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Introduction

Relevance

After the first protein structure was determined by X-ray crystallography
for myoglobin [1], protein molecules have been viewed as fully structured, static
entities. It took a substantial amount of time until experimental evidence of
conformational variability in proteins emerged. Among the first reports of
protein dynamics, Wüthrich and Wagner have shown that side chains in the
protein’s hydrophobic core are capable of jumping between different rotameric
states [2]. Thus, despite the existence of the uniquely defined structure, the
hydrophobic protein core displays certain properties of a polymer melt. Later,
the analyses of crystallographic data led another group of researchers to suggest
that individual domains in multi-domain proteins can shift their positions
relative to each other and that domain mobility plays an important role in
enzymatic catalysis [3]. At around the same time, it has been shown that a
number of protein molecules, including histone proteins, contain disordered
fragments which, despite the absence of a well-defined structure, play an
important functional role [4].

Currently, protein dynamics is a subject of active research. In some
way or form, protein dynamics has an influence on protein folding and
stability, ligand binding, allosteric effects in signal transduction and other
functional properties of protein molecules. Intrinsically disordered proteins,
as well as disordered regions in the otherwise structured proteins, play an
important role in the architecture and mechanism of molecular engines, such
as ribosome [5] in the spatial organization and function of chromatin [6] and
nuclear pore complexes [7], in cytoskeletal assembly [8] and formation of phase-
separated organelles [9]. While highly important, disordered peptide chains are
vulnerable to proteolytic degradation, aberrant posttranslational modifications
and, ultimately, to conversion into various pathological forms (including prions
and amyloid fibrils). Due to these singular features, disordered proteins play a
prominent role in neurodegenerative disease [10].

Probing disordered proteins and, more broadly, protein dynamics requires
special experimental instruments, as well as new approaches toward modeling of
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protein molecules, distinct from the traditional means of structure investigation.
Structural studies mainly rely on X-ray diffraction data and, since recently,
cryoelectron microscopy data. These data can shed some light on protein
dynamics, but only indirectly and to a limited extent. For example, the absence
of electron density while modeling a protein molecule guided by crystallographic
or cryo-EM data suggests that the corresponding fragment of the peptide chain
is highly mobile. To obtain a more detailed picture, one needs to employ a
special experimental toolkit, dominated by Nuclear Magnetic Resonance (NMR)
spectroscopy. NMR experiments make it possible to observe signals from the
individual atoms in the disordered peptide chain and thus obtain information
about the dynamic parameters pertaining to the near environment of a given
atom, as well as its more distant environment. The measurements are typically
based on multidimensional heteronuclear experiments that use 15N and 13C
nuclei from protein backbone and side chains as probes of conformational
dynamics. Using heteronuclei 15N and 13C as opposed to protons substantially
simplifies the analyses since the results can be usually interpreted by considering
a small-sized spin system, consisting of two-to-four spins.

Among many NMR observables, chemical shifts and spin relaxation rates
have special significance. Chemical shift reflects the characteristics of the atomic
close-range environment. In particular, chemical shifts are sensitive to the
so-called “residual structure”, i.e. the statistical propensity of a disordered
sequence to form transient α-helices, β-hairpin or other, more complex, structural
arrangements. Besides, analyses of NMR spectra allow one to identify the
effect of the so-called “exchange broadening” caused by relatively slow (from
microseconds to seconds) transitions between the conformational states with
different chemical shifts. A significant number of specialized experiments have
been developed to elucidate the parameters of such exchange dynamics. In
turn, heteronuclear spin relaxation rates (primarily those of 15N and 13C
spins) carry the information on amplitudes and characteristic time constants of
certain motional modes that modulate spin interactions involving those nuclei.
Typically, these modes are associated with reorientational dynamics of the
vector that connects nitrogen or carbon atom with its bonded proton. The most
popular relaxation measurements involve longitudinal (R1) and transverse (R2)
spin relaxation rates. However, beyond that current experimental techniques
are capable of measuring dozens of different relaxation parameters for various
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multi-spin correlations (coherences). A special place in this battery of relaxation
experiments belongs to the measurements of the so-called paramagnetic
relaxation enhancement (PRE) effect. To measure PREs, a paramagnetic label is
introduced into the system. Typically, it is a nitroxyl radical that is conjugated to
a cysteine side chain by means of maleimide chemistry. The unique characteristic
of the PRE effect is that it is a function of the long-range dipolar interaction
between the paramagnetic center and the individual nuclear spin, which thus
serves as a probe to characterize stochastic dynamics in the system at hand.

The repertoire of NMR methods to study disordered proteins is not limited
to the analyses of chemical shifts and relaxation rates. Valuable information
can also be obtained from NMR experiments using pulsed field gradients, which
allow one to measure translational diffusion rates for disordered proteins. In turn,
this makes it possible to characterize the protein’s conformational ensemble in
terms of overall compactness. The same information can also be gathered from
small-angle X-ray scattering data, but this latter technique suffers from poor
sensitivity when applied to small proteins or peptides. In addition, a number
of other experimental methods are used to study disordered proteins, such as
circular dichroism, analytical ultracentrifugation and proteolytic fragmentation.
A separate class of experiments makes use of covalent labels: apart from the PRE
measurements discussed above, this category includes Electron Spin Resonance
(ESR), Förster resonance energy transfer (FRET) and a number of variations of
the same theme (e.g. BRET), chemical cross-linking (e.g. disulfide trapping) and
other methods. However, these techniques are less informative than the NMR-
based experiments and the use of bulky labels can cause unwanted changes in
the delicate conformational equilibria of disordered proteins.

Clearly, studying disordered proteins calls for a new type of models,
different from static protein structures. Initially, disordered proteins were
modeled using structural ensembles, i.e. sets of tens or hundreds of structures
intended to reproduce the conformational diversity of a disordered protein. In
these models, statistical weights have been assigned to the individual conformers
reflecting their frequency of occurrence in the system at hand. A number of
programs have been developed to assist with the construction of such ensemble
models, most notably ENSEMBLE [11] and ASTEROIDS [12]. Briefly, their
algorithm can be described as follows. As a starting point, the pool of many
conformers is generated in a random manner (without any consideration for
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conformational propensities of the given peptide sequence). Next, the statistical
weights attached to all conformers are optimized such as to reproduce the set
of experimental data for the protein in question. One of the shortcomings of
such static models is the absence of temporal dimension, i.e. the information
on characteristic transition rates for transitions from one conformational state
to another. It should also be noted that the quality of such models is
entirely dependent on experimental data that inform the selection procedure.
Relative scarcity of the experimental data, the complicated character of data
interpretation and low information content create a situation where construction
of ensemble models turns into a major effort, while the resulting models prove
to be poorly determined.

As an alternative solution, Xue and Skrynnikov proposed to use molecular
dynamics (MD) trajectories as models of disordered proteins [13]. In the
following years this method has been actively developed and applied to a
wide range of disordered systems [14; 15]. In principle, MD-based models
make it possible to fully characterize the behavior of a natively disordered
protein, including the transition rates for interconversion between different
conformational states. It should also be noted that MD-based models are a
product of an a priori knowledge in a form of force field, which offers a fairly
realistic description of the interactions between various peptide moieties, as well
as the interaction of peptide with solvent water. Therefore, there are reasons to
believe that reliable models of disordered proteins can thus be generated from
the first principles without recourse to experimental data.

However, in practice this approach faces a number of technical hurdles.
First, ultra-long MD simulations are needed to ensure adequate coverage of the
vast conformational phase space accessible to a disordered protein. Advances
in GPU computing, as well continuous improvements in MD algorithms (e.g.
accelerated MD schemes) offer a workable solution to this problem, at least for
disordered systems of smaller size. Second, biomolecular force fields have been
traditionally designed, optimized and tested for well-structured globular proteins.
For this class of systems a wealth of data has been amassed, making it possible
to judge the strengths and weaknesses of the current force fields and revise them
accordingly. The first attempts to model disordered proteins using a standard
MD setup showed some significant systematic deviations from the experiment.
As it turned out, conventional force fields tend to overestimate the propensity
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of disordered proteins to form (unstable) α-helices as well as their tendency
to coalesce, i.e. form compact molten-globule-like species [16]. Further studies
have shown that these artefacts are caused by overestimation of the protein-
protein interactions at the expense of protein-water interactions. To correct this
problem, new variants of force fields have been developed, including new water
models [17]. Yet subsequent tests have shown that some of these new models are
poorly balanced, causing partial destabilization of globular proteins [18].

Thus, the situation developed where reliability of MD models of disordered
proteins (or proteins containing disordered regions) remains in doubt. The
attempts to validate these models so far have lacked consistency and focus.
Dozens of different proteins and peptides have been investigated using a number
of different MD protocols. The experimental datasets used to validate MD
models have been rather heterogeneous and typically included just a few
measurements. The calculations conducted as a part of validation procedure
often relied on simplified and even crude computational schemes. As a result,
numerous publications in this area paint a rather discordant picture, with
different research groups advocating different modeling schemes and oftentimes
making contradictory claims.

This rather unsatisfactory situation provides strong motivation for this
dissertation research. In our study we have developed and applied special MD
modeling schemes to facilitate subsequent calculation of NMR parameters.
We have also implemented new and improved algorithms to calculate NMR
variables from the MD simulation data. Finally, we compared the results of
our calculations with the experimentally measured values. This type of analysis
paves the way for more accurate and reliable validation of the MD models at
hand. In turn, those MD models that have been successfully validated, can
be regarded as a uniquely complete source of information on the dynamics of
disordered proteins and, more broadly, on protein dynamics in general.

Aims

In the first chapter, we discuss the development of methodology to
calculate diffusion parameters of disordered proteins based on MD modeling
data. The study has been performed on N-terminal fragment of histone H4 (N-
H4) and made use of the relevant experimental data. We sought to develop a
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protocol to generate a large amount of MD data by effectively employing the
available computational resources. Special attention has been paid to testing
of different water models in the context of our diffusion study. For the sake
of generality, we have also investigated translational and rotational diffusion of
a small globular protein ubiquitin. The main question posed in our study can
be expressed as follows: is it possible to draw a meaningful conclusion about
the degree of compactness of the disordered protein’s conformational ensemble
based on the analyses of its diffusion properties? We also sought to compare the
rigorous results of our MD-based treatment to various empirical schemes that
have been developed to predict diffusion parameters from MD modeling data.

The second chapter is dedicated to calculations and interpretation of
the paramagnetic relaxation rates (PRE) in a multicomponent system, which
includes both structured and disordered elements. Specifically, the study was
performed on a nucleosome core particle, where nitroxyl label has been attached
to different sites on the surface of histone H3 (within its structured portion),
while the spectral signals have been acquired from the flexible N-terminal region
of histone H4. It has been clear to us that the PRE data collected from such
samples should carry certain information about the localization of the H4 tail
relative to the body of the nucleosome particle. Yet a number of questions
remained. Is it possible to meaningfully interpret the PRE data based on the
MD simulation data? In doing so, is it necessary to implement a rigorous scheme
to calculate the PRE rates, taking into consideration translational dynamics of
the mobile H4 tail, or is it sufficient to use the simplified Solomon-Bloembergen
formula? Is it possible to achieve a desirable level of convergence in the PRE
calculations based on MD trajectories with net length of several microseconds?

In the third chapter, we discuss the use of MD data to assist in
interpretation of the experimental results pertaining to flips of phenylalanine
side chains in the crystals of small globular protein ubiquitin. In this case,
we were interested if MD modeling can be used as an additional source of
information that complements the NMR results and, more specifically, if MD
data can help to identify the origin of the splitting that has been observed for
some of the spectral resonances, to explain the absence of certain signals, and
to clarify the nature of conformational transitions in phenylalanine side chains.
Besides, we also sought to identify structural factors that influence the flip rate
of phenyl rings and are responsible for large differences in the experimentally
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observed rates.

Scientific and practical significance

1. As described above, the studies of disordered proteins are faced with
the deficit of experimental information. In this situation, measurements of
translational diffusion coefficient by means of the NMR experiments using pulsed
field gradients becomes a potentially important piece of the study, allowing
for characterization of the protein’s conformational ensemble in terms of its
compactness / extendedness. In this dissertation, we present the scheme for
MD modeling of a disordered protein (peptide) that permits highly rigorous
calculation of its diffusion parameters. As a first step, the trajectory of
a protein is recorded in a small-sized simulation cell. Next, the snapshots
from this trajectory are used as starting points to record a set of short
trajectories in the medium- and large-sized cells. Extrapolating the results to
the limit of an infinitely large cell yields the desired value of the diffusion
coefficient. This approach makes it possible to efficiently use all available
computational resources since the series of short trajectories can be recorded
using a cluster of computational servers under the management of a queueing
system. Furthermore, this approach is conducive to MD modeling in the NVE
ensemble (which is the most rigorous MD modality) since short trajectories do
not suffer from any appreciable temperature drift. In our work we have also
shown that the diffusion of disordered proteins can be successfully modeled not
only with the standard integration step of 1-2 fs, but also with the extended step
of 4 fs. To this end, it is necessary to apply hydrogen mass repartitioning (HMR)
scheme to the protein molecule as well as solvent water. This result opens up
further opportunities to accelerate the computations.

Modeling and calculations have been conducted on the disordered N-
terminal fragment of histone H4 (N-H4), which consists of 25 amino-acid residues.
Our study of peptide’s diffusion has shown that the results are significantly
influenced by viscosity of MD water. Hence, a systematic assessment of water
viscosity for TIP4P-Ew, TIP4P-D and OPC models has been undertaken as
a part of this study. After correcting for solvent viscosity, we found that the
resulting diffusion coefficient for the N-H4 peptide immersed in TIP4P-Ew water
is significantly overestimated compared to the experimental result. This is a
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consequence of exceedingly compact nature of N-H4 ensemble in the TIP4P-Ew
simulations. On the contrary, the diffusion parameters derived from TIP4P-
D and OPC simulations are in good agreement with the experimental data.
Thus, we conclude that TIP4P-Ew model is ill-suited for modeling of disordered
proteins, whereas the two other water models can be legitimately used in such
studies. This conclusion is supported by our analyses of relaxation data for
the backbone 15N spins in the N-H4 peptide. Therefore, our work provides
an example of MD models successfully validated using the diffusion and spin
relaxation data. Choosing between the two successful models, TIP4P-D and
OPC, one may prefer the latter option as it requires only minimal correction
with regard to viscosity and produces somewhat more accurate predictions for
the diffusion rate of the small globular protein ubiquitin.

In the current literature one can find numerous examples of papers where
translational diffusion data are used to validate various MD models of disordered
proteins (peptides). However, instead of the rigorous Dtr calculations, such as
demonstrated in this dissertation, the authors resort to various empirical tools,
e.g. programs for calculation of hydrodynamics parameters HYDROPRO and
HullRadSAS, as well as Kirkwood-Riseman relationship and phenomenological
formula by Nygaard. Comparing the results from these empirical treatments with
the outcome of the high-level analysis implemented in our study, we observe
that the empirical methods tend to perform poorly. In fact, their results can
be entirely misleading, e.g. incorrectly suggest that TIP4P-Ew is the optimal
choice of solvent to model a disordered peptide. This happens because the
programs HYDROPRO and HullRadSAS, as well as the empirical formulas that
approximate their results, are intended for use on static (rigid) protein structures
and, therefore, fail to take into consideration the effect of segmental dynamics
and its influence on translational diffusion of disordered proteins.

2. Nucleosome core particle (NCP) is a fundamental structural unit of
genetic information storage system in the cell. NCP is comprised of eight histone
proteins that are assembled into a spool, with 1.7 turns of double-stranded DNA
wound around this spool. The distinctive feature of histones is the presence of
extended terminal fragments (tails) that are conformationally disordered and
projected into solvent. Histone tails are of major functional importance, offering
binding sites for transcription factors and many other chromatin-associated
proteins, and also having a role in chromatin assembly. The interaction of histone
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tails with their numerous ligands is regulated by means of a special “histone
code” that involves covalent modifications of selected side chains. Due to their
disordered nature, histone tails cannot be studied by means of the standard
structure elucidation methods, leaving NMR spectroscopy as essentially the
only experimental tool to probe their conformation and dynamics. Among many
available NMR experiments, PRE measurements are of special significance since
they can be used to explore the localization of histone tails relative to the body
of the nucleosome particle. To measure the PRE effect, paramagnetic labels are
attached to the structured portion of the NCP (in our study, residues 36, 65, 79
and 125 in histone H3 have been chosen as labeling sites), whereas the signals
are registered from the residues in the mobile histone tail (in our case, the N-
terminal tail of histone H4 isotopically enriched with 15N). Of note, until recently
there has been no theoretical model to accurately interpret the PRE data in such
multicomponent system involving both structured and disordered elements.

As a part of this dissertation work, we have explored the possibility to
interpret the PRE data in nucleosome particle based on the conformational
ensemble model supplemented with the well-known Solomon-Bloembergen
equation. Our study has found that this interpretation is essentially baseless.
For example, the experimental PRE data can be reproduced using the model
that consists of mere two conformers, which is obviously inconsistent with the
general notion of histone tails dynamics. Similarly, the data can be reproduced
using a set of 42 conformers, where the two conformers determine the PRE values
while the remaining ones are essentially random. This unsatisfactory situation
is a consequence of the extremely high sensitivity of PRE rates to the distances
separating the paramagnetic center from 1HN nuclear spin probes.

To address this situation, we proposed an alternative interpretation which
is based on the first-principles calculations of the PRE rates from the MD data.
These rigorous calculations account not only for reorientational dynamics of
the vector that connects paramagnetic center with the nuclear spin, but also
for modulation of the interspin distance due to the translational motion of the
mobile histone tail. The results from the NCP simulation in TIP4P-D water
performed by the author, as well as the series of trajectories in the OPC water
recorded by Peng and co-workers are in good qualitative agreement with the
experimental data. Thus, in this work we have successfully validated the MD
model of nucleosome particle using the set of experimental PRE data. As a next
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step, the so verified MD model has been used to glean the information about the
spatial positioning of the H4 tail. Our analyses showed that the N-terminal tail
of histone H4 is localized mainly in the vicinity of the nucleosomal DNA, which
can be attributed to the electrostatic interaction between the positively charged
tail and the negatively charged DNA. At the same time, the tail retains its high
mobility while engaged in “fuzzy” interaction with the DNA. The localization
of the H4 tail in the vicinity of the DNA limits its accessibility to chromatin-
associated proteins, including the histone-modifying enzymes and transcription
factors.

To obtain further insight into dynamics of mobile histone tails in the
nucleosome particle, it is necessary to improve the convergence of the MD-based
PRE calculations. As demonstrated in our study, even the trajectories with
the length of tens of microseconds do not guarantee an acceptable convergence.
The main reason for this deficiency is the extreme sensitivity of the PRE
rates to the interspin distances, as already pointed out above. To improve the
convergence, we recommend the use of distributed computational resources,
accelerated modeling schemes (e.g. involving 4 fs integration step) and other
similar solutions.

3. Side-chain jumps in a globular protein can be viewed as an indicator of
protein plasticity, suggesting the presence of significant dynamic fluctuations in
the protein structure. Our co-workers from the research group of P. Schanda
investigated the dynamics of phenylalanine side chains in three different
crystalline forms of ubiquitin. The measurements were conducted by means of
the solid-state NMR spectroscopy under magic angle spinning (MAS) conditions
using the new isotopic labeling scheme where 1H and 13C spins are selectively
incorporated into ε1, ε2 positions of the phenyl ring. Both phenylalanine residues
in ubiquitin, Phe4 and Phe45, are located on the surface of the protein molecule,
which makes them potentially sensitive to the effect of crystal contacts. In
this dissertation work we have shown that the analyses of MD simulation data
can supplement and enhance the interpretation that is originally based on the
experimental NMR results.

In particular, we have shown that the splitting of the Phe4 signal in
the cubic crystal form is caused by the stacking of the two Phe4 rings at
the crystallization interface (where both residues belong to chains B in the
asymmetric unit). By processing the MD modeling data with the program
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SHIFTX2 we have calculated the chemical shifts of 1Hε and 13Cε spins, including
ring-current contributions from the stacked phenyl rings, thus corroborating the
assignment of the spectral signals in this crystal form. Our analyses of the MD
data also indicate that dynamics of the phenylalanine side chains is dominated
by ε2 jumps and, hence, can be described as phenyl ring flips, while the torsional
angle χ1 remains essentially constant. MD modeling data further suggest that
ring flips in Phe4 occur on the time scale of nanoseconds, whereas in Phe45
the respective time scale is in the range of tens or hundreds of microseconds; of
note, this relationship holds for all three crystal forms investigated in this study.
This result explains the absence of the experimentally observed signals from
residue Phe45, which can be attributed to the effect of exchange broadening
caused by microsecond dynamics. As a part of our MD study, we have also
attempted to rationalize the observed difference in the flip rates of Phe4 and
Phe45. In particular, we hypothesized that the flip rates depend on the side-
chain conformation, the locally available volume (which can be characterized
via solvent accessible surface area of the phenylalanine residue), or the crystal
contacts. None of these hypotheses, however, found direct support in the MD
data, suggesting that the flip rate is instead determined by an interplay of
more subtle cooperative effects within the ubiquitin structure. Thus, it has been
demonstrated that MD simulations of protein crystals is a valuable source of
information, complementing the results of the experimental study by solid-state
NMR spectroscopy.

Conferences participation

The elements of this dissertation study have been presented at the
following scientific meetings:

1. «65-th Biophysical Society Annual Meeting», online, 22 February – 26
February 2021.

2. International conference «Modern development of magnetic resonance
2021», Kazan, Russia, 1 November – 5 November 2021.

3. VI annual conference of the Translational Biomedicine Institute at
SPbU «Topical problems of translational biomedicine – 2022», St.
Petersburg, Russia, 25 July – 25 July 2022.
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4. «Chinese Biophysics Congress 2024», Lanzhou, China, 25 July – 28
July 2024.

Author contribution

Chapter 1. The author has been personally responsible for planning of
the research, recording, processing and analyzing the MD data, interpreting
the results and preparing materials for publication. In particular, the author
has devised and implemented a new scheme of MD modeling to quantify
translational diffusion of disordered proteins. The experimental NMR data
employed in this study have been mainly obtained by V.A. Salikov working
jointly and under the supervision of I.S. Podkorytov in the Laboratory of
Biomolecular NMR at SPbU. While processing and analyzing the MD data,
the author used a collection of scripts originally developed by S.A. Izmailov.

Chapter 2. The author has been personally responsible for planning and
implementing the part of this study related to the MD modeling, processing and
analyses of the MD data, interpretation of the results and preparing the relevant
materials for publication. In particular, the author has implemented in a form
of program code a number of theoretical schemes to compute paramagnetic
relaxation (PRE) rates based on the MD simulation data. The preparation of
the nucleosome samples and PRE measurements by means of NMR spectroscopic
experiments have been performed by W. Sun in the laboratory of C. Jaroniec.

Chapter 3. The author has been personally responsible for planning and
implementing the part of this study related to MD modeling, processing and
analyses of the MD data, interpretation of the results and preparing the relevant
materials for publication. The preparation of the samples of crystalline ubiquitin
and the experimental study of internal dynamics in these samples have been
performed by D. Gauto and L. Becker in the laboratory of P. Schanda. During
all stages of this work, the research problems were proposed and the results were
interpreted under the scientific supervision of N.R. Skrynnikov.
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Publications

The main results of the dissertation study are reported in 3 papers
published in the scientific journals indexed in Scopus and Web of Science
databases:

1. Using NMR diffusion data to validate MD models of disordered proteins:
Test case of N-terminal tail of histone H4 / O. O. Lebedenko [et al.] //
Biophysical Journal. –– 2024. –– Jan. –– Vol. 123, no. 1. –– P. 80––100.

2. Conformational and Interaction Landscape of Histone H4 Tails in
Nucleosomes Probed by Paramagnetic NMR Spectroscopy / W. Sun [et al.]
// Journal of the American Chemical Society. –– 2023. –– Sept. –– Vol. 145,
no. 46. –– P. 25478––25485.

3. Aromatic ring flips in differently packed ubiquitin protein crystals from
MAS NMR and MD / D. F. Gauto [et al.] // Journal of Structural Biology: X.
–– 2023. –– Dec. –– Vol. 7. –– P. 1––12.

The scope and structure of the work

The thesis consists of an introduction, three chapters describing the main
results of the dissertation study, conclusion and reference section. In turn,
each chapter includes an introduction, description of the obtained results and
their discussion, description of the employed materials and research methods,
conclusions and supplementary materials. The work is presented on 174 pages,
including 37 figures and 9 tables. The reference section contains 310 literature
references.

The main scientific results

1. A highly effective MD modeling scheme has been developed to predict
diffusion parameters of disordered proteins [19].

2. It has been shown that the MD-derived translational diffusion
parameters reflect (i) the viscosity of the modeled water and (ii)
the degree of compactness of the modeled protein’s conformational
ensemble [19].
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3. It has been shown that the empirical approaches to calculation of
disordered proteins’ diffusion rates using MD modeling data have
intrinsically poor accuracy and frequently lead to qualitatively incorrect
conclusions [19].

4. It has been found that MD modeling of translational diffusion can be
accelerated by using 4 fs integration step, but in order to retain high
accuracy of the model one should apply the hydrogen mass repartition
(HMR) scheme not only to the protein molecule, but also to the
molecules of solvent water [19].

5. A rigorous theoretical scheme has been implemented to calculate
paramagnetic relaxation rates (PREs) based on MD modeling data for
a system containing disordered regions (nucleosome particle) [20].

6. It has been shown that the MD model of nucleosome particle is in
qualitative agreement with the experimental PRE data and can be used
to reconstruct the spatial distribution of the flexible histone “tails” [20].

7. By analyzing the set of ultra-long MD trajectories, we have shown that
PRE calculations are extremely demanding with respect to convergence
of the MD simulations, whereas the attempts to build a model in a form
of static conformational ensemble lead to ill-defined results [20].

8. It has been shown that MD models of protein crystals can supplement
and enhance the results of dynamics studies relying on experimental
NMR data and, in particular, allow one to assign some of the observed
NMR signals and explain the absence of the other signals [21].

Summary notes to be presented at the defense

1. A new scheme for MD modeling of disordered proteins presented in this
dissertation allows one to efficiently generate MD data that are needed
for calculation of the protein’s translational diffusion rate.

2. Comparative analyses of the experimental data by diffusion NMR and
the results of the MD-based calculations makes it possible to assess
the validity of the MD model with regard to the compactness of the
IDP’s conformational ensemble. For smaller peptides, this information
is unique since the alternative technique, small-angle X-ray scattering,
suffers in this case from large experimental errors.
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3. The presented methodology to calculate diffusion parameters based on
MD modeling data led us to conclude that the empirical algorithms,
which are widely used for this purpose, suffer from low accuracy
and often mischaracterize the conformational ensemble of the modeled
protein.

4. In this dissertation study, we report a new scheme for calculation of
paramagnetic relaxation rates based on the MD modeling data; the
scheme rigorously accounts not only for reorientational dynamics of the
molecular system, but also for segmental dynamics of its disordered
elements (viz. mobile histone “tails” in the nucleosome particle).

5. The analyses of the experimental PRE data in conjunction with the
MD model of nucleosome particle indicate that the positively charged
histone tails are localized in the vicinity of the negatively charged
nucleosomal DNA whereby it is engaged in “fuzzy” interaction with
the DNA while retaining a relatively high degree of conformational
mobility.

6. According to our analyses of the PRE data based on the MD model of
nucleosome particle, in order to ensure good convergence of the PRE
calculations one needs to record MD trajectories with the net length of
hundreds of microseconds. The extreme sensitivity of the PRE data to
interspin distances makes it impossible to construct reliable PRE-based
structural models where the conformational diversity of histone tails is
represented in a form of static conformational ensemble.

7. In the study of crystalline ubiquitin by means of solid-state NMR
spectroscopy, the MD modeling assists in spectral assignment and
interpretation of the experimental data on rotameric jumps of protein
side chains.
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Chapter 1. Diffusion of disordered proteins: combined NMR and MD
study of the N-terminal tail of histone H4

1.1 Introduction

Intrinsically disordered proteins (IDPs) and intrinsically disordered protein
regions (IDPRs) have gained much attention over the last three decades. From
the evolutionary perspective, IDPs are considered to be an advanced element
of cellular machinery: the fraction of disordered sequences increases from
archeal proteomes to bacterial proteomes to eukaryotic proteomes [22]. IDPs
or IDPRs play a prominent role in molecular machines such as ribosome [23],
in chromatin [6], in nuclear pore transporters [7], in cytoskeletal assembly [8]
and in phase-separated organelles [9]. In broad terms, the prominence of IDPs
and IDPRs stems from their involvement in cell signaling. Signaling networks
involving disordered proteins have a higher degree of interconnectedness
and a broader range of dynamic responses, resulting in improved functional
efficiency [24]. The increased efficiency, however, comes at a price: disordered
proteins are susceptible to proteolytic cleavage [25], aberrant modifications [26],
conversion to a prionic form [27] or misassembly such as formation of amyloid
fibrils [28]. All of this explains the ominous role of IDPs in neurodegenerative
disorders, as well as wide involvement in cancer [29].

A search for pharmaceuticals to target IDPs is ongoing. However, finding
effective small-molecule ligands of IDPs (which is prerequisite for intracellular
targets) remains an outstanding challenge [30]. Industry-wide efforts to develop
therapeutic antibodies against extracellular IDPs such as Aβ and extracellular
tau so far have proved futile [31; 32].

From a structural standpoint, IDPs can be thought of as dynamic
ensembles consisting of a multitude of constantly interconverting conformers.
Roughly speaking, an unbound IDP can be viewed as a «statistical coil».
Typically, it acquires structure upon binding to its structured target, cf. «folding
upon binding» [33], although in some cases IDPs remain partially disordered
after forming the so-called «fuzzy interaction» [34; 35] or even fully disordered
after an engagement with another IDP [36]. Historically, unbound IDPs were
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assumed to be featureless coils that were of little interest per se [37]. However,
eventually it has been realized that IDPs have certain structural propensities,
termed «residual structure» [38; 39]. These structural propensities can have
an effect on IDPs’ affinities for their biological targets. The effect is usually
modest, yet biologically significant. For example, the level of residual helicity
in transactivation domain of p53 has an influence on its binding constant
to Mdm2 [40]. This and many other such examples have spurred interest in
structural studies of intrinsically disordered proteins.

Standard methods of structural biology such as X-ray crystallography,
cryo-EM or NOE-based NMR are unsuitable for characterization of IDPs and
IDPRs or, otherwise, provide only indirect information. Instead, the bulk of
experimental evidence about structural propensities of IDPs comes from other
NMR data, such as heteronuclear chemical shifts, heteronuclear relaxation
rates and paramagnetic relaxation enhancements (PREs), as well as diffusion
data obtained from pulsed field gradient NMR (PFG NMR) experiments. In
particular, diffusion data offer a potentially important piece of information,
shedding light on compactness of the IDP’s conformational ensemble (which
can have a different appearance ranging from a highly extended random coil to
a rather densely packed molten globule). The PFG NMR measurements could
be particularly useful for smallish IDPs (disordered peptides) with molecular
weight of several kDa. For systems of this size it can be difficult to obtain
comparable information by means of small-angle X-ray scattering (SAXS) since
the sensitivity of SAXS declines at low molecular weight [41] and boosting
the signal by using high-brilliance synchrotron sources often causes radiation
damage to protein samples [42]. In contrast, diffusion NMR spectroscopy can
be successfully used for IDPs of an arbitrary size.

While in the case of folded proteins the experimental data translate into
structural models that are deposited into Protein Data Bank, what are the
comparable models for disordered proteins? Early on, IDPs conformational
ensembles have been modeled by a collection of multiple conformers with
attached statistical weights. The best-known ensemble generation schemes are
ENSEMBLE [11] and ASTEROIDS [12]. Later, it has been proposed that
MD trajectories can serve as structural models of IDPs, allowing for direct
testing against NMR observables and other experimental data [13]. Indeed,
MD simulations offer a natural path toward a realistic IDP’s conformational
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ensemble. Moreover, they capture the dynamic aspect of IDP’s conformational
equilibrium, i.e. encode the transition rates between a multitude of different
conformers. This is particularly valuable for analyses of relaxation rates and
PREs, which depend on motional time constants — these observables can
be calculated directly from the MD trajectories and then compared with the
experimental data.

While the idea of using an MD trajectory as a «structural-dynamic
model» of an IDP seemed appealing, it faced some major challenges. First,
the conventional MD force fields (and water models) proved to be ill-suited
for modeling of disordered proteins. Second, typical MD trajectories were too
short to sample the vast conformational phase space of an IDP. Over the last
decade, a substantial headway has been made to address both of these problems.
A number of new force fields and water models have been developed to model
unstructured (as well as structured) proteins [18; 43––45]. At the same time,
the advent of GPU computing along with development of special schemes for
enhanced conformational sampling improved the situation with statistics of IDP
simulations [15; 46––48]. As a consequence, it became possible to generate a
converged trajectory involving a short IDP (i.e. a long peptide) and use it as
a bona fide model to test against the experimental data [49; 50]. Otherwise, for
longer IDPs, Blackledge and co-workers have developed the ABSURD approach
whereby the disordered protein is modeled using a collection of shorter MD
trajectories, which enter into the model with adjustable weights [51].

In this report, we address the question of whether an MD model of an
intrinsically disordered protein can be validated against PFG NMR diffusion
data. As already mentioned, the translational diffusion coefficient Dtr is one of
the potentially informative pieces of data, characterizing the overall compactness
of the IDP’s conformational ensemble. However, calculating Dtr from the MD
data (for the purpose of further comparison with the experimental result) is
less than trivial.

Indeed, it is well-known that calculated Dtr values depend on the size
of the simulation box. This has been demonstrated for simple fluids, polymers
and proteins [52––58]. The origin of this effect can be traced to the constraints
imposed on the MD simulation and, more specifically, the requirement of zero net
momentum. This requirement leads to a situation where some of the dynamics
in the simulated system is subtracted out; the effect is significant for small-sized
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systems, leading to slower-than-expected apparent diffusion [59]. In order to
counter this problem, Yeh and Hummer proposed to conduct several simulations
in boxes of increasing size and then extrapolate the resulting Dtr values toward
the limit of an infinitely large box [59]. While this approach has been commonly
accepted, it is rather demanding from a computational standpoint. In particular,
it requires one to record a long IDP simulation in a very large water box.

Furthermore, accurate determination of Dtr under the commonly used
NPT ensemble equipped with Langevin thermostat proves to be problematic.
It is a general observation that simulations employing Langevin thermostat
do not reproduce hydrodynamics [60]. For the typically used values of
friction constant γ (that are necessary for effective temperature control), the
friction leads to appreciable increases in solvent viscosity and, accordingly,
results in underestimated Dtr [61]. In principle, empirical schemes can be
developed to correct for this effect; e.g., Hicks and co-workers recently presented
such corrections for rotational diffusion coefficient Drot [62]. However, these
corrections are rather cumbersome and depend on a size of the simulated protein;
in the case of IDPs, this approach is likely to face further complications. A better
solution to this problem is to use another thermostat, such as Bussi-Parrinello
velocity rescaling thermostat [63].

In this study we have focused on the intrinsically disordered N-terminal
fragment of human histone H4 (residues 1-25). The N-terminal tail of H4
(hereafter referred to as N-H4) plays an important role in regulating gene
transcription as well as chromatin architecture and remodeling [64]. In addition
to the N-H4, we have also studied the well-known globular protein ubiquitin
(Ub), which serves as a point of reference in our study of translational diffusoin.
Since the MD-predicted Dtr constants of N-H4 and Ub are dependent on the
viscosity of the modeled solvent, we have also systematically investigated the
self-diffusion of water [65].

The simulations were conducted in the program Amber20 [66] under ff14SB
force field [67] using three different water models: TIP4P-Ew [68], TIP4P-D [18],
and OPC [69]. For both Ub and N-H4, we observe that the simulations using
TIP4P-Ew significantly overestimate the diffusion coefficients, the simulations
using TIP4P-D somewhat underestimate them, while the simulations using
OPC overestimate them but only very slightly. These observations are largely
attributable to variations in viscosity between the three water models. However,
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in the case of the disordered N-H4 peptide the results also convey some
information about the conformational ensemble of the peptide. Specifically, our
data suggest that TIP4P-Ew solvent leads to overly compact representation
of the N-H4 species. This observation is confirmed by the comparison of
MD-simulated and experimental 15N relaxation data. On the other hand, both
OPC and TIP4P-D simulations are compatible with the experimental results
within the uncertainty range.

Interestingly, analyses of the MD data using HYDROPRO software [70]
or HYDROPRO-based parameterization [71] leads to the opposite conclusion,
i.e. that the TIP4P-Ew model is the best water model to simulate N-H4. This
serves as a cautionary note regarding the application of HYDROPRO, which is
neither intended nor suited to be used on disordered proteins. Similarly, caution
should be exercised with regard to other empirical schemes to predict Dtr using
the simulated conformational ensembles of IDPs [72; 73]. Direct determination
of Dtr from MD simulations, as demonstrated in this work, can provide a useful
benchmark for further studies in this area.

1.2 Results and discussion

1.2.1 Water models for IDP simulations

The field of biomolecular MD simulations is dominated by classical 3-site
or 4-site rigid point-charge water models [74]. The interactions of these water
models are limited to pairwise Coulomb attraction/repulsion and pairwise
Lennard-Jones (LJ) attraction (dispersion)/repulsion. The geometry of the
water molecule, the magnitudes of point charges and their placement, as well
as the LJ constants are usually adjusted to reproduce certain experimental
characteristics of water. For example, the widely used 3-site TIP3P model
approximates the geometry of water molecule in gas phase, with tunable
interaction parameters adjusted such as to reproduce water density and heat of
vaporization [75]. The 4-site TIP4P model, reported by the same authors, has
the negative charge slightly shifted away from the oxygen atom, which improves
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the agreement with the oxygen-oxygen and oxygen-hydrogen radial distribution
functions from the neutron scattering experiments. Later TIP4P model has
been re-optimized by using the Ewald summation technique instead of simply
truncating the Coulomb interactions [68]. The resulting TIP4P-Ew model along
with the classical TIP3P and SPC/E [76] have been the most popular choices
in the field of biomolecular MD simulations over the last two decades.

About fifteen years ago, emerging interest in IDPs and advent of GPU
computing prompted a number of research groups to begin simulating flexible
peptide molecules. Soon it has been recognized that such simulations suffer
from inadequate solvation of peptide chains [16]. Specifically, solvation free
energies of peptide moieties turned out to be less favorable than those measured
experimentally. A number of attempts have been made to repair this problem
by fine-tuning the parameters of the relevant van der Waals interactions [77; 78].
In particular, these efforts led to a new version of Amber ff99SB force field [17;
79], which was later dubbed ff99SB-UCB. This modified force field has been
complemented with a suitably modified TIP4P-Ew water model. Specifically,
van der Waals parameters of the oxygen atom were tuned to better reproduce
solvation free energies for a set of small molecules representative of peptide
chemical space. Unfortunately, this modified water model remains nameless.

Soon thereafter, another modified water model has been introduced under
the name TIP4P-D [18]. This model was built upon TIP4P/2005 [80], with
van der Waals potential originating on the oxygen atom reparametrized such
as to make peptide hydration more enthalpically favorable. Charges were also
adjusted to fit the temperature-dependent density and heat of vaporization data.
The model has been tested with a number of force fields, including Amber
ff99SB-ILDN [81], and showed good results in IDP simulations. However, the
authors also noted a slight tendency of TIP4P-D to destabilize globular proteins.

Two years later, a similarly modified TIP3P model has been introduced for
use in conjunction with the amended force field, CHARMM36m, with the intent
to simulate both folded and unfolded proteins [43]. Likewise, this revised water
model was constructed by redefining van der Waals parameters in the original
model. Unfortunately, this water model is also lacking a unique name.

A similar effort has also been undertaken to generalize Amber force fields,
with a99SB-disp aspiring to model both folded and unfolded proteins [44]. This
force field was equipped with a slightly revised version of TIP4P-D, which also
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lacks a distinctive name. The new package was extensively tested on a set of
21 benchmark proteins.

In the meantime, a different type of water model, OPC, has been developed
by optimizing positions of point charges with no regard for covalent geometry;
the van der Waals parameters of the oxygen atom were tuned to match certain
key experimental metrics [69]. Later, the authors reported that OPC model
achieves good results in modeling of IDPs [45]. In particular, the trajectory of
26-residue N-terminal peptide from histone H4 recorded in OPC water under
Amber99SB force field showed a significantly more expanded conformational
ensemble compared to the trajectory in conventional TIP3P water.

A number of papers have also been published which compared the
performance of the newly developed water models combined with various
popular force fields [14; 49; 82––89]. The authors used radii of gyration measured
by SAXS, chemical shifts and 3J(HN,Hα)-couplings measured by NMR, as well
as a host of other diverse experimental characteristics, to test and validate
the new water models. From these studies it emerged that the new water
models clearly perform better in simulating disordered proteins than the
previous-generation models such as TIP3P. However, beyond that it is difficult
to draw any conclusions — it appears that some systems are better modeled by
one water/force field combination, while other systems favor other combinations.
It should also be added that only TIP4P-D model has been tested in more than a
few studies, whereas other models received little attention. Altogether, the field
needs more information on this problem, including a wider range of IDPs, more
comprehensive experimental datasets, longer trajectories and improved study
designs. The search for an optimal water model should be generally framed as
a search for an optimal force field, including water model as one of its most
consequential elements.

In this study we have chosen three water models, TIP4P-Ew, TIP4P-D and
OPC, to investigate their performance in the context of MD modeling of protein
diffusion, with the focus on disordered proteins. TIP4P-Ew is a classical model,
which is selected here as a point of reference. TIP4P-D is a better established
specialized model, developed for disordered proteins. Finally, OPC represents
the latest generation of water models, aspiring to model both structured and
disordered proteins. All of them are 4-site fixed-charge fixed-geometry models,
which facilitates the comparison (e.g. there is no difference in the computational
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costs between these models). For reader’s convenience, the parameters of these
models are summarized in Figure 1.1.

Figure 1.1 –– Parameterization of water models TIP4P-Ew, TIP4P-D and
OPC. Van der Waals parameters are for the oxygen atom, with the variable

representing oxygen-to-oxygen distance r.

To interpret our MD results on protein diffusion, which is the main focus
of this chapter, we also need the data on viscosity of the modeled bulk water. To
address this question, we consider self-diffusion coefficients DH2O

tr for TIP4P-Ew,
TIP4P-D and OPC water models. While the data on self-diffusion coefficients
for various water models are available in the literature, they are often obtained
from simulating a relatively small cluster of water molecules with no regard
for box-size dependence of Dtr [65]. Furthermore, the published data do not
always document the temperature dependence of DH2O

tr . Therefore, we decided
to quantify DH2O

tr as a part of this study, using the same simulation setup as
employed in our study of protein diffusion.

Specifically, for each of the considered water models we recorded three
150-ns-long trajectories involving small-, medium- and large-sized water boxes.
The box dimensions were taken to be the same as in Ub simulations (for instance,
the large OPC box contained 65243 water molecules). The simulations have
been conducted at two temperatures, 298 and 303 K (relevant for N-H4 and
Ub, respectively). The trajectories were processed as described in section 1.3,
resulting in three DH2O

tr values per water model per temperature. These results
are plotted in Figure 1.2 as a function of the inverse box size, 1/L (color-coded as
indicated in the legend). Linear extrapolation ofDH2O

tr to the limit of an infinitely
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Table 1 –– MD-pred-cted self-diffusion coefficients DH2O
(tr,0) for three different water

models at 298 and 303 K together with the corresponding experimental results

Temperature (K)
DH2O

tr (10-9 m2/s)

Experiment MD simulations
TIP4P-Ew TIP4P-D OPC

298 2.30 2.63 2.13 2.41
303 2.60 2.96 2.39 2.60

large box, 1/L = 0, allows one to recover the true MD-predicted self-diffusion
coefficients of water. These extrapolated values DH2O

(tr,0), corresponding to the
y-intercepts of the dashed lines in the graph, can be compared with the relevant
experimental data [90], as indicated by the horizontal red lines. The results are
also summarized in Table 1.

Figure 1.2 –– Determination of self-diffusion coefficients DH2O
tr from the series of

MD simulations of water using TIP4P-Ew, TIP4P-D and OPC models at (A) 298
K and (B) 303 K. The results are plotted as a function of the inverse linear size of
the simulation box, 1/L. The per-box DH2O

tr values are extrapolated to the limit
of an infinitely large box, 1/L = 0, using simple linear regression (dashed lines).
The y-intercept of each regression line corresponds to the predicted self-diffusion
coefficient for a given water model, DH2O

(tr,0) (listed in Table 1). The experimental
results [90] are represented by solid red lines.

The inspection of Figure 1.2 confirms that there is slight, but distinct
size dependence of the obtained DH2O

tr values. Therefore, if the objective is
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to compare the MD results with the experimental data one should use the
extrapolated values, DH2O

(tr,0). Likewise, when discussing the properties of solvent
water in the protein simulations, it is appropriate to refer to DH2O

(tr,0). Surveying
the results in Figure 1.2 and Table 1, we observe that TIP4P-Ew model
leads to appreciably overestimated DH2O

(tr,0), TIP4P-D model leads to somewhat
underestimatedDH2O

(tr,0), whereas the OPCmodel leads to minimally overestimated
DH2O

(tr,0).
It is also instructive to compare the results with the information in the

literature. For TIP4P-Ew water, the self-diffusion coefficient at 298 K was
reported to be 2.4 · 10-9 m2/s [68], which is appreciably lower than the value
of 2.63 · 10-9 m2/s reported here. This can be understood by noticing that
the original estimates have been obtained using a small water cluster (512
molecules) simulated under the Andersen thermostat [91], which is, strictly
speaking, not suitable for modeling of transport properties [61]. A similar
observation concerning TIP4P-Ew has been recently made by the Economou
group, who reported the size-corrected diffusion coefficient of 2.7 · 10-9 m2/s
for this water model [65].

For the OPC water, the originally reported self-diffusion coefficient at 298
K was 2.3 · 10-9 m2/s [69], which is slightly lower than the value 2.41 · 10-9 m2/s
found in our study. One should bear in mind that the water cluster simulated by
Izadi et al. was also rather small (804 molecules) and the Langevin thermostat
used by the authors of that study tend to bias the extracted diffusion rates
(discussed in the section 1.1).

Finally, for the TIP4P-D water, the self-diffusion coefficient of 2.1 · 10-9
m2/s has been originally reported at the temperature of 300 K. This is slightly
lower than the values 2.13 · 10-9 and 2.39 · 10-9 m2/s which we obtained at 298
and 303 K, respectively. Of note, the authors used the 3054 water molecules and
Nose-Hoover thermostat [91; 92], which is appropriate for this type of problem.

1.2.2 MD modelling of N-terminal tail of histone H4

We have recorded an extensive series of MD simulations for disordered
N terminal tail of histone H4 (net length 75 µs, see Table 4 for details). This
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positively charged peptide is comprised of the highly mobile glycine-rich segment
(residues 1-15) and the segment that consists of bulkier residues with a very high
proportion of charged amino acids (residues 16-25). There have been some early
reports of α-helical propensity in N-H4, particularly in the acetylated form of the
peptide, as well as propensity to adopt β-sheet conformations [93––96]. However,
subsequent experimental studies and simulations of the isolated N-H4 peptide,
as well as the N-terminal H4 tail within the nucleosome core particle (NCP)
have not found any evidence of residual secondary structure in this segment [49;
97––102]. Of interest, NMR studies of NCP samples have exposed some intriguing
aspects of N-H4 dynamics, including fuzzy interactions with the nucleosomal
DNA (scalable by lysine acetylation) and a competition between H4 and H3
tails for the DNA interaction sites [50; 100––102].

Reviewing the trajectories of N-H4 in the TIP4P-Ew, TIP4P-D and OPC
water, we note that in all of them the peptide dynamically interconverts between
a multitude of random conformations. However, in the case of TIP4P-Ew
simulation, it tends to constantly form various hairpin-like arrangements;
sometimes, the entire peptide forms a semblance of hairpin, which continually
morphs from one shape to another, but remains recognizable for up to
several hundreds of nanoseconds. Occasionally, the peptide chain forms a
«mini fold», which features little or no secondary structure, but likewise can
retain its topology for up to several hundreds of nanoseconds. Such fluid
structural motifs are held together by a handful of backbone-to-backbone,
sidechain-to-backbone and sidechain-to-sidechain hydrogen bonds. In contrast,
in the TIP4P-D trajectory the peptide mainly adopts extended conformations.
Different hairpin- and loop-like motifs are more local in character and appear less
frequently. Among them there is a distinctive small hairpin that is sporadically
formed by the C terminal portion of the peptide [49]. Finally, the OPC trajectory
falls somewhere in between the other two, as it features a mix of the extended
conformations and loosely packed conformations.

From the perspective of diffusion measurements, it is essential that N-H4
adopts more compact conformations in the TIP4P-Ew solvent, more extended
conformations in the TIP4P-D solvent, and a mixture of the two in the
OPC solvent. This can be conveniently visualized through the gyration radius
distribution function, P (Rg). These distributions for the N-H4 simulations in the
TIP4P-Ew, TIP4P-D and OPC water are shown in Figure 1.3 (blue, green and
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magenta histograms, respectively). In each case, the distribution can be loosely
described as bimodal. For the TIP4P-Ew histogram, the dominant narrow peak
is centered just under 10 Å, with the secondary broader peak appearing at
around 13 Å. For the TIP4P-D distribution, the broad main peak is centered
at approximately 16 Å, while a minor component is visible at 11 Å. Finally,
in the OPC histogram the broad peak with the larger area under the curve is
positioned at ca. 15 Å, whereas a sharper peak with a roughly triangular shape
occurs at 11 Å. The average Rg values are 11.5, 13.8 and 15.3 Å for TIP4P-Ew,
OPC and TIP4P-D trajectories, respectively — indicating that the TIP4P-Ew
and TIP4P-D results are wide apart, with OPC somewhat closer to the latter
rather than the former.

The results shown in Figure 1.3 are expectable. As indicated previously,
TIP4P-Ew favors intra-protein interactions at the expense of protein-to-water
interactions, thus giving rise to (transiently) structured, more compact N-H4
species. At the same time, TIP4P-D shifts the balance in the opposite direction,
emphasizing amply solvated, extended species. In the context of this work, it is
important that the three water models, TIP4P-Ew, TIP4P-D and OPC predict
significantly different conformational ensembles. The key question is whether the
experimental Dtr measurements can help to discriminate between these three
distinctive N-H4 ensembles. This question will be addressed in the remainder
of the chapter.

To conclude this section, we will briefly discuss the situation with Ub
simulations (see Table 5 for the summary of trajectories). Theoretically speaking,
one can imagine that Ub molecule becomes somewhat «compacted» in the
TIP4P-Ew solvent and somewhat «expanded» in the TIP4P-D solvent. This
can conceivably happen due to the surface side chains that cling to the protein
surface in the TIP4P-Ew solvent, but become extended outward in the TIP4P-D
solvent. In fact, this kind of effect proved to be minor, with average Rg values of
ubiquitin 11.69, 11.70 and 11.81 Å in TIP4P-Ew, OPC and TIP4P-D trajectories,
respectively (small-box NPT simulations). Therefore, we can safely assume that,
insofar as diffusion characteristics are concerned, the structural state of ubiquitin
does not depend on the water model used in the simulations.
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Figure 1.3 –– Gyration radius distributions P (Rg) for the N-H4 simulations in the
TIP4P-Ew, TIP4P-D and OPC water (small-box trajectories, NPT simulations).
The histograms for medium- and large-box NPT simulations, Figure 1.12 (B, C),
are near-identical to the ones shown in this plot; this is not surprising given that
the medium- and large-box trajectories were recorded as a set of short 10-ns
segments starting from the frames that have been extracted from the small-box
trajectory (see Figure 1.8). The histograms for small-, medium- and large-box
NVE simulations employing TIP4P-Ew and TIP4P-D simulations, Figure 1.12,
(D-F), are similar but not identical to the ones shown in this plot. Specifically, the
distributions derived from NVE and NPT simulations in TIP4P-D solvent are, in
fact, almost indistinguishable, whereas in the case of TIP4P-Ew there are some
small, but visible differences. This outcome is understandable — indeed, one
should expect that TIP4P-D simulations involving extended and highly dynamic
peptide species are better converged than TIP4P-Ew simulations involving a
host of interconverting hairpin-like conformers and other loosely structured

arrangements.

1.2.3 Protein diffusion coefficients from the MD simulations

The MD data from the simulations of N-H4 in the TIP4P-Ew, TIP4P-D
and OPC solvent have been processed as described in 1.3 to determine the
box-size-dependent DN−H4

tr quantities, which were then extrapolated to the limit
of an infinitely large box, yielding the predictions for translational diffusion
coefficients, D(N−H4)

(tr,0) . The latter step is illustrated in Figure 1.4 (A) for the
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N-H4 simulations in the NPT ensemble (the net duration of the trajectories
45 µs). The per-box values of DN−H4

tr (circles in the plot, colored according to
the type of water model used in the simulations) are successfully fitted with
straight lines, thus confirming the sound character of the box-size correction
scheme [59] and indicating that our results are well-converged. We further
observe that the predicted diffusion coefficient D

(N−H4)
(tr,0) from the simulations

in the TIP4P-Ew water significantly overestimate the experimental result (cf.
the y intercepts of the dashed blue line and the solid red line in Figure 1.4 (A)).
At the same time, the simulations in TIP4P-D water (green symbols) and OPC
water (magenta symbols) lead to moderate under- and overestimation of the
experimental diffusion coefficient, respectively. The OPC result is particularly
close to the experimental value, see Table 2.

Figure 1.4 –– Determination of diffusion coefficients for (A) N-H4 and (B, C) Ub
from the series of MD simulations using TIP4P-Ew, TIP4P-D and OPC water
models. The simulations have been conducted in the NPT ensemble at 298 K
(for N-H4) and 303 K (for Ub). The per-box Dtr values are plotted as a function
of the inverse linear size of the simulation box, 1/L, and fitted via the linear
regression (dashed lines). The y-intercept of each regression line corresponds
to the predicted diffusion coefficients D

(N−H4)
(tr,0) or DUb

(tr,0). The per-box DU
rotb
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values are plotted as a function of the inverse (generalized) box volume, 1/L3 ,
and likewise fitted via the linear regression. The y-intercept of each regression
line corresponds to the predicted rotational diffusion coefficient DUb

(rot,0). The
positioning of the points in graphs B and C may lead one to assume that the
y intercept of the Drot vs. 1/L3 dependence is determined more reliably than
that of the Dtr vs. 1/L. However, there is some amount of scatter associated
with Drot values (readily visible for the middle point in panel C). Ultimately,
the comparison of the results from the NPT and NVE simulations, as well as
jackknife estimation of uncertainties (see Table 6) indicate that Dtr and Drot

have been determined with the similar precision. In addition to the simulated
data, the experimental results are also shown in the plot (horizontal red lines).

The same kind of analysis has also been conducted for DUb
tr translational

and DUb
rot rotational diffusion of Ub (the net duration of the NPT simulations

18 µs). The results shown in Figures 1.4 (B, C) display the same pattern
as described above: TIP4P-Ew predictions are significantly overestimated,
TIP4P-D predictions are underestimated, while OPC predictions are close to the
target but slightly over the mark. This outcome can be explained by considering
the following two factors. First, the viscosity of the simulated solvent varies
between the different water models, see Figure 1.2 and Table 1. Second, in the
case of N-H4, the simulated conformational ensemble of the peptide also varies
between the models, see Figure 1.3. We will analyze these two factors and their
impact on the predicted Dtr and Drot values in the next section.

In addition to the NPT simulations, we have also generated a series of
N-H4 and Ub trajectories using the NVE ensemble. These simulations have
been conducted in TIP4P-Ew and TIP4P-D solvent, totaling 30 µs for N-H4
and 12 µs for Ub. The trajectories have been processed and analyzed in the
same manner as discussed above. The availability of the independent Dtr and
Drot data obtained from the NVE simulations offers a good opportunity to test
the convergence of our computational scheme.

A direct comparison of the diffusion coefficients obtained from the
independent NPT and NVE simulations is presented in Figure 1.13 and also
summarized in Table 6. The agreement is indeed very good, which confirms the
suitability of the Bussi-Parrinello thermostat for modeling of molecular diffusion.
The average (unsigned) deviation between the NPT and NVE results amounts to
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mere 2.0 %. This is similar to the uncertainty of the experimental measurements
— for example, the translational diffusion coefficient of Ub determined in this
study has an uncertainty of 2.5 % (see Table 6). Therefore, we conclude that the
precision of our calculations is sufficient to conduct a meaningful comparison to
the experimental data. The calculated and experimental diffusion coefficients
should be regarded as fully consistent so long as they fall within several
percentage points of each other.

1.2.4 Comparison of experimental and MD-based results

In Figure 1.5 we visualize the deviations (expressed in percentage points)
between the MD-predicted and experimental diffusion coefficients for water,
Ub and N-H4. It is convenient to first discuss the case of Ub, where the
conformational state of the protein is uniquely defined and protein diffusion is
presumably controlled by solvent viscosity alone. The data on solvent viscosity
in the form of DH2O

tr at the relevant temperature of 303 K are summarized in
Figure 1.5 (A). We compare those with the data on translational diffusion of
ubiquitin, DUb

tr , shown in Figure 1.5 (B).
As seen from the plot, in the TIP4P-Ew simulations the self-diffusion

coefficient of water is overestimated by 13.8 % (blue bar in Figure 1.5 (A).
Similarly, the diffusion coefficient of Ub using this water model is overestimated
by 16.7 % or 14.8 % (blue and light-blue bars in Figure 1.5 (B), corresponding
to the NPT and NVE simulations, respectively).

Next, in the TIP4P-D simulations the self-diffusion coefficient of water is
underestimated by 8.1 % (green bar in Figure 1.5 (A)). Similarly, the diffusion
coefficient of Ub using this water model is underestimated by 7.4 % (green
and light-green bars in Figure 1.5 (B), corresponding to the NPT and NVE
simulations).

Finally, in the OPC simulations the self-diffusion coefficient of water is
overestimated by 2.3 % (magenta bar in Figure 1.5 A). Similarly, the diffusion
coefficient of Ub using this water model is overestimated by 4.3 % (magenta bar
in Figure 1.5 (B), NPT simulations).
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Figure 1.5 –– The differences between the simulated and experimental values of
diffusion coefficients for water, Ub and N-H4 (based on Table 1 and Table 2 and
Table 6). The simulation and measurement conditions are annotated in the plot.
Of note, the results for water self-diffusion coefficient at 298 K are very similar

to those at 303 K (cf. panels A and D).

Thus, comparing the results inuresigs Fgiures 1.5 (A, B) we observe that
they are essentially identical to within a couple of percentage points. This means
that the simulated translational diffusion of Ub is indeed determined entirely by
the viscosity of the MD solvent. In particular, when using the OPC solvent,
which closely reproduces the experimental self-diffusion coefficient of water, the
simulations also closely reproduce the experimental diffusion coefficient of Ub.
In turn, this means that the MD-based scheme employed in our study can be
used to successfully predict the translational diffusion of a globular protein
— one just needs to use a water model with correct viscosity (such as OPC)
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or, otherwise, apply a simple ex-post viscosity correction (recommendable for
TIP4P-Ew and TIP4P-D).

This conclusion is supported by the rotational diffusion data for Ub, see
Figure 1.5 (C). As can be seen from the plot, the predicted values of the
rotational diffusion coefficient can be fully explained by the variations in solvent
viscosity. In particular, when using the OPC solvent, the predicted diffusion
coefficient DUb

(rot,0) reproduces the experimental result to within 1.4 % (magenta
bar in Figure 1.5 (C)). Otherwise, in the case of TIP4P-Ew or TIP4P-D solvent
one needs to apply a simple viscosity correction in order to obtain a similarly
accurate result.

In the above discussion, we observe that the bars in Figure 1.5 (A) are very
similar in magnitude to the bars in Figures 1.5 (B. C). While some deviations are
seen in the graphs, they are small and largely reflect the statistical uncertainty
in the MD-based calculations (cf. green and light-green bars in Figure 1.5 (C),
corresponding to the NPT and NVE simulations, respectively). Another source
of uncertainy is the experimental error. As already indicated (see the previous
section), the data entries in Figure 1.5 can be deemed consistent so long as they
fall within several percentage points of each other.

Next, we turn to the N-H4 data, which are of prime interest to us in the
context of this study. Since N-H4 in solution is disordered, we expect that the
accuracy of the MD predictions for this peptide depends in this case on two
factors: viscosity of the simulated solvent (already discussed for Ub) and the
characteristics of the simulated conformational ensemble (see Figure 1.3).

The deviations between the MD-predicted and experimental diffusion
coefficients for water and N-H4 at the relevant temperature of 298 K are graphed
in Figures 1.5 (D, E). Comparing the data from water simulations with those
from the N-H4 simulations, we immediately notice a big difference between the
respective TIP4P-Ew results. While this water model overestimates the water
self-diffusion coefficient by 14.3 % (blue bar in Figure 1.5 (D)), it overestimates
the N-H4 diffusion coefficient by a much wider margin, 25.1 % or 23.4 % (blue
and light-blue bars in Figure 1.5 (E)). The mismatch is too large to be explained
away by the experimental error or statistical uncertainty of the MD simulations.
Hence, we are led to conclude that the reason lies with the modeling of the
peptide conformational ensemble in the N-H4 simulations.
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Indeed, considering the results in Figure 1.3 we observe that the N-H4
peptide in the TIP4P-Ew solvent tends to adopt compact conformations.
These compact conformational species diffuse more rapidly, resulting in the
higher-than-expected translational diffusion coefficient. Thus, our analysis
identifies a problem with the modelling of the N-H4 conformational ensemble
in TIP4P-Ew water. Additional relaxation-based evidence that supports this
interpretation is shown below.

Returning to the discussion of Figures 1.5 (D, E), we note for TIP4P-D
and OPC models the data on self-diffusion of water are compatible with the data
on diffusion of N-H4. Specifically, in the case of TIP4P-D model the self-diffusion
coefficient of water is underestimated by 7.4 % (green bar in Figure 1.5 (D)),
while the diffusion coefficient of N-H4 is underestimated by 7.0 % or 3.5 % (green
and light-green bars in Figure 1.5 (E)). Finally, in the case of the OPC model
the self-diffusion coefficient of water is overestimated by 4.8 % (magenta bar
in Figure 1.5 (D)), while the diffusion coefficient of N-H4 is overestimated by
5.8 % (magenta bar in Figure 1.5 (E)).

The simple explanation is that both water models, TIP4P-D and OPC,
are reasonably successful in modeling of the N-H4 conformational ensemble.
Specifically, it can be suggested that the true P (Rg) distribution for this
peptide is somewhere in between the ones predicted by the TIP4P-D and OPC
simulations (cf. Figure 1.3). In this situation, the MD-derived diffusion coefficient
of N-H4 is determined mainly by solvent viscosity, which is what we observe for
these two water models.

In order to corroborate these observations, we turn to the 15N relaxation
data [49]. These data include a set of per-residue longitudinal relaxation rates
R1 and transverse cross-correlated (dipolar-CSA) relaxation rates η measured at
the temperature of 298 K. To draw a comparison, we have also calculated the
R1 and η rates using the MD trajectories reported in this study (see 1.3). Both
experimental and calculated results are shown in Figure 1.6.

Of particular interest to us are the cross-correlated relaxation rates
η Figure 1.6 (B). Unlike the longitudinal rates R1, the transverse rates
η have a simple dependence on motional time constants — namely, any slowing
of protein dynamics leads to increases in η [104]. Let us first discuss the
simulations employing TIP4P-Ew water. As already demonstrated, the viscosity
of TIP4P-Ew water is substantially lower than the experimentally measured
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Figure 1.6 –– Simulated and experimental 15N relaxation rates (A) R1 and (B)
η in the N-H4 peptide. The notations are described in the figure legend. The
simulated data are from the NPT trajectories in the small box. We have found
that the calculated relaxation rates are essentially independent of the box size
(see Figure 1.14, which is understandable since the spin relaxation in the N-H4
peptide is dictated by its extensive conformational dynamics rather than the

overall tumbling

viscosity, cf. Table 1. In this situation, one should expect that the simulated
dynamics of the N-H4 peptide in the TIP4P-Ew water should be faster than it
is in reality. In turn, this implies that the simulated η rates should be lower than
the experimentally measured ones. However, these expectations are not borne
out by the actual results — in fact, the simulated η values are substantially higher
than the experimental values (blue profile vs. the black circles in Figure 1.6 (B)).

Therefore, it remains to conclude that the results in Figure 1.6 (B)
are influenced by the details of the N-H4 conformational ensemble. Recall
that the ensemble observed in TIP4P-Ew simulations involves a significant
proportion of loosely structured (hydrogen bonded) species and overall appears
to be exceedingly compact (see subsection 1.3.2). The conformational dynamics
of N-H4 is obviously slowed down in such transiently structured compact
species, resulting in the elevated η rates. The effect is significant enough to
overcompensate for the low viscosity of the TIP4P-Ew water, producing the
simulated rates that are greater than the experimental values by a factor of ca.
1.5, see Figure 1.6 (B). Thus, the relaxation evidence appears to support our
diffusion-based findings, indicating that the conformational ensemble of N-H4
peptide in the TIP4P-Ew water is exceedingly compact. This is also in line
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with the previous knowledge that the classical water models tend to produce
unrealistic «collapsed» models of disordered proteins [16].

Finally, returning to the discussion of Figure 1.6 we note that both
TIP4P-D and OPC water produce a better description of the N-H4 relaxation
rates than TIP4P-Ew. In fact, they accurately capture the rates in the more
disordered N-terminal portion of the peptide, while still overestimating the rates
in the C terminal segment (green and magenta profiles vs. the black circles in
Figure 1.6). Given the smallness of the difference between the relaxation-rate
predictions from the TIP4P-D and OPC simulations, it is hardly possible to
favor one model over the other (i.e. it is impossible to tell which one provides a
more realistic description of the N-H4 conformational ensemble, see Figure 1.3).
While both diffusion and relaxation analyses point at the problem with the
TIP4P-Ew water, further studies are needed to assess the relative performance
of the TIP4P-D and OPC models.

1.2.5 Empirical methods to predict diffusion coefficients

In this chapter, we present the direct scheme to determine protein
translational diffusion coefficient from the MD simulations. As a simple
alternative, one can rely on the program HYDROPRO [70] which is intended to
calculate hydrodynamic properties of macromolecules based on their coordinates.
Of particular significance to us, in a number of studies this program has been
used to predict the hydrodynamic radii and translational diffusion coefficients
of disordered proteins. Specifically, HYDROPRO was applied to a set of
MD-simulated IDP conformers and the results were subsequently averaged to
obtain the predicted values of Rh and Dtr [82; 105––108]. The same approach
has also been used for various ensemble models of IDPs generated by means
other than MD simulations [109––111]. Furthermore, a few years ago, Nygaard
et al. proposed a simple empirical parameterization to express the relationship
between the average radius of gyration Rg and the HYDROPRO-predicted Rh

for simulated or otherwise constructed conformational ensembles of IDPs [71].
This parametrization has also been used to predict the translational diffusion
parameters of the MD-simulated IDPs [88; 89].



41

Strictly speaking, the approach whereby HYDROPRO is used to predict
Dtr of disordered protein, lacks any solid theoretical foundation. The description
of HYDROPRO clearly states that it is intended to calculate the hydrodynamic
properties of rigid macromolecules [70]; hydrodynamic calculations on flexible
macromolecules require different approaches [112; 113].

In effect, application of HYDROPRO to conformational ensembles of
IDPs implies that all conformers are «frozen» and preserve their shape while
diffusing in solution. This is clearly different from the real-life situation
where the peptide’s diffusion involves continuous conformational rearrangements.
Intuitively, we anticipate that diffusion of the «frozen» conformers should be,
on average, slower than that of the conformationally mobile peptide. Indeed,
numeric simulations of simple polymer chains support this conjecture [114; 115].

To directly test this point, we have designed a special restrained simulation
of the N-H4 peptide. Specifically, we regenerated a series of five hundred 10-ns
trajectories representing N-H4 in OPC water in a medium-sized box. In each
of these short trajectories, a large number of «soft» distance restraints have
been imposed on the peptide so that it preserved its initial conformation
during the simulation (see 1.3). The obtained set of short trajectories is thus
representative of the diverse conformational ensemble of N-H4, but all of the
simulated conformers are essentially rigid («frozen») and diffuse as such. As
it turns out, this model leads to the DN−H4

tr value which is 12 % lower than
our original (unrestrained) result. The same kind of restrained simulation in a
small-size box leads to the DN−H4

tr value which is underestimated by 8 %. These
findings directly confirm our notion that the ensemble consisting of «frozen»
conformers shows slower diffusion rate compared to the fully dynamic peptide
model.

Based on the above discussion, we expect that application of HYDROPRO
to our original (unrestrained) MD data should lead to a similar underestimation
of diffusion coefficients. To address this question, we have conducted the
HYDROPRO calculations on 5000 frames from the small-box trajectories of
N-H4 in the TIP4P-Ew, TIP4P-D and OPC water. The calculations used the
experimental values for water viscosity and water density at 298 K, with other
input parameters set to default values. The results were compared to the
experimental Dtr value as measured in this work; the deviations between the
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HYDROPRO-based predictions and the experiment are illustrated in Figure 1.7
(A).

Figure 1.7 –– The differences between the calculated and experimental values
of diffusion coefficients for N-H4. The calculations use 5000 frames from the
small-box NPT trajectories of N-H4 in TIP4P-Ew, TIP4-D and OPC water
(blue, green and magenta bars, respectively). The results from medium- and
large-box simulations are very similar to those shown in the plot, which is
understandable given that the respective conformational ensembles are very
similar, see Figure 1.12. The calculated Dtr values are from the following
computational tools: (A) HYDROPRO program; (B) empirical Nygaard formula,
which emulates the HYDROPRO results [71]; (C) Kirkwood-Riseman formula,
formula (1.5); (D) HullRadSAS program. In the calculations B and C, the
calculated values of Rh were converted into Dtr by means of the Einstein-Stokes
formula (1.3). The alternative conversion method using the data from the

reference molecule, formula (1.4), produces similar results (not shown).

Inspection of the HYDROPRO-based results in Figure 1.7 (А) suggests
that TIP4P-Ew is the best water model, which faithfully reproduces the
experimentally measured diffusion coefficient of N-H4. Indeed, the deviation
from the target for this water model is only 2.3 %, compareable to the
experimental uncertainty and appreciably better than that for the TIP4P-D
and OPC models. This is in contrast to our direct analyses of the MD data
(see section 1.3.2), which suggests that the use of TIP4P-Ew leads to the overly
compact conformational ensemble for the N-H4 peptide; additionally, this water
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model suffers from low viscosity. We believe that HYDROPRO results are in
error, as determined by the following two factors. First, since HYDROPRO
treatment tacitly assumes that the peptide molecules are rigid, it tends to
underestimate the diffusion coefficients of the disordered species (see above).
Second, at the same time, the simulations using TIP4P-Ew water produce an
overly compact peptide ensemble, which results in HYDROPRO overestimating
the relevant diffusion constants. The combination of these factors leads to
error compensation, resulting in a false conclusion that TIP4P-Ew is the best
choice of water model to simulate this disordered peptide. In this connection,
one other factor should also be mentioned: HYDROPRO calculations rely on
the user-supplied value of water viscosity (which is usually the experimentally
measured value) and, therefore, are unaffected by the TIP4P-Ew viscosity per se.

From our perspective this latter aspect is both a strength and a weakness.
On the one hand, the results are immune to the viscosity bias, which we have
to deal with in our direct analyses of the peptide diffusion, see subsection 1.3.2.
On the other hand, the HYDROPRO results fail to alert us to the problem with
TIP4P-Ew viscosity (which can compromise other MD-based calculations, e.g.
the calculations of spin relaxation rates).

To conclude the discussion of HYDROPRO, we note that this program
shows very good accuracy in predicting Dtr for ubiquitin, see Figure 1.15 (A).
The results are essentially independent of the water model used. Indeed, the
structure of this small globular protein is only minimally sensitive to the type
of the water model employed in the MD simulations (see section 1.3.2). At the
same time, HYDROPRO performs rather poorly in predicting Drot of ubiquitin,
registering the errors of up to 20 %, see Figure 1.15 (D). This fact, which
has also been noted by others [116], probably reflects the limitations of the
hydrodynamics models used by HYDROPRO.

It should also be noted that the empirical relationship between Rg and
the HYDROPRO-predicted Rh due to Nygaard et al. holds well for the proteins
at hand, cf. Figure 1.7 (A) vs. Figure 1.7 (B) and Figure 1.15 (A) vs. 1.15 (B).
This means, however, that our criticism of the approach whereby HYDROPRO
is used to predict translational diffusion coefficients of IDPs also applies to the
Nygaard’s formula.
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In conclusion, we recommend against using HYDROPRO on ensemble
models of disordered proteins because this program is not designed for disordered
proteins and can produce misleading results.

Very recently, Lindorff-Larsen and co-workers proposed two alternative
schemes to predict translational diffusion parameters of difosrdered proteins
based on their ensemble models. For a number of IDPs of different size, the
authors have generated conformational ensembles by using either the well-known
program Flexible-Meccano [117] or their original Langevin simulations using the
coarse-grained force field CALVADOS [118]. The ensembles were subsequently
reweighted using the experimental SAXS data. The authors then sought to
establish the relationship between these ensembles and the Rh (Dtr) data from
the PFG-NMR diffusion measurements.

To this end, the authors initially invoked a generalistic Kirkwood-Riseman
model pertaining to hydrodynamics properties of flexible polymers [119]. As it
appeared, this model was capable of accurately reproducing the experimental
Rh values based on the ensemble models at hand, subject to some reservations
concerning the protein size [72]. However, shortly thereafter the experimental
data have been re-assessed and it was found that Kirkwood-Riseman formula
actually tends to overestimate the translational diffusion coefficients of IDPs [73].

As an alternative, the same investigators proposed to use the recent
program HullRadSAS [120]. When applied to the ensemble models at hand,
this approach reproduces the experimental Rh values with a fairly good
accuracy [73]. It should be noted, however, that HullRadSAS is a program for
hydrodynamics calculations, which is conceptually similar to HYDROPRO. Just
like HYDROPRO, it is not intended for disordered proteins. Therefore, the use
of HullRadSAS in this context should be regarded as an empirical solution to
draw a bridge between the givent set of models and the Rh (Dtr) data.

As a part of our study, we have tested both Kirkwood-Riseman formula
and HullRadSAS scheme on our data (see section 1.3). The results from
Kirkwood-Riseman interpretation appear to be unsatisfactory, see Figure 1.7
(С). In accordance with the latest observations [73], this method overestimates
the diffusion coefficients of IDPs. While our rigorous analysis of the N-H4
diffusion in the MD simulations suggests that the trajectories recorded in
TIP4P-D and OPC water achieve a near-quantitative accuracy in modeling the
translational diffusion of this peptide (see section 1.3.2), the application of the
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Kirkwood-Riseman formula to the MD snapshots leads to large errors of 14.6 %
and 23.4 % for the two respective water models.

Turning to the very recent HullRadSAS scheme, see Figure 1.7 (D), we
note that the results are indeed more in line with the direct MD-based analysis.
Nevertheless, they still fall short of the quantitative agreement. Specifically, if
we factor out the trivial viscosity effects, we expect that the conformational
ensembles obtained from the TIP4P-D and OPC simulations should accurately
reproduce the experimental diffusion characteristics of N-H4, see Figure 1.5 (E,
D). Instead, the predictions by HullRadSAS overestimate the experimental Dtr

value by 5.3 % and 11.1 % for TIP4P-D and OPC, respectively. This may lead
one to incorrectly conclude that the OPC model is poorly suited for modeling
of disordered proteins.

Given that HullRadSAS has not been designed to work with flexible IDPs,
we repeat our call for caution which we have previously made with regard to
HYDROPRO. If the goal is to validate an MD model of a disordered peptide, it
is safer to directly extract the diffusion coefficient from the MD simulations (such
as demonstrated in this work) rather than rely on empirical tools to predict Dtr

based on a selection of MD snapshots.

1.2.6 Accelerating MD simulations of protein diffusion

As discussed above, direct determination of Dtr using the MSD(τ) metric
is preferable to various empirical schemes that make predictions based on the
coordinates of the MD-simulated conformers. However, the downside of the
direct approach is that it is time-consuming. We have already shown that
the computational time can be reduced several fold by recording fragmented
trajectories of the peptide in the medium- and large-size water boxes. In this
section we consider the possibility that further time savings can be achieved by
using a longer integration timestep. To obtain some insight into this problem,
we treat the simple test case, that of ubiquitin.

Toward this goal, we have recorded three additional series of Ub
trajectories using longer integration timestep: ∆t = 2 fs, ∆t = 4 fs (with
the HMR scheme applied to Ub, but not to water, as per the Amber manual
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recommendation) and ∆t = 4 fs (with the HMR scheme applied to both Ub and
solvent water). Each series consists of the simulations in small-, medium- and
large-size boxes and has a combined length of 6 µs. Aside from the timestep
and the HMR scheme, the simulation protocol is identical to the one described
in section 1.3. One of the two more successful solvent models, OPC, has been
selected for these simulations. The results are summarized in Table 3.

The inspection of the data in Table 3 shows that making a transition from
∆t = 1 fs to ∆t = 2 fs causes moderate increases in the Ub diffusion coefficients,
on the order of several percentage points. On the other hand, an attempt to
use a longer timestep, ∆t = 4 fs, in conjunction with the HMR scheme on Ub
leads to more substantial increases, on the order of 15-20 %. At the same time,
if the HMR scheme is applied to both Ub and water, the results from ∆t = 4 fs
simulations are brought back in line with the original 1 fs results.

This outcome is apparently at odds with the Amber default setup, where
the HMR scheme is only applied to the protein molecule [121]. The rationale for
this default setting is that the water molecules are already constrained to their
rigid geometry via the SETTLE algorithm [122] and, therefore, do not need to be
additionally constrained via the HMR. However, it has been previously pointed
out that the SETTLE algorithm does not necessarily eliminate all high-frequency
motions in water [123]. In fact, there are short-range nonbonded interactions
between proximal water molecules, which can give rise to such high-frequency
motions [123]. We argue that the application of the HMR scheme to both Ub
and solvent helps to suppress these high-frequency motional modes and thus
improve the accuracy of the MD simulations using the extended 4-fs timestep.

Our preliminary studies indicate that this conclusion also holds for pure
water, as well as the intrinsically disordered N-H4 peptide. It appears that
the simulations using ∆t = 4 fs are feasible for these systems and produce
the accurate diffusion parameters, but if and only if the HMR scheme is
applied to the entire simulation cell. If confirmed, this result means that the
direct MD-based procedure to quantify protein diffusion can be completed in
one-quarter of the time that has been expended in this work.
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1.3 Materials and methods

1.3.1 MD simulations

The initial coordinates of N-H4 peptide (amino-acid sequence
SGRGKGGKGLG KGGAKRHRKVLRDN) were generated as described
previously [49]. Briefly, we have built 2000 random N-H4 conformations using
the server http://unfolded.uchicago.edu [124] and the program Scwrl4 [125].
All conformations were energy-minimized and then ordered according to their
energies in GBneck2 solvent [126]. One structure was chosen at random from the
central portion of the energy histogram and subsequently used in all simulations.

The initial structure was protonated in accordance with the experimental
pH 4.0 using the program PROPKA [127]. The low pH was originally chosen to
minimize amide proton exchange with solvent; the protonation of the peptide
at pH 4.0 is the same as at physiologically relevant pH 7.2 except for a single
histidine residue [49]. The simulations were conducted in Amber 20 (ff14SB)
using three different water models: TIP4P-Ew, TIP4P-D and OPC. For each
choice of water model, we have recorded the trajectories in solvation boxes
of different size. Here we describe the simulations using smaller boxes; the
procedure to record trajectories in medium- and large-sized boxes is explained
later.

The truncated octahedral boxes were built using SolvateOct command in
LEaP; the distance parameter (nominally, a minimal separation between the
peptide and the boundary of the cell) has been set to 12 Å for TIP4P-Ew
simulations or, otherwise, 15 Å for TIP4P-D and OPC simulations. The system
was neutralized by adding nine Cl– ions [128] and then energy-minimized with
harmonic restraints applied to N-H4 heavy atoms. After that the system was
brought to the target temperature of 298 K and equilibrated for 1 ns in NVE
ensemble prior to the production run.

As already pointed out, in our simulations we opted for velocity rescaling
thermostat, also known as Bussi thermostat [63], which preserves the native-like
dynamics of the system. For this purpose, we have implemented Bussi thermostat
as a part of the official Amber 20 release (option ntt = 11). The pressure was
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controlled by Berendsen barostat [129] with the coupling time of 1 ps. The
nonbonded interactions were calculated with a cutoff of 11 Å. The particle mesh
Ewald summation scheme has been employed to treat long-range electrostatic
interactions with the default parameters for grid spacing and spline interpolation.
Bonds involving hydrogens have been restrained by means of the SHAKE
algorithm [130]. The integration time step was 1 fs (motivated by a separate
series of NVE simulations, see below). The coordinates were stored every 1 ps.
The simulations were conducted using in-house GPU workstations equipped with
NVIDIA GeForce GTX 1080, RTX 2080 Ti and RTX 3080 cards. The length of
the small-box N-H4 simulations employing three different water models was
5 µs apiece.

Note that the above description refers to the MD simulation of the
disordered peptide in a periodic boundary cell of a limited size. Does this have
any constraining effect on the N-H4 exploring its conformational phase space?
The answer depends on a number of encounters between the peptide and its
periodic images during the course of the simulations. To address this issue, we
have analyzed the trajectories and calculated the fraction of all frames featuring
close encounters between the master copy of N-H4 and its periodic images (where
at least a pair of atoms come to within 5 Å of each other). As it turns out, the
proportion of such frames is only a fraction of percentage point, viz. 0.06 %,
0.36 % and 0.17 % for trajectories in TIP4P-Ew, TIP4P-D and OPC water,
respectively. Hence, we conclude that the crowding effect in our simulations
must be minimal and can be safely ignored.

As already pointed out, the procedure to determine Dtr and Drot relies on
several MD trajectories recorded in water boxes of increasing size. While the
simulations using relatively small solvent boxes (see above) are reasonably fast,
their counterparts involving medium- and large-sized boxes are far more time
consuming. As a time-saving device, we propose a special scheme to record these
latter trajectories, see Figure 1.8. In brief, we extract the N-H4 coordinates from
the frames at time 0, 10, 20, …, 4990 ns of the small-box trajectory and then
place these conformers into bigger boxes. Specifically, medium-sized boxes were
generated by adding, via SolvateOct, a water shell with the minimal thickness
of 24 Å, whereas the large boxes were generated with the water layer of 48 Å.
The so prepared simulation cells were then equilibrated as described above and
used to start short trajectories with the length of x ns (see Figure 1.8).
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Figure 1.8 –– Schematic design of N-H4 simulations using small-, medium- and
large-size water boxes. The short trajectories were initially recorded with the

length of x = 5 ns and later extended to x = 10 ns

In this work, we recorded a series of trajectories with x = 5 ns. This scheme
offers substantial savings in computational time. First, there is a two-fold gain
due to the reduced overall length of the simulations, see Figure 1.8. Second,
there is a several-fold gain from using a network of GPU computers equipped
with a queuing system (in our case, SLURM), which allows one to quickly record
a series of short trajectories. At the same time, the described scheme ensures
satisfactory conformational sampling for the medium- and large-box simulations,
as inherited from the continuous 5 µs trajectory of N-H4 in a smaller water box.
In order to demonstrate the results are converged, we have later extended x = 5

ns series of simulations to x = 10 ns.
Alongside with NPT simulations employing Bussi thermostat, we have

also recorded a series of NVE simulations of N-H4 peptide in TIP4P-Ew
and TIP4P-D water. It is well-known that NVE simulations represent «true»
dynamics of the system, free from potential interference by thermostating
algorithms. At the same time, NVE simulations often develop a substantial
temperature drift, which makes them ill-suited for routine applications [131;
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132]. In the context of our work, NVE simulations have been conducted as a
control, with the aim to validate the NPT results using Bussi thermostat. The
protocol to record NVE trajectories was identical to the one described above,
including the integration timestep of 1 fs (intended to reduce the temperature
drift). Using the scheme shown in Figure 1.8, we only need to worry about the
temperature drift during the 5-µs NVE simulations in the smaller box (since the
simulations in medium- and large-sized boxes are recorded in short segments
of x = 5 or 10 ns and hence do not suffer from the temperature drift). As it
happens, the observed temperature drift in 5 µs NVE simulations of N-H4 using
small water boxes is modest: on average, the temperature is increased by 1.2 K
in the TIP4P-Ew trajectory and by 0.5 K in the TIP4P-D trajectory. Although
these effects are not inconsequential, they are tolerable for the purpose of our
analyses, which is to validate the results of the NPT simulations.

The summary of all N-H4 trajectories recorded in this study is given in
Table 4. The net length of these trajectories amounts to 75 µs.

Separately, in order to investigate the effect of N-H4 internal mobility on
its diffusion properties (in relation to HYDROPRO-based predictions of Dtr)
we have conducted a special restrained simulation of N-H4. Specifically, we
regenerated the set of five hundred 10-ns trajectories of N-H4 in OPC water
in the medium-sized box. Each of these trajectories was recorded with soft
restraints imposed on all pairwise interatomic distances (the total of 73536
restrains). The restraint potential was a well with parabolic bottom, k(d− d0)

2

(extending from 0.99 d0 to 1.01 d0, where d0 is the interatomic distance found
in the initial frame, with k set to 1 kcal/mol · Å2) and linear sides beyond
that [66]. The combined effect of all restraints was to maintain the peptide
conformation close to its initial conformation (which is specific to each individual
10-ns simulation); the root mean square deviation of the peptide coordinates
relative to the initial frame did not exceed 0.15 Å. The temperature, pressure
and volume of the restrained simulations remained on target and stable; the net
restraint energy was a small fraction, 0.11 %, of the total energy. The same kind
of simulations were also conducted in a small box; in doing so, the continuous
small-box trajectory of N-H4 in OPC water was divided into 10-ns segments and
used to seed five hundred 10-ns restrained simulations.

In addition to N-H4, we have also recorded a series of trajectories for
the popular model protein ubiquitin, which has been chosen in our study as a



52

control system. The initial coordinates were from the structure 1UBQ [133]
protonated using tleap (according to PROPKA, the protonation pattern of
Ub remains the same between pH 4.5 and 6.5). The simulation temperature
was 303 K; other MD parameters were the same as in the N-H4 simulation.
The design of the simulations was similar to the one described above, see
Figure 1.8, i.e. the trajectory in a small box was recorded in one piece, whereas
the trajectories in medium and large boxes were recorded as collections of
multiple short trajectories with x = 5 ns (subsequently extended to 10 ns).
Since the requirements regarding conformational sampling in Ub simulations
are rather minimal, we have reduced the duration of the simulations from 5 to
2 µs. The same tactics was used for NVE simulations of ubiquitin in TIP4P-Ew
and TIP4P-D water. The temperature drift in the small-box NVE trajectories
of Ub proved to be insignificant (0.4 and 0.2 K, respectively), thus facilitating
the type of the procedure shown in Figure 1.8. The summary of Ub simulations
can be found in Table 5; their net length amounts to 30 µs.

To obtain a handle on water viscosity for TIP4P-Ew, TIP4P-D and OPC
models, we also recorded a set of trajectories for pure water in the simulation
boxes of increasing size. The dimensions of the small, medium and large boxes
were chosen to be the same as in Ub simulations. The length of each trajectory
was 0.15 µs; the net length of all water simulations was 1.35 µs.

Additionally, to explore the significance of the integration timestep, we
simulated Ub in the OPC water using 2 fs and 4 fs timestep with or without
the hydrogen mass repartition scheme (HMR) [134].

1.3.2 Processing of MD datа

As a first step, the MD trajectories using periodic boundary conditions
were unwrapped, paying special attention to box-volume fluctuations in the NPT
simulations [135]. To this end we used the in-house script based on the python
library pyxmolpp2.

The translational diffusion coefficients Dtr were calculated in a standard
manner using mean square displacement (MSD) of the protein’s center of
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mass [136]. For collection of N trajectories with the individual length of x ns,
the MSD was computed by formula

MSD(τ) =
1

N · n

N∑
i=1

n∑
j=1

|r⃗i(tj + τ)− r⃗i(tj)|2 (1.1)

where −→ri defines the protein’s center of mass in the i-th trajectory, tj and
tj + τ are a pair of time points separated by the interval τ, and n is a number of
such pairs within the trajectory of length x. Whenever a single long trajectory is
used instead of the collection of short trajectories, the formula in formula (1.1)
is reduced to the familiar simple expression [136].

The obtained dependencies MSD(τ) have been fitted using a linear fitting
function to extract Dtr. In doing so, it is important to choose the appropriate τ
interval over which the fitting is performed. This interval should not extend to
large τ values where the accuracy of theMSD(τ) curve suffers from increasingly
poor statistics that manifests itself in large correlated errors [137; 138]. On
the other hand, one can argue that small τ values should also be left out. In
this connection, the role of internal protein dynamics is particularly relevant
(discussed below).

Conformational transitions in a disordered protein lead to a (limited)
displacement of protein’s center of mass. This effect can be thought of as
restrained translational diffusion. The characteristic time constants of this
diffusion process can be gleaned from N-H4 simulations, where the two dominant
motional modes have been observed: the fast mode on ca. 100 ps time scale
and the slow mode on ca. 1 ns time scale [49]. Therefore, one can expect that
conformational dynamics of N-H4 makes a certain contribution to the simulated
dependence MSD(τ) in the sub-nanosecond time window

Indeed, some evidence of this behavior can be seen in our MD data (an
example is shown in the inset of Figure 1.9 (E)). On the other hand, we note
that the experimentally measured Dtr values correspond to very long τ intervals,
on the order of tens or hundreds of milliseconds, and thus must be completely
insensitive to protein internal motions. Therefore, our goal is to fitMSD(τ) such
as to leave out the presumed small contributions from fast internal dynamics.

Considering these criteria, we have chosen the fitting interval [100 ps, 1
ns] to fit MSD(τ) profiles and determine Dtr (illustrated in Figure 1.9). We
have also tested other choices of the fitting interval and found only a small
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amount of random variation in the resulting Dtr values, thus indicating that the
scheme is sufficiently robust (Figure 1.9). We have also tested the convergence
of our scheme by comparing the Dtr values from x = 5 ns and x = 10 ns sets of
trajectories. The so obtained Dtr values are in good agreement with each other,
confirming that the results are converged (see Figure 1.10 (A)). In what follows,
we use the x = 10 ns data to determine Dtr with maximum possible accuracy.
Likewise, the more statistically sound x = 10 ns data have also been used for
all other calculations in this chapter.

The procedure to calculate Dtr for ubiquitin is the same as described above
for N-H4. The procedure to calculateDtr for water has a similar design as well. In
water molecules, internal dynamics occurs on a femtosecond time scale; therefore,
we have used the short-time fitting interval [1 ps, 100 ps] such as to reduce the
amount of statistical uncertainty affecting Dtr [137; 138]. The Dtr values have
been determined for 100 water molecules chosen at random from within the
water box and subsequently averaged.

Ultimately, to predict the translational diffusion coefficient, we plot the
obtained Dtr values as a function of inverse simulation box size. Any linear
size of the truncated octahedron can be used for this purpose, e.g. the edge
length a; we have chosen the diameter of the inscribed sphere, L = 6

√
a, as a

characteristic size of the box. Conveniently, the value of L is listed in the last
line of the rst7 coordinate file.

Of note, N-H4 simulations employing medium and large cells involve
the boxes of somewhat variable size (depending on the starting peptide
conformation, see above). For example, considering large boxes in the five
hundred short OPC trajectories, we find L = 142 ± 9 Å. Of interest to us, the
inverse size, 1/L, varies according to 0.0071 ± 0.0004 Å-1. When extrapolating
to an infinitely large box, the average 1/L value has been used, 0.0071 Å-1
(see Figure 1.4). In principle, it would be straightforward to use the boxes of
unified size (e.g. corresponding to the largest of all large boxes generated in
our treatment).

Comparing Dtr values derived from the independently performed NPT
and NVE simulations provides a good handle on MD-related uncertainty. In
addition, we have also employed a jackknife method to estimate the uncertainties
of MD-predicted diffusion coefficients. In doing so, the trajectories in small-sized
boxes were divided into 10-ns segments, similar to trajectories in medium- and
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large-sized boxes. Then for each box size we have discarded at random 20 % of
all 10-ns segments and reprocessed the resulting redacted dataset to determine
the translational diffusion coefficient. This procedure was repeated 1000 times;
the standard deviation of the obtained Dtr distribution was taken to be the
uncertainty of the Dtr prediction (reported in Table 6).

While Dtr has been determined for both N-H4 and Ub, the rotational
diffusion coefficient Drot is well defined only for Ub. To extract this parameter
from the MD data, we use the following multi-step procedure. First, superpose
(via the secondary-structure Cα atoms) the Ub molecules from all MD
frames onto the Ub molecule from the first frame. Second, parameterize
the above superposition operations via rotation matrices. Third, construct
a pseudo-molecule containing 64 vectors (emulating N-HN bonds) with
near-uniform distribution on a unit sphere [139]. Fourth, apply the above
rotation matrices to this pseudo-molecule (thus generating a pseudo-trajectory
that encodes the protein’s tumbling motion). Fifth, evaluate the time-correlation
functions g(τ) for all 64 vectors by using formula

g(τ) =
1

N · n

N∑
i=1

n∑
j=1

P2(cosχi(tj, tj + τ)) (1.2)

where P2(x) is the second-order Legendre polynomial, χi(tj,tj + τ) is the
angle between the vector’s orientations at points in time tj and tj+τ in the
i-th trajectory, and the averaging is over n pairs of time points separated by
the interval τ and over N trajectories of x ns length [140]. To speed up the
calculations, the inner sum in formula (1.2) has been evaluated using the fast
Fourier transformation [141].

Sixth, combine the correlation functions from all 64 vectors, including
the prescribed integration weights [139], to obtain G(τ). Seventh, fit G(τ) to a
mono-exponential function to determine the tumbling time τrot and subsequently
calculate Drot = 1((6τrot)). Similar to the treatment of translational diffusion,
it is important to carefully select the fitting interval. We have investigated this
aspect in some depth using long MD and BD (Brownian dynamics) simulations of
ubiquitin (not shown) and concluded that the most accurate results are obtained
when using the fitting interval [0, 2 ns]. The examples of G(τ) curves along with
their best fits are illustrated in Figure 1.11.
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The above procedure allows us to recover Drot that is comparable to the
one extracted from NMR relaxation studies. There are also other schemes that
can be used to extract Drot from molecular dynamics trajectories. For example,
one can use MD data to calculate 15N relaxation rates (cf. discussion below),
analyze these simulated data to determine the anisotropic rotational diffusion
tensor of ubiquitin [142], and from there make a transition to the isotropic
diffusion coefficient Drot. However, here we favor a simpler and more general
approach [140], as described above.

Similar to translation, Drot data also need to be extrapolated to the
infinite-size box. In this case, the dependence of Drot on the inverse box volume,
rather than the linear size, is used to perform linear extrapolation [143]. In lieu
of the volume one can use any quantity that is proportional to the volume; for
the sake of convenience we have used L3. The convergence of this procedure
is illustrated in Figure 1.10 (B). The uncertainty of Drot predictions has been
estimated using the same jackknife procedure as described above for Dtr.

The scripts written in-house to extractDtr andDrot from an MD trajectory
are available for download at https://github.com/bionmr-spbu-projects/
2023-UBQ-NH4-DIFFUSION. This repository also contains installation and usage
notes, as well as a short sample trajectory of Ub that can be used for the
purpose of testing. The requisite python library pyxmolpp2, which has been
developed in-house as a toolkit for processing of MD data, can be downloaded
from https://github.com/bionmr-spbu/pyxmolpp2.

While the concept of rotational diffusion is not well defined for a
disordered protein, a comparable dynamics information can be obtained from
heteronuclear relaxation data. Here we used the MD simulations of N-H4 to
calculate residue-specific 15N longitudinal relaxation rates R1 and CSA-dipolar
cross-correlated cross-relaxation rates η [49]. The corresponding correlation
functions were calculated using formula (1.2); in the case of cross-correlations,
the angle χwas taken to be the angle between the dipolar (N-HN) vector at time
t and the unique axis of the axially symmetric 15N CSA tensor at time t + τ.
When dealing with fragmented trajectories, the calculations were conducted on
x = 10 ns dataset (same as for Dtr and Drot).

The MD-derived correlation functions were fitted using the 4-exponential
ansatz,

∑4
k=1 ck exp(−τ/τk). The four characteristic times k have been

constrained to the intervals [1 ps, 10 ps], [10 ps, 100 ps], [100 ps, 1 ns]
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and [1 ns, 10 ns], while the weights ck have been normalized to ensure that they
sum up to 1.0. The fitting was performed using Levenberg-Marquardt algorithm
implemented in SciPy function curve_fit [144]. The fitted k and ck values were
translated into spectral densities, which were in turn used to calculate R1 and
η [145]. In these calculations, we used the standard values for N-HN bond length
(1.02 Å), 15N chemical shift anisotropy (-170 ppm), and the angle that the
unique axis of the nitrogen CSA tensor makes with N-HN bond (20◦) [146].

The HYDROPRO calculations were conducted on the individual frames
from the small-box MD simulations (stride 1 ns) using the experimental water
viscosity and density at 298 K or 303 K (for N-H4 and Ub, respectively) and other
input parameters set to default values. The calculations using HullRadSAS [120]
were performed in the same manner using the experimental water viscosity
and otherwise in the default mode. The empirical relationship between the
MD-derived average radius of gyration Rg and the HYDROPRO-calculated
hydrodynamic radius Rh was used as given in the original report [71]. The Rh was
converted intoDtr according to the authors’ prescriptions via the Einstein-Stokes
formula

Dtr =
kbT

6πηwRh
(1.3)

where kb is the Boltzmann constant, T is the temperature, and etaw is the
water viscosity, or otherwise via the diffusion data from the reference molecule,
1,4-dioxane using formula

Dtr = Ddioxane
tr

Rdioxane
h

Rh
(1.4)

where the hydrodynamic radius of dioxane Rdioxane
h was assumed to be 2.27

Å [73], and the diffusion coefficient of dioxane in water Ddioxane
tr at 298 K was

taken to be 1.10 × 10-9 m2/s [147]. The Kirkwood-Riseman formula was used
in the following form [148]

Rh = 1⟨ 1

N 2

∑
i ̸=j

1

rij
⟩ (1.5)

where rij is the distance between the Cα atoms from i-th and j-th residues,
N is the number of residues in the disordered protein chain, and the angular
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brackets denote averaging over multiple MD frames. The transition from Rh to
Dtr has been made using either formula (1.3) or formula (1.4).

1.3.3 NMR measurements

N-H4 peptide was synthesized by Pepmic Co. Ltd (Suzhou, China). The
sample with peptide concentration 1 mM was prepared in 20 mM NaAc-d3
buffer containing 5 % D2O (pH 4.0). Recombinant Ub was expressed and
purified as described elsewhere [149]. The sample was prepared with low protein
concentration, 0.23 mM, to reduce the proportion of Ub dimers [150]; lyophilized
Ub was dissolved in 20 mM NaAc-d3 buffer containing 5 % D2O (pH 6.0),
approximating the conditions of ubiquitin dimerization study [150]. For the
purpose of diffusion measurements, both N-H4 and Ub solutions were placed in
D2O-susceptibility-matched Shigemi tubes with the sample volume 250 μL [151].

Translational diffusion measurements were conducted on Bruker Avance
III 500 MHz spectrometer equipped with 5-mm BBI probehead with z-axis
gradient. The experiments were carried out at 298 K for N-H4 and 303 K for Ub.
The convection compensated double-stimulated echo sequence [152] with 3-9-19
WATERGATE [153] water suppression has been employed; the sequence code
is based on Bruker pulse programs dstebpgp3s and stebpgp1s19. The standard
Bruker smoothed square shape SMSQ10.100 with shape factor of 0.9 has been
used for all gradient pulses. The duration of each component of the bipolar
encoding/decoding gradient pulses was equal to 2.7 ms. Twenty spectra were
acquired with the gradient amplitude ranging from 2.4 to 50 G/cm. The diffusion
delay ∆ was 0.1 s, the acquisition time was 3.6 s and the recycling delay was 5 s.

The aliphatic high-field proton signals (several spectral lines in the range
from 0.93 to 0.73 ppm for N-H4 and a single line at -0.17 ppm for Ub)
that are far removed from the residual water resonance have been chosen for
diffusion coefficient determination. The integral intensity of these signals have
been evaluated using the new algorithm developed in our laboratory [154],
which is now available through the web server DDfit (Diffusion Data fit),
https://ddfit.bio-nmr.spbu.ru. To extract the Dtr coefficient, the data were
fitted using Stejskal-Tanner[155] with Jerschow-Müller modifications [152].
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Prior to comparison with the MD data, the experimental results were
corrected for a small fraction of D2O and sodium acetate in the buffer (assuming
that Dtr is inversely proportional to solvent viscosity, cf. Einstein-Stokes.
Furthermore, for ubiquitin the result was corrected for the presence of ubiquitin
dimers [150] (which are responsible for 8 % of the NMR signal from the dilute
sample at hand). Of note, this correction amounts to only 1.7 % of the measured
Dtr value; in this sense, the experiment is rather insensitive to the modest
proportion of dimers in the sample. The corrected Dtr values, corresponding
to a monomeric protein in pure water, allow for direct comparison with the
results of MD simulations.

The Drot value for Ub is from the paper by Charlier et al., where a
unique set of 15N relaxation data at multiple magnetic fields has been collected
for samples with different protein concentrations, including a highly dilute
sample [103]. Under the conditions of their study, pH 4.5, the authors did not
find any evidence of Ub dimerization, but observed nonspecific self-association
behavior at high protein concentration. To avoid this effect, we have used the
reportedDrot value measured at low protein concentration of 0.2 mM. This result
was corrected for temperature (296.6 K in the experimental measurements), as
well as the presence of D2O and acetate in the solvent, using the Einstein-Stokes
The 15N relaxation data for N-H4 peptide were used as originally reported [49].

1.4 Concluding remarks

Nowadays long peptides or smaller IDPs can be adequately modeled by
means of conventional MD simulation techniques. It is therefore highly desirable
to test and experimentally validate different MD models of such disordered
systems. In particular, it would be useful to identify a model system, which can
be investigated through concerted efforts of many research groups. For instance,
peptides such as RS peptide [43; 72; 82; 156] or N-H4 [49; 99] investigated in this
work can be used toward this goal. Such a thoroughly characterized disordered
system could play a role similar to the one played by ubiquitin or lysozyme in
strucutural and dynamic studies of globular proteins.
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Measurements of translational diffusion by PFG-NMR can potentially
provide a valuable piece of experimental data to test and validate MD models of
disordered proteins. However, this type of analysis faces a number of hurdles. As
it happens, Dtr is not a very sensitive parameter. This becomes clear when you
consider the fact that Dtr of monomeric and homodimeric proteins differ by only
a factor of 21/3 ≈ 1.26. This lack of sensitivity makes it difficult to register small
changes in compactness/extendedness of the IDP’s conformational ensemble via
the diffusion measurements.

Despite their wide popularity, PFG-NMR experiments are technically
challenging, suffering from convection artefacts and baseline distortions caused
by residual water signal [157]. On the computational front, prediction ofDtr from
the MD data also presents a number of challenges. As shown in this work, it
requires a judicious choice of the thermostating algorithm and multiple long MD
simulations, including those in extra-large water boxes. To interpret the results,
it is also necessary to accurately know the viscosity of the MD-simulated water
for the water models at hand.

In addressing these problems, we have implemented the Bussi-Parrinello
velocity rescaling thermostat in the MD simulation program Amber. We have
also implemented a fragmentation scheme, which allows one to efficiently record
MD trajectories in large-sized boxes while maintaining a good sampling of
the peptide’s conformational space. Our preliminary findings suggest that the
simulations can be further accelerated by switching to the 4-fs integration step,
with the proviso that the HMR scheme should be applied not only to the peptide
but also to solvent. Separately, we have investigated the viscosity of TIP4P-Ew,
TIP4P-D and OPC water and validated the results by modeling the diffusion
of a small globular protein, ubiquitin.

The central theme of this work is a careful analysis of translational diffusion
of the N-H4 peptide based on a series of NPT and NVE simulations with the net
length of 75 µs. The analysis suggests that the simulations using the classical
TIP4P-Ew water model produce an overly compact conformational ensemble
for this disordered peptide. This conclusion is convincingly supported by the
comparison of the simulated and experimental 15N relaxation rates. Indeed, in
the TIP4P-Ew trajectory the peptide is observed to form various «mini fold»
arrangements, which are held together by opportunistic hydrogen bonds and
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gradually morph from one shape to another, but remain recognizable for up to
several hundreds of nanoseconds.

On the other hand, we have found that both TIP4P-D and OPC water
models lead to the N-H4 conformational ensembles that are consistent with our
experimental Dtr result. While the two ensembles are somewhat different, as
characterized by the average Rg values of 15.3 and 13.8 Å, the diffusion analyses
are not sufficiently sensitive to discriminate between them. Likewise, the 15N
relaxation rates calculated from the TIP4P-D and OPC trajectories are similar
to each other and both show good agreement with the experimental results, such
that we cannot prefer one water model over the other. Further data are needed
to shed additional light on this problem.

As an alternative to the rigorous procedure to extract Dtr from the MD
simulation data, various simplified methods have been widely used in this area.
In particular, Dtr is often calculated by applying the program HYDROPRO to
the MD-simulated conformers of the disordered protein. Here we have shown
that this approach can lead to misleading results. For example, it identifies
TIP4P-Ew as the water model that is best-suited to simulate the disordered
N-H4 peptide, which is contrary to our (rigorous) findings. The main issue with
the use of HYDROPRO is that it is designed to predict the diffusion properties
of rigid biomolecules rather than the intrinsically flexible IDPs.

Very recently a number of empirical tools have been developed to
predict the translational diffusion coefficients of IDPs based on their simulated
conformational ensembles. These tools were calibrated on the ensembles
informed by the experimental SAXS data and the experimental Dtr results
from PFG-NMR experiments. We have found that these predictions can also
be inaccurate, likely due to subtle experimental biases e.g. related to the use
of 1,4-dioxane as a reference molecule [73]. In this sense, the first-principle
predictions of Dtr from MD simulations of a disordered protein, such as
demonstrated in this chapter, provide an important benchmark and validation
point for future efforts in this area.
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1.5 Supporting information

Figure 1.9 –– Extracting Dtr values from MD simulations of the N-H4 peptide.
The MSD(τ) curves obtained according to formula (1.1) (broad green lines)
have been fitted using a linear fitting function Dtr · (τ+ b). The best fit is shown
as a solid red line over the τ interval where the fitting has been performed; it
is shown with a dashed line outside this interval. Displayed in the left column
are the examples of the fits using the fitting interval [100 ps, 1 ns]. Shown in
the right column are the summaries of the Dtr values obtained using different
fitting intervals (color-coded as explained in the legend). (A, B) trajectory in
TIP4P-D water, medium box, NPT ensemble; (C, D) trajectory in TIP4P-D
water, medium box, NVE ensemble; (E, F) trajectory in TIP4P-Ew water, large
box, NPT ensemble. The inset in panel E shows the initial portion of theMSD(τ)

curve along with the best-fit line. Included in this figure are the simulations
showing the most significant variations between the extracted Dtr values.
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Figure 1.10 –– (A) Correlation between the Dtr values obtained from the
processing of x = 5 ns and x = 10 ns sets of trajectories. The results are from
the fragmented medium- and large-box trajectories of N-H4 and Ub (purple
and pink symbols, respectively), including both NPT and NVE simulations. (B)
Correlation between the Drot values obtained from the processing of x = 5 ns
and x = 10 ns sets of trajectories for Ub. The results are from the fragmented
medium- and large-box trajectories of Ub, including both NPT and NVE

simulations.
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Figure 1.11 –– Extracting Drot values from MD simulations of ubiquitin. The
G(τ) time-correlation curves obtained as described in section 1.3 (broad green
lines) have been fitted using a monoexponential fitting function exp ·(−6 ·Drotτ).
The best fit is shown as a solid red line over the τ interval where the fitting has
been performed, [0, 2 ns]; it is shown as a dashed line outside this interval. (A)
fragmented trajectory (x = 10 ns) in TIP4P-Ew water, large box, NPT ensemble;
(B) continuous trajectory in TIP4P-Ew water, small box, NVE ensemble; (C)

continuous trajectory in TIP4P-D water, small box, NPT ensemble.
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Figure 1.12 –– Gyration radius distributions P (Rg) for the N-H4 simulations
in TIP4P-Ew, TIP4P-D and OPC water using the NPT ensemble with Bussi
thermostat: (A) small-box simulations (reproduced Figure 1.3); (B) medium-box
simulations; (C) large-box simulations. Also, gyration radius distributions P (Rg)

for the N-H4 simulations in TIP4P-Ew and TIP4P-D water using the NVE
ensemble: (D) small-box simulations; (E) medium-box simulations; (F) large-box

simulations. The color-coding is described in the figure legend.
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Figure 1.13 –– Determination of diffusion coefficients for (A) N-H4 and (B,
C) Ub from the series of MD simulations employing TIP4P-Ew and TIP4P-D
water models. The results are from the NPT simulations (dark blue and dark
green symbols, respectively; reproduced from Figure 1.4), as well as the NVE
simulations (light blue and light green symbols). The protocol to process the

data is the same as in Figure 1.4.
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Figure 1.14 –– Experimental and simulated 15N relaxation rates R1 and η in the
N-H4 peptide, including the simulations in (A, B) TIP4P-Ew, (C, D) TIP4P-D
and (E, F) OPC water. The results from the NPT simulations in the boxes of
different size are shown with different color shades as indicated in the figure

legends.
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Figure 1.15 –– The differences between the calculated and experimental values
of diffusion coefficients for ubiquitin. The calculations use 2000 frames from
the small-box NPT trajectories of Ub in TIP4P-Ew, TIP4P-D and OPC
water (blue, green and magenta bars, respectively). The calculated Dtr values
are from the following computational tools: (A) HYDROPRO program; (B)
empirical formula by Nygaard, which emulates the HYDROPRO results; (C)
HullRadSAS program. In the calculations B and C, the calculated values of
Rh were converted into Dtr by means of the Einstein-Stokes formula (1.3). The
alternative conversion method using the data from the small reference molecule,
formula (1.4), produces similar results (not shown). The calculated Drot values

are from (D) HYDROPRO program and (E) HullRadSAS program.
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Figure 1.16 –– Determination of (A) translational and (B) rotational diffusion
coefficients of Ub from MD simulations in the OPC water using extended
integration timestep: ∆t = 2 fs (orange symbols), ∆t = 4 fs with the HMR
scheme applied to Ub only (brown symbols), and ∆t = 4 fs with the HMR

scheme applied to Ub and water (light green symbols).
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Table 4 –– Summary of MD trajectories of N-H4 recorded in this study

Protein Water
model

Ensemble Box Shell
thickness

Modeling

N-H4

TIP4P-Ew

NPT
small 12 Å 1 × 5000 ns
medium 24 Å 500 × 10 ns
large 48 Å 500 × 10 ns

NVE
small 12 Å 1 × 5000 ns
medium 24 Å 500 × 10 ns
large 48 Å 500 × 10 ns

TIP4P-D

NPT
small 15 Å 1 × 5000 ns
medium 24 Å 500 × 10 ns
large 48 Å 500 × 10 ns

NVE
small 15 Å 1 × 5000 ns
medium 24 Å 500 × 10 ns
large 48 Å 500 × 10 ns

OPC NPT
small 15 Å 1 × 5000 ns
medium 24 Å 500 × 10 ns
large 48 Å 500 × 10 ns



71

Table 5 –– Summary of MD trajectories of Ub recorded in this study

Protein Water
model

Ensemble Box Shell
thickness

Modeling

Ub

TIP4P-Ew

NPT
small 12 Å 1 × 2000 ns
medium 24 Å 200 × 10 ns
large 48 Å 200 × 10 ns

NVE
small 12 Å 1 × 2000 ns
medium 24 Å 200 × 10 ns
large 48 Å 200 × 10 ns

TIP4P-D

NPT
small 12 Å 1 × 2000 ns
medium 24 Å 200 × 10 ns
large 48 Å 200 × 10 ns

NVE
small 12 Å 1 × 2000 ns
medium 24 Å 200 × 10 ns
large 48 Å 200 × 10 ns

OPC NPT
small 12 Å 1 × 2000 ns
medium 24 Å 200 × 10 ns
large 48 Å 200 × 10 ns
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Chapter 2. Paramagnetic relaxation enhancements: investigation of
the histone H4 tail in the nucleosome core particle by MD modelling

and NMR spectroscopy

2.1 Introduction

Chromatin is a dynamic protein-DNA complex, which acts to compact
eukaryotic genomes and regulate DNA accessibility. The basic repeat unit of
chromatin, the nucleosome core particle (NCP), contains ∼147 base pairs (bps)
of DNA double helix wrapped ∼1.7 times around a histone octamer protein
complex composed of two copies each of histones H2A, H2B, H3 and H4. Each
histone contains a structured globular core domain and a positively-charged
∼15-35 amino acid (aa) residue N-terminal tail domain. Early experiments using
trypsin digestion and nuclear magnetic resonance (NMR) spectroscopy provided
initial evidence that histone N-terminal tails are exposed on the outside of
nucleosomes and highly flexible [159; 160], and these insights were confirmed
by the first high-resolution X-ray crystal structure of the NCP [161]. Indeed, in
this and subsequent X-ray (as well as cryoelectron microscopy) NCP structures
electron density is typically missing for extreme N-terminal residues, while for
residues further downstream the electron density is usually weak and disjointed.
In some cases, certain histone tail fragments can be resolved due to their
interactions with neighboring nucleosomes within the crystal lattice allowing
for the tails to be partially reconstructed (e.g., Figure 2.1 (C)) [161; 162].

The fact that histone tail domains are conformationally disordered,
dynamic and project outward into the solvent is key to their functional role,
where they provide «mooring lines» for hundreds of chromatin-associated
proteins (CAPs). The latter regulate chromatin assembly and remodeling, and
serve as accessory proteins to activate or repress transcription [163]. Notably,
histone tails are also processed by histone-modifying enzymes (HMEs), resulting
in addition or removal of various post-translational modifications (PTMs).
Among the most common PTMs are lysine and arginine methylation, as well
as (charge-altering) lysine acetylation [164]. The pattern of these and other
modifications, referred to as the «histone code» [165], serves to tune the affinity
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of histone tails for different CAPs, as well as their interactions with proximal
nucleosomes in chromatin [166]. In summary, histone tails are a focal point
of an extremely vast and complex dynamic network, of which we have only a
relatively limited understanding at the atomistic level.

In the present study we pursue detailed characterization of the structural
ensemble of the dynamically disordered histone H4 N-terminal tails in
nucleosomes. Previous studies employing solution and solid-state NMR methods
have found that ∼15-20 N-terminal H4 residues are largely dynamically
disordered in soluble nucleosomes [97], and that this dynamic disorder persists
in compacted nucleosomes [167] and in highly-condensed large nucleosome
arrays [98]. Due to its high positive charge, the H4 N-terminal tail is expected
to generally localize near and interact with negatively charged nucleosomal
DNA (nDNA). However, quantitative measurements of residue-specific NMR
spin relaxation rates for H4 tails in nucleosomes coupled with microsecond
time-scale molecular dynamics (MD) simulations revealed that electrostatic
and hydrogen bonding interactions between H4 tail residues and nDNA are
highly transient and dynamic even at low ionic strength [50], following the
«fuzzy complex» paradigm [50; 168]. While this previous study of H4 tails
in nucleosomes yielded valuable insights about the nature of nDNAH4 tail
interactions, the experimental NMR methods used were not suited to directly
probe proximities of H4 tail residues to different regions of the nucleosome or
the extent to which the H4 N-terminal tail is sequestered by nDNA. These
aspects, therefore, remain largely unexplored, although they are potentially
important for understanding H4 tail accessibility to CAPs (and HMEs) and its
availability to form internucleosomal connections [166], as well as the recently
reported cross-talk between H4 and H3 tails [101; 169].

As noted above, high-resolution structural techniques such as X-ray
crystallography or cryo-EM are generally unable to localize the disordered
histone tail domains in nucleosomes. Instead, this problem can be uniquely
addressed by multidimensional NMR spectroscopy [50; 97; 98; 100; 101; 167;
168; 170––180] –– in particular, by measurements of residue-specific proton
paramagnetic relaxation enhancements (PREs), which report on distances
between individual backbone amides and covalent paramagnetic tags attached
at specific protein sites and are significant over distances up to ∼20-30 Å.
For structured biomolecules in solution, the PRE-based restraints can be
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used to build or refine structural models [181––183] and, indeed, studies
along these lines have been reported for nucleosome particles and their
complexes with CAPs [184––186]. This approach relies on the well-known
Solomon-Bloembergen equation [187] that represents PRE rates as a product
of distance- and dynamics-dependent terms, where the latter can be determined
from heteronuclear relaxation measurements [188] and the former can be
converted into structural restraints. Additionally, methods have been developed
to account for the conformational flexibility of paramagnetic tags [183; 189].
In contrast, for dynamically disordered protein domains, such as histone
N-terminal tails in nucleosomes, the distance- and dynamics-related variables
cannot be readily deconvoluted. In these cases, the measured PRE rates are
often interpreted in a qualitative manner using one of the empirical random-coil
models as a point of reference [190––192]. Otherwise, it is common to make
certain simplifying assumptions about the dynamics of the disordered peptide
chain [193––195]. Using these assumptions, one can employ PRE data to
construct structural models of disordered proteins, typically in a form of
multi-member conformational ensembles [196––198]. In addition, specialized
methods have been developed to facilitate the extraction of distance information
and circumvent the dependence of PREs on dynamics [199; 200].

In our earlier studies of disordered proteins, we have pointed out that
PREs in such systems can be rigorously calculated from MD trajectories
[13; 201]. Historically, the use of MD simulations to analyze PRE data has
been hampered by two factors: the short length of MD trajectories and poor
performance of MD force fields in modeling of disordered polypeptides. Both of
these factors are no longer as limiting. With the advent of GPU computing
it has become possible to routinely record microsecond trajectories of fully
or partially disordered systems in large simulation cells [202]. At the same
time, a new generation of force fields has been developed (notably including
new water models) with the intent to model both structured and disordered
proteins [203; 204]. Here we take advantage of these recent advances to show
that long MD simulations of the nucleosome core particle can broadly reproduce
the experimental PREs measured for histone H4 N-terminal tails in nucleosome
samples carrying paramagnetic nitroxide tags attached to different histone H3
sites. Altogether, our results provide a realistic model for the conformational
ensemble and interactions of the dynamically disordered H4 tails in nucleosomes.
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2.2 Results and discussion

2.2.1 Spin labeled nucleosome samples

Four different paramagnetically labeled NCP samples reconstituted with
recombinant Xenopus laevis histones and the 147-bp Widom 601 DNA motif
[205] were used in this study. Specifically, as described in detail in section 2.3,
we employed a histone H3 construct containing the well-studied C110A mutation
[97; 98] that removes the lone native cysteine residue while preserving the native
histone structure and, starting with this construct, generated the following
single-cysteine mutants of H3: K36C, L65C, K79C, and Q125C (see Figure 2.1
(A)). Each H3 mutant was combined with 15N-labeled histone H4 along with
unlabeled histones H2A and H2B to produce the histone octamer complex, which
was then incubated with excess MTSL nitroxide spin label reagent resulting
in the tagging of histone H3 with the non-native paramagnetic side-chain R1
(see Figure 2.1 (B)) at the unique cysteine site [206; 207] and subsequently
reconstituted with the Widom 601 DNA to generate the NCP sample used for
the NMR studies. For brevity, the spin labeled NCP samples are referred to as
36R1, 65R1, 79R1 and 125R1.

Note that the specific H3 mutation sites selected for this study all
correspond to solvent-exposed residues located near nDNA in the coil region
preceding helix αN (K36), the ends of helix α1 (L65 and K79) and the center
of helix α3 (Q125) to avoid any significant perturbations of the NCP structure
and assembly. Potential structural perturbations were further minimized by the
use of a tagging protocol which involves spin labeling of the properly assembled
histone octamer complex as opposed to individual H3 molecules, with sample
fidelity confirmed by mass spectrometry and gel electrophoresis (see Figure 2.3
and Figure 2.4). Finally, the locations of paramagnetic tag sites were selected to
be within or near the structured globular domain of H3 in order to explore the H4
tail conformational dynamics relative to multiple well-defined reference points
within the NCP structure (see Figure 2.1 (C)). These sites were also chosen
to be ∼20-60 Å from one another to provide nonredundant data reporting on
the spatial distribution of the H4 tail.
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Figure 2.1 –– Measurement of paramagnetic relaxation enhancements for H4
histone tail residues in nucleosomes. (A) Amino acid sequences of Xenopus laevis
histones H3(C110A) and H4. Underlined residues are relatively unstructured
and associated with low electron densities and high B factors in the NCP X-ray
crystal structure (PDB entry 1KX5) [162]. The H3 core helices are indicated
by gray rectangles and labeled underneath; the spin label incorporation sites
are denoted by black boxes around the relevant residues. The most flexible H4
tail residues, up to and including A15, are typeset in thin font. (B) Schematic
representation of a paramagnetic nitroxide spin label (MTSL) conjugated to a
cysteine residue in a protein. The resulting side-chain is termed R1 [206; 207].
(C) Crystal structure of the nucleosome core particle (PDB entry 1KX5) with
histone H3 colored blue and histone H4 colored green. The spin-labeling sites in
histone H3 (Cα atoms of the relevant residues) are indicated by colored spheres
and labeled for one of the H3 copies. (D) 15N-1HN HSQC NMR spectra of H4
N-terminal tail in nucleosomes reconstituted with spin-labeled histone H3 and
15N-labeled H4. Shown in each panel is a superposition of paramagnetic (red) and
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reference diamagnetic (blue) spectra, plotted at the same contour level, for each
NCP sample (as identified at the top of the panel); the reference diamagnetic
samples were generated by addition of sodium ascorbate to the corresponding
paramagnetic nitroxide spin labeled sample. Resonances for A15 and all glycine
residues are aliased in the 15N dimension. Representative one-dimensional 1H
traces are shown in the insets for residue L10 in 65R1 and 79R1 samples. (E)
Ratios of peak volumes for H4 N-terminal tail residues in HSQC NMR spectra
recorded for paramagnetic and diamagnetic NCP samples, Vpara/Vdia, used to
determine residue-specific PREs (see Table 7). Given the high sensitivity of the
HSQC NMR spectra, the uncertainties in Vpara/Vdia ratios were 0.01 or smaller
for virtually all residues in the different samples studied and within the size of
the symbols used to depict the data. For clarity the error bars were therefore
omitted from the plot. The color coding that identifies the four spin-labeled NCP
samples is shown in the figure legend and corresponds to that used in panel (C).

2.2.2 Measurements of PREs in spin labeled nucleosomes

The PRE effects for histone H4 tail residues induced by nitroxide tags
attached to histone H3 were quantified by recording for each spin labeled NCP
sample a pair of 15N-1HN heteronuclear single quantum coherence (HSQC) NMR
spectra: one for the paramagnetic nitroxide spin labeled sample and the other
for the same sample but with the nitroxide moiety reduced to diamagnetic
hydroxylamine by addition of excess sodium ascorbate (see section 2.3).

The HSQC NMR spectra of nucleosomes reconstituted with 15N-H4
(Figure 2.1 (D)) feature a limited number of resonances corresponding to the
most flexible H4 tail residues (aa ∼1-15; note that NMR signals for the two
N-terminal residues are not detected due to amide proton exchange [97]), with
only one set of peaks observed in the spectra, which indicates that there are
no major structural and dynamic differences between the two H4 N-terminal
tails within the NCP. The remaining histone H4 residues reorient relatively
slowly – including those in the histone core with dynamics dominated by the
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slow overall tumbling of the nucleosome particle (∼160 ns [50]) – which leads to
severe spectral line broadening and prevents their observation.

Superposition of the paramagnetic and corresponding reference
diamagnetic NCP spectra (Figure 2.1 (D)) shows that presence of paramagnetic
tags in H3 positions 65 and 79 causes dramatic attenuation of spectral resonances
for most of the H4 tail residues. On the other hand, spin labels in H3 positions
36 and 125 cause only relatively minor reduction in H4 tail peak intensities.
Qualitatively, this can be readily understood given that the former H3 sites
are located in relatively close proximity to the attachment point of the H4
N-terminal tail, whereas the latter two are located some distance away, including
residue 36 which is separated from the H4 tail origin by the nDNA helix. For each
NCP sample, the ratio of peak volumes in the paramagnetic and diamagnetic
HSQC NMR spectra, Vpara/Vdia, is plotted in Figure 2.1 (E) as a function of
H4 residue number, and was used to evaluate the residue-specific PREs (see
section 2.3 and Table 7) as described in detail previously [201].

2.2.3 Calculation of PREs from MD trajectories

The experimental PRE data were used to validate two different MDmodels
of the nucleosome core particle. The first one is our own 2-µs NCP trajectory
recorded under Amber ff14SB force field [67] using the TIP4P-D water model
[18]. Previously, we have shown that this trajectory successfully reproduces 15N
relaxation data for the H4 N-terminal tail in nucleosomes [50]. The second one
is a collection of NCP trajectories with the net length of 41 µs [102], which has
been recorded in the Panchenko laboratory using the same Amber ff14SB force
field together with the OPC water model [208]. While TIP4P-D was originally
designed to improve the modeling of disordered polypeptides (such as H4 tails),
OPC was initially devised as a general-purpose model and later shown to perform
well for disordered systems [45]. The methodology used to calculate PREs from
MD data is described in detail in the section 2.3. Importantly, the algorithm
employs rigorous Redfield-theory expressions [201], which fully account for the
relative motion of 1HN spins (residing on the H4 tail) and the paramagnetic
center (residing on the core histone H3). This motion mainly stems from the
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conformational dynamics of the histone H4 tail and can be thought of as
restricted diffusion; it efficiently modulates both the orientation of the interspin
vector and its length (i.e., the distance between the two spins). The distinctive
correlation functions resulting from these dynamics are illustrated in Figure 2.5.

Before we compare the MD-based predictions to the experimental
results, we note that for a given spin-labeled sample there is relatively little
residue-to-residue variation in the measured PREs over the entire length of
the N-terminal tail (c.f., Figure 2.1 (E) and Table 7). Considering limited
convergence of the MD-based residue-specific PRE calculations (discussed in
more detail below), it is unlikely that these small residue-to-residue PRE
variations can be reproduced. Therefore, we have elected instead to focus on
the tail-averaged experimental PREs for each of the four spin-labeled NCP
samples and compare these with the similarly averaged calculated PREs, which
are less susceptible to the convergence issues.

2.2.4 Comparison of experimental and calculated PREs

Figure 2.2 (A, B) show the comparison of experimental and MD-derived
PREs for simulations employing TIP4P-D and OPC water, respectively. In
these plots, coral and green bars indicate the experimentally measured and
calculated values, respectively. Note that the calculated PREs shown in these
graphs constitute strictly a prediction, with no tunable parameters of any kind.
Clearly, both sets of calculated PREs, based on TIP4P‑D and OPC trajectories,
capture the qualitative behavior as observed in the experiment, with much higher
paramagnetic rates predicted for H3 79R1 and 65R1 samples than for 125R1
and 36R1 samples. While the MD simulations fail to predict the PREs with
quantitative accuracy it is encouraging that TIP4P-D results and OPC results
tend to «bracket» the experimentally determined PRE values. For example,
the TIP4P‑D simulation correctly recovers experimental 36R1 result, while
the OPC simulation produces an overestimated value. Further, the TIP4P-D
simulation somewhat underestimates the 65R1 result, while the OPC simulation
significantly overestimates it. Finally, the TIP4P‑D simulation substantially
underestimates the average PRE rate in the 79R1 sample, whereas the OPC
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Figure 2.2 –– Comparison of experimental and MD-derived paramagnetic
relaxation enhancements. (A, B) Experimental PREs averaged over histone H4
residues 3-15 and over two copies of H4 in nucleosomes (coral bars) and the
corresponding MD predictions (green bars). The MD results are from TIP4P-D
and OPC simulations (panels A and B, respectively). (C, D) The localization
of histone H4 tail residues 1-15 in TIP4P-D and OPC simulations (panels C
and D, respectively). The images are based on the coordinate set 3LZ0 [209].
In constructing these images, we took advantage of the 2-fold pseudo-symmetry
of the NCP such as to combine the data from the two H4 tails. Shown is the
density of Cα atoms for H4 residues 1-15; the isosurfaces containing 50 %, 90
% and 99 % of the integral density are colored dark, medium and light green,
respectively. The nitroxide tag attachment sites in histone H3 are indicated by

spheres and labeled (c.f., Figure 2.1 (C)).

simulation provides a good match. Based on these observations, we conclude
that the two MD simulations taken together offer a broadly correct model for
the PRE effects in spin-labeled nucleosomes.

It is worthwhile to consider the possible reasons for the observed lack of
quantitative agreement between experimental and predicted PREs in Figure 2.2.
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Almost certainly this has to do with the lack of convergence for the MD-based
PRE calculations in the system, which involves 25-residue-long disordered H4
tail probing a large swath of the nucleosome surface. Indeed, the calculated
PREs show an exceedingly steep dependence on the interspin distance (see
equation (2.3)). As a consequence, even a brief close encounter of the H4 tail
with the paramagnetic label can have a dramatic impact on the calculated PREs.
In other words, MD-based calculations of residue-specific PREs are extremely
demanding in terms of convergence [198]. This idea is further illustrated in
Figure 2.6, where the comparison is drawn to four different subsets of the OPC
trajectories.

Acknowledging this limitation, we nevertheless note that the results in
Figure 2.2A and 2B provide a broad semi-quantitative validation for the MD
models at hand. Of special interest to us, these models encode the information
about the localization of the histone H4 tails in nucleosomes. This is visualized in
Figures 2.2 C and D in a form of spatial density distribution for H4 tail residues
1-15 (volumes shaded with different shades of green). Inspection of these plots
confirms that these H4 residues are significantly delocalized, as expected for
the dynamically disordered tail. At the same time, the H4 tail clearly gravitates
toward the nucleosomal DNA, in agreement with the notion previously discussed
by us and others that histone tails engage in fuzzy interactions with nDNA
[50; 168].

The results in Figure 2.2 C and D show that H3 labels 65R1 and 79R1 are
indeed centrally located with respect to the H4 tail «cloud». On the other hand,
36R1 and 125R1 are located peripherally at a distance from the H4 tail as seen
in the side and front views of the NCP, respectively. Of interest, different subsets
of the OPC trajectories show some variability in terms of the H4 tail density
distribution (see Figure 2.6). Some of these models show the density distribution
that is somewhat more extended toward the 125R1 label and, accordingly,
predict higher PRE rates in this sample (more in line with the experimental
PRE data), suggesting that the details of the density distribution can be further
elucidated based on longer trajectories and additional experimental data.

While the MD-based interpretation of PRE data is currently faced with
certain technical challenges, including sub-par convergence in calculation of
residue-specific PREs, it constitutes a general and powerful strategy the accuracy
of which is only expected to improve in the coming years with continuing rapid
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advances in simulation length and quality of water models. In contrast, the more
traditional static ensemble-based approaches are faced with several inherent
limitations in dealing with PRE data as discussed below [198].

First, it is noteworthy that such ensemble-based approaches have no
knowledge of the residue-specific correlation times, τc, which are necessary
to calculate PRE rates but are challenging to determine experimentally. For
histone H4 tails in nucleosome, MD simulations indicate that these τc values
vary from one residue to another and can be significantly shorter than the
tumbling time of the entire nucleosome particle, τrot; furthermore, τc cannot be
reliably reconstructed from 15N relaxation data (see Figure 2.5). Therefore, when
constructing a conformational ensemble one either needs to make assumptions
about τc or otherwise use it as a tuning parameter.

Second, an earlier study by Ganguly and Chen [198] concluded that
PRE-restrained ensemble models of disordered proteins tend to be ill-defined.
Specifically, due to the r−6 weighting associated with PREs, only one or a few
ensemble members are typically needed to satisfy the experimental PREs and
the rest of the ensemble could be essentially unrestrained. As such the resulting
ensemble may not necessarily be a realistic representation of the underlying
disordered state.

These observations also apply to the system in our study as illustrated
in Figure 2.7 and Figure 2.7. In Figure 2.7, we present a minimal ensemble
consisting of just two H4 tail conformers which clearly does not represent the
conformational diversity of the H4 tail domain in nucleosome core particle yet
successfully reproduces the experimental PRE data. Additionally, in Figure 2.8
we show a larger ensemble of 42 H4 tail conformers, where the PRE rates are
largely determined by two lightly populated conformers, while the remaining 40
conformers are effectively unrestrained and largely arbitrary.

Finally, we note that validation of the two MD models of the NCP
discussed in this paper does not need to be limited to the PRE data. For
instance, both TIP4P-D and OPC simulations were successful in reproducing
secondary chemical shifts for H4 tail residues 1-15, correctly predicting the
random-coil character of this glycine-rich fragment. The TIP4P-D simulation
was also successful in predicting 15N relaxation rates for H4 tail residues [50]. In
contrast, the OPC simulations seem to overemphasize the attraction between the
histone tails and nDNA and thus produce biased predictions for 15N relaxation
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rates. Several factors may contribute to this situation, which will be the subject
of a separate study. At the same time, the TIP4P‑D simulation shows some early
signs of nDNA unwrapping which affects the two ends of the DNA superhelix.
This behavior likely reflects the known stability issues with this water model [18].
In contrast, the OPC simulations appear to be stable in this regard, although
some of the OPC trajectories show evidence of dynamic nDNA fluctuations
(see Figure 2.9).

2.3 Materials and Methods

2.3.1 Sample preparation

The pJ201 plasmid containing 32-copies of the 147-bp Widom 601 DNA
positioning sequence was transformed into E. coli DH5α, amplified in LB
rich medium, extracted by using a QIAGEN Plasmid Giga kit, digested with
EcoRV-HF (New England Biolabs), and purified by PEG precipitation as
described previously [210]. Briefly, 4 M NaCl and 40 % PEG 6000 were added
to the EcoRV-digested plasmid in a 0.192:0.346:1 v/v/v ratio. The mixture
was incubated on ice for 1 h and then centrifuged (27,000 g, 4 ◦C, 20 min).
The supernatant containing the desired 147-bp Widom 601 DNA sequence was
collected and combined with cold ethanol in a 1:2.5 v/v ratio. The precipitated
DNA was centrifuged (27,000 g, 4 ◦C, 40 min), the supernatant decanted, the
precipitate air-dried for 10 min and then dissolved in 0.5 x TE buffer (5 mM
Tris, 0.5 mM EDTA, pH 7.5).

Histone protein expression and purification. Xenopus laevis histones H2A,
H2B, H3(C110A) containing a cysteine point mutation at one of the following
sites: K36C, L65C, K79C or Q125C, and H4 were overexpressed in E. coli
BL21 (DE3) pLysS, purified as described previously[211] using gel filtration
and ion-exchange chromatography in 7 M urea followed by dialysis against
a solution of 2 mM β-mercaptoethanol (BME), and lyophilized. Uniformly
15N-labeled H4 was prepared by using a minimal medium with 15NH4Cl (1
g/L) (Cambridge Isotope Laboratories) as the sole nitrogen source. To express
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H3 cysteine mutants for subsequent spin labeling, plasmids were generated by
site-directed mutagenesis using the wild-type histone H3 plasmid and Herculase
II fusion DNA polymerase (Agilent).

Spin labeling of histone octamer. Histone octamer was prepared by
dissolving the four unfolded histone proteins (H2A, H2B, H3 mutant, and
15N-labeled H4) at concentrations of 10 mg/ml in unfolding buffer (7 M guanidine
hydrochloride, 20 mM Tris, 10 mM DTT, pH 7.5) in a H2A:H2B:H3:H4 molar
ratio of 1.2:1.2:1:1, and then transferred by double dialysis into refolding
buffer (1 x TE, 2 M NaCl, 5 mM BME, pH 8.0). After dialysis, the
solution was concentrated to a volume of 5 mL by Amicon centrifugal
filters (30 kDa cutoff, MilliporeSigma). To ensure complete reduction of
the cysteine residue in H3, DTT was added to the solution containing
the refolded octamer to a final concentration of 10 mM. The solution was
allowed to sit on ice for 30 min, and was then purified by gel filtration
chromatography in refolding buffer (without BME and DTT) as described
previously [211]. Eluted fractions containing pure octamer were immediately
pooled and incubated overnight in the dark at 4 ◦C with a 20-fold molar excess
of the nitroxide spin label reagent (1-oxyl-2,2,5,5-tetramethyl-∆3-pyrroline-3-
methyl)-methanetiosulfonate (MTSL; Toronto Research Chemicals, Inc.). To
remove excess MTSL tag, the octamer was transferred into 0.5 x TE buffer and
concentrated to a final concentration of 15 mg/mL using an Amicon centrifugal
filter. Spin labeling of the octamer was routinely confirmed by MALDI-TOF
mass spectrometry (see Figure 2.3), and estimated to be at least ∼80-90 %
efficient as assessed by peak deconvolution analysis of spectra before and after
tagging.

DNA and histone octamer were combined in a molar ratio of DNA:octamer
of 1:0.65, in an aqueous 0.5 x TE, 2 M NaCl and 1 mM benzamidine
hydrochloride hydrate (BZA) buffer. The NaCl was removed by double dialysis
against 0.5 x TE, 1 mM BZA buffer at 4◦C. To separate fully formed nucleosome
particles from naked DNA, sucrose gradient centrifugation was performed using
a sucrose gradient of 5-30 % in 0.5 x TE buffer. The fractions containing
nucleosome particles were combined and the sucrose was removed by buffer
exchange into 0.5 x TE buffer using an Amicon centrifugal filter. The formation
and purity of nucleosomes was confirmed by an electrophoretic mobility shift
assay using native polyacrylamide gel electrophoresis (Figure 2.4).
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2.3.2 NMR experiment

Solution NMR experiments on nucleosomes reconstituted with 15N-labeled
H4 and MTSL-tagged H3 were recorded at 25 ◦C using an 850 MHz Bruker
Avance III HD spectrometer equipped with a TCI CryoProbe. NMR samples
consisted of nucleosomes at concentrations of ∼40-45 µM in aqueous buffer
solution containing 5 mM Tris, 0.5 mM EDTA, 100 mM NaCl, 0.1 mM MgCl2
and 5 % D2O at pH 7.0. For each paramagnetic spin labeled nucleosome sample,
following NMR measurements on that sample, a reference diamagnetic sample
was generated by addition of a 20-fold molar excess of sodium ascorbate followed
by incubation for ∼4-7 h at 4 ◦C prior to NMR measurements. A simple 15N-1HN
HSQC pulse sequence with water flip-back pulses included for water suppression
was used to determine residue-specific peak volumes for the different histone H4
tail amide sites in the paramagnetic and diamagnetic samples, and the PREs (see
Table 7) were extracted from the peak volume ratio according to the following
expression: Vpara/Vdia = exp(−PRE · 2τinept) as described in detail previously
[201]. The duration of the INEPT elements in the HSQC pulse sequence was
4.56 ms, and the recycle delay was set to 2 s ensuring complete signal recovery
for both paramagnetic and diamagnetic samples.

2.3.3 MD modelling

The simulations of NCP in TIP4P-D water (a single 2-µs trajectory) and
in OPC water (twenty two trajectories with the net length of 41 µs) have been
described previously [50; 102]. Both simulations use the same force field, Amber
ff14SB [67], and are generally similar apart from the water model. Below we
comment on some of the relevant aspects of these simulations.

First, in our TIP4P-D simulation the initial structure is based on the
PDB entry 3LZ0, matching the experimentally investigated system. On the other
hand, the study by Peng and co-authors [102] pursued different goals; in their
OPC simulations, they used the model based on the PDB entry 1KX5 [162],
which has the same Xenopus laevis histone core, but a different DNA sequence.
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Furthermore, they have replaced the original nDNA with the sequence from
human KRAS gene and, in addition, extended the nDNA from both ends by
adding 20-bp linker segments. In principle, this type of structure editing can
have a perturbing effect on the NCP simulation. Incidentally, in some of the
trajectories the outer turn of nDNA is dynamic, but we found no evidence of
progressive nDNA unwrapping (Figure 2.9).

Second, TIP4P-D simulations were conducted at the temperature 25 ◦C
in the presence of 100 mM NaCl, which matches the experimental conditions
used in this study. On the other hand, OPC simulations were conducted at 36
◦C in the presence of 150 mM NaCl. Although elevated temperature and salt
concentration should promote the mobility of histone tails, we have observed that
H4 tail dynamics are actually slowed down in the OPC simulations compared
to TIP4P-D simulations.

Third, the OPC trajectories released by Peng et al. [102] have been
sampled with a time step of 1 ns. To investigate the effect of the step size,
we reprocessed our TIP4P-D trajectory with the sampling step of 1 ns and
compared the results with the original calculations using 1 ps grid. As it turns
out, the PREs and 15N R2 rates remain essentially unchanged when we switch
to the sparsely-sampled data (results not shown). On the other hand, 15N R1

rates prove to be sensitive to the sampling step. This is to be expected given
that 15N rates are sensitive to faster forms of motion, in contrast to R2 rates
that are mainly determined by slow motional modes. If the goal is to compute
rates, the sampling step of 10 ps can be recommended.

Fourth, both TIP4P-D and OPC simulations employed the widely
used Langevin thermostat. We note that Bussi-Parrinello velocity rescaling
thermostat [63] is, in fact, better suited to calculate the dynamics-dependent
relaxation rates.

MD-based calculations. The paramagnetic contribution to spin-spin
relaxation, measurable on per-residue basis for backbone 1HN spins, is given
by the following expressions:

Γ2 =
1

20
D2(J(0) + 4(J(ωH)), (2.1)

J(ω) =

∞∫
0

C(τ) cos(ωτ)dτ, (2.2)
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C(τ) =

⟨
P2(cos θ(t,t+ τ)

r3(t)r3(t+ τ)

⟩
(2.3)

Here D is the interaction constant, D = 4.9764 · 10−22 m3·s−1 for the MTSL
label, J(ω) is the spectral density, ωH is the proton Larmor frequency, C(τ) is
the dipolar correlation function, P2(x) is the second-order Legendre polynomial,
θ(t,t + τ) is the angle between the vectors r⃗(t) and r⃗(t + τ) connecting
paramagnetic center with the given 1HN spin at the points in timer⃗(t) and
r⃗(t + τ), respectively, with the corresponding vector lengths r(t) and r(t + τ)

, and the angular brackets denote averaging over time and over the ensemble
(consisting in this case of the two copies of histone H4). Considering the two-fold
pseudo-symmetry of the NCP, each 1HN spin residing on the H4 tails is relaxed
by two MTSL labels attached to the two copies of the histone H3, termed
«proximal» and «remote»

PRE = Γproximal
2 + Γremote

2 (2.4)

To calculate the PRE rates from the MD trajectories, we first overlay all MD
frames by superimposing them onto the reference coordinates 3LZ0 via the
secondary-structure Cα atoms from the histone core. The relevant correlation
functions are then calculated as follows

c(τ) =
1

Ntotal

Ntraj∑
i=1

2∑
j=1

Ntimepointpairs(i)∑
k=1

P2(cos θ(t,t+ τ)))

r3(t)r3(t+ τ)
(2.5)

where the first summation is over all available trajectories representing the
system of interest, the second summation is over the two H4 tails in the simulated
nucleosome particle, and the third summation is over all timepoint pairs t, t+ τ

in the given trajectory (considering a fixed value of τ). The result is normalized
by Ntotal, which is the total number of terms arising from all three summations in
equation (2.5). When calculating Γproximal

2 , the second summation in this formula
implies that the two vectors r⃗(t) are involved: (1) between the first H4 tail and
its proximal spin label and (2) between the second H4 tail and its proximal spin
label. The remote contribution Γremote

2 is evaluated in the analogous way. Note
also that the distinction between the proximal and remote spin labels is based
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not only on distance, but also on more fundamental symmetry considerations.
Specifically, 180◦ rotation about the dyad axis interchanges the two proximal
labels (and also interchanges the two remote labels).

It is worth stressing that equation (2.5) is perfectly suited to combine the
data from the two (presumed equivalent) H4 tails in the simulated NCP particle,
as well as the data from multiple MD trajectories modeling NCP dynamics.
More generally, this formula performs both ensemble- and time-averaging for
the problem at hand. The approach using equation (2.5) is much preferable to a
hypothetical alternative, where the PRE rates are computed separately for each
of the two tails and each of the many trajectories and then averaged to arrive at
the final result. The correlation functions c(τ) calculated via equation (2.5) are
subsequently multiplied by exp(−t/ τrot) to reintroduce the tumbling motion of
the nucleosome core particle:

C(τ) = c(τ) exp(−t/ τrot) (2.6)

The value of τrot, 163 ns, is from HYDROPRO calculations, as reported
previously [50]. The function C(τ) is then approximated using a multiexponential
fitting function, as described previously [50]. This multiexponential
representation is further used to evaluate the spectral densities, equation (2.2),
and ultimately to calculate the PREs, equation (2.4).

The MD trajectories at hand do not contain an explicit MTSL tag (explicit
modeling of the four MTSL-labeled samples is possible [212], but would mean a
shorter simulation for each individual sample). Instead, we have used the heavy
atoms at the extremity of the corresponding side chain as a proxy for the MTSL
paramagnetic center: Nζ atom in K36 or K79, Cδ1 in L65 and Nε2 in Q125 in the
histone protein H3. One can argue that the motion of these native side chains to a
certain degree approximates the motion of the MTSL tag. Also bear in mind that
MTSL movements is only a minor source of dynamics in this system compared
to the motions of the disordered H4 tail. Generally, given the level of convergence
in our MD-based PRE calculations, this approximation seems to be justified.

Of further note, equation (2.5) depends not only on reorientation of the
spin-spin vector r⃗(t), but also on time modulation of the distance r(t) due mainly
to the dynamics of the mobile H4 tail. In this sense, the observed effect is
reminiscent of translational relaxation. The influence of constrained translational
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dynamics on the correlation functions C(τ) is rather pronounced. For 1HN spins
at the extremity of the mobile H4 tail interacting with a proximal paramagnetic
label the correlation function decays on a time scale of tens of nanoseconds,
much faster than dictated by the tumbling motion of the NCP (Figure 2.5).

To visualize the location of H4 tails in the NCP (Figure 2.2 and Figure 2.6),
we have merged the data from the two histone tails. For this purpose, we
first prepared the rotated copy of the reference structure 3LZ0. This was
accomplished by superimposing the first copy of each histone, H2A, H2B, H3
and H4, onto the second copy of the same histone and vice versa (the histones
were superimposed via Cα atoms from the secondary-structure regions). This
transformation corresponds to 180◦ rotation about the dyad axis. Subsequently,
all MD frames have been superimposed onto the rotated structure 3LZ0, thus
obtaining a rotated copy of the original trajectory. Finally, we extracted the
coordinates of Cα atoms for residues 1-15 in H4 tail (second copy) in the rotated
trajectory and transferred them to the original trajectory. In this manner we
have generated a reduced trajectory comprised of the original structure 3LZ0,
plus the MD-derived coordinates of Cα atoms from the two (co-localized) H4 tails.
The coordinates of Cα atoms were used to produce a volumetric density map
using the VolMap plugin of the program VMD v.1.9.1 [213] with the following
options: resolution 1 Å, Gaussian smoothing factor 3, no weights setting. The
maps were visualized in VMD using the Isosurface representation [213].

To generate Figure 2.7, we first formed the pool of conformers by extracting
NCP coordinates from the TIP4P‑D trajectory using the step of 1 ns. Each
copy of the H4 tail was treated as an individual conformer, characterized by
its position relative to the paramagnetic labeling sites. For each conformer,
we calculated the PRE rates based on equations (2.1) и (2.4), but replacing
equation (2.2) with the following simple formula [193]

J(ω) =
1

r6
τc

1 +ω2τ2c
(2.7)

where ̊ is the conformer-specific distance between a certain amide proton in the
H4 tail and the paramagnetic center, while τc is the effective correlation time.

As discussed in the text, the standard procedure to construct an
experimentally restrained conformational ensemble has no prior knowledge of τc.
For lack of a better option, we set τc equal to τrot = 163 ns. On a physical level,
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this means that the motion of the H4 tail over the surface of the nucleosome core
particle is assumed to be slow on a time scale of τrot (which is a rather arbitrary
assumption). It is further assumed that, while loosely anchored to the surface
of NCP, the H4 tail remains conformationally labile («fuzzy» behavior), which
is a necessary condition to observe spectral signals by solution NMR. After that
we have searched for a combination of two conformers that would produce the
best agreement between the calculated and the experimental PRE rates (in a
sense of Figure 2.2 A). For this purpose, we have used the exhaustive search
within the pool of four thousand conformers; for each pair of conformers, we
also optimized their relative weights.

To generate Figure 2.7, we first formed the pool of conformers
representative of the OPC trajectories of NCP [102] (resampled with the
step of 10 ns). Similar to the above, we have identified two conformers that
closely reproduce the experimental PRE data, but in doing so we assumed that
both conformers are populated at the level of 10 %. In addition, we have also
selected 40 conformers that contribute only minimally to the PRE rates; each
of these additional conformers was assigned the weight of 2 %.

While Figures 2.7 and 2.8 are based on a collection of MD snapshots, it is
also possible to generate relevant conformational ensembles by other means. It
should be noted, however, that standard tools, such as Flexible-meccano [117]
or IDPConformerGenerator [214], are insufficient for this purpose. Indeed, after
a random conformation of the H4 tail is generated, it needs to be «glued» onto
the body of the nucleosome core particle; then the resulting model should be
evaluated from the standpoint of steric clashes and either accepted, subjected
to a remediation procedure, or discarded. Irrespective of the algorithmic details,
PRE-restrained ensembles of disordered systems tend to be problematic, as first
pointed out by Ganguly and Chen [198] and illustrated by Figures 2.7 and 2.8.
The situation can be improved by increasing a number of paramagnetically
labeled samples and also by employing additional experimental restraints (e.g.
chemical shifts, relaxation rates, etc.).
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2.4 Concluding Remarks

Characterization of conformational ensembles for the dynamic histone tail
domains in the context of nucleosomes and nucleosome arrays is important
for understanding of their interactions and ultimately function. Of particular
importance are changes in tail conformation and interactions that arise in
response to different PTMs and involvement of chromatin-associated proteins.
These problems can be uniquely addressed by probing a range of NMR
observables in both solution and solid state as appropriate. In this study, we
have demonstrated that measurements of residue-specific PREs in nucleosome
samples employing multiple paramagnetic tags should be one of the central
elements of such multi-experiment NMR datasets. We have also shown that
interpretation of these PRE data based on long MD simulations of nucleosome
particles yields valuable insights about the conformational and interaction
landscapes of histone tails in these systems. In the future we envision that
this strategy can be extended to nucleosome complexes with CAPs and even
larger nucleosome assemblies, as well as to other large biomolecular complexes
containing functionally important flexible segments. Finally, it is noteworthy
that PREs and other types of experimental NMR data can be used to
validate MD models and, by extension, to inform efforts in the area of force
field development. Collectively, these efforts are expected to contribute to an
improved understanding of the functional mechanisms in chromatin.
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2.5 Supporting Information

Figure 2.3 –– Representative MALDI-TOF mass spectra of histone octamer
containing 15N-labeled H4 and H3(C110A) K36C before (blue) and after (red)
tagging with MTSL. Observed m/z values are consistent with the expected
∼184 Da increase in molecular mass of H3(C110A) K36C due to tag attachment.
The vertical scales in the spectra are set to match the intensities of the peak

corresponding to 15N-labeled H4.
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Figure 2.4 –– Native polyacrylamide gel (5 % polyacrylamide, 0.3 x TBE running
buffer: 27 mM Tris-borate, 0.6 mM EDTA) stained with ethidium bromide. Lane
1: 1 kb DNA ladder (New England Biolabs). Lane 2: 147-bp Widom 601 DNA
nucleosome positioning sequence. Lane 3: nucleosome core particle after sucrose

gradient purification.
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Figure 2.5 –– Examples of the calculated PRE correlation functions C(τ) from
2-µs MD trajectory of NCP in TIP4P-D water (blue curves). The results are for
the observation sites R3, K8 and G13 within the histone H4 tails in the NCP
sample, which is spin-labeled at position L65C of histone H3; the contributions
from proximal and remote labels are shown separately (see legends in the graph).
For the purpose of plotting, the correlation functions are normalized by C(0)

(whose value is indicated in each panel). For comparison, we also show the
correlation function of the NCP tumbling motion with the characteristic time
τrot of 163 ns[50] (orange curves) and the correlation functions representative
of 1HN-15N dipolar interaction for the three observed amide sites (green curves).
Note that 1HN-15N correlation functions are essentially different from the PRE
correlation functions. For example, consider the scenario where H4 tail is loosely
anchored to nDNA through residue R3, so that the portion of the tail aa 3-15
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effectively forms a large floppy loop. In this situation, the movement of the tail
relative to the nitroxide label may occur only slowly, whereas the conformational
dynamics of the loop-like segment can be fast. As illustrated by this example,
nitrogen relaxation data cannot reliably predict the PRE-related dynamics. The
correlation functions from OPC simulations (not shown) are similar to those
from TIP4P-D simulations. However, they tend to decay considerably slower,
consistent with our observation that H4 tails are less dynamic in the OPC

trajectories.
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Figure 2.6 –– (A-D) Experimental PRE rates averaged over H4 residues 3-15
(coral bars) and the corresponding MD predictions (green bars) based on four
different subsets of OPC trajectories, originally labeled A-D (briefly summarized
below, see ref. [102] for additional details). (E-H) The localization of H4 tails
in four different subsets of OPC trajectories, A-D. The plotting conventions are
the same as in Figure 2.2. The trajectories have been grouped according to the
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original protocols used to build the initial NCP models [102]. Model A is based
on the structure PDB:1KX5, where the original DNA sequence has been replaced
with the extended DNA sequence from oncogene KRAS. The histone tails are
from PDB:1KX5 and also transferred from PDB:1AOI. The missing residues
at the end of the tails have been modeled by linearly extending the existing
tail conformations. Model B is analogous to model A, except the histone tail
conformations are from PDB:1KX5 and PDB:1EQZ. In model C, the partially
resolved tails contained in PDB:1KX5 have been clipped and then rebuilt with
a linear geometry following the backbone orientation of the last two residues
at the truncation sites. The arising steric clashes are removed by means of the
program Modeler [215]. Model D is analogous to model C, but with an additional
requirement that the pairs of histone tails should be oriented symmetrically with

respect to the dyad axis.
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Figure 2.7 –– (A) Two-member conformational ensemble of NCP predicting the
PRE data in good agreement with the experiment. The ensemble is derived from
the TIP4P-D trajectory as described in the section 2.3; the respective H4 tails
are visualized in the plot (purple coils) along with the nitroxide label attachment
sites (red spheres). The weights assigned to the two conformers are 93 % and 7
%. (B) Comparison of experimental and ensemble-based calculated PRE rates
(coral and turquoise bars, respectively). The calculated PREs are obtained
using the Solomon-Bloembergen expression for spectral density, equation (2.7),
and averaged over H4 residues 3-15 and over the two conformers in the
ensemble (taking into account their respective statistical weights). Although the
two-member conformational ensemble successfully reproduces the experimental
PRE data, it clearly fails to represent the conformational diversity of the H4 tail

in the nucleosome core particle.
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Figure 2.8 –– (A) 42-member conformational ensemble of NCP predicting the
PRE data in good agreement with the experiment. The ensemble is derived
from the OPC trajectories as described in the section 2.3; the respective
H4 tails are visualized in the plot (purple and green coils) along with the
nitroxide label attachment sites (red spheres). The two conformers shown in
purple are assigned the weights of 10 % each; they are responsible for the
bulk of the PRE effect. The forty conformers shown in green are assigned the
weight of 2 % each; they contribute only marginally to the calculated PRE
rates. (B) Comparison of experimental and ensemble-based calculated PRE
rates (coral and turquoise bars, respectively). The calculated PREs are obtained
using the Solomon-Bloembergen expression for spectral density, equation (2.7),
and averaged over H4 residues 3-15 and over the 42 conformers in the
ensemble (taking into account their respective statistical weights). (C) Reduced
conformational ensemble of NCP, containing two PRE-active conformers (purple
coils, same as in panel (A)) with the assumed weights of 10 % each. Note that
these two conformers are entirely different from the ones shown in Figure 2.7.
(D) Comparison of experimental and ensemble-based calculated PRE rates (coral
and turquoise bars, respectively) for the reduced conformational ensemble shown
in panel (C). Although formally the 42-member ensemble successfully reproduces
the experimental PRE data, it is in fact only minimally restrained and therefore
cannot be viewed as a meaningful PRE based model of the H4 tail dynamics.
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Figure 2.9 –– (A) RMSD traces for 2-µs TIP4P-D trajectory of NCP. All frames
in the trajectory have been superimposed onto the reference structure 3LZ0,
using for this purpose only Cα atoms from the rigid histone scaffold (i.e. those
Cα atoms that belong to the α-helical secondary structure). Subsequently, RMSD
values have been calculated using different sets of atoms: (1) the same Cα atoms
that have been used to overlay the frames (blue curve); (2) N1 and N9 atoms
from nDNA nucleobases (red curve); (3) sets (1) and (2) combined (black curve);
(4) N1 and N9 atoms from the inner turn of nDNA, nucleotides from -38 to 38
(green curve); (v) N1 and N9 atoms from the outer turn of nDNA, nucleotides
from -72 to ‑39 and from 39 to 72 (magenta curve). The sampling step of 1 ns
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has been used. (B, C) Analogous RMSD traces for two representative 5-µs OPC
trajectories of NCP belonging to groups B and D in ref. [102], respectively. Note
that the definition of the nDNA inner and outer turns is the same as before,

disregarding the linker segments.
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Table 7 –– Experimental PREs for individual H4 tail amide sites in the four NCP
samples containing paramagnetic spin labeled histone H3: 36R1, 65R1, 79R1 and
125R1. For each NCP sample, the PREs were extracted from residue-specific
peak volumes in the 15N-1HN HSQC NMR spectrum for the paramagnetic sample
and a reference diamagnetic sample generated by addition of excess sodium
ascorbate (c.f., Figure 2.1) as described above in the section 2.3. For the three
strongly overlapped glycine resonances, G4, G6 and G13, the experimentally
measured effective average PRE is reported. Note that for the H3 36R1 sample
three residues had small negative PREs, which have been assigned a value of
zero (with the values determined experimentally indicated in square brackets).
Shown in the bottom two rows is the average PRE for all H4 tail residues for
each sample, with the corresponding standard deviation.

PRE(s-1)
H4 residue H3 36R1 H3 65R1 H3 79R1 H3 125R1

R3 2.5 194.1 255.3 0.3
G4/G6/G13 0.7 172.1 327.1 7.6

K5 11.3 105.0 216.4 14.9
G7 5.5 194.8 265.6 9.3
K8 4.9 165.3 350.5 15.4
G9 4.8 210.4 180.0 12.2
L10 10.8 229.0 239.0 13.2
G11 0.1 227.7 268.6 17.5
K12 0.0 [-1.6] 165.2 229.2 19.4
G14 0.0 [-2.2] 164.9 248.0 11.7
A15 0.0 [-2.4] 250.1 235.0 26.8

Average 3.7 189.0 255.9 13.5
Standard deviation 4.2 40.5 48.1 6.8
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Chapter 3. Using NMR spectroscopy and MD modeling to study
aromatic ring-flips in ubiquitin crystals

3.1 Introduction

Aromatic side chains play important roles in proteins. Often located in
their hydrophobic cores, they are key to protein stability. Over-represented in
protein-protein and protein-drug interfaces, aromatics play an important role in
molecular recognition and binding [216], and are often prominent in the active
sites of enzymes. The dynamics of aromatic side chains have been intensely
studied research for more than four decades [217––220]. An important motivation
for this interest is the realisation that aromatic side chains are rather bulky, and
their motions, particularly rotations of the aromatic rings, require a significant
void volume. Consequently, aromatic ring flips are thought to reveal coordinated
movement of surrounding residues. Ring flips of His rings have also been studied
in the context of functional mechanisms of enzymes and channels [221; 222].

Ring flips of Phe and Tyr, i.e. 180° rotations around the χ2 dihedral
angle, interconvert two indistinguishable states, and the exchange between these
is, therefore, not observable by crystallographic methods. Nuclear magnetic
resonance (NMR) spectroscopy can probe such motions in quite some detail,
including the time scales of ring flips and the amplitudes and time scales of the
ring-axis motions. Solution-state NMR provides insights into ring flips because
the two symmetry-equivalent spin pairs (at the two Hε-Cε positions, or the two
Hδ-Cδ positions, respectively, also denoted ortho-CH and meta-CH) are exposed
to different conformational environments. Observing either two distinct sets of
peaks, or a single time-average set of peaks, or possibly line broadening due
to exchange, provides evidence for the time scale of flips. A growing arsenal
of methods allows for quantification of such exchange processes [223––226].
Studying the pressure- or temperature-dependence of such parameters sheds
light onto the transition state and created void volume involved in ring flips
[227––229]. A recent study managed to stabilise a transition state of a ring flip
which became then amenable to high-resolution structural investigation [230].
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Nuclear spin relaxation methods [229; 231] provide another avenue to probe
ring dynamics of proteins in solution.

Whether crystal packing has an influence on ring flips is poorly understood,
largely because these are invisible to crystallography. Magic-angle spinning
(MAS) NMR provides atom-resolved insight into protein assemblies, including
crystals. It can, thus, shed light onto the impact of crystal packing on
motions. MAS NMR has been used for studying dynamics of aromatic
rings [220; 232––234] and protein dynamics more generally (see reviews, e.g.
references [235––242]). We have recently applied a selective isotope-labeling
strategy combined with sensitive proton-detected MAS NMR pulse sequences
to quantitatively probe aromatic ring dynamics over a wide range of time scales
[243]. The approach uses highly deuterated protein samples, in which 1H-13C
spin pairs are introduced at either the Cζ (para-CH), the Cε (meta-CH) or the
Cδ (ortho-CH) site. Together with MAS frequencies of 40-50 kHz or above, this
strategy leads to sensitive high resolution 1H-13C correlation spectra. Moreover,
given the simplicity of the spin system, with well-isolated 1H-13C spin pairs,
it is straightforward to obtain quantitatively accurate dynamics data without
any influence of scalar or dipolar couplings to remote spins. In the solid state,
the arsenal of methods for probing dynamics is richer than in solution. In
addition to chemical-shift based methods and relaxation measurements (also
accessible in solution). MAS NMR allows quantifying dipolar couplings and
provides insights into microsecond-millisecond dynamics from experiments that
are sensitive to the MAS frequency and radiofrequency (RF) fields, such as
NEar-Rotary resonance Relaxation Dispersion (NERRD) experiments [244; 245]
(see below). Measurements of dipolar couplings are very useful to learn about
motional amplitudes: motion leads to averaging of dipolar couplings, and the
averaged dipolar-coupling tensor reflects the conformational space that the
inter-atomic vector samples. The methods we employ here allow to even see
anisotropy of the underlying motion, that is caused e.g. by two-site ring flips
[243; 246]. Additionally, MAS NMR relaxation measurements probe dynamics
over a broad range of time scales without inherent «blind spots» [236––238].
Although MAS NMR relaxation experiments are differently sensitive to different
time scales [247; 248], in principle any time scale can be probed. In particular,
NERRD experiments allow probing whether motions occur on microseconds
(µs) or rather nanosecond (ns) time scales [248].
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Here, we use MAS NMR together with highly deuterated samples
with specific 1H-13C spin pairs to investigate phenylalanine ring dynamics
in the ubiquitin protein, crystallized in three different crystal forms, herein
called MPD-ub, cubic-PEG-ub and rod-PEG-ub. These names refer to the
crystallisation agent, methyl pentanediol or polyethylene glycol, and the crystal
shape. The arrangement of the molecules, in particular with respect to the Phe
side chains, is displayed in Figure 3.1.

These three crystals differ in the number of molecules inside the unit cell,
the relative orientation of molecules to each other and the solvent content in the
crystal, ranging from 58 % water content in cubic-PEG-ub to 49 % (MPD-ub)
to 40 % (rod-PEG-ub). Previous studies of the backbone dynamics of these
crystals have revealed that the backbone has similar (sub-µs) motions, but that
there is different degree of overall motion: the molecules of the least densely
packed cubic-PEG-ub crystal undergo overall rocking motion with an amplitude
of several degrees on a µs time scale [244; 249]. While both Phe residues are
positioned more or less on the protein’s surface, rather than in the hydrophobic
core, the packing of the aromatic side chains differ. Using the highly accurate
solution-NMR structure of ubiquitin (PDB ID: 1D3Z), we find that the average
solvent accessible surface area (SASA) of Phe4 in this multi-conformer structure
is 59 Å2 (33 %), while for Phe45 it is 42 Å2 (23 %). However, the degree
of solvent exposure changes depending on intermolecular arrangements in the
different crystal forms (Figure 3.1 (D-I)), which is also reflected in the number
of contacts that each Phe side chain makes with the neighboring ubiquitin
molecules (Figure 3.1 (J)).

MAS NMR combined with MD simulations, presented herein, shed light
onto the effects of crystal packing on Phe ring dynamics. The entirety of
spectroscopic data suggest that the Phe45 signals are broadened beyond
detection in all crystals due to slow (µs) ring flips of Phe45. This finding is
backed up by MD simulations. The peak positions of Phe4 are remarkably
conserved in the three different crystal forms, despite different buffer composition
and pH conditions and intermolecular packing. However, in one crystal form,
differences in intermolecular packing between the two chains are reflected by
different 1H chemical shifts and spin relaxation parameters. Overall, our study
reveals that the impact of the crystal packing on aromatic ring dynamics are
detectably impacted by the crystal packing, but the effect is small compared
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Figure 3.1 –– Structures of ubiquitin in three different crystal forms, denoted
herein as MPD-ub (black), cubic-PEG-ub (red) and rod-PEG-ub (blue). The
three crystal forms correspond to PDB entries 3ONS, 3N30 and 3EHV,
respectively. The number of non-equivalent molecules in the asymmetric unit
are: 1 (MPD-ub), 2 (cubic-PEG-ub) and 3 (rod-PEG-ub). (A) Overlay of the
backbones of the six (1+2+3) chains from the three crystal forms. Panels (B) and
(C) zoom onto Phe45 and Phe4, respectively. Spheres denote atoms within 5 Å
around the aromatic side chain (shown here for one of the chains of rod-PEG-ub;
dark blue: nitrogen, red: oxygen, light blue: carbon). (D-I) Crystal packing for
MPD-ub (D), cubic-PEG-ub, chains A (E) and B (F), and rod-PEG-ub, chains A
(G), B (H) and C (I). Neighboring molecules in direct contact with the molecule
in the center are shown as mesh. (J) The number of heavy atoms located in a
neighboring ubiquitin chain within a radius of 4 Å around any atom of Phe4

(left) or Phe45 (right).

to the intramolecular determinants of ring flipping. Interestingly, the strong
difference of ring-dynamics time scale of Phe4 and Phe45 that we detect
from NMR measurements and MD simulations is not directly related to the
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solvent-accessible surface area, nor the rotameric state, which points to other
intramolecular determinants of ring flips.

3.2 Results

3.2.1 Specifically isotope-labeled Phe samples of three crystal forms
of ubiquitin

In order to obtain sensitive and high-resolution proton-detected MAS
NMR spectra, combining high levels of sample deuteration with fast magic-angle
spinning is an established method [250; 251]. For exchangeable sites, in particular
the amides of the backbone, perdeuteration followed by back-exchange in 1H2O
buffer is a straightforward method. For detecting side chain atoms, one can either
use the ”imperfection”of deuteration, i.e. the residual 1H content in deuterated
samples [252; 253], or specific labeling with precursors in which a chosen type of
moiety is protonated almost completely. The latter approach is commonly used
for methyl-directed NMR, particularly in solution NMR [254; 255], and also
in MAS NMR [246; 256]. Introduction of such isolated protons in other sites
allows to obtain highest resolution for other side chains; generally, such specific
labeling approaches can clearly achieve better line widths than those obtainable
from fully protonated samples at the highest available MAS frequencies to date
(100 kHz) [243].

We have recombinantly expressed ubiquitin in which all non-exchangeable
sites are deuterated, and individual 1H-13C spin pairs are incorporated at
the two Hε-Cε positions of Phe residues. We denote this labeling here
as u-[2H,15N],Phe(ε1,ε2)-1H,13C. The incorporation of the specific label was
achieved by adding a properly labeled ketoacid precursor molecule (35 mg per
liter of culture), displayed in Figure 3.2 (A), to the bacterial culture prior to
induction [257], as described in the section 3.3.
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Figure 3.2 –– MAS NMR of specifically Phe-labeled ubiquitin. (A) Ketoacid
precursor used for the labeling of Phe with two 1H-13C spin pairs at the
two ε positions. (B) Overlay of the cross-polarization (CP) based 1Hε-13Cε
correlation spectra of the three different ubiquitin crystal samples. The spectra
were obtained at 50 kHz MAS frequency at a sample temperature of ca. 28 ◦C
with a pulse sequence based on 1H-13C out-and-back cross-polarisation steps
and 1H detection [243]. MPD-ub and rod-PEG-ub spectra feature a single
observable peak, while cubic-PEG-ub displays two peaks (labeled #1 and #2
in the plot). The assignments of Phe4 and Phe45 in various solution-state data
sets (BMRB 6457, 5387, 16228 and 27356) are indicated by crosses, and the
solid-state NMR assignment (only for 13C; BMRB 25123) is indicated by a
horizontal line, color-coded for Phe4 (gold) and Phe45 (cyan). (C) Chemical-shift
predictions for 1Hε-13Cε spin pairs in Phe4 using the program SHIFTX2. Tthe
peaks are color-coded as indicated in the legend. Of interest, chain A in
cubic-PEG-ub shows a distinctive proton chemical shift, significantly different
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from that of chain B. This effect can be attributed to ring current shift arising
from the stacking of the two Phe4 rings from the proximal chains A in the crystal

lattice (illustrated in panel (D)).

Figure 3.2 B shows the aromatic region of the 1H-13C spectra of ubiquitin
in the three different crystal forms. Overlaid with these spectra are previous
assignments of the 1Hε-13Cε sites in solution [258––261], and of the 13Cε in a
carbon-detected MAS NMR study [262]. Even though these previous data sets
have been collected under a diverse set of conditions, including in-cell NMR and
a sample in reverse micelles, the reported peak positions are remarkably similar.

3.2.2 Phe4 rings undergo sub-millisecond ring flips

In obtained spectra, only the signal that corresponds to Phe4 is visible,
while the one of Phe45 is absent. We discuss the question of why the signal
of Phe45 is not observed further below. We observe a single peak for Phe4 in
both MPD-ub and rod-PEG-ub spectra. For MPD-ub, in which all chains are
identical, this is expected. However, this outcome is less obvious for rod-PEG-ub,
where the crystal contains three non-equivalent molecules in the unit cell and
many backbone amide sites show three distinct signals [249]. Closer inspection of
the three non-equivalent Phe4 appearances in the crystal (see Figure 3.1 (G-I))
shows that the Phe4 side chains do not have any contact to other molecules.
Thus, their environment is very similar in the three non-equivalent molecules,
which explains the observation of a single signal. In cubic-PEG-ub we observe
two signals: one overlaps with the position found in the other crystal forms and
in solution (denoted as (#1) in Figure 3.2), and the other one shifted by ca. 0.25
ppm upfield in proton dimension (#2). These two peaks mirror the differences
in the environment of Phe4 in the two non-equivalent molecules in the crystal
(Figure 3.2 (E, F, J)). We tentatively assign peak (#1), which is very close to
the solution-NMR position, to chain B, because in chain B Phe4 does not form
any intermolecular contacts, and peak (#2) to chain A, which is engaged in
contacts to a neighboring chain.
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To confirm this view, we have performed SHIFTX2 predictions [263]
of the 1Hε-13Cε correlations in solution and in the three crystal forms.
Chemical-shift prediction programs are often challenged to predict proton
frequencies with accuracy, particularly those in side chains, for which fewer
data are available. However, the predictions are able to reproduce the effects
observed for Phe4 rather well. In particular, the prediction finds a 0.39 ppm
upfield shift of the signal corresponding to chain A of cubic-PEG-ub, compared
to chain B. This effect is due to intermolecular stacking of Phe4 rings in the
two neighboring chains A (Figure 3.2 (D)). When the second chain is removed
in the SHIFTX2 calculation, the two Phe4 signals land essentially on top of
each other. The effects of ring-currents are well understood [264; 265], and we
assume that the effects of intermolecular ring stacking are well recapitulated in
the predicted Phe4 shifts of cubic-PEG-ub.

On the other hand, the limited accuracy of the structure-based chemical
shift predictors is apparent in the results for Phe45. While SHIFTX2 correctly
predicts that Phe45 shifts are similar among the different crystal forms and
in solution, their absolute values do not agree very well with the experiment,
see Figure 3.7.

The observation of a single cross-peak for Phe4, which is labeled at
the two εsites, suggests that the isotropic chemical shift of the two positions
is averaged by sub-millisecond ring flips. To gain a more direct insight into
ring flips, MAS NMR can probe the dipolar-coupling averaging. The 1H-13C
dipolar-coupling tensor is averaged by motions faster than ca. 10-100 µs (Figure
28 in ref. [237]). For the case of ring flips the tensor anisotropy is reduced to
theoretically 62.5 % (order parameter S=0.625); moreover, the dipolar-coupling
tensor, which is uniaxial in the rigid-limit case (i.e. axially symmetric), becomes
biaxial. We use here the term biaxial; this property is also termed tensor
asymmetry in the literature, with an asymmetry parameter, η, where η=0
denotes an axially symmetric tensor. As ”biaxial”more precisely reflects the shape
of the tensor, and in line with the use in other fields of physics, [266] we use
the term biaxiality herein. One can show that the ring flips not only reduce
the anisotropy of the dipolar-coupling tensor to S=0.625, but also increase
the biaxiality parameter to a value of η= 0.6 [243]. An adapted version of
the Rotational Echo DOuble Resonance (REDOR) experiment [267] allows
determining order parameters and tensor biaxiality parameters [246]. Figure 3.3
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(A) shows the REDOR curves for Phe4 in the three crystal forms. In all cases,
the obtained tensor parameters are in agreement with the ring flip model, i.e. the
order parameter matches (within error bars) the expected value of 0.625, and
the confidence interval of the biaxiality parameter encompasses the expected
value of 0.6, see Figure 3.3 (B). In some crystal forms the order parameters
and the biaxiality are somewhat lower than in others, possibly due to additional
small-amplitude motions, but it is clear that within error bar the ring flips alone
can account for the experimental observations.

Figure 3.3 –– 1H-13C dipolar-coupling tensor measurements for the ε site in
Phe4. (A) REDOR recoupling curves for the different crystals. (B) Fitted tensor
parameters in a fit that does a grid search for the best order parameter S (i.e. the
tensor anisotropy) and tensor biaxiality parameter η. (C) Fitted order parameter
from a grid search against a grid of simulations that assume explicit two-site
jumps (120◦) and a variable tensor anisotropy δD. The resulting best-fit order
parameter (calculated, as usual, as S=δD,fitted/δD,rigid) is close to 1, reflecting that
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the tensor is controlled by the two-site jumps, with only very small additional
motional averaging.

3.2.3 Phe4 ring flips occur on a 10-20 ns time scale

Spin relaxation rate constants are sensitive to amplitudes and time scales of
motion. We have measured the 13C longitudinal (R1) and rotating-frame (R1ρ)
relaxation, as well as 1H R1ρ, and used them to determine the ring-flip rate
constants. To this end, we compared the experimentally measured 13C relaxation
rate constants (Figure 3.4 (A, B) and Table 8) to calculated rate constants that
result from ring flips (Figure 3.4 (D)).

Figure 3.4 –– MAS NMR dynamics data for Phe4 signals in the three different
crystal forms. All data have been collected at 44.053 kHz MAS frequency. In
all cases, the colors black, red and blue refer to data from the three different
crystal forms. (A) 13C longitudinal (R1) and (B) rotating-frame (R1ρ) relaxation
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rate constants. (C) Measurements of 13C R1ρ as a function of the spin-lock field
strength (relaxation dispersion). The profiles do not show a marked increase
when the RF field strength approaches the condition ν RF=ν MAS, which one
would expect if the flip motion was on the µs time scale. (D) Calculated 13C
NERRD profiles (see section 3.5.1) for different correlation times and an order
parameter corresponding to ring flips (S=0.66, upper panel) or smaller amplitude
motion (S=0.99, lower panel). The rotary resonance condition is indicated with
a black vertical line at 44.053 kHz. (E) Determination of the ring-flip correlation
times for Phe4 from 13C relaxation rate constants. The Λ-shaped profiles show
relaxation rate constants calculated for ring flips as a function of the time scale
of these flips; orange: R1ρ; blue: R1. Horizontal lines indicate the experimentally
measured rate constants and vertical dashed lines show where the experimental
data intercept the calculated curve (on the ”fast”branch of the curve). (The
numerical values of the experimental relaxation rates are summarized in Table 8.
Note the remarkable agreement of the flip time constants from R1ρ and R1.
(F) 1H R1ρ relaxation-dispersion profiles. There is a rise of R1ρ at ν RF=1

2ν MAS
(”HORROR-condition”[268]), which is due to the recoupling of the 1H-1H dipolar
coupling, visible in particular for the MPD-ub crystal data. The width of this
feature is limited to only a few kHz around the halved spinning frequency. (G)

Calculated 1H R1ρ rate constants (see section 3.5.1 for details).

In these calculations, we fixed the order parameter of the 1H-13C moiety to
the one expected for ring flips, and varied the corresponding ring-flip correlation
time. The calculated relaxation rate constants for a correlation time in the 10-20
ns range match the experimental ones for all crystal forms and for the two
sites of cubic-PEG-ub. The correlation times of the ring flips determined from
R1ρ and R1 agree very well with each other, supporting that a single dominant
motion, ring flips, accounts for the bulk of spin relaxation. We have considered
the possibility that additional motions, other than ring flips, contribute to
the observed relaxation rate constants. To explore this possibility, we have
extended our model by including additional motional modes as found in our
MD simulations (see Figure 3.8 and section 3.5.2). Re-analyzing 13Cε R1 and
R1ρ using this extended model shows that additional motions have only minimal
influence on the extracted ring-flip rates, see Figure 3.9.
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Even though these data clearly point to nanosecond flips, we also probed
whether Phe4 undergoes µs motions, possibly of very small amplitude, using 13C
R1ρ NERRD experiments [244; 245]. In these experiments, the R1ρ rate constant
is probed as a function of the spin-lock RF field strength. In the presence of µs
motion, R1ρ increases sharply when the RF field strength approaches the MAS
frequency. A 1H R1ρ NERRD version has been proposed, too, and, although
less straightforward to quantify, is another way to detect µs motions [269; 270].
Figure 3.4 (C, F) show the 13C and 1H NERRD data, respectively. These profiles
are flat in most cases, suggesting that there is no significant µs motion. The
observed rise in the 1H NERRD profiles at the condition ν RF=1

2ν MAS, is due to
the recoupling of the homonuclear dipolar coupling at the HORROR condition
[268]; however, it extends over only a narrow range of RF field strengths, much
less than what is expected if the motion occurred on a µs time scale [270]. It
is noteworthy that the experimentally observed 1H R1ρ rate constants for Phe4,
ca. 50-120 s-1, are higher than the expected ones for ring flips occurring on the
ca. 10-20 ns time scale (ca. 30-50 s-1; see Figure 3.4 (G)). This suggests that
dipolar dephasing [271; 272] appears to be responsible for more than half of the
expected decay rate constant.

The calculations illustrated in Figure 3.4 also offer a plausible explanation
why the signal of Phe45 is unobserved. If ring flips for Phe45 are 1-2 orders of
magnitude slower than for Phe4 (MD suggests a factor of ca. 50; see below), then
the relaxation time constants of 1H and 13C at this site are expected to be of the
order of 1 ms or less (and additional dipolar dephasing would shorten the 1H
life time even more). Such fast relaxation would not lead to coherence transfer
through the experiment, and broaden signals beyond detection. Hence, Phe45
magnetization would decay rapidly during the pulse sequence and detection,
obliterating the spectral signal.

Of note, in cubic-PEG-ub peak #2 (assigned to chain A) has higher 1H
and 13C R1ρ rate constants than peak #1. This is likely the basis why the peak
intensity of peak #2 is lower. Given that the ring flip rates are very similar,
the origin of this faster relaxation is not entirely clear; a likely reason could be
the closer proximity of protons from the neighboring molecule in the crystal,
see Figure 3.1 (J).

Lastly, it is noteworthy that the molecules in the cubic-PEG-ub crystals
undergo rocking motion within the crystal, while for the more densely packed
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MPD-ub and rod-PEG-ub crystals this was not found [244; 249]. This rocking
effect, occurring on a time scale of tens of µs, was detected by non-flat 15N
NERRD profiles. In this sense, it is interesting that the 13C NERRD profiles
of cubic-PEG-ub (but not of the other two crystal forms) show a slight (ca.
10 s-1) increase toward ν RF=ν MAS = 44 kHz. We ascribe this small NERRD
effect to the overall rocking motion sensed by the side chain; the effect is
quantitatively somewhat smaller than expected from the rocking parameters
obtained for the backbone, which might reflect that the side chain is to some
degree decoupled from the motion that the backbone senses. It is also possible
that the contribution from rocking motion is more difficult to see for these
aromatic 1H-13C sites than for backbone amides, because the absolute rate
constants are ca. 10-fold larger than those of amide 15N.

Overall, NMR data show that in all crystal forms the flips of Phe4 are
similar, occurring on a 10-20 ns time scale. It appears that the flips of Phe45
occur on a slower time scale, which prevents its detection by NMR. The MD
evidence for that is reviewed in the next section.

3.2.4 MD simulations provide insight into ring-flip dynamics

Molecular dynamics simulations provide a useful additional view on ring
flips. We have analyzed microsecond-long trajectories of the explicit crystal
lattices, as well as of ubiquitin in solution, in order to understand the observed
differences in ring-flip rates, in particular between Phe4 and Phe45; the latter
is experimentally not observed. Figure 3.5 shows the time traces of the χ1
and χ2 dihedral angles of the two Phe sidechains in the different crystal lattices
and in solution. As the simulated crystal lattices comprise 24 or 48 molecules,
and the simulation extends over 2 µs, the trajectories effectively cover many
microseconds.
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Figure 3.5 –– Time traces of side-chain torsional angles χ1 and χ2 for (A) Phe4
and (B) Phe45 from the three simulated ubiquitin crystals and one simulation
of ubiquitin in solution. To better visualize rotameric jumps, we use the angle
range [0–360◦] instead of the conventional choice [-180–180◦]. The color coding
is the same as in the previous figures: black (MPD-ub), red (cubic-PEG-ub),
blue (rod-PEG-ub) and magenta (solution form). The cubic-PEG-ub simulation
cell contains 48 ubiquitin molecules equally divided between chain A (molecules
1–24) and chain B (molecules 25–48). The rod-PEG-ub simulation cell contains
24 ubiqutin molecules equally divided between chain A (molecules 1–8), chain
B (molecules 9–16) and chain C (molecules 17–24). The details on crystal

simulations are provided in the section 3.3.

The χ1 angle, which reorients the ring axis Cβ-Cγ, does not change in any
of the simulated systems. For χ2, which represents rotations of the ring (flips
and small-amplitude motions within the potential energy wells), the situation
is more interesting and more diverse. Phe4 undergoes ring flips in all cases. In
cubic-PEG-ub and rod-PEG-ub, these flips occur multiple times along the 2 µs
long trajectory. In MPD-ub, which experimentally behaves very similarly, the
flips occur less frequently than in the PEG-ub crystals.The aggregate estimate
of the characteristic time for Phe4 ring flips using all crystal trajectories and
solution trajectory is τdiv=204 ns (see Table 9 for the flip rate constants of the
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individual simulations; τdiv is the total aggregated simulation time divided by the
number of observed flips). This is an order of magnitude longer than the value
of 10-20 ns estimated from the experimental relaxation data. Such difference
translates into excess barrier height of ca. 1.5 kcal/mol, which is common even
for state-of-the-art force fields [273].

In all crystals as well as in solution, the ring flips of Phe45 are much less
frequent than those of Phe4. Specifically, the MD data indicate that there is
a 47-fold reduction of the rate constant. While this value is to be considered
a rough estimate, due to the insufficient sampling of the flip events in Phe45,
the MD data show unambiguously a slow-down compared to Phe4. This kind of
slow-down shifts the process into a range that is expected to cause a dramatic
broadening of Phe45 signals, preventing its detection in MAS NMR spectra, as
further discussed below.

3.3 Methods

3.3.1 Protein expression and purification

Perdeuterated ubiquitin with specific labels at the phenylalanine εpositions
( 1H-13C) was prepared by bacterial overexpression as follows. Escherichia coli
BL21(DE3) cells were transformed with a pET21b plasmid carrying the human
Ubiquitin gene. Transformants were progressively adapted in four stages over
48 h to M9/D2O media containing 1 g/L 15ND4Cl, 2 g/L D-glucose-d7 as the
sole nitrogen and carbon sources. In the final culture, the bacteria were grown
at 37 ◦C. When the optical density at 600 nm (OD600) reached 0.65, 35 mg of
the ketoacid precursor (shown in Figure 3.2 (A)) per liter of culture were added.
One hour later, while shaking at 37 ◦C the OD600 reached 0.95, whereupon
protein expression was induced by addition of IPTG to a final concentration
of 1 mM. Induction was performed for 3 h at 37 ◦C. At the end, the final
OD600 reading was 2.2.

After induction, the cells were resuspended in 20 mL of 50 mM Tris-HCl
pH 8 buffer containing 2 µg/mL leupeptine and 2 µg/mL pepstatine, and lysed
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by sonication. The lysate was centrifuged for 30 min at 46,000 g using JA25-50
Beckman rotor, then the supernantant was dialyzed against two times 300 mL
of 50 mM Tris-HCl pH 8 buffer. After dialysis the sample was centrifuged for
30 min at 46,000 g and loaded on a 40 mL Q-Sepharose column. Ubiquitin was
recovered in the flow through fractions, which were subsequently concentrated
and injected on a HiLoad 16/60 Superdex 75 column equilibrated with 1 column
volume of 50 mM Tris-HCl pH 8 buffer. The protein was dialyzed against Milli-Q
Ultra pure water until the buffer was completely removed. Then the protein was
freeze-dried for 24 h.

3.3.2 Protein crystallization

The three different crystal forms, which were also used in our previous
backbone-dynamics study although with different isotope labeling [249], were
obtained by sitting-drop crystallisation with buffer conditions described below.
In all cases, the crystals were obtained using sitting-drop crystallisation plates
(Hampton research Cryschem plate, catalog number HR3-159) with a 40 µL
sitting drop and 450 µL of reservoir buffer.

For preparing MPD-ub crystals ubiquitin was dissolved in buffer A (20
mM ammonium acetate, pH 4.3) at a concentration of 20 mg/mL. Buffer B (50
mM citrate, pH 4.1) was prepared and mixed with methyl pentanediol (MPD)
at a volume ratio of 40:60 (buffer B : MPD), and 450 µL of this mix was placed
in the reservoir of the wells. In the sitting drop, 37 µL of the ubiquitin / buffer
A solution was mixed with 10 µL of the buffer B / MPD solution. The plate was
covered with CrystalClear adhesive tape and kept at 4 ◦C. After ca. 1-2 weeks,
needle-shaped (”sea-urchin like”) crystals appeared.

For preparing cubic-PEG-ub crystals, the reservoir contained 450 µL of
buffer C (100 mM 2-(N-morpholino)ethanesulfonic acid (MES), pH 6.3, 20 %
(weight) PEG 3350 and 100 mM zinc acetate). The protein solution (20 mg/mL
of ubiquitin) in buffer D (20 mM ammonium acetate, pH 4.8) was mixed with
buffer C at a 1:1 ratio, and 45 µL thereof were placed in the sitting-drop holder.
Cubic-shape crystals were obtained within 1 week at ca. 23 ◦C.
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For preparing rod-PEG-ub crystals, the reservoir buffer contained buffer E
(50mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), pH 7.0, 25
% PEG 1500 and 25 mM zinc acetate). The protein was dissolved in buffer D at
20 mg/mL, and mixed with reservoir buffer E (1:1), akin to the cubic-PEG-ub
procedure.

Protein crystals were transferred to a custom-built ultra-centrifuge tool
(essentially a funnel placed on top of a 1.3 mm Bruker NMR rotor, with
dimensions that fit the buckets of a Beckman SW32 rotor). The crystals of
each kind (ca. 3 mg protein) were centrifuged into their individual rotors, and
the rotor caps were glued with two-component epoxy glue to avoid loss of water.

3.3.3 NMR experiment

All experiments were performed on a Bruker Avance III spectrometer
operating at 600 MHz 1H Larmor frequency (14.1 T) with a Bruker 1.3 mm probe
where the main coil was tuned to 1H, 13C and 15N frequencies, and an auxiliary
coil to 2H frequency. The MAS frequency was set to 40-50 kHz (specified in the
figure panels and below) and maintained constant to within less than 10 Hz. The
effective sample temperature was ca. 28 ◦C. The temperature was determined
from a non-temperature sensitive signal of MPD and the bulk water line, using
the equation T[◦C] = 455 - 90·δ H2O, where δ H2O is the shift of the bulk water
line in parts-per-million (ppm).

The pulse sequences for the proton-detected 1H-13C correlation
experiments (hCH) have been presented in Figure 3.8 of ref. [243]. They
include 1H excitation, cross-polarisation to 13C for chemical-shift editing (with
ca. 10 kHz 1H WALTZ-16 decoupling), flip-back of 13C coherence to 13Cz for
ca. 40 ms water suppression by a train of 1H pulses with 18 kHz field-strength
amplitude and a duration of 820 µs, alternating in phase (±15◦). The indirect 13C
dimension was typically sampled for ca. 12-15 ms, using a spectral width of 15
ppm (2250 Hz); the 1H dimension was sampled for ca. 50 ms.

The cross-polarisation steps (H to C and C to H) used RF fields of ca.
85 kHz and 35 kHz at 50 kHz MAS frequency, and a duration of 400 µs, with
a ramp (90 % to 100 %) on the 1H channel; the specified RF field strength is
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the value at the mid-point of the ramp. Hard pulses were typically 2.5 to 2.6 µs
(1H), 3.4 to 3.5 µs (15N) and 3.2 µs (13C).

The time-shifted REDOR, 13C R1, 13C R1ρ and 1H R1ρ experiments used
the same basic hCH correlation experiment, with the appropriate pulse sequence
element as described in Figure 3.8 of reference [243]. In the 1H R1ρ experiment, a
spin-lock element was inserted after the initial 1H excitation pulse. Except the 1H
relaxation experiment, all pulse sequences are implemented in NMRlib [274].

The REDOR experiment was performed at a MAS frequency of 44.053
kHz (rotor period of 22.7 µs). For the recoupling pulse train in the REDOR
experiment, the 1H-π and 13C-π pulses had durations of 5 µs and 6 µs,
respectively. The REDOR experiment was implemented with a shift of half of
the 1H pulses away from the center of the rotor period as described previously
[246; 275]. The shift of the pulses was such that the shortest time interval
between two consecutive 1H pulses was 0.5 µs, i.e. the centers of these two
consecutive 1H pulses were separated by 5.5 µs. Seventeen time points were
acquired, from 2 rotor periods to 36 rotor periods in steps of 2 rotor periods
(one on each side of the central 13C pulse). The REDOR data were collected
as a series of 1D spectra.

In the 13C R1ρ measurements, ten 1D experiments with different spin-lock
durations (between 1 and 45 ms) were collected, and this was repeated for
20 different spin-lock RF field strengths, ranging from 2 kHz to 40 kHz.
A 1H-π pulse was applied in the center of the relaxation period to suppress
cross-correlated relaxation effects [276]. In the 13C R1 measurements, ten 1D
experiments with different relaxation delays (between 1 and 45 ms) were
collected. In the 1H R1ρ measurements, ten 1D experiments with different
spin-lock durations (between 1 and 25 ms) were collected, and this was repeated
for 25 different spin-lock RF field strengths, ranging from 1 kHz (for MPD-ub)
or 2 kHz (cubic-PEG-ub) to 40 kHz.

To analyse the data, the peaks in the 1D series of spectra were integrated
using in-house written python scripts. The relaxation decay profiles were fitted
using a simple exponential fit. To interpret the REDOR data, a series of
numerical simulations of the REDOR recoupling element was conducted using
the GAMMA simulation package [277]. The simulations were performed with
different values of the tensor anisotropy and biaxiality, resulting in a 2D grid
of simulated time traces. The experimental data were fitted by first calculating
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∆S/Sref = (Sref − Srec)/Sref for both the experiment and the simulation, where
Srec and Sref are the signal intensities in the recoupling experiment and reference
experiment (with and without 1H pulses, respectively). Then, the experimental
curve was compared to each simulation, by calculating a chi-square value as the
sum of the squared deviations between the experimental and simulated ∆S/Sref

divided by the squared experimental error estimate. The best-fit values of the
two fitted parameters, tensor anisotropy and biaxiality, were taken to be those
for which the calculated chi-square value was minimal over the simulated 2D
grid. In an alternative fitting approach, we have performed the simulations
with an explicit jump model, assuming that ring flips cause a change of 120◦
in orientation of 1H-13C vector. A 1D grid of these simulations was compiled,
where the dipolar tensor anisotropy was varied.

Confidence intervals were obtained from Monte-Carlo simulations: the
best-fit curve (relaxation decay or REDOR curve) along with experimental
uncertainties (of the intensities or ∆S/Sref values) were used to generate a
”noisy”data set, by choosing the points randomly within a normal distribution
around the best-fit data point. One thousand such noisy data sets were fitted
using the same procedure as described above, and the standard deviation of the
fitted parameters is reported here.

The calculation of relaxation-rate constants in Figure 3.4 (D-G) used
Redfield-theory-based analytical expressions, as outlined in the section 3.5.1.
The R1ρ equations have been derived in reference [278]. The order parameter
used for these calculations was set to S = 0.661 (unless stated otherwise), which
corresponds to a two-site jump model, S2 = (3cos2φ + 1)/4 = 0.437, where
it is assumed that the jumps occur between the two equiprobable states and
cause reorientation of dipolar vector by 120◦ [279]. Note that S = 0.661 =√
0.437 is not exactly the same as S = 0.625, which is the scaling of the

dipolar-coupling anisotropy from the two-site jumps, used in the REDOR
analysis. The latter, however, refers to a different observable and stems from
the theoretical description, which also involves a tensor biaxiality.) For all
calculations we have used a value of the dipolar coupling that corresponds to
1.09 Å bond length (23327 Hz tensor anisotropy [231]. The CSA tensor was
assumed to be uniaxial (axially symmetric), with a value of Δδ =-159 ppm
[280]. Note that although the validity of the Redfield theory for slow motions
has been debated [237; 281], it appears to be valid for the range of rate constants
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considered here [282]. More specifically, some discrepancies have been detected
between Redfield-theory calculations and numerical simulations; however, where
the theory appeared to produce incorrect rate constants, it turned out to be due
to the fact that decays are multi-exponential. In essence, the deviations were
due to misinterpretation of multi-exponential behavior. Caution is required in
extracting relaxation rate constants, as discussed in refs. [283; 284].

3.3.4 MD modelling

Four MD trajectories have been analyzed to glean information on
phenylalanine dynamics: those of MPD-ub (2 µs), cubic-PEG-ub (2 µs) and
rod-PEG-ub (2 µs) crystals, as well as ubiquitin in solution (8 µs). For example,
the MPD-ub trajectory is based on crystallographic structure 3ONS [285] and
models the crystalline supercell that is comprised of 4 unit cells. In total, the
simulation box contains 24 ubiquitin molecules and 8,772 SPC/E [286] water
molecules. The dimensions of the box were rescaled by a factor 1.016 to reflect
the expansion of the crystal at room temperature. For cubic-PEG-ub, the
simulated box contains one unit cell, comprising 48 ubiquitin molecules, and for
rod-PEG-ub two unit cells, containing the total of 24 ubiquitin molecules in total.

As standard for protein crystal simulations [287], the periodicity of the
crystalline lattice is modeled by means of periodic boundary conditions applied
to the faces of the simulation box. All crystal trajectories have been recorded in
Amber 16 program [288] using ff14SB force field [273]; the solution trajectory
was recorded in Amber 11 [289] using ff99SB force field [290; 291]. Other details
of the MD setup can be found in our previous publications [244; 249]. MD
data have been processed using python library pyxmolpp2 written in-house
(available from https://github.com/bionmr"~spbu/pyxmolpp2). In particular,
this library offers facilities to extract dihedral angles and calculate SASA.

To calculate the chemical shifts, we have used the crystallographic
structures 3ONS [285], 3N30 [292] and 3EHV [293] and built the respective
crystal lattices. From these lattices we carved out the fragments representing a
Ub chain of interest together with the proximal chains. These fragments were
subsequently fed into the chemical shift predictor SHIFTX2 [263] to predict
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the phenylalanine side-chain 1Hε,13Cε chemical shifts. The obtained shifts were
averaged over the ε1, ε2 pairs of atoms. In addition, we have also used the
high-accuracy NMR structure 1D3Z to similarly predict the chemical shifts in
solution.

To calculate the number of flips in the MD simulations, we have employed
the following scheme. We defined the flip as the transition between the
two states, χ2=[60÷180◦] and χ2=[240÷360◦] (cf. Figure 3.5). The very rare
appearances of the rings in between of these two corridors have been ignored.
In this manner we have counted all Phe4 flips observed in all of the crystal and
solution simulations and similarly counted all Phe45 flips. These calculations
indicate that the flip rate of Phe45 is, on average, 47 times slower than the flip
rate of Phe4 in our MD simulations.

3.4 Discussion

We have shown that a selective isotope labeling scheme with
proton-detected MAS NMR provide insights into phenylalanine dynamics
in ubiquitin crystals. The resolution in the 1H dimension allowed us to detect
two distinct environments of Phe4 in the two chains in the asymmetric unit
cell. Specifically, stacking of Phe4 rings between two neighboring molecules
leads to an upfield proton shift, thus giving rise to a distinct signal for one of
the two chains in cubic-PEG-ub. In rod-PEG-ub, which is composed of three
non-equivalent chains, only one peak is seen because Phe4 points into the solvent
in all chains. Phe45, unobserved in all three crystals, is presumably broadened
beyond detection by the slow flips, as suggested by MD simulations. Using
the experimentally determined time scale of ca. 10-20 ns for the flips of Phe4
(Figure 3.4 (E)) and the MD-derived factor by which Phe45 is slower than Phe4,
ca. 50, we estimate that Phe45 ring flips occur on a time scale of about 1 µs.

We have calculated proton transverse relaxation rate R1ρ (using a 4-spin
system, see section 3.5 for details), and carbon R1ρ as a function of the time
scale of dynamics, to estimate how rapidly the spin magnetization would decay
if ring flips occur on such long time scales. These data (Figure 3.4 (E, G)) show
that the coherence life times under a spin lock are a fraction of millisecond.
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Such a rapid decay means that the signal is expected to be very broad, and
during the coherence transfer steps in an hCH experiment it should die off
before detection. In a simple proton single-pulse excitation 1D spectrum, the
aromatic signals overlap with the amide signals, making it impossible to detect
Phe45. Deuterating fully all amide sites, i.e. using 100 % deuterated buffer, is
not possible as even the precipitation agent, MPD, brings in about 20 % 1H
into the solvent.

It is noteworthy that Phe45 has been detected in one MAS NMR study
of MPD-ub, although at lower temperature (273 K) and using carbon detected
experiments [262]. While we can only speculate about the reasons, a possibility is
that Phe45 in MPD-ub has ring flips that are much slower than in other crystals,
e.g. in hundreds of µs. This conjecture finds some support in our MD simulations
of MPD-ub crystal, where Phe45 shows only one single flip (see Figure 3.5 (B)).
If so, then lowering the temperature to 273 K may further slow down Phe45 flips,
bringing them to millisecond territory [294]. That would create the conditions
for Phe45 signal to become observable again, cf. Figure 3.4 (E, G). In this
connection it should be mentioned that under the conditions of fast MAS used
in our study, the lowest temperature that we could achieve was ca. 15-20 ◦C,
and we did not observe the Phe45 peak in these trial experiments (not shown).

Of note, the B factors of the δ and ε carbons that sense flips are
comparable for Phe4 and Phe45 in each of the crystals (see Figure 3.10). It
is of course not surprising that the strong differences that we find in NMR data
are not seen by X-ray crystallography: the difference between Phe4 and Phe45 is
the time scale of flips, and crystallography cannot see flips nor their time scale;
at cryogenic temperatures they are furthermore expected to be frozen out.

We sought to identify the origin of the large difference in ring-flip rates
between Phe4 and Phe45. Given that Phe4 and Phe45 are not buried in the
hydrophobic core, but are positioned on the outside of the ubiquitin molecule,
a parameter that likely has an influence is the solvent accessible surface area
(SASA). We reasoned that SASA should reflect the void (i.e. in this case
water-filled) volume available to the phenyl ring. Another factor that might
influence the flip rate is the arrangement of phenylalanine side chain relative to
the backbone, i.e. its rotameric state.

Figure 3.6 summarizes structural information and MD data on rotameric
states and SASA of the two phenylalanine residues in ubiquitin. The heat
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maps in this figure show that Phe4 and Phe45 populate two distinct rotameric
states, possibly offering an explanation for the observed differences in ring-flip
rate constants. To test this proposition, we looked at surface-exposed Phe
residues in MD trajectories of several unrelated proteins. In doing so, we
found phenylalanines that belong to the same rotameric state as Phe4 but do
not experience any flips, as well as other phenylalanines that belong to the
same rotameric state as Phe45 but undergo frequent flips (Figure 3.11). This
observation rules out the possibility that the rotameric states can explain the
differences in ring flips. Figure 3.6 also shows SASA distributions as obtained
from our MD simulations, as well as SASA values from solution and crystal
structures (in addition, SASA variations on per-molecule basis are illustrated
in Figure 3.12). No clear correlation is found between the SASA characteristics
and the observed ring-flip rates. Thus, we are led to conclude that the flip
rates are likely controlled by a mix of structure and dynamics factors, involving
phenylalanine residues and their immediate surroundings, that remain to be
fully identified.

Figure 3.6 –– Rotameric states and solvent-accessible surface areas for residues
(A) Phe 4 and (B) Phe45 from MD simulations and various structural data.
Respective crystal and solution species are identified on the left side of the
plot. First column: heat maps showing (χ1,χ2) probability density distribution
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for Phe4 side chain as obtained from our MD data. Shown with black crosses
are the values of χ1, χ2 according to solution NMR (1D3Z, 10 conformers)
or crystallographic (3ONS, 3N30, 3EHV) structures. In addition, canonical
phenylalanine rotamers according to ref. [295] are indicated with magenta stars
along with their respective frequencies of occurrence. The χ1 and χ2 range is
[0÷360◦], same as in Figure 3.5. Second column: histograms showing SASA
distributions for Phe4 residue as obtained from our MD data. Also shown are
Phe4 SASA values from the solution NMR and crystallographic structures (black
vertical lines). Third and fourth columns: the same data for ubiquitin residue

Phe45.

Interestingly, while a previous study has found overall rocking motion in
cubic-PEG-ub crystal, which leads to strong NERRD effects and overall higher
R1ρ relaxation rates, we do not find significantly different relaxation for the Phe
carbons of that particular crystal, and any NERRD effect seen therein is weak,
if not absent (Figure 3.4 (C)). It is possible that the effects of rocking motion
are masked in this case by ring flips.

Overall, our study reveals that for ubiquitin the crystal packing has little
effect on ring-flip dynamics: for the observed Phe4, the flip rate constants are
nearly the same, and in all crystals Phe45 appears to be broadened beyond
detection, which we ascribe to much slower flips. It will be interesting to probe
the effects of crystalline packing on ring flips of aromatic residues buried in
the hydrophobic protein core, where «breathing motions» are thought to be
required for ring flips. We expect that the said breathing motions are largely
insensitive to the soft restraining effect of crystal contacts. The methodology we
have presented here, which combines selective labeling and a suite of MAS NMR
experiments, is well suited to address this question.
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3.5 Supporting Information

3.5.1 Calculation of R1ρ relaxation

The 1H R1ρ relaxation can be described by a sum of heteronuclear
dipolar 1H-13C (R1ρHC), homonuclear dipolar 1H-1H (R1ρHH) and the 1H CSA
(R1ρCSA) contributions [296]:
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where, dHC and dHH are the hetero- and homonuclear dipolar couplings
given by d12 = −µ0

4π

γ1γ2ℏ
r312

with the vacuum permeability µ0, the gyromagnetic
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is the chemical shift anisotropy, ωe is the amplitude of the effective field, βeff
is the tilt angle of the effective field, ωr is the MAS frequency, and ωH and
ωC are the 1H and 13C Larmor frequencies, respectively. The spectral densities
J(ω) are defined as J(ω) =

2

5
(1 − S2)

τc
1 + (ωτc)2

, with the order parameter S
and the correlation time τc.

For the homonuclear dipolar relaxation of an Hε proton (Figure 3.4 (G)),
we considered a four-spin system inspired by the environment of Phe45 in the
current deuterated, selectively 1H,13C-labeled sample. This system contains the
Hε proton of interest, its directly bound Cε, another Hε proton and the closest
HN amide proton in the backbone (Thr66). The distances between the nuclei
are 1.09 Å for Cε-Hε, 4.3 Å for Hε-Hε and 3.0 Å for Cε-HN. In addition to the
dipolar couplings that result from these spin pairs, we have taken into account
the Hε CSA. The proton chemical shift anisotropy ∆δ was set to 9 ppm [297].
The relaxation rates were calculated assuming a magnetic field corresponding
to 600 MHz proton Larmor frequency, 44.053 kHz MAS, an effective field of
80 kHz and an effective tilt angle of 90°. The order parameters S were set to
0.661 for the heteronuclear 13Cε-1Hε relaxation, 1.0 for the homonuclear 1Hε-1Hε
relaxation and 0.5 for the homonuclear 1Hε-1HN relaxation [279].

3.5.2 Including the effect of motional modes other than ring flips

In addition to ring flips, 13Cε spin relaxation is also sensitive to other
motional modes, such as small-amplitude axial fluctuations involving χ1 and χ2.
To estimate the effect of these other modes on the outcome of our analyses,
Figure 3.4 (E), we have applied the following scheme. In MPD-ub trajectory,
we have identified 6 ubiquitin molecules where Phe4 ring does not experience
any flips. For these six sites, we have calculated the average 1Hε-13Cε dipolar
correlation function g(τ), shown as black curve in Figure 3.8. The curve has a
familiar shape, decaying toward the plateau value of 0.84; similar shapes are
found for backbone sites, where dynamics is also limited to small-amplitude
fluctuations [298]. As is generally the case, the decay of g(τ) has a multi-
exponential character [299]. Accordingly, the function can be fitted with a
combination of several exponentials in the spirit of the extended Lipari-Szabo
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model [300]. Here we have found that four exponential terms are necessary and
sufficient to fit g(τ). For the purpose of our analyses, we have assumed that
there are four independent motional modes characterized by their respective
order parameters S2

i and correlation times τi. We have further assumed that the
net correlation function is a product of the four mode-specific functions [301]:

gfit(τ) = ((1− S2
1)exp(−τ/τ1) + S2

1)× ((1− S2
2)exp(−τ/τ2) + S2

2)×
×((1− S2

3)exp(−τ/τ3) + S2
3)× ((1− S2

4)exp(−τ/τ4) + S2
4)

(3.4)

where g(τ) correlation function with the ansatz from Equation (3.4) is
illustrated in Figure 3.8 (dashed green curve in the plot). The obtained time
constants, τ1 = 0.98 ps, τ2 = 32 ps, τ3 = 0.59 ns, τ4 = 9.2 ns are different
by an order of magnitude, thus confirming the statistical independence of the
respective motional modes. The first time scale, τ1, is extremely short and, in
fact, determined by the time interval that is used to record protein coordinates
during the MD simulation. This time scale is clearly not relaxation-active and,
therefore, the expression for gfit(τ) can be simplified to:

gred(τ) = S2
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4)
(3.5)

Furthermore, the term S2
1 , which pertains to sub-picosecond vibrations

and librations, must be already factored into the interaction constants (dipolar
and CSA) used in the data analyses. Therefore, the relevant portion of the
correlation function is reduced to:
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Using this MD-derived correlation function, we now construct a more
general correlation function, which additionally accounts for the effect of ring
flips:
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3)×
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(3.7)
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In this expression, the flip order parameter is S2
flip = 0.437 [279], the

values of S2
2 , τ2, S2

3 , τ3 and S2
4 , τ4 are fixed according to the MD fitting results

(Figure 3.8), and τflip is the sole variable. One can notice that in our case
τ2 ≪ τ3 ≪ τ4,τflip, which permits the following simplification:
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Note that this simplification is valid only for our specific case, where the
time scales τ2, τ3 and (τ4, τflip) are separated by at least an order of magnitude,
see Figure 3.8 and Table 8.

Equations (3.8) - (3.10) have been used to re-interpret our experimental
results, arriving at Figure 3.9. Comparing this latter to Figure 3.4 (E) in the
main text, one can appreciate the significance of motional modes other than ring
flips and quantify the bias in determination of τflip.

Finally, note that MD-derived parameters of local dynamics are not always
accurate. Furthermore, different motional modes underlying the correlation
function may not be completely independent, but rather may prove to be
partially correlated. In addition, the relevant constants, e.g. rCH = 1.09 Å, are
also not very accurately known and are a subject of debate focusing on the effect
of vibrational averaging [302; 303]. Thus, the results in Figure 3.9 are, at best,
a semi-quantitative estimate.
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Figure 3.7 –– Chemical-shift predictions for 1Hε-13Cε spin pairs in Phe4 (colored
yellow) and Phe45 (colored cyan) using the program SHIFTX2. It appears that
SHIFTX2 correctly predicts the similarity of Phe45 chemical shifts in different
crystal forms and in solution. Furthermore, it correctly predicts the Phe4 shifts,
including the resonance from chain A in the cubic-PEG-ub crystal, which is
shifted due to the intermolecular stacking of Phe4 rings (see Fig 3.2 (C)).
However, SHIFTX2 apparently fails to accurately predict the absolute value
of Phe45 shifts as can be deduced from the experimental evidence, see Fig 3.2

(B).
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Figure 3.8 –– 1Hε-13Cε dipolar correlation function reflecting phenylalanine
motions other than ring flips. The data are from six Phe4 residues that
do not experience any flips in our MPD-ub simulation (see Figure 3.5 (A)).
The time correlation function P2(cos θ) (black curve) has been fitted using
the 4-exponential decay function parameterized in the spirit of model-free
model, Equation (3.4) (dashed green curve). The best-fit order parameters and
correlation times are listed in the inset. The effect of these non-flip modes on

our analyses of spin relaxation rates is illustrated in Figure 3.9.
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Figure 3.9 –– Investigation of the contributions of non-flip motions to the 13C
relaxation rate constants and their effect on the extracted ring-flip correlation
times. (A) Re-analysis of 13C R1ρ and 13C R1 data from the MPD-ub crystals,
which additionally accounts for non-flip motions as listed in Figure 3.8. We
used the experimentally observed relaxation rate constants to re-determine the
ring-flip time constant τflip. The two profiles in the plot are calculated using
Equations ((3.8), (3.10)), see section 3.5.2. (B) The original analysis of 13C
R1ρ and 13C R1 data from the MPD-ub crystals, limited to ring-flip dynamics
(reproduced from Figure 3.4 (E)). Comparing the results in panels (A) and (B)
suggests that taking into consideration non-flip dynamics causes only relatively

small change in the determined ring-flip rates.
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Figure 3.10 –– B factors from the crystal structures of MPD-ub (black, PDB
3ONS), cubic-PEG-ub (red, PDB 3N30) and rod-PEG-ub (blue, PDB 3EHV).
The left three panels show the Cα B factors, and the right panel shows those of
the two Cδ and Cε sites of the Phe rings. Note the large offset of the B factors
of cubic-PEG-ub, which we ascribe to overall rocking motion of the protein in

the crystal as investigated in ref. [249].
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Figure 3.11 –– Time traces of side-chain torsional angles χ1 and χ2 for
surface-exposed residues (A) Phe464 and (B) Phe377 from MD simulation of
receptor-binding domain from SARS-CoV-2 spike protein in complex with the
mini-protein LCB1 (PDB ID: 7JZU [304]). The 1.5-μs trajectory of this complex
was recorded in Amber ff14SB force field using TIP4P-Ew water. Residue Phe464
is in the same rotameric state as Phe4 in ubiquitin, m-85◦ according to Lovell
et al. [295]; it is also highly solvent-exposed as evidenced by SASA of 72 Å2

(calculated from the MD trajectory). However, unlike Phe4 in ubiquitin, residue
Phe464 shows no flips in our simulations, τdiv ⩾ 1500 ns. At the same time,
residue Phe377 is in the same rotameric state as Phe45 in ubiquitin, t80◦, and
solvated at about the same level as Phe45, with SASA of 57 Å2. Yet, unlike
Phe45 in ubiquitin, residue Phe377 engages in frequent flips, τdiv = 10 ns. These
two examples demonstrate that the rotameric state of phenylalanine side chain

is not a unique determinant of the flip rate.
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Figure 3.12 –– The solvent-accessible surface areas (SASA) of the two
phenylalanine residues averaged over 2-μs MD simulations of the three
investigated ubiquitin crystals and 8-μs MD simulation of ubiquitin in solution.
Of note, the SASA values for Phe4 and Phe45 do not show any significant
correlation with the flip rates for these two residues (see Table 8). The
color coding is the same as elsewhere: black (MPD-ub), red (cubic-PEG-ub),
blue (rod-PEG-ub) and magenta (solution form). The MPD-ub simulation
box contains 24 ubiquitin molecules that are all classified as chain A. The
cubic-PEG-ub simulation box contains 48 ubiquitin molecules equally divided
between chain A (molecules 1-24) and chain B (molecules 25-48). The
rod-PEG-ub simulation box contains 24 ubiqutin molecules equally divided
between chain A (molecules 1-8), chain B (molecules 9-16) and chain C

(molecules 17-24).
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Table 8 –– Measured 13Cε R1 and R1ρ rate constants for Phe4 in different crystal
forms of ubiquitin and the corresponding calculated correlation times τ. The R1ρ

rate constants are from the measurements at 30 kHz spin lock.
Crystal R1 [s−1] τR1

[ns] R1ρ [s−1] τR1ρ [ns]
MPD-ub 0.33 ± 0.01 18.7 +1.4

−0.2 56.5 ± 4.1 16.3 +1.2
−2.2

cubic-PEG-ub, peak (#1) 0.47 ± 0.05 13.2 +2.0
−0.9 53.5 ± 5.1 15.2 +1.1

−2.0

cubic-PEG-ub, peak (#2) 0.61 ± 0.05 10.7 +0.8
−0.8 65.8 ± 6.2 18.7 +1.4

−2.5

rod-PEG-ub 0.55 ± 0.03 11.5 +0.9
−0.8 32.5 ± 0.7 10.0 +0.1

−0.2

Table 9 –– The characteristic times of Phe flips in ubiqutin according to MD
simulations. The time τdiv is the length of the trajectory divided by the number
of flips. The time τcorr is the flip correlation time, which has been calculated
along the lines of Redfield theory treatment. Specifically, we have extracted
the time points of all Phe flips from a given MD trajectory and constructed
a pseudo-trajectory where dipolar vector (e.g. Hε-Cε) changes its orientation
by 120◦ with each flip. The obtained pseudo-trajectory reproduces Phe ring
flips, while eliminating other motional modes such as fast axial fluctuations.
The pseudo-trajectory was used to compute the correlation function P2(cos(θ)),
which was subsequently fitted with g(τ) = S2 + (1 − S2)exp(−τ/τcorr), where
the order parameter is S2 = 0.437, according to the relevant 2-site jump model
[279].

Phe4 Phe45*
τdiv (ns) τcorr (ns) τdiv (ns) τcorr (ns)

solution 98 66 4000 -
MPD-ub 906 762 48000 -

cubic-PEG-ub chain A 215 170 4000 -
cubic-PEG-ub chain B 118 174 >48000 -
rod-PEG-ub chain A 236 217 4000 -
rod-PEG-ub chain B 140 242 >16000 -
rod-PEG-ub chain C 334 245 8000 -
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Conclusion

In the last thirty years life scientists came to recognize that disordered
protein sequences play a major role in cell activity in both normal and
pathological states. The function of disordered proteins is typically effected
through their interactions with partner proteins. The main scenario of such
interactions involves the so-called “folding upon binding” mechanism. This
mechanism assumes that disordered proteins acquire structure when binding to
their structured targets; in this case, the target serves as a template to facilitate
the folding of the initially disordered chain and to stabilize the formed structure.
However, the repertoire of different binding modes involving disordered proteins
is not limited to folding upon binding. For example, the protein ligand may
partially retain its disordered character upon binding to its target, thereby
forming a «fuzzy complex». Furthermore, a number of cases have been reported
where two disordered proteins remain structureless after forming a tight complex.
In our recent work, we have proposed a general classification for different binding
modes involving disordered proteins [305].

Playing devil’s advocate, one may ask a number of critical questions:
what is the significance of a disordered protein per se so long as its function
is accomplished through ordering upon binding? Should not we assume that
disordered protein is merely a random polymer coil and focus instead on
characterization of the fully structured complex? To answer these questions,
recall that disordered proteins possess certain structural propensities, which are
most clearly manifested in a form of residual structure (e.g. some regions in the
disordered chain often have a tendency to form short-lived α-helices). Usually it
is such elements of residual structure that enable the binding of the disordered
protein to its structured target; in this case, it can be said that the binding occurs
according to the “lock and key” model as opposed to the “induced fit” model [306].
Consequently, the presence of the elements of residual structure in the disordered
protein has a direct effect on the binding parameters (kon, Kd). In turn, even
small changes in kon and Kd can have a significant influence on cell activities
provided that the key signaling cascades are affected. Hence, it is the residual
structure that deserves thorough investigation; in other words, we are primarily
interested in what distinguishes the disordered protein from a random coil.



140

It is evident that standard methods of structure modeling are ill-suited
for disordered proteins. As an obvious alternative, molecular dynamics models
(i.e. MD trajectories) can be used to represent IDPs. Yet this approach faces
a number of hurdles. As it happens, MD models are usually not very accurate.
It is known that during the course of long MD simulations protein molecules
tend to experience the effect of structural drift; the implication is that MD force
fields in most cases are unable to reproduce the global free-energy minimum
corresponding to the experimentally determined protein structure [307]. For
disordered proteins, the situation is exacerbated since there is not even a local
minimum that could stabilize the simulated structure; this situation promotes
an extensive structural drift. One should also bear in mind that MD force fields
have been historically developed to model globular proteins. In practice, using
such traditional force fields to model IDPs lead to some distinctive biases –
e.g. an extended protein can be transformed into an exceedingly dense globule
during the course of the simulation [18].

Thus, before using MD simulations to model disordered proteins one
needs to address the deficiencies of the existing force fields. Solving this
problem requires an extensive validation of the MD models using the relevant
experimental data. This kind of strategy is actively pursued by a number
of research groups, but their efforts remain rather disjointed. The tests are
conducted on a host of proteins and peptides using different force fields in
conjunction with multiple water models. Furthermore, the experimental datasets
employed in these tests are usually very limited in scope and vary from one
study to another. At the same time, the MD-based calculations of measurable
parameters are often carried out using simplified or even crude formulas, which
largely negates the value of comparative analyses. As a result, there is currently
no consensus protocol for MD modeling of the partially or fully disordered
proteins, and the conclusions from many validation studies are often at odds
with each other.

In our opinion, to achieve a progress in this area the scientific community
should focus on a few select model systems. One of them can be the peptide N-
H4 that has been discussed in the chapter 1 of this dissertation. For each of the
selected systems, an extensive set of experimental data should be collected and
then used to systematically test different force fields (including water models).
The results of these tests should be used to identify those force fields (water
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models) that are best suited for modeling of disordered proteins and, ultimately,
to develop the next-generation of force fields. Such systematic studies can
greatly benefit from multiple research groups joining forces to explore a range of
modeling options. It is worth mentioning that the author of this dissertation has
an experience of organizing such an international research consortium, aiming to
investigate the effect of posttranslational modifications on histone tail dynamics
(the study is currently ongoing and is not covered in this text).

Regarding the quality of the MD models, there is room for improvement
of the existing conventional force fields. Work to optimize the parameters of
various force fields is being done in a number of research groups, marked with
some considerable successes [308]. Yet, sooner or later this line of development
will reach its limit, thus prompting the research community to turn to more
elaborate and complex modeling algorithms. This transition would require a
significant increase in computational power; however, the ongoing progress in
computing technologies can (at least in part) satisfy these needs. As an example
of such more sophisticated approach to MD modeling one can cite the use
of polarizable force fields. It should be mentioned, though, that the use of
polarizable force fields has not so far led to any notable breakthroughs in the
modeling of biomolecular systems.

In this connection, one should bear in mind that applications of
molecular dynamics to conformationally disordered systems call for ultra-
long MD simulations, which are necessary to adequately sample the immense
conformational diversity of such systems. The need for long trajectories is
especially pressing when the goal is to use the MD data for calculation of
paramagnetic relaxation rates. Indeed, as discussed in chapter 2 of this thesis,
the calculations of PREs are extremely demanding in terms of convergence.
In many cases, the problem of convergence can be mitigated by using the
specialized MD modeling schemes. For example, the computational scheme
known as metadynamics can be very useful when modeling side-chain dynamics
in globular proteins, as investigated in chapter 3.

Finally, it should be noted that further progress in this area should
involve more diverse and rich molecular context. For instance, this includes
posttranslational modifications of histone tails, which have already been
mentioned above. Along these lines one could also simulate molecular assemblies
with increased number of components. For example, as a part of the nucleosome
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project we have obtained some preliminary results for the MD model of
crystalline tetranucleosome, offering some insight into the role of histone tails in
chromatin packing. Yet another example of our ongoing research in this area is
MD modeling of the interaction between the pioneer transcription factor Cfb1
and the nucleosome core particle, where the flexible tail of histone H3 serves
as a point of contact for Cfb1.

Perhaps, the most striking example of in silico studies in this area is the
computer-assisted search for therapeutic ligands to target disordered peptide
chains. Many attempts to develop small-molecule ligands of IDPs have met
with only limited success, even though some promising results have been
reported [309]. It can be assumed that the very nature of disordered proteins
is not conducive to small-molecule binding (in contrast to structured proteins,
where small-molecule ligands are common). At the same time, it is typical of
IDPs to bind structured proteins that act as their physiological targets. This
opens an avenue for development of de novo proteins that are capable of engaging
IDPs. The first demonstration of this new approach has been reported by the
research team led by D. Baker in the summer of 2024 [310]. It is symbolic that
on the day when these lines are written the Nobel Prize has been awarded to D.
Baker for his fundamental contributions to the field of protein engineering. It can
be anticipated that computer methods to design protein ligands of disordered
protein targets should become one of the powerful instruments in healthcare
technology of the future. The development of accurate IDP models and their
validation using suitable experimental data, as described in this dissertation
study, are the integral part of the efforts in this direction.
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Acronyms

BBI broadband inverse probe
BRET bioluminescence resonance energy transfer
CSA chemical shift anisotropy
DNA deoxyribonucleic acid
EDTA ethylenediaminetetraacetic acid
ESR electron spin resonance
FRET Förster energy resonance transfer
IDPs Intrinsically disordered proteins
IDPR Intrinsically disordered regions
HSQC Heteronuclear Single Quantum Coherence
HMR hydrogen mass repartition scheme
MAS Magic Angle Spinning
MD Molecular dynamics
MSD mean square deviation
NCP nucleosome core particle
N-H4 peptide SGRGKGGKGLGKGGAKRHRKVLRDN
NOE nuclear Overhauser effect
NPT thermodynamic ensemble with the constant number of particles,

pressure and temperature
NVE thermodynamic ensemble with the constant number of particles,

volume and energy
OPC optimal point charges
PDB Protein Data Bank
PFG Pulsed Field Gradient
PRE Paramagnetic Relaxation Enhancement
RMSD root mean square deviation
SASA solvent-accessible surface area
SAXS small-angle X-ray scattering
TIP3P transferable intermolecular potential, 3 point
TIP4P-Ew transferable intermolecular potential, 4 point, Ewald
TIP4P-D transferable intermolecular potential, 4 point, dispersion
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