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Introduction

Research Topic Relevance

Network games are a rather young and intensively developing branch of math
ematical game theory. A distinctive feature of network games is the assumption
that the payoffs each player depend on the structure of interactions of all players.
The interaction of players is usually illustrated as a directed or undirected graph
with is vertices being identified with players and each edge (undirected interaction)
or arc (directed communication) characterizing the interaction, i.e. the influence
of the communications on the players connected by it. From a practical perspective,
the specifics of network interaction offer a new opportunity to mathematically in
vestigate seemingly ambiguous relations between potential parties to conflict. Thus,
for example, there are numerous situations when competing parties can conclude
a temporary "truce" without uniting into a coalition — joint research sponsored
by competing entities, mutual support of opposing parties, etc. In this respect,
it is of great interest to thesis such manifestations, firstly, for their feasibility and con
ditions of occurrence, secondly, for their duration and dynamics, where the mani
festations under consideration can be both short-term and long-term, and thirdly,
for the optimal behavior of players at a certain structure of network interaction.
Thus, we can conclude that dynamic models of competition with network interac
tion allow us to explore the peculiarities of the influence of players on each other
in terms of their individual relationships.

The network interaction of competing players, including but not limited to, can
describe their interaction and feature an exogenous or endogenous nature of the for
mation of network interactions — respectively, be defined as an external parameter
in a game (games on networks), or be part of the strategic behavior of players who
independently form network communications among themselves in the game process
under a common competitive environment.

The analysis of the exogenous formation of the network interaction between
players in dynamics allows us to resolve multiple crucial questions, primarily — from
the conceptual point of view of the dynamic game theory, for instance: how does
the network interaction (network structure and interaction effects — weights char
acterizing the strength of influence) affect the players’ payoffs and their equilibrium
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behavior and, if the network interaction affects the players’ behavior and the current
state of some controlled object, what would it be in equilibrium? The latter issue
originates from the optimal control theory, whereunder the stable development of a
controlled system requires that the vector describing its states be within the bound
aries of some desired region. Thus, the stable development of the system can be
achieved by selecting an appropriate network structure [18, 34, 80]. More generally,
one can raise the question of identifying for such network structures that would fulfill
the desired criterion (where a certain system state or duration of effect would have
been achieved — the problem of rapidity), which has become one of the first subject
areas in the application of non-cooperative network games in various controllable
systems [8].

The analysis of endogenous formation of dynamic network interaction between
players can raise the issues of feasibility and conditions of network interaction, dura
tion and sustainability of network interactions, which currently seems to be the most
relevant issues of endogenous network interaction. The relevance of the research of
these aspects is determined by their being in practical demand, which allows us
to successfully apply network games in negotiation processes, joint investments in
R&D, reputation management of network participants and other tasks where the
network interaction elements are particularly important for the players.

The conceptual features of players’ interaction that can be studied using net
work games allow us to suggest that the methodology may be applicable to all kinds
of networks and systems, which have agents with divergent or non-common interests.
Transportation, fuel and energy networks, interaction and other types of networks
can be referred to as examples of such networks.

Literature review

One of the first research papers devoted to competitive processes, that men
tioned the game theory literature is considered to be [52, 59], that analyze the
demand and price of goods in a competitive market. Further studies [35, 78, 88],
which presented mathematical aspects and applications of game theory, gave rise
to the development of the relevant theory as a powerful tool to analyze competi
tive behavior. Currently, the research on the players’ competitive behavior is both
relevant and very productive, especially taking into account the aspects of the play
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ers’ network interaction and network behavior [16, 17, 40, 68]. It is worth noting
that the strategic nature of network interaction in a static setting has been inves
tigated in such studies as [48, 54, 63, 70], and the same in a dynamic setting — in
[45, 61, 62, 67, 69, 81, 82]. A detailed analysis of current trends and directions in
the research on players’ network interaction can be found in reviews [16, 36, 62].

Despite the fact that the literature devoted to the research on competitive
behavior presents various models of oligopoly with production factor markets, for
instance, in studies [5, 6, 19, 75, 79, 84], according to a fair observation made
in [25], the literature has so far covered production networks insufficiently. That
being said, the analysis of scientific publications has shown that although Cournot’s
models have become classical examples of competition in mathematical game the
ory [23, 24, 31, 38, 41], the analysis of competition models based on Cournot’s
assumptions in various settings remains relevant [1, 9, 11, 64, 65, 83, 86]. It is
worth noting that structural interaction and network structure management in com
petition models directly by the game participants have not been discussed to the
necessary extent, although some results have already been made available [49, 63].
It is relevant to continue thesising such aspects since network structures allow us
to effectively describe competitive interaction, thus providing the opportunity of
expanding the class of solvable game problems due to complementarity and substi
tutability in the players’ behavior [36, 62, 67, 69], as well as the specificity of their
mutual influence depending on the presence of network communications. The nature
of players’ structural interaction is discussed with a sufficient degree of detail and
meaningfulness in studies [71, 87, 90], which describe the necessity for the game par
ticipants to form structural interactions with each other. Concurrently, the specifics
of network interaction expressed via network influence coefficients, as shown in [91],
represents a separate focus for research.

It should be noted, that a significant part of network game studies is often
devoted to games with externalities, predominantly arising in the consumer con
text only [55, 56, 58]. Along with this, the players’ efforts determined by the
complementarity of their actions are often considered as investment efforts and
mainly directed towards some ephemeral concepts – knowledge, opinions, impres
sions, etc. [46, 73, 76, 77, 85]. Recently, the area of application of network games
devoted to the optimization of systems with a network structure, in which players
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need to share the publicly available resources, has also been very popular; a detailed
description of the problems of this area of application can be found, for instance, in
studies [36, 37, 57].

Numerous researchers have chosen network games as the focus of their stud
ies [2, 7, 12, 25, 42, 43, 44]. Such popularity is primarily explained by the value of
applying theoretical results to actually existing network structures, for instance, to
organized groups of people, market or political relations, and even social or wire
less networks [13, 50], etc. However, the authors of the cited studies have noted
that there are quite a lot of issues with insufficient coverage at the moment, which
still remain largely open in theory, highlighting the conditions, criteria and prin
ciples of network interaction between competing players as the most relevant and
insufficiently covered aspects.

To investigate dynamic competition models with network interaction, this the
sis will adress and analyze the Nash equilibrium. Despite the fact that the Nash
equilibrium has certain drawbacks, which are described in detail in [21], with its
intrinsic merits it embodies the fundamental concept of solving non-zero-sum games
— according to [78, 88]. Therefore, we can conclude that the Nash equilibrium,
although well covered, remains relevant in the literature various on competition
models under conditions of simultaneous and independent behavior of players.

Research Purpose and Objectives

The purpose of the thesis is to find and analyze the equilibrium behavior of
competing firms under conditions of their dynamic network interaction. Dynamic
competition models with network interaction are considered as the object of the
thesis, and the equilibrium behavior of firms the subject of the thesis taking into
account the structure of their network interaction.
The purpose is achieved by accomplishing the following tasks:

1. Describe the dynamic equilibrium behavior of firms under exogenous formation
of network interaction. For this purpose, it is necessary to build an economic
and mathematical model of dynamic competition of firms, to find and charac
terize the Nash equilibrium for this model in two classes of firms’ strategies —
open-loop and feedback.
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2. Investigate the effect of network parameters on the Nash equilibrium in the
model with exogenously formed interaction. It is necessary to analyze the
effect of the network structure and network coefficients, which characterize
the effect obtained by firms from other firms’ investments on their strategic
behavior, the dynamics of their competitiveness and profit, as well as on the
market price of goods.

3. Describe the firms’ dynamic equilibrium behavior under endogenous formation
of network interaction. For this purpose, the firms’ feasible behavior should
be extended by the network component, i.e. the firms’ capability of forming
network interactions with competitors. Analyze the variants of the firms’
network interaction formation rule. Find the Nash equilibria for two variants of
the firms’ network interaction — with the formation of a constant and variable
network structure. Benchmark the obtained results and draw conclusions.

4. Determine the conditions for the formation of network interactions between
firms in the Nash equilibrium. Determine and analyze the conditions under
which firms are interested in network interaction — for variants of formation
of unilateral and bilateral network communications.

5. Adapt the models under consideration to the practical interaction of compet
ing firms in the market. Suggest and justify assumptions in the models under
consideration to adapt them to the real conditions of economic interaction
between firms, including the choice of business partners and duration of inter
action in the Nash equilibrium in each of the variants of the firms’ network
interaction under consideration.

Scientific Novelty

The dynamic investment and network modification in the Cournot oligopoly
with exogenously formed network interaction has been constructed. For the model
built, the conditions ensuring the uniqueness of open-loop and feedback Nash equi
libria have been found, for the equilibria obtained a benchmarking has been con
ducted. The model has investigated the effect of network parameters characterizing
the firms’ mutual influence, as well as the influence of the network structure on the
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equilibrium behavior of firms, their profits and the dynamics of competitiveness.
Consideration has been given to the unit price in the market as an external effect
(consumer externalities) arising from the equilibrium behavior of competing firms.

Based on dynamic investment and network modification in the Cournot oligopoly
with exogenously formed network interaction, the variant of endogenously formed
network interaction has been discussed — on the models where firms can enter into
short-term or long-term network interaction. The network interaction duration-de
pendent prospects have been benchmarked, while long-term interaction has been
investigated in the settings with unique-time and regular network interaction costs.
The open-loop Nash equilibrium has been found for each model, and the pairwise
network interaction condition has also been determined for two variants of network
communications — unilateral and bilateral.

The thesis has demonstrated that the conceptual approach to dynamic models
with endogenous network interaction can be applied to the problems of the economic
sector: the conditions for selecting business partners under various variants of firms’
investment behavior — constant and variable investment volumes, which can be in
terpreted as cautious and risky investment behavior in an unstable market. The
structural generality of all conditions of interaction in the open-loop Nash equilib
rium has been shown, the comparison of considered investment behavior variants
under common input parameters has been exemplified.

All the main results were obtained by the author personally and are new.

Theoretical and Practical Significance of Research

The dynamic competition models with network interaction investigated herein
complement the existing models of game-theoretic analysis, which have not been
considered so far in terms of structural interaction of players. Despite the fact
that the thesis has investigated the market competition models, we would like to
note that the results obtained are of universal applicable nature — with regard to
game modeling of competitive processes that occur beyond the economy. Indeed,
given the specifics of the subject area of the problem under consideration, the thesis
results can be relevantly applied to such processes as the competition for the leading
position of a party (political science), the formation of public opinion (sociology and
marketing), the distribution of server resources capabilities (computing systems), the
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construction and operation of roads (transportation systems and logistics), as well as
to various tasks of ecology, psychology, jurisprudence, sociology and other sciences,
where competing parties or individuals with their own goals and individual influence
collide. Thus, this thesis contributes to the development of the network game theory
due to such game components as dynamics and multicomponent behavior of players
in their network structural interaction.

In the exogenous formation of network interaction, the game process partici
pants can implement their equilibrium behavior depending on the information struc
ture of the model. The thesis results allow, through the choice of network structures
and coefficients of players’ exogenous interaction, to adjust their competitiveness,
the state of the controlled system, as well as the external factors arising from the dy
namic process of competition. This can be effectively applied, for instance, to state
antimonopoly programs, as well as in other programs for stabilization, maintenance
and development of the market economy.

For dynamic processes of competition with endogenously formed network in
teraction, the results have been obtained that allow players to implement their
equilibrium behavior, relying on the minimum amount of information required to
make decisions (time and costs of network interaction), while choosing their network
environment (direct neighbors within the network), relying on the formal condition
of feasibility of direct network interaction — regardless of the interaction variant,
which can either be unilateral or bilateral. This allows building «stable» network
structures — secured against existing network interactions being broken or new ones
being established, thus avoiding waste of funds — as noted in [58], as well as influ
encing their own competitiveness and winning in the game process.

The thesis results also allow us comparing not only the prospects of the short
-term or long-term network interaction variants, but also network interaction in
combinations with the specifics of other components of strategic behavior — with
their variable or constant value. Thus, the network interaction conditions derived
from the thesis will hopefully compensate to some extent for the currently lacking
coverage of the matters of feasibility, duration and conditions of interaction in a
competitive environment.

Based on the above, we can conclude that the thesis has attempted not only
to methodologically supplement the network game theory by covering some insuf
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ficiently studied issues of the theory, but also to conceptually suggest a universal
approach that can be applied in economic analysis and management tasks for ef
fective planning of firm’s activities, as well as, on a larger scale — in the tasks of
stabilization, maintenance, management and development of the market economy.

The thesis results have been used in the research project under the fellowship
of the Russian Science Foundation No. 22-11-00051 "Development of Methods for
Management of Multi-Agent Systems under Conflict Conditions".

Structure of the Thesis and the Main Scientific Results

The thesis structure includes an introduction, three Chapters divided into sec
tions and subsections, a description of the main results and conclusions — in each
chapter, conclusion and a list of references consisting of 91 sources. The thesis
consists of 116 pages of typewritten text and includes 25 Tables and 1 Figure.

Chapter 1 describes the construction and analysis of a dynamic competition
model with double-component (production and investment) behavior of firms with
exogenous formation of their network interaction (Section 1.1). Two classes of behav
ior of firms have been considered — according to the open-loop information structure
and feedback information structure. For each class of firms’ strategies, a unique Nash
equilibrium has been obtained (Section 1.2). The results have been benchmarked
in the Nash equilibrium for each of the considered classes of firms’ strategies by
means of numerical simulations (Section 1.3). Section 1.4 separately investigates
the function and significance of network elements that characterize the specifics of
firms’ mutual influence — through unit costs. It also considers the network structure
influence in the Nash equilibrium on the firms’ competitiveness dynamics and the
externalities arising from competition — in particular, the unit price in a common
competitive market. The Chapter is summarized with a presentation of the main
results and conclusions.

Chapter 2 continues to investigate the dynamic competition model from Chap
ter 1, but with its extension: now firms implement behaviors that are divided into
network, production, and investment behaviors. We have initially discussed the vari
ants of endogenous interaction between firms — unilateral interactions represented
by arcs and bilateral communications represented by edges in network structures,
described the formal component of the endogenous interaction variants, and, respec
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tively, specified some components of the model under consideration (Section 2.1).
Section 2.2 seeks for the open-loop Nash equilibrium under bilateral interaction of
firms. The thesis continues with a search for the open-loop Nash equilibrium for
models with constant network interaction between firms under two variations of net
work communication costs (unique-time and variable), as well as the conditions of
network interaction between firms (Section 2.3). Section 2.4 shows how the results
obtained earlier can be applied to unilateral interaction of firms in network struc
tures, and how the Nash equilibrium is modified. Section 2.5, through numerical
simulations, benchmarks the open-loop Nash equilibria for all models considered,
and evaluates the advantages and disadvantages of two variants of network interac
tion durations — short-run (firms rearrange the network structure at each decision
point) and long-term (the model is implemented on the network built by firms at
the initial time point). The Chapter is summarized with a presentation of the main
results and conclusions.

Chapter 3 presents assumptions aimed at adapting the investigated models of
competition to real economic processes and demonstrates the application of the pre
viously obtained results, both conceptual and methodological, to the real process of
interaction between firms. For this purpose, we introduce a set of special assump
tions that firms adhere to in real conditions of competitive production and conduct
a benchmarking of short-term (Section 3.1) and long-term (Section 3.2) network
interaction in the Nash equilibrium under risky and cautious investment behavior of
firms — in Section 3.3. We also investigate a model in which firms implement unique
time investments (Section 3.4). The Chapter is summarized with a presentation of
the main results and conclusions.

Research Methodology and Methods

This thesis has employed the tools which represent common research techniques
and approaches in applied mathematics: dynamic game theory (Nash equilibrium),
operations research (Bellman recurrence relations, Lagrange multiplier method),
optimal control theory (Pontryagin’s maximum principle), mathematical modeling,
benchmarking, numerical simulations in Wolfram Mathematica.



13

Degree of Credibility and Evaluation of Results

The main results of this thesis have been discussed and reported at the following
scientific events: All-Russian Conference on Natural Sciences and Humanities with
International Participation "SPSU Science – 2022", St. Petersburg; Fifty-Second
(LII) Scientific and Educational-Methodological Conference of ITMO University,
Section "Mathematical Modeling", St. Petersburg; XII Congress of Young Scientists
of ITMO, Section "Artificial Intelligence and Behavioral Economics", St. Peters
burg; 16th International Conference on Game Theory and Management (GTM2023),
St. Petersburg; 22nd International Conference on Mathematical Optimization The
ory and Operations Research "MOTOR 2023", Ekaterinburg; Workshop on Dynamic
Games and Applications, Tashkent, Uzbekistan; All-Russian Conference on Natural
Sciences and Humanities with International Participation "SPSU Science – 2023",
St. Petersburg; Scientific Seminar of the Applied Mathematical Research Institute
under the Karelian Scientific Center of the Russian Academy of Sciences, Petroza
vodsk; Scientific Seminar of the Department of Mathematical Game Theory and
Statistical Decisions of St. Petersburg State University, St. Petersburg.

The validity and credibility of the thesis research results is ensured by the
correctness of problem statements, proof points and conclusions, the rigor of mathe
matical evidence and the receipt of positive feedback from members of the editorial
boards of scientific outlets where the main results were published.

Publications

The main thesis results have been published in three scientific papers [27, 28,
29], included in the list of peer-reviewed scientific publications recommended by the
HAC (Higher Attestation Commission) of the Russian Federation and included in
the core of RSCI (Russian Science Citation Index), with the thesis [27] also indexed
in the Scopus and Web of Science international scientific databases. Received the
certificate of registration of the computer program [26] with registration number
RU 2023685627 have been obtained.
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Main scientific results

1. An network modification of the Cournot oligopoly is constructed, for which the
two-component Nash equilibrium behavior of firms with dynamic exogenous
network formation is obtained. The equilibrium is presented and character
ized for a open-loop strategies. In addition, a feedback Nash equilibrium has
been obtained and the «proximity» of the two equilibria found has been es
tablished [27].

2. The influence of the network structure and the associated coefficients of the
model on the behavior of firms in equilibrium, and how the structure of interac
tion of firms affects changes in their unit costs, competitiveness in the market,
profits, as well as the price of a unit of goods in the market are analysed [27].

3. A feasible behavior of each firm is complemented by a component that char
acterizes the attitude toward network interaction with its competitors and
is responsible for its network behavior. A functional structure of the Nash
equilibrium behavior of firms with dynamic endogenous network formation
obtained [28].

4. A Nash equilibrium is obtained for two types of network interaction — with
the formation of a constant and a variable network structure. At the same
time, the costs associated with the networking of firms are also considered in
two types — one-time and regular. A comparative analysis of the obtained
results is carried out [28].

5. Assumptions are proposed and justified that serve to adapt the studied game
theoretic models to the practical interaction of competing firms in the market.
The conditions for choosing business partners and options for the duration of
interaction between firms in the Nash equilibrium are considered. A compara
tive analysis of the Nash equilibrium is given for two types of the investment
behavior of firms common in real conditions - risky (variable) and cautious
(constant), taking into account the duration of their interaction [29].

6. A functional expression of the equilibrium behavior of firms under their one
time investment in their production is obtained. The relation between the
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changes of the upper limits of the allowable costs of network interaction and
the duration of the investments of the firms is shown [29].

7. For each model of endogenous network formation studied in the thesis, the
equilibrium network behavior of competitors are obtained, the fulfillment of
which makes firms interested in network interaction with their competitors.
At the same time, two types for the formation of network interaction are
considered, represented by undirected or directed links between firms. The
thesis notes that in network structures, which are formed when firms imple
ment their equilibrium network behavior, it is unprofitable for any firm to
unilaterally break any of its existing connections, as well as to strive to create
a new one, for which the condition of equilibrium network behavior is not
fulfilled [28, 29].

Main results to be Defended

1. Open-loop and feedback Nash equilibria and their uniqueness in the dynamic
competition model with exogenously formed network interaction.

2. Open-loop Nash equilibria for dynamic competition models with endogenously
formed short-term or long-term network interaction.

3. Open-loop Nash equilibria for dynamic competition models under risky or cau
tious investment behavior of firms with their endogenously formed short-term
or long-term interaction.

4. Conditions of Nash equilibrium network behavior under open-loop information
structure in dynamic competition models with endogenously formed network
interaction.
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Chapter 1.

Dynamic model with exogenous network formation

The dynamic competition model, which is the subject of this chapter, is based
on the classical Cournot1 oligopoly model presented to the scientific community
in [59]. Since its appearance, the model has been subjected to various criticisms by
economists, however, having proved its suitability in modeling of economic processes,
and as noted in [4], Cournot oligopoly later became a paradigmatic economic and
mathematical model. Some of its formal provisions are summarized below.

Suppose 𝒩 = {1, . . . , 𝑛}, 𝑛 ≥ 2, is a finite set of players, which are firms that
produce homogeneous and indivisible goods. The produced goods are fully sold in
the common market. Each firm 𝑖 ∈ 𝒩 decides on the volume of goods to produce, i.e.
𝑢𝑖 ∈ U = [0,+∞). Then

∑︀𝑛
𝑗=1 𝑢𝑗 is the total and non-negative volume of goods in

the market in the situation where 𝑢 = (𝑢1, . . . , 𝑢𝑛) ∈ U𝑛. Suppose, that the market
demand 𝑄 is known and defined by a decreasing linear function: 𝑄 (𝑃 ) = 𝑝− 𝜃 ·𝑃 ,
where 𝑝, 𝜃 ∈ R+, and 𝑃 = 𝑃 (𝑢) is the unit price such that demand matches supply
of the goods available in the market:

∑︀𝑛
𝑗=1 𝑢𝑗 = 𝑝− 𝜃 ·𝑃 . For simplicity, it is often

assumed that 𝜃 = 1. The inverse demand function, reflecting the marginal value of a
unit of the goods at a given volume is 𝑃 (𝑢) = 𝑝−

∑︀𝑛
𝑗=1 𝑢𝑗, where 𝑝 is the maximum

possible price of a unit (assumed to be fixed and constant). Fixed costs are most
often not included in the model, while unit costs 𝑐 ∈ 𝒞 = [0; 𝑝] are assumed to be
fixed and equal for all firms. The profit of each firm 𝑖 is determined by the value

𝐹𝑖 (𝑢) =

(︃
𝑝− 𝑐−

𝑛∑︁
𝑗=1

𝑢𝑗

)︃
· 𝑢𝑖. (1.1)

To maximize their profits, each firm pursues a strategy that enters in the Nash
equilibrium 𝑢N =

(︀
𝑢N1 , . . . , 𝑢

N
𝑛

)︀
∈ U𝑛 such that for each firm 𝑖 ∈ 𝒩 and any of its

admissible strategies 𝑢𝑖 ∈ U the inequality

𝐹𝑖

(︁
𝑢N1 , . . . , 𝑢

N
𝑖−1, 𝑢𝑖, 𝑢

N
𝑖+1, . . . , 𝑢

N
𝑛

)︁
6 𝐹𝑖

(︁
𝑢N1 , . . . , 𝑢

N
𝑖−1, 𝑢

N
𝑖 , 𝑢

N
𝑖+1, . . . , 𝑢

N
𝑛

)︁
is true. For each firm 𝑖 ∈ 𝒩 it is easy to determine its strategy that enters in the

1 Antoine Augustin Cournot (28 august 1801 — 30 march 1877, Paris) — French economist, philosopher and
mathematician, author of several economic and mathematical models that have become classic for game-theoretic
analysis.
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Nash equilibrium and is represented by the following volume2: 𝑢N𝑖 = (𝑝−𝑐)/(𝑛+1),
where 𝑢N𝑖 > 0 at 𝑝 > 𝑐.

Apart from the presented provisions, the described model features multiple
assumptions known both from the thesis by A. O. Cournot and from other classical
scientific literature, e.g. [10, 31, 41, 46], which will be adhered to.

In addition to the model discussed above, we will suppose that a firm is able
to influence the state of unit costs (hereinafter within the chapter referred to as the
costs) of all firms and discuss such influence in dynamics. We will assume that each
firm 𝑖 is capable of exerting an additional effect that affects the costs of other firms
by the nature of their networking with the firm 𝑖. We will proceed to the detailed
description and formalization of the mentioned capabilities of firms in the model
under consideration.

1.1. Description and formalization of dynamic investment and network
modification in the Cournot oligopoly

In addition to the classical Cournot model, consider oligopoly as a dynamic
game in discrete time with periods given by the set 𝒯 = {0, 1, . . . , 𝑇}, 𝑇 > 2. In
real conditions, the unit costs of firms are dynamic. We will consider the costs of
firms 𝑖 ∈ 𝒩 , denoted by 𝑐𝑖(𝑡) ∈ 𝒞, at 𝑡 ∈ 𝒯 as a value that tends to change over
time. By managing its costs, a firm can ensure that it increases the competitiveness
and profitability of its business or position. This seems to be a potentially important
application of dynamic game theory. Let the set 𝑐(𝑡) = (𝑐1(𝑡), . . . , 𝑐𝑛(𝑡))

′ denote the
state of firms’ costs at time 𝑡 ∈ 𝒯 for given initial costs 𝑐(0) ≡ 𝑐0 = (𝑐10, . . . , 𝑐𝑛0)

′,
where the symbol « ′ » here and in the future will denote the transposition operation.
The equation of the cost dynamics of firms is written in vector form as

𝑐(𝑡+ 1) = 𝑓(𝑡,g(𝑡), 𝑐(𝑡), 𝑦1(𝑡), . . . , 𝑦𝑛(𝑡)), 𝑡 ∈ 𝒯 ∖ {𝑇}.

The investment efforts of firm 𝑖 at time 𝑡, in monetary terms, are represented by 𝑦𝑖(𝑡)
which belongs to Y𝑖, a subset of the non-negative real numbers. The value of the
expression 𝜀𝑖(𝑡)

2 𝑦2𝑖 (𝑡) determines the monetary value of the investments. Here, 𝜀𝑖(𝑡)
is the current value of a given parameter. The 𝑓(𝑡, ·) is a continuously differentiable

2 The solution is known as the Cournot-Nash equilibrium. It was first obtained by A. O. Cournot without
a conceptual justification of the equilibrium. Later, J. Nash determined the justification.
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function. Additionally, we will discuss the structure of the network interaction of
firms, denoted by g(𝑡).

Have firms invest in their production technologies. The specifics of the impact
of one firm’s investment on others can be illustrated using a graph. To do this, we
identify a set of firms with vertices of a graph (𝒩 ,g(𝑡)), in which g(𝑡) ⊆ 𝒩 ×𝒩
— the set of connections represented by the edges of the graph, and define its
structure at time 𝑡 ∈ 𝒯 ∖{𝑇}. To simplify writing, the graph structure at time 𝑡
is denoted by g(𝑡). When evaluating the relationship between the firms 𝑖, 𝑗 ∈ 𝒩 ,
𝑗 ̸= 𝑖, denoted by (𝑖, 𝑗), we assume that (𝑖, 𝑗) = (𝑗, 𝑖) and (𝑖, 𝑗) ∈ g(𝑡) if and only
if 𝑔𝑖𝑗(𝑡) = 𝑔𝑗𝑖(𝑡) = 1, where 𝑔𝑖𝑗(𝑡) and 𝑔𝑗𝑖(𝑡) are elements of a binary adjacency
matrix for the network g(𝑡) without self loops. Next, for convenience, we denote by
g = {g(𝑡)}𝑇−1

𝑡=0 the sequence of network structures specified in the model.
For the firm 𝑖 ∈ 𝒩 , the rule for changing its costs over time is defined by a

recurrent equation with a given initial condition

𝑐𝑖(𝑡+ 1) = 𝛿𝑐𝑖(𝑡)−
𝑛∑︁

𝑗=1

𝜇𝑖𝑗(𝑡,g(𝑡))𝑦𝑗(𝑡), 𝑡 ∈ 𝒯 ∖ {𝑇}, 𝑐𝑖(0) = 𝑐𝑖0, (1.2)

where

𝜇𝑖𝑗(𝑡,g(𝑡)) =

⎧⎨⎩𝛼𝑖(𝑡), 𝑗 = 𝑖,

𝛽𝑖𝑗(𝑡) 𝑔𝑖𝑗(𝑡) + 𝛾𝑖𝑗(𝑡)(1− 𝑔𝑖𝑗(𝑡)), 𝑗 ̸= 𝑖.

In the future, in order to simplify the notation, where an explicit clarification of
the dependence on the network g(𝑡) is not necessary, we write 𝜇𝑖𝑗(𝑡) instead of
𝜇𝑖𝑗(𝑡,g(𝑡)).

The parameter 𝛿 > 1 characterizes the rate of change of a firm’s costs over time
due to the possible obsolescence of the production technologies it uses in the absence
of additional investments in their modernization. The parameter 𝛼𝑖(𝑡) > 0 reflects
the effect of the firm’s own investments 𝑖 at the current time, and 𝛽𝑖𝑗(𝑡) > 0 and
𝛾𝑖𝑗(𝑡) > 0 — current effects of investments of neighboring firms in the network g(𝑡),
i.e. from 𝑗 ∈ 𝒩𝑖(g(𝑡)) := {𝑟 | (𝑖,𝑟) ∈ g(𝑡)}, and also from firms 𝑗 /∈ 𝒩𝑖(g(𝑡)) ∪ {𝑖}
that are not neighbors of firm 𝑖 in the network g(𝑡).

𝑢 = (𝑢(0), . . . , 𝑢(𝑇 − 1)), 𝑢(𝑡) = (𝑢1(𝑡), . . . , 𝑢𝑛(𝑡)),

𝑦 = (𝑦(0), . . . , 𝑦(𝑇 − 1)), 𝑦(𝑡) = (𝑦1(𝑡), . . . ,𝑦𝑛(𝑡)).
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The profit of firm 𝑖 at time 𝑡 ∈ 𝒯 ∖{𝑇}, based on equation (1.1), is written as:

𝐹𝑖(𝑡, 𝑐𝑖(𝑡), 𝑢(𝑡), 𝑦𝑖(𝑡)) =

(︃
𝑝−

𝑛∑︁
𝑗=1

𝑢𝑗(𝑡)

)︃
𝑢𝑖(𝑡)− 𝑐𝑖(𝑡)𝑢𝑖(𝑡)−

𝜀𝑖(𝑡)

2
𝑦2𝑖 (𝑡), (1.3)

as the difference between its current revenue, formed according to the classical
Cournot oligopoly model with a linear inverse demand function, and its current
costs, which include production costs and investments in production. At the termi
nal period, the profit of firm 𝑖 is determined by the residual value of its production
according to the function Φ𝑖(𝑇, 𝑐𝑖(𝑇 )) = 𝜂𝑖 − 𝜂𝑐𝑖(𝑇 ), where 𝜂 > 0 is the liquidity
ratio of production and 𝜂𝑖 > 0 is the maximum market value of production, addi
tionally assuming 𝜂𝑖 > 𝜂𝑝. Then the total profit of firm 𝑖 for all periods in the model
takes the form

𝐽𝑖(𝑐0, 𝑢, 𝑦) =
𝑇−1∑︁
𝑡=0

𝜌𝑡𝐹𝑖(𝑡, 𝑐𝑖(𝑡), 𝑢(𝑡), 𝑦𝑖(𝑡)) + 𝜌𝑇Φ𝑖(𝑇, 𝑐𝑖(𝑇 )), (1.4)

where 𝜌 ∈ (0, 1] is the factor rate common to all firms and constant over time.
In this setting, the dynamic model of competitive production with investment is a
linear-quadratic discrete-time game with an 𝑛-dimensional state variable and two-di
mensional actions players. Note that the costs to firms of maintaining network con
nections do not affect their behavior, since network interaction is exogenous and
not controlled by the players. For this reason, such costs are not considered in this
model.

Let us describe the behavior of firms in dynamics. At the initial period, with
the known network structure g(0) and initial costs 𝑐0, firms simultaneously and
independently choose their feasible behavior — pairs (𝑢𝑖(0), 𝑦𝑖(0)), 𝑖 ∈ 𝒩 , — each of
them decides how much output to produce and how much investment to implement
at the current time. This decision gives the firm 𝑖 the profit 𝐹𝑖(0, 𝑐𝑖0, 𝑢(0), 𝑦𝑖(0))

— according to (1.3). Furthermore, the costs of firm 𝑖 change according to the
rule (1.2) and become equal to 𝑐𝑖(1), 𝑖 ∈ 𝒩 . At an intermediate nonterminal time
𝑡 ∈ 𝒯 ∖ {𝑇} with the known network structure g(𝑡), firms simultaneously and
independently choose their feasible behavior — for firm 𝑖 ∈ 𝒩 the current volume
of production and investment (𝑢𝑖(𝑡), 𝑦𝑖(𝑡)), which will lead the firm 𝑖 to the profit
𝐹𝑖(𝑡, 𝑐𝑖(𝑡), 𝑢(𝑡), 𝑦𝑖(𝑡)) and the next period cost 𝑐𝑖(𝑡+ 1). At the moment 𝑡 = 𝑇 , the
firm 𝑖 receives the residual value determined by the function Φ𝑖(𝑇, 𝑐𝑖(𝑇 )), 𝑖 ∈ 𝒩 ,
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and the total profit is calculated according to (1.4). After the described actions the
game ends.

In order to represent the dynamic nature of the interaction of firms in the
form of a game in a normal form, according to [47], we denote by 𝑠𝑖 a strategy of
firm 𝑖 ∈ 𝒩 , which prescribes to it an choice of feasible behavior depending on the
current information, and we denote the set of strategies of this firm by 𝒮𝑖. Due to
the unambiguity of the choice of actions prescribed by the strategies, we define the
payoff function of the firm 𝑖 as 𝒥𝑖(𝑠) = 𝐽𝑖(𝑐0, 𝑢, 𝑦) for the set of strategies chosen by
the firms 𝑠 = (𝑠1, . . . , 𝑠𝑛). Thus, the dynamic investment and network modification
in the Cournot oligopoly with the exogenous network formation can be represented
by a game in normal form:

Γex =
⟨︀
𝒩 , {𝒮𝑖}𝑖∈𝒩 , {𝒥𝑖}𝑖∈𝒩

⟩︀
.

1.2. Nash equilibrium for two information structures

In the sections of game theoretic analysis devoted to competitive models,
the Nash equilibrium embodies the fundamental concept of solving non-zero-sum
games according to [78, 88]. In Γex, a Nash equilibrium is set of strategies 𝑠N =

=
(︀
𝑠N1 , . . . , 𝑠

N
𝑛

)︀
∈
∏︀
𝑗∈𝒩

𝒮𝑗, where
∏︀
𝑗∈𝒩

𝒮𝑗 = 𝒮1 × . . .×𝒮𝑛 — the Cartesian product of

sets of firm strategies, and for any firm 𝑖 ∈ 𝒩 the condition is satisfied

𝑠N𝑖 = arg max
𝑠𝑖 ∈𝒮𝑖

𝒥𝑖

(︀
𝑠N−𝑖

⃒⃒
𝑠𝑖
)︀
,

where the set of strategies
(︀
𝑠N−𝑖 | 𝑠𝑖

)︀
differs from 𝑠N only in that the firm 𝑖 uses 𝑠𝑖 ∈ 𝒮𝑖

instead of the strategy 𝑠N−𝑖, that is
(︀
𝑠N−𝑖 | 𝑠𝑖

)︀
=
(︀
𝑠N1 , . . . , 𝑠

N
𝑖−1, 𝑠𝑖, 𝑠

N
𝑖+1, . . . , 𝑠

N
𝑛

)︀
.

In order to find a Nash equilibrium in Γex, it is important to understand what
the information structure is, that is, the type and amount of information available
to firms to choose their strategies. In the current chapter, we consider two variants
of the information structure: open-loop and feedback, we denote corresponding
strategies by 𝑠OL

𝑖 and 𝑠FB𝑖 , respectively, following [60, 89]. For each of the considered
variants of the information structure, the Nash equilibrium profiles are presented.
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1.2.1. Open-loop Nash equilibrium

The open-loop information structure in Γex assumes the choice of actions by
the participants of the game, based on the knowledge of the current moment and the
initial state of the costs of all firms 𝑐0. A feasible strategy of a firm corresponding
to the described information structure is similarly called — open-loop, and should
prescribe to it feasible behavior, taking into account the current intermediate period
and the state of 𝑐0. More formally, our can define the open-loop strategy of the firm
𝑖 ∈ 𝒩 as a rule 𝑠OL

𝑖 (𝑡, 𝑐0) : 𝒯 ∖ {𝑇} ↦→ U𝑖 × Y𝑖, which clearly matches the feasible
behavior of 𝑠OL

𝑖 (𝑡, 𝑐0) =
(︀
𝑠OL
)︀

at any intermediate time and initial values of the
unit costs of firms

(︀
𝑠OL
𝑖1 (𝑡, 𝑐0), 𝑠

OL
𝑖2 (𝑡, 𝑐0)

)︀
= (𝑢𝑖(𝑡), 𝑦𝑖(𝑡)).

Next, we will introduce some notations for convenience: e ∈ R𝑛 is a vector
consisting of units, e𝑖 ∈ R𝑛 is a unit vector with 1 in position 𝑖, 𝐼 is identics matrix
(𝑛× 𝑛) and 𝜇𝑖(𝑡) = (𝜇1𝑖(𝑡), . . . , 𝜇𝑛𝑖(𝑡))

′ for 𝑖 ∈ 𝒩 . These notations are used in
the following theorem, which characterizes the unique open-loop Nash equilibrium
in the model Γex. The thesis only describes interior Nash equilibria, which are those
where firms’ behavior is the interior point of the set of feasible actions.

Theorem 1.1. Let ℓ𝑖1(𝑡) ∈ R𝑛, ℓ𝑖2(𝑡) ∈ R satisfy the recurrence relations:

ℓ𝑖1(𝑡) =

⎧⎪⎨⎪⎩𝛿
2𝑀−1(𝑡+ 1)ℓ𝑖1(𝑡+ 1)− 𝜌𝑡

e− (𝑛+ 1)e𝑖
𝑛+ 1

, 𝑡 ̸= 𝑇,

0, 𝑡 = 𝑇,
(1.5)

ℓ𝑖2(𝑡) =

⎧⎨⎩𝛿
[︀
ℓ′𝑖1(𝑡+ 1)𝑀−1(𝑡+ 1)𝑚(𝑡+ 1) + ℓ𝑖2(𝑡+ 1)

]︀
− 𝜌𝑡

𝑝

𝑛+ 1
, 𝑡 ̸= 𝑇,

−𝜌𝑇𝜂, 𝑡 = 𝑇,
(1.6)

for all firm 𝑖 ∈ 𝒩 , where matrices 𝑀(𝑡) and vectors 𝑚(𝑡) are set according to the
rules:

𝑀(𝑡) = 𝐼 −
∑︁
𝑗∈𝒩

𝛼𝑗(𝑡− 1)𝜇𝑗(𝑡− 1)

𝜌𝑡−1𝜀𝑗(𝑡− 1)
ℓ′𝑗1(𝑡) и 𝑚(𝑡) =

∑︁
𝑗∈𝒩

𝛼𝑗(𝑡− 1)𝜇𝑗(𝑡− 1)

𝜌𝑡−1𝜀𝑗(𝑡− 1)
ℓ𝑗2(𝑡).

If the matrices 𝑀(𝑡) invertible for all 𝑡 ̸= 0, then in model Γex, a set of strategies
𝑠OLN = (𝑠OLN

1 , . . . , 𝑠OLN
𝑛 ) is the unique open-loop Nash equilibrium whose compo
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nents are 𝑠OLN
𝑖 (𝑡, 𝑐0) for the 𝑖 ∈ 𝒩 , 𝑡 ∈ 𝒯 ∖ {𝑇} and have the form:

𝑢OLN
𝑖 (𝑡, 𝑐0) =

𝑝+ (e− (𝑛+ 1)e𝑖)
′𝑐OLN(𝑡)

𝑛+ 1
, (1.7)

𝑦OLN
𝑖 (𝑡, 𝑐0) = − 𝛼𝑖(𝑡)

𝜌𝑡𝜀𝑖(𝑡)

(︁
ℓ′𝑖1(𝑡+ 1)𝑀−1(𝑡+ 1)(𝛿𝑐OLN(𝑡) +𝑚(𝑡+ 1)) + ℓ𝑖2(𝑡+ 1)

)︁
,

(1.8)

where the current equilibrium profit of cost 𝑐OLN(𝑡) is recursively found from equation

𝑐OLN(𝑡) =𝑀−1(𝑡)(𝛿𝑐OLN(𝑡− 1) +𝑚(𝑡)), 𝑡 ∈ 𝒯 ∖ {0}, 𝑐OLN(0) = 𝑐0. (1.9)

Proof. To determine the open-loop Nash equilibrium, we will use the Pontryagin
maximum principle [41, 47], for which we will introduce the Hamiltonian function
for the firm 𝑖 ∈ 𝒩 and 𝑡 ∈ 𝒯 ∖ {𝑇}:

ℋ𝑖(𝑡, 𝑐(𝑡), 𝑢(𝑡), 𝑦(𝑡), 𝜓𝑖(𝑡+ 1)) = 𝜌𝑡
[︁(︁
𝑝− 𝑐𝑖(𝑡)−

∑︁
𝑗∈𝒩

𝑢𝑗(𝑡)
)︁
𝑢𝑖(𝑡)−

𝜀𝑖(𝑡)

2
𝑦2𝑖 (𝑡)

]︁
+

+
∑︁
𝑗∈𝒩

𝜓𝑖𝑗(𝑡+ 1)
[︁
𝛿𝑐𝑗(𝑡)−

∑︁
𝑟∈𝒩

𝜇𝑗𝑟(𝑡)𝑦𝑟(𝑡)
]︁
,

where 𝜓𝑖(𝑡) = (𝜓𝑖1(𝑡), . . . ,𝜓𝑖𝑛(𝑡))
′ is vector of costate variables. According to [47] if

the strategy set 𝑠OLN(𝑡, 𝑐0) is a Nash equilibrium, then there exist non-zero costate
variables 𝜓𝑖(𝑡), 𝑡 ∈ 𝒯 ∖ {0}, 𝑖 ∈ 𝒩 which satisfy the relations:

𝑠OLN
𝑖1 (𝑡, 𝑐0) =

𝑝− 𝑐𝑖(𝑡)−
∑︀

𝑗∈𝒩∖{𝑖} 𝑠
OLN
𝑗1 (𝑡,𝑐0)

2
,

𝑠OLN
𝑖2 (𝑡, 𝑐0) = −

∑︀
𝑗∈𝒩 𝜓𝑖𝑗(𝑡+ 1)𝜇𝑗𝑖(𝑡)

𝜌𝑡𝜀𝑖(𝑡)
,

𝜓𝑖𝑗(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−𝜌𝑡𝑠OLN
𝑖1 (𝑡, 𝑐0) + 𝛿𝜓𝑖𝑖(𝑡+ 1), 𝑗 = 𝑖, 𝑡 ̸= 𝑇,

−𝜌𝑇𝜂, 𝑗 = 𝑖, 𝑡 = 𝑇,

𝛿𝜓𝑖𝑗(𝑡+ 1), 𝑗 ̸= 𝑖, 𝑡 ̸= 𝑇,

0, 𝑗 ̸= 𝑖, 𝑡 = 𝑇,

𝑐𝑖(𝑡+ 1) = 𝛿𝑐𝑖(𝑡)−
∑︁
𝑗∈𝒩

𝜇𝑖𝑗(𝑡)𝑠
OLN
𝑗2 (𝑡,𝑐0), 𝑡 ̸= 𝑇, 𝑐𝑖(0) = 𝑐𝑖0.
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From these relations we can immediately conclude that 𝜓𝑖𝑗(𝑡) = 0 for all 𝑖 ̸= 𝑗 and
𝑡 ∈ 𝒯 . Considering this and some transformations, we conclude:

𝑠OLN
𝑖1 (𝑡, 𝑐0) =

𝑝− (𝑛+ 1)𝑐𝑖(𝑡) +
∑︀

𝑗∈𝒩 𝑐𝑗(𝑡)

𝑛+ 1
, (1.10)

𝑠OLN
𝑖2 (𝑡, 𝑐0) = −𝛼𝑖(𝑡)𝜓𝑖𝑖(𝑡+ 1)

𝜌𝑡𝜀𝑖(𝑡)
, (1.11)

where the first expression matches (1.7). Due to the strict concavity of the Hamil
tonian ℋ𝑖(𝑡,·) over a set of variables (𝑢𝑖(𝑡), 𝑦𝑖(𝑡)), which follows from the fact that
the minor determinants of the Hesse matrix are −2𝜌𝑡 < 0 and 2𝜀𝑖(𝑡)𝜌

2𝑡 > 0, we
conclude that the maximum value of the function is given by is the only maximum
that satisfies the conditions (1.10) – (1.11).

We will search for costate variables in linear form 𝜓𝑖𝑖(𝑡) = ℓ′𝑖1(𝑡)𝑐(𝑡) + ℓ𝑖2(𝑡)

and show that ℓ𝑖1(𝑡) and ℓ𝑖2(𝑡) satisfy (1.5) – (1.6). Taking into account (1.8) and
the linear representation of the costate variables, the state equation can be written
as 𝑐(𝑡+ 1) = 𝑀−1(𝑡+ 1)(𝛿𝑐(𝑡) +𝑚(𝑡+ 1)), where 𝑡 ∈ 𝒯 ∖ {𝑇}, which is the same
as (1.9). Then, taking into account (1.10) and (1.11), we get this:

𝜓𝑖𝑖(𝑡) = −𝜌𝑡 · 𝑝+ (e− (𝑛+ 1)e𝑖)
′𝑐(𝑡)

𝑛+ 1
+ 𝛿[ℓ′𝑖1(𝑡+ 1)𝑐(𝑡+ 1) + ℓ𝑖2(𝑡+ 1)] =

= −𝜌𝑡·𝑝+ (e− (𝑛+ 1)e𝑖)
′𝑐(𝑡)

𝑛+ 1
+𝛿
[︀
ℓ′𝑖1(𝑡+1)𝑀−1(𝑡+1)(𝛿𝑐(𝑡)+𝑚(𝑡+1))+ℓ𝑖2(𝑡+1)

]︀
.

Following the method of undetermined coefficients, we conclude (1.5) – (1.6).

1.2.2. Feedback Nash equilibrium

If the information structure of the Γex model assumes that firms choose actions
based not only on the current period, but also on information about the state of
costs at that moment 𝑐(𝑡), then firms can focus on the feedback Nash equilibrium.

First, let us formally define a feedback strategy of the firm 𝑖 ∈ 𝒩 , denoted
by 𝑠FB𝑖 , usually 𝑠FB𝑖 (𝑡,𝑐) : 𝒯 ∖ {𝑇} × 𝒞𝑛 ↦→ U𝑖 × Y𝑖, which corresponds to every
intermediate period and every set of costs of firms 𝑐(𝑡) = (𝑐1(𝑡), . . . , 𝑐𝑛(𝑡))

′, which
unambiguously corresponds to the feasible behavior of firm 𝑖, that is 𝑠FB𝑖 (𝑡, 𝑐(𝑡)) =

=
(︀
𝑠FB𝑖1 (𝑡, 𝑐(𝑡)), 𝑠FB𝑖2 (𝑡, 𝑐(𝑡))

)︀
= (𝑢𝑖(𝑡), 𝑦𝑖(𝑡)).
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To determine the feedback Nash equilibrium, we use the Bellman recurrence
relations [3, 31, 74]. The equilibrium can be found using the following theorem.

Theorem 1.2. A set of strategies 𝑠FBN =
(︀
𝑠FBN1 , . . . , 𝑠FBN𝑛

)︀
with components

𝑠FBN𝑖 (𝑡, 𝑐) =
(︀
𝑠FBN𝑖1 (𝑡, 𝑐), 𝑠FBN𝑖2 (𝑡, 𝑐)

)︀
= (𝑎′𝑖(𝑡)𝑐+ 𝑣𝑖(𝑡), 𝑏

′
𝑖(𝑡)𝑐+ 𝑤𝑖(𝑡)),

where 𝑖 ∈ 𝒩 , 𝑡 ∈ 𝒯 ∖ {𝑇} and 𝑐 = (𝑐1, . . . , 𝑐𝑛)
′ is a given profile of costs, is the

unique feedback Nash equilibrium in Γex if there is a unique solution to the following
system of recurrent relations:

𝑎𝑖(𝑡) =
e− (𝑛+ 1)e𝑖

𝑛+ 1
, 𝑏𝑖(𝑡) =

−1

𝜌𝑡𝜀𝑖(𝑡)

[︁
𝛿𝐼 −

∑︁
𝑗∈𝒩

𝜇𝑗(𝑡)𝑏
′
𝑗(𝑡)
]︁′
𝐾𝑖(𝑡+1)𝜇𝑖(𝑡), (1.12)

𝑣𝑖(𝑡) =
𝑝

𝑛+ 1
, 𝑤𝑖(𝑡) =

−1

𝜌𝑡𝜀𝑖(𝑡)

[︁
𝑘𝑖(𝑡+1)−𝐾𝑖(𝑡+1)

∑︁
𝑗∈𝒩

𝜇𝑗(𝑡)𝑤𝑗(𝑡)
]︁′
𝜇𝑖(𝑡), (1.13)

𝐾𝑖(𝑡) = 2𝜌𝑡𝑎𝑖(𝑡)𝑎
′
𝑖(𝑡)− 𝜌𝑡𝜀𝑖(𝑡)𝑏𝑖(𝑡)𝑏𝑖(𝑡)+

+

(︃
𝛿𝐼 −

𝑛∑︁
𝑗=1

𝜇𝑗(𝑡)𝑏
′
𝑗(𝑡)

)︃′

𝐾𝑖(𝑡+ 1)

(︃
𝛿𝐼 −

𝑛∑︁
𝑗=1

𝜇𝑗(𝑡)𝑏
′
𝑗(𝑡)

)︃
,

(1.14)

𝑘𝑖(𝑡) = 2𝜌𝑡𝑎𝑖(𝑡)𝑣𝑖(𝑡)− 𝜌𝑡𝜀𝑖(𝑡)𝑏𝑖(𝑡)𝑤𝑖(𝑡)+

+

(︃
𝛿𝐼 −

𝑛∑︁
𝑗=1

𝜇𝑗(𝑡)𝑏
′
𝑗(𝑡)

)︃′(︃
𝑘𝑖(𝑡+ 1)−𝐾𝑖(𝑡+ 1)

𝑛∑︁
𝑗=1

𝜇𝑗(𝑡)𝑤𝑗(𝑡)

)︃
,

(1.15)

𝜅𝑖(𝑡) = 𝜌𝑡
(︂
𝑣2𝑖 (𝑡)−

𝜀𝑖(𝑡)

2
𝑤2

𝑖 (𝑡)

)︂
+ 𝜅𝑖(𝑡+ 1)−

−

(︃
𝑘𝑖(𝑡+ 1)− 1

2
𝐾𝑖(𝑡+ 1)

𝑛∑︁
𝑗=1

𝜇𝑗(𝑡)𝑤𝑗(𝑡)

)︃′ 𝑛∑︁
𝑗=1

𝜇𝑗(𝑡)𝑤𝑗(𝑡),

(1.16)

with the boundary conditions of 𝑖 ∈ 𝒩 : 𝐾𝑖(𝑇 ) = 0, 𝑘𝑖(𝑇 ) = −𝜌𝑇𝜂e𝑖, 𝜅𝑖(𝑇 ) = 𝜌𝑇𝜂𝑖;
and with this difference 𝜌𝑡𝜀𝑖(𝑡)−𝜇𝑖(𝑡)′𝐾𝑖(𝑡+1)𝜇𝑖(𝑡) positive for 𝑖 ∈ 𝒩 , 𝑇 ∈ 𝒯 ∖{𝑇}.
Besides,

𝒥𝑖

(︁
𝑠FBN

)︁
=

1

2
𝑐′0𝐾𝑖(0)𝑐0 + 𝑘′𝑖(0)𝑐0 + 𝜅𝑖(0), 𝑖 ∈ 𝒩 .
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Proof. From the theory of dynamic games [31, 41, 47] it is known that 𝑠FBN is a
Nash equilibrium if and only if there exist functions 𝑉𝑖(𝑡,·) : 𝒞𝑛 ↦→ R, 𝑡 ∈ 𝒯 , 𝑖 ∈ 𝒩
which satisfy the Bellman recurrence relations. Then for the model Γex we have:

𝑉𝑖(𝑡, 𝑐) = max
(𝑢𝑖(𝑡),𝑦𝑖(𝑡))∈ U𝑖×Y𝑖

[︁
𝜌𝑡
(︁
𝑝− 𝑐𝑖 − 𝑢𝑖(𝑡)−

∑︁
𝑗 ̸=𝑖

𝑠FBN𝑗1 (𝑡, 𝑐)
)︁
𝑢𝑖(𝑡)−

−𝜌𝑡𝜀𝑖(𝑡)
2
𝑦2𝑖 (𝑡) + 𝑉𝑖

(︁
𝑡+ 1, 𝛿𝑐− 𝜇𝑖(𝑡)𝑦𝑖(𝑡)−

∑︁
𝑗 ̸=𝑖

𝜇𝑗(𝑡)𝑠
FBN
𝑗2 (𝑡, 𝑐)

)︁]︁
.

(1.17)

For the class of linear-quadratic games, the Bellman function can be found
in a special form 𝑉𝑖(𝑡, 𝑐) = 1

2𝑐
′𝐾𝑖(𝑡)𝑐 + 𝑘𝑖(𝑡)

′𝑐 + 𝜅𝑖(𝑡) with the boundary condi
tion 𝑉𝑖(𝑇, 𝑐) = 𝜌𝑇 (𝜂𝑖 − 𝜂𝑐𝑖). Assuming a linear structure of the equilibrium, i.e.
𝑠FBN𝑖1 (𝑡, 𝑐) = 𝑎′𝑖(𝑡)𝑐 + 𝑣𝑖(𝑡) and 𝑠FBN𝑖2 (𝑡, 𝑐)) = 𝑏′𝑖(𝑡)𝑐 + 𝑤𝑖(𝑡), and performining maxi
mization in (1.17), we get

𝑠FBN𝑖1 (𝑡, 𝑐) =
𝑝− 𝑐𝑖 −

∑︀
𝑗 ̸=𝑖 𝑠

FBN
𝑗1 (𝑡, 𝑐)

2
,

𝑠FBN𝑖2 (𝑡, 𝑐) =
−1

𝜌𝑡𝜀𝑖(𝑡)

[︃(︁
𝛿𝑐−

∑︁
𝑗∈𝒩

𝜇𝑗(𝑡)𝑠
FBN
𝑗2 (𝑡, 𝑐)

)︁′
𝐾𝑖(𝑡+ 1) + 𝑘′𝑖(𝑡+ 1)

]︃
𝜇𝑖(𝑡),

or

𝑎′𝑖(𝑡)𝑐+ 𝑣𝑖(𝑡) =
𝑝− 𝑐𝑖 −

∑︀
𝑗 ̸=𝑖(𝑎

′
𝑗(𝑡)𝑐+ 𝑣𝑗(𝑡))

2
,

𝑏′𝑖(𝑡)𝑐+ 𝑤𝑖(𝑡) =
−1

𝜌𝑡𝜀𝑖(𝑡)

[︃(︁
𝛿𝑐−

∑︁
𝑗∈𝒩

𝜇𝑗(𝑡)(𝑏
′
𝑗(𝑡)𝑐+ 𝑤𝑗(𝑡))

)︁′
𝐾𝑖(𝑡+ 1)+𝑘′𝑖(𝑡+ 1)

]︃
𝜇𝑖(𝑡).

For each firm and each non-terminal period, the equation (1.17) allows the following
representation:

𝑉𝑖(𝑡, 𝑐) = max
(𝑢𝑖(𝑡),𝑦𝑖(𝑡))∈U𝑖×Y𝑖

⎡⎢⎢⎣
⎛⎜⎝𝜌𝑡𝑝

0

⎞⎟⎠
′⎛⎜⎝𝑢𝑖(𝑡)

𝑦𝑖(𝑡)

⎞⎟⎠− 𝑐′
(︂
𝜌𝑡e𝑖 0

)︂⎛⎜⎝𝑢𝑖(𝑡)
𝑦𝑖(𝑡)

⎞⎟⎠−
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−1

2

⎛⎜⎝𝑢𝑖(𝑡)
𝑦𝑖(𝑡)

⎞⎟⎠
′⎛⎜⎝2𝜌𝑡 0

0 𝜌𝑡𝜀𝑖(𝑡)

⎞⎟⎠
⎛⎜⎝𝑢𝑖(𝑡)
𝑦𝑖(𝑡)

⎞⎟⎠−
∑︁
𝑗 ̸=𝑖

𝑠FBN𝑗 (𝑡, 𝑐)′

⎛⎜⎝𝜌𝑡 0

0 0

⎞⎟⎠
⎛⎜⎝𝑢𝑖(𝑡)
𝑦𝑖(𝑡)

⎞⎟⎠+

+𝑉𝑖

⎛⎜⎝𝑡+ 1, 𝛿𝑐−
(︂
0 𝜇𝑖(𝑡)

)︂⎛⎜⎝𝑢𝑖(𝑡)
𝑦𝑖(𝑡)

⎞⎟⎠−
∑︁
𝑗 ̸=𝑖

(︂
0 𝜇𝑗(𝑡)

)︂
𝑠FBN𝑗 (𝑡, 𝑐)

⎞⎟⎠
⎤⎥⎦ .

Using the linear representation of firms’ strategies and the quadratic form of the
function 𝑉𝑖, we write out a matrix of quadratic form for an expression enclosed in
square brackets: ⎛⎜⎝−𝜌𝑡 0

0 1
2

(︀
𝜇′𝑖(𝑡)𝐾𝑖(𝑡+ 1)𝜇𝑖(𝑡)− 𝜌𝑡𝜀𝑖(𝑡)

)︀
⎞⎟⎠ .

Due to the conditions of the theorem, this matrix is negatively defined, which ensures
the uniqueness of the solution of the corresponding maximization problem. Using
the method of undetermined coefficients for all 𝑖 ∈ 𝒩 and 𝑡 ∈ 𝒯 ∖ {𝑇}, we obtain
the system (1.12) – (1.13), the unique solution of which is relative to 𝑎𝑖(𝑡), 𝑣𝑖(𝑡),
𝑏𝑖(𝑡) and 𝑤𝑖(𝑡) ensures the uniqueness of the Nash equilibrium [47].

Since 𝐹𝑖(𝑡,·) =
(︀
𝑠FBN𝑖1 (𝑡,𝑐)

)︀2− 𝜀𝑖(𝑡)
2

(︀
𝑠FBN𝑖2 (𝑡,𝑐)

)︀2, the equation (1.17), taking into
account the form of the function 𝑉𝑖(𝑡,𝑐) and the equilibrium behavior, we rewrite as

𝑉𝑖(𝑡, 𝑐) = 𝜌𝑡
[︂(︀
𝑠FBN𝑖1 (𝑡, 𝑐)

)︀2 − 𝜀𝑖(𝑡)

2

(︀
𝑠FBN𝑖2 (𝑡, 𝑐)

)︀2]︂
+𝑉𝑖

(︁
𝑡+1, 𝛿𝑐−

∑︁
𝑗∈𝒩

𝜇𝑗(𝑡)𝑠
FBN
𝑗2 (𝑡, 𝑐)

)︁
or

1

2
𝑐′𝐾𝑖(𝑡)𝑐+ 𝑘′𝑖(𝑡)𝑐+ 𝜅𝑖(𝑡) = 𝜌𝑡

[︂(︀
𝑎′𝑖(𝑡)𝑐+ 𝑣𝑖(𝑡)

)︀2 − 𝜀𝑖(𝑡)

2

(︀
𝑏′𝑖(𝑡)𝑐+ 𝑤𝑖(𝑡)

)︀2]︂
+

+

⎡⎣1
2

(︁
𝛿𝑐−

∑︁
𝑗∈𝒩

𝜇𝑗(𝑡)
(︀
𝑏′𝑗(𝑡)𝑐+ 𝑤𝑗(𝑡)

)︀)︁′
𝐾𝑖(𝑡+ 1) + 𝑘′𝑖(𝑡+ 1)

⎤⎦×

×

⎛⎝𝛿𝑐−∑︁
𝑗∈𝒩

𝜇𝑗(𝑡)
(︀
𝑏′𝑗(𝑡)𝑐+ 𝑤𝑗(𝑡)

)︀⎞⎠+ 𝜅𝑖(𝑡+ 1).

Determining the unknown coefficients in the quadratic and linear parts, as well as
in the summand independent of 𝑐, we obtain the relations (1.14), (1.15), and (1.16).
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Since 𝑉𝑖(𝑡, 𝑐) represents the profit of the firm 𝑖 ∈ 𝒩 in the Nash equilibrium in Γex,
starting at time 𝑡 with a set of unit costs 𝑐, then 𝒥𝑖

(︀
𝑠FBN

)︀
= 𝑉𝑖(0, 𝑐0) for 𝑖 ∈ 𝒩 .

Remark 1.1 (to Theorem 1.2). In the Nash equilibrium, the production volumes
𝑠FBN𝑖1 (𝑡, 𝑐) depend only on the set of firms’ costs and not on the game period, while
the investment 𝑠FBN𝑖2 (𝑡, 𝑐) depends both on the set of firms’ costs and on the game
period.

1.3. Numerical simulations and comparative analysis

Let us move on to the results of the thesis that can be obtained using The
orems 1.1 – 1.2. To make a comparative analysis of the results obtained, we will
keep the common input parameters, namely 𝑇 = 3, 𝑝 = 500, 𝜀𝑖(𝑡) = 1 000 and
𝜂𝑖 = 100 000 are assumed to be the same for all firms, 𝜂 = 1000; technological
obsolescence parameter 𝛿 = 1.07; the initial costs of the firms are also assumed to
be the same and equal to 𝑐𝑖0 = 100, the discount factor 𝜌 = 0.95; the network
parameters 𝛼𝑖(𝑡) = 1.8, 𝛽𝑖𝑗(𝑡) = 1, 𝛾𝑖𝑗(𝑡) = 0.5 are also the same for all firms and
are constant over time. Consider the case of the interaction of three and four firms
(𝑛 = 3 or 𝑛 = 4) and find their equilibrium behavior for four different networks g𝑗

which have a constant structure in time, i.e. for each 𝑗 ∈ {1, 2, 3, 4} we have that
g𝑗(0) = g𝑗(1) = g𝑗(2). We will call such networks permanent and identify them
with their network structure.

Tables 1.1 – 1.2 show the values of current equilibrium production 𝑢OLN
𝑖 (𝑡) =

𝑠OLN
𝑖1 (𝑡, 𝑐0), investment 𝑦OLN

𝑖 (𝑡) = 𝑠OLN
𝑖2 (𝑡, 𝑐0) and costs 𝑐OLN

𝑖 (𝑡) for each firm 𝑖 ∈ 𝒩
at open-loop Nash equilibrium 𝑠OLN(𝑡, 𝑐0). The Table also show additional results:
equilibrium profits 𝐽OLN

𝑖 := 𝐽𝑖(𝑐0, 𝑢
OLN, 𝑦OLN) = 𝒥𝑖(𝑠

OLN) and the current market
price, which is formed according to the linear inverse demand function: In the
Nash equilibrium, the market price is determined by the value 𝑃OLN(𝑡) := 𝑝 −∑︀

𝑗∈𝒩 𝑢
OLN
𝑗 (𝑡), 𝑡 ∈ 𝒯 ∖ {𝑇}.

Tables 1.3 – 1.4 show the same values as in Tables 1.1 – 1.2, but for the feedback
Nash equilibrium 𝑠FBN(𝑡, 𝑐).

All values presented in this chapter are rounded to third decimal place.
Analyzing the data presented in Tables 1.1 – 1.4, we can conclude that for

the considered network structures (g1 and g4 are star graphs, g3 and g4 are linear
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Table 1.1. Nash equilibrium 𝑠OLN in model Γex for network structures g1 and g2, as well

as the corresponding firm profits and prices.

Network g1

1

2

3

4

Network g2

1

2

3

4

𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3

𝑢OLN
1 (𝑡) 80.000 81.793 83.448 – 80.000 81.181 82.230 –

𝑢OLN
2 (𝑡) 80.000 79.744 79.375 – 80.000 80.155 80.192 –

𝑢OLN
3 (𝑡) 80.000 79.744 79.375 – 80.000 80.155 80.192 –

𝑢OLN
4 (𝑡) 80.000 79.744 79.375 – 80.000 79.123 78.144 –

𝑦OLN
1 (𝑡) 2.052 1.881 1.710 – 2.049 1.879 1.710 –

𝑦OLN
2 (𝑡) 2.041 1.874 1.710 – 2.043 1.875 1.710 –

𝑦OLN
3 (𝑡) 2.041 1.874 1.710 – 2.043 1.875 1.710 –

𝑦OLN
4 (𝑡) 2.041 1.874 1.710 – 2.038 1.872 1.710 –

𝑐OLN
1 (𝑡) 100.000 97.183 94.978 93.419 100.000 98.207 97.013 96.451

𝑐OLN
2 (𝑡) 100.000 99.233 99.051 99.487 100.000 99.233 99.051 99.486

𝑐OLN
3 (𝑡) 100.000 99.233 99.051 99.487 100.000 99.233 99.051 99.486

𝑐OLN
4 (𝑡) 100.000 99.233 99.051 99.487 100.000 100.264 101.098 102.532

𝑃OLN(𝑡) 180.000 178.976 178.426 – 180.000 179.387 179.243 –

𝐽OLN
1 19 577.792 16 711.687

𝐽OLN
2 13 496.491 13 669.861

𝐽OLN
3 13 496.491 13 669.861

𝐽OLN
4 13 496.491 10 627.026
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Table 1.2. Nash equilibrium 𝑠OLN in model Γex for network structures g3 and g4, as

well as the corresponding firm profits and prices.

Network g3

1

2

3

4

Network g4

1

2

3

𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3

𝑢OLN
1 (𝑡) 80.000 80.769 81.413 – 100.000 100.787 101.384 –

𝑢OLN
2 (𝑡) 80.000 80.769 81.413 – 100.000 99.727 99.294 –

𝑢OLN
3 (𝑡) 80.000 79.742 79.373 – 100.000 99.727 99.294 –

𝑢OLN
4 (𝑡) 80.000 79.742 79.373 – – – – –

𝑦OLN
1 (𝑡) 2.047 1.877 1.710 – 2.115 1.912 1.710 –

𝑦OLN
2 (𝑡) 2.047 1.877 1.710 – 2.110 1.908 1.710 –

𝑦OLN
3 (𝑡) 2.041 1.874 1.710 – 2.110 1.908 1.710 –

𝑦OLN
4 (𝑡) 2.041 1.874 1.710 – – – – –

𝑐OLN
1 (𝑡) 100.000 98.208 97.015 96.459 100.000 98.972 98.643 99.050

𝑐OLN
2 (𝑡) 100.000 98.208 97.015 96.459 100.000 100.031 100.734 102.142

𝑐OLN
3 (𝑡) 100.000 99.235 99.056 99.492 100.000 100.031 100.734 102.142

𝑐OLN
4 (𝑡) 100.000 99.235 99.056 99.492 – – – –

𝑃OLN(𝑡) 180.000 178.977 178.428 – 200.000 199.759 200.028 –

𝐽OLN
1 16 532.843 24 448.066

𝐽OLN
2 16 532.843 21 234.905

𝐽OLN
3 13 491.668 21 234.905

𝐽OLN
4 13 491.668 –
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Table 1.3. Nash equilibrium 𝑠FBN in model Γex for network structures g1 and g2, as well

as the corresponding firm profits and prices.

Network g1

1

2

3

4

Network g2

1

2

3

4

𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3

𝑢FBN
1 (𝑡) 80.000 81.808 83.471 – 80.000 81.202 82.263 –

𝑢FBN
2 (𝑡) 80.000 79.765 79.409 – 80.000 80.178 80.229 –

𝑢FBN
3 (𝑡) 80.000 79.765 79.409 – 80.000 80.178 80.229 –

𝑢FBN
4 (𝑡) 80.000 79.765 79.409 – 80.000 79.179 78.231 –

𝑦FBN
1 (𝑡) 2.033 1.871 1.710 – 2.061 1.885 1.710 –

𝑦FBN
2 (𝑡) 2.084 1.895 1.710 – 2.086 1.897 1.710 –

𝑦FBN
3 (𝑡) 2.084 1.895 1.710 – 2.086 1.897 1.710 –

𝑦FBN
4 (𝑡) 2.084 1.895 1.710 – 2.110 1.908 1.710 –

𝑐FBN
1 (𝑡) 100.000 97.089 94.831 93.261 100.000 98.061 96.785 96.207

𝑐FBN
2 (𝑡) 100.000 99.132 98.893 99.380 100.000 99.085 98.819 99.238

𝑐FBN
3 (𝑡) 100.000 99.132 98.893 99.380 100.000 99.085 98.819 99.238

𝑐FBN
4 (𝑡) 100.000 99.132 98.893 99.380 100.000 100.084 100.817 102.231

𝑃FBN(𝑡) 180.000 178.897 178.302 – 180.000 179.263 179.048 –

𝐽FBN
1 19 774.075 16 890.994

𝐽FBN
2 13 523.290 13 764.255

𝐽FBN
3 13 523.290 13 764.255

𝐽FBN
4 13 523.290 10 691.319
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Table 1.4. Nash equilibrium 𝑠FBN in model Γex for network structures g3 and g4, as well

as the corresponding firm profits and prices.

Network g3

1

2

3

4

Network g4

1

2

3

𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3

𝑢FBN
1 (𝑡) 80.000 80.782 81.434 – 100.000 100.780 101.374 –

𝑢FBN
2 (𝑡) 80.000 80.782 81.434 – 100.000 99.745 99.322 –

𝑢FBN
3 (𝑡) 80.000 79.773 79.420 – 100.000 99.745 99.322 –

𝑢FBN
4 (𝑡) 80.000 79.773 79.420 – – – – –

𝑦FBN
1 (𝑡) 2.059 1.884 1.710 – 2.096 1.902 1.710 –

𝑦FBN
2 (𝑡) 2.059 1.884 1.710 – 2.139 1.922 1.710 –

𝑦FBN
3 (𝑡) 2.084 1.895 1.710 – 2.139 1.922 1.710 –

𝑦FBN
4 (𝑡) 2.084 1.895 1.710 – – – – –

𝑐FBN
1 (𝑡) 100.000 98.108 96.859 96.286 100.000 98.949 98.608 99.012

𝑐FBN
2 (𝑡) 100.000 98.108 96.859 96.286 100.000 99.985 100.661 102.064

𝑐FBN
3 (𝑡) 100.000 99.118 98.872 99.295 100.000 99.985 100.661 102.064

𝑐FBN
4 (𝑡) 100.000 99.118 98.872 99.295 – – – –

𝑃FBN(𝑡) 180.000 178.890 178.292 – 200.000 199.730 199.982 –

𝐽FBN
2 16 643.707 24 535.499

𝐽FBN
2 16 643.707 21 223.474

𝐽FBN
3 13 545.573 21 223.474

𝐽FBN
4 13 545.573 –
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graphs, g4 there is a disconnected graph with an isolated vertex), the use of feedback
strategies, that is, when firms adapt to the current costs of competitors and not
only to the initial costs, allows all firms to reduce their costs in equilibrium. For
the production behavior of firms in equilibrium, the following observation seems
obvious.

Remark 1.2. According to Theorems 1.1 – 1.2, the firm’s production plans are
𝑖 ∈ 𝒩 , i.e., 𝑠FBN𝑖1 (𝑡,𝑐) and 𝑠OLN

𝑖1 (𝑡, 𝑐0), have the same functional form.

At the same time, the number of competing firms in the market can play a
key role. When there are four firms in the market, the feedback Nash equilibrium
gives firms better profits compared to their profits in open-loop Nash equilibrium.
In addition, when using feedback strategies, firms in equilibrium produce more at
any given time (this is no longer the case when there are three firms in the market).

Note that the initial conditions for all firms were the same, and the only dif
ference that broke the symmetry based on Tables 1.1 – 1.4 was their position in the
network, i.e., it was determined by the corresponding network structure. This leads
to the necessity of analyzing the results of numerical simulations in accordance with
the peculiarities of g𝑗.

1.4. The impact of network parameters and structures on equilibrium,
equilibrium profits and externalities

Let us make a comparative analysis of the results presented in Tables 1.1 – 1.4.
Note that all observations given in this section were made under the condition of
asymmetry of firms in the network structure — to assess the influence of the network
structure on the equilibrium behavior of firms and other indicators obtained under
equilibrium conditions.

The only aspect in which symmetry between firms break for model Γex were
networks g𝑗, with 𝑗 ∈ {1, 2, 3, 4}. As a result, the data in Tables 1.1 – 1.4 allow us
to assess the impact of the exogenous network structure on a number of important
indicators obtained during the implementation of Nash equilibrium. At the same
time, standard graph theory structures have been used for equilibrium modeling:
linear (networks g3 and g4) and star (networks g1 and g4), and the case of a structure
with one «isolated» firm (network g2) is also shown separately.
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1.4.1. Equilibrium behavior

Based on Tables 1.1 – 1.4, a central difference in the investment behavior of
firms can be observed when implementing Nash equilibrium.

Observation 1.1. Let |𝒩𝑖 (g) | > |𝒩𝑗 (g) | for 𝑐𝑖0 = 𝑐𝑗0 for a pair of firms 𝑖, 𝑗 ∈
𝒩 : 𝑖 ̸= 𝑗 in a constant network g, then

• in open-loop Nash equilibrium: 𝑢OLN
𝑖 (𝑡) > 𝑢OLN

𝑗 (𝑡), 𝑦OLN
𝑖 (𝑡) > 𝑦OLN

𝑗 (𝑡), then
firm 𝑖 produces and invests no less than firm 𝑗;

• in feedback Nash equilibrium: 𝑢FBN𝑖 (𝑡) > 𝑢FBN𝑗 (𝑡), но 𝑦FBN𝑖 (𝑡) 6 𝑦FBN𝑗 (𝑡), then
firm 𝑖 produces and invests no more than firm 𝑗.

This observation can be explained by the specifics of the strategies implemented,
open-loop strategies as functions of time and feedback strategies as functions of time
and the current state of unit costs.

Preposition 1.1. In a market with a constant number of firms, regardless of their
network and class of strategies, the firm with lower costs will produce a higher volume
in Nash equilibrium.

Proof. For the sake of generality, superscript «N» indicates the production behavior
and costs of firms in Nash equilibrium (both open-loop and feedback). According
to Remark 1.2 and Theorems 1.1 – 1.2 we have that

𝑢N𝑖 (𝑡) =
1

𝑛+ 1

(︃
𝑝− (𝑛+ 1)𝑐N𝑖 (𝑡) +

𝑛∑︁
𝑗=1

𝑐N𝑗 (𝑡)

)︃

for any firm 𝑖 ∈ 𝒩 and 𝑡 ∈ 𝒯 ∖ {𝑇}. Then from the inequality 𝑐N𝑖 (𝑡) < 𝑐N𝑗 (𝑡), where
𝑗 ∈ 𝒩 ∖ {𝑖}, it follows that

𝑢N𝑖 (𝑡)− 𝑢N𝑗 (𝑡) = 𝑐N𝑗 (𝑡)− 𝑐N𝑖 (𝑡) > 0, hence 𝑢N𝑖 (𝑡) > 𝑢N𝑗 (𝑡).

For any pair of firms, the firm with lower unit costs in equilibrium produces a larger
quantity of goods. This is because the cost advantage allows the firm to produce
more efficiently.

Preposition 1.2. The Nash equilibrium behavior of each firm 𝑖 ∈ 𝒩 (both open-loop
and feedback) has a nonlinear dependence on the network parameters 𝛼𝑖(𝑡), 𝛽𝑖𝑗(𝑡),
and 𝛾𝑖𝑗(𝑡), where 𝑡 ∈ 𝒯 ∖ {𝑇}, 𝑗 ∈ 𝒩 ∖ {𝑖}.
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The validity of this statement follows from the functional type of equilibrium be
havior of firms, presented in Theorems 1.1 – 1.2. As will be shown in the next
subsection, this nonlinear dependence allows a good linear approximation for small
values of the network parameters.

1.4.2. The price of goods like externality and equilibrium profits

Competition is usually non-trivial and often has effects that affect subjects not
directly involved in the process. Let us agree to call such effects external to the
competing parties. For the competition models studied in this thesis, the external
effect can be the price of the product, since in this case the price is determined
according to the current production behavior of the firms, and not by the consumers
themselves. Thus, the price of a product to consumers depends on the competitive
position of firms in the market.

Next, three options for the network are considered separately. By analyzing
the transition from g1 to g2, one can understand the importance of a connection
in a star, from g3 to g2 — the importance of a connection in a linear network
when excluding interactions leads to an isolated firm, and finally, an analysis of the
transition from g2 to g4 will show the effect of the number of firms in the market
with a linear network. Note the effect of adding new connections to the network or
removing existing ones on the firm’s profit in Nash equilibrium. Understanding such
effects will allow the firm, focusing on its profits, to review the current structure of
relationships with its competitors — in the case when the network is not exogenous.
At the same time, with an exogenous network, such effects can serve as a guideline
for stabilizing competition and the market value of goods for consumers.

Observation 1.2. For any pair of competing firms 𝑖, 𝑗 ∈ 𝒩 : 𝑖 ̸= 𝑗, it follows from
the condition that |𝒩N

𝑖 (g) | > |𝒩N
𝑗 (g) | that 𝐽N

𝑖 > 𝐽N
𝑗 .

In other words, of the two firms, the one with the most direct neighbors has the
highest profit (all else being equal). This conclusion is based on a direct comparison
of the profits, whose values are shown in the following Tables 1.1 – 1.4.

Observation 1.3. The profitability of a firm can be influenced by all connections
within the network, even those in which the firm is not directly involved. Firms that
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are directly involved in creating or removing a connection experience a significant
change in profits.

This can be seen from the data presented in Table 1.5, where Δ𝐽OLN
𝑖 and Δ𝐽FBN

𝑖

show the relative change in the profit of firm 𝑖 ∈ 𝒩 , expressed as a percentage,
when the network changes, when firms adhere to open-loop and feedback equilibria,
respectively. For example, when switching from the g2 network to the g3 network,
firms 2 and 4 (which establish a connection between themselves) receive a noticeable
increase in profits, while firms 1 and 3 have slightly reduced profits.

Table 1.5. Relative sensitivity of profits to network changes (%)

Change Δ𝐽OLN
1 Δ𝐽OLN

2 Δ𝐽OLN
3 Δ𝐽OLN

4 Δ𝐽FBN
1 Δ𝐽FBN

2 Δ𝐽FBN
3 Δ𝐽FBN

4

g1 → g2 –14.640 1.285 1.285 –21.261 –14.580 1.782 1.782 –20.941

g2 → g1 17.150 –1.268 –1.268 27.002 17.069 –1.751 –1.751 26.489

g2 → g3 –1.070 20.944 –1.304 26.956 –1.464 20.920 –1.589 26.697

g3 → g2 1.082 –17.317 1.321 –21.233 1.486 –17.301 1.614 –21.072

g2 → g4 46.293 55.341 55.341 – 45.258 54.193 54.193 –

g4 → g2 –31.644 –35.626 –35.626 – –31.157 –35.146 –35.146 –

Observation 1.4. The removal of the connection resulted in a greater increase in
profits for firms whose neighbors did not lose the connection.

For example, when moving g3 → g2 from the network g3 to g2, we have Δ𝐽FBN
3 >

Δ𝐽FBN
1 .

Observation 1.5. Firms may benefit from reducing the number of competitors in
the market and striving to capture a larger share of sales, potentially leading to a
monopoly.

The largest effect on the profit growth of firms 1, 2, and 3 is observed during the
transition from g2 → g4, which can also be interpreted as the exit of firm 4 from the
market. And in the opposite direction: when a new firm enters the market, the
profits of existing firms will decrease significantly, and their entry may be blocked.
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Let us move on to the current value of the external effect (the price of the
product) that results from adding new links to the network or removing existing
ones when firms adhere to the Nash equilibrium. As noted earlier, understanding
such effects allows us to infer the impact of the structure of firms’ relationships on
the cost of products to consumers. Using data from Tables 1.1 – 1.4, we move on to
the next observation.

Observation 1.6. The current market price in the case of firms implementing
feedback Nash equilibrium turns out to be slightly lower than the corresponding price
in the case of firms implementing open-loop Nash equilibrium.

Next, based on the results of the numerical simulations, we calculate the rel
ative changes in the current price, expressed as a percentage, when the network
changes, if the firms remain in equilibrium. The corresponding values are denoted
by Δ𝑃OLN(𝑡) and Δ𝑃 FBN(𝑡) and are given in Table 1.6 below.

Table 1.6. Sensitivity of current equilibrium prices to network changes (relative change,

%)

Change Δ𝑃OLN(0) Δ𝑃OLN(1) Δ𝑃OLN(2) Δ𝑃FBN(0) Δ𝑃FBN(1) Δ𝑃FBN(2)

g1 → g2 0.000 0.230 0.457 0.000 0.205 0.418

g2 → g1 0.000 –0.229 –0.455 0.000 –0.204 –0.417

g2 → g3 0.000 –0.228 –0.454 0.000 –0.208 –0.422

g3 → g2 0.000 0.229 0.456 0.000 0.208 0.424

g2 → g4 11.111 11.356 11.596 11.111 11.417 11.692

g4 → g2 –10.000 –10.198 –10.391 –10.000 –10.247 –10.468

Observation 1.7. If the number of participants in the market remains the same,
the network structure has no significant effect on the current price. If the number
of participants in the market decreases (increases), it leads to a significant increase
(decrease) in the current price of the product.

The observation is based on the data in Table 1.6: in the case of 𝑛 = 4, the
change in current prices in equilibrium does not exceed 0.5 % when the network
structure changes; the transition from network g2 to g4, i.e. the exit of firm 4
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from the market, allows the remaining firms to increase current product prices by
at least 11%, regardless of the class of strategies. Note also that as the number of
firms decreases (increases), the total quantity of goods produced in the market in
Nash equilibrium decreases (increases), which follows from the nature of the inverse
demand function.

Now let us evaluate the role of network parameters in the Nash equilibrium.
Let us identify the «type» of a firm with the number of its direct neighbours in
the network. Let us present the types of firms for the networks in question in
the Table 1.7. Obviously, changing the value of a network parameter can have
different effects on the behavior, costs, and profits of different types of firms. In
particular, the effect of changing the parameter 𝛼𝑖(𝑡) on the costs of firm 𝑖 ∈ 𝒩 can
be estimated for any network structure, since it is the same for each firm and does
not depend on the network structure. However, changing the parameter 𝛽𝑖𝑗(𝑡) or
𝛾𝑖𝑗(𝑡) with 𝑗 ∈ 𝒩 ∖ {𝑖} may affect the costs of different types of firms in different
ways. Therefore, it seems reasonable to consider the impact of changes in network
parameters on the profits of firms for networks g1 and g2. Based on the data from
Table 1.1, we will present the changes in the form of graphs3. The dependence of
the firms’ profits in the open-loop equilibrium on changes in the network coefficients
is shown in Figure. 1.1.

Table 1.7. Types of firms in model Γex for the considered exogenous networks

𝑖 ∖ |𝒩𝑖 (g𝑗) | |𝒩𝑖 (g1) | |𝒩𝑖 (g2) | |𝒩𝑖 (g3) | |𝒩𝑖 (g4) |

1 3 2 2 2

2 1 1 2 1

3 1 1 1 1

4 1 0 1 -

Remark 1.3. The profit function is nonlinear from the network parameters in equi
librium, and according to the Figure 1.1 the profits of firms in equilibrium allow a
linear approximation.

3 Constructing similar graphs for feedback Nash equilibrium according to Table 1.3 leads to similar conclu
sions (Remark 1.4), in structure of which we will limit ourselves only for open-loop Nash equilibrium.
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Figure 1.1. The effect of changing the value of the network parameter on the profits

of firms, in percentage terms
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Remark 1.4. The sensitivity of the firm to a change in the value of the parameter
𝛼𝑖(𝑡) or 𝛽𝑖𝑗(𝑡) turns out to be directly proportional to its type.

Given the equation (1.2), this remark seems natural. A similar situation is observed
when, in the above remark, an isolated firm is replaced by a firm of maximum type
and the parameter 𝛽𝑖𝑗(𝑡) is replaced by 𝛾𝑖𝑗(𝑡).

1.4.3. Dynamics of competitiveness

Considering the competitiveness of each firm 𝑖 ∈ 𝒩 as the ability to outperform
its competitors in profit — is typical for game-theoretic problems. Note that the com
petitiveness of each firm in model Γex can be reduced to an assessment of the state
of its unit costs relative to the unit costs of its competitors. Since it is the state of
a firm’s unit costs that determines its cost of producing a unit of goods, given equal
unit costs, a firm with lower unit costs produces more. At the same time, regardless
of the class of strategies — according to Remark 1.2 and the formula (1.10), the
production behavior of each firm in equilibrium functionally depends on the state
of unit costs of firms, further determining the current market price. The validity
of the above consideration is confirmed by the results of numerical simulations (see
Tables 1.1–1.4). It should also be noted that assessing the competitiveness of firms
through the state of their unit costs, rather than through profit, will further gener
alize the results to the case when the network is endogenous, and the expression of
the firm’s profit will include the cost of its existing network connections.

Let us evaluate in Table 1.8 the sensitivity of the firm’s unit cost in Nash equi
librium to changes in the network structure based on the data from Tables 1.1 – 1.4,
from which it is easy to see that the type of firm in equilibrium plays a leading role
in the dynamics of firms’ competitiveness.



41

Table 1.8. Sensitivity of current equilibrium costs to network changes (relative change,

%)

Change Firm 𝑖 Δ𝑐OLN
𝑖 (1) Δ𝑐OLN

𝑖 (2) 𝑐OLN
𝑖 (3) Δ𝑐FBN

𝑖 (1) Δ𝑐FBN
𝑖 (2) Δ𝑐FBN

𝑖 (3)

g1 → g2

1 1.053 2.142 3.245 1.002 2.061 3.159

2 –0.000 –0.000 –0.000 –0.048 –0.075 –0.080

3 –0.000 –0.000 –0.000 –0.048 –0.075 –0.080

4 1.039 2.067 3.061 0.961 1.945 2.934

g2 → g1

1 –1.042 –2.097 –3.143 –0.992 –2.019 –3.062

2 0.000 0.000 0.000 0.048 0.075 0.080

3 0.000 0.000 0.000 0.048 0.075 0.080

4 –1.028 –2.025 –2.970 –0.952 –1.908 –2.850

g2 → g3

1 0.001 0.002 0.002 0.048 0.076 0.082

2 –1.033 –2.056 –3.049 –0.986 –1.984 –2.975

3 0.003 0.005 0.005 0.033 0.053 0.057

4 –1.026 –2.020 –2.966 –0.966 –1.930 –2.873

g3 → g2

1 –0.001 –0.002 –0.002 –0.048 –0.076 –0.082

2 1.043 2.099 3.145 0.995 2.024 3.067

3 –0.003 –0.005 –0.005 –0.033 –0.053 –0.057

4 1.036 2.062 3.056 0.975 1.968 2.958

g2 → g4

1 0.779 1.681 2.695 0.905 1.883 2.916

2 0.805 1.699 2.669 0.908 1.863 2.847

3 0.805 1.699 2.669 0.908 1.863 2.847

4 – – – – – –

g4 → g2

1 –0.773 –1.653 –2.624 –0.897 –1.848 –2.833

2 –0.799 –1.670 –2.600 –0.900 –1.829 –2.768

3 –0.799 –1.670 –2.600 –0.900 –1.829 –2.768

4 – – – – – –
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Observation 1.8. In feedback Nash equilibrium, a firm’s costs are less sensitive to
a break of connection in which it participates than in open-loop Nash equilibrium.
In open-loop NE (Nash equilibrium), a firm’s costs are more sensitive to a break of
connection in which it does not participate than in feedback NE.

In fact, it is sufficient to observe the transitions from one network to another in
which a link has been removed: from g1 to g2 and from g3 to g2. Similar to
Observation 1.8, it is possible to formulate a similar result in the opposite direction,
replacing the removal of a connection with its addition.

Observation 1.9. Each firm should strive to have the highest possible type in the
network, while also ensuring that other firms have the lowest possible type. This
benefits the entire network.

The network g2 is more profitable for firm 3 than g1, in which it is asymmetric to
firm 2 — due to the fact that they have different types in these networks. It may
seem that for firm 3 there can be no preference between networks g1 and g2, since
in both its type is preserved and there is exactly one connection in which firm 3
does not participate — (2; 4) and (1; 4), respectively. However, in the network g1

the connection (2; 4) leads to two firms of the second type, and in the network g2 to
one firm of the second type. This means that it is more profitable for each firm to
have the largest number of firms of a lower type than its own. For the same reasons,
firm 4 benefits from the network g2 in which its connection does not increase the
number of firms with a higher type than it has.

1.5. Conclusions to Chapter 1

In the dynamic model of competition with exogenous network formation Γex,
a Nash equilibrium is obtained for two variants of the information structure —
open-loop and feedback. The uniqueness of the Nash equilibrium is also proved for
each variant of the information structure. Numerical simulations for several network
structures (networks) using the computer program are given [26]. A comparative
analysis of the results is performed, which allows us to assess the role and influence
of the network structure, as well as network parameters on the behavior of firms,
their profits and the external effect in equilibrium.
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The main results described in Chapter 1 are presented in the publication [27]
together with assumptions such as the restriction of the network parameters — for
each firm 𝑖 ∈ 𝒩 : 0 6 𝛾𝑖𝑗(𝑡) < 𝛽𝑖𝑗(𝑡) < 𝛼𝑖(𝑡) with 𝑗 ∈ 𝒩 ∖ {𝑖} and 𝑡 ∈ 𝒯 ∖ {𝑇},
the condition on a terminal period: firms exit the market at that moment, earning
a profit equal to the market value of their production. However, it is worth noting
that for the results presented (uniqueness and functional type of behavior of firms
in equilibrium) for model Γex, the assumptions on network parameters presented in
the publication do not seem to be fundamental. First, the absence of interaction
between firms may be more profitable than its presence (the variation in the inter
pretation of the exogenous network is diverse and depends on the problem under
consideration). Second, the effect of a direct neighbor’s investment in the network
may be greater than the effect of its own investment. Thus, in the case of the effect
of substitutability (submodularity), if firms from the set 𝒩𝑖 (g(𝑡)) increase the vol
ume of their investments, then firm 𝑖 may decrease its — reliance on its neighbors
in the network structure [66, 69]. Thus, the presented solutions have the property
of adaptability to problems with non-positive network parameters (influence coeffi
cients). Moreover, if at the final moment of model Γex the condition for firms to
exit the market is abandoned and the functional of (1.4) is rewritten in Lagrange
form, it is enough to set 𝜂𝑖 = 𝜂 = 0 for each firm 𝑖 ∈ 𝒩 , then the functional type of
behavior of firms in the Nash equilibrium remains unchanged. It is known from the
theory of optimal control that a functional written in the form of Lagrange can be
equivalently represented in the form of Mayer and vice versa, which indicates that
the presented methods of solving the model are applicable to various formulations
and formal expression of firms’ profits with the only condition — preservation of the
quadratic form of the functional.

Despite the fact that the model Γex is described as economic and mathematical
and the results of the analysis are interpreted accordingly, it seems obvious that
the results obtained during the study are not limited to application in economics
and can be adapted as theoretical (identification or justification of patterns and
phenomena), and to practical tasks in other scientific fields, examples of such areas
are well described in [33].

Note that the relation (1.2) is adapted to two variants of network interaction
of firms — if there is a connection between them in the network and in its absence,
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at the appropriate time. However, the conditions presented in Theorems 1.1–1.2
remain valid even when the model takes into account a greater variety of network
interaction options. For example, it can be assumed that firms 𝑖, 𝑗 ∈ 𝒩 for which
(𝑖, 𝑗) /∈ g(𝑡) benefit from each other’s investments with a coefficient of 𝜔𝑑𝑖𝑗(g(𝑡))(𝑡),
where 0 < 𝜔 < 1, and 𝑑𝑖𝑗(g(𝑡)) > 0 — the length of the shortest path from firm 𝑖

to 𝑗 in network g(𝑡). In this setting, we get 𝜇𝑖𝑗(𝑡,g(𝑡)) = 𝜔𝑑𝑖𝑗(g(𝑡))(𝑡) at 𝑖 ̸= 𝑗, and
it will be beneficial for each firm to reduce its distance to each competitor in the
network — as a way to avoid decay in positive effects of competitors’ investments.
At the same time, the choice of strategies by firms in following Theorem 1.1 or
Theorem 1.2 — depending on the information structure, allows them to adhere to
the Nash equilibrium.
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Chapter 2.

Dynamic models with endogenous network formation

Notwithstanding that [14] defines network games to be a rather young line in
game theory, a certain portion of the generally accepted classification has already
been well established. According to [15, 32, 36] network games can be divided
into two classes: games on network and network formation games. According to the
presented classification, the model discussed in Chapter 1 is a game on network. This
chapter will discuss models in which firms’ networking is formed only as part of their
strategic behavior. This allows this chapter to be considered as a logical continuation
of Chapter 1, where the model Γex is to extended by introducing the firms’ capability
of participating in network formation. The previous analysis is supplemented by the
matters of firms’ equilibrium multicomponent behavior under various types of their
network interaction (Sections 2.1 and 2.4). It is worth noting that games with
multicomponent behavior have already been discussed by game theorists, where the
work [42] can be exemplified, however numerous issues concerning the principles and
conditions for the formation of network interactions still remain unresolved.

This chapter will focus on the extended version of the model Γex (Section 2.2)
and its variations (Sections 2.3 and 2.4) under the assumption that firms indepen
dently form their network structure each decision period, i.e. the network formation
procedure becomes endogenous. For the firm’s network behavior, conditions will
be defined consistently with the interaction formation rule under consideration that
ensure the «stability» of network interactions being formed. The chapter will also
present the results of numerical simulations and benchmarking (Section 2.5), which
will allow firms to assess the prospects of long-term and short-term networking with
competitors. For the case of long-term networking between firms, the types of one
time and recurrent network communications costs will also be considered.

2.1. The strategic nature of network behavior and the formalization of
network formation rules

Let us consider the possibility of endogenous formation of firms’ network inter
actions, i.e., when each firm’s choice of direct neighbors in the network is the result
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of its strategic behavior. Let us assume that by choosing its network behavior at a
non-terminal period, each firm has knowledge of the costs associated with its poten
tial connections. To do this, we define for each period 𝑡 ∈ 𝒯 ∖ {𝑇} the matrix of
network costs (or interaction costs of firms) as Π(𝑡) = {𝜋𝑖𝑗(𝑡)}, where for each pair
of firms 𝑖, 𝑗 ∈ 𝒩 we have that 𝜋𝑖𝑗(𝑡) > 0 — the communication cost (𝑖,𝑗) that firm
𝑖 bears for communicating with firm 𝑗 if (𝑖,𝑗) belongs to the network structure g(𝑡)

formed at time 𝑡, while 𝜋𝑖𝑖(𝑡) = 0. We assume that the sequence of communication
cost matrices {Π(𝑡)}𝑇−1

𝑡=0 is always given and is common by known knowledge.
Let us consider for each time 𝑡 ∈ 𝒯 ∖ {𝑇} and the firm 𝑖 ∈ 𝒩 the vector

𝑔𝑖(𝑡) = (𝑔𝑖1(𝑡), . . . , 𝑔𝑖𝑛(𝑡)) ∈ G𝑖, which we will call the network behavior of the firm
𝑖 in the current period, and whose elements are

𝑔𝑖𝑗(𝑡) =

⎧⎨⎩1, if 𝑖 offers a connection to the firm 𝑗 ∈ 𝒩 ∖ {𝑖} at the time of 𝑡 ̸= 𝑇 ,

0, otherwise;

and be interpreted as an offer or consent of the firm 𝑖 to establish a network connec
tion with the firm 𝑗 in the current period, while we assume that 𝑔𝑖𝑖(𝑡) ≡ 0. Thus,
we can assume that the network behavior of firm 𝑖 at each nonterminal period of
the model is determined by a binary vector, and define the set of feasible types of
its network behavior as G𝑖 = {0, 1}𝑛 — space 𝑛−dimensional binary vectors. Set
𝑔𝑖 = (𝑔𝑖(0), 𝑔𝑖(1), . . . , 𝑔𝑖(𝑇 − 1)) to define the network behavior of firm 𝑖 in each of
the models discussed below.

We will say that a bilateral network connection is formed between a pair of
firms 𝑖 and 𝑗 at time 𝑡 if and only if 𝑔𝑖𝑗(𝑡) = 𝑔𝑗𝑖(𝑡) = 1, i.e. both firms at the
current time agree to establish a connection (𝑖, 𝑗) with each other, such that (𝑖, 𝑗) =
(𝑗, 𝑖) and (𝑖,𝑗) belong to the network structure g(𝑡) formed in the current period.
The described rule of forming bilateral links in network structures is of interest
to many researchers and is often found in the analysis of network games, for example
in [15, 16, 22, 39].

Based on the rule of bilateral network interaction, we determine the dynamics
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of the unit cost of the firm 𝑖 ∈ 𝒩 by changing the equation (1.2) as follows:

𝑐𝑖(𝑡+ 1)=𝛿𝑐𝑖(𝑡)− 𝛼𝑖(𝑡)𝑦𝑖(𝑡)−

−
∑︁
𝑗 ̸=𝑖

(︁
𝛽𝑖𝑗(𝑡) 𝑔𝑖𝑗(𝑡)𝑔𝑗𝑖(𝑡) + 𝛾𝑖𝑗(𝑡) (1− 𝑔𝑖𝑗(𝑡)𝑔𝑗𝑖(𝑡))

)︁
𝑦𝑗(𝑡),

(2.1)

where 𝑡 ∈ 𝒯 ∖ {𝑇} и 𝑐𝑖(0) = 𝑐𝑖0, 𝑐𝑖(𝑡) ∈ 𝒞, 𝑗 ∈ 𝒩 ∖ {𝑖}. Describing the current
network behavior of firms with the vector 𝑔(𝑡) = (𝑔1(𝑡), . . . , 𝑔𝑛(𝑡)), we will clarify
the current profits of firm 𝑖 with the following function:

𝐹𝑖 (𝑡, 𝑔(𝑡), 𝑐𝑖(𝑡), 𝑢(𝑡), 𝑦𝑖(𝑡)) =

=

(︃
𝑝− 𝑐𝑖(𝑡)−

𝑛∑︁
𝑗=1

𝑢𝑗(𝑡)

)︃
𝑢𝑖(𝑡)−

𝜀𝑖(𝑡)

2
𝑦2𝑖 (𝑡)−

∑︁
𝑗 ̸=𝑖

𝜋𝑖𝑗(𝑡)𝑔𝑖𝑗(𝑡)𝑔𝑗𝑖(𝑡).
(2.2)

Thus, the gameplay described in Section 1.1 is complemented by the fact that
now the behavior of a firm 𝑖 ∈ 𝒩 in period 𝑡 ∈ 𝒯 ∖ {𝑇} is described by a feasible
set (𝑔𝑖(𝑡), 𝑢𝑖(𝑡), 𝑦𝑖(𝑡)) ∈ G𝑖 ×U𝑖 ×Y𝑖; the network structure g(𝑡) is built according
to the rule of bilateral interaction (unless another rule is explicitly specified for the
formation of its links) unit costs are calculated according to (2.1), and current profits
are determined according to (2.2).

2.2. Open-loop Nash equilibrium

To formally represent a model with endogenous network formation as a dy
namic game, and also Nash equilibrium as its solution, following [47] let us start by
defining the strategies of competing firms. An open-loop strategy of firm 𝑖 ∈ 𝒩 is
called the mapping 𝑠𝑖(𝑡, 𝑐0) : 𝒯 ∖ {𝑇} ↦→ G𝑖 × U𝑖 × Y𝑖, which corresponds to each
intermediate period and the initial values of the unit costs of all firms the feasible
behavior of firm 𝑖 of the following type 𝑠𝑖(𝑡, 𝑐0) = (𝑔𝑖(𝑡), 𝑢𝑖(𝑡), 𝑦𝑖(𝑡)). Since the vec
tor 𝑐0 is fixed, we will omit the dependence of the strategy on it and consider it only
as a function of time. For the same reason, we will consider the firms’ open-loop
strategies as a function of time until the end of the thesis.

Following [20, 47], we define a dynamic model of competition with endogenous
formation of bilateral network interaction of firms as a game in normal form:

Γen =
⟨
𝒩 , {𝒮𝑖}𝑖∈𝒩 , {𝒥𝑖}𝑖∈𝒩

⟩
,
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where 𝒮𝑖 = {𝑠𝑖 | 𝑠𝑖(𝑡, 𝑐0) = (𝑔𝑖(𝑡), 𝑢𝑖(𝑡), 𝑦𝑖(𝑡)) , 𝑡 ∈ 𝒯 ∖ {𝑇}} — the set of strategies
of the firm 𝑖 ∈ 𝒩 , 𝑠 = (𝑠1, . . . , 𝑠𝑛) — a strategy profile and the payoff function
𝒥𝑖(𝑠) = 𝐽𝑖 (𝑐0,g, 𝑢, 𝑦) — the discounted profit of the firm 𝑖, determined by the
following expression:

𝐽𝑖 (𝑐0,g, 𝑢, 𝑦) =
𝑇−1∑︁
𝑡=0

𝜌𝑡𝐹𝑖 (𝑡,g(𝑡), 𝑐𝑖(𝑡), 𝑢(𝑡), 𝑦𝑖(𝑡)) + 𝜌𝑇 (𝜂𝑖 − 𝜂𝑐𝑖(𝑇 )) , (2.3)

where current profits are determined according to (2.2), with a set of network inter
action structures g = {g(𝑡)}𝑇−1

𝑡=0 that firms managed to generate, while the dynamics
of unit costs are described by (2.1).

The following theorem characterizes the Nash equilibrium in the model Γen.

Theorem 2.1. A set of strategies, 𝑠N =
(︀
𝑠N1 , . . . , 𝑠

N
𝑛

)︀
, whose components 𝑠N𝑖 (𝑡) =(︀

𝑔N𝑖 (𝑡), 𝑢
N
𝑖 (𝑡), 𝑦

N
𝑖 (𝑡)

)︀
, 𝑖 ∈ 𝒩 , 𝑡 ∈ 𝒯 ∖ {𝑇} have the form

𝑔N𝑖𝑗(𝑡) =

⎧⎨⎩1, 𝜋𝑖𝑗(𝑡) < 𝜋N𝑖𝑗(𝑡), 𝜋𝑗𝑖(𝑡) < 𝜋N𝑗𝑖(𝑡), 𝑗 ∈ 𝒩 ∖ {𝑖},

0, other,
(2.4)

𝑢N𝑖 (𝑡) =
𝑝− (𝑛+ 1)𝑐N𝑖 (𝑡) +

∑︀
𝑗∈ 𝒩 𝑐

N
𝑗 (𝑡)

𝑛+ 1
, (2.5)

𝑦N𝑖 (𝑡) = −𝛼𝑖(𝑡)𝜑𝑖(𝑡+ 1)

𝜌𝑡𝜀𝑖(𝑡)
, (2.6)

where

𝜋N𝑖𝑗(𝑡) =
𝜀𝑖(𝑡)

𝛼𝑖(𝑡)
(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡)) 𝑦

N
𝑖 (𝑡) 𝑦

N
𝑗 (𝑡),

is a Nash equilibrium in model Γen. Here 𝑐N𝑖 (𝑡) satisfies (2.1) with the initial condi
tion 𝑐N𝑖 (0) = 𝑐𝑖0, and 𝜑𝑖(𝑡) satisfies the relation 𝜑𝑖(𝑡) = −𝜌𝑡𝑢N𝑖 (𝑡) + 𝛿𝜑𝑖(𝑡+ 1) with
the boundary condition 𝜑𝑖(𝑇 ) = −𝜌𝑇𝜂 for 𝑖 ∈ 𝒩 .

Proof. First of all, following [51, 53, 72], let us suppose that instead of the 𝑛-dimensional
binary vector 𝑔𝑖(𝑡) the firm 𝑖 ∈ 𝒩 currently chooses 𝑡 ̸= 𝑇 the 𝑛-dimensional vector
𝑧𝑖(𝑡), whose components are 𝑧𝑖𝑗(𝑡) ∈ [0, 1]. We will characterize such a network
behavior of the firm 𝑖 as its tendency to form a connection with the firm 𝑗 in this
period. In extreme cases, i.e. when 𝑧𝑖𝑗(𝑡) = 0 or 𝑧𝑖𝑗(𝑡) = 1, the firm 𝑖 does not offer
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and offers a connection to the firm 𝑗, respectively. Let 𝑧(𝑡) = (𝑧1(𝑡), . . . , 𝑧𝑛(𝑡)), 𝜎𝑖
— a strategy of the firm 𝑖, i.e, 𝜎𝑖(𝑡) = (𝑧𝑖(𝑡), 𝑢𝑖(𝑡), 𝑦𝑖(𝑡)), and 𝜎 = (𝜎1, . . . , 𝜎𝑛) is
a set of strategies. Using standard dynamic game theory techniques, taking into
account (2.1) and (2.3) for the firm 𝑖, the Hamiltonian takes the form:

ℋ𝑖 (𝑡, 𝑐(𝑡), 𝑧(𝑡), 𝑢(𝑡), 𝑦(𝑡), 𝜓𝑖(𝑡+ 1)) =

= 𝜌𝑡
[︁(︁
𝑝−𝑐𝑖(𝑡)−

∑︁
𝑗∈𝒩

𝑢𝑗(𝑡)
)︁
𝑢𝑖(𝑡)−

𝜀𝑖(𝑡)

2
𝑦2𝑖 (𝑡)−

∑︁
𝑗 ̸=𝑖

𝜋𝑖𝑗(𝑡)𝑧𝑖𝑗(𝑡)𝑧𝑗𝑖(𝑡)
]︁
+
∑︁
𝑗∈𝒩

𝜓𝑖𝑗(𝑡+1)×

×
[︁
𝛿𝑐𝑗(𝑡)− 𝛼𝑗(𝑡)𝑦𝑗(𝑡)−

∑︁
𝑟 ̸=𝑗

(︁
𝛽𝑗𝑟(𝑡)𝑧𝑗𝑟(𝑡)𝑧𝑟𝑗(𝑡) + 𝛾𝑗𝑟(𝑡)(1− 𝑧𝑗𝑟(𝑡)𝑧𝑟𝑗(𝑡))

)︁
𝑦𝑟(𝑡)

]︁
,

where 𝜓𝑖(𝑡) = (𝜋𝑖1(𝑡), . . . ,𝜓𝑖𝑛(𝑡)), 𝑡 ∈ 𝒯 ∖{0}, — a set of costate variables. According
to the Pontryagin maximum principle [23, 47], if the set of strategies 𝜎N is a Nash
equilibrium, then there exist non-zero vectors 𝜓𝑖(𝑡) at 𝑡 ∈ 𝒯 ∖ {0}, 𝑖 ∈ 𝒩 , which
satisfy the system of recurrence relations:

𝜎N𝑖 (𝑡) = arg max
𝑧𝑖(𝑡)∈[0,1]𝑛, 𝑢𝑖(𝑡)∈U𝑖, 𝑦𝑖(𝑡)∈Y𝑖

ℋ𝑖

(︀
𝑡, 𝑐N(𝑡),

(︀
𝑧N−𝑖(𝑡) | 𝑧𝑖(𝑡)

)︀
,
(︀
𝑢N−𝑖(𝑡) |𝑢𝑖(𝑡)

)︀
,
(︀
𝑦N−𝑖(𝑡) | 𝑦𝑖(𝑡)

)︀
, 𝜓𝑖(𝑡+ 1)

)︀
,

𝜓𝑖𝑗(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝜌𝑡𝑢N𝑖 (𝑡) + 𝛿𝜓𝑖𝑖(𝑡+ 1), 𝑗 = 𝑖, 𝑡 ̸= 𝑇,

−𝜌𝑇𝜂, 𝑗 = 𝑖, 𝑡 = 𝑇,

0, 𝑗 ̸= 𝑖,

𝑐N𝑖 (𝑡+ 1) = 𝛿𝑐N𝑖 (𝑡)− 𝛼𝑖(𝑡)𝑦
N
𝑖 (𝑡)−

−
∑︁
𝑗 ̸=𝑖

(︁
𝛽𝑖𝑗(𝑡)𝑧

N
𝑖𝑗(𝑡)𝑧

N
𝑗𝑖(𝑡) + 𝛾𝑖𝑗(𝑡)(1− 𝑧N𝑖𝑗(𝑡)𝑧

N
𝑗𝑖(𝑡))

)︁
𝑦N𝑗 (𝑡), 𝑡 ̸= 𝑇,

𝑐N𝑖 (0) = 𝑐𝑖0.

Considering the equality 𝜋𝑖𝑗(𝑡) = 0 for 𝑖 ̸= 𝑗 and the linearity of the Hamiltonian
with respect to the variables 𝑧𝑖𝑗(𝑡) for the Nash equilibrium 𝜎N, it is necessary that:

𝑧N𝑖𝑗(𝑡) =

⎧⎨⎩1,
(︁
𝜌𝑡𝜋𝑖𝑗(𝑡) + 𝜓𝑖𝑖(𝑡+ 1)(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡))𝑦

N
𝑗 (𝑡)

)︁
𝑧N𝑗𝑖(𝑡) < 0 and 𝑗 ̸= 𝑖,

0, other,
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𝑢N𝑖 (𝑡) =
𝑝− (𝑛+ 1)𝑐N𝑖 (𝑡) +

∑︀
𝑗∈𝒩 𝑐

N
𝑗 (𝑡)

𝑛+ 1
,

𝑦N𝑖 (𝑡) = − 𝛼𝑖(𝑡)

𝜌𝑡𝜀𝑖(𝑡)
𝜓𝑖𝑖(𝑡+ 1). (2.7)

Thus, if 𝜎N is a Nash equilibrium, then 𝑠N = 𝜎N, where 𝑔N𝑖 = 𝑧N𝑖 . Therefore, the
Nash equilibrium dictates that two firms 𝑖 and 𝑗 establish a connection at time
𝑡 ̸= 𝑇 , i.e., choose in their network behavior 𝑔N𝑖𝑗(𝑡) = 𝑔N𝑗𝑖(𝑡) = 1, if the following
inequalities are satisfied:

𝜌𝑡𝜋𝑖𝑗(𝑡) + 𝜓𝑖𝑖(𝑡+ 1)(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡))𝑦
N
𝑗 (𝑡) < 0,

𝜌𝑡𝜋𝑗𝑖(𝑡) + 𝜓𝑗𝑗(𝑡+ 1)(𝛽𝑗𝑖(𝑡)− 𝛾𝑗𝑖(𝑡))𝑦
N
𝑖 (𝑡) < 0.

Considering (2.7), in Nash equilibrium two firms 𝑖 and 𝑗 establish a connection in
period 𝑡 if 𝜋𝑖𝑗(𝑡) < 𝜋N𝑖𝑗(𝑡) and 𝜋𝑗𝑖(𝑡) < 𝜋N𝑗𝑖(𝑡). Setting 𝜑𝑖(𝑡) = 𝜓𝑖𝑖(𝑡) we get the
expressions (2.4) – (2.6).

The existence of nonzero costate variables guarantees for each firm a nonzero
investment behavior determined by (2.7). The Hessian of the Hamiltonian ℋ𝑖 is
negative definite: −2𝜌𝑡

(︀
𝑢N𝑖 (𝑡)

)︀2 − 𝜌𝑡𝜀𝑖(𝑡)
(︀
𝑦N𝑖 (𝑡)

)︀2
< 0. Therefore, it remains to

conclude that 𝑠N will be an open-loop Nash equilibrium.

Remark 2.1. Following [27], the conditions (2.4) – (2.6) can also be represented in
an alternative recurrent form. To avoid repeating similar steps, we leave this out.
In addition, we note that when moving from model Γex to Γen, the functional type
of production and investment behavior of firms (2.5) – (2.6) in Nash equilibrium is
preserved.
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2.3. Open-loop Nash equilibrium for models with constant network
interaction

The considered model Γen allows firms to rebuild their network interaction with
competitors at each decision period, which can be interpreted as a variant of strategic
behavior in which firms are guided by short-term relationships, an example of which
may be short-term agreements or contracts. It also seems natural to consider options
for network interaction when connections in the network are established for a long
time, in other words, when the network has a permanent structure in the model.
At the same time, the interaction costs that firms take into account when choosing
direct neighbors in the network can be regular — firms bear the costs of their existing
connections in the network at every period 𝑡 ∈ 𝒯 ∖ {𝑇} (Subsection 2.3.1) as well
as one-time — firms bear the costs of their existing connections only at the time of
network formation (Subsection 2.3.2).

A comparative analysis of the Nash equilibrium conditions obtained for each of
the types of network interaction of competing firms in a dynamic process described
in this Section (Section 2.5) will rise a number of important questions, among which
the central one is — which option of interaction with common input parameters
(short-term or long-term) is more profitable for competing parties?

2.3.1. A model with the cost of establishing and maintaining network
connections

Consider a model in which firms choose their network behavior once in the
initial period, but bear the cost of establishing network connections with their direct
neighbors at each time 𝑡 ∈ 𝒯 ∖ {𝑇} — as they receive the effect of investments from
all firms, according to the constructed structure of network interaction. Thus, the
network in the model has a constant structure, so g = g(0) := g0. At the same
time, the cost of the firm’s network interaction is borne by 𝑡 ∈ 𝒯 ∖ {𝑇} at each
period. This assumption can be interpreted as the cost of forming and maintaining
network interaction over a long period of time.

Call the feasible behavior of the firm 𝑖 ∈ 𝒩 in the model: three actions
(𝑔𝑖(0), 𝑢𝑖(0), 𝑦𝑖(0)) ∈ G𝑖 × U𝑖 × Y𝑖 for 𝑡 = 0 and a pair of actions (𝑢𝑖(𝑡), 𝑦𝑖(𝑡)) ∈
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U𝑖 × Y𝑖 for 𝑡 ∈ 𝒯 ∖ {0, 𝑇}. The total profit of the firm 𝑖 is set to

𝐽𝑖 (𝑐0,g0, 𝑢, 𝑦) =

=
𝑇−1∑︁
𝑡=0

𝜌𝑡

[︃(︃
𝑝−𝑐𝑖(𝑡)−

𝑛∑︁
𝑗=1

𝑢𝑗(𝑡)

)︃
𝑢𝑖(𝑡)−

𝜀𝑖(𝑡)

2
𝑦2𝑖 (𝑡)−

∑︁
𝑗 ̸=𝑖

𝜋𝑖𝑗(𝑡)𝑔𝑖𝑗(0)𝑔𝑗𝑖(0)

]︃
+

+ 𝜌𝑇 (𝜂𝑖 − 𝜂𝑐𝑖(𝑇 )), (2.8)

where the current unit cost satisfies the recurrence relation

𝑐𝑖(𝑡+ 1) = 𝛿𝑐𝑖(𝑡)− 𝛼𝑖(𝑡)𝑦𝑖(𝑡)

−
∑︁
𝑗 ̸=𝑖

(︁
𝛽𝑖𝑗(𝑡)𝑔𝑖𝑗(0)𝑔𝑗𝑖(0) + 𝛾𝑖𝑗(𝑡)(1− 𝑔𝑖𝑗(0)𝑔𝑗𝑖(0))

)︁
𝑦𝑗(𝑡)

(2.9)

for 𝑡 ∈ 𝒯 ∖ 𝑇 , with initial unit cost 𝑐𝑖(0) = 𝑐𝑖0.
Then, the dynamic model of competition with endogenous formation of long-term

network interaction and regular interaction costs can be represented as a dynamic
game in normal form:

Γen
01 =

⟨
𝒩 , {𝒮𝑖}𝑖∈𝒩 , {𝒥𝑖}𝑖∈𝒩

⟩
,

where 𝒮𝑖 is the set of strategies of the firm 𝑖 such that

𝑠𝑖(𝑡) =

⎧⎨⎩(𝑔𝑖(0), 𝑢𝑖(0), 𝑦𝑖(0)), 𝑡 = 0,

(𝑢𝑖(𝑡), 𝑦𝑖(𝑡)), 𝑡 ∈ 𝒯 ∖ {0, 𝑇};
(2.10)

the payoff function 𝒥𝑖(𝑠) = 𝐽𝑖 (𝑐0,g0, 𝑢, 𝑦) — discounted profit determined according
to the functional (2.8), where 𝑠 = (𝑠1, . . . , 𝑠𝑛) — a strategy profile in the game in
which the network structure of interaction between firms is g0, and the dynamics of
unit costs is determined by (2.9) with the initial condition 𝑐(0) = 𝑐0.

The following theorem characterizes the open-loop Nash equilibrium for model
Γen
01.

Theorem 2.2. In model Γen
01 a set of strategies 𝑠* = (𝑠*1, . . . , 𝑠

*
𝑛), whose components

𝑠*𝑖 (𝑡) =

⎧⎨⎩(𝑔*𝑖 (0), 𝑢
*
𝑖 (0), 𝑦

*
𝑖 (0)), 𝑡 = 0,

(𝑢*𝑖 (𝑡), 𝑦
*
𝑖 (𝑡)), 𝑡 ∈ 𝒯 ∖ {0, 𝑇},
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for 𝑖 ∈ 𝒩 , have the form

𝑔*𝑖𝑗(0) =

⎧⎪⎨⎪⎩1,
𝑇−1∑︀
𝑡=0

𝜌𝑡𝜋𝑖𝑗(𝑡) < 𝜋*𝑖𝑗,
𝑇−1∑︀
𝑡=0

𝜌𝑡𝜋𝑗𝑖(𝑡) < 𝜋*𝑗𝑖, 𝑗 ∈ 𝒩 ∖ {𝑖},

0, otherwise,
(2.11)

𝑢*𝑖 (𝑡) =

𝑝− (𝑛+ 1)𝑐*𝑖 (𝑡) +
∑︀
𝑗∈𝒩

𝑐*𝑗(𝑡)

𝑛+ 1
,

𝑦*𝑖 (𝑡) = − 𝛼𝑖(𝑡)

𝜌𝑡𝜀𝑖(𝑡)
𝜑𝑖(𝑡+ 1), (2.12)

is a Nash equilibrium, where

𝜋*𝑖𝑗 =
𝑇−1∑︁
𝑡=0

𝜌𝑡
𝜀𝑖(𝑡)

𝛼𝑖(𝑡)
(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡)) 𝑦

*
𝑖 (𝑡) 𝑦

*
𝑗 (𝑡).

Here 𝑐*𝑖 (𝑡) satisfies the relation (2.9) with the initial condition 𝑐*𝑖 (0) = 𝑐𝑖0, and
𝜑𝑖(𝑡) satisfies the relation 𝜑𝑖(𝑡) = −𝜌𝑡𝑢*𝑖 (𝑡)+ 𝛿𝜑𝑖(𝑡+1) with the boundary condition
𝜑𝑖(𝑇 ) = −𝜌𝑇𝜂 for 𝑖 ∈ 𝒩 .

Proof. Since the current profit for each firm 𝑖 ∈ 𝒩 depends, among other things,
on the network behavior chosen at the beginning, standard methods based on Pon
tryagin’s maximum principle are not applicable. Therefore, a different approach is
required to prove the theorem.

First, as in the proof of Theorem 2.1, we assume that instead of the 𝑛-dimensional
binary vector 𝑔𝑖(0), firm 𝑖 chooses the 𝑛-dimensional vector 𝑧𝑖(0) in the initial pe
riod, whose components 𝑧𝑖𝑗(0) ∈ [0; 1] characterize the tendency of 𝑖 to form a
connection with 𝑗 ∈ 𝒩 ∖{𝑖} at 𝑡 = 0. Let 𝑧(0) = (𝑧1(0), . . . ,𝑧𝑛(0)), 𝜎𝑖 — a strategy
of firm 𝑖, a 𝜎 = (𝜎1, . . . ,𝜎𝑛) — a set of strategies.

Assuming that the strategies of all firms except 𝑖 are fixed, to find the best
response to these strategies, the firm 𝑖 must maximize (2.8) taking into account the
equation of the dynamics of unit costs (2.9). To find the best response for firm 𝑖,
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we write out the Lagrange function:

ℒ𝑖(𝑐, 𝑧(0), 𝑢, 𝑦, 𝜆𝑖) =
𝑇−1∑︁
𝑡=0

𝜌𝑡

[︃(︃
𝑝−

𝑛∑︁
𝑗=1

𝑢𝑗(𝑡)

)︃
𝑢𝑖(𝑡)− 𝑐𝑖(𝑡)𝑢𝑖(𝑡)−

− 𝜀𝑖(𝑡)

2
𝑦2𝑖 (𝑡)−

∑︁
𝑗 ̸=𝑖

𝜋𝑖𝑗(𝑡)𝑧𝑖𝑗(0)𝑧𝑗𝑖(0)

]︃
+ 𝜌𝑇 (𝜂𝑖 − 𝜂𝑐𝑖(𝑇 ))−

−
𝑇−1∑︁
𝑡=0

𝑛∑︁
𝑗=1

𝜆𝑖𝑗(𝑡+ 1)

[︃
𝑐𝑗(𝑡+ 1)− 𝛿𝑐𝑗(𝑡) + 𝛼𝑗(𝑡)𝑦𝑗(𝑡)+

+
∑︁
𝑟 ̸=𝑗

(︁
𝛽𝑗𝑟(𝑡)𝑧𝑗𝑟(0)𝑧𝑟𝑗(0) + 𝛾𝑗𝑟(𝑡)(1− 𝑧𝑗𝑟(0)𝑧𝑟𝑗(0))

)︁
𝑦𝑟(𝑡)

]︃
,

where 𝜆𝑖 = (𝜆𝑖(1), . . . ,𝜆𝑖(𝑇 )) when 𝜆𝑖(𝑡) = (𝜆𝑖1(𝑡), . . . ,𝜆𝑖𝑛(𝑡)), 𝑡 ∈ 𝒯 ∖ {0}, — a set
of Lagrange multipliers. If the set of strategies 𝜎* is a Nash equilibrium, then there
exist non-zero sets 𝜆𝑖, 𝑖 ∈ 𝒩 satisfying the system of recurrence relations:

𝑧*𝑖𝑗(0) =

⎧⎪⎨⎪⎩1,
𝑇−1∑︀
𝑡=0

(︁
𝜌𝑡𝜋𝑖𝑗(𝑡) + 𝜆𝑖𝑖(𝑡+ 1)(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡))𝑦

*
𝑗 (𝑡)
)︁
𝑧*𝑗𝑖(0) < 0 and 𝑗 ̸= 𝑖,

0, otherwise,

𝑢*𝑖 (𝑡) =

𝑝− (𝑛+ 1)𝑐*𝑖 (𝑡) +
𝑛∑︀

𝑗=1

𝑐*𝑗(𝑡)

𝑛+ 1
, 𝑡 ̸= 𝑇,

𝑦*𝑖 (𝑡) = − 𝛼𝑖(𝑡)

𝜌𝑡𝜀𝑖(𝑡)
𝜆𝑖𝑖(𝑡+ 1), 𝑡 ̸= 𝑇, (2.13)

𝜆𝑖𝑗(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝜌𝑡𝑢*𝑖 (𝑡) + 𝛿𝜆𝑖𝑖(𝑡+ 1), 𝑗 = 𝑖, 𝑡 ̸= 𝑇,

−𝜌𝑇𝜂, 𝑗 = 𝑖, 𝑡 = 𝑇,

0, 𝑗 ̸= 𝑖,

𝑐*𝑖 (𝑡+ 1) = 𝛿𝑐*𝑖 (𝑡)− 𝛼𝑖(𝑡)𝑦
*
𝑖 (𝑡)−

−
∑︁
𝑗 ̸=𝑖

(︁
𝛽𝑖𝑗(𝑡)𝑧

*
𝑖𝑗(0)𝑧

*
𝑗𝑖(0) + 𝛾𝑖𝑗(𝑡)(1− 𝑧*𝑖𝑗(0)𝑧

*
𝑗𝑖(0))

)︁
𝑦*𝑗 (𝑡), 𝑡 ̸= 𝑇,

𝑐*𝑖 (0) = 𝑐𝑖0.
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If 𝜎* is a Nash equilibrium, then 𝑠* = 𝜎*, where 𝑔*𝑖 (0) = 𝑧*𝑖 (0). We conclude
that the Nash equilibrium requires two different firms 𝑖 and 𝑗 to establish a connec
tion in the initial period, i.e. to choose in their network behavior 𝑔*𝑖𝑗(0) = 𝑔*𝑗𝑖(0) = 1,
if the inequalities are satisfied:

𝑇−1∑︁
𝑡=0

(︁
𝜌𝑡𝜋𝑖𝑗(𝑡) + 𝜆𝑖𝑖(𝑡+ 1)(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡))𝑦

*
𝑗 (𝑡)
)︁
< 0,

𝑇−1∑︁
𝑡=0

(︁
𝜌𝑡𝜋𝑗𝑖(𝑡) + 𝜆𝑗𝑗(𝑡+ 1)(𝛽𝑗𝑖(𝑡)− 𝛾𝑗𝑖(𝑡))𝑦

*
𝑖 (𝑡)
)︁
< 0.

Considering the above expression for 𝑦*𝑖 (𝑡), in Nash equilibrium, two firms 𝑖

and 𝑗 establish a connection at the initial time
𝑇−1∑︀
𝑡=0

𝜌𝑡𝜋𝑖𝑗(𝑡) < 𝜋*𝑖𝑗 and
𝑇−1∑︀
𝑡=0

𝜌𝑡𝜋𝑗𝑖(𝑡) <

𝜋*𝑗𝑖. Setting 𝜑𝑖(𝑡) = 𝜆𝑖𝑖(𝑡) we get the expressions (2.11)–(2.12).
The existence of non-zero Lagrange multipliers guarantees for each firm non-zero

investment behavior, determined according to (2.13), in the context of which the
Hessian of the Lagrange function ℒ𝑖 is negative definite:

−2
𝑇−1∑︁
𝑡=1

𝜌𝑡𝑢*𝑖 (𝑡)𝑐
*
𝑖 (𝑡)−

𝑇−1∑︁
𝑡=0

𝜌𝑡
[︀
2(𝑢*𝑖 (𝑡))

2 + 𝜀𝑖(𝑡)(𝑦
*
𝑖 (𝑡))

2
]︀
< 0.

Therefore, we can conclude that 𝑠* will be an open-loop Nash equilibrium for model
Γen
01.

2.3.2. A model with one-time network cost

Now consider a model in which firms also choose and implement their net
work behavior once at an initial period, but only incur the costs of direct network
connections at that period.

The network behavior of firms in such a model can be characterized by the costs
of network interaction, which are necessary only for the provision and/or formation
of links in the conditions of long-term network interaction of firms. As an example,
we can cite a strategy profile in which a couple of firms decide to jointly invest in a
project with a duration of 𝒯 , while the costs of network interaction itself are reduced
here to the costs of negotiating, drafting, and signing a general agreement between
the firms.
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A dynamic competition model with endogenous formation of long-term network
interaction and one-time network interaction costs is referred to as a dynamic game
in normal form:

Γen
02 =

⟨
𝒩 , {𝒮𝑖}𝑖∈𝒩 , {𝒥𝑖}𝑖∈𝒩

⟩
,

where 𝒮𝑖 is a set of strategies of the firm 𝑖, prescribing to it feasible behavior of the
form (2.10), and the payoff function 𝒥𝑖(𝑠) = 𝐽𝑖 (𝑐0,g0, 𝑢, 𝑦) — discounted profit of
the firm 𝑖, determined according to the following expression

𝐽𝑖 (𝑐0,g0, 𝑢, 𝑦) =

=
𝑇−1∑︁
𝑡=0

𝜌𝑡

[︃(︃
𝑝−𝑐𝑖(𝑡)−

𝑛∑︁
𝑗=1

𝑢𝑗(𝑡)

)︃
𝑢𝑖(𝑡)−

𝜀𝑖(𝑡)

2
𝑦2𝑖 (𝑡)

]︃
−
∑︁
𝑗 ̸=𝑖

𝜋𝑖𝑗(0)𝑔𝑖𝑗(0)𝑔𝑗𝑖(0)+

+ 𝜌𝑇 (𝜂𝑖 − 𝜂𝑐𝑖(𝑇 )), (2.14)

where a network of g0 is formed from the network behavior of firms at 𝑡 = 0, and
the dynamics of unit costs is given by the (2.9) with 𝑐(0) = 𝑐0.

The Nash equilibrium in Γen
02 is given by the following theorem.

Theorem 2.3. In the model Γen
02 a set of strategies 𝑠** = (𝑠**1 , . . . , 𝑠

**
𝑛 ), whose

components

𝑠**𝑖 (𝑡) =

⎧⎨⎩(𝑔**𝑖 (0), 𝑢**𝑖 (0), 𝑦**𝑖 (0)), 𝑡 = 0,

(𝑢**𝑖 (𝑡), 𝑦**𝑖 (𝑡)), 𝑡 ∈ 𝒯 ∖ {0, 𝑇},

for 𝑖 ∈ 𝒩 , have the form

𝑔**𝑖𝑗 (0) =

⎧⎨⎩1, 𝜋𝑖𝑗(0) < 𝜋**𝑖𝑗 , 𝜋𝑗𝑖(0) < 𝜋**𝑗𝑖 , 𝑗 ∈ 𝒩 ∖ {𝑖},

0, otherwise,
(2.15)

𝑢**𝑖 (𝑡) =

𝑝− (𝑛+ 1)𝑐**𝑖 (𝑡) +
𝑛∑︀

𝑗=1

𝑐**𝑗 (𝑡)

𝑛+ 1
,

𝑦**𝑖 (𝑡) = − 𝛼𝑖(𝑡)

𝜌𝑡𝜀𝑖(𝑡)
𝜑𝑖(𝑡+ 1), (2.16)

is a Nash equilibrium, where

𝜋**𝑖𝑗 =
𝑇−1∑︁
𝑡=0

𝜌𝑡
𝜀𝑖(𝑡)

𝛼𝑖(𝑡)
(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡)) 𝑦

**
𝑖 (𝑡) 𝑦**𝑗 (𝑡).
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Here 𝑐**𝑖 (𝑡) satisfies the relation (2.9) with the initial condition 𝑐**𝑖 (0) = 𝑐𝑖0, and
𝜑𝑖(𝑡) satisfies the relation 𝜑𝑖(𝑡) = −𝜌𝑡𝑢**𝑖 (𝑡)+𝛿𝜑𝑖(𝑡+1) with the boundary condition
𝜑𝑖(𝑇 ) = −𝜌𝑇𝜂 for the firm 𝑖.

Proof. Since the current profit of the firm also depends on the network behavior
chosen in the initial period, we use a similar proof of Theorem 2.2. First, let us
assume that instead of the 𝑛-dimensional binary vector 𝑔𝑖(0), the firm 𝑖 ∈ 𝒩 chooses
the 𝑛-dimensional vector 𝑧𝑖(0) with components 𝑧𝑖𝑗(0) ∈ [0, 1] at the initial time.
Let 𝑧(0) = (𝑧1(0), . . . , 𝑧𝑛(0)), 𝜎𝑖 firm strategy 𝑖, a 𝜎 = (𝜎1, . . . ,𝜎𝑛) — a set of
strategies.

Assuming that the strategies of all firms except 𝑖 are fixed, to find the best re
sponse to those strategies, the firm 𝑖 must maximize (2.14) taking into account (2.9).
Let us write the Lagrange function:

ℒ𝑖(𝑐, 𝑧(0), 𝑢, 𝑦, 𝜆𝑖) =
𝑇−1∑︁
𝑡=0

𝜌𝑡

[︃(︃
𝑝−

𝑛∑︁
𝑗=1

𝑢𝑗(𝑡)

)︃
𝑢𝑖(𝑡)− 𝑐𝑖(𝑡)𝑢𝑖(𝑡)−

𝜀𝑖(𝑡)

2
𝑦2𝑖 (𝑡)

]︃
−

−
∑︁
𝑗 ̸=𝑖

𝜋𝑖𝑗(0)𝑧𝑖𝑗(0)𝑧𝑗𝑖(0) + 𝜌𝑇 (𝜂𝑖 − 𝜂𝑐𝑖(𝑇 ))−

−
𝑇−1∑︁
𝑡=0

𝑛∑︁
𝑗=1

𝜆𝑖𝑗(𝑡+ 1)

[︃
𝑐𝑗(𝑡+ 1)− 𝛿𝑐𝑗(𝑡) + 𝛼𝑗(𝑡)𝑦𝑗(𝑡)+

+
∑︁
𝑟 ̸=𝑗

(︁
𝛽𝑗𝑟(𝑡)𝑧𝑗𝑟(0)𝑧𝑟𝑗(0) + 𝛾𝑗𝑟(𝑡)(1− 𝑧𝑗𝑟(0)𝑧𝑟𝑗(0))

)︁
𝑦𝑟(𝑡)

]︃
,

where 𝜆𝑖 = (𝜆𝑖(1), . . . ,𝜆𝑖(𝑇 )) when 𝜆𝑖(𝑡) = (𝜆𝑖1(𝑡), . . . ,𝜆𝑖𝑛(𝑡)), 𝑡 ∈ 𝒯 ∖ {0}, — a set
of Lagrange multipliers. If the set of strategies 𝜎** is a Nash equilibrium, then there
exist non-zero sets 𝜆𝑖, 𝑖 ∈ 𝒩 satisfying the system of recurrence relations:

𝑧**𝑖𝑗 (0) =

⎧⎪⎪⎨⎪⎪⎩
1,

(︃
𝜋𝑖𝑗(0) +

𝑇−1∑︀
𝑡=0

𝜆𝑖𝑖(𝑡+ 1)(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡))𝑦
**
𝑗 (𝑡)

)︃
𝑧**𝑗𝑖 (0) < 0, 𝑗 ̸= 𝑖,

0, otherwise,

𝑢**𝑖 (𝑡) =

𝑝− (𝑛+ 1)𝑐**𝑖 (𝑡) +
𝑛∑︀

𝑗=1

𝑐**𝑗 (𝑡)

𝑛+ 1
, 𝑡 ̸= 𝑇,

𝑦**𝑖 (𝑡) = − 𝛼𝑖(𝑡)

𝜌𝑡𝜀𝑖(𝑡)
𝜆𝑖𝑖(𝑡+ 1), 𝑡 ̸= 𝑇,
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𝜆𝑖𝑗(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝜌𝑡𝑢**𝑖 (𝑡) + 𝛿𝜆𝑖𝑖(𝑡+ 1), 𝑗 = 𝑖, 𝑡 ̸= 𝑇,

−𝜌𝑇𝜂, 𝑗 = 𝑖, 𝑡 = 𝑇,

0, 𝑗 ̸= 𝑖,

𝑐**𝑖 (𝑡+ 1) = 𝛿𝑐**𝑖 (𝑡)− 𝛼𝑖(𝑡)𝑦
**
𝑖 (𝑡)−

∑︁
𝑗 ̸=𝑖

(︁
𝛽𝑖𝑗(𝑡)𝑧

**
𝑖𝑗 (0)𝑧

**
𝑗𝑖 (0)+

+ 𝛾𝑖𝑗(𝑡)(1− 𝑧**𝑖𝑗 (0)𝑧
**
𝑗𝑖 (0))

)︁
𝑦**𝑗 (𝑡), 𝑡 ̸= 𝑇,

𝑐**𝑖 (0) = 𝑐𝑖0.

If 𝜎** is a Nash equilibrium, then 𝑠** = 𝜎**, where 𝑔**𝑖 (0) = 𝑧**𝑖 (0). Thus, the
Nash equilibrium dictates that any pair of different firms 𝑖 and 𝑗 should establish
a connection at the initial period, i.e., choose as their network behavior 𝑔**𝑖𝑗 (0) =

𝑔**𝑗𝑖 (0) =1, in the case that the inequalities are true

𝜋𝑖𝑗(0) +
𝑇−1∑︁
𝑡=0

𝜆𝑖𝑖(𝑡+ 1)(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡))𝑦
**
𝑗 (𝑡) < 0,

𝜋𝑗𝑖(0) +
𝑇−1∑︁
𝑡=0

𝜆𝑗𝑗(𝑡+ 1)(𝛽𝑗𝑖(𝑡)− 𝛾𝑗𝑖(𝑡))𝑦
**
𝑖 (𝑡) < 0.

Considering the above expression for 𝑦**𝑖 (𝑡), in Nash equilibrium two firms 𝑖 and 𝑗
establish a connection at the initial time 𝜋𝑖𝑗(0) < 𝜋**𝑖𝑗 and 𝜋𝑗𝑖(0) < 𝜋**𝑗𝑖 . Putting
𝜑𝑖(𝑡) = 𝜆𝑖𝑖(𝑡) we get (2.15) – (2.16).

Since the existence of non-zero Lagrange multipliers guarantees non-zero in
vestment behavior for each firm at every period 𝑡 ∈ 𝒯 ∖ {𝑇}, the Hessian of the
Hessian Lagrange function ℒ𝑖 turns out to be negative definite:

−2
𝑇−1∑︁
𝑡=1

𝜌𝑡𝑢**𝑖 (𝑡)𝑐**𝑖 (𝑡)−
𝑇−1∑︁
𝑡=0

𝜌𝑡
(︁
2
(︀
𝑢**𝑖 (𝑡)

)︀2
+ 𝜀𝑖(𝑡)

(︀
𝑦**𝑖 (𝑡)

)︀2)︁
< 0.

Therefore, we can conclude that 𝑠** will be an open-loop Nash equilibrium for
model Γen

02.
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2.4. Nash equilibrium with unilateral network interaction

Let us move on to the rule of forming a unilateral network interaction of com
peting firms, when the network connection between a pair of firms 𝑖 ∈ 𝒩 and
𝑗 ∈ 𝒩 ∖ {𝑖} is directed ((𝑖,𝑗) ̸= (𝑗, 𝑖)) in g(𝑡), at 𝑡 ∈ 𝒯 ∖ {𝑇}. In this case, let us
agree to understand by notation (𝑖, 𝑗) an arc in g(𝑡), indicating 𝑗 as a firm from
whose investments firm 𝑖 receives an effect with a coefficient 𝛽𝑖𝑗(𝑡). Note that for the
unilateral formation of a network interaction, the desire of only one firm is sufficient,
i.e. if firm 𝑖 chooses 𝑔𝑖𝑗(𝑡) = 1, then (𝑖, 𝑗) ∈ g(𝑡).

Note that when switching in the previously considered models Γen, Γen
01 and Γen

02

from the bilateral network rule to unilateral, the methodology for finding a open-loop
Nash equilibrium does not change. However, the condition for network interaction
in equilibrium takes a different form. Since unilateral network interaction does not
require firms to focus on the network behavior of their competitors, they can choose
it based only on their own interest. In this context, we will only discuss those
components of the models in Nash equilibrium that take on a different appearance
than they do in equilibrium with bilateral interaction.

� At an open-loop Nash equilibrium for model Γen with unilateral network interac
tion, we have:

𝐽𝑖
(︀
𝑐0,g

N, 𝑢N, 𝑦N
)︀
=

𝑇−1∑︁
𝑡=0

𝜌𝑡

[︃(︃
𝑝− 𝑐N𝑖 (𝑡)−

𝑛∑︁
𝑗=1

𝑢N𝑗

)︃
𝑢N𝑖 − 𝜀𝑖(𝑡)

2

(︀
𝑦N𝑖 (𝑡)

)︀2−
−
∑︁
𝑗 ̸=𝑖

𝜋𝑖𝑗(𝑡)𝑔
N
𝑖𝑗(𝑡)

⎤⎦+ 𝜌𝑇
(︀
𝜂𝑖 − 𝜂𝑐N𝑖 (𝑇 )

)︀
,

𝑐N𝑖 (𝑡+ 1) = 𝛿𝑐N𝑖 (𝑡)− 𝛼𝑖(𝑡)𝑦
N
𝑖 (𝑡)−

∑︁
𝑗 ̸=𝑖

(︁
𝛽𝑖𝑗(𝑡) 𝑔

N
𝑖𝑗(𝑡) + 𝛾𝑖𝑗(𝑡)

(︀
1− 𝑔N𝑖𝑗(𝑡)

)︀ )︁
𝑦N𝑗 (𝑡),

𝑔N𝑖𝑗(𝑡) =

⎧⎪⎨⎪⎩
1, 𝜋𝑖𝑗(𝑡) <

𝜀𝑖(𝑡)(𝛽𝑖𝑗(𝑡)−𝛾𝑖𝑗(𝑡))
𝛼𝑖(𝑡)

𝑦N𝑖 (𝑡) 𝑦
N
𝑗 (𝑡), 𝑗 ∈ 𝒩 ∖ {𝑖},

0, otherwise.

� At an open-loop Nash equilibrium for model Γen
01 with unilateral network interac
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tion, we have:

𝐽𝑖 (𝑐0,g
*, 𝑢*, 𝑦*) =

𝑇−1∑︁
𝑡=0

𝜌𝑡

[︃(︃
𝑝− 𝑐*𝑖 (𝑡)−

𝑛∑︁
𝑗=1

𝑢*𝑗

)︃
𝑢*𝑖 −

𝜀𝑖(𝑡)

2
(𝑦*𝑖 (𝑡))

2−

−
∑︁
𝑗 ̸=𝑖

𝜋𝑖𝑗(𝑡)𝑔
*
𝑖𝑗(0)

⎤⎦+ 𝜌𝑇 (𝜂𝑖 − 𝜂𝑐*𝑖 (𝑇 )) ,

𝑐*𝑖 (𝑡+ 1) = 𝛿𝑐*𝑖 (𝑡)− 𝛼𝑖(𝑡) 𝑦
*
𝑖 (𝑡)−

∑︁
𝑗 ̸=𝑖

(︁
𝛽𝑖𝑗(𝑡)𝑔

*
𝑖𝑗(0) + 𝛾𝑖𝑗(𝑡)(1− 𝑔*𝑖𝑗(0))

)︁
𝑦*𝑗 (𝑡),

𝑔*𝑖𝑗(0) =

⎧⎪⎨⎪⎩1,
𝑇−1∑︀
𝑡=0

𝜌𝑡𝜋𝑖𝑗(𝑡) <
𝑇−1∑︀
𝑡=0

𝜌𝑡
𝜀𝑖(𝑡)

𝛼𝑖(𝑡)
(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡)) 𝑦

*
𝑖 (𝑡) 𝑦

*
𝑗 (𝑡), 𝑗 ∈ 𝒩 ∖ {𝑖},

0, otherwise.

� At an open-loop Nash equilibrium for model Γen
02 with unilateral network inter

action, we have:

𝐽𝑖 (𝑐0,g
**, 𝑢**, 𝑦**) =

𝑇−1∑︁
𝑡=0

𝜌𝑡

[︃(︃
𝑝− 𝑐**𝑖 (𝑡)−

𝑛∑︁
𝑗=1

𝑢**𝑗

)︃
𝑢**𝑖 − 𝜀𝑖(𝑡)

2
(𝑦**𝑖 (𝑡))2

]︃
−

−
∑︁
𝑗 ̸=𝑖

𝜋𝑖𝑗(0)𝑔
**
𝑖𝑗 (0) + 𝜌𝑇 (𝜂𝑖 − 𝜂𝑐**𝑖 (𝑇 )) ,

𝑐**𝑖 (𝑡+ 1) = 𝛿𝑐**𝑖 (𝑡)− 𝛼𝑖(𝑡) 𝑦
**
𝑖 (𝑡)−

∑︁
𝑗 ̸=𝑖

(︁
𝛽𝑖𝑗(𝑡)𝑔

**
𝑖𝑗 (0) + 𝛾𝑖𝑗(𝑡)(1− 𝑔**𝑖𝑗 (0))

)︁
𝑦**𝑗 (𝑡),

𝑔**𝑖𝑗 (0) =

⎧⎪⎨⎪⎩1, 𝜋𝑖𝑗(0) <
𝑇−1∑︀
𝑡=0

𝜌𝑡
𝜀𝑖(𝑡)

𝛼𝑖(𝑡)
(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡)) 𝑦

**
𝑖 (𝑡) 𝑦**𝑗 (𝑡), 𝑗 ∈ 𝒩 ∖ {𝑖},

0, otherwise.

Next, we will move on to numerical simulations. This will enable us to compare
the results obtained at open-loop Nash equilibrium with common parameters for all
the models considered.
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2.5. Numerical simulations and comparative analysis of results

To illustrate the theoretical results in Sections 2.2 – 2.4, we will use the same
data that were employed for numerical simulations in Chapter 1 (Section 1.3). Recall
them:

𝑛 = 4 The parameters are universal across all firms

𝑇 = 3 𝜂𝑖 = 100 000 𝛿 = 1.07 constants over time

𝑝 = 500 𝜂 = 1000 𝜌 = 0.95 𝛼 = 1.8 𝛽 = 1 𝛾 = 0.5 𝜀 = 1000

𝑐𝑖0 = 100, 𝑖 = 1, 𝑛

Cost matrices for potential connections between firms in network structures
will be consistent across all models and remain constant over time.

Π(𝑡) =

⎛⎜⎜⎜⎜⎜⎝
0 800 800 800

800 0 800 800

900 900 0 900

1100 1100 1100 0

⎞⎟⎟⎟⎟⎟⎠ .

In Table 2.1, for each firm 𝑖 ∈ 𝒩 , its current feasible behavior is given by(︀
𝑔N𝑖 (𝑡), 𝑢

N
𝑖 (𝑡), 𝑦

N
𝑖 (𝑡)

)︀
in open-loop Nash equilibrium, 𝑠N =

(︀
𝑔N, 𝑢N, 𝑦N

)︀
, and the

corresponding unit cost 𝑐N𝑖 (𝑡). At the same time, the table contains the results of
numerical simulations obtained for Γen with two different types of network structure
formation — bilateral and unilateral network interaction. The table also shows the
network structures gN(𝑡) prescribed by the Nash equilibrium, current unit prices in
the market 𝑃N(𝑡) := 𝑝−

∑︀
𝑗∈𝒩

𝑢N𝑗 (𝑡) and firm profits 𝐽N
𝑖 := 𝐽𝑖(𝑐0, 𝑔

N, 𝑢N, 𝑦N).

Similar in structure to Table 2.1 are the Tables 2.2 – 2.3, which present the
results of numerical simulations corresponding to models of long-term network in
teraction, Γen

01 and Γen
02. The results are given in Tables 2.1 – 2.3, obtained by imple

menting the conditions of Theorems 2.1 – 2.3 using the program [26]. All values in
the tables in this Section are rounded to the third decimal place.

First, we note that the results presented in Section 1.4 remain valid in the case
of endogenous formation of network interaction between firms, which can be directly
verified according to Tables 2.1 – 2.3.



62

Table 2.1. Open-loop Nash equilibrium 𝑠N and corresponding profits and unit costs of

firms, as well as current prices in Γen.

Γen: bilateral interaction unilateral interaction

𝑡 : 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3

gN(𝑡)

1

2

3

4

1

2

3

4

1

2

3

4

–

1

2

3

4

1

2

3

4

1

2

3

4

–

𝑔N1 (𝑡) (0,1,1,1) (0,1,1,0) (0,1,0,0) – (0,1,1,1) (0,1,1,1) (0,1,1,1) –

𝑔N2 (𝑡) (1,0,1,1) (1,0,1,0) (1,0,0,0) – (1,0,1,1) (1,0,1,1) (1,0,1,1) –

𝑔N3 (𝑡) (1,1,0,1) (1,1,0,0) (0,0,0,0) – (1,1,0,1) (1,1,0,1) (0,0,0,0) –

𝑔N4 (𝑡) (1,1,1,0) (0,0,0,0) (0,0,0,0) – (1,1,1,0) (0,0,0,0) (0,0,0,0) –

𝑢N1 (𝑡) 80.000 80.564 81.193 – 80.000 80.564 81.570 –

𝑢N2 (𝑡) 80.000 80.564 81.193 – 80.000 80.564 81.570 –

𝑢N3 (𝑡) 80.000 80.564 81.193 – 80.000 80.564 81.570 –

𝑢N4 (𝑡) 80.000 80.561 79.309 – 80.000 80.561 78.745 –

𝑦N1 (𝑡) 2.046 1.877 1.710 – 2.046 1.878 1.710 –

𝑦N2 (𝑡) 2.046 1.877 1.710 – 2.046 1.878 1.710 –

𝑦N3 (𝑡) 2.046 1.877 1.710 – 2.046 1.878 1.710 –

𝑦N4 (𝑡) 2.043 1.874 1.710 – 2.042 1.873 1.710 –

𝑐N1 (𝑡) 100.000 97.183 95.917 96.133 100.000 97.182 94.977 93.417

𝑐N2 (𝑡) 100.000 97.183 95.917 96.133 100.000 97.182 94.977 93.417

𝑐N3 (𝑡) 100.000 97.183 95.917 96.988 100.000 97.182 94.977 95.982

𝑐N4 (𝑡) 100.000 97.186 97.801 99.004 100.000 97.186 97.801 99.004

𝑃N(𝑡) 180.000 177.747 177.110 – 180.000 177.747 176.545 –

𝐽N
1 12 103.590 12 280.904

𝐽N
2 12 103.590 12 280.904

𝐽N
3 11 602.535 11 662.737

𝐽N
4 10 723.252 10 645.829
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Table 2.2. Open-loop Nash equilibrium 𝑠* and corresponding profits and unit costs of

firms, as well as current prices in Γen
01

Γen
01: bilateral interaction unilateral interaction

𝑡 : 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3

g*
0

1

2

3

4

–

1

2

3

4

–

𝑔*1(𝑡) (0, 1, 1, 0) – – – (0, 1, 1, 1) – – –

𝑔*2(𝑡) (1, 0, 1, 0) – – – (1, 0, 1, 1) – – –

𝑔*3(𝑡) (1, 1, 0, 0) – – – (1, 1, 0, 1) – – –

𝑔*4(𝑡) (0, 0, 0, 0) – – – (0, 0, 0, 0) – – –

𝑢*1(𝑡) 80.000 80.771 81.416 – 80.000 81.181 82.230 –

𝑢*2(𝑡) 80.000 80.771 81.416 – 80.000 81.181 82.230 –

𝑢*3(𝑡) 80.000 80.771 81.416 – 80.000 81.181 82.230 –

𝑢*4(𝑡) 80.000 78.711 77.325 – 80.000 78.095 76.102 –

𝑦*1(𝑡) 2.047 1.877 1.710 – 2.049 1.879 1.710 –

𝑦*2(𝑡) 2.047 1.877 1.710 – 2.049 1.879 1.710 –

𝑦*3(𝑡) 2.047 1.877 1.710 – 2.049 1.879 1.710 –

𝑦*4(𝑡) 2.036 1.870 1.710 – 2.033 1.868 1.710 –

𝑐*1(𝑡) 100.000 98.205 97.010 96.448 100.000 97.182 94.977 93.418

𝑐*2(𝑡) 100.000 98.205 97.010 96.448 100.000 97.182 94.977 93.418

𝑐*3(𝑡) 100.000 98.205 97.010 96.448 100.000 97.182 94.977 93.418

𝑐*4(𝑡) 100.000 100.266 101.101 102.535 100.000 100.268 101.106 102.540

𝑃 *(𝑡) 180.000 178.976 178.426 – 180.000 178.362 177.208 –

𝐽*
1 11 973.707 12 466.088

𝐽*
2 11 973.707 12 466.088

𝐽*
3 11 403.207 11 610.338

𝐽*
4 10 454.336 10 199.379
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Table 2.3. Open-loop Nash equilibrium 𝑠** and corresponding profits and unit costs of

firms, as well as current prices in Γen
02

Γen
02: bilateral interaction unilateral interaction

𝑡 : 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3

g**
0

1

2

3

4

–

1

2

3

4

–

𝑔**1 (𝑡) (0, 1, 1, 0) – – – (0, 1, 1, 1) – – –

𝑔**2 (𝑡) (1, 0, 1, 0) – – – (1, 0, 1, 1) – – –

𝑔**3 (𝑡) (1, 1, 0, 0) – – – (1, 1, 0, 1) – – –

𝑔**4 (𝑡) (1, 1, 1, 0) – – – (1, 1, 1, 0) – – –

𝑢**1 (𝑡) 80.000 80.564 81.005 – 80.000 80.564 81.005 –

𝑢**2 (𝑡) 80.000 80.564 81.005 – 80.000 80.564 81.005 –

𝑢**3 (𝑡) 80.000 80.564 81.005 – 80.000 80.564 81.005 –

𝑢**4 (𝑡) 80.000 80.564 81.005 – 80.000 80.564 81.005 –

𝑦**1 (𝑡) 2.045 1.877 1.710 – 2.045 1.877 1.710 –

𝑦**2 (𝑡) 2.045 1.877 1.710 – 2.045 1.877 1.710 –

𝑦**3 (𝑡) 2.045 1.877 1.710 – 2.045 1.877 1.710 –

𝑦**4 (𝑡) 2.045 1.877 1.710 – 2.045 1.877 1.710 –

𝑐**1 (𝑡) 100.000 97.182 94.976 93.417 100.000 97.182 94.976 93.417

𝑐**2 (𝑡) 100.000 97.182 94.976 93.417 100.000 97.182 94.976 93.417

𝑐**3 (𝑡) 100.000 97.182 94.976 93.417 100.000 97.182 94.976 93.417

𝑐**4 (𝑡) 100.000 97.182 94.976 93.417 100.000 97.182 94.976 93.417

𝑃 **(𝑡) 180.000 177.745 175.981 – 180.000 177.745 175.981 –

𝐽**
1 16 648.020 16 648.020

𝐽**
2 16 648.020 16 648.020

𝐽**
3 16 348.020 16 348.020

𝐽**
4 15 748.020 15 748.020
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Next, we introduce the concept of an upper bound on the interaction cost
that the firm 𝑖 ∈ 𝒩 is willing to pay for to interaction with the firm 𝑗 ∈ 𝒩 ∖ {𝑖} at
period 𝑡 ∈ 𝒯 ∖{𝑇}. Let us call the upper limit of the allowable communication costs
of a firm 𝑖 with a firm 𝑗 in the network structure g(𝑡) the minimum value of the
communication costs (𝑖,𝑗), starting from which the condition of network interaction
in Nash equilibrium for the firm 𝑖 in relation to the firm 𝑗 imposes the choice of
𝑔N𝑖𝑗(𝑡) = 0. For the models considered, the upper bounds of feasible communication
costs (network interaction or just interaction) are set by the values 𝜋N𝑖𝑗(𝑡), 𝜋*𝑖𝑗(𝑡)
and 𝜋**𝑖𝑗 (𝑡). Let us turn to Table 2.4 with the values 𝜋N𝑖𝑗(𝑡) for model Γen.

Table 2.4. The upper limits of feasible costs of interaction in model Γen

𝑡
Γen bilateral interaction unilateral interaction

𝑖∖𝑗 1 2 3 4 1 2 3 4

0

1 0 1162.573 1162.573 1160.709 0 1163.320 1163.320 1160.520

2 1162.573 0 1162.573 1160.709 1163.320 0 1163.320 1160.520

3 1162.573 1162.573 0 1160.709 1163.320 1163.320 0 1160.520

4 1160.709 1160.709 1160.709 0 1160.520 1160.520 1160.520 0

1

1 0 978.705 978.705 977.025 0 979.376 979.376 976.857

2 978.705 0 978.705 977.025 979.376 0 979.376 976.857

3 978.705 978.705 0 977.025 979.376 979.376 0 976.857

4 977.025 977.025 977.025 0 976.857 976.857 976.857 0

2

1 0 812.250 812.250 812.250 0 812.250 812.250 812.250

2 812.250 0 812.250 812.250 812.250 0 812.250 812.250

3 812.250 812.250 0 812.250 812.250 812.250 0 812.250

4 812.250 812.250 812.250 0 812.250 812.250 812.250 0

Analyze the data of Tables 2.1 and 2.4 for model Γen with bilateral network
interaction. Since the chosen parameters (𝜀𝑖(𝑡), 𝛼𝑖(𝑡), 𝛽𝑖𝑗(𝑡), 𝛾𝑖𝑗(𝑡)) are common to
firms, then 𝜋N𝑖𝑗(𝑡) = 𝜋N𝑗𝑖(𝑡) for all 𝑡 ∈ 𝒯 ∖{𝑇}. The decrease in investment vol
ume over time according to Table 2.1 implies a decrease in the upper bounds of
feasible network interaction costs at which firms will be interested in interacting.
Then, in the Nash equilibrium, firms 𝑖 and 𝑗 establish a relationship in the cur
rent period if 𝜋N𝑖𝑗(𝑡) > max{𝜋𝑖𝑗(𝑡), 𝜋𝑗𝑖(𝑡)}. According to the found equilibrium
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𝑠N at time 𝑡 = 0, links are established between arbitrary pairs of firms. In fact,
even the communication cost of firm 4, which is the highest compared to the other
firms (𝜋4𝑗(𝑡) = 1100, 𝑗 = 1, 2, 3, 𝑡 = 0, 1, 2), does not exceed the minimum commu
nication cost 𝜋N4𝑗(0) = 1160.709. At 𝑡 = 1, firms 1, 2, and 3 maintain network
connections with each other, but connections with firm 4 are excluded. This is
due to a change in the upper bound of feasible communication costs for firm 4,
since 𝜋N4𝑗(0) =977.025, which means 𝜋4𝑗(1) < 𝜋N4𝑗(0), making firm 4 connections
with other firms unprofitable. Finally, at 𝑡 = 2 in network g(2), only link (1, 2) is
observed, since it becomes unprofitable for firms 3 and 4 to interact: their commu
nication costs (900 and 1100, respectively) turn out to be above the upper bound of
feasible communication costs, equal to 812,250.

For model Γen with unilateral network interaction of firms, describing the net
work behavior of firms based on data from Tables 2.1 and 2.4 can be done in the same
way as it was done with bilateral network interaction. However, in this case, the net
work behavior of firms is more personalized in the sense that, according to the rule of
forming connections in the network, with unilateral interaction, firms may not focus
on the upper limits of feasible interaction costs of competitors when choosing their
direct environment in each network structure. We explain this by going back to Ta
bles 2.1 and 2.4. let us look at the network structures of Table 2.1 for unilateral net
work interaction of firms, namely for the following links: for 𝑡 = 1 links (1, 4), (2, 4),
and (3, 4), and for 𝑡 = 2 links (1, 3), (1, 4), (2, 3), (2, 4). For example, at 𝑡 = 1, firm
1 can afford the connection (1, 4), since 𝜋14(1) = 800 < 976.857 = 𝜋N14(1), therefore
chooses 𝑔N14(1) = 1, although firm 4 cannot afford the (4, 1) connection in the gN(1)

network structure, so 𝜋41(1) = 1100 > 976.857 = 𝜋N41(1). At the same time, with
unilateral network interaction, firm 1 receives the effect of 𝛽14(1) 𝑦N4 (1) = 1.873 from
the investments of firm 4 the current period, and with bilateral network interaction,
the effect of firm 1 from the investments of firm 4 will be 𝛾14(1) 𝑦N4 (1) = 0.937.
This ensures an improvement in the competitive position of firm 1 in the market
compared to its competitive position with bilateral interaction of firms.

To evaluate the change in the competitiveness of firms, let us turn to Ta
ble 2.5. Here we look at the change in the competitiveness of firms in Nash equi
librium at 𝑡 = 1, 2, 3. To do this, we introduce the value Δ𝑐N𝑖𝑗(𝑡) := 𝑐N𝑗 (𝑡) − 𝑐N𝑖 (𝑡),
which characterizes the competitive advantage of firm 𝑖 over firm 𝑗 in the Nash
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equilibrium: if Δ𝑐N𝑖𝑗(𝑡) > 0, then 𝑖 has a competitive advantage over 𝑗 estimated
by Δ𝑐N𝑖𝑗(𝑡), and if Δ𝑐N𝑖𝑗(𝑡) < 0, then 𝑗 has a competitive advantage over 𝑖 es
timated by |Δ𝑐N𝑖𝑗(𝑡)| = Δ𝑐N𝑗𝑖(𝑡). Also note for each firm 𝑖 the value 𝒟N

𝑖 (𝑡) :=(︂
max
𝑗 ∈𝒩

𝑐N𝑗 (𝑡)− 𝑐N𝑖 (𝑡)

)︂
/

𝑛∑︀
𝑗=1

𝑐N𝑗 (𝑡)× 100, which characterizes in percentage terms the

current competitiveness of firm 𝑖 relative to all firms in the market.

Table 2.5. The relationship between competitiveness and the competitive position of

firms in the market in equilibrium 𝑠N in Γen

𝑡
Γen bilateral interaction unilateral interaction

𝑖 Δ𝑐N𝑖1(𝑡) Δ𝑐N𝑖2(𝑡) Δ𝑐N𝑖3(𝑡) Δ𝑐N𝑖4(𝑡) 𝒟N
𝑖 (𝑡) Δ𝑐N𝑖1(𝑡) Δ𝑐N𝑖2(𝑡) Δ𝑐N𝑖3(𝑡) Δ𝑐N𝑖4(𝑡) 𝒟N

𝑖 (𝑡)

1

1 - 0 0 0.003 0.001 - 0 0 0.004 0.001

2 0 - 0 0.003 0.001 0 - 0 0.004 0.001

3 0 0 - 0.003 0.001 0 0 - 0.004 0.001

4 -0.003 -0.003 -0.003 - 0.000 -0.004 -0.004 -0.004 - 0.000

2

1 - 0 0 1.884 0.489 - 0 0 2.824 0.738

2 0 - 0 1.884 0.489 0 - 0 2.824 0.738

3 0 0 - 1.884 0.489 0 0 - 2.824 0.738

4 -1.884 -1.884 -1.884 - 0.000 -2.824 -2.824 -2.824 0 0.000

3

1 - 0 0.855 2.871 0.739 - 0 2.565 5.587 1.463

2 0 - 0.855 2.871 0.739 0 - 2.565 5.587 1.463

3 -0.855 -0.855 - 2.016 0.519 -2.565 -2.565 - 3.022 0.792

4 -2.871 -2.871 -2.016 - 0.000 -5.587 -5.587 -3.022 - 0.000

From Table 2.5 it can be concluded that the network connections, which exist
for Γen with unilateral interaction of firms in equilibrium and are not present in a
similar position with bilateral interaction, have a significant impact on the change in
the competitive position of firms in the market. This makes such connections very
valuable, since in the case under consideration there is also a higher competitive
advantage for all firms over firm 4, while firms 1, 2, and 3 can afford high interaction
costs and firm 4 can only afford lower ones.

For the models Γen
01 and Γen

02 for the bilateral network interaction of firms, refer
ring to the Tables 2.2 – 2.3, we conclude that the Nash equilibrium requires firms 𝑖

and 𝑗 to establish a link at the initial time if 𝜋*𝑖𝑗 > max

{︂
𝑇−1∑︀
𝑡=0

𝜌𝑡𝜋𝑖𝑗(𝑡),
𝑇−1∑︀
𝑡=0

𝜌𝑡𝜋𝑗𝑖(𝑡)

}︂



68

or 𝜋**𝑖𝑗 > max{𝜋𝑖𝑗(0), 𝜋𝑗𝑖(0)} respectively. At the same time, the discounted sums
of interaction costs for each firm are 2282,000, 2282,000, 2567,250, and 3137,750,
respectively. Comparing these values with the data in Table 2.6, we see that it is
impractical for firm 4 to establish links with other firms, while the rest of the firms
establish all links among themselves. And in model Γen

02, since the communication
cost of any firm does not exceed the interaction cost limit equal to 2824.706, at the
initial time, links are established between all pairs of firms.

Table 2.6. The upper limits of feasible costs of interaction in models Γen
01 and Γen

02

bilateral interaction unilateral interaction

𝑖∖𝑗 1 2 3 4 1 2 3 4

model Γen
01

1 0 2826.619 2826.619 2817.107 0 2830.405 2830.405 2816.144

2 2826.619 0 2826.619 2817.107 2830.405 0 2830.405 2816.144

3 2826.619 2826.619 0 2817.107 2830.405 2830.405 0 2816.144

4 2817.107 2817.107 2817.107 0 2816.144 2816.144 2816.144 0

model Γen
02

1 0 2824.706 2824.706 2824.706 0 2824.706 2824.706 2824.706

2 2824.706 0 2824.706 2824.706 2824.706 0 2824.706 2824.706

3 2824.706 2824.706 0 2824.706 2824.706 2824.706 0 2824.706

4 2824.706 2824.706 2824.706 0 2824.706 2824.706 2824.706 0

The results of the observations made for model Γen with bilateral and unilateral
network interaction can be transferred to the case of Γen

01 and Γen
02, so they are not

given.
Comparing the results obtained with the bilateral network interaction of firms

for models Γen (Table 2.1) and Γen
01 (Table 2.2), we evaluate the advantages and disad

vantages of short-term and long-term network interactions, respectively, under the
same conditions represented by the input parameters of the models. The following
indicators will be compared:

� The profits of the firms. Long-term interactions reduces the profit of each
firm, while for firms that have connections in long-term interaction (firms 1, 2, 3)
the decrease in profit is about 1%, but for firm 4 a similar decrease in profit is
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about 2.5%. It can be concluded that the profits of firms whose number of network
connections does not depend on the duration of interaction turn out to be less
sensitive to the duration of network interaction.

� The production volume and the price of the product. Since in the con
sidered models the volume of goods supplied to the market is linearly related to
the current price for units of goods, we evaluate these indicators together. Thus, in
the case of short-term interaction, the firms produce a larger total volume of goods,
which causes a decrease in the price of goods. As a result, each firm produces a
larger volume of goods in short-term interaction with its competitors than in the
long-term case. Note, however, that the situations compared differ by less than 1%.

� The volume of investments. The presence and the number of network con
nections have a significant impact on the investment behavior of firms. Thus, the
investments of firms 1, 2, and 3 are almost the same for both types of the duration
of network interaction of firms. And for firm 4, which is deprived of network con
nections in long-term interaction, it turns out to be more profitable to reduce the
volume of its investments, at 𝑡 = 0 the decrease is 𝑦N4 (0)− 𝑦*4(0) = 0.007, a at 𝑡 = 1

we have 𝑦N4 (1) − 𝑦*4(1) = 0.004. At the same time, a slightly larger volume of in
vestment is implemented by firms that have connections with long-term interaction,
while it is more profitable for firm 4 to reduce the total volume of its investment
in equilibrium. Thus, it can be assumed that the total investment volume of each
firm is influenced more by its network environment than by the duration of the
interaction.

�The relationship between competitiveness and the competitive position
of firms in the market. According to Table 2.5 it can be noted that in the Nash
equilibrium with unilateral network interaction, firms 1, 2, and 3 have a sharper
increase in their competitive position in the market than in the case of bilateral
interaction. Under these conditions, it is more profitable for these firms if the
network interaction is unilateral. In fact, with bilateral network interaction we have
𝒟𝑖(2) = 0.489, where 𝑖 = 1, 2, 3, and with unilateral 𝒟𝑖(2) = 0.738, for the next
period, 𝑡 = 3, we have 𝒟1(3)=𝒟2(3)= 0.739,𝒟3(3)= 0.519, and 𝒟1(3)=𝒟2(3)=

1.463,𝒟3(3)=0.792. The same cannot be said for firm 4, since its competitiveness
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relative to other firms becomes lower in the unilateral network interaction than in
the bilateral network interaction. Thus, for firm 4, the case of bilateral networking
of firms turns out to be preferable, since in this case the change in the growth of
competitive advantage among other firms is slower.

As a result of the analysis of competition models with endogenous network
formation, the equilibrium network behavior of firms turned out to be similar in
models Γen, Γen

01 and Γen
02: a firm will offer a connection to its competitor if the

cost of establishing and maintaining that connection (or the discounted sum of such
costs) does not exceed a certain threshold. Note that in the absence of connection
establishment and maintenance costs 𝜋𝑖𝑗(𝑡) = 0 for all 𝑖, 𝑗 ∈ 𝒩 and 𝑡 ∈ 𝒯 ∖ {𝑇}
firms establish all possible connections in Nash equilibrium, which is true for any
model.

In conclusion, we would like to note that for the considered models with en
dogenous formation of a permanent network, the obtained Nash equilibria ensure
«stability» of networks over time — no firm over time will be ready to abandon its
existing network connection, nor will it strive to form a connection that is not pre
scribed to it by the Nash equilibrium.

2.6. Conclusions to Chapter 2

The analysis of competition models with endogenous network formation struc
ture resulted in obtaining open-loop Nash equilibria. The equilibrium production
and investment behavior of each firm is established, and the conditions under which
the firm is interested in forming a network interaction with certain competitors are
found. Although this chapter analyses three dynamic models with endogenous net
work formation, where connections can be both bilateral and unilateral, the Nash
equilibria found in them share several similarities.

1. For all models, the structure of the firm’s production and investment behavior
in equilibrium is the same as the corresponding structure in exogenous network
interaction.

2. The conditions for equilibrium network behavior are similar. A firm engages
in network interaction if the costs of establishing and maintaining it, or the
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discounted amount of such costs, do not exceed a certain threshold, which is
the upper limit of feasible network interaction costs.

3. In a Nash equilibrium where there are no costs for forming and maintaining
connections in the network, firms establish all types of connections. This
applies to each model.

In conclusion, it is worth noting that in models with endogenous formation of
a permanent network structure, the Nash equilibria obtained ensure the stability of
the network interaction structures being formed. Over time, no firm will be willing
to give up any of its existing network connections, and at the same time, it will not
strive to form a connection that was not prescribed by the Nash equilibrium.

The main results of the chapter are published in [28].
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Chapter 3.

Adaptation and application of game theoretic models

to analyze the equilibrium behavior of competing firms

This Chapter analyzes the equilibrium behavior of competing firms in dynam
ics, taking into account common practical conditions. Models with endogenous for
mation of network interaction are considered, based on the following assumptions:

1. For each firm 𝑖 ∈ 𝒩 we have 𝑢𝑖(𝑡) = 𝑢𝑖 ∈ U𝑖 at 𝑡 ∈ 𝒯 ∖ {𝑇}, i.e. the
production volume is constant over time;

2. For each pair of firms 𝑖 and 𝑗 ∈𝒩 ∖{𝑖}, and for each time 𝑡 ∈ 𝒯 ∖ {𝑇}, we
assume that 𝛽𝑖𝑗(𝑡) > 𝛾𝑖𝑗(𝑡) > 0. That is, the network interaction between
firms ensures an increase in their positive impact on each other’s unit costs.
This means that the relationship between the firms can be considered as a
interaction, and the firms themselves 𝑖 and 𝑗 are called partners;

3. Firms can implement their investment behavior in two ways, which we will
call variable (risky) — 𝑦𝑖(𝑡) ∈ Y𝑖, and constant (cautious) — 𝑦𝑖(𝑡) = 𝑦𝑖 ∈ Y𝑖,
at 𝑡 ∈ 𝒯 ∖ {𝑇}.

The assumptions presented allow us to move from the game-theoretic models of
the Chapter 2 to practice-oriented models. At the same time, we maintain the
general concept of the models studied and adapt the theoretical results obtained
to the analysis of market competition in conditions close to practice. Indeed, in
practice, the constant volume of production of the firm on a small planning horizon
is natural. In fact, in the economic planning of production, a production plan is
often drawn up and approved, which determines the volume of production of the
firm for a certain period of time. The production plan simplifies the economic
analysis of both the firm’s activities and its sales market. It also allows for effective
management. Often, the production plan of the firm provides for the production of a
constant volume of goods, which is explained both by stabilization and optimization
of attracted and spent resources, for example, the number of working personnel
(human capital). It is also worth noting that the constant volume of production
on the considered planning horizon ensures uniform saturation of the market with
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goods at a constant cost per unit of goods for the consumer. According to the
considered model concept, such a volume of goods is determined by the value of∑︀𝑛

𝑗=1 𝑢𝑗, and the price per unit of goods is — the value of 𝑃 (𝑡) = 𝑝−
∑︀𝑛

𝑗=1 𝑢𝑗 > 0,
if 𝑝 >

∑︀𝑛
𝑗=1 𝑢𝑗. The second assumption also seems quite natural. Any interaction

always implies interaction under conditions that are formally regulated and legally
formalized. This is the basis for the security and benefits of interaction. The third
assumption allows us to consider two variants of common investment behavior in
practice. We will also be interested in comparing these variants of equilibrium
behavior. A more detailed description and analysis of these types of investment
behavior will be given in Sections 3.1 and 3.2, respectively.

Let us note another feature of this Chapter. The characterization for the equi
librium behavior of firms will be based on a open-loop information structure. For
each model, the corresponding conditions for the behavior of firms in open-loop
Nash equilibrium are presented. This allows firms to choose their behavior with
a minimum requirement for a set of information needed to make a decision. This
restriction is due to two aspects. First, as shown in the first Chapter 1, the profits
of firms in open-loop and feedback Nash equilibria can be quite close. Second, in
practice it is quite difficult to know the unit costs of competitors at all times. In
most cases, such information is private to each firm and not subject to disclosure.
At the same time, the open-loop information structure allows each firm participat
ing in the game to build a calendar financial and economic plan that stabilizes its
economic activity and contributes to the organization of effective management with
information that is always available.

Thus, game-theoretic models of dynamic competition with network interactions
between firms, which are the subject of this Chapter, turn out to be quite popular
in practice and, from an economic point of structure, more feasible for the analysis
of real economic processes.

3.1. Analysis of short-term network interactions of competing firms

In the context of a dynamic process, the main interest of endogenous network
interaction is the ability of firms to rewire the network structure at each decision
period. In order to do this adequately, we will stick to scenarios in which firms
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implement their investments at each non-terminal period. At the same time, we
consider two different types of investment behavior — when firms’ investments are
implemented in variable and constant volumes.

3.1.1. Variable investment

According to the assumptions presented at the beginning of this Chapter, each
firm 𝑖 ∈ 𝒩 plans for a set of time periods 𝒯 a constant volume of production
𝑢𝑖 ∈ U𝑖, while 𝑢 = (𝑢1, . . . , 𝑢𝑛) ∈ U1 × . . . × U𝑛. We will say that we are consid
ering a model with constant production and variable (risky) investment, in which
the strategy of the firm 𝑖 prescribes to it, at each decision period an feasible behav
ior (𝑔𝑖(𝑡), 𝑢𝑖, 𝑦𝑖(𝑡)) ∈ G𝑖 × U𝑖 × Y𝑖. Considering here and further the strategy
of each firm as a function of time — as done in Chapter 2, we get that 𝒮𝑖 =

= {𝑠𝑖(𝑡) | 𝑠𝑖(𝑡) = (𝑔𝑖(𝑡), 𝑢𝑖, 𝑦𝑖(𝑡)) , 𝑡 ∈ 𝒯 ∖ {𝑇}} — the set of feasible strategies of
firm 𝑖, 𝑠 = (𝑠1, . . . , 𝑠𝑛) ∈ 𝒮1× . . .×𝒮𝑛 — strategy profile, 𝑦 = (𝑦(0), . . . , 𝑦(𝑇 − 1)),
𝑦(𝑡) = (𝑦1(𝑡), . . . , 𝑦𝑛(𝑡)) ∈ Y1 × . . .×Y𝑛 at 𝑡 ∈ 𝒯 ∖ {𝑇}. The evolution of the unit
costs of the firm 𝑖 with bilateral interaction is described by the equation (2.1), and
its discounted profit given by the following function

𝐽𝑖 (𝑐0,g, 𝑢, 𝑦) =
𝑇−1∑︁
𝑡=0

𝜌𝑡

[︃(︃
𝑝−

𝑛∑︁
𝑗=1

𝑢𝑗

)︃
𝑢𝑖 − 𝑐𝑖(𝑡)𝑢𝑖 −

𝜀𝑖(𝑡)

2
𝑦2𝑖 (𝑡)−

−
∑︁
𝑗 ̸=𝑖

𝜋𝑖𝑗(𝑡)𝑔𝑖𝑗(𝑡)𝑔𝑗𝑖(𝑡)

⎤⎦+ 𝜌𝑇 (𝜂𝑖 − 𝜂𝑐𝑖(𝑇 )) ,

(3.1)

where g = {g(𝑡)}𝑇−1
𝑡=0 — a set of networks of bilateral interaction formed as a result

of the implementation by all firms of their network behavior at appropriate game
periods.

Let us denote the presented dynamic model of competition with endogenous
formation of network interaction of firms with constant production volume and risky
investment behavior by Γ̄en. The open-loop Nash equilibrium for bilateral network
interaction is characterized by the following theorem.

Theorem 3.1. In model Γ̄en, the open-loop Nash equilibrium is a set of strategies
𝑠N =

(︀
𝑠N1 , . . . , 𝑠

N
𝑛

)︀
, whose components 𝑠N𝑖 (𝑡) =

(︀
𝑔N𝑖 (𝑡), 𝑢

N
𝑖 , 𝑦

N
𝑖 (𝑡)

)︀
for 𝑖 ∈ 𝒩 , 𝑡 ̸= 𝑇



75

have the form:

𝑔N𝑖𝑗(𝑡) =

⎧⎨⎩1, 𝜋𝑖𝑗(𝑡) < 𝜋N𝑖𝑗(𝑡), 𝜋𝑗𝑖(𝑡) < 𝜋N𝑗𝑖(𝑡), 𝑗 ̸= 𝑖,

0, otherwise,
(3.2)

𝑢N𝑖 =

𝑝−
𝑇−1∑︀
𝜏=0

𝜌𝜏
(︂
(𝑛+ 1)𝑐N𝑖 (𝜏)−

∑︀
𝑗∈ 𝒩

𝑐N𝑗 (𝜏)

)︂(︂
𝑇−1∑︀
𝜏=0

𝜌𝜏
)︂−1

𝑛+ 1
, (3.3)

𝑦N𝑖 (𝑡) = −𝛼𝑖(𝑡)𝜑𝑖(𝑡+ 1)

𝜌𝑡𝜀𝑖(𝑡)
, (3.4)

where

𝜋N𝑖𝑗(𝑡) =
𝜀𝑖(𝑡)

𝛼𝑖(𝑡)
(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡)) 𝑦

N
𝑖 (𝑡) 𝑦

N
𝑗 (𝑡), (3.5)

𝜑𝑖(𝑡) =

⎧⎪⎨⎪⎩−𝜌𝑡
(︂
𝑢N𝑖 ·

𝑇−𝑡−1∑︀
𝜏=0

(𝜌𝛿)𝜏 + 𝜂(𝜌𝛿)𝑇−𝑡

)︂
, 𝑡 ̸= 𝑇,

−𝜌𝑇𝜂, 𝑡 = 𝑇.

(3.6)

The unit cost of 𝑐N𝑖 (𝑡) satisfies (2.1) given 𝑐N𝑖 (0) = 𝑐𝑖0.

Proof. We start by assuming that each firm 𝑖 chooses the 𝑛-dimensional vector 𝑧𝑖(𝑡)
as its network behavior with components 𝑧𝑖𝑗(𝑡) ∈ [0, 1]. Let 𝑧(𝑡) = (𝑧1(𝑡), . . . , 𝑧𝑛(𝑡)),
𝑧 = (𝑧(0), . . . , 𝑧(𝑇 − 1)); 𝜎𝑖 — the strategy of the firm is 𝑖, and 𝜎 = (𝜎1, . . . , 𝜎𝑛) —
a set of strategies. Then 𝜎𝑖(𝑡) = (𝑧𝑖(𝑡), 𝑢𝑖, 𝑦𝑖(𝑡)). Let us fix the strategies of all firms
except 𝑖. To find the best response to these strategies, the firm 𝑖 must maximize
(3.1) taking into account (2.1).
Introduce the Lagrange function to take this into account

ℒ𝑖(𝑐, 𝑧, 𝑢, 𝑦, 𝜆𝑖) =

=
𝑇−1∑︁
𝑡=0

𝜌𝑡

[︃(︃
𝑝− 𝑐𝑖(𝑡)−

∑︁
𝑗∈𝒩

𝑢𝑗

)︃
𝑢𝑖 −

𝜀𝑖(𝑡)

2
𝑦2𝑖 (𝑡)−

∑︁
𝑗 ̸=𝑖

𝜋𝑖𝑗(𝑡)𝑧𝑖𝑗(𝑡)𝑧𝑗𝑖(𝑡)

]︃
+

+ 𝜌𝑇 (𝜂𝑖 − 𝜂𝑐𝑖(𝑇 ))−
𝑇−1∑︁
𝑡=0

∑︁
𝑗∈𝒩

𝜆𝑖𝑗(𝑡+ 1)

[︃
𝑐𝑗(𝑡+ 1)− 𝛿𝑐𝑗(𝑡) + 𝛼𝑗(𝑡)𝑦𝑗(𝑡)+

+
∑︁
𝑟 ̸=𝑗

(︁
𝛽𝑗𝑟(𝑡)𝑧𝑗𝑟(𝑡)𝑧𝑟𝑗(𝑡) + 𝛾𝑗𝑟(𝑡)(1− 𝑧𝑗𝑟(𝑡)𝑧𝑟𝑗(𝑡))

)︁
𝑦𝑟(𝑡)

]︃
,
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where 𝜆𝑖 = (𝜆𝑖(1), . . . , 𝜆𝑖(𝑇 )) when 𝜆𝑖(𝑡) = (𝜆𝑖1(𝑡), . . . , 𝜆𝑖𝑛(𝑡)), 𝑡 ∈ 𝒯 ∖ {0}, — a
set of Lagrange multipliers. The best response of firm 𝑖 to the fixed strategies of
its competitors is a strategy whose components satisfy the following system (taking
into account the linearity of ℒ𝑖 with variables 𝑧𝑖𝑗(𝑡)):

𝑧𝑖𝑗(𝑡) =

⎧⎨⎩1,
(︀
𝜌𝑡𝜋𝑖𝑗(𝑡) + 𝜆𝑖𝑖(𝑡+ 1)(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡))𝑦𝑗(𝑡)

)︀
𝑧𝑗𝑖(𝑡) < 0, 𝑗 ∈ 𝒩 ∖ {𝑖},

0, otherwise,
,

𝑢𝑖 =
1

2

(︃
𝑝−

∑︁
𝑗 ̸=𝑖

𝑢𝑗 −
𝑇−1∑︁
𝜏=0

𝜌𝜏𝑐𝑖(𝜏) ·

(︃
𝑇−1∑︁
𝜏=0

𝜌𝜏

)︃−1)︃
,

𝑦𝑖(𝑡) = −𝛼𝑖(𝑡)𝜆𝑖𝑖(𝑡+ 1)

𝜌𝑡𝜀𝑖(𝑡)
,

where

𝜆𝑖𝑗(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝜌𝑡𝑢𝑖 + 𝛿𝜆𝑖𝑖(𝑡+ 1), 𝑗 = 𝑖, 𝑡 ̸= 𝑇,

−𝜌𝑇𝜂, 𝑗 = 𝑖, 𝑡 = 𝑇,

0, 𝑗 ̸= 𝑖.

(3.7)

Therefore, if 𝜎N is a Nash equilibrium, then 𝑠N = 𝜎N and 𝑔N𝑖 = 𝑧N𝑖 . Thus, the
Nash equilibrium dictates that firms 𝑖 and 𝑗 establish a partnership in the current
period 𝑡 ∈ 𝒯 ∖ {𝑇} while satisfying the inequalities

𝜌𝑡𝜋𝑖𝑗(𝑡) + 𝜆𝑖𝑖(𝑡+ 1)(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡))𝑦
N
𝑗 (𝑡) < 0 and

𝜌𝑡𝜋𝑗𝑖(𝑡) + 𝜆𝑗𝑗(𝑡+ 1)(𝛽𝑗𝑖(𝑡)− 𝛾𝑗𝑖(𝑡))𝑦
N
𝑖 (𝑡) < 0.

From the recurrence relation (3.7), in which 𝜑𝑖(𝑡) = 𝜆𝑖𝑖(𝑡) is set in equilibrium, we
get (3.5) and (3.6), which leads to the expressions (3.2), (3.3) and (3.4).

Since the Hessian of the Lagrange function ℒ𝑖 is definite negative:

−2𝑢N𝑖 ·
𝑇−1∑︁
𝑡=1

𝜌𝑡𝑐N𝑖 (𝑡)−
𝑇−1∑︁
𝑡=0

𝜌𝑡
(︁
2
(︀
𝑢N𝑖
)︀2

+ 𝜀𝑖(𝑡)
(︀
𝑦N𝑖 (𝑡)

)︀2 )︁
< 0,

then it remains to conclude that 𝑠N will be a Nash equilibrium in the model Γ̄en.

In analyzing the open-loop Nash equilibrium found, we will make two remarks.
First, unlike the model Γen, in which the current production volume was determined
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by the firms’ current unit costs, in the model Γ̄en with constant production (but
variable investment), the production volume of each firm (3.3) is expressed in terms
of the weighted average cost of the firms on the horizon under consideration (the
weight at the time 𝑡 is assumed to be equal to 𝜌𝑡, i.e. current costs are discounted
at the beginning of the game). And second, the ratio (3.6) in the Nash equilibrium
sets a linear relationship between the current investment level of the firm and its
production volume:

𝑦N𝑖 (𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜌
𝛼𝑖(𝑡)

𝜀𝑖(𝑡)

(︃
𝑢N𝑖 ·

𝑇−𝑡−2∑︁
𝜏=0

(𝜌𝛿)𝜏 + 𝜂(𝜌𝛿)𝑇−𝑡−1

)︃
, 𝑡 ̸= 𝑇 − 1,

𝜌𝜂
𝛼𝑖(𝑇 − 1)

𝜀𝑖(𝑇 − 1)
, 𝑡 = 𝑇 − 1.

(3.8)

Thus, with the values 𝛼𝑖(𝑡) and 𝜀𝑖(𝑡) constant over time, the firm’s investment
volume in the Nash equilibrium 𝑦N𝑖 (𝑡) will be a monotonically decreasing function of
time at 𝑢N𝑖 > 𝜂(1 − 𝜌𝛿). Moreover, the time-invariant parameters 𝛽𝑖𝑗(𝑡) and 𝛾𝑖𝑗(𝑡)
lead to a monotonic decrease of the upper bounds of the allowable costs of network
interaction 𝜋N𝑖𝑗(𝑡) in (3.5), below which firms are willing to interactions. In other
words, the latter means that the number of network partnerships does not increase
over time.

Corollary 3.1 (from Theorem 3.1). Let 𝛼𝑖(𝑡) = 𝛼(𝑡) and 𝜀𝑖(𝑡) = 𝜀(𝑡) for any
firm 𝑖 ∈ 𝒩 . Then, in the model Γ̄en, when implementing the Nash equilibrium,
for arbitrary firms 𝑖 and 𝑗 ∈ 𝒩 ∖ {𝑖} the following three conditions are equivalent:

𝑇−1∑︀
𝜏=0

𝜌𝜏𝑐N𝑖 (𝜏)

𝑇−1∑︀
𝜏=0

𝜌𝜏
<

𝑇−1∑︀
𝜏=0

𝜌𝜏𝑐N𝑗 (𝜏)

𝑇−1∑︀
𝜏=0

𝜌𝜏
⇔ 𝑢N𝑖 > 𝑢N𝑗 ⇔ 𝑦N𝑖 (𝑡) > 𝑦N𝑗 (𝑡), 𝑡 ̸= 𝑇 − 1.

Proof. According to (3.3), in the Nash equilibrium the difference in production
volumes is equal to the weighted difference in current costs, i.e.

𝑢N𝑖 − 𝑢N𝑗 =
𝑇−1∑︁
𝜏=0

𝜌𝜏
(︀
𝑐N𝑗 (𝜏)− 𝑐N𝑖 (𝜏)

)︀
/

𝑇−1∑︁
𝜏=0

𝜌𝜏 ,

and the linear ratio is (3.8) allows you to relate the difference in production volumes
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to current investment volumes at a time 𝑡 ∈ 𝒯 ∖ {𝑇 − 1, 𝑇}:

𝑦N𝑖 (𝑡)− 𝑦N𝑗 (𝑡) = 𝜌𝜂
𝛼(𝑡)

𝜀(𝑡)

(︀
𝑢N𝑖 − 𝑢N𝑗

)︀ 𝑇−𝑡−2∑︁
𝜏=0

(𝜌𝛿)𝜏 .

In addition, we note that equality is valid

𝑦N𝑖 (𝑇 − 1) = 𝑦N𝑗 (𝑇 − 1) = 𝜌𝜂
𝛼(𝑇 − 1)

𝜀(𝑇 − 1)
.

Similar to what was shown in Section 2.4 for the model Γ̄en with unilateral
network interaction of firms, it is sufficient to simply change the equation of the
dynamics of unit costs, the functional type of profit of firms, and the conditions
of their network interaction in Nash equilibrium accordingly. In this regard, in this
Chapter we will focus only on the condition of network interaction in open-loop Nash
equilibrium, which we will present as a corollary from the corresponding equilibrium
theorem for bilateral interaction of firms and give without proof.

Corollary 3.2 (from Theorem 3.1). If we assume that the interaction of firms is
one-sided, then the equilibrium behavior of firms in terms of production and in
vestment behavior is preserved and determined according to (3.3) – (3.4), and the
network behavior of firm 𝑖 ∈ 𝒩 in Nash equilibrium takes the following form:

𝑔N𝑖𝑗(𝑡) =

⎧⎪⎨⎪⎩
1, 𝜋𝑖𝑗(𝑡) <

𝜀𝑖(𝑡)

𝛼𝑖(𝑡)
(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡)) 𝑦

N
𝑖 (𝑡) 𝑦

N
𝑗 (𝑡),

0, otherwise,
𝑗 ∈ 𝒩 ∖ {𝑖}.

3.1.2. Constant investment

Now consider a model in which firms implement their investments in equal
amounts (contributions), i.e. the investment behavior of each firm is constant over
time. The relevance of the model under consideration is due to the approach to
investment activity, the main idea of which is to average the cost of investments
during market fluctuations, which protects investors from significant losses and is
therefore often called constant in practice. Another example of such investment be
havior is when investments can be understood as sponsoring, for example, a research
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laboratory. In this case, the sponsorship is also often made in equal amounts over a
period of time.

As before, the strategy of the firm 𝑖 ∈ 𝒩 is called the function 𝑠𝑖(𝑡), which
prescribes to it a feasible behavior (𝑔𝑖(𝑡), 𝑢𝑖, 𝑦𝑖) ∈ G𝑖 × U𝑖 × Y𝑖 at each decision
period 𝑡 ∈ 𝒯 ∖ {𝑇}. Then we redefine the set of strategies of firm 𝑖 as 𝒮𝑖 =

{𝑠𝑖(𝑡) | 𝑠𝑖(𝑡) = (𝑔𝑖(𝑡), 𝑢𝑖, 𝑦𝑖) , 𝑡 ∈ 𝒯 ∖ {𝑇}}, 𝑠 = (𝑠1, . . . , 𝑠𝑛) — strategy profile, 𝑦 =

(𝑦1, . . . , 𝑦𝑛) ∈ Y1 × . . . × Y𝑛 at 𝑡 ∈ 𝒯 ∖ {𝑇}. Note that the network behavior of
firms remains tied to a particular period. The evolution of the unit costs of firm 𝑖

with bilateral interaction is described by the equation

𝑐𝑖(𝑡+1) = 𝛿𝑐𝑖(𝑡)−𝛼𝑖(𝑡)𝑦𝑖−
∑︁
𝑗 ̸=𝑖

(︁
𝛽𝑖𝑗(𝑡)𝑔𝑖𝑗(𝑡)𝑔𝑗𝑖(𝑡)+𝛾𝑖𝑗(𝑡)(1−𝑔𝑖𝑗(𝑡)𝑔𝑗𝑖(𝑡))

)︁
𝑦𝑗, (3.9)

where 𝑐𝑖(0) = 𝑐𝑖0, and its profit is given by

𝐽𝑖(𝑐0,g, 𝑢, 𝑦) =
𝑇−1∑︁
𝑡=0

𝜌𝑡

[︃(︃
𝑝−

𝑛∑︁
𝑗=1

𝑢𝑗

)︃
𝑢𝑖 − 𝑐𝑖(𝑡)𝑢𝑖 −

𝜀𝑖(𝑡)

2
𝑦2𝑖 −

−
∑︁
𝑗 ̸=𝑖

𝜋𝑖𝑗(𝑡)𝑔𝑖𝑗(𝑡)𝑔𝑗𝑖(𝑡)

]︃
+ 𝜌𝑇 (𝜂𝑖 − 𝜂𝑐𝑖(𝑇 )).

Denote the presented dynamic model of competition with endogenous network
formation with constant production volume and constant investment behavior by
¯̄Γen. The open-loop Nash equilibrium with bilateral interaction for this model is
characterized by the following theorem.

Theorem 3.2. The open-loop Nash equilibrium for model ¯̄Γa is a set of strategies
𝑠 = (𝑠1, . . . , 𝑠𝑛), whose components 𝑠𝑖(𝑡) = (𝑔𝑖(𝑡), �̂�𝑖, 𝑦𝑖) for 𝑖 ∈ 𝒩 and 𝑡 ̸= 𝑇 have
the form:

𝑔𝑖𝑗(𝑡) =

⎧⎨⎩1, 𝜋𝑖𝑗(𝑡) < �̂�𝑖𝑗(𝑡), 𝜋𝑗𝑖(𝑡) < �̂�𝑗𝑖(𝑡), 𝑗 ̸= 𝑖,

0, otherwise,
(3.10)

�̂�𝑖 =

𝑝−
𝑇−1∑︀
𝜏=0

𝜌𝜏
(︂
(𝑛+ 1)𝑐𝑖(𝜏)−

∑︀
𝑗∈𝒩

𝑐𝑗(𝜏)

)︂
·

(︃
𝑇−1∑︀
𝜏=0

𝜌𝜏

)︃−1

𝑛+ 1
, (3.11)
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𝑦𝑖 = −

𝑇−1∑︀
𝑡=0

𝛼𝑖(𝑡)𝜑𝑖(𝑡+ 1)

𝑇−1∑︀
𝑡=0

𝜌𝑡𝜀𝑖(𝑡)

, (3.12)

where

�̂�𝑖𝑗(𝑡) =
𝜀𝑖(𝑡)

𝛼𝑖(𝑡)
(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡)) 𝑦𝑖 𝑦𝑗, (3.13)

𝜑𝑖(𝑡) =

⎧⎪⎨⎪⎩−𝜌𝑡
(︂
�̂�𝑖 ·

𝑇−𝑡−1∑︀
𝜏=0

(𝜌𝛿)𝜏 + 𝜂(𝜌𝛿)𝑇−𝑡

)︂
, 𝑡 ̸= 𝑇,

−𝜌𝑇𝜂, 𝑡 = 𝑇.

The unit cost of 𝑐𝑖(𝑡) satisfies (3.9), given 𝑐𝑖(0) = 𝑐𝑖0.

Proof. The proof of this theorem largely repeats the steps of the proof of the the
orem 3.1, so it will be omitted. Note only that since the Hessian of the Lagrange
function ℒ𝑖 is negative definite:

−2�̂�𝑖 ·
𝑇−1∑︁
𝑡=1

𝜌𝑡𝑐𝑖(𝑡)−
𝑇−1∑︁
𝑡=0

𝜌𝑡
(︁
2 (�̂�𝑖)

2 + 𝜀𝑖(𝑡) (𝑦𝑖)
2
)︁
< 0,

then it remains to conclude that 𝑠 will be a open-loop Nash equilibrium in ¯̄Γen.

The above theorem allows us to make a number of observations. First, the exis
tence of non-zero Lagrange multipliers guarantees the non-zero investment behavior
of 𝑦𝑖 of each firm. Second, in the Nash equilibrium, there is also a linear relationship
between the firm’s investment volume and its production volume, which is expressed
in the following form

𝑦𝑖 =

𝑇−2∑︀
𝑡=0

𝜌𝑡+1

(︂
�̂�𝑖 ·

𝑇−𝑡−2∑︀
𝜏=0

(𝜌𝛿)𝜏 + 𝜂(𝜌𝛿)𝑇−𝑡−1

)︂
𝛼𝑖(𝑡) + 𝜌𝑇𝜂𝛼𝑖(𝑇 − 1)

𝑇−1∑︀
𝜏=0

𝜌𝑡𝜀𝑖(𝑡)

. (3.14)

The time invariant parameters 𝛼𝑖(𝑡), 𝛽𝑖𝑗(𝑡), 𝛾𝑖𝑗(𝑡), and 𝜀𝑖(𝑡) imply a constant up
per bound on the allowable cost of network interaction �̂�𝑖𝑗(𝑡) in (3.13), which, if
exceeded, will cause firm 𝑖 to refuse to interaction with firm 𝑗. If this is true for all
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pairs of firms, then in Nash equilibrium none of the established partnerships will be
broken over time.

A corollary similar to Collary 3.1, which links the ratios between the weighted
average costs, production volumes, and investments of two firms, is given without
proof.

Corollary 3.3 (from Theorem 3.2). Let 𝛼𝑖(𝑡) = 𝛼 and 𝜀𝑖(𝑡) = 𝜀 for arbitrary firms.
Then, in Nash equilibrium, for any firms 𝑖 and 𝑗, the following three conditions are
equivalent:

𝑇−1∑︀
𝜏=0

𝜌𝜏𝑐𝑖(𝜏)

𝑇−1∑︀
𝜏=0

𝜌𝜏
<

𝑇−1∑︀
𝜏=0

𝜌𝜏𝑐𝑗(𝜏)

𝑇−1∑︀
𝜏=0

𝜌𝜏
⇔ �̂�𝑖 > �̂�𝑗 ⇔ 𝑦𝑖 > 𝑦𝑗.

Here is another corollary that reveals the aspect of unilateral network interac
tion of firms in Nash equilibrium for the model ¯̄Γen.

Corollary 3.4 (from Theorem 3.2). If we assume that the interaction of firms is
one-sided, then the equilibrium behavior of firms in terms of production and invest
ment behavior is preserved and determined according to (3.11) – (3.12), and the
network behavior of firm 𝑖 ∈ 𝒩 in Nash equilibrium takes the following form:

𝑔𝑖𝑗(𝑡) =

⎧⎪⎨⎪⎩
1, 𝜋𝑖𝑗(𝑡) <

𝜀𝑖(𝑡)

𝛼𝑖(𝑡)
(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡)) 𝑦𝑖 𝑦𝑗,

0, otherwise,
𝑗 ∈ 𝒩 ∖ {𝑖}. (3.15)

3.1.3. Numerical simulations of equilibrium behavior for short-term
network interactions

Compare the equilibrium results of modeling in Γen and Γ̄en, while evaluating
how much the adaptation of the theoretical model of Γen turns out to be feasible
for practical applications in real conditions of market competition. Also compare
and evaluate two variants of investment behavior of firms, which are provided in
practical game models Γ̄en and ¯̄Γen.

As input parameters for presenting the results of numerical simulations of
open-loop Nash equilibrium under the conditions of Theorems 3.1–3.2, we use the
parameters from the Chapter 2 (p. 61). With these data we present the result
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of the modeling: 𝑠N =
(︀
𝑔N, 𝑢N, 𝑦N

)︀
or 𝑠 = (𝑔, �̂�,𝑦) for models Γ̄en and ¯̄Γen in Ta

ble 3.1 – 3.2 respectively. These Tables have a common structure and contain for each
firm 𝑖 ∈ 𝒩 its feasible behavior in equilibrium,

(︀
𝑔N𝑖 (𝑡), 𝑢

N
𝑖 , 𝑦

N
𝑖 (𝑡)

)︀
and (𝑔𝑖(𝑡), �̂�𝑖, 𝑦𝑖),

with unilateral and bilateral interaction of firms. The Tables also contain informa
tion about the current price of the product, 𝑃N := 𝑝−

∑︀𝑛
𝑗=1 𝑢

N
𝑗 or 𝑃 := 𝑝−

∑︀𝑛
𝑗=1 �̂�𝑗,

the current unit costs of the firms, 𝑐N𝑖 (𝑡) and 𝑐𝑖(𝑡), and their equilibrium profits,
𝐽N
𝑖 := 𝐽𝑖

(︀
𝑐0,g

N, 𝑢N, 𝑦N
)︀

and 𝐽𝑖 := 𝐽𝑖(𝑐0, ĝ, �̂�, 𝑦). For the sake of clarity, the fol
lowing Tables illustrate the network structures of interaction between firms in an
equilibrium strategy profile, gN(𝑡) and ĝ(𝑡). All values in Tables are rounded to
three decimal places.

In addition, we present Tables 3.3 – 3.4, which indicate the upper bounds of
feasible costs of network interaction of firms in models Γ̄en and ¯̄Γen.

According to the data from Tables 3.1 – 3.4, it is possible to explain the network
behavior of firms in equilibrium for the models Γ̄en and ¯̄Γen for both unilateral and
bilateral network interaction of firms, similar to what was done in Section 2.5 for
the game-theoretic model Γen, which is why we omit it here.

Evaluate the results of modeling the Nash equilibrium behavior in the mod
els Γen and Γ̄en. As one can see from Tables 2.1 and 3.1, the network structures
are preserved, regardless of their type (bilateral or unilateral). A peculiarity of the
cautious investment behavior of firms is that the upper bounds of the allowable costs
of interaction turn out to be constant over time (see Table 3.4), which seems natu
ral based on the conditions of network interaction (3.15) and constant investment
volumes in equilibrium, as well as constant network parameters. At the same time,
we note that the total investment volume1 of firms changes slightly in the transition
from a variable to a constant production volume (or from Γen to Γ̄en):

• In Γen with bilateral network interaction of firms, we have

2∑︁
𝑡=0

𝑦N1 (𝑡) =
2∑︁

𝑡=0

𝑦N2 (𝑡) =
2∑︁

𝑡=0

𝑦N3 (𝑡) = 5.633,
2∑︁

𝑡=0

𝑦N4 (𝑡) = 5.627,

and with unilateral network interaction
2∑︁

𝑡=0

𝑦N1 (𝑡) =
2∑︁

𝑡=0

𝑦N2 (𝑡) =
2∑︁

𝑡=0

𝑦N3 (𝑡) = 5.634,
2∑︁

𝑡=0

𝑦N4 (𝑡) = 5.625;

1 Talking about the total investment volume of firms, discounting is not taken into account here and further.
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Table 3.1. Open-loop Nash equilibrium 𝑠N and corresponding profits and unit costs of

firms, as well as current prices in the modal Γ̄en.

bilateral interaction unilateral interaction

𝑡 : 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3

gN(𝑡)

1

2

3

4

1

2

3

4

1

2

3

4

–

1

2

3

4

1

2

3

4

1

2

3

4

–

𝑔N1 (𝑡) (0,1,1,1) (0,1,1,0) (0,1,0,0) – (0,1,1,1) (0,1,1,1) (0,1,1,1) –

𝑔N2 (𝑡) (1,0,1,1) (1,0,1,0) (1,0,0,0) – (1,0,1,1) (1,0,1,1) (1,0,1,1) –

𝑔N3 (𝑡) (1,1,0,1) (1,1,0,0) (0,0,0,0) – (1,1,0,1) (1,1,0,1) (0,0,0,0) –

𝑔N4 (𝑡) (1,1,1,0) (0,0,0,0) (0,0,0,0) – (1,1,1,0) (0,0,0,0) (0,0,0,0) –

𝑢N1 80.564 80.564 80.564 – 80.683 80.683 80.683 –

𝑢N2 80.564 80.564 80.564 – 80.683 80.683 80.683 –

𝑢N3 80.564 80.564 80.564 – 80.683 80.683 80.683 –

𝑢N4 79.969 79.969 79.969 – 79.791 79.791 79.791 –

𝑦N1 (𝑡) 2.045 1.876 1.710 – 2.045 1.876 1.710 –

𝑦N2 (𝑡) 2.045 1.876 1.710 – 2.045 1.876 1.710 –

𝑦N3 (𝑡) 2.045 1.876 1.710 – 2.045 1.876 1.710 –

𝑦N4 (𝑡) 2.043 1.875 1.710 – 2.042 1.875 1.710 –

𝑐N1 (𝑡) 100.000 97.188 95.924 96.141 100.000 97.187 94.986 93.426

𝑐N2 (𝑡) 100.000 97.188 95.924 96.141 100.000 97.187 94.986 93.426

𝑐N3 (𝑡) 100.000 97.188 95.924 96.996 100.000 97.187 94.986 95.991

𝑐N4 (𝑡) 100.000 97.189 97.803 99.007 100.000 97.189 97.804 99.007

𝑃N 178.338 178.338 178.338 – 177.980 177.980 177.980 –

𝐽N
1 12 099.364 12 276.380

𝐽N
2 12 099.364 12 276.380

𝐽N
3 11 598.308 11 658.213

𝐽N
4 10 717.991 10 638.375
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Table 3.2. Open-loop Nash equilibrium 𝑠 and corresponding profits and unit costs of

firms, as well as current prices in the model ¯̄Γen

bilateral interaction unilateral interaction

𝑡 : 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3

ĝ(𝑡)

1

2

3

4

1

2

3

4

1

2

3

4

–

1

2

3

4

1

2

3

4

1

2

3

4

–

𝑔1(𝑡) (0,1,1,0) (0,1,1,0) (0,1,1,0) – (0,1,1,1) (0,1,1,1) (0,1,1,1) –

𝑔2(𝑡) (1,0,1,0) (1,0,1,0) (1,0,1,0) – (1,0,1,1) (1,0,1,1) (1,0,1,1) –

𝑔3(𝑡) (1,1,0,0) (1,1,0,0) (1,1,0,0) – (1,1,0,1) (1,1,0,1) (1,1,0,1) –

𝑔4(𝑡) (1,1,1,0) (0,0,0,0) (0,0,0,0) – (0,0,0,0) (0,0,0,0) (0,0,0,0) –

�̂�1 80.589 80.589 80.589 – 80.961 80.961 80.961 –

�̂�2 80.589 80.589 80.589 – 80.961 80.961 80.961 –

�̂�3 80.589 80.589 80.589 – 80.961 80.961 80.961 –

�̂�4 78.725 78.725 78.725 – 78.166 78.166 78.166 –

𝑦1 1.883 1.883 1.883 – 1.883 1.883 1.883 –

𝑦2 1.883 1.883 1.883 – 1.883 1.883 1.883 –

𝑦3 1.883 1.883 1.883 – 1.883 1.883 1.883 –

𝑦4 1.879 1.879 1.879 – 1.878 1.878 1.878 –

𝑐1(𝑡) 100.000 98.906 97.736 96.484 100.000 97.965 95.788 93.458

𝑐2(𝑡) 100.000 98.906 97.736 96.484 100.000 97.965 95.788 93.458

𝑐3(𝑡) 100.000 98.906 97.736 96.484 100.000 97.965 95.788 93.458

𝑐4(𝑡) 100.000 100.793 101.642 102.550 100.000 100.794 101.644 102.553

𝑃 179.508 179.508 179.508 – 178.951 178.951 178.951 –

𝐽1 11 921.435 12 401.633

𝐽2 11 921.435 12 401.633

𝐽3 11 350.935 11 545.883

𝐽4 10 454.836 10 207.999
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Table 3.3. The upper limits of feasible costs of interaction in the model Γ̄en

𝑡
Γ̄en bilateral interaction unilateral interaction

𝑖∖𝑗 1 2 3 4 1 2 3 4

0

1 0 1161.331 1161.331 1160.166 0 1161.797 1161.797 1160.049

2 1161.331 0 1161.331 1160.166 1161.797 0 1161.797 1160.049

3 1161.331 1161.331 0 1160.166 1161.797 1161.797 0 1160.049

4 1160.166 1160.166 1160.166 0 1160.049 1160.049 1160.049 0

1

1 0 977.583 977.583 977.053 0 977.795 977.795 977.000

2 977.583 0 977.583 977.053 977.795 0 977.795 977.000

3 977.583 977.583 0 977.053 977.795 977.795 0 977.000

4 977.053 977.053 977.053 0 977.000 977.000 977.000 0

2

1 0 812.250 812.250 812.250 0 812.250 812.250 812.250

2 812.250 0 812.250 812.250 812.250 0 812.250 812.250

3 812.250 812.250 0 812.250 812.250 812.250 0 812.250

4 812.250 812.250 812.250 0 812.250 812.250 812.250 0

Table 3.4. The upper limits of feasible costs of interaction in the model ¯̄Γen

𝑡

¯̄Γen bilateral interaction unilateral interaction

𝑖∖𝑗 1 2 3 4 1 2 3 4

0, 1, 2

1 0 984.555 984.555 982.821 0 985.247 985.247 982.647

2 984.555 0 984.555 982.821 985.247 0 985.247 982.647

3 984.555 984.555 0 982.821 985.247 985.247 0 982.647

4 982.821 982.821 982.821 0 982.647 982.647 982.647 0

• In Γ̄en with bilateral network interaction of firms, we have

2∑︁
𝑡=0

𝑦N1 (𝑡) =
2∑︁

𝑡=0

𝑦N2 (𝑡) =
2∑︁

𝑡=0

𝑦N3 (𝑡) = 5.631,
2∑︁

𝑡=0

𝑦N4 (𝑡) = 5.628,

and with unilateral network interaction

2∑︁
𝑡=0

𝑦N1 (𝑡) =
2∑︁

𝑡=0

𝑦N2 (𝑡) =
2∑︁

𝑡=0

𝑦N3 (𝑡) = 5.631,
2∑︁

𝑡=0

𝑦N4 (𝑡) = 5.627.
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At the same time, the change in the competitive position of firms in the market
over time (𝒟𝑖(𝑡), 𝑡 = 1, 2, 3) will be more pronounced in Γen (Table 2.5) than in Γ̄en

(presented on page 87).
It is also worth noting that the results of the analysis based on the numerical

simulation of the equilibrium in Γen remain valid for the model Γ̄en and are therefore
omitted. However, it is noteworthy in this example that the equilibrium profits of
firms (as well as the total volume of goods produced) obtained for the models Γen

and Γ̄en turn out to be close enough. In fact, we estimate the relative change in the
equilibrium profit of firms as a percentage during their transition from a variable to a
constant volume of production. Using data from Tables 2.1 and 3.2 for this purpose,
we conclude: for firms 1 and 2, the decrease in profit will be 0.035 %, for firm 3,
the decrease in profit will be 0.036%, and for firm 4, the decrease in profit will be
0.049 % — with bilateral interaction. If the interaction of the firms is assumed to
be unilateral, then the decrease in equilibrium profit for all firms is not much larger
— for firms 1 and 2 by 0.037 %, for firm 3 by 0.039 %, and for firm 4 by 0.070%.
Such a small decrease in equilibrium profit (less than one percent) indicates, on the
one hand, that the theoretical results obtained in Chapters 1-2 are quite feasible in
practice and confirms the rationality of choosing a constant volume of production
in the behavior of producers of goods.

To compare the possibilities of investment behavior of firms, we go to the results
of equilibrium modeling for the models Γ̄en and ¯̄Γen. According to the fact that for
constant investments the upper bounds of the allowable costs of interaction between
firms are constant and at the beginning of the period lower than the corresponding
bounds for risky investments — we conclude from Table 3.3 and 3.4, then for firm 4,
in the condition of bilateral interaction, we have 𝜋4𝑗(0) = 1100 > 982.821 = �̂�4𝑗(0),
for 𝑗 = 1, 2 and 3. In the condition of unilateral interaction, the strategy profile
is similar, since 𝜋4𝑗(0) = 1100 > 982.647 = �̂�4𝑗(0). Therefore, regardless of the
type of interaction in the model ¯̄Γen, firm 4 has no partners. And for 𝑡 = 2 with
unilateral interaction for the firm 3, we have 𝜋3𝑗(2) < min {�̂�3𝑗(2), �̂�34(2)}, 𝑗 = 1, 2,
which allows it to interact with all firms. Thus, the type of investment behavior
can affect firms’ partnerships in different ways, despite the fact that in Γ̄en and ¯̄Γen,
firms’ total investment volumes are quite close:
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• In Γ̄en with bilateral network interaction of firms, we have

2∑︁
𝑡=0

𝑦N1 (𝑡) =
2∑︁

𝑡=0

𝑦N2 (𝑡) =
2∑︁

𝑡=0

𝑦N3 (𝑡) = 5.631,
2∑︁

𝑡=0

𝑦N4 (𝑡) = 5.628,

and with unilateral network interaction

2∑︁
𝑡=0

𝑦N1 (𝑡) =
2∑︁

𝑡=0

𝑦N2 (𝑡) =
2∑︁

𝑡=0

𝑦N3 (𝑡) = 5.631,
2∑︁

𝑡=0

𝑦N4 (𝑡) = 5.627;

• In ¯̄Γen with bilateral network interaction of firms, we have

2∑︁
𝑡=0

𝑦1(𝑡) =
2∑︁

𝑡=0

𝑦2(𝑡) =
2∑︁

𝑡=0

𝑦3(𝑡) = 5.649,
2∑︁

𝑡=0

𝑦4(𝑡) = 5.637,

and with unilateral network interaction

2∑︁
𝑡=0

𝑦1(𝑡) =
2∑︁

𝑡=0

𝑦2(𝑡) =
2∑︁

𝑡=0

𝑦3(𝑡) = 5.649,
2∑︁

𝑡=0

𝑦4(𝑡) = 5.634.

Let us move on to assessing changes in the competitiveness of firms, for which we will

create a Table 3.5, where ̂︀𝒟𝑖(𝑡) :=

(︂
max
𝑗 ∈𝒩

𝑐𝑗(𝑡)− 𝑐𝑖(𝑡)

)︂
/

𝑛∑︀
𝑗=1

𝑐𝑗(𝑡)× 100, 𝑡 = 1, 2, 3.

It is interesting to note that as firms become more cautious in their investment
behavior, the change in their competitive position on the market becomes more
pronounced. One can check this by comparing the data in Table 3.5 and the following
indicators in the equilibrium of the model Γ̄en:
with bilateral interaction 𝒟N

1 (1) = 𝒟N
2 (1) = 𝒟N

3 (1) = 0.0003, 𝒟N
1 (2) = 𝒟N

2 (2) =

= 𝒟N
3 (2) = 0.487, 𝒟N

1 (3) = 𝒟N
2 (3) = 0.738,𝒟N

3 (3) = 0.518, 𝒟N
4 (𝑡) = 0 — for each

𝑡, since firm 4 had the highest unit cost at each period; in the case of unilateral
interaction of firms, we have 𝒟N

1 (1) = 𝒟N
2 (1) = 𝒟N

3 (1) = 0.0005, 𝒟N
1 (2) = 𝒟N

2 (2) =

= 𝒟N
3 (2) = 0.736, 𝒟N

1 (3) = 𝒟N
2 (3) = 1.462,𝒟N

3 (3) = 0.790, 𝒟N
4 (𝑡) = 0.

Thus, it can be concluded that the change in the competitive position of firms in
the market is faster with cautious investment behavior. At the same time, bilateral
network interaction with risky investment behavior of firms provides the lowest rate
of change of competitive position of firms in equilibrium.
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Table 3.5. The relationship between competitiveness and the competitive position of

firms in the market, with their equilibrium behavior in the model ¯̄Γen

𝑡

¯̄Γen bilateral interaction unilateral interaction

𝑖 Δ𝑐𝑖1(𝑡) Δ𝑐𝑖2(𝑡) Δ𝑐𝑖3(𝑡) Δ𝑐𝑖4(𝑡) ̂︀𝒟𝑖(𝑡) Δ𝑐𝑖1(𝑡) Δ𝑐𝑖2(𝑡) Δ𝑐𝑖3(𝑡) Δ𝑐𝑖4(𝑡) ̂︀𝒟𝑖(𝑡)

1

1 - 0 0 1.887 0.475 - 0 0 2.829 0.717
2 0 - 0 1.887 0.475 0 - 0 2.829 0.717
3 0 0 - 1.887 0.475 0 0 - 2.829 0.717
4 -1.887 -1.887 -1.887 - 0.000 -2.829 -2.829 -2.829 - 0.000

2

1 - 0 0 3.906 0.989 - 0 0 5.856 1.505
2 0 - 0 3.906 0.989 0 - 0 5.856 1.505
3 0 0 - 3.906 0.989 0 0 - 5.856 1.505
4 -3.906 -3.906 -3.906 - 0.000 -5.856 -5.856 -5.856 0 0.000

3

1 - 0 0 6.066 1.547 - 0 0 9.095 2.375
2 0 - 0 6.066 1.547 0 - 0 9.095 2.375
3 0 0 - 6.066 1.547 0 0 - 9.095 2.375
4 -6.066 -6.066 -6.066 - 0.000 -9.095 -9.095 -9.095 - 0.000

3.2. Analysis of long-term network interactions of competing firms

Let us move on to dynamic models in which firms enter into long-term network
interaction, forming a network structure of interaction once and for all at 𝑡 = 0.
Following the notation used in Chapter 2, we denote such a structure as g(0) = g0.
In the thesis, the equilibrium behavior of firms is of interest, and its comparison
with the equilibrium behavior in short-term interaction and with the results obtained
for the models Γen

01 (Subsection 2.3.1), Γen
02 (Subsection 2.3.2).

3.2.1. Variable investment

We start with a model in which firms implement variable investment volumes
or risky investment behavior. By the strategy of the firm 𝑖 ∈ 𝒩 we will understand a
function that prescribes to it, am each decision period, 𝑡 ∈ 𝒯 ∖{𝑇} feasible behavior
of the form

𝑠𝑖(𝑡) =

⎧⎨⎩(𝑔𝑖(0), 𝑢𝑖, 𝑦𝑖(0)) ∈ G𝑖 × U𝑖 × Y𝑖, 𝑡 = 0,

(𝑢𝑖, 𝑦𝑖(𝑡)) ∈ U𝑖 × Y𝑖, 𝑡 ∈ 𝒯 ∖ {0, 𝑇}.
(3.16)



89

The change in the unit cost of firm 𝑖 is described by the equation (2.9), at 𝑐𝑖(0) = 𝑐𝑖0,
and its profit under the network structure of bilateral long-term interaction g0, which
is formed at the initial time, is given by

𝐽𝑖 (𝑐0,g0, 𝑢, 𝑦) =
𝑇−1∑︁
𝑡=0

𝜌𝑡

[︃(︃
𝑝−

𝑛∑︁
𝑗=1

𝑢𝑗

)︃
𝑢𝑖 − 𝑐𝑖(𝑡)𝑢𝑖 −

𝜀𝑖(𝑡)

2
𝑦2𝑖 (𝑡)−

−
∑︁
𝑗 ̸=𝑖

𝜋𝑖𝑗(𝑡)𝑔𝑖𝑗(0)𝑔𝑗𝑖(0)

⎤⎦+ 𝜌𝑇 (𝜂𝑖 − 𝜂𝑐𝑖(𝑇 )) ,

where 𝑦 = (𝑦(0), . . . , 𝑦(𝑇 − 1)) and 𝑦(𝑡) = (𝑦1(𝑡), . . . , 𝑦𝑛(𝑡)), 𝑡 ∈ 𝒯 ∖ {𝑇}.
Let us denote the presented dynamic model of competition with endogenous

formation of long-term network interaction with constant production volume and
risky investment behavior by Γ̄en

0 . The open-loop Nash equilibrium is characterized
by the following theorem.

Theorem 3.3. The open-loop Nash equilibrium for the model Γ̄en
0 is a set of strate

gies 𝑠* = (𝑠*1, . . . , 𝑠
*
𝑛), whose components satisfy (3.16) for 𝑖 ∈ 𝒩 , 𝑡 ̸= 𝑇 and have

the form:

𝑔*𝑖𝑗(0) =

⎧⎪⎨⎪⎩1,
𝑇−1∑︀
𝑡=0

𝜌𝑡𝜋𝑖𝑗(𝑡) < 𝜋*𝑖𝑗,
𝑇−1∑︀
𝑡=0

𝜌𝑡𝜋𝑗𝑖(𝑡) < 𝜋*𝑗𝑖, 𝑗 ∈ 𝒩 ∖ {𝑖},

0, otherwise,
(3.17)

𝑢*𝑖 =

𝑝−
𝑇−1∑︀
𝜏=0

𝜌𝜏
(︂
(𝑛+ 1)𝑐*𝑖 (𝜏)−

∑︀
𝑗∈ 𝒩

𝑐*𝑗(𝜏)

)︂
·
(︂

𝑇−1∑︀
𝜏=0

𝜌𝜏
)︂−1

𝑛+ 1
, (3.18)

𝑦*𝑖 (𝑡) = −𝛼𝑖(𝑡)𝜑𝑖(𝑡+ 1)

𝜌𝑡𝜀𝑖(𝑡)
, (3.19)

where

𝜋*𝑖𝑗(𝑡) =
𝑇−1∑︁
𝑡=0

𝜌𝑡
𝜀𝑖(𝑡)

𝛼𝑖(𝑡)
(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡)) 𝑦

*
𝑖 (𝑡) 𝑦

*
𝑗 (𝑡),

𝜑𝑖(𝑡) =

⎧⎪⎨⎪⎩−𝜌𝑡
(︂
𝑢*𝑖 ·

𝑇−𝑡−1∑︀
𝜏=0

(𝜌𝛿)𝜏 + 𝜂(𝜌𝛿)𝑇−𝑡

)︂
, 𝑡 ̸= 𝑇,

−𝜌𝑇𝜂, 𝑡 = 𝑇.

The unit cost of 𝑐*𝑖 (𝑡) satisfies (2.9) given 𝑐*𝑖 (0) = 𝑐𝑖0.
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Proof. The methodology of proving this theorem largely repeats the steps of proving
Theorem 2.2, so it is omitted.

Note the validity of the functional dependence (3.8) by replacing 𝑦N𝑖 (𝑡) with 𝑦*𝑖 (𝑡) in
it, and the corollary 3.1 is also in equilibrium for the model Γ̄en

0 . Next, we consider
the condition of network interaction in equilibrium with unilateral interaction in the
network g0.

Corollary 3.5 (from Theorem 3.3). If we assume that the interaction of firms is
one-sided, then the equilibrium behavior of firms in terms of production and invest
ment behavior is preserved and determined according to (3.18) – (3.19), and the
network behavior of firm 𝑖 ∈ 𝒩 in Nash equilibrium takes the following form:

𝑔*𝑖𝑗(0) =

⎧⎪⎨⎪⎩1,
𝑇−1∑︀
𝑡=0

𝜌𝑡𝜋𝑖𝑗(𝑡) <
𝑇−1∑︀
𝑡=0

𝜌𝑡
𝜀𝑖(𝑡)

𝛼𝑖(𝑡)
(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡)) 𝑦

*
𝑖 (𝑡) 𝑦

*
𝑗 (𝑡),

0, otherwise,
𝑗 ∈ 𝒩 ∖ {𝑖}.

3.2.2. Constant investment

Let us move on to a model in which firms implement a constant volume of
investments or a constant investment behavior. By the strategy of the firm 𝑖 ∈ 𝒩
we will understand a function that prescribes to it in an unambiguous way mt each
decision period 𝑡 ∈ 𝒯 ∖ {𝑇} feasible behavior of the form

𝑠𝑖(𝑡) =

⎧⎨⎩(𝑔𝑖(0), 𝑢𝑖, 𝑦𝑖) ∈ G𝑖 × U𝑖 × Y𝑖, 𝑡 = 0,

(𝑢𝑖, 𝑦𝑖) ∈ U𝑖 × Y𝑖, 𝑡 ∈ 𝒯 ∖ {0, 𝑇}.
(3.20)

The change in the unit cost of firm 𝑖 is described by the equation

𝑐𝑖(𝑡+ 1) = 𝛿𝑐𝑖(𝑡)− 𝛼𝑖(𝑡)𝑦𝑖−

−
∑︁
𝑗 ̸=𝑖

(︁
𝛽𝑖𝑗(𝑡)𝑔𝑖𝑗(0)𝑔𝑗𝑖(0) + 𝛾𝑖𝑗(𝑡)(1− 𝑔𝑖𝑗(0)𝑔𝑗𝑖(0))

)︁
𝑦𝑗, (3.21)
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at 𝑐𝑖(0) = 𝑐𝑖0, and its profit under the network structure of bilateral long-term
interaction g0, which is formed at the initial time, is given by

𝐽𝑖 (𝑐0,g0, 𝑢, 𝑦) =
𝑇−1∑︁
𝑡=0

𝜌𝑡

[︃(︃
𝑝−

𝑛∑︁
𝑗=1

𝑢𝑗

)︃
𝑢𝑖 − 𝑐𝑖(𝑡)𝑢𝑖 −

𝜀𝑖(𝑡)

2
𝑦2𝑖−

−
∑︁
𝑗 ̸=𝑖

𝜋𝑖𝑗(𝑡)𝑔𝑖𝑗(0)𝑔𝑗𝑖(0)

⎤⎦+ 𝜌𝑇 (𝜂𝑖 − 𝜂𝑐𝑖(𝑇 )) ,

where 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ Y1 × . . . × Y𝑛 for each 𝑡 ∈ 𝒯 ∖ {𝑇}. Note that the costs
of network interaction of firms in g0 are time-bound.

Denote the presented dynamic model of competition with endogenous forma
tion of long-term network interaction with constant production volume and cautious
investment behavior by ¯̄Γen

0 . The open-loop Nash equilibrium for this model is char
acterized by the following theorem.

Theorem 3.4. The open-loop Nash equilibrium for the model ¯̄Γen
0 is a set of strate

gies 𝑠** = (𝑠**1 , . . . , 𝑠
**
𝑛 ) whose components satisfy (3.20) for 𝑖 ∈ 𝒩 , 𝑡 ̸= 𝑇 and have

the form:

𝑔**𝑖𝑗 (0) =

⎧⎪⎨⎪⎩1,
𝑇−1∑︀
𝑡=0

𝜌𝑡𝜋𝑖𝑗(𝑡) < 𝜋**𝑖𝑗 ,
𝑇−1∑︀
𝑡=0

𝜌𝑡𝜋𝑗𝑖(𝑡) < 𝜋**𝑗𝑖 , 𝑗 ∈ 𝒩 ∖ {𝑖},

0, otherwise,
(3.22)

𝑢**𝑖 =

𝑝−
𝑇−1∑︀
𝜏=0

𝜌𝜏
(︂
(𝑛+ 1)𝑐**𝑖 (𝜏)−

∑︀
𝑗∈ 𝒩

𝑐**𝑗 (𝜏)

)︂
·
(︂

𝑇−1∑︀
𝜏=0

𝜌𝜏
)︂−1

𝑛+ 1
, (3.23)

𝑦**𝑖 = −

𝑇−1∑︀
𝑡=0

𝛼𝑖(𝑡)𝜑𝑖(𝑡+ 1)

𝑇−1∑︀
𝑡=0

𝜌𝑡𝜀𝑖(𝑡)

, (3.24)

where

𝜋**𝑖𝑗 (𝑡) =
𝑇−1∑︁
𝑡=0

𝜌𝑡
𝜀𝑖(𝑡)

𝛼𝑖(𝑡)
(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡)) 𝑦

**
𝑖 𝑦**𝑗 ,

𝜑𝑖(𝑡) =

⎧⎪⎨⎪⎩−𝜌𝑡
(︂
𝑢**𝑖 ·

𝑇−𝑡−1∑︀
𝜏=0

(𝜌𝛿)𝜏 + 𝜂(𝜌𝛿)𝑇−𝑡

)︂
, 𝑡 ̸= 𝑇,

−𝜌𝑇𝜂, 𝑡 = 𝑇.
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The unit cost of 𝑐**𝑖 (𝑡) satisfies (3.21) given 𝑐**𝑖 (0) = 𝑐𝑖0.

Proof. The methodology of proving this theorem largely repeats the steps of proving
Theorem 2.2, so it is omitted.

Note the validity of the functional dependence (3.14) replacing 𝑦𝑖 by 𝑦**𝑖 and the
corollary 3.1. Let us move on to the condition of network interaction in equilibrium
with one-way interaction in g0.

Corollary 3.6 (from Theorem 3.4). If we assume that the interaction of firms is
one-sided, then the equilibrium behavior of firms in terms of production and invest
ment behavior is preserved and determined according to (3.23) – (3.24), and the
network behavior of firm 𝑖 ∈ 𝒩 in Nash equilibrium takes the following form:

𝑔**𝑖𝑗 (0) =

⎧⎪⎨⎪⎩1,
𝑇−1∑︀
𝑡=0

𝜌𝑡𝜋𝑖𝑗(𝑡) <
𝑇−1∑︀
𝑡=0

𝜌𝑡
𝜀𝑖(𝑡)

𝛼𝑖(𝑡)
(𝛽𝑖𝑗(𝑡)− 𝛾𝑖𝑗(𝑡)) 𝑦

**
𝑖 𝑦**𝑗 ,

0, otherwise,
𝑗 ∈ 𝒩 ∖ {𝑖}.

3.2.3. Numerical simulations of equilibrium behavior for long-term
network interactions

Move on to the numerical simulations of the Nash equilibrium defined by the
conditions of Theorems 3.3–3.4 for the models Γ̄en

0 and ¯̄Γen
0 , respectively. The in

put parameters of the simulation remain the same (page 61). In this Section, we
are interested in comparing the results of modeling the practical model Γ̄en

0 with
the theoretical model Γen

0 in terms of costs aimed at forming and maintaining net
work interaction (Subsection 2.3.1 and Section 2.4), as well as in comparing the data
in equilibria for two types of investment behavior of firms.

Let us present the simulation results in Tables 3.6 – 3.7, which have a structure
already familiar to the reader and contain the main emphasis on the feasible behavior
of firms in a Nash equilibrium strategy profile. In addition, we will provide Table 3.8
showing the upper bounds of the feasible costs of interaction of firms in equilibrium
for the models Γ̄en

0 and ¯̄Γen
0 , respectively. All simulation results are rounded to the

third decimal place as before.
According to the data from Tables 3.6 – 3.8, it is possible to explain the network

behavior of firms in equilibrium for the models Γ̄en
0 and ¯̄Γen

0 for both unilateral and
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Table 3.6. The Nash equilibrium 𝑠* and the corresponding profits and unit costs of the

firms, as well as the market price in the model Γ̄en
0

bilateral interaction unilateral interaction

𝑡 : 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3

g*
0

1

2

3

4

–

1

2

3

4

𝑔*1(0) (0,1,1,0) – – – (0,1,1,1) – – –

𝑔*2(0) (1,0,1,0) – – – (1,0,1,1) – – –

𝑔*3(0) (1,1,0,0) – – – (1,1,0,1) – – –

𝑔*4(0) (0,0,0,0) – – – (0,0,0,0) – – –

𝑢*1 80.703 80.703 80.703 – 81.097 81.097 81.097 –

𝑢*2 80.703 80.703 80.703 – 81.097 81.097 81.097 –

𝑢*3 80.703 80.703 80.703 – 81.097 81.097 81.097 –

𝑢*4 78.728 78.728 78.728 – 78.137 78.137 78.137 –

𝑦*1(𝑡) 2.045 1.876 1.710 – 2.047 1.877 1.710 –

𝑦*2(𝑡) 2.045 1.876 1.710 – 2.047 1.877 1.710 –

𝑦*3(𝑡) 2.045 1.876 1.710 – 2.047 1.877 1.710 –

𝑦*4(𝑡) 2.038 1.873 1.710 – 2.036 1.872 1.710 –

𝑐*1(𝑡) 100.000 98.209 97.018 96.456 100.000 97.187 94.986 93.427

𝑐*2(𝑡) 100.000 98.209 97.018 96.456 100.000 97.187 94.986 93.427

𝑐*3(𝑡) 100.000 98.209 97.018 96.456 100.000 97.187 94.986 93.427

𝑐*4(𝑡) 100.000 100.263 101.096 102.530 100.000 100.265 101.099 102.533

𝑃 * 179.163 179.163 179.163 – 178.575 178.575 178.575 –

𝐽*
1 11 969.791 12 462.514

𝐽*
2 11 969.791 12 462.514

𝐽*
3 11 399.294 11 606.765

𝐽*
4 10 448.161 10 187.284
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Table 3.7. The Nash equilibrium 𝑠** and the corresponding profits and unit costs of

the firms, as well as the market price in the model ¯̄Γen
0

bilateral interaction unilateral interaction

𝑡 : 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3

g**
0

1

2

3

4

–

1

2

3

4

𝑔**1 (0) (0,1,1,0) – – – (0,1,1,1) – – –

𝑔**2 (0) (1,0,1,0) – – – (1,0,1,1) – – –

𝑔**3 (0) (1,1,0,0) – – – (1,1,0,1) – – –

𝑔**4 (0) (0,0,0,0) – – – (0,0,0,0) – – –

𝑢**1 80.589 80.589 80.589 – 80.961 80.961 80.961 –

𝑢**2 80.589 80.589 80.589 – 80.961 80.961 80.961 –

𝑢**3 80.589 80.589 80.589 – 80.961 80.961 80.961 –

𝑢**4 78.725 78.725 78.725 – 78.166 78.166 78.166 –

𝑦**1 1.883 1.883 1.883 – 1.883 1.883 1.883 –

𝑦**2 1.883 1.883 1.883 – 1.883 1.883 1.883 –

𝑦**3 1.883 1.883 1.883 – 1.883 1.883 1.883 –

𝑦**4 1.879 1.879 1.879 – 1.878 1.878 1.878 –

𝑐**1 (𝑡) 100.000 98.906 97.736 96.484 100.000 97.965 95.788 93.458

𝑐**2 (𝑡) 100.000 98.906 97.736 96.484 100.000 97.965 95.788 93.458

𝑐**3 (𝑡) 100.000 98.906 97.736 96.484 100.000 97.965 95.788 93.458

𝑐**4 (𝑡) 100.000 100.793 101.642 102.550 100.000 100.794 101.644 102.553

𝑃 ** 179.508 179.508 179.508 – 178.951 178.951 178.951 –

𝐽**
1 11 921.435 12 401.633

𝐽**
2 11 921.435 12 401.633

𝐽**
3 11 350.935 11 545.883

𝐽**
4 10 454.836 10 207.999
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Table 3.8. The upper limits of feasible costs of interaction in Γ̄en
0 and ¯̄Γen

0

bilateral interaction unilateral interaction

𝑖∖𝑗 1 2 3 4 1 2 3 4

model Γ̄en
0

1 0 2823.869 2823.869 2818.329 0 2826.078 2826.078 2817.771

2 2823.869 0 2823.869 2818.329 2826.078 0 2826.078 2817.771

3 2823.869 2823.869 0 2818.329 2826.078 2826.078 0 2817.771

4 2818.329 2818.329 2818.329 0 2817.771 2817.771 2817.771 0

model ¯̄Γen
0

1 0 2808.443 2808.443 2803.498 0 2810.418 2810.418 2803.001

2 2808.443 0 2808.443 2803.498 2810.418 0 2810.418 2803.001

3 2808.443 2808.443 0 2803.498 2810.418 2810.418 0 2803.001

4 2803.498 2803.498 2803.498 0 2803.001 2803.001 2803.001 0

bilateral network interaction of firms, similar to what was done in Section 2.5 for
the game-theoretic model Γen

01, which is why we omit it here.
Evaluate the results obtained by modeling equilibria in the models Γen

01 and Γ̄en
0 .

As you can see from Tables 2.2 and 3.6, the network structures of interaction, regard
less of its type (bilateral or unilateral), are preserved. Note that the total investment
of the firms changes slightly during the transition from a variable production volume
to a constant (in this case, from the model Γen

01 to Γ̄en
0 ):

• In Γen
01 with bilateral network interaction of firms, we have

2∑︁
𝑡=0

𝑦*1(𝑡) =
2∑︁

𝑡=0

𝑦*2(𝑡) =
2∑︁

𝑡=0

𝑦*3(𝑡) = 5.634,
2∑︁

𝑡=0

𝑦4(𝑡) = 5.616,

and with unilateral network interaction
2∑︁

𝑡=0

𝑦*1(𝑡) =
2∑︁

𝑡=0

𝑦*2(𝑡) =
2∑︁

𝑡=0

𝑦*3(𝑡) = 5.638,
2∑︁

𝑡=0

𝑦*4(𝑡) = 5.611;

• In Γ̄en
0 with bilateral network interaction of firms, we have

2∑︁
𝑡=0

𝑦*1(𝑡) =
2∑︁

𝑡=0

𝑦*2(𝑡) =
2∑︁

𝑡=0

𝑦*3(𝑡) = 5.631,
2∑︁

𝑡=0

𝑦*4(𝑡) = 5.621,
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and with unilateral network interaction

2∑︁
𝑡=0

𝑦*1(𝑡) =
2∑︁

𝑡=0

𝑦*2(𝑡) =
2∑︁

𝑡=0

𝑦*3(𝑡) = 5.634,
2∑︁

𝑡=0

𝑦*4(𝑡) = 5.618.

At the same time, the change in the competitive position of firms in the market over
time will be more noticeable in the model Γen

01 than in Γ̄en
0 , which is easy to verify.

We also note that the results of the analysis based on the numerical simulations for
Γen
01 remain valid for the model Γ̄en

0 , in which they are omitted.
It is noteworthy in this example that the profits of the firms (as well as the

total volume of goods produced) in equilibrium for the models Γen
01 and Γ̄en

0 with
general simulations parameters, they turn out to be quite close. This can be easily
verified by referring to Tables 2.2 and 3.6 and concluding that the change in profit
is less than 1%. This allows us to conclude that the theoretical results obtained in
Chapters 1-2, while maintaining the conceptual assumptions, turn out to be quite
feasible for analyzing the behavior of competing firms in real conditions.

To compare the types of investment behavior, we look at the results of equilib
rium simulations for the Γ̄en

0 and ¯̄Γen
0 . Despite the fact that the upper bounds of the

allowable costs of interaction in Table 3.8 are different for the models, the network
structure is preserved both with unilateral and bilateral network interaction. Thus,
it can be concluded that the type of investment behavior in long-term interaction
does not affect the partnerships of firms in the examples considered.

Referring to Tables 3.6 and 3.7, it is easy to make sure that the total investment
of the firms in models Γ̄en

0 and ¯̄Γen
0 are also close, therefore we will immediately

proceed to the assessment of the changes in the competitive position of the firms
in the market with their equilibrium behavior, for which we will use the data in
Table 3.9.

Analyzing the data in Table, we can conclude that, unlike the short-term inter
action, the change in the competitive position of firms in the market occurs faster
with risky investment behavior and unilateral interaction. At the same time, the
lowest rate of change in the competitive position of firms is observed with cautious
investment behavior and bilateral interaction.
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Table 3.9. The relationship between competitiveness and the competitive position of

firms in the market, with their equilibrium behavior in models Γ̄en
0 and ¯̄Γen

0 .

𝑡

bilateral interaction unilateral interaction

model Γ̄en
0

𝑖 Δ𝑐*𝑖1(𝑡) Δ𝑐*𝑖2(𝑡) Δ𝑐*𝑖3(𝑡) Δ𝑐*𝑖4(𝑡) 𝒟*
𝑖 (𝑡) Δ𝑐*𝑖1(𝑡) Δ𝑐*𝑖2(𝑡) Δ𝑐*𝑖3(𝑡) Δ𝑐*𝑖4(𝑡) 𝒟*

𝑖 (𝑡)

1

1 - 0 0 2.054 0.520 - 0 0 3.078 0.784
2 0 - 0 2.054 0.520 0 - 0 3.078 0.784
3 0 0 - 2.054 0.520 0 0 - 3.078 0.784
4 -2.054 -2.054 -2.054 - 0.000 -3.078 -3.078 -3.078 - 0.000

2

1 - 0 0 4.078 1.040 - 0 0 6.113 1.583
2 0 - 0 4.078 1.040 0 - 0 6.113 1.583
3 0 0 - 4.078 1.040 0 0 - 6.113 1.583
4 -4.078 -4.078 -4.078 - 0.000 -6.113 -6.113 -6.113 0 0.000

3

1 - 0 0 6.074 1.550 - 0 0 9.106 2.379
2 0 - 0 6.074 1.550 0 - 0 9.106 2.379
3 0 0 - 6.074 1.550 0 0 - 9.106 2.379
4 -6.074 -6.074 -6.074 - 0.000 -9.106 -9.106 -9.106 - 0.000

model ¯̄Γen
0

𝑖 Δ𝑐**𝑖1 (𝑡) Δ𝑐**𝑖2 (𝑡) Δ𝑐**𝑖3 (𝑡) Δ𝑐**𝑖4 (𝑡) 𝒟**
𝑖 (𝑡) Δ𝑐**𝑖1 (𝑡) Δ𝑐**𝑖2 (𝑡) Δ𝑐**𝑖3 (𝑡) Δ𝑐**𝑖4 (𝑡) 𝒟**

𝑖 (𝑡)

1

1 - 0 0 1.887 0.475 - 0 0 2.829 0.717
2 0 - 0 1.887 0.475 0 - 0 2.829 0.717
3 0 0 - 1.887 0.475 0 0 - 2.829 0.717
4 -1.887 -1.887 -1.887 - 0.000 -2.829 -2.829 -2.829 - 0.000

2

1 - 0 0 3.906 0.989 - 0 0 5.856 1.505
2 0 - 0 3.906 0.989 0 - 0 5.856 1.505
3 0 0 - 3.906 0.989 0 0 - 5.856 1.505
4 -3.906 -3.906 -3.906 - 0.000 -5.856 -5.856 -5.856 0 0.000

3

1 - 0 0 6.066 1.547 - 0 0 9.095 2.375
2 0 - 0 6.066 1.547 0 - 0 9.095 2.375
3 0 0 - 6.066 1.547 0 0 - 9.095 2.375
4 -6.066 -6.066 -6.066 - 0.000 -9.095 -9.095 -9.095 - 0.000

3.3. Comparative analysis of types of network interactions and some
patterns of equilibria for models with constant output

In this Section we will focus on comparing the equilibrium behavior of firms
and its performance (profit and competitiveness) for different duration of network
interaction.
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� Network behavior. The conditions of bilateral network interaction of firms
in equilibrium, described in (3.2), (3.10), (3.17) and (3.22), have a common struc
ture: firm 𝑖 offers interaction to firm 𝑗 if her cost of interaction associated with
this connection in the network structure does not exceed a certain amount, which
depends on the volume of her investments. In the case of unilateral network inter
action, the relevant conditions have a similar structure. Moreover, in the case of
unilateral interaction of firms, the number of links in the equilibrium network is not
less than in the corresponding network with bilateral interaction, and at the same
time the upper limits of feasible costs turn out to be very close within the same
type of investment behavior of firms. For time-independent values 𝛼𝑖(𝑡) and 𝜀𝑖(𝑡),
the volume of investment 𝑦N𝑖 (𝑡) of firm 𝑖 in Nash equilibrium is a monotonically
decreasing function of time at 𝑢N𝑖 > 𝜂(1 − 𝜌𝛿). Moreover, the time-independent
parameters 𝛽𝑖𝑗(𝑡) and 𝛾𝑖𝑗(𝑡) lead to a monotonous decrease of the upper bounds
of the allowable costs of network interaction 𝜋N𝑖𝑗(𝑡) in (3.5), below which firms are
willing to form partnerships (collaborate). In other words, the latter means that the
number of such links in the network does not increase over time.

� Production behavior. With a constant production plan, the quantities of
goods produced by each firm differ slightly when comparing the equilibrium behavior
of firms in models Γ̄en, ¯̄Γen, Γ̄en

0 ,
¯̄Γen
0 . At the same time, in equilibrium, these models

share a common feature, which we formulate in the form of the following remark.

Remark 3.1 (equilibrium production behavior). The production behavior of firms
in equilibrium has the same functional structure that does not depend on the duration
of their network interaction and their investment behavior — cautious or risky.

This remark is based on the expressions (3.3), (3.11), (3.18) and (3.23) of the equi
librium production behavior of firms in the compared models.

� Investment behavior. In this chapter, two types of the investment behavior of
firms in equilibrium (risky and cautious) have been considered. At the same time,
as follows from Theorems 3.1– 3.4, within the same type of investment behavior
of firms, the investment volumes have the same functional expression. With risky
investment behavior, this follows from (3.4) and (3.19), and with caution — from
(3.12) and (3.24). In addition, all four models Γ̄en, ¯̄Γen, Γ̄en

0 ,
¯̄Γen
0 regarding the

investment behavior of firms can be combined with the following remark.
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Remark 3.2 (on equilibrium production and investment behavior). Regardless of
the type of the firms’ investment behavior, the duration and type of network interac
tion, in the Nash equilibrium there is a linear relationship between the firm’s current
level of investment and its output.

This remark is based on the equivalences (3.8) and (3.14), which, as already noted,
retain their functional expression within the same type of investment behavior of
firms. Note also that in Chapter 1 the proposition 1.1 was presented which, assuming
the time-independent of network parameters, also allows us to prove the observation
that the firm with the lowest unit cost in open-loop Nash equilibrium strategies
produces more goods and invests more funds than the firm that has higher unit
costs. For all models, this follows from the Corollary 3.1, which, as noted earlier,
can be concluded with respect to any of the models Γ̄en, ¯̄Γen, Γ̄en

0 ,
¯̄Γen
0 .

� Equilibrium profits and changes in the competitive position of firms
in the market. With unilateral network interaction, in all the examples in this
chapter, it is clear that some firms have the opportunity to obtain higher profits
compared to profits with bilateral interaction in the corresponding model. However,
the rate of change in the competitive position of firms in the market, according
to the conclusions in Subsections 3.1.3 and 3.2.3, depends on the type of network
interaction. Thus, in the case of short-term interaction, the largest changes are
observed in the case of unilateral interaction and cautious investment, and in the case
of long-term interaction — in the case of bilateral interaction and risky investment
of firms. Comparing Tables 3.2 and 3.7, we conclude that with careful investment,
the duration of interaction may not be fundamental, but from Tables 3.1 and 3.6,
that with risky investment, long-term interaction is preferable for most firms — in
terms of the rate of change in competitiveness.

3.4. A one-time investment model

In the models considered, the mutually beneficial network interaction of even
one pair of firms makes other firms interested in network interaction and the imple
mentation of non-zero investments. In the final part of the thesis, we will consider a
model in which firms implement their investment behavior once, in the initial period,
and choose a one-time investment volume. We assume that in this case firms make
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a one-time decision about their willingness to collaborate with other firms, bear
one-time costs of interaction in the established network, and also have a one-time
effect on the investment behavior of all firms. Thus, the feasible behavior of firm
𝑖 ∈ 𝒩 in the initial period will be a triple 𝑠𝑖(0) = (𝑔𝑖(0), 𝑢𝑖, 𝑦𝑖(0)) ∈ G𝑖 × U𝑖 × Y𝑖

and 𝑠𝑖(𝑡) = 𝑢𝑖 ∈ U𝑖 at all subsequent times 𝑡 ̸= 𝑇 . This allows us to describe the
dynamics of the unit cost of firm 𝑖 by the equation

𝑐𝑖(𝑡+ 1) =

=

⎧⎪⎨⎪⎩
𝛿𝑐𝑖0−𝛼𝑖(0)𝑦𝑖(0)−

∑︀
𝑗 ̸=𝑖

(︁
𝛽𝑖𝑗(0)𝑔𝑖𝑗(0)𝑔𝑗𝑖(0)+𝛾𝑖𝑗(1−𝑔𝑖𝑗(0)𝑔𝑗𝑖(0))

)︁
𝑦𝑗(0), 𝑡 = 0,

𝛿𝑐𝑖(𝑡), 𝑡 /∈ {0, 𝑇},

or

𝑐𝑖(𝑡) = 𝛿𝑡−1
[︁
𝛿𝑐𝑖0 − 𝛼𝑖(0)𝑦𝑖(0)−

−
∑︁
𝑗 ̸=𝑖

(︁
𝛽𝑖𝑗(0)𝑔𝑖𝑗(0)𝑔𝑗𝑖(0) + 𝛾𝑖𝑗(0)(1− 𝑔𝑖𝑗(0)𝑔𝑗𝑖(0))

)︁
𝑦𝑗(0)

]︁
, (3.25)

where 𝑐𝑖(0) = 𝑐𝑖0 and 𝑡 ̸= 0, and the firm’s profit is given by the following expression

𝐽𝑖(𝑐0, 𝑔(0), 𝑢, 𝑦(0)) =
𝑇−1∑︁
𝑡=0

𝜌𝑡
(︁
𝑝− 𝑐𝑖(𝑡)−

∑︁
𝑗∈𝒩

𝑢𝑗

)︁
𝑢𝑖 −

𝜀𝑖(0)

2

(︀
𝑦𝑖(0)

)︀2−
−
∑︁
𝑗 ̸=𝑖

𝜋𝑖𝑗(0)𝑔𝑖𝑗(0)𝑔𝑗𝑖(0) + 𝜌𝑇 (𝜂𝑖 − 𝜂𝑐𝑖(𝑇 )).

Denote this dynamic model of competition with endogenous network forma
tion of constant production volume and one-time investment of firms by ̃︀Γen

0 . The
open-loop Nash equilibrium with bilateral interaction of firms for this model is char
acterized by the following theorem.

Theorem 3.5. The Nash equilibrium in the ̃︀Γen
0 model is a set of strategies 𝑠 =

(𝑠1, . . . , 𝑠𝑛), whose components are

𝑠𝑖(𝑡) =

⎧⎨⎩(𝑔𝑖(0), �̃�𝑖, 𝑦𝑖(0)) , 𝑡 = 0,

�̃�𝑖, 𝑡 /∈ {0,𝑇},
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for 𝑖 ∈ 𝒩 , have form:

𝑔𝑖𝑗(0) =

⎧⎨⎩1, 𝜋𝑖𝑗(0) < �̃�𝑖𝑗, 𝜋𝑗𝑖(0) < �̃�𝑗𝑖, 𝑗 ̸= 𝑖,

0, otherwise,
(3.26)

�̃�𝑖 =

𝑝−
𝑇−1∑︀
𝜏=0

𝜌𝜏
(︂
(𝑛+ 1)𝑐𝑖(𝜏)−

∑︀
𝑗∈𝒩

𝑐𝑗(𝜏)

)︂
·
(︂

𝑇−1∑︀
𝜏=0

𝜌𝜏
)︂−1

𝑛+ 1
, (3.27)

𝑦𝑖(0) =
𝜌𝛼𝑖(0)

𝜀𝑖(0)

(︂
�̃�𝑖

𝑇−2∑︁
𝑡=0

(𝜌𝛿)𝑡 + 𝜂(𝜌𝛿)𝑇−1

)︂
, (3.28)

where

�̃�𝑖𝑗 =
𝜀𝑖(0)

𝛼𝑖(0)
(𝛽𝑖𝑗(0)− 𝛾𝑖𝑗(0)) 𝑦𝑖(0) 𝑦𝑗(0).

The current unit cost of 𝑐𝑖(𝑡) is determined according to (3.25),

Proof. First, we assume that each firm 𝑖 chooses as its network behavior, instead of
a set of 𝑔𝑖(0), an 𝑛-dimensional vector 𝑧𝑖(0) with components 𝑧𝑖𝑗(0) ∈ [0, 1]. Let
𝑧(0) = (𝑧1(0), . . . , 𝑧𝑛(0)); 𝜎𝑖 — the strategy of the firm 𝑖, and 𝜎 = (𝜎1, . . . , 𝜎𝑛) — a
set of strategies. The best response of firm 𝑖 to the fixed strategies of its competitors
is a strategy whose components satisfy the following system (taking into account the
linearity of 𝐽𝑖 in the variables 𝑧𝑖𝑗(𝑡)):

𝑧𝑖𝑗(0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1,

(︀
𝜋𝑖𝑗(0)−

𝜀𝑖(0)

𝛼𝑖(0)
(𝛽𝑖𝑗(0)− 𝛾𝑖𝑗(0))𝑦𝑖(0)𝑦𝑗(0)

)︀
𝑧𝑗𝑖(0) < 0,

и 𝑗 ̸= 𝑖,

0, otherwise,

𝑢𝑖 =
1

2

(︃
𝑝−

∑︁
𝑗 ̸=𝑖

𝑢𝑗 −
𝑇−1∑︁
𝜏=0

𝜌𝜏𝑐𝑖(𝜏) ·
(︂ 𝑇−1∑︁

𝜏=0

𝜌𝜏
)︂−1

)︃
,

𝑦𝑖(0) =
𝜌𝛼𝑖(0)

𝜀𝑖(0)

(︃
𝑢𝑖

𝑇−2∑︁
𝑡=0

(𝜌𝛿)𝑡 + 𝜂(𝜌𝛿)𝑇−1

)︃
.
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Thus, if �̃� is a Nash equilibrium, then 𝑠 = �̃� and 𝑔𝑖(0) = 𝑧𝑖(0). The Nash equilibrium
requires that firms 𝑖 and 𝑗 establish a connection in the initial period, while
satisfying the inequalities

𝜋𝑖𝑗(0) <
𝜀𝑖(0)(𝛽𝑖𝑗(0)− 𝛾𝑖𝑗(0))

𝛼𝑖(0)
𝑦𝑖(0)𝑦𝑗(0), 𝜋𝑗𝑖(0) <

𝜀𝑗(0)(𝛽𝑗𝑖(0)− 𝛾𝑗𝑖(0))

𝛼𝑗(0)
𝑦𝑖(0)𝑦𝑗(0).

Thus we arrive at the expressions (3.26), (3.27) and (3.28), the sufficiency of which
is given by the negative-definiteness of the Hessian of the Lagrange function

−2�̃�𝑖

(︃
𝑇−1∑︁
𝑡=1

𝜌𝑡𝑐𝑖(𝑡) + �̃�𝑖

𝑇−1∑︁
𝑡=0

𝜌𝑡

)︃
− 𝜀𝑖(0)𝑦

2
𝑖 (0) < 0,

which means that 𝑠 will be a Nash equilibrium in ̃︀Γen
0 .

Despite the fact that firms implement their investment behavior on a one-time
basis, we note that Corollary 3.1 presented in Subsection 3.1.1, with constant net
work parameters, retains its validity for equilibrium in model ̃︀Γen

0 . We will present
this corollary further and without proof, which is similar to the proof of the Corol
lary 3.1.

Corollary 3.7. Let 𝛼𝑖(0) = 𝛼 and 𝜀𝑖(0) = 𝜀 for arbitrary firms. Then, in Nash
equilibrium, for any firms 𝑖 and 𝑗, the following three conditions are equivalent:

𝑇−1∑︀
𝜏=0

𝜌𝜏𝑐𝑖(𝜏)

𝑇−1∑︀
𝜏=0

𝜌𝜏
<

𝑇−1∑︀
𝜏=0

𝜌𝜏𝑐𝑗(𝜏)

𝑇−1∑︀
𝜏=0

𝜌𝜏
⇔ �̃�𝑖 > �̃�𝑗 ⇔ 𝑦𝑖(0) > 𝑦𝑗(0).

Next, we consider a variant of unilateral network interaction of firms in equi
librium for model ̃︀Γen

0 . As for the previous models, it can be obtained from the
condition of bilateral network interaction in equilibrium.

Remark 3.3 (from Theorem 3.5). If we assume that the interaction of the firms
is one-sided, then the equilibrium behavior of the firms in terms of production and
investment behavior is preserved and determined according to (3.27) – (3.28), and
the network behavior of the firm in Nash equilibrium is 𝑖 ∈ 𝒩 :
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𝑔𝑖𝑗(0) =

⎧⎪⎨⎪⎩
1, 𝜋𝑖𝑗(0) <

𝜀𝑖(0)

𝛼𝑖(0)
(𝛽𝑖𝑗(0)− 𝛾𝑖𝑗(0)) 𝑦𝑖(0) 𝑦𝑗(0),

0, otherwise,
𝑗 ∈ 𝒩 ∖ {𝑖}.

The relationship between the production and investment behavior of each firm
in Nash equilibrium is characterized by the following remark, which can be inferred
from (3.28).

Remark 3.4. The investment behavior of the firm 𝑖 ∈ 𝒩 in Nash equilibrium for
model ̃︀Γen

0 has a linear relationship with its production behavior.

Let us move on to the example with the results of numerical simulations of
the equilibrium in both bilateral and unilateral interaction in model ̃︀Γen

0 according
to the conditions of Theorem 3.5 and Remark 3.3. Keeping the same modeling
input parameters as before, we will only change the cost of interaction for firm 4:
𝜋4𝑗(0) = 1200, 𝑗 = 1, 2, 3 and present the result in Table 3.10, rounding the results
to the third decimal place.

Based on the data in Tables 3.10 and 3.11, it is still possible to explain the
equilibrium network behavior of firms, which is why it is omitted here.

If, when numerically modeling the equilibrium in model ̃︀Γen
0 , one adheres to the

input parameters presented on the page 61, then the upper bounds of the allowable
costs of network interaction between firms would be jointly �̃�𝑖𝑗(0) = 1158.862, where
𝑖, 𝑗 ∈ 𝒩 , such that 𝑖 ̸= 𝑗. In this case, all firms would be interested in network
interaction with all their competitors, regardless of the nature of the formation of
interaction in the network g̃(0). At the same time, taking into account the data
in Table 3.8, it can be noted that in case of one-time investments the upper limits
of the allowable costs of network interaction of firms are significantly lower than
the corresponding limits in case of regular investments (models Γ̄en

0 and ¯̄Γen
0 ). This

allows us to make the following observation.

Observation 3.1. The values of the upper limits of the allowable costs of network
interaction depend on the duration of the firms’ investments.
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Table 3.10. The Nash equilibrium 𝑠 and the corresponding profits and unit costs of

the firms, as well as the market price in the model ̃︀Γen
0

bilateral interaction unilateral interaction

𝑡 : 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3

g̃0

1

2

3

4

–

1

2

3

4

𝑔1(0) (0,1,1,0) – (0,1,1,1) – – –

𝑔2(0) (1,0,1,0) – (1,0,1,1) – – –

𝑔3(0) (1,1,0,0) – (1,1,0,1) – – –

𝑔4(0) (0,0,0,0) – (0,0,0,0) – – –

�̃�1 80.072 80.072 80.072 – 80.346 80.346 80.346 –

�̃�2 80.072 80.072 80.072 – 80.346 80.346 80.346 –

�̃�3 80.072 80.072 80.072 – 80.346 80.346 80.346 –

�̃�4 78.696 78.696 78.696 – 78.283 78.283 78.283 –

𝑦1(0) 2.043 – 2.044 –

𝑦2(0) 2.043 – 2.044 –

𝑦3(0) 2.043 – 2.044 –

𝑦4(0) 2.038 – 2.037 –

𝑐1(𝑡) 100.000 98.218 105.093 112.449 100.000 97.196 104.000 111.280

𝑐2(𝑡) 100.000 98.218 105.093 112.449 100.000 97.196 104.000 111.280

𝑐3(𝑡) 100.000 98.218 105.093 112.449 100.000 97.196 104.000 111.280

𝑐4(𝑡) 100.000 100.267 107.285 114.795 100.000 100.268 107.287 114.797

𝑃 181.088 181.088 181.088 – 180.679 180.679 180.679 –

𝐽1 3 928.200 4 254.398

𝐽2 3 928.200 4 254.398

𝐽3 3 728.200 3 954.398

𝐽4 2 903.154 2 720.382
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Table 3.11. Upper limits of feasible costs of interaction in the model ̃︀Γen
0

Γ̃en
0 bilateral interaction unilateral interaction

𝑖 ∖ 𝑗 1 2 3 4 1 2 3 4

1 0 1159.403 1159.403 1156.710 0 1160.477 1160.477 1156.439

2 1159.403 0 1159.403 1156.710 1160.477 0 1160.477 1156.439

3 1159.403 1159.403 0 1156.710 1160.477 1160.477 0 1156.439

4 1156.710 1156.710 1156.710 0 1156.439 1156.439 1156.439 0

3.5. Conclusions to Chapter 3

The presented results of equilibrium modeling in model ̃︀Γen
0 (with one-time

investments by firms) allow us to make a simple but important remark. This remark
helps to stabilize and maintain the balance of trade and consumer interaction in the
sales market of a certain product: the absence of investments by firms from period
𝑡 = 1 entails a monotonous increase in the unit costs of firms (𝛿 = 1.07) and a
monotonous decrease in the intermediate profits of firms, as a result — a decrease
in profitability and liquidity each firm has its own production facilities.

Under the considered conditions, the only possible way to maintain the liquidity
of production and to increase the profits of firms is to invest in the modernization of
their own production technologies and other components of unit costs. The rational
ity of interaction with other firms at the same time contributes to saving investments
and increasing intermediate profits, and for consumers of goods — to reducing the
market value of a unit of goods. This means that the positive investment behavior
of competing firms is beneficial to all market participants.

In this Chapter an attempt has been made to response the fundamental ques
tions of equilibrium behavior and the corresponding conditions for rational interac
tion of each pair of firms. The assumptions proposed for the models in this Chapter
made it possible to find and analyze the equilibrium behavior of firms in market com
petition, which makes it possible to distinguish these models as practical. On the
basis of these models one can possible to find and analyze the equilibrium behavior
of firms, to compare and evaluate the prospects of their long-term and short-term
interaction with different types of investment behavior. It is shown that the differ
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ence in the profits of the firms in the considered models does not cause a significant
difference in a short period of time, which cannot be said about the dynamics of
their competitiveness. Thus, in Section 3.3 it is noted that in the case of short-term
interaction the largest changes in competitiveness are observed under unilateral in
teraction and cautious investment behavior of firms, and in the case of long-term
interaction - under unilateral interaction and risky investment behavior.

It is important to note that the results of the comparative analysis presented in
Subsections 3.1.3, 3.2.3, as well as in Section 3.3 are based on the assumption that
network parameters are constant over time and the same for different types of the
duration of interaction. However, it is obvious that if the cost of interaction includes,
for example, renting a warehouse to store goods, then renting for a longer period
may be much cheaper than renting for a short period. Therefore, the theorems
formulated in the Chapter on the equilibrium behavior of firms are recommended to
be applied in the analysis of the prospects of potential interaction for each possible
type of model parameters separately — so that it would be objectively possible to
conclude the advantage of any type of duration of interaction for the considered set
of model parameters.

The main results of the thesis described in this Chapter are presented in the
article [29].
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Conclusion

The thesis is devoted to the characterization and analysis of the equilibrium be
havior of competing firms in dynamic models with network interaction and is related
to the theory of dynamic network games. Within the framework of the recharacteri
zation conducted, an investment and network modification of the Cournot oligopoly
was built, in which firms competing in the common sales market are endowed with
the ability to implement multicomponent strategic behavior in a dynamic manner.
At the same time, the concept under consideration was applied to two types of the
formation of network interaction of firms – exogenous (Chapter 1) and endogenous
(Chapter 2). The adaptation of models with endogenous formation of network in
teraction to the characterization and analysis of the equilibrium behavior of firms
in market conditions similar in practice is proposed (Chapter 3).
The main results of the thesis are as follows

1. An network modification of the Cournot oligopoly is constructed, for which the
two-component Nash equilibrium behavior of firms with dynamic exogenous
network formation is obtained. The equilibrium is presented and character
ized for a open-loop strategies. In addition, a feedback Nash equilibrium has
been obtained and the «proximity» of the two equilibria found has been es
tablished [27].

2. The influence of the network structure and the associated coefficients of the
model on the behavior of firms in equilibrium, and how the structure of interac
tion of firms affects changes in their unit costs, competitiveness in the market,
profits, as well as the price of a unit of goods in the market are analysed [27].

3. A feasible behavior of each firm is complemented by a component that char
acterizes the attitude toward network interaction with its competitors and
is responsible for its network behavior. A functional structure of the Nash
equilibrium behavior of firms with dynamic endogenous network formation
obtained [28].

4. A Nash equilibrium is obtained for two types of network interaction — with
the formation of a constant and a variable network structure. At the same
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time, the costs associated with the networking of firms are also considered in
two types — one-time and regular. A comparative analysis of the obtained
results is carried out [28].

5. Assumptions are proposed and justified that serve to adapt the studied game
theoretic models to the practical interaction of competing firms in the market.
The conditions for choosing business partners and options for the duration of
interaction between firms in the Nash equilibrium are considered. A compara
tive analysis of the Nash equilibrium is given for two types of the investment
behavior of firms common in real conditions - risky (variable) and cautious
(constant), taking into account the duration of their interaction [29].

6. A functional expression of the equilibrium behavior of firms under their one
time investment in their production is obtained. The relation between the
changes of the upper limits of the allowable costs of network interaction and
the duration of the investments of the firms is shown [29].

7. For each model of endogenous network formation studied in the thesis, the
equilibrium network behavior of competitors are obtained, the fulfillment of
which makes firms interested in network interaction with their competitors.
At the same time, two types for the formation of network interaction are
considered, represented by undirected or directed links between firms. The
thesis notes that in network structures, which are formed when firms imple
ment their equilibrium network behavior, it is unprofitable for any firm to
unilaterally break any of its existing connections, as well as to strive to create
a new one, for which the condition of equilibrium network behavior is not
fulfilled [28, 29].

It remains to conclude that all the tasks formulated within the framework of
the thesis have been completed and the objective set has been fully achieved.
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