JOINT INSTITUTE FOR NUCLEAR RESEARCH

Manuscript copyright

Priakhina Daria Igorevna

Digital twins for solving management and development tasks of

distributed data acquisition, storage and processing centers

Scientific specialty 2.3.1. System analysis, management and information processing,

statistics

Thesis for a Candidate Degree in Technical Sciences
Translation from Russian
Supervisor:

Doctor of Technical Sciences

Korenkov Vladimir Vasilyevich

Dubna
2024

Contents
[T oo [3Tox 1 o] 4 ISP TSSO TP PSP TP PRPRO 4
Chapter 1. Analysis of the task of creating digital twins of distributed data acquisition, storage and
OO To TS T [oT=]] (=T OSSP 15
1.1. Distributed data acquisition, storage and processing CeNters.........c.cccvevvrveervereesvennnan, 15
1.2. State of the problem of modeling distributed data acquisition, storage and processing
(61T 01 (=T £SO PP PR PP 16
1.3. Digital twin: definition, application examples...........cccooiiiiiiiiinnn e, 18
1.4. Possibilities of using digital twins of data storage and processing centers................... 20
1.5, Conclusions t0 Chapter L........ccovoiiiieieeie e ne e 21
Chapter 2. Models, methods and algorithms for creating digital twins of distributed data acquisition,
Storage and ProCESSING CENTEISeiveireieeieieesteeteseesteeseesteeste e e e sreesteesseateeateesaesseesseesseasaesseansesseesreeneens 23
2.1, Preliminary FEMAIKS ..ottt 23
2.2. Requirements for digital twins of distributed data acquisition, storage and processing
(01T 01 (=T £ TSP U PR PR PP 24
2.3. Method of creating digital twins of distributed data acquisition, storage and processing
(01T 0 (T £ T TP PR PP PR 27
2.4. Algorithms for implementing of the method of creating digital twins of distributed data
acquisition, storage and ProCeSSING CENTETSeiverueiiereerieeeesreesieeeesree e eeesreesseeseesneeseeeeeenes 30
2.5, DaAta MOUEL ... 35
2.6. CoNnClUSIONS t0 CRAPTET 2........eiiieiiiieiee ittt 40
Chapter 3. Implementation of algorithms and development of special software for creating digital
twins and iNteracting With TN ..ot 41
3.1, IMPIemeNntation tOOISccveiiiieie e 41
3.2. Implementation of the digital twin Kernel............ccccoveiiiii i, 42
3.3. Implementation of a module for user interaction with a digital twin........................... 51
3.4. Development of special SOFtWAIe...........ccceeiiiiiiiiie e 55
3.5, Conclusions t0 ChAPLEr 3.....c..oiiiiiiieieeee e 57
Chapter 4. Verification and experimental operation of the special software for creating digital

twins

4.1. Verification of the digital twin Kernel...........c.ccoooiiii i 58

4.2. Application of the special software to create the digital twin of the computing
infrastructure of the BM@N experiment of the NICA compleX ..., 70

4.3. Application of the special software to create the digital twin of the computing system of

the online data filter of the SPD experiment of the NICA compleX.........cccccvevvevieiviveiveniene, 82

4.4, Conclusions t0 ChapLer 4ccoiveieiieieee ettt ne s 86
(@F0] 004 (113 [o TSRS 88
GHOSSANY OF TEIIMNS ...ttt bbbt bbbt e et et et ebe b b 90
RETEIEINICES ...t bbbt b Rt b bR bbb bbbt n e nes 91
Appendix 1. Description of data model eNtItieS..........ccccvveiiiiiiiieiecce e 98
Appendix 2. User instructions for working with the special softwareccccccoeveveiieceeiicnen. 103
Appendix 3. Certificate of registration of & COMPULEr Programccocevvrerireeiieiene e 112
Appendix 4. Letters on the application of the results of the PhD thesis research............c.cc.coeuee. 114

Appendix 5. Act of implementing the results of the PhD thesis research in the educational

PIOCESS oiiittteitee e e e — e E— g oL — e Lo E oAbt e oAb et oAb et e R b e e n R e e e R b e e e b e e e rr e e e nres 118

Introduction

Relevance of the research topic

Data centers (DCs) are widely used in various fields: in science for storing and further processing
data from experiments; in business for providing IT outsourcing services; in government organizations
for automating internal processes, for example, document management; in security systems of the urban
environment, transport and industrial enterprises to ensure collection, storage and analysis of access
control systems, video surveillance, etc. There are many computing systems of various scales for storing
and intensive data processing. In this research, distributed systems (centers) designed to collect, store
and process extremely large amounts of data (up to 10* bytes) are considered as the most relevant and
applicable for computing infrastructures of large-scale scientific experiments.

Distributed centers are a complex that includes not only powerful computing and data storage
resources, but also network equipment responsible for data exchange within the system and communi-
cation with external consumers, engineering systems, security systems, monitoring systems, etc. Such
complex systems require high-quality design in order to determine as accurately as possible the param-
eters of all processes that will occur in the system under consideration, to choose the necessary equip-
ment for the system operation, taking into account current needs and future development prospects. In
addition, during the operation of distributed centers there is a need for scaling in order to increase the
efficiency of equipment use, to speed up data processing, etc. Scaling requirements may vary depending
on the field of application and the types of tasks to be solved. Therefore, a tool that will allow analyzing
the effectiveness and reliability of possible scenarios for the development of distributed data acquisition,
storage and processing centers (DDCs) is needed. At the same time, it is necessary to take into account
all processes occurring in the DDC, including job flow management strategies, as well as data flow
parameters for storage and processing.

Such atool is usually a variety of modeling software packages. The main element of such packages
is the core, i.e. a computer program that performs the modeling of systems. Some packages use databases
(DBs) to store input data and simulation results. Existing modeling tools do not enable to carry out the
above-mentioned studies qualitatively for the following reasons:

e modern trends in the construction of distributed centers, including heterogeneous data pro-
cessing modules, cloud structures and supercomputers, hierarchical memory systems and much more,
are not taken into account;

¢ such an important criterion for the functioning of the system as data loss, depending on the type
of equipment, the probability of failures, changes in the performance of computing resources and data

storages, is not considered;

e a detailed description of the parameters of computer and network systems in the DB leads to
difficulties in making a decision on the choice of a system configuration;

¢ there is no search for a hardware configuration with specified criteria;

o for each simulated infrastructure, it is necessary to adapt the modeling kernel by changing the
program code;

o there is no interface for user interaction with the simulation program.

Therefore, in the process of creating and improving the DDC, there is a problem of solving such
important tasks as:

e checking various DDC scaling scenarios, taking into account the requirements for data flows
and jobs;

o formation and enhancement of a job flow management strategy for the efficient allocation of
DDC resources in data processing;

o analysis of the resources used and assessment of the required amount of resources for specific
tasks according to the requirements for the DDC.

Currently, technologies for the elaboration of problem-oriented management and decision-making
systems based on digital twins (DTs), which can be applied to solving the above tasks, are actively
developing. Thus, it seems relevant to develop a method and implement algorithms for creating digital
twins of DDCs to solve the tasks of designing, managing and developing DDCs, including to verify the
effectiveness and reliability of their functioning. Using the DT at the design stage of the DDC as a
prototype will enable to analyze the operating modes of future systems and increase their reliability.
Consequently, the developed methods and algorithms can be applied to a wide class of tasks for the
construction and development of DDCs within large scientific experiments and large-scale projects.

The main requirements for DTs are the adequacy of modeling (compliance of the DDC model with
a real system according to a list of characteristics), the visibility of initial data and results presentation,
as well as the deliverance of a user from participation in the development and maintenance of the DT
core, i.e., a computer program that implements algorithms for modeling various DDC processes

Degree of study of the problem

The first mention of digital twins was made in 2002 [1]. Over the past 20 years, this technology
has found application worldwide in almost all fields of science and human activity [2]. Due to the pro-
gressive trend of creating data centers for various tasks of science and business [3, 4, 5], DT technologies
began to be used in this area.

For example, the American companies Future Facilities [6] u Sunbird DCIM [7] are engaged in
the software development and creation of DC digital twins. However, firstly, these DTs are virtual copies
of DCs, which are geographically located in the same physical space, and secondly, DCs are considered

only from the point of view of engineering infrastructure. At the moment, neither in Russia nor abroad,
there is a tool that allows one to create a DDC digital twin, taking into account data flows and job flows,
which can be used to evaluate and select the necessary amount of resources for specific tasks according
to the requirements for the DC.

The effectiveness of the creation, use and development of DT technology is determined by the
quality of the constructed model, therefore, modeling approaches play a decisive role in the construction
of DTs [8]. To improve the quality of the DT model, it is necessary to take into account the probabilistic
characteristics of processes occurring in the simulated system. The application and use of DTs are pro-
vided by various software tools and information technologies. The DT needs to be upgraded during
operation based on the results of testing. Thus, it is required to provide criteria for evaluating the quality
of the DT based on the results of its work.

It should be noted that it is important to take into account the functionality of the DT, which will
allow one to select the configuration of the DDC equipment. It is necessary to use not only the technical
characteristics of the equipment as selection criteria, but also others, for example, time indicators. As a
result, several potentially competitive options can be selected from a variety of acceptable configura-
tions.

Thus, the relevance of the chosen research topic follows from the above.

Goal and tasks of the research

The goal of the research is to develop a method and algorithms for creating digital twins to describe
distributed systems, to make decisions on choosing equipment configurations within the task of scaling
and developing distributed data acquisition, storage and processing centers, of managing resources and
processes occurring in the DDC.

To achieve this goal, it is necessary to solve the following tasks.

1. To conduct an analysis of the subject area.

2. To develop a method for creating DDC digital twins, which, unlike existing ones, performs the
modeling of distributed centers taking into account the characteristics of job flows and data for storage
and processing, as well as the probabilities of changes in processes occurring in the DDC.

3. To implement algorithms, the DB structure, and a web user interface for creating and executing
a DT, as well as providing graphical information about the results of the DT work. Based on the created
models, methods and algorithms, to develop special software that allows one to compare the DDC effi-
ciency depending on different hardware configurations.

4. To carry out the verification and experimental operation of the special software.

Scientific innovation

New scientific results obtained personally by the author are as follows.

1. A new method of creating and using DDC digital twins is proposed and developed. The method
differs from existing ones in the ability to simulate such processes as data storage and processing, taking
into account the characteristics of data flows and jobs, the probabilities of failures and changes in the
equipment performance and other processes occurring in the simulated system.

2. Algorithms for describing the infrastructure of a distributed system and forming its virtual image
are developed and implemented.

3. A problem-oriented decision-making system for management and optimization tasks is devel-
oped in order to improve the technical characteristics of the DDC based on DT models. Its adequacy is
confirmed by the example of the computing infrastructure of the BM@N? experiment of the NICA?
complex.

4. The configuration of the DDC for the BM@N and SPD? experiments of the NICA complex is
scientifically justified.

Theoretical significance

The theoretical significance of the research lies in the development of a method for modeling dis-
tributed computing systems that operate with extremely large amounts of data requiring reliable storage
and a complex processing system.

The applicability of the methodology developed in the thesis for the creation of DDC digital twins
is proved on the basis of the results of verification of the computational infrastructure model of an ex-
isting experiment.

Practical significance

The practical significance lies in the application of the results obtained to enhance the efficiency,
quality and reliability of complex data acquisition, storage and processing systems.

The developed special software can be used for a wide class of tasks in the field of design, con-
struction and development of DDCs, including helping to select several potentially competitive options
from a variety of acceptable hardware configurations.

The certificate of state registration of the computer program No. 2023667305 “Software Complex
for Creating Digital Twins of Distributed Data Acquisition, Storage and Processing Centers” dated 14
August 2023 is received.

The problem of finding an equipment configuration for the data acquisition, storage and processing
system of the BM@N experiment of the NICA complex at the Joint Institute for Nuclear Research

(JINR) is solved, which is confirmed by the corresponding letter of application.

1 Baryonic Matter at Nuclotron is an experimental facility for the study of baryonic matter.

2 Nuclotron based lon Collider fAcility is an accelerator complex designed at the Joint Institute for Nuclear Research
(Dubna, Russia) to study the properties of dense baryonic matter.

3 Spin Physics Detector is an experiment conducted on a spin physics detector.

The results of the research are used in the design of the computing system for the online data filter
of the SPD experiment of the NICA complex at JINR, which is confirmed by the corresponding letter of
application.

The results of the research are used in the educational process of the Federal State Budgetary
Educational Institution of Higher Education “Dubna University” in the course “Distributed Computing
and Cloud Technologies” for the preparation of master’s students in the field of 27.04.03 System Anal-
ysis and Management in the profile “Digital Platforms and Big Data Analytics”, which is confirmed by
the corresponding act of implementation.

Research methodology and methods

The theoretical research is based on the implementation of the principles of a systematic approach
and the methods of system analysis in the study of system connections and patterns of the functioning
of complex systems, which are modern data acquisition, storage and processing centers, including dis-
tributed ones.

The practical results are obtained on the basis of the use of modern architectural solutions and
tools for developing software, web applications and DB.

Degree of reliability

The reliability of the thesis results is ensured by the correct application of the principles of a sys-
tematic approach and the methods of system analysis in the study of system connections and patterns of
the functioning of complex systems.

The proposed solutions are based on the study and critical understanding of scientific works and
developments in organizing the distributed storage and reliable transfer of large amounts of data from
physical experiments.

The reliability of the recommendations and conclusions based on the results of the thesis research
is confirmed by the practice of applying the developed methods in the design and development of com-
puting infrastructures for large-scale experiments in the field of high-energy physics.

Approbation of the results

The methods and special software developed in this work are tested and show their effectiveness
in creating a DT for the distributed data acquisition, storage and processing center of the BM@N exper-
iment of the NICA complex, which is confirmed by the corresponding letter of application.

The results were discussed at the following annual meetings of the BM@N experiment collabora-
tion:

1. 5th Collaboration Meeting of the BM@N Experiment at the NICA Facility, 20-21 April 2020
(JINR, Dubna, Russia).

2. 6th Collaboration Meeting of the BM@N Experiment at the NICA Facility, 26-27 October 2020
(JINR, Dubna, Russia).

3. 8th Collaboration Meeting of the BM@N Experiment at the NICA Facility, 03-08 October 2021
(JINR, Dubna, Russia).

4. 9th Collaboration Meeting of the BM@N Experiment at the NICA Facility, 13-16 Septem-
ber 2022 (JINR, Dubna, Russia).

5. 10th Collaboration Meeting of the BM@N Experiment at the NICA Facility, 14-19 May 2023
(SPbU, St. Petersburg, Russia).

6. 11th Collaboration Meeting of the BM@N Experiment at the NICA Facility, 28-30 Novem-
ber 2023 (JINR, Dubna, Russia).

The special software developed in this work is currently being used to design the computing sys-
tem of the SPD experiment of the NICA complex, in particular for the online data filter, which is con-
firmed by the corresponding letter of application. The results obtained and plans for further cooperation
were discussed at the SPD experiment collaboration meeting: VI SPD Collaboration Meeting and Work-
shop on Information Technology in Natural Sciences, 23-27 October 2023 (Samara University, Samara,
Russia).

The main provisions and results of the work were reported, discussed and approved by specialists
at the following Russian and international scientific events:

1. 8th International Conference “Distributed Computing and Grid-technologies in Science and
Education” (GRID 2018), 10-14 September 2018 (JINR, Dubna, Russia).

2. All-Russian scientific and practical conference “Nature, Society, Man” of Dubna University,
21-23 November 2018 (Dubna University, Dubna, Russia).

3. International Conference “Mathematical Modeling and Computational Physics” (MMCP2019),
1-4 July 2019 (Stara Lesna, Slovakia).

4. XXVII International Conference “Mathematics. Computer. Education”, symposium with inter-
national participation “Biophysics of complex systems: computational and systems biology, molecular
modeling”, 27 January — 1 February 2020 (Dubna University, Dubna, Russia).

5. XXI1V International Scientific Conference of Young Scientists and Specialists (AYSS-2020),
09-13 November 2020 (JINR, Dubna, Russia). A diploma for the best report of the conference was
awarded.

6. 9th International Conference “Distributed Computing and Grid-technologies in Science and
Education” (GRID 2021), 05-09 July 2021 (JINR, Dubna, Russia).

7. 56th meeting of the PAC for Particle Physics, 24-25 January 2022 (JINR, Dubna, Russia).

8. XXVI International Scientific Conference of Young Scientists and Specialists (AYSS-2022),
24-28 October 2022 (JINR, Dubna, Russia).

9. 57th meeting of the PAC for Particle Physics, 23 January 2023 (JINR, Dubna, Russia).

10

10. XIII Conference (with international participation) “Information and Telecommunication
Technologies and Mathematical Modeling of High-Tech Systems” (ITTMM 2023), 17-21 April 2023
(RUDN, Moscow, Russia).

11. 10th International Conference “Distributed Computing and Grid-technologies in Science and
Education” (GRID 2023), 03-07 July 2023 (JINR, Dubna, Russia).

12. XXVII International Scientific Conference of Young Scientists and Specialists (AYSS-2023);
29 October — 03 November 2023 (JINR, Dubna, Russia). A diploma for the best report of the conference
was awarded.

13. 59th meeting of the PAC for Particle Physics, 22 January 2024 (JINR, Dubna, Russia).

In 2017, 2019 and 2022, the research was supported by the Meshcheryakov Scholarship at the
JINR Meshcheryakov Laboratory of Information Technologies (MLIT) for work in the field of support
for experimental and theoretical physics, and in 2018 and 2020, it was supported by the Govorun Schol-
arship at MLIT for work in the field of information, computer and network support for JINR activities.
In 2021 and 2023, grants for young JINR researchers to develop methods and a complex of programs
for modeling data storage and processing centers were received. Winner of the Il degree of the JINR
Prize for Young Scientists and Specialists for 2023 in the nomination “Scientific and Technical Applied
Works”.

Publications

The main scientific results of the thesis are published in the works listed below.

1. Trofimov V.V., Nechaevskiy A.V., Ososkov G.A., Priakhina D.l. Probability-cost approach to
optimizing distributed data storage systems for physical experiments // CEUR Workshop Proceedings.
2018. Vol. 226. pp. 393-399 (in Russian).

2. Korenkov V.V., Priakhina D.I., Nechaevskiy A.V., Ososkov G.A., Trofimov V.V. Simulation
of data storage and processing centers taking into account economic components // System analysis in
science and education. 2018. No. 4. pp. 1-8 (in Russian).

3. Korenkov V., Nechaevskiy A., Ososkov G., Priakhina D., Trofimov V. A probabilistic
approach of the simulation of data processing centers // European Physical Journal Web of Conferences.
January 2020. Vol. 226. P. 03012.

4. Priakhina D., Trofimov V., Ososkov G., Gertsenberger K. Data center simulation for the
BM@N experiment of the NICA project // AIP Conference Proceeding. 2021. Vol. 2377. P. 040007.

5. Priakhina D., Korenkov V., Gertsenberger K., Trofimov V. Simulation of Data Processing for
the BM@N Experiment of the NICA Complex // CEUR Workshop Proceedings. 2021. Vol. 3041.
pp. 483-487.

6. Priakhina D., Korenkov V., Trofimov V., Gertsenberger K. Simulation Results of BM@N
Computing Infrastructure // Physics of Particles and Nuclei Letters. 2023. Vol. 20. No. 5. pp. 1272—

11

1275.

7. Priakhina D.I., Korenkov V.V. Relevance of creating a digital twin for managing distributed
data acquisition, storage and processing centers // Modern Information Technologies and IT-Education.
2023. Vol. 19. No. 2. pp. 262-271 (in Russian).

8. Priakhina D.l., Korenkov V.V., Trofimov V.V. Method for creating digital twins to solve the
tasks of effective management and development of distributed data acquisition, storage and processing
centers // Modern Information Technologies and IT-Education. 2023. Vol. 19. No. 2. pp. 272-281 (in
Russian).

9. Priakhina D.l., Korenkov V.V., Trofimov V.V., Gertsenberger K.V. Verification of the
simulation program for creating digital twins of distributed data acquisition, storage and processing
centers // International Journal of Open Information Technologies. January 2024. Vol. 12. No. 1.
pp. 118-128 (in Russian).

The certificate of state registration of the computer program No. 2023667305 “Software Complex
for Creating Digital Twins of Distributed Data Acquisition, Storage and Processing Centers” dated 14
August 2023 is received.

Structure and scope of the thesis

The PhD thesis consists of an introduction, four chapters, a conclusion, references and five appen-
dices.

The introduction reflects the relevance of the work, sets the goal of the research, as well as the
tasks for achieving it, substantiates the scientific innovation of the work, formulates the provisions to be
defended, and shows the practical significance of the results obtained.

The first chapter analyzes the task of creating digital twins of distributed data storage and pro-
cessing centers. For this purpose, examples of distributed centers are considered, and the problems of
DDC modeling are described. In addition, an overview of the concept of DT technology is provided,
application examples are presented, and the possibilities of using DTs of data centers are outlined.

In the second chapter, a new method for constructing DDC digital twins of is proposed. A formal
description of the method, functional and non-functional requirements for the DT, including a computer
program that performs the modeling of systems, and a module for user interaction with the DT are pre-
sented. According to the described requirements, algorithms to implement the method of constructing
DDC digital twins are developed. Due to the fact that the functioning of the algorithms is impossible
without a DB, a logical data model with a detailed description of entities, their attributes and relation-
ships is provided.

The third chapter is devoted to the software implementation of algorithms for creating DDC digital
twins. Diagrams that demonstrate the general structure of the hierarchy of the developed classes of com-
puter programs, as well as the life cycle of certain objects, are presented. The architecture of the special

12

software is shown. It includes all the developed algorithms and modules for the implementation of the
method of constructing DDC digital twins. Implementation tools used both to develop individual algo-
rithms and to combine components into a single complex are described. The characteristics of the equip-
ment necessary for the operation of the special software are given.

The fourth chapter discusses the results of the verification of the DT core, which confirm the ade-
quacy of the developed models and prove the possibility of their further use. The results of the applica-
tion of the developed special software using examples of creating DDC digital twins to solve design
tasks, improve the efficiency, quality and reliability of complex systems for acquiring, storing and pro-
cessing data from existing experiments in the field of high-energy physics are presented.

In conclusion, the results of the research are summarized, the main conclusions and possible pro-
spects for the development of this work are formulated.

The total volume of the thesis is 119 pages, including 94 figures, 2 tables and 14 formulas. The
list of references includes 82 titles.

Main scientific results

1. The system connections and patterns of the functioning of complex systems, which are DDCs,
are investigated using the principles of a systematic approach and the methods of system analysis. Meth-
ods for describing distributed systems, making decisions on the choice of equipment configurations, and
managing resources and processes of complex systems are developed. Models, methods and algorithms
for creating DDC digital twins are developed. Algorithms, the DB structure and a web user interface are
implemented for creating and executing a DT, as well as providing graphical information about the re-

sults of its work. The results are presented in the following publications: Priakhina D.l., Korenkov V.V.

Relevance of creating a digital twin for managing distributed data acquisition, storage and processing
centers // Modern Information Technologies and IT-Education. 2023. Vol. 19. No. 2. pp. 262-271 (in
Russian on pages 267-268); Priakhina D.l., Korenkov V.V., Trofimov V.V. Method for creating digital
twins to solve the tasks of effective management and development of distributed data acquisition, storage
and processing centers // Modern Information Technologies and IT-Education. 2023. Vol. 19. No. 2.
pp. 272-281 (in Russian on pages 275-278); Trofimov V.V., Nechaevskiy A.V., Ososkov G.A., Pri-
akhina D.l. Probability-cost approach to optimizing distributed data storage systems for physical ex-
periments // CEUR Workshop Proceedings. 2018. Vol. 226. pp. 393-399 (in Russian on pages 394—
395); Korenkov V.V., Priakhina D.I., Nechaevskiy A.V., Ososkov G.A., Trofimov V.V. Simulation of
data storage and processing centers taking into account economic components // System analysis in sci-
ence and education. 2018. No. 4. pp. 1-8 (in Russian on page 7); Korenkov V., Nechaevskiy A., Osos-
kov G., Priakhina D., Trofimov V. A probabilistic approach of the simulation of data processing centers
/I European Physical Journal Web of Conferences. January 2020. Vol. 226. P. 03012 (on page 03012-
2).

13

2. Special software is developed on the basis of the created models, methods and algorithms. The
software allows comparing the efficiency of the DDC operation depending on different hardware con-

figurations. The certificate of state registration of the computer program No. 2023667305 “Software

Complex for Creating Digital Twins of Distributed Data Acquisition, Storage and Processing Centers”
dated 14 August 2023 is received.

3. The verification of the DT kernel is performed using the example of the computing infrastructure
of the BM@N experiment of the NICA accelerator complex. The adequacy is assessed by several indi-
cators by comparing the DT results with statistical data from monitoring the computational infrastructure

of the experiment. The result is presented in the following publication: Priakhina D.I., Korenkov V.V.,

Trofimov V.V., Gertsenberger K.V. Verification of the simulation program for creating digital twins of
distributed data acquisition, storage and processing centers // International Journal of Open Information
Technologies. January 2024. Vol. 12. No. 1. pp. 118-128 (in Russian on page 126).

4. Recommendations on the results of the DT functioning are taken into account in the design and
development of computing infrastructures for large-scale experiments in the field of high-energy phys-
ics. The experimental operation of the special software is performed during the creation of the DT of the
computing infrastructure of the BM@N experiment. The most suitable configuration of data processing
equipment in the shortest possible time is obtained. A strategy for managing job flows and distributing
the load on computing resources is chosen. The experimental operation of the special software is per-
formed during the creation of the DT of the online data filter system of the SPD experiment of the NICA
complex. The results enable to evaluate the required parameters of the equipment for storing, processing
and transferring online filter data, taking into account the planned characteristics of experimental data
flows. The results are presented in the following publications: Priakhina D., Trofimov V., Ososkov G.,

Gertsenberger K. Data center simulation for the BM@N experiment of the NICA project // AIP Confer-
ence Proceeding. 2021. Vol. 2377. P. 040007 (on pages 040007-3-040007-5); Priakhina D., Koren-
kov V., Gertsenberger K., Trofimov V. Simulation of Data Processing for the BM@N Experiment of
the NICA Complex // CEUR Workshop Proceedings. 2021. Vol. 3041. pp. 483487 (on pages 485—
486); Priakhina D., Korenkov V., Trofimov V., Gertsenberger K. Simulation Results of BM@N Com-
puting Infrastructure // Physics of Particles and Nuclei Letters. 2023. Vol. 20. No. 5. pp. 1272-1275 (on
pages 1273-1274).

Provisions to be defended

1. A method for constructing a digital twin is developed. The method allows describing distributed
data acquisition, storage and processing centers, taking into account data flows and job flows, as well as
processes occurring in the DDC. The ability to simulate such processes as data storage and processing,
taking into account the characteristics of data flows and jobs, the probabilities of failures and changes in

the equipment performance and other processes occurring in the simulated system are distinctive features

14

of the new method. The developed approach to the creating of a digital twin realizes methods for de-
scribing distributed systems, making decisions on the choice of equipment configurations, and managing
resources and processes of complex systems.

2. Algorithms, on the basis of which special software used to make decisions on choosing the
configuration of equipment for distributed data acquisition, storage and processing centers according to
specified requirements is created, are developed. The special software allows comparing the efficiency
of the DDC operation depending on different hardware configurations. Algorithms, the database struc-
ture and a web user interface are implemented for creating and executing a digital twin, as well as provid-
ing graphical information about the results of its work. Modern architectural solutions and tools for
developing software, web applications and databases are used.

3. The adequacy of the constructed methods and algorithms is confirmed using the example of the
computational infrastructure of the existing experiment. The verification is performed using the example
of the computing infrastructure of the BM@N experiment of the NICA accelerator complex. The ade-
quacy is assessed by several indicators. The resulting values prove that the deviations of the digital twin
results from the results of real DDC allow to use the constructed methods and algorithms for solving
management and development tasks of distributed systems. Results of the experimental operation of the
special software during the creation of the digital twins of the computing infrastructure of the BM@N
experiment and the online data filter system of the SPD experiment of the NICA complex results enable
to evaluate the required parameters of the equipment for storing, processing and transferring data, taking
into account the planned characteristics of data flows. Recommendations on the results of the digital
twins functioning are taken into account in the design and development of computing infrastructures for
large-scale experiments in the field of high-energy physics. The results of the software application prove

the efficiency and high quality of the models and algorithms developed in the thesis.

15

Chapter 1. Analysis of the task of creating digital twins of distributed data

acquisition, storage and processing centers

1.1. Distributed data acquisition, storage and processing centers

The development of scientific research in high-energy physics, astrophysics, biology, earth sci-
ences, chemistry, as well as in medicine, nanotechnology, industry, business and other areas of human
activity requires the joint work of many organizations to process large amounts of data in a relatively
short time. It is for this purpose DDCs are created and developed. DDCs are capable of transmitting and
storing huge data arrays, as well as serving as a universal efficient infrastructure for high-performance
distributed computing and data processing.

Distributed systems are designed, as a rule, for acquisition, storage and processing of ultra-large
amounts of data and represent a geographically distributed infrastructure, combining many resources of
different types (processors, long-term and RAM, storage, networks), which can be accessed by the user
from any point, regardless of their location. Such a system assumes a collective shared mode of access
to resources [9]. This means that distributed data acquisition, storage and processing centers include not
only powerful hybrid computing and storage resources, but also network equipment responsible for data
exchange within the system and communication between centers and with external consumers, engineer-
ing systems, security systems, monitoring systems and others.

An example of an DDC is the infrastructure for processing data from the Large Hadron Collider
(LHC), a high-energy physics experiment at CERN (the European Organization for Nuclear Research,
Geneva, Switzerland) [10]. This system has several levels of organization (Tier). The essence of the
distributed model is that the entire volume of data from the LHC detectors after real-time processing and
primary reconstruction should be sent for further processing and analysis to regional centers. It should
be noted that the experimental data are also distributed over several data repositories, which have differ-
ent geographical locations. In Russia, in particular, there are Tiers of this large distributed infrastructure
[11].

Systems similar to the LHC computational infrastructure should be created and developed in Rus-
sia for existing and planned experiments of the “mega sciences” class. Such Russian experiments may
include:

¢ NICA project consisting of several experiments at the accelerator complex to study properties
of dense baryonic matter (Dubna) [12];

e research at the PIK reactor (Gatchina) [13];

16

e Center for Collective Use “Siberian Ring Photon Source” (Novosibirsk) [14];

o research in the field of high-energy neutrino astrophysics using the Baikal-GVD neutrino tele-
scope (Lake Baikal) [15].

It is also worth paying attention to the experiments realized jointly with other countries, e.g., JUNO
(China) — a planned precision experiment with new-generation reactor ante-neutrinos designed to de-
termine the neutrino mass hierarchy [16].

DDCs for such important and complex experiments need to evolve and scale to ensure the quality
and efficiency of scientists who strive for rapid scientific results and new discoveries. Depending on the
application and the types of problems to be solved, the scaling requirements may be different, so a tool
is needed to analyze the efficiency and reliability of the various processes occurring in DDCs, taking
into account the data flows for storage and processing, and to improve the strategy for managing job
flows. Traditional modeling tools do not allow such researches to be performed qualitatively. Further
materials of this chapter are presented in accordance with the published article [17], where the ad-
vantages and disadvantages of existing DDC modeling tools are discussed in detail and recommenda-

tions for the development of an alternative solution are proposed.

1.2. State of the problem of modeling distributed data acquisition, storage and

processing centers

At the stage of designing the DDC, it is important to determine as accurately as possible the pa-
rameters of all processes that will occur in the system. For this purpose, various models are created. In
the process of modeling it is possible to determine the minimum necessary equipment for the functioning
of the system, as well as to choose several variants of equipment taking into account the current needs
and future development prospects. The ongoing research considers libraries and program complexes that
allow, first of all, to carry out modeling of DDC data flows.

So far, various tools for modeling distributed systems have been created, such as Bricks, OptorSim,
and GridSim [18], which had a narrow specialization. With the help of these software packages it was
possible to model certain distributed system architectures. It is worth noting that the use of such tools
requires knowledge of special programming languages, which significantly reduces the efficiency of
their use [19]. But nevertheless, there are software packages for modeling built on the basis of the above
tools.

For example, the SyMSim software tool is developed using the GridSim package, which is built
on the SimJava library that allows modeling the flow of discrete events in time [20]. It should be noted
that the GridSim (the latest version 5.2 was released in 2010 [21]) and SimJava (the latest version 2.0

17

was released in 2002 [22]) libraries are currently outdated, so they cannot be used for modeling modern
RDCs, as they do not allow taking into account new trends in the construction of distributed systems
that have, for example, a hybrid structure, i.e., include heterogeneous data processing modules, including
cloud structures and supercomputers, as well as hierarchical memory systems and much more.

Nevertheless, SyMSim provides an opportunity to simulate the job flow process of a distributed
system with specified resources and rules of their reservation and use. SyMSim is a simulation model
that allows to obtain the value of job processing time and to estimate how the structure of the computing
system and the performance of its individual parts affect this time. Based on the results of the simulation,
we can conclude that the highest value of job (data) flow intensity [23].

The main feature of the SyMSim program is the synthesis of simulation and monitoring processes.
Monitoring data of a particular computer center are stored in the database and then used to form the
input jobs flow for simulate. If there is no monitoring data for a particular computer center, the statistics
of jobs for similar computer centers is analyzed [24]. Then the distributions of jobs by execution time
and input file size are created, after which a hypothesis about the number of job types in the flow is
hypothesized and tested [25]. Generated data flows and jobs flows regardless of their volume are stored
in the DB, which is a disadvantage because it can lead to serious computational costs when working
with the DB.

The means of describing the computing infrastructure in the program complex is realized as a DB
with an interface presented as a web page [26]. The description is assigned an identifier, which the user
must specify in the parameters of the model run. The model receives information from the DB, which is
used to build a description of the computational structure [27]. Consequently, the equipment parameters
and architecture of the modeled infrastructure are set through the DB, which is a serious disadvantage.
Not all potential users of the program complex have skills of working with the DB. Direct interaction of
inexperienced users with the DB can lead to violation of its integrity.

The kernel of the program is a module that is responsible for receiving processing jobs and
“launching” them on processors, as well as managing queues by storing information about currently
occupied and free processors. In operation [28, 29, 30], he SyMSim toolkit is specifically adapted to
each simulated infrastructure by modifying the program code. This fact is a serious disadvantage that
does not allow SyMSim to be used to solve a wide class of problems in data center design and support.

The result of the simulation program operation is a sequence of DB records reflecting all events
occurring in the system. These include, for example, job arrival, beginning and end of job processing,
beginning and end of file transfer, tape manipulations, etc. All events are described in a common format.
Modeling results are presented in the form of a limited number of graphs in the web-interface, conveying
only a part of information [26]: amount of incoming data, free space in data storages, load on data trans-

mission channels, which may be insufficient for users.

18

Thus, the existing SyMSim software complex, despite its main advantage, which is the synthesis
of simulation and monitoring processes, has a number of significant disadvantages:

1. the libraries that form the basis of the complex are outdated and do not allow to take into account
modern trends in the construction of DDCs;

2. web-interface of the complex allows to set only parameters of job flows, start/stop the modeling
process, as well as to view some results on a limited set of charts (to obtain additional results, the data
should be exported from the DB);

3. to change the equipment parameters and the structure of the modeled system it is necessary to
interact directly with the DB;

4. the input data flow and jobs flow, regardless of the volume, is stored in the DB;

5. the program kernel is adapted to each simulated infrastructure by changing the program code;

6. such important criteria of system functioning as data losses depending on the type of selected
equipment, probability of realization of events related to equipment failures and failures, changes in the
performance of computing resources and data storages are not taken into account;

7. there is no possibility to search for the equipment configuration satisfying the given criteria.

It can be concluded that the listed disadvantages do not allow applying SyMSim software complex
for solving a wide class of problems in designing and supporting DDCs. Therefore, it is necessary to
create a new approach, different from the existing tools and software complexes for modeling, which
can be used in the design, construction and development of DDCs, taking into account the characteristics

of the equipment, as well as data flows and jobs flows.

1.3. Digital twin: definition, application examples

Digital twin is a concept that has emerged quite recently. The first mention of it was in 2002 during
Michael Greaves’ presentation called “Conceptual Ideal for PLM”. The American scientist, talking
about product lifecycle management (PLM), informally presented the concept of DT, which is based on
the idea that for every physical system there should be some virtual system. This virtual system is a
mirror image (duplication, twin) of the physical system. It is assumed that the twin contains all infor-
mation about the physical system and is connected with it throughout its life cycle. At the same time,
there should be some channel between the virtual and physical systems to ensure data exchange and
synchronization [1].

The life cycle of any system begins with design, when the system’s goals, behavior, and charac-
teristics are analyzed, i.e., some requirements are formulated. At the same time, undesirable behaviors

of the system are identified to develop strategies to prevent their occurrence. At this stage, the DT is a

19

prototype of the future system and is used to verify whether the design meets the formulated require-
ments. Once the virtual copy of a particular system with all components is completed and verified, the
physical system construction phase begins, where the DT will help to adjust the production or installation
of system components, thus preventing possible problems during system commissioning, reducing fi-
nancial costs and time. During the system operation phase, the DT’s predictions regarding the behavior
of the system under various external factors are verified. When using the system, as a rule, there is a
need to replace the components, there are requirements to improve its characteristics, behavior, adding
new functional capabilities. It is at this stage that the connection between physical and virtual systems
Is necessary. To predict the behavior of the system when changing its configurations, to assess perfor-
mance and possible failures are used DTs [31].

Of course, first of all, we are talking about complex systems consisting of a large number of com-
ponents with multiple connections between them. The design, development and operation of such sys-
tems are complicated not only by their architecture, but also by the non-trivial processes of transferring
and processing large amounts of data, as well as by the various technologies on which they are based. It
is obvious that complex systems must fulfill their tasks flawlessly and always give the desired results.
The risk of such a system failing should be minimal. But, unfortunately, in real life in the process of
operation of complex systems there are acute problems that require a quick solution. Therefore, there is
a need for a tool that can warn about the probability of possible failures in the system so that they can
be corrected in a timely manner. One of such tools is modeling, which allows you to determine how the
system will work in different conditions, to test and evaluate the consequences of changes within the
system, to find the cause of possible failures, etc. Despite the fact that modeling is the predecessor of
DT, this approach does not provide real-time data exchange between the physical system and the model.

Thus, DTs can be defined as computer models that mimic, mirror or duplicate a physical system
and follow the life cycle of its physical twin by monitoring, controlling and improving its processes and
functions. The DT continuously predicts future system states (e.g., defects, damage, failures) and enables
modeling and testing of new configurations. The physical system and its DT must constantly exchange
information. Data obtained, e.g., by monitoring the system itself and its operating conditions, allow the
application of computational methods to predict failures, test the results of possible solutions, etc. In this
way, a predictive modeling approach is formed, where possible failures in the system can be predicted,
any modifications to the system can be modeled to prevent errors or find the best solution. However, it
is important to realize that DTs are not always fully autonomous and require a lot of human intervention,
especially when they are used to test new functions and modifications of physical systems [32].

Currently, there are many examples of the use of DTs all over the world. DTs are developed for
different purposes. For example, in transport engineering for creation and operation of vehicles [33], in
aerospace industry for preventive maintenance [34] and for creation of internal systems for aviation [35],

20

in shipbuilding and operation of water transport for virtual testing [36], in railway transport for track
construction [37], in oil and gas industry [38] and electric power industry [39], in agriculture for increas-
ing crop yields and optimizing animal care processes [40]. In medicine, organ DTs are very widespread
[41], and DTs of medical components play an important role in healthcare [42]. An interesting example
of the application of virtual twins is the DT of a city. Such systems are used both for foreign [43] and
Russian cities [44]. There are also examples of DT application in logistics [45], for optimizing life cycles
of production [46], hospitals [47] and other organizations.

The above is only a small part of the large number of examples of the application of DT in all areas
of human activity. In this paper, the research focuses on the study of new trends in the design and appli-
cation of DD, namely for the design, construction and development of data centers, in particular distrib-

uted ones, taking into account the characteristics of data flows and jobs flows.

1.4. Possibilities of using digital twins of data storage and processing centers

In the modern world, in any field of human activity (science, technology, production, social life,
etc.), the need to store and process large amounts of data can be traced. In this regard, everywhere began
to use DCs. For example, in science, data centers are used for storage and further processing of data
from experiments; in business — for IT outsourcing services; in government organizations — for automa-
tion of internal processes, such as document management; in security systems of urban environment,
transport and industrial enterprises — to ensure the collection, storage and analysis of access control
systems, video surveillance, etc. There are many computing systems of different scales for storage and
intensive data processing. To design, create and modify such complex systems one cannot do without
DT. Let’s consider some examples of application of data storage and processing center DTs.

Future Facilities [6], an American company, develops software and creates DTs for DC manage-
ment. The DT is implemented as a 3D replica of a DC that can simulate its physical behavior in any
operating scenario. The DT covers the entire DC ecosystem, including virtual representations of power,
cooling components, etc. Such DTs are based on engineering system simulations and allow predicting
the impact of changes in DC components through visualization and quantification of performance [48].
These DTs are used to design next-generation facilities, troubleshoot existing facilities, speed up capac-
ity planning processes, and improve overall efficiency and sustainability.

Another American company Sunbird DCIM [7] specializes in creating a 3D copy of the physical
DC, which reflects the actual conditions of the DC in real time and provides remote visualization and
monitoring capabilities, thus providing faster DC management. This DT contains all the most important

information about the physical infrastructure of the DC. In the form of high-quality, scalable 3D images,

21

the DC contains servers, networking equipment, storage systems, and cabling. About each of the infra-
structure components in the DC contains information about the exact location, measure, model, size,
configuration, ports and much more. Even ports and cables that are difficult to see physically, such as
those in cable trays, can be visualized in the model. In addition, the DT displays current readings of
environmental sensors such as temperature, humidity, water, airflow and pressure drop, providing an
accurate view of what is happening in the DC. This DT functionality can increase uptime by providing
timely information about potential problems and loads on DC components, increase DC efficiency by
analyzing current resource consumption and assessing the impact of allowable changes, increase produc-
tivity remotely, and avoid the time and expense of physically being in the DC. With automatic collection,
storage and reporting, you can receive and analyze data on DC operations in real time.

There are significant disadvantages in the DTs described above:

o virtual copies of DC that are geographically located in the same physical space are presented;

e DC are considered only in terms of engineering.

However, firstly, distributed DCs are used more often lately, and secondly, there is a necessity to
model data flows to form a strategy of job flow management, to analyze the amount of used resources
in order to timely update the equipment, to prevent the situation when the available equipment will be
insufficient to store all data or fast processing in the required time interval, to estimate the amount of
resources required to use the DC in certain tasks, according to the requirements of the DC.

Thus, it seems relevant to develop a method and algorithms for creating digital twins of DDCs in
order to conduct research in the field of efficiency and reliability of distributed systems, to test various
scaling scenarios, taking into account the requirements for data flows and jobs flows, to form and im-
prove the strategy for managing job flows, to analyze the esing resources, to estimate the necessary

amount of resources for specific tasks according to the requirements for DDCs.

1.5. Conclusions to Chapter 1

This chapter clarifies the concept of a DT for the goals of this research. A DT is a computer model
that:

o reflects the DC architecture, as well as processes taking place in the system under consideration
and related to data flows and job flows;

¢ allows one to simulate and test new hardware configurations, thereby providing the opportunity
to predict system failures and evaluate the results of solutions to prevent such situations.

As a result of the analysis of existing DTs and DC modeling tools, it can be concluded that at the

moment, neither in Russia nor abroad, there is an instrument that enables to create a DDC digital twin

22

in order to form and improve a strategy for managing job flows, analyzing used resources, and evaluating
the required amount of resources for specific tasks according to the requirements for the DC. Thus, there
is an urgent task of developing a method and algorithms for constructing DDC digital twins to conduct
research on the effectiveness and reliability of DDCs both during design and during operation, to manage
DDCs and check various scaling scenarios, taking into account the requirements for data flows and job

flows.

23

Chapter 2. Models, methods and algorithms for creating digital twins of

distributed data acquisition, storage and processing centers

2.1. Preliminary remarks

As a rule, the process of constructing a DT is realized in stages. At the first stage, data on the
purpose of the physical object (system), its components and operation parameters are collected [49]. At
the second stage, the information necessary for building a virtual image of the object (system) under
consideration is extracted from the obtained data [50]. At the third stage, modeling methods are used to
build a virtual image. The fourth stage, as a rule, is devoted to the verification of the resulting models,
verification and validation with the physical prototype [51]. This is a very important stage, since further
study of the considered physical object (system) depends on the adequacy of the model. If necessary,
the model is corrected. The last, fifth stage of DT construction provides for the creation of a module for
demonstrating the results of DT work, which should be open, accessible and presented in an understand-
able form (diagrams, charts, schemes, etc.) [52]. Thus, the basis of DT is models, and the functioning of
DT is provided by tools that are created with the help of various information technologies.

The efficiency of creation, use and development of DT technology is conditioned by the quality
of the kernel (model), for the construction of which various approaches are used. There are several clas-
ses of models that are mainly used to create DT: physical model, optimization model, simulation model
[44]. A physical model provides computer simulation of physical processes occurring in time. Such a
model is based on the laws of physics and computer-aided engineering analysis [53]. Optimization model
provides the search for optimal values of the target function in the presence of constraints using mathe-
matical methods. Simulation modeling is a research method in which the system under study is replaced
by a computer model in which all or some of the processes occurring in the real system are simulated.
In order for a DT to cope with its tasks, it is necessary to take into account the probabilistic characteristics
of the processes occurring in the modeled system when developing the kernel [54].

At the same time, the technologies that enable the user to interact with the DT also play an im-
portant role. The DT should have the functionality that will allow setting, displaying and editing the
input data, as well as visualizing and processing the simulation results. For this purpose, it is necessary
to develop a methodology and appropriate software and hardware tools. In addition, it is very important
to provide criteria for assessing the quality of DT operation, which will be used in the process of creating
and modernizing the DT based on the results of its operation.

Thus, it is necessary to describe functional and non-functional requirements to the created digital
twin of DDC.

24

2.2. Requirements for digital twins of distributed data acquisition, storage and

processing centers

2.2.1 Kernel requirements

Within the framework of the considered task of creating a DT, which will help to qualitatively
conduct research related to the creation and development of modern DDCs, taking into account the char-
acteristics of data flows and jobs flows, it is advisable to develop a unique Kernel. The uniqueness of
the kernel lies in its universality and applicability for modeling the processes of data transfer, storage
and processing of any DDC. When building the kernel of DT, in which the process of modeling of DDCs
will be implemented, it is necessary to take into account modern trends in building distributed systems
and adhere to the principle of developing a universal software package, which does not need to be mod-
ified for each modeled infrastructure. During modeling it is also necessary to take into account possible
probabilities of changes in the system functioning processes depending on the type of equipment (e.g.,
data loss, performance changes). This peculiarity will allow to apply DT for solving a wide class of
problems, to carry out researches connected with designing, scaling, increase of DDC performance,
analysis of efficiency and reliability of various processes occurring in DDC during operation period.

The DT should include functionality that allows for the selection of several potentially competitive
options from among the many allowable equipment configurations for DDC.

2.2.2 Requirements to the module for user interaction with the digital twin

Of course, digital twins of DDCs cannot be fully autonomous and require human intervention, for
example, to describe the modeled infrastructure, when testing various modifications of the distributed
system, when searching for equipment configurations according to the available requirements. During
the experiments and operation of the DT the structure of the modeled distributed system may be changed.
For example, it may be necessary to add or remove computing components, data storages, communica-
tion links between the components of the DDC. This means that the developed DT should be equipped
with a well-designed, convenient and accessible interface, where the user can not only set the required
parameters of the DDC, but also get the results of the DT operation in a clear and structured form,
including graphs.

Thus, we can formulate the following functional requirements for the module for user interaction
with the DT:

¢ interaction should be in dialog mode;

o the user should build the DDC infrastructure by locating the necessary objects on the field,
moving them to the required area, connecting them with each other by communication links;

o the system should allow saving the image with the DDC infrastructure to the user’s computer;

25

¢ the module shall provide an opportunity to set parameters of basic configuration of DDC equip-
ment,

¢ the module shall provide the ability to specify the characteristics of data flows to be processed
at the DDC,;

¢ the module shall provide the ability to specify characteristics of job flows to be executed at the
DDC;

o the user should be able to edit the data center infrastructure, equipment parameters, data flow
and job flow characteristics;

e the module must contain functionality for launching the DT;

o the user should create computational experiments on the DT, which involve searching and se-
lecting the required hardware configuration for solving specific tasks (e.g., searching for the required
number of resources for storing data coming from the experimental facility; searching for the required
number of computational resources for processing data for a certain period of time, etc.);

e it should be possible to create scenarios for scaling/modifying DDC parameters;

o the results of DT operation should be graphically illustrated and reflect data volumes and dis-
tribution of different types of files in storage, using of computing components, load on communication
links during data transfer.

The diagram of variants of use of the described module is presented in the figure 1.

26

Select an
DDC object

Field an object

¢ -
-
4 e

<<include>>

Build DDC
infrastructure

Set the basic
parameters of
the object

<<include>>

-
-, ~—

Edit DDC
infrastructure

[
<<extend>> !

Set the
characteristics
of the data

flows

Cad [
=3 '

*

<<extend>>

i
I
)

[]
‘I
!
'l‘
/
! Select the objects
to be connected

; .
J <<extend>>

; and set the
User Set the ! required
- . [
characteristics] _parameters

-
-

[}

i

) -
I <

of the job flows

<<include>>

Set up
communication
links '

Save the DDC
infrastructure
image

Create an
experiment

-~ <<include>>

LY

View data

storage volumes Create DDC

parameter
modification
scenarios

<<include>>

E A3 " s__-
' <<include>>

<<include>> S

]

]

]

U

View the

distribution of
different file types
in the storages

View the using of
computing
components

View the load on
communication
links y

Figure 1. Diagram of variants of using the module for user interaction with the DT

27

2.2.3 Non-functional requirements for the method of constructing digital twins of DDCs

The following non-functional reliability, security and performance requirements can be attributed
to the method of constructing digital twin of DDCs:

e various parameters and results of DT operation should be stored in the DB;

o the speed of operation of the DT from the moment of start-up to the receipt of results should be
determined based on the scale of the DDC and the processes occurring in it;

e the adequacy of the DT should be verified by the results of the existing DDC for different
parameters available during the system monitoring; the results of the DT should not deviate from the
average value of the monitoring data by more than three standard deviations;

e system operability should not depend on third-party software.

2.3. Method of creating digital twins of distributed data acquisition, storage and

processing centers

Based on the identified functional requirements, we can formulate a method for constructing dig-
ital twins of DDCs. The method consists of the following steps.

1. Obtaining data on DDC: equipment parameters, data flows and job flows, purposes of the DT
construction, probabilistic characteristics of the processes occurring in DDC.

2. Description of the DDC structure and the links between the components.

3. Formation of virtual image of DDC on the basis of received data and description of its structure.

4. Modeling of DDC.

5. Graphical presentation of the DT results.

Based on the principles of system analysis [55], the system for implementing the method can be
represented as follows:

MDT{D,S,V,M,G,R,Q, W}, (1)
where D — physical objects of DDC, S — data model entities, V — objects of the DDC virtual image,
M — objects of modeling processes in DDC (the kernel of DT), G — instances of the module for user
interaction with DT, R — relations defining links between physical objects and data model entities, Q —
relations defining links between data model entities and objects of the DDC virtual image, W — elations
defining links between the results of DT operation and their graphical representations.

Each physical object of an DDC (d € D) has a set of parameters that characterize the components
of the distributed centers X, i.e.. d € D c X; X X, X ... X Xy, where X; are the properties of physical

objects at i = 1, N (N € N). Physical objects are capable of changing from one state to another under

28

the influence of external factors or processes occurring in DDCs, so physical objects are formalized in
the following form:

D ={X,o,f},)
where @ is the set of admissible states of the object, f is the transition function from one state to another,
le.f1dxXX > P,

A data model is needed to formally describe the objects of the DDC, where each physical object
corresponds to a certain entity (s € S), i.e. D i S, where
R:{s€ S|3d € D,s = R(d)}. ®3)
The relationships between the components of an DDC are described in the data model as P: {s;P;sy},
where i,j,k = 1,N (N € N). Therefore, the formal description of the data model is as follows:
S ={D,R, P}. 4)

The virtual image of the DDC should be formed based on the parameters of real physical objects

and the links between them (P), which is reflected in the data model, i.e. S A V, where

Q:{veV|aseS,v=0(s)} (5)
Thus, the virtual image of DDC is formalized as
V={S0Q,P} (6)

The main stage of the method of constructing digital twins of DDCs is the modeling process, for
the implementation of which objects (data and job generators, data movement scheduler, management
object for data processing job , etc.), which together constitute the kernel of the DT (m € M) must be
created. The initial data of this stage are the parameters of the virtual objects of the DDC (v € V), each
of which has a set of admissible states (U). Each virtual object, similar to its physical image, has a
transition function for state change (h: U X V — U), which should be taken into account when modeling
various processes occurring in DDC. The outputs of the considered stage are formal descriptions of the
states of the objects (z€Z cY; XY, X ...x Yy, where Y; are the properties of the objects at i =
1,N (N € N)) at each moment of time (T). Thus there exists an exit function k: U x V — Z. The exit is
possible when a given running time is completed, when the job flow process ends, or when resources
overflow, which cause the DDC to stop running. Consequently, formally, the kernel of the DT can be
represented as follows:

M = {T,V,U,Z, h,k}. (7)

It is worth noting, the uniform (8) or normal (9) distribution of a continuous random variable can

be used to generate object parameters such as data volume and job execution time.

1

pr(v) = =, ®)

29

where pr(x) is the probability density function of a uniform distribution, [a, b) is the interval of accepta-

ble variation of the value of the parameter under consideration.

_(x=w)?

1
pn(x) = —e 2o°, 9)

where pn(x) is the probability density function of the normal distribution, p is the mean value of the
random variable, o is the standard deviation.

The events of changing the state of DDC objects can include, for example, the transition of equip-
ment to a non-operational state, changes in performance, etc. Events can be described in terms of prob-
ability distribution, since the time of their occurrence is a random variable. The flow of events is formed
according to Poisson’s law, according to which the moments of occurrence of events are distributed. The
intervals between the occurrences of events are determined by the formula of exponential distribution:

r= —2+In(r), (10)
where t is the interval between random events, 4 is the average number of events per unit time, r €
[0; 1] is a uniformly distributed random number.

Characteristics of data flow and job flows, parameters of random events of object state change,
types of probability distribution are determined by the user, who is an expert in the field of DDC admin-
istration. Evaluating the system reliability and failure probability according to the data of various mon-
itoring systems, the user can change the settings of DT parameters in order to obtain information on data
processing time, using resources, etc. to make a decision on the strategy of job flow management or
possible redistribution of resources.

Appropriate interfaces (g € G) should be provided for user interaction with the DT in the dialog
mode, in particular, for setting various parameters and graphical representation of the results of the DT
operation, which can be formally represented as follows:

G ={Z,W}, (11)
where Z are the formal descriptions of the states of the objects, the information about which was stored

in the process of DT operation, W are the relations defining the links between the results of DT operation

and their further representations (Z i G), namely:
W:{geGlazeZ,g=W(2)}. (12)
Based on the results of the DT, the expert can make a decision to select the required equipment
configuration from some set of alternatives {3}, based on the selection principle (. l.e., the decision
making problem can be formalized in the form:
{}, 9} -y, (13)
where y* — selected alternative. The principle of selection depends on the goal, which can be the search

for equipment configuration and job flow management strategy that ensures processing of all data in the

30

minimum amount of time, using the least amount of resources, etc. So, it is necessary to find such an
alternative that delivers a minimum of one, the most preferred criterion (for example, time), provided
that the values of the other criteria are no more than some predetermined values:

criteria; () - min; criteria;() < ¢;;j =2,N (N € N), (14)
where criteria; () is the most preferred criterion, criteria;() is the set of criteria, ¢; is the given
acceptable value of the j-th criterion.

The selected alternative should provide more efficient use of resources and reliable scenarios for
scaling and managing the data flows and job flows of DDC. In general, the performance indicator is a =
< H,, T >, where H, — target effects, T — time costs.

In order to implement each step of the method, it is necessary to develop algorithms, as well as a
data model where the initial data about DDC and the results of the DT will be stored. Further material

is presented in accordance with the published article [56].

2.4. Algorithms for implementing of the method of creating digital twins of distributed

data acquisition, storage and processing centers

2.4.1 Algorithm of kernel operation
The key element in the method of constructing digital twins of DDCs is the kernel, or the modeling
program of distributed systems, which takes into account the parameters of data flows and jobs flows to
be processed, as well as probabilistic characteristics of the processes occurring in DDC. Therefore, first
of all, it is necessary to describe the algorithm of the simulation program (see Fig. 2).

31

Kernel algorithm

Kernel

DB

Y

v

Job launcher scheduler:
- creating, activating, starting jobs;
- resource freeing

C

Recording of current modeling results ™|

a (DB connection)(—
g
m ¢
E (Request for initial data on DDC)——(Execution of request)
=
E (Obtaining initial data ‘\"::
<] J
v
Creating model objects and links
o between them
g
= Creating structures for data flows, jobs
E flows, events flows
E
=
§ < Subscription of objects to events)
M-
[=]
s Creating schedulers for moving data
E and launching jobs
]
w Creating an object for statistics
collection
v
< Loop by time of DDC operation >-1—
Changes data of model objects
according to the flow of events
- v
= Data movement scheduler:
E - storage validation;
E'= - data movement

—b(Execution of reguest)

in the DB

L
-

Figure 2. The algorithm of operation of the DDC digital twin kernel

32

In order for the kernel to be universal and can be used for modeling the processes of data trans-
mission, storage and processing of any DDC, it is necessary to adhere to the principle of developing a
universal software package, which does not need to be modified for each modeled infrastructure. In this
regard, all input parameters that describe the structure of the DDC, the configuration of its equipment,
the characteristics of data flows and job flows should be stored in the DB. In addition, the DB should
contain information about possible events occurring in the DDC. An event means, for example, a sched-
uled equipment shutdown, its temporary cessation of operation, performance changes, etc. Events are
not tied to a specific object, because they can occur with any element of the DDC. The event can occur
independently of the object, for example, when stopping the whole DDC, or it can be initiated by the
object processes, for example, data storage overflow, which occurs when data exceeding the available
resources are written. The DB should describe the scenarios of modeling and modification of the DDC
equipment parameters, as well as the criteria for collecting statistics about specific objects in the process
of operation of the future DT. Thus, the first stage of the algorithm is to set up the connection to the DB
and obtain all the necessary information about the modeled system.

The second stage of the algorithm is the formation of a virtual image of the DDC. At this stage,
using the initial data obtained from the DB, the creation of objects of the future model and the links
between them is carried out. Further, the structures for data flows and jobs flows are defined, the flow
of events is generated. Due to the fact that events can occur with any object, it is advisable to introduce
the concept of “object subscription to an event”, thanks to which it is possible to control simultaneously
all elements of DDC at the moment of occurrence of this or that event. Thus, objects are subscribed to
any number of events. At the same stage, objects are created that should be responsible for planning the
processes of data and jobs movement between the DDC elements, as well as objects that will collect and
record in the DB statistical information about the processes occurring in different DDC elements during
the third stage of the algorithm — modeling.

Modeling is carried out by constant time units, the minimum value of which is 1 second. For each
model object built at the previous stage of the algorithm, in accordance with the flow of events, changes
are made in the data, which correspond to the time unit of DDC operation. The onset and duration of
each event is determined according to one of the probability distributions (e.g., Poisson). Data movement
and job management schedulers are the key objects that describe the processes occurring in the DDC.
At each unit of time, the data movement scheduler checks all storages for new data, which are generated
according to the selected probability distribution law. If they are found, the process of data transfer from
the current storage to the destinations is started according to the description of the structure of the mod-
eled DDC. The task of the second scheduler is to manage the flow of jobs for processing the available

data. At each unit of time, the scheduler creates a certain number of jobs, the execution time of which is

33

a random variable distributed according to one of the laws (e.g., uniformly), activates and sends previ-
ously created jobs for execution. There are two basic models for launching jobs on computational re-
sources. The first model represents sending jobs to queues that are located directly on the counting nodes
of computational components. In the second model, there are general queues for each class of jobs that
are not assigned to specific computing resources. Therefore, computing components have individual
pilots that control the process of launching jobs. A pilot is an algorithm that analyzes the number of free
cores on a computational component allocated to a certain type of jobs. If free resources are available,
the pilot takes a job from the corresponding queue and sends it for execution. Then the job is removed
from the queue, occupies computational resources (slots) and starts to be executed, i.e. processes the
input file if it is available in the storage. Each slot includes some subset of cores. The job may require
either one or several cores. As a result of job execution, the output file is written to the storage with
which the compute resource is associated. When each task is completed, the scheduler frees the compu-
tational resources. Throughout the entire modeling stage, data is recorded in the DB, which reflects
statistical information about all the ongoing processes.
2.4.2 Algorithm of the module for user interaction with the digital twin

The algorithm of the module for user interaction with the DT is presented in the diagram in Fig-
ure 3. User interaction with the DT begins with the construction of the DDC infrastructure. According
to the requirements, the user needs to select from a list of objects corresponding to the equipment of the
DDC, place it in some area and set up the basic configuration of this device. After that, all information
about the object added to the infrastructure is stored in the DB. After all the necessary objects are added,
the user must configure the communication links between them. Communication links are logical con-
nections between the components of the DDC, through which the data are transmitted. User should select
the objects between which the connection is made and set the required parameters to configure the links.
Information about communication links is also added to the DB. Further it is required to create data
flows for processing at the DDC and job flows that will process this data. The user can edit the DDC
infrastructure, basic equipment configuration, change the parameters of data flows and job flows before

proceeding to the next stage, which is to create the DT.

34

Algorithm of the module for user interaction with the DT

User Module DB
_ y . v
(Selectmn and IDcatlon) DB connection j L —

of the object

CSEtting up the basic
configuration
Modification /
addition
— new object

Y |—

Creating a
communication link

:

Writing data to the DE>7

Selecting objects to
connect

Di

Execution of request)

Execution of request)

Gonfigu ring paramete
for the link
Modification /
addition
L_new channel

r

Y |7

(Creating data flows

¥

(Creating job flows

Building the infrastructure of DDC

Modification /
addition
L new flow

Editing
infrastructure

(Creating DT

<

il

LT

Writing data to the DE>7

Writing data to the DE>7
Writing data to the DED—

IS

L b

Execution of request)

Execution of request)

Execution of request)

L
(Creating experiments

¥

s

.

Request basic configuration,
objects, events

}

Execution of request)

[
=]
=
b (Add|_ng modifications to)—%’u‘riting data to the DED——)(Executiun of request)
5 equipment parameters
(DT startup)
1]
= ¥
Z . - .
@ Selecting objects for Requesting the DT Execution of request
E viewing statistics results
=
)
E (Downloading results)—4<Graph demonstration):
=

h 4

Figure 3. Algorithm of the module for user interaction with the digital twin of DDC

DTs can be created for different tasks, for example, to design an DDC; to check the performance
of an existing DDC with current equipment parameters and to find problem areas of its operation; to

scale DDC and to find an equipment configuration that will meet certain requirements, etc. In this regard,

35

the user needs to create computational experiments where the DT will be applied to solve a specific
problem. When adding a computational experiment on the DT, it is important to specify objects and
events, information about which will be stored in the DB. In each such experiment there will be access
to the basic configuration of equipment, which was created when building the DDC infrastructure. At
the same time the user can add additional modifications to the equipment parameters, if it is necessary
to solve the task at hand. After configuring the computational experiments, the DT is launched. If there
are several modifications, the DT for each modification can be launched simultaneously.

In the process or upon completion of the DT operation, the user can view and further analyze the
results in order to assess the efficiency of solving the tasks of building and development of DDC. The
user should select the type of equipment of interest, after which interactive graphs will be built using
data from the DB, which were recorded during the operation of the DT. For example, the graphs can
reflect data volumes and distribution of different types of files in storages, using of computing compo-
nents, load on communication links during data transfer, etc. Interactive graphs imply the ability to zoom
and select data for viewing. The user can save the results of the DT operation for any modification in

the form of images with graphs, which reflect the changes occurring in the DDC.

2.5. Data model

The DB plays a key role in the development of algorithms for the implementation of the method
of creating DTs of DDCs. The DB should store information about the architecture of the DDC, param-
eters of equipment included in its composition, characteristics of data flows and job flows, events oc-
curring in the DDC, scenarios of possible scaling of the system, and the results of the work of the DT.
In this regard, it is necessary to develop a data model, which should include the following entities:

e DataStorages — DDC data storages;

e ComputingComponents — DDC computing components;

e Pilots — pilots, i.e. objects that will launch jobs on DDC computing resources;

e Slots — slots that are part of the computing components of the DDC;

e Links — DeepL Translate — Camplii TOUHBII IEPEBOTUMK B MUPE;

e DataTags — types of data stored and processed in DDC;

e DataFlows — data flows for storage and processing in the DDC;

e JobQueues — job flows that will process the data available in the DDC;

e TransportJobs — objects for transferring data flows between DDC storages;

e Events — possible events occurring at the DDC;

36

e Event_Object — parameters of probabilities distributions of events occurrence for each object
with which this or that event can happen;

e Sensors — objects for collecting statistics in the process of DT operation;

e Experiments — variants of launching DT for different tasks (computational experiments);

¢ Modifications — modifications (scaling scenarios) of the basic configuration of DDC equip-
ment;

e SimulationReport — DT results.

The attributes of the DataStorages entity are the parameters of DDC data storages: identifier,
name, description, volume, name of the object for statistics collection. For the object of data generation,
I.e. the active storage, attributes are required to indicate the fact of activity and the rate of data appear-
ance. For each storage, a priority value should also be set, which indicates the sequence in which devices
are viewed during the scheduling of data transfer processes.

The attributes of the ComputingComponents entity are the parameters of the DDC computing com-
ponents: identifier, name, description, number of computing resources (cores), name of the object for
statistics collection. If the computing component has a possibility to reduce the time spent on job exe-
cution, an attribute containing the value of the speed up factor is required.

The attributes of the Pilots entity are the parameters of pilots that will run jobs on the DDC com-
puting resources: identifier, name, description, name of the object for statistics collection. To identify
the resource on which the pilot will work, an attribute specifying the name of the computational compo-
nent is required. According to the kernel algorithm, there are individual pilots for each class of jobs on
computational components, so the entity under consideration must contain an attribute that specifies the
name of the job flow. Each pilot should have a priority value that indicates the sequence in which entities
are viewed during the scheduling of data processing job startup processes. To divide job flows into
several computational components, an attribute is introduced that specifies the fraction of jobs from the
total flow that should be picked up by the pilot from the queue. Due to the fact that there can be several
types of resources for data storage in the DDC, attributes indicating the name of the data storage for
reading the initial data, for processing and recording the results of computational jobs execution are
added.

The attributes of the Slots entity are the parameters of the slots that are part of the DDC computing
components: identifier, name, number of cores allocated to a particular pilot, name of the object for
statistics collection. It is important to note that the total number of cores in all slots belonging to one
computing component must not exceed the total number of cores on the resource. The attribute respon-
sible for the slot activity is necessary to realize the possibility of changing the number of computational

resources in the process of DDC operation.

37

The attributes of the Links entity are the parameters of the links between the components of the
DDC: identifier, name, description, bandwidth, name of the object for statistics collection. As a rule, a
links connects objects of different entities, the names of which are indicated in the corresponding attrib-
utes. To realize the possible event of communication link disconnection, an attribute is provided, by
means of which the entity becomes inactive.

Attributes of DataTags entity are parameters of data types stored and processed in DDC: identifier,
name, description. The attributes of the DataFlows entity are the parameters of data flows to be stored
and processed in the DDC: identifier, name, description, data type, name of the object for statistics col-
lection. Each flow is bound to a specific storage to which data will be written. A certain amount of
resources is allocated for each flow in the storage, in case of overflow of which the flow status will
change to inactive for recording. It is important to note that the total allowable volume of data flows
belonging to one storage must not exceed the total storage resource volume. When creating a DT may
be necessary to consider the variant of work DDC, in which the data stores have already written a certain
number of files for processing. For the described case, this entity has a corresponding attribute.

The attributes of the JobQueues entity are the parameters of the job flows that will process the data
available in the DDC: identifier, name, description, name of the object for statistics collection. For each
type of tasks such values as: type of input/output data, average volume of input/output data, average
time of job execution should be defined. In addition, the number of jobs in flows may differ, some jobs
may be started more often, and some jobs may start executing only after others are finished. All these
details are reflected in the attributes. It is important to provide for the possibility of random generation
of data files and jobs for their processing, therefore, attributes defining permissible limits for changing
certain values have been added to the entity.

The attributes of the TransportJobs entity are the parameters of the objects for transferring data
flows between DDC storages: hame, names of storage resources between which data are transferred and
the communication link connecting them, type of transferred data. For each object, a priority value must
be set, which indicates the sequence of device viewing during the planning of data transfer processes. It
is possible to divide data flows into several distributed storages by means of an attribute, where the
percentage of data from the common flow to be transferred to certain resources will be specified. The
attribute of delayed start of data transfer is introduced to realize the situation of redistribution of storage
resources.

The attributes of the Events entity are the parameters describing possible events occurring in the
DDC: identifier, name, description, name of the object for statistics collection. Such events can be, for
example, stopping/starting one of the DDC elements, increasing/decreasing the number of available
computing or storage resources and others. The attributes of the Event_Object entity are the parameters
of event probability distributions for each object with which an event can occur: event identifier, name

38

and type of object, which can be data storages, computing components, slots, communication links. The
main attributes are the distribution type and the value of the event occurrence probability, which can
differ not only depending on the object type, but also on its purpose. For realization of dependent events,
additional attributes are provided.

The attributes of the Sensors entity are the parameters of the objects for collecting statistics during
the operation of the DT. For each type of element included in the DDC: data storages, computing com-
ponents, pilots, slots, communication links, data flows, job flows, events — a special program object of
statistics collection is provided, having an identifier, name and description. The collected information
should be averaged and saved with a specified frequency, which will speed up the recording process and
save space in the DB.

The attributes of the Experiments entity are the parameters of variants of the DT launch for differ-
ent tasks: identifier, name, description, launch parameters, date and time of creation, as well as the list
of identifiers of the objects of statistics collection, which can be changed according to the needs of the
DT use. The attributes of the Modifications entity are the parameters of modifications (scaling scenarios)
of the basic configuration of the DDC equipment: identifier, parameters of the DDC equipments, which
are changed in accordance with the scenario relative to the basic configuration, status, as well as the date
and time of creation, start, and completion of the DT operation. To identify the records with the DT
results according to a particular scenario, the corresponding attribute is added, which contains the value
of the identifiers of the CD start and the scenario.

Attributes of the SimulationReport entity are parameters describing the DT results. Each record
contains the identifier, system time of statistics collection, identifier and name of the object, which is
part of the DDC, information about the results of work of which is contained in the record. For each type
of objects, the data are recorded, which are of the greatest interest for tracking the processes occurring
in the DDC in accordance with the description of the objects of statistics collection. The results of all
variants of starting the DT with different modifications are stored in one table, therefore an attribute is
provided to identify the record of each scenario.

A full description of the attributes of the listed entities is provided in the Appendix 1. Notes are
added for each attribute, according to which a physical data model is developed for the database imple-
mentation. Figure 4 presents a logical data model showing all described entities, their attributes and
relationships.

39

'd R
Events
JobQueues Sensors
PK,U | event id i K Links
Event_Object PK,U| queue id PK,U| sn id
U event_name PK, U link id
FK | event_id ~—H PK, U| gueue name HPK,U| sn_name
event_description L . PK, U| link_name
object_name queue_description sn_description
FK | event_senszor =l d)) link_description
object_type ~d FK | queue_input_tag sn_period
.) i link_from
distribution Experiments queue_input_volume sn_frequency
.) link_to
probability APK,U| exp id queue_input_mod
link_bandwidth
initial_time U eXp_name l-od FK | queue_output_tag
- link_active
initial_value exp_description queue_output_volume
FK | link_sensor
value BXp_params queue_output_mod E‘
depend_events exp_lo weue_runtime
pend_ P19 . - TransportJobs
. exp_date_create queue_runmaod i
Maodifications PK,U transp id
. queue_start_delay
AHPK, U | mod id PK, FK, U| transp storage from po—,
- queue_temp
FK | mod_experiment o PK, FK, U| transp storage to p0—|
ueue_tempmod
U mod_report _ K . —eme o FK transp_link
SimulationReport
d_json fusuE_power e FK transp_tag
mo
PK, U| report id -
FK | queue_sensor =2e] o
mod_status - transp_priority
report_systime
mod_date_create .) DataTags transp_part
report_equipment_id
mod_date_start) PK, U | tag_id transp_time_start
report_squipment
mod_date_finish “—H{PK, U| tag_name H—
- - report_variable g DataFlows
tag_description j
report_comment PK, U | dataflow id
- o< FK | report_modification DataStorages PK, U | dataflow name
PK, U | storage id dataflow_description
Pilots i
~—HPK, U| storage name H— o FK | dataflow_tag
PK, U| pilot_id
' . storage_description [——mo<l FK | dataflow_storage
PK,U| pilot_name — .
storage_volume dataflow_volume
pilot_description) . -
storage_active dataflow_files
FK | pilot_comp =0 i)
storage_quant dataflow_active
FK ilot_gueue = ~‘
proa storage_priority FK | dataflow_sensor s ————
ilot_priorit _ W,
pioLp v FK | storage_sensor =2e)
pilot_jobs_part _
R ComputingComponents
FK | pilot_storage_input =0 | -
Slots PK, U | comp id
FK ilot_storage_output o <
Pl ge_outp PK, U | slot id ‘“———HPK, U| comp_name
FK ilot_sensor B
POl PK, U | slot name comp_description
slot_cores comp_cores
e o= FK | slot_pilot comp_speed
slot_active FK | comp_sensor s —————1
FK | slof_sensor peo
S

Figure 4. Logical data model

40
2.6. Conclusions to Chapter 2

Functional and non-functional requirements for DDC digital twins are defined. The requirements
include requirements for the core, which is a simulation program, and requirements for the module for
user interaction with the DT. The main requirements of the core are universality, adequacy of modeling
taking into account the characteristics of data flows and job flows, probabilistic processes of the system
functioning, as well as applicability for modeling the processes of data transfer, storage and processing
of any DDC. The requirements for the module for user interaction with the DT include the visibility of
the presentation of source data, the modeling process and results, as well as the release of a user from
participation in the development and maintenance of the DT core. The requirements are formulated in
accordance with the use cases of the future DT, the main task of which is to assess the effectiveness of
solving the tasks of building and developing a DDC.

As aresult, a new method for creating and using DTs is formulated to solve the tasks of managing
and developing DDCs, including improving their technical characteristics. A formal description of the
method is presented. The proposed method differs from existing ones in the ability to simulate such
processes as data storage and processing, taking into account the characteristics of data flows and jobs,
the probabilities of failures and changes in the equipment performance and other processes occurring in
the simulated system.

To implement the method, algorithms for the core operation and the user module are developed.
The algorithm of the core can be divided into three stages: obtaining data about the DDC, forming a
virtual image of the DDC, and modeling. The algorithm of the module for user interaction with the DT
includes the construction of a DDC infrastructure, the creation of a DT, and viewing the results of the
DT work.

A data model is created, entities are presented. The entities describe the architecture of the DDC,
the equipment included in it, data flows and job flows, events occurring in the DDC, scenarios for the
possible scaling of the system, and the results of the DT work.

The first provision to be defended is proved: “A method for constructing a digital twin is devel-
oped. The method allows describing distributed data acquisition, storage and processing centers, taking

into account data flows and job flows, as well as processes occurring in the DDC”.

41

Chapter 3. Implementation of algorithms and development of special

software for creating digital twins and interacting with them

3.1. Implementation tools

It is necessary to define a list of technologies to implement the method of building digital twins of
DDCs. First of all, it is necessary to choose a programming language that will allow to create a cross-
platform software product. Python — an interpreted object-oriented high-level programming language
with dynamic typing and automatic memory management — is chosen from the set of existing languages
[57]. Its advantages for developing complex algorithms with multiple methods are the availability of a
variety of libraries that can be used to process command line arguments, encode and decode data into
various formats, work with high-level mathematical functions, and finally interact with database man-
agement systems (DBMS). The Python libraries used will be described in more detail in the following
sections when the developed algorithms are described in detail.

The Python programming language can be used to create web services that can be conveniently
used for user interaction with the DT. For example, the freely distributed open source web framework
Django supports Object-Relational Mapping (ORM) technology for accessing database entities [58].
Django's architecture is called Model Template View (MVT, model-template-representation) because
models map the data structures needed by the application to tables in the DB, templates are responsible
for presenting the data to the user, and the view formats the data from the models into a specific view
and passes it to the templates [59]. The user interface in this case is conveniently implemented as adap-
tive web pages using the JavaScript programming language and the Bootstrap, Cytoscape.js and Plotly
libraries. The libraries used will be described in more detail in the following sections when describing
the developed algorithms in detail.

The freely distributed object-relational DBMS PostgreSQL [60] was chosen for storing the data
required for creating, launching and functioning of the DT. The physical realization of the DB is based
on a detailed description of the attributes of the entities of the developed data model, which is presented

in the Appendix 1.

42
3.2. Implementation of the digital twin kernel

Due to the fact that the DT kernel, in which the process of DDC modeling will be implemented,
should be universal for modeling the processes of data transmission, storage and processing of any DDC,
it is necessary to adhere to the principle of developing a universal software package, which does not
need to be modified for each modeled infrastructure. The object-oriented approach is used for the devel-
opment of the DT kernel.

All objects from the data model are described by the abstract base class Object_DC (see Fig. 5)
which includes general properties of the DDC elements, such as identifier (id), name (name), description
(description), priority (priority), active status (active) and the list of events (events) that can occur. The
class implements the constructor and methods of getting statistical information about the object func-
tioning (GetStatistics), adding an event (AddEvent) and sorting events by the nearest time of occurrence
(SortEventByMinTime). The methods of editing object parameters (EditObject) and processing events
(ProcessEvents) are abstract and are implemented in the base class inheritors: DataStorages, Compu-
tingComponents, Pilots, Slots, Links, DataFlows, JobQueues, TransportJobs, Events, Sensor.

Figure 6 shows a diagram demonstrating the general structure of the hierarchy of kernel classes,
which describe the entities of the described data model, as well as additional objects that allow to im-
plement the process of modeling the work of DDCs.

———————————

DataFlow

Object_DC

Sensor

- data_fype: string

- storage: DataStorage
- volume: float

- files: int

- filearray: List[File]

- total_existing_files: int
- volume_current: float

+ DataFlow(flow_properties: Tuple[*])
+ CreateFile(size: float, time: int)

+ DeleteFile(file: File)

+ FilesToDataFlow()

+ FindFilesSub(): List{File]

+ AddDataFlowVolume(vol: float, time: int)
+ DeleteData(vol: float)

- CheckFreeVolume()

+ ProcessEvents(time: int)

+ EditObjeci(parameters: Tuple[*])

+ FindFiles(file_status: FileStatus): List[File]

#id: int

name: string

description: string
priority; int

active: int

events: List[Eveni]

- period: imt

- compression: int

- records: Lis[]

- objects: List])
-recordsToDB: List]]

Link

- from: Object_DC
- to: Object_DC
- bandwidth: float
- load_cur: float

+ Object_DC(object_parameters: Tuple[*])

+ AddEvent{event. Event)

+ SortEventByMinTime()

+ ProcessEvents(time: int)

+ EditObject(parameters: Tuple*]}

+ GetStatisticsisn_name: List[string]): List{List{floaf], List[string]]

+ FinalChecked(id: int)

+ Sensor(sensor_properties: Tuple[*])
+ CreateRecord(id: int, time: int)
- CompressionRecords(id: int)

+ ProcessEvents(time: int)
+ EditObject(parameters: Tuple[*])

+ Link(link_parameters: Tuple[*])

+ ChangeLoad(volume: float, time: int)
+ ProcessEvents(time: int)

+ EditObject(parameters: Tuple[*])

Pilot

ComputingComponent

Event

- probability: float

JobQueue

- input_data_type: string
- input_volume: float

- input_mod: float

- gutput_data_type: string
- gutput_volume: float

- gutput_mod: float

- runtime: int

- runmod: int

- start_delay: int

- temp: int

- temp_mod: int

- power: int

- jobpoaol: List[Job]

- lasttime: int

- frequency: int

- lastactivetime: int

- initial_time: int
- initial_value: float
- value: float

+ Event(event_properties: Tuple[*])
+ ModifyInitTime(inc_time: int)

+ ProcessEvents(time: int)

+ EditObject(parameters: Tuple[*])

- comp: ComputingComponent
- gqueue: JobhCueue

- jobs_part: float

- storage_input: DataStorage
- storage_output: DataStorage

- cores: int

- cpeed: float

- slots: List[Slot]

- pilots: List{Pilot]
- numfreesiots: int

+ Pilot{pilot_properties: Tuple[*])

+ Activate()

+ GetJobFromQueus(queue: JobQueue)

+ DeleteJobFromQueue(gueue: JobQueue, job: Job)
+ ProcessEvents(time: int)

+ EditObject(parameters: Tuple[*])

+ ComputingComponent{comp_parameters: Tuple[*])
+ AddSlot{computing_slots: Slot)

+ FindFreeSlot{pilot_name: string): Slot

+ AddPilot(pilot: Pilot)

+ StartPilots(): Pilot

+ TimeStep(pilot: Pilot, time: int)

+ ProcessEvents(time: int)

+ EditObject({parameters: Tuple[*])

Slot

+ JobQueue(gueue_properties: Tuple[*])
+ GenerateJob(time: inf)

+ ActivateJob(time: int)

+ GetActivedobs(): int

+ HaveJobsAfterStop(): bool

+ MumJobsForExecute(): int

- GetNumJobs(status: JobStatus): int

- generator(job_number: int, time: int)

+ ProcessEvents(time: int)

+ EditObject(parameters: Tuple[*])

- cores: int

- pilot: Pilot

- link_storagefrom: Link
- link_storageto: Link

- occupy: int

- uploadingjobs: List{Job]
- successfuljobs: int

+ Slot(slot_parameters: Tuple[*])

+ TransierLink(link: Link, volume: float, time: int)
+ GetFreeSlots(): int

+ CleanSlots()

+ UploadJob(job: Job)

+ StartJobs()

+ GetNumJobsByStatus(status: JobStatus): int
+ ComputingStep(speed: float, time: int)

+ ProcessEvents(time: int)

+ EditObject{parameters: Tuple[*])

TransportJob

- storage_from: DataStorage

- sforage_to: DataStorage

- link: Link

- data_type: string

- part: float

- time_start: int

- dataTransfers: List[DataTransfer]
- dataFlowTo: List{DataFlow]

- gquant: float

+ TransportJob(transp_properties: Tuple[*])

+ AddDataTransfer(dt: DataTransfer, df: DataFlow)
+ DeleteDataTransfer(di: DataTransfer)

+ StartTransfer_Write{time: int)

+ ProcessEvents(time: int)

+ EditObject(parameters: Tuple[*])

Figure 5. Class diagram describing the inheritance hierarchy

DataStorage

- volume: float

- guant: float

- data_flows: List{DataFlow]

- comm_objects: List{Object_DC]
- tranport_jobs: List{Transportlob]
- lostdata: float

+ DataStorage(storage_properties: Tuplel*])

+ CheckFreeVolumel): List[float, float]

+ DataGeneration(time: int)

+ AddLostData(vol: float)

+ AddDataFlow(data_flow: DataFlow)

+ FindDataFlow{data_type: string). DataFlow

+ AddCommObject{com_obj: Object_DC)

+ FindCommObjectiname_object: string): Object_DC
+ AddTransportJob(iransport_job: TransportJob)
+ GelTransportJobs(): TransportJob

+ ProcessEvents(time: int)

+ EditObject({parameters: Tuple[*])

1917

44

JobsScheduler DataScheduler
- queues: ListlJobQueue] - storages: List{DataStorage]
- comps: ListfComputingComponent]
- pilots: List[Pilot] + DataScheduler(data_storages: List{DataStorage])
+ Transfer(time: int)
+ JobsScheduler{queues: ListlJobQueue], farms: ListfComputingComponent], + StopGeneration()
pilots: List[Pilot]) - TransferStepGeneration{data_storage: DataStorage, time: int)
+ StepRun(systime: int) - FileSubscription(file: File, ds: DataStorage, {j: TransportJob, ds_to: DataStorage,
- CreateJob(systime: int) di_to: DataFlow, sub_type: SubscribeType)
- ActivateJob(systime: int) - SelectDataStorageTo(storages: List{DataStorage]. parts: List{float], data_type: siring): List[DataStorage, int]
- ExecuteJob()
- SelectPi!ot[piIots:_ List[Eintjju: [slot: Slot, queue: JobQueue] <> DataStorage
- ProcessingStepitime: int)
- volume: float
- quant: float
- data_flows: List[DataFlow]
ComputingComponent Pilot - comm_objects: List{Object_DC]
- tranport_jobs: List{TransportJob]
- cores: int - comp: ComputingComponent - lostdata: float
- speed: float 0/ - queue: JobQueue
- slots: List[Slot] - jobs_part: float + DataStorage(storage_properties: Tuple[*])
- pilots: List[Pilot] - storage_input: DataStorage + CheckFreeVolume(): List[float, float]
- numireeslots: int - storage_output: DataStorage <>-—-— + DataGeneration(time: int)
+ AddLostData(vol: float)
+ ComputingComponent(comp_parameters: Tuple[*]) + Pilot(pilot_properties: Tuple[*]) + AddDataFlow(data_flow: DataFlow)
+ AddSlot(computing_slots: Slot) + Activate() * FiﬂdDatEHU\’{(dEtE_WDEZ _String_::: DataFlow
+ FindFreeSlot(pilot_name: string): Slot + GetJobFromQueue(queue: JobQueue) + AddCommObject(com_obj: Object_DC)
+ AddPilot(pilot: Pilot) + DeleteJobFromQueue(gueue: JobQueue, job: Job) + FindCommObject(name_object: string): Object_DC
+ StartPilots(): Pilot + ProcessEvents(time: int) + AddTransportJob(iranspori_job: TransportJob)
+ TimeStep(pilot: Pilot, time: int) + EditObject{parameters: Tuple[*]) + GetTransportJobs(): TransportJob
+ ProcessEvents(time: int) + ProcessEvents(time: int)
+ EditObject{parameters: Tuple[*]) + EditObject{parameters: Tuple[*])
JobQueue ".
‘ ‘ Link Cin e
put_data_type: string '
srerme CWhi - input_volume: float 3
Slot B :Lqrgb%tlcjte_c[tlEDC -input_mod: floai "
- cores: int - bandwidth: float - output_data_ty.pe. string \.f
- pilot: Pilot - load_cur: float - output_volume: float —
- link_storagefrom: Link - out?ut_rr!otd. float distributions
- link_storageto: Link + Link(link_parameters: Tuple[*]) -run |me.. |_n
- occupy: int + Changeload(volume: float, time- int) :L?;?%délén.t_ int + uniform(mean: float): float
- uploadingjobs: ListlJob] + ProcessEvents(time: int) t‘ = i y- + normal{mean: float, deviation: float): float
- successfuljobs: int + EditObject(parameters: Tuple[*]) :tzms._lrﬂod: int | + poisson({probability: float): float
- power: int FX
+ Slot(slot_parameters: Tuple[*]) ==gnumeration== - jobpool: List[Job] 1
+ TransferLink(link: Link, volume: float, time: int) JobStatus - lasttime: int !
+ GetFreeSlots(): int - frequency:int | e !
+ CleanSlots() NEW - lastactivetime: int
+ UploadJob(job: Job) ACTIVE DataFlow
+ StartJobs() TO_PILOT . .
+ GetNumJobsByStatus(status: JobStatus): int TO_SLOT + JobQueue(queue_properties: Tuple["]) - data_type: string
+ ComputingStep(speed: float, time: int) START + GenerateJob(time: in) - storage: DataStorage
+ ProcessEvents(time: int) WAITING + ActivateJobitime: inf) - volume: float
i N - » + GetActivedobs(): int - =
+ EditObject{parameters: Tuple[*]) {RUNNING) - files: int
l|success + HaveJobsAflerStop(): bool ~filearray: List[File]
K EMERGENCY + NumJobsForExecute(): int _total existing files- int
Q - GetMumJobs(status: JobStatus): int _volume currge_nt' ﬂtﬁat
- : - generator(job_number: int, time: int) = .
Job + ProcessEvents(time: int) + DataFlow(flow_properties: Tuple[*])
+ EditObject{parameters: Tuple[*]) + CreateFile(size: float, time: int)
- name: string + DeleteFile(file: File)
- gentime: int ’ + FilesToDataFlow()
- runtime: int ==enumeration== + FindFiles(file_status: FileStatus): List[File]
——@! - outile_vol float TransportJob Tiastatuy, + FindFilesSuby): ListlFile]
- outﬁle._type: string - storage_from: DataStorage + AddDataFIq«JVolumg[vol: float, time: int)
- status: JobSt_a_tus. _ - storage_to: DataStorage NEW + DeleteData(vol: float)
—procgssfposnmn. int - link- Link READY —CheckFreeVqucn_e[_: .
- remtime: int - data_type: string IN_PROCESSING + ProcessEvents(time: int)
- input: File _ part: float DONE_PROCESS + EditObject{parameters: Tuple[*])
- datatransier: DataTransfer - time_start: int RUNNING
- dataTransfers: List[DataTransfer] SUCCESS
+ Job(jname: string, systime: int, runtime: int, - dataFlowTo: List{DataFlow] EMERGENCY
outfile: File, outtype: string) - gquant: float /7\
+ StepTime(): int H File
+ TransportJob(transp_properties: Tuple[*]) I
DataTransfer + AddDataTransfer(dt DataTransfer, df: DataFlow) - name: string
_____ + DeleteDataTransfer(dt: DataTransfer) - length: float
- link_file_source: File + StartTransfer_Write(time: int) - status: FileStatus
- link_file_fin: File + ProcessEvents(time: int) - subscribtions: List{Subscribe]
- trans_status: TransportStat + EditObject{parameters: Tuple[*]) - time_creation: int
- time_modification: int
+ DataTransfer(file_from: File, file_to: File) Subscribe - time_final: int
+ TransportStep{max_vol: float, result_vol: float, ==enumeration==
time: int): float - subscriber: Object_DC SubscribeType + File(filename: string, length: float, time: int)
- type: SubscribeType + WriteFile(add_vol- float, fileSize: float,
==enumeration== WRITE time: int)
TransportStat + Subscribe(sub_obj: Object_DC, READ + Create$ub5crip?ion{sub\scriber: Subscribe,
sub_t: SubscribeType) READ_TO_PROCESSING type: SubscribeType) .
NONE WRITE_AFTER_PROCESS + DeleteSubscription(subscriber: Subscribe)
PROGRESS :
DONE : N

Figure 6. Detailed class diagram for the DT kernel

45

The DataStorage class describes data storages of DDC. Distinctive properties of the object are the
maximum storage volume (volume) and the rate of data generation per unit of time (quant), if the object
describes a data generator. A data generator can be subscribed to an event that changes its parameters.
The data generator has no memory for storing information, so if by the beginning of the next generation
event the data volume of the generator is not equal to zero, the information is considered lost. In this
regard, a data loss counter (lostdata) is required. Data in storages are managed by flows, which are
described in the DataFlow class. Each flow is bound to a specific storage (storage) to which data of a
certain type (data_type) will be written. Each flow in the storage is allocated a certain volume of re-
sources (volume) for each thread, in case of overflow of which the flow status will change to inactive
for writing. Data in a flow are stored as files (files).

Data is moved between storages using objects described in the TransportJob class. The fields are
the type of transferred data (data_type), pointers to the storages between which the data are moved
(storage_from and storage_to), and a pointer to the data transfer link (link). To implement the process
of dividing data flows into several storages, a field (part) is created, which contains the value of the
percentage of data from the total flow to be transferred to certain resources. There is a field of delayed
start of data transfer (time_start) to realize the situation of reallocation of storage resources. The Data-
Transfer class was created to detail the process of transferring data files. The fields are pointers to files
for data transfer (link_file_source) and reception (link_file_fin), as well as transfer status (trans_status).
Possible statuses are listed in the TransportStat element (no transmission, transmission in progress,
transmission completed). Communication links between DDC objects for data transfer are described in
the Link class. The characteristics of the link are bandwidth (bandwidth) and references to the infrastruc-
ture objects between which the link is performed (from u to).

The File class describes data files. Each file has a name (name), a size (length), a creation time
(time_creation), a modification time (time_modification), and a completion time (time_final). Since a
file can be used to write or read for processing, a field is added to reflect its status (status), as well as a
field describing the subscriptions (subscriptions) object that requires the file. The FileStatus element
lists the possible statuses of the file: new, ready for use, in process of transfer, transferred, in process,
processed successfully, processed failed. The subscriber object can be either a data storage or a compu-
ting component, so the SubscribeType element is introduced, which lists the types of acceptable file
usage: write, read, read for processing, write after processing.

The ComputingComponent class describes the computing components of an DDC. Each compu-
ting component contains a certain number of cores (cores) on which various jobs will be executed. To
possibly reduce the time spent on job execution on a computing component, a field describing the speed
up factor (speed) is created. The cores of the computational component are combined into slots, which
are described in the Slot class. It is on these slots that data processing jobs are performed. A certain

46

number of cores (cores) is allocated for jobs of different types. In this case, we consider a model with
general queues for each class of jobs, not assigned to specific computing resources, so the process of
launching jobs is controlled by pilots, which are described by the Pilot class. Each pilot works only
within one computational component (comp) and controls only a certain type of jobs, which are formed
in some queues (queue). Since all jobs from the queue can be divided among several pilots, a field
(Jobs_part) is added to the class to specify the percentage of jobs to be taken by a pilot from the queue.
Additionally, fields indicating the data storages for reading the input data for processing (storage_input)
and recording the results of computational jobs (storage_output) have been added to the class.

Data processing tasks are described in the Job class. The job is characterized by such class fields
as name (name), generation time (gentime), runtime (runtime), output data volume (outfile_vol), output
data type (outfile_type), executed operations counter (process_position). The job must process a file, so
a field that contains a reference to the input data for processing (input) and a field that contains a refer-
ence to the object detailing the process of file transfer from storage (datatransfer) are added. The JobSta-
tus element is introduced to track the status of job execution (status). Possible variants of job status:
new, activated, taken by pilot, sent to execution slot, started, waiting for file for processing, running,
completed successfully, completed with error. After creation, all jobs fall into queues (flows), which are
described by the JobQueue class. For each queue are defined such characteristics as: input/output data
type (input_data_type and output_data_type), average input/output data volume (input_volume and out-
put_volume), average job execution time (runtime). Besides, the number of jobs in flows may differ,
some jobs may be started more often, and some jobs may start executing only after others are finished,
that's why the corresponding fields (power, temp, start_delay) are added to the class. fields for values of
permissible modification of input/output data volumes (input_mod and output_mod), job execution time
(runtime_maod) and start frequency (temp_mod) have been added to the class.

To describe possible events occurring in DDC, the Event class is created. The class fields are
probability of event occurrence (probability), time of occurrence (initial_time) and permissible values
for changing object properties (initial_value, value). Objects of the Sensor class are required, which are
characterized by the averaging period of the collected information (period) and the frequency of writing
to the DB (compression), to collect statistics in the process of operation of the DB.

The key elements in the implemented kernel are the data movement scheduler (DataScheduler
class) and the jpb management scheduler (JobsScheduler class). The life cycle of these elements and
their main functions are shown in Figures 7 and 8 respectively. A field of the DataScheduler class is a
list of references to objects (storages) that are data stores, since the data movement scheduler must con-
trol any operations on files. At each unit of time, the data movement scheduler checks the health of all
stores, which in turn performs event processing and then responds with the status of their activity. The

datastorages are then checked for new data that are generated in the data flows according to the required

47

probability distribution law. In case of their detection, the process of data transfer from the current stor-
age (Transfer()) or from the generator (TransferStepGeneration()), if it is provided by the computing
infrastructure, to the destinations (SelectDataStorageTo()) according to the list of objects requesting a
certain file (FileSubscription()) is started. The fields of the JobsScheduler class are lists of references to
objects that contain queues of jobs to be executed (queues), and are responsible for launching jobs (pi-
lots) on specific computational resources (comps). At each time unit, the scheduler creates a certain
number of jobs (CreateJob()), the execution time of which is a random variable distributed according to
a specified law, activates previously created jobs (ActivateJob()) and sends them to the computing com-
ponents for execution in the queue. Next, a pilot is selected to run the job on the computational compo-
nent (SelectPilot()). The pilot analyzes the number of free cores on the computational component. If free
resources are available, a job is executed (ExecuteJob()): the pilot takes a job from the corresponding
gueue and sends it for execution on computational resources, in the process of which the input file is
processed if it is available in the storage (ProcessingStep()). When each job is completed, the scheduler
removes it from the queue and frees computing resources.

Generation of all data and jobs, event occurrence times is performed using the distributions class,
where methods of random values generation according to different distributions (uniform (uniform()),
normal (normal()), Poisson (poisson())) are implemented using the module of work with high-level
mathematical functions and multidimensional arrays NumPy [61].

48

Data manager Data Storages Data flows
scheduler
i | i
1 ' 1
activity check
2l I
event handling
response L
..:E __________________________
data availability check T
> data request

collection of data and files

collection of data and files - - - e
check for readiness
to receive data |
]
response
Mo ==========----—--—————mm o | |
object selection
for data dump
data transfer |
]
| finding flow to write data
H data recording |
| file creation
result message 0 | [leoooo-. r ia_syl_t_rpn_a_s_s?g? ________ 1
data removal I
]
finding flow to remove data
H data remaval |
| file remowval
result message 0 | [leo oo __ r ia_syl_t_@n_a_s_@gaﬁ ________

S

Figure 7. Sequence diagram for the data manager scheduler

49

Job management Job queues Pilots Computing
scheduler resources
! ! ! !
-1 job creation f B M
e

| job generation

job zctivation T

previously created
» job activation

selecting a pilot to start the job

L search for available resources
active pilot amount of available resources T:|
... eplot G - m e T
search for a job to run
job
{ ___________________________
job sltart
J_l__ job request
} job
I it job execution

job result T:|
'i:— ____________________________ e I

deleting a completed job
from the queue

I .I::I FESOUICE recovery

"]

L L L
i i i
i i i
i i i
i i i
i i i
i i i

e

Figure 8. Sequence diagram for the job management scheduler

Now let's consider the general principle of kernel operation, its relations with the described classes

and additional parameters that are necessary for its operation, which is reflected in Figure 9.

50

DataScheduler JobsScheduler
- storages: List{DataStorage] - queues: List{JobQueue]
- comps: ListiComputingComponent]
+ DataScheduler(data_storages: List{DataStorage]) - pilots: List{Pilot]
+ Transfer(time: int)
+ StopGeneration() + JobsScheduler{queues: ListlJobQueue], farms:
- TransferStepGeneration{data_storage: DalaStorage, fime: int) ListiComputingComponent], pilots: List[Pilot])
- FileSubscription(file: File, ds: DataStorage, tj: TransportJob, + StepRun(systime: int)
ds_to: DataStorage, di_to: DataFlow, sub_type: SubscribeType) - CreateJob(systime: int)
- SelectDataStorageTo(storages: List[DataStorage], paris: List[float], - ActivateJob(systime: int)
data_type: string): List{DataStorage, int] - Executedob()
- SelectPilot(pilots: List[Pilot]): [slot. Slot, queue: JobQueue]
\ - ProcessingStep(time: int)

Database
- params: config
- conn: connection _
main
+ connect() + parameters: Parzer
+ disconnect() + db: Database

+ get_tables_name() —‘—‘-———__,___‘ + data_scheduler: DataScheduler
+ get_data(viewname: string, columns: string, condition: string): Lisf{ Tuples] + job_scheduler: JobsScheduler

+ insert(List[Tuples])
+ update(table: string, columns: List{string], values: List[string], conditions: string)

+ GetDataFromDE()

.. + Simulation()

Parser =" | + CreateRecordsStatistic()
+ WiteRecords Statistic()

config + parser: argparze

+ config() + CreateParser()

Figure 9. General class diagram for the DT kernel

The developed program should be run using the command line, so the Parser class was developed.
The only method of the class with the help of the argparse library [62] processes the specified arguments,
which are necessary for further operation of the program. Such arguments include: the operating time of
the experimental facility in hours for which the computational infrastructure is created (simula-
tion_time); the time resolution factor (resolution_factor), which is necessary to speed up the program
and obtain results in a shorter time (calculations are performed not for each second of astronomical time,
but for the time indicated by this factor); the identifier of the DT for logging the results of its operation
(log_id).

The first step after starting the program is to configure the connection to the DB and get all the
necessary information about the DDC. The DB connection settings are described in a special file with
the extension .ini, where such parameters as host, port, user name, password and DB name are specified.
A single method of the config class parses the parameters of the configuration file using the configparser
module [63]. The Database class describes the connection to the DB and, using the psycopg2 module,
implements the methods of interaction with the PostgreSQL DBMS: connect and disconnect (connect()
and disconnect()), get the list of tables (get_tables_name()), get data from a given table (get_data()), add
new data (insert()), update data (update()).

The second stage of the algorithm is the formation of a virtual image of the DDC. At this stage,

using the initial data obtained from the DB, the creation of objects of the future model and links between

51

them is carried out. Further, structures for data flows and job flows are defined, a flow of events is
generated, to which DDC objects are subscribed. Schedulers of data and job management processes are
created, as well as objects that will collect and record in the DB statistical information about the pro-
cesses occurring in various elements of the DDC.

The third stage is modeling. Modeling is carried out by constant time units, the minimum value of
which is 1 second. Since the program is designed to analyze the flow of data and jobs in the system, the
methods of the data transfer scheduler (data_scheduler.Transfer()) and job management scheduler
(job_scheduler.StepRun(system_time)) are called. For each model object built in the previous step of the
algorithm, changes are made to the data according to the flow of events that correspond to the time unit
of the DDC operation. Throughout the entire modeling stage, statistical information about all ongoing
processes is obtained (CreateRecordsStatistic()) and data are written to the DB (WriteRecordsStatis-
tic()).

In this way the kernel of the DT is developed taking into account all the declared requirements.

3.3. Implementation of a module for user interaction with a digital twin

The module for user interaction with the DT functions in a dialog mode. The module is realized in
the form of adaptive web pages taking into account all the requirements. HTML, CSS, Bootstrap and
JavaScript technologies were used. Each page is described in a separate template for ease of further use
when building the project in the special software.

User interaction with the DT begins with building the DDC infrastructure (see Fig. 10). The page
contains a list of objects corresponding to possible DDC equipment, as well as a field for locating the
required objects and connecting them to the common infrastructure. Moving an object to the field opens
a form for entering its parameters. When you click on the “Add device” button, all information about
the object will be saved in the DB. This is how the basic configuration is set up. After all the necessary
objects are added, the user must configure the communication links between them. Communication links
are understood as logical connections between the components of DDC, through which data are trans-
mitted. To configure the links, select the objects between which the connection is made and set the
required parameters (see Fig. 11). To create data flows and job flows by analogy, forms for entering the
required parameters are created. Information about communication links, data flows and job flows
should also be added to the DB. The user can edit the DDC infrastructure, basic equipment configuration,
change the parameters of data flows and job flows before proceeding to the next stage, which is to create
the DDC.

52

NocTpoeHre WHPPacTPYKTYPL
ueHTpa cbopa, xpaHeHua u o6paboTHW AaHHBIX

Figure 10. Page for building DDC infrastructure and setting up basic equipment configuration

MocTpoeHue WHOPaCTPYKTYPbI
ueHTpa cbopa, XpaHeHua 1 06paboTKWU [aHHEIX

POAIHTHRORATE MNGDICTRYKTYPY

HacTpouTs HacTpouTs
NOTOKRE JaRHNS NOTOKW 38034

Coopame uWdpcBoR ADCHNAK

Trigger Buffer

i =
=

Compriing

N

)

i

Figure 11. Page for building DDC infrastructure and setting up communication links between objects

Building DDC infrastructure is one of the most important functions. The process involves ani-
mated arrangement of objects on a form (HTML canvas element) on which they can be moved, con-
nected, selected. Configuration building resembles the process of building a weighted graph, where the
added objects are vertices, and the links between them, which describe the communication links with
bandwidth — edges with weights. Due to this feature, the Cytoscape.js library, which is focused on

graph and network construction, was chosen to implement the functionality. The library has built-in

53

rendering with gestures and events, and allows manipulating highly customizable and interactive graphs
[64].

A corresponding simple HTML page for adding computational experiments on the DT has been
created to describe the purpose of creating the DT and entering additional parameters for the modeling
process (see Fig. 12). In each computational experiment there is access to the basic configuration of the
equipment, which was created during the construction of the DDC infrastructure, also the user can add
additional modifications to the equipment parameters and enter the events occurring in the DDC. After

configuring the computational experiments, the DT is launched (see Fig. 13).

JobaBneHne sKcnepumeHTa
3anonHuTe nonA fopmsl, 4Tobs 0063BMThE HOBHIH 3IKCNEpWMEHT ANA MOWCKAa ONTUMANbLHOW KOHDUrypauww oBopygoBaHuMA
* D6AzaTencHos none AnA 3anonHeHus

Hazepanue IHCNEepUMeHTa *

CnucaHne 3KCnepuMeHTa

MapaMeTps MOAENHPOBAHWMA

s [IpogoAKHTENEHOCTE DaboTsl MOTEMUPYEMO WHAPACTPYKTYPH — | .

* YckopeHwe npouecca MogenHposaHua 8]LJ_-TB.

MNapameTps NOrvpoBaHWs

BufepnTe 0b6berkTd ¥ cobbTHA, O KOTOPHX HeoGxoAWMO COXPaHATb WHPODMAUMK BO BPEMA MOZSNMPOBaHWA

Kaknane cBA3n

FeHepayna GanHex
MoTepn gaHHbX
PaBora c gannamu

leHepauns, 3anyck, BLITOAHEHHE 33gay

fo6aeuTk O4UCTHTE

OTmeHa

Figure 12. Page for adding a computational experiment

54

WHpopMaunn o6 3KcnepumeHTe

CANCON MOAMPAXBUMK

Aara
e
Gucanesos
LiE=0p
PP

NapaweTps NOrwponINke

Cnneok cobummit

| Hodzante COGeiTHE

NoCuaTPRTH PoAYANTATH

BubpaTe ADYIOR IMENEDUMEIT

fobaaute WOgMdUKaUMO

Figure 13. Page to view information about the computational experiment and start the DT

According to the requirements, in the process or upon completion of the DT work, the user should

be able to view the DT results. The Plotly library is used to implement this function [65]. On the page,

the user is presented with interactive graphs depending on the type of equipment selected (see Fig. 14).

Interactive graphs provide the ability to zoom in and select data for viewing, which helps to identify

several potentially competitive options from a variety of acceptable equipment configurations. The user

can save the DT results for any modification in the form of images with graphs. All of these features are

provided by the Plotly library.

PesyneTate 3kcnepumenTa Test 1
AL M CBRIN Dluspam Ja5a PeCnpaniianien iaanog]
3AHATHE AAPA HA BEYACTIMTENEHOA kKoMmoHesTe noxdhap JaHATEE AAPE HA BRYACAMTENEHOA KoMnoserTe L2t
w0 =
00
500
o
00
00
o i
e Bpemn |

Figure 14. Page for viewing the DT results
Thus, a module for user interaction with the DT is realized taking into account all the declared

requirements.

55
3.4. Development of special software

The implemented models, methods, modules and algorithms are combined into a single software
package for further use as a part of special software, which is a problem-oriented system of management,
decision-making and optimization based on DT models. The special softwarearchitecture is presented in
Figure 15. Special software contains three main blocks: data storage, modeling, presentation of results.
Data storage — accumulation of structured information to support the processes of modeling and anal-
ysis of results. Modeling — algorithms of the DT kernel. Results presentation — a module for user
interaction with the DT, with the help of which it is possible to set the initial data describing DDC and
parameters for modeling, as well as to view the results of the DT operation.

i
Control script

[
Algorithm script

Analysis results

l7E:-< perimental results— Algorithm script

[
>

Initial

—» Data storage
data d

DB data

A A
L, Modeling

Resulis
v
¥
Presentation of
results
Visualization
» of results

PosigreSaL Python

Figure 15. The architecture of the special software

To implement the previously described methods, modules and algorithms, the Python program-
ming language was used, so Django framework was used to combine all components into a single special
software as a web service. This framework supports object-relational mapping technology for accessing
DB entities, and the architecture features allow the project to be run as a server-side application. A
Django project consists of a project directory with general settings and directories of applications to be
connected and disconnected from the project. Applications are connected in the file of general project
settings.

Each page that is designed for the user interaction module with the DT is given a template that

defines how the page will be displayed to the user, the view that accepts the page request, and the url

56

address where the page is accessible. To define application URLSs, the Python URLconf (URL configu-
ration) module is used. This module contains Python code that renders URL patterns using regular ex-
pressions, and related Python functions (views). Configurations can reference each other and be created
dynamically [66]. As a result, a page has a template that defines how the page will be displayed to the
user, its view that accepts a page request, and the address at which the page is accessible.

To work with the DB Django framework has a project settings file (settings.py), where you must
specify the appropriate driver for the type of DBMS used. The same file specifies the name, host, port
and data for connecting to the DB. Each entity, which is necessary for storing data of the implemented
system, Django matches classes-models, described in the file models.py. A model contains certain fields,
each of which has a name, a type, and may have additional properties corresponding to possible DB
attribute properties: for example, a property of uniqueness of values or an indication that the field is a
foreign key. Django provides some built-in model methods for accessing data in the DB, and also pro-
vides the ability to fetch data from the DB using manually written SQL queries.

The server part of the DDC infrastructure building process is of the greatest interest. When se-
lecting a device from the list, a form opens for entering its parameters. This functionality is implemented
with the help of AJAX-requests so that the page is not reloaded after adding parameters to the next
device. Using JavaScript, data from the form is collected, and an AJAX-request is formed, which sends
the received data to the view, where the data is processed and stored in the DB. Then the server replies
that the data has been successfully added to the DB, or an error has occurred, which is reported to the
user.

A detailed user’s manual with a detailed description of all possible actions for working with the
special software can be found in the Appendix 2.

Upon completion of development and implementation of the problem-oriented system of manage-
ment, decision-making and optimization on the basis of DT models, the certificate of state registration
of computer program No. 2023667305 “Software package for creating digital twins of distributed data
acquisition, storage and processing centers” from August 14, 2023 is received (Appendix 3).

The following minimum system requirements are required for the installation and operation of the
special software:

e 32-bit (x86) or 64-bit (x64) processor clocked at 2 GHz;

e 16 GB of RAM;

e 1 GB of free disk space.

Additional disk space at the rate of at least 30 MB per computational experiment will be required

to store the DT results.

57
3.5. Conclusions to Chapter 3

Algorithms for constructing DDC digital twins are implemented according to the described re-
quirements. Modern architectural solutions, object-oriented programming principles and tools for devel-
oping software, web applications and DBs are used.

The DT core is a program consisting of a large number of classes describing all kinds of objects
that may exist in various DDCs, as well as additional elements that allow one to implement the process
of modeling the DDC operation. At the same time, the principle of developing a universal software
package is taken into account. The software package does not need to be changed for each simulated
infrastructure.

The module for user interaction with the DT is implemented as a web service with adaptive web
pages to ensure operation in interactive mode. If necessary, additional pages can be added to the service
according to the developed templates. It simplifies the further development of the project.

A relational DB is implemented to store the data necessary for the creation, launch and operation
of the DT. Data is accessed using libraries implemented for the Python programming language, which
is used to implement all algorithms.

Special software is developed. The software is a problem-oriented management, decision-making
and optimization system based on DT models. The special software is used to create DDC digital twins
and allows one to compare the efficiency of the DDC operation depending on different hardware con-
figurations. The special software includes a database, the DT core and a module for user interaction with
the DT.

The special software implements methods for creating DTs of data storage and processing centers,
modeling such centers, generating data flows and job flows, and visualizing. The special software can
be used for a wide class of tasks in the field of design, construction and development of DDCs, including
helping to select several potentially competitive options from a variety of acceptable hardware configu-
rations.

The certificate of state registration of the computer program No. 2023667305 “Software Complex
for Creating Digital Twins of Distributed Data Acquisition, Storage and Processing Centers” dated 14
August 2023 is received (Appendix 3).

The second provision to be defended is proved: “Algorithms, on the basis of which special soft-
ware used to make decisions on choosing the configuration of equipment for distributed data acquisition,

storage and processing centers according to specified requirements is created, are developed”.

58

Chapter 4. Verification and experimental operation of the special software

for creating digital twins

4.1. Verification of the digital twin kernel

4.1.1 Problem statement

According to the presented requirements for digital twins of DDCs, the adequacy of the DT should
be verified by the results of the existing DDC for different parameters available during the system mon-
itoring. At the same time, the DT results should not deviate from the average value of monitoring data
by more than three standard deviations. Therefore, it is necessary to verify the modeling program, which
is the kernel of the DT. Further description of the material is presented in accordance with the published
article [67].

Verification of the simulation program was carried out on the example of the computational infra-
structure of the BM@N experiment [68] of the NICA accelerator complex [12], which is being built in
Russia at the JINR in Dubna, Moscow region. The BM@N experimental facility is one of the elements
of the first stage of realization of the NICA complex. After a series of technical sessions of the experi-
ment in the winter of 2022-2023, the first physical session took place, in which more than 550 million
events of interaction of a xenon ion beam on a cesium-iodine target were collected, subject to further
processing and physical analysis of the experimental data [69]. The computational infrastructure of the
experiment includes various resources, namely:

1. the NICA cluster, which is located in the Veksler and Baldin Laboratory of High Energy
Physics (LHEP) of JINR;

2. components of the distributed grid infrastructure of the JINR Multifunctional Information and
Computing Complex (MICC) [70]: the resource center of the first level Tierl LIT and the resource center
of the second level Tier2 LIT,;

3. Govorun supercomputer, part of the HybriLIT heterogeneous platform [71] (JINR MICC);

4. data storage on the EOS distributed file system (JINR LIT).

The DIRAC system is used to integrate infrastructure objects and provide unified access to them
for the purpose of launching mass data processing jobs [72]. Monitoring and evaluation of the perfor-
mance of computing resources as a result of the experiment jobs is also performed using DIRAC Inter-
ware software [73].

Thus, as the initial data for verification we used the statistics obtained from the results of monitor-

ing with the help of DIRAC Interware software when running the tasks of converting the obtained «raw»

59

(unprocessed) experimental data into digit format (hereinafter referred to as RawToDigit jobs) and the
jobs of converting the digit format data into the data of reconstructed particle collision events in DST
format (hereinafter referred to as DigitToDst jobs).

To achieve this goal, three stages of modeling were carried out. The task of the first stage is to
model the process of aquisition experimental data, determining the amount of resources required for
their storage. The task of the second and third stages is to model the process of launching RawToDigit
and DigitToDst jobs, respectively, to measure such indicators as using computational resource, total job
execution time, data transfer rate.

4.1.2 Description of experimental data and monitoring results

We consider the physical session of the BM@N experiment, which ran from December 2022
through February 2023. The total data collection time was approximately 720 hours. “Raw” unprocessed
data (hereafter raw data) came from the facility at a rate, averaged over the entire session time, of
142 MB/s. According to monitoring results [74], at the end of the session, the total amount of physical
raw data was 379 TB (see Fig. 16). During each run, during each experiment data set, the experiment
data was written to raw files in the receive and store buffer. The size of an individual file was 15 GB.
When ready, the raw files were copied in their entirety to the data storage on the EOS file system. The
volume of the resulting experimental raw data recorded in the repository corresponds to 25 800 raw files
for processing. The processing of the experimental data is a transformation and subsequent acquisition

of reconstructed event data.

Diata per day

Total raw physics size ~ 379 TB |

.

1204 12008 12412 1206 120 1204 12028 0101 1005 0008 01413 0117 o121 05 Og2e pne

Figure 16. Real volume of incoming raw data from the BM@N experiment

Conversion of raw files into digit files (RawToDigit jobs) was performed on the computational
resources of the experiment: NICA cluster and LIT Tierl. Each RawToDigit job processes 1 file of “raw”
experimental data once. The digit file size averages 870 MB. All RawToDigit were sent for execution
simultaneously. The total processing time for all raw files was approximately 36 hours. Figures 17 and
18 are graphs showing the number of jobs executed on the computational components of the NICA

LHEP cluster and LIT Tierl cluster, respectively, over the specified time period. The graph in Figure 17

60

shows that the computational resources of the LHEP NICA cluster are loaded uniform, with approxi-
mately 100 jobs executed every hour. This allowed us to make the assumption that 100 cores were pro-
vided on the LHEP NICA cluster. According to the graph shown in Figure 18, According to the graph
shown in Figure 18, we can conclude about the uneven sing of LIT Tierl resources. The number of
executed tasks per hour varies from about 200 to 1 500, which indicates a gradual loading of the provided
for processing 1 500 cores. It should be noted that a total of 4 844 jobs were processed on the LHEP
NICA cluster, which is approximately 19% of the total, while 20 956 jobs (81%) were processed on the
LIT Tierl cluster. Monitoring of processor performance when executing all RawToDigit jobs showed
that the average time to complete a single job was approximately 2 500 seconds. The total volume of the
resulting digit files in the data store was 23 TB (excluding data mirroring). The graph in Figure 19 shows
the data transfer rate. It can be seen that the data transfer rate from the data storage to the computational
resources of the LHEP NICA cluster is 0.5 GB/s on average. Due to the fact that the jobs on the LIT

Tierl compute components were received non-uniform, similar data rates vary from 1 GB/s to 8 GB/s.

fotaljobs perhour | Total number of jobs 4844

Figure 17. Number of completed jobs on the LHEP NICA cluster

ool oy pEk Siouk Total number of jobs 20956

Figure 18. Number of completed jobs on Tierl LIT resources

61

Stacked transfer speed

i i -‘";-J‘"'I‘Lr- m

B i 5 Lot Lo LI B
'IJ [t ~indy L Ar ’“JJ]J-".J“:"..JL.H__.-HL;

Figure 19. Data rate monitoring: yellow — from data storage to LHEP NICA cluster computing resources; blue — from data

storage to Tierl LIT resources

Obtaining reconstructed data of DST format (DigitToDst jobs) — conversion of digit-files into
dst-files — was already carried out on a larger number of computing components, namely: LHEP NICA
cluster, LIT Tierl, LIT Tier2, Govorun supercomputer. Similarly, each DigitToDst job processes 1 digit
file once. The size of each dst file averaged 2 000 MB. All DigitToDst jobs were sent for execution
simultaneously. The total processing time for all digit files was approximately 73 hours. Figures 20-23
show graphs reflecting the number of completed jobs on the LHEP NICA cluster, LIT Tierl, LIT Tier2,
Govorun supercomputer, respectively, for the specified period of time. It can be concluded that all com-
putational resources are loaded non-uniform. On the NICA cluster 300 cores are allocated to run Digit-
ToDst jobs (see Fig. 20), and there is an interval when fewer resources are used (10 to 200 cores). The
LIT Tierlis allocated 1 500 cores, the compute component is gradually loaded to its maximum and then
the number of resources used is reduced to 10 cores (see Fig. 21). A similar situation is seen at LIT
Tier2, where 1 000 cores have been allocated (see Fig. 22). Govorun supercomputer, where 500 cores
are allocated, is used to run jobs only in the first half of the time interval under consideration
(see Fig. 23). Thus a total of 5 315 jobs were processed on the LHEP NICA cluster, which is approxi-
mately 21% of the total, 9 289 jobs (36%) on the LIT Tierl, 9 016 jobs (35%) on the LIT Tier2, and
2 180 jobs (8%) on the Govorun supercomputer. CPU performance monitoring during execution of all
RawToDigit jobs showed that the average execution time of one job is about 10 000 seconds. The total

volume of the resulting dst files in the data storage is 53 TB.

62

Total jobs per hour Total number of jobs 5315

Figure 20. Number of completed jobs on the LHEP NICA cluster

Total jebsper-Hour | Total number of jobs 9289 |

Figure 21. Number of completed jobs on the LIT Tierl

Total jobs per hour

I Total number of jobs 9016 |

Figure 22. Number of completed jobs on the LIT Tier2

Toul jobs per hour l Total number of jobs 2180 l

Figure 23. Number of completed jobs on the Govorun supercomputer

4.1.3 Modeling the process of acquisition and storage of BM@N experimental data
The simulated system of BM@N experiment data acquisition and storage is presented in Figure 24.
The inputs to run the simulation program are the rate of data generation and the bandwidth of commu-
nication links between infrastructure objects. The number of resources required to store all incoming

data on the buffer and in the EOS data store must be determined.

Data reception
and storage EOS
buffer

BM@N
Trigger

142 MB/s

Figure 24. Modeled system for acquisition and storing data of the BM@N experiment
The simulation results showed that the amount of data accumulated over 720 hours would be
approximately 363 TB (see Fig. 25). All data packed in raw files will be transferred to the EOS reposi-
tory (see Fig. 26). A 400 TB buffer will be sufficient for receiving and storing experimental data at a

given average generation frequency (not including data mirroring).

63

Total data volume on the Online storage Data volume on the EOS

| [Raw data
— Total

350

300

)
wn
f=]

Data volume {TB}
L)
=1
=]

Data volume (TB)

o a0 a0 W %o e 7w 5 100 200 300 B TSI
Figure 25. Amount of data reception and storing buffer ~ Figure 26. Volume of raw files in the EOS data storage
4.1.4 Modeling of the process of executing jobs of conversion of experimental data

Based on the monitoring results, the system of experimental data processing was modeled, pre-
sented in Figure 27. During the simulation, it is required to calculate the using computational resource
during RawToDigit jobs and the data transfer rate under the following conditions. There are 100 cores
allocated to the LHEP NICA cluster, and 1 500 cores allocated to the LIT Tierl. The number of jobs
executed per hour on a LIT Tierl varies from about 200 to 1 500, so when modeling the RawToDigit job
execution process, parameters should be set to vary the number of cores used. Such parameters are the
probability of occurrence of the event of change in the number of free cores available for job execution,
as well as the range of acceptable values. In this case, the probability of a resource increase event occur-
ring is 0.005, with the number of cores varying from 200 to 1 500, on average by 100 units at each event.
The following are used for modeling: uniform distribution of job execution time with average value
equal to 2 500 seconds, average raw file size equal to 15 GB, average digit file size — 870 MB. Addi-
tionally, the total execution time of all RawToDigit jobs must be determined.

LHEP NICA

100
cores

LIT Tier1

1 500
cores

Figure 27. A simulated BM@N experiment computational infrastructure for executing experimental data conversion jobs

64

All 25 800 RawToDigit jobs are generated simultaneously. The process of executing jobs during
simulation is controlled by pilots. A pilot is an algorithm that prepares a job for executing , including
analyzing the number of free cores on a computational component. If free resources are available, the
pilot takes the next job from the queue and sends it for execution. Then the job occupies a processor core
and starts executing, i.e. processing the input raw file from the EOS data store. As a result of job execu-
tion, the output digit-file is also written to EOS.

Let's consider the obtained results of modeling. Figure 28 presents graphs showing the total num-
ber of completed jobs on the LHEP NICA cluster and LIT Tierl, respectively, at each point in time. It
can be concluded that all RawToDigit jobs are completed in about 30 hours, with 3 875 jobs processed
on the LHEP NICA cluster, which is approximately 15% of the total, and 21 924 jobs (85%) processed
on the LIT Tierl.

Completed RawToDigit jobs on computing components

----- NICA LHEP
Tierl LIT
Total

25000

20000

15000 4

umber of jobs

M

10000

5000 1

a 5 10 15 20 25
Time (h)

Figure 28. Number of RawToDigit jobs completed on computational resources during modeling
Figures 29 and 30 are graphs showing the number of cores in use on the computational compo-
nents of the LHEP NICA cluster and LIT Tierl, respectively, at each point in time. We conclude that
the resources of the LHEP NICA cluster are uniform loaded at 100%, but the LIT Tierl resources are

not fully used, i.e. they are initially loaded at 15% and then gradually begin to fill up to 100%.

65

Occupied cores on the NICA LHEP Occupied cores on the Tierl LIT
100 4
1400
B0 T t t 12004
2 g 1000 4
2 &0 f=8
o c 800
L =}
E E
2 404 3 600
400
20
200
o] T T T T T 4] T T T T T
(4] 5 10 15 20 25 4] 5 10 15 20 25
Time (h} Time {h)
Figure 29. Using of the computational component re- Figure 30. Using of the computational component re-
source of the LHEP NICA cluster source of the LIT Tierl

Graphs showing the load on communication links between the storage and computational com-

ponents of the LHEP NICA cluster and LIT Tierl are presented in Figures 31 and 32, respectively. It
can be concluded that the average data rate between EOS and the LHEP NICA cluster is 5 Gb/s =
0.63 GBI/s; between EOS and LIT Tierl, the rate varies from 8 Gb/s = 1 GB/s to 64 Gh/s =8 GB/s. Thus,

the change in data rate between EOS and LIT Tierl corresponds to the change in the number of cores

free to run jobs.

Load of link between Load of link between
the EOS and the NICA LHEP the EOS and the Tierl LIT

Load (Gbit/sec)
@
Load (Ghit/sech

0 5 10 15 20 25 0 5 10 15 20 25
Time (h} Time (h)

Figure 31. Loading of the communication link between Figure 32. Loading of the communication link between
EOS and the LHEP NICA cluster EOS and the LIT Tierl

It is worth noting that the digit file size in the simulation is a uniformly distributed random vari-

able with a mean of 870 MB (see Fig. 33), and the total size of all digit files was approximately 22 TB
(see Fig. 34).

66

Distribution of Digit Files an the EOS Data volume on the EOS
A00 -7 Raw data
i Digit data R e s
0] — Total
2000 300 4
g
= & 250 4
£ 1500 z
E'r % 200 -
1000 - & 150
100 4
500 1 —— Distribution curve
=== Mean value 50
B Histagram of a random volumes
D I . L . 1 1 . L | 1 I. 1 I' . 0 ; 2 - s }
0 250 300 750 1000 1250 1500 1750 0 5 10 15 20 25
Data volume [MB) Time th)
Figure 33. Uniform distribution of digit file sizes in Figure 34. Data volume in the EOS repository after
EOS storage conversion of experimental data

4.1.5 Modeling the process of conversion event reconstruction jobs

The infrastructure that was used to reconstruct particle collision events from the acquired digit
data is shown in Figure 35. During modeling it is required to calculate the load of computing resources
in the process of DigitToDst jobs execution under the following conditions. There are 300 cores allo-
cated to the LHEP NICA cluster, 1 500 cores allocated to the LIT Tier1, 1 000 cores allocated to the LIT
Tier2, and 500 cores allocated to the Govorun supercomputer. In this case, the LHEP NICA cluster is
fully loaded 60% of the time, with 10 to 200 cores in use the rest of the time. LIT Tierl is gradually
loaded to maximum and then the remaining 40% of the time the number of resources used is reduced to
10 cores. A similar situation is seen on the LIT Tier2. The Govorurun supercomputer is used to run jobs
half of the time interval under consideration. Thus, when modeling the process of DigitToDst job exe-
cution, parameters for changing the number of cores used (probabilities and range of changes) for all
computational resources are established. In this case, the probability of occurrence of resource increase
and decrease events is 0.001, with the number of cores on the LHEP NICA cluster varying from 10 to
300, on the LIT Tierl from 10 to 1 500, on the LIT Tier2 from 10 to 1 000, and on the Govorun super-
computer from 50 to 500. The following are used for modeling: uniform distribution of job execution
time with average value equal to 10 000 seconds, average digit-file size equal to 870 MB, average dst-
file size — 2 000 MB. Additionally, the total execution time of all DigitToDst jobs must be determined.
All 25 800 DigitToDst jobs are generated simultaneously. The process of executing DigitToDst jobs

during simulation is similar to the process of executing RawToDigit jobs.

67

LHEP NICA

300
cores

~ LIT Tier1

1 500
cores

LIT Tier2

1000

cores

Govorun
supercomputer

500
cores

Figure 35. A simulated computational infrastructure of the BM@N experiment for executing event reconstruction jobs

Let's consider the obtained results of modeling. Figure 36 presents graphs showing the total num-
ber of completed jobs on the LHEP NICA cluster, LIT Tierl, LIT Tier2, Govorun supercomputer at each

point in time. We conclude that all DigitToDst jobs are completed in about 80 hours. In this case,

5906 jobs were processed on the LHEP NICA cluster, which is approximately 24% of the total,
8 872 jobs (34%) on the LIT Tierl, 8 598 jobs (33%) on the LIT Tier2, 2 424 jobs (9%) on the super-

computer.

Completed DigitToDst jobs on computing components

=:oos NICA LHEP
#a00d -~ Tierl LIT
Tier2 LIT

=+ Supercomputer
20000 4 Total i

15000 +

Number of jobs

10000

5000 +

0 1o 20 30 40 S50 60 70 80
Time (h}

Figure 36. Number of DigitToDst jobs completed on computational resources during modeling

Figures 37-40 are graphs showing the number of used cores on the computational components
of the LHEP NICA cluster, LIT Tierl, LIT Tier2, and Supercomputer, respectively, at each point in
time. We conclude that the resources of the LHEP NICA cluster are uniformly fully used for 60% of the
time, the rest of the time 10 to 200 cores are used. LIT Tierl and LIT Tier2 resources are gradually

loaded to maximum, and 40% of the time an average of 10 cores are used. The Govorurun supercomputer

runs jobs only in the first half of the time interval under consideration, with 10% of resources being used

at first, and then used up to 100% is traced.

Occupied cores on the NICA LHEP

300 -

Number of jobs
&
{=]

100 4—

50

0 10 20 30 40 50 60 70 a0
Time (h)

Figure 37. Using resource of the LHEP NICA cluster

computational components

Qccupied cores on the Tier2 LIT

1000 4

800

600

Mumber of jobs

400 1

200

0 T T T T ; T ; T
0 10 20 30 40 50 60 70 80
Time (h)

Figure 39. Using resource of the LIT Tier2 computa-

tional components

Occupied cores on the Tierl LIT

1400

1200

—
(=]
=3
=

2]
o
=1

Number of jobs

600

400

200-\/WJ

1}

y T r T T T T T
o 10 20 30 40 50 60 10 &80
Time (h)

Figure 38. Using resource of the LIT Tierl computa-

tional components

Occupied cores on the Supercomputer

500

400 4

w
o
=]

Mumber of jobs
]
=3
=3

100 -

Q T T T T T T T T

] 10 20 30 40 50 &0 70 a0
Time (h}

Figure 40. Using resource of the Govorun supercom-

puter computational components

It is worth noting that the dst-file size in the simulation is a uniformly distributed random variable
with a mean of 2 000 MB (see Fig. 41), and the total size of all dst-files was approximately 52 TB

(see Fig. 42).

69

Distribution of Reconstruction Files on the EOS Data volume on the EOS
3000 4 I L e Raw data
Ll — Digit data /,_’—’——
2500 400 1 Dst data
B T SRR e e
2000 - -
) w
c E
S 1500 2
a =
£ © 200
100 - : L2
i
T " 100 -
500 —— Distribution curve
=== Mean value
B Histogram of a random volumes
0 T T — o . T . T 4] T T T T T T T T
o 1000 2000 3000 4000 0 10 20 30 40 50 60 70 80
Data velume (MB) Time (h}
Figure 41. Uniform distribution of digit file sizes in Figure 42. The amount of data in the EOS repository
EOS storage after receiving reconstruction data

4.1.6 Conclusions on verification results

Verification of the simulation program, which is the kernel of the special software for the creation
of digital twins of DDCs, was carried out on the example of the computing infrastructure of the BM@N
experiment of the NICA project. The considered computing infrastructure was used to acquire, store and
process the data of the experiment session, which took place from December 2022 to February 2023.
The statistics obtained from the results of monitoring the computing infrastructure of the experiment
using the DIRAC Interware software was used as input data for modeling.

In the process of modeling, such indicators as the amount of resources required to store incoming
data, the load of computational resources during the transformation of experimental data and obtaining
reconstructed event data from them, the total time of job execution, and the speed of data transfer be-
tween infrastructure objects were determined. Table 1 shows the results of monitoring and modeling for
a more convenient comparison.

The verification results proved the correct operation of the modeling program. Adequacy was as-
sessed by several indicators. It should be noted that deviations of modeling results from the average
value obtained by monitoring results do not exceed three standard deviations of statistical monitoring
data. This value of accuracy is sufficient for further use of the simulation program as part of special
software to create digital twins of DDCs, which will be used to solve the problems of design and devel-
opment of computational infrastructure of scientific experiments of the “megasciences” class.

The simulation program has been previously applied to other BM@N computing infrastructure
configurations as well. Some results of the application have been published [75, 76, 77].

70

Table 1. Comparison of monitoring and modeling results

) Standard
Monitor-) o
) Modeling | deviation
ing
(o)
Volume of experimental data accumulated during 720 hours
-) 379 363 10
of facility operation (TB)
Total execution time of all RawToDigit jobs (h.) 36 30 5
Number of completed jobs on the LHEP NICA cluster / 4844/ 3875/ -
of total number of jobs 19% 15%
Number of completed jobs on the LIT Tierl/ 20956 / 21924/ 500
% of total number of jobs 81% 85%
Data transfer rate between EOS and the LHEP NICA cluster
0.5 0.63 0,1
(GBIs)
Data transfer rate between EOS and the LIT Tierl (GB/s) 1to 8 1to 8 1
Total digit file volume (TB) 23 22 2
Oo61ee Bpemst BoimotHeHus Beex DigitToDst 3amgay (u.) 73 80 5
Number of completed jobs on the LHEP NICA cluster / 5315/ 5906/ 500
% ot 001Iero unciia 3amay 21% 24%
Number of completed jobs on the LIT Tierl/ 9289/ 8872/ 500
% of total number of jobs 36% 34%
Number of completed jobs on the LIT Tier2 / 9016/ 8598/ 500
% of total number of jobs 35% 33%
Number of completed jobs on the supercomputer /
_ 2180/8% 2424/9% 500
% of total number of jobs
Total dst file volume (TB) 53 52 2

4.2. Application of the special software to create the digital twin of the computing

infrastructure of the BM@N experiment of the NICA complex

The results of the first physical session of the BM@N experiment of the NICA complex, which
took place from December 2022 to February 2023, showed that the computing infrastructure of the ex-
periment needs to be modified. In this regard, it is required to create a DT with several types of archi-
tecture of the system of data acquisition, storage and processing of the experiment, as well as with dif-

ferent parameters of equipment.

71

The main goal of the DT creation is to select the equipment configuration that will ensure data
storage and processing taking into account the planned parameters of data flows of future BM@N ex-
periment sessions. The most preferable selection criterion is the time of processing all data, which should
be the minimum of all possible alternatives.

The distributed system of BM@N experiment data aquisition, storage and processing includes the
following components:

1. data generator (Trigger) — average data generation rate 140 MB/sec;

2. intermediate data storage (Buffer) — storing “raw” unprocessed experimental data and re-
cording them in raw files, the average volume of which is 15 GB;

3. permanent data storage on a distributed file system (EOS) — 1 000 TB to store all files, which
contain not only experimental data, but also data of modeled events, as well as the results of each stage
of processing of the listed data types;

4. computational cluster for processing experimental data during the operation of the facility
(Online farm) — 1 000 cores can be used to process the data after the session is over;

5. JINR LHEP computing cluster (NICA LHEP) — 1 000 cores can be used for data processing;

6. the resource center of the first level of the JINR LIT MICC (Tierl LIT) — 750 cores can be
used for data processing;

7. the resource center of the second level of the JINR LIT MICC (Tier2 LIT) — 500 cores can
be used for data processing;

8. Govorun supercomputer JINR LIT (Govorun) — 200 cores can be used for data processing.

The process of building the DDC infrastructure is presented in Figure 43.

72

MNocTpoeHue UHDPaACTPYKTYPb
ueHTpa cbopa, xpaHeHusa v 06paboTKK AaHHbIX

PEnaKTHROBATE WHEPECTRYHTYDY

- HacTpours HacTpouTti HacTpouTe
¥
- [ole T HBHANW COR3IM NOTOHM OBHHWX noToKK 3anaq

Q_,’_'o : OB
— =K
=
Cnline farm HICAREER
100T8/c gg
100T6&/c
Trigger Buffer EQS Tier] LIT

Figure 43. Distributed system for data acquisition, storage and processing of BM@N experiment

It should be noted that the bandwidth of communication links is 100 Gbit/s. We consider the case
of DDC operation at uninterrupted functioning of the equipment after the end of the experiment session,
i.e. computing jobs were not started during the data set period.

The process of experimental data processing includes two steps:

1. conversion of data from raw files (25 800 pcs.) B dopmar digit, into digit format, average size
of the resulting digit file is 870 MB — RawToDigit jobs, average execution time of one job is 2 500 s;

2. conversion of digit format data into reconstructed particle collision event data in DST format,
average size of the resulting dst file is 2 000 MB — DigitToDst jobs, average execution time of one job
is 86 400 s.

The process of processing the generated model data includes two steps:

1. obtaining from the generated data in generation files, or gen files (60 000 pcs.), the average
size of which is 4 MB, modeled events after collisions, the average size of the resulting sim file is
300 MB — GenToSim jobs, average execution time of one job is 5400 s;

2. conversion of sim format data into reconstructed particle collision event data of DST format,
average size of the resulting dst file is 300 MB — SimToDst jobs, average execution time of one job is
5400 s.

The characteristics specified in the enumeration of data processing stages are used to configure the

parameters of data flows and job flows. To analyze the workload of storage resources and computational

73

components when processing only experimental data with different number of free cores, as well as
when processing experimental and modeled data in parallel, we added the corresponding computational
experiments on DT.

In the first computational experiment, the required amount of data in the EOS storage is calculated
on the DT and the workload of computational resources is analyzed in the process of raw data processing,
I.e. during the execution of RawToDigit and DigitToDst jobs. In this case, RawToDigit jobs are executed
only on LIT Tierl resources, while DigitToDst jobs are executed on all available computational compo-
nents. Two configurations of computing equipment are considered:

a. Online farm — 0 cores, NICA LHEP — 250 cores, Tierl LIT — 750 cores, Tier2 LIT —
500 cores, Govorun — 200 cores;

b. Online farm — 1 000 cores, NICA LHEP — 1 000 cores, Tierl LIT — 750 cores, Tier2
LIT —500 cores, Govorun — 200 cores.

The second computational experiment on DT is devoted to search for the required amount of data
in EOS storage and analyze the workload of computational resources. But in this case both the process
of experimental data processing (execution of RawToDigit and DigitToDst jobs), and the process of
model data processing (execution of GenToSim u SimToDst jobs) are considered. Similar to the first
computational experiment, RawToDigit jobs are executed only on Tierl LIT resources, while Digit-
ToDst jobs are executed on all available computational components. GenToSim and SimToDst jobs are
executed only on Online farm and NICA LHEP resources. In this case, only the basic configuration of
equipment is used, which is set at the stage of building infrastructure before the creation of the DT
(Online farm — 1 000 cores, NICA LHEP — 1 000 cores, Tierl LIT — 750 cores, Tier2 LIT —
500 cores, Govorun — 200 cores).

The DTs for both computational experiments are run simultaneously. After 20 hours, all results
are obtained. Let us consider the results in more detail on the images that are exported from the web
service.

The results of the first computational experiment show that with the hardware configuration shown
in Figure 44, all experimental data will be fully processed in about 432 hours (see Fig. 45), which is
18 days. At the same time, the RawToDigit jobs will be completed in 60 hours (see Fig. 46). The graph
of completed DigitToDst jobs is shown in Figure 47. The graphs in Figures 48-51 represent the full using
of computing components. The amount of data in the EOS storage at the end of experimental data pro-
cessing is 460 TB (see Fig. 52).

74

NICA LHEP

250
cores

Tier2 LIT

’ 500

200
cores

Figure 44. Configuration diagram (a) of the first computational experiment on the DT

Completed jobs (%)
100 4 e i et o ' e

80

401

20_:_. '”..

Percentage of the total number of jobs

- RawToDigit
- DigitToDst

0 100 200 300 200
Time (h]

Figure 45. Number of experimental data processing jobs completed on computational resources

75

Completed RawToDigit jobs on computing components

25000 4 il Lo Coii i i ks i
L
!
20000 i
[}
i]
L=f 1
= 15000 4 r
g {
g l.
= 100004+
]
[}
5000 '
" Tierl LIT
- - Tatal
0 T T T -
0 100 200 300 400
Tima (h)

Figure 46. Number of RawToDigit jobs completed on
computational resources

Occupied cores on the NICA LHEP

2504

2004

150

Mumber of cores

100

50

0 100 200 300 400
Time (h)

Figure 48. Usage of resources of the NICA LHEP com-

puting component

Occupied cores on the Tier2 LIT

500 4

400 4

Mumber of cores
w
=]
[=]

[
(=]
<

100 1

0 100 200 300 400
Time (h}

Figure 50. Usage of resources of the Tier2 LIT compu-

ting component

Completed DigitToDst jobs on computing components

oo MICA LHEP .-
23000 Tierl LT | | -
—-- Tier2 LIT _,'
- Gouerm J*
200004 - . Toeal v
wn Ed
o
k= "
5 15000 t -
T ¥
=
£ 4
=)
= 10000 - 5
5000 | of T
il v i .
0 200 300 400

Time [h)

Figure 47. Number of DigitToDst jobs completed on

computational resources

Occupied cores on the Tierl LIT

700 1
600
& 500 1
(=]
-
S 400 -
@
=
&
3 3001
200
L N RawToDigit
100 : i DigitTDst
i Total
0 % T i r
1] 100 200 300 400
Time (h)

Figure 49. Usage of resources of the Tierl LIT compu-

ting component

Occupied cores on the Govorun

Number of cores
= =
ur - [N
[=] (5] (=1 (.1
! '

m
w

(=]

0 100 200 300 400
Time (h)

Figure 51. Usage of resources of the Govorun compu-

ting component

76

Data volume on the EOS

300 1

200 4

Data valume (TR}

100 - | Rev:' data
Digit data
—-- Dst data

[e L

0 100 200 300 400
Time {h}

Figure 52. Data volume in the EOS repository after experimental data processing

The results of the DT with the updated hardware configuration (see Fig. 53) showed that all ex-
perimental data will be fully processed in about 240 hours (see Fig. 54), which is 10 days. At the same
time, the RawToDigit will be completed in 28 hours (see Fig. 55). The graph of completed DigitToDst
jobs is shown in Figure 56. The graphs in Figures 57-61 represent the full using of computing compo-
nents. It should be noted that this configuration allows processing experimental data almost 2 times

faster. The increase in the number of computing resources does not affect the accumulated amount of
data in EOS storage.

Online farm NICA LHEP
1 000 1 000
cores cores

-~
7
S
=
=
20
(=]

Tier2 LIT

500
cores

Govorun

200
cores

Figure 53. Configuration diagram (b) of the first computational experiment on the DT

Completed jobs (%)

100
i
=
=
% B0
b
o
E
2
= 0
B
o
=
‘B 40
o
o
m
E ;
D 20 :
5 :
----- RawToDigit
. DigitToDst
0 T T T T
0 50 100 150 200
Time (h)

Figure 54. Number of experimental data processing jobs completed on computational resources

Completed RawToDigit jobs on computing components

s | i e et Rt it Ctalid
I
|
20000 4
y
[
2 [}
5 15000 +—
- i
b !
b i
E i
= 10000 l'
i
5000 1+
] Tierl LIT
J -+ Total
0 : - ' T
4] 50 100 150 200
Time (h)

Figure 55. Number of RawToDigit jobs completed on

computational resources

Occupied cores on the Online farm

1000 4 v

R b

800 1

GO0

Number of cores

400 4

200

o 50 100 150 200
Time (h)

Figure 57. Usage of resources of the Online farm com-

puting component

Completed DigitToDst jobs on computing components

<o NICA LHEP =
25000 Tierl LIT -]
—-= Tier2 UT J
-+ Govon ’
20000 4 Online farm .
=« Total #
wn
o
k=1 2%
= 15000 I
E -
=]
2)
=)
Z 10000 -7
i
5000 - o
0 £ T T T T 7
0 50 100 150 200

Time [h)

Figure 56. Number of DigitToDst jobs completed on
computational resources

Occupied cores on the NICA LHEP

1000 4

800 4

600 4

Number of cores

400 1

200 5

0 50 100 150 200
Time (h)

Figure 58. Usage of resources of the NICA LHEP com-

puting component

78

Occupied cores on the Tierl LIT Occupied cores on the Tier2 LIT
500
700 1os
600 A 400
§ 500+ H
8 S 300
é 400 ?
& 2
£ 3
3 300 = 200
200
i | [RawToDigit 3007
100 1 : DigitToDst
Total
o ey - . . 0 . : : :
1] 50 100 150 200 0 50 100 150 200
Time (h) Time (h}
Figure 59. Usage of resources of the Tierl LIT compu- Figure 60. Usage of resources of the Tier2 LIT compu-
ting component ting component

Occupied cores on the Govorun

200

Number of cores
[l - - [
u) o Lt] w d
(=] w (=] w (=1 un
; f

ra
i

0

0 50 100 150 200
Time (h)

Figure 61. Usage of resources of the Govorun computing component

The results of the second computational experiment on DT to process all types of data on the
computing infrastructure shown in Figure 62 showed that the experimental data would be fully processed
in approximately 367 hours (15 days) and the modeled data in 130 hours (6 days) (see Fig. 63). The
process of executing RawToDigit jobs is similar to the same process in the first computational experi-
ment with configuration (b). The execution graphs of DigitToDst, GenToSim and SimToDst jobs are
shown in Figures 64-66, respectively. The graphs in Figures 67-71 show the full usage of the computa-
tional components. It is worth noting that although the experimental data takes slightly longer to process
compared to configuration (b) of the first computational experiment, it takes only 6 days to process the
modeled data. The amount of data in the EOS storage at the end of the processing of experimental and
modeled data is 500 TB (see Fig. 72).

79

Online farm NICA LHEP
1 000 1000
Cores cores

Tiert LIT

GenToSim
SimToDst

750
. cores

Tier2 LIT

500
cores

Govorun

200
cores

Figure 62. Configuration diagram of the second computational experiment on the DT

Completed jobs (%)

00— sy
: /
5 and i r‘f
2 F
E .
2 :]
K5 601+ 7
2 i /
2 /
2 ool i
o i
g 4 .
= 1 . Py
@ & r ===+ RawToDigit
A e | ' ' ' DigitToDst
H A —-- GenToSim
L -+ SimToDst
0 - :
0 50 100 150 200 250 300 350

Time (h)

Figure 63. Number of experimental data and modeled data processing jobs completed on computational resources

Completed DigitToDst jobs on computing components

ESUUU_.-"" NICA LHEP { 1 + - ‘l i
- Tlerl uT P
== TierZ LIT .
- Govorun 2@
20000_ pm—: TDtal] 1 il I’ i
un | *
-=
1o -
% 150004 TE
E +
E .
= L
2 10000 | : - 4
’:. | oo Iﬂ_'"_,r-n.-n
5000 1 1 = 1 — "_.‘.,...ur!.‘f.
Jum= gt
. et
3 i
L T | .
DRI T T T - : T
0 50 100 150 200 250 300 350
Time (h}

Figure 64. Number of DigitToDst jobs completed on computational resources

Completed GenToSim jobs on computing components

60000 1+ NICALHEP — === e e
Online farm "
= Total
50000 s
I
40000 | =
i=h #
G 7y
T 30000 1 -
E g
™
= i
20000 1 -
;
10000 { +
[o } } ! } } ! }
o 50 100 150 200 250 360 350

Time (h)
Figure 65. Number of GenToSim jobs completed on

computational resources

Occupied cores on the Online farm

1000
800
w
o
5 600
5
5 S SY——— =
= |
E i 4
2 400 |
1
!
2004 = GenToSim
I . SimToDet
1 Total
0 : by . : . -
0 50 100 150 200 250 300 350
Time (h}

Figure 67. Usage of resources of the Online farm com-

puting component

Occupied cores on the Tierl LIT

700 4
600 1
% 500
g
w
S 400
i
a
£
E 300
200
S RawToDigit
100: DigitToDst
1 Total
0 s T T T T T .
0 50 100 150 200 250 300 350
Time (h)

Figure 69. Usage of resources of the Tierl LIT compu-

ting component

Completed SimToDsk jobs on computing components

60000 § +oee NICA LHEP — ===~ EREE T e
Online farm 5

-+ Total
50000 4 ¥

1 40000 4

L
=1
=
(=]
=3

Number of johs

20000

100001

0 50 100 150 200 250 300 350
Time {(hi

Figure 66. Number of SimToDst jobs completed on

computational resources

Occupied cores on the NICA LHEP

1000 4
800
n
=
o 600
5
b
£
5 400
_';""""”"""""'“""‘i DigitTaDst
2001 j —- GenlosSim
i - SimToDst
H Total
1] U T L T r v + =
0 50 100 150 200 250 300 350
Time (h)

Figure 68. Usage of resources of the NICA LHEP com-

puting component

Occupied cores on the Tier2 LIT

500 -

400 4

[
=
(=]

Mumber of coras

[
(=]
(=]

100 1

- + T T T T
L] 50 100 150 200 250 300 350
Time (h}

Figure 70. Usage of resources of the Tier2 LIT compu-

ting component

81

Occupied cores on the Goverun

200 4

175

150

Number of cores
= =
w - = N
o v)]

[
w

=]

0 50 100 150 200 250 300 350
Time (h}

Figure 71. Usage of resources of the Govorun computing component

Data volume on the EOS

S00 7 e Raw data —'——.‘_,_’__,_,_,—-——
Digit clata
—-= Dst data
400 -4+ - Generation data
Gimulation data T L
& - - Dst (model) data
b — Total
w 3004
E
=3
=]
E
2 200
a
1004
T R eemican o MR WY
[¢] 50 100 150 E{IJD 250 300 350

Figure 72. Data volume in the EOS storage after processing of experimental and modeled data

Table 2 summarizes the results of the computational experiments performed on the DT for easier
comparison. The construction of the DT was performed to select the hardware configuration that will
ensure data storage and processing with regard to the planned parameters of data flows of future BM@N
experiment sessions. The most preferred selection criterion is the processing time of all data, which
should be the shortest possible.

Based on the DT results, it is concluded that the best equipment configuration is the one that will
allow for the least amount of time to process all experimental (367 hours) and modeled data (130 hours)
using all available resources. The configuration should include the following components: Online
farm — 1 000 cores, NICA LHEP — 1 000 cores, Tierl LIT — 750 cores, Tier2 LIT —500 cores, Go-
vorun — 200 cores, EOS — at least 500 TB. It is reasonable to run RawToDigit jobs only on Tierl LIT
resources, DigitToDst jobs — on all available computational components, GenToSim and SimToDst
jobs — only on Online farm and NICA LHEP. The selected alternative, taking into account the full use
of available resources, will provide a 2 times speed up of the raw data conversion process. The pro-
posed tactics of managing the jobs flow with different types when distributing them to computing

resources will allow to process not only experimental but also model data in the same time (3 weeks

82

after the end of the experiment). Therefore, more efficient resource usage is achieved, robust scaling
scenarios are selected and data flows and job flows are managed.

Table 2. Comparison of the DT results under different equipment configurations of the BM@N experiment computing in-

frastructure

Configurations of the first com- Configurations of the sec-

putational experiment ond computational experi-
a b ment

Convert all raw data to digit format 60 hours 28 hours 28 hours
(RawToDigit jobs) (2,5 days) (1 day) (1 day)

Time for complete processing of 432 hours 240 hours 367 hours
all experimental data (18 days) (10 mueit) (15 days)

Time for complete processing of 130 hours
all model data - - (6 days)

In the considered example of the special software application for the creating of the DT of the
computing infrastructure of the BM@N experiment of the NICA complex, the problem of searching for
the equipment configuration for the system of data acquisition, storage and processing has been solved.
The importance of the conducted research is confirmed by the letter of application of the results in the
BM@N experiment (Appendix 4). The results of the work are of particular practical importance, as they
allowed us to estimate the required amount of resources for data storage and processing taking into
account the planned parameters of data flows of future sessions of the BM@N experiment. It was found
how much time will be required to process experimental and model data at the end of the experiment
session. The obtained results helped to make the right decision in the process of job flow management
and more correctly distribute the load on computational resources. The total operation time of the DT
for all computational experiments (from the moment of runing to the results) was 20 hours, which not
only meets the specified requirements, but also allows to test a large number of options for modernization
of the DDC in a short time. This, of course, contributes to more rapid decision-making on the develop-

ment of infrastructure, on which new achievements of scientists directly depend.

4.3. Application of the special software to create the digital twin of the computing

system of the online data filter of the SPD experiment of the NICA complex

The NICA complex has components that are under construction, such as the SPD detector. The
SPD experiment is designed to study the proton-deuteron spin structure and other spin phenomena with

polarized proton and deuteron beams at collision energies up to 27 GeV and luminosities up to

83

1032 cm2s? [78]. According to the technical documentation, the new facility will receive data at a rate
of 20 GB/sec, which corresponds to 200 PB/year [79]. Designing a large-scale system for storing and
processing such a huge amount of experimental data requires special attention. In this regard, it was
proposed to use the developed special software to create a DT of the SPD experiment computing infra-
structure in order to test subsystems, in particular the online data filter, with different variants of hard-
ware parameters, data flows, and job flows.

The main goal of the online data filter is to quickly reconstruct events arising from particle colli-
sions and suppress background events by a factor of at least 20 in real time. Given that the data arrival
rate is planned to be 20 GB/sec, fast reconstruction and filtering of SPD detector data cannot be per-
formed on a single computational node (processor or core). This means that the online filter computing
system should be a specialized high-performance cluster including several data storage systems (for
receiving detector data and for intermediate storage of filtered data before transferring them to long-term
storage) and a large number of identical data processing worker nodes [79].

The online filter will work as follows. Unprocessed raw data of the detector at a rate of 20 GB/sec
will be received into the data reception buffer, where the recording of experimental data into raw files is
planned. The size of an individual raw file is 4 GB. The background event suppression process, which
is performed on some set of computing resources in real time at a rate of 1 000 events/sec, includes three
processing steps: decoding, partial reconstruction, and data filtering. Each stage generates the resulting
files: dec, prec and filtered, respectively, which are written to intermediate data storage resources. The
size of a separate dec-file is 4 GB, prec-file — 8 GB, filtered-file — 450 MB [79].

Thus, in order to ensure fast reconstruction of events and real-time data filtering, it is necessary to
design an efficient computing system, providing opportunities for its further development and optimiza-
tion. Let us consider the results of using the developed special software to create a DT of system of data
acquisition, storage and processing for online filtering of SPD experiment.

The first application of the program complex for creation of the online filtering computer system
DT is caused by the necessity to calculate the required parameters of the equipment for data storage and
processing, as well as to estimate the load of the data transmission network. In the example under con-
sideration, the task of creating a DT for acquisition and filtering the data of the experiment, which will
operate for 24 hours with the following periodicity: 1 hour of work and 3 hours of break. An additional
requirement is put forward to the time of raw-file processing: all three stages until the filtered file is
received should last no more than 10 minutes. Files in data storage systems are not deleted.

Figure 73 shows an element of the special software web-interface, which allows describing the

infrastructure of the considered computing system and the parameters of the equipment included in it.

84

The infrastructure includes such objects as a data generator (Trigger), a computing component (Compu-
ting), and two data storages (Buffer and Intermediate). Data flows and job flows were configured in

accordance with the presented description of the online filter operation process.

MNocTpoeHue UHGpaCTPYKTYpHl
ueHTpa cbopa, xpaHeHuA U 06paboTKU AaHHbLIX

Pepaxruposars uw IQPICTPYKTYPY

, < Hocrpoure HocTponre Hactpouve
£ x
| ~ - Kananu CERIn NOTONM QarHuX NOTOKK 33484

Trigger Buffer Computing Intermediate

= & 8 &

!

0

(7 o]

Figure 73. Computational system for online data filtering of SPD experiment

After building the infrastructure, we can proceed to the creation of the DT, for the start of which
it is necessary to configure some parameters: set the duration of operation of the computing system, add
probabilistic events that can occur in the system, as well as specify objects and events for logging. It is
important to note that with the specified duration of the experiment (24 hours) there is a limitation on
the time of active data acquisition (1 hour of work and 3 hours of break), in this regard, the efficiency of
data generation (20%) is specified in the DT settings.

The final results of the DT were obtained 40 minutes after its run. Let us consider the results in
more detail on the images exported from the web service.

At a generation rate of 20%, the SPD facility will produce approximately 400 TB of experimental
data in 24 hours (see Fig. 74). Processing all raw files in real time will require approximately 1 400
compute nodes (see Fig. 75), 120 of which will be dedicated to decoding the experimental data (Raw-
ToDec), 430 to partially reconstructing the decoded data (DecToPrec), and 850 to directly filtering the
reconstructed data (PrecToFilt). The required data volume for the intermediate storage, where the re-
sulting files of the three processing steps are located, is approximately 1 250 TB (see Fig. 76). In this
case, 400 TB will occupy decoded data (Dec), 800 TB — partial reconstruction data (Prec) and 50 TB —

filtered data (Filt). The load of communication links during data transmission is shown in Figures 77-

85

79. We conclude that a communication link with a bandwidth of at least 50 Gbps should be provided

between the SPD facility and the data reception buffer (see Fig. 77), between the data reception buffer

and computing resources — 40 Gbps (see Fig. 78), between computing resources and intermediate data
storage — 250 Ghbps (see Fig. 79).

Data volume (TB)

Total data volume on the Buffer

400 -

350 4

Data volume (TB)

- ~N N w
w (=3 o £=3
© S =) S

=
o
o

w
o

o

10 15 20 25
Time (h)

o
w

Figure 74. Amount of accumulated experimental data
for 24 hours

Data volume on the Storage for intermediate data

----- Dec data
1200 Prec data
== Filt data
10004 © - Total
800
600
400 -
200 4 -
PRp IR ot RSy T T D e s -
o 5 10 15 20 2%

Time (h)
Figure 76. VVolume of resulting data in intermediate

storage

Load of link between
the Buffer and the Computing resources

Load (Gbit/sec)
- — ~N N w w £
s © & v & & =B

w

0 5 10 15 20 25
Time (h)

Figure 78. Loading of the data link between the data re-

ception buffer and computing resources

Occupied cores on the Computing resources

D i e T8 ——

RawToDec
DecToPrec
== PrecToFilt

800

Occupied slots

0 5 10 15 20 25
Time (h)
Figure 75. Using computational resources to process

data to suppress background events

Load of link between
the Trigger and the Buffer

200 1

-
v
o

Load (Gbit/sec)
-
o
o

50

0 5 10 15 20 25
Time (h)

Figure 77. Loading the data link between the SPD facil-

ity and the data receive buffer

Load of link between
the Computing resources and the Storage for intermediate data

WMFMWWNM

250 1

200 A

150

Load (Gbit/sec)

50 1

0 S 1'0 1'5 2'0 2'5
Time (h)

Figure 79. Loading of the data link between computing

resources and intermediate data storage

86

The following conclusions are drawn from the results of the work performed. Taking into account
20% of data generation efficiency, 400 TB of data will be generated during 24 hours of the experiment
operation, the processing of which requires at least 1 500 computational nodes to ensure fast reconstruc-
tion of events and real-time data filtering, provided that the bandwidth of communication channels is
provided at the level of 50 Gbps. The intermediate storage uses 1 250 TB to temporarily store the filtered
data before transferring it to the long-term storage. The data transfer rate from computing resources to
intermediate storage is 250 Gbps.

The results of the application of special software to the create of the DT of the online data filtering
system of the SPD experiment of the NICA complex proved the possibility of using the development to
solve the problem of designing the DDC. The high practical significance of the conducted work is con-
firmed by the letter of application of the research results in the SPD experiment (Appendix 4). The results
of the research allowed us to estimate the required parameters of the equipment for storage, processing
and transmission of online filter data, taking into account the planned characteristics of the SPD exper-
iment data flows. The operation time of the DT (from the moment of startup to obtaining the results)
amounted to 40 minutes, which not only meets the specified requirements, but also will allow testing the
online filter computing system with different variants of equipment parameters, data flows and job flows
in a short time. This will undoubtedly ensure quality development and support of the computing infra-
structure. All of the above confirms that the obtained results allow scaling and transformation of the

system for different tasks and requirements.

4.4. Conclusions to Chapter 4

The verification and experimental operation of the special software are performed. The adequacy
of the developed DT models of the data acquisition, storage and processing center of the BM@N exper-
iment of the NICA complex is experimentally confirmed by the verification. The computing infrastruc-
ture was used to receive, store and process data from the latest session of the experiment, which took
place from December 2022 to February 2023. The verification results prove the correct operation of the
simulation program. The adequacy is assessed by several indicators. The obtained values proved that the
deviations of the DT results from the results of real DDC will not be more than three standard devia-
tions of the statistical monitoring data.

The reliability of the recommendations and conclusions based on the results of the research is
confirmed by the practice of using the developed methods in the design and development of computing

infrastructures for large-scale experiments in the field of high-energy physics.

87

The experimental operation of the special software is performed using examples of creating a dig-
ital twin for the computing infrastructure of the BM@N experiment and a digital twin for the computing
system of the online data filter of the SPD experiment of the NICA complex. The applicability of the
special software and the possibility of using the DT for the design, improvement of the operation effi-
ciency, quality and reliability of complex data acquisition, storage and processing systems are shown.

DTs are successfully created with the help of the developed special software. The characteristics
of the equipment necessary for storing, processing and transferring data, taking into account the planned
parameters of data flows of future sessions of the NICA complex experiments, are found on the basis of
the DT results. The main criterion is the minimization of the data processing time. The obtained results
provide a qualitative check of the DDC functioning, as well as help to make the right decision in the
process of managing job flows and more correctly distribute the load on computing resources. The sci-
entific justification of the choice of DDC configurations confirms the importance of the conducted re-
search. The application of the research results to solve the task of finding an equipment configuration
for the computing infrastructures of the BM@N and SPD experiments of the NICA complex at JINR is
confirmed by the corresponding letters of application (Appendix 4).

The time required to receive the DT results (from the moment of launch to the receipt of the re-
sults), which depends on the scale of the RDC and the processes occurring in it, does not exceed 24
hours. This is an additional advantage since it contributes to more prompt decision-making on the de-
velopment of the DDC.

The third provision to be defended is proved: “The adequacy of the constructed methods and al-

gorithms is confirmed using the example of the computational infrastructure of the existing experiment”.

88

Conclusion

A new method of creating and using DDC digital twins is developed in the PhD thesis in order to
improve DDC technical characteristics. The proposed method differs from existing ones in the ability to
simulate such processes as data storage and processing, taking into account the characteristics of data
flows and jobs, the probabilities of failures and changes in the equipment performance and other pro-
cesses occurring in the simulated system.

The main results of the PhD thesis are as follows.

1. The system connections and patterns of the functioning of complex systems, which are DDCs,
are investigated using the principles of a systematic approach and the methods of system analysis.

2. Methods for describing distributed systems, making decisions on the choice of equipment con-
figurations, and managing resources and processes of complex systems are developed.

3. Models, methods and algorithms for creating DDC digital twins are developed.

4. Algorithms, the DB structure and a web user interface are implemented for creating and execut-
ing a DT, as well as providing graphical information about the results of its work. Modern architectural
solutions and tools for developing software, web applications and DBs are used.

5. Special software is developed on the basis of the created models, methods and algorithms. The
software allows comparing the efficiency of the DDC operation depending on different hardware con-
figurations.

6. The certificate of state registration of the computer program No. 2023667305 “Software Com-
plex for Creating Digital Twins of Distributed Data Acquisition, Storage and Processing Centers” dated
14 August 2023 is received (Appendix 3).

7. The verification of the DT kernel is performed using the example of the computing infrastructure
of the BM@N experiment of the NICA accelerator complex. The adequacy is assessed by several indi-
cators. The resulting values prove that the deviations of the DT results from the results of real DDC will
not be more than three standard deviations of statistical monitoring data.

8. The experimental operation of the special software is performed during the creation of the DT
of the computing infrastructure of the BM@N experiment. The most suitable configuration of data pro-
cessing equipment in the shortest possible time is obtained. A strategy for managing job flows and dis-
tributing the load on computing resources is chosen. The chosen alternative will provide a speed-up by
2 times of the raw data conversion process. The proposed tactics for managing job flows will allow
processing not only experimental, but also model data at the same time.

9. The experimental operation of the special software is performed during the creation of the DT

of the online data filter system of the SPD experiment of the NICA complex. The results enable to

89

evaluate the required parameters of the equipment for storing, processing and transferring online filter
data, taking into account the planned characteristics of experimental data flows.

10. The time required to receive the DT results (from the moment of launch to the receipt of the
results) has been determined, taking into account the scale of the DDC and the processes taking place in
it, which does not exceed 24 hours. This is an additional advantage, as it facilitates faster decision-
making on the development of DDCs.

11. Recommendations on the results of the DT functioning are taken into account in the design
and development of computing infrastructures for large-scale experiments in the field of high-energy
physics. The results of the software application prove the efficiency and high quality of the models and
algorithms developed in the thesis, which is confirmed by the corresponding letters of application (Ap-
pendix 4).

12. The results of the research are used in the educational process of the Federal State Budgetary
Educational Institution of Higher Education “Dubna University” in the course “Distributed Computing
and Cloud Technologies” for the preparation of master’s students in the field of 27.04.03 System Anal-
ysis and Management in the profile “Digital Platforms and Big Data Analytics”, which is confirmed by
the corresponding act of implementation (Appendix 5).

The results of the PhD thesis are an important contribution to the development of scientific re-
search, which provides significant assistance in designing, creating, supporting, as well as solving man-
agement and development tasks of data acquisition, storage and processing centers for large scientific
projects. The developed method of creating DTs allows one to build a prototype of a computing infra-
structure, which helps to assess the efficiency of the DDC operation, contributes to prompt decision-
making on scaling a distributed system and changing the characteristics of its constituent equipment,
which leads to an increase in the quality and reliability of complex data acquisition, storage and pro-
cessing systems.

In the future, the developed software [80] can be used for a wide class of tasks in the field of
design, construction and development of DDCs for large scientific experiments and large-scale projects.

In the long-term development of this work, it is planned to improve the developed method and add
a multi-criteria optimization function in choosing an equipment configuration for a DDC. Not only the
technical, but also cost parameters of the equipment included in the DDC [81, 82] will have to be taken
into account as criteria. It is necessary to add a user’s personal account, and to ensure security, a module
for registration, i.e., provide access to the special software for creating DTs only after passing the au-

thorization procedure. It will allow enhancing the convenience of using the special software.

90
Glossary of terms

1. adequacy: Compliance of the model of a distributed data acquisition, storage and processing
center with a real system according to a certain list of characteristics.

2. verification: A procedure for checking a computer program for the correctness of the imple-
mentation of the task by evaluating the results of its work according to specified criteria; in this paper,
the results of the work of the distributed system modeling program are compared with the results of
monitoring this system.

3. computational experiment: An experiment on a digital twin of a distributed data acquisition,
storage and processing system to study its behavior under a certain scenario with specified parameters
of equipment, data flows and jobs flows.

4. special software: A set of programs that implements a method for solving specific tasks, namely
in this work: a new method for creating, including building, configuring, executing digital twins of dis-
tributed data acquisition, storage and processing centers, as well as demonstrating the results of its work.

5. kernel of the digital twin: a computer program that implements algorithms for modeling vari-
ous processes occurring in the system, in particular, a distributed data acquisition, storage and processing

center.

10.

11.

12.

91

References

Grieves M. Digital Twin: Manufacturing Excellence Through Virtual Factory Replication. Digital
Twin White Paper // ResearchGate. 2014. URL: https://www.researchgate.net/publication/
275211047 _Digital_Twin_Manufacturing_Excellence_through_Virtual_Factory Replication (date
of access: 15.03.2023).

Prokhorov A., Lysachev M. Digital twin. Analysis, trends, world experience. 1st ed. M.: LLC
“AlliancePrint”, 2020. 401 pp. (in Russian).

Kornilov V.V., Isaev V.A., Isaev K.A. Prospects of using data processing centers in solving
problems of mathematical biology and bioinformatics // Mathematical Biology and Bioinformatics.
February 2015. Vol. 10. No. 1. pp. 60-71 (in Russian).

Lyashenko M.A. Content of the data center development strategy // Internet journal “Naukovedenie”.
July — August 2015. Vol. 7. No. 4 (in Russian).

Business Ecosystems. Data Centers. Increase scalability, flexibility and business security // Business
Ecosystems. URL.: https://becsys.ru/uploads/files/solutions/technological-solutions/3/

Business_Ecosystems_Data_Centers.pdf (date of access: 15.03.2023) (in Russian).

The Digital Twin Company [Electronic resource] // Future Facilities: [caitir]. URL: https://

www.futurefacilities.com/ (date of access: 20.12.2022).

Sunbird Software, Inc. DCIM - Data Center Infrastructure Management Software System, Cable
Management, Infrastructure Design & Optimization Companies [Electronic resource] // Sunbird
DCIM: [caiit]. URL: https://www.sunbirddcim.com/ (date of access: 20.12.2022).

Petrov A.V. Simulation modeling as the basis of digital twin technology // Bulletin of Irkutsk State
Technical University. 2018. Vol. 22. No. 10. pp. 56-66 (in Russian).

Foster I., Kesselman C. The grid: blueprint for a new computing infrastructure. San Francisco (CA):
Morgan Kaufmann Publishers Inc., 1999. 593 pp.

CERN. Welcome to the Worldwide LHC Computing Grid [Electronic resource] // WLCG: [caiiT].
URL.: https://wlcg.web.cern.ch/ (date of access: 10.12.2022).

Berezhnaya A., Dolbilov A., llyin V., Korenkov V., Lazin Y., Lyalin 1., Mitsyn V., Ryabinkin E.,
Shmatov S., Strizh T., et al. LHC Grid Computing in Russia: presentand future // Journal of Physics:
Conference Series. 2014. Vol. 513. No. 6. P. 062041.

Kekelidze V., Kovalenko A., Lednicky R., Matveev V., Meshkov 1., Sorin A., Trubnikov G. Status

of the NICA project at JINR // European Physical Journal Web of Conferences. March 2017.
Vol. 138. P. 01027.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

92

Serebrov A.P., Vassiljev A.V., Varlamov V.E., Geltenbort P., Gridnev K.A., Dmitriev S.P., Dovator
N.A., Egorov A.l., Ezhov V., Zherebtsov O.M., et al. Program for studying fundamental interactions
at the PIK reactor facilities // Physics of Atomic Nuclei. June 2016. Vol. 79. No. 3. pp. 293-303.

Baranov G.N., Bogomyakov A.V., Levichev E.B., Sinyatkin S.V. Optimization of the magnetic
structure of the synchrotron radiation source of the fourth generation SKIF in Novosibirsk // Siberian
Physical Journal. 2020. Vol. 15. No. 1. C. 5-23 (in Russian).

Avrorin A.D., Avrorin A.V., Aynutdinov V.M., Bannash R., Belolaptikov I.A., Brudanin V.B.,
Budnev N.M., Doroshenko A.A., Domogatsky G.V., Dvornicky R., et al. Baikal-GVD: status and
prospects // European Physical Journal Web of Conferences. October 2018. VVol. 191. P. 01006.

Fengpeng A., et al. Neutrino physics with JUNO // Journal of Physics G: Nuclear and Particle
Physics. February 2016. Vol. 43. No. 3. P. 030401.

Priakhina D.I., Korenkov V.V. Relevance of creating a digital twin for managing distributed data
acquisition, storage and processing centers // Modern Information Technologies and IT-Education.
2023. Vol. 19. No. 2. pp. 262-271 (in Russian).

Nechaevskiy A.V., Korenkov V.V.. DataGrid modeling packages // System analysis in science and
education. 2009. No. 1. pp. 21-35 (in Russian).

Samovarov O.l., Kuzurin N.N., Grushin D.A., Avetisyan A.l., Mikhailov G.M., Rogov Y.P.
Problems of modeling GRID-systems and their implementation // Scientific service in the Internet:
solving big problems. Moscow. 2008. pp. 83-88 (in Russian).

Korenkov V.V., Nechaevskiy A.V., Ososkov G.A., Priakhina D.I., Trofimov V.V., Uzhinsky A.V.
Modeling of grid and cloud services as a means to improve the efficiency of their development //
CEUR Workshop Proceedings. 2014. Vol. 1297. pp. 13-19 (in Russian).

GridSim: A Grid Simulation Toolkit 5.2 [Electronic resource] // Soft 112: [caiit]. [2010]. URL:
https://gridsim-a-grid-simulation-toolkit.soft112.com/ (date of access: 10.10.2022).

The University of Edinburgh. APl Specification [Electronic resource] // SimJava v2.0: [caiir].
[2002]. URL.: https://www:.icsa.inf.ed.ac.uk/research/groups/hase/simjava/doc/index.html (date of
access: 23.12.2022).

Korenkov V.V., Nechaevskiy A.V., Ososkov G.A., Priakhina D.I., Trofimov V.V., Uzhinsky A.V.
Synthesis of modeling and monitoring processes for the development of systems for storage and
processing of large data arrays in physical experiments // Computer Research and Modeling. 2015.
Vol. 7. No. 3. pp. 691-698 (in Russian).

Kadochnikov 1., Korenkov V., Mitsyn V., Pelevanyuk 1., Strizh T. Service monitoring system for
JINR Tier-1 // The European Physical Journal Conferences. Sep 2019. Vol. 214. P. 08016.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

93

Korenkov V.V., Nechaevskiy A.V., Ososkov G.A., Priakhina D.l., Trofimov V.V., Uzhinsky A.V.
Modeling of grid and cloud services as an important stage of their development // Systems and Means

of Informatics // Systems and Means of Informatics. 2015. Vol. 25. No. 1. pp. 4-19 (in Russian).
Nechaevskiy A.V., Priakhina D.l., Uzhinsky A.V. Development of web-service for modeling of

systems of storage and processing of physical experiments data // System Analysis in Science and
Education. 2015. No. 4. pp. 1-7 (in Russian).

Korenkov V., Nechaevskiy A., Ososkov G., Pryahina D., Trofimov V., Uzhinskiy A., Balashov N.
Web-Service Development of the Grid-Cloud Simulation Tools // Procedia Computer Science. 2015.
Vol. 66. pp. 533-539.

Korenkov V., Nechaevskiy A., Ososkov G., Pryahina D., Trofimov V., Uzhinskiy A. Simulation
concept of NICA-MPD-SPD TierO-Tierl computing facilities // Particles and Nuclei Letters. 2016.
Vol. 13. No. 5. pp. 1074-1083.

Kutovsky N.A., Nechaevsky A.V., Ososkov G.A., Priakhina D.l., Trofimov V.V.. Modeling of
interprocessor interaction when executing MPI-applications in the cloud // Computer Research and
Modeling. 2017. Vol. 9. No. 6. pp. 955-963 (in Russian).

Nechaevskiy A., Ososkov G., Pryahina D., Trofimov V., Li W. Simulation approach for improving
the computing network topology and performance of the China IHEP Data Center // European
Physical Journal Web of Conferences. 2019. Vol. 214. P. 08018.

Grieves M., Vickers J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in
Complex Systems // In: Transdisciplinary Perspectives on Complex Systems: New Findings and
Approaches. Springer, Cham, 2017. pp. 85-113.

Barricelli B.R., Casiraghi E., Fogli D. Definitions, Characteristics, Applications, and Design
Implications // IEEE Access. November 2019. Vol. 7. pp. 167653-167671.

Denisov A.S., Kuverin I.Yu. Digital twins as the basis of digital transformation of technical operation
of vehicles within the fourth technological revolution // Technical regulation in transport
construction. 2020. Vol. 3. No. 42. pp. 165-168 (in Russian).

Yang J., Zhang W., Liu Y. Subcycle fatigue crack growth mechanism investigation for aluminum
alloys and steel // 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference. Boston. 2013. P. 1499.

Shalumov A.S., Shalumova N.A., Shalumov M.A. Digital twin of avionics: modeling of physical
processes during the formation of electronic model // Automation. Modern Technologies, Vol. 75,
No. 9, 2021. pp. 403-415 (in Russian).

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

94

Filatov A.R. Digital twin of the ship hull. Purpose and Basic Principles of Construction //
Proceedings of the Krylov State Research Center. 2021. Vol. 4. No. 398. pp. 87-92 (in Russian).

Shevchenko D.V. Methodology of building digital twins on the railway transport // Bulletin of the
Railway Transport Research Institute. 2021. Vol. 80. No. 2. pp. 91-99 (in Russian).

Bykova V.N., Kim E., Gadzhialiev M.R., Musienko V.O., Orudzhev A.O., Turovskaya E.A.
Application of digital twin in the oil and gas industry // Actual Problems of Oil and Gas. 2020.
Vol. 28. No. 1. pp. 8 (in Russian).

Tikhonov A.l., Stulov A.V., Karzhevin A.A., Podobnyi A.V. Development of a nonlinear model of
a three-phase transformer for investigation of the influence of the magnetic system asymmetry on
the device operation in arbitrary modes // Bulletin of Ivanovo State Power Engineering University.
2020. No. 1. pp. 22-31 (in Russian).

Abramov V.I., Stolyarov A.D. Digital twins in agriculture: opportunities and prospects // AIC of
Russia: education, science, production. Collection of articles of the Il All-Russian (national)

scientific-practical conference. Penza. 2021. pp. 3-9 (in Russian).

Bruynseels K., Santoni de Sio F., Hoven J. Digital Twins in Health Care: Ethical Implications of an

Emerging Engineering Paradigm // Frontiers in genetics. February 2018. Vol. 9. No. 31.

Menshutina N.V. Multilevel modeling of aerogels and their production // Supercritical Fluids,

Fundamentals, Technologies, Innovations. Sochi. 2017. pp. 124-126 (in Russian).

Lehtola V.V., Koeva M., Elberink S.O., Raposo P., Virtanen J.P., Vahdatikhaki F., Borsci S. Digital
twin of a city: Review of technology serving city needs // International Journal of Applied Earth
Observation and Geoinformation. 2022. Vol. 114. P. 102915.

Ivanov S.A., Nikolskaya K.Yu., Radchenko G.l., Sokolinsky L.B., Tsymbler M.L. Concept of
building a digital twin of the city // Bulletin of SUSU. Series: Computational Mathematics and
Informatics. 2020. Vol. 9. No. 4. pp. 5-23 (in Russian).

Amirkhanyan A.G. Digital twins in logistics // Modern science. 2020. No 1-2. pp. 37-40 (in
Russian).

Rosen R., Von Wichert G., Bettenhausen K.D. About the importance of autonomy and digital twins
for the future of manufacturing // IFAC-PapersOnLine. 2015. Vol. 48. No. 3. pp. 567-572.

Polyniak K., Matthews J. The Johns Hopkins Hospital Launches Capacity Command Center to
Enhance Hospital Operations // John Hopkins Medicine. 2016. URL: https://
www.hopkinsmedicine.org/news/media/releases/

the_johns_hopkins_hospital_launches_capacity command_center_to_enhance_hospital_operations
(date of access: 18.12.2022).

48.

49,

50.

51.

52.

53.

54.

55.

56.

S7.

58.

59.

60.

61.
62.

95

Nemati K., Zabalegui A., Bana M., Seymour M.J. Quantifying data center performance // 34th
Thermal Measurement, Modeling & Management Symposium. 2018. pp. 141-147.

Batty M. Digital twins. Environment and Planning B // Urban Analytics and City Science. 2018.
Vol. 5. No. 45. pp. 817-820.

Boschert S., Rosen R. Digital Twin — The Simulation Aspect // In: Mechatronic Futures. Springer,
Cham, 2016. pp. 59-74.

Cimino C., Negri E., Fumagalli L. Review of digital twin applications in manufacturing // Computers
in Industry. December 2019. Vol. 113. P. 103130.

Halenar 1. 20th International Carpathian Control Conference // Virtualization of Production Using
Digital Twin Technology. Krakow-Wieliczka, Poland. 2019. pp. 1-5.

Khitrykh D.P. Digital twins: past, present and future / CADFEM REVIEW - Scientific and
Technical Journal from the company CADFEM. 2021. Vol. 8. No. 31. pp. 30-32 (in Russian).
Korenkov V., Nechaevskiy A., Ososkov G., Priakhina D., Trofimov V. A probabilistic approach of
the simulation of data processing centers // European Physical Journal Web of Conferences. January
2020. Vol. 226. P. 03012.

Romanov V.N. Fundamentals of system analysis / educational and methodical complex. St.
Petersburg: NWTU, 2011. 298 pp. (in Russian).

Priakhina D.I., Korenkov V.V., Trofimov V.V. Method for creating digital twins to solve the tasks
of effective management and development of distributed data acquisition, storage and processing
centers // Modern Information Technologies and IT-Education. 2023. Vol. 19. No. 2. pp. 272-281
(in Russian).

Ramalho L. Fluent Python: Clear, Concise, and Effective Programming. 1st ed. O'Reilly Media,
2015.

Rubio D. Beginning Django: Web Application Development and Deployment with Python. Mexico:
Ensenada, 2017.

Dronov V.A. Django 2.1. Practice of creating websites in Python. St. Petersburg: BHV-Peterburg,
2019 (in Russian).

Novikov B.A. Fundamentals of database technologies: textbook. 2nd ed. Moscow: DMK Press, 2020
(in Russian).

Fiihrer C., Solem J.E., Verdier O. Scientific Computing with Python. 2nd ed. Packt Publishing, 2021.
Argparse Tutorial [Electronic resource] // Python 3.12.1 documentation: [caiiT]. URL: https://
docs.python.org/3/howto/argparse.html (date of access: 17.07.2021).

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

96

configparser — Configuration file parser [Electronic resource] // Python 3.12.1 documentation:
[website]. URL.: https://docs.python.org/3/library/configparser.html (date of access: 17.07.2021).

Graph theory (network) library for visualisation and analysis [Electronic resource] // Cytoscape.js:
[website]. URL.: https://js.cytoscape.org/ (date of access: 20.05.2022).

Dabbas E. Interactive dashboards and applications with PLOTLY and DASH. DMK Press, 2023 (in

Russian).

Django documentation [Electronic resource] // Django: [caiit]. URL: https:/

docs.djangoproject.com/en/5.0/ (date of access: 17.05.2022).

Priakhina D.l., Korenkov V.V., Trofimov V.V., Gertsenberger K.V. Verification of the simulation
program for creating digital twins of distributed data acquisition, storage and processing centers //
International Journal of Open Information Technologies. January 2024. Vol. 12. No. 1. pp. 118-128
(in Russian).

Kapishin M., BM@N Collaboration. Studies of baryonic matter at the BM@N experiment (JINR) //
Nuclear Physics A. 2019. Vol. 982. P. 967.

JINR. NICA Bulletin // LABORATORY OF HIGH ENERGY PHYSICS - named after V.l.Vexler
and A.M.Baldin. 2023. URL: https://Ihep.jinr.ru/wp-content/uploads/2023/03/nica_vypusk9.pdf
(date of access: 20.04.2023).

Baginyan A., Balandin A., Balashov N., Dolbilov A., Gavrish A., Golunov A., Gromova N.,
Kashunin 1., Korenkov V., Kutovskiy N., et al. Current status of the MICC: an overview // CEUR
Workshop Proceeding. 2021. Vol. 3041. pp. 1-8.

Adam G., Bashashin M., Belyakov D., Kirakosyan M., Matveev M., Podgainy D., Sapozhnikova T.,
Streltsova O., Torosyan S., Vala M., et al. IT ecosystem of the HybriLIT heterogeneous platform for
high performance computing and training of IT specialists / CEUR Workshop Proceeding. 2018.
Vol. 2267. pp. 638-644.

Korenkov V., Pelevanyuk I., Tsaregorodtsev A. DIRAC at JINR as a general purpose system for
massive computations // Journal of Physics: Conference Series. 2023. Vol. 2438. P. 012029.
Pelevanyuk 1. Performance evaluation of computing resources with DIRAC interware // AIP

Conference Proceedings. September 2021. Vol. 2377. No. 1. P. 040006.

Gertsenberger K., Pelevanyuk 1. BM@N Mass Data Production on distributed infrastructure for Run
8 using DIRAC, 10th Collaboration Meeting of the BM@N Experiment at the NICA Facility , St.
Petersburg, Presentation 2023.

Priakhina D., Trofimov V., Ososkov G., Gertsenberger K. Data center simulation for the BM@N
experiment of the NICA project // AIP Conference Proceeding. 2021. Vol. 2377. P. 040007.

76.

77.

78.

79.

80.

81.

82.

97

Priakhina D., Korenkov V., Gertsenberger K., Trofimov V. Simulation of Data Processing for the
BM@N Experiment of the NICA Complex // CEUR Workshop Proceedings. 2021. Vol. 3041. pp.
483-487.

Priakhina D., Korenkov V., Trofimov V., Gertsenberger K. Simulation Results of BM@N
Computing Infrastructure // Physics of Particles and Nuclei Letters. 2023. VVol. 20. No. 5. pp. 1272—
1275.

The SPD proto-collaboration. Conceptual design of the Spin Physics Detector // International spin
physics collaboration at the collider NICA. 2021. URL.: http://spd.jinr.ru/wp-content/uploads/2021/
04/2102.00442.pdf (date of access: 25.09.2023).

The SPD collaboration. Technical Design Report of the Spin Physics Detector // International spin
physics collaboration at the collider NICA. 2022. URL.: http://spd.jinr.ru/wp-content/uploads/2023/
03/TechnicalDesignReport SPD2023.pdf (date of access: 25.09.2023).

Korenkov V.V., Priakhina D.I., Trofimov V.V. Software Complex for Creating Digital Twins of
Distributed Data Acquisition, Storage and Processing Centers, The certificate of state registration of
the computer program No. 2023667305, August 14, 2023 (in Russian).

Trofimov V.V., Nechaevskiy A.V., Ososkov G.A., Priakhina D.l. Probability-cost approach to opti-
mizing distributed data storage systems for physical experiments // CEUR Workshop Proceedings.
2018. Vol. 226. pp. 393-399 (in Russian).

Korenkov V.V., Priakhina D.l., Nechaevskiy A.V., Ososkov G.A., Trofimov V.V. Simulation of
data storage and processing centers taking into account economic components // System analysis in
science and education. 2018. No. 4. pp. 1-8 (in Russian).

98

Appendix 1. Description of data model entities

Ne | Attribute name | Attribute description \ Type | Note
DataStorages entity
1 storage _id Storage identifier integer primary
2 storage_name Storage name character key,
ge_ g string unique
3 storage__descrlp- Storage description chz_alracter
tion string
. double
4 | storage_volume | Maximum storage volume (TB) -
precision
5 storage_active | Storage activity (1 — active; 0 — inactive) integer
6 storage quant Data generation rate in the active storage double
geqd (TBIs) precision
7 | storage priority | Storage priority value integer
8 storage_sensor | Name of the statistics collection object chz_;\racter foreign
string key
ComputingComponents entity
1 comp_id Computing component identifier integer primary
. character key;
2 comp_name Computing component name : .
string unique
3 | comp_description | Computing component description gthr ?rrlzcter
4 comp_cores Total number of cores integer
double
5 comp_speed Speed up factor orecision
6 comp_sensor Name of the statistics collection object chgracter foreign
string key
Pilots entity
1 pilot_id Pilot identifier integer primary
. . character key;
2 pilot_name Pilot name string unique
3 | pilot_description | Pilot description chgracter
string
. : character foreign
4 pilot_comp Computing component name string key
5 pilot_queue Job flow name chgracter foreign
string key
6 pilot_priority Pilot priority value integer
I . double
7 pilot_jobs part | Percentage of jobs to be processed orecision
8 pilot_storage_in- Name of storage with data for processing chgracter foreign
put string key
9 pilot_storage out- | Name of storage for saving data after pro- character foreign
put cessing string key
10 pilot_sensor Name of the statistics collection object chgracter foreign
string key
Slots entity
1] slot_id | Slot identifier | integer |

99

Ne | Attribute name Attribute description Type Note
primary
2 slot_name Slot name chgracter key;
- string :
unique
3 slot_cores Number of cores in slot integer
4 slot_pilot Pilot name chz_alracter foreign
string key
5 slot_active Slot activity (1 — active; 0 — inactive) integer
6 slot_sensor Name of the statistics collection object chgracter foreign
string key
Links entity
1 link_id Communication link identifier integer primary
. o character key;
2 link_name Communication link name string unique
3 | link_description | Communication link description ;:pr?rrlzcter
. Name of the object from which the data are | character
4 link_from : X
- transmitted string
: Name of the object to which the data are character
5 link_to : X
- transmitted string
: . o : double
6 link_bandwidth | Communication link bandwidth (TB/s) -
precision
7 link_active Link activity (1 — active; 0 — inactive) integer
8 link_sensor Name of the statistics collection object chgracter foreign
string key
DataTags entity
1 tag_id Data type identifier integer primary
character key;
2 tag_name Data type name string unique
3 | tag_description | Data type description gthr ?;ZCter
DataFlows entity
1 dataflow_id Data flow identifier integer primary
2 dataflow_name | Data flow name chz_ﬁracter key;
string unique
3 dataflovy_descrlp- Data flow description chz_ﬁracter
tion string
4 dataflow_tag Data type name chgracter foreign
string key
5 | dataflow_storage | Storage name chgracter foreign
string key
. . double
6 | dataflow_volume | Maximum data flow size (TB) -
precision
7 dataflow_files Number of files in the data flow integer
8 | dataflow_active | Data flow activity (1 — active; 0 —inactive) | integer
9 | dataflow_sensor | Name of the statistics collection object chgracter foreign
string key
JobQueues entity
1 queue_id Job flow identifier integer primary
character key;
2 queue_name Job flow name string unique

100

Ne | Attribute name Attribute description Type Note
3 | queue_description | Job flow description gthr ?rr]a;cter
. character foreign
4 | queue_input_tag | Input data type name string key
5 queue_input_vol- Average input data volume (TB) douple_:
ume precision
. Allowable value of input data volume varia- | double
6 | queue_input_mod | .. -
tion (TB) precision
character foreign
7 | queue_output_tag | Output data type name string key
double
8 | queue_output_vol | Average output data volume (TB) -
precision
9 queue_out- Allowable value of output data volume vari- | double
put_mod ation (TB) precision
10 | queue_runtime | Average time of task execution (s) integer
Permissible value of job execution time var- | .
11| queue_runmod | . .. integer
iation (s)
12 | queue_start_delay | Delay of job start process (s) integer
13 queue_temp Average time of job occurrence (S) integer
Permissible value of job occurrence time .
14 | queue_temp_mod I integer
variation (S)
15 queue_power Total number of jobs integer
16 queue_sensor Name of the statistics collection object chgracter foreign
string key
TransportJobs entity
primary
1 transp_id Transfer object identifier integer key;
unique
5 transp_stor- Name of the storage from which the data are | character primary
age_from transferred string key;
. foreign
Name of the storage to which the data are character _
3 | transp_storage_to . key;
transferred string "
unique
4 transp_link Name of communication link chgracter foreign
string key
character foreign
5 transp_tag Data type name string key
6 transp_priority | Priority value of the transmission object integer
7 transp_part Percentage of data to be transferred doupl(_e
precision
8 | transp_time_start | Transmission start time (S) integer
Events entity
primary
1 event_id Event identifier integer key;
unique
character .
2 event_name Event name unique

string

101

Ne | Attribute name Attribute description Type Note
3 | event_description | Event description chz_:lracter
string
4 event_sensor Name of the statistics collection object chgracter foreign
string key
Event Object entity
1 event_id Event identifier integer Ex'gn
2 object_name Object name chgracter
string
; : character
3 object_type Object type string
4 distribution Distribution type chgracter
string
5 probability Probability of event occurrence doul:_)lg
precision
6 initial_time Time of occurrence of the first event integer
N Initial value of the parameter of the object double
7 initial_value . ! -
- with which the event occurs precision
3 value Permissible value of change of the parame- | double
ter of the object with which the event occurs | precision
9 depend_events | List of dependent events gthr ?;ZCter
Sensors entity
1 sn_id Statistics collection object identifier integer primary
. . . character key;
2 sn_name Statistics collection object name string unique
3 sn_description | Statistics collection object description gthr ?rr]z;cter
4 sn_period Averaging period of collected information integer
5 sn frequenc Frequency of recording the collected infor- integer
—Teq y mation in the DB g
Experiments entity
primary
1 exp_id DT experiment identifier integer key;
unique
2 exp_name DT experiment name chgracter unique
string
3 | exp_description | DT experiment description gthr ?;ZCter
4 exp_params DT experiment parameters gthr?rrlzcter
List of identifiers of the statistics collection | character
5 exp_log . X
object string
6 | exp_date create | Date and time of creation timestamp
Modifications entity
primary
1 mod_id Scenario identifier integer key;
unique
2 | mod_experiment | DT experiment identifier integer foreign

key

102

Ne | Attribute name Attribute description Type Note
3 mod_report DT experiment scenario identifier integer unique
. . TEKCTOBBIC
4 mod_json DDC equipment parameters anmbie JSON
5 mod_status Statys of work (0 — created; 1 — in opera- integer
tion; 2 — completed)
6 | mod date create | Date and time of creation timestamp
7 | mod date start | Date and time of startup timestamp
8 | mod_date_finish | Date and time of work completion timestamp
SimulationReport entity
primary
1 report_id Record identifier integer key;
unique
2 report_systime | System time of statistics collection integer
renort equin- Identifier of the object, which is a part of
3 port_equip the DDC, the information on the results of | integer
ment_id S L
- which is contained in the record
Name of the object included in the DDC,
.) . o character
4 | report_equipment | the information on the results of which is X
L string
contained in the record
5 | report variable Value describing the state of the object in- double
port_ cluded in the DDC precision
6 | report_comment | Comment chz_ﬁracter
string
7 report_modifica- DT experiment scenario identifier integer foreign

tion

key

103
Appendix 2. User instructions for working with the special software

1. When entering the system, a page opens that invites the user to build an DDC infrastructure
(see Fig. 80). The page has “active” buttons that show objects available for adding to the DDC infra-
structure, namely: data generator, computing component, data storage, robotic library. It is necessary to
select an object from the list (1) and place it in the area selected for drawing (2), after which a form for
setting up the basic configuration of the device will open (3). It is required to enter all the necessary data
and click on the “Add Device” button. Figure 81 shows an example of adding a data storage to the DDC
infrastructure. When the infrastructure is completed, you should click the corresponding button, after
which the buttons with infrastructure objects will become “inactive” (see Fig. 82). The resulting infra-

structure image can be saved to a local device.

NocTpoeHne WHOpPacTpyKTYPH
ueHTpa cbopa, xpaHeHuna 1M 0bpaboTKW AaHHBIX

& 2 faE|
= B R E

Figure 80. Building the infrastructure of DDCs

104

MocTpoeHne WHOPACTPYKTYpbI
ueHTpa cbopa, XpaHeHuss U 06paboTKU [aHHbIX

AoBasuts ycTpoicTeo

Figure 81. Adding a data storage to the DDC infrastructure and configuring its parameters

MocTpoeHWe UHHPACTPYKTYPH
ueHTpa cbopa, xpaHeHus n obpaboTkM paHHbIX

PEnaxTHpoBaTh WHEPACTPYHTYPY

HacTpouTh HacTponte HacTponTe
BXDaHATY HBHANM COR3IM NOTCHW OEHHUX noTokN 3agad
x AWEHUR
L

NCX LHEP

EOS

Trigger Buffer
= Tier LIT

Figure 82. Result of building DDC infrastructure
2. The built infrastructure can be edited, for example, to change the location of objects or param-

eters of the basic configuration. To do this, click on the “Edit Infrastructure” button, then in the drawing
area select an object to move or change its parameters (see Fig. 83). All changes should be saved by

clicking on the corresponding button.

105

MocTpoeHne MHOPaCTPYKTYps
ueHTpa cbopa, XpaHeHus u 06paboTKM AaHHbIX

3aBepumT DEABKTHDOBAHWE WHODACTDYKTYDH

L B
- = &
(Sl S
= T &)
e nventy
NCX LHEP
)
S
Trigger Buffer
Tier LIT
ceol
= o)

&

@ﬂ

EOS

Figure 83. Moving one of the data stores in the process of editing the DDC infrastructure

3. Once all the necessary objects have been added, the user must configure the communication
links between them (see Fig. 84). To configure links, select the objects to be connected between and set
the required parameters. User can make changes to existing communication links (see Fig. 87).

NocTpoeHWe MHPPaCTPYKTYPS.
UeHTpa cbopa, xpaHeHuss U 06paboTHKKM OaHHLIX

PEABKTHROBETE MHOPACTOVKTYEY

-~ HacTponrs HacTpomTs
P '.-E. 1 | | NOTOKK AaHHNx ROTOKW Janad
o
g Co3nate uwdposol asoRinm
HACTPOAKS HBHANDE CHAZW
« DOAZATENEHOE MONE AN 33007 HEHHA
LELETT
|
|
. One
|
* Kau | Trg " | f v
5 F J
Trigger Buffer

foGasnTe

EOS

Figure 84. Setting up communication links

106

MocTpoeHne WUHDPACTPYKTYpPH
ueHTpa cbopa, xpaHeHuss U 06paboTKM AaHHbLIX

PepanTHposats MsdpOCTRYHTYRY

HacrTponTe HocTponTe
NOTONM ARHHEN noToRM Iagad

CozpaTe YndpopoR feodiiK

Hacrpeoiina wanance caraw

NCX | HEP N * OGRzaTEnsHOE AOne RAA .E_:L-."—\E‘:‘.-.‘)

Buffer

100 6/c Tier UT

Figure 85. Editing communication links
4. Next, user must to create data flows for processing at the DDC (see Fig. 86) and job flows that
will process this data (see Fig. 87). To create flows it is necessary to click on the corresponding button

and then fill in the opened form.

107

MocTpoeHue UHPPacTpyKTYPsI
ueHTpa cbopa, xpaHeHuss U o0bpaboTKU pgaHHBIX

'E'!

-
: 'y
& Lo i B
T

W nBOAHMK

HACTPORKA NOTOMOR [EHMEX

NCX]_HEP + 0BA3aTeNLMOS NONd AR 33INORHEWMMA

* (NUCaHWE:

(data from trigger

* Kanan nepega-n Ao Linkl .

OFLEN QaHHEK A0

Trigger Buffer

ApBanuTe
10Te/c 10T6/c Tier LIT

Figure 86. Setting up data flows

MNocTpoeHne UHPPaCTRYKTYPH
ueHTpa cbopa, xpaHeHus u 06paboOTKM faHHbIX

PepanTuposaTe MRbpacTpyRTYDY

Hacrpoisa noroxon 2anAw

S OBRIATENLHEE FeNG N SEnEANGIAR
* Hassawwe
[it]
o Onucauue
Raw To Digit |

Trigger Buffer

10T6/c 10T6/c Tier LIT »
[

i gevres (gonycrnmoe oruonenwe) | 1 5|

* PACIPBAEIEHNE SELORTHOCTI LR TEASPELNA S3HHBIX:

pRINOMEpHOe ~

HEHUR 330a4ne 0 |e

ARHBHIE [IOMACTHMDR DTKNOHERWE): [

10T6/c
10 [f6/c " o2

ECS

® PaCnpegensHine DEPONTHOCTH AN MEHSpauUMM sanax:

PAEHUMEDHOE v|

anas [100 |

foGaenTe

Figure 87. Setting up job flows

108

5. The user can edit the DDC infrastructure, basic equipment configuration, change data flow pa-
rameters and job flows before moving to the next stage, which is directly creating the DDC.

6. Clicking on the “Create Digital Twin” button will open the window shown in Figure 88. The
user needs to add a computational experiment to the DT by clicking on the corresponding button, after
which the form shown in Figure 89 will open. The user is prompted to enter the name and description
of the computational experiment, modeling and logging parameters. It is possible to add several compu-
tational experiments to solve the problem of searching for the required configuration of equipment of a

certain type (see Fig. 90).

IKCNEepPUMEHTbI

Figure 88. Adding a computational experiment on the DT

JobaeneHue 3KCMEpPUMEHTA
3aNoNHWTS Nona QopMel, 4YTOOs O0G3BMTE HOBWM IKCNEpMMEHT ONA NOWCHaE ONTHUMaNsHOA KOHGUIypaunHd Ole|J'_\£|Z-EEHI-!F|
- EIGHSETEJ-IBHOS noage AnR 222aNoNHEHKA

Haszsanwe IHCNEepHUMEeHTa -

Dnucanne IKCNepaMedHTa

MoKCK ONTUMANLHOTD KONWYECTBAa PeCcYPCCB ONA XPaHeHWR OaHHsX ‘

HRQHHPTDH MOOBNWDOBAHWR

- = d) 1
MapameTps NOTWPDBaHNA
BufiepuTe DHLEKTH W CoBHTUA, 0 KOTOPHX HEOBXDAWMO COXPAHATH WHOOPMALMK BO BPBUA MOAENVPOBAHWA

DfrenTH Mogen ¥ Typh

La XPIHUANWE HSHHEX

e TEMLHWE HOMITOHEHTH

Co

o X

s

s M

Fedepayha, 3anycK, BHIOAHEHHE 335ad
JoGaBuTh QuHETHTE
DTMeHa

Figure 89. Setting up the parameters of the computational experiment on the DT

109

JKCNepuUMeHTH

BufepuTe CYWEeCTBYRWHA SKCMEPUMEHT WNW [OBG3ELTE HOBHIA 3KCMEPUMEHT ANA MOUCKA ONTUMANLHOW HoHGWTYpausw

ofiopypoBaHA

Test 4
Test

fara cosganua: 9 mapra 2023 r. 15:04

Test 3

Wccneposadue 3arpysKW KaHanos CBA3W

Aata cozpanua: 7 gespans 2823 r. 18:42

Test 2
MNouck onNTUMansLHOro KONWYECTEa BLYUCNUTENLHLX PECYpPCOB

lata co3ganuwa: 7 ¢espans 20823 r. 168:38

Test 1
MNouck oNTUManNLHOTO KONWYECTEa PECYPCOB ONA XPaHeHWA OaHHbIX

Jata co3ganua: 7 g¢espans 20823 r. 168:36

AdoBGasuTh

Figure 90. List of added computational experiments on the DT

7. Clicking on one of the available computational experiments will open a page with information
that reflects all parameters and the basic configuration of the equipment (see Fig. 91). To add new equip-
ment modifications, click on the “Add modification” button. To add and configure events that can occur
in the DDC, click on the “Add Event” button

WHpopMauma o6 3KcnepumedTe

HE3D3IHKE IKCHEPUMEHTS 5230820 KUMPHrYDAUMR CnCoK MORMBMXBUMR

APAMMAMLE AaMHNsLx

DRNCIMME SHENEPUMENTS

Hasnamwe Onmcanne | Otvem (Th) :
triggar Trigger EMGN 2606,0

NAPANETIV MOASANPOBANAN

NapameTpu norsponamks

cosan

Mpomycxman : CMCOK CobniTwi

Hasmawnn Onncawme :
cnocobinocts (M6/c) &
v L0 e 3) trfgger. - buffe) : >
: Robaewrs cobsitne
™l \hep
26
™7 131
o U

NOCHOTPATH PEAYANTATH

Bubpare ARYroR IMEMEDIMENT

foSanute WORMWK IO

Figure 91. Viewing information about the computational experiment on the DT

110

8. After setting up the computational experiments, the DT is started. If there are several modifi-
cations in a computational experiment (see Fig. 92), the DT for each modification can be started simul-

taneously.

Wudopmauyusa ob 3kcnepumeHTe

Rara

Cncok coGummii

Hassanue Doucamme
" Lhe [: decrense yMEHE WeH Me TioRd s
o : KOMMHOCTES RALD
1 >k $ Ao5ERRTE COBRITHE

AoBanwte wmopmbmmatime

MOCNOTPETL eIy LTaTM

Figure 92. Information about the computational experiment with a list of available modifications and events occurring in
DDC

9. During or at the end of the DT operation, the results are available for the user to view. Clicking
on the "View Results" button will open a page where the type of equipment of interest should be selected,
after which interactive graphs will be plotted. For example, Figure Figure 93 shows a page with graphs
reflecting data volumes in storages, and Figure Figure 94 shows the load on communication links during
data transfer. Graphs of distribution of different types of files in storage and usage of computational
components are also available for viewing. Interactive graphs imply the possibility to zoom and select
data for viewing, i.e. hide the results of one or several modifications (see Fig. Figure 94). The user can

save the results of DT operation for any modification in the form of images with graphs.

PesyneTate 3kcnepumenTa Test 1

Ofwmi ofver ganHblx 8 xpannrwes buffer OSiuui ofben fanHsx B xpaHnnae soslit

&

Figure 93. Viewing the DT results — total amount of data in storages

111

PesyneTate 3kcnepumeHTta Test 1

BUBEpWTH BRASINY AAN APGCUATRD FEIZNLTATOR

[XpEHHIWILL AaHHbIX BaRMCI TR AR SOMROHEHTE

Cuepagn 3ges Pacnpedefsms Hannoe

rafo

Harpyska va kawan coase computed Harpyska Ha kakan oA compuled

1)
I\HM‘JQ-L“ILU_..}-JI._‘—“_’-« P L ey
o ~
% 10 1 b2 13 5) 15] F]
Bpens [u) Bpesa (4]

madificanan: 35033

Figure 94. Viewing the DT results — data link loading

112

Appendix 3. Certificate of registration of a computer program

POCCHIHCIK A DENEPAIKA

" A -

¥
B
B
B
B
B

Bt BE BB B

CBUAETEJIBCTBO

0 TOCYIAPCTBEHHOW PerdcTpauMu mporpaMmmsl aas 9BM

Ne 2023667305

IIporpaMMHbIil KOMILIEKC /LISl CO3IaHHs HH(POBLIX
JABOHHMKOB pacnpe/iesieHHbIX HeHTPOB c00pa, XpaHeHUsI U
00paboTKH JaHHBIX

Tpasoo6aanatens; Q0BeOuHennviii Hnemumym Hoeprnvix
Hecneoosanuii (RU)

asropn: Kopenvkoe Bnaoumup Bacunvesuu (RU), Ilpaxuna
Hapva Hzopesna (RU), Tpogpumos Braoumup Barenmunosuu
(RU)

3aspka Ne 2023665363

Jlara nocTynIcHHs. 20 uroan 2023 r.
Jlara rocy1apcTBeHHON PerHCTpaliny
8 Peectpe nporpamm s 9BM 14 aszycma 2023 2.

Pyxogodumeis PedepaibHoul cayxrchvl
110 UHMEAICKMYATLHOU cofcmeeHHocmY

/% 10.C. 3yboe

R N R R R R R R R

@%ﬁ?ﬁ%%ﬁ%%&%ﬁ%%ﬁ%%%%ﬁ%ﬁ%%ﬁ%ﬂﬁ%E&&%E&E&%g&%ﬁ%KZKSE&KZ?X‘E&%?&X&%%E%E%ﬁﬁ%&

S

%%K&%%&%%ﬁ%ﬁ&&&%ﬁ%ﬁg%ﬂ%ﬁ%%%%%%K&%K&%&%%%%ﬁ%%ﬁ&ﬁ%ﬁ%ﬁ%gﬁﬁ%%

113

POCCHUCKAS ©EJIEPALIUS

RU2023667305

DEJNEPAJIBHASA CJIVIKBA
110 UHTEJUIEKTYAJIbHOY COBCTBEHHOCTH

TFOCYJAPCTBEHHAA PETUCTPALIM S ITPOTPAMMBI 17151 9BM

Howmep perucrpauuu (CBHACTEILCTBA): . ABTOp(BI):
2023667305 Kopenskos Bnagumup Bacumsesua (RU),
JlaTta perucrpanun: 14.08.2023 Ilpsxuna dapes Uropesna (RU),
Homep 1 n1aTa nocTymiieHus 3asIBKHU: Tpodmmos Bragumup Banentunosuy (RU)
2023665363 20.07.2023 [1paBoobnanaTenn(u):
Jata nybaukamuu u HoMep OI0ICTeHS: Obsenunennsnt UucTHTYT S nepHBIX
14.08.2023 brom. Ne 8 WUccnenopanuit (RU)
KoHTakTHBIC PEeKBH3HTHI:
Her

Hassanue nporpamms! a1s DBM:
I1porpaMMHELT KOMIUIEKC IS CO3TaHHs MH(POBEIX IBOHHUKOB pacIpe/ie/IeHHEIX EHTPOB cO0pa, XpaHeHUs
H 00paboTKH JaHHEIX

Pedepar:

[TporpaMMHBIi KOMITZIEKC Ipe/IHA3HAYEH /1718 co3/1anus qudpoBbix asoiinukos (LJ1) pacnpenenennbix
ueHTpoB cbopa. xpanenus 1 o6padborku ganuex (PLIO). Coznannsie LI/ MoryT npumensaTses s
pelIenus 3aaayd nocTpoeHus, cosepimencTBoBanus ¥ pa3sutus PLIO/]. OcHOBHBIM KOMIOHEHTOM
MPOrpPaAMMHOTO KOMITJICKCA ABIACTCS AIFOPUTM, PCAIM3YIONIHI MOJICTHPOBAHHE PACTIPEICICHHBIX
LEHTPOB € YYETOM XapaKTePUCTHK MOTOKOB JIAHHBIX W 3a71a4 /U1 XpaHeHHs H 06paboTKH, a Takxke
BEPOSTHOCTEH MOABICHUS H3IMEHEHHI B poueccax. npoucxoasmux B PLIOJI. B nporpamme Taxxke
peanu3oBaHbl mponecch noayyenus nadopmammn o PO/ (apxutekTypa, napametpsl 060py10BaHus,
XapaKTePHCTHKH MOTOKOB JAHHBIX U 3a7a4, coObITHS, npoucxoaammx B PLIO/L, cuenapun
MacITabHpOBaHUS CHCTEMBI), CTPYKTYPHPOBAHHSA W cOXpaHeHus pe3ynbTatoB padoter L1, s
MOJIL30BaTeNs pa3paboTana BO3MOKHOCTD rpaduyeckoro noctpoenus uupactpykrypst PLIO,
3amycka L1 n Busyanusamum pesynstatoB ero padotst. Tun DBM: IBM PC-cosmect. 1K na 6aze
npoueccopa Intel/AMD: OC: Windows 7 1 Bbie; Linux.

S3BIK TpOrpaMMHPOBaHHS: Python 3.7 ¢ ucnonb3oBanuem 6ubmoTek argparse, json,
matplotlib, numpy, plotly. psycopg2, scipy u ¢pefiMmBopka
Django; JavaScript, SQL

O6sem nporpaMmsr s DBM: 133,14 Mb

114

Appendix 4. Letters on the application of the results of the PhD thesis

research

[TMCbMO

0 MPUMEHEHHHU Pe3y/IbTAaToB AuccepTalmonHoi padoTel Ipsaxunoii [1. U.
«LludpoBeic ABOMHUKM /TS PEIIEHUs 3a/1a4 YIPABJICHUS U PA3BUTHA PACIIPE/IC/ICHHBIX
neHTpoB cbopa, xpaHeHus 1 00paboTKH JTaHHBIX
B 3kcniepumente BM@N npoekra NICA

B jmccepraiiMd Ha COMCKAaHHE YYCHOH CTENEeHW KaH/ujara TEXHUYECKHUX HayK
Ipsixunoii /1. U. «lludposbie ABOAHUKK JUIS pCLICHHs 3aday YNPaBICHWS W PasBHTHA
paclpe/e/CHHBIX LEHTPOB cOOpa, XpaHeHus M 00palOTKM JaHHBIX» pa3padoTaH METOI
MOCTPOEHHS M MCIO/b30BaHUs LH(POBBIX BOMHHKOB pacrpe/eeHHbIX LEHTpOB cbopa,
XpaHeHHs U 06paBOTKH JaHHBIX. AKTYaJlbHOCTH PaboThl MOATBEPAKIAETCS HEOOXOAMMOCTEIO
co3ianusi LUGPOBBIX IBOMHUKOB JUISi TIPOSKTUPOBAHMS allllapaTHBIX PEIICHHI, OIEHKH
YOPEeKTUBHOCTH (HYHKIMOHUPOBAHHUS, @ TAKIKE [10MCKA MPOOIEMHBIX TOYEK CJIOKHBIX CHCTEM
cbopa, xpaHeHus W 0OpabOTKM [JaHHBIX, KOTOPBIMHM SBJISIOTCS KPYITHBIE PACHPEACICHHBIC
BBIYHMC/IUTEIbHBIE HHPPACTPYKTYPHl COBPEMEHHBIX HAYYHBIX [IPOCKTOB.

[IpeUIOKEHHBIN B JIMCCEPTALMOHHOM paboTe 10/IX0/1 HalpaB/IeH Ha MOACTMPOBAHHE
pacIpe/IeICHHBIX BRIYMCIUTENBHBIX CHCTEM, ONEPUPYIOMX OONbIIMMH 00heMaMH JIaHHBIX.
TTporpamMma MOJIeIMpOBaHIsl, KOTOpas ABJIACTCA OCHOBHBIM 5/IEMEHTOM LU(pPOBOTo ABOHHHKA,
YUMTBIBAET XAPAKTCPMCTHKYM IIOTOKOB JAAaHHBIX M 3a/1a4, BEPOATHOCTU ¢OOsl ¥ M3MCHEHHS B
TIPOU3BOMTENLHOCTH MCIIOJIB3YEMOIl AllIapaTHOil 9acTH PacTIpe/IeeHHbIX CHCTEM 00padOTKH
¥ XPaHCHUS NaHHBIX. BaKHBIM Pe3yibTaToM JIMCCEPTALMOHHON paboTh ABISIETCS CHEIHAILHOE
nporpaMMHoe ofecrieucHue JUIs co3aHus TM(POBBIX JIBOHHHKOB, KOTOPOE MOKET
NPUMEHSTRCS JUTS TMHPOKOTO Kjacca 3a1a4 B 00JacTd TPOSKTUPOBAHMSA, IMOCTPOCHHS H
pa3BUTHS pacrpe/Ie/eHHBIX CHCTEM, B TOM YHCIIE C HeNbio BrIOOpa Hanbonee nenecoodpasHbix
BAapUAHTOB M3 MHOKECTBA PACCMATPUBACMbIX KOHDUTYpalluii anmapaTHbIX 11argopm.

JloCTOBEPHOCTH ~ MOJAXOJd M BBIBOJOB JIMCCECPTAIlMOHHOTO MCCIIEN0BAHMS
OJATBEPIKIACTCS [PAKTHKOH TPHMEHEHHs pa3pabOTaHHLIX METONOB IpH aHaIu3e H
MPOrHO3UPOBAHKHM PA0OTHl BBLIYUCIMTCABHOH HHPPACTPYKTYphl KPYMHOIO HKCIEPUMCHTA B
o61acTH GU3MKH BHICOKMX YHEPTHiA. Bepudukaliis KOMIOHEHTOB IIPOrpaMMHOTO 0becTieYeHus
MPOXOAWIA B MPOLIECCE CO3aHHs [U(PPOBOTO JBOMHUKA BBIYMC/INTEIILHOK HHPPACTPYKTY PHI
sxcnepumenta BM@N npoekra NICA OObeAMHEHHOIO HHCTHTYTa AJEPHBIX HCCIIC0BAHHIA.
Pesysprarhl, MOJydYeHHBIE pa3paboTaHHON B JUCCEPTALMHA MOJICIBIO, [OKa3ald XOpPOUIyio
COTJIACOBAHHOCTD € NIPAKTUYECKUMH 3HAYCHUAMU.

Peann3oBaHHBIH METO]| 1OCTPOeHUsT LU(GPOBOro JABOMHHMKA ITO3BOJIMI KAaK OINKMCATH
BBIUMCAUTENBHYO HHpacTpyKkTypy OSkcnepuMenta BM@N, yuurbiBas peaibHbIE IMOTOKH
JIAHHBIX M 3aJa4, TaK ¥ NPUMEHUTH €ro JUis OIEHKH XapakTepPUCTUK paboTsl HMCIOIIHXCA

115

IIEHTPOB 00pabOTKM 1P PELICHHH 3a/1ad YKCTIEPUMEHTA Ha BHIGpaHHON HH(PACTPYKTYpE.
Pesyaptarel paboThl 1MGPOBOTO JBONHIKA, TMOCTPOCHHOIO C MOMOLLIBIO Pa3padoTaHHOTO
CIELHAIBHOTO TPOTPAMMHOTO OOeCTIeUeHHUs, [O3BOJIWIM OLUECHUTH TpedyeMoe KOJIHYECTBO
pecypcoB Juisi 00padOTKH [JaHHBIX C YYETOM IUIAHUPYEMBIX MapaMeTpoB IMOTOKOB JaHHBIX
Oymymmx ceancos skcnepuMeHTa BM@N, npoBenena oreHka BpeMeHH, HEOOXOUMOr0 st
MOJIHOH 00palOTKH IKCIEPUMENTATBHBIX JAHHBIX [0 OKOHUAHHK) CeaHca IKCIEPUMEHTA, KaK ¢
YUETOM, TaK U 6e3 yyeTa I0NOTHUTENbHOI 00paboTKH HMEIOIIMXCS MOAETHPOBAHHEIX TAHHBIX.
B naneneiiniem crenmaipHOe IporpaMMHoe oOecriedYeHHe IIAHMPYeTCs MPUMEHATh UL
(hopmupoBanus TpeOOBAHMI 110 PA3BUTHIO BEIYHCITHTEIBHON HHPPACTPYKTY Db SKCIIEPUMEHTA
BM@N.

Upsixuna JI. M. perynspHo mnpeicraeiser s OOCYKIEHHS W (hopmupoBaHus
JalbHEHINeH CTpaTerud TEKYLIME pe3yJbTarThl JaHHOW paboThl Ha KOJ1a60pallMOHHBIX
COBelaHuAX sKecnepuMenTa BM@N. |

Boipakaio cBoro 1noaaepxky mccepraruonsoi pabore JI. WM. TIpsxuHOii.

(4 ' K.T.H., 'epuenbeprep Koncrantun Bukroposuy
\IW KOOPAMHATOP pa3paboTKu MporpaMMHOTO 06ecIIeYeHus
skcnepumenTa BM@N npoekra NICA,

Ha4qaJIbHUK TPYITIIEI MATEMaTHYECKOI0 U MPOrpaMMHOI0 00ecrieyeHus
HAYYHO-IKCHEPUMEHTAIBHOIO OT/le1a GU3UKN CTONKHOBEHHIA

TSOKETBIX MOHOB Ha KoMIutekce NICA,

Jlaboparopus (pusmku BeicOKHX dHepruii M. B.U. Bekcenepa u A.M. Bamuna,
OO0BeIMHEHHBII HHCTUTYT SIIEPHBIX HCCIIETOBAHMI

« 42 » 02 2024 1.

116

[TMCbMO

0 MPHMEHEHUH Pe3yIbTaroB aucceprainonHoil pabotst Ipaxunoi JI.U. «ludpossie
NBOMHMKM JIJIsl PELLICHUS 3a1a4 yIIPaBICHUs U Pa3BUTHUs paclipe/leIeHHbIX [IEHTPOB
cbopa, XpaHeHHs 1 00paboTKH NaHHEIX) B 3kcriepumente SPD kommiekca NICA

B paborax, Jiermmx B OCHOBY AHCCEPTALMH Ha COMCKAHWE YYEHOM CTENEHH Kamauiara
texuuueckux Hayk [Ipsxunoit J{U. «[ludposeie ABOHHHKH JUIA PEMICHHS 334aY YNPABICHUS H
pasBUTHs paclpejieieHHbIX TEHTPOB cOopa, XpaneHHs U 0OpabOTKM JaHHBIX», OblLl paspaboraH u
peaj30BaH MPOrPaAMMHBIH HHCTPYMEHTAPHIT 1715 co3aanus LHPPOBLIX JABOWHMKOB PAaCIPEACICHHBIX
neHTpoB cbopa, XxpaneHus 1 06paboTku JaHHBIX. Pacnpenenennas 00padoTka UIpaeT KIHOUEBYHO POk
B MOJYyYECHHHM HAy4HBIX pPE3yJIbTaTOB KPYIMHBIX KCIEPHMEHTOB Kiacca «MeracadeHcy. Xopoimm
IpUMEpPOM ABNAIOTCA JKCTIEPHMEHTH Ha yckopureabHoM komiiekce NICA. B pamkax
IPOEKTHPOBaHHS (H3UYECKOM YCTAHOBKH, a TaK JKE B MPONECCE TMPOBOAMMBIX HCC/IEI0BAHNH
SKCIIEPUMEHTBI IIPOU3BOAAT OOJBIIOH 0OBEM [aHHBIX, I XPaHEHWS W CBOEBPEMEHOH 00paboTKu
KOTOPBIX MCNOJIb3YIOTCA KPYITHbIE BEIYACIHTENbHBIE CHCTEMBL. K TakuM KOMOMHHPOBAHHBIM CHCTEMAM
IPEABSBIAIOTCA JIOCTATOYHO BBICOKHME TpeOOBaHHWSA TO MNPOM3BOAMTELHOCTH IIPH ONTHMAJBHBIX
3arparax, mostomy padota [Ipsxunoit JI.1. no co3nanuio uuQpPOBLIX ABOHHUKOB, KOTOPBIC [IOMOTAI0T
obecreynTh KaueCTBEHHOE MPOEKTHPOBAHKE, MOCTOSHHOE COBEPLICHCTBOBaHKE M MaciTabupoBaHHe
CHCTEM XpaHeHUs U 00pabOTKH JaHHBIX, SBISETCS OYEHb aKTyaIbHOM.

Pa3paGoTauHblii B JMCCEPTALME HOBBIH METOX IOCTPOCHHMA W HCMOJb30BAHHA IH(POBBIX
JIBOMHHKOB CJIOXKHBIX CHCTEM OT/JIHYAeTCAd BO3MOXKHOCTBIO MOZEIHPOBATb IIPOLECCHl 00pabOTKH
TaHHBIX, VYUTHIBAS XapPaKTEPUCTHKU I[OTOKOB JAHHBIX W BBIYMCIIMTENIBHBIX 3a/1a4, BEPOATHOCTEH
c00€B, OTKa30B M M3MEHCHHN B IPOM3BOIMTEIBHOCTH Pa3IHYHBIX COCTABJAIOIIMX paclpeaeeHHON
CHCTEMBl. JTa 0COOEHHOCTD SBJISETCS CYUIECTBEHHBIM IMPEHMYINECTBOM paldOThl, TaK KaK [03BOJAET
OpUMEHSATh pa3paboTKy TNpH TPHHATHH PEIeHHH MO yIYYIIEHHIO TEXHHYECKHX XapaKTepHCTHK
CTIOYKHBIX BEIYHCITUTEIBHBIX CHCTEM.

DkcrepuMenTanbHas ycraHoBka SPD xommiekca NICA HaxoauTcs B CTaJWHM CO3JaHMS,
OIHOBPCMCHHO pealM3yeTcsi ¥ cucTeMa MepBuunoil o6paboTkn maHHBIX dkcnepument: SPD online
filter. TlpoexkTHpoBaHME CHEIHATU3HPOBAHHON BBIMMCIIMTENBHON CHCTEMbl CHCTEMBI JUISA
BEICOKOTIPOTIYCKHOM 006pabGoTKH OrpoMHOro 00beMa, BKIIOYaeT B ce0s aHaiu3 apXUTeKTyphl H
MPOTHO3MPOBAHKE 3aTpaT Ha 000pyA0BaHKe, NOITOMY paspaboranublii Ilpsxunoi J[.M. nporpaMMHBIH
KOMIITIEKC MCIONB3yeTes Ul cosuanus uudposoro apoituka SPD Online filter. ImaBnas 3anava
ou(poBOro JIBOMHMKA — MOJEIMPOBAHHE I[OJACHCTEM C pasHBIMM BapHaHTAMH TapaMeTpPOB
000pya0BaHysl, IOTOKOB JAHHBIX ¥ THIOB 00paboTku. Pesymeratsl paboTel nu(poBOro ABoiHMKa Ha
JIAHHBIA MOMEHT TO3BOJMJIM MEPBOHAYANBHO OIEHHTH TpedyeMble MapaMeTpbl 000pydOBaHMS LIS
CMeNHATH3HPOBAHHON CHCTEMBI NpeABAPUTE]LHOH 00pabOoTKHM ¢ y4YeToM ILIaHHPYEMBIX
XapaKTepPUCTUK MOTOKOB AaHHBIX skcnepuMenta SPD kommiexca NICA. Ilpumenenue pesyinbTaTon
JquccepranMoHEoro ucenepoanus [Ipsxuuoit JI.M. B obo3pumom OymymeM MO3BOIUT 0OECTIEUHTH
Ka4eCTBEHHOE PA3BUTHE W MOJIEPIKKY BEIMHCIHTENLHOH HHPPACTPYKTYphl dkcriepumenta SPD.

[TomyuyeHHble pe3ynbTaThl NMEPBOTO BapHaHTa HUGPOBOTO JABOMHMKA M IUIAHBLI Pa3BUTHS
JIAHHOIO HAIlpaBIeHHUs MOJYYUIH OJ00OpeHHe Ha COBEMmaHHM Koianabopauuu skcrnepuMenta SPD B

117

2023 rony (VI SPD Collaboration Meeting and Workshop on Information Technology in Natural
Sciences).

Beipaxaro nopaepxkky aucceprannonHoit padore [psaxunoit J1.1.

K.T.H., Oneitnuk Jlanuna AHaronneBuy

3aMECTHTEIb KOOPAMHATOPA pa3paboTKHU [IPOrpaMMHOr0 obecreyeHus

skciepumenTa SPD komrutekca NICA,

CTapIIii HAYYHBIIf COTPYHUK HAYYHO-TEXHUYECKOTO OT/Ie/Ia BHEIIHMX KOMMYHHKALIUI 1
pacnpeIeeHHBIX HH)OPMAUHOHHBIX CHCTEM,

Jlaboparopus nadopmanuorsbsix TexHoaorui um. M.I. Mewepsikosa,

OObeAMHEHHEIH HHCTHTYT SACPHBIX HCCIIEA0BAHMMI

1 D
A

&

«12» derpast 2024 1.

118

Appendix 5. Act of implementing the results of the PhD thesis research in

the educational process

MWHUCTEPCTBO HAYKW U BbICLLEMO O6PA30BAHMUS
POCCUMCKOW ®EOEPALIU

(epepanbHoe rocyaapcTeeHHoe DoaxeTHoe
obpasoBatenbHoe yupexaeHue Bbiclero obpasoBaHus
«Yuusepcurer «[ly6Ha»

(rocynapcTeeHHblii yHusepeuteT «[lybHa»)

VTBEPXJIAKO

M,‘&.‘,npopewropa 1o y4eOHo#H padore
- Uﬁ
['ocyiapcTBeHHOTO yHHBEPCHTETa «/lyOnay

O.A. Kpetigep

)] B PN

Ao o
SRR doie BNl SR
ST g

AKT

0 BHEJIPEHHH Pe3y/ILTaToR jucceprainoHHoit padotsl Ipsxunoii JI.W. «Ilndposbie IBOHHAKH
JUISL pELICHNS 3a/1a4 YIPABJICHHS U PA3BUTHS PACTIPE/ICICHHBIX HEHTPOB cO0pa, XpaHeH s 1
00paboTKH JlaHHkIX» B MHCTHTYTE cHeTeMHOTo anamisa i ynpasienus (MCAY) @enepansioro
roCy1apeCTBEHHOTO BIO/UKETHOTO 00pa3oBaTEILHOTO YUPEKICHHS BbICIIEro 06pazoBaHus
«Yuunsepcuret «Jlybua»

Komuccusi B cocrase:
.11, npod. E.H. Uepemucuna, nayunsiii pykorogurens HCAY, 3as. kad. cuctemMioro
aHa/nza u yupaancunx,'
K.T.H., gou. E.JO. Kupnuuesa, aupextop MCAY,
K.(p.-M.H., ou. H.A. Tokapesa, 3aB. Ka). HHOOPMAUMOHHBIX TEXHOJIOIHH,
k.1.1., O.K). Taromkuna, 10UeHT Kad. CHCTEMHOTO aHann3a U YIpasJeHHs,
ILIL Cerues, gouent kad. pacnpeencHHbIX HHQOPMAIIHOHHO-BbIYMCIUTEIbHBIX CUCTEM
COCTaBMJIA HACTOSIIMI aKT O BHEJPCHUH PE3yJIbTaTOB JIACCEPTALMOHHOIO HCC/ICMOBAHMS
Hpsxuuoit J1.M. B yuebnmiit npouece ocynapersentoro ynusepeurera «/lydnay. Pasputniii B
JIHCCEPTAllHM METOJ MOCTPOCHHS M MCHOJIb30BaHWA HM(POBBIX JABOHHHKOB pacrpeesIeHHbIX
LEHTPOR cOOpa, XpaHeHust 1 o0pa0OTKH JIAHHBIX HCIOJIL3YETCSl NMPH IPOBEJCHHH IJICKIHA H
CEMMHAPCKUX 3aHATHI JUIS CTY/JICHTOB MarucTparypbl no Hampasienuio 27.04.03 Cucrembii
apanus u ynpasiaedue 1o npoduio «llndposeie nuardopmer 1 aHaIUTHKA OOMBIINX JIAHHLIX) B

Kypce ((P'dC[IpCJlCJICHHHC BBIYMCIICHHS W 00J1auHBIC TEXHOIOTHHY.

Poccua, 141982, r. lybHa MockoBckoi obnacru,
yn. Yuusepcuretckas, a. 19

Ten.: (496) 216-64-64, hakc: (496) 216-60-96
www.unl-dubna.ru

119

Hcnonp3oBanne B y4eOHOM [POIECCE METOAMYECKHMX PEKOMEHJAUME # BLIBOJIOB

- muccepraumy [lpaxuwoit JLM. B wacTH noaxoza K paspaboTke MOAENH pacrpeeNIeHHbIX
BBIUHCIHTEILHLIX CHCTEM C YYETOM XapakTePHUCTHK MOTOKOB 3a/a4 M JAHHBIX JUIS XPAHCHHA H

06pabOTKH, a TaKKe BEPOSTHOCTEH MOSBICHUA N3MEHEHUH B mpoLeccax, MPOMCXO/ALINX B TAKHX

CHCTEMAaX, MO3BOJAET MOBBICHTh YPOBEHb MPO(EcCHOHANBHBIX KOMIETEHIMA CTY/ICHTOB B

PEHUICHHU 33/a4 TTPOM3BOJACTBEHHON M TCXHOIOIMHYECKOH JICATEIBHOCTH € Y4ETOM COBPEMCHHBIX

JIOCTHIKCHUI HAYKH U TEXHHKH.

»
VS, g
Yepemucuna E.H. 7 —
Hayunetii pykorogmrens MCAY, /
3aB. Ka). CHCTEMHOTO aHaln3a U YIIpaBJICHHUA,
opod., J.T.H.

Kupnuuena E.10. /
Jlupexrop NCAY, -

J1011., K.T.H. i s
,/ </
{/"» 7 "c,a’)/:?e_ﬁ—/
7

Toxapesa H.A.

3aB. Ka. nHPOPMALIMOHHBIX TEXHOJIOIHi,
JI011., K.(h.-M.H.

Taromkuna O.10. 7= - =

. JIOLCHT Ka(b. CHCTEMHOI'0O aHaJ/In34a U YIpasJICHWA,
K.T.H.

Cpruen ILI1

JAOLCHT Ka(b. pacnpeaeienHbIxX HHq)OpMallHOHHO-BbI‘lPlCJIHTCJTbHB

