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Introduction

Relevance of the topic.
One of the fields of study in mathematical control theory is research on the

boundary problems for controlled systems of ordinary differential equations (ODEs).
For the first time, the solution to these problems for linear non-stationary systems
in the class of square-integrable control functions was obtained by Kalman [1].

There are several main research areas on the boundary problems for controlled
ODE systems.

The first area of study is related to finding the necessary and sufficient
conditions for the right part of controlled systems that guarantee the transfer of
a controlled system to a given point in the phase space. Works of Zubov V. I.,
Krasovskiy N. N., Potapov A. P., Leps N. L., Komarov V. A., Walczak S., Ohta Y.,
Maeda H., Dirk A., Jersy S., Nistri P., and others were devoted to these researches.

The second research area includes the study of the final states set to which
transfer of a controlled system from some initial state is possible. The main results of
this area of research were presented in the scientific works of Kalman R., Chernous’ko
F. L., Panasuk A. I., Berdyshev Yu. I. and others.

The third direction of research concerns to development of accurate and
approximate methods of control function construction and the corresponding
trajectories that are connecting given points of the phase space. The most significant
results in the field of study are given in the works of Krasovskiy N. N., Zubov V. I.,
Chernous’ko F. L., Krischenko A. P., Kvitko A. N., and others.

All the aspects mentioned above of the research on controlled systems have
been studied enough for linear stationary, non-stationary, and non-linear systems
of a special type.

Let us note some methods that are beeing applied for solving the control
problems for non-linear systems:

– Pontryagin’s maximum principle [2], etc.;
– differential-geometric approach [3—6], etc.;
– method of inverse dynamics problems [7—9], etc.;
– method of inverse spectral problems [10], etc.;
– approximate methods of solving [11; 12], etc.;
– methods of intelligent control [13], etc.;
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– neural network methods [14], etc.;
– reinforcement learning [15], etc.;
– classical methods of control theory [16—21], etc.
It follows from the above theory for solving boundary value problems for non

linear systems of general form is fundamental, and it is far from being full developed.
Analysis of the publication activity in the referative database of the peer

reviewed scientific literature from Scopus since 2012, before 2022 years on the topic
"nonlinear systems control"that is presented on the graph (see fig. 1) shows growth
of publication quantity.

Figure 1 — Analysis of the publication activity in Scopus since 2012 before 2022
years. Keywords: "control" and "nonlinear system" (online; accessed: 13.12.2022).

Thus, the development of methods for constructing of control functions for
non-linear systems of ordinary differential equations, as also, algorithms and software
development based on the methods, are actual problems of control theory.

Aims and objectives. The main goals of the present work are:
1. development of a method for constructing control functions that guarantee

the transfer of the control object from an initial state to the given final
state at a finite time interval with account for discreteness and limitation
of a controlling action and also sufficient simple for numeric realisation and
stable to computation errors;
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2. development of an algorithm for constructing a control function that
guarantees transfer for a wide class of stationary non-linear controlled
systems from an initial state to the origin of the coordinate system, taking
account of the possibility of the computer system’s operability checking;

3. study of dynamics for controlled non-linear systems of ODEs that are
describing identical and non-identical Josephson junction arrays by the well
known optimal control method.

To achieve the goals, it is necessary to solve a number of tasks:
1. development of the algorithm for constructing the discrete control function

that is restricted by a norm and provides transfer from initial to the given
final state for a sufficiently wide class of non-linear non-stationary systems
of ordinary differential systems;

2. development of the control algorithm with consideration of operability
checking for computer systems based on the control function construction
that is providing the transfer of a wide class of non-linear stationary systems
of ordinary differential systems from an initial state to the origin of the
coordinate system;

3. realisation of the algorithm of discrete control functions constructing for
non-linear problem like a set of functions in the Python programming
language;

4. testing of the constructed algorithms on the concrete examples and them
analysis;

5. solution and numerical modelling of the optimal control problem for arrays
of identical and non-identical Josephson junctions.

Methods of the research. In the work, methods of mathematical control
theory, stability theory, differential equations theory, mathematical and functional
analysis, complexity theory of computations, informational technologies, linear
Algebra and numerical methods for systems of ordinary differential equations are
applied.

The theoretical and practical significance of the work. New
constructing method of the discrete control function is developed that is restricted by
a norm and provides transfer from the initial to the given final state for a sufficiently
wide class of non-linear non-stationary systems of ordinary differential equations.
In addition, constructively sufficient Kalman type condition that guarantees this
transfer is obtained.



7

For the implementation of the discrete control algorithm library of software
modules that may be applied for the development of the mathematical packages that
are intended for control problem solving and in the learning process is developed.

Algorithm for control function construction that guarantees transfer of non
linear stationary system to the origin of the coordinate system from some initial state
for a wide class of non-linear stationary systems of ordinary differential equations
with account of the possibility of computer system operability checking is suggested.
Constructive sufficient conditions that guarantee the existence of the solution for
this problem are found.

Application of the algorithm for computer system checking is possible at
the step of control system development, and also in the process of control signal
form. The suggested checking method may supplement or substitute traditional
engineering-technical approaches. In addition, this algorithm may be used for solving
the practical problem of the integration step choice for the Cauchy problem solution
of ODE system that describes the mathematical model of the control object.

Josephson junctions are perspectives for quantum bit (qubit) construction.
This research area is in sufficiently active progress at the present time. The solution
of the control problem for Josephson junction arrays may be applied to the solving
of qubits constructing technical problems.

The reliability of the obtained results is ensured by correct application
of mathematical control theory, computational mathematics and information
technologies. The basic provisions are confirmed by numerical modeling of the
practical problems.

Approbation of the research results. The results presented in this
dissertation have been presented and discussed at conferences:

1. Litvinov N. Global variables control of a Josephson junctions
array. The 10th International Scientific Conference on Physics
and Control PHYSCON’2021, Fudan University, Shanghai, China,
04.10.2021-08.10.2021

2. Litvinov N. N. Discrete control of a single-link robot-manipulator with
account perturbations //Conference SPISOK-2022, 27–29 april 2022.

3. Litvinov N. N. Optimal control of a single-link robot-manipulator with
account perturbations //Conference SPISOK-2022, 27–29 april 2022.
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4. Litvinov N. N. On the computational complexity of a discrete control
algorithm. LIV International Scientific Conference on Control Processes
and Stability (CPS’23), 4–7 april 2023. [22]

Publications. The results of the dissertation were presented by two articles
in journals included in the list of editions of the Higher Attestation Commission and
indexed in the Scopus database, one paper that has been accepted, and also two
computer programmes that have been registered:

1. Kvitko A. N., Litvinov N. N. Solution of a local boundary problem
for a non-linear non-stationary system in the class of discrete controls. //
Vestnik of Saint Petersburg University. Applied Mathematics. Computer
Sciences. Control Processes, 2022, vol. 18, iss. 1, pp. 18–36. (In Russian).
[23]

2. Litvinov N. Control of global variables for identical and non-identical
Josephson junctions arrays // Cybernetics and Physics, vol. 10, No 3, pp.
138-142, 2021 https://doi.org/10.35470/2226-4116-2021-10-3-138-142. [24]

3. The Certificate on Official Registration of the Computer Program №
2023616889 in Russian Federation. «A library of functions for solving
of discrete control problems» (DiscrControlLib) : № 22023615862: req.
24.03.2023: published 03.04.2023 / N. N. Litvinov, A. N. Kvitko; applicant
Federal State Budgetary Educational Institution of Higher Education "St.
Petersburg State University". (in Russian). [25]

4. The Certificate on Official Registration of the Computer Program №
2023616890 in Russian Federation. «A library of functions for solving of
optimal control LQ-problems» (DiscrControlLib) : № 2023615863 : req.
24.03.2023: published 03.04.2023 / N. N. Litvinov; applicant Federal State
Budgetary Educational Institution of Higher Education "St. Petersburg
State University". (in Russian). [26]

5. Kvitko A. N., Litvinov N. N. Solution of the Local-Boundary-Value
Problem of Control for a Nonlinear Stationary System Taking into Account
Computer System Verification. Vestnik of Saint-Petersburg University.
Mathematics. Mechanics. Astronomy, 2024, Vol. 57, No 2. pp. 202 – 212.
Accepted. [27]

Personal contribution of the author to publications. In the
collaborative publications, problem statements, suggestions of the solution concept,
and discussions of the results belong to scientific advisor Kvitko A. N.
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Overview of the thesis. In the introduction, the actuality of the
dissertation is substantiated, a brief literature review is provided, and the main
targets, problems, methods, and research results are presented. The scientific novelty,
theoretical and practical significance of the work are discussed.

The first chapter of the thesis is devoted to the solution of the discrete control
problem for a non-linear, non-stationary system of ordinary differential equations.
Formulation and proof of the theorem that is substantiating the method of the
problem solving are provided. In addition, estimation of the reachability set for the
considered problem is provided.

In the second chapter, computational complexity analyses of the discrete
control algorithm, numerical modeling for various options of control for robot
manipulator with the help of this algorithm is carried out. Also, a comparison of
the constructed algorithm with an optimal control algorithm is done.

In the third chapter of the present work, the algorithm for the control
function constructing that guarantees the transfer of a non-linear stationary system
to the origin of the coordinate system from some initial state for a wide class of
non-linear stationary systems of ordinary differential equations with account of the
possibility of the computer system operability checking is provided. Constructive,
sufficient conditions that guarantee the existence of the solution for the problem are
found. Recomendations for the algorithm construction are given, and estimation
of the theoretical complexity is provided. The efficiency of the algorithm is
demonstrated by numerical modeling of the interorbital flying problem.

The fourth chapter is devoted to the solution of the optimal control problem
for ODE systems that give a description of the identical and nonidentical Josephson
junction arrays, numerical simulation, and analysis of the dynamics with account
of control for these models.

In the conclusion, a brief discussion of the obtained results and possible
future research directions are provided.

In the appendices, programme code of the software package for solving the
robot-manipulator discrete and optimal control problems are presented.

Structure and contents of the work. The thesis consists of an
introduction, 4 chapters, conclusion and 2 appendices. The total volume of the
dissertation is 103 pages, including 27 figures. The reference list contains 82 titles.
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Main scientific results.
1. The algorithm for constructing the discrete control functions for a

sufficiently wide class of non-linear, non-stationary systems is developed
[23].

2. The constructively sufficient condition that gives the possibility of transfer
from an initial state to the given final state for a wide class of non-linear
non-stationary systems are obtained [23].

3. The programme module for solving discrete control problems in the Python
programming language is developed [25].

4. The algorithm of the computer system operability checking by solving of
boundary value problem for non-linear stationary systems is developed
and constructive sufficient condition that guarantees the existence of this
solution is found [27].

5. Dynamics of equation systems that are describing arrays of identical and
non-identical Josephson junctions with an account of control action have
been studied by the optimal control method [24].

Thesis statements are to be defended.
1. Algorithm of piecewise-constant control functions, constructing that

provides the transfer of the ODE system from an initial state to the
given final state for a wide class of non-linear, non-stationary systems at a
finite time interval.

2. Algorithm of boundary problem solution for non-linear stationary system
with account of the computer systems operability checking.

3. Finding of constructively sufficient conditions that guarantee the transfer
of non-linear stationary system to the origin of the coordinate system from
some neighbourhood of an initial state in the discrete and continuous-time
controls classes.

4. A package of application programmes for solving the discrete control
problems in the Python programming language.

5. Solution of the optimal control problem for arrays of identical and non
identical Josephson junctions.
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Chapter 1. Solution of a local boundary problem for a non-linear
non-stationary system in the class of discrete controls

1.1 Brief Literature Review

The use of digital computing technology in the formation of a control effect
dictates the need to solve the problems of managing ODE systems by constructing
piecewise constant or discrete control functions. This circumstance justifies the
relevance of the study of boundary value problems for controlled ODE systems
in the class of these controls.

The main approaches to solving the boundary problems in the discrete control
class for a finite period of time include issues related to finding the necessary
and sufficient conditions that guarantee the existence of the solutions [28—34],
construction or evaluation of the reachability set, and also development of accurate
and approximate methods for construction of control functions [30; 31; 34—38].

Stabilisation problems for linear and non-linear ODE systems in the discrete
control class represent considerable interest. These problems may be considered as
boundary problems for an infinite period of time [37—42].

Local and global boundary problems in the discrete control class sufficient
for linear, quasi-linear, and non-linear systems of a special kind are studied at the
present time [28—53].

Solutions of the piecewise constant stabilisation and control with incomplete
information for an infinite period of time are presented in the works [17; 37].

In the monograph [52] the synthesis method of discrete control algorithms
for non-linear nonstationary systems based on the discretization of the continuous
algorithms (that are considered in this work) is considered.

In the publication [53] necessary and sufficient conditions of local optimality
in the class of the piecewise-constant controls are suggested.

The construction of algorithms for solving control problems of nonlinear
systems of ordinary differential equations using piecewise Lyapunov functions of
various types is presented in the works [54; 55] and others.

In the [54] method of solution of the stability problem for nonlinear systems,
using piecewise-polynomial Lyapunov functions is suggested.
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In the article [55] the stabilisation algorithm for nonlinear systems using
piecewise-polynomial Lyapunov functions is considered.

The results of this chapter are published in the paper [23] and included in
the work [56].

1.2 Problem staitment and main theorem

Let us consider the controlled system of the ordinary differential equations

�̇� = 𝑓(𝑥,𝑢,𝑡), (1.1)

where 𝑥 ∈ 𝑅𝑛, 𝑥 = (𝑥1, . . . , 𝑥𝑛)
𝑇 , 𝑢 ∈ 𝑅𝑟, 𝑢 = (𝑢1, . . . , 𝑢𝑟)

𝑇 , 𝑟 ⩽ 𝑛, 𝑡 ∈ [0,1],
𝑓 = (𝑓1, . . . , 𝑓𝑛)

𝑇 , 𝑓 ∈ 𝐶(𝑛)(𝑅𝑛 × 𝑅𝑟 × 𝑅1;𝑅𝑛);

‖𝑢‖ ⩽ 𝑁,𝑁 > 0, 𝑁 = const. (1.2)

In the next text, we will assume a value ‖𝑥‖ =
√︀∑︀

𝑥2𝑖 as a norm of the vector
𝑥 and a matrix norm is a norm that is corresponding to the norm of the vector 𝑥.

The right part of the system (1.1) sutisfies the conditions

𝑓(0,0,𝑡) ≡ 0, (1.3)

𝐴0 =
𝜕𝑓
𝜕𝑥(0,0,1), 𝐵0 =

𝜕𝑓
𝜕𝑢(0,0,1), 𝑆0 = (𝐵0,𝐴0𝐵0, . . . ,𝐴

𝑛−1
0 𝐵0),

rank 𝑆0 = 𝑛. (1.4)

Let us consider following matrices:

𝑃 = α𝑒−ατ𝐴0 + α𝑒
−2ατ𝐴1 + . . .+ α𝑒−(𝑛−1)ατ𝐴𝑛−2,

𝑄 = α𝑒−ατ𝐵0 + α𝑒
−2ατ𝐵1 + . . .+ α𝑒−(𝑛−1)ατ𝐵𝑛−2,

(1.5)

where
𝐴𝑖 =

(−1)𝑖

𝑖!
𝜕𝑖+1𝑓
𝜕𝑥𝜕𝑡𝑖 (0,0,1), 𝑖 = 1, . . . , 𝑛−1, 𝐵𝑖 =

(−1)𝑖

𝑖!
𝜕𝑖+1𝑓
𝜕𝑢𝜕𝑡𝑖 (0,0,1), 𝑖 = 1, . . . , 𝑛−1.

Let’s construct a matrix: 𝑆 =
{︀
𝐿1(τ), . . . , 𝐿𝑛(τ)

}︀
, здесь 𝐿1(τ) =

𝑄(τ), 𝐿𝑖(τ) = 𝑃 (τ)𝐿𝑖−1(τ) − 𝑑𝐿𝑖−1

𝑑τ , 𝑖 = 2, . . . ,𝑛.
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Let

rank 𝑆(τ) = 𝑛, τ ∈ [0,∞), α > 0. (1.6)

Let us consider splitting the interval [0, 1] by the infinite number of points:

0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑘 < 1,

where 𝑡𝑘 → ∞ when 𝑘 → ∞.
Definition 1.1. Control function 𝑢(𝑡) is discrete if 𝑢(𝑡) = 𝑢𝑘, 𝑢𝑘 ∈ 𝑅𝑟,

∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), 𝑘 = 0,1, . . .

Problem 1.1. Find a discrete control 𝑢(𝑡) that is defined on an infinite
splitting of the interval [0, 1] and an absolutely continuous function 𝑥(𝑡) that is
almost everywhere satisfying to the system (1.1) and conditions

𝑥(0) = 𝑥0, 𝑥(1) = 0, 𝑥0 = (𝑥10, . . . , 𝑥
𝑛
0)

𝑇 . (1.7)

Problem 1.2. Find a discrete control 𝑢(𝑡) that is defined on a finite splitting
0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑚 < 1 of the interval [0,1], 𝑡 ∈ [0,𝑡𝑚] and an absolutely
continuous function 𝑥(𝑡) that is almost everywhere satisfying (1.1) and conditions

𝑥(0) = 𝑥0, ‖ 𝑥(𝑡𝑚) ‖⩽ ε1, |𝑡𝑚 − 1| < ε2, (1.8)

where 𝑡𝑚 – unknown value of the time, ε1 > 0, ε2 > 0 – fixed numbers.
Theorem 1.1. Let us suppose that for the right part of the equations system

(1.1) conditions (1.3), (1.4), and (1.6) are satisfied, there exists such ε > 0 when
for all 𝑥0 such that ‖ 𝑥0 ‖< ε, there exist such solutions of the problems 1.1 and
1.2 which may be found with the help of the stabilisation problem solving for linear
non-stationary system of ODEs with exponential coefficients followed by a solution
of the Cauchy problem for an auxiliary system.
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1.3 Auxiliary system construction

Let us consider a problem.
Find an absolutely continuous function 𝑥(𝑡) and a discrete control function

�̄�(𝑡), that are almost everywhere satisfying to the system (1.1) and conditions

𝑥(0) = 𝑥0, 𝑥(𝑡) → 0 as 𝑡 → 1. (1.9)

We call this pair of functions 𝑥(𝑡), �̄�(𝑡) the solution of the problem (1.1), (1.9).
Obviously, if we have the solution of the problem (1.1), (1.9), we can obtain

the solution of the Problem 1.1 with the help of the passage to the limit as 𝑡 → 1.
For solving the problem (1.1), (1.9), we perform a transformation of the

independent variable 𝑡 by a formula

𝑡(τ) = 1− 𝑒−ατ, τ ∈ [0,∞), (1.10)

where α > 0 is some constant subjected to definition.
Then the original system (1.1) and condition (1.9) will take the form

𝑑𝑐

𝑑τ
= α𝑒−ατ𝑓(𝑐, 𝑑, 𝑡(τ)), (1.11)

𝑐(0) = 𝑥0, 𝑐(τ) → 0 при τ→ ∞,

𝑐(τ) = 𝑥(𝑡(τ)), 𝑐 = (𝑐1 . . . 𝑐𝑛)
𝑇 , 𝑑(τ) = 𝑢(𝑡(τ)), 𝑑 = (𝑑1 . . . 𝑑𝑟)

𝑇 . (1.12)

Let us consider a discrete control function in the form

𝑑(τ) = 𝑑(𝑘ℎ), τ ∈ [𝑘ℎ, (𝑘 + 1)ℎ), ℎ > 0, 𝑘 = 0,1, . . .

Problem 1.3. Find a discrete control 𝑑(τ) and an absolutely continuous
function 𝑐(τ) that are almost everywhere satisfying the system (1.11) and the
following conditions:



15

𝑐(0) = 𝑥0, 𝑐(τ) → 0 при τ→ ∞. (1.13)

Pair functions 𝑐(τ), 𝑑(τ), we will call the solution of the problem (1.11), (1.13).
Let us introduce the notations: �̃� = θ𝑖𝑐, 𝑑 = θ𝑖𝑑, 𝑡(τ) = 1−θ𝑖𝑒−ατ, θ𝑖 ∈ [0,1].
Let 𝑘1, . . . , 𝑘𝑛, 𝑚1, . . . ,𝑚𝑟 – arbitrary natural numbers then

|𝑘| =
∑︀𝑛

𝑗=1 𝑘𝑗, |𝑚| =
∑︀𝑟

𝑗=1𝑚𝑗, 𝑘! = 𝑘1! . . . 𝑘𝑛!, 𝑚! = 𝑚1! . . .𝑚𝑟!.

We will imagine the right part of the system (1.11) in the neighbourhood of
the point (0,0,1) in Taylor series form:

𝑑𝑐𝑖
𝑑τ

= α𝑒−ατ
𝑛∑︁

𝑗=1

𝜕𝑓𝑖
𝜕𝑥𝑗

(0,0,1)𝑐𝑗 + α𝑒−ατ
𝑟∑︁

𝑗=1

𝜕𝑓𝑖
𝜕𝑢𝑗

(0,0,1)𝑑𝑗 +

+
1

2
α𝑒−ατ

(︂ 𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

(0,0,1)𝑐𝑗𝑐𝑘 +
𝑟∑︁

𝑗=1

𝑟∑︁
𝑘=1

𝜕2𝑓𝑖
𝜕𝑢𝑗𝜕𝑢𝑘

(0,0,1)𝑑𝑗𝑑𝑘 +

+ 2
𝑛∑︁

𝑗=1

𝑟∑︁
𝑘=1

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑢𝑘

(0,0,1)𝑐𝑗𝑑𝑘 − 2α𝑒−ατ
𝑛∑︁

𝑗=1

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑡

(0,0,1)𝑐𝑗 −

− 2α𝑒−ατ
𝑟∑︁

𝑗=1

𝜕2𝑓𝑖
𝜕𝑢𝑗𝜕𝑡

(0,0,1)𝑑𝑗

)︂
+ . . .+

+ α𝑒−ατ
∑︁

|𝑘|+|𝑚|+𝑙=𝑛−1,

|𝑘|+|𝑚|⩾1

1

𝑘!𝑚!𝑙!

𝜕𝑓
|𝑘|+|𝑚|+𝑙
𝑖

𝜕𝑥𝑘11 . . . 𝜕𝑥𝑘𝑛𝑛 𝜕𝑢𝑚1
1 . . . 𝜕𝑢𝑚𝑟

𝑟 𝜕𝑡𝑙
(0,0,1) ×

× 𝑐𝑘11 . . . 𝑐𝑘𝑛𝑛 𝑑𝑚1
1 . . . 𝑑𝑚𝑟

𝑟 (−1)𝑙𝑒−𝑙ατ +

+ α𝑒−ατ ×
∑︁

|𝑘|+|𝑚|+𝑙=𝑛,

|𝑘|+|𝑚|⩾1

1

𝑘!𝑚!𝑙!

𝜕𝑓
|𝑘|+|𝑚|+𝑙
𝑖

𝜕𝑥𝑘11 . . . 𝜕𝑥𝑘𝑛𝑛 𝜕𝑢𝑚1
1 . . . 𝜕𝑢𝑚𝑟

𝑟 𝜕𝑡𝑙
(𝑐,𝑑, 𝑡(τ)) ×

× 𝑐𝑘11 . . . 𝑐𝑘𝑛𝑛 𝑑𝑚1
1 . . . 𝑑𝑚𝑟

𝑟 (−1)𝑙𝑒−𝑙ατ, 𝑖 = 1, . . . , 𝑛.

(1.14)

All the arguments given below we will conduct with account restrictions on
the function 𝑐(τ):

‖𝑐(τ)‖ < 𝐶1, 𝐶1 > 0, τ ∈ [0,∞). (1.15)
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Combining in the right part of the system (1.14) all summands that are linear
by vector components 𝑐 and 𝑑 with coefficients 𝑒−𝑖ατ, 𝑖 = 1, . . . 𝑛 system (1.14) may
be written in the following form:

𝑑𝑐

𝑑τ
= 𝑃 · 𝑐+𝑄 · 𝑑+𝑅1(𝑐, 𝑑,τ) +𝑅2(𝑐, 𝑑, τ) +𝑅3(𝑐,𝑑, τ),

𝑅1 = (𝑅1
1 . . . 𝑅

𝑛
1)

𝑇 ; 𝑅2 = (𝑅1
2 . . . 𝑅

𝑛
2)

𝑇 , 𝑅3 = (𝑅1
3 . . . 𝑅

𝑛
3)

𝑇 ,
(1.16)

where 𝑃 and 𝑄 are defined by formulae (1.5).
𝑅1

𝑖 are summands of the right part of the system (1.16) that are linearly
dependent from components of the vector 𝑐 with coefficients 𝑒−𝑛ατ, 𝑅2

𝑖 are summands
that are linearly dependent from components of the vector 𝑑 with coefficients 𝑒−𝑛ατ.
In 𝑅3

𝑖 all summands that are nonlinear by components of the vectors 𝑐 and 𝑑 are
included.

From constructing of the functions 𝑅1, 𝑅2, 𝑅3 with account (1.2), (1.15), the
next estimations are following:

‖𝑅1(𝑐,𝑑, τ)‖ ⩽ 𝑒−𝑛ατ𝐿1‖𝑐‖, 𝐿1 > 0, (1.17)

‖𝑅2(𝑐,𝑑, τ)‖ ⩽ 𝑒−𝑛ατ𝐿2‖𝑑‖, 𝐿2 > 0, (1.18)

‖𝑅3(𝑐,𝑑, τ)‖ ⩽ 𝑒−ατ𝐿3(‖𝑐‖2 + ‖𝑑‖2), 𝐿3 > 0. (1.19)

Let us introduce an auxiliary control function υ(τ) that is linked with 𝑑(τ)

by the next differential equation:

𝑑𝑑(τ)

𝑑τ
= υ(τ), υ = (υ1, . . . ,υ𝑟)

𝑇 . (1.20)

Let

𝑑(0) = 0. (1.21)

Then system (1.16), (1.20), and initial conditions (1.13), (1.21) may be written as

𝑑𝑐

𝑑τ
= 𝑃 · 𝑐+ �̄� · υ+ �̄�1(𝑐, 𝑑,τ) + �̄�2(𝑐, 𝑑, τ) + �̄�3(𝑐,𝑑, τ), (1.22)

𝑃 =

(︃
𝑃 𝑄

𝑂1 𝑂2

)︃
𝑛+𝑟×𝑛+𝑟

, �̄� =

(︃
𝑂3

𝐸

)︃
𝑛+𝑟×𝑟

, (1.23)
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where 𝑐 = (𝑐, 𝑑)𝑇𝑛+𝑟×1, �̄�1 = (𝑅1
1, . . . , 𝑅

𝑛
1 , 0, . . . , 0)

𝑇
𝑛+𝑟×1, �̄�2 = (𝑅1

2, . . . , 𝑅
𝑛
2 , 0, . . . , 0)

𝑇
𝑛+𝑟×1,

�̄�3 = (𝑅1
3, . . . , 𝑅

𝑛
3 , 0, . . . , 0)

𝑇
𝑛+𝑟×1, 𝑂1, 𝑂2, 𝑂3 – matrices with corresponding

dimentions that consist of zero elements, 𝐸 is the unity matrix,

𝑐(0) = 𝑐0, 𝑐0 = (𝑐(0), 0, . . . , 0)𝑇𝑛+𝑟×1. (1.24)

1.4 Solution of the stabilisation problem for the auxiliary system

Let us consider the linear part of the system (1.22):

𝑑𝑐

𝑑τ
= 𝑃 · 𝑐+ �̄� · υ. (1.25)

Lemma 1.1 Let conditions (1.4), (1.6) for system of differential equations
(1.1) be satisfied, then there exists an auxiliary control function υ(τ)

υ(τ) = 𝑀(τ)𝑐, (1.26)

‖𝑀(τ)‖ = 𝑂(𝑒𝑛ατ) as τ→ ∞, (1.27)

that provides exponential decay of the fundamental matrix of system (1.25) closed
by function (1.26).

Here is a brief description of the main steps of the problem solution.
After the solution of the stabilisation problem for system (1.25), we find the

solution of the Cauchy ptoblem for system (1.22) closed by found auxiliary control
(1.26) with initial conditions (1.24). As a result, we obtain functions 𝑐(τ), 𝑑(τ),
υ(τ) with τ ∈ [0,∞). Then, we construct the function

𝑑(τ) = 𝑑(𝑘ℎ), τ ∈ [𝑘ℎ, (𝑘 + 1)ℎ), 𝑘 = 0,1, . . . , (1.28)

and solve the Cauchy problem for system (1.22) with initial conditions (1.24) after
substituting of the function 𝑑(τ) into the right-hand sides of it’s first 𝑛 equations.
As a result, we obtain a function 𝑐(τ). In addition, the first component of the 𝑐(τ)

gives functions 𝑐(τ). If to do transition to original independent variables by formulae
(1.10), (1.12), then from the construction of the system (1.22) we will have functions
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𝑥(𝑡), �̄�(𝑡), that are solution to Problem 1.3. Passing to limit in functions 𝑥(𝑡), �̄�(𝑡)
as 𝑡 → 1, we will obtain a solution for Problem 1.1. In this case, the time switching
points 𝑡𝑘 for discrete control are defined by a formula

𝑡𝑘 = 1− 𝑒−α𝑘ℎ, 𝑘 = 0,1, . . . . (1.29)

If to choose values of 𝑡𝑚 in the solution of Problem 1.1 so that ‖ 𝑥(𝑡𝑚) ‖⩽ ε1,
1 − 𝑡𝑚 < ε2, then narrowing of functions 𝑥(𝑡), �̄�(𝑡) on the interval [0,𝑡𝑚] give
solution of Problem 1.2.

P r o o f o f t h e l e m m a. Let us denote 𝐿𝑗
1, 𝑗 = 1, . . . , 𝑟 as 𝑗-th column of

the matrix �̄�. Let us consider the matrix

𝑆1 =
{︀
𝐿1
1,𝐿

1
2, . . . ,𝐿

1
𝑘1
,𝐿2

1,𝐿
2
2, . . . ,𝐿

2
𝑘2
, . . . , 𝐿𝑟

1,𝐿
𝑟
2, . . . ,𝐿

𝑟
𝑘𝑟

}︀
,

𝐿𝑗
𝑖 = 𝑃𝐿𝑗−1

𝑖 − 𝑑𝐿𝑗−1
𝑖

𝑑τ
, 𝑗 = 1, . . . , 𝑟, 𝑖 = 2, . . . , 𝑘𝑗,

(1.30)

where 𝑘𝑗, 𝑗 = 1, . . . , 𝑟, – the maximum columns number of the matrix 𝐿𝑗
1, . . . ,𝐿

𝑗
𝑘𝑗

,
𝑗 = 1, . . . ,𝑟, such that vectors 𝐿1

1,𝐿
1
2, . . . ,𝐿

1
𝑘1
,𝐿2

1,𝐿
2
2, . . . ,𝐿

2
𝑘2
, . . . , 𝐿𝑟

1,𝐿
𝑟
2, . . . ,𝐿

𝑟
𝑘𝑟

are
linear independent.

Remark 1.1. It is easy to see that matrix 𝑆1 up to the exact column
permutation has the next structure:

𝑆1 =

(︃
𝑂𝑛×𝑟 𝐿1 . . . 𝐿𝑛

𝐸𝑟×𝑟 𝑂𝑟×𝑟 . . . 𝑂𝑟×𝑟

)︃
,

where 𝑂𝑟×𝑟 is null-matrix of the 𝑟 × 𝑟 size,

𝐿1 = 𝑄, 𝐿𝑖 = 𝑃𝐿𝑖 − 𝑑𝐿𝑖

𝑑τ , 𝑖 = 2, . . . , 𝑛.

Let �̄�𝑗
1, 𝑗 = 1, . . . , 𝑟 is 𝑗-th column of the matrix α𝑒−ατ𝐵0. Consider the matrix

𝑆2 =
{︀
�̄�1
1,�̄�

1
2, . . . ,�̄�

1
𝑘1
,�̄�2

1, �̄�
2
2, . . . , �̄�

2
𝑘2
, . . . ,�̄�𝑟

1,�̄�
𝑟
2, . . . ,�̄�

𝑟
𝑘𝑟

}︀
,

�̄�𝑗
𝑖 = α𝑒

−ατ𝐴0�̄�
𝑗−1
𝑖 − 𝑑�̄�𝑗−1

𝑖

𝑑τ , 𝑗 = 1, . . . , 𝑟, 𝑖 = 2, . . . , 𝑘𝑗.

From one point of view, with the help of contrudiction reasoning in account (1.4),
we can verify the validity of the condition

rank 𝑆2 = 𝑛, τ ∈ [0,∞). (1.31)
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From another point of view

𝐴0 + 𝑒−ατ𝐴1 + . . .+ 𝑒−(𝑛−2)ατ𝐴𝑛−2 → 𝐴0, при τ→ ∞,

𝐵0 + 𝑒−ατ𝐵1 + . . .+ 𝑒−(𝑛−2)ατ𝐵𝑛−2 → 𝐵0, при τ→ ∞.
(1.32)

From (1.31), (1.32) estimation is following

‖𝑆−1
2 ‖ = 𝑂(𝑒𝑛ατ), τ→ ∞. (1.33)

From condition (1.6) and the structure of the matrix 𝑆1 (see Remark 1.1),
a condition is the following:

rank 𝑆1 = 𝑛+ 𝑟, τ ∈ [0,∞). (1.34)

From the construction of the columns matrix 𝑆2 it follows that its elements are
decreasing not faster then 𝑒−𝑛ατ. From here and structure of matrices 𝑃 и �̄� follows
that elements of the matrix 𝑆−1

2 will be increasing not faster than 𝑒𝑛ατ (see (1.33)).
As a result, we have an estimation:

‖𝑆−1
1 ‖ = 𝑂(𝑒𝑛ατ), τ→ ∞. (1.35)

Using (1.34), we provide replacing of the variables

𝑐 = 𝑆1(τ)𝑦. (1.36)

As a result, the system (1.25) takes a form

𝑑𝑦

𝑑τ
= 𝑆−1

1

(︂
𝑃𝑆1 −

𝑑𝑆1

𝑑τ

)︂
𝑦 + 𝑆−1

1 �̄�υ. (1.37)

In accordance with the [57] matrix of the right-hand side of the system (1.37),
we can write as follows:

𝑆−1
1

(︂
𝑃𝑆1 −

𝑑𝑆1

𝑑τ

)︂
= {𝑒2, . . . , 𝑒𝑘1,φ𝑘1(τ), . . . , 𝑒𝑘1+...+𝑘𝑟−1+2, . . . , 𝑒𝑘1+...+𝑘𝑟 ,φ𝑘𝑟(τ)}.

(1.38)

In (1.38) 𝑒𝑖 = (0, . . . ,1, . . . ,0)𝑇𝑛+𝑟×1 is a mstrix column in which 1 is at the 𝑖-th place.
Components of the vector φ𝑘𝑗(τ) have a form:
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φ𝑘𝑗(τ) = (−φ1
𝑘1
(τ), . . . ,−φ𝑘1

𝑘1
(τ), . . . ,−φ1

𝑘𝑗
(τ), . . . ,−φ𝑘𝑗

𝑘𝑗
(τ), 0, . . . , 0)𝑇𝑛+𝑟×1,

where −φ𝑖
𝑘𝑗
(τ) are coefficients of the decomposition of the vector 𝐿𝑗

𝑘𝑗+1 by vectors
𝐿1
𝑖 ,

𝑖 = 1, . . . , 𝑘1; 𝐿2
𝑖 , 𝑖 = 1, . . . , 𝑘2; 𝐿𝑗

𝑖 , 𝑖 = 1, . . . , 𝑘𝑗, 𝑗 = 1, . . . , 𝑟,
∑︀𝑟

𝑗=1 𝑘𝑗 =

𝑛 + 𝑟.

𝐿𝑗
𝑘𝑗+1 = −

𝑘1∑︁
𝑖=1

φ𝑖
𝑘1
(τ)𝐿1

𝑖 − . . .−
𝑘𝑗∑︁
𝑖=1

φ𝑖
𝑘𝑗
(τ)𝐿𝑗

𝑖 ,

𝑆−1
1 𝑄 = {𝑒1, . . . ,𝑒𝑘𝑗+1, . . . , 𝑒γ+1}, γ =

𝑟−1∑︁
𝑖=1

𝑘𝑖.

(1.39)

Consider the stabilisation problem of the system

𝑑𝑦𝑘𝑗
𝑑τ

= {𝑒𝑘𝑗2 , . . . ,𝑒
𝑘𝑗
2 ,φ̄𝑘𝑗}𝑦𝑘𝑗 + 𝑒

𝑘𝑗
1 𝑑𝑗, 𝑗 = 1, . . . ,𝑟, (1.40)

where 𝑦𝑘𝑗 = (𝑦1𝑘𝑗 , . . . ,𝑦
𝑘𝑗
𝑘𝑗
)𝑇𝑘𝑗×1, 𝑒

𝑘𝑗
1 = (0, . . . ,1, . . . ,0)𝑇𝑘𝑗×1, 1 stands in the 𝑖-th place,

φ̄𝑖
𝑘𝑗

= (−φ1
𝑘𝑗
, . . . , − φ

𝑘𝑗
𝑘𝑗
)𝑇𝑘𝑖×1.

Let 𝑦
𝑘𝑗
𝑘𝑗

= ψ. Equalities

𝑦
𝑘𝑗
𝑘𝑗

= ψ, 𝑦
𝑘𝑗−1
𝑘𝑗

= ψ(1) +φ
𝑘𝑗
𝑘𝑗
ψ,

𝑦
𝑘𝑗−2
𝑘𝑗

= ψ(2) +φ
𝑘𝑗
𝑘𝑗
ψ(1) +

(︂
𝑑φ

𝑘𝑗
𝑘𝑗

𝑑τ
+φ

𝑘𝑗−1
𝑘𝑗

)︂
ψ,

𝑦1𝑘𝑗 = ψ
(𝑘𝑗−1) + 𝑟𝑘𝑗−2(τ)ψ

(𝑘𝑗−2) + . . .+ 𝑟1(τ)ψ
(1) + 𝑟0(τ)ψ.

(1.41)

follow from the matrix structure of the right-hand side of the system (1.40). After
differentiating the last equality (1.41) and substituting the last expression in the
first equation of the system (1.40), we will have following system

ψ(𝑘𝑗) + ε𝑘𝑗−1(τ)ψ
(𝑘𝑗−1) + . . .+ ε0(τ)ψ = υ𝑗, 𝑗 = 1, . . . ,𝑟. (1.42)

Remark 1.2. Limitation of the functions φ𝑘𝑗
𝑘𝑗
, . . . ,φ2

𝑘𝑗
,φ1

𝑘𝑗
, their derivatives

and functions 𝑟𝑘𝑗−2(τ), . . . , 𝑟1(τ), 𝑟0(τ) arise from the construction of matrices 𝑃

and �̄�, and also from formulae (1.39).
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Let

υ𝑗 =

𝑘𝑗∑︁
𝑖=1

(ε𝑘𝑗−𝑖(τ)− γ𝑘𝑗−𝑖)ψ
(𝑘𝑗−𝑖), 𝑗 = 1, . . . ,𝑟. (1.43)

Coefficients γ𝑘𝑗−𝑖 are chosen such that the roots of the characteristic equation

λ𝑘𝑖 + γ𝑘𝑖−1λ
𝑘𝑖−1 + . . .+ γ0 = 0, 𝑖 = 1, . . . , 𝑟

satisfy the conditions

λ𝑖𝑘𝑖 ̸= λ
𝑗
𝑘𝑖
, 𝑖 ̸= 𝑗; λ𝑗𝑘𝑖 < −(2𝑛+ 1)α− 1, 𝑗 = 1, . . . , 𝑘𝑖, 𝑖 = 1, . . . ,𝑟. (1.44)

Returning to the original variables, we obtain

υ𝑗 = δ𝑘𝑗𝑇
−1
𝑘𝑗

𝑆−1
1𝑘𝑗

𝑐, 𝑗 = 1, . . . , 𝑟, (1.45)

where δ𝑘𝑗 = (ε𝑘𝑗−1(τ)−γ𝑘𝑗−1, . . . , ε0(τ)−γ0), 𝑇𝑘𝑗 is a matrix from equalities (1.41)
such that 𝑦𝑘𝑗 = 𝑇𝑘𝑗ψ̄, ψ̄ = (ψ𝑘𝑗−1, . . . ,ψ)𝑇 , 𝑆−1

1𝑘𝑗
is a matrix that consists of the

corresponding 𝑘𝑗 strings of 𝑆−1
1 .

The resulting auxiliary control function may be written in the form (1.26),
where 𝑀(τ) = δ𝑘𝑇

−1
𝑘 𝑆−1

1𝑘 = (δ𝑘1𝑇
−1
𝑘1

𝑆−1
1𝑘1

, . . . , δ𝑘𝑟𝑇
−1
𝑘𝑟

𝑆−1
1𝑘𝑟

)𝑇 .
Let Ψ(τ) is a fundamental matrix of the system (1.42) closed by auxiliary

control (1.43). From (1.44), it follows that Ψ(τ) is the fundamental matrix of
the exponential stable linear system of the differential equations with constant
coefficients. It follows that

‖Ψ(τ)Ψ(𝑡)−1‖ ⩽ �̄�𝑒−λ(τ−𝑡), �̄� > 0, λ > 0. (1.46)

Consider the system (1.25) closed by the auxiliary control function (1.45):

𝑑𝑐

𝑑τ
= 𝐷(τ)𝑐, 𝐷(τ) = 𝑃 (τ) + �̄�(τ)𝑀(τ). (1.47)

Let Φ(τ) (Φ(0) = 𝐸) be a fundamental matrix of the system (1.47). 𝐸 is the
identity matrix. Let us introduce a block diagonal matrix 𝑇 (τ) with matrices 𝑇𝑘𝑗 ,
𝑗 = 1, . . . ,𝑟, on its diagonal. From formulae (1.36) and (1.41), we obtain equality
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Φ(τ) = 𝑆1(τ)𝑇 (τ)Ψ(τ)Ψ−1(0)𝑇−1(0)𝑆−1
1 (0). (1.48)

Further, estimations

‖Φ(τ)‖ ⩽ �̄�𝑒−λτ, λ > 0, �̄� > 0,

‖Φ(τ)Φ−1(𝑡)‖ ⩽ �̄�1𝑒
−λ(τ−𝑡)𝑒(𝑛−1)α𝑡, τ ⩾ 𝑡, �̄�1 > 0,

‖𝑀(τ)‖ = 𝑂(𝑒𝑛ατ), τ→ ∞.

(1.49)

follow from (1.35), (1.36), (1.41), (1.46), (1.48) and Remark 1.2.
The lemma is proved.

1.5 Continuation of the theorem proof

Consider the system (1.22) closed by found auxiliary control (1.26):

𝑑𝑐

𝑑τ
= 𝐷(τ)𝑐+ �̄�1(𝑐, 𝑑, τ) + �̄�2(𝑐, 𝑑, τ) + �̄�3(𝑐, 𝑑, τ). (1.50)

Let us to make the following replace of the variables:

𝑐 = 𝑧(τ)𝑒−𝑛ατ,𝑧 = (𝑧1, 𝑧2)
𝑇 , 𝑐(0) = 𝑧(0);

𝑐 = 𝑧1(τ)𝑒
−𝑛ατ, 𝑑 = 𝑧2(τ)𝑒

−𝑛ατ.
(1.51)

As a result, the system will have a form

𝑑𝑧

𝑑τ
= 𝐶(τ)𝑧 + 𝑒𝑛ατ(�̄�1(𝑧1𝑒

−𝑛ατ, 𝑧2𝑒
−𝑛ατ,τ)+

�̄�2(𝑧1𝑒
−𝑛ατ, 𝑧2𝑒

−𝑛ατ, τ) + + �̄�3(𝑧1𝑒
−𝑛ατ, 𝑧2𝑒

−𝑛ατ, τ)),

𝐶(τ) = 𝐷(τ) + 𝑛α𝐸.

(1.52)

Let us show that all solutions of the system (1.52) with initial conditions (1.51),
which are beginning in a sufficiently small neighbourhood of zero, are decreasing
exponentially.

Let Φ1(τ), and Φ1(0) = 𝐸 is a fundamental matrix of the system 𝑑𝑧
𝑑τ = 𝐶(τ)𝑧.

Then, according to (1.49), (1.51):
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‖Φ1(τ)‖ ⩽ �̄�𝑒−βτ, ‖Φ1(τ)Φ
−1
1 (𝑡)‖ ⩽ 𝐾1𝑒

−β(τ−𝑡)𝑒(𝑛−1)α𝑡,

β = λ− 𝑛α, τ ⩾ 𝑡.
(1.53)

Let us choose value α such that the condition

β > 0. (1.54)

is fulfilled.
Let us present solutions of the system (1.50) with initial conditions (1.24),

(1.51) as follows:

𝑧(τ) = Φ1(τ)Φ
−1
1 (τ1)𝑧(τ1)+

τ∫︁
τ1

Φ1(τ)Φ
−1
1 (𝑡)𝑒𝑛α𝑡(𝑅1(𝑧1𝑒

−𝑛α𝑡, 𝑧2𝑒
−𝑛α𝑡, 𝑡) +

𝑅2(𝑧1𝑒
−𝑛α𝑡, 𝑧2𝑒

−𝑛α𝑡, 𝑡) +𝑅3(𝑧1𝑒
−𝑛α𝑡, 𝑧2𝑒

−𝑛α𝑡, 𝑡))𝑑𝑡; τ ∈ [τ1,∞),

(1.55)

𝑧(τ) = Φ1(τ)𝑐(0) +

τ∫︁
0

Φ1(τ)Φ
−1
1 (𝑡)𝑒𝑛α𝑡(𝑅1(𝑧1𝑒

−𝑛α𝑡, 𝑧2𝑒
−𝑛α𝑡, 𝑡) +

+ 𝑅2(𝑧1𝑒
−𝑛α𝑡, 𝑧2𝑒

−𝑛α𝑡, 𝑡) +𝑅3(𝑧1𝑒
−𝑛α𝑡, 𝑧2𝑒

−𝑛α𝑡, 𝑡))𝑑𝑡; τ ∈ [0,τ1].

(1.56)

Estimations

‖ 𝑧(τ) ‖⩽ �̄�𝑒−βτ ‖ Φ−1
1 (τ1)𝑧(τ1) ‖ +

τ∫︁
τ1

𝐾1𝑒
−β(τ−𝑡)𝐿𝑒−α𝑡‖𝑧‖𝑑𝑡,

τ ∈ [τ1,∞),

(1.57)

‖ 𝑧(τ) ‖⩽ �̄�𝑒−βτ ‖ 𝑐(0) ‖ +

τ∫︁
0

𝐾1𝑒
−β(τ−𝑡)𝐿𝑒−α𝑡‖𝑧‖𝑑𝑡,

τ ∈ [0, τ1],

(1.58)

in the domain (1.2), (1.15) are following from (1.55), (1.56) taking into account
(1.17) - (1.19), (1.53), and (1.54). Here, 𝐿 > 0 is a constant that is dependent on
domain (1.2), (1.15).
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Using theorem 6.1 [58], we obtain inequalities:

‖𝑧(τ)‖ ⩽ �̄�𝑒−γτ‖𝑧(τ1)‖, τ ∈ [τ1,∞), (1.59)

where γ = β − 𝐾1𝐿𝑒
−ατ1,

‖𝑧(τ)‖ ⩽ �̄�𝑒−µτ‖𝑐(0)‖, τ ∈ [0,τ1], (1.60)

µ = β − 𝐾1𝐿, from (1.57), (1.58).
Using condition (1.54), let us choose τ1 > 0 so that inequality γ > 0 has been

satisfied. Estimations (1.59), (1.60) we can write as follows:

‖𝑧(τ)‖ ⩽ 𝐾1𝑒
−γτ‖𝑐(0)‖, τ ∈ [0,∞). (1.61)

All solutions of the system (1.52) that are beginning in the domain

‖𝑥0‖ ⩽
𝐶1

�̄�1
(1.62)

are exponentially decreasing. This fact is arising from (1.61).
With the help of formulae (1.51), (1.26), we obtain the functions 𝑐(τ) =

(𝑐(τ), 𝑑(τ))𝑇 , υ(τ). The second component of the vector 𝑐(τ) gives the function
𝑑(τ). Estimation

‖ 𝑐(τ) ‖⩽ 𝐾2𝑒
−(γ+𝑛α)τ, τ ∈ [τ,∞), 𝐾2 > 0. (1.63)

in the domain (1.2), (1.15) arises from (1.51), (1.59)
Constant 𝐾2 depends from domain (1.2), (1.15).
Substitution of 𝑑(τ) in the (1.28) gives control 𝑑(τ). Consider system (1.25)

that is closed by auxiliary control system υ(τ) after substitution into its right-hand
side the first 𝑛 equations of the function 𝑑(τ), that was introduced in the statement
of Problem 1.3. This system may be written in the form:

𝑑𝑐

𝑑τ
= 𝐷(τ)𝑐+ �̄�(𝑑− 𝑑) + �̄�1(𝑐, 𝑑, τ) + �̄�2(𝑐, 𝑑, τ) + �̄�3(𝑐, 𝑑, τ)+

(�̄�2(𝑐, 𝑑, τ)− �̄�2(𝑐, 𝑑, τ)) + (�̄�3(𝑐, 𝑑, τ)− �̄�3(𝑐, 𝑑, τ)),

τ ∈ [𝑘ℎ, (𝑘 + 1)ℎ), 𝑘 = 0,1, . . . , �̄� = (𝑄,𝑂4)
𝑇
𝑛+𝑟×𝑟,

(1.64)
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Here, 𝑂4 is a null-matrix of the appropriate dimension.
From the middle theorem, we obtain the following equalities:

𝑅𝑖
2(𝑐, 𝑑, τ)−𝑅𝑖

2(𝑐, 𝑑, τ) =

(︂(︂
𝜕𝑅𝑖

2

𝜕𝑑
(𝑐, 𝑑, τ)

)︂𝑇

,(𝑑− 𝑑)

)︂
=

=

(︂(︂
𝜕𝑅𝑖

2

𝜕𝑑
(𝑐, 𝑑, τ)

)︂𝑇

,
𝑑

𝑑τ
𝑑(τ̄)ℎ

)︂
,

𝑅𝑖
3(𝑐, 𝑑, τ)−𝑅𝑖

3(𝑐, 𝑑, τ) =

(︂(︂
𝜕𝑅𝑖

3

𝜕𝑑
(𝑐, 𝑑, τ)

)︂𝑇

,(𝑑− 𝑑)

)︂
=

=

(︂(︂
𝜕�̄�𝑖

3

𝜕𝑑
(𝑐, 𝑑, τ)

)︂𝑇

,
𝑑

𝑑τ
𝑑(τ̄)ℎ

)︂
,

(1.65)

where 𝑑 is a middle point in the domain (1.2), 𝑑 = (𝑑1, . . . ,𝑑𝑟)
𝑇 .

Estimations

‖ υ(τ̃) ‖=‖ 𝑑

𝑑τ
𝑑(τ̃) ‖⩽‖ 𝑀(τ̃) ‖‖ 𝑐(τ̃) ‖⩽ 𝐾4𝑒

−γτ̃ =

= 𝐾3𝑒
−γτ𝑒γ(τ−τ̃) ⩽ 𝐾3𝑒

−γτ𝑒γℎ = 𝐾4𝑒
−γτ,

𝐾4 > 0, 𝐾4 = 𝐾3𝑒
γℎ, τ̃ ∈ [𝑘ℎ, (𝑘 + 1)ℎ), τ ∈ [𝑘ℎ, (𝑘 + 1)ℎ),

τ̃ = (τ̃1, . . . , τ̃𝑟)
𝑇 ;υ(τ̃) = (υ1(τ̃1), . . . ,υ𝑟(τ̃𝑟))

𝑇 .

(1.66)

in the domain (1.2), (1.15) are following from (1.20), (1.26), (1.27), (1.63), (1.65).
In (1.66), constant 𝐾4 depends on the domain (1.2), (1.15), but it does not

depend on the number 𝑘.
From (1.65), (1.66), we obtain enaqulities

‖ 𝑑− 𝑑 ‖⩽ 𝐾5𝑒
−γτℎ,𝐾5 > 0, ‖ 𝑅𝑖

2(𝑐, 𝑑, τ)−𝑅𝑖
2(𝑐, 𝑑, τ) ‖⩽ 𝐾6𝑒

−γτℎ,

𝐾6 > 0, ‖ 𝑅𝑖
3(𝑐, 𝑑, τ)−𝑅𝑖

3(𝑐, 𝑑, τ) ‖⩽ 𝐾7𝑒
−γτℎ,𝐾7 > 0,

τ ∈ [𝑘ℎ, (𝑘 + 1)ℎ), 𝑘 = 0,1, . . . .

(1.67)

In (1.67), constants 𝐾5, 𝐾6, and 𝐾7 depend on domain (1.2), (1.15), but
do not depend on value 𝑘. Let us show that all solutions of the system (1.64)
that are beginning in the sufficiently small neghbourhood of zero are decreasing
exponentially. Let us replace the variable 𝑐 in the system (1.64) by the formula
(1.51). As a result, we have enaqulities
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𝑑𝑧

𝑑τ
= 𝐶(τ)𝑧 + 𝑒𝑛ατ(�̄�(𝑑− 𝑑) + �̄�1(𝑧1𝑒

−𝑛ατ, 𝑑, τ)+

�̄�2(𝑧1𝑒
−𝑛ατ, 𝑑, τ) + �̄�3(𝑧1𝑒

−𝑛ατ, 𝑑, τ)+

(�̄�2(𝑧1𝑒
−𝑛ατ, 𝑑, τ)− �̄�2(𝑧1𝑒

−𝑛ατ, 𝑑, τ)) +

+ (�̄�3(𝑧1𝑒
−𝑛ατ, 𝑑, τ)− �̄�3(𝑧1𝑒

−𝑛ατ, 𝑑, τ))),

𝑑(τ) = 𝑧2(τ)𝑒
−𝑛ατ, 𝑑(𝑘ℎ) = 𝑧2(𝑘ℎ)𝑒

−𝑛α𝑘ℎ,

τ ∈ [𝑘ℎ, (𝑘 + 1)ℎ), 𝑘 = 0,1, . . . .

(1.68)

The solution of the system (1.68) with the initial conditions (1.51), (1.24)
has a form

𝑧(τ) = Φ1(τ)Φ
−1
1 (𝑘ℎ)𝑧(𝑘ℎ) +

τ∫︁
𝑘ℎ

Φ1(τ)Φ
−1
1 (𝑡)𝑒𝑛α𝑡(�̄�(𝑑− 𝑑) +

+�̄�1(𝑧1𝑒
−𝑛α𝑡, 𝑧2𝑒

−𝑛α𝑡, 𝑡) + �̄�2(𝑧1𝑒
−𝑛α𝑡, 𝑧2𝑒

−𝑛α𝑡, 𝑡)+

𝑅3(𝑧1𝑒
−𝑛α𝑡, 𝑧2𝑒

−𝑛α𝑡, 𝑡) + (�̄�2(𝑧1𝑒
−𝑛ατ, 𝑑, τ)− �̄�2(𝑧1𝑒

−𝑛ατ, 𝑑, τ))+

+ (�̄�3(𝑧1𝑒
−𝑛ατ, 𝑑, τ)− �̄�3(𝑧1𝑒

−𝑛ατ, 𝑑, τ)))𝑑𝑡, τ ∈ [𝑘ℎ, (𝑘 + 1)ℎ),

(1.69)

𝑧(τ) = Φ1(τ)𝑐(0) +

τ∫︁
0

Φ1(τ)Φ
−1
1 (𝑡)𝑒𝑛α𝑡(�̄�(𝑑− 𝑑)+

�̄�1(𝑧1𝑒
−𝑛α𝑡, 𝑧2𝑒

−𝑛α𝑡, 𝑡) + �̄�2(𝑧1𝑒
−𝑛α𝑡, 𝑧2𝑒

−𝑛α𝑡, 𝑡)+

𝑅3(𝑧1𝑒
−𝑛α𝑡, 𝑧2𝑒

−𝑛α𝑡, 𝑡) + (�̄�2(𝑧1𝑒
−𝑛ατ, 𝑑, τ)− �̄�2(𝑧1𝑒

−𝑛ατ, 𝑑, τ))+

+(�̄�3(𝑧1𝑒
−𝑛ατ, 𝑑, τ)− �̄�3(𝑧1𝑒

−𝑛ατ, 𝑑, τ)))𝑑𝑡, τ ∈ [0,𝑘ℎ).

(1.70)

Estimations

‖ 𝑧(τ) ‖⩽ �̄�𝑒−β(τ−𝑘ℎ) ‖ 𝑧(𝑘ℎ) ‖ +

τ∫︁
𝑘ℎ

𝐾𝑒−β(τ−𝑡)(𝐿‖𝑧‖+𝐾8ℎ)𝑒
−α𝑡𝑑𝑡,

τ ∈ [𝑘ℎ, (𝑘 + 1)ℎ),

(1.71)

‖ 𝑧(τ) ‖⩽ 𝐾𝑒−βτ ‖ 𝑐(0) ‖ +

τ∫︁
0

𝐾𝑒−βτ(𝐿‖𝑧‖+𝐾8ℎ)𝑒
−α𝑡𝑑𝑡, τ ∈ [0, 𝑘ℎ], (1.72)
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are following from (1.69), (1.70) with account (1.17), (1.18), (1.19), (1.51), (1.53),
(1.63), (1.66), (1.67). In (1.71), (1.72) �̄� = 𝐾𝑒(𝑛−1)α𝑘ℎ.

Applying the known result from [58] to formulae (1.71), (1.72), we obtain
estimations

‖𝑧(τ)‖ ⩽ �̄�𝑒−γ1(τ−𝑘1ℎ)‖𝑧(𝑘1ℎ)‖+𝐾9ℎ𝑒
−ατ, τ ∈ [𝑘1ℎ, (𝑘1 + 1)ℎ), (1.73)

where γ1 = β − 𝐾𝐿𝑒−α𝑘1ℎ,

‖𝑧(τ)‖ ⩽ �̄�𝑒−µ1τ‖𝑐(0)‖+𝐾10ℎ, τ ∈ [0,𝑘1ℎ], (1.74)

where µ1 = β − 𝐾𝐿.
We choose a value 𝑘 = 𝑘1 such that the condition γ1 > 0 is satisfied.
In (1.73), (1.74), constants 𝐾9,𝐾10 > 0 depend on domain (1.2), (1.15) and

do not depend on value 𝑘. From one point of view, the fact that all solutions of
the system (1.52) that belong to domain (1.2), (1.15) are decreasing exponentially
follows from (1.73), (1.74). From another point of view, we can choose so ε > 0,
ℎ0 > 0 that for all 𝑥0, ℎ : ||𝑥0|| < ε, 0 < ℎ < ℎ0 solution of the system will be
belong to the domain (1.2), (1.15).

Then substitution (1.69), (1.70) in formulae (1.26), (1.51) will give known
functions 𝑐(τ), υ(τ). By virtue of the construction of systems (1.16), (1.22), and
(1.68), the function 𝑐(τ) that corresponds to the first component of the function
𝑐(τ) satisfies the system (1.11) as a substitution in its right-hand side 𝑑(τ). From
(1.51), (1.73). it follows that function 𝑐(τ) satisfies the boundary conditions (1.13).
Therefore, the pair of functions 𝑐(τ), 𝑑(τ) is the solution to Problem 1.3.

Returning to the original independent variable 𝑡 by formulae (1.10), (1.11),
and (1.29), we obtain functions 𝑥(𝑡) = 𝑐(τ(𝑡)), �̄�(𝑡) = 𝑑(τ(𝑡)) and ῡ(𝑡) = υ(τ(𝑡))

that satisfy the system

�̇� = 𝑓(𝑥, �̄�(𝑡), 𝑡), �̇� = α−1(1− 𝑡)−1ῡ(𝑡) (1.75)

and the initial conditions

𝑥(0) = 0, 𝑢(0) = 0, �̄�(𝑡) = 𝑢(𝑡𝑘), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), 𝑘 = 0,1, . . . . (1.76)

From the construction of the system (1.75) it follows that the pair functions 𝑥(𝑡),
�̄�(𝑡) is solution to the problem (1.1), (1.9). Further, by passing to the limit as 𝑡 → 1

in functions 𝑥(𝑡), �̄�(𝑡), we obtain a solution to Problem 1.1.
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Narrowings of functions 𝑥(𝑡), �̄�(𝑡) in the interval [0, 𝑡𝑚] give the solution to
Problem 1.2.

The theorem is proved.

1.6 Estimation of the reachability domain

Definition 1.2. Reachibility domain is a set of all points 𝑀 = {𝑥0} ∈ 𝑅𝑛

such that, for all 𝑥0 ∈ 𝑀 there exists pair of functions 𝑥(𝑡), 𝑢(𝑡) that is sutisfying
the ODE system (1.1) and conditions (1.2), (1.3), (1.7), (1.8), (1.9).

Estimation of the domain ‖𝑥0‖ < ε in which solutions of the system (1.1) that
are transferring state vector to the coordinate system origin will give an estimation
of the reachability domain.

The inequality (1.62) describes the reachability domain for a continuous case.
Let us provide estimation of the reachability domain taking into account a

discrete control function that acts on the ODE system.
The fairness of the estimation

‖𝑥0‖ ⩽
𝐶1 −𝐾10 · ℎ

�̄�
, (1.77)

in the domain (1.2), (1.15) follows from formula (1.74).
In (1.77), 0 < ℎ < ℎ0 is the discretization step, �̄�, 𝐾10 are constants that

are described above.
We obtain

𝐾10 ⩽
𝐾1 · (𝐾5 +𝐾6 +𝐾7)

(𝑛− 1) · α
, (1.78)

with account estimations (1.67).
The inequality

‖𝑥0‖ ⩽
𝐶1 − 𝐾1·(𝐾5+𝐾6+𝐾7)

(𝑛−1)·α · ℎ
�̄�

, (1.79)

follows from (1.77), (1.78).
Formula (1.79) gives the estimation of the reachability domain.
Let us provide an estimation of the discretization step from which the

reachability domain (1.77) depends. A minimum number of points for the
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constructed method, in which it is necessary to integrate the function, equals
the number of switch points that are defined by formula (1.29).

Further considerations will be conducted, taking into account the application
of the explicit numerical integration methods for systems of differential equations.

It follows from (1.44) that all real parts of the eigenvalues of the matrix of the
right-hand side of the auxiliary equations system with account control are strictly
negative. The value of the integration step for the system of the ordinary differential
equations for explicit numerical methods is [59]:

∆𝑡 ⩽
𝑎

|λ𝑚𝑎𝑥|
. (1.80)

Here, 𝑎 is a constant that depends on applying the numerical method; λ𝑚𝑎𝑥 is a
maximum modulo eigenvalue of the auxiliary system matrix.

It follows from (1.29) and (1.80):

1− 𝑒−αℎ0 ⩽ 𝑎
|λ𝑚𝑎𝑥| .

The estimation of the maximum discretization step, taking into account the
conditions (1.44), has the form:

ℎ0 ⩽

⃒⃒⃒⃒
ln(1− 𝑎

(2𝑛+1)α+1)

α

⃒⃒⃒⃒
. (1.81)

Let us perform a substitution of the value (1.81) into (1.77). And we will obtain
a final estimation of the reachability domain wich takes into account a discreteness
of the control:

‖𝑥0‖ ⩽
𝐶1 −𝐾10 ·

⃒⃒⃒⃒
ln(1− 𝑎

(2𝑛+1)α+1 )

α

⃒⃒⃒⃒
�̄�

. (1.82)

It follows from formulae (1.77) and (1.82) that when the discretization step is
increasing the reachability domain is decreasing.

1.7 Conclusions for the first chapter

In the present chapter, the piecewise constant control problem for a wide
class of non-linear non-stationary systems of ordinary differential equations has been
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solved. Also, constructive sufficient conditions that guarantee existence of the control
function that provides a transition from the initial state to the final state for the
specified class of systems for a finite time interval have been obtained.

Based on the theorem proof, algorithm construction is possible, which may
be applied to solve problems of control for different technical and physical systems
described by ODE systems, the right-hand sides of which satisfy the conditions
(1.3), (1.4), and (1.6).

The next chapter is devoted to the construction and detailed study of this
algorithm.
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Chapter 2. Construction, analysis and application of the discrete
control algorithm

The contents of this chapter are published in articles [22],[23] and included in
the thesis of the postgraduate programme [56].

2.1 Description of the discrete control algorithm

The solution method of the boundary value problem in the class of discrete
controls that is in the First chapter gives an algorithm for constructing the desired
control, which consists of the next steps [22; 23]:

Auxiliary system construction.
1. Decomposition of the system (1.1) according to the Taylor formula.
2. Replacing the origin independent variable 𝑡 by an auxiliary independent

variable τ by a fomula

𝑡(τ) = 1− 𝑒−ατ, τ ∈ [0,∞), α > 0.

The result of the calculations of clauses 1 and 2 is a system:

𝑑𝑐

𝑑τ
= 𝑃 · 𝑐+𝑄 · 𝑑+

3∑︁
𝑖=1

𝑅𝑖(𝑐, 𝑑,τ), 𝑅𝑖 = (𝑅1
𝑖 . . . 𝑅

𝑛
𝑖 )

𝑇 .

3. Introduction of the auxiliary control that satisfies the system

𝑑
𝑑τ𝑑(τ) = υ(τ), υ = (υ1, . . . ,υ𝑟)

𝑇 , 𝑑(0) = 0,

and constructing of the auxiliary system

𝑑𝑐

𝑑τ
= 𝑃 · 𝑐+ �̄� · υ, (2.1)

where 𝑃 =

(︃
𝑃 𝑄

𝑂1 𝑂2

)︃
(𝑛+𝑟)×(𝑛+𝑟)

, �̄� =

(︃
𝑂3

𝐸

)︃
(𝑛+𝑟)×𝑟

. 𝑂1, 𝑂2, 𝑂3 are null

matrices of the corresponding dimensions, 𝐸 is the identity matrix.
Further, the linear part of the auxiliary system (2.1) is considered.
Solution to the stabilisation problem for the auxiliary system.
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4. Construction of the matrix

𝑆 =

(︃
𝑂𝑛×𝑟 𝐿1 . . . 𝐿𝑛

𝐸𝑟×𝑟 𝑂𝑟×𝑟 . . . 𝑂𝑟×𝑟

)︃
, (2.2)

where 𝑂𝑟×𝑟 is null-matrix with dimension 𝑟 × 𝑟, 𝐿1 = 𝑄, 𝐿𝑖 = 𝑃𝐿𝑖 −
𝑑𝐿𝑖

𝑑τ , 𝑖 = 2, . . . , 𝑛.

5. Computation of the matrix 𝑆 = 𝑆−1

(︂
𝑃𝑆 − 𝑑𝑆

𝑑τ

)︂
.

6. Determining the polynomial coefficients, real parts of the roots of which
belong to the left half-plane and satisfy the conditions (see formulae (40)
– (42) in [23])
λ𝑖𝑘𝑖 ̸= λ

𝑗
𝑘𝑖
, 𝑖 ̸= 𝑗; λ𝑗𝑘𝑖 < −(2𝑛+ 1)α− 1, 𝑗 = 1, . . . , 𝑘𝑖, 𝑖 = 1, . . . ,𝑟.

7. Computation of the auxiliary control function
υ(τ) = 𝑀(τ)𝑐, 𝑀(τ) = δ𝑇−1𝑆−1, 𝑐 = (𝑐,𝑑), where 𝑇 is the upper triangle
matrix that is constructed based on elements of the matrix 𝑆; δ is a vector
string obtained from 𝑆 and coefficients or the polinom from clause 6.

8. Solution of the Cauchy problem for an auxiliary system with initial
conditions 𝑐(0) = 𝑥0 that is closed by the control υ(τ). The results of
the solution are functions 𝑐(τ) = (𝑐(τ),𝑑(τ)), υ(τ).
Solution to the control problem for the original system.

9. Finfing of the switch points by the formula

𝑡𝑘 = 1− 𝑒−α𝑘ℎ, 𝑘 = 0,1, . . . , (2.3)

where ℎ is the step of discreteness of the control.
10. Transition to the original independent variable 𝑡 in the function υ(τ)

according to the formula (1.10) that is giving ῡ(𝑡) = υ(τ(𝑡)).
11. Solution of the Cauchy problem for the system

�̇� = 𝑓(𝑥, �̄�(𝑡), 𝑡), �̇� = α−1(1− 𝑡)−1ῡ(𝑡),

𝑥(0) = 0, 𝑢(0) = 0, �̄�(𝑡) = 𝑢(𝑡𝑘), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), 𝑘 = 0,1, . . . .
(2.4)

In the eighth and eleventh clauses, the Cauchy problem is solving with the help
of one of the numerical methods of solution for ODEs [60; 61]. The other clauses
may be realised with the help symbolic computation software, e.g. [62].
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2.2 Computational cost analysis of the algorithm

In the present section, estimation and analysis of the computational cost of
the above discrete control algorithm are considered.

This material was presented at the LIV International conference for
postgraduate and undergraduate students on Control Processes and Stability
(CPS’23), which was held from April 4-7, 2023, and published in the article [22].

2.2.1 Brief Literature Review

When developing software, it is useful to estimate the computational cost of
implemented algorithms.

The computational complexity cost is conducted by a time often. Also,
sometimes it may be useful estimate the cost of memory when performing
calculations.

The computational costs of some control algorithms are provided in works
[44; 54; 55], etc.

Except for the above, we should to notice the publication [63], which is devoted
to the analysis of the computational cost for optimal control algorithm synthesis that
is obtained from theoretical-game models of the functioning of active systems.

Based on the results of the estimations of the computational cost for algorithms
that are provided in [44; 54; 55; 63], etc., it may be followed that a significant part
of them have not more than polynomial complexity.

2.2.2 Theoretical computational cost of the algorithm

Lemma 2.1. The computational complexity of the discrete control algorithm
that is constructed in [23] is the following:

𝑂(𝑛4) +𝑂
(︀
𝐾 · 𝐶(𝑛)

)︀
, (2.5)
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where 𝑂(𝑛4) is the computational complexity of the symbolic computations; 𝑂
(︀
𝐾 ·

𝐶(𝑛)
)︀

is the computational complexity of the solution of the Cauchy problem with

the help of the Runge-Kutta method; 𝐾 =

[︂
ln((1−𝑡𝑚)−1)

α·ℎ

]︂
+1 is the number of switch

points (1.29); 𝐶(𝑛) is a function that characterises the number of operations for
integrated function components computing.

Proof of the Lemma 2.1. . The maximum computational complexity are
operations of the matrix (2.2) computing and solution of the Cauchy problem (2.4).

For computing the (2.2) 𝑛−1 multiplications of two matrices with dimensions
(𝑛+ 𝑟)× (𝑛+ 𝑟) and (𝑛+ 𝑟)× 𝑟 accordingly are required. The upper bound for the
complexity of this operation is 𝑂((𝑛 + 𝑟)2 · 𝑟). Since 𝑟 ⩽ 𝑛 from the conditions of
the problem, taking into account the necessary multiplications number for defining
(2.2), the upper bound for this operaton is 𝑂(𝑛4).

Integrating the Cauchy problem is held on the time-interval 𝑡 ∈ [0, 1]. Swith
points are defined by (2.3) and make up a countable (Problem 1.1, see Chapter 1) or
the finite (Problem 1.2, see Chapter 1) set. For estimation of the operation numbers
in the worst case scenario, it is necessary to define the largest number of switch
points. For this purpose, it is possible to accept the accuracy of the approximation
to 1 of 𝑡𝑚 value at the right side of the time-interval [0,1], Then from formula (2.3),
we will have the following number of switch-points:

𝐾 = 𝑚+ 1 =

[︂
ln((1−𝑡𝑚)−1)

α·ℎ

]︂
+ 1,

where |1− 𝑡𝑚| < ε2 is the accuracy of the approximation 𝑡𝑚 at the right side of the
time-interval [0,1] in accordance with Problem 1.2 from Chapter 1.

2.2.3 Computational cost analyses

Based on the obtained formula (2.5), graphs are plotted that show the
nature of the dependency for growth functions of computational complexity and
its components from the dimension of the problem and the approximation accuracy
at the right side of the time-interval [0,1]. The following values have been accepted:
ε2𝑓 = 10−6 ( float accuracy), ε2𝑑 = 10−16 (double accuracy), α = 0,25, ℎ = 0,01,
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𝐶(𝑛) = 120 · 𝑛. Values ε2 have been chosen from standard values for data types
float and double, which are applied in different programming languages.
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Figure 2.1 — Nature of the dependency for growth functions of computational
complexity at different values of the approximation accuracy on the right side of

the time-interval [0,1].
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Figure 2.2 — The nature of the dependency on growth functions of computational
complexity depends on the accuracy of the problem solution.
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Figure 2.3 — The nature of the dependency on growth functions of computational
complexity for symbolic and numerical parts of the algorithm depends on the

dimension of the problem.

Analysis of graphs (Figs. 2.1 – 2.3) and obtained formulae allows to the
following conclusions:

1. The higher the approximation accuracy at the right side of the time-interval
[0,1] then higher computational complexity of the Cauchy problem solution.

2. For small dimensions computational cost of the Cauchy problem solution
is higher then complexity of the symbolic calculations.

3. Since any value 𝑁 =

[︂
3

√︁
𝐶 · ln(ε−1

2 )
α·ℎ

]︂
, computational cost of the symbolic

calculations is higher then computational cost of the Cauchy problem
solution.

4. With a sufficiently large dimension of the problem, the computational cost
of the solution for the ODE system is possible to not take into account;
however, most of the control problems have a small dimension, usually.

5. The computational cost of the studied algorithm depends on the values of
α and ℎ.
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2.3 Discrete control of the single-link robot-manipulator

Consider the control problem for the robot-manipulator, which moves cargo
of variable weight to the given point. The solution to this problem is described
in the article [23].

According to [64; 65], let us write the equation system as follows:

�̇�1 = 𝑥2,

�̇�2 = −𝑎2(𝑡) sin𝑥1 − 𝑎1(𝑡)𝑥2 + 𝑢.

Here, 𝑥1 is a deviation angle of manipulator from the vertical axis, 𝑥2 is angular
velocity of the manipulator, 𝑎1(𝑡) = ᾱ𝐿−2𝑚1(𝑡)

−1, 𝑚1(𝑡) = 𝑚(𝑡) + 𝑀/3, 𝑎2(𝑡) =
𝑔𝐿−1

(︀
𝑚(𝑡) + 𝑀/2

)︀
𝑚1(𝑡)

−1, 𝑀 is mass of the manipulator, 𝐿 is length of the
manipulator, 𝑔 is gravitational acceleration, ᾱ is friction coefficient, 𝑚(𝑡) = 𝑚0− 𝑞𝑡

is mass of the cargo, 𝑞 > 0, 𝑚0 is initial mass of the cargo, 𝑥 = (𝑥1,𝑥2)
𝑇 is a state

vector, 𝑢 is a scalar control.
Consider the boundary conditions 𝑥(0) = �̄�, 𝑥(1) = 0. Analogues of the

equation system (1.22) and conditions (1.24) have a form

𝑑𝑐1
𝑑τ

= α𝑒−ατ𝑐2,

𝑑𝑐2
𝑑τ

= −α𝑒−ατ𝑎2(1− 𝑒−ατ) sin 𝑐1 − α𝑒−ατ𝑎1(1− 𝑒−ατ)𝑐2 + α𝑒
−ατ𝑑,

𝑑

𝑑τ
𝑑(τ) = υ,

(2.6)

in which 𝑐1(τ) = 𝑥1(𝑡(τ)), 𝑐2(τ) = 𝑥2(𝑡(τ)),

𝑐1(0) = �̄�1, 𝑐2(0) = �̄�2, 𝑑(0) = 0, 𝑐𝑖(τ) → 0. (2.7)

Linear part of the system (2.6):

𝑑𝑐

𝑑τ
= 𝑃𝑐+ �̄�υ, 𝑐 = (𝑐1, 𝑐2, 𝑑)

𝑇 , (2.8)

where 𝑃 and �̄� are constructed by formulae (1.23):

𝑃 =

⎡⎢⎣ 0 α𝑒−ατ 0

−𝑎2(1)α𝑒
−ατ −𝑎1(1)α𝑒

−ατ α𝑒−ατ

0 0 0

⎤⎥⎦, �̄� =

⎡⎢⎣00
1

⎤⎥⎦.
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Consider the matrix (1.30):

𝑆 =

⎡⎢⎣0 0 α2𝑒−2ατ

0 α𝑒−ατ α2𝑒−ατ − 𝑎1(1)α
2𝑒−2ατ

1 0 0

⎤⎥⎦ . (2.9)

It follows from (2.9) that conditions (1.4) and (1.6) have been satisfied.
Matrix 𝑆 has the form

𝑆 = 𝑆−1

(︂
𝑃𝑆 − 𝑑𝑆

𝑑τ

)︂
=

⎡⎢⎣0 0 0

1 0 α2
(︀
−2𝑒2ατ + 𝑎1(1)𝑒

ατ − 𝑎2(1)
)︀
𝑒−2ατ

0 1 3α− 𝑎1(1)α𝑒
−ατ

⎤⎥⎦ . (2.10)

Let us introduce the notations of elements for the third column of the matrix
(2.10): ⎡⎢⎣φ1(τ)

φ2(τ)

φ3(τ)

⎤⎥⎦ =

⎡⎢⎣ 0

α2
(︀
−2𝑒2ατ + 𝑎1(1)𝑒

ατ − 𝑎2(1)
)︀
𝑒−2ατ

3α− 𝑎1(1)α𝑒
−ατ

⎤⎥⎦.

Matrix 𝑇 has the form

𝑇 =

⎡⎢⎣1 −φ3(τ) −(𝑑φ3(τ)
𝑑τ +φ2(τ))

0 1 −φ3(τ)

0 0 1

⎤⎥⎦ . (2.11)

We define the string δ = (δ1,δ2,δ3) in the form

δ =

⎡⎢⎣δ1δ2
δ3

⎤⎥⎦
𝑇

=

⎡⎢⎣ −γ2 −φ3

−γ1 − 2𝑑φ3(τ)
𝑑τ −φ2(τ)

−γ0 − 𝑑2φ3(τ)
𝑑τ2 − 𝑑φ2(τ)

𝑑τ

⎤⎥⎦
𝑇

, (2.12)

where γ2 = 12, γ1 = 47, γ0 = 60.
Substituting (2.12), (2.11), and (2.9) in (1.45), we obtain:

υ(τ) = 𝑀(τ)𝑐, 𝑀(τ) = δ𝑇−1𝑆−1, 𝑐 = (𝑐1,𝑐2,𝑑), (2.13)

𝑀(τ) = (𝑚1(τ),𝑚2(τ),𝑚3(τ)),
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𝑚1(τ) = −𝑎1(1)𝑎2(1)α𝑒
−ατ+3𝑎2(1)α+𝑎2(1)γ2−8α𝑒2ατ−4γ2𝑒

2ατ− 2γ1𝑒
2ατ

α
− γ0𝑒

2ατ

α2 ,
𝑚2(τ) = −𝑎1(1)

2α𝑒−ατ+3𝑎1(1)α+𝑎1(1)γ2+𝑎2(1)α𝑒
−ατ− 7α𝑒ατ− 3γ2𝑒

ατ− γ1𝑒
ατ

α
,

𝑚3(τ) = −3α+ 𝑎1(1)α𝑒
−ατ − γ2.

Further, we solve the Cauchy problem for system (2.6), with initial conditions (2.7),
which is closed by control (2.13). Finally, we have functions 𝑐1(τ), 𝑐2(τ), 𝑑(τ), υ(τ).

Using formulae (1.10) and (1.29), we obtain the function ῡ(𝑡) = ῡ(τ(𝑡)) and
switch-points 𝑡𝑘.

Let us solve the Cauchy problem for the system of equations

�̇�1 = 𝑥2,

�̇�2 = −𝑎2(𝑡) sin𝑥1 − 𝑎1(𝑡)𝑥2 + �̄�,

�̇� = α−1(1− 𝑡)−1υ(𝑡)

with initial conditions 𝑥1(0) = �̄�1, 𝑥2(0) = �̄�2, 𝑢(0) = 0.
The following values of parameters were used for numerical simulation: �̄�1 =

−0.5 radian, �̄�2 = −0.8 radian/s, ᾱ = 0.1, α = 0.25, 𝐿 = 10 m, 𝑀 = 20 kg, 𝑚0 =

1 kg, ℎ = 0.01, 𝑞 = 0.01, 𝑡 ∈ [0,0.99].
The Runge-Kutta method has been applied to solve the Cauchy problem. In

the Fig. 2.4 graphs of the phase coordinates 𝑥1(𝑡), 𝑥2(𝑡) and the control 𝑢(𝑡) are
presented.

The study of the numerical modeling results presented in Fig. 2.4 allows for
the following conclusions:

1. graphs of the phase coordinate functions and control illustrate the transition
process;

2. the maximum cost of the control resource is in the initial section of the
trajectory and belongs to 𝑡 ∈ [0,0.2]; the maximum value of the control
action is about 50 radian/s2;

3. the suggested algorithm may be applied for solving the stabilisation problem
at the finite time-interval for a wide class of non-linear non-stationary
systems.
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Figure 2.4 — Graphs of the functions 𝑥1(𝑡), 𝑥2(𝑡)
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2.4 Discrete control of the single-link robot-manipulator with account
of pertrubations

Consider the equation system of the control model for the single-link robot
manipulator that is moving cargo with variable weight to the given point, taking
into account perturbation actions:

�̇�1 = 𝑥2,

�̇�2 = −𝑎2(𝑡) sin𝑥1 − 𝑎1(𝑡)𝑥2 + 𝑓(1− 𝑡)2 + 𝑢,
(2.14)

where 𝑓(1 − 𝑡)2 is the perturbation action, and other parameters are provided in
Section 2.3.

The boundary conditions have a form:

𝑥(0) = �̄�, 𝑥(1) = 0. (2.15)

Discrete control problem. Find discrete control 𝑢(𝑡𝑘) which is solving the
stabilisation problem of the system (2.14) in case of the boundary conditions (2.15),
where 𝑡𝑘 are switch-points that are defined by the formula:

𝑡𝑘 = 1− 𝑒−α𝑘ℎ, 𝑘 = 0,1, . . . (2.16)

ℎ is the discreteness step of the control, α > 0 is an arbitrary constant to be
determined, and 𝑡 ∈ [0; 1].

For solving the problem, we obtain the control function for the system (2.3)
with the help of the discrete control algorithm, presented in the first section of this
chapter. Let us substitute the obtained control function into the system

�̇�1 = 𝑥2,

�̇�2 = −𝑎2(𝑡) sin𝑥1 − 𝑎1(𝑡)𝑥2 + 𝑓(1− 𝑡)2 + �̄�,

�̇� = α−1(1− 𝑡)−1υ(𝑡).

(2.17)

Further, we will solve the Cauchy problem with the initial conditions 𝑥1(0) = �̄�1,
𝑥2(0) = �̄�2, 𝑢(0) = 0 and conduct numerical simulations.
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Figure 2.5 — Solution of the Cauchy
problem for system (2.17).

Values of the parameters: 𝑓 = 5, α =

0.25, ℎ = 0.1.

Figure 2.6 — Solution of the Cauchy
problem for system (2.17). Values of the
parameters: 𝑓 = 5 · 1013, α = 0.25,

ℎ = 0.1.

The following values of the parameters are used for calculations: ᾱ = 0.1,
𝐿 = 10 m, 𝑀 = 20 kg, 𝑚0 = 1 kg, 𝑞 = 0.01, 𝑡 ∈ [0,0.99], �̄�1 = 0.5 radians,
�̄�2 = −0.8 radians/s. To determine the limits of applicability of the constructed
algorithm, different values of the perturbation action, discretness step for control ℎ
and parameter α have been considered.

The Runge-Kutta method [61] have been applied for solve of Cauchy problem.
Graphs of the phase coordinates 𝑥1(𝑡), 𝑥2(𝑡) and control 𝑢(𝑡) for different values of
parameters α, ℎ and perturbations have been presented in Figs. 2.5—2.8.

Analysis of the simulation results:
1. The target of the control is reached at any value of initial data and does

not depend on them.
2. With increasing of the peturbation the time that is necessary for

stabilisation of the system increases; however, it happens at any value
of the petrubation, see Figs. 2.5, 2.6; this circumstance is related to the
decreasing nature of the perturbation.
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Figure 2.7 — Solution of the Cauchy
problem for system (2.17). Values of
the parameters: 𝑓 = 5, α = 0.25,

ℎ = 0.536.

Figure 2.8 — Solution of the Cauchy
problem for system (2.17).

Values of the parameters: 𝑓 = 5, α =

2.135, ℎ = 0.1.

3. The value of the discretness control step ℎ is necessary to choose from the
range of values 0 < ℎ < 0.536, see Fig. 2.7; the optimal value of the
discretness control step is ℎ = 0.1, see Fig. 2.5.

4. The value range of the parameter α belongs to the interval α ∈ (0; 2.135),
see Fig. 2.8, and the optimal value of this constant is 0.25.

2.5 Optimal control of the single-link robot-manipulator with account
of pertrubations

In this Section, a solution of the optimal control problem for the single-link
robot-manipulator with consideration of perturbations is outlined. The considered
system is non-linear.

In the work [66] some approaches to solving the optimal control problems
for non-linear problems are considered. For instance, one of them is based on
the consideration of the linear-quadratic optimal control problem for the first
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approximation system of equations and its reduction to the linear programming
problem.

In this section, the basis of the applied algorithm is the linear-quadratic
problem Statement 2.1 for a linearized system and the solution of the non-stationary
differential-matrix Riccati equation. The solution to this equation is possible with
Zubov’s method of successive approximations [31; 57]. In addition, it is possible to
apply the method of integration of the equations system by one of the numerical
methods. The problem is solved by numerical integration of the Riccati equation,
and analysis of the solution based on one of the theorems from [57] was carried out.
A similar approach was developed for the solution of the linear-quadratic problem
for linear systems, and it is known as the «establishment method» [67; 68].

Solution to the problem.
The linearized system (2.14) has the form:

�̇� = 𝐴(𝑡) · 𝑥+𝐵 · 𝑢, (2.18)

where 𝐴(𝑡) =

[︃
0 1

−𝑎2(𝑡) −𝑎1(𝑡)

]︃
, 𝐵 =

[︃
0

1

]︃
.

Optimal control problem. Find a control that stabilises system (2.18)
with quadratic functional of quantity:

𝐽1(𝑢) =
∫︀∞
0 [𝑥𝑇 (𝑡)𝑁1𝑥(𝑡) + 𝑢2]𝑑𝑡 → 𝑖𝑛𝑓

𝑢
,

where 𝑥(𝑡) is the state vector, 𝑢 is the scalar control, 𝑁1 > 0 is a positive
difinite matrix.

We have obtained a non-stationary linear-quadratic problem. The solution to
the problem is a function that has a form:

𝑢(𝑥,𝑡) = −𝐵𝑇 · 𝑃 (𝑡) · 𝑥(𝑡), (2.19)

where 𝑃 (𝑡) is the solution of the differential-matrix non-stationary Riccati equation.

−𝐴(𝑡)𝑇𝑃 (𝑡)− 𝑃 (𝑡)𝐴(𝑡) + 𝑃 (𝑡)𝐵𝐵𝑇𝑃 (𝑡)−𝑁1 = − ˙𝑃 (𝑡). (2.20)

Statement 2.1. If there exists a restricted solution of the non-stationary
Riccati equation (2.20) with initial conditions 𝑃 (0) = 0 in the form of a symmetric
matrix 𝑃 (𝑡), then control (2.19) stabilises system (2.18) and, in addition, solves the
control problem for the original system (2.14).
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Remark 2.1. In the case of system (2.18), the Statement 2.1 is a special
case of a theorem 2.1, see [57], p. 208.

Remark 2.2. The theorem 2.1 (see [57], p. 208) may be considered as
"the controllability criteria"for linear-quadratic problems for non-stationary linearly
controlled systems.

Results of the numerical simulation.
Numerical experiments have been carried out at the following values of

parameters: ᾱ = 0.1, 𝐿 = 10 m, 𝑀 = 20 kg, 𝑚0 = 1 kg, 𝑞 = 0.01, 𝑡 ∈ [0,100] s,

�̄�1 = 0.5 radian, �̄�2 = −0.8 radian/s, 𝑁1 =

[︃
1 0

0 2

]︃
.

Also, for defining the limits of applicability for the constructed algorithm
different values of perturbations have been considered.

Graphs for the symmetric solution matrix elements of the Riccaty equation
are represented in Fig. 2.9. Graphs of the phase coordinates 𝑥1(𝑡), 𝑥2(𝑡) taking
into account of different cases of the purturbations are shown in Figs. 2.10–2.12.
Numerical solutions to the system of ordinary differential equations are obtained
with the help of the Runge-Kutta method [61].

Analysis of the numerical experiment results.
1. It follows from the graph (see Fig. 2.9) that the solution matrix of the

Riccati equation and its elements are restricted. It means that conditions
of the theorem 2.1 (see [57], p. 208) are satisfied. Hence, the control (2.19)
stabilises the system (2.18). And, it follows from the graph (see Fig. 2.10)
that this control stabilises the original system.

2. The value range of the parameter 𝑓 that is charaterizing disturbing effect
belongs to the span 𝑓 ∈ [0; 2.28), see Figs. 2.10–2.12.

3. It follows from graphs (see Figs. 2.10, 2.11) that than larger the
purturbating effect value then longer period of time and more significant
energy resources of the control are required for stabilisation of the system.

4. It follows from the construction of the problem solution that the target of
the control is reached at an unlimited period of time.
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Figure 2.9 — Solution of the Riccati
equation (2.20)

Figure 2.10 — Solution of the Cauchy
problem for system (2.14). The value of

the parameter 𝑓 is 𝑓 = 0.10

Figure 2.11 — Solution of the Cauchy
problem for system (2.14). The value of

the parameter 𝑓 is 𝑓 = 1.50

Figure 2.12 — Solution of the Cauchy
problem for system (2.14). The value of

the parameter 𝑓 is 𝑓 = 2.28

2.6 Comparison of constructed control algorithms

The results of the numerical experiments for discrete and optimal control
problems for system (2.14) with the same model parameters are represented in
Figs. 2.13, 2.14.

Analysis of the calculations results:
1. For solving the stabilisation problem in the optimal control case, longer

period of time and less energy resources of control are required, see Figs.
2.12, 2.13.

2. It follows from the analysis of graphs (see Figs. 2.5–2.7, 2.10–2.14) and
considered models that the discrete control algorithm allows to obtain a
solution to the problem at a significantly larger value of the perturbation.
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Figure 2.13 — Numerical simulation results for
the solution of the discrete control problem for
the system (2.14). Parameters are 𝑓 = 1.50, α =

0.25, and ℎ = 0.1.

Figure 2.14 — Numerical simulation results for
the solution of the optimal control problem for

the system (2.14), 𝑓 = 1.50.
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2.7 Conclusions for the second chapter

In the present chapter, the construction and analysis of the discrete control
algorithm that described in the first chapter are provided.

Based on the presented material, it is possible to draw the following
conclusions:

1. The realisation of the considered algorithm is possible with the help of a
combination of numerical methods and symbolic calculation software.

2. A constructed discrete control algorithm may be included in the complexity
class 𝑃 [69].

3. For problems with low dimensions, a medium-sized personal computer is
enough.

4. The constructed algorithm is more stable to disturbing effects in the system
of ODEs in comparison with the optimal control algorithm, but it requires
more energy resources for control.
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Chapter 3. Solution of the local boundary problem for nonlinear
stationary system with account of the computer system verification

3.1 Introduction

Boundary value problems for controlled systems that are concerned with
the effectiveness of the mathematical modeling for control processes represent
a significant interest. Application of the numerical simulation procedure at
different stages of the control system design for technical objects significantly
reduces development costs and creation time. Quantity and realibility of the
numerical modeling results depend on computer systems serviceability. Due to this
circumstance, problem of the control algorithms that allow to verify computer
systems during the calculation processes occurs.

In the present work the control function and corresponding phase coordinate
functions are found as follows. One of the phase coordinates is given in the form
of a polynomial that depends on an independent variable. The verification method
is based on the comparison of phase coordinate values received as a result of the
calculations with the exact values that are obtained from the given polynomial. If
the modulus of the difference between these values is higher than any given number
then a decision is made on the use of a reserve computer system.

Similary, the control problem of the computing systems on the control object in
the process of control signal generation is solved. The proposed verification method
can complement and sometimes replace traditional engineering approaches.

Besides, this algorithm may be applied to the solution of the important and
difficult practical problem of choice of the integration step in the solving process of
the Cauchy problem for the ordinary differential equations system which is describing
the mathematical model of the control object. The difficulty of the solution to
this problem is that with large integration steps, the methodical error rate of the
calculation scheme grows. And with small integration steps, the calculation error rate
increases. With information about the exact value of one of the phase coordinates
it is possible to find a balanced integration step for the chosen calculation scheme.

When solving a given problem, the approach applied in the works [23; 34; 70]
is used. The main difference of the present result and the one published in [34; 70]
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is the following: the solution of the original problem tends to be the solution of the
boudary problem for non-stationary systems. In the publication [23], an algorithm for
solving a boundary problem that is similar to the one considered in [70] is provided.
However, it is impossible to use these results because the condition 𝑓(0,0,𝑡) = 0

from article [23] is not used in the theorem formulation.

3.2 Problem statement and main theorem

The object of study is a controlled system of ordinary differential equations
in the form

�̇� = 𝑓(𝑥,𝑢), (3.1)

where 𝑥 = (𝑥1, . . . , 𝑥𝑛)
𝑇 , 𝑥 ∈ 𝑅𝑛, 𝑢 = (𝑢1, . . . , 𝑢𝑟)

𝑇 , 𝑢 ∈ 𝑅𝑟, 𝑟 ⩽ 𝑛, 𝑡 ∈ [0,1].
Here 𝑥 is a vector of phase coordinates, and, 𝑢 is a vector of control.
Let the conditions be fulfilled

𝑓 ∈ 𝐶2𝑛(𝑅𝑛 ×𝑅𝑟,𝑅𝑛), 𝑓 = (𝑓1, . . . , 𝑓𝑛)
𝑇 , (3.2)

𝑓(0,0) = 0; (3.3)

𝜕𝑓1
𝜕𝑢1

(0,0) ̸= 0. (3.4)

Introduce the following matrices:
𝐴0 = {𝑎𝑖𝑗}, 𝑎𝑖𝑗 = 𝜕𝑓𝑖

𝜕𝑥𝑗
(0,0) − 𝜕𝑓𝑖

𝜕𝑢1
(0,0) · 𝜕𝑓1

𝜕𝑥𝑗
(0,0) ·

(︀
𝜕𝑓1
𝜕𝑢1

(0,0)
)︀−1

,

𝐵0 = {𝑏𝑖𝑗}, {𝑏𝑖𝑗} = 𝜕𝑓𝑖
𝜕𝑢𝑗

(0,0) − 𝜕𝑓𝑖
𝜕𝑢1

(0,0) · 𝜕𝑓1
𝜕𝑢𝑗

(0,0) ·
(︀
𝜕𝑓1
𝜕𝑢1

(0,0)
)︀−1

, 𝑖 =

2, . . . , 𝑛, 𝑗 = 2, . . . , 𝑟,
Let 𝑆0 = (𝐵0,𝐴0𝐵0, . . . ,𝐴

𝑛−1
0 𝐵0).

Suppose that matrix 𝑆0 satisfies the following condition:

𝑟𝑎𝑛𝑘 𝑆0 = 𝑛− 1. (3.5)
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The following restrictions are imposed on the control 𝑢:

‖𝑢‖ ⩽ 𝑁,𝑁 > 0, 𝑁 = 𝑐𝑜𝑛𝑠𝑡 (3.6)

Problem 1. Find pair of functions 𝑥(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑛(𝑡))
𝑇 , 𝑥(𝑡) ∈ 𝐶1[0,1];

𝑅𝑛, 𝑢(𝑡) ∈ 𝐶1[0,1]; 𝑅𝑟 which is satisfying to the system (3.1) and conditions:

𝑥(0) = 𝑥0, 𝑥(1) = 0, 𝑥0 = (𝑥01, . . . , 𝑥
0
𝑛)

𝑇 , (3.7)

𝑥1(𝑡) = 𝑥01 · (1− 𝑡), 𝑥01 ∈ 𝑅1. (3.8)

This pair of functions we will call the solution of the problem (3.1), (3.7), and (3.8).
Solution to the problem may be found based on the proof of the following

theorem.
Theorem 3.1. Let for system (3.1) conditions (3.2) - (3.5) are sutisfied.

Then there exists such ε > 0 that ∀𝑥0 ∈ 𝑅𝑛 : ‖𝑥0‖ < ε solution of the problem (3.1),
(3.7), (3.8) exists which may be obtained afrer solving of the stabilisation problem
for linear non-stationary system of a special form and the following solution of the
Cauchy problem for an auxiliary system of the ordinary differential equations.

The proof of the theorem may be divided into several stages.

3.3 Formulation of the auxiliary problems and auxiliary systems
construction

From conditions (3.2) - (3.4) and the implicit function theorem, it follows
that there exists ε1 > 0 such, that function 𝑢1(𝑡, 𝑥

0
1, 𝑥2, . . . , 𝑥𝑛, 𝑢2, . . . , 𝑢𝑟) exists

for all 𝑥01, 𝑥𝑖, 𝑖 = 2, . . . , 𝑛, 𝑢𝑗, 𝑗 = 2, . . . , 𝑟 : |𝑥01| < ε1, |𝑥𝑖| < ε1, |𝑢𝑖| < ε1 and
satisfies the equation

𝑥01 = 𝑓1(𝑥
0
1 · (1− 𝑡), 𝑥2, . . . , 𝑥𝑛, 𝑢1(𝑥1(𝑡), 𝑥

0
1, 𝑥2, . . . , 𝑥𝑛, 𝑢2, . . . , 𝑢𝑟), 𝑢2, . . . , 𝑢𝑟),

𝑡 ∈ [0,1],

(3.9)



52

and the condition

𝑢1(𝑡, 0, . . . , 0) ≡ 0. (3.10)

After substituting of function 𝑢1(𝑡, 𝑥
0
1, 𝑥2, . . . , 𝑥𝑛, 𝑢2, . . . , 𝑢𝑟) and 𝑥1(𝑡) from

formula (3.8) into the right side of all equations of the system (3.1), except the
first, we will obtain the system

�̇�𝑖 = 𝑓𝑖(𝑥1(𝑡), 𝑥2, . . . , 𝑥𝑛, 𝑢1(𝑡, 𝑥
0
1, 𝑥2, . . . , 𝑥𝑛, 𝑢2, . . . , 𝑢𝑟), 𝑢2, . . . , 𝑢𝑟),

𝑖 = 2, . . . , 𝑛.
(3.11)

Consider the problem.
Find pair of functions �̄�(𝑡), �̄�(𝑡), where �̄�(𝑡) = (𝑥2(𝑡), . . . , 𝑥𝑛(𝑡))

𝑇 , �̄�(𝑡) =

(𝑢2(𝑡), . . . , 𝑢𝑟(𝑡))
𝑇 , which are satisfying the system (3.11) and the conditions

�̄�(0) = �̄�0, �̄�(1) = 0̄, �̄�0 = (𝑥02, . . . , 𝑥
0
𝑛)

𝑇 , 0̄ = (0, . . . , 0)𝑛−1×1. (3.12)

Pair of functions �̄�(𝑡), �̄�(𝑡) satisfying the system (3.11) and the conditions (3.12)
we will call a solution of the problem (3.11), (3.12).

Remark 3.3.1. If to substitute solution of the problem (3.11), (3.12) in
the function 𝑢1(𝑡, 𝑥

0
1, 𝑥2, . . . , 𝑥𝑛, 𝑢2, . . . , 𝑢𝑟), then we will have a set of functions

𝑥1(𝑡), �̄�(𝑡) and 𝑢1(𝑡), �̄�(𝑡) which is solution of the Problem 3.1.
Introduce notations

𝑓𝑖(𝑡, 𝑥
0
1, 𝑥2, . . . , 𝑥𝑛, 𝑢1, . . . , 𝑢𝑟) =

𝑓𝑖(𝑥1(𝑡), 𝑥2, . . . , 𝑥𝑛, 𝑢1(𝑡, 𝑥
0
1, 𝑥2, . . . , 𝑥𝑛, 𝑢2, . . . , 𝑢𝑟), 𝑢2, . . . , 𝑢𝑟), 𝑖 = 2, . . . , 𝑛.

(3.13)

It follows from the conditions (3.3) and (3.10)

𝑓𝑖(𝑡, 0,0̄, ¯̄0) = 0, ¯̄0 = (0, . . . , 0)𝑟−1×1, 𝑖 = 2, . . . , 𝑛. (3.14)

Let us replace the independent variable 𝑡 on τ by a formula:

𝑡(τ) = 1− 𝑒−ατ, τ ∈ [0,∞), (3.15)

where α > 0 is a real number to be determined.
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As a result, a vector form of the system (3.11) is as follows

𝑑𝑐

𝑑τ
= α𝑒−ατ𝑓(𝑡(τ),𝑥01, 𝑐, 𝑑), 𝑓 = (𝑓2, . . . , 𝑓𝑛)

𝑇 , (3.16)

𝑐(τ) = �̄�(𝑡(τ)), 𝑐 = (𝑐2, . . . , 𝑐𝑛)
𝑇 , 𝑑(τ) = �̄�(𝑡(τ)), 𝑑 = (𝑑2, . . . , 𝑑𝑟)

𝑇 . (3.17)

Consider the problem.
Find a pair of functions 𝑐(τ) ∈ 𝐶1([0,∞)), 𝑑(τ) ∈ 𝐶1([0,∞)) satisfying the

system (3.16) and the conditions

𝑐(0) = �̄�0, 𝑐(τ) → 0̄ при τ→ ∞ (3.18)

This pair of functions we will call the solution of problem (3.16), (3.18).
Remark 3.3.2. It is easy to see that after passing to limit τ → ∞ and to

original independent variable 𝑡 by formulae (3.15), (3.17) in the solution of problem
(3.16), (3.18) we will obtain solution of the problem (3.11), (3.12).

Let us introduce the following notations for solving the problem (3.16), (3.18):
˜̄𝑐 = θ𝑖𝑐,

˜̄𝑑 = θ𝑖𝑑, 𝑡 = 1− θ𝑖𝑒−ατ, θ𝑖 ∈ [0,1], 𝑖 = 2, . . . , 𝑛;

|𝑘| =
∑︀𝑛

𝑗=2 𝑘𝑗; |𝑚| =
∑︀𝑟

𝑗=2𝑚𝑗, 𝑘! = 𝑘2! . . . 𝑘𝑛!, 𝑚! = 𝑚2! . . .𝑚𝑟!.
If we represent the right-hand side of the system (3.11) as a Taylor formula

in the neighbourhood of point (1, 𝑥01, 0̄, ¯̄0), taking into account the replacement of
function 𝑓 with 𝑓 , then the system will take the form
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𝑑𝑐𝑖
𝑑τ

= α𝑒−ατ
(︂
𝑓𝑖(1, 𝑥

0
1,0̄,

¯̄0) +
𝑛∑︁

𝑗=2

𝜕𝑓𝑖
𝜕𝑥𝑗

(1, 𝑥01,0̄,
¯̄0)𝑐𝑗 +

𝑟∑︁
𝑗=2

𝜕𝑓𝑖
𝜕𝑢𝑗

(1, 𝑥01,0̄,
¯̄0)𝑑𝑗−

−𝑒−ατ
𝜕𝑓𝑖
𝜕𝑡

(1, 𝑥01,0̄,
¯̄0)

)︂
+

+
1

2
α𝑒−ατ

(︂ 𝑛∑︁
𝑗=2

𝑛∑︁
𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

(1, 𝑥01,0̄,
¯̄0)𝑐𝑗𝑐𝑘 +

𝑟∑︁
𝑗=2

𝑟∑︁
𝑘=2

𝜕2𝑓𝑖
𝜕𝑢𝑗𝜕𝑢𝑘

(1, 𝑥01,0̄,
¯̄0)𝑑𝑗𝑑𝑘 +

+ 2
𝑛∑︁

𝑗=2

𝑟∑︁
𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑢𝑘

(1, 𝑥01,0̄,
¯̄0)𝑐𝑗𝑑𝑘 − 2α𝑒−ατ

𝑛∑︁
𝑗=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑡

(1, 𝑥01,0̄,
¯̄0)𝑐𝑗 −

− 2α𝑒−ατ
𝑟∑︁

𝑗=2

𝜕2𝑓𝑖
𝜕𝑢𝑗𝜕𝑡

(1, 𝑥01,0̄,
¯̄0)𝑑𝑗 + 𝑒−2ατ𝜕

2𝑓𝑖
𝜕𝑡2

(1, 𝑥01,0̄,
¯̄0)

)︂
+ . . .+

+ α𝑒−ατ
∑︁

|𝑘|+|𝑚|+𝑙=2𝑛−2,

1

𝑘!𝑚!𝑙!

𝜕𝑓
|𝑘|+|𝑚|+𝑙
𝑖

𝜕𝑥2𝑘2 . . . 𝜕𝑥𝑛𝑘𝑛𝜕𝑢2𝑚2 . . . 𝜕𝑢𝑟𝑚𝑟𝜕𝑡𝑙
(1, 𝑥01,0̄,

¯̄0) ×

× 𝑐2
𝑘2 . . . 𝑐𝑛

𝑘𝑛𝑑𝑚2
2 . . . 𝑑𝑟

𝑚𝑟(−1)𝑙𝑒−𝑙ατ +

+ α𝑒−ατ ×
∑︁

|𝑘|+|𝑚|+𝑙=2𝑛−1,

1

𝑘!𝑚!𝑙!

𝜕𝑓
|𝑘|+|𝑚|+𝑙
𝑖

𝜕𝑥𝑘22 . . . 𝜕𝑥𝑘𝑛𝑛 𝜕𝑢𝑚2
2 . . . 𝜕𝑢𝑚𝑟

𝑟 𝜕𝑡𝑙
(𝑡(τ), 𝑥01, ˜̄𝑐,

˜̄𝑑) ×

× 𝑐2
𝑘2 . . . 𝑐𝑛

𝑘𝑛𝑑2
𝑚2 . . . 𝑑𝑟

𝑚𝑟(−1)𝑙𝑒−𝑙ατ, 𝑖 = 2, . . . , 𝑛.

(3.19)

Further considerations we will conduct on the condition of the restrictions
for function 𝑐(τ):

‖𝑐(τ)‖ < 𝐶,𝐶 > 0. (3.20)

Let us to perform 2𝑛 − 1 shift-transformations of the function 𝑐𝑖 → 𝑐
(2𝑛−1)
𝑖 . The

main goal of these transformations is the norm of right-side summands, which do not
contain components of vectors 𝑐(2𝑛−1) and 𝑑, should satisfy the following estimation
𝑂(𝑒−2𝑛ατ|𝑥01|), τ → ∞, 𝑥01 → 0. At the first stage, we are replacing 𝑐𝑖(τ) with
𝑐
(1)
𝑖 (τ) by a formula:

𝑐𝑖 = 𝑐
(1)
𝑖 (τ)− 𝑒−ατ𝑓𝑖(1, 𝑥

0
1,0̄,

¯̄0), 𝑖 = 2, . . . , 𝑛. (3.21)

Let 𝐷|𝑘|+|𝑚|+𝑙𝑓𝑖 =
𝜕𝑓

|𝑘|+|𝑚|+𝑙
𝑖

𝜕𝑥
𝑘2
2 ...𝜕𝑥𝑘𝑛

𝑛 𝜕𝑢
𝑚2
2 ...𝜕𝑢𝑚𝑟

𝑟 𝜕𝑡𝑙
.
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For compact recording, we introduce the notation:

𝐹𝑖(𝑥
0
1) = 𝑓𝑖(1, 𝑥

0
1,0̄,

¯̄0), 𝑖 = 2, . . . , 𝑛. (3.22)

Obviously,

𝐹𝑖(0) = 0, 𝑖 = 2, . . . , 𝑛. (3.23)

We obtain the following system after substituting (3.21) into the left and right
sides of (3.19) and taking into account the introduced notations:
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𝑑𝑐
(1)
𝑖

𝑑τ
= −α𝑒−2ατ

𝑛∑︁
𝑗=2

𝜕𝑓𝑖
𝜕𝑥𝑗

(1, 𝑥01,0̄,
¯̄0)𝐹𝑗(𝑥

0
1)

+α𝑒−3ατ
(︀1
2

𝑛∑︁
𝑗=2

𝑛∑︁
𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

(1, 𝑥01,0̄,
¯̄0)𝐹𝑗(𝑥

0
1)𝐹𝑘(𝑥

0
1) +

𝑛∑︁
𝑗=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑡

(1, 𝑥01,0̄,
¯̄0)𝐹𝑗(𝑥

0
1)
)︀

+α𝑒−ατ
(︂ 𝑛∑︁

𝑗=2

𝜕𝑓𝑖
𝜕𝑥𝑗

(1, 𝑥01,0̄,
¯̄0)𝑐

(1)
𝑗 +

𝑟∑︁
𝑗=2

𝜕𝑓𝑖
𝜕𝑢𝑗

(1, 𝑥01,0̄,
¯̄0)𝑑𝑗 − 𝑒−ατ

𝜕𝑓𝑖
𝜕𝑡

(1, 𝑥01,0̄,
¯̄0)

)︂

−1

2
α𝑒−2ατ

(︂ 𝑛∑︁
𝑗=2

𝑛∑︁
𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

(1, 𝑥01,0̄,
¯̄0)𝑐

(1)
𝑗 𝐹𝑘(𝑥

0
1)

+
𝑛∑︁

𝑗=2

𝑛∑︁
𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

(1, 𝑥01,0̄,
¯̄0)𝐹𝑗(𝑥

0
1)𝑐

(1)
𝑘 + 2

𝑛∑︁
𝑗=2

𝑟∑︁
𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑢𝑘

(1, 𝑥01,0̄,
¯̄0)𝐹𝑗(𝑥

0
1)𝑑𝑘

)︂

+
1

2
α𝑒−ατ

(︂ 𝑛∑︁
𝑗=2

𝑛∑︁
𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

(1, 𝑥01,0̄,
¯̄0)𝑐

(1)
𝑗 𝑐

(1)
𝑘 +

𝑟∑︁
𝑗=2

𝑟∑︁
𝑘=2

𝜕2𝑓𝑖
𝜕𝑢𝑗𝜕𝑢𝑘

(1, 𝑥01,0̄,
¯̄0)𝑑𝑗𝑑𝑘

+ 2
𝑛∑︁

𝑗=2

𝑟∑︁
𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑢𝑘

(1, 𝑥01,0̄,
¯̄0)𝑐

(1)
𝑗 𝑑𝑘 − 2α𝑒−ατ

𝑛∑︁
𝑗=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑡

(1, 𝑥01,0̄,
¯̄0)𝑐

(1)
𝑗

− 2α𝑒−ατ
𝑟∑︁

𝑗=2

𝜕2𝑓𝑖
𝜕𝑢𝑗𝜕𝑡

(1, 𝑥01,0̄,
¯̄0)𝑑𝑗 + 𝑒−2ατ𝜕

2𝑓𝑖
𝜕𝑡2

(1, 𝑥01,0̄,
¯̄0)

)︂
+ . . .+

+ α𝑒−ατ
∑︁

|𝑘|+|𝑚|+𝑙=2𝑛−2,

1

𝑘!𝑚!𝑙!
𝐷|𝑘|+|𝑚|+𝑙𝑓𝑖(1, 𝑥

0
1,0̄,

¯̄0)×

(𝑐
(1)
2 − 𝑒−ατ𝐹2(𝑥

0
1))

𝑘2
. . . (𝑐(1)𝑛 − 𝑒−ατ𝐹𝑛(𝑥

0
1))

𝑘𝑛
𝑑2

𝑚2 . . . 𝑑𝑟
𝑚𝑟(−1)𝑙𝑒−𝑙ατ

+ α𝑒−ατ
∑︁

|𝑘|+|𝑚|+𝑙=2𝑛−1,

1

𝑘!𝑚!𝑙!
𝐷|𝑘|+|𝑚|+𝑙𝑓𝑖(𝑡(τ), 𝑥

0
1, ˜̄𝑐,

˜̄𝑑)×

(𝑐
(1)
2 − 𝑒−ατ𝐹2(𝑥

0
1))

𝑘2
. . . (𝑐(1)𝑛 − 𝑒−ατ𝐹𝑛(𝑥

0
1))

𝑘𝑛
𝑑2

𝑚2 . . . 𝑑𝑟
𝑚𝑟(−1)𝑙𝑒−𝑙ατ,

𝑖 = 2, . . . , 𝑛.

(3.24)
Initial conditions will take the form:

𝑐
(1)
𝑖 (0) = 𝑥0𝑖 + 𝐹𝑖(𝑥

0
1), 𝑖 = 2, . . . , 𝑛. (3.25)

At the next stage, we are replacing variables using the formula:
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𝑐
(1)
𝑖 = 𝑐

(2)
𝑖 (τ) + 𝑒−2ατ

(︂ 𝑛∑︁
𝑗=2

𝜕𝑓𝑖
𝜕𝑥𝑗

(1, 𝑥01,0̄,
¯̄0)

)︂
𝐹𝑖(𝑥

0
1) =

= 𝑐
(2)
𝑖 (τ) + 𝑒−2ατφ

(2)
𝑖 (𝑥01), 𝑖 = 2, . . . , 𝑛,

(3.26)

where φ(2)
𝑖 (𝑥01) =

∑︀𝑛
𝑗=2

𝜕𝑓𝑖
𝜕𝑥𝑗

(1, 𝑥01,0̄,
¯̄0)𝐹𝑗(𝑥

0
1),

It follows from (3.23) that

φ
(2)
𝑖 (0) = 0. (3.27)

After substituting (3.26) in the left-hand and right-hand sides of the system
(3.24), we obtain

𝑑𝑐
(2)
𝑖

𝑑τ
= α𝑒−3ατ

(︂
1

2

𝑛∑︁
𝑗=2

𝑛∑︁
𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

(1, 𝑥01,0̄,
¯̄0)𝐹𝑗(𝑥

0
1)𝐹𝑘(𝑥

0
1)

+
𝑛∑︁

𝑗=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑡

(1, 𝑥01,0̄,
¯̄0)𝐹𝑗(𝑥

0
1) +

𝑛∑︁
𝑗=2

𝜕𝑓𝑖
𝜕𝑥𝑗

(1, 𝑥01,0̄,
¯̄0)φ

(2)
𝑗 (𝑥01)

)︂

−1

2
α𝑒−4ατ ×

(︂ 𝑛∑︁
𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

(1, 𝑥01,0̄,
¯̄0)φ

(2)
𝑗 (𝑥01)𝐹𝑘(𝑥

0
1)

+
𝑛∑︁

𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

(1, 𝑥01,0̄,
¯̄0)𝐹𝑗(𝑥

0
1)φ

(2)
𝑘 (𝑥01)

+2
𝑛∑︁

𝑗=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑡

(1, 𝑥01,0̄,
¯̄0)φ

(2)
𝑗 (𝑥01)

+α𝑒−ατ
𝑛∑︁

𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

(1, 𝑥01,0̄,
¯̄0)φ

(2)
𝑗 (𝑥01)φ

(2)
𝑘 (𝑥01)

)︂

(3.28)

+α𝑒−ατ
(︂∑︀𝑛

𝑗=2
𝜕𝑓𝑖
𝜕𝑥𝑗

(1, 𝑥01,0̄,
¯̄0)𝑐

(2)
𝑗 +

∑︀𝑟
𝑗=2

𝜕𝑓𝑖
𝜕𝑢𝑗

(1, 𝑥01,0̄,
¯̄0)𝑑𝑗 − 𝑒−ατ 𝜕𝑓𝑖𝜕𝑡 (1, 𝑥

0
1,0̄,

¯̄0)

)︂
−α𝑒−2ατ

(︂∑︀𝑛
𝑗=2

∑︀𝑛
𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

(1, 𝑥01,0̄,
¯̄0)𝑐

(2)
𝑗 𝐹𝑘(𝑥

0
1)

+
∑︀𝑛

𝑗=2

∑︀𝑛
𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

(1, 𝑥01,0̄,
¯̄0)𝐹𝑗(𝑥

0
1)𝑐

(2)
𝑘 +

∑︀𝑛
𝑗=2

∑︀𝑟
𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑢𝑘

(1, 𝑥01,0̄,
¯̄0)𝐹𝑗(𝑥

0
1)𝑑𝑘

)︂
+1

2α𝑒
−3ατ

(︂∑︀𝑛
𝑗=2

∑︀𝑛
𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

(1, 𝑥01,0̄,
¯̄0)𝑐

(2)
𝑗 φ

(2)
𝑘 (𝑥01)

+
∑︀𝑛

𝑗=2

∑︀𝑛
𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

(1, 𝑥01,0̄,
¯̄0)φ

(2)
𝑗 (𝑥01)𝑐

(2)
𝑘 +∑︀𝑛

𝑗=2

∑︀𝑟
𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑢𝑘

(1, 𝑥01,0̄,
¯̄0)φ

(2)
𝑗 (𝑥01)𝑑𝑘

)︂
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+ 1
2α𝑒

−ατ
(︂∑︀𝑛

𝑗=2

∑︀𝑛
𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

(1, 𝑥01,0̄,
¯̄0)𝑐

(2)
𝑗 𝑐

(2)
𝑘 +

∑︀𝑟
𝑗=2

∑︀𝑟
𝑘=2

𝜕2𝑓𝑖
𝜕𝑢𝑗𝜕𝑢𝑘

(1, 𝑥01,0̄,
¯̄0)𝑑𝑗𝑑𝑘

+ 2
∑︀𝑛

𝑗=2

∑︀𝑟
𝑘=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑢𝑘

(1, 𝑥01,0̄,
¯̄0)𝑐

(2)
𝑗 𝑑𝑘 − 2α𝑒−ατ

∑︀𝑛
𝑗=2

𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑡

(1, 𝑥01,0̄,
¯̄0)𝑐

(2)
𝑗

− 2α𝑒−ατ
∑︀𝑟

𝑗=2
𝜕2𝑓𝑖
𝜕𝑢𝑗𝜕𝑡

(1, 𝑥01,0̄,
¯̄0)𝑑𝑗 + 𝑒−2ατ 𝜕2𝑓𝑖

𝜕𝑡2 (1, 𝑥
0
1,0̄,

¯̄0)

)︂
+ . . .+

+ α𝑒−ατ
∑︀

|𝑘|+|𝑚|+𝑙=2𝑛−2,
1

𝑘!𝑚!𝑙!𝐷
|𝑘|+|𝑚|+𝑙𝑓𝑖(1, 𝑥

0
1,0̄,

¯̄0)×
(𝑐

(2)
2 − 𝑒−ατ𝐹2(𝑥

0
1) + 𝑒−2ατφ

(2)
2 (𝑥01))

𝑘2
. . . (𝑐

(2)
𝑛 − 𝑒−ατ𝐹𝑛(𝑥

0
1) + 𝑒−2ατφ

(2)
𝑛 (𝑥01))

𝑘𝑛×
𝑑2

𝑚2 . . . 𝑑𝑟
𝑚𝑟(−1)𝑙𝑒−𝑙ατ + α𝑒−ατ

∑︀
|𝑘|+|𝑚|+𝑙=2𝑛−1,

1
𝑘!𝑚!𝑙!𝐷

|𝑘|+|𝑚|+𝑙𝑓𝑖(𝑡(τ), 𝑥
0
1, ˜̄𝑐,

˜̄𝑑)×
(𝑐

(2)
2 − 𝑒−ατ𝐹2(𝑥

0
1) + 𝑒−2ατφ

(2)
2 (𝑥01))

𝑘2
. . . (𝑐

(2)
𝑛 − 𝑒−ατ𝐹𝑛(𝑥

0
1) + 𝑒−2ατφ

(2)
𝑛 (𝑥01))

𝑘𝑛×
𝑑2

𝑚2 . . . 𝑑𝑟
𝑚𝑟(−1)𝑙𝑒−𝑙ατ, 𝑖 = 2, . . . , 𝑛.

Initial conditions will take the form

𝑐
(2)
𝑖 (0) = 𝑥0𝑖 + 𝐹𝑖(𝑥

0
1)−φ

(2)
𝑖 (𝑥01), 𝑖 = 2, . . . , 𝑛. (3.29)

Obviously, the summands of the right side of the system (3.28), which are not
consisting components of vectors 𝑐(2) and 𝑑 satisfy the estimation 𝑂(𝑒−3ατ|𝑥01|) at
τ → ∞, 𝑥01 → 0 in the domain (3.20), (3.6).

Based on (3.21), (3.24), (3.26), (3.28) and inductive transition, the shift
transformasion on the 𝑘−th stage will take a form

𝑐
(𝑘−1)
𝑖 = 𝑐

(𝑘)
𝑖 (τ) + 𝑒−𝑘ατφ

(𝑘)
𝑖 (𝑥01), φ

(𝑘)
𝑖 (0) = 0, 𝑖 = 2, . . . , 𝑛. (3.30)

If transformation (3.30) to apply 2𝑛 − 1 times and in the right-hand side
of obtained system to join linear by components of vector 𝑐(2𝑛−1) summands with
factors 𝑒−𝑖ατ 𝑖 = 1, . . . , 𝑛 and also, summands which are linear by components of
vector 𝑑 with factors 𝑒−𝑖ατ 𝑖 = 1, . . . , 𝑛, then in accordance with formulae (3.21),
(3.24), (3.25), (3.26), (3.28), and (3.29) we will obtain system and initial data which
can be written in vector form:

𝑑𝑐(2𝑛−1)

𝑑τ
= 𝑃 (𝑥01) · 𝑐(2𝑛−1) +𝑄(𝑥01) · 𝑑+𝑅1(τ, 𝑥

0
1, 𝑐

(2𝑛−1), 𝑑)+

+𝑅2(τ, 𝑥
0
1, 𝑐

(2𝑛−1), 𝑑) +𝑅3(τ, 𝑥
0
1, 𝑐

(2𝑛−1),𝑑) +𝑅4(τ, 𝑥
0
1, 𝑐

(2𝑛−1),𝑑);

𝑅1 = (𝑅1
2, . . . , 𝑅

1
𝑛)

𝑇 , 𝑅2 = (𝑅2
2, . . . , 𝑅

2
𝑛)

𝑇 , 𝑅3 = (𝑅3
2, . . . , 𝑅

3
𝑛)

𝑇 ,

𝑅4 = (𝑅4
2, . . . , 𝑅

4
𝑛)

𝑇 .

(3.31)
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From condition (3.13) and differentiation as complex functions of functions 𝑓𝑖, 𝑖 =

2, . . . , 𝑛 by components of vectors �̄�, �̄� and variable 𝑡 we obtain equality:

𝑃 (𝑥01) = α𝑒
−ατ(𝐴(𝑥01) + α𝑒

−ατ𝑃2(𝑥
0
1) + . . .+ α𝑒−(𝑛−1)ατ𝑃𝑛(𝑥

0
1)),

𝑄(𝑥01) = α𝑒
−ατ(𝐵(𝑥01) + α𝑒

−ατ𝑄2(𝑥
0
1) + . . .+ α𝑒−(𝑛−1)ατ𝑄𝑛(𝑥

0
1)),

(3.32)

𝑐
(2𝑛−1)
𝑖 (0) = 𝑥0𝑖 + 𝐹𝑖(𝑥

0
1)−φ

(2)
𝑖 (𝑥01)− . . .−φ(2𝑛−1)

𝑖 (𝑥01), , 𝑖 = 2, . . . , 𝑛,

φ
(𝑘)
𝑖 (𝑥01) = (φ

(𝑘)
2 (𝑥01), . . . ,φ

(2𝑛−1)
𝑛 (𝑥01)), 𝑘 = 2, . . . , 2𝑛− 1, φ

(𝑘)
𝑖 (0) = 0.

(3.33)

It is easy to see that

𝑃𝑖(𝑥
0
1) → 0, 𝑄𝑖(𝑥

0
1) → 0 при 𝑥01 → 0, 𝑖 = 2, . . . ,𝑛. (3.34)

Besides

𝐴(0) = 𝐴0, 𝐵(0) = 𝐵0. (3.35)

Functions 𝑅1
𝑖 contain summands of the right-hand side of the system (3.31) which

are linear depending from components 𝑐(2𝑛−1) with factors 𝑒−𝑖ατ, where 𝑖 ⩾ 𝑛 + 1.
𝑅2

𝑖 includes summands of the right-hand side of the system (3.31) that are linearly
dependent from components 𝑑 with factors 𝑒−𝑖ατ, 𝑖 ⩾ 𝑛+1. 𝑅3

𝑖 contains summands
of the right-hand side of the system (3.31), which are linear depending on the
components of vectors 𝑐(2𝑛−1) and 𝑑. 𝑅4

𝑖 contains from the summands which are
not contain degrees of the components of vectors 𝑐(2𝑛−1) and 𝑑.

It follows from conditions (3.21), (3.26), and (3.30) that there exist constants
𝐶1 > 0 and ε1 > 0 such that, for all 𝑐(2𝑛−1) and 𝑥01 which belong to the domain

||𝑐(2𝑛−1)|| < 𝐶1, |𝑥01| < ε1. (3.36)

The corresponding function 𝑐(τ) will belong to the domain (3.20).
It follows from conditions (3.2), (3.3), and the construction of functions 𝑅1,

𝑅2, 𝑅3, 𝑅4 that estimations
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‖𝑅1(τ, 𝑥
0
1, 𝑐

(2𝑛−1), 𝑑)‖ ⩽ 𝑒−(𝑛+1)ατ𝐿1‖𝑐(2𝑛−1)‖, 𝐿1 > 0, (3.37)

‖𝑅2(τ, 𝑥
0
1, 𝑐

(2𝑛−1), 𝑑)‖ ⩽ 𝑒−(𝑛+1)ατ𝐿2‖𝑑‖, 𝐿2 > 0, (3.38)

‖𝑅3(τ, 𝑥
0
1, 𝑐

(2𝑛−1), 𝑑)‖ ⩽ 𝑒−ατ𝐿3(‖𝑐(2𝑛−1)‖2 + ‖𝑑‖2), 𝐿3 > 0, (3.39)

‖𝑅4(τ, 𝑥
0
1, 𝑐

(2𝑛−1), 𝑑)‖ ⩽ 𝑒−2𝑛ατ𝐿4(𝑥
0
1), 𝐿4(𝑥

0
1) → 0 при 𝑥01 → 0. (3.40)

are fair in the domain (3.6), (3.36).
Constants 𝐿𝑖, 𝑖 = 1 . . . 4 depend from domain (3.36).
Introduce the auxiliary control function ῡ which is related to the original 𝑑

by the following system of differential equations

𝑑

𝑑τ
𝑑(τ) = ῡ, ῡ = (υ1, . . . ,υ𝑟−1)

𝑇 . (3.41)

Let

𝑑(0) = ¯̄0. (3.42)

Then the equations system (3.31), (3.41), and initial conditions (3.33), (3.42) will
take a form

𝑑

𝑑τ
𝑐(2𝑛−1) = 𝑃 (𝑥01) · 𝑐(2𝑛−1) + �̄�(𝑥01) · ῡ+ �̄�1(τ, 𝑥

0
1, 𝑐

(2𝑛−1), 𝑑)+

+�̄�2(τ, 𝑥
0
1, 𝑐

(2𝑛−1), 𝑑) + �̄�3(τ, 𝑥
0
1, 𝑐

(2𝑛−1),𝑑) + �̄�4(τ, 𝑥
0
1, 𝑐

(2𝑛−1),𝑑),
(3.43)

𝑃 (𝑥01) =

(︃
𝑃 (𝑥01) 𝑄(𝑥01)

𝑂1 𝑂2

)︃
𝑛+𝑟−2×𝑛+𝑟−2

, �̄� =

(︃
𝑂3

𝐸

)︃
𝑛+𝑟−2×𝑟−1

,

where 𝑐(2𝑛−1) = (𝑐(2𝑛−1), 𝑑)𝑇𝑛+𝑟−2×1, �̄�1 = (𝑅1
2, . . . , 𝑅

1
𝑛, 0, . . . , 0)

𝑇
𝑛+𝑟−2×1,

�̄�2 = (𝑅2
2, . . . , 𝑅

2
𝑛, 0, . . . , 0)

𝑇
𝑛+𝑟−2×1, �̄�3 = (𝑅3

2, . . . , 𝑅
3
𝑛, 0, . . . , 0)

𝑇
𝑛+𝑟−2×1,

�̄�4 = (𝑅4
2, . . . , 𝑅

4
𝑛, 0, . . . , 0)

𝑇
𝑛+𝑟−2×1, 𝑂1, 𝑂2, 𝑂3 are null-matrices with

corresponding dimensions, and 𝐸 is an identity matrix,

𝑐(2𝑛−1)(0) = 𝑐
(2𝑛−1)
0 , 𝑐

(2𝑛−1)
0 = (𝑐

(2𝑛−1)
0 , 0, . . . , 0)𝑇𝑛+𝑟−2×1. (3.44)

Further proof will be based on the following lemma.
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3.4 Formulation and proof of the auxiliary lemma

Consider the linear part of the system (3.43):

𝑑

𝑑τ
𝑐(2𝑛−1) = 𝑃 · 𝑐(2𝑛−1) + �̄� · ῡ. (3.45)

Lemma 3.1. Let conditions (3.2), (3.5) be satisfied. Then there exists a
positive number ε2: 0 < ε2 < ε1 such that for all 𝑥01: |𝑥01| < ε2 there exists an
auxiliary control function ῡ(τ) in the form

ῡ(τ) = 𝑀(τ)𝑐(2𝑛−1), ‖𝑀(τ)‖ = 𝑂(𝑒(𝑛−1)ατ) при τ→ ∞, (3.46)

which obtain exponential decreasing of the fundamental matrix of the system (3.45)
which is closed by an auxiliary control function (3.46).

P r o o f o f t h e l e m m a. Let us denote 𝑗-th column of the matrix �̄� as
𝐿𝑗
1, 𝑗 = 1, . . . , 𝑟 − 1. Consider matrix

𝑆1 =
{︀
𝐿1
1,𝐿

1
2, . . . ,𝐿

1
𝑘1
,𝐿2

1,𝐿
2
2, . . . ,𝐿

2
𝑘2
, . . . , 𝐿𝑟−1

1 ,𝐿𝑟−1
2 , . . . ,𝐿𝑟−1

𝑘𝑟−1

}︀
,

𝐿𝑗
𝑖 = 𝑃𝐿𝑗−1

𝑖 − 𝑑𝐿𝑗−1
𝑖

𝑑τ
, 𝑗 = 1, . . . , 𝑟 − 1, 𝑖 = 2, . . . , 𝑘𝑗,

where 𝑘𝑗, 𝑗 = 1, . . . , 𝑟−1, is the maximum column number of the matrix 𝐿𝑗
1, . . . ,𝐿

𝑗
𝑘𝑗

,
𝑗 = 1, . . . ,𝑟−1, such that vectors 𝐿1

1,𝐿
1
2, . . . ,𝐿

1
𝑘1
,𝐿2

1,𝐿
2
2, . . . ,𝐿

2
𝑘2
, . . . , 𝐿𝑟−1

1 ,𝐿𝑟−1
2 , . . . ,𝐿𝑟−1

𝑘𝑟−1

are linear independent.
With accuracy before permutation of columns, the structure of the matrix 𝑆1 is(︃

𝑂𝑛−1×𝑟−1 𝐿1 . . . 𝐿𝑛−1

𝐸𝑟−1×𝑟−1 𝑂𝑟−1×𝑟−1 . . . 𝑂𝑟−1×𝑟−1

)︃
,

where 𝑂𝑟−1×𝑟−1 is null-matrix with dimension 𝑟 − 1× 𝑟 − 1;

𝐿1 = 𝑄, 𝐿𝑖 = 𝑃𝐿𝑖 − 𝑑𝐿𝑖−1

𝑑τ , 𝑖 = 2, . . . , 𝑛− 1.

Let us show that the rank of the matrix 𝑆1 equals to 𝑛 + 𝑟 − 2.
Let 𝑆2 = {𝐿1, . . . , 𝐿𝑛−1}.
Introduce a matrix 𝑆3 = {�̄�1, . . . , �̄�𝑛−1}. �̄�1 = α𝑒−ατ𝐵(𝑥01), �̄�𝑖 =

α𝑒−ατ𝐴(𝑥01)𝐿𝑖 − 𝑑𝐿𝑖−1

𝑑τ , 𝑖 = 2, . . . , 𝑛 − 1.
Conditions (3.34) guarantee ε̄ < ε1 existation of ε̄ < ε1 such that ∀𝑥01 : |𝑥01| <

ε̄, 𝑟𝑎𝑛𝑘 𝑆2 = 𝑟𝑎𝑛𝑘 𝑆3.
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Reasoning by contradiction, taking into account conditions (3.5), (3.35), it is
easy to see that there exists ε̃: 0 < ε̃ < ε̄ such that ∀𝑥01 : |𝑥01| < ε̃ and

𝑟𝑎𝑛𝑘 𝑆3 = 𝑟𝑎𝑛𝑘 𝑆0 = 𝑛− 1. (3.47)

From equality (3.47) and structure of the matrix 𝑆1 follows

rank 𝑆1 = 𝑛+ 𝑟 − 2. (3.48)

It follows from the column construction of the matrix 𝑆2 that its elements
decreases not higher than 𝑒−(𝑛−1)ατ, as τ→ ∞. Hence, elements of the matrix 𝑆−1

2

increase not faster than 𝑒(𝑛−1)ατ, as τ→ ∞. As a result, we obtain an estimation:

‖𝑆−1
1 ‖ = 𝑂(𝑒(𝑛−1)ατ), τ→ ∞. (3.49)

Let us replace variables, taking into account (3.48):

𝑐(2𝑛−1) = 𝑆1(τ)𝑦, 𝑦 = (𝑦1, . . . , 𝑦𝑛+𝑟−2)
𝑇 . (3.50)

Finally, the system (3.45) takes the form:

𝑑𝑦

𝑑τ
= 𝑆−1

1

(︂
𝑃𝑆1 −

𝑑𝑆1

𝑑τ

)︂
𝑦 + 𝑆−1

1 �̄�ῡ. (3.51)

According to work [57], the matrix of the right-hand side of (3.51) takes a form

𝑆−1
1

(︂
𝑃𝑆1 −

𝑑𝑆1

𝑑τ

)︂
=

{𝑒2, . . . , 𝑒𝑘1,φ𝑘1(τ), . . . , 𝑒𝑘1+...+𝑘𝑟−1+2, . . . , 𝑒𝑘1+...+𝑘𝑟−1
,φ𝑘𝑟−1

(τ)}.
(3.52)

In (3.52) 𝑒𝑖 = (0, . . . ,1, . . . ,0)𝑇𝑛+𝑟−2×1 is a matrix column in which 1 is on the 𝑖-th
place.

Components of the vector φ𝑘𝑗(τ) take the form:

φ𝑘𝑗(τ) = (−φ1
𝑘1
(τ), . . . ,−φ𝑘1

𝑘1
(τ), . . . ,−φ1

𝑘𝑗
(τ), . . . ,−φ𝑘𝑗

𝑘𝑗
(τ), 0, . . . , 0)𝑇𝑛+𝑟−2×1,
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where −φ𝑖
𝑘𝑗
(τ) are coefficients of decomposition of the vector 𝐿𝑗

𝑘𝑗+1 by vectors 𝐿1
𝑖 ,

𝑖 = 1, . . . , 𝑘1; 𝐿
2
𝑖 , 𝑖 = 1, . . . , 𝑘2; 𝐿𝑗

𝑖 , 𝑖 = 1, . . . , 𝑘𝑗, 𝑗 = 1, . . . , 𝑟−1,
∑︀𝑟−1

𝑗=1 𝑘𝑗 =

𝑛 + 𝑟 − 2.

𝐿𝑗
𝑘𝑗+1 = −

𝑘1∑︁
𝑖=1

φ𝑖
𝑘1
(τ)𝐿1

𝑖 − . . .−
𝑘𝑗∑︁
𝑖=1

φ𝑖
𝑘𝑗
(τ)𝐿𝑗

𝑖 ,

𝑆−1
1 𝑄 = {𝑒1, . . . ,𝑒𝑘𝑗+1, . . . , 𝑒γ+1}, γ =

𝑟−2∑︁
𝑖=1

𝑘𝑖.

(3.53)

Consider a stabilisation problem for a system of ordinary differential equations

𝑑𝑦𝑘𝑗
𝑑τ

= {𝑒𝑘𝑗2 , . . . ,𝑒
𝑘𝑗
𝑘𝑗
,φ̄𝑘𝑗}𝑦𝑘𝑗 + 𝑒

𝑘𝑗
1 𝑑𝑗, 𝑗 = 1, . . . ,𝑟 − 1, (3.54)

where 𝑦𝑘𝑗 = (𝑦1𝑘𝑗 , . . . ,𝑦
𝑘𝑗
𝑘𝑗
)𝑇𝑘𝑗×1, 𝑒

𝑘𝑗
1 = (0, . . . ,1, . . . ,0)𝑇𝑘𝑗×1, 1 is in the 𝑖-th position,

φ̄𝑖
𝑘𝑗

= (−φ1
𝑘𝑗
, . . . , − φ

𝑘𝑗
𝑘𝑗
)𝑇𝑘𝑖×1.

Let 𝑦
𝑘𝑗
𝑘𝑗

= ψ.
Equalities

𝑦
𝑘𝑗
𝑘𝑗

= ψ, 𝑦
𝑘𝑗−1
𝑘𝑗

= ψ(1) +φ
𝑘𝑗
𝑘𝑗
ψ,

𝑦
𝑘𝑗−2
𝑘𝑗

= ψ(2) +φ
𝑘𝑗
𝑘𝑗
ψ(1) +

(︂
𝑑φ

𝑘𝑗
𝑘𝑗

𝑑τ
+φ

𝑘𝑗−1
𝑘𝑗

)︂
ψ,

𝑦1𝑘𝑗 = ψ
(𝑘𝑗−1) + 𝑟𝑘𝑗−2(τ)ψ

(𝑘𝑗−2) + . . .+ 𝑟1(τ)ψ
(1) + 𝑟0(τ)ψ.

(3.55)

follow from the structure of the right-hand side matrix of the system (3.54).
Let us differentiate the last equality from (3.55) and substitute the resulting

expression in the first equation of the system (3.54). As a result, we obtain the
following system:

ψ(𝑘𝑗) + ε𝑘𝑗−1(τ)ψ
(𝑘𝑗−1) + . . .+ ε0(τ)ψ = υ𝑗, 𝑗 = 1, . . . ,𝑟 − 1. (3.56)

Remark 3.3. It follows from columns construting of the matrix 𝑆1 and
formulae (3.53) that functions φ𝑘𝑗

𝑘𝑗
, . . . ,φ2

𝑘𝑗
,φ1

𝑘𝑗
, them derivatives and also functions

𝑟𝑘𝑗−2(τ), . . . , 𝑟1(τ), 𝑟0(τ) are limited.
Let

υ𝑗 =

𝑘𝑗∑︁
𝑖=1

(ε𝑘𝑗−𝑖(τ)− γ𝑘𝑗−𝑖)ψ
(𝑘𝑗−𝑖), 𝑗 = 1, . . . ,𝑟 − 1, (3.57)
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and coefficients γ𝑘𝑗−𝑖 are chosen so that the roots of the characteristic equation

λ𝑘𝑖 + γ𝑘𝑖−1λ
𝑘𝑖−1 + . . .+ γ0 = 0, 𝑖 = 1, . . . , 𝑟 − 1

satisfy the conditions

λ𝑖𝑘𝑖 ̸= λ
𝑗
𝑘𝑖
, 𝑖 ̸= 𝑗; λ𝑗𝑘𝑖 < −(2𝑛+ 1)α− 1, 𝑗 = 1, . . . , 𝑘𝑖, 𝑖 = 1, . . . ,𝑟 − 1. (3.58)

Returning to the original variables, we obtain

υ𝑗 = δ𝑘𝑗𝑇
−1
𝑘𝑗

𝑆−1
1𝑘𝑗

𝑐(2𝑛−1), 𝑗 = 1, . . . , 𝑟 − 1, (3.59)

where δ𝑘𝑗 = (ε𝑘𝑗−1(τ) − γ𝑘𝑗−1, . . . , ε0(τ) − γ0), 𝑇𝑘𝑗 is a matrix from inequalities
(3.55) such that 𝑦𝑘𝑗 = 𝑇𝑘𝑗ψ̄, ψ̄ = (ψ𝑘𝑗−1, . . . ,ψ)𝑇 , 𝑆−1

1𝑘𝑗
is a matrix, consisting of

the corresponding 𝑘𝑗 strings of the matrix 𝑆−1
1 .

The resulting auxiliary function (3.59) may be written in the form (3.46),
where 𝑀(τ) = δ𝑘𝑇

−1
𝑘 𝑆−1

1𝑘 = (δ𝑘1𝑇
−1
𝑘1

𝑆−1
1𝑘1

, . . . , δ𝑘𝑟𝑇
−1
𝑘𝑟

𝑆−1
1𝑘𝑟

)𝑇 .
Let Ψ(τ) be a fundamental matrix of the system (3.56) that is closed by an

auxiliary control function (3.57). It follows from (3.58) that Ψ(τ) is the fundamental
matrix of the exponentially stable linear system of ODEs with constant coefficients.
Hence,

‖Ψ(τ)Ψ(𝑡)−1‖ ⩽ �̄�𝑒−λ(τ−𝑡), �̄� > 0, λ > 0. (3.60)

Consider the system (3.45) closed by the auxiliary control function (3.59):

𝑑𝑐(2𝑛−1)

𝑑τ
= 𝐷(τ)𝑐(2𝑛−1), 𝐷(τ) = 𝑃 (τ) + �̄�(τ)𝑀(τ). (3.61)

Let Φ(τ) (Φ(0) = 𝐸) be the fundamental matrix of the system (3.61). 𝐸

is an identity matrix. Introduce a block diagonal matrix 𝑇 (τ). Matrices 𝑇𝑘𝑗 , 𝑗 =

1, . . . ,𝑟 − 1 are on its diagonal. Then, equality

Φ(τ) = 𝑆1(τ)𝑇 (τ)Ψ(τ)Ψ−1(0)𝑇−1(0)𝑆−1
1 (0) (3.62)

follows from formulae (3.50) and (3.55).
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Further, taking into account Remark 3.3 and formulae (3.49), (3.50), (3.55),
(3.60), and (3.62), we obtain estimations

‖Φ(τ)‖ ⩽ �̄�𝑒−λτ, λ > 0, �̄� > 0,

‖Φ(τ)Φ−1(𝑡)‖ ⩽ �̄�1𝑒
−λ(τ−𝑡)𝑒(𝑛−2)α𝑡, τ ⩾ 𝑡, �̄�1 > 0,

‖𝑀(τ)‖ = 𝑂(𝑒(𝑛−1)ατ), τ→ ∞.

(3.63)

It is possible to take the value ε2 = ε̃ as ε2 from the formulation of the lemma.
The lemma is proved.

3.5 Proof of the theorem

Consider the system (3.43) that is closed by the auxiliary control function
(3.46):

𝑑𝑐(2𝑛−1)

𝑑τ
= 𝐷(τ)𝑐(2𝑛−1) + �̄�1(τ, 𝑥

0
1, 𝑐

(2𝑛−1)) + �̄�2(τ, 𝑥
0
1, 𝑐

(2𝑛−1))+

+�̄�3(τ, 𝑥
0
1, 𝑐

(2𝑛−1)) + �̄�4(τ, 𝑥
0
1, 𝑐

(2𝑛−1)).

(3.64)

Let us replace variables in the system (3.64) using formulae:

𝑐(2𝑛−1) = 𝑧(τ)𝑒−(𝑛−1)ατ, 𝑐(2𝑛−1)(0) = 𝑧(0). (3.65)

As a result, we obtain

𝑑𝑧

𝑑τ
= 𝐶(τ)𝑧 + 𝑒(𝑛−1)ατ(�̄�1(τ, 𝑥

0
1, 𝑧𝑒

−(𝑛−1)ατ)+

+�̄�2(τ, 𝑥
0
1, 𝑧𝑒

−(𝑛−1)ατ) + �̄�3(τ, 𝑥
0
1, 𝑧𝑒

−(𝑛−1)ατ)+

+�̄�4(τ, 𝑥
0
1, 𝑧𝑒

−(𝑛−1)ατ)), 𝐶(τ) = 𝐷(τ) + (𝑛− 1)α𝐸.

(3.66)

Let us show that all solutions of the system (3.66) with initial conditions (3.65)
that are beginning in the small neighbourhood of zero decrease exponentially.

Let Φ1(τ), Φ1(0) = 𝐸 is a fundamental matrix of the system 𝑑𝑧
𝑑τ = 𝐶(τ)𝑧.

Then according to (3.63), (3.65):

‖Φ1(τ)‖ ⩽ �̄�𝑒−βτ, ‖Φ1(τ)Φ
−1
1 (𝑡)‖ ⩽ 𝐾1𝑒

−β(τ−𝑡)𝑒(𝑛−2)α𝑡,

β = λ− (𝑛− 1)α, τ ⩾ 𝑡.
(3.67)
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Let us choose a value of the coefficient α so that the condition

β > 0 (3.68)

is satisfied.
The solution of the system (3.64) with the initial conditions (3.33), (3.44),

and (3.65) may be written as follows:

𝑧(τ) = Φ1(τ)Φ
−1
1 (τ1)𝑧(τ1) +

τ∫︁
τ1

Φ1(τ)Φ
−1
1 (𝑡)𝑒(𝑛−1)α𝑡×

(�̄�1(𝑡, 𝑥
0
1, 𝑧𝑒

−(𝑛−1)α𝑡) + �̄�2(𝑡, 𝑥
0
1, 𝑧𝑒

−(𝑛−1)α𝑡)+

�̄�3(𝑡, 𝑥
0
1, 𝑧𝑒

−(𝑛−1)α𝑡) + �̄�4(𝑡, 𝑥
0
1, 𝑧𝑒

−(𝑛−1)α𝑡))𝑑𝑡, τ ∈ [τ1,∞);

(3.69)

𝑧(τ) = Φ1(τ)𝑐
(2𝑛−1)(0) +

τ∫︁
0

Φ1(τ)Φ
−1
1 (𝑡)𝑒(𝑛−1)α𝑡×

(�̄�1(𝑡, 𝑥
0
1, 𝑧𝑒

−(𝑛−1)α𝑡) + �̄�2(𝑡, 𝑥
0
1, 𝑧𝑒

−(𝑛−1)α𝑡)+

�̄�3(𝑡, 𝑥
0
1, 𝑧𝑒

−(𝑛−1)α𝑡) + �̄�4(𝑡, 𝑥
0
1, 𝑧𝑒

−(𝑛−1)α𝑡))𝑑𝑡, τ ∈ [0,τ1].

(3.70)

Using (3.69), (3.70), and taking into account (3.37) - (3.40), (3.67), (3.68) in
the domain (3.6), and (3.36), we obtain estimations:

‖ 𝑧(τ) ‖⩽ �̄�𝑒−βτ ‖ Φ−1
1 (τ1)𝑧(τ1) ‖ +

τ∫︁
τ1

𝐾1𝑒
−β(τ−𝑡)(𝐿𝑒−α𝑡‖𝑧‖+ 𝐿4(𝑥

0
1)𝑒

−𝑛α𝑡)𝑑𝑡, τ ∈ [τ1,∞),
(3.71)

‖ 𝑧(τ) ‖⩽ �̄�𝑒−βτ ‖ 𝑐(2𝑛−1)(0) ‖ +
τ∫︁

0

𝐾1𝑒
−β(τ−𝑡)(𝐿𝑒−α𝑡‖𝑧‖+ 𝐿4(𝑥

0
1)𝑒

−𝑛α𝑡)𝑑𝑡, τ ∈ [0, τ1],
(3.72)

where 𝐿 > 0 is a constant that depends on the domain (3.6), (3.36).
Applying the well-known result (see [58]) in the domain (3.6), (3.36) to

formulae (3.71), (3.72), we will obtain inequalities
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‖𝑧(τ)‖ ⩽ �̄�𝑒−µτ‖Φ−1
1 (τ1)𝑧(τ1)‖+

τ∫︁
τ1

𝐾1𝑒
−µ(τ−𝑡)𝐿4(𝑥

0
1)𝑒

−𝑛α𝑡𝑑𝑡,

τ ∈ [τ1,∞),

(3.73)

where µ = β − 𝐾1𝐿𝑒
−ατ1,

‖𝑧(τ)‖ ⩽ �̄�𝑒−µ1τ‖𝑐(2𝑛−1)(0)‖+
τ∫︁

0

𝐾1𝑒
−µ1(τ−𝑡)𝐿4(𝑥

0
1)𝑒

−𝑛α𝑡)𝑑𝑡,

τ ∈ [0,τ1],

(3.74)

µ1 = β − 𝐾1𝐿.
Let us choose a value τ1 > 0 so that the condition µ > 0 is fulfilled.
We obtain the following formula after computing the integrals in the right-hand

parts of (3.73), (3.74):

‖𝑧(τ)‖ ⩽ �̄�𝑒−µτ‖Φ−1
1 (τ1)‖‖𝑧(τ1)‖+𝐾2𝑒

−ατ𝐿4(𝑥
0
1), τ ∈ [τ1,∞),

‖𝑧(τ)‖ ⩽ 𝐾3‖𝑐(2𝑛−1)(0)‖+𝐾4𝐿4(𝑥
0
1), τ ∈ [0,τ1].

(3.75)

Here, coefficients �̄�, 𝐾1, 𝐾2, 𝐾3 and 𝐾4 are strictly positive.
Estimations (3.75) may be written as a single inequality:

‖𝑧(τ)‖ ⩽ 𝐾5𝑒
−ατ‖𝑐(2𝑛−1)(0)‖ (3.76)

It follows from (3.65), (3.76) that for all 𝑐(2𝑛−1)(0), which belong to the domain

‖𝑐(2𝑛−1)(0)‖ <
𝐶1

𝐾5
, (3.77)

a solution of the system (3.64) does not leave domain (3.36) and exponentially
decreases.

Using condition (3.33), we will find ε > 0 such that ∀𝑥0, satisfying the
inequality ‖𝑥0‖ < ε, the condition (3.77) is satisfied.

A substitution of the obtained function 𝑧(τ) into the formula (3.65) gives
the known function 𝑐(2𝑛−1)(τ) = (𝑐(2𝑛−1)(τ), 𝑑(τ)). After substituting 𝑐(2𝑛−1) into
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the formula (3.46), we obtain the known function ῡ(τ). Further, using 𝑐(2𝑛−1), with
help of formulae (3.30), (3.26), and (3.21), we will have the pair function 𝑐(τ), 𝑑(τ)
which is a solution of the problem (3.16), (3.18).

The found functions �̄�(𝑡) = 𝑐(τ(𝑡)), �̄�(𝑡) = 𝑑(τ(𝑡)) and υ̃(𝑡) = ῡ(τ(𝑡)) satisfy
the system

˙̄𝑥 = 𝑓(𝑥1(𝑡), �̄�, 𝑢1(𝑥1(𝑡), �̄�, �̄�),�̄�),

˙̄𝑢 = α−1(1− 𝑡)−1υ̃(𝑡)
(3.78)

and the initial conditions

�̄�(0) = �̄�0, �̄�(0) = ¯̄0. (3.79)

Remark 3.4. It follows from the theorem proof that after minor changes to
the condition (3.5) and the proof, its statement will be correct, if we substitute a
function 𝑥𝑖(𝑡) = 𝑝𝑖(𝑡), 𝑖 = 1, . . . , 𝑛 instead of the known function 𝑥0(𝑡) specified
by the formula (3.8). Here, 𝑝𝑖(𝑡) is a polynomial of degree 𝑛 ⩾ 1 satisfying the
boundary condition (3.7).

The theorem has been proved.

3.6 Algorithm description

The algorithm for the original problem solution consists of the following stages:
1. finding the function 𝑢1 from the condition (3.9); as a result, we obtain the

function
𝑢1(𝑥1(𝑡), 𝑥2, . . . , 𝑥𝑛, 𝑢2, . . . , 𝑢𝑟);

2. construction of the system (3.11);
3. construction the auxiliary system (3.43);
4. solution of the stabilisation problem of the system (3.45); as a result, we

obtain the auxiliary control function of the form (3.46) in symbolic form;
5. solution of the Cauchy problem for the system (3.43) with initial conditions

(3.44) closed by the auxiliary control, obtained at stage 4; as a result, we
obtain the known functions 𝑐(2𝑛−1)(τ),𝑑(τ);

6. substitution of the functions 𝑐(2𝑛−1)(τ),𝑑(τ) into the formula (3.46) gives
the known function υ(τ);
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7. transition to the independent variable 𝑡 by the formula (3.15) in the function
ῡ(τ) into the function ῡ(τ); as a result, we will obtain υ̃(𝑡) = ῡ(τ(𝑡));

8. solution of the Cauchy problem (3.78) with initial data (3.79); finally, we
obtain the known functions �̄�(𝑡), �̄�(𝑡);

9. substitution of the found solutions �̄�(𝑡), �̄�(𝑡) into the function
𝑢1(𝑥1(𝑡),�̄�(𝑡), �̄�(𝑡)) and its calculation.

Implementation of the stages from the first to the fourth and also the sixth,
seventh, and ninth may be carried out by analytical methods with the help of
symbolic calculation software. E.g., it is possible to apply the Python Sympy library
[62] or the computer algebra software Wolfram Mathematica [71].

The fifth and eighth stages are being performed by numerical solution methods
for systems of ODEs. For example, one of the Runge-Kutta methods may be applied.

The computational cost of the algorithm is

𝑂(𝑛4) +𝑂

(︂
𝐶2(𝑛) · τ𝑓

ℎ

)︂
+𝑂

(︂
𝐶2(𝑛)

ℎ

)︂
, (3.80)

where 𝑂(𝑛4) is a complexity of symbolic operations; 𝑂(
𝐶2(𝑛)·τ𝑓

ℎ ) is a complexity
cost of the fifth stage of the algorithm; 𝑂(𝐶2(𝑛)

ℎ ) is a complexity cost of the eighth
stage; 𝐶2(𝑛) a function characterising the number of necessary operations for the
calculation of the integrated function; τ𝑓 is a finite value of the time interval; ℎ is an
integration step of the Cauchy problem solution. To determine the computational
cost, the Runge-Kutta method of the 4th degree with a constant integration step
has been taken.

3.7 Solution of the interorbital flight problem

Consider the transition problem of the material point moving along a circular
orbit with constant speed into the central gravitational field to the given point,
lying in the plane of the orbit by a reactive force.
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In accordance with [72], the equations system relating to the moving by circular
orbit has the following form:

�̇�1 = 𝑥2,

�̇�2 = ν1(𝑥1, 𝑥4) + 𝑢1,

�̇�3 = 𝑥4,

�̇�4 = ν2(𝑥1, 𝑥2, 𝑥4) + ν3(𝑥1)𝑢2 ,

(3.81)

where 𝑥1 = 𝑟− 𝑟0, 𝑥2 = �̇�, 𝑥3 = ψ−α0𝑡, 𝑥4 = ψ̇−α0, 𝑢1 = 𝑎γ�̇�/𝑚, 𝑢2 = 𝑎ψ�̇�/𝑚;
𝑟0 is a radius of the circular ofbit, �̇� is a radial velocity; ψ is a polar angle, ψ̇ is an
angular velocity; 𝑎γ, 𝑎ψ is a projection of the relative speed vector of the particle
on radius and transverse directions, respectively, 𝑚, �̇� is a mass and speed of the
mass-changing; α0 is an angular velocity of the moving by the given cicular orbit,

ν1 = − ν
(𝑥1+𝑟0)2

+ (𝑥1 + 𝑟0)(𝑥4 + α0)
2, ν2 = −2𝑥2(𝑥4+α0)

(𝑥1+𝑟0)
, ν3 = 1

𝑥1+𝑟0
,

where ν = 𝐺 ·𝑀 ; 𝐺 = 6.6743 × 10−11 м3 kg−1 с−2 is a gravitational factor,
𝑀 = 5.972×1024 kg is an Earth mass, α0 =

√︁
ν
𝑟30

, 𝑟0 = 7·106 m, 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4)
𝑇 ,

𝑢 = (0, 𝑢1, 0, 𝑢2)
𝑇 .

Problem 3.2. Find functions 𝑥(𝑡), 𝑢(𝑡) satisfying the system (3.81) and
the conditions:

𝑥1(0) = 100, 𝑥2(0) = 0.2, 𝑥3(0) = −α0 · 10−6, 𝑥4(0) = 10−5, 𝑥(1) = 0 (3.82)

𝑥4(𝑡) = (3𝑥04 + 2𝑥03) · 𝑡2 − (4𝑥04 + 6𝑥03) · 𝑡+ 𝑥04. (3.83)

Initial conditions and values of parameters are given according to [37].
The solution to the control problem has been conducted with the help of the

algorithm described in the previous section, using the value α = 0.25.
Let us find the control 𝑢1. Consider the system consisting of the first two

equations of (3.81):

�̇�1 = 𝑥2,
�̇�2 = − ν

(𝑥1+𝑟0)2
+ ((𝑥04(1− 𝑡))2 + 2α0𝑥

0
4(1− 𝑡) + α2

0)𝑥1+

+𝑟0(𝑥
0
4(1− 𝑡))2 + 2α0𝑟0𝑥

0
4(1− 𝑡) + α2

0𝑟0 + 𝑢1,

We do the transition to the new independent variable using the formula (3.15):
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𝑑

𝑑τ
𝑐1 = α𝑒

−ατ𝑐2,

𝑑

𝑑τ
𝑐2 = α𝑒

−ατ
(︂
− ν

(𝑐1 + 𝑟0)2
+ ((𝑥04𝑒

−ατ)2 + 2α0𝑥
0
4𝑒

−ατ + α2
0)𝑐1+

+𝑟0(𝑥
0
4𝑒

−ατ)2 + 2α0𝑟0𝑥
0
4𝑒

−ατ + α2
0𝑟0 + 𝑑1

)︂
,

(3.84)

where 𝑐1(τ) = 𝑥1(𝑡(τ)), 𝑐2(τ) = 𝑥2(𝑡(τ)),

𝑐1(0) = �̄�1, 𝑐2(0) = �̄�2, 𝑑1(0) = 0, 𝑐𝑖(τ) → 0.

Let us perform shift transformations and add the auxiliary control function
υ(τ) to the formula (3.84). As a result, we have a system:

𝑑
𝑑τ𝑐1 = α𝑒

−ατ𝑐2,
𝑑
𝑑τ𝑐2 = α𝑒

−ατ
(︂
− ν

(𝑐1+𝑟0)2
+ ((𝑥04𝑒

−ατ)2 + 2α0𝑥
0
4𝑒

−ατ + α2
0)𝑐1++𝑟0(𝑥

0
4𝑒

−ατ)2 +

2α0𝑟0𝑥
0
4𝑒

−ατ + α2
0𝑟0 + 𝑑1

)︂
, 𝑑
𝑑τ𝑑1 = υ(τ).

Finally, we obtain

𝑢1 =

[︂
2.16 · 10−8 · 𝑡− 3.51 · 10−6 − 4.0

(1− 𝑡)2
− 78.0

α(1− 𝑡)2
−

− 380

α2(1− 𝑡)2

]︂
· 𝑥1 −

3(α+ 13)

α(1− 𝑡)
· 𝑥2

(3.85)

We obtain a control 𝑢2 from the fourth equation of the system (3.81), taking into
account the given function (3.83):

𝑢2 =
((6 · 𝑥04 + 4 · 𝑥03) · 𝑡− (4 · 𝑥04 + 6 · 𝑥03)− ν2(𝑥1, 𝑥2, 𝑥4))

ν3(𝑥1)
(3.86)

We find a numerical solution of the Cauchy problem for the given system after
substitition of control functions (3.85) and (3.86) into the formula (3.81).

The calculation results are presented in Figs. 3.1—3.4. All computations and
graphs were accomplished in the Jupiter Notebook software.
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Figure 3.1 — Graphs of the functions 𝑥1(𝑡), 𝑥2(𝑡)
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Figure 3.2 — Graphs of the functions 𝑥3(𝑡), 𝑥4(𝑡)

Analysis of the numerical simulation results allows us to draw the following
conclusions:

1. It follows from the analysis of graphs (Figs. 3.1—3.4) that the obtained
functions of the state vector correspond to the conditions (3.82), (3.83),
and (3.7).
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Figure 3.3 — Graph of the function 𝑢1(𝑡)
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Figure 3.4 — Graph of the function 𝑢2(𝑡)

2. It follows from the graphs that the norm of the control vector is ||𝑢||∞ =

7858.86.
3. The efficiency of the constructed algorithm is shown.
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3.8 Conclusions for the third chapter

The proposed method may be applied to solve the concrete problems of
computer system verification.

It follows from the formula (3.80) that the computational cost of the algorithm
depends on the integration step of the solution of the Cauchy problem for auxiliary
and original equation systems.

Solutions for problems of small dimension are possible on the personal
computer with middle parameters, and also in the Google Colab software.

For the considered example, the polynomial (3.83) with a degree higher than
in the condition (3.8) has been given, which allows us to conclude the generalisation
possibility of the Problem 3.1 solution.
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Chapter 4. Solution of the control problem for Josephson junction
arrays

4.1 Introduction

A Josephson junction is a possible way to construct a quantum bit (qubit) [73].
A Josephson qubit can be presented as a non-linear resonator. There are three types
of superconducting qubits that are distinguished by how the non-linear resonator
is constructed, namely phase, flux, and charge qubits. Phase and flux qubits are
sensitive to the phase value of the Josephson current [74; 75].

To perform quantum computations, it is necessary to create a chain or an
array of qubits. The dynamics of Josephson junction arrays were studied in detail in
a significant number of works, e.g., [76—78]. The dynamics of an identical non-linear
oscillator network was studied in [79].

Control of one Josephson junction was investigated in [80].
The Josephson junction array may be presented as a multidimensional

controlled system with periodic non-linearities. The dynamics of such systems were
considered in [81].

In [78], the authors show how the phases depend on the global variables of an
electrical circuit: the phases are not stable and grow up with time.

In the current work, an approach to stabilisation of the Josephson junction
array phases is suggested. It is based on the solution of the optimal control problem
for the Josephson junction array in terms of global variables.

The results of this chapter were published in the paper [24].
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4.2 Models description

4.2.1 Identical Josephson junction array model

The identical junctions can be described by the system of ordinary differential
equations in dimensionless global variables [77; 78]:

�̇�𝑖 = 𝐼 − sin𝑥𝑖 − ε𝑥𝑁+2, �̇�𝑁+1 = 𝑥𝑁+2,

�̇�𝑁+2 = 𝐼 − γ𝑥𝑁+2 −ω2
0𝑥𝑁+1 −

1

𝑁

𝑁∑︁
𝑖=1

sin𝑥𝑖
(4.1)

where 𝑥𝑖 is the phase of the 𝑖-th junction; 𝑁 is the total number of junctions;
𝑥𝑁+1 is the load capacitor charge; 𝐼 is the external current; ε, γ and ω2

0 are
dimensionless parameters of the parallel 𝑅𝐿𝐶-load. Initial conditions for the ODE
system are 𝑥0 = (0, . . . , 0, 0.5, 0)𝑇 .

Initial conditions for the ODE’s system are

𝑥0 = (0, . . . , 0, 0.5, 0)𝑇 . (4.2)

An equivalent circuit for the identical Josephson junction array with an
𝑅𝐿𝐶-load connected in parallel is presented in Fig. 4.1.

Figure 4.1 — Equivalent circuit for the identical Josephson junction array with the
common RLC load [82]

The numerical simulation for the solution of equation (4.1) given in Fig. 4.2.
The simulation was made for a 200-junction array, following [78].
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Figure 4.2 — Identical Josephson
junction array simulation results. The
values of the parameters are (a) 𝐼 = 1.2,
ε = 0.5, ω2

0 = 1.2, and γ = 1; (b)
𝐼 = 2.5, ε = 0.5, ω2

0 = 1.2, and γ = 1.

Figure 4.3 — Identical Josephson
junctions array simulation results for
different initial values of the phases. 15
phases of 200 are shown. The values of
the parameters are (a) 𝐼 = 1.2, ε = 0.5,
ω2

0 = 1.2, and γ = 1; (b) 𝐼 = 2.5,
ε = 0.5, ω2

0 = 1.2, and γ = 1.

From simulation, it follows that identical junctions are in a synchronous state.
Also, the simulation for different initial values of phases was carried out. The

initial values of phases are in the range [0; 10]. The simulation results are presented
in Fig. 4.3. As follows from the graphs, Josephson junctions are in an asynchronous
state.
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4.2.2 Non-identical Josephson junction array model

The ODE system describing non-identical junctions is [77; 78]:

�̇�𝑖 = 𝐼 − (1 + ξ𝑖) sin𝑥𝑖 − ε𝑥𝑁+2, �̇�𝑁+1 = 𝑥𝑁+2,

�̇�𝑁+2 = 𝐼 − γ𝑥𝑁+2 −ω2
0𝑥𝑁+1 −

1

𝑁

𝑁∑︁
𝑖=1

(1 + ξ𝑖) sin𝑥𝑖
(4.3)

where the values have the same meaning as in (4.1) and ξ𝑖 are the parameters
characterizing the difference of the critical currents from the nominal value.

An equivalent circuit for the non-identical Josephson junction array with a
parallel 𝑅𝐿𝐶-load is presented in Fig. 4.4.

Figure 4.4 — Equivalent circuit for the non-identical Josephson junction array with
the common RLC load [82]

The simulation of (4.3) is presented in Fig. 4.5. The simulation was done for
an array with 200 junctions, according to [78].
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Figure 4.5 — Non-identical Josephson junction array simulation results. 10 phases
of 200 are shown. The values of the parameters are (a) 𝐼 = 1.2, ε = 0.5, ω2

0 = 1.2,
γ = 1, ξ𝑖 ∈ [−1; 1]; (b) 𝐼 = 2.5, ε = 0.5, ω2

0 = 1.2, γ = 1, ξ𝑖 ∈ [−1; 1].

4.3 Problem statement and its solution

Let us consider systems (4.1) and (4.3) in general form and expand them
with a control function:

�̇� = 𝑓(𝑥) +𝐵𝑢+ 𝐼 = 𝐹 (𝑥,𝑢) + 𝐼, (4.4)

where 𝑥 = (𝑥1, . . . , 𝑥𝑛)
𝑇 , 𝑥 ∈ 𝑅𝑛,

𝑢 = (𝑢1, . . . , 𝑢𝑟)
𝑇 , 𝑢 ∈ 𝑅𝑟, 𝑟 ⩽ 𝑛,

𝑓 = (𝑓1, . . . , 𝑓𝑛)
𝑇 , 𝑓 ∈ 𝐶∞(𝑅𝑛 ×𝑅𝑟;𝑅𝑛);

𝐼 = (𝐼, . . . , 𝐼, 0, 𝐼)𝑇 , 𝐹 (0,0) = 0,
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𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0 0

0 1 . . . 0 0 0

. . . . . . . . . . . . . . .

0 0 . . . 1 0 0

0 0 . . . 0 0 0

0 0 . . . 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Problem 4.1. Find a pair of the functions 𝑥(𝑡), 𝑢(𝑡), which satisfy the system

(4.4) and given initial conditions:

𝑥0 = (𝑥10, . . . , 𝑥
𝑛
0). (4.5)

Here, 𝑢(𝑡) is the optimal control for the linearized system (4.4).
Problem solution. Let us consider ODE systems (1) and (2). These systems

contain significant non-linearity. Thus, for the start, we make a Taylor expansion
and keep only linear terms. The linearized systems have a general form:

�̇� = 𝐴𝑥+𝐵𝑢, (4.6)

where 𝐴 is the matrix of the first approximation summands, which has the form

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎝
−(1 + ξ1) . . . 0 0 −ε

. . . . . . . . . . . . . . .

0 . . . −(1 + ξ𝑁) 0 −ε
0 . . . 0 0 1

−1+ξ1
𝑁 . . . −1+ξ𝑁

𝑁 −ω2
0 −γ

⎞⎟⎟⎟⎟⎟⎟⎠ (4.7)

The case ξ𝑖 = 0, 𝑖 = 1,...,𝑁 corresponds to an identical junction array.
A test of the controllability conditions for these systems shows that

𝑟𝑎𝑛𝑘𝑆 = 𝑛, (4.8)

where 𝑆 = (𝐵,𝐴𝐵, . . . , 𝐴𝑛−1𝐵), 𝑛 is a dimension of the system.
Now we study a stationary Linear-Quadratic problem (LQ-problem) for (4.6),

following [64].
LQ-problem. Find a pair of the functions 𝑥(𝑡), 𝑢(𝑡), which satisfy the system

(4.6) over the infinite time interval and minimise the quality criterion

𝐽(𝑢) =

∫︁ ∞

0

[𝑥𝑇 (𝑠)𝑁2𝑥(𝑠) + 𝑢𝑇 (𝑠)𝑁3𝑢(𝑠)]𝑑𝑠,𝑁3 > 0, 𝑁2 > 0, (4.9)
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where matrices 𝑁2 of dimension [𝑛 × 𝑛] and 𝑁3 of dimension [𝑟 × 𝑟] are
positively defined.

The possibility of the LQ-problem solution follows from condition (4.8).
The required control function 𝑢(𝑡) that satisfies (4.9) is defined as [64]:

𝑢(𝑥) = −𝑁−1
3 𝐵𝑇𝑃𝑥, (4.10)

where matrix 𝑃 > 0 solves the algebraic Riccati equation

𝐴𝑇𝑃 + 𝑃𝐴+𝑁2 − 𝑃𝐵𝑁−1
3 𝐵𝑇𝑃 = 0, (4.11)

The Riccati equation (4.11) is solved with MATLAB Control Toolbox. We
substitute the solution of the Ricatti equation 𝑃 into (4.10) to obtain the control
functions. At the last step, we substitute the obtained control functions into the
initial non-linear systems.

4.4 Numerical simulation results and analysis

Simulation was done for controlled systems of identical and non-identical
Josephson junction arrays.

Initial conditions (4.5) for ODE systems are 𝑥0 = (0, . . . , 0, 0.5, 0)𝑇 . We
considered two values of the external current, namely 𝐼 = 1.2 and 𝐼 = 2.5. The
values of parameters ξ𝑖 for the non-identical Josephson junction array vary in the
range [−1,1]. Parameters of the 𝑅𝐿𝐶-load are ε = 0.5, and γ = 1, ω2

0 = 1.2 for
both cases. The parameters are taken from [77; 78]..We have chosen matrices 𝑁2

and 𝑁3 to be identity matrices of the corresponding sizes. Simulation results are
presented in Figs. 4.6, 4.7, 4.8.

In case of different initial phase values for identical Josephson junction array,
these values are chosen in the range [0, 10]. To determine the required external
current value, numerical experiments were carried out. Results are presented in
Fig. 4.7.
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Figure 4.6 — The simulation results for the solution of the control problem for
an Identical Josephson junctions array. The values of the parameters are ε = 0.5,

ω2
0 = 1.2, γ = 1. (a) 𝐼 = 1.2. (b) 𝐼 = 2.5.

Analysis of the simulation results
1. The solution to the control problem ensures stabilisation of the phase values

for identical and non-identical junction arrays.
2. The dependence of the phase values on external current is detected.
3. In the case of identical junctions with different initial values of the phases

the synchronisation effect is detected (see Fig. 4.8). When external current
𝐼 < 1.738 phases tend to two different values. Phases tend to be in a one
synchronous-state with an external current 𝐼 ⩾ 1.738.

A numerical simulation was performed in Jupyter Notebook.
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Figure 4.7 — The simulation results for the solution of the control problem for an
identical Josephson junction array with different initial values of the phases. The first
15 junctions of 200 are shown. The values of the parameters are ε = 0.5, ω2

0 = 1.2,
and γ = 1. (a) 𝐼 = 1.2(b) 𝐼 = 1.738
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Figure 4.8 — The simulation results for the solution of the control problem for
non-identical Josephson junctions array. The first 15 junctions of 200 are shown.
The values of the parameters are ε = 0.5, ω2

0 = 1.2, and γ = 1, ξ𝑖 ∈ [−1; 1]. (a)
𝐼 = 1.2. (b) 𝐼 = 2.5.
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Conclusion

In the presented work, the following control algorithms for non-linear systems
have been constructed and studied:

1. the algorithm of discrete control construction for non-linear non-starionary
systems;

2. the algorithm of control construction for non-linear starionary systems,
taking into account computer system verification.

The efficiency of the constructed algorithms has been shown in the concrete
examples, and their complexity cost have been determined. These algorithms allow
for the construction of control functions for a wide class of non-linear systems.
For the discrete control algorithm, a library of functions has been developed that
simplifies the simulation process.

Besides, the dynamics of systems describing identical and non-identical
Josephson junction arrays, taking into account the optimal control method, have
been studied. Josephson junctions are applied in the development of different
technical systems. The solution to this control problem may be useful for solving
the problems.

In conclusion, we discuss the further development of the presented research.
Except for the suggested discrete control method, it is possible to consider

piecewise control problems for non-linear systems, taking into account incomplete
information or the controllability of the system. Also, it is possible to consider
discrete control problems for systems with a delay.

The verification problem of computer systems has been considered in the
case of one known component of the state vector. Further, may be performed a
generalization on the larger number of given components of the state vector. And
also, it is possible to consider the more complex functions of the given components of
the state vector. Besides, it is interesting to obtain a solution to the discrete control
problem, taking into account computer system verification.

It is possible to solve the identical and non-identical Josephson junction arrays
optimal control problem taking into account the incomplete measurability of the
system. And also, it is interesting to obtain estimations of the maximal number of
junctions for which the control problem solutions take place.
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Appendix A

Program code for solving of the discrete control problem of a
robot-manipulator

import sympy as sp
import math as mt
import numpy as np
import matplotlib.pyplot as plt
from sympy import *
import DiscrControlLib as ds

#Function of the graph plotting
def PlotFig(y,t,m,label_y):

plt.figure(figsize=(16, 5))
plt.subplot(121)
st = label_y
label=[’$x_1(t)$, рад’,’$x_2(t)$, рад/c’]
if m > 1:

for n in range(0,m):
r = [y[i][n] for i in range(0,len(y))]
plt.plot(t,r,label=label[n])
plt.legend(loc=’best’, fontsize=12)

else:
plt.plot(t,y,label=st)

plt.xlabel(’t’)
plt.ylabel(st)
plt.grid()
plt.subplot(122)
sg = ’* k’
s = len(t)
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plt.plot(t[:s],y[:s,2], sg)
plt.grid()
plt.xlabel(’t’)
plt.ylabel(’$u(t)$, $рад/с^2$’)
plt.show()

#variables

u = sp.var(’u:5’)
c = sp.var(’c:5’)
d = sp.var(’d:5’)
a = var(’a’)
sp.var(’alpha’)
t, tau = symbols(’t tau’)
y = sp.var(’y:3’)

#Values of the parameters
a = 0.25
x_0 = 0.05
a1 = 0.1
q = 0.01
L = 10
M = 20
m_0 = 1
g = 9.81

m = m_0 - q*t
m_1 = m + M/3
a_1 = a1/(L**2*m_1)
a_2 = g*(m + M/2)/(L*m_1)

"""###Matrices of an auxiliary system constructing"""

#Vector-function
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F = sp.Matrix([y1,- a_2*sp.sin(y0) - a_1*y1 + y2, 0])

P = ds.Matrix_P(F, y, t, 1)

Q = sp.Matrix([0,0,1])

"""###Constructing of the matrix S,
test of the Kalman’s type conditions"""

S, R = ds.Test_controllability(P, Q, tau)

"""### Constructing of the matrix $S^{-1}(PS-\frac{dS}{d\tau})$"""

U = sp.simplify(S.inv()*(P*S - sp.diff(S,tau)))

"""### Coefficients of the stable polynom"""

gamma = ds.Koeffs_Sym(3,a)

"""### Constructing of the matrix $T$"""

phi = U.col(-1)

T = sp.Matrix([[1, -phi[-1], -(sp.diff(phi[-1],tau)+phi[-2])],
[0, 1, -phi[-1]],[0, 0, 1]])

"""Constructing of the vector $\delta$"""

delta = sp.simplify(sp.Matrix([-gamma[0]-phi[-1],
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-gamma[1]-2*sp.diff(phi[-1],tau)-phi[-2],
-gamma[2] - sp.diff(phi[-1],tau,2)- sp.diff(phi[-2],tau)]))

"""### Constructing of the control function"""

M_u = sp.simplify(delta.T*T.inv()*S.inv())
M_u

"""### Return to initial variables"""

TAU = - sp.log(1-t)/alpha
TAU

M_t = M_u.subs(tau, TAU)
M_t

"""### Substitution of the control function in the initial system
and solving of the Cauchy problem"""

M_t1 = M_t.subs(alpha, a)
M_t1

u_t = ds.Sym_to_Num(M_t1,t)
m = len(u_t)
for i in range(m):

print(u_t[i](t))

at1 = sp.lambdify(t, a_1, "numpy")

at2 = sp.lambdify(t, a_2, "numpy")

per = 5*10**13
def f(t,y):

f = np.zeros((m),’float’)
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u = 0
#h = 1-mt.exp(-a*t)
for i in range(m):

u += u_t[i](t)*y[i]

f[0] = y[1]
f[1] = - at2(t)*np.sin(y[0]) - at1(t)*y[1] + y[2] + per*(1-t)**2
f[2] = u/(a*(1-t))
return f

t0 = 0.
tEnd = 0.99
y0 = np.array([0.5, -0.8, 0.])
tau1 = 0.1

k = len(y0)

t_u = []
y_u = []

for i in range(k):
t_f, y_f = ds.rungediscr_23(f,t0,y0[i],tEnd,tau1,a)
t_u.append(t_f)
y_u.append(y_f)
PlotFig(y_f,t_f,2,’x(t)’)
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Appendix B

Program code for solving of the optimal control problem of a
robot-manipulator

import numpy as np
import matplotlib.pyplot as plt
import math as mt
import sympy as sp
import OptRicControlLib as opt

def PlotFig(y,t,m,label_y):
plt.figure(figsize=(8, 5))
#plt.subplot(121)
st = label_y
if m == 2:

label=[’$x_1(t)$, рад’,’$x_2(t)$, рад/c’]
else:

label = ["$p_{11}$","$p_{12}$","$p_{21}$","$p_{22}$"]
if m > 1:

for n in range(0,m):
r = [y[i][n] for i in range(0,len(y))]
plt.plot(t,r,label=label[n])
plt.legend(loc=’best’, fontsize=12)

else:
plt.plot(t,y,label=st)

plt.xlabel(’t’)
plt.ylabel(st)
plt.grid()
plt.show()

#Required symbolic variables
t, tau = sp.var(’t tau’)
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sp.var(’alpha’)
y = sp.var(’y:2’)
x = sp.var(’x:4’)

#Parameters of the model
a = 1/2
x_0 = 0.05
a1 = 0.1
q = 0.01
L = 10
M = 20
m_0 = 1
g = 9.81
m = m_0 - q*t
m_1 = m + M/3
a_1 = a1/(L**2*(m_0 - q*t + M/3))
a_2 = g*(m_0 - q*t + M/2)/(L*(m_0 - q*t + M/3))

#Vector-function
F = sp.Matrix([y1,- a_2*sp.sin(y0) - a_1*y1])

Y_f = sp.Matrix([y0,y1])

"""###Matrices of an auxiliary system constructing""

P = sp.Matrix([[0,1],[-a_2,-a_1]])

Q = sp.Matrix([0,1])

"""###The Kalman’s type conditions test"""

S, R = opt.Test_control_one_col(P, Q, tau)

#Matrices of the system
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N_0 = 1
N_1 = sp.eye(2)
N_1[1,1] += 1
A = P
B = Q

#Solution of the Riccati equation
t0 = 0.
tEnd = 100
p0 = np.array([0, 0, 0, 0])
tau1 = 0.02

t_p, y_p = opt.Riccati_solve(A,B,N_0,N_1,t0,tEnd,tau1)

label = ["$p_{11}$","$p_{12}$","$p_{21}$","$p_{22}$"]

opt.PlotFigRic(y_p,t_p,4,label,figsize=(8,5))

"""###Constructing of the control function"""

X = sp.Matrix([[x0,x1],[x2,x3]])
u = -N_0*B.T*X
u = sp.lambdify(t, u, "numpy")

"""###Substitution of the control function in the initial system
and solving of the Cauchy problem"""

at1 = sp.lambdify(t, a_1, "numpy")

at2 = sp.lambdify(t, a_2, "numpy")

def f(t,y,y_p,k,h):
f = np.zeros((2),’float’)
f[0] = y[1]
f[1] = - at2(t)*np.sin(y[0]) - at1(t)*y[1] -
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y_p[k][2]*y[0] - y_p[k][3]*y[1] + h*(1 - t/tEnd)**2
return f

h = [0.10,1.5,2.28]

t0 = 0.
y0 = np.array([0.5, -0.8])
tau1 = 0.02

t_u = []
y_u = []
for i in range(len(h)):

t_f, y_f = opt.runKut_23_U(f,t0,y0,tEnd,tau1,y_p,h[i])
t_u.append(t_f)
y_u.append(y_f)
PlotFig(y_f,t_f,2,’x(t)’)
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