββ =+ .           (3.25) 

Here ppJ 11 = , 122 ppJ = , ppJ 33 =  are the intensities (strengths) of the 

incident shock ( 1j ), the reflected one ( 2j ) and the main one ( 3j ), i.e. the ratios of 

static pressures on their sides, p  is the free-stream static pressure, 31 pp −  are the 

pressures behind the shocks 31 jj − , and 31 ββ −  are the flow deflection angles at 

those shocks in the vicinity of the triple point, related to their intensities by formulas 

of the form (1.4): 
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on the incident and reflected shocks [1], and by the relation (1.12) 
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at the main shock [88]. Here ( ) ( )11 +−= γγε ; ( ) ( )11 333 +−= γγε ; γ  is the 

adiabatic index of a gas mixture in the free flow, 3γ  is the adiabatic index of 

combustion products behind the main shock. Dimensionless quantity (1.11) 

( ) ( ) Tcp p1−
==
γ

γφ
ρ

φφ                      (3.29) 

characterizes pulsed energy release φ  per unit mass of the mixture; ρ  is its density, 

T  is its temperature , pc  is its isobaric specific heat capacity. Meaning φ  is 

determined by the specific heat of fuel combustion λ , related to the entire mixture in 

the oncoming flow. 

Mach numbers 1M  and TM 2  of the flows behind the incident and reflected 

shocks are determined by relations of the form (1.6): 
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 Relations (1.10) of the Chapman-Jouguet model of stationary detonation 

nn uu 33ρρ = ,  2
333

2
nn upup ρρ +=+ ,  ττ 3uu = ,  

3
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2
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+
=+

−
+

+ , 

where the indices «n » and «τ » refer to the normal and tangential (to the shock 

surface) velocity components, determine the Mach number TM3  (1.15) in the vicinity 

of the triple point: 
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Here, according to (1.16), 

( ) 2
3

3
3 1

1arcsin
ME
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−
=

γ
σ  

is the angle of inclination of the shock to the flow in front of it, and 

( ) ( ) ( )[ ]
( ) ( ) 333

333
3 11

11121
J
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++−
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−=

γγ
φγγγ  

is th inverse ratio of gas densities on the sides of the shock (1.17), which reduces to 

the ordinary Rankine-Hugoniot adiabat at 0=φ  and γγ =3 .  

 As it is shown in [146] and in Subsection 3.1, a sufficiently large pulsed energy 

release φ  shifts the “detonation” polar III (Figure 3.9), reflecting the relation (3.28), 

inside the shock polar I, which corresponds to expression (3.26). In this case, the 

intensity of the steady shock 3j  must belong to the interval (1.13) 

max33min3 JJJ ≤≤ .           (3.33) 

Here the value max33 JJ =  corresponds to a normal shock with pulsed energy release, 

and the triple configuration with max33 JJ =  and NJJ 11 =  (Figure 3.9) corresponds to 

the analogue of the von Neumann transition criterion eflection of the shock 1j  

restablished in Subsection 3.1. Values min3J  and max3J , according to [146], are 

determined by the formula (1.14): 

( ) ( ) ( ) ( )[ ]
1

112
2

1
1
1

3

2
3

2
3

22
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3
maxmin,3 +

−−+−−++
⋅
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=
γ

γγγφγγγγ

γ
γ MMMJ

J m


, (3.34) 

here ( ) ( ) εε −+= 21 MMJm . 
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Figure 3.9. Solution of the problem of Mach reflection on the plane “shock intensity – flow 

deflecttion angle”: I is the polar of the incident shock; IIa is the polarity of the reflected shock at 
minimum permissible intensity ( NJ1 ) of the incident one; IIb – at its maximum permissible intensity 

( PJ1 ); III is the polar of the main (Mach) shock with pulsed energy release 

 The only solution to system (3.25-3.26) in the considered range of sufficiently 

large Mach numbers belongs to the interval of intensities 

PN JJJ 111 ≤≤ ,             (3.35) 

here the value PJJ 11 =  corresponds to the limiting position of polar IIb of the 

reflected shock (its contact with polar III, see Figure 3.9). Flow behind the reflected 

shock 2j  at the same time it is supersonic ( 12 >TM ), and it is subsonic ( 13 <TM ) 

beyond the main shock 3j .  

 As a rule, for an approximate analytical description of the flow in region 3 

(Figuse 3.7, a-b), a model of quasi-one-dimensional flow with a certain initial Mach 

number 30M  immediately after the strong Mach stem is used. The value of 30M   can 

be determined by formula (9), then TMM 330 = , or by a similar ratio for max33 JJ = , 

which corresponds to the flow at the point N after a normal shock (then NMM 330 = ), 

or as  half the sum of these values: then 

( ) 23330 NT MMM += ,           (3.36) 
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which corresponds to the approach adopted in [145, 58]. Initial value of 30M  can 

also be based on more complex methods for averaging of flow parameters [5, 111]. 

Next, to determine the initial Mach number of the flow through the “virtual nozzle” 

3, approximation (3.36) is used. 

 Thus, the application of the proposed model allows us to establish the initial 

flow angle ( 30 βθ = ) and Mach numbers ( TMM 220 =  and 30M ) in regions 2 and 3 

behind the reflected shock and the main one. 

Flow in an expansion wave behind a reflected shock. Relationships for flow 

angle θ  in Prandtl-Meyer wave 2 with straight characteristics of the first family look 

as follows: 

( ) ( )2200 MM ννθθ −+= , 

here ( ) ( ) 1arctg1arctg1 22 −−−= MMM εεν  is the Prandtl-Meyer function, 

together with a condition of the form (1.22) 

( ) ( )330 MqMqyy T = , 

where ( ) ( )[ ] 3212
33 11

ε
ε

−
−+= MMMq  is the isentropic flow rate function, and 

equality (1.23) of pressures across the slipstream τ : 

( ) ( ) ( ) ( )30333202 MMMM ππππ = . 

Here ( ) ( )[ ] ( )12 211
−−

−+=
γγ

γπ MM  and ( ) ( )[ ] ( )12
33

33211
−−

−+=
γγ

γπ MM  are the 

isentropic pressure functions written for gases above and below the slipstream. Those 

relations lead to equations of the form (1.35-1.38), which describe the shape ( )xy  of 

the slipstream τ  and changes in flow parameters on both its sides: 

                               θtan=
dx
dy

,  ( )yMM
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d
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2
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=
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. 

If we consider the Mach number 3M  below the slipstream as an independent 

variable, equations (3.37) are similar to (1.39-1.42): 
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 At the same chemical composition of the flows across the slipstream, the ratios 

(3.37) and (3.38) take the form (2.31-2.34), known from [64, 65, 145]. Integration of 

equations (3.37) or (3.38) is to be performed up to the point D of the intersection of 

the slipstream τ  with boundary characteristic BD of the second family which incides 

from the exit point of the reflected shock 2j  (TB) to the jet boundary (Figure 3.7,b). 

The flow from below from the slipstream should remain subsonic ( 13 <M ); reaching 

critical speed indicates that the proposed altitude Ty  of the triple point is 

significantly underestimated. 

 As calculations show, the angle of rotation of the slipstream τ  on its segment 

TD if usually small in absolute value, but can be 1.5-2 times more than the initial 

angle 0θ  the slope of this discontinuity at the exit from the triple point. Therefore, 

ignoring the curvature of the slipstream leads to a significant underestimation of the 

resulting height of the main shock (namely, of the value of Ty ). 

 An analysis of the differential characteristics of the flow in a Prandtl-Meyer 

wave, similar to that obtained in [64, 65, 145] with 3γγ = , leads to the following 

equations to determine the shape ( )FF xy  of the boundary acoustic characteristics of 

the second family BD and variation in flow parameters along the its direction ϕ : 
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which are consistent with the equations (1.51-1.59). Here ( )22 1arcsin M=α  is the 

Mach angle, 2M  is flow Mach number at an arbitrary point F  on the characteristic 

BD, 3M  is Mach number of the flow on the other side of the slipstream τ  at the 

point 1F  its intersection with the corresponding straight characteristic 1FF . 

Coordinate 
1Fy  point 1F  obeys the formula 

( ) ( )3301
MqMqyy TF = , 

and the distance y∆  from this point to the envelope line of the family of the straight 

characteristics obeys the relation 

( ) ( ) ( )
θγ

αθε

sin
sin111

2
323

2
2
3

2
2 1

MM
yMM

y F +−−+
=∆ . 

The system of equations (3.39) is integrated starting from the point B of the 

intersection of the reflected shock with the jet boundary and finishing at the point D 

of the incidence of the characteristic BD on the slipstream. If we take the distance L 

between the curvilinear characteristic BD and slipstream as an independent variable, 

then the equations (3.39) are recorded in the form 

       
ϕ
ϕ

ddL
ddx

dL
dx FF = ,  

ϕ
ϕ

ddL
ddy

dL
dy FF = ,  

ϕ
ϕθθ

ddL
dd

dL
d

= ,  
ϕ
ϕ

ddL
ddM

dL
dM 22 = ,  

ϕ
ϕ

ddL
ddM

dL
dM 33 = ,  (3.40) 

here the value 
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d
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ϕ

 

characterizes the decrease in distance L as the curved characteristic BD approaches to 

the slipstream. Integrating of equations (3.40) is produced starting from the value L 

and flow parameters which correspond to the point B after the reflected shock, up to 

the value L=0, which corresponds to the point D. 

 Equation of the shape of a reflected shock. It has been repeatedly shown [113, 

137] that the reflection coefficient of expansion or compression disturbances 

overtaking the preceding oblique shock wave is very small (if only the flow behind 

the shock is not transonic, which is not the case considered here). In addition, the 
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expansion wave part acting on the reflected shock 2j  in a triangle 1TBB  (Figure 

3.7,b), is weak itself. Therefore, according to the method first proposed in [9], the 

shape of the reflected shock is determined basing on the condition of flow 

conjugation in direction (i.e., the flow angles behind each point of the reflected shock 

2j  and at the corresponding points the Prandtl-Meyer expansion wave 2 must 

coincide). Analysis of the differential characteristics of the flowfield in wave 2 [64, 

65, 145], together with the compatibility conditions on the oblique shock, determines 

the shape of the reflected shock in polar coordinates ( r ,ξ ): 

( )ξβσ
ξ

−−= 12cotr
d
dr

,                                                (3.41) 

     ( )
( )ξθσ

σβα
ξ
θ

−−
−+

=
12

22222
sin

sinrMK
d
d s .           (3.42) 

Here r  is the distance from the edge of the nozzle to the considered point on shock 

surface, ξ  is the polar angle measured from the horizontal direction (see 

Figure 3.7,b), and ( )22 1arcsin M=α  is the Mach angle. In this case, the angle 2β  of 

the flow deflection on the reflected shock is related to its intensity 2J  by (3.27), and 

the angle 2σ  of the shock clope to the flow in front of it – by dependence (1.1): 

( ) εσε −+= 2
22

12 sin1 MJ . 

Mach number 2M  at the corresponding point of the expansion wave behind the shock 

obeys the dependence 

( ) ( ) 20202 βθνν −+= MM , 

here ( )Mν  is the Prandtl-Meyer function. Corresponding Mach number 3M  on the 

other side of the slipstream obeys the relation 

( ) ( ) ( ) ( )2030323 MMMM ππππ ⋅= . 

The curvature SK  of the streamline behind an arbitrary point on shock surface, which 

is present in (3.42), is determined according to the results of the analysis in [65]: 
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here ξsinrHy +=  is the ordinate of a given point downstream the shock, 

( ) ( )2200 MM ννθθ −+=  is flow angle at this point, ( ) ( )330 MqMqyy TA = , 

( ) ( ) ( ) ( )[ ]θγθαε sinsin1111 2
3232

2
3

2
21

MMMMyy AA +−−+−= , H  is a half-width 

of the nozzle exit section. 

 Integration of (3.41-3.42) is carried out from the value 1σξ −=  at the triple 

point T to the value 1βξ −=  at point B of the exit of the shock 2j  onto the jet 

boundary with subsequent reflection in form of the expansion wave 4ψ . 

 The incidence of an expansion wave on slipstream. Many modern approximate 

models of flows with Mach reflection [66-68] actually replace the fast analytical 

assessment for the interaction of the rarefaction wave 4ψ  with a sleepstream τ  

(Figure 3.7, a-b) for its numerical calculation using the method of characteristics. 

However, on the other hand, the reduction of the area DCE of this interaction to a 

single point D, which ignores the finiteness of the DC secot of the inverse turn of the 

sleepstream in the horizontal direction [52, 53], also leads to significant errors in 

determining the parameters of the shock-wave structure. By analogy with the model 

[145] set out in Subsection 2.3, the calculation of the wave interaction 4ψ  with a 

sleepstream τ  is performed as follows. It is assumed that the wave 4ψ  is the Prandtl-

Meyer flow, and the Mach number BDM 2  flow in front of this wave corresponds to 

the average slope angle of the characteristic BD in area 2: 

           ( ) ( ) ( ) ( ) ( ) ( )[ ] 2222222 DDBBBDBD MMMMMM αναναν +++=+ .          (3.43) 

Initial Mach number DM3  and width Dy  of flow area 3 along the “virtual 

nozzle” are determined from previously obtained solutions to problems about the 

shape of the slipstream ТD, boundary characteristics BD and variations of flow 

parameters along them. 

Arbitrary Mach number [ ]1;33  DH MM ∈  on the lower side of the slipstream 

corresponds to the Mach number HM 2  from its upper side. It is determined by the 

relation 

( ) ( ) ( ) ( )DBDHH MMMM 332332 ππππ = ,                              (3.44) 
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and width Hy  area 3 is such that 

( ) ( )HDDH MqMqyy 33= .                                          (3.45) 

In this case, the abscissa Hx  of point H is approximately determined from the 

condition of straightness of the incident characteristic BH1H: 

      ( ) ( ) ( ) ( ) ( ) ( )[ ]
11 2222tg HHBDBDBHBH MMMMxxyy ανανζ −−++=−− ,       (3.46) 

here ( ) ( )BDBD xxyy −−=ζtan , and the slope ( )HH xy '  of the slipstream at this 

point obeys the condition 

( ) ( ) ( ) ( )[ ]HBDHDHH MMMxy 222
'

1
2tan νννθ −−+= ,                  (3.47) 

taking into account the turn of streamlines in the waves which are incident on the 

slipstream τ  ( 4ψ ) and reflected from it ( 5ψ ). Here 
12HM  is Mach number on the 

characteristic BH1, Dθ  is the previously determined angle of inclination of the 

sleepstream at point D. 

System of equations (3.44-3.47) defines the shape ( )HH xy  of the 

sleepstream τ  and is to be integrated until the value 13 =HM  is reached.  

 If the expansion wave 4ψ  undergoes refraction at the reflected shock 2j  before 

falling onto the sleepstream(see, for example, Figure 3.7,а), then we should add to 

system (3.44-3.47) the analytical solutions to the problem of the interaction of a 

shock with an expansion wave of counter direction, obtained in [60, 61]. 

 Algorithm for applying an approximate analytical model. To quickly estimate 

the parameters of the shock-wave structure of a supersonic flow with Mach 

reflection, pulsed energy release and changes in the chemical composition at the main 

shock, first of all, the parameters of the free-stream flow of the initial mixture (values 

M  and γ ) should be set, as well as the adiabatic index 3γ  of the combustion 

products, dimensionless pulse energy release φ  and intensity 1J  of the incident 

shock, satisfying inequality (3.35). Next, the flow parameters are to be determined as 

follows: 

 1. Let us set the height Ty  of the triple point to a first approximation. 
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 2. The problem (3.24-3.30) of calculating flow parameters in the vicinity of the 

triple point is to be solved. Relations (3.25), (3.31), (3.32) and (3.36) determine the 

initial Mach numbers 202 MM T =  and TM3  on the sides of the slipstream, as well as 

the initial Mach number 30M  of the flow along the “virtual nozzle” 3 and angle 

30 θθ =  of inclination of slipstream in the vicinity of the triple point. 

 3. Relations (3.41-3.42) establish the shape of a slightly curved (convex 

upward) reflected shock wave 2j  (ТВ), as well as the coordinates of the point B and 

flow parameters behind the shock at this point.  

 4.Shapes of the boundary characteristic BD (3.39-3.40), of the slipstream τ  

(3.38) and flow parameters on their sides are to be determined jointly. Integration of 

equations (3.38) and (3.39-3.40) finishes at point D of intersection of the boundary 

characteristic with the slipstream. The flow through the “virtual nozzle” 3 can reach 

a critical speed ( 13 =M ) to this point, indicating a significant underestimation in the 

value Ty  in the accepted approximation. 

 5. The problem (3.43-3.48) about the incidence of a expansion wave 4ψ  which 

causies a reverse turn of the slipstream τ  is solve,. If it is discovered that the critical 

flow speed in region 3 is reached before the sleepstream turns horizontally ( 13 =HM  

at ( ) 0' <HH xy ), suggested height Ty  is overestimated, otherwise it is underestimated. 

 6. Based on the results of the iteration, the value Ty  is specified, after which 

calculations are performed in the next approximation. 

 3.2.2. Results of applying an approximate analytical model of the shock-wave 

structure of a flow with pulsed energy release and a change in the chemical 

composition of the gas at the main shock 

As an example of using the presented model, the outflow of a uniform (in the 

outlet section) planar jet of a fuel-air gas mixture is calculated. The adiabatic indices 

of the mixture in the free flow and behind the main shock wave were assumed to be 

equal 396.1=γ  and 290.13 =γ , which approximately corresponds to a 

stoichiometric methane-air mixture (mass fractions – 4.856% CH4, 74.212% N2, 
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19.980% O2, 0.951% of other impurities) and products of its complete combustion, 

including carbon dioxide and water vapor. The specific heat of combustion of fuel 

was taken equal to 266.55=λ  MJ/kg, which corresponds to the value 684.2=φ  

MJ/kg in terms of the entire gas mixture and the dimensionless value (3.29) of the 

pulse energy release 045.30=φ  at T=300 K. This value of specific energy release is 

an order of magnitude higher than that considered in [88]. 

Due to the rather large value of the pulsed energy release, the solution to 

system (3.24-3.30), which describes the stationary Mach reflection, under the 

conditions under consideration exists only for 436.5>M . According to inequality 

(3.33), which limits the range of possible intensities of the main shock with an energy 

supply, at 436.5=M  the detonation polar III (Figure 3.9) is compressed into a point 
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and at lower Mach numbers it disappears. The solution describing the triple 

configuration of the Mach reflection, with 436.5<M  should be sought by allowing 

the movement of the main shock wave 3j  upstream, i.e. unsteadiness of the emerging 

flow. 

Figure 3.10 shows examples of calculating the dimensionless (relative to the 

half-width of the outlet section) height of the triple point Ty  depending on intensity 

1J  of the incident shock (provided that there is a non-separated outflow of the highly 

overexpanded jet under consideration). Curves 1-6 correspond to the outflow with 

Mach numbers M=6; 6.5; 7; 8; 9 and 10 over the entire range (3.33) of incident shock 

intensities. 
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Figure 3.10. Values of the triple point height depending on the intensity of the incident shock in the 

presence (curves 1-6) and absence (curves 1a-6a) of pulsed energy release and changes in the 
chemical composition of the methane-air mixture. Squuares and triangles correspond to numerical 

results in CFD package ANSYS Fluent 

 For comparison, curves 1a-6a show the values ( )1JyT , calculated for the same 

outflow parameters, but in the absence of energy release ( 0=φ ) and without changes 

in the chemical composition of the mixture ( 396.13 == γγ ), that is, according to the 

algorithm [145] (Subsection 2.3), a generalization of which is presented in this 

section. From a comparison of curves 1-6 and 1a-6a, it is obvious that a significant 

pulsed energy release noticeably shifts the conditions for the occurrence of Mach 

reflection (from points vN1-vN6, corresponding to the “classical” von Neumann 

criterion, to points N1-N6), which completely corresponds to the conclusions and 

relationships obtained in Subsetion 3.1. In addition, the energy release leads to a 

significant increase in size of the main (Mach) shock and in the width of the subsonic 

flow region after it. 

The following example of verification of the developed analytical model is 

presented in Figure 3.8. Using a software package ANSYS Fluent 2020 R2, the 
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planar flow of a stoichiometric methane-air mixture in a symmetrical narrowing duct 

between the wedges was calculated. The angles at the tops of the wedges are 
1

24β =  , 

the distance between their leading edges is 200 mm, and the minimum channel width 

is 100 mm. The oncoming flow had normal atmospheric parameters, the dynamic 

viscosity of the gas was changed according to the Sutherland formula, and κ ω−  

SST-turbulence model was applied. The calculations were obtained on an 

unstructured grid consisting of 2·106 cells. In this case, chemical reactions initiated 

by high temperature behind the Mach shock were calculated using a finite kinetics 

model. The results of the calculations were compared with those obtained under 

similar conditions for a non-reacting mixture of similar composition. The calculated 

values of the dimensionless (relative to the width of the channel inlet section) length 

of the main (Mach) shock were approximately 0.377 (in the presence of exothermic 

reactions) and 0.207 (in the case of their absence). From Figure 3.8b, it is obvious 

that in this case chemical reactions are initiated only behind the main (Mach) shock, 

but not behind the incident and the reflected shocks (since carbon dioxide, which is 

their product, is present only in the flow region behind the main shock). 

Application of the approximate analytical model presented here (as well as in 

[143, 147]) made it possible to obtain the values 0.412
T

y =  (in the first case) and 

0.215
T

y =  (in the second one). Thus, the comparison of numerical (also 

demonstrated by squares and triangles in Figure 3.10) and analytical results seems 

satisfactory. 

At the next verification step, the results of applying the proposed analytical 

model and the calculations given in [138] were compared. First, the flow of a lean 

hydrogen-air mixture was calculated (0.4 H2 + 4.772 Air) with Mach numbers M=3.0 

and M=3.15. According to [138] , a steady numerical solution with Mach reflection 

was not obtained in both cases (a transition to regular reflection occurred, or 

oscillatory movements of the Mach shock with chemical reactions behind it began). 

Assuming complete combustion of hydrogen with specific heat 141.8λ =  MJ/kg, it is 

easy to establish that the energy release per unit mass of the gas mixture is 0.821φ =  
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MJ/kg. This is significantly greater than the critical value corresponding to the 

maximum dimensionless energy release *φ  (3.18) which is 0.538 MJ/kg at M=3.0 and 

0.477 MJ/kg at M=3.15. At the indicated values, the “detonation polar” of the main 

shock [24] degenerates into a single point and disappears, which leads to the absence 

of a solution for a steady shock-wave structure (at least at 1.403γ =  in the free stream 

and 
3

1.322γ =  in the mixture behind the main shock). Thus, a “negative” (reducing 

to the absence of both analytical and numerical solution) agreement between the 

numerical and analytical results was obtained. More “positive” results (expressed in 

the presence of a steady solution with Mach reflection and pulsed energy release) for 

a mixture of a given composition should be sought, for example, at M = 4.0. 

Lastly, the flows of a stoichiometric mixture of hydrogen and oxygen were 

calculated (2H2 + O2), also considered in [138]. At M=4.0, the estimated energy 

release also exceeds the critical value (3.18). Therefore, the numerical result obtained 

in [138] for 
1

25β =   (unsteady flow regime) is quite consistent with the proposed 

model. 

 At Mach number M=7.0, according to the data of [138], stationary detonation 

took place only in a narrow range of flow deflection angles on the incident shock 

(between 
1

20β =   and 
1

23.5 24β = −  ). The upper limit is fully consistent with the 

data of the proposed model, in particular, the equation (3.34): 
1 1P

J J=  at 
1

23.824β =  . 

According to numerical experiments in [138] and analytical results of applying the 

proposed model, at 
1 1P

J J=  the Mach shock occupies almost the entire cross-section 

of the channel, gradually turning into the bow detached shock. 
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Figure 3.11. Dimensionless height of the triple point depending on the angle of flow deflection at 

the incident shock in the presence (curves I, II) or absence (curves I’, II’) of energy release and 
changes in the chemical composition of ga mixture behind the main shock in the jet flow of 

a stoichiometric mixture of hydrogen and oxygen at M=7.0 (curves I, I’) and M=8.0 (curves II, II’) 

 Bottom line (
1

20β =  ) of the region of existence of stationary detonation in 

a stoichiometric mixture of hydrogen and oxygen at M=7.0 corresponds to formation 

of “classical” stationary Mach configuration in a perfect diatomic gas (
1

19.716β =  ), 

i.e. to von Neumann criterion. According to the results of Subsection 3.1, in the 

presence of a pulsed energy supply, this boundary shifts to the value 
1

17.104β =   

(from point 1’ in Figure 3.11 to point 1). It should be noted that at M=7.0 wide range 

of angles 
1

β  (up to 
1

30.245β =  ) belongs to the domain of “dual solution” for Mach 

and regular reflections. Therefore, in a number of cases, numerical solutions with 

regular reflection are obtained, for example, at 
1

22β =  , although in the case of the 

implementation of the Mach reflection, the height of the main shock should be quite 

large (see, for example, the curve in Figure 3.11). In addition, at M=7.0 or M=8.0 and 

normal free-stream temperature, chemical reactions in a stoichiometric mixture of 

hydrogen and oxygen take place not only behind the main shock, but also behind the 

incident one. 

The dependence ( )1T
y β of the dimensionless height of the triple point on the 

flow deflection angle at the incident shock in a supersonic jet of a stoichiometric 
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mixture of hydrogen and air is shown in Figure 3.11 for Mach numbers M=7.0 

(curves I and I’) and M=8.0 (curves II and II’). In this case, curves I and II 

correspond to a mixture with a change in chemical composition and pulsed energy 

release at the main shock (the results of applying the model discussed in Point 3.2.1). 

Curves I’ and II’ correspond to the Mach reflection in a non-reacting mixture of the 

same chemical composition (the results of applying the model outlined in 

Subsection 2.3). 

Thus, the flow emperature behind the main shock of the Mach reflection, 

formed in high-speed supersonic gas flows, is significantly higher than behind the 

incident and reflected shocks. For this reason, detonation effects (pulse energy release 

and changes in the chemical composition of the reactive gas mixture) are initiated, 

first of all, after the main (Mach) shock. An analysis of the resulting triple 

configurations using the Champan–Jouguet model of stationary detonation to the 

main (Mach) shock shows that a significant pulsed release of energy leads to a shift 

in the criteria of the oblique shock reflection transition. The shocks, which reflect 

regularly according to the classical theory, can reflect with the formation of a triple 

point, if we allow pulse energy release at the Mach shock. 

The presented approximate analytical model for quickly calculating the 

parameters of the shock-wave structure of the flow of a reactive gas mixture with 

Mach reflection takes into account for the first time the change in chemical 

composition as well as pulsed energy release at the main shock. The primary results 

obtained when calculating a supersonic jet flow of a stoichiometric composition of 

methane-air, hydrogen-air or hydrogen-oxygen gas mixtures show not only an earlier 

occurrence of Mach reflection compared to a similar flow without chemical reactions, 

but also a significant increase in the geometric dimensions of the Mach stem. 
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3.3. On the possibility of applying the obtained results in the design  

of a combined jet engine 

3.3.1. The idea of the combined engine 

Traditional jet engines working on chemical fuel have largely reached the limit 

of their efficiency. There is an opinion that in order to significantly increase thrust 

and to improve efficiency, it is necessary to develop fundamentally new types of jet 

engines, including through a combination of thermodynamic cycles that underlie 

traditionally used designs. 

The concept of a ramjet detonation engine was previously discussed in [86, 89, 

150, 152, 153-156]. Despite the theoretical simplicity of the device, its operation in 

practice is difficult due to the formation of complex shock-wave structures with 

different temperatures of the gas mixture, as a result of which the chemical reactions 

(for example, at gas detonation) are excited only in the part of the flow that has the 

highest temperature [76, 79 , 92]. In particular, at a stationary Mach reflection, the 

temperature of the flow behind the main (Mach) shock is always (especially at high 

flow Mach numbers) significantly higher than behind the system of incident and 

reflected shocks. As a result, only part of the fuel-air mixture in the flow behind the 

Mach shock detonates first. It is this part of the flow that is advisable to use in the 

thermodynamic cycle of a ramjet detonation engine (so-called Fickett-Jacobs cycle). 

In itsw turn, as theoretical and numerical studies of flows in supersonic air 

intakes show, the loss of total pressure (stagnation pressure) in the system of the 

incident shock and the reflected one is significantly less than in the Mach stem [76, 

78, 79, 92]. This part of the flow is preferable for subsequent use in the combustion 

chamber of a “classical” ramjet engine (in the Brayton thermodynamic cycle). 

Significant differences (at least in several times, but sometimes in tens of 

times) in total pressures and static temperatures of gas flows separated by tangential 

discontinuities behind triple configurations (TC) of different types (for example, with 

Mach reflection) are discussed in [9, 10] . The extreme properties of shock=wave 

systems and structures have been previously used to optimize the shapes of 
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streamlined bodies [118, 119], supersonic air intakes [80–83], in jet technologies and 

other applications of gas dynamics. 

Based on the noted features of the emergence of shock-wave structures, the 

concept of a combined jet engine with detonation of a reactive gas mixture behind a 

Mach shock and using a flow behind an oblique reflected shock according to the 

scheme of a “classical” air-breathing engine was proposed in [86, 150, 152] . 

The practical implementation of the idea of a combined engine requires the 

separation of streams with different values of temperature, stagnation pressure ( and 

with different chemical compositions as chemical reactions are excited), separated by 

a slipstream beyond the triple point. The conditions for the existence of Mach 

reflection in the presence of exothermic reactions and changes in the chemical 

composition of the gas mixture at the main shock can be determined based on the 

data discussed in Subsection 3.1. The dimensions of the flow regions used in various 

thermodynamic cycles are determined based on the algorithm for calculating the 

triple point height discussed in Subsection 3.2. The same algorithm determines the 

shape of the sleepstream along which the streams should be divided. 

Below are several examples of calculating an idealized (to the model of flow 

with Mach reflection in a narrowing channel between the wedges) model of the air 

intake of a prospective combined jet engine, both in the presence of pulsed energy 

release at the main shock and without it. 

3.3.2. Flow without chemical reactions in an idealized air intake of 

a prospective engine 

To analyze the operation of an idealized (model) air intake of a prospective 

propulsion system, it was necessary to obtain a series of gas-dynamic calculations in 

standard and most common computational fluid dynamics packages. 

In the first calculation, the steady problem of planar of supersonic air flow into 

a narrowing channel between wedges is solved. Air was considered as a perfect gas, 

there were no chemical reactions. 
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During the numerical simulation of the process under consideration, the 

averaged Navier-Stokes equations [139] for a compressible perfect gas are used, 

which are represented by the following system (the averaging signs are omitted): 

( ) 0

( ) ( ) ( )

( ) ( ) ( )

m t

jэф j m t h
j
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t

u uu p g F
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ρ ρ

ρ ρ τ τ ρ

ρ ρ α τ τ
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     (3.48) 

In (3.48), u  is the averaged flow velocity vector with projections 𝑢, 𝑣 и 𝑤 on 

the coordinate axis, m tτ τ+  are the molecular and turbulent components of the 

viscous stress tensor, 2 2 20.5( )vE C T u v w= + + +  is total gas energy, 
2 2 2/ 0.5( )pH E p C T u v wρ= + = + + +  is its total enthalpy, 𝑇 is temperature, 

( )v pC C R= −  is the specific heat capacity of gas at constant volume, Cp is the 

specific heat capacity of gas at constant pressure, R is gas constant, gρ   is 

gravitational force per unit volume (here it is negligible), F


 are the external forces, 

эф tα α α= +  is effective heat transfer coefficient, jJ


 is diffusion term,  jh  is the 

enthalpy of formation of a component, Sh  are quantitative characteristics of the 

energy source (allows us to take into account the process of formation and absorption 

of thermal energy). 

The relationship between turbulent stresses and averaged flow parameters can 

be determined using various turbulence models. In those models, certain assumptions 

are made, on the basis of which the missing number of equations is introduced, which 

makes it possible to find all the unknowns. The work uses the tubulence model k – ε 

Realizable [139].  

The parameters of the free-stream flow correspond to the Mach number M=5 

and the adiabatic index γ=1.4. The von Neumann criterion for the transition from a 

Mach reflection to a regular one for given flow parameters corresponds to the 

following parameters of the incident shock: deflection angle (the angle at the top of 
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the wedges shown in Figure 3.12,a-c) β1=20.862˚, or intensity J1=7.479, or slope  

angle (angle of incidence of the shock) σ1= 0.796˚. 

To obtain a Mach reflection with a sufficiently large height of the main shock, 

the angle at the wedge apex corresponded to the value β1=31˚. The distance between 

the wedges was 200 mm, the internal section was 100 mm. 

а) 

  
b) 

 
 

c) 
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Figure 3.12,a-c. Field of stagnartion pressures (a), static temperatures (b) and Mach 
numbers (c) when air flows into the narrowing channel of a prospective engine 

The resulting main, or Mach shock occupies approximately half of the inlet 

section. It can be noted that the flow behind the Mach shock resembles a quasi-one-

dimensional flow through convergent-divergent nozzle with a transition from 

subsonic to supersonic flow (“virtual de Laval nozzle”). The inverse turn of the 

slipstream occurs under the influence of an expansion wave falling from the trailing 

edge of the wedge. 

Figure 3.12a shows the distribution of total gas pressure (stagnation pressure of 

the gas flow). From the diagram above, it is obvious that the flow behind the reflected 

oblique shock has a stagnation pressure several times greater than the flow behind the 

“Mach stem” (main shock). Such a flow can be used with much greater efficiency in 

the combustion chamber of a “classical” ramjet engine. 

According to Figure 3.12b, the gas temperature after the main (Mach) shock 

increases to 1750 K, which creates good conditions for ignition or detonation of the 

fuel-air mixture passing through that shock, compared to the flow overcoming the 

system of incident and reflected oblique shocks, where the gas temperature is 

noticeably lower. Thus, the flow in this part of the air intake can be used in 

a detonation engine cycle. 

3.3.3. Influence of pulsed energy release on the parameters of the shock-wave 

structure 

If a reactive fuel-air mixture is supplied to a strong shock, a sharp increase in 

temperature promotes its ignition and can initiate detonation. 

In the example discussed in Figure 3.13 and 3.14, air flows in with the same 

Mach number (M=5) into a tapering channel formed by two wedges and similar to 

that discussed in Figure 3.12. After some time, when the calculation is established, 

fuel (a stoichiometric mixture of methane with air) is supplied into the central part of 

the channel through a slit (slot) 10 mm wide. 
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Figure 3.13 shows the dimensions of the input part and the calculation area. 

The calculation area is a rectangle with dimensions of 5 m by 10 m. All dimensions 

in Figure 3.13 are indicated in millimeters. 

The problem is solved in a two-dimensional planar symmetric formulation. 

A one-stage chemical reaction of combustion of a stoichiometric mixture of 

methane with air is simulated: 

2 24 22 2 OCH O H CO+ ⇒ +  
To solve chemical reactions, a finite-rate chemistry model (Finite-Rate/No 

TCI) is used, which implies that the applied fluid dynamics package used takes into 

account the finite rate of chemical reactions, solving chemical kinetics equations 

using Arrhenius reaction rate constants, without attempting to additionally take into 

account the influence of turbulence. 

Simulating the flow of a gas mixture, its multicomponence must be taken into 

account. The equation of the concentration change of each i-th component of the gas 

mixture is written as it follows: 

 ( ) ( ) ,i i
i i i i i

C
uC g S

t
ρ

ρ ω
∂

+∇ = −∇ + +
∂

    (3.49) 

In (3.49), iω  is the rate of formation of the i-th component, which is determined by 

the formula (3.50): 
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= ∑   (3.50) 

Here  mwi
µ  is the molar mass of the i-th component of the gas mixture, RN  is the 

number of chemical reactions, irR  is the molar rate of formation/decay of the i-th 

component in the reaction r , which was calculated by equation (3.51) of chemical 

kinetics for the rate of formation of the i-th component during a nonequilibrium 

chemical reaction: 
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.jr jr
N N

ir jr jr fr jr br jr
j j

R Г k X k X
η ν

ν ν
= =
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∏ ∏   (3.51) 
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Here 
N

ir j
j

Г Xγ=∑  is a coefficient that takes into account the influence of third bodies 

on the rate of chemical reactions, "
jrν  is an exponent for product j  in chemical 

reaction r , '
jrν  is a stoichiometric coefficient for the reagent j  in reaction r , 

 и fr brk k  are, respectively, the rate constants of the direct and reverse reactions, jrX  is 

a molar concentration of component j  in reaction r , '
jrη  is an exponent for reagent 

j  in reaction r , irγ  is the efficviency of component j  in reaction r  as the third 

body. 

The rate constants of the forward and reverse reactions are calculated 

according to the Arrhenius law: 

 /
,

r rE RT
f r rk A T eβ −= . (3.52) 

Here, rA  is the pre-exponential coefficient, rβ  is the dimensionless exponent at the 

temperature T, rЕ  is the activation energy (J/kmol), R is the universal gas constant 

(J/kmol·K) 

We used the combustion model Species Transport, Finite-Rate/No TCI, which 

was realized in CFD package ANSYS Fluent.  

In the “Species Transport” model, the local mass of each of the reagents is 

calculated by solving the convection-diffusion equation (3.53): 

 ( ) ( ) ,i i i i iY vY J R S
t
ρ ρ∂

+∇ ⋅ = −∇ ⋅ + +
∂

 

  (3.53) 

Here, iR  is the rate of additional production of reagent i during the chemical reaction, 

iS  is the rate of reagent production from the dispersed phase or the user-defined rate 

of reagent production. This equation is solved for N-1 reagents; N is the number of all 

reagents in the liquid phase included in the system to be solved. The mass of reagent 

N is equal to the difference between the total mass of the system and the mass of the 

other 1N −  calculated reagents. In order to avoid numerical errors, it is recommended 

to set the n-th reagent to a substance with the maximum mass fraction in the system, 

for example, nitrogen for a reaction in which air is the oxidizer [26]. 

The diffusion of mass in turbulent flows is described by the equation 
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= − + ∇ − 

 

   (3.54) 

where tSc  is the turbulent Schmidt number, tµ  is the turbulent viscosity.  

Density of the mixture:  

см
см

см

P
R T

ρ = . (3.55) 

Here, the pressure of the mixture 
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(3.56) 

and i i смC ρ ρ=  is the mass concentration of the i-th component in mixture [11]. 

Thermodynamic enthalpy of the mixture: 

1

n

i i
i

i C i
=

= ⋅∑ , (3.57) 

where 
2

1

,

T

i p i
T

i c dT= ⋅∫  is the enthalpy of the i-th component. 
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Figure 3.13 – Geometric parameters of the calculation area 

The specific heat capacity ,p ic  of each i-th component is given according to a 

piecewise linear law as a function of temperature and pressure. Thus, the average 

specific heat of a gas mixture is calculated using the ratio 

, ,
1

n

p i i p i
i

c C c
=

= ⋅∑ . (3.58) 

Here, ,p ic  is the the specific isobaric heat capacity of each component [11]. 

The thermal conductivity  𝜆𝑖 of each i-th component is determined using the 

ratio from the kinetic theory of gases: 
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The thermal conductivity of the gas mixture is determined by the formula 
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iX  is the molar concentration of t i-th component; the parameter ,i jϕ  was calculated 

using the ratio 
21/2 1/4
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The viscosity of each i-th component was calculated using Sutherland’s 

formula: 
3/2

0
0

норм
i i

T ST
T T S

µ µ
+ 

=   + 
. (3.62) 

Here, 0iµ  is the dynamic viscosity of the i-th component in normal conditions, S is 

the effective temperature (Sutherland’s constant). 

The dynamic viscosity of the gas mixture is calculated as follows: 

1
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n
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µµ
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=

=∑
∑

 (3.63) 
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Figure 3.14. Distribution (mass fraction) of methane in the flow field 

  

  

  
Figure 3.15. Distribution of the mass fraction of carbon dioxide (a), flow Mach numbers (b) 

and temperature, K (c) in the flow with the reactive mixture supplied to the central part of flowfield  

Figure 3.14 shows the supply of a fuel-air mixture (a stoichiometric mixture of 

methane with air). The fuel is supplied from the right at an angle of 90° to the main 
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(Mach) shock, since in this way it is easier to check the possibility of its ignition. It 

can be seen that methane mixes with air as it moves to the air intake. 

Figure 3.15,a-c shows the results of calculating the flowfield with fuel supplied 

to the central part of the Mach stem using the model (3.49-3.63). From the results 

obtained, it is clear that the mixture ignites at a strong shock, resulting in the 

formation of carbon dioxide (Figure 3.15a). In this case, the combustion surface does 

not come into contact with the channel body, and this fact has a beneficial effect on 

minimizing the cooling of the walls of the apparatus. 

The flow pattern shown in Figure 3.15b-c shows that the main (Mach) shock 

bends upstream (to the left), which is not observed in Mach reflection without 

chemical reactions [1, 20, 44]. Thus, the main shock at Mach reflection becomes 

convex forward with respect to the oncoming flow – a fact that is not characteristic 

for flows of non-reacting gases which requires additional analysis using differential 

conditions of dynamic compatibility [1, 140-142]. 

Due to the relatively small size of the nozzle from which methane is supplied, 

there is a noticeable mixing of the mixture supplied through the slot with the 

surrounding air. The distance from the nozzle to the Mach shock is 2.6 m. At this 

distance, the methane flow dissipates, and an already mixed mixture with a methane 

concentration much lower than the stoichiometric one enters the main shock. 

However, the methane concentration is sufficient to initiate chemical reactions at the 

Mach stem. 

The change in the position of the shock configuration is also noticeable. The 

reflected shock approaches the edge of the wedge, and the main shock moves 

upstream by 1 cm, thereby noticeably increasing in size. 

Thus, it has been established through numerical simulation that the presence of 

energy release resulting from the excitation of chemical reactions at a strong Mach 

stem significantly increases the size of this shock (the height of the triple point), 

which is in good agreement with the materials in Subsection 3.2. This fact increases 

the significance of the flow region behind the Mach shock, which is proposed to use 

in the thermodynamic cycle of a ramjet detonation engine. 
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3.4. Conclusions to the Chapter 3 

The pulsed energy release behind the main shock (Mach stem), as well as, to a 

much lesser extent, the decrease in the adiabatic index of the gas caused by physical 

and chemical effects, lead to an expansion of the region of existence of the Mach 

reflection, which, in the presence of energy release and physicochemical effects, can 

theoretically arise at all Mach numbers of supersonic flow. The possibility of energy 

release behind the main shock contributes to the Mach reflection of relatively weak 

incident shocks, which, in the absence of combustion, detonation and other physical 

and cchemical effects, reflect only regularly. 

The presented thesis study proposes a new approximate analytical model for 

quickly calculating the parameters of the shock-wave structure of the flow of a 

reactive gas mixture with Mach reflection, which for the first time takes into account 

changes in the chemical composition and pulsed energy release at the main shock. 

The primary results obtained when calculating a supersonic jet flow of methane-air, 

hydrogen-air or hydrogen-oxygen gas mixture show not only an earlier occurrence of 

the Mach reflection compared to a similar flow without chemical reactions, but also a 

significant increase in the geometric dimensions of the main shock. Those primary 

results are confirmed by numerical simulation data. 

In a number of works of the author of the dissertation and his supervisor, the 

idea of a combined ramjet engine which uses gas flows separated by slipstream 

behind the triple point of Mach reflection in different thermodynamic cycles was put 

forward. The development of such an engine is one of the possible practical 

applications of the results of this thesis study.  
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Conclusions 

 

 Research and optimization of shock-wave systems and structures using the 

mathematical apparatus of the modern theory of interaction of gas-dynamic 

discontinuities allows us to obtain theoretically important and practically valuable 

results. 

In the presented dissertation study, an analysis of the shock-wave structures, 

that form at the reflection of oblique shocks, including under conditions of pulsed 

energy release and changes in the chemical composition of the gas at the main shock 

that occurs at Mach reflection, was carried out. A mathematical apparatus has been 

developed for quickly and accurately estimating the parameters of the resulting 

shock-wave structure and the integral characteristics of the flowfield as a whole. 

For the regular shock reflection, analytical expressions have been obtained that 

describe structures with minimal dynamic and thermal loads on the affected object. 

The cubic equation in the variables “shock intensity – free-stream Mach number” 

determines both the parameters of the incident shocks with the minimum value of 

pressure and gas temperature behind them, and the angles of inclination of the 

obstacle at which the static pressure and temperature behind the point of regular 

reflection of a propagating shock wave of a given amplitude are minimal. Geometric 

optimization of the interaction of shock waves (in particular, blast ones) with 

obstacles can significantly reduce mechanical and thermal loads on structural 

elements. 

For more complex shock-wave structures (in particular, triple shock-wave 

configurations with a negative slope angle of the reflected shock, which arise at 

irregular reflection in flows with high Mach numbers and a reduced adiabatic index), 

areas of solution ambiguity were identified. It has been established analytically and 

numerically that there is a wide range of problem parameters, within which for the 

same incident (branching) shock-wave the solutions for the following sturctures 

coexist: 
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- Mach reflection with subsonic flow after the main shock; the flow behind the 

reflected shock can be either supersonic or subsonic; 

- regular reflection (as a rule, with a supersonic flow downstream the reflected 

shock); 

- triple configuration of the third type, in most cases – with the subsonic flow 

after the resulting shock. 

In addition, with similar problem parameters in real gas-dynamic devices, the 

formation of detached shocks, the formation of unsteady flows, as well as more 

complex and branched shock-wave configurations is not excluded. In particular, 

solutions corresponding to the formation of triple configurations of Mach reflection 

with a negative angle of inclination of the reflected shock are always ambiguous. 

Their realizability (as well as the stability of the emerging shock-wave structures) 

must be confirmed in each individual practically important case. 

In the presented work, the conditions for the existence are identified and a 

parametric analysis is carried out for triple configurations of steady shocks that arise 

at Mach reflection with pulsed energy release and a change in the chemical 

composition of the gas mixture at the main shock. The cause of pulsed energy release 

and changes in chemical composition can be, for example, detonation phenomena 

excited by a strong increase in temperature at the main shock. The author of the study 

has shown analytically and numerically that the pulsed energy release behind the 

main (Mach) shock, as well as, to a much lesser extent, the decrease in the adiabatic 

index of the gas caused by real gas effects, lead to an expansion of the region of 

Mach reflectioexistence. The possibility of energy release after the main shock makes 

possible the Mach reflection of relatively weak shocks, which, in the absence of 

combustion, detonation and other physical and chemical effects, reflect only 

regularly. 

Solutions to individual problems of interaction of gas-dynamic discontinuities 

and waves, previously obtained in the theory of interaction of stationary gas-dynamic 

discontinuities (solution for the triple configuration of Mach reflection, conjugation 

of a Prandtl-Meyer wave with a previous overtaking shock, counter shock and quasi-
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one-dimensional flow, interaction of an incident centered or simple expansion wave 

with the slipstream, etc.), contributed to the development of a new analytical model 

of the shock-wave structure of a supersonic flow with Mach reflection. Based on the 

results obtained for a supersonic overexpanded jet or flow in a narrowing channel, we 

demonstrate its high accuracy, especially determining the size of the main shock 

(Mach stem). 

The developed analytical model of the shock-wave structure of a supersonic 

flow with Mach reflection was generalized to the case of possible pulsed energy 

release at a Mach shock, as well as real gas effects that are significant for irregular 

reflection in flows with high Mach numbers. Thus, an approximate analytical model 

was obtained for quickly calculating the parameters of the shock-wave structure in 

the flow of a reactive gas mixture with Mach reflection, which for the first time takes 

into account the change in chemical composition and pulsed energy release at the 

main shock. The primary results obtained when calculating the supersonic flow of a 

methane-air, hydrogen-air or hydrogen-oxygen gas mixture show not only an earlier 

occurrence of the Mach reflection compared to a similar flow without chemical 

reactions, but also a significant increase in the geometric dimensions of the main 

shock. Those primary results are confirmed by numerical simulation data. 

In a number of their studies, the author of the thesis and his supervisor put 

forward the idea of a combined ramjet engine using gas flows separated by a 

slipstream behind the triple point of Mach reflection in different thermodynamic 

cycles. In particular, the flow downstream the reflected shock, which has a relatively 

high stagnation pressure, is advisable, after further deceleration in a system of several 

shocks, to be used in the Brayton cycle of a classical ramjet engine. In the flow after 

the Mach shock, due to very high temperature values, detonation effects can be 

initiated, and it is more expedient to use this flow in the Fickett-Jacobs cycle of a 

ramjet detonation engine. The development of such an engine that combines the 

benefits of the advantages of two gas flows is one of the possible practical 

applications of the results of this dissertation study. It is easy to see that the 

developed analytical model of flows with Mach reflection in the presence of pulsed 
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energy release and changes in the chemical composition of the gas at the main shock 

can be used for the gas-dynamic design of such prospective devices. 

From the point of view of theoretical gas dynamics, continuation of the 

ongoing research may include a complete parametric analysis of all types of triple 

shock-wave configurations with the possibility of pulsed energy release at individual 

shocks. In particular, it is necessary to analyze the ratios of the parameters of the 

flows formed behind the triple point and separated by the slipstream, and to identify 

triple configurations that are optimal for solving the assigned engineering problems. 

Of no less interest is the analysis of flowfield gradients in the vicinity of the triple 

point using differential conditions of dynamic compatibility. 

In further studies of triple configurations with energy release and significant 

changes in the physical and chemical properties of the gas, the following should be 

taken into account: 

- existence and development of more modern models of detonation 

transformations, which replaced the Chapman–Jouguet model applied here; 

- a more complex nature of physical and chemical transformations at strong 

shocks, which is not always described with a sufficient degree of accuracy and 

reliability by the one-parameter model of the “effective adiabatic index” of the 

mixture downstream the main shock.  
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