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Introduction

Research Topic Relevance

Network games are a rather young and intensively developing branch of math-
ematical game theory. A distinctive feature of network games is the assumption
that the payoffs each player depend on the structure of interactions of all players.
The interaction of players is usually illustrated as a directed or undirected graph
with is vertices being identified with players and each edge (undirected interaction)
or arc (directed communication) characterizing the interaction, i.e. the influence
of the communications on the players connected by it. From a practical perspective,
the specifics of network interaction offer a new opportunity to mathematically in-
vestigate seemingly ambiguous relations between potential parties to conflict. Thus,
for example, there are numerous situations when competing parties can conclude
a temporary "truce" without uniting into a coalition — joint research sponsored
by competing entities, mutual support of opposing parties, etc. In this respect,
it is of great interest to thesis such manifestations, firstly, for their feasibility and con-
ditions of occurrence, secondly, for their duration and dynamics, where the mani-
festations under consideration can be both short-term and long-term, and thirdly,
for the optimal behavior of players at a certain structure of network interaction.
Thus, we can conclude that dynamic models of competition with network interac-
tion allow us to explore the peculiarities of the influence of players on each other
in terms of their individual relationships.

The network interaction of competing players, including but not limited to, can
describe their interaction and feature an exogenous or endogenous nature of the for-
mation of network interactions — respectively, be defined as an external parameter
in a game (games on networks), or be part of the strategic behavior of players who
independently form network communications among themselves in the game process
under a common competitive environment.

The analysis of the exogenous formation of the network interaction between
players in dynamics allows us to resolve multiple crucial questions, primarily — from
the conceptual point of view of the dynamic game theory, for instance: how does
the network interaction (network structure and interaction effects — weights char-

acterizing the strength of influence) affect the players’ payoffs and their equilibrium



behavior and, if the network interaction affects the players’ behavior and the current
state of some controlled object, what would it be in equilibrium? The latter issue
originates from the optimal control theory, whereunder the stable development of a
controlled system requires that the vector describing its states be within the bound-
aries of some desired region. Thus, the stable development of the system can be
achieved by selecting an appropriate network structure [18, 34, 80]. More generally,
one can raise the question of identifying for such network structures that would fulfill
the desired criterion (where a certain system state or duration of effect would have
been achieved — the problem of rapidity), which has become one of the first subject
areas in the application of non-cooperative network games in various controllable
systems [§].

The analysis of endogenous formation of dynamic network interaction between
players can raise the issues of feasibility and conditions of network interaction, dura-
tion and sustainability of network interactions, which currently seems to be the most
relevant issues of endogenous network interaction. The relevance of the research of
these aspects is determined by their being in practical demand, which allows us
to successfully apply network games in negotiation processes, joint investments in
R&D, reputation management of network participants and other tasks where the
network interaction elements are particularly important for the players.

The conceptual features of players’ interaction that can be studied using net-
work games allow us to suggest that the methodology may be applicable to all kinds
of networks and systems, which have agents with divergent or non-common interests.
Transportation, fuel and energy networks, interaction and other types of networks

can be referred to as examples of such networks.
Literature review

One of the first research papers devoted to competitive processes, that men-
tioned the game theory literature is considered to be [52, 59|, that analyze the
demand and price of goods in a competitive market. Further studies [35, 78, 88|,
which presented mathematical aspects and applications of game theory, gave rise
to the development of the relevant theory as a powerful tool to analyze competi-
tive behavior. Currently, the research on the players’ competitive behavior is both

relevant and very productive, especially taking into account the aspects of the play-



ers’ network interaction and network behavior [16, 17, 40, 68]. It is worth noting
that the strategic nature of network interaction in a static setting has been inves-
tigated in such studies as [48, 54, 63, 70], and the same in a dynamic setting — in
|45, 61, 62, 67, 69, 81, 82|. A detailed analysis of current trends and directions in
the research on players’ network interaction can be found in reviews [16, 36, 62|.

Despite the fact that the literature devoted to the research on competitive
behavior presents various models of oligopoly with production factor markets, for
instance, in studies [5, 6, 19, 75, 79, 84|, according to a fair observation made
in [25], the literature has so far covered production networks insufficiently. That
being said, the analysis of scientific publications has shown that although Cournot’s
models have become classical examples of competition in mathematical game the-
ory [23, 24, 31, 38, 41|, the analysis of competition models based on Cournot’s
assumptions in various settings remains relevant [1, 9, 11, 64, 65, 83, 86|. It is
worth noting that structural interaction and network structure management in com-
petition models directly by the game participants have not been discussed to the
necessary extent, although some results have already been made available [49, 63].
It is relevant to continue thesising such aspects since network structures allow us
to effectively describe competitive interaction, thus providing the opportunity of
expanding the class of solvable game problems due to complementarity and substi-
tutability in the players’ behavior [36, 62, 67, 69], as well as the specificity of their
mutual influence depending on the presence of network communications. The nature
of players’ structural interaction is discussed with a sufficient degree of detail and
meaningfulness in studies |71, 87, 90|, which describe the necessity for the game par-
ticipants to form structural interactions with each other. Concurrently, the specifics
of network interaction expressed via network influence coefficients, as shown in [91],
represents a separate focus for research.

It should be noted, that a significant part of network game studies is often
devoted to games with externalities, predominantly arising in the consumer con-
text only [55, 56, 58|. Along with this, the players’ efforts determined by the
complementarity of their actions are often considered as investment efforts and
mainly directed towards some ephemeral concepts — knowledge, opinions, impres-
sions, etc. [46, 73, 76, 77, 85]. Recently, the area of application of network games

devoted to the optimization of systems with a network structure, in which players



need to share the publicly available resources, has also been very popular; a detailed
description of the problems of this area of application can be found, for instance, in
studies [36, 37, 57|.

Numerous researchers have chosen network games as the focus of their stud-
ies [2, 7, 12, 25, 42, 43, 44]. Such popularity is primarily explained by the value of
applying theoretical results to actually existing network structures, for instance, to
organized groups of people, market or political relations, and even social or wire-
less networks [13, 50|, etc. However, the authors of the cited studies have noted
that there are quite a lot of issues with insufficient coverage at the moment, which
still remain largely open in theory, highlighting the conditions, criteria and prin-
ciples of network interaction between competing players as the most relevant and
insufficiently covered aspects.

To investigate dynamic competition models with network interaction, this the-
sis will adress and analyze the Nash equilibrium. Despite the fact that the Nash
equilibrium has certain drawbacks, which are described in detail in [21], with its
intrinsic merits it embodies the fundamental concept of solving non-zero-sum games
— according to |78, 88]. Therefore, we can conclude that the Nash equilibrium,
although well covered, remains relevant in the literature various on competition

models under conditions of simultaneous and independent behavior of players.
Research Purpose and Objectives

The purpose of the thesis is to find and analyze the equilibrium behavior of
competing firms under conditions of their dynamic network interaction. Dynamic
competition models with network interaction are considered as the object of the
thesis, and the equilibrium behavior of firms the subject of the thesis taking into
account the structure of their network interaction.

The purpose is achieved by accomplishing the following tasks:

1. Describe the dynamic equilibrium behavior of firms under exogenous formation
of network interaction. For this purpose, it is necessary to build an economic
and mathematical model of dynamic competition of firms, to find and charac-
terize the Nash equilibrium for this model in two classes of firms’ strategies —

open-loop and feedback.



2. Investigate the effect of network parameters on the Nash equilibrium in the
model with exogenously formed interaction. It is necessary to analyze the
effect of the network structure and network coefficients, which characterize
the effect obtained by firms from other firms’ investments on their strategic
behavior, the dynamics of their competitiveness and profit, as well as on the

market price of goods.

3. Describe the firms’ dynamic equilibrium behavior under endogenous formation
of network interaction. For this purpose, the firms’ feasible behavior should
be extended by the network component, i.e. the firms’ capability of forming
network interactions with competitors. Analyze the variants of the firms’
network interaction formation rule. Find the Nash equilibria for two variants of
the firms’ network interaction — with the formation of a constant and variable

network structure. Benchmark the obtained results and draw conclusions.

4. Determine the conditions for the formation of network interactions between
firms in the Nash equilibrium. Determine and analyze the conditions under
which firms are interested in network interaction — for variants of formation

of unilateral and bilateral network communications.

5. Adapt the models under consideration to the practical interaction of compet-
ing firms in the market. Suggest and justify assumptions in the models under
consideration to adapt them to the real conditions of economic interaction
between firms, including the choice of business partners and duration of inter-
action in the Nash equilibrium in each of the variants of the firms’ network

interaction under consideration.
Scientific Novelty

The dynamic investment and network modification in the Cournot oligopoly
with exogenously formed network interaction has been constructed. For the model
built, the conditions ensuring the uniqueness of open-loop and feedback Nash equi-
libria have been found, for the equilibria obtained a benchmarking has been con-
ducted. The model has investigated the effect of network parameters characterizing

the firms’ mutual influence, as well as the influence of the network structure on the



equilibrium behavior of firms, their profits and the dynamics of competitiveness.
Consideration has been given to the unit price in the market as an external effect
(consumer externalities) arising from the equilibrium behavior of competing firms.

Based on dynamic investment and network modification in the Cournot oligopoly
with exogenously formed network interaction, the variant of endogenously formed
network interaction has been discussed — on the models where firms can enter into
short-term or long-term network interaction. The network interaction duration-de-
pendent prospects have been benchmarked, while long-term interaction has been
investigated in the settings with unique-time and regular network interaction costs.
The open-loop Nash equilibrium has been found for each model, and the pairwise
network interaction condition has also been determined for two variants of network
communications — unilateral and bilateral.

The thesis has demonstrated that the conceptual approach to dynamic models
with endogenous network interaction can be applied to the problems of the economic
sector: the conditions for selecting business partners under various variants of firms’
investment behavior — constant and variable investment volumes, which can be in-
terpreted as cautious and risky investment behavior in an unstable market. The
structural generality of all conditions of interaction in the open-loop Nash equilib-
rium has been shown, the comparison of considered investment behavior variants
under common input parameters has been exemplified.

All the main results were obtained by the author personally and are new.
Theoretical and Practical Significance of Research

The dynamic competition models with network interaction investigated herein
complement the existing models of game-theoretic analysis, which have not been
considered so far in terms of structural interaction of players. Despite the fact
that the thesis has investigated the market competition models, we would like to
note that the results obtained are of universal applicable nature — with regard to
game modeling of competitive processes that occur beyond the economy. Indeed,
given the specifics of the subject area of the problem under consideration, the thesis
results can be relevantly applied to such processes as the competition for the leading
position of a party (political science), the formation of public opinion (sociology and

marketing), the distribution of server resources capabilities (computing systems), the
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construction and operation of roads (transportation systems and logistics), as well as
to various tasks of ecology, psychology, jurisprudence, sociology and other sciences,
where competing parties or individuals with their own goals and individual influence
collide. Thus, this thesis contributes to the development of the network game theory
due to such game components as dynamics and multicomponent behavior of players
in their network structural interaction.

In the exogenous formation of network interaction, the game process partici-
pants can implement their equilibrium behavior depending on the information struc-
ture of the model. The thesis results allow, through the choice of network structures
and coefficients of players’ exogenous interaction, to adjust their competitiveness,
the state of the controlled system, as well as the external factors arising from the dy-
namic process of competition. This can be effectively applied, for instance, to state
antimonopoly programs, as well as in other programs for stabilization, maintenance
and development of the market economy.

For dynamic processes of competition with endogenously formed network in-
teraction, the results have been obtained that allow players to implement their
equilibrium behavior, relying on the minimum amount of information required to
make decisions (time and costs of network interaction), while choosing their network
environment (direct neighbors within the network), relying on the formal condition
of feasibility of direct network interaction — regardless of the interaction variant,
which can either be unilateral or bilateral. This allows building «stable» network
structures — secured against existing network interactions being broken or new ones
being established, thus avoiding waste of funds — as noted in [58], as well as influ-
encing their own competitiveness and winning in the game process.

The thesis results also allow us comparing not only the prospects of the short-
-term or long-term network interaction variants, but also network interaction in
combinations with the specifics of other components of strategic behavior — with
their variable or constant value. Thus, the network interaction conditions derived
from the thesis will hopefully compensate to some extent for the currently lacking
coverage of the matters of feasibility, duration and conditions of interaction in a
competitive environment.

Based on the above, we can conclude that the thesis has attempted not only

to methodologically supplement the network game theory by covering some insuf-
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ficiently studied issues of the theory, but also to conceptually suggest a universal
approach that can be applied in economic analysis and management tasks for ef-
fective planning of firm’s activities, as well as, on a larger scale — in the tasks of
stabilization, maintenance, management and development of the market economy.

The thesis results have been used in the research project under the fellowship
of the Russian Science Foundation No. 22-11-00051 "Development of Methods for
Management of Multi-Agent Systems under Conflict Conditions".

Structure of the Thesis and the Main Scientific Results

The thesis structure includes an introduction, three Chapters divided into sec-
tions and subsections, a description of the main results and conclusions — in each
chapter, conclusion and a list of references consisting of 91 sources. The thesis
consists of 116 pages of typewritten text and includes 25 Tables and 1 Figure.

Chapter 1 describes the construction and analysis of a dynamic competition
model with double-component (production and investment) behavior of firms with
exogenous formation of their network interaction (Section 1.1). Two classes of behav-
ior of firms have been considered — according to the open-loop information structure
and feedback information structure. For each class of firms’ strategies, a unique Nash
equilibrium has been obtained (Section 1.2). The results have been benchmarked
in the Nash equilibrium for each of the considered classes of firms’ strategies by
means of numerical simulations (Section 1.3). Section 1.4 separately investigates
the function and significance of network elements that characterize the specifics of
firms’ mutual influence — through unit costs. It also considers the network structure
influence in the Nash equilibrium on the firms’ competitiveness dynamics and the
externalities arising from competition — in particular, the unit price in a common
competitive market. The Chapter is summarized with a presentation of the main
results and conclusions.

Chapter 2 continues to investigate the dynamic competition model from Chap-
ter 1, but with its extension: now firms implement behaviors that are divided into
network, production, and investment behaviors. We have initially discussed the vari-
ants of endogenous interaction between firms — unilateral interactions represented
by arcs and bilateral communications represented by edges in network structures,

described the formal component of the endogenous interaction variants, and, respec-
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tively, specified some components of the model under consideration (Section 2.1).
Section 2.2 seeks for the open-loop Nash equilibrium under bilateral interaction of
firms. The thesis continues with a search for the open-loop Nash equilibrium for
models with constant network interaction between firms under two variations of net-
work communication costs (unique-time and variable), as well as the conditions of
network interaction between firms (Section 2.3). Section 2.4 shows how the results
obtained earlier can be applied to unilateral interaction of firms in network struc-
tures, and how the Nash equilibrium is modified. Section 2.5, through numerical
simulations, benchmarks the open-loop Nash equilibria for all models considered,
and evaluates the advantages and disadvantages of two variants of network interac-
tion durations — short-run (firms rearrange the network structure at each decision
point) and long-term (the model is implemented on the network built by firms at
the initial time point). The Chapter is summarized with a presentation of the main
results and conclusions.

Chapter 3 presents assumptions aimed at adapting the investigated models of
competition to real economic processes and demonstrates the application of the pre-
viously obtained results, both conceptual and methodological, to the real process of
interaction between firms. For this purpose, we introduce a set of special assump-
tions that firms adhere to in real conditions of competitive production and conduct
a benchmarking of short-term (Section 3.1) and long-term (Section 3.2) network
interaction in the Nash equilibrium under risky and cautious investment behavior of
firms — in Section 3.3. We also investigate a model in which firms implement unique-
time investments (Section 3.4). The Chapter is summarized with a presentation of

the main results and conclusions.
Research Methodology and Methods

This thesis has employed the tools which represent common research techniques
and approaches in applied mathematics: dynamic game theory (Nash equilibrium),
operations research (Bellman recurrence relations, Lagrange multiplier method),
optimal control theory (Pontryagin’s maximum principle), mathematical modeling,

benchmarking, numerical simulations in Wolfram Mathematica.
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Degree of Credibility and Evaluation of Results

The main results of this thesis have been discussed and reported at the following
scientific events: All-Russian Conference on Natural Sciences and Humanities with
International Participation "SPSU Science — 2022", St. Petersburg; Fifty-Second
(LII) Scientific and Educational-Methodological Conference of ITMO University,
Section "Mathematical Modeling", St. Petersburg; XII Congress of Young Scientists
of ITMO, Section "Artificial Intelligence and Behavioral Economics", St. Peters-
burg; 16th International Conference on Game Theory and Management (GTM2023),
St. Petersburg; 22nd International Conference on Mathematical Optimization The-
ory and Operations Research "MOTOR 2023", Ekaterinburg; Workshop on Dynamic
Games and Applications, Tashkent, Uzbekistan; All-Russian Conference on Natural
Sciences and Humanities with International Participation "SPSU Science — 2023",
St. Petersburg; Scientific Seminar of the Applied Mathematical Research Institute
under the Karelian Scientific Center of the Russian Academy of Sciences, Petroza-
vodsk; Scientific Seminar of the Department of Mathematical Game Theory and
Statistical Decisions of St. Petersburg State University, St. Petersburg.

The validity and credibility of the thesis research results is ensured by the
correctness of problem statements, proof points and conclusions, the rigor of mathe-
matical evidence and the receipt of positive feedback from members of the editorial

boards of scientific outlets where the main results were published.
Publications

The main thesis results have been published in three scientific papers [27, 28,
29|, included in the list of peer-reviewed scientific publications recommended by the
HAC (Higher Attestation Commission) of the Russian Federation and included in
the core of RSCI (Russian Science Citation Index), with the thesis [27] also indexed
in the Scopus and Web of Science international scientific databases. Received the

certificate of registration of the computer program [26] with registration number
RU 2023685627 have been obtained.
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Main scientific results

1. An network modification of the Cournot oligopoly is constructed, for which the
two-component Nash equilibrium behavior of firms with dynamic exogenous
network formation is obtained. The equilibrium is presented and character-
ized for a open-loop strategies. In addition, a feedback Nash equilibrium has

been obtained and the «proximitys of the two equilibria found has been es-
tablished [27].

2. The influence of the network structure and the associated coefficients of the
model on the behavior of firms in equilibrium, and how the structure of interac-
tion of firms affects changes in their unit costs, competitiveness in the market,

profits, as well as the price of a unit of goods in the market are analysed [27].

3. A feasible behavior of each firm is complemented by a component that char-
acterizes the attitude toward network interaction with its competitors and
is responsible for its network behavior. A functional structure of the Nash
equilibrium behavior of firms with dynamic endogenous network formation
obtained [28].

4. A Nash equilibrium is obtained for two types of network interaction — with
the formation of a constant and a variable network structure. At the same
time, the costs associated with the networking of firms are also considered in
two types — one-time and regular. A comparative analysis of the obtained

results is carried out [28].

5. Assumptions are proposed and justified that serve to adapt the studied game
theoretic models to the practical interaction of competing firms in the market.
The conditions for choosing business partners and options for the duration of
interaction between firms in the Nash equilibrium are considered. A compara-
tive analysis of the Nash equilibrium is given for two types of the investment
behavior of firms common in real conditions - risky (variable) and cautious

(constant), taking into account the duration of their interaction [29].

6. A functional expression of the equilibrium behavior of firms under their one-

time investment in their production is obtained. The relation between the
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changes of the upper limits of the allowable costs of network interaction and

the duration of the investments of the firms is shown [29].

7. For each model of endogenous network formation studied in the thesis, the
equilibrium network behavior of competitors are obtained, the fulfillment of
which makes firms interested in network interaction with their competitors.
At the same time, two types for the formation of network interaction are
considered, represented by undirected or directed links between firms. The
thesis notes that in network structures, which are formed when firms imple-
ment their equilibrium network behavior, it is unprofitable for any firm to
unilaterally break any of its existing connections, as well as to strive to create

a new one, for which the condition of equilibrium network behavior is not
fulfilled [28, 29].

Main results to be Defended

1. Open-loop and feedback Nash equilibria and their uniqueness in the dynamic

competition model with exogenously formed network interaction.

2. Open-loop Nash equilibria for dynamic competition models with endogenously

formed short-term or long-term network interaction.

3. Open-loop Nash equilibria for dynamic competition models under risky or cau-
tious investment behavior of firms with their endogenously formed short-term

or long-term interaction.

4. Conditions of Nash equilibrium network behavior under open-loop information
structure in dynamic competition models with endogenously formed network

interaction.
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Chapter 1.

Dynamic model with exogenous network formation

The dynamic competition model, which is the subject of this chapter, is based
on the classical Cournot! oligopoly model presented to the scientific community
in [59]. Since its appearance, the model has been subjected to various criticisms by
economists, however, having proved its suitability in modeling of economic processes,
and as noted in [4], Cournot oligopoly later became a paradigmatic economic and
mathematical model. Some of its formal provisions are summarized below.

Suppose N = {1,...,n},n > 2, is a finite set of players, which are firms that
produce homogeneous and indivisible goods. The produced goods are fully sold in
the common market. Each firm ¢ € N decides on the volume of goods to produce, i.e.
u; € U= [0,+00). Then 2?:1 u; is the total and non-negative volume of goods in
the market in the situation where u = (uq, ..., u,) € U". Suppose, that the market
demand @ is known and defined by a decreasing linear function: @ (P) =p—0-P,
where p,# € R, and P = P (u) is the unit price such that demand matches supply
of the goods available in the market: 2?21 uj = p — 0 -P. For simplicity, it is often
assumed that § = 1. The inverse demand function, reflecting the marginal value of a
unit of the goods at a given volume is P (u) = p— Z?:l u;, where p is the maximum
possible price of a unit (assumed to be fixed and constant). Fixed costs are most
often not included in the model, while unit costs ¢ € C = [0; p] are assumed to be

fixed and equal for all firms. The profit of each firm ¢ is determined by the value

Fi(u) = (p—c—Zuj) - Uy (1.1)

To maximize their profits, each firm pursues a strategy that enters in the Nash
equilibrium «N = (ull\l, e ,ug) € U" such that for each firm ¢ € A and any of its

admissible strategies u; € U the inequality

N N N N N N N N N
E(ul,,ul_lyu“ul_’_l,,un) <E<U1,,ul_1,ul ,ul_'_l,,un)

is true. For each firm ¢ € N it is easy to determine its strategy that enters in the

L Antoine Augustin Cournot (28 august 1801 — 30 march 1877, Paris) — French economist, philosopher and
mathematician, author of several economic and mathematical models that have become classic for game-theoretic

analysis.
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Nash equilibrium and is represented by the following volume?: ul¥ = (p—c)/(n+1),
where u) > 0 at p > c.

Apart from the presented provisions, the described model features multiple
assumptions known both from the thesis by A. O. Cournot and from other classical
scientific literature, e.g. [10, 31, 41, 46|, which will be adhered to.

In addition to the model discussed above, we will suppose that a firm is able
to influence the state of unit costs (hereinafter within the chapter referred to as the
costs) of all firms and discuss such influence in dynamics. We will assume that each
firm ¢ is capable of exerting an additional effect that affects the costs of other firms
by the nature of their networking with the firm ¢. We will proceed to the detailed
description and formalization of the mentioned capabilities of firms in the model

under consideration.

1.1. Description and formalization of dynamic investment and network

modification in the Cournot oligopoly

In addition to the classical Cournot model, consider oligopoly as a dynamic
game in discrete time with periods given by the set 7 = {0,1,...,7}, T > 2. In
real conditions, the unit costs of firms are dynamic. We will consider the costs of
firms i € N, denoted by ¢;(t) € C, at t € T as a value that tends to change over
time. By managing its costs, a firm can ensure that it increases the competitiveness
and profitability of its business or position. This seems to be a potentially important
application of dynamic game theory. Let the set ¢(t) = (¢y1(t), ..., c,(t))" denote the
state of firms’ costs at time ¢ € T for given initial costs ¢(0) = ¢y = (10, - - -, Cno)’,
where the symbol «’» here and in the future will denote the transposition operation.

The equation of the cost dynamics of firms is written in vector form as

c(t +1) = f(t,g(t), c(t), y1(t), ..., yn(t)), € TANA{T}.

The investment efforts of firm ¢ at time ¢, in monetary terms, are represented by v;(t)

which belongs to Y;, a subset of the non-negative real numbers. The value of the
Ei(t)
2
is the current value of a given parameter. The f(,-) is a continuously differentiable

expression “52y2(¢) determines the monetary value of the investments. Here, &;(t)

2 The solution is known as the Cournot-Nash equilibrium. It was first obtained by A. O. Cournot without

a conceptual justification of the equilibrium. Later, J. Nash determined the justification.
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function. Additionally, we will discuss the structure of the network interaction of
firms, denoted by g(t).

Have firms invest in their production technologies. The specifics of the impact
of one firm’s investment on others can be illustrated using a graph. To do this, we
identify a set of firms with vertices of a graph (N, g(t)), in which g(¢t) C N x N
— the set of connections represented by the edges of the graph, and define its
structure at time t € T\{7T'}. To simplify writing, the graph structure at time ¢
is denoted by g(t). When evaluating the relationship between the firms i,5 € N,
J # i, denoted by (i,7), we assume that (i,7) = (j,7) and (i,7) € g(¢) if and only
if ¢;;(t) = g;i(t) = 1, where g;;(t) and g;;(t) are elements of a binary adjacency
matrix for the network g(t¢) without self loops. Next, for convenience, we denote by
g ={g(t ) the sequence of network structures specified in the model.

For the ﬁrm i € N, the rule for changing its costs over time is defined by a

recurrent equation with a given initial condition
(t + 1 - 501 Z:uw t g t)a t e T\ {T}7 Cz(o) = Cio, (12)

where
ai(t)7 ] = i,
Bii () g () + 75 () (1 — g5 (1)), j #i.

In the future, in order to simplify the notation, where an explicit clarification of

paj (1, 8(1)) =

the dependence on the network g(t) is not necessary, we write j,;(t) instead of
pij(t. g(t)).

The parameter 6 > 1 characterizes the rate of change of a firm’s costs over time
due to the possible obsolescence of the production technologies it uses in the absence
of additional investments in their modernization. The parameter «;(t) > 0 reflects
the effect of the firm’s own investments ¢ at the current time, and 3;;(¢) > 0 and
7ij(t) = 0 — current effects of investments of neighboring firms in the network g(¢),
ie. from j € Ni(g(t)) :={r|(i,;r) € g(t)}, and also from firms j ¢ N;(g(t)) U {i}

that are not neighbors of firm ¢ in the network g(t).
u=(u(0),...,u(T" = 1)), u(t) = (w(l),...,u(t)),

y=0),....y(T=1)), yt)= () . ).
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The profit of firm ¢ at time ¢ € T \ {T'}, based on equation (1.1), is written as:

yi(t), (1.3)

Fi(t, ci(t),U(t), yz(t)) = (p — Z%(t)) w(t) — Ci(t)ui(t) _ Eiét)

as the difference between its current revenue, formed according to the classical
Cournot oligopoly model with a linear inverse demand function, and its current
costs, which include production costs and investments in production. At the termi-
nal period, the profit of firm ¢ is determined by the residual value of its production
according to the function ®;(T,¢;(T)) = n; — ne;(T), where n > 0 is the liquidity
ratio of production and n; > 0 is the maximum market value of production, addi-
tionally assuming 7; > np. Then the total profit of firm ¢ for all periods in the model
takes the form

T-1

Ji(c()? u, y) - Z ptFi(tv Ci@)? u(t)v yZ(t)) + pT(I)i(Tv Ci(T>)7 (1‘4)

where p € (0,1] is the factor rate common to all firms and constant over time.
In this setting, the dynamic model of competitive production with investment is a
linear-quadratic discrete-time game with an n-dimensional state variable and two-di-
mensional actions players. Note that the costs to firms of maintaining network con-
nections do not affect their behavior, since network interaction is exogenous and
not controlled by the players. For this reason, such costs are not considered in this
model.

Let us describe the behavior of firms in dynamics. At the initial period, with
the known network structure g(0) and initial costs ¢y, firms simultaneously and
independently choose their feasible behavior — pairs (u;(0), y;(0)), i € N, — each of
them decides how much output to produce and how much investment to implement
at the current time. This decision gives the firm i the profit F;(0, ¢;o, u(0), y;(0))
— according to (1.3). Furthermore, the costs of firm i change according to the
rule (1.2) and become equal to ¢;(1), i € N. At an intermediate nonterminal time
t € T\ {T'} with the known network structure g(¢), firms simultanecously and
independently choose their feasible behavior — for firm ¢ € N the current volume
of production and investment (u;(t),y;(t)), which will lead the firm ¢ to the profit
Fi(t,ci(t),u(t),y;(t)) and the next period cost ¢;(t + 1). At the moment ¢ = T, the
firm 4 receives the residual value determined by the function ®;(T,¢;(T)), i € N,
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and the total profit is calculated according to (1.4). After the described actions the
game ends.

In order to represent the dynamic nature of the interaction of firms in the
form of a game in a normal form, according to [47]|, we denote by s; a strategy of
firm ¢ € N, which prescribes to it an choice of feasible behavior depending on the
current information, and we denote the set of strategies of this firm by &;. Due to
the unambiguity of the choice of actions prescribed by the strategies, we define the
payoff function of the firm i as J;(s) = J;(co, u, y) for the set of strategies chosen by
the firms s = (s1,...,8,). Thus, the dynamic investment and network modification
in the Cournot oligopoly with the exogenous network formation can be represented

by a game in normal form:
Fex - <N7 {SZ}Z€N7 {\71}26/\/>

1.2. Nash equilibrium for two information structures

In the sections of game theoretic analysis devoted to competitive models,
the Nash equilibrium embodies the fundamental concept of solving non-zero-sum
games according to [78, 88]. In I'™*, a Nash equilibrium is set of strategies sN =

= (311\1’ o Sg) € [[ S;, where [[ S; =81 x... xS, — the Cartesian product of
JEN jEN
sets of firm strategies, and for any firm ¢ € A/ the condition is satisfied

N=arg max VACEDE

S

where the set of strategies (sljl | si) differs from s™ only in that the firm i uses s; € S;
instead of the strategy s¥;, that is (s, |s;) = (s, ..., S} 1, 85,801, ..Sh).

In order to find a Nash equilibrium in I'*, it is important to understand what
the information structure is, that is, the type and amount of information available
to firms to choose their strategies. In the current chapter, we consider two variants
of the information structure: open-loop and feedback, we denote corresponding
strategies by S?L and sFB| respectively, following [60, 89]. For each of the considered

variants of the information structure, the Nash equilibrium profiles are presented.



22

1.2.1. Open-loop Nash equilibrium

The open-loop information structure in I'* assumes the choice of actions by
the participants of the game, based on the knowledge of the current moment and the
initial state of the costs of all firms ¢y. A feasible strategy of a firm corresponding
to the described information structure is similarly called — open-loop, and should
prescribe to it feasible behavior, taking into account the current intermediate period
and the state of ¢y. More formally, our can define the open-loop strategy of the firm
i € N as arule sP%(¢,co) : T\ {T} = U; x Y;, which clearly matches the feasible
behavior of sP™(t,¢p) = (s°%) at any intermediate time and initial values of the
unit costs of firms (s§{™(¢, o), sQ=(t, co)) = (wi(t), yi(t)).

Next, we will introduce some notations for convenience: e € R" is a vector
consisting of units, e; € R" is a unit vector with 1 in position ¢, I is identics matrix
(n xn) and p;(t) = (p1i(t), ..., pei(t)) for i € N. These notations are used in
the following theorem, which characterizes the unique open-loop Nash equilibrium
in the model I'**. The thesis only describes interior Nash equilibria, which are those

where firms’ behavior is the interior point of the set of feasible actions.

Theorem 1.1. Let (;1(t) € R", {;5(t) € R satisfy the recurrence relations:

( — (n+1)e;
M Yt+ 1) (t+1) — e—(n - t+£T,
fa(t) = | (t+Dla(t+1) —p— = # (15)
0, t="T,
\
( _ p
S|, t+ )M t+1)m(t+1) +Lpt+1)| —pl——, t#T,
La(t) = [ (t+ DMt + Dm(t + 1) + Lio(t + 1)] —— 16)
L —p"n, t="T,

for all firm i € N, where matrices M(t) and vectors m(t) are set according to the

rules:

M(t) . Z aj(t_ 1):“](t_ 1) / (t) U m(t) _ Z aj<t_ 1)M3(t_1)€j (t)

o Plelt-1) = Plelt=1)

If the matrices M (t) invertible for all t # 0, then in model I, a set of strategies

OLN _ (S(l)LN OLN

s = sy §N) is the unique open-loop Nash equilibrium whose compo-
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nents are sP™N(t, ¢p) for thei € N, t € T\ {T} and have the form:

p+(e—(n+1e)c®N(t)

wOIN (¢, o) = — : (1.7)

LN _olt) -1 LN
e u¢@_:1%%®(ﬂ@+1m4 (t+ DO (@) +m(t + 1) + ot +1)),
(18)

OLN (t)

where the current equilibrium profit of cost ¢ is recursively found from equation

OWN(E) = ML) GEON(E— 1) +m(t), teT\{0}, CN0)=c. (1.9)

Proof. To determine the open-loop Nash equilibrium, we will use the Pontryagin

maximum principle [41, 47|, for which we will introduce the Hamiltonian function
for the firm ¢ € N and t € T\ {T'}:

il cft).ult). o). st + 1) = [ (o= ) = 3 w0 slt) — o2 0)]

jEN

-I-Zlb”t—l-l[écj ZMW (1 ]

jeEN reN

where 1;(t) = (¥i1(t), ... Win(t))" is vector of costate variables. According to [47] if
the strategy set sO*N(¢, ¢y) is a Nash equilibrium, then there exist non-zero costate
variables 9;(t), t € T \ {0}, i € A which satisfy the relations:

P —ci(t) = e pgiy S (o)

OLN(t CO) 5 ’
SOLN 2 jen it 4 Dpsi(t)
(t, o) = — ,

plei(t)
—p sON(t e) + O (t+ 1), j=i t£T,
_p 777 ,] — i) t = T7
Yij(t) = < -
oi(t + 1), j#it#T,
L0, jAi,t=T

ci(t+1) = dce(t) Z pi; (t OLN (t,co), t#T, ¢(0)=cp.
jEN
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From these relations we can immediately conclude that v;;(t) = 0 for all ¢ # j and

t € T. Considering this and some transformations, we conclude:

p—(n+1)c)+ 2 enc(t)
n+1

s (t, o) = , (1.10)

ai(t)vii(t + 1)
p'ei(t)
where the first expression matches (1.7). Due to the strict concavity of the Hamil-
tonian H;(t,-) over a set of variables (u;(t),y;(t)), which follows from the fact that

the minor determinants of the Hesse matrix are —2p' < 0 and 2g;(¢)p** > 0, we

s N(t,co) = — (1.11)

conclude that the maximum value of the function is given by is the only maximum
that satisfies the conditions (1.10) — (1.11).

We will search for costate variables in linear form 1y (t) = €;;(t)c(t) + Cia(t)
and show that £;1(f) and ¢;5(t) satisfy (1.5) — (1.6). Taking into account (1.8) and
the linear representation of the costate variables, the state equation can be written
as c(t +1) = MYt +1)(dc(t) + m(t + 1)), where t € T \ {T'}, which is the same
as (1.9). Then, taking into account (1.10) and (1.11), we get this:

¢ Pt (e — (n+ 1)e;)c(t)

n4+1 +0[0 (t+ 1)e(t + 1) + Lp(t +1)] =

Vii(t) = —p

— _pt,p+ (e _én_:rll)ei)/c(t)—|—5[€§1(t+1)M1(t+1)(5c(t)+m(t—|—1))—|—€i2(t—|—1)].

Following the method of undetermined coefficients, we conclude (1.5) — (1.6). [

1.2.2. Feedback Nash equilibrium

If the information structure of the I'** model assumes that firms choose actions
based not only on the current period, but also on information about the state of
costs at that moment ¢(t), then firms can focus on the feedback Nash equilibrium.

First, let us formally define a feedback strategy of the firm i € N, denoted
by s'B, usually sfB(t,c) : T\ {T} x C* — U; x Y;, which corresponds to every
intermediate period and every set of costs of firms c(t) = (¢1(t), ..., cn(t))’, which

unambiguously corresponds to the feasible behavior of firm i, that is sfB(¢, c(t)) =

= (sit> (£, c(t)), s’ (£, (1)) = (wilt), wi(2))-
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To determine the feedback Nash equilibrium, we use the Bellman recurrence

relations [3, 31, 74]. The equilibrium can be found using the following theorem.

Theorem 1.2. A set of strategies s

3 99n

FBN — (slfBN SFBN) with components

sivh(te) = (s (o), sy (E €)= (ai(t)e + i), bit)e + wilt)),

where i € N, t € T\A{T} and ¢ = (cy,...,¢,) is a given profile of costs, is the
unique feedback Nash equilibrium in I'®* if there is a unique solution to the following

system of recurrent relations:

ait) = SIS ) = for - 3 (o ) K+ D), (112
p —1
wuy:n+1,m@y:¢aﬁﬁk@+1 t+12;ﬂjzw }ZuL(LB)

+ 51—zn:uj(t)b;.(t)> Ki(t+1) (51 Zﬂj t)0(t ) (114

+ (5[ — zn::uj(t)b;‘(t)> (kz(t +1) - K;i(t+1) znjﬂj(t)wj(t)> | (1.15)

ki(t) = p' <vl2(t) — szét) w?(t)) + ri(t+1)—
ki(t+1 1K t+1 - t t § t t <1'16)
= | it +1) = g Ki(t + );Mj()wj() ;w( Jw;(t)

with the boundary conditions of i € N': Ki(T) = 0, k(T) = —p"ne;, wi(T) = p'n;;
and with this difference p'e;(t) — pi(t) Ki(t+1):(t) positive fori € N', T € T\{T'}.
Besides,

Z(%ﬂ:é%mwm+@mm+mwxieN-
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Proof. From the theory of dynamic games [31, 41, 47| it is known that s™BY is a
Nash equilibrium if and only if there exist functions Vj(t,-) : C" — R, t € T, i € N
which satisfy the Bellman recurrence relations. Then for the model I'** we have:
Vi(t,c) = max [t( — i —ui(t SFBNtc> (t)—
) = S e, 7P )= 2 ()

s (1.17)

_ 1€i(t) 5 .
P

5 y()+V(t+150 ZMJ FBNtc)}

JFi
For the class of linear-quadratic games, the Bellman function can be found
in a special form V;(t,c) = 3¢ K;(t)c + k;(t)'c + k;(t) with the boundary condi-
tion V;(T,c) = pl(n; — ne;). Assuming a linear structure of the equilibrium, i.e.
sEBN(t, ¢) = ali(t)e + vi(t) and sk (¢, ¢)) = bi(t)e + wi(t), and performining maxi-

mization in (1.17), we get

p—ci—=3usi (to)

si(t,c) =

; ,
N = [<5C—§My EN(E, ) Kilt + 1) + K(t + 1) (1),
e o) 2° ZJ#Z;ag(t)c—ij(t)),
b(t)e + wi(t) = pt;%t) !(5(; =S O 0+ wy(0) Kilt + 1D +EE+ 1) ().
L JEN

For each firm and each non-terminal period, the equation (1.17) allows the following

representation:

plp\ [ wilt) u;(t)
Vilt,c) = = ple; -
(t,) (w(t)yf%?fémixm ‘ <p ©i O)
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C1[w@®)) (2000 YN oy pt 0 [wit) .
yi(t) 0 ple(t)) \wi®)) 7 0 0/ \wil(t)
u;(t)
Vil t+10e— (0 w(t) =210 w5 (k)
CIC) ) Wy B oI CRC)

Using the linear representation of firms’ strategies and the quadratic form of the
function V;, we write out a matrix of quadratic form for an expression enclosed in

square brackets:

—pt 0

0 (0K + Dpilt) — p'=i(0))

Due to the conditions of the theorem, this matrix is negatively defined, which ensures
the uniqueness of the solution of the corresponding maximization problem. Using
the method of undetermined coefficients for all i € N and ¢ € T \ {T'}, we obtain
the system (1.12) — (1.13), the unique solution of which is relative to a;(t), v;(t),
b;(t) and w;(t) ensures the uniqueness of the Nash equilibrium [47].

Since F;(t,") = (s EBN(t,c))2 — EiT(t)(sZFQBN(t,c))Q, the equation (1.17), taking into

account the form of the function V;(¢,c) and the equilibrium behavior, we rewrite as

Vi(t,c) = p' [( FEN(t, c))2 _&ld) (szBN(t,c))zl +V}<t+1,5c—z,uj(t)s]F-QBN(t,c)>

2

JEN
1/ / t ' 2 Ei(t> / 2
SCKi(te+ k(e + ri(t) = p [(ai(t)cﬂi(t)) — 5 (bi() +wi(t))}+
+ (5C—ZM (B)e +wp(t)) Kt +1) + Kt +1) | x
jEN
X 5C—Z,uj (t)e+w;(t)) | + ri(t +1).
jEN

Determining the unknown coefficients in the quadratic and linear parts, as well as
in the summand independent of ¢, we obtain the relations (1.14), (1.15), and (1.16).
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Since V;(t, ¢) represents the profit of the firm 7 € N in the Nash equilibrium in T'**,
starting at time ¢ with a set of unit costs ¢, then J; (s"®N) = V;(0, ¢p) fori e N. [

Remark 1.1 (to Theorem 1.2). In the Nash equilibrium, the production volumes
sEBN(t, ¢) depend only on the set of firms’ costs and not on the game period, while
the investment sk (t, ¢) depends both on the set of firms’ costs and on the game

period.

1.3. Numerical simulations and comparative analysis

Let us move on to the results of the thesis that can be obtained using The-
orems 1.1 — 1.2. To make a comparative analysis of the results obtained, we will
keep the common input parameters, namely 7" = 3, p = 500, &;(t) = 1000 and
n; = 100000 are assumed to be the same for all firms, n = 1000; technological
obsolescence parameter 6 = 1.07; the initial costs of the firms are also assumed to
be the same and equal to ¢;g = 100, the discount factor p = 0.95; the network
parameters «;(t) = 1.8, 5;;(t) = 1, v;;(t) = 0.5 are also the same for all firms and
are constant over time. Consider the case of the interaction of three and four firms
(n =3 or n =4) and find their equilibrium behavior for four different networks g;
which have a constant structure in time, i.e. for each j € {1,2,3,4} we have that
g;(0) = g;(1) = g;(2). We will call such networks permanent and identify them
with their network structure.

Tables 1.1 — 1.2 show the values of current equilibrium production u9*N(t) =

sOUN(2, ¢p), investment yOLN(t) = sQWN(¢, ¢p) and costs ¢P¥N(t) for each firm i € N
at open-loop Nash equilibrium s°™ (¢, ¢y). The Table also show additional results:
equilibrium profits JO™N == J;(co, u®™N, yOLN) = 7;(sO™N) and the current market
price, which is formed according to the linear inverse demand function: In the
Nash equilibrium, the market price is determined by the value POM™N(¢) = p —
> e WO (D), £ € T (T,

Tables 1.3 — 1.4 show the same values as in Tables 1.1 — 1.2, but for the feedback
Nash equilibrium s"™BN(¢, ¢).

All values presented in this chapter are rounded to third decimal place.

Analyzing the data presented in Tables 1.1 — 1.4, we can conclude that for

the considered network structures (g; and g4 are star graphs, g3 and g4 are linear
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as the corresponding firm profits and prices.

in model I'** for network structures g; and g,, as well

2 2
1 4 1 4
L [
Network g 3 Network go 3
t=0 t=1 t=2 t=3 t=0 t=1 t=2 t=3
uStN (1) 80.000 81.793  83.448 - 80.000 81.181  82.230 -
ud™N () 80.000  79.744  79.375 — 80.000  80.155  80.192 -
ud™N (1) 80.000  79.744  79.375 - 80.000  80.155  80.192 -
u™N (1) 80.000  79.744  79.375 — 80.000  79.123  78.144 -
yOIN (1) 2.052  1.881  1.710 - 2.049 1879  1.710 -
YOI (1) 2.041  1.874  1.710 — 2.043 1875  1.710 -
Y9N (1) 2.041 1874  1.710 - 2.043 1875  1.710 -
YN (1) 2.041  1.874  1.710 - 2.038 1872  1.710 -
PUN(1) 100.000 97.183  94.978 93.419  100.000 98.207 97.013  96.451
cSUN(t) 100.000 99.233  99.051 99.487  100.000 99.233  99.051  99.486
SN (t) 100.000 99.233  99.051 99.487  100.000 99.233  99.051  99.486
QN (¢ 100.000 99.233  99.051 99.487  100.000 100.264 101.098 102.532
4
POUN(¢)  180.000 178.976 178.426  — 180.000 179.387 179.243 -
JOLN 19577.792 16 711.687
JOLN 13496.491 13669.861
JOLN 13496.491 13669.861
JOMN 13496.491 10 627.026
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Table 1.2. Nash equilibrium s°™ in model I'** for network structures g; and g,, as

well as the corresponding firm profits and prices.

2 2
1 4 1
Network g3 3 Network gy 3
t=0 t=1 t=2 t=3 t=0 t=1 t=2 t=3
uPN(¢) 80.000  80.769  81.413 - 100.000 100.787 101.384 -
ug"N(¢) 80.000  80.769  81.413 - 100.000  99.727  99.294 -
uUN(t) 80.000  79.742  79.373 - 100.000  99.727  99.294 -
ud™N(t) 80.000  79.742  79.373 - - - - -
yPIN (1) 2.047  1.877  1.710 - 2.115 1912  1.710 -
s N (t) 2.047 1877 1.710 - 2110 1908  1.710 -
Y9N (t) 2.041  1.874  1.710 - 2.110  1.908  1.710 -
y$N () 2.041 1874  1.710 — ~ - - _

PN (1) 100.000 98.208  97.015 96.459 100.000 98.972  98.643  99.050
cSN() 100.000  98.208  97.015 96.459 100.000 100.031 100.734 102.142
§™N() 100.000  99.235  99.056  99.492 100.000 100.031 100.734 102.142

N (t) 100.000  99.235  99.056  99.492 - ~ . _

POUN(¢)  180.000 178.977 178.428  — 200.000 199.759 200.028 -
JOLN 16 532.843 24 448.066
JOEN 16 532.843 21234.905
JOLN 13491.668 21234.905

JOEN 13491.668 -
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Table 1.3. Nash equilibrium s~ in model I'** for network structures g, and g5, as well

as the corresponding firm profits and prices.

2 2
1 4 1 4
° °
Network g 3 Network go 3
t=20 t=1 t=2 t=3 t=20 t=1 t=2 t=3
ulBN(1) 80.000  81.808  83.471 - 80.000  81.202  82.263 -
usBN(t) 80.000  79.765  79.409 - 80.000  80.178  80.229 -
ufBN(t) 80.000  79.765  79.409 - 80.000  80.178  80.229 -
ulBN(t) 80.000  79.765  79.409 - 80.000  79.179  78.231 -
yiBN(t) 2.033 1.871 1.710 - 2.061 1.885 1.710 -
Y BN(t) 2.084 1.895 1.710 - 2.086 1.897 1.710 -
yEBN(t) 2.084 1.895 1.710 - 2.086 1.897 1.710 -
Y BN(t) 2.084 1.895 1.710 = 2.110 1.908 1.710 -
cIBN(t) 100.000 97.089  94.831 93.261 100.000 98.061  96.785  96.207
cEBN(t) 100.000  99.132  98.893  99.380 100.000  99.085  98.819  99.238
cEBN(t 100.000 99.132  98.893  99.380 100.000 99.085  98.819  99.238
3
cEBN(t) 100.000 99.132  98.893  99.380 100.000 100.084 100.817 102.231
PYBN(¢) 180.000 178.897 178.302 = 180.000 179.263 179.048 -
JIBN 19774.075 16 890.994
JIBN 13523.290 13764.255
JEBN 13523.290 13764.255
JIBN 13523.290 10691.319
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Table 1.4. Nash equilibrium s"®Y in model I'** for network structures g; and g, as well

as the corresponding firm profits and prices.

2 2
1 4 1
Network g3 3 Network g4 3
t=0 t=1 t=2 t=3 t=0 t=1 t=2 t=3
ufBN(t) - 80.000  80.782 81434 - 100.000 100.780 101.374 -
usBN(t)  80.000  80.782 81434 100.000  99.745  99.322 -
ufBN(t)  80.000  79.773  79.420 - 100.000  99.745  99.322 -
ugPN(t)  80.000  79.773  79.420  — - - - -
yiBN(1) 2.059  1.884  1.710 - 2.096  1.902  1.710 -
ys N (t) 2.059 1884  1.710 - 2139 1922 1.710 —
y5 PN (L) 2084  1.895  1.710 - 2139 1.922 1710 -
yy N (1) 2.084 1895  1.710 - — - - -

eI BN(t) 100.000 98.108  96.859  96.286 100.000  98.949  98.608  99.012
cEBN(1) 100.000  98.108  96.859  96.286 100.000  99.985 100.661 102.064
cEBN(1) 100.000  99.118  98.872  99.295 100.000  99.985 100.661 102.064

cEBN (1) 100.000 99.118  98.872  99.295 - - - -

PFBN(#)  180.000 178.890 178.292 - 200.000 199.730 199.982 -
JEBN 16 643.707 24 535.499
JIBN 16 643.707 21223.474
JEBN 13545.573 21223.474

JFBN 13 545.573 -
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graphs, g, there is a disconnected graph with an isolated vertex), the use of feedback
strategies, that is, when firms adapt to the current costs of competitors and not
only to the initial costs, allows all firms to reduce their costs in equilibrium. For
the production behavior of firms in equilibrium, the following observation seems

obvious.

Remark 1.2. According to Theorems 1.1 — 1.2, the firm’s production plans are

i €N, e, siBN(t,c) and sQ¥™N(t,cy), have the same functional form.

At the same time, the number of competing firms in the market can play a
key role. When there are four firms in the market, the feedback Nash equilibrium
gives firms better profits compared to their profits in open-loop Nash equilibrium.
In addition, when using feedback strategies, firms in equilibrium produce more at
any given time (this is no longer the case when there are three firms in the market).

Note that the initial conditions for all firms were the same, and the only dif-
ference that broke the symmetry based on Tables 1.1 — 1.4 was their position in the
network, i.e., it was determined by the corresponding network structure. This leads
to the necessity of analyzing the results of numerical simulations in accordance with

the peculiarities of g;.

1.4. The impact of network parameters and structures on equilibrium,

equilibrium profits and externalities

Let us make a comparative analysis of the results presented in Tables 1.1 — 1.4.
Note that all observations given in this section were made under the condition of
asymmetry of firms in the network structure — to assess the influence of the network
structure on the equilibrium behavior of firms and other indicators obtained under
equilibrium conditions.

The only aspect in which symmetry between firms break for model I'™* were
networks g;, with j € {1,2,3,4}. As a result, the data in Tables 1.1 — 1.4 allow us
to assess the impact of the exogenous network structure on a number of important
indicators obtained during the implementation of Nash equilibrium. At the same
time, standard graph theory structures have been used for equilibrium modeling:
linear (networks gz and g4) and star (networks g; and gy4), and the case of a structure

with one «isolated» firm (network gs) is also shown separately.
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1.4.1. Equilibrium behavior

Based on Tables 1.1 — 1.4, a central difference in the investment behavior of

firms can be observed when implementing Nash equilibrium.

Observation 1.1. Let |N; (g)| > |N; (8) ]| for cio = ¢jo for a pair of firms i,j €
N i # j in a constant network g, then

e in open-loop Nash equilibrium: u@™ (t) = uP™N(t), yP™™(t) = y?™N(t), then

firm © produces and invests no less than firm j;

e in feedback Nash equilibrium: u; "N (t) = uiPN(t), no y ®N (t) <y PN (t), then

firm @ produces and invests no more than firm j.
This observation can be explained by the specifics of the strategies implemented,
open-loop strategies as functions of time and feedback strategies as functions of time

and the current state of unit costs.

Preposition 1.1. In a market with a constant number of firms, regardless of their
network and class of strategies, the firm with lower costs will produce a higher volume

i Nash equilibrium.

Proof. For the sake of generality, superscript «N» indicates the production behavior
and costs of firms in Nash equilibrium (both open-loop and feedback). According
to Remark 1.2 and Theorems 1.1 — 1.2 we have that

(0 = — <p—<n+1>c1‘<t>+ic?<t>>

:n—i—l

for any firm i € N and t € T\ {T'}. Then from the inequality ¢} (t) < ¢} (t), where
j € N\ {i}, it follows that

uy (1) —uf (t) =

(t) = c; (t) > 0, hence u; (t) > u> ().
For any pair of firms, the firm with lower unit costs in equilibrium produces a larger
quantity of goods. This is because the cost advantage allows the firm to produce

more efficiently. O

Preposition 1.2. The Nash equilibrium behavior of each firmi € N (both open-loop

and feedback) has a nonlinear dependence on the network parameters o;(t), Bi;(t),

and 7;;(t), where t € T\{T}, j € N\ {i}.
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The validity of this statement follows from the functional type of equilibrium be-
havior of firms, presented in Theorems 1.1 — 1.2. As will be shown in the next
subsection, this nonlinear dependence allows a good linear approximation for small

values of the network parameters.

1.4.2. The price of goods like externality and equilibrium profits

Competition is usually non-trivial and often has effects that affect subjects not
directly involved in the process. Let us agree to call such effects external to the
competing parties. For the competition models studied in this thesis, the external
effect can be the price of the product, since in this case the price is determined
according to the current production behavior of the firms, and not by the consumers
themselves. Thus, the price of a product to consumers depends on the competitive
position of firms in the market.

Next, three options for the network are considered separately. By analyzing
the transition from g; to gy, one can understand the importance of a connection
in a star, from g3 to gy — the importance of a connection in a linear network
when excluding interactions leads to an isolated firm, and finally, an analysis of the
transition from go to gy will show the effect of the number of firms in the market
with a linear network. Note the effect of adding new connections to the network or
removing existing ones on the firm’s profit in Nash equilibrium. Understanding such
effects will allow the firm, focusing on its profits, to review the current structure of
relationships with its competitors — in the case when the network is not exogenous.
At the same time, with an exogenous network, such effects can serve as a guideline

for stabilizing competition and the market value of goods for consumers.

Observation 1.2. For any pair of competing firmsi,7 € N : 1 # 7, it follows from
the condition that INT (g)| >IN} ()| that JY > J.

In other words, of the two firms, the one with the most direct neighbors has the
highest profit (all else being equal). This conclusion is based on a direct comparison

of the profits, whose values are shown in the following Tables 1.1 — 1.4.

Observation 1.3. The profitability of a firm can be influenced by all connections

within the network, even those in which the firm is not directly involved. Firms that
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are directly involved in creating or removing a connection experience a significant

change in profits.

This can be seen from the data presented in Table 1.5, where AJPM™N and AJFBEN
show the relative change in the profit of firm ¢ € N, expressed as a percentage,
when the network changes, when firms adhere to open-loop and feedback equilibria,
respectively. For example, when switching from the go network to the g3 network,
firms 2 and 4 (which establish a connection between themselves) receive a noticeable

increase in profits, while firms 1 and 3 have slightly reduced profits.

Table 1.5. Relative sensitivity of profits to network changes (%)

Change AJOW™N  AJOWN - AJOIN AJON AJFBN AJEBN AJEBN A JEBN

g — g —14.640 1.285 1.285 -21.261 -14.580  1.782 1.782  -20.941
g, — g 17150 -1.268 -1.268 27.002 17.069 -1.751 -1.751  26.489
g, — gz —1.070 20944 -1.304 26.956 -1.464 20.920 -1.589  26.697
g3 — gy 1082 17317 1321 -21.233 148 -17.301 1.614 -21.072
g — g4 46.293  55.341  55.341 - 45.258  54.193  54.193 -

g4 — g —31.644 -35.626 -35.626 = -31.157 -35.146 -35.146 -

Observation 1.4. The removal of the connection resulted in a greater increase in

profits for firms whose neighbors did not lose the connection.

For example, when moving gz — g» from the network g3 to gs, we have AJIBN >

AJFBN.

Observation 1.5. Firms may benefit from reducing the number of competitors in
the market and striving to capture a larger share of sales, potentially leading to a

momnopoly.

The largest effect on the profit growth of firms 1, 2, and 3 is observed during the
transition from go — g4, which can also be interpreted as the exit of firm 4 from the
market. And in the opposite direction: when a new firm enters the market, the

profits of existing firms will decrease significantly, and their entry may be blocked.
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Let us move on to the current value of the external effect (the price of the
product) that results from adding new links to the network or removing existing
ones when firms adhere to the Nash equilibrium. As noted earlier, understanding
such effects allows us to infer the impact of the structure of firms’ relationships on
the cost of products to consumers. Using data from Tables 1.1 — 1.4, we move on to

the next observation.

Observation 1.6. The current market price in the case of firms implementing
feedback Nash equilibrium turns out to be slightly lower than the corresponding price

in the case of firms implementing open-loop Nash equilibrium.

Next, based on the results of the numerical simulations, we calculate the rel-
ative changes in the current price, expressed as a percentage, when the network
changes, if the firms remain in equilibrium. The corresponding values are denoted
by APOMN(t) and APYBN(¢) and are given in Table 1.6 below.

Table 1.6. Sensitivity of current equilibrium prices to network changes (relative change,

%)

Change APCMIN(0) APCPMIN(1) APOMIN(2) APFBN(0) APFEN(1) APYEN(2)

g1 — 82 0.000 0.230 0.457 0.000 0.205 0.418
g2 — 81 0.000 —0.229 —0.455 0.000 —-0.204 -0.417
g2 — g3 0.000 -0.228 -0.454 0.000 -0.208 -0.422
g3 — 82 0.000 0.229 0.456 0.000 0.208 0.424
g2 — 84 11.111 11.356 11.596 11.111 11.417 11.692
g+ — g2 —10.000 —10.198 -10.391 -10.000 —-10.247 —-10.468

Observation 1.7. If the number of participants in the market remains the same,
the network structure has no significant effect on the current price. If the number
of participants in the market decreases (increases), it leads to a significant increase

(decrease) in the current price of the product.

The observation is based on the data in Table 1.6: in the case of n = 4, the
change in current prices in equilibrium does not exceed 0.5% when the network

structure changes; the transition from network go to gy, i.e. the exit of firm 4
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from the market, allows the remaining firms to increase current product prices by
at least 11 %, regardless of the class of strategies. Note also that as the number of
firms decreases (increases), the total quantity of goods produced in the market in
Nash equilibrium decreases (increases), which follows from the nature of the inverse
demand function.

Now let us evaluate the role of network parameters in the Nash equilibrium.
Let us identify the «types of a firm with the number of its direct neighbours in
the network. Let us present the types of firms for the networks in question in
the Table 1.7. Obviously, changing the value of a network parameter can have
different effects on the behavior, costs, and profits of different types of firms. In
particular, the effect of changing the parameter a;(t) on the costs of firm i € N can
be estimated for any network structure, since it is the same for each firm and does
not depend on the network structure. However, changing the parameter (3;;(t) or
v (t) with j € N\ {i} may affect the costs of different types of firms in different
ways. Therefore, it seems reasonable to consider the impact of changes in network
parameters on the profits of firms for networks g; and go. Based on the data from
Table 1.1, we will present the changes in the form of graphs®. The dependence of
the firms’ profits in the open-loop equilibrium on changes in the network coefficients

is shown in Figure. 1.1.

Table 1.7. Types of firms in model I'** for the considered exogenous networks

i\ Ni(g) | | Wilg)|  Wilga)|  [Ni(gs)l  Vi(gd)l

1 3 2 2 2
2 1 1 2 1
3 1 1 1 1
4 1 0 1 -

Remark 1.3. The profit function is nonlinear from the network parameters in equi-
librium, and according to the Figure 1.1 the profits of firms in equilibrium allow a

linear approrimation.

3 Constructing similar graphs for feedback Nash equilibrium according to Table 1.3 leads to similar conclu-

sions (Remark 1.4), in structure of which we will limit ourselves only for open-loop Nash equilibrium.
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of firms, in percentage terms
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Remark 1.4. The sensitivity of the firm to a change in the value of the parameter

a;(t) or Bij(t) turns out to be directly proportional to its type.

Given the equation (1.2), this remark seems natural. A similar situation is observed
when, in the above remark, an isolated firm is replaced by a firm of maximum type

and the parameter f3;;(t) is replaced by 7;;(%).

1.4.3. Dynamics of competitiveness

Considering the competitiveness of each firm ¢ € N as the ability to outperform
its competitors in profit — is typical for game-theoretic problems. Note that the com-
petitiveness of each firm in model I'** can be reduced to an assessment of the state
of its unit costs relative to the unit costs of its competitors. Since it is the state of
a firm’s unit costs that determines its cost of producing a unit of goods, given equal
unit costs, a firm with lower unit costs produces more. At the same time, regardless
of the class of strategies — according to Remark 1.2 and the formula (1.10), the
production behavior of each firm in equilibrium functionally depends on the state
of unit costs of firms, further determining the current market price. The validity
of the above consideration is confirmed by the results of numerical simulations (see
Tables 1.1-1.4). It should also be noted that assessing the competitiveness of firms
through the state of their unit costs, rather than through profit, will further gener-
alize the results to the case when the network is endogenous, and the expression of
the firm’s profit will include the cost of its existing network connections.

Let us evaluate in Table 1.8 the sensitivity of the firm’s unit cost in Nash equi-
librium to changes in the network structure based on the data from Tables 1.1 — 1.4,
from which it is easy to see that the type of firm in equilibrium plays a leading role

in the dynamics of firms’ competitiveness.
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Table 1.8. Sensitivity of current equilibrium costs to network changes (relative change,

%)

Change Firmi AcP™N(1) AcPIN(2)  OMN(3)  AcBN(1)  AcBN(2)  AcBN(3)
1 1.053 2.142 3.245 1.002 2.061 3.159
2 -0.000 -0.000 -0.000 —0.048 —-0.075 -0.080
g1 — 82
3 -0.000 -0.000 -0.000 —0.048 -0.075 —0.080
4 1.039 2.067 3.061 0.961 1.945 2.934
1 —1.042 -2.097 -3.143 —0.992 -2.019 -3.062
2 0.000 0.000 0.000 0.048 0.075 0.080
g2 — 81
3 0.000 0.000 0.000 0.048 0.075 0.080
4 —1.028 -2.025 -2.970 —0.952 -1.908 -2.850
1 0.001 0.002 0.002 0.048 0.076 0.082
2 -1.033 —-2.056 -3.049 —0.986 -1.984 -2.975
g2 — 83
3 0.003 0.005 0.005 0.033 0.053 0.057
4 -1.026 -2.020 -2.966 -0.966 -1.930 -2.873
1 -0.001 -0.002 -0.002 -0.048 -0.076 -0.082
2 1.043 2.099 3.145 0.995 2.024 3.067
83 — 82
3 -0.003 -0.005 -0.005 -0.033 -0.053 -0.057
4 1.036 2.062 3.056 0.975 1.968 2.958
1 0.779 1.681 2.695 0.905 1.883 2.916
2 0.805 1.699 2.669 0.908 1.863 2.847
g2 — 84
3 0.805 1.699 2.669 0.908 1.863 2.847
4 _ , , , , -
1 —-0.773 -1.653 -2.624 -0.897 —1.848 -2.833
2 -0.799 -1.670 -2.600 -0.900 -1.829 —-2.768
84— 82
3 -0.799 -1.670 -2.600 -0.900 —-1.829 —-2.768
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Observation 1.8. In feedback Nash equilibrium, a firm’s costs are less sensitive to
a break of connection in which it participates than in open-loop Nash equilibrium.
In open-loop NE (Nash equilibrium), a firm’s costs are more sensitive to a break of

connection in which it does not participate than in feedback NE.

In fact, it is sufficient to observe the transitions from one network to another in
which a link has been removed: from g; to go and from g3 to go. Similar to
Observation 1.8, it is possible to formulate a similar result in the opposite direction,

replacing the removal of a connection with its addition.

Observation 1.9. Fach firm should strive to have the highest possible type in the
network, while also ensuring that other firms have the lowest possible type. This

benefits the entire network.

The network go is more profitable for firm 3 than gy, in which it is asymmetric to
firm 2 — due to the fact that they have different types in these networks. It may
seem that for firm 3 there can be no preference between networks g; and go, since
in both its type is preserved and there is exactly one connection in which firm 3
does not participate — (2; 4) and (1; 4), respectively. However, in the network g
the connection (2; 4) leads to two firms of the second type, and in the network gs to
one firm of the second type. This means that it is more profitable for each firm to
have the largest number of firms of a lower type than its own. For the same reasons,
firm 4 benefits from the network go in which its connection does not increase the

number of firms with a higher type than it has.

1.5. Conclusions to Chapter 1

In the dynamic model of competition with exogenous network formation 1'%,
a Nash equilibrium is obtained for two variants of the information structure —
open-loop and feedback. The uniqueness of the Nash equilibrium is also proved for
each variant of the information structure. Numerical simulations for several network
structures (networks) using the computer program are given [26]. A comparative
analysis of the results is performed, which allows us to assess the role and influence
of the network structure, as well as network parameters on the behavior of firms,

their profits and the external effect in equilibrium.
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The main results described in Chapter 1 are presented in the publication [27]
together with assumptions such as the restriction of the network parameters — for
each firm i € N: 0 < 745(t) < Bi(t) < a;(t) with j € N\ {i} and t € T\ {T'},
the condition on a terminal period: firms exit the market at that moment, earning
a profit equal to the market value of their production. However, it is worth noting
that for the results presented (uniqueness and functional type of behavior of firms
in equilibrium) for model I'**, the assumptions on network parameters presented in
the publication do not seem to be fundamental. First, the absence of interaction
between firms may be more profitable than its presence (the variation in the inter-
pretation of the exogenous network is diverse and depends on the problem under
consideration). Second, the effect of a direct neighbor’s investment in the network
may be greater than the effect of its own investment. Thus, in the case of the effect
of substitutability (submodularity), if firms from the set A; (g(t)) increase the vol-
ume of their investments, then firm ¢ may decrease its — reliance on its neighbors
in the network structure [66, 69]. Thus, the presented solutions have the property
of adaptability to problems with non-positive network parameters (influence coeffi-
cients). Moreover, if at the final moment of model I'** the condition for firms to
exit the market is abandoned and the functional of (1.4) is rewritten in Lagrange
form, it is enough to set 1; = n = 0 for each firm 7 € A/, then the functional type of
behavior of firms in the Nash equilibrium remains unchanged. It is known from the
theory of optimal control that a functional written in the form of Lagrange can be
equivalently represented in the form of Mayer and vice versa, which indicates that
the presented methods of solving the model are applicable to various formulations
and formal expression of firms’ profits with the only condition — preservation of the
quadratic form of the functional.

Despite the fact that the model I'** is described as economic and mathematical
and the results of the analysis are interpreted accordingly, it seems obvious that
the results obtained during the study are not limited to application in economics
and can be adapted as theoretical (identification or justification of patterns and
phenomena), and to practical tasks in other scientific fields, examples of such areas
are well described in [33].

Note that the relation (1.2) is adapted to two variants of network interaction

of firms — if there is a connection between them in the network and in its absence,
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at the appropriate time. However, the conditions presented in Theorems 1.1-1.2
remain valid even when the model takes into account a greater variety of network
interaction options. For example, it can be assumed that firms 4, 7 € N for which
(1,7) ¢ g(t) benefit from each other’s investments with a coefficient of w®s(®®)(¢),
where 0 < w < 1, and d;;(g(t)) > 0 — the length of the shortest path from firm 4
to j in network g(¢). In this setting, we get p;;(t, g(t)) = wh@D)(¢) at i # j, and
it will be beneficial for each firm to reduce its distance to each competitor in the
network — as a way to avoid decay in positive effects of competitors’ investments.
At the same time, the choice of strategies by firms in following Theorem 1.1 or
Theorem 1.2 — depending on the information structure, allows them to adhere to

the Nash equilibrium.
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Chapter 2.

Dynamic models with endogenous network formation

Notwithstanding that [14] defines network games to be a rather young line in
game theory, a certain portion of the generally accepted classification has already
been well established. According to [15, 32, 36] network games can be divided
into two classes: games on network and network formation games. According to the
presented classification, the model discussed in Chapter 1 is a game on network. This
chapter will discuss models in which firms’ networking is formed only as part of their
strategic behavior. This allows this chapter to be considered as a logical continuation
of Chapter 1, where the model I'** is to extended by introducing the firms’ capability
of participating in network formation. The previous analysis is supplemented by the
matters of firms’ equilibrium multicomponent behavior under various types of their
network interaction (Sections 2.1 and 2.4). It is worth noting that games with
multicomponent behavior have already been discussed by game theorists, where the
work [42] can be exemplified, however numerous issues concerning the principles and
conditions for the formation of network interactions still remain unresolved.

This chapter will focus on the extended version of the model I'** (Section 2.2)
and its variations (Sections 2.3 and 2.4) under the assumption that firms indepen-
dently form their network structure each decision period, i.e. the network formation
procedure becomes endogenous. For the firm’s network behavior, conditions will
be defined consistently with the interaction formation rule under consideration that
ensure the «stability» of network interactions being formed. The chapter will also
present the results of numerical simulations and benchmarking (Section 2.5), which
will allow firms to assess the prospects of long-term and short-term networking with
competitors. For the case of long-term networking between firms, the types of one-

time and recurrent network communications costs will also be considered.

2.1. The strategic nature of network behavior and the formalization of

network formation rules

Let us consider the possibility of endogenous formation of firms’ network inter-

actions, i.e., when each firm’s choice of direct neighbors in the network is the result
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of its strategic behavior. Let us assume that by choosing its network behavior at a
non-terminal period, each firm has knowledge of the costs associated with its poten-
tial connections. To do this, we define for each period t € T \ {T'} the matrix of
network costs (or interaction costs of firms) as II(t) = {m;;(t)}, where for each pair
of firms ¢, 7 € N we have that m;;(t) > 0 — the communication cost (¢,5) that firm
i bears for communicating with firm j if (4,7) belongs to the network structure g(¢)
formed at time ¢, while 7;(¢) = 0. We assume that the sequence of communication
cost matrices {I1(#)}/! is always given and is common by known knowledge.

Let us consider for each time ¢ € T \ {T'} and the firm i € N the vector
gi(t) = (g (t),...,gin(t)) € G;, which we will call the network behavior of the firm

7 in the current period, and whose elements are

1, if i offers a connection to the firm j € N\ {i} at the time of t # T,

gi(t) =4
0, otherwise;

and be interpreted as an offer or consent of the firm ¢ to establish a network connec-
tion with the firm j in the current period, while we assume that g;;(f) = 0. Thus,
we can assume that the network behavior of firm 7 at each nonterminal period of
the model is determined by a binary vector, and define the set of feasible types of
its network behavior as G; = {0,1}" — space n—dimensional binary vectors. Set
gi = (9i(0),gi(1),...,9(T — 1)) to define the network behavior of firm i in each of
the models discussed below.

We will say that a bilateral network connection is formed between a pair of
firms ¢ and j at time ¢ if and only if g;;(f) = ¢;(t) = 1, i.e. both firms at the
current time agree to establish a connection (7, j) with each other, such that (i, j) =
(7,7) and (7,7) belong to the network structure g(¢) formed in the current period.
The described rule of forming bilateral links in network structures is of interest
to many researchers and is often found in the analysis of network games, for example
in [15, 16, 22, 39].

Based on the rule of bilateral network interaction, we determine the dynamics
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of the unit cost of the firm ¢ € N/ by changing the equation (1.2) as follows:

ci(t +1)=dci(t) — ai(t)yi(t)—
=3 (Bt 955090 + 715(0) (1 = g5z (0) s (0), Y

JFi
where t € T\ {T} u ¢;(0) = ¢, ci(t) € C, 5 € N\ {i}. Describing the current
network behavior of firms with the vector g(t) = (g1(¢), ..., gn(t)), we will clarify

the current profits of firm ¢ with the following function:

— <p — (1) —Z uj(t)> u;(t) — %@yg(t) —Z 7ij ()9 () g;i (t)-

JFi

(2.2)

Thus, the gameplay described in Section 1.1 is complemented by the fact that
now the behavior of a firm ¢ € N in period t € T \ {T'} is described by a feasible
set (gi(t), u;i(t),y:(t)) € G; x U; x Y;; the network structure g(t) is built according
to the rule of bilateral interaction (unless another rule is explicitly specified for the
formation of its links) unit costs are calculated according to (2.1), and current profits

are determined according to (2.2).

2.2. Open-loop Nash equilibrium

To formally represent a model with endogenous network formation as a dy-
namic game, and also Nash equilibrium as its solution, following [47] let us start by
defining the strategies of competing firms. An open-loop strategy of firm 7 € N is
called the mapping s;(¢,co) : T \ {T'} — G; x U; x Y;, which corresponds to each
intermediate period and the initial values of the unit costs of all firms the feasible
behavior of firm ¢ of the following type s;(t, co) = (gi(t), ui(t), yi(t)). Since the vec-
tor cg is fixed, we will omit the dependence of the strategy on it and consider it only
as a function of time. For the same reason, we will consider the firms’ open-loop
strategies as a function of time until the end of the thesis.

Following [20, 47], we define a dynamic model of competition with endogenous

formation of bilateral network interaction of firms as a game in normal form:

ren = <N, {Sz‘}igj\/a{ji}iej\/>7



48

where S; = {s;|si(t,co) = (g:(t),u;(t),yi(t)), t € T\ {T'}} — the set of strategies
of the firm i € N, s = (s1,...,8,) — a strategy profile and the payoff function
Ji(s) = Ji(co,8,u,y) — the discounted profit of the firm i, determined by the
following expression:

T g wy) = 3 0 F (L g(t), (), ult), () + o7 (i —nei(T)),  (23)

t=0
where current profits are determined according to (2.2), with a set of network inter-
action structures g = {g(t) tT:_Ol that firms managed to generate, while the dynamics
of unit costs are described by (2.1).

The following theorem characterizes the Nash equilibrium in the model T"".

Theorem 2.1. A set of strategies, sN = (slf, o8N

(g7 (&), u) (1), 45 (1), i €N, t € T\ {T} have the form

’

), whose components s%\l(t) —

1, my(t) <al(t), ma(t) <7X@),  jeN\{i,

g;;(t) = - (2.4)

uN(t) = 2= i 1)0%1(2T ZjENCJN“), (2.5)

N () = —O‘i(t;?;((tt; 2 (2.6)
where

=30 = 0 ~ )10 ()

is a Nash equilibrium in model T°". Here ¢\ (t) satisfies (2.1) with the initial condi-
tion cN(0) = cio, and ¢;(t) satisfies the relation ¢;(t) = —pul(t) + 5¢;(t + 1) with

the boundary condition ¢;(T) = —pn fori e N.

Proof. First of all, following |51, 53, 72], let us suppose that instead of the n-dimensional
binary vector g;(t) the firm ¢ € N currently chooses ¢ # T the n-dimensional vector
zi(t), whose components are z;(¢) € [0,1]. We will characterize such a network
behavior of the firm ¢ as its tendency to form a connection with the firm j in this

period. In extreme cases, i.e. when z;;(t) = 0 or 2;;(t) = 1, the firm ¢ does not offer
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and offers a connection to the firm j, respectively. Let z(t) = (z1(t), ..., z,(t)), o
— a strategy of the firm 1, i.e, o;(t) = (z;(t),u;(t),y;(t)), and ¢ = (01,...,0,) is
a set of strategies. Using standard dynamic game theory techniques, taking into

account (2.1) and (2.3) for the firm ¢, the Hamiltonian takes the form:

Hi (¢, c(t), 2(t), u(t), y(t), ilt + 1))
[(p ci(t Z w;(t ) t i (t)2i;(t) 25 (¢ }-I—Z Yii(t+1)x
Fal jeN

< [6ej(t) - (W )= (m )2ir ()20 (8) + 25 () (1 = 230(8)205(0) ) ()],

r#j

where 1;(t) = (7 (t), ... ,in(t)), t € T\{0}, — aset of costate variables. According

N

to the Pontryagin maximum principle [23, 47|, if the set of strategies o™ is a Nash

equilibrium, then there exist non-zero vectors ;(t) at t € T \ {0}, ¢ € N, which

satisfy the system of recurrence relations:

oN(t) = arg max
Zi(t>€[071}", ui(t)EUi, yi(t)EYi

Hi (8, (1), (ZR0) [2i(8)) 5 (u;(0) [us()) , (6500 |wi(1)) it + 1))

r—ptu%-\}(t) + 0yt +1), j=i,t#T,

Vi(t) = < —p'n, j=i,t="T,

\O? ] 7& ia

Nt +1) = 66 () — ity <t>—

= > (BN + (0 = 2O )yl @), ¢ AT,

JFi

N (0) = co.

Considering the equality m;;(¢) = 0 for ¢ # j and the linearity of the Hamiltonian

with respect to the variables z;;(t) for the Nash equilibrium o, it is necessary that:

Lo () + alt + D(B5(8) = 35 () (1)) 23(0) < 0 and j # 4,
0, other,



yi\l(t) - _pt8—M¢Zl(t + 1) (27)

Thus, if o is a Nash equilibrium, then sN = o™

, where g~ = 2. Therefore, the
Nash equilibrium dictates that two firms ¢ and j establish a connection at time
t # T, ie., choose in their network behavior g;(t) = gj(t) = 1, if the following

inequalities are satisfied:

g (t) + it + 1) (Bi(t) — i (1) () < 0,
Pp(t) + 5t + 1) (Bit) — v5(t)w; () < 0.

Considering (2.7), in Nash equilibrium two firms ¢ and j establish a connection in
period t if m;(t) < my(t) and m;(t) < my(t). Setting ¢i(t) = 1bu(t) we get the
expressions (2.4) — (2.6).

The existence of nonzero costate variables guarantees for each firm a nonzero
investment behavior determined by (2.7). The Hessian of the Hamiltonian #; is
negative definite: —2p' (u%\l(t))2 — plei(t) (yi\l(t))2 < 0. Therefore, it remains to

conclude that s will be an open-loop Nash equilibrium. ]

Remark 2.1. Following [27], the conditions (2.4) — (2.6) can also be represented in
an alternative recurrent form. To avoid repeating similar steps, we leave this out.
In addition, we note that when moving from model T’ to I'", the functional type
of production and investment behavior of firms (2.5) — (2.6) in Nash equilibrium is

preserved.
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2.3. Open-loop Nash equilibrium for models with constant network

interaction

The considered model '™ allows firms to rebuild their network interaction with
competitors at each decision period, which can be interpreted as a variant of strategic
behavior in which firms are guided by short-term relationships, an example of which
may be short-term agreements or contracts. It also seems natural to consider options
for network interaction when connections in the network are established for a long
time, in other words, when the network has a permanent structure in the model.
At the same time, the interaction costs that firms take into account when choosing
direct neighbors in the network can be regular — firms bear the costs of their existing
connections in the network at every period t € T \ {T'} (Subsection 2.3.1) as well
as one-time — firms bear the costs of their existing connections only at the time of
network formation (Subsection 2.3.2).

A comparative analysis of the Nash equilibrium conditions obtained for each of
the types of network interaction of competing firms in a dynamic process described
in this Section (Section 2.5) will rise a number of important questions, among which
the central one is — which option of interaction with common input parameters

(short-term or long-term) is more profitable for competing parties?

2.3.1. A model with the cost of establishing and maintaining network

connections

Consider a model in which firms choose their network behavior once in the
initial period, but bear the cost of establishing network connections with their direct
neighbors at each time t € 7\ {T'} — as they receive the effect of investments from
all firms, according to the constructed structure of network interaction. Thus, the
network in the model has a constant structure, so g = g(0) := go. At the same
time, the cost of the firm’s network interaction is borne by ¢ € T \ {T'} at each
period. This assumption can be interpreted as the cost of forming and maintaining
network interaction over a long period of time.

Call the feasible behavior of the firm ¢ € N in the model: three actions
(9:(0),u;(0),4:(0)) € G; x U; x Y; for t = 0 and a pair of actions (u;(t),y;(t)) €
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U; x Y; for t € T\ {0,T}. The total profit of the firm 7 is set to

Ji (o, 8o, U, y) =
=3/ [(pcxt)Zuj(t)) 1)~ “g20) -3 (09, (0),(0)
t=0 j=1 i
+p (i = nei(T)), (2.8)

_|_

where the current unit cost satisfies the recurrence relation
2.9
=3 (By(195(0)055(0) + 151 ~ 955500 )ity )
JF#i
for t € T\ T, with initial unit cost ¢;(0) = ¢;.
Then, the dynamic model of competition with endogenous formation of long-term

network interaction and regular interaction costs can be represented as a dynamic

game in normal form:

Ot = (NAShiew AT hiew )
where S; is the set of strategies of the firm ¢ such that

Si(t) _ (gi(0)7ui(0)a yz(o))a t=0, (2‘10)

(ui(t), yi(t)), teT\{0,T};
the payoff function J;(s) = J; (co, 8o, u, y) — discounted profit determined according
to the functional (2.8), where s = (s1,...,5,) — a strategy profile in the game in
which the network structure of interaction between firms is gg, and the dynamics of
unit costs is determined by (2.9) with the initial condition ¢(0) = c.
The following theorem characterizes the open-loop Nash equilibrium for model
LGy

* *

Theorem 2.2. In model T'{} a set of strategies s* = (s7,...,s}), whose components

(97 (0),4;(0),57(0)), t=0,
(ui (2), ¥ (1)), t € T\{0,T},
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fori e N, have the form

T-1 T-1
17 Z ptﬂi'(t) < 7Tz>’k’7 Z ptﬂ-'i(t) < Tﬁi? J € N\ {Z}7
9;(0) = =R = R ’ (2.11)

0, otherwise,

p—(n+1)c(t)+ ;\[ ¢ ()

n+1

(0 =56+ ), 212)

15 a Nash equilibrium, where

— &)
a; (t)

(Bi (8) = i (1)) i (2) 5 (1)

Here c(t) satisfies the relation (2.9) with the initial condition c¢f(0) = ¢, and
¢i(t) satisfies the relation ¢;(t) = —p'u;(t) +d¢;(t+ 1) with the boundary condition
¢i(T) = —p'n fori e N.

Proof. Since the current profit for each firm ¢ € N depends, among other things,
on the network behavior chosen at the beginning, standard methods based on Pon-
tryagin’s maximum principle are not applicable. Therefore, a different approach is
required to prove the theorem.

First, as in the proof of Theorem 2.1, we assume that instead of the n-dimensional
binary vector ¢;(0), firm ¢ chooses the n-dimensional vector z;(0) in the initial pe-
riod, whose components z;;(0) € [0;1] characterize the tendency of i to form a
connection with j € N\ {i} at t = 0. Let 2(0) = (21(0), ...,2,(0)), 0; — a strategy
of firm i, a 0 = (01,...,0,) — a set of strategies.

Assuming that the strategies of all firms except ¢ are fixed, to find the best
response to these strategies, the firm ¢ must maximize (2.8) taking into account the

equation of the dynamics of unit costs (2.9). To find the best response for firm i,



54

we write out the Lagrange function:

Li(c,z(0), u, y, A ZP [(p Zuj(t)) ui(t) — ¢i(t)uwi(t)—
j=1

= mii(1)25(0)2;4(0)

JF#

+p" (i = nei(T)) —

n

—ZZ)\U@—I— 1)

=1

cj(t +1) = dej(t) + a(t)y;(t)+

+ Z <5jr(t)zjr(0)zrj(0) + 75 () (1 = er(o)zrj(o)))yr(t>] ,
r#j

where A; = (\;(1), ..., M(T)) when X\;(¢) = (A (t), ..., \in(2)), t € T\ {0}, — a set
of Lagrange multipliers. If the set of strategies o* is a Nash equilibrium, then there

exist non-zero sets \;, 1 € N satisfying the system of recurrence relations:

T-1
25(0) = . t;) (ptmj(t) + Xt 4 1) (Bij (1) — i (t))y; (t)> ©(0) < 0 and j # i,

0, otherwise,

p—(n+1)ci(t) + i()

O‘g(tz Nt + 1), t£T, (2.13)

Gt + 1) = 8ei(t) - az-<t>y*<t>—
=3 (B®250)25:0) + (1 — 255(0)25:(0) )y (), AT,

JFi
¢ (0) = co.



99

If o* is a Nash equilibrium, then s* = ¢*, where ¢7(0) = 2/(0). We conclude
that the Nash equilibrium requires two different firms ¢ and j to establish a connec-
tion in the initial period, i.e. to choose in their network behavior g;;(0) = g7;(0) = 1,

if the inequalities are satisfied:

~
L

(P as(8) + At + 1) (B () = 3,0 () <0,

-1

(o3 (t) + Ajs (¢ + D (Biat) — 1)y (1)) < 0.

iy
=
~

t

Il
=

Considering the above expression for y(t), in Nash equilibrium, two firms ¢
T—1 T—1
and j establish a connection at the initial time »_ p'm;;(t) < mj; and Y p'mj(t) <
=0 =0
7. Setting ¢;(t) = Aii(t) we get the expressions (2.11)—(2.12).

The existence of non-zero Lagrange multipliers guarantees for each firm non-zero
investment behavior, determined according to (2.13), in the context of which the

Hessian of the Lagrange function £; is negative definite:

oY et = 3 o [20u (1)) + 5 (0w (0)?] < 0.

Therefore, we can conclude that s* will be an open-loop Nash equilibrium for model

en
01 []

2.3.2. A model with one-time network cost

Now consider a model in which firms also choose and implement their net-
work behavior once at an initial period, but only incur the costs of direct network
connections at that period.

The network behavior of firms in such a model can be characterized by the costs
of network interaction, which are necessary only for the provision and/or formation
of links in the conditions of long-term network interaction of firms. As an example,
we can cite a strategy profile in which a couple of firms decide to jointly invest in a
project with a duration of 7, while the costs of network interaction itself are reduced
here to the costs of negotiating, drafting, and signing a general agreement between
the firms.
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A dynamic competition model with endogenous formation of long-term network
interaction and one-time network interaction costs is referred to as a dynamic game

in normal form:

0% = (NASiew 1T hien ).
where §; is a set of strategies of the firm ¢, prescribing to it feasible behavior of the

form (2.10), and the payoff function J;(s) = J; (co, 8o, u,y) — discounted profit of

the firm 7, determined according to the following expression

2(75)] —Z 7i5(0)i5(0)g;:(0)+

Ji (607 8o, U y) =
T-1
t:O ji
+ o (i = nei(T)), (2.14)

where a network of g is formed from the network behavior of firms at ¢t = 0, and
the dynamics of unit costs is given by the (2.9) with ¢(0) = .

The Nash equilibrium in I'f is given by the following theorem.

Theorem 2.3. In the model T}y a set of strategies s = (s7*,...,s), whose
components
” (9;7(0),u;*(0),3;7(0)), =0,
si (t) =
(ui™(t), 47" (t)), teT\{0,T},
fori € N, have the form
1, m;(0) < 7w, m(0) <7, jeN\{i}
0, otherwise,
p— (n+1)c(t) + 22 ¢ ()
i (t) = =
! n+1 ’
(1) =~ gt 4 1) (2.16)
Yi - ,Otgz(t) 7 ) .
15 a Nash equilibrium, where
T-1
K% t‘gi(t Kk *k
TS 2P (B85 () — i) ;™ (2) y; ™ (¢)
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Here ¢*(t) satisfies the relation (2.9) with the initial condition ¢*(0) = ¢, and
¢;(t) satisfies the relation ¢;(t) = —p'ui*(t) +¢;(t+1) with the boundary condition
¢i(T) = —pTn for the firm i.

Proof. Since the current profit of the firm also depends on the network behavior
chosen in the initial period, we use a similar proof of Theorem 2.2. First, let us
assume that instead of the n-dimensional binary vector g;(0), the firm ¢ € N chooses
the n-dimensional vector z;(0) with components z;;(0) € [0, 1] at the initial time.
Let 2(0) = (2(0),...,2,(0)), o; firm strategy ¢, a 0 = (01,...,0,) — a set of
strategies.

Assuming that the strategies of all firms except ¢ are fixed, to find the best re-
sponse to those strategies, the firm ¢ must maximize (2.14) taking into account (2.9).

Let us write the Lagrange function:

Li(c, 2(0), u,y, \i) = 2 P [(p — Z u; (ﬂ) ui(t) — ci()ui(t) — aét)y?(t)] -

— Z 7TU<O>ZZ](0)ZW(O) + PT (771 - UCz(T)) -

J#i
T-1 n
= 3D Nl 1) eyt + 1) = bey(8) + a () (1) +
t=0 j=1
+ Z <Bjr(t)2’j7~(0)2¢j(0) + ’Y]r(t)(l — er(O)er (O)))yr(t)] ,
r#j

where )\z = ()\Z(l), ce ,)\Z(T)) when )\z(t) = ()\Zl(t), Ce ,)\m(t)), t e T\ {O}, — a set
of Lagrange multipliers. If the set of strategies o** is a Nash equilibrium, then there

exist non-zero sets \;, i € N satisfying the system of recurrence relations:

z

**(0) _ 1, <7TZJ(O) + Tzl )\Zz(t + 1)(613(15) — Vlj(t))y;*(t)> Z;*(O) <0, j4i,

0, otherwise,

p—(n+1)c™(t) + 3 ¢ (¢)
n+1
Nii(t + 1), t£T,

ey ai(t)
0=
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c;*(0) = cp.

If o** is a Nash equilibrium, then s** = o™, where g;*(0) = 2z:*(0). Thus, the
Nash equilibrium dictates that any pair of different firms ¢ and j should establish
a connection at the initial period, i.e., choose as their network behavior g;‘jf“(()) =

957 (0) =1, in the case that the inequalities are true

m(0) + 37 Nalt + D(Bi(8) — ()" () < 0,
=0
T-1
mii(0) + > Aji(t+ D) (Bii(t) — i)y (t) < 0.
=0

Considering the above expression for y*(¢), in Nash equilibrium two firms i and j
establish a connection at the initial time m;;(0) < 77 and 7;;(0) < 7j;. Putting
oi(t) = Nii(t) we get (2.15) — (2.16).

Since the existence of non-zero Lagrange multipliers guarantees non-zero in-
vestment behavior for each firm at every period ¢t € T \ {T'}, the Hessian of the

Hessian Lagrange function £; turns out to be negative definite:

23" (e () — 3 ot (2065 (0) + 50 (57 (1)) < 0.

Therefore, we can conclude that s** will be an open-loop Nash equilibrium for
model I'g5. O
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2.4. Nash equilibrium with unilateral network interaction

Let us move on to the rule of forming a unilateral network interaction of com-
peting firms, when the network connection between a pair of firms i € N and
j € N\ {i} is directed ((7,5) # (4,7)) in g(¢), at t € T \ {T'}. In this case, let us
agree to understand by notation (i,7) an arc in g(t), indicating j as a firm from
whose investments firm ¢ receives an effect with a coefficient 3;;(¢). Note that for the
unilateral formation of a network interaction, the desire of only one firm is sufficient,
i.e. if firm ¢ chooses g;;(t) = 1, then (7, 7) € g(t).

Note that when switching in the previously considered models I'*", I'G} and I'gy
from the bilateral network rule to unilateral, the methodology for finding a open-loop
Nash equilibrium does not change. However, the condition for network interaction
in equilibrium takes a different form. Since unilateral network interaction does not
require firms to focus on the network behavior of their competitors, they can choose
it based only on their own interest. In this context, we will only discuss those
components of the models in Nash equilibrium that take on a different appearance

than they do in equilibrium with bilateral interaction.

B At an open-loop Nash equilibrium for model '™ with unilateral network interac-

tion, we have:

T (g ) = Y0 [( ) - Zu?) o =0 3y -

= mign @) | +p" (i — 0 (T))

JF#

N(t+1) =06 () — sty (8) = D (By(6) g1 + (8) (1= g3(1) ) 9 (8),

JFi

S=1 mytt) < SOOI Ny, e a i

0, otherwise.

Il

B At an open-loop Nash equilibrium for model with unilateral network interac-
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tion, we have:

Ji (co, 8" u",y") = ] P’ [(p —ci(t) — Z“?) w— g’ét) (g (1) —

= mi(0)g50) | +p" (i — e (T)),

JFi

Gt +1) = 31 (t) — oa(t) i (1) — 3 (Bugt)ais (0) + 25 (1)1 — 5(0))) w3 (1),

J#

£ (t
(07 (t

T-1 T-1
L X plmy(t) < X pf
t=0 t=0

0, otherwise.

. (Bi(t) — ;) y; () y; (@), 7 € N\ A{i},
gij(o) =

B At an open-loop Nash equilibrium for model I'gy with wunilateral network inter-

action, we have:

T-1 n
i (co, g™ ™ y™) = > pf [(p —c () — Z%) u; =

t=0
= mi;(0)g;5(0) + p" (n; — nei*(T))
J#i

£ t)

(v *(t))2] -

(1) = 06 (1) — aa(t) (1) = Y (B (0) + 45 (D)1 = gi7(0)) ) " (1),

JFi

Ei(t
(07 t)

1 w(@){i(jpt (Bus(®) — 7y () wi* () (1), J € N\ i,

0, otherwise.

9ij (0) =

Next, we will move on to numerical simulations. This will enable us to compare
the results obtained at open-loop Nash equilibrium with common parameters for all

the models considered.
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2.5. Numerical simulations and comparative analysis of results

To illustrate the theoretical results in Sections 2.2 — 2.4, we will use the same
data that were employed for numerical simulations in Chapter 1 (Section 1.3). Recall

them:

n=4 The parameters are universal across all firms
T=3 |n=100000 ¢ =1.07 constants over time
p =500 | n = 1000 p=095 la=18 pf=1 ~=05 &=1000

cio=100, 1 =1,n

Cost matrices for potential connections between firms in network structures

will be consistent across all models and remain constant over time.

0 800 800 800
800 0 800 800
900 900 0 900
1100 1100 1100 O

In Table 2.1, for each firm ¢ € N, its current feasible behavior is given by
(gy(t), ul (1), yy(t)) in open-loop Nash equilibrium, sN = (gN, uN, yN), and the
corresponding unit cost ¢N(¢). At the same time, the table contains the results of
numerical simulations obtained for I'*" with two different types of network structure
formation — bilateral and unilateral network interaction. The table also shows the
network structures g™ (¢) prescribed by the Nash equilibrium, current unit prices in
the market PN(t) .= p — ;\/ uj (t) and firm profits J) = Ji(co, g™, u™, yN).

j

Similar in structure to Table 2.1 are the Tables 2.2 — 2.3, which present the
results of numerical simulations corresponding to models of long-term network in-
teraction, I'f} and I'Gy. The results are given in Tables 2.1 — 2.3, obtained by imple-
menting the conditions of Theorems 2.1 — 2.3 using the program [26]. All values in
the tables in this Section are rounded to the third decimal place.

First, we note that the results presented in Section 1.4 remain valid in the case
of endogenous formation of network interaction between firms, which can be directly

verified according to Tables 2.1 — 2.3.
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N

Table 2.1. Open-loop Nash equilibrium s* and corresponding profits and unit costs of

firms, as well as current prices in I'*".

Iren: bilateral interaction unilateral interaction
t t=20 t=1 t=2 t=3 t=20 t=1 t=2 t=3
1 i 1 1 1 1
4 Y v I\ﬂ v I\ 2 4.4 {\.2

gN(t) 3 - 3 3 3 -
glN(t) (0,1,1,1) (0,1,1,0) (0,1,0,0) - (0,1,1,1) (0,1,1,1) (0,1,1,1) -
gg(t) (1,0,1,1) (1,0,1,0) (1,0,0,0) — (1,0,1,1) (1,0,1,1) (1,0,1,1) -
g?(t) (1,1,0,1) (1,1,0,0) (0,0,0,0) — (1,1,0,1) (1,1,0,1) (0,0,0,0) —
g4N(t) (1,1,1,0)  (0,0,0,0) (0,0,0,0) — (1,1,1,0) (0,0,0,0) (0,0,0,0) —
ulf(t) 80.000 80.564 81.193 — 80.000 80.564 81.570 —
ug(t) 80.000 80.564 81.193 — 80.000 80.564 81.570 —
ugN(t) 80.000 80.564 81.193 — 80.000 80.564 81.570 —
u4N(t) 80.000 80.561 79.309 - 80.000 80.561 78.745 -
le(t) 2.046 1.877 1.710 — 2.046 1.878 1.710 —
yQN(t) 2.046 1.877 1.710 - 2.046 1.878 1.710 —
yy(zﬁ) 2.046 1.877 1.710 - 2.046 1.878 1.710 -
yf(t) 2.043 1.874 1.710 — 2.042 1.873 1.710 —
clf(t) 100.000 97.183 95.917 96.133 100.000 97.182 94.977  93.417
cgj(t) 100.000 97.183 05.917 96.133 100.000 97.182 94.977 93.417
ca (T . . . . . . . .

gj( ) 100.000 97.183 05.917 96.98%8 100.000 97.182 94.977  95.982
C4N(t) 100.000 97.186 97.801 99.004 100.000 97.186 97.801  99.004
PN(t) 180.000 177.747  177.110 - 180.000 177.747 176.545 -

JN 12103.590 12 280.904

JN 12103.590 12280.904

Jé\f 11602.535 11662.737

Jf 10723.252 10645.829
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Table 2.2. Open-loop Nash equilibrium s* and corresponding profits and unit costs of

firms, as well as current prices in I'}]

gy bilateral interaction unilateral interaction
t t=20 t=1 t=2 t=3 t=20 t=1 t=2 t=3
1 !
N\ v {\,2

g5 3 - 3 -
gi(t) (0,1,1,0) - - - (0,1,1,1) - - -
g;(t) (1,0,1,0) - - - (1,0,1,1) — — —
g3(t)  (1,1,0,0) - - - (1,1,0,1) - - -
gx(t)  (0,0,0,0) - - - (0,0,0,0) - - -
ui (1) 80.000 80.771  81.416 - 80.000 81.181  82.230 -
us(t) 80.000 80.771  81.416 - 80.000 81.181  82.230 -
ui(t) 80.000 80.771  81.416 - 80.000 81.181  82.230 -
wy (1) 80.000 78.711  77.325 - 80.000 78.095  76.102 -
yi(t) 2.047 1.877 1.710 - 2.049 1.879 1.710 -
ys(t) 2.047 1.877 1.710 - 2.049 1.879 1.710 -
y;(t) 2.047 1.877 1.710 - 2.049 1.879 1.710 -
yi(t) 2.036 1.870 1.710 - 2.033 1.868 1.710 -
ci(t)  100.000  98.205 97.010 96.448  100.000  97.182  94.977  93.418
c3(t)  100.000  98.205 97.010  96.448  100.000  97.182 94977  93.418
c3(t)  100.000  98.205 97.010  96.448  100.000  97.182 94977  93.418
ci(t)  100.000  100.266 101.101 102.535  100.000  100.268 101.106 102.540
P*(t) 180.000 178.976 178.426 - 180.000  178.362 177.208 -

A 11973.707 12 466.088

J5 11973.707 12466.088

J3 11403.207 11610.338

Jy 10 454.336 10199.379
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Table 2.3. Open-loop Nash equilibrium s** and corresponding profits and unit costs of

firms, as well as current prices in I}

'G5 bilateral interaction unilateral interaction
t t=0 t=1 t=2 t=3 t=0 t=1 t=2 t=3
1 !
VAN v \2

gy 3 - 3 -
gi*(t) (0,1,1,0) - - - (0,1,1,1) - - -
g;*(t) (1707170) - - - (1,0,1,1) - — —
gg*(t) (171a070) o o o (1717071) o o o
g*(t)  (1,1,1,0) - - - (1,1,1,0) - - -
ui*(t) 80.000 80.564  81.005 - 80.000 80.564  81.005 -
uy*(t) 80.000 80.564  81.005 - 80.000 80.564  81.005 -
ul*(t) 80.000 80.564  81.005 - 80.000 80.564  81.005 -
wy*(t) 80.000 80.564  81.005 - 80.000 80.564  81.005 -
y¥(t) 2.045 1.877 1.710 - 2.045 1.877 1.710 -
y3*(t) 2.045 1.877 1.710 - 2.045 1.877 1.710 -
y3*(t) 2.045 1.877 1.710 - 2.045 1.877 1.710 -
yi¥(t) 2.045 1.877 1.710 - 2.045 1.877 1.710 -
ci*(t)  100.000  97.182 94.976 93.417  100.000  97.182 94.976 93.417
cy*(t)  100.000  97.182 94976 93.417  100.000  97.182 94.976 93.417
ci*(t)  100.000  97.182 94976 93.417  100.000  97.182  94.976 93.417
ci*(t)  100.000  97.182 94976 93.417  100.000  97.182  94.976 93.417
P*(t)  180.000  177.745 175.981 - 180.000  177.745 175.981 -

Ji* 16 648.020 16 648.020

J3* 16 648.020 16 648.020

J3* 16 348.020 16 348.020

Ji 15748.020 15748.020
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Next, we introduce the concept of an upper bound on the interaction cost
that the firm ¢ € A is willing to pay for to interaction with the firm j € N\ {i} at
period t € T\ {T'}. Let us call the upper limit of the allowable communication costs
of a firm ¢ with a firm j in the network structure g(¢) the minimum value of the
communication costs (7,7), starting from which the condition of network interaction
in Nash equilibrium for the firm ¢ in relation to the firm j imposes the choice of
g%\} (t) = 0. For the models considered, the upper bounds of feasible communication
costs (network interaction or just interaction) are set by the values ﬂg(t), T (1)
and 7;7(t). Let us turn to Table 2.4 with the values 7}5(¢) for model T'*".

Table 2.4. The upper limits of feasible costs of interaction in model '™

e bilateral interaction unilateral interaction
t
i\J 1 2 3 4 1 2 3 4
1 0 1162.573 | 1162.573 | 1160.709 0 1163.320 | 1163.320 | 1160.520
0 2 1162.573 0 1162.573 | 1160.709 | 1163.320 0 1163.320 | 1160.520
3 1162.573 | 1162.573 0 1160.709 | 1163.320 | 1163.320 0 1160.520
4 1160.709 | 1160.709 | 1160.709 0 1160.520 | 1160.520 | 1160.520 0
1 0 978.705 | 978.705 | 977.025 0 979.376 | 979.376 | 976.857
1 2 978.705 0 978.705 | 977.025 | 979.376 0 979.376 | 976.857
3 978.705 | 978.705 0 977.025 | 979.376 | 979.376 0 976.857
4 977.025 | 977.025 | 977.025 0 976.857 | 976.857 | 976.857 0
1 0 812.250 | 812.250 | 812.250 0 812.250 | 812.250 | 812.250
2 2 812.250 0 812.250 | 812.250 | 812.250 0 812.250 | 812.250
3 812.250 | 812.250 0 812.250 | 812.250 | 812.250 0 812.250
4 812.250 | 812.250 | 812.250 0 812.250 | 812.250 | 812.250 0

Analyze the data of Tables 2.1 and 2.4 for model '™ with bilateral network
interaction. Since the chosen parameters (g;(t), ai(t), 5i;(t),vij(t)) are common to
firms, then mjj(t) = 7j(t) for all t € T\{T}. The decrease in investment vol-
ume over time according to Table 2.1 implies a decrease in the upper bounds of
feasible network interaction costs at which firms will be interested in interacting.
Then, in the Nash equilibrium, firms ¢ and j establish a relationship in the cur-

rent period if mji(t) > max{m;(t), 7;(t)}. According to the found equilibrium
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sN at time ¢ = 0, links are established between arbitrary pairs of firms. In fact,
even the communication cost of firm 4, which is the highest compared to the other
firms (my;(t) = 1100, j = 1,2,3,¢t = 0,1, 2), does not exceed the minimum commu-
nication cost W%(O) = 1160.709. At t = 1, firms 1, 2, and 3 maintain network
connections with each other, but connections with firm 4 are excluded. This is
due to a change in the upper bound of feasible communication costs for firm 4,
since 7;(0) =977.025, which means my;(1) < m5(0), making firm 4 connections
with other firms unprofitable. Finally, at ¢ = 2 in network g(2), only link (1,2) is
observed, since it becomes unprofitable for firms 3 and 4 to interact: their commu-
nication costs (900 and 1100, respectively) turn out to be above the upper bound of
feasible communication costs, equal to 812,250.

For model I'" with unilateral network interaction of firms, describing the net-
work behavior of firms based on data from Tables 2.1 and 2.4 can be done in the same
way as it was done with bilateral network interaction. However, in this case, the net-
work behavior of firms is more personalized in the sense that, according to the rule of
forming connections in the network, with unilateral interaction, firms may not focus
on the upper limits of feasible interaction costs of competitors when choosing their
direct environment in each network structure. We explain this by going back to Ta-
bles 2.1 and 2.4. let us look at the network structures of Table 2.1 for unilateral net-
work interaction of firms, namely for the following links: for ¢ = 1 links (1, 4), (2, 4),
and (3, 4), and for t = 2 links (1, 3), (1, 4), (2, 3), (2, 4). For example, at t = 1, firm
1 can afford the connection (1,4), since m14(1) = 800 < 976.857 = 71y(1), therefore
chooses ¢g7y(1) = 1, although firm 4 cannot afford the (4, 1) connection in the gN(1)
network structure, so my;(1) = 1100 > 976.857 = 73} (1). At the same time, with
unilateral network interaction, firm 1 receives the effect of 814(1) y}'(1) = 1.873 from
the investments of firm 4 the current period, and with bilateral network interaction,
the effect of firm 1 from the investments of firm 4 will be ~v14(1) y(1) = 0.937.
This ensures an improvement in the competitive position of firm 1 in the market
compared to its competitive position with bilateral interaction of firms.

To evaluate the change in the competitiveness of firms, let us turn to Ta-
ble 2.5. Here we look at the change in the competitiveness of firms in Nash equi-
librium at ¢ = 1,2,3. To do this, we introduce the value Acjj(t) := ¢} (t) — ¢\ (1),

J
which characterizes the competitive advantage of firm ¢ over firm j in the Nash
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equilibrium: if Ac%\;(t) > 0, then ¢ has a competitive advantage over j estimated
by Acjy(t), and if Acjj(t) < 0, then j has a competitive advantage over i es-
timated by |Ac(t)] = Ac(t). Also note for each firm ¢ the value D}(t) =

n
(maj\}[( A (t) — c?(t)) /3> ¢ (t) x 100, which characterizes in percentage terms the
VAS j=1

current competitiveness of firm ¢ relative to all firms in the market.

Table 2.5. The relationship between competitiveness and the competitive position of

firms in the market in equilibrium sV in '™

. ren bilateral interaction unilateral interaction
i || Ach(t)| Aci(t)| Aciy(t)| Acii(t) | Di(t) | Acii(t)| Aciy(t)| Acii(t)| Acii(t)| D (¢)
1 - 0 0 0.003 | 0.001 - 0 0 0.004 | 0.001
11 2 0 - 0 0.003 | 0.001 0 - 0 0.004 | 0.001
3 0 0 - 0.003 | 0.001 0 0 - 0.004 | 0.001
4 | -0.003 | -0.003 | -0.003 - 0.000 | -0.004 | -0.004 | -0.004 - 0.000
1 - 0 0 1.884 | 0.489 - 0 0 2.824 | 0.738
9| 2 0 - 0 1.884 | 0.489 0 - 0 2.824 | 0.738
3 0 0 - 1.884 | 0.489 0 0 - 2.824 | 0.738
4 || -1.884 | -1.884 | -1.884 - 0.000 | -2.824 | -2.824 | -2.824 0 0.000
1 - 0 0.855 | 2.871 | 0.739 - 0 2.565 | 5.587 | 1.463
3] 2 0 - 0.855 | 2.871 | 0.739 0 - 2.565 | 5.587 | 1.463
3 || -0.855 | -0.855 - 2.016 | 0.519 | -2.565 | -2.565 - 3.022 | 0.792
4 || -2.871 | -2.871 | -2.016 - 0.000 | -5.587 | -5.587 | -3.022 - 0.000

From Table 2.5 it can be concluded that the network connections, which exist
for I'™ with unilateral interaction of firms in equilibrium and are not present in a
similar position with bilateral interaction, have a significant impact on the change in
the competitive position of firms in the market. This makes such connections very
valuable, since in the case under consideration there is also a higher competitive
advantage for all firms over firm 4, while firms 1, 2, and 3 can afford high interaction
costs and firm 4 can only afford lower ones.

For the models I'j} and I'g; for the bilateral network interaction of firms, refer-

ring to the Tables 2.2 — 2.3, we conclude that the Nash equilibrium requires firms ¢
T—1 T—1

and j to establish a link at the initial time if 7;; > max { S ptmi(t), D ptwji(t)}
t=0 t=0
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or m;F > max{m;(0), 7;;(0)} respectively. At the same time, the discounted sums
of interaction costs for each firm are 2282.,000, 2282.000, 2567,250, and 3137,750,
respectively. Comparing these values with the data in Table 2.6, we see that it is
impractical for firm 4 to establish links with other firms, while the rest of the firms

establish all links among themselves. And in model I'f3,

since the communication
cost of any firm does not exceed the interaction cost limit equal to 2824.706, at the

initial time, links are established between all pairs of firms.

Table 2.6. The upper limits of feasible costs of interaction in models I'j} and I'j;

bilateral interaction unilateral interaction

i\Jj 1 2 3 4 1 2 3 4

model I'G}

N

0
2826.619
2826.619
2817.107

2826.619
0
2826.619
2817.107

2826.619
2826.619
0
2817.107

2817.107

2817.107

2817.107
0

0
2830.405
2830.405
2816.144

2830.405
0
2830.405
2816.144

2830.405
2830.405
0
2816.144

2816.144

2816.144

2816.144
0

model I'G;

N

0
2824.706
2824.706
2824.706

2824.706
0
2824.706
2824.706

2824.706
2824.706
0
2824.706

2824.706

2824.706

2824.706
0

0
2824.706
2824.706
2824.706

2824.706
0
2824.706
2824.706

2824.706
2824.706
0
2824.706

2824.706

2824.706

2824.706
0

The results of the observations made for model I'** with bilateral and unilateral
network interaction can be transferred to the case of I'fj and I'gy, so they are not
given.

Comparing the results obtained with the bilateral network interaction of firms
for models I'*" (Table 2.1) and I'§} (Table 2.2), we evaluate the advantages and disad-
vantages of short-term and long-term network interactions, respectively, under the
same conditions represented by the input parameters of the models. The following

indicators will be compared:

B The profits of the firms. Long-term interactions reduces the profit of each
firm, while for firms that have connections in long-term interaction (firms 1, 2, 3)

the decrease in profit is about 1%, but for firm 4 a similar decrease in profit is
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about 2.5%. It can be concluded that the profits of firms whose number of network
connections does not depend on the duration of interaction turn out to be less

sensitive to the duration of network interaction.

B The production volume and the price of the product. Since in the con-
sidered models the volume of goods supplied to the market is linearly related to
the current price for units of goods, we evaluate these indicators together. Thus, in
the case of short-term interaction, the firms produce a larger total volume of goods,
which causes a decrease in the price of goods. As a result, each firm produces a
larger volume of goods in short-term interaction with its competitors than in the

long-term case. Note, however, that the situations compared differ by less than 1%.

B The volume of investments. The presence and the number of network con-
nections have a significant impact on the investment behavior of firms. Thus, the
investments of firms 1, 2, and 3 are almost the same for both types of the duration
of network interaction of firms. And for firm 4, which is deprived of network con-
nections in long-term interaction, it turns out to be more profitable to reduce the
volume of its investments, at ¢t = 0 the decrease is y} (0) — y5(0) = 0.007, a at t = 1
we have y(1) — y;(1) = 0.004. At the same time, a slightly larger volume of in-
vestment is implemented by firms that have connections with long-term interaction,
while it is more profitable for firm 4 to reduce the total volume of its investment
in equilibrium. Thus, it can be assumed that the total investment volume of each
firm is influenced more by its network environment than by the duration of the

Interaction.

B The relationship between competitiveness and the competitive position
of firms in the market. According to Table 2.5 it can be noted that in the Nash
equilibrium with unilateral network interaction, firms 1, 2, and 3 have a sharper
increase in their competitive position in the market than in the case of bilateral
interaction. Under these conditions, it is more profitable for these firms if the
network interaction is unilateral. In fact, with bilateral network interaction we have
D;(2) = 0.489, where i = 1,2,3, and with unilateral D;(2) = 0.738, for the next
period, t = 3, we have D;(3) =D(3) =0.739, D5(3) = 0.519, and D;(3) =D(3) =

1.463,D5(3) =0.792. The same cannot be said for firm 4, since its competitiveness
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relative to other firms becomes lower in the unilateral network interaction than in
the bilateral network interaction. Thus, for firm 4, the case of bilateral networking
of firms turns out to be preferable, since in this case the change in the growth of

competitive advantage among other firms is slower.

As a result of the analysis of competition models with endogenous network
formation, the equilibrium network behavior of firms turned out to be similar in
models I'™", 't} and I'gy: a firm will offer a connection to its competitor if the
cost of establishing and maintaining that connection (or the discounted sum of such
costs) does not exceed a certain threshold. Note that in the absence of connection
establishment and maintenance costs m;;(t) = 0 for all 4,7 € M and t € T \ {T'}
firms establish all possible connections in Nash equilibrium, which is true for any
model.

In conclusion, we would like to note that for the considered models with en-
dogenous formation of a permanent network, the obtained Nash equilibria ensure
«stability» of networks over time — no firm over time will be ready to abandon its
existing network connection, nor will it strive to form a connection that is not pre-

scribed to it by the Nash equilibrium.

2.6. Conclusions to Chapter 2

The analysis of competition models with endogenous network formation struc-
ture resulted in obtaining open-loop Nash equilibria. The equilibrium production
and investment behavior of each firm is established, and the conditions under which
the firm is interested in forming a network interaction with certain competitors are
found. Although this chapter analyses three dynamic models with endogenous net-
work formation, where connections can be both bilateral and unilateral, the Nash

equilibria found in them share several similarities.

1. For all models, the structure of the firm’s production and investment behavior
in equilibrium is the same as the corresponding structure in exogenous network

Interaction.

2. The conditions for equilibrium network behavior are similar. A firm engages

in network interaction if the costs of establishing and maintaining it, or the
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discounted amount of such costs, do not exceed a certain threshold, which is

the upper limit of feasible network interaction costs.

3. In a Nash equilibrium where there are no costs for forming and maintaining
connections in the network, firms establish all types of connections. This

applies to each model.

In conclusion, it is worth noting that in models with endogenous formation of
a permanent network structure, the Nash equilibria obtained ensure the stability of
the network interaction structures being formed. Over time, no firm will be willing
to give up any of its existing network connections, and at the same time, it will not
strive to form a connection that was not prescribed by the Nash equilibrium.

The main results of the chapter are published in [28].
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Chapter 3.
Adaptation and application of game theoretic models

to analyze the equilibrium behavior of competing firms

This Chapter analyzes the equilibrium behavior of competing firms in dynam-
ics, taking into account common practical conditions. Models with endogenous for-

mation of network interaction are considered, based on the following assumptions:

1. For each firm i € N we have w;(t) = u; € U; at t € T \ {T}, i.e. the

production volume is constant over time;

2. For each pair of firms ¢ and j € N\ {¢}, and for each time t € T \ {T'}, we
assume that 3;;(t) > 7;;(t) > 0. That is, the network interaction between
firms ensures an increase in their positive impact on each other’s unit costs.
This means that the relationship between the firms can be considered as a

interaction, and the firms themselves ¢ and j are called partners;

3. Firms can implement their investment behavior in two ways, which we will
call variable (risky) — y;(t) € Y;, and constant (cautious) — y;(t) = y; € Y,
att € T\ {T}.

The assumptions presented allow us to move from the game-theoretic models of
the Chapter 2 to practice-oriented models. At the same time, we maintain the
general concept of the models studied and adapt the theoretical results obtained
to the analysis of market competition in conditions close to practice. Indeed, in
practice, the constant volume of production of the firm on a small planning horizon
is natural. In fact, in the economic planning of production, a production plan is
often drawn up and approved, which determines the volume of production of the
firm for a certain period of time. The production plan simplifies the economic
analysis of both the firm’s activities and its sales market. It also allows for effective
management. Often, the production plan of the firm provides for the production of a
constant volume of goods, which is explained both by stabilization and optimization
of attracted and spent resources, for example, the number of working personnel
(human capital). It is also worth noting that the constant volume of production

on the considered planning horizon ensures uniform saturation of the market with



73

goods at a constant cost per unit of goods for the consumer. According to the
considered model concept, such a volume of goods is determined by the value of
> i1 uj, and the price per unit of goods is — the value of P(t) =p —> 7 u; >0,
if p > 2?21 u;j. The second assumption also seems quite natural. Any interaction
always implies interaction under conditions that are formally regulated and legally
formalized. This is the basis for the security and benefits of interaction. The third
assumption allows us to consider two variants of common investment behavior in
practice. We will also be interested in comparing these variants of equilibrium
behavior. A more detailed description and analysis of these types of investment
behavior will be given in Sections 3.1 and 3.2, respectively.

Let us note another feature of this Chapter. The characterization for the equi-
librium behavior of firms will be based on a open-loop information structure. For
each model, the corresponding conditions for the behavior of firms in open-loop
Nash equilibrium are presented. This allows firms to choose their behavior with
a minimum requirement for a set of information needed to make a decision. This
restriction is due to two aspects. First, as shown in the first Chapter 1, the profits
of firms in open-loop and feedback Nash equilibria can be quite close. Second, in
practice it is quite difficult to know the unit costs of competitors at all times. In
most cases, such information is private to each firm and not subject to disclosure.
At the same time, the open-loop information structure allows each firm participat-
ing in the game to build a calendar financial and economic plan that stabilizes its
economic activity and contributes to the organization of effective management with
information that is always available.

Thus, game-theoretic models of dynamic competition with network interactions
between firms, which are the subject of this Chapter, turn out to be quite popular
in practice and, from an economic point of structure, more feasible for the analysis

of real economic processes.

3.1. Analysis of short-term network interactions of competing firms

In the context of a dynamic process, the main interest of endogenous network
interaction is the ability of firms to rewire the network structure at each decision

period. In order to do this adequately, we will stick to scenarios in which firms
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implement their investments at each non-terminal period. At the same time, we
consider two different types of investment behavior — when firms’ investments are

implemented in variable and constant volumes.

3.1.1. Variable investment

According to the assumptions presented at the beginning of this Chapter, each
firm ¢ € N plans for a set of time periods 7 a constant volume of production
u; € Uy, while u = (uy,...,u,) € Uy x ... x U,. We will say that we are consid-
ering a model with constant production and variable (risky) investment, in which
the strategy of the firm ¢ prescribes to it, at each decision period an feasible behav-
ior (g;(t),u;,yi(t)) € G; x U; x Y;. Considering here and further the strategy
of each firm as a function of time — as done in Chapter 2, we get that §; =
= {5i(t) | si(t) = (gi(t), wi, yi(t)), t € T\ {T}} — the set of feasible strategies of
firm i, s = (s1,...,8,) € S1 X ... xS, — strategy profile, y = (y(0),...,y(T — 1)),
y(t) = (ya(t),...,yn(t)) € Yy x ... x Y, at t € T\ {T'}. The evolution of the unit
costs of the firm ¢ with bilateral interaction is described by the equation (2.1), and

its discounted profit given by the following function

T-1 n
t Ei(t) 2
Ji (co, 8,1, y) ; [(p;u]) ui = ci(t)ui — =y () -

— Z mj(t)gij(t)gﬂ(t) + ,OT (771' - UCZ(T)) )
J#i

= 1 — a set of networks of bilateral interaction formed as a result

where g = {g(t)},_
of the 1mp1ementat10n by all firms of their network behavior at appropriate game
periods.

Let us denote the presented dynamic model of competition with endogenous
formation of network interaction of firms with constant production volume and risky
investment behavior by I'®". The open-loop Nash equilibrium for bilateral network

interaction is characterized by the following theorem.

Theorem 3.1. In model I, the open-loop Nash equilibrium is a set of strategies
sN = (sY,...,s)), whose components s (t) = (g (t),ul,yN(t)) fori e N, t £ T
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have the form:

1, my(t) < my(t), mu(t) < wy(t), J#1,

gi(t) = | (32)

0, otherwise,

p= S (i nsm -y @) (Sr)
uy: =0 < jeEN )<T=0 ) ’ (3.3)
n+1

o (8)n(t + 1)

v; (t) p (3.4)
where

) = 0 )0 1) 35)
. —pf(uz-- 5 (o0 + (o ) VAT, -

—p'n, t=T.
The unit cost of ¢ (t) satisfies (2.1) given c; (0) = cip.

Proof. We start by assuming that each firm ¢ chooses the n-dimensional vector z;(t)
as its network behavior with components z;;(¢) € [0,1]. Let 2(t) = (z1(%), ..., zn(1)),
z=(2(0),..., 2(T"—1)); 0; — the strategy of the firm is ¢, and o0 = (01, ...,0,) —
a set of strategies. Then o;(t) = (2;(t), u;, yi(t)). Let us fix the strategies of all firms
except i. To find the best response to these strategies, the firm ¢ must maximize
(3.1) taking into account (2.1).

Introduce the Lagrange function to take this into account

1
—Zpt[< — ¢t Zw)uz Z?TU 2ij ()25 (t) | +
t=0 ]EN J#i
+ pT( —nei(T Z Z Aij(t+ 1) [ ¢j(t + 1) = dc;(t) + oy (t)y; (1) +
t=0 je N

+ 37 (B 0z (O25(8) + 7351 - zjr<t>zrj<t>>)yr<t>] ,

r#j
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where )\Z = ()\2(1), ceey )\Z(T)) when )\z(t) = ()\Zl(t)7 .. ,)\m(t)), t € T\ {0}, — a
set of Lagrange multipliers. The best response of firm ¢ to the fixed strategies of
its competitors is a strategy whose components satisfy the following system (taking

into account the linearity of £; with variables z;;(t)):

: 0, otherwise, ’

u; = %(p—zuj'—z;fcz-(f)- (fo) )

JFi 7=0 T=

yl(t) _ _Ozi(t))\ii(t + 1)’

plei(t)
where ,
—plu; +0Ni(t + 1), j=i, t £T,
Aij(t) = —p"n, j—it=T (3.7)
0, J# 1.

\

Therefore, if o™ is a Nash equilibrium, then s = o™ and g¥ = 2. Thus, the
Nash equilibrium dictates that firms ¢ and j establish a partnership in the current

period t € T \ {T'} while satisfying the inequalities

Pl (8) + Nia(t + 1) (Bi5(8) — 7i5(£))y; (£) < 0 and
prmji(t) + Ag(t + 1)(Ba(t) — v5i())y; () < 0.
From the recurrence relation (3.7), in which ¢;(t) = A;(t) is set in equilibrium, we

get (3.5) and (3.6), which leads to the expressions (3.2), (3.3) and (3.4).

Since the Hessian of the Lagrange function £; is definite negative:

Y P - 3 0 (206) 5 (1)) <

then it remains to conclude that s will be a Nash equilibrium in the model T®*. [

In analyzing the open-loop Nash equilibrium found, we will make two remarks.

First, unlike the model I'*", in which the current production volume was determined
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by the firms’ current unit costs, in the model I with constant production (but
variable investment), the production volume of each firm (3.3) is expressed in terms
of the weighted average cost of the firms on the horizon under consideration (the
weight at the time ¢ is assumed to be equal to pf, i.e. current costs are discounted
at the beginning of the game). And second, the ratio (3.6) in the Nash equilibrium
sets a linear relationship between the current investment level of the firm and its

production volume:

yi (1) =
f=T—1.

Thus, with the values «;(t) and &;(¢) constant over time, the firm’s investment
volume in the Nash equilibrium g (¢) will be a monotonically decreasing function of
time at ul¥ > n(1 — pd). Moreover, the time-invariant parameters 3;;(t) and ~;;(t)
lead to a monotonic decrease of the upper bounds of the allowable costs of network
interaction 3(t) in (3.5), below which firms are willing to interactions. In other
words, the latter means that the number of network partnerships does not increase

over time.

Corollary 3.1 (from Theorem 3.1). Let «;(t) = af(t) and €;(t) = e(t) for any
firm i € N. Then, in the model T, when implementing the Nash equilibrium,
for arbitrary firms i and j € N\ {i} the following three conditions are equivalent:

T-1 N T-1 N

Z_:OPTQ- (7) X_:OPTCJ- (7)

— < == S >ud ey t) >y ), t£T -1
> P 2P
=0 7=0

Proof. According to (3.3), in the Nash equilibrium the difference in production

volumes is equal to the weighted difference in current costs, i.e.

-1 T-1
uf —uf =y p () = (1)) e
7=0 7=0

and the linear ratio is (3.8) allows you to relate the difference in production volumes
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to current investment volumes at a time t € 7 \ {T' — 1,T}:

T—t—2
y¥ () — oY (0) = pn a(—f)) (W — ) 3 (o8
7=0

In addition, we note that equality is valid

yp (T = 1) = y; (T = 1) = pn
0

Similar to what was shown in Section 2.4 for the model T with unilateral
network interaction of firms, it is sufficient to simply change the equation of the
dynamics of unit costs, the functional type of profit of firms, and the conditions
of their network interaction in Nash equilibrium accordingly. In this regard, in this
Chapter we will focus only on the condition of network interaction in open-loop Nash
equilibrium, which we will present as a corollary from the corresponding equilibrium

theorem for bilateral interaction of firms and give without proof.

Corollary 3.2 (from Theorem 3.1). If we assume that the interaction of firms is
one-sided, then the equilibrium behavior of firms in terms of production and in-
vestment behavior is preserved and determined according to (3.3) — (3.4), and the
network behavior of firm i € N in Nash equilibrium takes the following form:

gi(?)
a;(t

0, otherwise,

1, m;t) < (Bij (1) = i () wi (1) 5 (1),

j e N\ {i}.

N—

gy(t) =

3.1.2. Constant investment

Now consider a model in which firms implement their investments in equal
amounts (contributions), i.e. the investment behavior of each firm is constant over
time. The relevance of the model under consideration is due to the approach to
investment activity, the main idea of which is to average the cost of investments
during market fluctuations, which protects investors from significant losses and is
therefore often called constant in practice. Another example of such investment be-

havior is when investments can be understood as sponsoring, for example, a research
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laboratory. In this case, the sponsorship is also often made in equal amounts over a
period of time.

As before, the strategy of the firm i € N is called the function s;(¢), which
prescribes to it a feasible behavior (g;(t),u;, ;) € G; x U; x Y; at each decision
period ¢t € T \ {T'}. Then we redefine the set of strategies of firm i as S; =
{si(t) [ si(t) = (9i(t), ui, ys) ,t € TNAT}}, s = (s1,...,8n) — strategy profile, y =
(Y1, -yyn) € Yy x ... x Y, at t € T \ {T'}. Note that the network behavior of
firms remains tied to a particular period. The evolution of the unit costs of firm ¢

with bilateral interaction is described by the equation

ci(t+1) = dei(t) —ai(t)yi— > (5z'j(t)9z‘j(t)9ﬂ(t)+%j(t)(1—gij(t)gji(t))>yja (3.9)
j#i

where ¢;(0) = ¢;o, and its profit is given by

pt [(p - Zu3>uz — ci(t)ui — 527(75)%2 —

— Z Tij (t)gz] (t)gjl (t)
JF#i

-1

T
Ji(c()7 g, u, y) =
t=0

+p" (i — nei(T)).

Denote the presented dynamic model of competition with endogenous network
formation with constant production volume and constant investment behavior by
I'*". The open-loop Nash equilibrium with bilateral interaction for this model is

characterized by the following theorem.

Theorem 3.2. The open-loop Nash equilibrium for model T is a set of strategies
§=(81,...,8,), whose components §;(t) = (g:(t), u;,y;) fori € N and t # T have
the form.:

Gus(t) = L, mi(t) < 7y(t), mu(t) < 7y(t), j#1,

0, otherwise,

(3.10)

p—fg/f@m De(r) = 3 éjm) ~ (2 PT) h

JEN
n+1

, (3.11)

U; =
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Tf a;(t)gi(t +1)
i = = , (3.12)
t:ZO plei(t)

Rii(t) = 25 Bi(0) = 7 (0) 66, (3.13)

The unit cost of ¢;(t) satisfies (3.9), given ¢;(0) = ¢jo.

Proof. The proof of this theorem largely repeats the steps of the proof of the the-
orem 3.1, so it will be omitted. Note only that since the Hessian of the Lagrange

function L; is negative definite:

2 - Z péi(t Z o (2(@)" +=:(t) (31)° ) <0,

t=0
then it remains to conclude that § will be a open-loop Nash equilibrium in [en, O

The above theorem allows us to make a number of observations. First, the exis-
tence of non-zero Lagrange multipliers guarantees the non-zero investment behavior
of 7; of each firm. Second, in the Nash equilibrium, there is also a linear relationship
between the firm’s investment volume and its production volume, which is expressed

in the following form

T—t-2

pre ( S oy 4 n(pfs)T—f—l) 0i(t) + pTmes(T — 1)

7=0

A~

i ==

(3.14)

T-1
ZO plei(t)

The time invariant parameters a;(t), 5;;(t), vij(t), and &;(t) imply a constant up-
per bound on the allowable cost of network interaction 7;;(¢) in (3.13), which, if

exceeded, will cause firm ¢ to refuse to interaction with firm j. If this is true for all
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pairs of firms, then in Nash equilibrium none of the established partnerships will be
broken over time.

A corollary similar to Collary 3.1, which links the ratios between the weighted
average costs, production volumes, and investments of two firms, is given without

proof.

Corollary 3.3 (from Theorem 3.2). Let o;(t) = o and g,(t) = ¢ for arbitrary firms.
Then, in Nash equilibrium, for any firms 1 and j, the following three conditions are

equivalent:

T-1 T-1

ZO préi(T) ZO pré;(T)

TiT_l < TiT_l S U > ﬂj &Sy > Qj'
2. 2.
7=0 7=0

Here is another corollary that reveals the aspect of unilateral network interac-

tion of firms in Nash equilibrium for the model ren,

Corollary 3.4 (from Theorem 3.2). If we assume that the interaction of firms is
one-sided, then the equilibrium behavior of firms in terms of production and invest-
ment behavior is preserved and determined according to (3.11) - (3.12), and the

network behavior of firm i € N in Nash equilibrium takes the following form:

o gilt) o e o
Gii(t) = b ”w<aﬁ%%ﬁ)vdm%%’jeN\&} (3.15)

0, otherwise,

3.1.3. Numerical simulations of equilibrium behavior for short-term

network interactions

Compare the equilibrium results of modeling in I'®® and I'®*, while evaluating
how much the adaptation of the theoretical model of I'*™ turns out to be feasible
for practical applications in real conditions of market competition. Also compare
and evaluate two variants of investment behavior of firms, which are provided in
practical game models '™ and ren,

As input parameters for presenting the results of numerical simulations of
open-loop Nash equilibrium under the conditions of Theorems 3.1-3.2, we use the

parameters from the Chapter 2 (p. 61). With these data we present the result
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of the modeling: s~ = (g™, u™,yN) or § = (g, 4,9) for models ['*" and [ in Ta-

ble 3.1 — 3.2 respectively. These Tables have a common structure and contain for each
firm ¢ € A its feasible behavior in equilibrium, (gX(¢), ul, > (¢)) and (;(t), @, 9:),
with unilateral and bilateral interaction of firms. The Tables also contain informa-
tion about the current price of the product, PN := p— 27:1 uy or P:= p— Z;‘:l uj,
N(t) and ¢;(t), and their equilibrium profits,
JN = J; (co,gN,uN,yN) and J; = Ji(co, 8,0, 7). For the sake of clarity, the fol-

lowing Tables illustrate the network structures of interaction between firms in an

the current unit costs of the firms, ¢

equilibrium strategy profile, gN(¢) and g(¢). All values in Tables are rounded to
three decimal places.

In addition, we present Tables 3.3 — 3.4, which indicate the upper bounds of
feasible costs of network interaction of firms in models T'°® and T,

According to the data from Tables 3.1 — 3.4, it is possible to explain the network
behavior of firms in equilibrium for the models '™ and T for both unilateral and
bilateral network interaction of firms, similar to what was done in Section 2.5 for
the game-theoretic model I'*"; which is why we omit it here.

Evaluate the results of modeling the Nash equilibrium behavior in the mod-
els " and I'*. As one can see from Tables 2.1 and 3.1, the network structures
are preserved, regardless of their type (bilateral or unilateral). A peculiarity of the
cautious investment behavior of firms is that the upper bounds of the allowable costs
of interaction turn out to be constant over time (see Table 3.4), which seems natu-
ral based on the conditions of network interaction (3.15) and constant investment
volumes in equilibrium, as well as constant network parameters. At the same time,
we note that the total investment volume! of firms changes slightly in the transition

from a variable to a constant production volume (or from '™ to T'®):

e In I'" with bilateral network interaction of firms, we have

2 2 2 2

ST =S ") =Y ) =5.633, D (1) = 5.627,

t=0 t=0 t=0 t=0

and with unilateral network interaction

2 2 2 2
Do) =y (t) = uy(t) =5.634, Y yi(t) = 5.625;
t=0 t=0 t=0 t=0

I Talking about the total investment volume of firms, discounting is not taken into account here and further.
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Table 3.1. Open-loop Nash equilibrium sY and corresponding profits and unit costs of

firms, as well as current prices in the modal I"*".

bilateral interaction unilateral interaction
t t=20 t=1 t=2 t=3 t=20 t=1 t=2 t=3
1 1 1 1 1 1
AT TANERRPARY 4.% 2

g(t) 3 - \z%/ \é z'a/ -
g¥(t) (0,1,1,1) (0,1,1,0) (0,1,0,0) - (0,1,1,1) (0,1,1,1) (0,1,1,1) -
gy () (1,0,1,1)  (1,0,1,0) (1,0,0,0) = (1,0,1,1) (1,0,1,1) (1,0,1,1) -
g () (1,1,0,1) (1,1,0,0) (0,0,0,0) - (1,1,0,1) (1,1,0,1) (0,0,0,0) -
gi(t) (1,1,1,0)  (0,0,0,0) (0,0,0,0) - (1,1,1,0) (0,0,0,0) (0,0,0,0) -

ul 80.564 80.564 80.564 - 80.683 80.683 80.683 -

ud 80.564 80.564 80.564 - 80.683 80.683 80.683 -

uy 80.564 80.564 80.564 - 80.683 80.683 80.683 -

uy 79.969 79.969 79.969 - 79.791 79.791 79.791 -
YN (1) 2.045 1.876 1.710 - 2.045 1.876 1.710 -
Yo (1) 2.045 1.876 1.710 - 2.045 1.876 1.710 -
vy (1) 2.045 1.876 1.710 - 2.045 1.876 1.710 -
yi(t) 2.043 1.875 1.710 - 2.042 1.875 1.710 -
() 100.000 97.188 95.924  96.141  100.000 97.187 94.986  93.426
cN(t)  100.000 97.188 95.924  96.141  100.000 97.187 94.986  93.426
Y (t)  100.000 97.188 95.924  96.996  100.000 97.187 94.986  95.991
' (t)  100.000 97.189 97.803  99.007  100.000 97.189 97.804  99.007

PN 178.338  178.338  178.338 - 177.980 177.980 177.980 -

JN 12099.364 12276.380

JN 12099.364 12276.380

JN 11598.308 11658.213

JN 10717.991 10638.375
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Table 3.2. Open-loop Nash equilibrium $§ and corresponding profits and unit costs of

firms, as well as current prices in the model [en

bilateral interaction unilateral interaction
t t=20 t=1 t=2 t=3 t=20 t=1 t=2 t=3
i i 1 1 1 1
! ' ! D Do Do

g(t) - 3 3 3 -
gi1(t) (0,1,1,0) (0,1,1,0) (0,1,1,0) - (0,1,1,1) (0,1,1,1) (0,1,1,1) -
go(t) (1,0,1,0) (1,0,1,0) (1,0,1,0) - (1,0,1,1) (1,0,1,1) (1,0,1,1) -
gs(t) (1,1,0,0) (1,1,0,0) (1,1,0,0) - (1,1,0,1) (1,1,0,1) (1,1,0,1) -
gs(t) (1,1,1,0)  (0,0,0,0) (0,0,0,0) — (0,0,0,0) (0,0,0,0) (0,0,0,0) -

U 80.589 80.589 80.589 - 80.961 80.961 80.961 —

Us 80.589 80.589 80.589 - 80.961 80.961 80.961 —

U3 80.589 80.589 80.589 - 80.961 80.961 80.961 -

Uy 78.725 78.725 78.725 — 78.166 78.166 78.166 —

U1 1.883 1.883 1.883 — 1.883 1.883 1.883 -

Uo 1.883 1.883 1.883 - 1.883 1.883 1.883 -

U3 1.883 1.883 1.883 — 1.883 1.883 1.883 —

Ua 1.879 1.879 1.879 - 1.878 1.878 1.878 —
¢ (t 100.000 98.906 97.736 96.484 100.000 97.965 95.788 93.458

)
) 100.000 98.906 97.736 96.484 100.000 97.965 95.788 93.458
)
)

é5(1)  100.000  98.906  97.736  96.484  100.000 97.965 95.788  93.458
&) 100.000  100.793  101.642 102.550  100.000  100.794  101.644  102.553
P 179.508  179.508  179.508 . 178.951 178.951 178.951 -
Jy 11921.435 12401.633

J 11921.435 12401.633

Js 11350.935 11 545.883

Jy 10 454.836 10207.999
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Table 3.3. The upper limits of feasible costs of interaction in the model T'*"

[en bilateral interaction unilateral interaction
t
i\Jj 1 2 3 4 1 2 3 4
1 0 1161.331 | 1161.331 | 1160.166 0 1161.797 | 1161.797 | 1160.049
0 2 1161.331 0 1161.331 | 1160.166 | 1161.797 0 1161.797 | 1160.049
3 1161.331 | 1161.331 0 1160.166 | 1161.797 | 1161.797 0 1160.049
4 1160.166 | 1160.166 | 1160.166 0 1160.049 | 1160.049 | 1160.049 0
1 0 977.583 | 977.583 | 977.053 0 977.795 | 977.795 | 977.000
1 2 977.583 0 977.583 | 977.053 | 977.795 0 977.795 | 977.000
3 977.583 | 977.583 0 977.053 | 977.795 | 977.795 0 977.000
4 977.053 | 977.053 | 977.053 0 977.000 | 977.000 | 977.000 0
1 0 812.250 | 812.250 | 812.250 0 812.250 | 812.250 | 812.250
2 2 812.250 0 812.250 | 812.250 | 812.250 0 812.250 | 812.250
3 812.250 | 812.250 0 812.250 | 812.250 | 812.250 0 812.250
4 812.250 | 812.250 | 812.250 0 812.250 | 812.250 | 812.250 0
Table 3.4. The upper limits of feasible costs of interaction in the model [en
[en bilateral interaction unilateral interaction
t
i\Jj 1 2 3 4 1 2 3 4
1 0 084.555 | 984.555 | 982.821 0 985.247 | 985.247 | 982.647
0,1,2 2 984.555 0 984.555 | 982.821 | 985.247 0 085.247 | 982.647
3 984.555 | 984.555 0 982.821 | 985.247 | 985.247 0 082.647
4 082.821 | 982.821 | 982.821 0 0982.647 | 982.647 | 982.647 0

e In '™ with bilateral network interaction of firms, we have

2
t=0

2

IAOCEDIIAC

t=0

and with unilateral network interaction

2
t=0

2

IRAOEDIIAC

t=0

> ()

H
Il
=
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At the same time, the change in the competitive position of firms in the market
over time (D;(t),t = 1,2,3) will be more pronounced in ['*® (Table 2.5) than in [
(presented on page 87).

It is also worth noting that the results of the analysis based on the numerical
simulation of the equilibrium in I"®" remain valid for the model I'®* and are therefore
omitted. However, it is noteworthy in this example that the equilibrium profits of
firms (as well as the total volume of goods produced) obtained for the models I""
and I'® turn out to be close enough. In fact, we estimate the relative change in the
equilibrium profit of firms as a percentage during their transition from a variable to a
constant volume of production. Using data from Tables 2.1 and 3.2 for this purpose,
we conclude: for firms 1 and 2, the decrease in profit will be 0.035%, for firm 3,
the decrease in profit will be 0.036 %, and for firm 4, the decrease in profit will be
0.049 % — with bilateral interaction. If the interaction of the firms is assumed to
be unilateral, then the decrease in equilibrium profit for all firms is not much larger
— for firms 1 and 2 by 0.037%, for firm 3 by 0.039 %, and for firm 4 by 0.070 %.
Such a small decrease in equilibrium profit (less than one percent) indicates, on the
one hand, that the theoretical results obtained in Chapters 1-2 are quite feasible in
practice and confirms the rationality of choosing a constant volume of production
in the behavior of producers of goods.

To compare the possibilities of investment behavior of firms, we go to the results
of equilibrium modeling for the models T'®® and Ten, According to the fact that for
constant investments the upper bounds of the allowable costs of interaction between
firms are constant and at the beginning of the period lower than the corresponding
bounds for risky investments — we conclude from Table 3.3 and 3.4, then for firm 4,
in the condition of bilateral interaction, we have m4;(0) = 1100 > 982.821 = 74;(0),
for j = 1,2 and 3. In the condition of unilateral interaction, the strategy profile
is similar, since my;(0) = 1100 > 982.647 = 74;(0). Therefore, regardless of the
type of interaction in the model I:’en, firm 4 has no partners. And for ¢ = 2 with
unilateral interaction for the firm 3, we have m3;(2) < min {3;(2), 734(2)}, j = 1, 2,
which allows it to interact with all firms. Thus, the type of investment behavior
can affect firms’ partnerships in different ways, despite the fact that in ' and fen,

firms’ total investment volumes are quite close:
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e In I with bilateral network interaction of firms, we have

S =D at) =Y Gs(t) =5.649, > gult) = 5.634

t=0 t=0 t=0 t=0

Let us move on to assessing changes in the competitiveness of firms, for which we will
~ n
create a Table 3.5, where D;(t) := (m%( ¢i(t) — c}(t)) /> ¢(t) x 100, t=1,2,3.
JE€ j=1

It is interesting to note that as firms become more cautious in their investment
behavior, the change in their competitive position on the market becomes more
pronounced. One can check this by comparing the data in Table 3.5 and the following
indicators in the equilibrium of the model '™
with bilateral interaction DY(1) = DY (1) = DY(1) = 0.0003, DY(2) = DY (2) =
= DY(2) = 0.487, DY (3) = DY(3) = 0.738, DY(3) = 0.518, DY(t) = 0 — for each
t, since firm 4 had the highest unit cost at each period; in the case of unilateral
interaction of firms, we have DY (1) = DY(1) = D} (1) = 0.0005, DY (2) = DY(2) =
= DY (2) = 0.736, DY(3) = DY(3) = 1.462, DY (3) = 0.790, DY (t) = 0.

Thus, it can be concluded that the change in the competitive position of firms in
the market is faster with cautious investment behavior. At the same time, bilateral
network interaction with risky investment behavior of firms provides the lowest rate

of change of competitive position of firms in equilibrium.
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Table 3.5. The relationship between competitiveness and the competitive position of

firms in the market, with their equilibrium behavior in the model [en

[en bilateral interaction unilateral interaction
t
i || Aea(t)| Aen(t)| Aeis(t)| Aeia(t)] Dit) | Aén(t)| Aéin(t)| Acis(t)| Acu(t)| Di(t)
1 - 0 0 1.887 | 0.475 - 0 0 2.829 | 0.717
) 2 0 - 0 1.887 | 0.475 0 - 0 2.829 | 0.717
3 0 0 - 1.887 | 0.475 0 0 - 2.829 | 0.717
4 || -1.887 | -1.887 | -1.887 - 0.000 | -2.829 | -2.829 | -2.829 - 0.000
1 - 0 0 3.906 | 0.989 - 0 0 5.856 | 1.505
5 2 0 - 0 3.906 | 0.989 0 - 0 5.856 | 1.505
3 0 0 - 3.906 | 0.989 0 0 - 5.856 | 1.505
4 || -3.906 | -3.906 | -3.906 - 0.000 | -5.856 | -5.856 | -5.856 0 0.000
1 - 0 0 6.066 | 1.547 - 0 0 9.095 | 2.375
5 2 0 - 0 6.066 | 1.547 0 - 0 9.095 | 2.375
3 0 0 - 6.066 | 1.547 0 0 - 9.095 | 2.375
4 || -6.066 | -6.066 | -6.066 - 0.000 | -9.095 | -9.095 | -9.095 - 0.000

3.2. Analysis of long-term network interactions of competing firms

Let us move on to dynamic models in which firms enter into long-term network
interaction, forming a network structure of interaction once and for all at ¢ = 0.
Following the notation used in Chapter 2, we denote such a structure as g(0) = go.
In the thesis, the equilibrium behavior of firms is of interest, and its comparison
with the equilibrium behavior in short-term interaction and with the results obtained
for the models I'g} (Subsection 2.3.1), I'gy (Subsection 2.3.2).

3.2.1. Variable investment

We start with a model in which firms implement variable investment volumes
or risky investment behavior. By the strategy of the firm ¢ € A we will understand a
function that prescribes to it, am each decision period, t € T \ {1’} feasible behavior
of the form
(gl(o)a Uy, yl(())) € GZ X UZ X Yia t= 07

si(t) = (3.16)
(ui, yi(t)) € U; x Y, teT\{0,T}.
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The change in the unit cost of firm 4 is described by the equation (2.9), at ¢;(0) = ¢,
and its profit under the network structure of bilateral long-term interaction g, which

is formed at the initial time, is given by

Ji (o, 8o, u, y) Zp [(p — Z%) u; — ¢i(t)u; — siéﬂyf(t)—

= > mi(095(0)g;i(0) | + p" (i = nei(T)).
JF#i
where y = (y(0),...,y(T — 1)) and y(t) = (y1(t),...,ya(t)), t € T\ {T}.
Let us denote the presented dynamic model of competition with endogenous
formation of long-term network interaction with constant production volume and
risky investment behavior by T'S". The open-loop Nash equilibrium is characterized

by the following theorem.

Theorem 3.3. The open-loop Nash equilibrium for the model T is a set of strate-
gies s* = (s3,...,s%), whose components satisfy (3.16) fori € N, t # T and have
the form.:
o .=y v :
71(0) = 1, ;} pimij(t) <), ;} pmi(t) <7, J€ N {i}, (317)
0, otherwise,

p— Til o7 ((n + D) — 3 C§(7)> . (Tz—:l pT> -1

* 7=0 jEN ~
" n+1 : (3.18)
* i)t +1)
where
SPE0
7rz>'kj (t) = o ozl-(t) (Bij(t) —vij(t)) yi (1) y}‘f(t)’
=0
sty =4 " (“ 2 () +mp) ) t AT,
A t="T.

The unit cost of ci(t) satisfies (2.9) given ¢ (0) = cjo.
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Proof. The methodology of proving this theorem largely repeats the steps of proving
Theorem 2.2, so it is omitted. []

Note the validity of the functional dependence (3.8) by replacing 2 (t) with y}(t) in
it, and the corollary 3.1 is also in equilibrium for the model T'§". Next, we consider
the condition of network interaction in equilibrium with unilateral interaction in the

network g.

Corollary 3.5 (from Theorem 3.3). If we assume that the interaction of firms is
one-sided, then the equilibrium behavior of firms in terms of production and invest-
ment behavior is preserved and determined according to (3.18) — (3.19), and the

network behavior of firm i € N in Nash equilibrium takes the following form:

= b El) oy (1)
5(0) = 1, Z%p Z!7(1k)<lg)poﬁ(t)(ﬁw(t) %i(1)) yi (8) y; (1), JeN\ i),

0, otherwise,

3.2.2. Constant investment

Let us move on to a model in which firms implement a constant volume of
investments or a constant investment behavior. By the strategy of the firm ¢ € N
we will understand a function that prescribes to it in an unambiguous way mt each
decision period t € T \ {1} feasible behavior of the form

Z‘O,Ui,i EGZ'XUZ'XYZ', tZO,
si(t) = (9i(0), wi, yi) (3.20)
(wi, yi) e U; x Y;, teT\{0,T}.

The change in the unit cost of firm ¢ is described by the equation

1) = Belt) — i
B Z (ﬁij(t)gij(o)gji(o) +7i5(6)(1 = gij(o)gji(o))>yj, (3.21)

JFi
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at ¢;(0) = ¢, and its profit under the network structure of bilateral long-term

interaction g, which is formed at the initial time, is given by

T—1 n
. t Ei(t) 2
Ji (co, 80, 1, y) = tz;p [(p— Z;uj> L
fr— j:

= D mi(0gi5(0)g;:(0) | + o (i = nei(T))
JFi
where y = (y1,...,9yn) € Yy X ... x Y, for each t € T \ {T'}. Note that the costs
of network interaction of firms in gy are time-bound.
Denote the presented dynamic model of competition with endogenous forma-
tion of long-term network interaction with constant production volume and cautious
investment behavior by I:‘SD. The open-loop Nash equilibrium for this model is char-

acterized by the following theorem.

Theorem 3.4. The open-loop Nash equilibrium for the model I:’SH s a set of strate-
gies s = (s7*,..., s*) whose components satisfy (3.20) fori € N, t # T and have

n
the form.:

T-1 T-1
1, z% plmii(t) < mit, 20 plri(t) <7, § e N\ {i},
t: t:

g1:(0) = (3.22)
0, otherwise,
T—1 T-1 -1
p- = (e - £ om) ()
= — e = . (3.23)
n+1
T-1
;%@Aﬂ@ﬁ+¢)
Y= : (3.24)
> plei(t)
t=0
where
T-1 E(t)
i (1) = 2 P O;Z_ 0 (B3 () — 7 () yi" v; ™
T—t—1
(X 0 ). AT,
gbz(t) = 7=0

—pn, t=T.
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The unit cost of ¢;*(t) satisfies (3.21) given ¢*(0) = ¢;o.

Proof. The methodology of proving this theorem largely repeats the steps of proving
Theorem 2.2, so it is omitted. []

Note the validity of the functional dependence (3.14) replacing g; by y* and the
corollary 3.1. Let us move on to the condition of network interaction in equilibrium

with one-way interaction in g.

Corollary 3.6 (from Theorem 3.4). If we assume that the interaction of firms is
one-sided, then the equilibrium behavior of firms in terms of production and invest-
ment behavior is preserved and determined according to (3.23) — (3.24), and the

network behavior of firm i € N in Nash equilibrium takes the following form:

N Gl oo ok
0) = Lo X omilt) < X 0o (Bult) — () it v SN\ L),

0, otherwise,

3.2.3. Numerical simulations of equilibrium behavior for long-term

network interactions

Move on to the numerical simulations of the Nash equilibrium defined by the
conditions of Theorems 3.3-3.4 for the models T$" and fgn, respectively. The in-
put parameters of the simulation remain the same (page 61). In this Section, we
are interested in comparing the results of modeling the practical model I'$* with
the theoretical model I'f" in terms of costs aimed at forming and maintaining net-
work interaction (Subsection 2.3.1 and Section 2.4), as well as in comparing the data
in equilibria for two types of investment behavior of firms.

Let us present the simulation results in Tables 3.6 — 3.7, which have a structure
already familiar to the reader and contain the main emphasis on the feasible behavior
of firms in a Nash equilibrium strategy profile. In addition, we will provide Table 3.8
showing the upper bounds of the feasible costs of interaction of firms in equilibrium
for the models T'$" and :Sn, respectively. All simulation results are rounded to the
third decimal place as before.

According to the data from Tables 3.6 — 3.8, it is possible to explain the network

behavior of firms in equilibrium for the models T'§" and fgﬂ for both unilateral and
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Table 3.6. The Nash equilibrium s* and the corresponding profits and unit costs of the

firms, as well as the market price in the model T'¢"

bilateral interaction unilateral interaction
t t=20 t=1 t=2 t=3 t=20 t=1 t=2 t=3
1 1
L | \o W \2

=4 3 - 3
g7 (0) (0,1,1,0) - - — (0,1,1,1) - - —
g;(O) (170a1a0) - - - (1,0,1,1) — — —
g5(0) (1,1,0,0) — - - (1,1,0,1) - - -
g:(0) (0,0,0,0) - - - (0,0,0,0) - - -

uj 80.703 R0.703  80.703 — 81.097 1.097 81.097 —

ud 80.703 80.703  80.703 - 81.097 81.097  81.097 -

us 80.703 80.703  80.703 - 81.097 81.097  81.097 -

uy 78.728 7R.728  T8.728 - 78.137 78.137  78.137 -
yi(t) 2.045 1.876 1.710 - 2.047 1.877 1.710 -
ya(t) 2.045 1.876 1.710 - 2.047 1.877 1.710 -
Y3 (1) 2.045 1.876 1.710 — 2.047 1.877 1.710 —
yi(t) 2.038 1.873 1.710 - 2.036 1.872 1.710 —
ci(t) 100.000 98.209 97.018  96.456 100.000 97.187 94986  93.427
cs(t) 100.000 08.209 97.018 96.456 100.000 97.187 94986  93.427
ci(t) 100.000 08.209 97.018 96.456 100.000 97.187 94986  93.427
ci(t) 100.000 100.263 101.096 102.530 100.000 100.265 101.099 102.533

P* 179.163 179.163 179.163 - 178.575 178.575 178.575 -

J7 11969.791 12462.514

J3 11969.791 12462.514

J3 11 399.294 11606.765

Ji 10448.161 10187.284
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Table 3.7. The Nash equilibrium s** and the corresponding profits and unit costs of

the firms, as well as the market price in the model 1:“8“

bilateral interaction unilateral interaction
t t=20 t=1 t=2 t=3 t=20 t=1 t=2 t=3
1 1
4, 2 4./%\.2
gy 3 - 3
gf*(()) (0717170) o o o (Ovlalal) o o o
937(0) (1,0,1,0) - - - (1,0,1,1) - - —
95°(0)  (1,1,0,0) - ~ - (1,1,0,1) - - -
g:7(0) (0,0,0,0) - - - (0,0,0,0) - - -
ui* 80.589 80.589  80.589 — 80.961 80.961  80.961 -
us* 80.589 80.589  80.589 — 80.961 80.961  80.961 —
(e 80.589 80.589  80.589 - 80.961 80.961  80.961 —
uy 78.725 78.725  78.725 — 78.166 78.166  78.166 —
Y 1.883 1.883 1.883 — 1.883 1.883 1.883 —
(. 1.883 1.883 1.883 — 1.883 1.883 1.883 —
(. 1.883 1.883 1.883 - 1.883 1.883 1.883 -
ys* 1.879 1.879 1.879 — 1.878 1.878 1.878 —
car(t 100.000 98.906 97.736  96.484 100.000 97.965 95.788  93.458

)
) 100.000 98.906 97.736  96.484 100.000  97.965  95.788  93.458
)
)

c3" (T 100.000 98.906 97.736  96.484 100.000 97.965 95.788  93.458
cyt (T 100.000  100.793 101.642 102.550  100.000  100.794 101.644 102.553
P 179.508  179.508 179.508 - 178.951  178.951 178.951 -
Ji 11921.435 12401.633

J3* 11921.435 12401.633

J3* 11350.935 11545.883

Ji* 10454.836 10207.999
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The upper limits of feasible costs of interaction in I'{* and f“gn

bilateral interaction unilateral interaction

2

3

4

2

3

model T

N

0
2823.869
2823.869
2818.329

2823.869
0
2823.869
2818.329

2823.869
2823.869
0
2818.329

2818.329

2818.329

2818.329
0

2826.078
2826.078
2817.771

2826.078
0
2826.078
2817.771

2826.078
2826.078
0
2817.771

2817.771

2817.771

2817.771
0

model T

en

0

N

0
2808.443
2808.443
2803.498

2808.443
0
2808.443
2803.498

2808.443
2808.443
0
2803.498

2803.498

2803.498

2803.498
0

0
2810.418
2810.418
2803.001

2810.418
0
2810.418
2803.001

2810.418
2810.418
0
2803.001

2803.001

2803.001

2803.001
0

bilateral network interaction of firms, similar to what was done in Section 2.5 for

en

the game-theoretic model I'g},

which is why we omit it here.

Evaluate the results obtained by modeling equilibria in the models 'S} and T'¢".
As you can see from Tables 2.2 and 3.6, the network structures of interaction, regard-
less of its type (bilateral or unilateral), are preserved. Note that the total investment
of the firms changes slightly during the transition from a variable production volume

to a constant (in this case, from the model TS to TE):

e In I'g} with bilateral network interaction of firms, we have

and with unilateral network interaction

2 2 2 2
S yit) =) wst)=> yi(t) =5.638, Y yi(t) =5.611;
t=0 t=0 t=0

t=0

e In ['$* with bilateral network interaction of firms, we have

> i) = 5.621,
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and with unilateral network interaction

2 2 2

STuit) = ust) = wit) = 5634, Y yi(t) =5.618.

At the same time, the change in the competitive position of firms in the market over

time will be more noticeable in the model 't than in T, which is easy to verify.

We also note that the results of the analysis based on the numerical simulations for
e remain valid for the model T'$", in which they are omitted.

[t is noteworthy in this example that the profits of the firms (as well as the
total volume of goods produced) in equilibrium for the models TS and TS with
general simulations parameters, they turn out to be quite close. This can be easily
verified by referring to Tables 2.2 and 3.6 and concluding that the change in profit
is less than 1%. This allows us to conclude that the theoretical results obtained in
Chapters 1-2, while maintaining the conceptual assumptions, turn out to be quite
feasible for analyzing the behavior of competing firms in real conditions.

To compare the types of investment behavior, we look at the results of equilib-
rium simulations for the ['§" and I:‘SH. Despite the fact that the upper bounds of the
allowable costs of interaction in Table 3.8 are different for the models, the network
structure is preserved both with unilateral and bilateral network interaction. Thus,
it can be concluded that the type of investment behavior in long-term interaction
does not affect the partnerships of firms in the examples considered.

Referring to Tables 3.6 and 3.7, it is easy to make sure that the total investment
of the firms in models T'{* and fgﬂ are also close, therefore we will immediately
proceed to the assessment of the changes in the competitive position of the firms
in the market with their equilibrium behavior, for which we will use the data in
Table 3.9.

Analyzing the data in Table, we can conclude that, unlike the short-term inter-
action, the change in the competitive position of firms in the market occurs faster
with risky investment behavior and unilateral interaction. At the same time, the
lowest rate of change in the competitive position of firms is observed with cautious

investment behavior and bilateral interaction.
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Table 3.9. The relationship between competitiveness and the competitive position of

firms in the market, with their equilibrium behavior in models " and fgﬂ.

bilateral interaction unilateral interaction
¢ model Tg
[ Acjy (t) Ac;}(t) Acfs(t) Ac;f‘4(t) D; (t) Acjy (t) AC:Q(t) AC;‘k:s(t) Acjy (t) D (t)
1 - 0 0 2.054 | 0.520 - 0 0 3.078 | 0.784
1 2 0 - 0 2.054 | 0.520 0 - 0 3.078 | 0.784
3 0 0 - 2.054 | 0.520 0 0 - 3.078 | 0.784
4 || -2.054 | -2.054 | -2.054 - 0.000 | -3.078 | -3.078 | -3.078 - 0.000
1 - 0 0 4.078 | 1.040 - 0 0 6.113 | 1.583
5 2 0 - 0 4.078 | 1.040 0 - 0 6.113 | 1.583
3 0 0 - 4.078 | 1.040 0 0 - 6.113 | 1.583
4 || -4.078 | -4.078 | -4.078 - 0.000 | -6.113 | -6.113 | -6.113 0 0.000
1 - 0 0 6.074 | 1.550 - 0 0 9.106 | 2.379
5 2 0 - 0 6.074 | 1.550 0 - 0 9.106 | 2.379
3 0 0 - 6.074 | 1.550 0 0 - 9.106 | 2.379
4 | -6.074 | -6.074 | -6.074 - 0.000 | -9.106 | -9.106 | -9.106 - 0.000
model fgn
i || AT ()] Ay ()] Aciz(t)] Acii(t)| Dy*(t) | Aci(t)] Aciy (1) Aciz(t)] Acii(t)] Dy~ (t)
1 - 0 0 1.887 | 0.475 - 0 0 2.829 | 0.717
] 2 0 - 0 1.887 | 0.475 0 - 0 2.829 | 0.717
3 0 0 - 1.887 | 0.475 0 0 - 2.829 | 0.717
4 || -1.887 | -1.887 | -1.887 - 0.000 | -2.829 | -2.829 | -2.829 - 0.000
1 - 0 0 3.906 | 0.989 - 0 0 5.856 | 1.505
5 2 0 - 0 3.906 | 0.989 0 - 0 5.856 | 1.505
3 0 0 - 3.906 | 0.989 0 0 - 5.856 | 1.505
4 1 -3.906 | -3.906 | -3.906 - 0.000 | -5.856 | -5.856 | -5.856 0 0.000
1 - 0 0 6.066 | 1.547 - 0 0 9.095 | 2.375
3 2 0 - 0 6.066 | 1.547 0 - 0 9.095 | 2.375
3 0 0 - 6.066 | 1.547 0 0 - 9.095 | 2.375
4 || -6.066 | -6.066 | -6.066 - 0.000 | -9.095 | -9.095 | -9.095 - 0.000

3.3. Comparative analysis of types of network interactions and some

patterns of equilibria for models with constant output

In this Section we will focus on comparing the equilibrium behavior of firms
and its performance (profit and competitiveness) for different duration of network

Interaction.
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B Network behavior. The conditions of bilateral network interaction of firms
in equilibrium, described in (3.2), (3.10), (3.17) and (3.22), have a common struc-
ture: firm ¢ offers interaction to firm j if her cost of interaction associated with
this connection in the network structure does not exceed a certain amount, which
depends on the volume of her investments. In the case of unilateral network inter-
action, the relevant conditions have a similar structure. Moreover, in the case of
unilateral interaction of firms, the number of links in the equilibrium network is not
less than in the corresponding network with bilateral interaction, and at the same
time the upper limits of feasible costs turn out to be very close within the same
type of investment behavior of firms. For time-independent values «;(t) and &;(t),

the volume of investment yX(¢) of firm ¢ in Nash equilibrium is a monotonically
N

decreasing function of time at u; > n(1 — pd). Moreover, the time-independent

parameters (3;;(¢) and ;;(¢) lead to a monotonous decrease of the upper bounds
of the allowable costs of network interaction 7j;(t) in (3.5), below which firms are
willing to form partnerships (collaborate). In other words, the latter means that the

number of such links in the network does not increase over time.

B Production behavior. With a constant production plan, the quantities of
goods produced by each firm differ slightly when comparing the equilibrium behavior

of firms in models T'**, fen, o, fgn. At the same time, in equilibrium, these models

share a common feature, which we formulate in the form of the following remark.

Remark 3.1 (equilibrium production behavior). The production behavior of firms
n equilibrium has the same functional structure that does not depend on the duration

of their network interaction and their investment behavior — cautious or risky.

This remark is based on the expressions (3.3), (3.11), (3.18) and (3.23) of the equi-

librium production behavior of firms in the compared models.

B Investment behavior. In this chapter, two types of the investment behavior of
firms in equilibrium (risky and cautious) have been considered. At the same time,
as follows from Theorems 3.1- 3.4, within the same type of investment behavior
of firms, the investment volumes have the same functional expression. With risky
investment behavior, this follows from (3.4) and (3.19), and with caution — from
(3.12) and (3.24). In addition, all four models T, Te®, T¢" T regarding the

investment behavior of firms can be combined with the following remark.
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Remark 3.2 (on equilibrium production and investment behavior). Regardless of
the type of the firms’ investment behavior, the duration and type of network interac-
tion, in the Nash equilibrium there is a linear relationship between the firm’s current

level of investment and its output.

This remark is based on the equivalences (3.8) and (3.14), which, as already noted,
retain their functional expression within the same type of investment behavior of
firms. Note also that in Chapter 1 the proposition 1.1 was presented which, assuming
the time-independent of network parameters, also allows us to prove the observation
that the firm with the lowest unit cost in open-loop Nash equilibrium strategies
produces more goods and invests more funds than the firm that has higher unit
costs. For all models, this follows from the Corollary 3.1, which, as noted earlier,

can be concluded with respect to any of the models T, I:‘en, o, Iz‘gn.

B Equilibrium profits and changes in the competitive position of firms
in the market. With unilateral network interaction, in all the examples in this
chapter, it is clear that some firms have the opportunity to obtain higher profits
compared to profits with bilateral interaction in the corresponding model. However,
the rate of change in the competitive position of firms in the market, according
to the conclusions in Subsections 3.1.3 and 3.2.3, depends on the type of network
interaction. Thus, in the case of short-term interaction, the largest changes are
observed in the case of unilateral interaction and cautious investment, and in the case
of long-term interaction — in the case of bilateral interaction and risky investment
of firms. Comparing Tables 3.2 and 3.7, we conclude that with careful investment,
the duration of interaction may not be fundamental, but from Tables 3.1 and 3.6,
that with risky investment, long-term interaction is preferable for most firms — in

terms of the rate of change in competitiveness.

3.4. A one-time investment model

In the models considered, the mutually beneficial network interaction of even
one pair of firms makes other firms interested in network interaction and the imple-
mentation of non-zero investments. In the final part of the thesis, we will consider a
model in which firms implement their investment behavior once, in the initial period,

and choose a one-time investment volume. We assume that in this case firms make
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a one-time decision about their willingness to collaborate with other firms, bear
one-time costs of interaction in the established network, and also have a one-time
effect on the investment behavior of all firms. Thus, the feasible behavior of firm
i € N in the initial period will be a triple s;(0) = (¢:(0),u;,4:(0)) € G; x U; x Y;
and s;(t) = u; € U; at all subsequent times ¢ # T'. This allows us to describe the

dynamics of the unit cost of firm ¢ by the equation
dcio—ai(0)y(0)— ;( 7(0)i; (0 )gji(0)+%‘j(1—gz‘j(O)gﬂ(O))) y;(0), t =0,
— JF1

dc(t), t ¢ 40,7},

ci(t) = ' [ e — ai(0)yi(0)-

= > (81(0)g:5(0)g51(0) + 745(0) (1 = 955(0)5:(0)) )35 (0)], (3.25)

J7i

where ¢;(0) = ¢;0 and ¢ # 0, and the firm’s profit is given by the following expression

T 9. u.0) = 36 (p = eit) = 3 Y = A2 3,0
t=0 jeEN
= > m;(0)9i(0)g;i(0) + p" (i — mei(T)).
i

Denote this dynamic model of competition with endogenous network forma-
tion of constant production volume and one-time investment of firms by fgn. The

open-loop Nash equilibrium with bilateral interaction of firms for this model is char-

acterized by the following theorem.

Theorem 3.5. The Nash equilibrium in the fgn model is a set of strategies 5§ =

(51,...,8,), whose components are

(9:(0), i, 9:(0)), t=0,
U, l §é {OaT}a

si(t) =
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fori e N, have form:

1, m;(0) <7, mii(0) < Tisy g # 4,
§,;(0) = ;(0) j» mi(0) jiv J 7 (3.26)
0, otherwise,

p- £ 7 (4 Va0 - T 500)) (zp)

iy = — n+j1€N = o 3.27)
~ . pa;(0) ~
30) = 2 (5 ) o)) (329)

where

Fi = %(WO) —145(0) :(0) 35(0).

The current unit cost of ¢;(t) is determined according to (3.25),

Proof. First, we assume that each firm ¢ chooses as its network behavior, instead of
a set of ¢;(0), an n-dimensional vector z;(0) with components z;;(0) € [0, 1]. Let
2(0) = (21(0), ..., 2,(0)); o; — the strategy of the firm i, and o = (01,...,0,) — a
set of strategies. The best response of firm ¢ to the fixed strategies of its competitors

is a strategy whose components satisfy the following system (taking into account the

linearity of J; in the variables z;;(t)):

(1 (my(0) — %(%(0) (0 ()5 (0)) 25:(0) < 0,

W= wj#i,

0, otherwise,
\




102

Thus, if & is a Nash equilibrium, then § = & and ¢;(0) = Z;(0). The Nash equilibrium
requires that firms ¢ and 75 establish a connection in the initial period, while

satisfying the inequalities

8¢(0)(5iyé?()0)_ Tij (0))@i(0)?§j(0)7 m5i(0) <

;(0)(B;i(0) — v;i(0)) .
o;(0) 3i(0)7;(0).

Thus we arrive at the expressions (3.26), (3.27) and (3.28), the sufficiency of which

is given by the negative-definiteness of the Hessian of the Lagrange function

T—-1 T—-1
—21; (Z EOERTSY p'f) —i(0)g;(0) <0,
t=1 t=0

which means that s will be a Nash equilibrium in fgn. O

T (O) <

Despite the fact that firms implement their investment behavior on a one-time
basis, we note that Corollary 3.1 presented in Subsection 3.1.1, with constant net-
work parameters, retains its validity for equilibrium in model fgn. We will present
this corollary further and without proof, which is similar to the proof of the Corol-

lary 3.1.

Corollary 3.7. Let a;(0) = « and €;(0) = ¢ for arbitrary firms. Then, in Nash

equilibrium, for any firms v and j, the following three conditions are equivalent:

T-1 ~ T-1 ~

ZO pTEi(T) ZO pre(7)

— < = & w>u; < gi(0) > g;(0).
55

Next, we consider a variant of unilateral network interaction of firms in equi-
librium for model fgn. As for the previous models, it can be obtained from the

condition of bilateral network interaction in equilibrium.

Remark 3.3 (from Theorem 3.5). If we assume that the interaction of the firms
1s one-sided, then the equilibrium behavior of the firms in terms of production and
investment behavior is preserved and determined according to (3.27) — (3.28), and

the network behavior of the firm in Nash equilibrium is i € N :



5:(0) = 1, m;(0) < m(ﬁz‘j(o) —75(0)) 5:(0) g;(0)

0, otherwise,

CjENN {i}.

The relationship between the production and investment behavior of each firm
in Nash equilibrium is characterized by the following remark, which can be inferred
from (3.28).

Remark 3.4. The investment behavior of the firm ¢ € N in Nash equilibrium for

model fgﬂ has a linear relationship with its production behavior.

Let us move on to the example with the results of numerical simulations of
the equilibrium in both bilateral and unilateral interaction in model ~8n according
to the conditions of Theorem 3.5 and Remark 3.3. Keeping the same modeling
input parameters as before, we will only change the cost of interaction for firm 4:
m4;(0) = 1200, 7 = 1,2, 3 and present the result in Table 3.10, rounding the results
to the third decimal place.

Based on the data in Tables 3.10 and 3.11, it is still possible to explain the
equilibrium network behavior of firms, which is why it is omitted here.

If, when numerically modeling the equilibrium in model fgn, one adheres to the
input parameters presented on the page 61, then the upper bounds of the allowable
costs of network interaction between firms would be jointly 7;;(0) = 1158.862, where
i,7 € N, such that ¢ # j. In this case, all firms would be interested in network
interaction with all their competitors, regardless of the nature of the formation of
interaction in the network g(0). At the same time, taking into account the data
in Table 3.8, it can be noted that in case of one-time investments the upper limits
of the allowable costs of network interaction of firms are significantly lower than
the corresponding limits in case of regular investments (models I'$* and fgﬂ). This

allows us to make the following observation.

Observation 3.1. The values of the upper limits of the allowable costs of network

interaction depend on the duration of the firms’ investments.
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Table 3.10. The Nash equilibrium s and the corresponding profits and unit costs of

the firms, as well as the market price in the model fgn

bilateral interaction unilateral interaction
t t=0 t=1 t =2 t=3 t=0 t=1 t =2 t=3
1 1
L |\2 s ;\,2
&, 3 _ 3
§1<0) (0717170) - (0,1,1,1) — — —
g2(0)  (1,0,1,0) — (1,0,1,1) — — -
g3(0)  (1,1,0,0) - (1,1,0,1) — - -
§4(0) (0707()’0) - (0,0,0,0) — — —
o 80.072 80.072  80.072 - 80.346 80.346  80.346 -
Uo 80.072 80.072  80.072 - 80.346 80.346  80.346 -
Us 80.072 R0.072  80.072 — 80.346 R0.346  80.346 -
Uy 78.696 78.696  78.696 — 78.283 78.283  78.283 —
71(0) 2.043 — 2.044 -
72(0) 2.043 — 2.044 —
73(0) 2.043 - 2.044 -
74(0) 2.038 - 2.037 -

) 100.000 98.218 105.093 112.449  100.000 97.196 104.000 111.280
) 100.000 98.218 105.093 112.449  100.000 97.196 104.000 111.280
) 100.000 98.218 105.093 112.449  100.000 97.196 104.000 111.280
) 100.000  100.267 107.285 114.795  100.000  100.268 107.287 114.797

P 181.088  181.088 181.088 - 180.679  180.679 180.679 -
Ji 3928.200 4954.398
Jo 3928.200 49254.398
Js 3728.200 3954.398
J 2903.154 2720.382
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Table 3.11. Upper limits of feasible costs of interaction in the model fgn

ren bilateral interaction unilateral interaction

i\Jj 1 2 3 4 1 2 3 1
1 0 1159.403 | 1159.403 | 1156.710 0 1160.477 | 1160.477 | 1156.439
2 1159.403 0 1159.403 | 1156.710 | 1160.477 0 1160.477 | 1156.439
3 1159.403 | 1159.403 0 1156.710 | 1160.477 | 1160.477 0 1156.439
4 1156.710 | 1156.710 | 1156.710 0 1156.439 | 1156.439 | 1156.439 0

3.5. Conclusions to Chapter 3

The presented results of equilibrium modeling in model fgﬂ (with one-time
investments by firms) allow us to make a simple but important remark. This remark
helps to stabilize and maintain the balance of trade and consumer interaction in the
sales market of a certain product: the absence of investments by firms from period
t = 1 entails a monotonous increase in the unit costs of firms (0 = 1.07) and a
monotonous decrease in the intermediate profits of firms, as a result — a decrease
in profitability and liquidity each firm has its own production facilities.

Under the considered conditions, the only possible way to maintain the liquidity
of production and to increase the profits of firms is to invest in the modernization of
their own production technologies and other components of unit costs. The rational-
ity of interaction with other firms at the same time contributes to saving investments
and increasing intermediate profits, and for consumers of goods — to reducing the
market value of a unit of goods. This means that the positive investment behavior
of competing firms is beneficial to all market participants.

In this Chapter an attempt has been made to response the fundamental ques-
tions of equilibrium behavior and the corresponding conditions for rational interac-
tion of each pair of firms. The assumptions proposed for the models in this Chapter
made it possible to find and analyze the equilibrium behavior of firms in market com-
petition, which makes it possible to distinguish these models as practical. On the
basis of these models one can possible to find and analyze the equilibrium behavior
of firms, to compare and evaluate the prospects of their long-term and short-term

interaction with different types of investment behavior. It is shown that the differ-



106

ence in the profits of the firms in the considered models does not cause a significant
difference in a short period of time, which cannot be said about the dynamics of
their competitiveness. Thus, in Section 3.3 it is noted that in the case of short-term
interaction the largest changes in competitiveness are observed under unilateral in-
teraction and cautious investment behavior of firms, and in the case of long-term
interaction - under unilateral interaction and risky investment behavior.

It is important to note that the results of the comparative analysis presented in
Subsections 3.1.3, 3.2.3, as well as in Section 3.3 are based on the assumption that
network parameters are constant over time and the same for different types of the
duration of interaction. However, it is obvious that if the cost of interaction includes,
for example, renting a warehouse to store goods, then renting for a longer period
may be much cheaper than renting for a short period. Therefore, the theorems
formulated in the Chapter on the equilibrium behavior of firms are recommended to
be applied in the analysis of the prospects of potential interaction for each possible
type of model parameters separately — so that it would be objectively possible to
conclude the advantage of any type of duration of interaction for the considered set
of model parameters.

The main results of the thesis described in this Chapter are presented in the
article [29].
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Conclusion

The thesis is devoted to the characterization and analysis of the equilibrium be-
havior of competing firms in dynamic models with network interaction and is related
to the theory of dynamic network games. Within the framework of the recharacteri-
zation conducted, an investment and network modification of the Cournot oligopoly
was built, in which firms competing in the common sales market are endowed with
the ability to implement multicomponent strategic behavior in a dynamic manner.
At the same time, the concept under consideration was applied to two types of the
formation of network interaction of firms — exogenous (Chapter 1) and endogenous
(Chapter 2). The adaptation of models with endogenous formation of network in-
teraction to the characterization and analysis of the equilibrium behavior of firms
in market conditions similar in practice is proposed (Chapter 3).

The main results of the thesis are as follows

1. An network modification of the Cournot oligopoly is constructed, for which the
two-component Nash equilibrium behavior of firms with dynamic exogenous
network formation is obtained. The equilibrium is presented and character-
ized for a open-loop strategies. In addition, a feedback Nash equilibrium has
been obtained and the «proximity» of the two equilibria found has been es-
tablished |27].

2. The influence of the network structure and the associated coefficients of the
model on the behavior of firms in equilibrium, and how the structure of interac-
tion of firms affects changes in their unit costs, competitiveness in the market,

profits, as well as the price of a unit of goods in the market are analysed [27].

3. A feasible behavior of each firm is complemented by a component that char-
acterizes the attitude toward network interaction with its competitors and
is responsible for its network behavior. A functional structure of the Nash
equilibrium behavior of firms with dynamic endogenous network formation
obtained [28].

4. A Nash equilibrium is obtained for two types of network interaction — with

the formation of a constant and a variable network structure. At the same



108

time, the costs associated with the networking of firms are also considered in
two types — one-time and regular. A comparative analysis of the obtained

results is carried out [28].

5. Assumptions are proposed and justified that serve to adapt the studied game
theoretic models to the practical interaction of competing firms in the market.
The conditions for choosing business partners and options for the duration of
interaction between firms in the Nash equilibrium are considered. A compara-
tive analysis of the Nash equilibrium is given for two types of the investment
behavior of firms common in real conditions - risky (variable) and cautious

(constant), taking into account the duration of their interaction [29].

6. A functional expression of the equilibrium behavior of firms under their one-
time investment in their production is obtained. The relation between the
changes of the upper limits of the allowable costs of network interaction and

the duration of the investments of the firms is shown [29].

7. For each model of endogenous network formation studied in the thesis, the
equilibrium network behavior of competitors are obtained, the fulfillment of
which makes firms interested in network interaction with their competitors.
At the same time, two types for the formation of network interaction are
considered, represented by undirected or directed links between firms. The
thesis notes that in network structures, which are formed when firms imple-
ment their equilibrium network behavior, it is unprofitable for any firm to
unilaterally break any of its existing connections, as well as to strive to create

a new one, for which the condition of equilibrium network behavior is not
fulfilled |28, 29].

It remains to conclude that all the tasks formulated within the framework of

the thesis have been completed and the objective set has been fully achieved.
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