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Introduction

Thin-walled shells and structures made from them are widely used in modern industry

and mechanical engineering. Significant development of shell theory occurred in the

mid-20th century when solving many applied problems. Thin shells are used in the oil

and gas industry to store and transport liquids and gases, in the aerospace industry

for the manufacture of rocket bodies and space modules, in construction of water

towers and pipes, as well as in the automotive industry for design bodies, fuel tanks,

gas cylinders and other components. Structures consisting of thin-walled shells usually

withstand high dynamic loads, causing vibrations and deformations.

The general theory of plates and shells was advanced through the research of

S.P. Timoshenko [1, 2, 3, 4], V.Z. Vlasov [5, 6, 7], A.I. Lurie [8], W.T. Koiter [9, 10],

A.L. Goldenveizer [11, 12, 13], A.P. Filin [14], E. Reissner [15], L.G. Donnell [16], V.V.

Novozhilov [17, 18], Kh.M. Mushtari [19], J. Arbocz [20, 21], and others, contributing

significantly to the foundational principles of modern shell theory.

Vibrations of thin-walled structures are the focus of works by V.V. Bolotin

[22, 23, 24], A.L. Goldenveizer [11], V.B. Lidsky [11], P.E. Tovstik [11, 25, 26, 27], V.

Zödl [28], I.A. Birger [29]. These publications discuss the fundamental theoretical and

practical aspects of the dynamics of shells and plates, encompassing various analysis

methods, numerical modeling, and experimental research.

Research on the structure of the frequency spectrum of free vibrations of

structures is of particular importance, as this information is critically necessary for

the design of structures containing thin-walled elements to avoid dangerous resonances.

Numerous studies dedicated to this issue are compiled in the reference [24]. In [11],

A.L. Goldenveizer, V.B. Lidsky, and P.E. Tovstik investigate the properties of the

eigenfrequency spectrum of vibrations of thin rotational shells.
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The equations describing the vibrations of the structures discussed in the

dissertation are complex, making exact analytical solutions challenging to obtain. The

presence of a small thin-walled parameter allows for the use of asymptotic methods

to derive asymptotic formulas for eigenfrequencies of vibrations. This work pays

particular attention to the influence of various methods of reinforcing a cylindrical

shell on the natural frequencies of the structure. The dissertation uses the asymptotic

method developed in the works of S.B. Filippov [30, 31], the Rayleigh-Ritz method,

and the finite element method to study the natural vibrations of a cylindrical shell.

Comparative analysis showed good agreement of results, indicating the reliability

and effectiveness of the approach used, especially in the context of analyzing various

reinforcement configurations of cylindrical shells.

Structures consisting of thin-walled elements, under certain conditions, can

become unstable, moving from the initial stress-strain state to the adjacent equilibrium

state. This dictates the need to solve the problems of buckling of such structures.

The stability of thin shells was considered in the papers by P.E. Tovstik [25], E.I.

Grigolyuk [32], A.S. Volmir [33], V.Z. Vlasov [5], L.G. Donnell [16], R. Southwell [34],

P.F. Papkovich [35], W. Koiter [9, 10], E. Reissner [15], N.A. Alfutov [36], V.V. Bolotin

[22], A.N. Dinnik [37], A.R. Rzhanitsyn [38], R. Lorenz [39], P.M. Ogibalov [40], I.I.

Vorovich [41], V.I. Feodosiev [42], W. Flügge [43], and A.V. Pogorelov [44].

Circular cylindrical shells, often reinforced with stiffness ribs, are commonly

used in practice. Depending on the application, these can be longitudinal ribs —

stringers, or transverse circular ribs — frames. Reinforced shells withstand higher

critical pressure compared to similar smooth shells of the same mass.

Along with reinforced shells, structures incorporating several conjugated shells

or shells conjugated with plates are often used in practice. The works [45, 46, 47, 48, 49,

50, 51, 52, 53, 54, 63] consider problems of vibrations of a cylindrical shell conjugated



6
with spherical and conical shells. The issues of stability loss in such structures are

investigated by P.E. Tovstik [25] and S.B. Filippov [30, 31, 55, 56, 57, 58, 59, 60, 61, 62].

In addition to analytical and asymptotic research methods, numerical methods

are actively used for investigating thin-walled structures. With the advancement of

computing technology, research on complex composite structures has become possible.

The works [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76] present research on reinforced

cylindrical shells using the finite element method.

This dissertation is dedicated to improving the efficiency of structures by

optimizing their geometric parameters. The goal is to explore the possibility of reducing

the mass of structures without decreasing the critical pressure and fundamental

frequency. Methods for efficiently calculating optimal parameters of a reinforced

cylindrical shell are proposed. An analysis of the accuracy of the proposed models

and research methods is conducted.

The dissertation examines some specific problems of free vibrations and stability

of reinforced shells, which have practical applications. For analyzing such problems, the

classical (linear) system of shell theory equations based on Kirchhoff-Love hypotheses

is used. The Kirchhoff-Love hypotheses assume that lines perpendicular to the mid­

surface of the shell remain undeformed and orthogonal to the deformed surface, and

the thickness of the plate does not change during deformation. These hypotheses

simplify the mathematical model of the shell, which is convenient for deriving analytical

approximate formulas. Using the classical system of shell theory equations with

Kirchhoff-Love hypotheses provides sufficient accuracy for solving the problems set in

this work and allows for deriving approximate formulas that can be used in practical

calculations when designing thin-walled structures.
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Structure of the Dissertation

In the introduction, the relevance of research dedicated to the vibrations and

stability loss of thin-walled elastic cylindrical shells is substantiated. An analysis of

existing literature related to the dissertation’s theme is presented.

The first chapter of the dissertation addresses the problem of natural

vibrations of a circular reinforced cylindrical shell. This study is of significant practical

importance for industry, as the fundamental frequency of natural vibrations of

structures is a key indicator of their reliability and safety. To increase the fundamental

frequency of vibrations, transverse stiffening ribs — frames — are installed on the

shell. Most works consider cases of shell reinforcement with identical frames. The

dissertation investigates the vibrations and stability of a shell reinforced with ribs of

varying heights. The classical system of shell theory equations, based on Kirchhoff-Love

hypotheses, is used for modeling the structure. The equation system for the case of shell

reinforcement with stiffness ribs, whose heights change along the shell’s generatrix, is

examined using the asymptotic method. A comparison of the fundamental vibration

frequencies of these structures, found using the Rayleigh-Ritz method and the finite

element method, is conducted. The effect of the distribution law of frame stiffnesses on

the fundamental frequencies and vibration modes of the structure is investigated. The

study identifies two types of structure vibrations and derives formulas for calculating

approximate values of the fundamental frequencies of the structure for various edge

support conditions of the shell. A single-parameter optimization problem is solved,

with the relative height of the frames chosen as the parameter. For a structure of

fixed mass, the parameter value at which the structure has the highest fundamental

frequency is found. As the height of the frames increases, they transform into annular

plates, necessitating solving the problem of natural vibrations of a plate. In this case,

optimization is achieved for such a set of parameters where the fundamental frequency
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of the reinforced cylinder coincides with the fundamental frequency of vibrations of

the plate with the largest radius.

The second chapter of the dissertation examines cylindrical shells conjugated

with spherical end segments. The frequency spectrum of natural vibrations of a

structure consisting of a cylindrical shell, with one end rigidly fixed and the other

end conjugated with the edge of a spherical segment, is investigated. As the curvature

of the spherical segment increases indefinitely, it degenerates into a circular plate.

Numerical research on vibrations in the finite element package 𝐶𝑜𝑚𝑠𝑜𝑙 revealed that

the vibrations could be divided into three groups. The frequencies and modes of the first

group ("shell-like") are close to the frequencies and modes of vibrations of a cylindrical

shell with one end rigidly fixed and the other hinge-supported. The second group’s

frequencies and modes ("cap-like in the degenerate case - "plate-like") are close to the

frequencies and modes of natural vibrations of the spherical segment with a rigidly

fixed edge. The third group ("beam-like") has frequencies and modes of vibrations

barely differing from those of a beam, with one end clamped and a mass concentrated

on the other. Asymptotic and numerical solutions show that for a cylindrical shell, the

end cap plays the role of an elastic fixture.

The third chapter of the dissertation is devoted to investigating the stability

loss of a structure consisting of a cylindrical shell conjugated with circular frames of

different stiffness under normal external pressure. An approximate analytical solution

to the problem of stability loss of the structure is obtained. A comparison of solutions

for several sets of parameters of the height distribution function of the frames along

the shell’s generatrix is conducted. Two optimization problems are solved. In the first

problem, the parameters of a fixed-mass structure with the highest critical pressure are

found. In the second problem, for a given critical pressure, the geometric parameters

of the structure with the lowest mass are determined.
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At the end of each chapter, research results are presented, and brief conclusions

are made.

In the dissertation’s conclusion, general conclusions and provisions are

described.

General Characteristics of the Dissertation

Relevance of the topic is dictated by the need to develop methods for investigating

and optimizing structures composed of cylindrical shells reinforced with ring plates

and cylindrical shells conjugated with spherical end caps. In the context of active

urbanization, the optimization of pipeline and tank structures at the design stage is

critically important, ensuring their resilience and durability under all dynamic loads

and operating conditions. Effective modeling and analysis of such complex systems

contribute to the creation of safe and efficient engineering solutions.

The aim of the work includes:

— Developing an efficient method for analytical calculation of the fundamental

frequency of natural vibrations of a cylindrical shell reinforced with frames of varying

stiffness.

— Assessing the influence of curvature and thickness of the end cap on the

fundamental frequency of natural vibrations of a structure consisting of a cylindrical

shell conjugated with an end cap.

— Developing a method for determining the fundamental frequencies of composite

structures for different vibration modes of the structure.

— Modeling various conditions of shell conjugation with plates.

— Solving the problem of stability loss of a cylindrical shell reinforced with frames

of varying stiffness.
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Reliability of the results is determined by the use of equations from the

technical theory of shells and semi-momentless theory; application of tested numerical

and analytical methods for solving systems of differential equations; comparison of

results obtained through analytical, asymptotic, and numerical analysis; systematic

assessments of the error and order of accuracy of approximation formulas and results

obtained using the finite element method; and alignment of simulation results with

other authors’ findings.

Scientific value of the dissertation consists of the following:

— An algorithm for investigating vibrations and stability loss of a cylindrical shell

reinforced with frames of varying stiffness is developed, where the distribution function

of frame stiffnesses along the shell’s generatrix can be arbitrary.

— A method for estimating fundamental frequencies of described structures by

dividing the vibration spectrum into types is proposed and tested. The change in

vibration modes when frequencies of different types coincide is investigated.

— Various approaches to optimization problems of structures are proposed:

minimizing the mass of the structure at a fixed critical pressure and maximizing the

fundamental frequency of the structure at a fixed mass. Examples of their solutions

are provided.

Practical value of the dissertation consists of the following:

— Using approximate formulas for estimating the fundamental frequency of a

cylindrical shell reinforced with ring plates significantly accelerates the design process.

— Recommendations for the design of medium-length reinforced cylindrical shells

are provided, which can reduce their mass without losing strength.

— A method for calculating the geometric parameters of a reinforced cylindrical

shell with a given critical pressure is developed.
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Publications. The main results presented in the dissertation are published in

the following journals:

— "Vestnik of St. Petersburg University. Mathematics. Mechanics.

Astronomy"[77, 78, 79];

— "Vestnik of St.Petersburg University. Mathematics"[80, 81, 82];

— In the book series "Advanced Structured Materials"[83, 84];

— In the book series "AIP Conference Proceedings"[85];

— Proceedings of the seminar "Computer Methods in Continuum Mechanics"[86,

87].

Among these, 3 are in journals included in the list of peer-reviewed scientific

journals recommended by the Higher Attestation Commission, 6 in peer-reviewed

publications indexed in the international citation database Scopus, and 2 in collections

indexed in RSCI.

Validation of results. The research findings were reported at the following

international and all-Russian conferences:

— "All-Russian Congress on Theoretical and Applied Mechanics"[88];

— "Current Problems in Mechanics (APM)"[89];

— "29th Nordic Seminar on Computational Mechanics"[90];

— VIII and IX Polyakhov’s Readings [91, 92];

— Section of Theoretical Mechanics at the Gorky House of Scientists (St.

Petersburg) [93].

Author’s contribution to the preparation of publications. In joint

publications, the scientific supervisor S.B. Filippov contributed to the problem setting

and discussion of results. In the works [78, 79, 81, 82, 84], A.L. Smirnov contributed
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to the results of the asymptotic analysis of the problem of vibrations of a cylindrical

shell with a cap.

Structure and volume of the dissertation. The dissertation consists of an

introduction, three chapters, and a bibliography. The volume of the dissertation work

is 111 pages, including 25 figures and 20 tables. The bibliography contains 93 items.

The work was carried out with the financial support of the Russian Foundation

for Basic Research (project 19-01-00208) and the Russian Science Foundation (project

3-21-00111).

Main scientific results:

— The Rayleigh-Ritz method is applied for the first time to find the fundamental

frequency of a cylindrical shell conjugated with frames of varying stiffness. Different

cases of frame stiffness distribution along the shell’s generatrix are considered [85, 86,

87].

— The feasibility of using the ring plate model to study the vibration of transverse

frames is investigated [85, 86, 87].

— The influence of a cylindrical shell on conjugated plates in solving vibration

and stability problems is examined [77, 78, 79, 80, 81, 82].

— Problems of vibrations and stability loss for cylindrical shells reinforced with

frames of varying stiffness and different edge conditions are solved [77, 80].

— The effect of curvature and thickness of the end plate on the fundamental

frequency of the structure is studied [78, 79, 81, 82, 84].

Provisions for Defense:

— Equations describing the natural vibrations of thin cylindrical shells reinforced

with frames of varying stiffness are obtained. Approximate formulas for the

fundamental frequencies of the structure’s vibrations are derived. As an example, an



13
optimization problem is considered involving the maximization of the fundamental

vibration frequency of a structure of a given mass.

— Approximate formulas for the lowest natural frequencies of a cylindrical shell

conjugated with a spherical segment or a circular plate are obtained. The influence of

the curvature and thickness of the spherical segment on the fundamental frequency of

the structure is investigated.

— Asymptotic formulas for the critical external normal pressure of a cylindrical

shell conjugated with ring plates are obtained. Examples of solved problems include

maximizing the critical pressure for a structure of a given mass and minimizing the

mass of the structure for a fixed value of critical pressure.
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1 Natural vibrations of a thin cylindrical shell stiffened

with rings of varying stiffness

This chapter investigates the lowest frequencies and modes of vibrations of a

structure consisting of a thin-walled elastic cylindrical shell stiffened with rings of

varying stiffness. An example of such a shell is shown in Figure 1.1.

Two types of structure vibrations are identified. The modes of the first type have

a large number of waves in the circumferential direction and are similar to the modes

of natural vibrations of an unstiffened cylindrical shell. The modes and frequencies of

the second type are close to the modes and frequencies of vibrations of a ring plate.

The influence of changing the distribution law of ring stiffnesses along the generatrix

on the lowest frequency of the shell is investigated using numerical and asymptotic

methods. Formulas for calculating approximate values of the fundamental frequencies

of the structures are obtained for cases of simple support and rigid fixing of the shell

edges.

An optimization problem is solved to find the values of the coefficients of the

ring height distribution function for a structure of fixed mass, where the value of the

fundamental frequency reaches its highest.

Fig 1.1 — Cylindrical shell stiffened with rings.



15
1.1 Natural vibrations of a stiffened cylindrical shell

1.1.1 Problem statement

The problem of vibrations of a thin-walled elastic cylindrical shell, which is stiffened

with 𝑛𝑠 transverse stiffness ribs (rings) with zero eccentricity to increase the first

natural frequency, is considered. After separating the variables, the dimensionless

system of equations describing small free vibrations of the cylindrical shell takes the

form [11, 14]:

𝜇4 ·∆2𝑤 − 𝜎∆𝑘Φ− 𝜆𝑤 = 0, ∆2Φ +∆𝑘𝑤 = 0, (1.1)

where

∆𝑤 =
𝑑2𝑤

𝑑𝑠2
−𝑚2𝑤, ∆𝑘𝑤 =

𝑑2𝑤

𝑑𝑠2
, 𝜎 = 1− 𝜈2.

Here, 𝑠 is the coordinate directed along the generatrix, Φ is the force function,

𝑤 is the projection of displacement in the normal direction, 𝑚 is the number of waves

along the parallel, 𝜈 is the Poisson’s ratio, 𝜇4 = ℎ2/12 is a small parameter, ℎ is the

shell thickness, 𝜆 = 𝜎𝜌𝜔2𝑅2𝐸−1, 𝜌 is the material density, 𝐸 is Young’s modulus, 𝜔

is the frequency of natural vibrations. The radius 𝑅 of the cylinder base is chosen as

the unit of length.

We will limit ourselves to determining the lowest frequencies of vibrations.

Assume that the boundary conditions do not allow bending of the shell’s mid-surface.

Expressing the solution of system (1.1) as the sum of the main semi-momentless state

and a simple edge effect near the shell edges, the lowest frequencies correspond to 𝜆 ∼

𝜇2, 𝑚 ∼ 𝜇−1/2 [11]. Excluding the force function Φ from the system and considering

that ∆ ∼ 𝑚2, we obtain in the first approximation the equation

𝑤𝐼𝑉
0 − 𝛼4𝑤0 = 0, 𝛼4 =

𝑚4𝜆0 − 𝜇4𝑚8

𝜎
, (1.2)
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where 𝑤0 describes the semi-momentless state, 𝜆0 is the approximate value of 𝜆, 𝑤′ =

𝑑𝑤/𝑑𝑠 (see [11, 14]). In the following, only the approximate solution is considered, and

instead of 𝑤0 and 𝜆0, the notations 𝑤 and 𝜆 are used, respectively.

For simple support of the shell edges, the boundary conditions for equation

(1.2) are:

𝑤(0) = 𝑤′′(0) = 𝑤(𝑙) = 𝑤′′(𝑙) = 0, (1.3)

and for rigid fixing:

𝑤(0) = 𝑤′(0) = 𝑤(𝑙) = 𝑤′(𝑙) = 0, (1.4)

where 𝑙 is the dimensionless length of the shell.

If the shell is stiffened along the parallels with coordinates 𝑠 = 𝑠𝑖, 𝑖 =

1, 2, . . . , 𝑛−1 with circular rods (rings), then 𝑤 = 𝑤(𝑖) for 𝑠 ∈ [𝑠𝑖−1,𝑠𝑖], 𝑖 = 1, 2, . . . , 𝑛,

with 𝑠0 = 0, 𝑠𝑛 = 𝑙:

𝑤(𝑖)𝐼𝑉 − 𝛼4𝑤(𝑖) = 0, 𝑖 = 1,2, . . . ,𝑛. (1.5)

Assuming that the characteristic size of the cross-section of the ring 𝑎𝑖 ≪ 𝜇,

the following conjugation conditions are satisfied on the parallels stiffened with rings,

which can have different heights and stiffnesses [30]:

𝑤(𝑖) = 𝑤(𝑖+1), 𝑤(𝑖)′ = 𝑤(𝑖+1)′,

𝑤(𝑖)′′ = 𝑤(𝑖+1)′′, 𝑤(𝑖)′′′ − 𝑤(𝑖+1)′′′ = −𝑐𝑖𝑤
(𝑖+1),

𝑠 = 𝑠𝑖, 𝑖 = 1, 2, . . . , 𝑛− 1,

(1.6)

where

𝑐𝑖 =
𝑚8𝜇4𝑙𝜂𝑖

𝜎𝑛
, 𝜂𝑖 =

12𝜎𝑛𝐸𝑐𝐽𝑖
ℎ3𝐸𝑙

.

Here, 𝐸𝑐 is Young’s modulus of the material of the rings, 𝜂𝑖 is the dimensionless

stiffness of the 𝑖-th ring, proportional to the ratio of bending stiffnesses of the ring and

the shell, introduced in [36], 𝐽𝑖 is the moment of inertia of the cross-section of the 𝑖-th

ring relative to the generatrix of the cylinder.
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The approximate value of the frequency parameter of the stiffened shell is

determined by the formula:

𝜆 =
𝜎𝛼4(c)

𝑚4
+ 𝜇4𝑚4, c = {𝑐𝑖}𝑛𝑖=1,

where 𝛼(c) is the eigenvalue of the boundary problem (1.5), (1.6) with boundary

conditions (1.3) or (1.4).

1.1.2 Moment of inertia of the ring

Fig 1.2 — Axial section of the shell stiffened with rings.

Figure 1.2 shows a shell with rings in a cut along the shell’s generatrix. It is

assumed that the shell and rings are made of the same material. It is assumed that all

rings have the same width 𝑎, and the height of the first ring is 𝑏 = 𝑘𝑎. Let’s introduce

𝑓(𝑖) — a function describing the distribution of ring heights along the generatrix of

the cylinder: 𝑏𝑖 = 𝑏𝑓(𝑖) = 𝑘𝑎𝑓(𝑖).
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The eccentricity of a ring is the distance between the center of gravity of the

ring’s cross-section and the mid-surface of the shell. For a ring with zero eccentricity,

the moment of inertia of the 𝑖-th ring is calculated using the formula:

𝐽𝑖 =
𝑎𝑏3𝑖
12

=
𝑎4𝑘3

12
𝑓 3(𝑖) = 𝐽𝑓 3(𝑖), 𝐽 =

𝑎4𝑘3

12
.

Then the dimensionless stiffness of the ring can be written as:

𝑐𝑖 =
𝑚8𝜇4𝑙𝜂𝑖

𝜎𝑛
=

𝑚8𝜇4𝑙𝜂

𝜎𝑛
· 𝑓 3(𝑖) = 𝑐 · 𝑓 3(𝑖), (1.7)

𝜂𝑖 =
12𝜎𝑛𝐸𝑐𝐽𝑖
ℎ3𝐸𝑙

=
12𝜎𝑛𝐽

ℎ3𝑙
· 𝑓 3(𝑖) = 𝜂 · 𝑓 3(𝑖),

where

𝑐 =
𝑚8𝜇4𝑙𝜂

𝜎𝑛
, 𝜂 =

12𝜎𝑛𝐽

ℎ3𝑙
. (1.8)

Rings with non-zero eccentricity, located either inside or outside the shell, are

more commonly used in practice. When the eccentricity of the ring is equal to 𝑏𝑖/2,

to get an upper estimate of the first frequency of the shell, the moment of inertia

𝐽 = 𝑎𝑏3/3 can be taken.

The function of the structure profile 𝑓(𝑖) can have an arbitrary form, but it

is practical to stiffen the shell with rings whose heights are symmetrical about the

middle. Specifically, for a linear distribution of ring heights as shown in Figure 1.3 (a),

the function 𝑓(𝑖) is

𝑓𝑙𝑖𝑛(𝑖) = (𝜅(𝑖)− 1)(𝑢− 1) + 1, 𝑢 =
𝑏2
𝑏1
. (1.9)

For the case of ring heights distributed parabolically as shown in Figure 1.3

(b),

𝑓𝑝𝑎𝑟𝑎𝑏(𝑖) = 𝑎𝑝𝜅
2(𝑖)− 𝑛𝑎𝑝𝜅(𝑖) + 𝑛𝑎𝑝 − 𝑎𝑝 + 1, 𝑤ℎ𝑒𝑟𝑒 𝑎𝑝 =

1− 𝑢

𝑛− 3
. (1.10)
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For the case of exponential distribution of ring heights as shown in Figure 1.3

(c),

𝑓𝑒𝑥𝑝(𝑖) =
𝑢− 1

𝑒2 − 𝑒
𝑒𝜅(𝑖) +

𝑒− 𝑢

𝑒− 1
. (1.11)

Consequently, for the case of reinforcing the shell with identical rings

𝑓0(𝑖) = 1. (1.12)

Fig 1.3 — Structure profiles for the case of

a). linear b). parabolic c). exponential

ring height distribution functions.

In formulas (1.9, 1.10, 1.11), the function

𝜅(𝑖) =
𝑛

2
−
⃒⃒⃒𝑛
2
− 𝑖
⃒⃒⃒
=

⎧⎪⎪⎨⎪⎪⎩
𝑖, 𝑖 < 𝑛

2

𝑛− 𝑖, 𝑖 ⩾ 𝑛
2

ensures the symmetry of the structure profile functions, and the parameter 𝑢 = 𝑏2/𝑏1

characterizes the amplitude of the distribution function.

1.1.3 Optimal placement of rings

The boundary problems (1.3, 1.5, 1.6) and (1.4, 1.5, 1.6) are equivalent to the problems

of determining the lowest frequencies of transverse vibrations of beams, respectively
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with simply supported and clamped ends (Figure 1.4), stiffened with springs of stiffness

𝑐𝑖 at points 𝑠 = 𝑠𝑖. The case of simply supported ends of the beam with uniformly

spaced (𝑠𝑖 = 𝑙/𝑛 · 𝑖) identical springs (𝑐𝑖 = 𝑐) is studied in the monograph [30].

Fig 1.4 — Vibration modes of a beam supported with springs with

a). clamped, b). simply supported

ends.

The work [63] analyzed cases of non-uniform placement of springs. By iterating

through options, the optimal locations of springs were determined, corresponding to

the maximum value of the first eigenvalue 𝛼1(𝑐) of the boundary problems (1.3, 1.5,

1.6) and (1.4, 1.5, 1.6). It was found that as 𝑐 → ∞, the coordinates of the optimal

placement points of the springs 𝑠𝑖(𝑐) tend towards certain limit values 𝑠*𝑖 . The optimal

placement of springs at points 𝑠*𝑖 , corresponding to 𝑐 = ∞, is referred to as the limit

optimal placement.

In the article [63], for 𝑛 = 3, 5, 7, it was shown that in the case of simply

supported ends of the beam, the limit optimal placement of springs is their uniform

placement, i.e., 𝑠*𝑖 = 𝑙/𝑛 · 𝑖. The points 𝑠*𝑖 = 𝑙/𝑛 · 𝑖 are the nodes of the vibration mode

of the unstiffened beam

𝑤𝑛(𝑠) = sin(𝛼𝑛𝑠), 𝛼𝑛 =
𝑛

𝑙
· 𝜋. (1.13)

The work [56] showed that in the case of rigid fixing, the nodes of the vibration

mode of the unstiffened beam coincide with the points of the limit optimal placement
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of springs. The solution of equation (1.2) with boundary conditions (1.4) is

𝑤𝑛(𝑠) = [𝑈 (𝛼𝑛𝑠)− κ𝑛𝑉 (𝛼𝑛𝑠)] (1.14)

where

𝑆(𝑥) = ch 𝑥+ cos𝑥, 𝑇 (𝑥) = sh𝑥+ sin𝑥,

𝑈(𝑥) = ch𝑥− cos𝑥, 𝑉 (𝑥) = sh 𝑥− sin𝑥,

𝑆(𝑥) = 𝑇 ′(𝑥) = 𝑈 ′′(𝑥) = 𝑉 ′′′(𝑥) = 𝑆 ′′′′(𝑥)

are the Krylov function system,

𝛼𝑛 =
𝑧𝑛
𝑙
, κ𝑛 =

ch 𝑧𝑛 − cos 𝑧𝑛
sh 𝑧𝑛 − sin 𝑧𝑛

,

and the values

𝑧𝑛 ≃ 𝜋(2𝑛+ 1)/2, 𝑛 = 1,2, . . .

are the roots of the equation ch 𝑧 · cos 𝑧 = 1. In this case, the points of optimal

placement of springs coincide with the roots of the equation 𝑤𝑛(𝑠) = 0.

For simplicity, instead of 𝛼0 = 𝜋
2𝑙 , 𝛼 is used, instead of κ1 = 𝑈(3𝜋2 )/𝑉 (3𝜋2 ), κ

is used, and the first vibration mode of the unstiffened beam 𝑤1(𝑠) is denoted 𝑤(𝑠).

If 𝑐 ≫ 1, then the optimal placement of rings differs little from the limit optimal

placement.

1.1.4 Determining eigenvalues of vibrational frequencies of a beam

supported with springs

Consider the boundary problem (1.5, 1.6) of vibrations of a beam stiffened with springs.

An approximate solution to this problem in the case of simply supported beam ends

and uniformly distributed identical springs is obtained in [30] using the method of

averaging elastic characteristics. The formula for estimating the first eigenvalue 𝛼1 is:

𝛼4
1 =

𝜋4

𝑙4
+ 𝑐

𝑛

𝑙
. (1.15)
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The averaging method is only applicable for the case of uniformly distributed

identical springs. Let’s consider the boundary problem of vibrations of a beam stiffened

with springs of varying stiffness. Instead of the averaging method, the Rayleigh method

will be used. The Rayleigh formula for a beam stiffened with springs can be written

in the following dimensionless form:

𝛼4
1 =

𝐼1 + 𝐼2
𝐼0

, (1.16)

Here 𝐼0 is the kinetic energy of the beam (the work of the compressing force on

the shell), 𝐼1 is the energy of deformation of the beam (potential energy of bending of

the shell), 𝐼1 is the energy of deformation of the springs (deformation of the reinforcing

rings of the shell).

𝐼1 =

𝑙∫︁
0

(𝑤′′(𝑠))2𝑑𝑠, 𝐼2 =
𝑛−1∑︁
𝑖=1

𝑐𝑖𝑤
2(𝑠𝑖), 𝐼0 =

𝑙∫︁
0

𝑤2(𝑠)𝑑𝑠.

For 𝐼1, the following transformations can be made:

𝐼1 =

𝑙∫︁
0

(𝑤′′(𝑠))2𝑑𝑠 = (𝑤′′(𝑠)𝑤′(𝑠))

⃒⃒⃒⃒𝑙
0

−
𝑙∫︁

0

𝑤′(𝑠)𝑤′′′(𝑠)𝑑𝑠 =

= (𝑤′′(𝑠)𝑤′(𝑠)− 𝑤′′′(𝑠)𝑤(𝑠))

⃒⃒⃒⃒𝑙
0

+

𝑙∫︁
0

𝑤(𝑠)𝑤′′′′(𝑠)𝑑𝑠.

For both the simple support (1.3) and the rigid fixation (1.4) of the beam ends,

the non-integral term becomes zero, therefore

𝐼1 = 𝛼4

𝑙∫︁
0

𝑤2(𝑠)𝑑𝑠 = 𝛼4𝐼0.

In the case of simple support (1.3) of the beam ends, substitute 𝑤 = 𝑤1 in

(1.16), where the function 𝑤1 is defined by formula (1.13). We get

𝐼0 =

𝑙∫︁
0

(︁
sin
(︁𝜋𝑠

𝑙

)︁)︁2
𝑑𝑠 =

1

2

𝑙∫︁
0

(︂
1− cos

(︂
2𝜋𝑠

𝑙

)︂)︂
𝑑𝑠 =

𝑙

2
,
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𝐼1 = 𝛼4𝐼0 =
𝜋4

𝑙4
· 𝑙
2
.

With (1.7)

𝐼2 =
𝑛−1∑︁
𝑖=1

𝑐𝑖𝑤
2(𝑠𝑖) = 𝑐

𝑛−1∑︁
𝑖=1

𝑓 3(𝑖) · 𝑤2(𝑠𝑖).

Thus, for the case of simple support of the beam ends (1.3), the formula for

estimating the first eigenvalue is:

𝛼4
𝑠 =

𝐼1
𝐼0

+
𝐼2
𝐼0

=
𝜋4

𝑙4
+ 𝑐

2𝑇𝑠(𝑛)

𝑙
, 𝑇𝑠(𝑛) =

𝑛−1∑︁
𝑖=1

𝑓 3(𝑖) sin2
(︂
𝜋𝑖

𝑛

)︂
. (1.17)

For the case of reinforcing the beam with springs of the same stiffness (1.12),

both the averaging method and the Rayleigh method give the same approximate

formula (1.15) for the first eigenvalue:

𝑇 0
𝑠 (𝑛) =

𝑛−1∑︁
𝑖=1

sin2
(︂
𝜋𝑖

𝑛

)︂
=

𝑛

2
, 𝛼4

𝑠 =
𝜋4

𝑙4
+ 𝑐

𝑛

𝑙
.

Similar calculations are carried out for the case of rigidly fixed ends (1.4) of the

beam: substitute 𝑤 = 𝑤1 in (1.16), where the function 𝑤1 is defined by formula (1.14).

Then, the values of 𝐼0, 𝐼1 and 𝐼2 are calculated by the following formulas:

𝐼0 =

𝑙∫︁
0

(𝑈(𝛼𝑠)− κ · 𝑉 (𝛼𝑠))2𝑑𝑠, 𝐼1 =

𝑙∫︁
0

(𝑆(𝛼𝑠)− κ · 𝑇 (𝛼𝑠))2𝑑𝑠,

𝐼2 =
𝑛−1∑︁
𝑖=1

𝑐𝑖𝑤
2(𝑠𝑖) = 𝑐

𝑛−1∑︁
𝑖=1

𝑓 3(𝑖) · 𝑤2(𝑠𝑖).

Therefore, the value of the approximate parameter for the first frequency of

vibrations of the beam with clamped ends can be calculated using the formula

𝛼4
𝑐 =

𝐼1
𝐼0

+
𝐼2
𝐼0

=

(︂
3𝜋

2𝑙

)︂4

+ 𝑐
𝑇𝑐(𝑛)

𝐼0
, 𝑇𝑐(𝑛) =

𝑛−1∑︁
𝑖=1

𝑓 3(𝑖)𝑤2(𝑠𝑖). (1.18)
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1.1.5 Determining eigenvalues in the problem of vibrations of a stiffened

shell

Consider the problem of determining the lowest value of the frequency parameter 𝜆1

for a cylindrical shell with simply supported edges (1.3). The shell is stiffened with

rings of stiffness 𝑐𝑖 along parallels with coordinates 𝑠𝑖, which are nodes of the vibration

mode of the unstiffened simply supported shell (1.13).

Denote 𝛼𝑠(𝜂,𝑚) as the eigenvalue of the boundary problem for the case of

simple support (1.3, 1.5, 1.6), corresponding to the lowest frequency parameter. Denote

the corresponding frequency parameter value 𝜆1(𝜂) as 𝜆
𝑠(𝜂)

𝜆𝑠(𝜂) = 𝜆1(𝜂) = min
𝑚

[︂
𝜎𝛼4

𝑠(𝜂,𝑚)

𝑚4
+ 𝜇4𝑚4

]︂
. (1.19)

Considering (1.8) and (1.17),

𝛼4
𝑠 =

𝜋4

𝑙4
+ 𝑐

2𝑇𝑠(𝑛)

𝑙
=

𝜋4

𝑙4
+

𝑚8𝜇4𝑙𝜂

𝜎𝑛

2𝑇𝑠(𝑛)

𝑙
=

𝜋4

𝑙4
+

2𝑇𝑠(𝑛)𝜇
4𝜂

𝜎𝑛
𝑚8.

Substituting the obtained value of 𝛼4
𝑠 into (1.19) gives the following expression:

𝜆𝑠(𝜂) = min
𝑚

[︂
𝜎𝜋4

𝑙4
𝑚−4 +

2𝑇𝑠(𝑛)𝜇
4𝜂

𝑛
𝑚4 + 𝜇4𝑚4

]︂
In general, the minimizable function 𝜆(𝜂,𝑚) takes the form:

𝜆(𝜂,𝑚) = 𝑋𝑚−4 + 𝑌 𝑚4, (1.20)

where

𝑋 =
𝜎𝜋4

𝑙4
, 𝑌 =

(︂
1 +

2𝑇𝑠(𝑛)

𝑛
𝜂

)︂
𝜇4.

Minimizing the obtained function 𝜆(𝜂,𝑚) with respect to 𝑚:

𝑑

𝑑𝑚
𝜆(𝜂,𝑚) = −4𝑋𝑚−5 + 4𝑌 𝑚3, −4𝑋𝑚−5

0 + 4𝑌 𝑚3
0 = 0,

then

𝑚4
0 =

√︂
𝑋

𝑌
, min

𝑚

[︀
𝑋𝑚−4 + 𝑌 𝑚4

]︀
= 2

√
𝑋𝑌 .
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Therefore, for the lowest frequency parameter value, we have

𝜆𝑠(𝜂) = 2

√︃
𝜎𝜋4

𝑙4
·
(︂
1 +

2𝑇𝑠(𝑛)

𝑛
𝜂

)︂
𝜇4 =

2𝜋2𝜇2
√
𝜎

𝑙2

√︂
1 +

2𝑇𝑠(𝑛)

𝑛
𝜂

Since 𝜇4 = ℎ2/12, the value of 𝜆𝑠 for the case of simply supported shell edges

is written as:

𝜆𝑠(𝜂) = 𝜆𝑠(0)

√︂
1 +

2𝑇𝑠(𝑛)

𝑛
𝜂, 𝑤ℎ𝑒𝑟𝑒 𝜆𝑠(0) =

𝜋2ℎ
√
𝜎

𝑙2
√
3

. (1.21)

With an increase in 𝜂, 𝜆𝑠(𝜂) also increases, but formula (1.21) cannot be used for

large values of 𝜂. There exists a vibration frequency value independent of 𝜂. Indeed,

the eigenvalue 𝛼𝑛 of the boundary problem (1.3), (1.5) is also an eigenvalue of the

boundary problem (1.3), (1.5), (1.6), as the vibration mode of the unstiffened shell

𝑤𝑛(𝑠) satisfies the boundary conditions (1.6). For the parameter 𝜆𝑠
𝑛 corresponding to

this eigenvalue 𝛼𝑛, we have:

𝜆𝑠
𝑛 = min

𝑚

[︂
𝜎𝛼4

𝑛

𝑚4
+ 𝜇4𝑚4

]︂
= 2
√︀

𝜎𝛼4
𝑛𝜇

4 = 2𝛼2
𝑛𝜇

2
√
𝜎 =

=
2𝜋2𝑛2

𝑙2
ℎ√
12

√
𝜎 =

𝜋2ℎ
√
𝜎

𝑙2
√
3

𝑛2 = 𝜆𝑠(0)𝑛2.

This parameter does not depend on 𝜂.

The parameter 𝜂*𝑠 , which is the root of the equation

𝜆𝑠(0)

√︂
1 +

2𝑇𝑠(𝑛)

𝑛
𝜂 = 𝜆𝑠

𝑛

is called the effective stiffness of the ring. Increasing the stiffness of the ring 𝜂 after

reaching the value of 𝜂*𝑠 does not lead to an increase in the lowest frequency parameter.

Therefore,

𝜆𝑠(𝜂)

𝜆𝑠(0)
=

⎧⎪⎪⎨⎪⎪⎩
√︁
1 + 2𝑇𝑠(𝑛)

𝑛 𝜂, 𝜂 ⩽ 𝜂*𝑠

𝑛2, 𝜂 > 𝜂*𝑠

, 𝜂*𝑠 =
𝑛(𝑛4 − 1)

2𝑇𝑠(𝑛)
. (1.22)

Consider a similar problem of determining the lowest value of the frequency

parameter 𝜆𝑐 for a cylindrical shell with rigidly fixed (1.4) edges. In this case, the
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coordinates of the parallels where the shell is stiffened with rings of stiffness 𝑐𝑖 are the

nodes of the vibration mode of the unstiffened rigidly fixed shell (1.14).

Substituting (1.8) into the eigenvalue (1.18) of the boundary problem(1.4, 1.5,

1.6):

𝛼4
𝑐 =

(︂
3𝜋

2𝑙

)︂4

+ 𝑐
𝑇𝑐(𝑛)

𝐼0
=

(︂
3𝜋

2𝑙

)︂4

+
𝑚8𝜇4𝑙𝜂

𝜎𝑛

𝑇𝑐(𝑛)

𝐼0
=

=

(︂
3𝜋

2𝑙

)︂4

+
𝑙𝑇𝑐(𝑛)𝜇

4𝜂

𝜎𝑛𝐼0
𝑚8

Then the smallest eigenvalue for the frequency parameter of the rigidly fixed

cylindrical shell (1.19) is

𝜆𝑐(𝜂) = min
𝑚

[︃
𝜎

𝑚4

(︃(︂
3𝜋

2𝑙

)︂4

+
𝑙𝑇𝑐(𝑛)𝜇

4𝜂

𝜎𝑛𝐼0
𝑚8

)︃
+ 𝜇4𝑚4

]︃
=

= min
𝑚

[︂
𝜎(3𝜋)4

(2𝑙)4
𝑚−4 +

𝑙𝑇𝑐(𝑛)𝜇
4𝜂

𝑛𝐼0
𝑚4 + 𝜇4𝑚4

]︂
.

After minimizing this expression with respect to 𝑚, similarly to (1.20), we

obtain

𝜆𝑐(𝜂) = 2

√︃
𝜎(3𝜋)4

(2𝑙)4
·
(︂
1 +

𝑙𝑇𝑐(𝑛)𝜂

𝑛𝐼0

)︂
𝜇4 =

9𝜋2𝜇2
√
𝜎

2𝑙2

√︃
1 +

𝑙𝑇𝑐(𝑛)𝜂

𝑛𝐼0
.

or

𝜆𝑐(𝜂) = 𝜆𝑐(0)

√︃
1 +

𝑙𝑇𝑐(𝑛)𝜂

𝑛𝐼0
, where 𝜆𝑐(0) =

3𝜋2ℎ
√
3𝜎

4𝑙2
. (1.23)

As 𝜂 increases, 𝜆𝑐(𝜂) also increases. However, like in the case of simply

supported shell edges, formula (1.23) cannot be used for large values of 𝜂 because

there exists a frequency parameter 𝜆𝑐
𝑛, which is independent of 𝜂, and for which the

approximate formula is:

𝜆𝑐
𝑛 = min

𝑚

[︂
𝜎𝛼4

𝑛

𝑚4
+ 𝜇4𝑚4

]︂
= 2
√︀

𝜎𝛼4
𝑛𝜇

4 =
(2𝑛+ 1)2𝜋2

4𝑙2
ℎ
√
𝜎√
3

=

=
3𝜋2ℎ

√
3𝜎

4𝑙2
(2𝑛+ 1)2

32
= 𝜆𝑐(0) ·

(︂
2𝑛+ 1

3

)︂2

.
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The value of the effective stiffness of the ring 𝜂*𝑐 in this case is the root of the

equation

𝜆𝑐(0)

√︃
1 +

𝑙𝑇𝑐(𝑛)𝜂*𝑐
𝑛𝐼0

= 𝜆𝑐(0) ·
(︂
2𝑛+ 1

3

)︂2

Increasing the stiffness of the ring 𝜂 after reaching the value of 𝜂*𝑐 does not lead

to an increase in the lowest frequency parameter. Therefore:

𝜆𝑐(𝜂)

𝜆𝑐(0)
=

⎧⎪⎪⎨⎪⎪⎩
√︁

1 + 𝑙𝑇𝑐(𝑛)𝜂
𝑛𝐼0

, 𝜂 ⩽ 𝜂*𝑐(︀
2𝑛+1
3

)︀2
, 𝜂 > 𝜂*𝑐

, 𝜂*𝑐 =
𝑛𝐼0

𝑙𝑇𝑐(𝑛)

(︃(︂
2𝑛+ 1

3

)︂4

− 1

)︃
. (1.24)

1.2 Optimization of parameters of a stiffened cylindrical shell

for maximum increase of the first frequency

Let’s assume the mass of the stiffened shell is fixed. We consider the problem of

determining the optimal distribution of mass between the rings and the shell (cladding)

that corresponds to the highest value of the first frequency.

The lowest vibration frequency 𝜔0 of a cylindrical shell with simply supported

edges, having a non-dimensional length 𝑙 and thickness ℎ0, can be determined using

the approximate formula, assuming 𝜆 = 𝜆𝑠(0) (1.21)

𝜔0
𝑠 =

√︃
𝐸𝜆𝑠(0)

𝜌𝑅2𝜎
=

√︃
𝐸

𝜌𝑅2𝜎

𝜋2ℎ0

√
𝜎

𝑙2
√
3

=

√︃
𝐸ℎ0𝜋2

𝜌𝑅2𝑙2
√
3𝜎

. (1.25)

Assume that due to the reduction of the shell thickness to ℎ, 𝑛 − 1 rings are

installed on it. Assume that the rings have a rectangular cross-section, equal width 𝑎,

and height 𝑏𝑖(𝑖 = 1, . . . , 𝑛− 1). The mass of the stiffened shell, in this case,

𝑀 𝑠 = 𝑀(ℎ) +𝑀 𝑟, (1.26)

where 𝑀(ℎ) = 𝜌2𝜋𝑅 ·𝑅ℎ ·𝑅𝑙 — mass of the cladding, and the mass of the rings

𝑀 𝑟 =
𝑛−1∑︁
𝑖=1

𝜌2𝜋𝑅 · 𝑎𝑅 · 𝑏𝑖𝑅 = 2𝜋𝑅3𝜌 · 𝑎2𝑘 · 𝑃 (𝑛), 𝑃 (𝑛) =
𝑛−1∑︁
𝑖=1

𝑓(𝑖).
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Let the mass of the stiffened shell be equal to the mass of the smooth shell

𝑀0 = 𝑀(ℎ0).

To determine the first frequency of vibration of the stiffened shell 𝜔𝑠, we use

formulas (1.21) and (1.25). We introduce a function of the ratio of the first frequency

of vibration of the stiffened shell to the first frequency of vibration of the smooth shell.

In the case of simply supported shell edges considering (1.22), we obtain the following

expression

𝑓𝑠 =
𝜔𝑠

𝜔0
𝑠

=

⎧⎪⎪⎨⎪⎪⎩
4

√︁
1 + 2𝑇𝑠(𝑛)

𝑛 𝜂 ·
√
𝑑, 𝜂 ⩽ 𝜂*𝑠 ,

𝑛 ·
√
𝑑, 𝜂*𝑠 < 𝜂,

, 𝜂*𝑠 =
𝑛(𝑛4 − 1)

2𝑇𝑠(𝑛)
, 𝑑 =

ℎ

ℎ0
.

Transforming the second term under the square root considering the value of 𝜂

from (1.8)

2𝑇𝑠(𝑛)

𝑛
𝜂 =

2𝑇𝑠(𝑛)

𝑛

12𝜎𝑛

ℎ3𝑙
𝐽 =

2𝑇𝑠(𝑛)

𝑛

12𝜎𝑛

ℎ3𝑙

𝑎4𝑘3

12

ℎ3
0

ℎ3
0

=
2𝑇𝑠(𝑛)𝜎𝑘

3

𝑙ℎ3
0

· 𝑎
4

𝑑3
.

Therefore

𝑓𝑠 =

⎧⎪⎪⎨⎪⎪⎩
𝑛 ·

√
𝑑, 0 < 𝑑 ⩽ 𝑑𝑠

4

√︁
1 + 𝐵𝑠𝑎4

𝑑3 ·
√
𝑑, 𝑑𝑠 < 𝑑 ⩽ 1

, 𝐵𝑠 =
2𝜎𝑘3

𝑙ℎ3
0

· 𝑇𝑠(𝑛). (1.27)

Consider the condition of mass equality of the stiffened shell and the smooth

shell (1.26):

2𝜋𝑅3𝜌
(︀
ℎ𝑙 + 𝑎2𝑘𝑃 (𝑛)

)︀
= 2𝜋𝑅3𝜌ℎ0𝑙,

ℎ𝑙 + 𝑎2𝑘𝑃 (𝑛) = ℎ0𝑙.

From which

𝑎2 =
1− 𝑑

𝐴
, where 𝐴 =

𝑘

ℎ0𝑙
𝑃 (𝑛).

Using the expression for 𝑎2, the function 𝑓 2
𝑠 (𝑑) can be represented as follows:

𝑓𝑠(𝑑) =

⎧⎪⎪⎨⎪⎪⎩
𝑛 ·

√
𝑑, 0 < 𝑑 ⩽ 𝑑𝑠

4

√︁
1 + 𝐵𝑠

𝐴2 · (1−𝑑)2

𝑑3 ·
√
𝑑, 𝑑𝑠 < 𝑑 ⩽ 1

,
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From the continuity condition of the function 𝑓𝑠 at 𝑑𝑠, we have

𝑛4 − 1 =
𝐵𝑠

𝐴2
· (1− 𝑑𝑠)

2

𝑑3𝑠
,

from which

𝑑3𝑠 −
𝐵𝑠

𝐴2(𝑛4 − 1)
(1− 𝑑𝑠)

2 = 0,

or

𝑑3𝑠 −
2𝜎𝑘𝑙

ℎ0
· 𝑇𝑠(𝑛)

𝑃 2(𝑛)(𝑛4 − 1)
· (𝑑𝑠 − 1)2 = 0. (1.28)

The value of 𝑑𝑠 is determined as the root of this equation from the interval [0, 1], which

corresponds to the maximum first frequency of vibration of the simply supported shell,

stiffened with rings of various stiffness.

The non-dimensional width of the rings 𝑎𝑠 and the value of the target function

𝑓 *
𝑠 , corresponding to 𝑑𝑠, are found by the formulas:

𝑎𝑠 =

√︂
1− 𝑑𝑠
𝐴

, 𝑓 *
𝑠 = 𝑛 ·

√︀
𝑑𝑠.

In the problem of vibrations of a stiffened cylindrical shell with rigidly fixed

edges, a similar mass optimization can be performed. The lowest vibration frequency

𝜔0 of a cylindrical shell with clamped edges, having a non-dimensional length 𝑙 and

thickness ℎ0, can be determined by the approximate formula (assuming 𝜆 = 𝜆𝑐(0)

according to (1.23))

𝜔0
𝑐 =

√︃
𝐸𝜆𝑐(0)

𝜌𝑅2𝜎
=

√︃
𝐸

𝜌𝑅2𝜎

3𝜋2ℎ0

√
3𝜎

4𝑙2
=

√︃
9𝐸ℎ0𝜋2

4𝜌𝑅2𝑙2
√
3𝜎

. (1.29)

To determine the first frequency of vibration of the stiffened shell 𝑤𝑐, we can

use formulas (1.23) and (1.29). Considering the relationship (1.24), the function of the

ratio of the first frequency of vibration of the stiffened shell to the first frequency of

vibration of the smooth shell 𝑓𝑐 will have the following form:

𝑓𝑐 =
𝜔𝑐

𝜔0
𝑐

=

⎧⎪⎪⎨⎪⎪⎩
4

√︁
1 + 𝑙𝑇𝑐(𝑛)𝜂

𝑛𝐼0
·
√
𝑑, 𝜂 ⩽ 𝜂*𝑐

2𝑛+1
3 ·

√
𝑑, 𝜂 > 𝜂*𝑐

, 𝜂*𝑐 =
𝑛𝐼0

𝑙𝑇𝑐(𝑛)

(︃(︂
2𝑛+ 1

3

)︂4

− 1

)︃
.
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Let’s perform similar transformations of the second term under the square root:

𝑙𝑇𝑐(𝑛)𝜂

𝑛𝐼0
=

𝑙𝑇𝑐(𝑛)

𝑛𝐼0

12𝜎𝑛

ℎ3𝑙
𝐽 =

𝑙𝑇𝑐(𝑛)

𝑛𝐼0

12𝜎𝑛

ℎ3
0𝑑

3𝑙

𝑎4𝑘3

12
=

𝑇𝑐(𝑛)𝜎𝑘
3

𝐼0ℎ3
0

𝑎4

𝑑3
,

then

𝑓𝑐 =

⎧⎪⎪⎨⎪⎪⎩
2𝑛+1
3 ·

√
𝑑, 0 < 𝑑 ⩽ 𝑑𝑐

4

√︁
1 + 𝐵𝑐𝑎4

𝑘3 ·
√
𝑑, 𝑑𝑐 < 𝑑 ⩽ 1

, 𝐵𝑐 =
𝜎𝑘3

𝐼0ℎ3
0

· 𝑇𝑐(𝑛).

Considering the equality of mass of the shell, stiffened with rings, and the

smooth shell

𝑓𝑐 =

⎧⎪⎪⎨⎪⎪⎩
2𝑛+1
3 ·

√
𝑑, 0 < 𝑑 ⩽ 𝑑𝑐

4

√︁
1 + 𝐵𝑐

𝐴2 · (1−𝑑)2

𝑑3 ·
√
𝑑, 𝑑𝑐 < 𝑑 ⩽ 1

, 𝑎2 =
1− 𝑑

𝐴
, 𝐴 =

𝑘𝑃 (𝑛)

ℎ0𝑙
.

Where 𝑑𝑐 satisfies the following equation:(︂
2𝑛+ 1

3

)︂4

= 1 +
𝐵𝑐

𝐴2
· (1− 𝑑𝑐)

2

𝑑3𝑐
,

from which

𝑑3𝑐 −
𝐵𝑐

𝐴2
(︁(︀

2𝑛+1
3

)︀4 − 1
)︁(1− 𝑑𝑐)

2 = 0,

or

𝑑3𝑐 −
𝜎𝑘𝑙2

𝐼0ℎ0

𝑇𝑐(𝑛)

𝑃 2(𝑛)
(︁(︀

2𝑛+1
3

)︀4 − 1
)︁(1− 𝑑𝑐)

2 = 0. (1.30)

The non-dimensional width of the rings 𝑎𝑐 and the target function value 𝑓 *
𝑐 ,

corresponding to 𝑑𝑐, can be found by the following formulas:

𝑎𝑐 =

√︂
1− 𝑑𝑐
𝐴

, 𝑓 *
𝑐 =

2𝑛+ 1

3
·
√︀
𝑑𝑐.

1.3 Analytical determination of the fundamental frequency of

a stiffened shell

Using numerical and asymptotic methods, the spectrum of natural frequencies of

a stiffened shell has been obtained. Two types of vibrations have been identified.
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The modes of the first type of vibrations have a large number of waves in the

circumferential direction, similar to the modes of an unstiffened cylindrical shell. The

natural frequencies and modes of the second type are similar to the frequencies and

modes of vibrations of a circular plate.

In this section, the "shell"frequencies are determined analytically and

numerically. As an example, consider a copper cylindrical shell with a length of 𝑙 = 4

and a thickness of ℎ0 = 0.01, with Young’s modulus 𝐸 = 11 · 1010 Pa, Poisson’s ratio

𝜈 = 0.35, and density 𝜌 = 8920 kg/m3. The approximate value of the fundamental

frequency of vibration (𝜔0) of the unstiffened shell is calculated using formula (1.25) in

the case of simple edge support, and using formula (1.29) in the case of rigid fixation.

The corresponding values 𝜔0
𝑠 and 𝜔0

𝑐 are as follows

𝜔0
𝑠 =

√︃
𝐸ℎ0

𝑅2𝑙2
√
3𝜎

≃ 216.5
rad

s
, 𝜔0

𝑐 =

√︃
9𝐸ℎ0

4𝑅2𝑙2
√
3𝜎

≃ 324.8
rad

s
.

In the case of reinforcing the shell with 𝑛𝑠 rings of width 𝑎 and heights 𝑏𝑖 =

𝑘𝑎𝑓(𝑖)(𝑖 = 1 . . . 𝑛𝑠), the function 𝑓(𝑖) determines the distribution of ring heights along

the shell’s generatrix, and thus the distribution of ring stiffness and the construction

profile. For the case of linear distribution

𝑓𝑙𝑖𝑛(𝑖) = (𝜅(𝑖)− 1)(𝑢− 1) + 1, 𝑢 =
𝑏2
𝑏1
,

where

𝜅(𝑖) =
𝑛

2
−
⃒⃒⃒𝑛
2
− 𝑖
⃒⃒⃒
=

⎧⎪⎪⎨⎪⎪⎩
𝑖, 𝑖 < 𝑛

2

𝑛− 𝑖, 𝑖 ⩾ 𝑛
2

, 𝑛 = 𝑛𝑠 + 1.

For the case of parabolic distribution

𝑓𝑝𝑎𝑟𝑎𝑏(𝑖) = 𝑎𝑝𝜅
2(𝑖)− 𝑛𝑎𝑝𝜅(𝑖) + 𝑛𝑎𝑝 − 𝑎𝑝 + 1, 𝑤ℎ𝑒𝑟𝑒 𝑎𝑝 =

1− 𝑢

𝑛− 3
,

and for the case of exponential distribution

𝑓𝑒𝑥𝑝(𝑖) =
𝑢− 1

𝑒2 − 𝑒
𝑒𝜅(𝑖) +

𝑒− 𝑢

𝑒− 1
.
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For a shell stiffened with rings of equal height, 𝑢 = 1.

The approximate value of the "shell"frequency of such a structure can be

obtained using the formula 𝜔𝑠 = 𝜔0
𝑠𝑓𝑠 in the case of simple edge support, and using

the formula 𝜔𝑐 = 𝜔0
𝑐𝑓𝑐 in the case of rigid edge fixation. The values of 𝑓𝑠 and 𝑓𝑐 for

different construction profiles are given in Tables 1.1 and 1.2. Figures 1.5 and 1.6 show

the dependencies of the functions 𝑓𝑠 and 𝑓𝑐 on the number of rings for various ratios

of ring width and height.

Based on the obtained results, it can be concluded that using unequal rings

to stiffen a cylindrical shell leads to a more significant increase in its first natural

frequency compared to stiffening with equal rings. Among the three construction

profiles considered, the profile with an exponential law of height distribution of rings

provides the greatest increase in the first frequency. Furthermore, it can be noted that

fixing the edges of the shell leads to higher fundamental frequencies than in the case of

simple edge support. These results underscore the importance of considering both the

type of construction profile and the boundary conditions when improving constructions

with cylindrical shells.

1.4 Natural vibrations of an annular plate

As can be seen from the results of the previous section, the first frequency of shell

vibrations increases with the height of the rings. In most studies on the vibrations

of cylindrical shells stiffened with rings, the rod model of the ring is used, as the

natural frequency of the ring’s vibrations exceeds that of the shell when the height is

small. However, as the height increases, the natural frequency of the ring’s vibrations

decreases, leading to a decrease in the frequency of vibrations of the entire structure.

Therefore, when the ratio of the ring’s height to its width 𝑘 = 𝑏/𝑎 is large, to obtain

more accurate results, rings should be considered as annular plates instead of using the
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Table 1.1 — Values of the function 𝑓𝑠 for a simply supported shell stiffened with 𝑛𝑠

rings.

𝑓𝑙𝑖𝑛(𝑖) 𝑓𝑝𝑎𝑟𝑎𝑏(𝑖) 𝑓𝑒𝑥𝑝(𝑖)

𝑛𝑠

𝑢
1 2 3 1 2 3 1 2 3

𝑘
=

1

4 3,16 3,41 3,51 3,16 3,41 3,51 3,16 3,41 3,51

5 3,36 3,66 3,90 3,36 3,66 3,82 3,36 3,66 4,13

6 3,51 3,85 4,17 3,51 3,85 4,08 3,51 3,85 4,45

7 3,64 4,00 4,47 3,64 4,00 4,30 3,64 4,00 5,32

8 3,74 4,13 4,68 3,74 4,13 4,50 3,74 4,13 5,64

𝑘
=

1,
5

4 3,61 3,66 3,64 3,61 3,66 3,64 3,61 3,66 3,64

5 4,02 4,14 4,14 3,94 4,02 3,99 4,25 4,45 4,49

6 4,31 4,45 4,44 4,22 4,32 4,29 4,60 4,82 4,84

7 4,63 4,83 4,83 4,46 4,59 4,56 5,49 5,82 5,86

8 4,86 5,07 5,07 4,68 4,83 4,79 5,83 6,17 6,20

𝑘
=

2

4 3,77 3,73 3,95 3,77 3,73 3,95 3,77 3,73 3,95

5 4,31 4,27 4,55 4,16 4,10 4,40 4,65 4,63 4,89

6 4,65 4,59 4,94 4,50 4,43 4,78 5,04 5,00 5,33

7 5,06 5,00 5,40 4,79 4,71 5,11 6,08 6,04 6,40

8 5,33 5,26 5,71 5,05 4,97 5,41 6,46 6,40 6,83

ring rod model. The optimal use of rings is when the first frequency of their vibrations

coincides with the first frequency of shell vibrations.

Figure 1.7 shows a cylindrical shell stiffened in the middle with an annular plate.

As before, the radius of the cylindrical shell is chosen as the unit of length 𝑅 = 1.
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Fig 1.5 — Values of the function 𝑓𝑠 for a) linear, b) parabolic, c) exponential

construction profiles.

Numerical results show that for large values of 𝑘, the low-frequency vibrations

are axisymmetric, and the lower frequencies of the stiffened shell are close to the

frequencies corresponding to the bending vibrations of the plate.

The dimensionless equations describing axisymmetric vibrations of the

cylindrical shell are as follows:

𝜇4𝑑
4𝑤

𝑑𝑠4
+ 𝜈

𝑑𝑢

𝑑𝑠
+ 𝑤 = 𝜆𝑤,

𝑑2𝑢

𝑑𝑠2
+ 𝜈

𝑑𝑤

𝑑𝑠
= −𝜆𝑢, (1.31)

Here 𝑠 ∈ [0, 𝑙] is the longitudinal coordinate, (𝑢,𝑤) are the displacement components

(𝑢 is axial, 𝑤 is normal), 𝜇4 = ℎ2/12 is a small parameter, ℎ is the shell thickness, 𝜈

is the Poisson’s ratio, and 𝜆 = 𝜌𝜔2𝑅2𝐸−1 is the frequency parameter.

Axisymmetric vibrations of an annular plate are described by the dimensionless

equation:

∆2𝑤𝑝 = 𝛾4 · 𝑤𝑝, ∆𝑤𝑝 =
1

𝑠𝑝

𝑑

𝑑𝑠𝑝

(︂
𝑠𝑝
𝑑𝑤𝑝

𝑠𝑝

)︂
, 𝛾4 =

12𝜆

𝑎2
, (1.32)

where 𝑠𝑝 ∈ [1, 1 + 𝑏] is the radial coordinate, and 𝑤𝑝 is the displacement along the

normal.
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Table 1.2 — Values of the function 𝑓𝑐 for a rigidly fixed shell stiffened with 𝑛𝑠 rings.

𝑓𝑙𝑖𝑛(𝑖) 𝑓𝑝𝑎𝑟𝑎𝑏(𝑖) 𝑓𝑒𝑥𝑝(𝑖)

𝑛𝑠

𝑢
1 1,5 2 1 1,5 2 1 1,5 2

𝑘
=

1

4 2,67 2,77 2,84 2,67 2,77 2,84 2,67 2,77 2,84

5 2,86 2,99 3,08 2,86 2,99 3,08 2,86 2,99 3,08

6 3,01 3,16 3,26 3,01 3,16 3,26 3,01 3,16 3,26

7 3,13 3,30 3,42 3,13 3,30 3,42 3,13 3,30 3,42

8 3,23 3,41 3,54 3,23 3,41 3,54 3,23 3,41 3,54

𝑘
=

1,
5

4 2,82 2,91 2,98 2,82 2,91 2,98 2,82 2,91 2,98

5 3,14 3,26 3,35 3,08 3,20 3,29 3,31 3,42 3,50

6 3,37 3,52 3,62 3,30 3,45 3,55 3,58 3,72 3,82

7 3,63 3,80 3,91 3,50 3,66 3,78 4,25 4,40 4,50

8 3,81 4,00 4,13 3,67 3,85 3,99 4,52 4,70 4,82

𝑘
=

2

4 2,93 3,01 3,07 2,93 3,01 3,07 2,93 3,01 3,07

5 3,32 3,43 3,50 3,22 3,34 3,42 3,52 3,62 3,69

6 3,58 3,72 3,82 3,48 3,62 3,72 3,84 3,96 4,05

7 3,89 4,05 4,17 3,71 3,88 3,99 4,56 4,70 4,78

8 4,11 4,29 4,42 3,91 4,10 4,23 4,87 5,03 5,14

Assuming that the edge of the plate (𝑠𝑝 = 1+ 𝑏) is free, we write the boundary

conditions as follows:

𝑀𝑝 = 𝑄𝑝 = 0 at 𝑠𝑝 = 1 + 𝑏, (1.33)

where the bending moment 𝑀𝑝 and the shearing force 𝑄𝑝 are defined as:

𝑀𝑝 =
𝑑2𝑤𝑝

𝑑𝑠2𝑝
+

𝜈

𝑠𝑝

𝑑𝑤𝑝

𝑑𝑠𝑝
, 𝑄𝑝 =

𝑑3𝑤𝑝

𝑑𝑠3𝑝
+

1

𝑠𝑝

𝑑2𝑤𝑝

𝑑𝑠2𝑝
− 1

𝑠2𝑝

𝑑𝑤𝑝

𝑑𝑠𝑝
.
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Fig 1.6 — Values of the function 𝑓𝑐 for a) linear, b) parabolic, c) exponential

construction profiles.

Fig 1.7 — Cylindrical shell conjugated with an annular plate.

In the study [57], it is shown that in the case when the width of the ring is

close to the thickness of the shell 𝑎 ∼ ℎ, in the first approximation, the conjugation
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boundary conditions (1.34) can be written as:

𝑤𝑝(1) = 0,
𝑑𝑤𝑝

𝑑𝑠𝑝
(1) = 0. (1.34)

In general, the exact solution of the system (1.32), (1.33), (1.34) is represented

through Bessel functions:

𝑤𝑝 = 𝐶1𝐽0(𝛾𝑠𝑝) + 𝐶2𝑌0(𝛾𝑠𝑝) + 𝐶3𝐼0(𝛾𝑠𝑝) + 𝐶4𝐾0(𝛾𝑠𝑝), (1.35)

where {𝐶𝑖}4𝑖=1 are arbitrary constants, 𝐽0, 𝑌0 are Bessel functions of the first and

second kind, 𝐼0, 𝐾0 are modified Bessel functions. In general, to find the parameter 𝛾,

it is necessary to substitute the solution (1.35) into the boundary conditions (1.33) and

(1.34). The condition for the existence of a non-trivial solution is the zeroing of the

main determinant of the system of linear equations. The resulting complex equation

can only be solved numerically.

However, in the case of conjugation with a sufficiently narrow (𝑏 ≪ 1) plate, a

simple approximate formula for 𝛾 can be obtained.

After changing the variable 𝑠𝑝 = 1 + 𝑏𝑥 in equation (1.32) and boundary

conditions (1.33), (1.34) and neglecting small terms, we obtain an eigenvalue problem:

𝑑4𝑤

𝑑𝑥4
− 𝛽4𝑤 = 0, where 𝛽 = 𝑏𝛾, (1.36)

𝑤(0) =
𝑑𝑤

𝑑𝑥
(0) =

𝑑2𝑤

𝑑𝑥2
(1) =

𝑑3𝑤

𝑑𝑥3
(1) = 0. (1.37)

The solution to equation (1.36) takes the form:

𝑤 = 𝐷1 sin(𝛽𝑥) +𝐷2 cos(𝛽𝑥) +𝐷3 sh(𝛽𝑥) +𝐷4 ch(𝛽𝑥). (1.38)

Substituting (1.38) into (1.37) results in a system of homogeneous equations

for {𝐷𝑖}4𝑖=1, which has non-trivial solutions when the main determinant equals zero:

sh(𝛽) cos(𝛽) + 1 = 0.
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The smallest root of this equation 𝛽0 ≃ 1.875 corresponds to the first frequency.

An approximate value of the parameter 𝛾 can be found using the formula 𝛾0 = 1.875/𝑏.

For 𝑎 ≪ 𝑏 ≪ 1 and 𝑎 ∼ ℎ, an approximate value of the frequency parameter

𝜆1, using (1.32) and (1.5),

𝛽 = 𝑏𝛾, 12𝜆 = 𝛾4𝑎2,

can be obtained by the formula:

𝜆1 ≃ 1.03
𝑎2

𝑏4
. (1.39)

Next, we will use the obtained formula when solving the problem of choosing

optimal coefficients for the distribution function.

1.5 Analytical and numerical evaluation of the fundamental

frequency of the structure’s vibrations

The lower part of the frequency spectrum of a cylindrical shell with annular stiffness

ribs is formed by the eigenvalues (1.21) and (1.39) in the case of simply supported

shell edges, and by the eigenvalues (1.23) and (1.39) in the case of rigidly fixed

edges. Numerical results presented in Tables 1.1 and 1.2 show that as the parameter

𝑢 increases, so does the first "shell"frequency of the structure. The corresponding

vibration mode is shown in Figure 1.8.

However, as follows from the approximate formula (1.39), the first

"plate"frequency decreases at the same time. The vibration mode corresponding to

the first "plate"frequency is shown in Figure 1.9.

The optimal value of the parameter 𝑢 is one where the first "shell"and

"plate"frequencies coincide.
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Fig 1.8 — "Shell"vibration mode of a cylindrical shell with thickness ℎ = 0.01, length

𝑙 = 4, stiffened with 5 rings for the linear distribution function case with 𝑢 = 7.

Fig 1.9 — "Plate"vibration mode of a cylindrical shell with thickness ℎ = 0.01, length

𝑙 = 4, stiffened with 5 rings for the linear distribution function case with 𝑢 = 8.

Asymptotic formulas (1.22) and (1.24) for the eigenvalue of the first frequency

of shell vibrations provide a good approximation for thin shells (ℎ ∼ 0.01) of medium

length (3 < 𝑙 < 15).

As the length of the shell increases, the frequency corresponding to the

"beam"vibrations of the shell becomes minimal. That is, a long cylindrical shell should
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be modeled as a rod of constant cross-section, stiffened with springs. The vibration

mode corresponding to the fundamental "beam"frequency is shown in Figure 1.10).

Fig 1.10 — "Beam"vibration mode of a cylindrical shell with thickness ℎ = 0.01,

length 𝑙 = 20, stiffened with 5 rings for the linear distribution function case with

𝑢 = 7.

For short lengths of the shell, formulas (1.21) and (1.23) lose their accuracy, as

vibrations do not decay towards the ends of the intervals between installed rings.

With a high variability of the structure’s profile (𝑢), depending on the thickness

and length of the shell, the vibration mode of the shell is localized in the vicinity of the

first ring (Figure 1.11). In this case, the fundamental frequency of the structure will

be the first frequency of vibrations of the shell segment, stiffened by the first ring with

an elastic fixture at the location of the second ring. The condition of elastic fixture

occupies an intermediate position between rigid fixture and simple support; in the

future, it will be chosen the same as at the edge of the shell.

Below are the optimal values of the parameter 𝑢 for some values of the

construction’s geometric parameters (𝑘, 𝑛𝑠). For example, consider a copper cylindrical

shell with a length of 𝑙 = 4 and a thickness of ℎ0 = 0.01, with a Young’s modulus of
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Fig 1.11 — Localization of "shell"vibration mode of a structure with high profile

variability 𝑢.

𝐸 = 11 · 1010 Pa, Poisson’s ratio 𝜈 = 0.35, and density 𝜌 = 8920 kg/m3. Numerical

results were obtained using the finite element method in Ansys and Comsol packages.

For different construction profiles, optimal values of the parameter 𝑢 and their

corresponding values of the function 𝑓𝑠 (for the case of simply supported shell edges)

and the function 𝑓𝑐 (for the case of rigid fixation) are shown in Tables 1.3 and 1.4.

Table 1.5 for the optimal value of the parameter 𝑢 shows the values of

cyclic oscillation frequencies 𝜔𝑎𝑠𝑦𝑚𝑝 obtained by the asymptotic method described in

the chapter, and the corresponding values 𝜔𝑓𝑒𝑎 obtained by the finite-state method

elements in the 𝐴𝑛𝑠𝑦𝑠 package for linear, parabolic and exponential profiles of the

structure. Note that for 𝑛𝑠 = 3 and 𝑛𝑠 = 4 the profiles are the same.

The figure 1.12 for the case of shell stiffening with three rings shows the

vibration shape of the optimal structure corresponding to its fundamental frequency.

As you can see, both the shell and the largest ring are subject to vibrations, that is, a

further decrease in the thickness of the shell will lead to a decrease in the first frequency

of the «shell» series of frequencies, and a decrease in thickness or an increase in the
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height of the ring will lead to a decrease in the first frequency of the «plate» series of

frequencies. Maximizing the fundamental frequency is important for several reasons.

Firstly, it minimizes the likelihood of resonance, which can occur when the frequency of

the applied load coincides with the structure’s natural frequency, leading to excessive

vibrations and destruction of the structure. Secondly, having equal or nearly equal

Table 1.3 — Optimal values of the parameter 𝑢 and the corresponding values of

the function 𝑓𝑠 for a simply supported shell with linear (𝑓𝑙𝑖𝑛), parabolic (𝑓𝑝𝑎𝑟𝑎𝑏) and

exponential (𝑓𝑒𝑥𝑝) height distributions 𝑛𝑠 rings.

𝑢 𝑓𝑠 𝑢 𝑓𝑠 𝑢 𝑓𝑠 𝑢 𝑓𝑠 𝑢 𝑓𝑠

𝑛𝑠 𝑘 = 1 𝑘 = 1,5 𝑘 = 2 𝑘 = 2,5 𝑘 = 3

𝑓𝑙𝑖𝑛

4 14,52 4,32 9,74 4,31 7,35 4,29 5,92 4,28 4,96 4,27

5 6,57 4,72 4,61 4,69 3,63 4,67 3,03 4,65 2,64 4,63

6 6,59 5,12 4,60 5,10 3,61 5,07 3,02 5,05 2,62 5,03

7 4,43 5,33 3,22 5,30 2,61 5,27 2,25 5,25 2,00 5,23

8 4,50 5,63 3,26 5,60 2,64 5,58 2,26 5,55 2,01 5,53

𝑓𝑝𝑎𝑟𝑎𝑏

4 14,52 4,32 9,74 4,31 7,35 4,29 5,92 4,28 4,96 4,27

5 9,93 4,72 6,77 4,70 5,18 4,69 4,23 4,67 3,60 4,66

6 8,69 5,10 5,95 5,08 4,59 5,06 3,77 5,04 3,22 5,03

7 7,17 5,35 4,97 5,34 3,88 5,32 3,22 5,30 2,77 5,29

8 6,51 5,61 4,55 5,59 3,57 5,57 2,97 5,55 2,58 5,54

𝑓𝑒𝑥𝑝

4 14,52 4,32 9,74 4,31 7,35 4,29 5,92 4,28 4,96 4,27

5 3,81 4,78 2,82 4,74 2,33 4,71 2,03 4,67 1,83 4,65

6 3,87 5,19 2,85 5,16 2,35 5,12 2,04 5,10 1,84 5,07

7 1,81 5,44 1,53 5,37 1,39 5,31 1,30 5,26 1,25 5,22

8 1,85 5,79 1,55 5,72 1,40 5,67 1,31 5,62 1,25 5,58
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natural frequencies for different vibration modes can lead to a more balanced response

of the structure to external loads, leading to increased stability and durability, reducing

the risk of destruction. Finally, equal or nearly equal natural frequencies can also lead

to improved dynamic characteristics, such as reducing the level of vibrations and noise.

This is particularly important in applications such as aerospace, transportation, and

Table 1.4 — Optimal values of the parameter 𝑢 and the corresponding values of the

function 𝑓𝑐 for a rigidly fixed shell with linear (𝑓𝑙𝑖𝑛), parabolic (𝑓𝑝𝑎𝑟𝑎𝑏) and exponential

(𝑓𝑒𝑥𝑝) height distributions 𝑛𝑠 rings.

𝑢 𝑓𝑐 𝑢 𝑓𝑐 𝑢 𝑓𝑐 𝑢 𝑓𝑐 𝑢 𝑓𝑐

𝑛𝑠 𝑘 = 1 𝑘 = 1,5 𝑘 = 2 𝑘 = 2,5 𝑘 = 3

𝑓𝑙𝑖𝑛

4 15,64 3,39 10,47 3,38 7,88 3,38 6,33 3,37 5,29 3,36

5 6,76 3,78 4,72 3,76 3,70 3,75 3,09 3,74 2,68 3,73

6 6,60 4,14 4,60 4,13 3,61 4,11 3,01 4,10 2,61 4,09

7 4,31 4,38 3,14 4,36 2,55 4,34 2,19 4,32 1,95 4,30

8 4,32 4,66 3,13 4,63 2,54 4,61 2,18 4,60 1,94 4,58

𝑓𝑝𝑎𝑟𝑎𝑏

4 15,64 3,39 10,47 3,38 7,88 3,38 6,33 3,37 5,29 3,36

5 10,21 3,77 6,94 3,76 5,31 3,75 4,33 3,74 3,67 3,74

6 8,68 4,12 5,94 4,11 4,57 4,10 3,74 4,09 3,20 4,08

7 6,97 4,38 4,83 4,37 3,77 4,36 3,12 4,34 2,70 4,33

8 6,22 4,63 4,35 4,62 3,41 4,60 2,85 4,59 2,47 4,57

𝑓𝑒𝑥𝑝

4 15,64 3,39 10,47 3,38 7,88 3,38 6,33 3,37 5,29 3,36

5 3,93 3,82 2,90 3,80 2,38 3,77 2,07 3,76 1,86 3,74

6 3,90 4,19 2,87 4,17 2,35 4,15 2,04 4,13 1,83 4,11

7 1,79 4,46 1,52 4,41 1,38 4,37 1,29 4,33 1,23 4,30

8 1,82 4,77 1,53 4,73 1,38 4,69 1,30 4,65 1,24 4,62



44
industrial equipment, where structures must operate reliably and quietly under high

loads.

The obtained distribution function parameters can be used for preliminary

design. Refinement of parameters can be conducted using the finite element method.

Fig 1.12 — The vibration form of a cylindrical shell supported by three unequal rings.

Table 1.5 — Analytical and numerical values of vibration frequencies of 𝜔 stiffened

shells.

𝑛𝑠 = 3 𝑛𝑠 = 4 𝑛𝑠 = 5 𝑛𝑠 = 6

𝜔𝑎𝑠𝑦𝑚𝑝 𝜔𝑓𝑒𝑎 𝜔𝑎𝑠𝑦𝑚𝑝 𝜔𝑓𝑒𝑎 𝜔𝑎𝑠𝑦𝑚𝑝 𝜔𝑓𝑒𝑎 𝜔𝑎𝑠𝑦𝑚𝑝 𝜔𝑓𝑒𝑎

𝑓𝑙𝑖𝑛 67,01 73,49 72,72 78,07 76,59 82,02 80,16 86,71

𝑓𝑝𝑎𝑟𝑎𝑏 67,01 73,49 72,72 78,07 76,54 84,16 79,94 87,06

𝑓𝑒𝑥𝑝 67,01 73,49 72,72 78,07 77,2 82,58 80,72 87,97
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2 Natural vibrations of a cylindrical shell joined with a

plate at the edge

In this chapter, the lowest natural frequencies and vibration modes of a

structure consisting of a closed circular cylindrical shell with an attached end cap are

investigated. Numerical and asymptotic methods are used to study caps in the form of

a circular plate and a shallow spherical segment. Three types of natural vibrations of

the structure are identified. The natural frequencies and vibration modes of the first

type are close to the frequencies and modes of vibrations of a shallow spherical shell,

the second type to those of a cylindrical shell, and the third type to the frequencies

and modes of vibrations of a cantilever beam with a load at the end. Approximate

values for the frequencies of all types are found using asymptotic methods.

Two optimization problems are solved. In the first, the optimal ratio of the

thicknesses of the plate and shell is evaluated to ensure the maximum value of the

fundamental frequency of the structure with a given mass. In the second optimization

problem, the values of the relative thickness of the structural elements and the

curvature of the end cap are found, at which the fundamental natural frequency of

the structure is maximized.

2.1 Numerical results

In this chapter, the frequencies and modes of vibrations of a structure consisting of a

thin circular cylindrical shell of radius 𝑅, length 𝐿, and thickness 𝐻𝑠 with a rigidly

attached end cap in the form of a spherical segment of thickness 𝐻𝑝 and curvature

radius 𝑅𝑝 are determined using asymptotic and numerical methods. The other edge of

the shell is rigidly fixed. The shell and cap are made of isotropic material with Young’s
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modulus 𝐸, Poisson’s ratio 𝜈, and density 𝜌. At 𝑅𝑝 = ∞, the shell degenerates into a

plate, and at 𝑅𝑝 = 𝑅, into a shell of hemispherical shape.

The solution begins with a numerical study, which will serve as a benchmark

for asymptotic analysis. Numerical analysis of the structure was performed using the

finite element package 𝐶𝑜𝑚𝑠𝑜𝑙 𝑣5.6 with the following parameters: 𝑅 = 1 m, 𝐿 = 4

m, 𝐻 = 0.01 m — the thickness of the shells, 𝑅𝑝 = 10 m, 𝐸 = 110 GPa, 𝜈 = 0.35,

𝜌 = 8,960 kg/m3. The convergence of the method on different meshes was considered.

The best convergence is provided by a mapped mesh with element sizes in the range

[0.008, 0.08]. Further reduction in element size has a minimal effect on the results: the

relative change in the frequency spectrum does not exceed 1%.

The values of the natural vibration frequency parameter

Ω =
√
𝜔

(︂
12𝜌𝜎𝑅4

𝐸𝐻2

)︂1/4

,

where 𝜎 = 1−𝜈2 and 𝑓 , 𝜔 = 2𝜋𝑓 — respectively the frequency and cyclic frequency of

vibrations, are shown in Figure 2.1 for caps in the form of a circular plate (1/𝑅𝑝 = 0)

and in the form of a spherical segment (𝑅𝑝 = 10 m).

Fig 2.1 — The lowest natural frequencies of the structure with a cap in the form of

a) a plate, b) a spherical segment.

"Shell"frequencies are marked in blue, cap frequencies in red, and

"beam-like"frequencies in green.

The corresponding vibration modes for the structure with a cap in the form of

a spherical segment are shown in Figure 2.2
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Fig 2.2 — Types of natural vibration modes:

a) "shell b) "cap c) "beam".

2.2 Problem statement

Let’s consider small free low-frequency vibrations of a thin circular cylindrical shell,

coupled at the edge with a shallow spherical shell. Non-dimensional parameters are

used, related to dimensional ones as follows: 𝑙 = 𝐿/𝑅, 𝑟𝑝 = 𝑅𝑝/𝑅, ℎ𝑠 = 𝐻𝑠/𝑅,

ℎ𝑝 = 𝐻𝑝/𝑅, where 𝐻𝑠 and 𝐻𝑝 are the dimensional thicknesses of the cylindrical and

spherical shells, respectively.

Figure 2.3 shows a section of this structure cut through its axis of symmetry.

The radius 𝑅 of the cylindrical shell is taken as the unit of length. After separating

the variables, the non-dimensional differential equations describing the free vibrations
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Fig 2.3 — Section of the structure through a plane.

of the cylindrical shell take the form [30]

𝑇 ′
1 +𝑚𝑆 + 𝜆𝑢 = 0, 𝑆 ′ −𝑚𝑇2 +𝑄2 + 2𝐻 ′ + 𝜆v = 0,

𝑄′
1 +𝑚𝑄2 − 𝑇2 + 𝜆𝑤 = 0, 𝑄1 = 𝑀 ′

1 +𝑚𝐻, 𝑄2 = −𝑚𝑀2 +𝐻 ′,

𝑇1 = 𝑢′ + 𝜈(𝑤 +𝑚v), 𝑇2 = 𝑤 +𝑚v+ 𝜈𝑢′, 2𝑆 = (1− 𝜈)(v′ −𝑚𝑢),

𝑀1 = 𝜇4(𝜗′
1 + 𝜈𝑚𝜗2), 𝑀2 = 𝜇4(𝑚𝜗2 + 𝜈𝜗′

1), 𝐻 = 𝜇4(1− 𝜈)𝜗′
2,

𝜗1 = −𝑤′, 𝜗2 = 𝑚𝑤 + v,

(2.1)

where (’) denotes the derivative with respect to the non-dimensional longitudinal

coordinate 𝑠 ∈ [0, 𝑙], 𝑚 is the wave number along the parallel, 𝑢, 𝑣 and 𝑤 are the

displacement components, 𝑇1, 𝑇2, 𝑆, 𝑄1, 𝑄2 are the forces, 𝑀1, 𝑀2, 𝐻 are the

moments, 𝜗1 and 𝜗2 are the rotation angles, 𝜈 is the Poisson’s ratio, 𝜎 = 1 − 𝜈2,

𝐸 is the Young’s modulus, 𝜌 is the density, 𝑓 is the vibration frequency, 𝜔 = 2𝜋𝑓 is

the angular frequency, 𝜆 = 𝜔2𝜎𝜌𝑅2𝐸−1 is the frequency parameter, 𝜇4 = ℎ2
𝑠/12 is a

small parameter.
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The equations for the vibrations of a shallow spherical shell [14] in non­

dimensional variables take the form

(𝑟𝑇1𝑝)
′ − 𝑇2𝑝 +

𝑚

𝑟
𝑆𝑝 = 0, (𝑟𝑆𝑝)

′ + 𝑆𝑝 −𝑚𝑇2𝑝 = 0,

(𝑟𝑄1𝑝)
′ +𝑚𝑄2𝑝 −

𝑟

𝑟𝑝
(𝑇1𝑝 + 𝑇2𝑝) + 𝜆𝑟𝑤𝑝 = 0,

𝑟𝑄1𝑝 = (𝑟𝑀1𝑝)
′ −𝑀2𝑝 +𝑚𝐻𝑝, 𝑟𝑄2𝑝 = −𝑚𝑀2𝑝 + (𝑟𝐻𝑝)

′ +𝐻𝑝,

𝑇1𝑝 = 𝜀1𝑝 + 𝜈𝜀2𝑝, 𝑇2𝑝 = 𝜀2𝑝 + 𝜈𝜀1𝑝, 2𝑆𝑝 = (1− 𝜈)𝜀12𝑝,

𝜀1𝑝 = 𝑢′𝑝 +
𝑤𝑝

𝑟𝑝
, 𝜀2𝑝 =

𝑢𝑝
𝑟

+𝑚
v𝑝
𝑟
+

𝑤𝑝

𝑟𝑝
, 𝜀12𝑝 = v′𝑝 −

v𝑝
𝑟
− 𝑚

𝑟
𝑢𝑝,

𝑀1𝑝 = 𝜇4
(︁
𝜗′
1𝑝 + 𝜈

𝑚

𝑟
𝜗2𝑝 +

𝜈

𝑟
𝜗1𝑝

)︁
, 𝑀2𝑝 = 𝜇4

(︂
𝑚

𝑟
𝜗2𝑝 +

1

𝑟
𝜗1𝑝 + 𝜈𝜗′

1𝑝

)︂
,

𝐻𝑝 = 𝜇4(1− 𝜈)𝜗′
2𝑝, 𝜗1𝑝 = −𝑤′

𝑝, 𝜗2𝑝 =
𝑚

𝑟
𝑤𝑝.

(2.2)

Here (’) denotes the derivative with respect to the non-dimensional radial coordinate

𝑟 ∈ [0, 1], 𝑢𝑝, 𝑣𝑝, and 𝑤𝑝 are the displacement components, 𝑇1𝑝, 𝑇2𝑝, 𝑆𝑝, 𝑄1𝑝, 𝑄2𝑝

are the forces, 𝑀1𝑝, 𝑀2𝑝, 𝐻𝑝 are the moments, 𝜗1𝑝 and 𝜗2𝑝 are the rotation angles,

𝜇4
𝑝 = ℎ2

𝑝/12 is a small parameter. If the moment-free forces are expressed through the

non-dimensional function Φ by the formulas

𝑇1𝑝 = 𝑟𝑝𝜇
4

(︂
Φ′

𝑟
− 𝑚2

𝑟2
Φ

)︂
, 𝑇2𝑝 = 𝑟𝑝𝜇

4Φ′′, 𝑆𝑝 = −𝑟𝑝𝜇
4

𝑟

(︂
𝑚Φ′ − Φ

𝑟

)︂
,

then the system of equations (2.2) can be written in the following compact form [14, 24]:

∆2𝑤𝑝 +∆Φ− Ω4
𝑝𝑤 = 0, ∆2Φ = 𝑘2∆𝑤𝑝, (2.3)

where

∆ =
𝑑2

𝑑𝑟2
+

1

𝑟

𝑑

𝑑𝑟
− 𝑚2

𝑟2
, Ω4

𝑝 =
𝜆

𝜇4
𝑝

, 𝑘2 =
𝜎

𝜇4
𝑝𝑟

2
𝑝

.

Assume that the shell and plate are made of the same material. In this case,

the following 8 continuity conditions must be satisfied at the coupling parallel 𝑠 = 𝑙,
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𝑟 = 1 [30]:

𝑢𝑝 = −𝑢 sin 𝛽 + 𝑤 cos 𝛽, 𝑤𝑝 = −𝑤 sin 𝛽 − 𝑢 cos 𝛽,

ℎ𝑝𝑇1𝑝 = ℎ𝑠(𝑇1 sin 𝛽 −𝑄1 cos 𝛽), ℎ𝑝𝑄1𝑝 = ℎ𝑠(𝑄1 sin 𝛽 + 𝑇1 cos 𝛽),

v𝑝 = v, 𝜗1𝑝 = 𝜗1, ℎ𝑝𝑆𝑝 = ℎ𝑠𝑆, ℎ𝑝𝑀1𝑝 = −ℎ𝑠𝑀1,

(2.4)

where sin 𝛽 = 1/𝑟𝑝 (see Fig. 2.3).

For a shallow spherical shell 𝑟𝑝 ≫ 1. Therefore, sin 𝛽 ≪ 1, 𝛽 ≪ 1 and the

coupling conditions (2.4) can be replaced by approximate conditions

𝑢𝑝 = 𝑤, 𝑤𝑝 = −𝑢, ℎ𝑝𝑇1𝑝 = −ℎ𝑠𝑄1, ℎ𝑝𝑄1𝑝 = ℎ𝑠𝑇1,

v𝑝 = v, 𝜗1𝑝 = 𝜗1, ℎ𝑝𝑆𝑝 = ℎ𝑠𝑆, ℎ𝑝𝑀1𝑝 = −ℎ𝑠𝑀1.
(2.5)

At the edge of the shell 𝑠 = 0, four homogeneous boundary conditions should

be set. For example, let’s consider the conditions of rigid fixation:

𝑢 = 𝑤 = v = 𝜗1 = 0 at 𝑠 = 0. (2.6)

If at 𝜆 = 𝜆𝑘 the equations (2.1), (2.2) have a non-trivial solution satisfying

the boundary conditions (2.5), (2.6), then 𝜆𝑘 is an eigenvalue of the corresponding

boundary problem. The smallest positive eigenvalue 𝜆1 corresponds to the first

vibration frequency.

2.3 Frequencies of the first type of vibrations (cap vibrations)

To approximate the calculation of the frequencies of the first type of vibrations, which

are close to the frequencies of vibrations of a shallow spherical shell, we use the analogy

from [14] between an elastically supported plate and a shallow shell. We replace the

shallow spherical shell with a circular plate lying on an elastic foundation with non­

dimensional stiffness

𝑘2 =
𝜎

𝜇4
𝑝𝑟

2
𝑝

.
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Consequently, the original problem of vibrations of a cylindrical shell coupled

with a shallow spherical shell is reduced to the problem of vibrations of a cylindrical

shell coupled with a circular plate on a Winkler foundation. Using the asymptotic

approach, which was employed in the problem of vibrations of a cylindrical shell

connected with a ring plate [57, 90], we find that in the first approximation, the

frequencies of the first type of vibrations can be determined by solving the problem of

vibrations of a circular plate with a rigidly fixed edge.

The equation describing the transverse vibrations of a circular plate lying on a

Winkler foundation with stiffness 𝑘2 is

∆2𝑤𝑝 − κ4𝑤𝑝 = 0, κ4 = Ω4
𝑝 − 𝑘2. (2.7)

Substituting the exact solution of this equation

𝑤𝑝 = 𝐶1𝐽𝑚(κ𝑠𝑝) + 𝐶2𝐼𝑚(κ𝑠𝑝),

where 𝐶1 and 𝐶2 are arbitrary constants, 𝐽𝑚 is the Bessel function, 𝐼𝑚 is the modified

Bessel function, into the boundary conditions of rigid fixation

𝑤𝑝(1) = 𝑤′
𝑝(1) = 0

yields a system of linear algebraic equations to determine 𝐶1 and 𝐶2. Setting the

determinant of this system to zero

𝐽𝑚(κ)𝐼𝑚−1(κ)− 𝐽𝑚−1(κ)𝐼𝑚(κ) = 0, (2.8)

serves as the equation for determining the parameters κ(𝑚,𝑛), where 𝑛 is the number

of the positive root of equation (2.8). The roots are numbered in ascending order.

From the second formula (2.7), it follows that the approximate value of the frequency

parameter Ω𝑝 can be found using Zedel’s formula [28].
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Ω4
𝑝 = κ4 + 𝑘2. (2.9)

When 𝑘 = 0, we obtain vibration frequencies Ω𝑝 = κ, corresponding to the

frequencies of the first type of vibrations for a cylindrical shell coupled with a circular

plate. These frequencies turn out to be lower than the frequencies of vibrations of

the shell coupled with a shallow spherical segment. As the radius of curvature of the

spherical segment 𝑟𝑝 increases, the parameter 𝑘 decreases, and the difference between

the frequencies diminishes.

Consider a structure with the following parameter values: ℎ𝑝 = ℎ𝑠 = ℎ = 0.01,

𝑟𝑝 = 20, 𝜈 = 0.35. In the third and fourth columns of Table 2.1 for different values of

𝑚 and 𝑛, the values of the parameter κ and the approximate values of the frequency

parameter Ω𝑝 obtained using the formula (2.9) are presented. The fifth column contains

the values of Ω𝑝 found using the finite element method (FEM), and the sixth column

shows the error of the approximate frequency value.

Table 2.1 — Frequency parameters Ω𝑝(𝑚,𝑛)

𝑚 𝑛 κ Formula (2.9) FEM (Comsol) Error, %

0 1 3.20 4.38 3.94 11

1 1 4.61 5.17 4.97 4

2 1 5.91 6.20 6.03 3

0 2 6.31 6.55 6.36 3

3 1 7.14 7.32 7.11 3

1 2 7.80 7.93 7.71 3

For the considered example, the error in calculating the lower frequencies using

Zedel’s formula is small, except for the lowest frequency, which corresponds to the

axisymmetric form of vibration. Let’s consider axisymmetric vibrations of a cylindrical
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shell with a cap in the form of a shallow spherical shell to obtain more accurate

approximate formulas for the lower frequencies of the first type.

The equations of axisymmetric vibrations of a cylindrical shell are derived from

the equations (2.1) by setting 𝑚 = 0:

𝑇 ′
1 + 𝜆𝑢 = 0, 𝑄′

1 − 𝑇2 + 𝜆𝑤 = 0, 𝑄1 = 𝑀 ′
1,

𝑇1 = 𝑢′ + 𝜈𝑤, 𝑇2 = 𝑤 + 𝜈𝑢′, 𝑀1 = 𝜇4𝜗′
1, 𝜗1 = −𝑤′.

(2.10)

From the equations (2.2) with𝑚 = 0, we obtain the equations for axisymmetric

vibrations of a shallow spherical shell:

(𝑟𝑇1𝑝)
′ − 𝑇2𝑝 = 0, 𝑇1𝑝 = 𝜀1𝑝 + 𝜈𝜀2𝑝, 𝑇2𝑝 = 𝜀2𝑝 + 𝜈𝜀1𝑝,

𝜀1𝑝 = 𝑢′𝑝 +
𝑤𝑝

𝑟𝑝
, 𝜀2𝑝 =

𝑢𝑝
𝑟

+
𝑤𝑝

𝑟𝑝
,

(𝑟𝑄1𝑝)
′ − 𝑟

𝑟𝑝
(𝑇1𝑝 + 𝑇2𝑝) + 𝜆𝑟𝑤𝑝 = 0, 𝑟𝑄1𝑝 = (𝑟𝑀1𝑝)

′ −𝑀2𝑝,

𝑀1𝑝 = 𝜇4
𝑝𝜗

′
1𝑝, 𝑀2𝑝 = 𝜇4

(︂
1

𝑟
𝜗1𝑝 + 𝜈𝜗′

1𝑝

)︂
, 𝜗1𝑝 = −𝑤′

𝑝.

(2.11)

Introduce a function Φ such that

𝑇1𝑝 =
𝑟𝑝𝜇

4Φ′

𝑟
, 𝑇2𝑝 = 𝑟𝑝𝜇

4Φ′′.

Then the system of equations (2.11) can be written in the form

∆2𝑤𝑝 +∆Φ− Ω4
𝑝𝑤 = 0, ∆2Φ = 𝑘2∆𝑤𝑝, (2.12)

where

∆ =
𝑑2

𝑑𝑟2
+

1

𝑟

𝑑

𝑑𝑟
− 𝑚2

𝑟2
, Ω4

𝑝 =
𝜆

𝜇4
𝑝

, 𝑘2 =
𝜎

𝜇4
𝑝𝑟

2
𝑝

.

When 𝑘 = 0, the equations (2.12) turn into the equations of axisymmetric vibrations

of a circular plate.

Eliminating the unknown function Φ from the equations (2.12) leads to an

equation for determining 𝑤𝑝:

∆(∆2𝑤𝑝 − κ4𝑤𝑝) = 0, κ4 = Ω4
𝑝 − 𝑘2.
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For the axisymmetric boundary problem at 𝑠 = 𝑙, 𝑟 = 1, out of the eight

approximate coupling conditions (2.5), six remain:

𝑢𝑝 = 𝑤, 𝑤𝑝 = −𝑢, ℎ𝑝𝑇1𝑝 = −ℎ𝑠𝑄1,

ℎ𝑝𝑄1𝑝 = ℎ𝑠𝑇1, 𝜗1𝑝 = 𝜗1, ℎ𝑝𝑀1𝑝 = −ℎ𝑠𝑀1,
(2.13)

and the conditions of rigid fixation become

𝑢 = 𝑤 = 𝜗1 = 0 at 𝑠 = 0. (2.14)

Assume that 𝜇𝑝 ∼ 𝜇 ≪ 1, 𝜆 ∼ 𝜇4, and look for a solution to the system of

equations (2.11) in the form of a sum of the membrane solution 𝑦0 and edge effect

functions 𝑦1, 𝑦2:

𝑦 = 𝜇𝐼0(𝑦)𝑦0 + 𝜇𝐼1(𝑦)+2𝑦1 + 𝜇𝐼1(𝑦)𝑦2, (2.15)

Here, the letter 𝑦 replaces any of the unknown functions in the system (2.11), 𝐼1(𝑦)

and 𝐼2(𝑦) are intensity indicators, given in Table 2.2, with their selection taking into

account the results of [11].

Table 2.2 — Intensity Indicators

Functions

Indicators 𝑢 𝑤 𝜗 𝑇1 𝑀1 𝑄1

𝐼0 2 4 6 4 ∞ ∞

𝐼1 3 2 1 4 4 3

The functions 𝑦0 are solutions to the membrane equations obtained from the

equations (2.10) when 𝜇 = 0:

𝑇 ′
1 + 𝜆𝑢 = 0, 𝑇2 = 𝜆𝑤, 𝑇1 = 𝑢′ + 𝜈𝑤, 𝑇2 = 𝑤 + 𝜈𝑢′. (2.16)

The edge effect functions 𝑦1 and 𝑦2 take the form

𝑦1 =
2∑︁

𝑗=1

𝐷𝑗𝑦𝑗 exp

(︂
𝑟𝑗𝑠

𝜇

)︂
, 𝑦2 =

4∑︁
𝑗=3

𝐷𝑗𝑦𝑗 exp

(︂
𝑟𝑗(𝑠− 𝑙)

𝜇

)︂
, (2.17)
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where 𝐷𝑗 ∼ 1 are arbitrary constants,

𝑟1,2 =
𝜎1/4(−1± 𝑖)√

2
, 𝑟3,4 =

𝜎1/4(1± 𝑖)√
2

.

In particular, 𝑤̂𝑗 = 1, 𝑗 = 1, 2, 3, 4.

The function 𝑦1 rapidly decreases as 𝑠 increases from 0 to 𝑙, and the function 𝑦2

decreases as 𝑠 decreases from 𝑙 to 0. Assuming 𝑙 ≫ 𝜇, we get 𝑦1(𝑙) ≪ 1, and 𝑦2(0) ≪ 1.

The equations (2.10) and (2.11) include two small parameters 𝜇, 𝜇𝑝, and one

large parameter 𝑟𝑝. The asymptotic expansions of the solutions to the boundary

problem depend on relative order of these parameters. In obtaining the asymptotics

of the solutions to the system (2.10), it was assumed that 𝜇 ∼ 𝜇𝑝, meaning that the

thicknesses of the shells do not differ significantly from each other. Additionally, let’s

assume that

1

𝑟𝑝
∼ 𝜇2,

and consider the case where the variables included in the system (2.11) have the

following orders

𝑤𝑝 ∼ 𝜗1𝑝 ∼ 1, 𝑢𝑝 ∼ 𝑇1𝑝 ∼ 𝜇2, 𝑀1𝑝 ∼ 𝑄1𝑝 ∼ 𝜇4.

Substituting the solutions (2.15) into the conditions (2.13) and (2.14), we obtain

the boundary conditions for the first approximation

𝑢0 = 0, 𝑤1 = −𝑤0, 𝜗11 = 0, 𝑠 = 0,

𝑤2 = −𝑢𝑝, 𝑤𝑝 = 0, 𝑇1𝑝 = 0, ℎ𝑝𝑄1𝑝 = ℎ𝑠𝑇1,

𝜗1𝑝 = 0, ℎ𝑝𝑀1𝑝 = −ℎ𝑠𝑀12, 𝑠 = 𝑙, 𝑟 = 1.

In the first approximation, the boundary problem for the equations (2.10),

(2.11) or (2.12) with boundary conditions (2.13) and (2.14) is reduced to solving four

independent problems:
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1. The eigenvalue boundary problem for the equations (2.11) or (2.12) with

boundary conditions

𝑤𝑝(1) = 0, 𝑤′
𝑝(1) = 0, 𝑇1𝑝(1) = 0, or Φ′ = 0.

2. The system of linear algebraic equations

𝑤2(𝑙) = −𝑢𝑝(1), ℎ𝑠𝑀12(𝑙) = −ℎ𝑝𝑀1𝑝(1)

to determine the constants 𝐷3 and 𝐷4.

3. The system of linear algebraic equations

𝑤1(0) = −𝑤0, 𝜗11 = 0

to determine the constants 𝐷1 and 𝐷2.

4. The non-homogeneous boundary problem for the membrane system (2.16)

with boundary conditions

𝑢0(0) = 0, ℎ𝑠𝑇10 = ℎ𝑝𝑄1𝑝(1)− ℎ𝑠𝑇11(0).

Let’s consider only problem 1, as its solution allows us to find an approximate

value of the parameter 𝜆 and the main part of the vibration shape. The displacements

of the cylindrical shell 𝑢 ∼ 𝑤 ∼ 𝜇2 are small compared to the normal displacement of

the spherical shell 𝑤𝑝 ∼ 1, which is also confirmed by FEM calculations (see Fig. 2.2).

The solution to the system of equations (2.12) with boundary conditions

𝑤𝑝 = 0, 𝑤′
𝑝 = 0, Φ′ = 0 𝑟 = 1 (2.18)

is given in the reference [24]. After substituting its general solution

𝑤𝑝 = 𝐶1 + 𝐶2𝐽0(κ𝑟) + 𝐶3𝐼0(κ𝑟), Φ = 𝐶1
𝑟2

4
Ω4 − 𝑘2

κ2
(𝐶2𝐽0(κ𝑟))− 𝐶3𝐼0(κ𝑟))
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into the boundary conditions (2.18) and equating to zero the determinant of the system

of linear homogeneous equations for the arbitrary constants 𝐶1, 𝐶2, and 𝐶3, we obtain

the following equation for determining the approximate value of the parameter κ

(κ4 + 𝑘2)[𝐽0(κ)𝐼1(κ) + 𝐼0(κ)𝐽1(κ)]−
𝑘2

κ
𝐼1(κ)𝐽1(κ) = 0. (2.19)

The root κ of the equation (2.19) is related to the frequency parameter Ω𝑝 by the

formula (2.9).

Table 2.3 presents a comparison of the values of the parameters for the first

two axisymmetric vibration frequencies Ω𝑝(0, 1) = 4.03 and Ω𝑝(0, 2) = 6.52, found

using the equation (2.19), with the results of FEM provided in Table 2.1 and the

approximation obtained using the equation (2.9) for different values of the curvature

radius of the cap.

Table 2.3 — Frequency parameter for the two lowest axisymmetric vibration frequencies

of a spherical cap with different radii of curvature, found analytically and numerically

𝑟𝑝
(2.19) (2.9) Comsol

Ω𝑝(0, 1) Ω𝑝(0, 2) Ω𝑝(0, 1) Ω𝑝(0, 2) Ω𝑝(0, 1) Ω𝑝(0, 2)

∞ 3.196 6.306 3.196 6.306 3.196 6.303

20 4.028 6.517 4.379 6.554 3.939 6.364

10 5.696 7.076 5.833 7.164 5.003 6.971

For 𝑟𝑝 = 20 for Ω𝑝(0, 1), using equation (2.19) instead of equation (2.9) reduces

the error from 11% to 2%. For Ω𝑝(0, 2), replacing equation (2.9) with equation (2.19)

leads to a slight reduction in error, amounting to 3%. For 𝑟𝑝 = 10 for Ω𝑝(0, 1), the

error of both equations increases to 13% and 16%, whereas for Ω𝑝(0, 2), the error of

the equations does not increase, remaining at 2% and 3% respectively.
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2.4 Frequencies of the first type of vibrations for a circular

plate

The study of the case 1/𝑟𝑝 = 0, where the segment of the spherical shell degenerates

into a circular plate (Figure 2.4), is of particular interest. After separating variables,

the non-dimensional differential equations describing the free vibrations of a cylindrical

shell [62] are written in the form (2.1).

Fig 2.4 — Shell coupled with a circular plate.

The non-dimensional differential equations describing the free vibrations of a

circular plate can be written as

(𝑠𝑝𝑄1𝑝)
′ +𝑚𝑄2𝑝 + 𝜆𝑠𝑝𝑤𝑝 = 0,

𝑠𝑝𝑄1𝑝 = (𝑠𝑝𝑀1𝑝)
′ −𝑀2𝑝 + 2𝑚𝐻𝑝, 𝑠𝑝𝑄2𝑝 = −𝑚𝑀2𝑝 + 2𝐻𝑝,

𝑠𝑝𝑀1𝑝 = 𝜇4
𝑝[𝑠𝑝𝜗

′
1𝑝 + 𝜈(𝑚𝜗2𝑝 + 𝜗1𝑝)], 𝑠𝑝𝑀2𝑝 = 𝜇4

𝑝(𝑚𝜗2𝑝 + 𝜗1𝑝 + 𝜈𝑠𝑝𝜗
′
1𝑝),

𝐻𝑝 = 𝜇4
𝑝(1− 𝜈)𝜗′

2𝑝, 𝜗1𝑝 = −𝑤′
𝑝, 𝑠𝑝𝜗2𝑝 = 𝑚𝑤𝑝.

(2.20)

Here (’) denotes the derivative with respect to the radial coordinate, 𝑠𝑝 ∈ [0,1], 𝑤𝑝

is the transverse deflection, 𝑄1𝑝, 𝑄2𝑝, 𝑀1𝑝, 𝑀2𝑝, 𝐻𝑝 are non-dimensional resultant

stresses and stress couples, 𝜗1𝑝 and 𝜗2𝑝 are the rotation angles of the normal, ℎ𝑝 is the

non-dimensional thickness of the plate, 𝜇4
𝑝 = ℎ2

𝑝/12 is a small parameter.
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The following equations [62] can be used to find the tangential (in-plane)

deformation of the plate:

(𝑠𝑝𝑇1𝑝)
′ − 𝑇2𝑝 +𝑚𝑆𝑝 + 𝜆𝑠𝑝𝑢𝑝 = 0, 𝑠𝑝𝑆

′
𝑝 + 2𝑆𝑝 −𝑚𝑇2𝑝 + 𝜆𝑣𝑝 = 0,

𝑠𝑝𝑇1𝑝 = 𝑠𝑝𝑢
′
𝑝 + 𝜈(𝑚𝑣𝑝 + 𝑢𝑝), 𝑠𝑝𝑇2𝑝 = 𝑢𝑝 +𝑚𝑣𝑝 + 𝜈𝑠𝑝𝑢

′
𝑝,

2𝑠𝑝𝑆𝑝 = (1− 𝜈)(𝑠𝑝𝑣
′
𝑝 −𝑚𝑢𝑝 − 𝑣𝑝),

(2.21)

where 𝑢𝑝 and 𝑣𝑝 are the tangential displacement components, 𝑇1𝑝, 𝑇2𝑝, 𝑆𝑝 are non­

dimensional resultant stresses.

If the shell and the plate are made of the same material, then the following 8

coupling conditions must be satisfied around the circumference 𝑠 = 𝑙, 𝑠𝑝 = 1

𝑤 = 𝑢𝑝, 𝑢 = −𝑤𝑝, 𝑣 = 𝑣𝑝, 𝜗1 = 𝜗1𝑝,

ℎ𝑠𝑄1 = −ℎ𝑝𝑇1𝑝, ℎ𝑠𝑇1 = ℎ𝑝𝑄1𝑝, ℎ𝑠𝑆 = −ℎ𝑝𝑆𝑝, ℎ𝑠𝑀1 = −ℎ𝑝𝑀1𝑝.
(2.22)

At the edge of the shell 𝑠 = 0, four homogeneous boundary conditions must be

introduced. For example, let’s consider the shell with a clamped edge, i.e.

𝑢 = 𝑤 = 𝑣 = 𝜗1 = 0 at 𝑠 = 0. (2.23)

As in the case with the shallow shell, assume that 𝜇𝑝 ∼ 𝜇, 𝜆 ∼ 𝜇4, and seek an

approximate solution to the system (2.1) in the form of a sum of the membrane state

and edge effect functions:

𝑦 = 𝜇𝐼0(𝑦)𝑦0 + 𝜇𝐼1(𝑦)+1𝑦1 + 𝜇𝐼1(𝑦)𝑦2, (2.24)

Here 𝑦 also denotes any unknown function, 𝐼(𝑦) and 𝐼1(𝑦) are intensity indices.

The corresponding choice of intensity indices allows satisfying boundary conditions

in the first and subsequent approximations and ensures the existence of non-trivial

solutions to the corresponding eigenvalue problems. Usually, the estimation of intensity

indices is based on one of the enumeration methods and/or intuitive considerations.
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The functions 𝑢0, 𝑣0, 𝑇10, and 𝑆0 satisfy the membrane equations derived from

(2.1) under the assumption 𝜇 = 0 and neglecting small terms 𝜆𝑢, 𝜆𝑣, and 𝜆𝑤:

𝑇 ′
10 +𝑚𝑆0 = 0, 𝑆 ′

0 = 0, 2𝑆0 = (1− 𝜈)(𝑣′0 −𝑚𝑢0), 𝑇10 = 𝜎𝑢′0. (2.25)

The edge effect functions 𝑦1 and 𝑦2 take the form (2.17) with intensity indices

listed in Table 2.4.

Table 2.4 — Intensity indices for the first (plate-type) mode of vibration

Functions

Indices 𝑢 𝑣 𝑤 𝜗 𝑇1 𝑆 𝑀1 𝑄1

𝐼0 3 3 3 3 3 3 7 7

𝐼1 3 4 2 1 4 3 4 3

We assume that

𝑤𝑝 ∼ 𝜗1𝑝 ∼ 1, 𝑀1𝑝 ∼ 𝑄1𝑝 ∼ 𝜇4, 𝑢𝑝 ∼ 𝑣𝑝 ∼ 𝑇1𝑝 ∼ 𝑆𝑝 ∼ 𝜇3. (2.26)

Substituting the solutions (2.24) and (2.17) into equations (2.1, 2.20, 2.21), the

continuity conditions (2.22), and the boundary conditions (2.23), the eigenvalue

problem (2.1, 2.20–2.23) in the first approximation can be divided into five separate

problems:

1) Eigenvalue problem for equations (2.20) describing the deflection deformation

of the plate with boundary conditions

𝑤𝑝 = 𝜗1𝑝 = 0, 𝑠𝑝 = 1. (2.27)

2) Linear algebraic equations

𝑤2(𝑙) = 0, ℎ𝑠𝑀12(𝑙) = −ℎ𝑝𝑀1𝑝(1) (2.28)



61
for the unknown constants 𝐷3, 𝐷4. Solving these equations, we obtain edge effect

functions on the parallel 𝑠 = 𝑙.

3) Non-homogeneous boundary problem for the membrane shell equations

(2.25) with boundary conditions

𝑢0(0) = 𝑣0(0), 𝑇10(𝑙) = 0, ℎ𝑠[𝑆0(𝑙) + 𝑆2(𝑙)] = −ℎ𝑝𝑆𝑝(1). (2.29)

4) Linear algebraic equations

𝑤1(0) = −𝑤0(0), 𝜗11(0) = 0. (2.30)

for unknown constants 𝐷1 and 𝐷2.

5) Non-homogeneous boundary problem for the plate equations (2.21) with

boundary conditions

𝑣𝑝(1) = 𝑣0(𝑙), ℎ𝑝𝑇1𝑝(1) = −ℎ𝑠𝑄12(𝑙).

Thus, the approximate solution of the eigenvalue problem (2.1, 2.20–2.23) is

reduced to sequentially solving five simple problems.

First, it is necessary to solve the eigenvalue problem 1) for the deflection

deformation of the plate. Then, the solution of equations (2.28) is used to find edge

effect functions on the parallel 𝑠 = 𝑠𝑘. Next, the solution of the membrane problem

3) can be obtained using boundary conditions (2.29), and edge effect integrals on the

parallels 𝑠 = 0 and 𝑠 = 𝑙 are found using equations (2.30). Finally, boundary problem

5), describing the tangential displacements of the plate, can be solved.

We consider only problem 1), as its solution provides the frequency parameter

𝜆 and the main mode of vibration. The displacements of the cylindrical shell and the

tangential displacements of the plate are very small compared to the deflection of the

plate (see relationship (2.26) and Table 2.4).



62
To obtain an improved first approximation, the solution to problem 1) can be

refined by replacing boundary condition (2.27) with a more accurate condition. From

the relationships

𝑤2(𝑙) = 0, 𝜗1𝑝(1) = 𝜗12(𝑙), ℎ𝑠𝑀12(𝑙) = −ℎ𝑝𝑀1𝑝(1)

we find

𝐷3+𝐷4 = 0, 𝜗1𝑝(1) = −𝜇(𝑟3𝐷3+ 𝑟4𝐷4), ℎ𝑝𝑀1𝑝(1) = 𝜇4ℎ(𝑟23𝐷3+ 𝑟24𝐷4). (2.31)

From (2.31) it follows that

𝑀1𝑝(1) = −
√
2𝑔𝜇3ℎ𝑠

ℎ𝑝
𝜗1𝑝(1).

A refined value of the frequency parameter 𝜆 is obtained using the following condition

𝑤𝑝(1) = 0, 𝑀1𝑝(1) = −
√
2𝑔𝜇3ℎ𝑠

ℎ𝑝
𝜗1𝑝(1) (2.32)

instead of the boundary condition (2.27).

As a result, the equations (2.20) describing the free transverse vibrations of a

circular plate are reduced to the following equation

∆2𝑤 − 𝛽4𝑤 = 0, 𝛽4 =
𝜆

𝜇4
𝑝

, (2.33)

where

∆ =
1

𝑠𝑝

𝑑

𝑑𝑠𝑝

(︂
𝑠𝑝

𝑑

𝑑𝑠𝑝

)︂
− 𝑚2

𝑠2𝑝
.

The exact solution of equation (2.33) is

𝑤 = 𝐶1𝐽𝑚(𝛽𝑠𝑝) + 𝐶2𝐼𝑚(𝛽𝑠𝑝), (2.34)

where 𝐶1 and 𝐶2 are arbitrary constants, 𝐽𝑚 is the Bessel function, and 𝐼𝑚 is the

modified Bessel function. Substituting the solution (2.34) into the boundary conditions
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(2.32) leads to a system of linear algebraic equations for the unknowns 𝐶1 and 𝐶2. The

system has non-trivial solutions if its determinant equals zero:

𝐽𝑚(𝛽)𝐼𝑚−1(𝛽)− 𝐽𝑚−1(𝛽)𝐼𝑚(𝛽)−
2𝛽𝐽𝑚(𝛽)𝐼𝑚(𝛽)

1− 𝜈 − 𝑘
= 0, (2.35)

where

𝑘 =

√
2𝜎1/4

𝜇𝛿3
, 𝛿 =

ℎ𝑝

ℎ𝑠
.

For a plate connected to a shell, the roots 𝛽(𝑚,𝑛) (𝑚 = 0, 1, 2, . . ., 𝑛 = 1, 2, . . .)

of equation (2.35) are the first approximation of the non-dimensional frequency of plate

vibrations. For 𝑚 = 0, the vibrations are axisymmetric. The case 𝑘 = 0 corresponds to

vibrations of a plate with a hinged edge. The case 1/𝑘 = 0 corresponds to vibrations

of a plate with a clamped edge. In this case, equation (2.35) becomes

𝐽𝑚(𝛽)𝐼𝑚−1(𝛽)− 𝐽𝑚−1(𝛽)𝐼𝑚(𝛽) = 0. (2.36)

Consider a structure with the following parameters: ℎ𝑝 = ℎ𝑠 = ℎ = 0.01, 𝜈 =

0.35. The first roots of equations (2.36) and (2.35) and the frequency parameter values

obtained by the finite element method (FEM) for a plate connected to a cylindrical

shell are presented in Table 2.5. The last column contains the values of 𝛽 for a plate

with a hinged edge. The formula for the relationship between angular frequency and

frequency parameter is

𝜔2 = 𝛽4 ℎ2𝐸

12𝜎𝜌𝑅2
(2.37)

2.5 Frequencies of the second type of vibrations (shell type)

For low-frequency vibrations of the second type, the vibration modes of the cylindrical

shell with a cover are similar to the vibration modes of an unreinforced shell with a

large number of waves along the parallel (𝑚 ∼ 𝜇−1/2). Following [11], we seek a solution



64

Table 2.5 — Frequency parameter 𝛽 for the lowest frequencies of the “plate-type” mode

of vibration

𝑚 𝑛 (2.36) (2.35) FEM 𝑘 = 0

0 1 3.196 3.086 3.070 2.238

1 1 4.611 4.460 4.422 3.736

2 1 5.906 5.722 5.658 5.067

0 2 6.306 6.111 6.058 5.457

3 1 7.144 6.932 6.835 6.326

1 2 7.799 7.570 7.480 6.967

4 1 8.347 8.111 7.978 7.543

2 2 9.197 8.939 8.805 8.377

0 3 9.439 9.176 9.002 8.615

to the system (2.1) as a sum of a semi-momentless solution and an edge effect:

𝑦 = 𝜇𝐼0(𝑦)𝑦0 + 𝜇𝐼1(𝑦)(𝑦1 + 𝑦2), (2.38)

The values of the intensity indicators 𝐼0 and 𝐼1 are given in Table 2.6.

Table 2.6 — Intensity Indicators

Functions

Indicators 𝑢 𝑣 𝑤 𝜗 𝑇1 𝑆 𝑀1 𝑄1

𝐼0 1 1/2 0 0 1 3/2 3 3

𝐼1 2 5/2 1 0 2 3/2 3 2

The function 𝑣0 satisfies the semi-momentless equation

𝑑4𝑣0
𝑑𝑠4

− 𝛼4
𝑠𝑣0 = 0, (2.39)
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where

𝛼4
𝑠 =

𝜆𝑚4 − 𝜇4𝑚8

𝜎
,

𝑤0 = −𝑣0, 𝑢0 =
𝑑𝑣0
𝑑𝑠

, 𝑇10 =
𝑑2𝑣0
𝑑𝑠2

, 𝑆0 = −𝜎
𝑑3𝑣0
𝑑𝑠3

. (2.40)

The edge effect functions 𝑦1 and 𝑦2 are as in (2.17).

Suppose that

ℎ ∼ ℎ𝑝,
1

𝑟𝑝
∼ 𝜇2, 𝑣𝑝 ∼ 𝜇5, 𝑢𝑝 ∼ 𝜇2, 𝑀1𝑝 ∼ 𝑄1𝑝 ∼ 𝜇4.

Considering the relations

𝑣 ∼ 𝜇1/2, 𝑤 ∼ 1, 𝑇1 ∼ 𝜇, 𝑀1 ∼ 𝜇3,

and disregarding minor terms in the first, fourth, fifth, and eighth conjunction

conditions (2.5), we obtain approximate boundary conditions at the edge 𝑠 = 𝑙 for

the equations of vibration of the cylindrical shell (2.1):

𝑣 = 𝑤 = 𝑇1 = 𝑀1 = 0. (2.41)

These conditions correspond to a hinged support of the shell edge.

Thus, in the first approximation for a cylindrical shell with a cover, we have an

eigenvalue boundary problem for the system of equations (2.1) with the boundary

conditions of rigid fixation (2.6) and hinged support (2.41). It is shown in the

monograph [11] that the boundary conditions (2.6) and (2.41) for equation (2.39)

degenerate into the conditions

𝑣0(0) =
𝑑𝑣0
𝑑𝑠

(0) = 0, 𝑣0(𝑙) =
𝑑2𝑣0
𝑑𝑠2

(𝑙) = 0. (2.42)

The boundary problem (2.39), (2.42) describes the vibrations of a beam with

a clamped edge at 𝑠 = 0 and a hinged edge at 𝑠 = 𝑙. The solution to this problem is
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well known (see [3]). The eigenvalues for the problem (2.39), (2.42) are given by the

formula 𝛼𝑠𝑛 = κ𝑛/𝑙, where κ𝑛 are the roots of the equation

tgκ = tanhκ. (2.43)

with κ1 = 3.927, κ2 = 7.069.

The frequency parameter

𝜆(𝑚,𝑛) =
𝜎κ4

𝑛

𝑚4𝑙4
+ 𝜇4𝑚4 (2.44)

takes the minimum value corresponding to the fundamental frequency if 𝑛 = 1 and 𝑚

is close to 𝑚0 where

𝑚4
0 =

√
𝜎κ2

1

𝜇2𝑙2
.

Let’s consider a cylindrical shell of thickness ℎ = 0.01, to which a flat cover of

the same thickness is attached.

The values of the parameter

𝜂 =
(12𝜆)1/4√

ℎ
(2.45)

are given in Table 2.7 for 𝜈 = 0.35 and three values of the length of the shell.

2.6 Frequencies of the third type of vibrations (beam type)

Among the lowest natural frequencies of the shell, there can be frequencies of beam

vibrations, during which the structure oscillates similarly to a cantilever beam with a

load at the end (see Figure 2.2). The equation of transverse vibrations of a beam with

one clamped end and loaded with a concentrated mass at the other end is given by

𝑤(𝐼𝑉 )
(︁𝑠
𝑙

)︁
− 𝛼4𝑤

(︁𝑠
𝑙

)︁
= 0, 𝛼4 =

𝜌𝑆𝑙4𝑅4

𝐸𝐽
𝜔2, 0 ≤ 𝑠 ≤ 𝑙, (2.46)

and the boundary conditions are as follows:

𝑤(0) = 𝑤′(0) = 0, 𝑤′′(1) = 0,
𝐸𝐽𝑤′′′(1)

𝑙3
= −𝑚𝜔2𝑤(1).
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Table 2.7 — Comparison of numerical and asymptotic lower values of the frequency

parameter for the shell-type vibrations.

𝑙 = 4 𝑙 = 6 𝑙 = 8

𝑛 𝑚 Num. Asymp. 𝑛 𝑚 Num. Asymp. 𝑛 𝑚 Num. Asymp.

1 4 4.770 5.026 1 3 3.933 4.228 1 3 3.315 3.537

1 5 5.173 5.287 1 4 4.106 4.267 1 4 3.926 4.090

1 3 5.315 5.991 1 5 4.940 5.061 1 2 3.962 4.466

1 6 6.010 6.086 1 2 5.044 5.914 2 4 4.561 4.744

2 5 6.508 6.901 2 4 5.353 5.690 1 5 4.888 5.019

2 6 6.669 6.760 2 5 5.434 5.551 2 3 4.978 5.436

1 2 6.872 8.848 1 6 5.917 6.017 2 5 5.095 5.194

2 4 7.089 8.082 2 6 6.124 6.173 3 5 5.599 5.722

1 7 6.968 7.030 2 3 6.249 7.061 3 4 5.676 6.058

2 7 7.311 7.293 3 5 6.408 6.719 1 6 5.898 6.005

1 8 7.956 8.012 3 6 6.610 6.668 2 6 5.985 6.057

Here, 𝐽 is the moment of inertia of the shell’s section around its diameter,𝑚 = 𝜋𝑅2ℎ𝑝𝜌

is the mass of the cover (plate), and 𝑆 = 2𝜋𝑅ℎ is the cross-sectional area of the shell.

Substituting the solution of equation (2.46)

𝑤
(︁𝑠
𝑙

)︁
= 𝐶1 sin

𝛼𝑠

𝑙
+ 𝐶2 cos

𝛼𝑠

𝑙
+ 𝐶3 sinh

𝛼𝑠

𝑙
+ 𝐶4 cosh

𝛼𝑠

𝑙

into the boundary conditions and setting the determinant of the homogeneous linear

system to zero, we obtain an equation for determining the value of 𝛼

𝛾𝛼(cos(𝛼) sinh(𝛼)− cosh(𝛼) sin(𝛼)) + cosh(𝛼) cos(𝛼) + 1 = 0, (2.47)

where 𝛾 = 𝑚
𝑀 =

ℎ𝑝

2𝑙ℎ , and 𝑀 is the mass of the shell.
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In the case where the cover is a circular plate, 𝛾 = 1/(2𝑙). For such structures,

the results of analytical and finite element analysis for various lengths of shells are

presented in Table 2.8, where the frequency parameter Ω is related to 𝛼 by the relation

Ω =
3𝜎𝛼

𝑙
4

√︂
1 +

4

ℎ2
.

Table 2.8 — Dependency of the frequency parameter Ω on the length of the shell 𝑙 for

"beam-like"vibrations

𝑙 Analytical FEM Error

4 6.411 5.561 15.3 %

8 3.357 3.203 4.8 %

12 2.277 2.223 2.3 %

16 1.723 1.701 1.8 %

20 1.387 1.375 0.8 %

For shells with a relatively short length, the solution of equation (2.47) gives

significantly overstated frequencies, but the accuracy of the analytical formula increases

with the length of the shell. It should be noted that as the length of the shell

increases, the frequencies of beam vibrations decrease rapidly and for shells with

𝑙 > 8, the fundamental frequency of the structure becomes the first frequency of

"beam-like"vibrations.

2.7 Single-parameter optimization of the eigenfrequency

spectrum

The obtained results for the spectrum can be used in solving optimization problems.

The most common optimization problem of the spectrum is to maximize the value
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of the lowest eigenfrequency of vibrations by changing the system parameters, both

geometric and physical.

First, let’s consider the influence of the thickness of the plate (1/𝑟𝑝 = 0)

on the eigenfrequencies while mass conservation of the structure. Since the lowest

eigenfrequencies of the structure belong to the series of "plate-like"frequencies, to

increase the fundamental eigenfrequency, it is necessary to increase the thickness of

the plate so that its lowest frequency coincides with the lowest frequency of the shell.

For a shell and plate with thicknesses ℎ and ℎ𝑝 = 𝛿ℎ respectively, the angular

frequency 𝜔 is given by a formula similar to (2.37):

𝜔2 = 𝛽4
𝛿

ℎ2𝐸

12𝜎𝜌𝑅2
, 𝛽4

𝛿 = (𝛽
√
𝛿)4. (2.48)

The second row of Table 2.9 shows the first root 𝛽 of equation (2.36), and the

third row shows the value of 𝛽𝛿. The fourth row contains the values of 𝛽𝛿 corresponding

to the fundamental frequency found using the Finite Element Method (FEM). The

difference between asymptotic and numerical results is less than 1.1%.

Table 2.9 — Dependency of the frequency parameter of the fundamental frequency on

the thickness of the plate.

𝛿 1 1.5 2 2.5 3 3.5 4

𝛽 3.086 2.906 2.715 2.565 2.461 2.393 2.348

𝛽𝛿 3.086 3.560 3.840 4.055 4.263 4.477 4.697

FEM 3.069 3.537 3.815 4.028 4.231 4.439 4.648

The condition of mass conservation of the structure allows for the determination

of the thickness of the shell ℎ𝑠, which decreases with increasing thickness of the plate.

Indeed, from the condition of volume conservation

2𝜋ℎ𝑙 + 𝜋ℎ = 2𝜋ℎ𝑠𝑙 + 𝜋ℎ𝛿,
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the thickness of the shell is

ℎ𝑠 =

(︂
1 +

1− 𝛿

2𝑙

)︂
ℎ = 𝛿𝑠ℎ.

When 𝛿 = 1, the thicknesses of the plate and the shell are equal, ℎ𝑠 = ℎ𝑝 = ℎ.

Figure 2.5 a) shows the analytical dependencies of the frequency parameter Ω

on 𝛿 for the lowest "plate-like"frequency (𝑚 = 0), two lowest "shell-like"frequencies

(𝑚 = 4 and 𝑚 = 5), and the first "beam-like"frequency for ℎ = 0.01, 𝑙 = 4. The

frequency parameter Ω is related to the parameters 𝛼, 𝛽, and 𝜂 as follows:

Ω =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛽𝛿 for "plate-like"frequencies (see (2.48)),

4

√︁
12𝜆
ℎ2
𝑠

for "shell-like"frequencies (see (2.45)),

3𝜎𝛼
𝑙

4

√︁
1 + 4

ℎ2
𝑠

for "beam-like"frequencies (see (2.46)).

At 𝛿 = 1, the fundamental frequency is the lowest "plate-like"frequency. As 𝛿

increases, ℎ𝑠 decreases and the mass of the plate increases, thus reducing both the first

"shell-like"and the first "beam-like"frequencies. As the length of the shell 𝑙 increases,

the lowest "beam-like"frequency decreases and becomes the fundamental frequency of

the structure for 𝑙 > 8.

When changing the parameter 𝛿, frequencies can become multiples. When

"plate-like"and "shell-like"frequencies collide, distortions in the corresponding

vibration forms are negligible. When "plate-like"and "beam-like"frequencies are close,

the vibration form represents a superposition of "beam-like"and "plate-like"vibration

forms, which does not allow for determining the type of vibration. The collision of the

first "beam-like"and second "plate-like"frequencies explains the non-monotonicity of

the green line in Figure 2.5.

Table 2.10 shows the values of the optimal thicknesses of the structural elements

and the corresponding frequency parameter values, found analytically and by the finite

element method.
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2.8 Two-parameter optimization of the eigenfrequency

spectrum

Consider the problem of vibrations of a structure consisting of a cylindrical shell of

length 𝑙, radius 1, and thickness ℎ𝑠, coupled with a spherical segment of radius 𝑟𝑝 and

thickness ℎ𝑝 = ℎ𝑠/𝛿. As 𝑟𝑝 → ∞, the spherical shell turns into a flat circular plate.

Reducing the radius of curvature of the spherical segment leads to a rapid

increase in its eigenfrequencies, while reducing the thickness of the spherical segment

leads to a less significant decrease in its eigenfrequencies. At the same time, to maintain

the mass of the structure, the "excess"material can be used to increase the thickness

of the cylindrical shell, which leads to an increase in its eigenfrequencies.

The condition for mass conservation of the structure is given by

2𝜋ℎ𝐿𝑅 + 𝜋ℎ𝑅2 = 2𝜋ℎ𝑠𝐿𝑅 + 𝜋ℎ𝑝𝑅𝑝

(︁
𝑅𝑝 −

√︁
𝑅2

𝑝 −𝑅2
)︁
,

from which, with ℎ𝑠 = 𝛿ℎ𝑝, follows the formula for dimensionless parameters

ℎ𝑝 = ℎ · 2𝑙 + 1

2𝑙𝛿 + 2𝑟2𝑝 − 2𝑟𝑝
√︁
𝑟2𝑝 − 1

.

In the first optimization problem, for a given mass of the structure, we find the

curvature of the cover 𝑘 (𝑘 = 1/𝑟𝑝) and the thickness ratio 𝛿, at which the fundamental

frequency of the structure is the highest.

For a fixed-mass structure, Figure 2.6 presents analytically derived

dependencies of the lowest eigenfrequencies on parameters 𝛿(1 < 𝛿 < 5) and

𝑘(0.01 < 𝑘 < 0.15). In the graph, the values of "plate-like"frequencies are denoted in

green, "shell-like"frequencies in yellow, and the lowest eigenfrequency of the cylindrical

shell in the limit case, when the thickness of the cover tends to zero, in red. It is

noted that as the curvature of the cover increases, the lowest eigenfrequency of "shell­

like"vibrations rapidly approaches the limit value.
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Figure 2.7 demonstrates a good match between the values of the lowest

eigenfrequencies of vibrations obtained analytically (green, yellow, and red surfaces)

and numerically (dots) in the 𝐶𝑜𝑚𝑠𝑜𝑙 package for different values of 𝛿 and 𝑘.

Table 2.11 lists the values of the first frequencies of structures for different

values of 𝛿 and 𝑟𝑝.

The optimal solution, in which the fundamental frequency reaches the

maximum value while mass conservation of the structure, is achieved with parameters

𝑟𝑝 = 9.851 and 𝛿 = 30. However, such a setup is not justified, as for a cylindrical

shell with a radius of 𝑅 = 1 m and a thickness of 𝐻 = 1 cm, the cover would have a

thickness of𝐻𝑝 = 0.3mm, which is unacceptable for real structures. In particular, most

engineering standards, for example, for designing railway tanks, specify a minimum

thickness of the end cover of 3 mm.

Therefore, consider the second optimization problem: for a given mass of the

structure and a given minimum thickness of the cover 𝐻𝑝 = 3 mm, find the radius

of curvature of the cover at which the fundamental frequency of the structure is the

highest.

For a structure with parameters defined above, the maximum fundamental

frequency of 40.36 Hz is achieved at 𝑅𝑝 = 9.851 m, which significantly exceeds the

fundamental frequency of the structure with a flat cover of 16.318 Hz.
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a)

b)

Fig 2.5 — Dependency of the frequency parameter of the lowest eigenfrequencies on

the thickness of the plate while maintaining the overall mass of the structure.

a) analytical results, b) numerical (FEM).

"Plate-like"frequency — red, "beam-like"frequency — green,

"shell-like"frequencies: for 𝑚 = 4 — blue, 𝑚 = 5 — light blue.
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Table 2.10 — Optimal thicknesses of structural elements and the corresponding

frequency parameter

Analytical FEM

Ω 4.50 4.43

ℎ𝑝 3.90 3.83

ℎ𝑠 0.64 0.65

Fig 2.6 — Analytical dependencies of the lowest eigenfrequencies on parameters 𝛿 and

𝑘: "plate-like"(green), "shell-like"(yellow), and the lowest eigenfrequency of the

cylindrical shell (red) in the limit case.
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Fig 2.7 — Lowest eigenfrequencies of vibrations found analytically (green, yellow, and

red surfaces) and numerically (dots).

Table 2.11 — Frequency parameter of a shell coupled with a shallow spherical segment

𝛿

𝜌
0.01 0.03 0.05 0.07 0.09 0.11 0.13

1 3.162 3.500 3.940 4.386 4.768 4.768 4.767

2 2.446 3.032 3.640 4.171 4.633 4.823 4.823

3 2.122 2.892 3.564 4.118 4.594 4.843 4.842

4 1.957 2.850 3.554 4.127 4.619 4.852 4.852

5 1.869 2.845 3.573 4.164 4.673 4.858 4.857
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3 Buckling of a thin cylindrical shell stiffened with rings

of varying stiffness

This chapter is devoted to study of the buckling of a structure consisting of a

thin-walled elastic cylindrical shell, stiffened with rings of varying stiffness along its

parallels. An example of such a stiffened shell is shown in Figure 1.1.

The Rayleigh-Ritz method is used to derive an asymptotic formula for

evaluation of the critical load value of the structure. Numerical and asymptotic

methods are used to study the effect of varying the stiffness distribution law of the

frames along the generatrix on the critical pressure of the shell.

Two optimization problems are solved. In the first, the coefficients of the

distribution functions are chosen such that the structure of a given mass achieves

maximum critical pressure. In the second problem, the mass of the structure is

minimized for a given critical pressure.

3.1 Buckling of a stiffened cylindrical shell

3.1.1 Problem statement

The problem of buckling in a thin-walled elastic cylindrical shell under the action of

uniform external pressure 𝑝 is considered. To increase the critical pressure, the shell is

stiffened with 𝑛𝑠 transverse ribs of varying stiffness (rings) with zero eccentricity.

rings whose stiffness varies along the generatrix of the shell are considered. It is

assumed that the optimal choice of ring stiffnesses will lead to the maximum increase in

the critical pressure of the structure. The solution of the optimization problem involves

finding the geometrical parameters of the rings corresponding to the maximum critical

pressure for a given mass of the structure.
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To study the buckling, we will use the dimensionless equations of the technical

theory of shells [25]:

𝜀8∆2𝑤(𝑖)(𝑠)−∆𝑘Φ
(𝑖)(𝑠)− 𝜆𝑚2𝑤(𝑖)(𝑠) = 0, ∆2Φ(𝑖)(𝑠) + ∆𝑘𝑤

(𝑖)(𝑠) = 0, (3.1)

where

∆𝑘 =
𝑑2

𝑑𝑠2
, ∆ = ∆𝑘 −𝑚2, 𝜎 = 1− 𝜈2, 𝜆 =

𝑝

𝐸ℎ
, 𝜀8 =

ℎ2

12𝜎
.

Here 𝜀 is a small parameter, 𝑠 is the coordinate along the generatrix of the cylinder,

𝑤(𝑖)(𝑠) is the projection of displacement in the direction normal to the median surface

between rings, Φ(𝑖)(𝑠) is the force function,𝑚 is the number of waves along the parallel,

ℎ is the dimensionless thickness of the shell, 𝑙 is the dimensionless length of the shell,

𝜈 is Poisson’s ratio, and 𝐸 is Young’s modulus. The unit of length is chosen to be the

radius 𝑅 of the median surface of the cylinder.

We represent the solution of the system of equations (3.1) as a sum of the basic

semi-momentless state and the simple edge effect of the shell and parallels where the

rings are installed. In the first approximation, we get(︁
𝑤

(𝑖)
0

)︁𝐼𝑉
− 𝛼4𝑤

(𝑖)
0 = 0, 𝛼4 = 𝑚6𝜆0 − 𝜀8𝑚8, (3.2)

where 𝑤
(𝑖)
0 is the approximate solution of the system (3.1), 𝜆0 is the approximate value

of 𝜆 (see [14]). Further, only the first term of the asymptotic expansion of the solution

is considered, and 𝑤
(𝑖)
0 and 𝜆0 are replaced by 𝑤(𝑖) and 𝜆, respectively.

The boundary conditions for equation (3.2) in the case of simply supported

edges of the shell are as follows:

𝑤(1) = 0,
𝑑2

𝑑𝑠2
𝑤(1) = 0, at 𝑠 = 0,

𝑤(𝑛) = 0,
𝑑2

𝑑𝑠2
𝑤(𝑛) = 0, at 𝑠 = 𝑙,

(3.3)
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and in the case of clamped edges

𝑤(1) = 0,
𝑑

𝑑𝑠
𝑤(1) = 0, at 𝑠 = 0,

𝑤(𝑛) = 0,
𝑑

𝑑𝑠
𝑤(𝑛) = 0, at 𝑠 = 𝑙.

(3.4)

Assume that the characteristic size of the cross-section of the ring 𝑎 ≪ 𝜀. Then,

on the parallels stiffened with rings, the conjugation conditions are satisfied [30]:

𝑤(𝑖) = 𝑤(𝑖+1), 𝑤(𝑖)′ = 𝑤(𝑖+1)′,

𝑤(𝑖)′′ = 𝑤(𝑖+1)′′, 𝑤(𝑖)′′′ − 𝑤(𝑖+1)′′′ = −𝑐𝑖𝑤
(𝑖+1),

for 𝑠 = 𝑠𝑖, (𝑖 = 1, 2, . . . , 𝑛− 1),

(3.5)

where

𝑐𝑖 =
𝑚8𝜀8𝑙𝜂𝑖

𝑛
, 𝜂𝑖 =

12𝜎𝑛𝐸𝑐𝐽𝑖
ℎ3𝐸𝑙

.

Here 𝐸𝑐 is Young’s modulus of the ring material, 𝜂𝑖 is the effective stiffness of the 𝑖-th

ring, proportional to the ratio of the bending stiffnesses of the ring and the shell, 𝐽𝑖 is

the moment of inertia of the cross-section of the 𝑖-th ring relative to the generatrix of

the cylinder.

The approximate value of the critical pressure parameter 𝜆 for the stiffened

shell is determined by the formula [14]:

𝜆(𝜂) = min
𝑚

[︂
𝛼4(c)

𝑚6
+ 𝜀8𝑚2

]︂
, c = {𝑐𝑖}𝑛𝑖=1, (3.6)

where 𝛼(c) is the eigenvalue of the boundary problem (3.2), (3.5) with the boundary

conditions (3.3) in the case of simply supported edges of the shell and (3.4) in the case

of their rigid clamping.

3.1.2 Vibrations of a stiffened Beam

The method of reinforcing the shell with rings is discussed in detail in Section 2 of the

first chapter of the dissertation. Figure 3.1 shows the shell with rings in a sectional

view along the shell generatrix.
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Fig 3.1 — Axial section of a shell stiffened with rings with zero eccentricity.

The eccentricity of a ring is defined as the distance between the center of gravity

of the ring’s cross-section and the median surface of the shell. For the case of stiffenning

with rings of zero eccentricity, the moment of inertia of the 𝑖-th ring is given by the

formula:

𝐽𝑖 = 𝐽𝑓 3(𝑖), 𝐽 =
𝑎4𝑘3

12
.

where 𝑎 is the width of the rings, 𝑘 = 𝑏/𝑎 is the ratio of the height of the first ring to its

width, 𝑓(𝑖) is a function describing the profile of the structure. Then the dimensionless

stiffness (𝑐𝑖) and the relative stiffness (𝜂𝑖) of the 𝑖-th ring can be written as:

𝑐𝑖 = 𝑐 · 𝑓 3(𝑖), 𝜂𝑖 = 𝜂 · 𝑓 3(𝑖), where 𝑐 =
𝑚8𝜀8𝑙𝜂

𝑛
, 𝜂 =

12𝜎𝑛𝐽

ℎ3𝑙
. (3.7)

The profile function of the structure 𝑓(𝑖) can take any form, however, it is

advisable to stiffen the shell with rings, the heights of which are symmetrical relative

to the middle.

In particular:
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- for linear distribution of ring heights (Figure 3.2 (a)), the function 𝑓(𝑖) has

the form

𝑓𝑙𝑖𝑛(𝑖) = (𝜅(𝑖)− 1)(𝑢− 1) + 1, 𝑢 =
𝑏2
𝑏1
, (3.8)

- for distribution of ring heights by a parabola (Figure 3.2 (b))

𝑓𝑝𝑎𝑟𝑎𝑏(𝑖) = 𝑎𝑝𝜅
2(𝑖)− 𝑛𝑎𝑝𝜅(𝑖) + 𝑛𝑎𝑝 − 𝑎𝑝 + 1, where 𝑎𝑝 =

1− 𝑢

𝑛− 3
, (3.9)

- for exponential distribution of ring heights (Figure 3.2 (c))

𝑓𝑒𝑥𝑝(𝑖) =
𝑢− 1

𝑒2 − 𝑒
𝑒𝜅(𝑖) +

𝑒− 𝑢

𝑒− 1
. (3.10)

- when reinforcing the shell with identical rings

𝑓0(𝑖) = 1. (3.11)

Fig 3.2 — Construction profiles for the case of

a). linear b). parabolic c). exponential

functions of distribution of ring heights.

In formulas (3.8, 3.9, 3.10) the function

𝜅(𝑖) =
𝑛

2
−
⃒⃒⃒𝑛
2
− 𝑖
⃒⃒⃒
=

⎧⎪⎪⎨⎪⎪⎩
𝑖, 𝑖 < 𝑛

2

𝑛− 𝑖, 𝑖 ⩾ 𝑛
2
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ensures the symmetry of the construction profile functions, and the parameter 𝑢 =

𝑏2/𝑏1 characterizes the amplitude of the distribution function.

The boundary problems (3.2, 3.3, 3.5) and (3.2, 3.4, 3.5) are equivalent to

problems of determining the lowest frequencies of transverse vibrations of simply

supported and clamped beams (Figure 3.3), stiffened with springs of stiffness 𝑐𝑖 at

points 𝑠 = 𝑠𝑖.

Fig 3.3 — Vibration modes of a beam, stiffened with springs with

a). clamped, b). simply supported

ends.

The choice of optimal coordinates for installing the springs 𝑠𝑖 is considered in

the first chapter of the dissertation. Springs should be installed at the nodes of the

vibration modes of the unstiffened beam:

- for simply supported edges (3.2, 3.3, 3.5)

𝑤𝑛(𝑠) = sin(𝛼𝑛𝑠), 𝛼𝑛 =
𝑛

𝑙
· 𝜋, (3.12)

- for clamped edges (3.2, 3.4, 3.5)

𝑤𝑛(𝑠) = 𝑈 (𝛼𝑛𝑠)− κ𝑛𝑉 (𝛼𝑛𝑠) , 𝛼𝑛 =
𝑧𝑛
𝑙
, κ𝑛 =

𝑈(𝑧𝑛)

𝑉 (𝑧𝑛)
, (3.13)

where

𝑈(𝑥) = ch𝑥− cos𝑥, 𝑉 (𝑥) = sh 𝑥− sin𝑥

are Krylov functions, and the values

𝑧𝑛 ≃ (2𝑛+ 1)
𝜋

2
, 𝑛 = 1,2, . . .
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are the roots of the equation ch 𝑧 · cos 𝑧 = 1. At the same time, the points of optimal

placement of the springs coincide with the roots of the equation 𝑤𝑛(𝑠) = 0.

Subsequently, for simplicity of notation, we omit the indices, and thus 𝛼 = 𝜋
2𝑙 ,

κ = 𝑈(3𝜋2 )/𝑉 (3𝜋2 ), and the first form of vibrations of the unstiffened beam is denoted

𝑤(𝑠).

The formula for estimating the first eigenvalue by the Rayleigh-Ritz method of

the boundary problem (3.2, 3.5) with boundary conditions of simply supported ends

(3.3) of the beam is as follows

𝛼4
𝑠 =

𝜋4

𝑙4
+ 𝑐

2𝑇𝑠(𝑛)

𝑙
, 𝑇𝑠(𝑛) =

𝑛−1∑︁
𝑖=1

𝑓 3(𝑖) sin2
(︂
𝜋𝑖

𝑛

)︂
, (3.14)

and the value of the approximate parameter of the first frequency of vibrations of the

beam with clamped ends (3.4) can be calculated by the formula

𝛼4
𝑐 =

(︂
3𝜋

2𝑙

)︂4

+ 𝑐
𝑇𝑐(𝑛)

𝐼0
, (3.15)

where

𝐼0 =

𝑙∫︁
0

(︁
𝑈
(︁𝜋𝑠
2𝑙

)︁
− κ · 𝑉

(︁𝜋𝑠
2𝑙

)︁)︁2
𝑑𝑠, 𝑇𝑐(𝑛) =

𝑛−1∑︁
𝑖=1

𝑓 3(𝑖)𝑤2(𝑠𝑖).

3.1.3 Finding eigenvalues in the problem of buckling of a stiffened shell

Consider the problem of determining the value of the critical pressure parameter 𝜆1

for a cylindrical shell with simply supported (3.3) edges. The shell is stiffened with

rings of stiffness 𝑐𝑖 along parallels with coordinates 𝑠𝑖, which are the nodes of the

vibration form of the unstiffened simply supported shell (3.12). Denote by 𝛼𝑠(𝜂,𝑚)

the eigenvalue of the boundary problem for the case of simply supported (3.2, 3.3, 3.5),

corresponding to the critical pressure. The corresponding value of the critical pressure

parameter 𝜆1(𝜂) is determined from formula (3.6) and denoted as 𝜆𝑠(𝜂)

𝜆𝑠(𝜂) = min
𝑚

[︂
𝛼4
𝑠(𝜂,𝑚)

𝑚6
+ 𝜀8𝑚2

]︂
. (3.16)
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Taking into account the value of ring stiffness 𝑐, which is defined in (3.7), the

eigenvalue 𝛼𝑠 considering the formula (3.14) can be written as

𝛼4
𝑠 =

𝜋4

𝑙4
+ 𝑐

2𝑇𝑠(𝑛)

𝑙
=

𝜋4

𝑙4
+

𝑚8𝜀8𝑙𝜂

𝑛

2𝑇𝑠(𝑛)

𝑙
=

𝜋4

𝑙4
+

2𝑇𝑠(𝑛)𝜂𝜀
8

𝑛
𝑚8.

Substitution of the obtained 𝛼4
𝑠 in (3.16) gives the following expression for the

eigenvalue of the critical pressure parameter of the simply supported shell

𝜆𝑠(𝜂) = min
𝑚

[︂(︂
𝜋4

𝑙4
+

2𝑇𝑠(𝑛)𝜀
8𝜂

𝑛
𝑚8

)︂
𝑚−6 + 𝜀8𝑚2

]︂
=

= min
𝑚

[︂
𝜋4

𝑙4
𝑚−6 +

2𝑇𝑠(𝑛)𝜀
8𝜂

𝑛
𝑚2 + 𝜀8𝑚2

]︂
In general, the minimized function 𝜆𝑠(𝜂,𝑚) takes the form

𝜆(𝜂,𝑚) = 𝑋𝑚−6 + 𝑌 𝑚2, where 𝑋 =
𝜋4

𝑙4
, 𝑌 = 𝜀8

(︂
1 +

2𝑇𝑠(𝑛)𝜂

𝑛

)︂
. (3.17)

Minimize the obtained function 𝜆(𝜂,𝑚) over 𝑚:

−6𝑋𝑚−7 + 2𝑌 𝑚 = 0, 𝑚2 =
4

√︂
3𝑋

𝑌
, 𝜆𝑚𝑖𝑛 =

4

√︂
256

27
𝑋𝑌 3. (3.18)

then

𝜆𝑠(𝜂) =
4

√︃
256

27

𝜋4

𝑙4

(︂
𝜀8
(︂
1 +

2𝑇𝑠(𝑛)𝜂

𝑛

)︂)︂3

=
4𝜋𝜀6

𝑙 4
√
27

4

√︃(︂
1 +

2𝑇𝑠(𝑛)𝜂

𝑛

)︂3

.

Since 𝜀8 = ℎ2/(12𝜎), the value of 𝜆𝑠 for the case of simply supported edges of

the shell can be written as

𝜆𝑠(𝜂) = 𝜆𝑠(0)
4

√︃(︂
1 +

2𝑇𝑠(𝑛)𝜂

𝑛

)︂3

, where 𝜆𝑠(0) =

√
6𝜋ℎ3/2

9𝑙𝜎3/4
. (3.19)

In the case of simply supported ends of the shell, the boundary problem (3.2,

3.4) has an eigenvalue independent of 𝜂, which is also the eigenvalue of the boundary

problem (3.2, 3.3, 3.5). To find the limiting value of 𝜂, substitute the eigenvalue 𝛼𝑛

from (3.12) of the boundary problem (3.2, 3.3) into expression (3.6):

𝜆𝑠
𝑛 = min

𝑚

[︂
𝛼4
𝑛

𝑚6
+ 𝜀8𝑚2

]︂
=

4

√︂
256

27
𝛼4
𝑛𝜀

24 = 𝛼𝑛𝜀
6 4

4
√
27

=
𝜋𝑛

𝑙

ℎ3/2

123/4𝜎3/4

4
4
√
27

= 𝜆𝑠(0)𝑛.
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The parameter 𝜂*𝑠 , which is the root of the equation

𝜆𝑠(0)
4

√︃(︂
1 +

2𝑇𝑠(𝑛)𝜂*𝑠
𝑛

)︂3

= 𝜆𝑠
𝑛,

is referred to as the effective stiffness of the ring. The critical pressure parameter does

not increase for values of the ring stiffness 𝜂 greater than 𝜂*𝑠 . Therefore,

𝜆𝑠(𝜂)

𝜆𝑠(0)
=

⎧⎪⎪⎨⎪⎪⎩
4

√︂(︁
1 + 2𝑇𝑠(𝑛)

𝑛 𝜂
)︁3
, 𝜂 ⩽ 𝜂*𝑠

𝑛, 𝜂 > 𝜂*𝑠

, 𝜂*𝑠 =
𝑛(𝑛4/3 − 1)

2𝑇𝑠(𝑛)
. (3.20)

Consider the problem of determining the value of the critical pressure parameter

𝜆𝑐 for other boundary conditions, namely, for a cylindrical shell with clamped (3.4)

edges. In this case, the coordinates of the parallels where the shell is stiffened with

rings of stiffness 𝑐𝑖 are the nodes of the vibration form of the unstiffened clamped shell

(3.13). Taking into account the expression for 𝑐 (3.7), the eigenvalue of the boundary

problem (3.2, 3.4, 3.5) can be written as:

𝛼4
𝑐 =

(︂
3𝜋

2𝑙

)︂4

+ 𝑐
𝑇𝑐(𝑛)

𝐼0
=

(︂
3𝜋

2𝑙

)︂4

+
𝑚8𝜀8𝑙𝜂

𝑛

𝑇𝑐(𝑛)

𝐼0
=

(︂
3𝜋

2𝑙

)︂4

+
𝜀8𝑙𝑇𝑐(𝑛)𝜂

𝑛𝐼0
𝑚8.

The corresponding value of the critical pressure parameter 𝜆𝑠(𝜂), taking into

account the minimum value of the function (3.18), is

𝜆𝑐 = min
𝑚

[︂
𝛼4
𝑐

𝑚6
+ 𝜀8𝑚2

]︂
= min

𝑚

[︃(︂
3𝜋

2𝑙

)︂4

𝑚−6 +
𝜀8𝑙𝑇𝑐(𝑛)𝜂

𝑛𝐼0
𝑚2 + 𝜀8𝑚2

]︃
=

=
4

√︃
256

27

(︂
3𝜋

2𝑙

)︂4

𝜀24
(︂
1 +

𝑙𝑇𝑐(𝑛)𝜂

𝑛𝐼0

)︂3

=
6𝜋𝜀6

𝑙33/4
4

√︃(︂
1 +

𝑙𝑇𝑐(𝑛)𝜂

𝑛𝐼0

)︂3

Taking into account the expression for the small parameter 𝜀8 = ℎ2/(12𝜎), the

value of 𝜆𝑐 for the case of clamped edges of the shell can be written as

𝜆𝑐(𝜂) = 𝜆𝑐(0)
4

√︃(︂
1 +

𝑙𝑇𝑐(𝑛)𝜂

𝑛𝐼0

)︂3

, where 𝜆𝑐(0) =
𝜋ℎ3/2

√
6𝑙𝜎3/4

. (3.21)
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As in the case of simply supported edges of the shell, the boundary problem (3.2,

3.4) has an eigenvalue independent of 𝜂, which is also the eigenvalue of the boundary

problem (3.2, 3.4, 3.5). To find the limiting value of 𝜂, substitute the eigenvalue 𝛼𝑛

from (3.13) of the boundary problem (3.2, 3.4) into expression (3.6):

𝜆𝑐
𝑛 = min

𝑚

[︂
𝛼4
𝑛

𝑚6
+ 𝜀8𝑚2

]︂
=

4

√︂
256

27
𝛼4
𝑛𝜀

24 =
4

33/4
(2𝑛+ 1)𝜋

2𝑙

ℎ3/2

123/4𝜎3/4
=

2𝑛+ 1

3
𝜆𝑐(0).

The effective stiffness of the ring 𝜂*𝑐 in this case is the root of the equation

𝜆𝑐(0)
4

√︃(︂
1 +

𝑙𝑇𝑐(𝑛)𝜂*𝑐
𝑛𝐼0

)︂3

= 𝜆𝑐
𝑛.

Increasing the stiffness of the ring 𝜂 after reaching the value 𝜂*𝑐 does not lead to an

increase in the critical pressure parameter. Therefore,

𝜆𝑐(𝜂)

𝜆𝑐(0)
=

⎧⎪⎪⎨⎪⎪⎩
4

√︂(︁
1 + 𝑙𝑇𝑐(𝑛)𝜂

𝑛𝐼0

)︁3
, 𝜂 ⩽ 𝜂*𝑐

2𝑛+1
3 , 𝜂 > 𝜂*𝑐

, 𝜂*𝑐 =
𝑛𝐼0

𝑙𝑇𝑐(𝑛)

(︃(︂
2𝑛+ 1

3

)︂4/3

− 1

)︃
. (3.22)

3.2 Maximum increase in critical pressure of a cylindrical shell

stiffened with rings of varying stiffness

Let the mass of the stiffened shell be fixed. Consider the problem of determining the

optimal distribution of mass between the rings and the shell (cladding), corresponding

to the highest value of critical pressure.

The critical pressure 𝑝0 for a smooth shell of length 𝑙 and thickness ℎ0 can be

found using the approximate Southwell-Papkovich formula [30]:

𝑝 = 𝜆𝐸ℎ0, (3.23)

where in the case of simply supported edges of the shell

𝜆 = 𝜆𝑠(0) =

√
6𝜋ℎ

3/2
0

9𝑙𝜎3/4
, 𝑝𝑠0 =

√
6𝜋ℎ

5/2
0 𝐸

9𝑙𝜎3/4
. (3.24)
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and in the case of clamped edges

𝜆 = 𝜆𝑐(0) =

√
6𝜋ℎ3/2

6𝑙𝜎3/4
, 𝑝𝑐0 =

√
6𝜋ℎ

5/2
0 𝐸

6𝑙𝜎3/4
. (3.25)

Assume that by reducing the thickness of the shell to ℎ, 𝑛 − 1 rings of rectangular

cross-section with width 𝑎 and height 𝑏𝑖, 𝑖 = 1 . . . 𝑛 − 1, are installed on it. Let the

mass of the shell be

𝑀(ℎ) = 𝜌 · 2𝜋𝑅 ·𝑅ℎ ·𝑅𝑙,

and the mass of the rings

𝑀𝑟 = 𝜌
𝑛−1∑︁
𝑖=1

2𝜋𝑅 ·𝑅𝑎 ·𝑅𝑎𝑘𝑓(𝑖),

where 𝑘 = 𝑏/𝑎 is the ratio of the height of the first ring to its width, and 𝑓(𝑖) is

the function of the construction profile. Then from the condition of the mass of the

stiffened shell equaling the mass of the smooth shell

𝜌 · 2𝜋𝑅 ·𝑅ℎ0 ·𝑅𝑙 = 𝜌 · 2𝜋𝑅 ·𝑅ℎ ·𝑅𝑙 + 𝜌

𝑛−1∑︁
𝑖=1

2𝜋𝑅 ·𝑅𝑎 ·𝑅𝑎𝑘𝑓(𝑖)

the dependence of the width of the rings 𝑎 on the ratio of the thicknesses of the stiffened

and smooth shells 𝑑 = ℎ/ℎ0 can be expressed as:

𝑎2 =
1− 𝑑

𝐴
, where 𝐴 =

𝑘𝑃 (𝑛)

ℎ0𝑙
, 𝑃 (𝑛) =

𝑛−1∑︁
𝑖=1

𝑓(𝑖). (3.26)

For the optimal distribution of the construction mass between the shell and the

rings, for the case of simply supported edges, introduce the function 𝑓𝑠 of the ratio of

the critical pressure of the stiffened shell to the critical pressure of the smooth shell.

Taking into account the relationship (3.20), write 𝑓𝑠 as

𝑓𝑠 =
𝑝𝑠

𝑝𝑠0
=

𝜆𝑠(𝜂)𝐸ℎ

𝜆𝑠(0)𝐸ℎ0
=

⎧⎪⎪⎨⎪⎪⎩
𝑑5/2 4

√︂(︁
1 + 2𝑇𝑠(𝑛)

𝑛 𝜂
)︁3
, 0 ⩽ 𝜂 ⩽ 𝜂*𝑠

𝑑5/2𝑛, 𝜂 > 𝜂*𝑠

, (3.27)
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and find the maximum value of this function.

Transform the second term under the root expression taking into account the

value of the relative stiffness of the ring 𝜂 (3.7):

2𝑇𝑠(𝑛)

𝑛
𝜂 =

2𝑇𝑠(𝑛)

𝑛

12𝜎𝑛𝐽

ℎ3𝑙
=

24𝑇𝑠(𝑛)𝜎

ℎ3𝑙

𝑎4𝑘3

12
= 𝐵𝑠

𝑎4

𝑑3
, where 𝐵𝑠 =

2𝑇𝑠(𝑛)𝜎𝑘
3

ℎ3
0𝑙

.

Then the function 𝑓𝑠 can be written as

𝑓𝑠 =

⎧⎪⎪⎨⎪⎪⎩
𝑑5/2𝑛, 0 ⩽ 𝑑 ⩽ 𝑑*

𝑑5/2
4

√︁(︀
1 +𝐵𝑠

𝑎4

𝑑3

)︀3
, 𝑑* < 𝑑 ⩽ 1

, (3.28)

where 𝑑* is the optimal ratio of the thicknesses of the stiffened and smooth shells,

at which the maximum value of the function 𝑓𝑠 is achieved. Taking into account the

condition of equality of the masses of the stiffened and smooth shells (3.26)

𝑓𝑠 =

⎧⎪⎪⎨⎪⎪⎩
𝑑5/2𝑛, 0 ⩽ 𝑑 ⩽ 𝑑*

𝑑5/2 4

√︂(︁
1 + 𝐵𝑠

𝐴2

(1−𝑑)2

𝑑3

)︁3
, 𝑑* < 𝑑 ⩽ 1

. (3.29)

The value 𝑑* is found from the condition of continuity of the function 𝑓𝑠 at the

point 𝑑*, which we write as

𝑑3 = 𝐶𝑠(𝑑− 1)2, (3.30)

where

𝐶𝑠 =
𝐵𝑠

𝐴2(𝑛4/3 − 1)
=

2𝑇𝑠(𝑛)𝑘
3𝜎

𝑙ℎ3
0

ℎ2
0𝑙

2

𝑘2𝑃 2(𝑛)

1

𝑛4/3 − 1
=

2𝑘𝑙𝜎

ℎ0

𝑇𝑠(𝑛)

𝑃 2(𝑛)(𝑛4/3 − 1)
.

Since 𝐶𝑠 > 0, equation (3.30) has a unique real root in the interval (0, 1). The function

𝑔𝑠(𝑑) = 𝑓
4/3
𝑠 increases for 𝑑 ∈ [0; 𝑑*], therefore, the maximum of the function is on the

interval [𝑑*; 1]. On this interval, the function 𝑔𝑠(𝑑) can be written as:

𝑔𝑠(𝑑) = 𝑑1/3
(︂
𝑑3 +

𝐵𝑠

𝐴2
(𝑑− 1)2

)︂
.
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The roots of the equation 𝑔′𝑠(𝑑) = 0 are outside the segment [𝑑*; 1] (see [60]), hence

the maximum of the function 𝑓𝑠(𝑑) is achieved at one of the ends [𝑑*; 1].

𝑓 *
𝑠 = max

[︁
𝑑

5
2
*𝑛; 1

]︁
.

For small ℎ0, the inequality 𝑑
5
2
*𝑛 > 1 holds, as 𝑑* → 1 when ℎ0 → 0.

Thus, a cubic equation is obtained, the root of which corresponds to the

maximum critical pressure of a clamped shell stiffened with rings of varying stiffness:

𝑑3* −
2𝑘𝑙𝜎

ℎ0

𝑇𝑠(𝑛)

𝑃 2(𝑛)(𝑛4/3 − 1)
(𝑑* − 1)2 = 0.

The optimal thickness of the rings 𝑎* and the maximum value of the function

𝑓𝑠, corresponding to 𝑑*, can be calculated by the formulas

𝑎* =

√︂
1− 𝑑*
𝐴

, 𝑓 *
𝑠 = 𝑑5/2* 𝑛.

Finally, consider the case of rigid clamping of the shell edges. For this, we

introduce the function 𝑓𝑐 of the ratio of the critical pressure of the stiffened shell with

clamped edges to the critical pressure of the smooth shell with clamped edges. Use the

relationship (3.22) for this purpose:

𝑓𝑐 =
𝑝𝑐

𝑝𝑐0
=

𝜆𝑐(𝜂)ℎ

𝜆𝑐(0)ℎ0
=

⎧⎪⎪⎨⎪⎪⎩
𝑑5/2 4

√︂(︁
1 + 𝑙𝑇𝑐(𝑛)

𝐼0𝑛
𝜂
)︁3
, 0 ⩽ 𝜂 ⩽ 𝜂*𝑐

𝑑5/2
(︀
2𝑛+1
3

)︀
, 𝜂*𝑐 < 𝜂

.

Taking into account the condition of mass equality of the stiffened and smooth

shells (3.26), as well as the expression for the relative stiffness of the rings 𝜂 (3.7), the

second term under the root expression can be written as

𝑙𝑇𝑐(𝑛)

𝐼0𝑛
𝜂 =

𝑙𝑇𝑐(𝑛)

𝐼0𝑛

12𝜎𝑛

ℎ3𝑙

𝑎4𝑘3

12
=

𝐵𝑐

𝐴2

(1− 𝑑)2

𝑑3
, where 𝐵𝑐 =

𝜎𝑇𝑐(𝑛)𝑘
3

𝐼0ℎ3
0

,

then

𝑓𝑐 =

⎧⎪⎪⎨⎪⎪⎩
𝑑5/2

(︀
2𝑛+1
3

)︀
, 0 ⩽ 𝑑 ⩽ 𝑑*

𝑑5/2 4

√︂(︁
1 + 𝐵𝑐

𝐴2

(1−𝑑)2

𝑑3

)︁3
, 𝑑* < 𝑑 ⩽ 1

. (3.31)
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where 𝑑* is the root of the cubic equation

𝑑3* = 𝐶𝑐(𝑑* − 1)2,

where

𝐶𝑐 =
𝐵𝑐(︁(︀

2𝑛+1
3

)︀4/3 − 1
)︁
𝐴2

=
𝜎𝑇𝑐(𝑛)𝑘

3

𝐼0ℎ3
0

ℎ2
0𝑙

2

𝑘2𝑃 2(𝑛)

1(︀
2𝑛+1
3

)︀4/3 − 1
=

=
𝜎𝑘𝑙2

ℎ0𝐼0

𝑇𝑐(𝑛)

𝑃 2(𝑛)
(︁(︀

2𝑛+1
3

)︀4/3 − 1
)︁ .

This equation has one root in the interval (0, 1).

The function 𝑔𝑐 = 𝑓
4/3
𝑐 increases for 𝑑 ∈ [0; 𝑑*], therefore, the maximum of the

function is on the interval [𝑑*; 1]. On this interval, the function 𝑔 can be written as:

𝑔𝑐(𝑑) = 𝑑1/3
(︀
𝑑3 +𝐵𝑐𝐴

−2(𝑑− 1)2
)︀
.

The roots of the equation 𝑔′𝑐(𝑑) = 0 are outside the segment [𝑑*; 1], hence the maximum

of the function 𝑓𝑐(𝑑) is achieved at one of the ends [𝑑*; 1].

𝑓 *
𝑐 = max

[︂
2𝑛+ 1

3
𝑑

5
2
* ; 1

]︂
.

For small ℎ0, the inequality 𝑑
5
2
* · 2𝑛+1

3 > 1 holds, as 𝑑 → 1 when ℎ0 → 0.

Thus, a cubic equation is obtained, the root of which corresponds to the

maximum critical pressure of a clamped shell stiffened with rings of varying stiffness:

𝑑3* −
𝜎𝑘𝑙2

ℎ0𝐼0

𝑇𝑐(𝑛)

𝑃 2(𝑛)
(︁(︀

2𝑛+1
3

)︀4/3 − 1
)︁(𝑑* − 1)2 = 0,

At the same time, 𝑎* and 𝑓 *
𝑐 , corresponding to 𝑑*, can be found by the following

formulas:

𝑎* =

√︂
1− 𝑑*
𝐴

, 𝑓 *
𝑐 =

(︂
2𝑛+ 1

3

)︂√︀
𝑑5*.
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3.3 Determining the critical pressure of a structure using

analytical and numerical methods

This section investigates the buckling of a cylindrical shell stiffened with rings under

normal external pressure, both analytically and numerically. As an example, a copper

cylindrical shell of length 𝑙 = 4 and thickness ℎ0 = 0.01 with Young’s modulus 𝐸 =

11 · 1010 Pa, Poisson’s ratio 𝜈 = 0.35, and density 𝜌 = 8920 kg/m3 is considered.

The approximate value of the critical pressure of the smooth unstiffened shell (𝑝0)

is calculated using formula (3.24) for simply supported edges, and formula (3.25) for

clamped edges. The corresponding values 𝑝0𝑠 and 𝑝0𝑐 are

𝑝0𝑠 =

√
6𝐸ℎ

5/2
0

9𝑙𝜎3/4
≈ 259.3 kPa, 𝑝0𝑐 =

√
6𝐸ℎ

5/2
0

6𝑙𝜎3/4
≈ 389 kPa.

For a shell stiffened with 𝑛𝑠 rings of width 𝑎 and heights 𝑏𝑖 = 𝑘𝑎𝑓(𝑖)(𝑖 =

1, . . . , 𝑛𝑠), the function 𝑓(𝑖) determines the distribution of ring heights along the

generatrix of the shell, and consequently, the distribution of ring stiffnesses and the

construction profile. These functions for linear, parabolic, and exponential distributions

are defined by formulas (3.8—3.11).

The approximate value of the critical pressure of such a structure can be

obtained using the formula 𝑝𝑠 = 𝑝0𝑠𝑓𝑠 for simply supported edges, and the formula

𝑝𝑐 = 𝑝0𝑐𝑓𝑐 for clamped edges. The values of 𝑓𝑠 and 𝑓𝑐 for different construction profiles

are provided in tables 3.1 and 3.2. Figures 3.4 and 3.5 show the dependencies of the

functions 𝑓𝑠 and 𝑓𝑐 on the number of rings for various ratios of width and height of

the rings.

Based on the obtained results, it can be concluded that the use of non-uniform

rings for reinforcing a cylindrical shell leads to a more significant increase in its critical

pressure compared to stiffenning with uniform rings. Among the three considered

construction profiles, the profile with an exponential law of ring height distribution
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Table 3.1 — The value of the function 𝑓𝑠 for a simply supported shell supported by 𝑛𝑠

rings.

𝑓𝑙𝑖𝑛(𝑖) 𝑓𝑝𝑎𝑟𝑎𝑏(𝑖) 𝑓𝑒𝑥𝑝(𝑖)

𝑛𝑠

𝑢
1 1,5 2 1 1,5 2 1 1,5 2

𝑘
=

1

4 2,94 3,37 3,67 2,94 3,37 3,67 2,94 3,37 3,67

5 3,11 3,78 4,24 3,11 3,70 4,12 3,11 4,00 4,56

6 3,22 4,08 4,67 3,22 3,98 4,52 3,22 4,40 5,10

7 3,28 4,42 5,18 3,28 4,22 4,89 3,28 5,49 6,38

8 3,32 4,66 5,56 3,32 4,44 5,23 3,32 6,00 7,01

𝑘
=

1,
5

4 3,20 3,53 3,78 3,20 3,53 3,78 3,20 3,53 3,78

5 3,43 3,98 4,38 3,43 3,91 4,26 3,43 4,19 4,68

6 3,60 4,33 4,85 3,60 4,24 4,71 3,60 4,64 5,25

7 3,72 4,72 5,39 3,72 4,53 5,11 3,72 5,74 6,52

8 3,80 5,01 5,81 3,80 4,78 5,49 3,80 6,29 7,18

𝑘
=

2

4 3,37 3,64 3,86 3,37 3,64 3,86 3,37 3,64 3,86

5 3,65 4,14 4,49 3,65 4,07 4,38 3,65 4,33 4,77

6 3,87 4,53 4,99 3,87 4,43 4,85 3,87 4,82 5,37

7 4,03 4,94 5,55 4,03 4,76 5,29 4,03 5,92 6,63

8 4,15 5,27 6,00 4,15 5,05 5,69 4,15 6,51 7,31

provides the greatest increase in critical pressure. Moreover, it is noticeable that

clamping the edges of the shell leads to higher critical pressure values than simply

supported edges. These results emphasize the importance of considering both the type

of construction profile and boundary conditions in the improvement of cylindrical shell

structures.
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Fig 3.4 — Values of the function 𝑓𝑠 for a) linear, b) parabolic, c) exponential

construction profiles.

Table 3.3 compares critical pressures obtained by the analytical method

(𝑝), described in paragraph 3.3, and the finite element method (𝑝𝑓𝑒𝑚) using the

𝐶𝑜𝑚𝑠𝑜𝑙 package. As an example, several different values of the parameters 𝑢 and

𝑘, characterizing the construction profile, are considered. The clamped shell described

above with a linear function of stiffness distribution is analyzed. For a clamped smooth

shell of thickness ℎ = 0.01, the critical pressure value obtained by the finite element

method is 𝑝𝑚𝑎𝑥 = 384840 Pa.

The good agreement between the analytical and numerical solution results

shows that the analytical approach described above can be used for approximate

parameter selection before the start of design.

3.4 Minimization of the mass of a cylindrical shell stiffened

with rings of varying stiffness

Consider a structure consisting of a cylindrical shell and supporting circular rings of

varying stiffness. We seek parameters at which the structure has the lowest mass and
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Table 3.2 — The value of the function 𝑓𝑐 for a clamped shell stiffened with 𝑛𝑠 rings.

𝑓𝑙𝑖𝑛(𝑖) 𝑓𝑝𝑎𝑟𝑎𝑏(𝑖) 𝑓𝑒𝑥𝑝(𝑖)

𝑛𝑠

𝑢
1 1,5 2 1 1,5 2 1 1,5 2

𝑘
=

1

4 2,42 2,71 2,91 2,42 2,71 2,91 2,42 2,71 2,91

5 2,57 3,04 3,34 2,57 2,99 3,26 2,57 3,20 3,55

6 2,68 3,30 3,69 2,68 3,23 3,58 2,68 3,52 3,96

7 2,75 3,59 4,09 2,75 3,44 3,89 2,75 4,30 4,82

8 2,80 3,80 4,40 2,80 3,63 4,17 2,80 4,70 5,28

𝑘
=

1,
5

4 2,59 2,81 2,97 2,59 2,81 2,97 2,59 2,81 2,97

5 2,79 3,17 3,43 2,79 3,12 3,35 2,79 3,32 3,62

6 2,94 3,46 3,79 2,94 3,39 3,70 2,94 3,67 4,05

7 3,06 3,78 4,21 3,06 3,64 4,03 3,06 4,45 4,90

8 3,15 4,03 4,55 3,15 3,87 4,33 3,15 4,87 5,38

𝑘
=

2

4 2,70 2,89 3,02 2,70 2,89 3,02 2,70 2,89 3,02

5 2,94 3,27 3,49 2,94 3,22 3,42 2,94 3,40 3,67

6 3,13 3,58 3,88 3,13 3,52 3,79 3,13 3,78 4,12

7 3,28 3,92 4,31 3,28 3,79 4,13 3,28 4,55 4,96

8 3,40 4,20 4,67 3,40 4,04 4,46 3,40 5,00 5,45

does not buckle under the action of external pressure 𝑝, where 𝑝 is the critical pressure

of a smooth cylindrical shell of thickness ℎ0.

The mass of the structure 𝑀 , consisting of a cylindrical shell of length 𝑙 and

thickness ℎ, with 𝑛− 1 rings of thickness 𝑎 and width 𝑏𝑖(𝑖 = 1, . . . , 𝑛− 1), is given by

𝑀 = 2𝜋𝜌𝑅3𝑙ℎ+ 2𝜋𝜌𝑅3
𝑛−1∑︁
𝑖=1

𝑎𝑏𝑖 = 2𝜋𝜌𝑅3

(︃
𝑙ℎ+ 𝑎2𝑘

𝑛−1∑︁
𝑖=1

𝑓(𝑖)

)︃
,
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Fig 3.5 — Values of the function 𝑓𝑐 for a) linear, b) parabolic, c) exponential

construction profiles.

Table 3.3 — Critical pressure values obtained by the analytical method 𝑝 and the finite

element method 𝑝𝑓𝑒𝑚.

𝑘 = 1 𝑘 = 2

𝑢 = 1

𝑛𝑠 𝑝,Pa 𝑝𝑓𝑒𝑚,Pa 𝑑* 𝑛𝑠 𝑝,Pa 𝑝𝑓𝑒𝑚,Pa 𝑑*

3 628199 609440 0.918 3 666391 645430 0.9399

4 700574 688990 0.8850 4 760599 747720 0.9145

5 757109 755760 0.8539 5 839855 839140 0.89

𝑢 = 1.5

3 658402 614370 0.9354 3 689856 642590 0.9530

4 754081 717130 0.9114 4 803660 762560 0.9349

5 863682 804290 0.9 5 927847 861660 0.9262

𝑢 = 2

3 681002 616760 0.9481 3 707084 637890 0.9625

4 787950 733720 0.9276 4 830211 770330 0.9471

5 918921 811080 0.9226 5 971589 851530 0.9434

and the mass of the smooth shell 𝑀0:

𝑀0 = 2𝜋𝜌𝑅3𝑙ℎ0,
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where 𝜌 is the material density, 𝑘 = 𝑏/𝑎 is the ratio of the height of the first ring to

its width, and 𝑓(𝑖) is the construction profile function. Then the ratio of the mass of

the stiffened shell to the mass of the smooth shell 𝐹 (𝑎, 𝑑) is written as

𝐹 (𝑎,𝑑) =
𝑀

𝑀0
= 𝑑+ 𝐴𝑎2, where 𝑑 =

ℎ

ℎ0
, 𝐴 =

𝑘𝑃 (𝑛)

ℎ0𝑙
, 𝑃 (𝑛) =

𝑛−1∑︁
𝑖=1

𝑓(𝑖).

(3.32)

For the case of simply supported edges of the cylindrical shell (3.3), we use the

function of the ratio of the critical pressure of the stiffened shell to the critical pressure

of the smooth shell (3.27)

𝑓𝑠 =

⎧⎪⎪⎨⎪⎪⎩
𝑑5/2 4

√︂(︁
1 + 2𝑇𝑠(𝑛)

𝑛 𝜂
)︁3
, 0 ⩽ 𝜂 ⩽ 𝜂*𝑠

𝑑5/2𝑛, 𝜂 > 𝜂*𝑠

, where 𝜂*𝑠 =
𝑛(𝑛4/3 − 1)

2𝑇𝑠(𝑛)
,

which, for convenience of analysis, is rewritten as (3.28)

𝑓𝑠 =

⎧⎪⎪⎨⎪⎪⎩
𝑑5/2𝑛, 0 ⩽ 𝑑 ⩽ 𝑑*

𝑑5/2 4

√︂(︁
1 + 𝐵𝑠𝑎4

𝑑3

)︁3
, 𝑑* < 𝑑 ⩽ 1

,

where

𝐵𝑠 =
2𝜎𝑘3

𝑙ℎ3
0

𝑇𝑠(𝑛), 𝑇𝑠(𝑛) =
𝑛−1∑︁
𝑖=1

𝑓 3(𝑖) sin2
(︂
𝜋𝑖

𝑛

)︂
.

The optimal value of the ratio of the thicknesses of the stiffened and smooth

shells 𝑑* will be the root of the equation 𝑓𝑠 = 1 for 𝜂 = 𝜂*𝑠 :

𝑑𝑠* = 𝑛−2/5,

and the height of the first ring is

𝑎𝑠* =
4

√︃(︀
𝑛4/3 − 1

)︀
· 𝑑3*

𝐵𝑠
.

Substituting the obtained optimal values 𝑎𝑠* and 𝑑𝑠* into (3.32), we obtain the

ratio of the masses of the stiffened shell and smooth shell with equal critical pressure
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values for the case of simply supported edges:

𝐹𝑠(𝑛) = 𝑛−2/5 +
𝐴√
𝐵𝑠

√︀
𝑛2/15 − 𝑛−6/5.

The same method can be used to solve the problem of minimizing the mass of

the structure in the case of clamped edges of the cylindrical shell.

3.5 Analytical and numerical determination of minimum mass

of a structure with a given critical pressure

Table 3.4 presents the values of the mass ratio function 𝐹𝑠 for the previously described

structure with simply supported edges. As the number of rings 𝑛𝑠 increases, the mass of

the structure decreases. The same trend is observed with an increase in the ratio of the

height of the first ring to its width (𝑘 = 𝑏/𝑎). The parameter 𝑢, which represents the

amplitude of the distribution function (𝑢 = 𝑏2/𝑏1), is chosen for each distribution

function such that the optimal ratio of the thickness of the stiffened shell to the

thickness of the smooth shell (𝑑* = ℎ/ℎ0) is the same, thereby making it possible

to assess the influence of the choice of construction profile function on mass reduction.

For all considered values of 𝑛𝑠 and 𝑘, the greatest reduction in the mass of the structure

is observed when using the exponential distribution function.
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Table 3.4 — Values of the function 𝐹𝑠 for the case of stiffenning of the shell with

identical rings (𝑓0), as well as for linear (𝑓𝑙𝑖𝑛), parabolic (𝑓𝑝𝑎𝑟𝑎𝑏), and exponential

(𝑓𝑒𝑥𝑝) construction profiles.

𝑘 = 1 𝑘 = 2

𝑓0(𝑖)

𝑛𝑠 𝑑* 𝑎* 𝑀𝑠/𝑀0 𝑛𝑠 𝑑* 𝑎* 𝑀𝑠/𝑀0

4 0.525 0.031 0.623 4 0.525 0.019 0.595

5 0.488 0.030 0.603 5 0.488 0.018 0.570

7 0.435 0.029 0.580 7 0.435 0.017 0.537

9 0.398 0.028 0.568 9 0.398 0.016 0.518

𝑓𝑙𝑖𝑛(𝑖), 𝑢 = 2

𝑛𝑠 𝑑* 𝑎* 𝑀𝑠/𝑀0 𝑛𝑠 𝑑* 𝑎* 𝑀𝑠/𝑀0

4 0.525 0.020 0.585 4 0.525 0.012 0.568

5 0.488 0.016 0.545 5 0.488 0.010 0.529

7 0.435 0.012 0.496 7 0.435 0.007 0.478

9 0.398 0.010 0.461 9 0.398 0.006 0.443

𝑓𝑝𝑎𝑟𝑎𝑏(𝑖), 𝑢 = 2

𝑛𝑠 𝑑* 𝑎* 𝑀𝑠/𝑀0 𝑛𝑠 𝑑* 𝑎* 𝑀𝑠/𝑀0

4 0.525 0.010 0.556 4 0.525 0.006 0.547

5 0.488 0.007 0.517 5 0.488 0.004 0.508

7 0.435 0.005 0.460 7 0.435 0.002 0.453

9 0.398 0.002 0.420 9 0.398 0.001 0.414

𝑓𝑒𝑥𝑝(𝑖), 𝑢 = 1.2

𝑛𝑠 𝑑* 𝑎* 𝑀𝑠/𝑀0 𝑛𝑠 𝑑* 𝑎* 𝑀𝑠/𝑀0

4 0.525 0.008 0.551 4 0.525 0.005 0.544

5 0.488 0.004 0.503 5 0.488 0.002 0.498

7 0.435 0.002 0.445 7 0.435 0.001 0.442

9 0.398 0.001 0.404 9 0.398 0.001 0.403
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Conclusion

In the context of further research, the results presented in the dissertation

provide a foundation for several promising directions.

For tasks involving vibrations and stability loss of a shell reinforced with frames

of varying stiffness, frames with non-zero eccentricity should be considered. In practice,

the frame is located either outside or inside the shell.

In the task of vibrations of a cylindrical shell conjugated with a shallow cap,

special attention can be given to cases where the materials of the cap and shell differ,

possibly having a non-uniform structure or using different methods of attachment.

Also, cases where the shell’s cap has the shape of an ellipsoid of rotation or other

geometric peculiarities.

A detailed analysis of these scenarios will require the development of more

complex mathematical models and, possibly, new research methods. These directions

open up opportunities for a deeper understanding of the impact of various parameters

on the overall strength and stability of the structure.

Additionally, further research may focus on analyzing the effectiveness of

various methods of reinforcing connections between the cap and the shell, ultimately

contributing to the broader practical application of the obtained results in applied

projects.
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