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Introduction

The present thesis concerns the phenomenon of spontaneous reconstruction of
the quantum electrodynamical (QED) vacuum state, also referred to as the sponta-
neous vacuum decay, in supercritical Coulomb fields. During this reconstruction the
initially neutral vacuum state acquires a non-zero charge and one or two positrons
are emitted. According to QED, this effect can occur in collisions of heavy nuclei
with the total charge number Zt = ZA + ZB exceeding the critical value Zcr ≈ 173.
For this, the nuclei have to approach each other at a distance less than the critical
value Rcr, which depends on ZB and ZB. Experimental observation of the vacuum
decay in such collisions is greatly complicated by prevailing dynamical (induced)
pair production due to time dependence of the nuclear potential. The goal of this
work is the search for an experimental scenario that would allow one to observe
signatures of the transition to the supercritical regime and the spontaneous vacuum
decay. To this end we developed an efficient numerical technique for calculations of
the electron-positron pair-creation probabilities and energy spectra of the positrons
emitted in low-energy collisions of heavy nuclei. By utilizing this technique we in-
vestigated collisions of heavy nuclei within a wide range of collision parameters. The
calculations were performed both within the monopole approximation, where only
spherically symmetric part of the two-center nuclear potential is taken into account,
and beyond. The results of the calculations show qualitative changes of both the
pair-creation probabilities and the positron spectra when the collision parameters
enter deeply enough into the supercritical domain.

Relevance of the topic

Spontaneous vacuum decay in supercritical Coulomb fields represents a fun-
damental nonperturbative quantum electrodynamical phenomena predicted to take
place in strong electromagnetic fields. Its existence was suggested more than 50
years ago in 1969. Since then it had been intensively studied both theoretically
and experimentally. But all the attempts to observe any manifestations of this phe-
nomenon were not successful. As a result, after more than 20 years it was concluded
that the spontaneous pair creation can only be observed if the nuclei would stick
one to another for some time during the collision due to nuclear forces. Not so long
ago interest to this process raised again in view of several new experimental facilities
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such as GSI/FAIR in Germany, HIAF in China and NICA in Russia that are cur-
rently being built. Concerning observation of the spontaneous pair creation, a major
improvement of these new facilities compared to the ones utilized before is twofold.
Firstly, they will provide the possibility to work with ions in substantially higher
charge states and potentially even with bare nuclei. Secondly, they can make avail-
able experiments using crossed beams instead of fixed-target collisions used earlier.
Both of these factors lead to the decrease in the population of the quasimolecular
1sσ state. This plays a crucial role for observation of the spontaneous vacuum decay,
since the latter can only occur when the 1sσ state has a vacancy before it enters the
lower continuum. The less the population of this state, the bigger the contribution
of the spontaneous mechanism to the pair creation.

Elaboration of the topic

Quantum electrodynamics in the presence of superstrong electromagnetic fields
predicts a number of nonlinear and nonperturbative effects such as light-by-light
scattering, vacuum birefringence and production of electron-positron pairs (see, e.g.,
reviews [1–4]). Experimental observation of these effects is complicated by extremely
high requirements on the field strength needed for their manifestation. One of the
ways to attain such fields relies on ever evolving laser technologies. Although laser
facilities in the near future might meet requirements for some of the effects, vacuum
pair production is still far from being experimentally accessible. An alternative
approach suggests to use heavy nuclei as a source of a strong electric field.

In a pioneering work [5] it was shown that the 1s level of a hydrogen-like ion
with an extended nucleus continuously goes down with increasing nuclear charge
until at a certain value Zcr it reaches the border of the negative-energy continuum.
It raised the question of what happens to a bound state when it joins the positron
continuum. In works of Soviet and German physicists [6, 7] it was conjectured that
the diving of an initially empty bound state into the negative-energy continuum can
result in spontaneous reconstruction of the QED vacuum accompanied with creation
of electron-positron pairs (for details see, e.g., Refs. [8–21]). Such reconstruction of
the vacuum state happens every time a new empty bound state enters the negative-
energy continuum. The new vacuum state attains a charge Ne, where N is is the
number of submerged bound states and e is the electron charge.

The heaviest element synthesized to date is oganesson, which has a nuclear
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charge Z = 118. This is well below the minimum required nuclear charge Zcr, which
is evaluated to be approximately equal to 173. Nonetheless, a realistic scenario
for observation of this process can be realized in low-energy collision of two heavy
nuclei with the total charge exceeding the critical value ZA + ZB > Zcr [6]. When
during such collisions the nuclei get sufficiently close to each other, 1sσ state of the
quasimolecule, transiently formed by them, enters the negative-energy continuum as
a resonance. As a result, if 1sσ state was unoccupied, additional two (due to spin
degeneracy) holes enter the lower continuum. Initially localized near the nuclei,
these holes can escape to infinity as free positrons, and the initially neutral vacuum
becomes charged with the charge 2e. This process is known as the spontaneous
decay of the neutral QED vacuum.

Spontaneous vacuum decay in heavy-ion collisions was a subject of intense
theoretical and experimental investigations (see, e.g., reviews [22–27] and references
therein). The first theoretical calculations of pair creation in the supercritical col-
lisions were carried out in the quasistatic approximation, according to which the
pair-creation probability is proportional to the time integral of the resonance width
Γ(R) taken along the nuclear trajectory R(t) [28–30]. Within this approximation,
the total probability of spontaneous pair creation, associated with the resonance
decay, energy spectra of the emitted positrons as well as their angular distributions
were obtained. In Ref. [30], a correction for the nonadiabaticity of the tunneling
process was also considered. However, the quasistatic approach does not take into
account the dynamical pair creation induced by the time-dependent potential of
the moving nuclei. It turns out that the supercritical resonance has a rather long
lifetime, compared to the duration of the supercritical regime τcr. For example,
in collisions of uranium nuclei at the energies near the Coulomb barrier (when the
nuclei touch each other) the resonance lifetime is about two orders of magnitude
larger than τcr. This makes the probability of spontaneous pair creation quite small.
Moreover, an additional width Γdyn ∼ ℏ/τcr, caused by the uncertainty principle,
prevents appearance of narrow resonance structures in the energy distribution of the
emitted positrons, predicted in the quasistatic approximation. Therefore, in order
to verify the possibility to observe the signal from the vacuum decay, one needs to
take into account the dynamical pair production.

Both the spontaneous and the dynamical mechanisms of pair creation were
investigated by the Frankfurt group. The first attempts to take into account induced
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pair creation were based on the time-dependent perturbation theory [31,32]. Later,
a nonperturbative procedure was realized for solution of the time-dependent Dirac
equation. It employed the coupled-channel technique in the basis of adiabatic quasi-
molecular wave functions calculated in the monopole approximation. Nonperturba-
tive calculations showed the importance of multistep processes for various aspects
of the ion-atom collision such as pair-creation, electron excitations and 1sσ vacancy
formation, which plays a crucial role for the spontaneous pair-creation mechanism
(see, e.g., [33–36]). From the obtained results it was eventually concluded that ex-
perimental observation of spontaneous vacuum decay is possible only if the colliding
nuclei would stick to each other for some time due to nuclear forces [26, 27]. How-
ever, since no evidence of such sticking have been registered to date for the nuclei
of the interest, this scenario also does not seem promising.

In view of the upcoming experimental facilities in Germany (GSI/FAIR) [37,
38], China (HIAF) [39], and Russia (NICA) [40] the interest to this problem was
renewed. New investigations concerned both static and dynamic aspects of spon-
taneous positron emission. The properties of the supercritical resonance were ad-
dressed for spherically symmetric [41–44] and two-center [45–47] field configurations.
The behavior of the vacuum polarization energy for supercritical Coulomb fields
was examined in a series of papers (see, e.g., [48–50] and references therein). Dy-
namic consideration of pair creation in heavy-nuclei collisions was targeted in the
framework of the monopole approximation [51–53] and beyond [54–56]. First non-
perturbative calculations of the angular resolved positron spectra can be found in
Ref. [57]. Relativistic semiclassical approach to the vacuum instability problem was
considered in detail in Ref. [58].

Recently there was proposed a new way to see the signatures indicating the
transition to the supercritical regime, where spontaneous electron-positron pair cre-
ation becomes possible [59, 60]. The method suggests to consider collisions along
trajectories corresponding to different energies but having the same distance of the
closest approach, Rmin. As the parameters that define the specific trajectory, it is
convenient to use Rmin and the ratio η = E/E0 ∈ [1,∞) of the collision energy E
to the energy of the head-on collision with the same Rmin. The idea behind this is
the opposite dependence of the dynamic and spontaneous contributions to the pair-
creation probability on the nuclear velocity, characterized here by the parameter η.
Indeed, it is clear that the contribution of the spontaneous mechanism is determined
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by the duration of the supercritical regime τcr. This time monotonically decreases
with the increase of collision energy, i.e., η, and so does the contribution of the
spontaneous mechanism. On the contrary, the dynamical pair production should
increase with the increase of η. Therefore, the raise of the pair-creation probability
with η → 1 is to be attributed to the transition to the supercritical regime and
activation of the spontaneous mechanism. More details are to be found in Ref. [60].

By employing the aforementioned approach, we carried out a detailed investi-
gation of the η-dependence of the pair-production probabilities and positron energy
spectra (see Ref. [60]). The calculations were conducted within the monopole ap-
proximation, where only spherically symmetric part of the two-center nuclear poten-
tial is taken into account. The evidence of the transition to the supercritical regime
have been found in both the pair-creation probabilities and the positron spectra.
These findings were later independently confirmed in Ref. [61]. As it was quan-
titatively shown in works [54–56], the monopole approximation works rather well
for description of the pair-creation process. Nonetheless it is important to study
how consideration of the full two-center potential would affect the signs of the tran-
sition to the supercritical regime mentioned above. Also, calculations beyond the
monopole approximations are necessary to get access to other important aspects of
nuclei collisions, e.g., the angular resolved positron spectra. To this end, in Ref. [62]
we extended our numerical technique beyond the monopole approximation and per-
formed the calculations of the pair-creation probabilities and positron energy spectra
taking into account higher-order terms in the decomposition of the nuclear potential
over spherical harmonics. The results demonstrated that all the signatures of the
transition to the supercritical regime remain and some of them even get enhanced.
The calculations were performed in the rotating coordinate system with z-axis di-
rected along the internuclear line and the origin located at the center of mass. The
rotational-coupling term that appears in the time-dependent Dirac equation due to
the transition to this noninertial reference frame (see, e.g., Ref. [63, 64]) as well as
the magnetic field of the moving nuclei were not taken into account in that work. As
it was argued in Refs. [33, 65–67], the influence of these effects on the total proba-
bility and positron energy spectra should be small. To quantitatively assess the role
of the rotational coupling on the pair-creation we developed two methods of incor-
porating it into our code. By using these methods we quantitatively demonstrated
that the rotational coupling can be safely neglected when considering pair-creation
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probabilities for low-energy near head-on collisions. Investigation of its impact on
the positron energy and angular distributions is currently under way.

Purpose

The main goal of the present study is the search for an experimental scenario
that would allow one to observe signatures of the transition to the supercritical
regime in low-energy collisions of heavy nuclei. This requires development of an
effective numerical technique allowing one to nonperturbatively examine the process
of the electron-positron pair-creation occurring in such collisions. To achieve the
stated goal, the following objectives have to be accomplished:

1. Derivation of the calculation formulas.

2. Development of the numerical code for nonperturbative solution of the time-
dependent Dirac equation in the monopole approximation and its testing by
comparison with the available data.

3. Carrying out extensive calculations of the pair-creation probabilities and the
positron energy spectra for a wide range of collision parameters, i.e. charge
numbers, collision energies, and impact parameters.

4. Analysis of the obtained data looking for signatures of the transition to the
supercritical regime.

5. Extension of the numerical code beyond the scope of the monopole approxima-
tion.

6. Investigation of the impact the higher-order terms of the multipole expansion
of the time-dependent nuclear potential has on the results obtained earlier in
the monopole approximation.

Scientific novelty

The main results of this research concerning the qualitative changes of both the
pair-creation probabilities and the positron energy spectra following the transition
to the supercritical regime in collisions of heavy nuclei have not been demonstrated
before, and thus are novel. The developed technique of nonperturbative numerical
calculations of the probabilities and the spectra within and beyond the monopole
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approximation which allowed us to reveal these changes is novel as well. This is
confirmed by the fact of publication of our findings in high-impact scientific journals
and their presentation at national and international conferences.

Theoretical and practical significance

The found qualitative changes in the behavior of the pair-creation probabilities
and the positron energy spectra represent the first indications of the supercritical
transition occurring in heavy-nuclei collisions. They do not require a transient for-
mation of a bound nuclear compound, also referred to as the nuclear sticking, as it
was thought to be necessary before. These signatures of the supercritical transition
can be experimentally observed in impact parameter sensitive measurements of the
positron yield.

Methodology and research methods

The calculation method numerically implemented in the present research is
based on the formalism of quantum electrodynamics in the Furry picture. Within
this formalism the physical quantities of interest to us are expressed in terms of
one-electron transition amplitudes. The one-electron wave functions are found by
numerically solving of the time-dependent Dirac equation within a finite one-center
static basis set. The radial part of the basis functions are described with B-splines,
for the angular part the spherical spinors are used.

Approbation of the research

The findings of the investigation were reported and discussed at the following
conferences:

• 18th Topical Workshop of the Stored Particles Atomic Physics Research Col-
laboration (SPARC 2021), September 6–9, 2021.

• 56th Winter School of Petersburg Nuclear Physics Institute NRC KI, March
17-22, 2024.

The results obtained within this study were published in 3 articles (the journals
are recommended by the Higher Attestation Commission of the Russian Federation
and included in the RSCI, Web of Science and Scopus databases):



10

• R. V. Popov, A. I. Bondarev, Y. S. Kozhedub, I. A. Maltsev, V. M. Shabaev,
I. I. Tupitsyn, X. Ma, G. Plunien, and T. Stöhlker, One-center calculations of
the electron-positron pair creation in low-energy collisions of heavy bare nuclei,
Eur. Phys. J. D 72, 115 (2018).

• R. V. Popov, V. M. Shabaev, D. A. Telnov, I. I. Tupitsyn, I. A. Maltsev, Y. S.
Kozhedub, A. I. Bondarev, N. V. Kozin, X. Ma, G. Plunien, T. Stöhlker, D. A.
Tumakov, and V. A. Zaytsev, How to access QED at a supercritical Coulomb
field, Phys. Rev. D 102, 076005 (2020).

• R. V. Popov, V. M. Shabaev, I. A. Maltsev, D. A. Telnov, N. K. Dulaev, and
D. A. Tumakov, Spontaneous vacuum decay in low-energy collisions of heavy
nuclei beyond the monopole approximation, Phys. Rev. D 107, 116014 (2023).

Personal contribution of the author

All of the main findings were obtained personally by the applicant or in work
of joint authorship.

Thesis structure

The thesis consists of Introduction, five Chapters, Conclusion, and a list of
references. The thesis contains 84 pages, 25 figures, and 4 tables. The list of
references includes 82 items.

• In Introduction we describe the relevance of the topic, its elaboration, the
purpose and main objectives of this investigation, its novelty, significance and
methods. Finally, we formulate the main statements to defend and discuss the
approbation of the research conducted.

• In Chapter 1 we make a short overview of the supercritical resonance and the
process of spontaneous vacuum decay.

• In Chapter 2 we briefly outline the formalism of quantum electrodynamics with
unstable vacuum in the Furry picture and elucidate the main steps in derivation
of the formulae that underlie the calculation technique.

• In Chapter 3 we elaborate on the set of collision trajectories used to observe
the transition to the supercritical regime.
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• In Chapter 4 we describe the core components of the numerical calculation
technique and discuss the results obtained in the monopole approximation.

• In Chapter 5 the numerical algorithm is extended beyond the monopole ap-
proximation and the influence of the higher-order multipole terms of the two-
center nuclear potential is examined.

• In Conclusion we recapitulate the major findings of the present research.

Main scientific results

1. A program has been developed for one-center nonperturbative calculations of the
electron-positron pair-creation probabilities in low-energy collisions of heavy nu-
clei beyond the monopole approximation. Calculations of the electron-positron
pair-creation probabilities in head-on collisions of uranium nuclei have been
carried out, see Ref. [56] (personal contribution is 80%).

2. Investigation of the pair-creation probability and the positron energy spectra
have been performed within the framework of the monopole approximation for
a wide range of nuclear charge numbers, collision energies and impact param-
eters, including both subcritical and supercritical values. Qualitative changes
have been found in the energy spectra of positrons during the transition to the
supercritical regime in collisions of heavy nuclei with a fixed distance of the
closest approach, see Ref. [60] (personal contribution is 75%).

3. The behavior of the electron-positron pair-creation probability and the positron
energy spectra at the transition to the supercritical regime in collisions of heavy
nuclei has been studied beyond the monopole approximation. It is shown that
taking into account higher-order terms in the multipole decomposition of the
two-center potential of nuclei preserves all the signatures of the transition to
the supercritical regime found within the monopole approximation, see Ref. [62]
(personal contribution is 90%).
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Thesis statements to be defended

The statements read:

1. A numerical method for nonperturbative calculations beyond the monopole ap-
proximation of the electron-positron pair-creation probabilities and the positron
energy spectra in low energy-collisions of heavy nuclei was developed.

2. The pair-creation probabilities and the energy spectra of emitted positrons near
the supercritical transition were investigated for a wide range of the collision
energies, impact parameters, and the nuclei charge numbers.

3. A qualitative changes of the positron energy spectra were revealed at the transi-
tion from the subcritical to the supercritical regime in collisions of heavy nuclei
with fixed distance of the closest approach.

4. Taking into account higher-order terms in the multipole expansion of the two-
center nuclear potential retains the signatures of the supercritical transition
found in the monopole approximation.
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Chapter 1. Supercritical resonance. Short
overview

In this section, we will dwell a little more on the nature of the supercritical
resonance and its connection with the decay of the QED vacuum. We will start
by considering the behavior of the bound-state energies of hydrogen-like ions with
the nuclear charge number growing beyond the point-charge limit Z = 137. The
energy of a bound state in the case of one-electron ion with a point-like nucleus can
be found analytically with the help of the well known Zommerfeld fine-structure
formula

Enκ =
mc2√

1 +

(
αZ

n−|κ|+
√
κ2−(αZ)

2

)2
. (1.1)

Here n is the principal quantum number, κ = (−1)j+l+1/2(j+1/2) is the relativistic
angular-momentum–parity quantum number, α ≈ 1/137 is the fine structure con-
stant, m is the electron mass, and c is the speed of light. It is readily seen that

the formula (1.1) is valid only when the square root
√
κ2 − (αZ)2 is real, i.e. for

Z ≤ |κ|/α. The lowest energy 1s state has κ = −1. Therefore, one can use (1.1)
only for Z ≤ 137. For Z > 137 the standard procedure for construction of the rela-
tivistic self-adjoint Hamilton operator with the pure Coulomb potential fails and one
has to turn to special methods to overcome this problem (see, e.g., Refs. [68–70]).
This issue can be avoided by employing a more realistic model of the nuclear charge
distribution, e.g. homogeneously charged shell, sphere or the Fermi model. In a pi-
oneering work [5] Pomeranchuk and Smorodinsky examined the dependence of the
bound state energies of one-electron ions on the nuclear charge utilizing the shell
model of the nuclear charge distribution. They found out that the energy of the
1s state continuously goes down with increasing Z, becomes negative and at some
critical value Zcr reaches the border of the lower continuum. Although Zcr turned
out to be overestimated, this work opened the question of what happens when a
bound energy level dives into the lower continuum with the increase of the nuclear
charge beyond the critical value. The dependence of a few low-lying bound states on
Z, obtained in our calculations with the nuclear model of homogeneously charged
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Figure 1: Dependence of the lowest bound state energies of hydrogen-like ions on
the nuclear charge Z.

sphere, is illustrated in the Fig. 1. For comparison, we plotted also the dashed line
corresponding to the 1s level of H-like ions with point-like nucleus.

Despite the fact that atoms with charge numbers close to Zcr do not exist,
the question stated above retains its significance. This is because the scenario of a
bound state entering the negative-energy continuum can be experimentally realized
in low-energy collision of two heavy ions, given that the total charge ZA+ZB exceeds
the critical value Zcr. In this case, instead of atomic, one deals with quasimolecular
energy levels, which are temporarily formed when the relatively slow moving ions get
close to each other. The behavior of the lowest-lying quasimolecular levels during a
collision is demonstrated in Fig. 2. It is seen from the picture that for a short period
of time denoted as τcr, when the internuclear distance R(t) becomes less than a
certain value, the 1sσ state ceases to exist diving in the negative-energy continuum.
The internuclear distance Rcr at which this occurs is referred to as critical. During
this time, the corresponding bound energy level transforms into a resonance. For
illustration purposes, a nonlinear time scale is used in Fig. 2, the real duration of
τcr is significantly smaller. The emergence of the resonance is related to appearance
of a barrier in the effective potential of the electron for ions with for Z > Zcr

and ε ≲ −mc2 (see eg. Refs. [12, 43]). As it is well known, the variables in the
Dirac equation for a spherically symmetric potential V (r) can be separated. The
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Figure 2: Lowest-lying energy levels of U183+
2 quasimolecule formed in a low-energy

collision as functions of time.

stationary Dirac equation in this case reads

(
α · p+ βm+ V (r)

)
ψ(r) = εψ(r) (1.2)

where α, β — are the Dirac matrices. Here and further we use the relativistic units
(ℏ = c = 1), but sometimes we explicitly write the light speed c for clarity. The
solution of the equation (1.2) can be expressed as a bispinor

ψ(r) =
1

r


 G(r)Ωκµ(n)

iF (r)Ω−κµ(n)


 , (1.3)

where Ωκµ(n) — is a spherical spinor [71]. Substituting the wave function in this
form into the equation (1.2), one obtains the system of two first order differential
equations on the radial components [72]:

(
d

dr
+
κ

r

)
G− (m+ ε− V )F = 0, (1.4)

(
d

dr
− κ

r

)
F − (m− ε+ V )G = 0. (1.5)

Using the first equation one can express the small component of the wave function,
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r

Ueff

0

Figure 3: Effective potential for electron with κ = −1 and ε = −mc2

F , through a large component, G. Then, substituting it into the second equation,
one obtains the equivalent differential equation of the second order:

G′′ +
V ′

m+ ε− V

(
G′ +

κ

r
G

)
+

[
(ε− V )2 −m2 − κ(κ+ 1)

r2

]
G = 0. (1.6)

Utilizing the substitution G = χ
√
m+ ε− V , Eq. (1.6) can be written as

χ′′ + k2χ = 0, (1.7)

where k2 = 2(E − Ueff), E = 1
2(ε

2 −m2), and Ueff is an effective potential, which
depends on ε. In a particular case of the Coulomb potential V = −αZ/r, κ = −1

and ε = −m the potential Ueff has the form

Ueff =
mαZ

r
− 4(αZ)2 − 3

8r2
. (1.8)

As can be seen from the Fig. 3, the effective potential has a wide barrier.
In order to understand what happens with the Coulomb system when its

bound state dives into a negative-energy continuum we need to recall the definition
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of the relativistic current operator. We use the following definition

ĵµ(x) =
e

2

[
ψ̂(x), γµψ̂(x)

]
, (1.9)

where e is the electron charge, [Â, B̂] = ÂB̂ − B̂Â stands for the commutator of
operators Â and B̂, γµ is the 4-vector of the Dirac matrices, ψ̂ is the electron-
positron field operator, and ψ̂ = ψ̂†γ0. In particular, we are interested in the zeroth
component of the current, which represents the electron charge density operator

ρ̂(x) =
e

2

[
ψ̂†(x), ψ̂(x)

]
. (1.10)

The mean value of ρ̂ evaluated for the vacuum state gives the well known vacuum-
polarisation charge density

ρvac(x) = ⟨0
∣∣ρ̂(x)

∣∣ 0⟩ = e

2


 ∑

εn≤−mc2

∣∣ψn(x)
∣∣2 −

∑

εn>−mc2

∣∣ψn(x)
∣∣2

 . (1.11)

Suppose that the two nuclei have a total charge ZA + ZB > Zcr. In the subcritical
case, i.e. when R > Rcr, the total charge of the system evaluated as the spatial
integration of ρvac(x) yields zero:

Qvac =

∫
dxρvac(x) = 0. (1.12)

Thus, the vacuum is said to be electrically neutral. Now, let us look at what
happens at the verge of supercriticality. To this end, it is convenient to separate
the contribution of the lowest-energy bound state to the total charge density. For
R = Rcr + δR, where δR is infinitesimally small, we have

ρvac(x) =
e

2


 ∑

εn≤−mc2

∣∣ψn(x)
∣∣2 − 2

∣∣ψ1sσ(x)
∣∣2 −

∑

εn>−mc2; εn ̸=ε1sσ

∣∣ψn(x)
∣∣2

 . (1.13)

The factor of two in front of the 1sσ contribution stems from the two projections
of the total angular momentum on the internuclear axis. Since the density ρ(x)

continuously depends on R, when R is slowly decreased to the point R = Rcr− δR,
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ρvac will approximately stay unchanged

ρ′vac(x) ≈
e

2


 ∑

εn≤−mc2

∣∣ψn(x)
∣∣2 − 2

∣∣ψ1sσ(x)
∣∣2 −

∑

εn>−mc2; εn ̸=ε1sσ

∣∣ψn(x)
∣∣2

 . (1.14)

This is the charge density of the subcritical vacuum state in the supercritical poten-
tial. The supercritical vacuum state is defined in a regular way as a state in which
all the energy levels with energies εn ≤ −mc2 are occupied with electrons, and the
ones with εn > −mc2 are empty. The only difference with the subcritical case is
is the absence of the 1sσ state in the energy spectrum. But the contribution of
this state to the charge density does not disappear. When the 1sσ state joins the
negative energy-continuum, the continuum wave functions get distorted in such a
way that the charge density associated with the 1sσ state becomes distributed over
a range of them in a resonant manner. The supercritical vacuum can be obtained
from the subcritical state with occupied 1sσ shell by adiabatically slow decrease of
the internuclear separation R over the critical value. Due to continuity of ρ with
respect to R, one can approximately express the supercritical vacuum charge density
ρcrvac(x) as

ρcrvac(x) ≈
e

2


 ∑

εn≤−mc2

∣∣ψn(x)
∣∣2 + 2

∣∣ψ1sσ(x)
∣∣2 −

∑

εn>−mc2; εn ̸=ε1sσ

∣∣ψn(x)
∣∣2

 . (1.15)

Comparing Eqs. (1.14) and (1.15), it is readily seen that ρcrvac(x) differs from the
ρ′vac(x) by the density of the submerged 1sσ shell 2

∣∣ψ1sσ(x)
∣∣2. Although, the ap-

proximate expression (1.14) of the charge density in the supercritical regime is valid
only for R(t) ≈ Rcr, the qualitative picture remains the same until the next bound
state joins the lower continuum. Thus, for R(t) ≤ Rcr we have a system in state
with two vacancies spread over the lower continuum. Initially these vacancies are
localised near the nuclei. But within a certain period of time they can go through
the potential barrier, like the one depicted in Figure 3, and escape to infinity as
positrons. This process is called spontaneous electron-positron pair creation.

However, the actual nuclear collisions are not adiabatically slow but happen
at finite speeds. In this case there exists an additional pair-creation mechanism
referred to as dynamic or induced. Due to time-dependence of the nuclear potential
the electrons in the negative-energy continuum can be exited to bound states or
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positive-energy continuum. The energy required for this transition is taken from the
kinetic energy of the nuclei. Figure 2 illustrates all possible ways an electron-positron
pair can be created during a collision. Channels a, b and c correspond to the dynamic
mechanism. The remaining channel d demonstrates the spontaneous mechanism. It
is seen from the figure that in contrast to the spontaneous pair creation, which can
happen only for a short period of time τcr, the dynamic mechanism is active during
the whole collision process.
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Chapter 2. General formalism

For nonperturbative description of the pair-creation process we employ the for-
malism of quantum electrodynamics in the presence of a strong external field [23,73].
In our case, this field is induced by two colliding heavy nuclei, which are considered
as classical finite-size particles moving along the hyperbolic Rutherford trajectories.
Within the zeroth order of perturbation theory with respect to interaction with the
quantized electromagnetic field, the Lagrangian density is given as

L = ˆ̄ψ
(
i∂µ − eAext

µ

)
γµψ̂ −m ˆ̄ψψ̂. (2.1)

Here ψ̂ represents the operator of the electron-positron field, ˆ̄ψ = ψ̂†γ0 is the Dirac
adjoint operator, m is the electron mass, γµ are the Dirac matrices, and Aext

µ de-
notes the classical external field. Since we consider collisions with energies near the
Coulomb barrier, the internuclear velocity appears to be relatively small. Therefore,
the 4-potential Aext

µ can be approximated with a good accuracy by its scalar part,
neglecting the vector component

Aext
0 = V (r, t), (2.2)

Aext
i = 0, i = 1, 2, 3. (2.3)

Here V (r, t) is the time-dependent Coulomb potential of the colliding nuclei

V (r, t) = VA
(
|r −RA(t)|

)
+ VB

(
|r −RB(t)|

)
, (2.4)

VA,B(r) =
e

4π

∫
dr′ρA,B(r

′)

|r − r′| , (2.5)

where RA,B(t) are the nuclear coordinates and ρA,B(r) are the nuclear charge den-
sities. The latter are described by the model of homogeneously charged sphere.

According to the canonical quantization procedure, the momenta conjugate
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to the electron-positron field read

pψ =
∂L
∂
˙̂
ψ

= i ˆ̄ψγ0, (2.6)

pψ̄ =
∂L
∂
˙̄̂
ψ

= 0. (2.7)

This leads to the Hamiltonian

Ĥ(t) =

∫
dx ˆ̄ψ(x)

(
−iγ ·∇+m+ eγµAext

µ (x)
)
ψ̂(x) =

∫
dxψ̂†(x)H(t)ψ̂(x), (2.8)

whereH(t) = α·p+mβ+V (r, t) is the Dirac Hamiltonian. To ensure that the Dirac
field, describing spin-12 particles, complies with the Pauli exclusion principle, the
following anticommutation relations, taken at the same time x0 = y0, are imposed
onto the operators ψ̂ and ˆ̄ψ:

{
ψ̂(x), ψ̂(y)

}
=
{
ˆ̄ψ(x), ˆ̄ψ(y)

}
= 0,

{
ψ̂(x), ˆ̄ψ(y)

}
= γ0δ(x− y), x0 = y0.

(2.9)

The time dependence of an arbitrary operator Â in the Heisenberg represen-
tation is governed by equation

∂tÂ(r, t) = i
[
Ĥ(t), Â(r, t)

]
. (2.10)

Therefore, combining expressions (2.8)–(2.10), one arrives at the following equation
describing the time evolution of the electron-positron field operator ψ̂:

i∂x0ψ̂(x) = H(x0)ψ̂(x). (2.11)

Let us now introduce two sets of solutions of the time-dependent Dirac equa-
tion

i∂x0φ(x) = H(x0)φ(x), (2.12)

namely the so called in- and out-solutions. In-solutions will be denoted as ζφn(x),
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and out-solutions as ζφn(x), where ζ = ± is used to specify if the corresponding
solution is of the positive-energy (+) or the negative-energy (−) type. The difference
between these two sets is that the in-solutions are subject to the initial conditions





(i∂x0 −H(x0))ζφn(x) = 0,

ζφn(x)
∣∣
x0=tin

= ζϕn(x),
(2.13)

whereas the out-solutions obey the final conditions




(i∂x0 −H(x0))
ζφn(x) = 0,

ζφn(x)
∣∣
x0=tout

= ζϕn(x).
(2.14)

Here ζϕ(x) and ζϕ(x) are the eigenstates of the Dirac Hamiltonian taken at the
time tin and tout, respectively:

H(tin)ζϕn = ζεn ζϕn, (2.15)

H(tout)
ζϕn =

ζεn
ζϕn. (2.16)

The sets {ζφn(x)}, {ζφn(x)} are complete and orthonormal at any instant of time

(ζφn,ζ ′ φm) = (ζφn,
ζ ′ φm) = δζζ ′δnm, ζ, ζ ′ = ±, (2.17)

∑

ζ,n

ζφn(x)ζφ
†
n(y) =

∑

ζ,n

ζφn(x)
ζφ†

n(y) = δ(x− y), x0 = y0, (2.18)

(f, g) =

∫
dx f †(x)g(x). (2.19)

Therefore, the electron-positron field operator ψ̂(x) can be expanded over either of
them

ψ̂(x) =
∑

n

[
ân(in)+φn(x) + b̂†n(in)−φn(x)

]
, (2.20)

ψ̂(x) =
∑

n

[
ân(out)

+φn(x) + b̂†n(out)
−φn(x)

]
. (2.21)



23

The corresponding expansion of the conjugate field ˆ̄ψ(x) reads

ˆ̄ψ(x) =
∑

n

[
â†n(in)+φ̄n(x) + b̂n(in)−φ̄n(x)

]
, (2.22)

ˆ̄ψ(x) =
∑

n

[
â†n(out)

+φ̄n(x) + b̂n(out)
−φ̄n(x)

]
. (2.23)

The operators â†(in/out) and â(in/out) are referred to as the operators of creation
and annihilation of an electron in an in-/out-state. The operators b̂†(in/out) and
b̂(in/out) represent the corresponding operators of creation and annihilation of a
positron in an in-/out-state. Using the equal-time anti-commutation relations (2.9)
for ψ̂ and ˆ̄ψ, one readily obtains the following relations for the just introduced
creation/annihilation operators:

{
ân(in), âm(in)

}
=
{
â†n(in), â

†
m(in)

}
=

{
b̂n(out), b̂m(out)

}
=
{
b̂†n(out), b̂

†
m(out)

}
= 0, (2.24)

{
ân(in), â

†
m(in)

}
=
{
b̂n(in), b̂

†
m(in)

}
=

{
ân(out), â

†
m(out)

}
=
{
b̂n(out), b̂

†
m(out)

}
= δnm. (2.25)

Since the functions ζφn(x) and ζφn(x) satisfy the same time-dependent Dirac
equation as ψ̂(x), the creation and annihilation operators appear to be independent
of time. However, it should be noted that they relate to physical particles only at
certain moments of time, namely, in-operators — at tin and out-operators — at tout.
Only at these time instants the Hamiltonian (2.8) acquires a diagonal form in terms
of in-/out-operators:

Ĥ(tin) =
∑

n

[
+εn(tin)â

†
n(in)ân(in) +

∣∣−εn(tin)
∣∣b̂†n(in)b̂n(in)

]
, (2.26)

Ĥ(tout) =
∑

n

[
+εn(tout)â

†
n(out)ân(out) +

∣∣−εn(tout)
∣∣b̂†n(out)b̂n(out)

]
. (2.27)

The vacuum states are defined in a regular manner:

ân(in)|0, in⟩ = b̂n(in)|0, in⟩ = ân(out)|0, out⟩ = b̂n(out)|0, out⟩ = 0. (2.28)
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The generic form of the in-/out-states with specific occupation numbers reads

|in⟩ = â†k(in) . . . b̂
†
l (in) . . . |0, in⟩, (2.29)

|out⟩ = â†k(out) . . . b̂
†
l (out) . . . |0, out⟩. (2.30)

The quantities of interest to us are the mean numbers electrons nm and
positrons n̄m produced from the vacuum in a certain state m. They are defined
as

nm = ⟨0, in|â†m(out)âm(out)|0, in⟩, (2.31)

n̄m = ⟨0, in|b̂†m(out)b̂m(out)|0, in⟩. (2.32)

In order to calculate these matrix elements, the in-operators are to be written in
terms of out-operators. The following expressions come in helpful for this:

âm(out) =

∫
dx +φ†

m(x)ψ̂(x), (2.33)

â†m(out) =

∫
dx ψ̂†(x)+φm(x), (2.34)

b̂m(out) =

∫
dx ψ̂†(x)−φm(x), (2.35)

b̂†m(out) =

∫
dx −φ†

m(x)ψ̂(x). (2.36)

Substituting here ψ̂(x), ψ̂†(x), written in terms of in-operators, one arrives at

âm(out) =
∑

n

[
G(+|+)mnân(in) +G(+|−)mnb̂†n(in)

]
, (2.37)

â†m(out) =
∑

n

[
G(+|+)nmâ†n(in) +G(−|+)nmb̂n(in)

]
, (2.38)

b̂m(out) =
∑

n

[
G(+|−)nmâ†n(in) +G(−|−)nmb̂n(in)

]
, (2.39)

b̂†m(out) =
∑

n

[
G(−|+)mnân(in) +G(−|−)mnb̂†n(in)

]
, (2.40)
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where

G(ξ|ζ)mn =
∫
dx ξφ

†
m(x)

ζφn(x), (2.41)

G(ζ |ξ) = G(ξ|ζ)†, ξ, ζ = ±. (2.42)

Because of orthonormality and completeness of the sets {±φ(x)} and {±φ(x)}, the
matrices G(±|±), G(±|±) possess a number of properties:

∑

ξ=±
G(±|ξ)G(ξ|±) =

∑

ξ=±
G(±|ξ)G(ξ|±) = I, (2.43)

∑

ξ=±
G(±|ξ)G(ξ|∓) =

∑

ξ=±
G(±|ξ)G(ξ|∓) = 0. (2.44)

Substituting (2.37), (2.38) into (2.31) and using the permutation relations (2.24),
(2.25) and the definition of the vacuum state (2.28), one obtains the mean number
of produced electrons in a particular state m equal to [73]

nm =
(
G(+|−)G(−|+)

)
mm

. (2.45)

Analogously, the mean number of positrons is given by

n̄m =
(
G(−|+)G(+|−)

)
mm

. (2.46)

The quantity nm/n̄m can also be interpreted as the mean number of the produced
electron-positron pairs with electron/positron in a statem, while the positron/electron
can occupy any of possible state. The total numbers of the created electrons, n, and
positrons, n̄, are given as

n =
∑

m

nm, (2.47)

n̄ =
∑

m

n̄m. (2.48)

It can be readily shown that the total numbers of electrons and positrons coincide,
i.e., n = n̄. Due to the fact that the probability of creation of k + 1 electron-
positron pairs from the vacuum is several orders of magnitude smaller than the
probability production of k pairs, the mean values of created particles nm and n̄m
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are predominately determined by the probability of a single pair production. For this
reason in the thesis we use the words “pair-creation probability” and “mean number of
created pairs” interchangeably, but the actual values are always calculated according
to the formulae (2.45)–(2.48).

It should be noted that the indices in the sums and matrices above are not
exclusively discrete but run over a continuous set of values as well. However, since
in the numerical calculations we employ the finite-size basis approach, effectively we
deal with a pure discrete spectrum. Thus, direct evaluation of the energy spectra
of emitted particles according to Eqs. (2.45) and (2.46) is not possible. Therefore,
the differential probabilities dP/dε are calculated using a modified version of the
Stiltjes procedure [55]

dP

dε

(εp + εp+s−1

2

)
=

1

εp+s−1 − εp


np + np+s−1

2
+

s−2∑

i=1

np+i


 . (2.49)

Here s determines the number of energy eigenvalues εi involved in the calculation
of one point in the positron energy spectrum. With s = 2 the equation (2.49) turns
into the regular Stieltjes formula [52,53,74].
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Chapter 3. Collision trajectories

Within the scope of our calculation method the nuclei are treated classically
as uniformly charged balls. The nuclear motion is determined by the nonrelativis-
tic classical mechanics which prescribes them to follow the hyperbolic Rutherford
trajectories. Conventionally, the scattering trajectories are parameterized with a
collision energy E and an impact parameter b. In our study we focus on the be-
havior of the electron-positron pair-creation probability and the positron energy
spectra obtained in collisions with different energies E but corresponding to the
same distance of the closest approach Rmin. Hence, it turns out to be convenient
to characterize a specific trajectory with Rmin and a parameter η = E/E0, which is
the ratio of the collision energy E to the energy E0 of the head-on collision with the
same Rmin. With Rmin being fixed, the impact parameter b is related to the collision
energy E in the center-of-mass reference frame via the equation

b2 = R2
min −

αZAZB

E
Rmin, (3.1)

where α ≈ 1/137 is the fine structure constant and ZA, ZB are the colliding nuclei
charge numbers. Keeping in mind that for head-on collisions E0 = αZAZB/Rmin and
using the definition of the parameter η = E/E0, one obtains the following unique
correspondence between the conventional trajectory parameters (E, b) and our new
ones (Rmin, η)

E = ηE0, (3.2)

b = Rmin

√
1− 1/η. (3.3)

The scattering angle θ turns out to be a function of η only and is expressed as

θ = π − 2 arccos
(
1/(2η − 1)

)
. (3.4)
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Solving Eq. (3.1) for Rmin, one arrives at the inverse transformation from (E, b) to
(Rmin, η)

Rmin =
αZAZB

E
η, (3.5)

η =
1

2


1 +

√
1 +

(
2bE

αZAZB

)2

 . (3.6)

Using Eq. (3.4), η can be expressed as a function of the scattering angle θ as

η =
1

2


1 +

[
cos

(
π − θ

2

)]−1

 . (3.7)

An examples of trajectories corresponding to U92+-U92+ collisions with various
energies, E, and impact parameters, b, but having the same distance of the closest
approach Rmin = 17.5 fm are presented in Fig. 4. All trajectories of this sort are
tangent to a circle with a diameter d = Rmin. In Fig. 4 this circle is depicted with a
solid blue line. The second circle drawn with a dashed orange line outlines the region

Rmin = 17.5 fm

R
cr = 32.7 fm

E0 = 5.9 MeV/u, b = 0 fm

E
=
6.
2
M
eV
/u
, b

=
4
fm

E
=

7.4
M
eV

/u
,
b
=

8
fm

E
=
8.7

M
eV

/u,
b
=
10

fm

E = 22.1 MeV/u, b = 15 fm

Figure 4: Example of considered U92+-U92+ collision trajectories corresponding to
Rmin = 17.5 fm. The circle R = 32.7 fm delineates the boundary of the supercritical
region.
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of supercritical internuclear separations. This means that when the nuclei are inside
the regionR(t) ≤ Rcr, the lower continuum acquires a resonance originating from the
lowest-energy quasimolecular bound state reaching the energy ε1sσ(ZA, ZB, Rcr) =

−mc2. For collisions of uranium nuclei considered in the monopole approximation
the critical internuclear distance Rcr = 32.7 fm.
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Figure 5: Duration of the supercritical regime and nuclear velocity at R =
Rcr in U92+-U92+ collisions with Rmin = 17.5 fm as functions of η = E/E0

and the corresponding scattering angle θ.

The duration of the supercritical regime is determined by the time τcr the
nuclei spend in the ringRmin ≤ R(t) < Rcr (see also Fig. 2). This time monotonously
decreases with increasing η. Actual dependence of τcr on η for the case of U92+-U92+

collisions with Rmin = 17.5 fm is displayed in Fig. 5. The figure also presents the
relative nuclear velocity at the border of the supercritical region, i.e. when R(t) =
Rcr, as a function of η. In contrast to the duration τcr, this velocity monotonously
rises with η = E/E0. From general considerations it is clear that when Rmin is fixed,
the regular dynamic pair creation should intensify with growing nuclear velocity,
characterized here by the parameter η, and diminish with its decrease. On the other
hand, the reduction of the velocity positively affects the spontaneous mechanism by
extending the time interval when it is active. Therefore, keeping aside the subject of
interplay between the two mechanisms, an increase in the pair-creation probability as
η → 1 is to be considered as a signature of supercritical regime, where spontaneous
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vacuum decay becomes possible.
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Chapter 4. Calculations within the monopole
approximation

In this section we will consider the process of electron-positron creation in
low-energy collisions of heavy nuclei within the framework of the monopole approx-
imation, which takes into account only spherically symmetric part of the two-center
nuclear potential. Firstly, the procedure is described that is used for solving the
stationary Dirac equation necessary for specifying the initial conditions of the time-
dependent wave functions. After that we proceed to outlining the main points of
the technique developed to solve the time-dependent Dirac equation. And finally,
we present and discuss the results of calculations of the pair-creation probabilities
and the positron energy spectra for collisions of heavy nuclei for a wide range of the
collision parameters. The results of the research described in this chapter have been
published in the paper [60].

4.1 Stationary Dirac equation

To set the starting point for integration of the time-dependent Dirac equa-
tion for the sets of the in-/out-solutions introduced above, the eigenstates of the
Dirac Hamiltonian taken at the time instant tin/tout have to be found. The time-
dependence of the Hamiltonian is completely contained within the potential term.
In the monopole approximation, the nuclear potential is given as

V mon(r, t) =
1

4π

∫
dnV (r, t), (4.1)

V (r, t) = VA
(
|r −RA(t)|

)
+ VB

(
|r −RB(t)|

)
, (4.2)

VA,B(r) =
e

4π

∫
dr′ρA,B(r

′)

|r − r′| , (4.3)

where V (r, t) is the total two-center potential of the nuclei positioned at RA,B(t),
n = r/|r| is the unit vector directed along r. The charge density of the nuclei,
ρA,B(r), was described with the model of homogeneously charged sphere, which
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yields

V (r) =





− αZ

Rnucl

(
3

2
− 1

2

(
r

Rnucl

)2
)
, if r ≤ Rnucl,

−αZ
r
, if r > Rnucl,

(4.4)

where α ≈ 1/137 is the fine structure constant, Z is the nuclear charge number,
and Rnucl is its charge radius. The nuclear radii were calculated by the approximate
formula Rnucl = 1.2 × A1/3 fm, with A = 2.5Z being the atomic mass number.
Situated at the distance d from the origin a homogeneously charged spherically
symmetric nucleus induces the potential with the following monopole part

V mon(r; d) =





−αZ
d
, for r ≤ r−,

− αZ

R3
nucld

[
1

16r
(d−Rnucl)

3(d+ 3Rnucl)

− 1
4r

2
+(d− 2Rnucl) +

3
8(d

2 −R2
nucl) for r− < r < r+,

−1
4dr

2 + 1
16r

3
]
,

−αZ
r
, for r ≥ r+,

(4.5)

where

r+ = d+Rnucl, (4.6)

r− = d−Rnucl. (4.7)

For symmetric collisions considered in the center-of-mass reference frame the param-
eter d is equal to the half of the internuclear distance R(t). If the colliding nuclei
are of different sorts, then each of them will have its own value of the distance d
given by

dA =
MB

MA +MB
R(t), (4.8)

dB =
MA

MA +MB
R(t), (4.9)

where MA and MB denote the corresponding nuclear masses.
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Since the monopole potential (4.1) depends on time only via the internuclear
distance R(t), which has the same values at tin and tout, we have

H(tin) = H(tout). (4.10)

Therefore, only one set of eigenstates needs to be evaluated. As it was stated above,
the process of nuclear collision is treated within the finite-basis-set approach. The
radial part of the basis functions is described with B-splines [75], while the angular
part is represented by spherical spinors Ωκµ(n) [71]. To get rid of the spurious
states, we employed the dual kinetic balance method (DKB) [76].

The stationary Dirac equation for a spherically symmetric potential V (r) reads

H0φi(r) = εiφi(r), (4.11)

H0 = α · p+mβ + V (r), (4.12)

where α, β are the Dirac matrices. It is well known that for spherically symmetric
fields the stationary wave function φ can be written in the form of a single bispinor

φnκµ(r) =
1

r


 Gnκ(r)Ωκµ(n)

iFnκ(r)Ω−κµ(n)


 , (4.13)

where n is the principal quantum number, Ωκµ(n) is the spherical spinor with the
relativistic angular-momentum–parity quantum number κ = (−1)j+l+

1
2 (j + 1

2) and
z-projection of the total angular momentum µ. This form of the wave function
allows one to exclude angular variables from the equation (4.11). Then, introducing
a two-component array of the functions G(r) and F (r) as

ϕ(r) =


 G(r)

F (r)


 , (4.14)

the resulting radial Dirac equation can be expressed as

Hκϕ = εϕ, (4.15)
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where

Hκ =


 m+ V (r) − d

dr +
κ
r

d
dr +

κ
r −m+ V (r)


 . (4.16)

In a finite basis approach the function ϕ(r) is approximately expressed as a finite
sum

ϕ(r) =
2n∑

i=1

ciui(r) (4.17)

of linearly independent and square integrable two-component functions ui(r). Con-
sequently, the radial Dirac equation (4.15) transforms into a generalised eigenvalue
problem

Hκc = εSκc, (4.18)

where c = {c1, . . . , c2n} denotes the array of the expansion coefficients, Hκ; ij =

⟨ui|Hκ|uj⟩ is the Hamiltonian matrix, and Sκ; ij = ⟨ui|uj⟩ is the overlap matrix.
Solving the problem (4.18) yields a set of eigenvalues εi and eigenvectors ci (i =
1, . . . , 2n) which represent a discretized version of the H0 operator spectrum.

The gist of the DKB method is in a special choice of the basis functions ui(r),
incorporating the connection between the upper and lower components of the Dirac
bispinors, namely,

ui(r) =




πi(r)

1
2m

(
d
dr +

κ
r

)
πi(r)


 , i ≤ n, (4.19)

ui(r) =




1
2m

(
d
dr − κ

r

)
πi−n(r)

πi−n(r)


 , i > n. (4.20)

The use of basis functions of this form ensures that the matrices Hκ and H−κ have in
general different sets of eigenvalues, retaining the symmetries inherent in the Dirac
equation, e.g., charge conjugation symmetry. It should be noted that DKB approach
is applicable only for potentials that do not have singularities at the origin. The
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Coulomb potential of a point-like charge does not belong to this category due to the
singularity as r → 0. Though, this does not cause any complications to us, since
the total potential of the nuclei is finite at any point. In actual computations the
functions πi(r) were the B-splines.
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Figure 6: Example of a set of B-splines of the 3rd order constructed on the
grid ti = [0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7]

The term B-splines is a short for basis splines, which means that an arbitrary
spline function can be uniquely represented as a linear combination of B-splines
with the same order. A spline function of the nth order in turn is a piecewise
polynomial function defined on a given grid of knots. On each interval of the grid
this function has a form of a polynomial of the nth degree. For a given grid of knots
{ti}Ni=0 the B-spline of order p is represents a set of piecewise polynomial functions
Bi,p(t) of the degree p, which have a very compact support. Namely, Bi,p(t) is zero
everywhere except for the region ti ≤ t ≤ ti+p+1. This strong localisation of the B-
splines comes in quite advantageous especially for calculations beyond the monopole
approximation. The reason for this is that the work with large but sparse matrices,
appearing in such calculations, can be optimised by employing numerical algorithm
designed to efficiently deal with this sort of matrices.
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The functions Bi,p(t) can be defined recursively by relations

Bi,0(t) =





1, if ti ≤ t < ti+1,

0, otherwise,
(4.21)

and

Bi,k(t) =
t− ti
ti+k − ti

Bi,k−1(t) +
ti+k+1 − t

ti+k+1 − ti+1
Bi+1,k−1(t). (4.22)

An example of the 3rd order B-splines constructed on the grid ti = [0, 0, 0, 1, 2,
3, 4, 5, 6, 7, 7, 7] is depicted in Fig. 6. A uniform grid here is chosen for the sake
of simplicity. From the figure one can see that the first spline is equal to 1 at the
beginning of the first interval. The same holds for the last spline at the end of the
last interval of the grid. The second and the second last splines at these points have
nonzero derivatives. Other B-splines have zero values and first derivatives at the
start and end of the their intervals. The sum of all B-splines of a given degree is
unity

∑

i

Bi,k(t) = 1. (4.23)

B-splines can be used for approximation of functions with different smoothness at
the knots. The number of continuous derivatives is naturally set by appropriate
number of repetitive knots in the grid. The more knots coincide the less smooth
function is obtained. To satisfy the zero boundary conditions imposed on wave
functions we exclude the first and the last B-splines from the basis set.

4.2 Time-dependent Dirac equation

Having examined the stationary states, which determine the initial and final
conditions, let us proceed to description of their time evolution during a collision. To
calculate the electron-positron pair-creation probability according to the formulae
(2.45)–(2.46), one needs to know the wave function at the time instant tout. For
this, the time-dependent Dirac equation subject to certain initial conditions needs
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to be solved




(
i∂t −H(t)

)
φi(r, t) = 0

φi(r, tin) = ϕi(r),
(4.24)

where

H(t) = α · p+mβ + V mon(r, t), (4.25)

H(tin)ϕi(r) = εiϕi(r), (4.26)

and V mon(r, t) stands for the monopole part of the total two-center potential of the
nuclei, defined by Eq. (4.1).

The time-dependent wave function φi(r, t) is decomposed over the basis set
consisting of the eigenstates of the Hamiltonian H(tin),

φi(r, t) =
∑

j

aji(t)e
−iεjtϕj(r). (4.27)

Substituting this decomposition into Eq. (4.24), multiplying it from the left by
eiεktϕ†k(r) and performing spatial integration, we arrive at the following set of equa-
tions on the expansion coefficients aki(t):

i∂taki(t) =
∑

j

Vkj(t)aji(t)e
i(εk−εj)t, (4.28)

Vkj(t) = ⟨ϕk|V mon(r, t)− V mon(r, tin)|ϕj⟩. (4.29)

Since the monopole potential is spherically symmetric, the angular integration in
Eq. (4.29) leads to the Kronecker deltas for angular symmetry related quantum
numbers κ and µ of the corresponding bra- and ket- states:

Vkj(t) = δκkκjδµkµj

∫
drρkj(r)

[
V mon(r, t)− V mon(r, tin)

]
, (4.30)

with

ρkj(r) = Fk(r)Fj(r) +Gk(r)Gj(r). (4.31)

The remaining radial part of the matrix element Vkj(t) is evaluated numerically
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using Gauss-Legendre quadratures.
As a result, the partial differential equation (4.24) is replaced with the equiv-

alent system of ordinary differential equations:



i∂tai(t) =M(t)ai(t),

aji(tin) = δji,
(4.32)

where ai(t) = {a1i(t), . . . , aNi(t)} and

Mkj(t) = Vkj(t)e
i(εk−εj). (4.33)

To solve this system we employ the Crank-Nicolson scheme [77], which imposes
the following relation on the expansion coefficients taken at adjacent time steps
separated by an interval ∆t:

ai(t+∆t) ≈ U(t+∆t, t)ai(t), (4.34)

where the matrix U is defined as

U(t+∆t, t) =

[
I + i

∆t

2
M

(
t+

∆t

2

)]−1 [
I − i

∆t

2
M

(
t+

∆t

2

)]
, (4.35)

and I is the identity matrix. The advantages of this scheme is that it conserves the
normalisation of the wave function, does not require diagonalisation of the matrix
M(t) and provides the error of the expression (4.34) on the level of O(∆t3). In actual
calculations, instead of evaluating the matrix U(t + ∆t, t) we solve the system of
linear equations

[
I +

i∆t

2
M(t+∆t/2)

]
ai(t+∆t) =

[
I − i∆t

2
M(t+∆t/2)

]
ai(t). (4.36)

Finally, the matrices G(ζ |ξ) in Eqs. (2.45) and (2.46) for mean numbers of
created electrons end positron are related to the expansion coefficients a(t) as

G(ζ |ξ)ij = aij(tout), (4.37)

where ζ = + if the ith out-state has a positive energy and ζ = − otherwise. The
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same rule applies for ξ and in-states.

4.3 Results

Using the technique described above we performed a detailed investigation
of the electron-positron pair-creation probabilities and the positron energy spectra
for low-energy collisions of heavy nuclei in a broad range of collision parameters.
The energy of a quasimolecular bound state and the parameters of the correspond-
ing supercritical resonance are mostly determined by three parameters: the charge
numbers of the nuclei ZA,B and the internuclear distance R. In order to enter
the supercritical region, all these parameters should have appropriate values. The
border of the supercritical domain of collision parameters is given by the equation
ε1sσ(ZA, ZB, Rmin) = −mc2. With this in mind, we studied the behavior with re-
spect to the parameter η = E/E0 of the pair-creation probabilities and the positron
energy spectra when the supercritical regime is activated by increasing the total
nuclear charge Ztot beyond Zcr and by decreasing the minimal internuclear distance
Rmin below Rcr. The basis set included functions with |κ| = 1, that were shown to
give the dominant contribution to the process under consideration. Since the states
with different values of κ or µ do not get mixed by a spherically symmetric poten-
tial, we assembled the basis sets from functions with µ = −1

2 only and carried out
the calculations for κ = −1 and κ = 1 independently. The obtained results were
then summed and doubled. For calculations of the probabilities we used B-splines
of the 9th order constructed on a radial grid with 200 nodes distributed exponen-
tially. In calculations of the positron spectra we utilised B-splines of the same order
constructed on a polynomial grid with 400 nodes.

4.3.1 Pair-creation probabilities

Figure 7 represents the pair-creation probability as a function of η = E/E0

and Z = ZA = ZB for symmetric collisions with the distance of the closest approach
Rmin = 17.5, 25, 35, 50 fm. For the largest charge number considered in Fig. 7, i.e.,
Z = 96, the critical value of the internuclear distance is approximately equal to 48

fm. This means that the pair-creation in collisions with Rmin = 50 fm is of pure
dynamical origin. The top left pane of Fig. 7 shows that in this case the pair-creation
probability monotonically decreases as η → 1 for each Z. As the distance of the
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Figure 7: Probability of e−e+ pair creation in symmetric collisions as a function of
the nuclear charge Z and the parameter η = E/E0, obtained for various distances
of the closest approach Rmin.

closest approach gets smaller, the systems of colliding nuclei with large enough Z

begin to spend some time in the supercritical regime, i.e., with the resonance in
the negative-energy continuum. This entails a significant change in the behavior of
the pair-creation probability as a function of η. The change is most pronounced for
the smallest regarded Rmin = 17.5 fm with the critical charge Zcr ≈ 87.5. As it
is illustrated on the bottom right pane of Fig. 7, the monotonous decrease of the
pair-creation probability as η → 1, taking place for Z < Zcr, gradually transforms
to the increase for sufficiently large charge numbers.

This transition from decrease to increase can be traced in more detail in Fig. 8,
which depicts the contribution of the s (κ = −1) and p1/2 (κ = 1) states to the
pair-creation probability as functions of η for a number of charge numbers and
Rmin = 17.5 fm. Figure 8 reveals that already for Z = 92 the contribution of s states
exhibits an increase as η → 1, which gets compensated in the total probability by the
decrease of the p1/2 contribution. The difference in η-dependence of the contributions
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Figure 8: Probability of e−e+ pair creation in symmetric collisions as a function
of η = E/E0 obtained for Rmin = 17.5 fm. The green dotted line represents the
contribution of p1/2 states, the orange dashed line corresponds to s states, and the
solid blue line is the sum of s and p1/2 contributions.

of s and p1/2 channels is due to different values of the critical charge at which 1s

and 2p1/2 states reach the border of the negative-energy continuum. For instance,
for Rmin = 17.5 fm, it happens at Z1s

cr /2 ≈ 87.5 for 1s state and at Z2p1/2
cr /2 ≈ 95

for 2p1/2 state.
Figure 9 displays the dependence of the pair-creation probability on Rmin and

η for symmetric collisions with ZA = ZB = 96. As in Fig. 7, where the distance of
the closest approach was fixed, here we see that the decrease of the probability as
η → 1, typical for the dynamic mechanism, gives place to the increase when Rmin

gets sufficiently smaller than the critical distance Rcr ≈ 48 fm.
An important characteristic, which makes the tendency of the pair-creation

probability to change its behavior in the supercritical region more lucid is the deriva-
tive dP/dη of the probability with respect to the parameter η. Figure 10 represents
the derivative dP/dη as a function of the nuclear charge Z = ZA = ZB and the
distance of the closest approach Rmin. There is an unambiguous correspondence be-
tween the parameter η and the scattering angle θ expressed in Eqs. (3.4) and (3.7).
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Figure 9: Probability of e−e+ pair creation in symmetric collisions with ZA = ZB =
96 as a function of Rmin and η = E/E0.
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Figure 10: Derivative of the e−e+ pair-creation probability dP/dη as a function of
Z = ZA = ZB and Rmin. Black solid curve outlines the border of the supercritical
domain of collision parameters.

The data plotted in Fig. 10 corresponds to the scattering angles θ = 60°, 180°. The
black solid line delineates the border of the supercritical domain of collision param-
eters located in the bottom right corner. In accordance with the above said, in the
subcritical domain the derivative dP/dη is positive and furthermore increases when
moving in the direction of larger Z and smaller Rmin. However, after crossing the
border of the supercritical region, the increase of dP/dη gives way to the decrease
and when the point (Z,Rmin) is deep enough in this region the derivative becomes
negative.

Individual contributions of s (κ = −1) and p1/2 (κ = 1) states to dP/dη are
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Figure 11: Derivative of the e−e+ pair-creation probability dP/dη at η = 1 (θ =
180°) as a function of: a) Z with Rmin = 17.5 fm, b) Rmin for Z = 96. Vertical
lines mark the values of the abscissa at which the energies of 1s and 2p1/2 states are
equal to −mc2. On the upper pane the left line corresponds to 1s state, right — to
2p1/2. On the lower pane the left line corresponds to 2p1/2 state, right — to 1s.

depicted in Fig. 11. Figure 11a represents these contributions as functions of the
charge number Z = ZA = ZB with Rmin = 17.5 fm, and Fig. 11b depicts them
as functions of the distance of the closest approach Rmin for ZA = ZB = 96. Both
plots clearly show that the behavior of a contribution undergoes a substantial change
once the corresponding lowest-energy bound state reaches the border of the negative
energy continuum.
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Figure 12: Energy-spectra of the positrons produced in symmetric collisions with
Rmin = 17.5 fm. Here η = E/E0 is the ratio of the collision energy E to the energy
of the head-on collision with the same Rmin.

4.3.2 Positrons energy spectra

Having studied the dependence of the pair-creation probability on the parame-
ter η = E/E0, which demonstrated a significant change in the supercritical region of
collision parameters, we investigated η-dependence of energy spectra of the positrons
produced in low-energy collisions of heavy nuclei. Figure 12 represents the positron
energy spectra obtained for symmetric collisions with Z = ZA = ZB = 83 − 96,
Rmin = 17.5 fm and η = 1, 1.1, 1.2. Individual contributions of s (κ = −1) and p1/2
(κ = 1) states to the positron spectra are given in Figs. 13 and 14, correspondingly.
As it was already stated above, these channels almost completely determine the to-
tal pair-creation probability. In the case of Rmin = 17.5 fm, the supercritical regime
starts at Z ≈ 87.5 for the 1s state and at Z ≈ 95 for the 2p1/2 state. Figures 13
and 14 display a substantial transformation of η-dependence of the positron spectra,
once the respective channel becomes supercritical. Namely, for subcritical charge
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Figure 13: Contribution of s (κ = −1) states to the positron spectra for symmetric
collisions with Rmin = 17.5 fm. Here η = E/E0 is the ratio of the collision energy
E to the energy of the head-on collision with the same Rmin.

numbers, the curves obtained for larger values of η are located above the ones cor-
responding to smaller η. However, once the charge number passes the critical value,
the relative position of the curves near the peak gets inverted and the spectra cal-
culated for larger η lie under the ones for smaller η. Though, the positioning of
the tails remains unchanged. The total spectra depicted in Fig. 12, with the main
contribution provided by s states, rather closely follow the behavior illustrated in
Fig. 13. A possible explanation of this change might be the following. The sponta-
neous pair creation, active in the supercritical regime, monotonously depends on the
time τcr the bound state spends in the negative-energy continuum as a resonance.
Therefore it is more pronounced for smaller η (see Fig. 5). Besides, the energies of
the positrons originating from the supercritical resonance decay are confined within
a certain region. For instance, in the case of U92+-U92+ collisions, the energy of
the spontaneous positrons should mostly be below the bound of 600 keV. Indeed,
let us first consider a hypothetical adiabatically slow collision, when transitions in-
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Figure 14: Contribution of p1/2 (κ = 1) states to the positron spectra for symmetric
collisions with Rmin = 17.5 fm. Here η = E/E0 is the ratio of the collision energy
E to the energy of the head-on collision with the same Rmin.

duced by the time-dependence of the total nuclear potential can be neglected. In
this scenario, positrons are created exclusively due to the spontaneous mechanism
and their energy distribution is determined by the position εres

(
R(t)

)
and width

Γres
(
R(t)

)
of the supercritical resonance as composite functions of time, R(t) is the

internuclear distance. A qualitative behavior of the positron spectrum for this case
is depicted, for example, in Fig. (4) of Ref. [15]. Both the energy and the width of
a supercritical resonance monotonously increase with decreasing R. According to
Refs. [46, 47], the position of the resonance for two uranium nuclei with R = 16 fm
corresponds to the peak energy of the emitted positrons of about 300 keV with the
natural width of less than 2 keV. In real collisions, finite duration of the supercritical
regime, τcr, leads to appearance of an additional width, which greatly exceeds the
value of the natural one. This additional width can be roughly estimated by the
uncertainty principle Γdyn ∼ ℏ/τcr and with τcr ∼ 2×10−21 s (see Fig. 5) one obtains
Γdyn ∼ 300 keV. Thus, the energy of spontaneous positrons gets distributed over
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the interval from 0 to 600 keV. A major consequence of such a large value of the
dynamical width is that it prevents the emergence of sharp resonance structures in
the spectra. Together with the interference between the spontaneous and dynamic
mechanisms, this make the transition to the supercritical regime smooth. Despite
this fact, the qualitative changes in the positron spectra, especially when compar-
ing the subcritical Bi83+-Bi83+ and supercritical Cm96+-Cm96+ collisions, should be
regarded as an unambiguous proof of the access to the supercritical regime. This
claim is also corroborated by the positron spectra obtained for head-on U92+-U92+

collisions with various Rmin demonstrated in Fig. 15. As in the case of fixed Rmin

and varying Z, the same change of the positron spectra layout takes place when
Rmin drops past the critical value Rcr = 32.7 fm.
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Figure 15: Energy spectra of the positron created in symmetric collisions with Z =
ZA = ZB = 92. Here η = E/E0 is the ratio of the collision energy E to the energy
of the head-on collision with the same Rmin.

Looking closely at Figs. 12–15, one can notice that the changes in the positron
spectra associated with the transition to the supercritical regime are mostly concen-
trated at the area near the maximum and on the left from it. This area matches the
energy region where the spontaneous pair-creation takes place. This circumstance
can be taken advantage of to improve the quantitative characteristic of the transi-
tion to the supercritical regime. The probability P in dP/dη represents the integral
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Figure 16: Definition of the partial pair-creation probability Px.

of the differential probability dP/dε over the whole range of the positron energies

P =

∫ ∞

0

dP

dε
dε. (4.38)

By focusing only on the energy interval where the spontaneous mechanism can
contribute, it is possible to construct a characteristic, which is more sensitive to
the supercritical transition compared to dP/dη. To this end, we introduce a partial
probability Px defined as the probability of creating an electron-positron pair with
the positron energy in the interval 0 ≤ ε ≤ ε(x),

Px =

∫ ε(x)

0

dP

dε
dε, x ∈ [0, 1]. (4.39)

Here ε(x) is the bigger one of the two positron energies for which the differential
probability calculated for head-on collision (η = 1) amounts to (1 − x) part of its
peak value, i.e. dP/dε

∣∣
ε=ε(x)

= (1 − x)max
{
dP/dε

}
. The visualisation of this

definition of Px can be found in Fig. 16. According to the definition, when x = 0

the cutoff energy ε(x) coincides with the position of the peak in the spectra for the
head-on collisions. The case x = 1 corresponds to the energy ε(x) for which the
differential probability is equal to zero. This happens at infinity, which means that
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Figure 17: Derivative d lnPx/dη at η = 1, obtained for various x in symmetric
collisions with Rmin = 17.5 fm. The vertical line at Z ≈ 87.5 marks the border of
the supercritical region.

with x = 1 we return to the total probability, i.e. P1 = P . The parameter x should
be chosen in such a way as to cover the area of width Γdyn around the position of
the supercritical resonance. As it was discussed above, for U92+-U92+ collisions this
area spans from 0 to 600 keV. Therefore, it is reasonable to consider x ≳ 0.1, taking
into account at least around 50% of the total pair-creation probability.

In Fig. 17 we present the derivative d lnPx/dη with x = 0.1, 0.25, 0.5, 1.0
calculated for symmetric head-on collisions (η = 1). The figure demonstrates that
the use of Px noticeably enhances the signature of the transition to the supercritical
regime, namely the sign change of the derivative dPx/dη (and hence d lnPx/dη) from
positive to negative. For example, in the case of U92+-U92+ collisions d lnPx/dη

∣∣
η=1

is approximately equal to −0.6 at x = 0.1, −0.5 at x = 0.25, and −0.4 at x =

0.5, whereas the derivative of the total probability (x = 1) is almost zero. The
enhancement is also visible in Fig. 18, where the ratio Px(η)/Px(1) is depicted
as a function of the charge number Z for fixed Rmin (Fig. 18a) and the distance
of the closest approach Rmin for U92+-U92+ (Fig. 18b). Here, the transition to
the supercritical mode is manifested in the passing through the unity of the ratio
Px(η)/Px(1) towards smaller values. As it can be seen in the figure, for x = 0.5,
0.25, and 0.1, this transition takes place at successively smaller values of the charge
number Z, when Rmin is fixed, and larger Rmin, when Z is fixed.
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Figure 18: Ratio Px(η)/Px(1) for η = 1.1, 1.2 and 1.5 as a function of: a) Z with
Rmin = 17.5 fm, b) Rmin for Z = 92.
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Chapter 5. Calculations beyond the monopole
approximation

In this section we will consider the process of electron-positron creation in low-
energy collisions of heavy nuclei beyond the scope of the monopole approximation.
To this end, we employ the multipole expansion of the two-center potential over the
spherical harmonics in the center-of-mass reference frame. We begin with description
of the procedure used to solve the stationary Dirac equation for axially symmetric
potentials. This procedure is necessary for specifying the initial/final conditions for
the time-dependent problem. After that we turn to outlining the algorithm of solving
the time-dependent Dirac equation. Finally, we present the results of calculations
of the pair-creation probabilities and the positron energy spectra. We study their
convergence with respect to the number of terms in the multipole expansion of the
two-center potential and examine the influence of the L > 0 terms on the signatures
of the transition to the supercritical regime found in the monopole approximation.
The results of the research described in this chapter have been published in the
papers [56,62].

5.1 Stationary Dirac equation

Going beyond the monopole approximation means the loss of the spherical
symmetry, which substantially simplified the calculations described in the previous
chapter. Now, if one is to proceed the calculation working with a single-center
basis, the latter has to contain functions that transforms differently under three-
dimensional rotations. This entails a drastic augmentation of the basis set, which
can make the computations resource-heavy and substantially time-consuming. Es-
pecially, it affects the time evolution procedure, where a system of linear equations
is to be solved at every time step, of which there may be dozens of thousands.
Fortunately, the complexity of the problem can be reduces to a large extent by
transitioning to a reference frame with z-axis directed along the internuclear line
and rotating together with it. This transition does not in itself introduce any ap-
proximations but brings into the Hamiltonian a new coupling term referred to as
the rotational coupling. However, if we disregard the rotational coupling, then we
will gain the symmetry with respect to rotations around the z-axis. Thus, functions
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Figure 19: Quasimolecular reference frame for the general case of nuclei with differ-
ent masses.

with different z-projections of the total angular momentum, denoted by the symbol
µ, get decoupled and their contributions to the process under consideration can be
computed independently. Restriction of the basis set to a single value of µ allows one
to noticeably reduce its size and therefore significantly facilitate the computations.

The stationary Dirac equation written in the reference frame with z-axis di-
rected along the internuclear line reads

H0φi(r) = εiφi(r), (5.1)

H0 = α · p+mβ + V (r, θ). (5.2)

Here α, β are the Dirac matrices, m is the electron mass, V (r, θ) is the potential
function, r = |r|, and θ is the polar angle, i.e. the angle between r and z-axis (see
Fig. 19). In the monopole approximation the potential V possessed spherical sym-
metry and was a function of a single argument r (see Eq. (4.12)). Now the symmetry
is reduced to cylindrical and the potential acquires an additional dependence on the
polar angle θ. Using a complete set of orthogonal Legendre polynomials

{
PL(x)

}∞
L=0

the two-center nuclear potential can be expressed as an infinite sum

V (r, θ) =
∑

α=A,B

∞∑

L=0

V α
L

(
r, Rα(tin)

)
√

2L+ 1

4π
PL(cos θ), (5.3)
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where

V α
L

(
r, Rα(t)

)
=

∫ π

0

dθ sin θPL(cos θ)Vα
(
|r −Rα(t)|

)
. (5.4)

For practical calculations it is convenient to rewrite (5.3) in terms of spherical har-
monics YLM(r̂) (r̂ = r/|r|):

V (r, θ) =
∞∑

L=0

VL(r, tin)YL0(r̂), (5.5)

VL(r, t) = V A
L

(
r, RA(t)

)
+ V B

L

(
r, RB(t)

)
. (5.6)

This expression can be readily derived from (5.3) by employing the following prop-
erties of the spherical functions (see, e.g., [71]):

L∑

M=−L
YLM(n1)Y

∗
LM(n2) =

2L+ 1

4π
PL(cos θ12), (5.7)

Y ∗
LM(n) = δM0

√
2L+ 1

4π
for n parallel to z-axis, (5.8)

where θ12 is the angle between the vectors n1 and n2. In our case n1 = r̂, n2 = ez

is the unit vector along z-axis, and θ12 = θ.
As before, the wave function with a certain angular momentum projection µ

is approximated as a finite sum

φ(r) =
∑

κ

2n∑

j=1

cκµj u
κµ
j (r). (5.9)

In contrast to the monopole expression (4.17) this sum is twofold, since κ is no longer
a good quantum number. The basis functions uκµj (r) are bispinors with the radial
part represented by B-splines in accordance with the dual kinetic balance (DKB)
approach [76]. The angular part is described by spherical spinors. Each subset of
uκµj , pertaining to certain κ, is split into two parts. The first part with 1 ≤ j ≤ n



54

is defined as

uκµj (r) =
1

r




Bj(r)Ωκµ(r̂)

1
2m

(
d
dr +

κ
r

)
Bj(r)Ω−κµ(r̂)


 (5.10)

and the second one with n < j ≤ 2n reads

uκµj (r) =
1

r




1
2m

(
d
dr − κ

r

)
Bj−n(r)Ωκµ(r̂)

Bj−n(r)Ω−κµ(r̂)


 . (5.11)

Here Bj(r) is the jth B-spline [75], Ωκµ(r̂) is the spherical spinor [71]. This choice of
basis functions is highly advantageous in the case of symmetric collisions, where the
odd harmonics in the multipole expansion of the two-center potential (5.5) cancel out
in the center-of-mass frame. Thus, the states with opposite spatial parity become
decoupled, which reduces the size of matrices describing the discretized versions of
the static and time-dependent Dirac equation (see below) by half, which significantly
facilitates the computations.

Let us move from a multiindex κµj to a single index l by enumerating all the
basis functions present in (5.9) from 1 to N . Then, substituting decomposition (5.9)
into Eq. (5.1), multiplying by ul(r) from the left and performing spatial integration,
one arrives at the following form of the discretized static Dirac equation

Hc = εSc, (5.12)

where Hjk = ⟨uj|H0|uk⟩, Sjk = ⟨uj|uk⟩ is the overlap matrix and c = {c1, . . . , cN}.
Solving Eq. (5.12) yields a set of eigenvalues εi and eigenvectors ci (i = 1, . . . , N)
which represent a discretized version of the H0 spectrum. When calculating the
matrix Hjk it is convenient to split H0 into two parts

H0 = hfree + V, (5.13)

where hfree is the Dirac Hamiltonian of a free electron

hfree = α · p+mβ, (5.14)
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and V is the remaining two-center potential. The matrix elements of hfree are di-
agonal with respect to κ and have already been considered in the previous chapter
(see, e.g., Eq. (4.16)). The matrix Vjk has a more complex structure. Its elements
can be written as

Vjk =
∑

L

gL0(κjµ, κkµ)

∫
drVL(r, tin)

[
Fj(r)Fk(r) +Gj(r)Gk(r)

]
, (5.15)

where the functions Gj(r)/Fj(r) are the upper/lower radial components of the basis
functions uj(r) multiplied by r (see the definition in Eq. (4.13) and Eqs. (5.10)-
(5.11)). The angular coefficients gLM(κjµj, κkµk) are defined as

gLM(κjµj, κkµk) =

∫
dn Ω†

κj ,µj
(n)YLM(n)Ωκk,µk

(n)

= (−1)
1
2+µj

√
(2lj + 1)(2lk + 1)(2jj + 1)(2jk + 1)

4π(2L+ 1)
CL0
lj0,lk0

CLM
jjµj ,jk−µk




jj lj

1
2

lk jk L



 .

(5.16)

Here CLM
j1µ1,j2µ2

are the Clebsch–Gordan coefficients and the quantum numbers l and
j are related to κ via expression

l =

∣∣∣∣κ+
1

2

∣∣∣∣−
1

2
, (5.17)

j = |κ| − 1

2
. (5.18)

Employing the relation

CL0
l10,l20




j1 l1

1
2

l2 j2 L



 =





1√
(2l1+1)(2l2+1)

CL0
j1− 1

2 ,j2
1
2

, if l1 + l2 + L is even,

0, otherwise,
(5.19)

the expression (5.16) can be simplified and written as

gLM(κjµj, κkµk) = (−1)
1
2+µj

√
(2jj + 1)(2jk + 1)

4π(2L+ 1)
CL0
jj− 1

2 ,jk
1
2
CLM
jjµj ,jk−µk

. (5.20)

Due to the properties of the Clebsch-Gordan coefficients, gLM(κ1µ1, κ2µ2) have
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nonzero values only for L = |j1− j2|, |j1− j2|+1, . . . , j1+ j2 with even l1+ l2+L
and M = µ1 − µ2. Therefore, for any given pair of the basis functions uj(r) and
uk(r) the sum over L in Eq. (5.15) will have a finite number of terms.

5.2 Time-dependent Dirac equation

The time-dependent wave function is represented by a sum similar to one
displayed in Eq. (5.9) but with the coefficients depending on time

φ(r, t) =
N∑

i=1

ai(t)ui(r). (5.21)

When using a static basis set comprised of non-orthogonal functions the time-
dependent Dirac equation subject to certain initial conditions




i∂tφi(r, t) = H(t)φi(r, t),

φi(r, tin) = ϕi(r),
(5.22)

is transformed into the following system of ordinary differential equations



iS
∂ai(t)

∂t
= H(t)ai(t),

ai(tin) = ci.
(5.23)

Here ai = {a1i, . . . , aNi} denotes the array of expansion coefficients, ci is the ith
solution of the system (5.12) corresponding to the energy εi, Hjk(t) = ⟨uj|H(t)|uk⟩
is the Hamiltonian matrix, and Sjk = ⟨uj|uk⟩ is the overlap matrix. To solve this
system we again turn to the Crank-Nicolson scheme [77]. This time, because of the
non-orthogonality of the basis functions, the overlap matrix S makes appearance in
the relation between the expansion coefficients ai(t) at the neighboring time steps
(cf. Eq. (4.36))

[
S +

i∆t

2
H(t+∆t/2)

]
ai(t+∆t) =

[
S − i∆t

2
H(t+∆t/2)

]
ai(t). (5.24)

After the array of the expansion coefficients, corresponding to the wave func-
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tion at the time tout, is found, the transition amplitudes G(ζ |ξ) are evaluated as

G(ζ |ξ)ji = ⟨ϕj|φi(tout)⟩ = c†jSai(tout). (5.25)

Here ζ and ξ correspond to the energy signs of the jth out-state and ith in-state.
Finally, the mean number of electrons and positrons created from the vacuum in a
certain state are evaluated according to Eqs. (2.45) and (2.46).

5.2.1 Approximation neglecting the internuclear axis rotation

In the monopole approximation we utilized the spherical symmetry of the
problem which allowed us to greatly simplify the numerical calculations. It was
achieved due to the fact that the time-dependent potential in that case coupled only
basis functions with identical relativistic angular quantum numbers κ and angular
momentum projections µ. This allowed us to perform calculations for any permit-
ted combination of κ and µ separately with relatively small-sized matrices in the
discretized version of the time-dependent Dirac equation (see Eq. (4.32)). When
going beyond the monopole approximation in the time-dependent problem, we lose
any symmetry, except for the case of the head-on collision. In collisions of this sort
the inertial frame of reference can be chosen in such a way, that its z-axis is directed
along the internuclear line. By doing so, we obtain axial symmetry and become
able to deal with basis functions corresponding to different values of µ separately.
The calculations for such collisions are considerably more complicated, compared
to the monopole approximation. At the same time, they are substantially less time
consuming than in the general case when functions with different µ get coupled. For
collisions with non-zero impact parameters the axial symmetry can be regained if
we move to the rotating reference frame with z-axis directed along the internuclear
line. But for this we need to neglect the additional terms appearing in the Hamil-
tonian due to the transition to this noninertial reference frame [63, 64]. The exact
Hamiltonian in this reference frame can be written with a good accuracy as

H(t) = hfree + V (r, t)− Ĵ · ω. (5.26)

Here hfree is the free-electron Hamiltonian defined in Eq. (5.14), V (r, t) is the time-
dependent potential of the moving nuclei, Ĵ is the operator of the total angular
momentum of the electron, and ω is the angular-velocity vector of the internuclear
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axis. It is argued that the −Ĵ ·ω term in the Hamiltonian (5.26) can not significantly
affect the pair-creation process compared to the strong potential V (r, t) (see, e.g.,
Refs. [33, 65, 66]) and thus is often ignored. By neglecting the rotational term, one
obtains the axially symmetric Hamiltonian

H(t) = hfree + V (r, t). (5.27)

Calculating the contributions of each term on the right-hand side of Eq. (5.27) in-
dependently one can slightly optimise evaluation of the Hamiltonian matrix Hjk(t).
Since hfree does not depend on time, its matrix can be calculated only once at the
start of the program, stored in the system memory and reused at need. The remain-
ing V (r, t) matrix, on the other hand, has to be evaluated at every internuclear
distance R(ti +∆ti/2), where i enumerates discrete time steps and ∆ti = ti+1 − ti.
The use of the spherical spinors to describe angular dependence of the basis functions
allows us to take the angular part of the matrix elements analytically, see Eq. (5.15).
The radial integration is performed numerically. Being independent of the angular
variables, hfree couples only functions of the same angular symmetry. Therefore, the
matrix hfreejk = ⟨uj|hfree|uk⟩ is diagonal with respect to the quantum numbers κ and
µ. The structure of the matrix Vjk(t) = ⟨uj|V (r, t)|uk⟩ is more complex. It is also
diagonal with respect to µ, but if the number of the terms in the expansion (5.5) is
not explicitly restricted, then functions with any values of κ get coupled, potentially
by more than one term.

As it was stated above, an accurate description of a two-center wave function
within one-center basis set requires the latter to contain a relatively large number
of functions describing the angular motion. Thus, the dimensions of the matrices
appearing in Eqs. (5.23) and (5.24) can reach substantial values. In our numerical
procedure, the radial integrals used to construct the Hamiltonian matrix at a specific
time instant are obtained by interpolation of the integrals precalculated for a number
of points along the nuclear trajectory and stored in an array. Bearing this in mind,
the actual calculations within sufficiently large basis sets could potentially demand
a significant amount of the system memory. The use of B-splines to deal with the
radial degree of freedom allows us to noticeably reduce the size of the needed memory.
This is achieved due to strong localisation of the B-splines. Namely, a jth-order B-
spline has non-zero values in at most j + 1 contiguous grid intervals. Therefore,
when the number of the nodes in the grid is large compared to the order of the



59

B-splines, only a small fraction of the splines overlaps allowing the radial integrals
and the corresponding matrix elements to acquire non-zero values. Another benefit
of having sparse matrices in Eq. (5.24) is the possibility to apply the algorithms
designed specifically to work with matrices of this sort. Starting with a certain
percentage of non-zero elements in the matrices these algorithms provide better
performance compared to the regular dense-matrix counterparts. In our calculations
we utilize the PARDISO [78, 79] code to solve systems of linear equations.

5.2.2 Accounting for the rotation of the internuclear axis

To find out to which extent rotation of the internuclear axis can affect the
pair-creation probabilities we performed calculations with this rotation taken into
account. We did this in two different ways. The first method is similar to the
one described in the previous section. The problem is considered in the rotating
reference frame, but this time the rotational term is retained in the Hamiltonian.
In the second one the collision process is regarded in the inertial reference frame
with the origin located at the center of mass. The Hamiltonian in this case becomes
dependent on the angle between the internuclear line and z-axis. Let us begin with
calculations in the rotating reference frame. As it was stated above in this case the
Hamiltonian reads

H(t) = hfree + V (r, t)− Ĵ · ω. (5.28)

The first two terms have already been considered in detail in the previous section.
Therefore, here we focus only on the last one. Let us assume that the collision takes
place in the xz plane. Then, the angular-velocity vector is directed along the y-axis,
that is ω = (0, ω, 0), and the scalar product is reduced to

−Ĵ · ω = −Ĵyω. (5.29)

The operator Ĵy of the y-projection of the total electron angular momentum can
be expressed in terms of the ladder operators Ĵ+/Ĵ−, which raise/lower the total
angular momentum z-projection µ. These operators are defined as

Ĵ± = Ĵx ± iĴy (5.30)
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and act on the eigenfunctions of the operators Ĵ2 and Ĵz, i.e. spherical spinors
Ωκ,µ(n) in the case of electrons, according to

Ĵ±Ωκ,µ(n) =
√

(j ∓ µ)(j ± µ+ 1)Ωκ,µ±1(n), (5.31)

where j is total angular momentum quantum number related to κ via Eq. (5.18).
Thus, the rotational term in (5.28) can be conveniently rewritten as

−Ĵ · ω =
iω

2

(
Ĵ+ − Ĵ−

)
. (5.32)

Then, for the matrix elements one readily obtains

⟨uκaµa

i | − Ĵ · ω|uκbµb

j ⟩ = iδκaκb
ω

2
Sκaij

×
(
δµa,µb+1

√
(jb − µb)(jb + µb + 1)− δµa,µb−1

√
(jb + µb)(jb − µb + 1)

)
, (5.33)

Sκij =

∫
dr
[
Gκ
i (r)G

κ
j (r) + F κ

i (r)F
κ
j (r)

]
, (5.34)

where Gκ
i (r)/F κ

i (r) are the upper/lower radial components of the basis functions
uκµi (r) multiplied by r (see Eqs. (5.10)–(5.11)). As one can see from Eq. (5.33)
the rotational term is diagonal with respect to κ and only couples functions with
∆µ = ±1.

On the other hand the internuclear axis rotation can be also taken into account
in the inertial reference frame represented in Fig. 20. The origin of this reference
frame is located at the center of mass and its z-axis is directed along the vector of
initial velocity of the nucleus A. The Hamiltonian in this case acquires an explicit
dependence on the angle θAB(t) between the z-axis and the internuclear axis (see
Fig. 20). In the inertial reference frame the Hamiltonian has a simple form

H(t) = hfree + V (r, t). (5.35)

The two-center nuclear potential can be expressed in a form similar to Eq. (5.3)

V (r, t) =
∑

α=A,B

∞∑

L=0

V α
L

(
r, Rα(t)

)
√

2L+ 1

4π
PL

(
cos
(
θ − θAB(t)

))
, (5.36)
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Figure 20: Inertial reference frame for the general case of nuclei with different masses.

where

V α
L

(
r, Rα(t)

)
=

∫ θAB(t)+π

θAB(t)

dθ sin
(
θ − θAB(t)

)

PL

(
cos
(
θ − θAB(t)

))
Vα
(
|r −Rα(t)|

)
. (5.37)

Employing again the property (5.7) of the Legendre polynomials, we arrive at the
following expansion of the potential V (r, t) over the spherical harmonics:

V (r, t) =
∞∑

L=0

L∑

M=−L
VL(r, t)YLM(r̂)Y ∗

LM

(
R̂B(t)

)
, (5.38)

VL(r, t) = V A
L

(
r, RA(t)

)
+ V B

L

(
r, RB(t)

)
. (5.39)

In contrast to Eq. (5.5), all harmonics are present in the expansion (5.38), which
means that functions with all possible pairs of κ and µ get coupled. All dependence
of V (r, t) on the internuclear axis rotation angle is contained within the last factor
in (5.38), that is Y ∗

LM

(
R̂B(t)

)
. The matrix elements of the two-center potential

(5.38) are very similar to the ones given by Eq. (5.15). However, now in addition
to the sum over L we also obtain sum over M , and each LM -term in the sum is
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multiplied by the corresponding spherical harmonic Y ∗
LM

(
R̂B(t)

)
:

Vjk =
∑

LM

gLM(κjµj, κkµk)Y
∗
LM

(
R̂B(t)

)∫
drVL(r, t)

[
Fj(r)Fk(r) +Gj(r)Gk(r)

]
.

(5.40)

5.3 Results

Following the method described above, we examined how inclusion of the
higher-order spherical harmonics in the potential affects the results obtained within
the monopole approximation. To this end, we performed calculations of the ground-
state energy, critical internuclear distances, pair-creation probabilities, and positron
energy spectra for various numbers of multipoles taken into account in the decom-
position of the two-center nuclear potential.

5.3.1 Ground-state energies and critical internuclear separations

Figure 21a demonstrates the ground-state energy of the U183+
2 quasimolecule

as a function of the internuclear distance in the range from 30 to 80 fm. The figure
contains the curves corresponding to the monopole approximation (|κ|max = 1),
|κ|max = 3, and |κ|max = 5. For comparison we also included the result obtained
in Ref. [80] using the Dirac-Sturm approach, in which the two-center basis set is
constructed from the one-center Dirac-Sturm orbitals localised at the nuclei. The
nuclear charge distribution in the work [80] was described with the Fermi model. It
is seen from the figure that the most pronounced change of the ground-state energy is
associated with the transition from the monopole approximation (|κ|max = 1) to the
basis with |κ|max = 3. The line corresponding to |κ|max = 5 almost coincides with
the one of [80], and with |κ|max = 7 the difference with the results of [80] becomes
invisible in the considered region of internuclear separations. Within a wider scope
of the internuclear distances, the dependence of the U183+

2 ground-state energy on
|κ|max is to be found in Fig. 21b. The figure illustrates the results obtained for
|κ|max up to 19 and internuclear distances in the range from 30 to 10000 fm. The
curves are located strictly one under another, with the upper one corresponding to
the monopole approximation and the lowest one was calculated in the basis with
|κ|max = 19
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Figure 21: Energy of 1sσ state of the U183+
2 quasimolecule as a function of internu-

clear distance. Mironova et al. denotes the data from Ref. [80].
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One of the most important characteristics pertaining to a given pair of nu-
clei when studying the spontaneous electron-positron pair creation is the critical
internuclear distance Rcr. Together with the trajectory parameters, such as the col-
lision energy E and the impact parameter b or the minimal internuclear separation
Rmin and the parameter η = E/E0, Rcr determines the duration of the supercritical
regime τcr (see, e.g., Fig. 4). The critical distance is defined as the distance between
the nuclei at which a certain quasimolecular bound-state energy level reaches the
border of the negative-energy continuum. It depends on the nuclear charge num-
bers and has different values for different energy levels, Rcr = Rn

cr(ZA, ZB), where
n specifies a certain energy level. The function Rn

cr(ZA, ZB) is defined only for such
ZA, ZB for which there exits a solution of the equation εn(ZA, ZB, R) = −mc2. For
the considered in this research nuclei, only the lowest-energy 1sσ state dives into the
negative-energy continuum for a noticeable period of time. For this reason, bellow
we constrain ourselves to consideration of Rcr corresponding to the 1sσ state only,
and omit the superscript.

In Table 1 we present the dependence of the Rcr on the number of κ-channels
included in the basis set. The table contains the results obtained for the homonuclear
quasimolecules with the nuclear charge numbers 87 ≤ Z ≤ 100. For comparison
we also included the values calculated in Refs. [46, 80]. To make the table more
readable we only show the values until Rcr is converged, i.e. the last value in each
row corresponds to the converged result. Here the nuclear root-mean-square charge
radii ⟨r2n⟩

1
2 were taken from Ref. [81] if the data is available there, otherwise we used

the values from Ref. [82]. As it can be seen from the table, our converged values of
Rcr are in a very good agreement with the findings of Ref. [80]. Across the whole
range of the considered nuclear charge numbers the deviation does not exceed 0.02
fm, with our results being systematically smaller. This discrepancy can be partially
accounted for by different nuclear charge distribution models. We regarded the
nuclei as homogeneously charged spheres, whereas in Ref. [80] the Fermi model was
utilized. The convergence rate noticeably depends on the nuclear charge Z. The
number of needed κ-channels is the smallest for lighter nuclei and almost linearly
grows with increasing Z. For example, to get Rcr with the accuracy of four significant
digits for Z = 87 it is enough to have a basis with |κ|max = 5, whereas for Z = 100

|κ|max = 17 is needed. Analogous calculations were also carried out for heteronuclear
one-electron quasimolequles. The results are represented in the Table 2.
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Table 2: Dependence of the critical internuclear distance Rcr for 1sσ state on |κ|max

for heteronuclear one-electron quasimolecules with ZA = 92. The superscript a

denotes the results of Ref. [46].

ZB MA |κ|max

2 3 4 5 7 9 11 13
82 15.82 15.74 16.25 16.25 16.27

83 17.44 17.32 17.98 17.98 18.01

84 19.04 18.91 19.71 19.71 19.74

85 20.69 20.54 21.49 21.49 21.55

86 22.27 22.10 23.19 23.19 23.26

87 23.93 23.74 25.00 25.00 25.10

88 25.61 25.40 26.82 26.82 26.95 26.96

89 27.34 27.10 28.71 28.70 28.87 28.88

90 29.03 28.78 30.55 30.54 30.74 30.76

91 30.82 30.54 32.50 32.49 32.74 32.77

92 32.56 34.39 34.67 34.70 34.71

93 34.41 34.09 36.42 36.40 36.74 36.80 36.81

94 36.22 35.88 38.38 38.37 38.75 38.82 38.83

95 38.08 37.72 40.41 40.40 40.83 40.92 40.93

96 39.99 39.62 42.51 42.50 42.99 43.10 43.12

97 41.93 41.53 44.53 44.62 45.17 45.30 45.33 45.34

98 43.88 43.47 46.77 46.75 47.36 47.52 47.55 47.56 47.57

43.894a 43.483a 46.792a 46.787a

5.3.2 Pair-creation probabilities

Having studied the relevant static properties of the one-electron quasimolecules,
we moved to the dynamical problem of low-energy nuclear collisions. Within the
framework of this task we investigated how going beyond the monopole approxi-
mation affects the signatures of the transition to the supercritical regime found in
the previous chapter. To this end, we performed calculations of the pair-creation
probabilities and positron energy spectra for collisions of heavy nuclei with vari-
ous charge numbers. The nuclei were treated classically as homogeneously charged
spheres of radius Rn = 1.2A1/3 fm, where A = 2.5Z is the atomic mass number.
Their motion was described by the hyperbolic trajectories. As was demonstrated
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in Ref. [55], when the rotation of the internuclear axis is neglected, the dominant
contribution to the probability comes from states with angular momentum projec-
tions |µ| = 1

2 . Influence of the internuclear axis rotation will be considered in the
next subsection, the calculations described here were performed with the rotation
neglected. Therefore, only states with µ = 1

2 were included into the basis set and
the results were doubled. The basis functions (5.10), (5.11) were constructed with
B-splines of the 9th order generated on the grid of size Rbox = 26400 fm. The
nodes were distributed polynomially with ri = Rbox

(
i/(N − 1)

)4. The initial and
final internuclear distance was taken to be R(tin) = R(tout) ≡ R0 = 5000 fm. The
number of propagated electron states was reduced by introducing a cutoff energy
εc = 6mc2 Only states with energy ε ∈ (−mc2, εc] were taken into account in
Eq. (2.45), providing the relative inaccuracy of the sum on the level of 10−4.

First, we studied the dependence of the pair-creation probability on the num-
ber of the κ channels included in the expansion (5.21) of the time-dependent wave
function. For this purpose we considered collisions of uranium nuclei at the energy
in the target rest frame of 6.218 MeV/u. Table 3 contains the total pair-creation
probability Pt and the contributions of the ground (Pg) and all bound states (Pb)
obtained for several impact parameters in the range from 0 to 30 fm. For compar-
ison the values calculated in Ref. [55] are also presented. The table shows a rather
fast convergence of the total probability with respect to the number of the κ chan-
nels. For example, the basis with |κ|max = 3 already provides a deviation from the
converged results of less than 1%. Thus, in further calculation only functions with
|κ| ≤ 3 were included in the basis.

After that, we studied the behavior of the pair-creation probability as a func-
tion of η with fixed Rmin and examined how inclusion of terms with L > 0 in the
expansion (5.5) of the two-center potential affects the signatures of the transition to
the supercritical regime found in the monopole approximation. Further, we consider
the total pair-creation probability and denote it with P omitting the subscript. As it
was shown in the previous chapter (see also Refs. [59,60]), in the monopole approx-
imation the pair-creation probability as a function of η starts to increase as η → 1,
when Rmin and Zt = ZA + ZB enter deeply enough into the supercritical domain
of collision parameters. As it is demonstrated in Fig. 22 this qualitative change of
the P (η) near the point η = 1 still takes place in calculations with the two-center
nuclear potential. The figure depicts P (η) obtained for symmetric collisions with
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Figure 22: Total pair-creation probability as a function of η with Rmin = 17.5
fm. Solid blue lines depict results obtained with |κ|max = 3, dashed orange curves
correspond to the monopole-approximation results (|κ|max = 1).

Rmin = 17.5 fm of nuclei with subcritical (Z = 84) and supercritical (Z = 88,
92, 96) charge numbers. For each Z there are two curves: the dashed orange one
corresponds to the monopole approximation (|κ|max = 1) and the solid blue line was
obtained in the basis with |κ|max = 3. Comparing the curves one can notice that the
effects associated with higher-order terms somewhat enhance the manifestation of
the increase of P (η) as η → 1 for supercritical charge numbers. For instance, in the
case of the U92+-U92+ collisions, the probability obtained with |κ|max = 3 exhibits a
shallow minimum near η = 1, which is absent in the monopole approximation.

The influence of the nonmonopole terms becomes more apparent when con-
sidering the derivative of the pair-creation probability with respect to the parameter
η, dP/dη, at η = 1. Figure 23 depicts this derivative and the individual contribu-
tions of odd (P = −1) and even (P = 1) states. Figure 23a represents dP/dη as a
function of Z with Rmin = 17.5 fm and Fig. 23b in turn represents this derivative
as a function of Rmin for Z = 96. As can be seen from the figures, the deviation
from the monopole results is hardly visible until the corresponding channel becomes
supercritical, which happens at Z ≈ 87.3 for P = 1 and Z ≈ 94.8 for P = −1. In
the supercritical region the values of dP/dη obtained with |κ|max = 3 lie lower than
the monopole ones. This behavior of dP/dη aligns with the findings of Refs. [46,47],



70

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

d
P
/d

η

Z

84 86 88 90 92 94 96

|κ|max = 3: sum

|κ|max = 3: P = 1

|κ|max = 3: P = −1

Mon. approx.: sum

Mon. approx.: P = 1

Mon. approx.: P = −1

(a)

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

d
P
/d

η

Rmin [fm]

20 30 40 50 60 70

|κ|max = 3: sum

|κ|max = 3: P = 1

|κ|max = 3: P = −1

Mon. approx.: sum

Mon. approx.: P = 1

Mon. approx.: P = −1

(b)

Figure 23: Derivative of the e−e+ pair-creation probability dP/dη at η = 1 (θ =
180°) as a function of a) Z with Rmin = 17.5 fm, b) Rmin for Z = 96. Vertical lines
mark the values of the abscissa at which the energies of 1sσ and 2p1/2σ states are
equal to −mc2. Dashed lines correspond to the monopole approximation (|κ|max =
1), solid lines to calculations with |κ|max = 3.

where the supercritical-resonance parameters were examined beyond the monopole
approximation. According to Refs. [46,47], inclusion of higher-order terms in the po-
tential decomposition results in about 20% increase in the resonance width of U183+

2
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quasimolecule at the internuclear distance of 16 fm. Furthermore, this increase in
width turns out to be larger for larger internuclear separations. Note that super-
critical resonance width is exclusively due to the spontaneous pair creation while in
collisions of heavy nuclei both spontaneous and dynamic mechanisms contribute to
the total pair-creation probability. As seen in Table 3, the overall increase in the
pair-creation probability for head-on collisions of uranium nuclei at the energy of
6.218 MeV/u (which corresponds to the minimal internuclear distance Rmin ≈ 16.47

fm) amounts to approximately 5%. This may indicate that the relative contribu-
tion of the spontaneous mechanism to the pair production became larger, although
the electron-positron pairs are mostly created by the dynamic mechanism. As a
result one may observe an enhancement of the signal indicating the transition to
the supercritical regime found in dP/dη, namely the sign change from positive to
negative. Another factor that can play a role is the extended duration of the super-
critical regime, τcr, due to the increase in the critical internuclear distance Rcr (see
Table 1).

5.3.3 Impact of the internuclear axis rotation on the pair-creation
probability

Following the approach described in Section 5.2.2 we developed a numerical
code implementing both procedures allowing one to take into account the rotation
of the internuclear axis. Using this code we performed calculations of the pair-
creation probabilities with electron captured into a bound state and the total pair-
creation probabilities for symmetric collisions of uranium nuclei. The calculations
were carried out in the basis of spatially even functions with κ = −1, 2,−3. The
number of angular projections µ included in the basis varied for different methods.
The calculations in the rotating reference frame neglecting the rotational coupling
were independently conducted for µ = 1/2 and µ = 3/2. Then the results were
summed and doubled. The calculations in the same reference frame but with enabled
rotational coupling were performed within two basis sets. The first one included
functions with |µ| ≤ 3/2. The second one contained functions with all possible
angular momentum projections for the given set of κ, that is |µ| ≤ 5/2 in our
case. Finally, the calculations in the inertial reference frame were carried out within
the basis with |µ| ≤ 5/2. The results of the calculations for Rmin = 17.5 and
25 fm can be found in the Table 4. It is seen from the table that both methods of
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Figure 24: Energy spectra of the positrons emitted in head-on U92+-U92+ collisions
with energy E = 6.218 MeV/u. Maltsev et al. denotes the data from Ref. [55].

accounting for the rotational coupling yield identical results in the largest considered
basis with |µ| ≤ 5/2. A small difference in the last significant digit of the results
obtained in the rotating reference frame within the basis sets with |µ| ≤ 3/2 and
|µ| ≤ 5/2 is found only for a large value of the parameter η, namely η = 20. This
fact shows an advantage of calculations in the rotating reference frame compared
to the inertial one. In addition to the greater sparsity of the matrices mentioned
above, working in the rotating frame also allows one to operate with a smaller-size
matrices, by using basis sets with fewer angular momentum projections. Bearing in
mind the relation between the impact parameter and the new collision parameters
(Rmin, η) given by Eq. (3.3), one can clearly see that when considering pair-creation
probability in low-energy collisions with small impact parameters rotational effects
can be safely neglected. It is exactly this type of collisions that is used in search for
the spontaneous pair-creation. For Rmin = 17.5 fm the influence of the rotational
coupling starts to manifest only at η = 5. As it was expected, its impact increases
with increasing impact parameter and collision energy.

5.3.4 Positron energy spectra

Another signature of the transition to the supercritical regime found in the
previous chapter concerns the η-dependence of the maximum of the positron energy
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Table 4: Pair-creation-probability obtained within the basis set with κ = −1, 2,−3.
Pb – probability of pair creation with the electron in a bound state, Pt – total pair-
creation probability, A — calculation neglecting the rotation of the internuclear axis,
B — calculations taking into account the rotation of the internuclear axis: B1— in
the rotating reference frame, B2 — in the inertial reference frame.

Rmin, fm Method η = E/E0

1 5 10 20
17.5 Pb A: |µ| ≤ 3/2 1.03×10−2 7.95×10−3 7.07×10−3 5.94×10−3

B1: |µ| ≤ 3/2 1.03×10−2 7.96×10−3 7.09×10−3 5.96×10−3

B1: all µ 1.03×10−2 7.96×10−3 7.09×10−3 5.96×10−3

B2: all µ 1.03×10−2 7.96×10−3 7.09×10−3 5.96×10−3

Pt A: |µ| ≤ 3/2 1.04×10−2 1.04×10−2 1.18×10−2 1.44×10−2

B1: |µ| ≤ 3/2 1.04×10−2 1.05×10−2 1.19×10−2 1.46×10−2

B1: all µ 1.04×10−2 1.05×10−2 1.19×10−2 1.47×10−2

B2: all µ 1.04×10−2 1.05×10−2 1.19×10−2 1.47×10−2

25 Pb A: |µ| ≤ 3/2 4.19×10−3 5.15×10−3 5.25×10−3 4.97×10−3

B1: |µ| ≤ 3/2 4.19×10−3 5.16×10−3 5.27×10−3 5.00×10−3

B1: all µ 4.19×10−3 5.16×10−3 5.27×10−3 5.00×10−3

B2: all µ 4.19×10−3 5.16×10−3 5.27×10−3 5.00×10−3

Pt A: |µ| ≤ 3/2 4.20×10−3 5.88×10−3 7.11×10−3 8.96×10−3

B1: |µ| ≤ 3/2 4.20×10−3 5.91×10−3 7.18×10−3 9.15×10−3

B1: all µ 4.20×10−3 5.91×10−3 7.18×10−3 9.17×10−3

B2: all µ 4.20×10−3 5.91×10−3 7.18×10−3 9.17×10−3

spectra obtained in collisions with fixed Rmin. As it was shown in section 4.3.2 in the
monopole approximation, in the case of subcritical collisions the spectra correspond-
ing to larger η possess higher peak values, whereas for supercritical collisions the
dependence is inverted and peak values decrease with increasing η. The layout of the
tails of the spectra remains unchanged. In this section we will examine whether this
behavior remains valid beyond the monopole approximation. At first, we regarded
collisions of uranium nuclei at the energy of 6.218 MeV/u. The positron spectra
calculated for the head-on collision in the framework of the monopole approxima-
tion and beyond it are depicted in Fig. 24. The spectrum obtained in the basis with
|κ|max = 3 is in perfect agreement with the one given in Ref. [55]. Inclusion of spher-
ical harmonics with L > 0 into the expansion of the two-center nuclear potential
leads to a raise of the spectrum near the peak leaving the tail almost unchanged.

After that, we studied the dependence of the positron spectra on η for sym-
metric collisions with a fixed distance of the closest approach, Rmin. In Fig. 25 we
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Figure 25: Positron spectra for the symmetric collisions with Z = ZA = ZB = 84–96
at Rmin = 17.5 fm and η = E/E0 = 1, 1.1, 1.2.

present the spectra obtained for collisions of nuclei with charge numbers Z = 84,
88, 92, 96, Rmin = 17.5 fm, and η = 1, 1.1, 1.2. The results show that once the
total charge number 2Z exceeds the critical value, the order of the curves near the
peak gets reversed. In full accordance with the previous chapter, the subcritical
collisions yield higher peak values of the positron spectrum for larger η, while in the
case of the supercritical collisions the opposite relation between the peak height and
η is established. The same behavior of the spectra with respect to η is found when
the supercritical domain of the collision parameters is approached from a different
direction, namely when Z is fixed and Rmin is decreasing.
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Conclusion

In this thesis we investigated a process of electron-positron pair creation in low-
energy collisions of heavy nuclei. To this end, we implemented a numerical technique
of solving the time-dependent Dirac equation using a finite static basis set. The
basis set consists of bispinors characteristic to spherically symmetric fields. Their
angular part is described by spherical spinors and radial components are constructed
from B-splines in accordance the dual kinetic balance approach, designed to get
rid of the unphysical spurious states. Using this code in the framework of the
monopole approximation, we performed nonperturbative calculations of the pair-
creation probabilities and the positron energy spectra for low energy collisions of
heavy nuclei for a wide range of the collision parameters. To analyze the obtained
results we introduced a pair of parameters (Rmin, η), whereRmin is the distance of the
closest approach and η = E/E0 is the ratio of the collision energy E to the energy
E0 of the head-on collision with the same Rmin. Alongside with the conventional
collision energy E and the impact parameter, the pair (Rmin, η) unambiguously
specifies a collision trajectory. As a result of the analysis we found that the behavior
of the pair-creation probability P on the parameter η with fixed Rmin undergoes a
qualitative change when the nuclei charge numbers ZA, ZB and the distance of the
closest approach Rmin get deeply enough in the supercritical domain with the border
defined as the solution of the equation ε1sσ(ZA, ZB, Rmin) = −mc2. For subcritical
collisions, that is with ε1sσ(ZA, ZB, Rmin) > −mc2, the pair-creation probability
monotonously decreases at η → 1. However, when ZA, ZB and Rmin are inside the
supercritical domain at a sufficient distance from the border, the decrease of P (η)
gives way to the increase at η → 1, thus forming a minimum. The same change is
observed in individual contribution of s and p1/2 channels, when the corresponding
lowest-energy bound state enters the lower continuum. The positron energy spectra
also reveal a qualitative change for supercritical collisions. Namely, the increase of
the peak values of the differential probability with increasing η, is replaced by the
decrease in the supercritical domain. Consideration of the part of the produced pairs
including only positrons in the energy range where the spontaneous mechanism can
contribute allows one to enhance manifestation of these signatures of the transition
to the supercritical regime.

The validity of the signatures found within the monopole approximation is
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corroborated by calculations with the full two-center potential. Using the multipole
expansion, we examined the influence of the higher-order spherical harmonics of the
nuclear potential on the pair-creation probability, positron energy spectra and their
dependence on η with fixed Rmin. The calculations were performed in the rotating
quasimolecular reference frame, with the rotational term appearing in the Hamilto-
nian due to the transition to this noninertial reference frame neglected. The results
of the calculations showed the same qualitative changes of P (η) and the positron
spectra as the ones found in the monopole approximation. Moreover, the derivative
dP/dη

∣∣
η=1

becomes negative at smaller nuclear charges ZA, ZB and larger values of
Rmin. Also we quantitatively investigated validity of the approximation neglecting
the rotational coupling. To this end, we developed two calculation methods where
the rotational effects are taken into account. The first one is based on calculation in
the rotating quasimolecular reference frame but with the rotational term retained
in the Hamiltonian. In the second one the calculations are performed in the inertial
reference frame with the origin located at the center of mass. Both methods are in
a perfect agreement with each other and demonstrate that the influence of the rota-
tional coupling on the pair-creation probability is negligible for low-energy collisions
with small impact parameters. It is exactly this type of collisions, that is employed
for investigations of the spontaneous vacuum decay.
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