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Introductoin

Relevance of thesis topic. The development of social networks has had

a huge impact on the development of new methods of network analysis, including

game-theoretic methods. Methods of social network analysis are applied in many

fields, such as economics, physics, biology and information technology. At the qual

itative level, a social network is understood as a social structure consisting of a set

of agents (individual or collective subjects, e.g., individuals, families, groups or or

ganisations) and a set of relations defined on it (a set of links between agents, e.g.,

acquaintance, cooperation, communication) [1]. To describe such a network, it is

convenient to use a graph in which a finite set of vertices corresponds to a set of

agents, and a set of edges describes the interaction of these agents.

The concept of modern network analysis was formulated on the basis of the

works of J. Moreno [2] through maps of relations between agents (adjacency matri

ces) and visualisations of these maps (actually, graphs) [3].

Many system analysis problems are reduced to graph analysis. Structural

graph analysis is an effective tool for investigating complex systems, discovering

hidden patterns and predicting behaviour. It is an integral part of data analytics,

science and product development, where the relationships between system elements

play an important role. For example, in social networks, understanding the structure

of social connections between people or organisations allows you to investigate in

formation influence, identify key agents, define groups or communities, and analyse

the spread of information or diseases. Vertex ranking can help to identify the most

important community leaders who have the most influence on other participants

[4]. In bioinformatics, structural analysis allows us to study molecular structures,

gene networks and protein interactions. The methods of vertex ranking are used to

find key proteins that control many biological processes [5], to identify key regions

of the genome associated with various diseases [6; 7]. Vertex ranking methods can

be used for solving machine learning problems, for example, for pattern recognition



5

or disease risk prediction. Pre-ranking of graph vertices can improve the efficiency

of solving some applied optimisation problems [8]. Peer-to-peer systems can also

be represented as graphs. In them, the location of vertices and the ranking of ver

tices depending on their location in the system occupy an important place. For this

purpose, centrality measures can be used [9—12].

In connection with the above mentioned, the research and development of new

methods for ranking graph vertices can lead to the improvement of quality of solving

different kinds of problems relevant in the modern world. In general, graphs are a

powerful tool for representing complex relationships between objects or entities.

Centrality of a vertex is one of the key concepts when studying structural

characteristics of a graph. Often in small systems the most central vertex can be

determined intuitively. As D. Brass and M. Burkhardt [13] note, when describing

a network structure, "most people would simply look at the graph and declare

which of the central actors is the most powerful" . At the Massachusetts Institute

of Technology in the 50s of the XX century, A. Bavelas [14] and G. Livitt [15]

conducted a number of studies, as a result of which the researchers came to the

conclusion that the central role is related to social status, power, and the agent’s

satisfaction with group activity [16].

The centrality measure demonstrates how important a vertex is to the graph

as a whole, how well placed it is on the paths connecting the vertices of the graph,

whether it is key to maintaining links between the others vertices. The centrality

of a graph vertex is of great importance for analysing transport systems, social,

electrical and other networks.

One of the first definitions of centrality was the concept of "betweenness cen

trality" [17], which was related to the shortest paths that pass through the considered

vertex. However, considering only the shortest paths raises serious objections, since

information may spread not necessarily along the shortest path. Therefore, central

ity measures based on random walks [18; 19] and other centrality measures based

on the computation of the inverse Laplace matrix have emerged. The latter have

a good analogy with electrical networks and Kirchhoff’s laws [20—22]. Recently,
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works related to game-theoretic centrality measures have appeared [23—28]. As a

measure of centrality, one can consider the income of a player in a network from

economic interaction with other related players, where the income is discounted as a

function of the shortest distance between players [29]. Game-theoretic methods are

also used for graph clustering. For this purpose, the notion of Nash-stable coalition

partitioning is used, where players in their own coalition are disadvantaged to join

players of other coalitions [30—33].

To determine the centrality of vertices in a graph, an approach related to the

theory of cooperative games can be used. In this case, the solution of a cooperative

game is used to rank vertices. R. Myerson in his 1976 paper [34] proposes to describe

cooperation between players using an undirected graph; in this case, the presence

of an edge between two vertices of the graph means that the pair of players corre

sponding to these vertices can mutually act directly. This interaction can describe

familiarity or cooperation, but can also be interpreted as, for example, the existence

of a motorway between two transport nodes, or the possibility of transferring infor

mation or resources between organisations. For this class of problems, Mayerson

proposed to distribute the payoffs between the players according to the Shepley

scheme [35]. This approach later became known as the Myerson vector [36]. Despite

the large number of methods developed to distribute winnings between players in a

network, such as [37—43], the Myerson vector is one of the most used.

The aim of this thesis is to develop new game-theoretic methods for

analysing graph structure and their applications in transport systems, social and

communication networks.

To achieve this goal it was necessary to solve the following tasks:

1. Development of a method for finding the centrality of vertices in directed

graphs based on the number of vertices occurrences in paths of fixed length

2. Development of a method for finding the centrality of vertices in undirected

graphs based on the number of occurrences of vertices in paths of fixed

length.
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3. Development of a method for the centrality measurement of the graph ver

tices based on the values of the absolute potentials of the nodes of an electric

circuit calculated using the Laplace matrix.

4. Building a model of the Petrozavodsk transport system to test the proposed

methods.

Methodology and methods of research. The methods of graph theory,

linear algebra, cooperative game theory are used in this work.

Relation of the work to scientific programmes: the results of the work

were partially obtained as part of research carried out with financial support of RSF

No 22-11-20015, “Research and development of mathematical models and software

for finding equilibrium traffic flows and optimization of a transportation network

on the case of Petrozavodsk city”, jointly with support of the authorities of the

Republic of Karelia with funding from the Venture Investment Foundation of the

Republic of Karelia.

Approbation of the work. The main results of the work were presented

at the following seminars and conferences:

1. LIV International Conference of Postgraduates and Students "Control Pro

cesses and Stability" (CPS’23), St. Petersburg, 3 - 7 April 2023;

2. All-Russian Scientific Conference "Theory and Practice of System Dynam

ics", Apatity, 3 - 7 April 2023;

3. The Sixteenth International Conference on Game Theory and Management

(GTM2023), St. Petersburg, 28-30 June 2023;

and at scientific seminars of the Institute of Applied Mathematical Research of the

Karelian Centre of the Russian Academy of Sciences.

Publications. The dissertation materials were published in 7 scientific pa

pers, including 1 article in a journal indexed in the Web of Science bibliographic

database; 2 articles in a journal indexed in the bibliographic list Scopus; 1 article

in a journal indexed in the RSCI bibliography list; 3 articles in journals indexed

in the РИНЦ bibliographic database.
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Scope and structure of the work. The thesis consists of an introduction,

3 chapters, conclusion and 1 appendix. The full volume of the thesis is 123 pages,

including 52 figures and 24 tables. The list of literature contains 78 titles.

The introduction reflects the relevance, significance and objectives of the

work; substantiates the scientific novelty, theoretical and practical value of the re

search; formulates the main provisions for defence.

The first chapter is devoted to the description of a game-theoretic approach

to calculating the centrality of graph vertices based on the number of vertex ap

pearances in paths. The use of the Myerson vector as a measure of centrality for

oriented graphs is described. Formulas for calculating the number of occurrences of

a vertex in simple paths of length 2 and 3 through the adjacency matrix are given.

The notion of integral centrality as a definite integral of the sharing function in

a cooperative game, where the characteristic function is defined using the number

of total appearances of a graph vertex in simple paths is introduced. It is shown

that the Boldi - Vigna axioms [44] are valid for such a centrality measure. Also, a

modification of the Myerson value for vertices of an undirected graph is proposed

for the case when cycles are included in the consideration. A formula for calculating

the number of appearances of graph vertices in paths of fixed length with cycles is

given. A number of special cases are considered.

Chapter 2 demonstrates an approach to ranking of graph vertices based on

the values of absolute potentials of the electric circuit nodes. A two-stage procedure

for ranking the vertices of a graph with weighted edges is proposed, where at the

first stage the nodes are ranked on the basis of absolute potentials at consecutive

current supply to all nodes of the circuit. At the second stage, a tournament table

is constructed and a final ranking is performed based on the sum of the previously

found ranks. The distributions of vertex ranks are obtained for a clique, a star graph,

a double star graph, and a complete bipartite graph. For a graph with weighted

edges and vertices, a ranking procedure based on the total work required to transfer

the charge between the nodes of an electric circuit is proposed. Analytical formulas



9

for calculating the values of the total work done in the vertices of the star, clique

and full bipartite graphs are obtained.

The third chapter presents the results of applying the proposed methods

to the graphs obtained by solving a number of applied problems. It describes the

process of building a model of the transport network of Petrozavodsk city, where

intersections of motorways are considered as vertices. In addition, the applicability of

the proposed approaches to calculating the centrality of graph vertices for analysing

biological populations and social networks is shown.

The conclusion lists the main results of the work carried out.

Appendix A contains a table with information on passenger flow at St. Pe

tersburg Subway stations.

Main scientific results:

1. During the dissertation work we have proposed an approach to compute

the centrality values of vertices of directed graphs as the Myerson value in

a cooperative game, where the characteristic function is defined in terms of

the number of simple paths of fixed length in the subgraph generated by

the coalition. In a more general case, we introduce the notion of integral

centrality as the value of the definite integral of the payoff function in a

cooperative game, where the characteristic function is defined in terms of

a polynomial by analogy with Jackson’s scheme [45].

2. A method for determining the measure of node centrality in an undirected

graph based on the modification of the Myerson value in a cooperative game,

where the number of paths (including cycles) in the subgraph corresponding

to the coalition is used as a characteristic function, is proposed.

3. A method for the centrality measurement of the graph vertices with

weighted edges based on the values of the absolute potentials of the nodes of

an electric circuit calculated using the Laplace matrix has been developed.

4. A method for the centrality measurement of the graph vertices with

weighted vertices and edges based on the total work of charge transfer

between nodes of an electric circuit is developed.
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Practical significance. In the course of the work the application of the

obtained results was demonstrated on the example of the transport network of

Petrozavodsk. The most important sections as well as "bottlenecks" were deter

mined. Analytical expressions for finding the centrality values of vertices using

different approaches for solving cooperative games were obtained.

Results submitted for defense:

1. A method is proposed for determining the centrality measure of the directed

graph vertices, as the Myerson value in a cooperative game, where the

number of simple paths acts as a characteristic function in the subgraph

corresponding to the coalition.

2. A method for ranking graph vertices is proposed, based on the introduced

new concept of integral centrality, as the value of a definite integral of the

payoff function in a cooperative game, where the characteristic function

is determined through the total number of occurrences of vertices in the

subgraph corresponding to the coalition. An axiomatic justification for this

centrality measure is given.

3. A method for determining the measure of node centrality in a undirected

graph based on the modification of the Myerson value in a cooperative game,

where the number of paths (including cycles) in the subgraph corresponding

to the coalition is used as a characteristic function, is proposed.

4. A method for the centrality measurement of the graph vertices based on the

values of absolute potentials of the electric circuit nodes calculated using

the Laplace matrix is proposed.

5. A method for the centrality measurement of the vertices of a graph with

weighted vertices based on the total work of charge transfer between the

nodes of an electric circuit is proposed.
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Chapter 1. A game-theoretic approach to calculating centrality

1.1 Centrality measures in graph theory

Centrality of a vertex in a graph is an indicator defining the most important

vertices in the graph. Centrality allows to identify the most important vertices, to

evaluate how well they are located in the graph, how they influence the processes

occurring in the network. There are different approaches to calculating centrality

indices (values), each of which has its own interpretation. Let us describe the most

common approaches. Let us consider a graph 𝐺 with a set of vertices 𝑉, |𝑉 | = 𝑛

and a set of edges 𝐸.

Degree centrality

The simplest in terms of computation is degree centrality [46], which in general

shows how many neighbours a vertex has.

𝑐𝐷(𝑣𝑖) =
∑︁
𝑣𝑗∈𝑉
𝑗 ̸=𝑖

𝑎𝑖𝑗, (1.1)

where 𝑎𝑖𝑗 are the elements of the corresponding adjacency matrix. The vertex with

the largest number of links is the most central. When analysing directed graphs,

the numbers of incoming and outgoing connections can be considered (in-degree

centrality, out-degree centrality) [47].

Betweenness centrality

Historically, one of the first approaches is betweenness centrality [48; 49]. This

centrality measure is based on calculating the number of shortest paths connecting

all pairs of vertices in a graph. In this case, the centrality of a vertex is determined

by the number of paths passing through the vertex.

𝑐𝐵(𝑣) =
1

𝑛𝐵

∑︁
𝑠,𝑡∈𝑉

σ𝑠,𝑡(𝑣)

σ𝑠,𝑡
, (1.2)
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where σ𝑠,𝑡 is the number of geodesic paths between vertices 𝑠 and 𝑡, σ𝑠,𝑡(𝑣) is the

number of geodesic paths between vertices 𝑠 and 𝑡 that pass through vertex 𝑣. The

coefficient 𝑛𝐵 is chosen as follows: 𝑛𝐵 = (𝑛 − 1)(𝑛 − 2) if vertex 𝑣 cannot be the

initial (𝑠) or final (𝑡) vertex, and 𝑛𝐵 = 𝑛(𝑛 − 1), otherwise.

Closeness centrality

Also, one of the common methods is closeness centrality [14; 50; 51], where

the most central vertex is the closest to other vertices in the network. The closeness

centrality was defined by A. Bavelas in 1950 as a value inverse to remoteness:

𝑐𝐶(𝑣) =
1∑︀

𝑤∈𝑉
𝑑(𝑣,𝑤)

, 𝑣,𝑤 ∈ 𝑉, (1.3)

where 𝑑(𝑣,𝑤) is the length of the shortest path in the graph between vertices 𝑣 and 𝑤.

For directed graphs, shortest distances from or to a vertex can be considered.

A modification of this approach was proposed in [52], taking into account

that in graphs with infinitely large distances between vertices, the harmonic mean,

rather than the arithmetic mean, gives the best results. Thus, harmonic central

ity was introduced:

𝑐𝐻(𝑣) =
∑︁
𝑤∈𝑉

1

𝑑(𝑣,𝑤)
. (1.4)

For directed graphs, the approach was reviewed in [44].

PageRank

As one of the most common approaches to calculate the centrality of graph

vertices, we can consider the ranking of vertices using the PageRank method. This

method can be related to the process of random walk [53]. On a set of 𝑛 web

pages, hyperlinks are clicked with some probability α, and with probability 1 − α

the process can go to a random web page, then the stationary distribution of the

process can be interpreted as the final probability of being in the vertices of the

graph. The higher the probability, the more important the vertex is to the system,

and hence the higher its centrality value.
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The transition probability matrix ̃︀𝑃 is calculated as follows

̃︀𝑃 = α𝑃 + (1− α)(
1

𝑛
E), (1.5)

where the value of α is chosen from (0,1), E𝑛×𝑛 is an identity matrix, and 𝑃𝑛×𝑛 is

a matrix whose elements are equal:

𝑝𝑖𝑗 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
𝑘 vertex 𝑖 has 𝑘 > 0 outgoing links and 𝑗 is one of them,

0 vertex 𝑗 is not an outgoing link for 𝑖,

1
𝑛 vertex 𝑖 has no outgoing links, 𝑘 = 0.

Also, the PageRank method can be used for a weighted graph with a weight

matrix 𝑊 and a vertex degree matrix 𝐷, then the matrix 𝑃 = 𝐷−1𝑊 .

Game-theoretic centrality

In recent years, game-theoretic centrality measures have become more and

more widespread [24—27; 30; 54]. In many applications, centrality based on the role

that a graph vertex plays by itself is not relevant. For example, if we consider the

problem of stopping an epidemic, vaccinating a connected group is more efficient

than vaccinating individuals. In this case, the vaccinated group can be viewed as

a coalition of players in a cooperative game.

A cooperative game of 𝑛 persons is a pair Γ = ⟨𝑁,𝑣⟩ where 𝑁 = {1,2, . . . ,𝑛}

is the set of players, 𝑣 : 2𝑁 → R is a mapping that assigns to each coalition 𝑆 ∈ 2𝑁

(where 2𝑁 is the set of all subsets of the set 𝑁) some numerical value: 𝑣(∅) = 0.

The function 𝑣 is called the characteristic function of a cooperative game [55].

By the solution of a cooperative game we mean the sharing of the winnings of

the grand coalition 𝑣(𝑁) among all players. A payoff in a cooperative game Γ is a

vector 𝑋 = (𝑋1,𝑋2, . . . ,𝑋𝑛) which satisfies the property of individual rationality

𝑋𝑖 ⩾ 𝑣𝑖, 𝑖 = 1, . . . ,𝑛, (1.6)

and the property of collective rationality∑︁
𝑖∈𝑁

𝑋𝑖 = 𝑣(𝑁). (1.7)
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One of the most popular solutions in the theory of cooperative games is the

Shapley vector [35]. Let us recall its definition. We denote by σ = (σ(1),...,σ(𝑛)) an

arbitrary permutation of players of the set 𝑁 1,...,𝑛. Let us assume that all permu

tations σ are equally probable, and then the probability of each permutation is 1/𝑛!.

Consider player 𝑖. Let us imagine that a coalition will be formed when he

appears. Denote by 𝑃σ(𝑖) = {𝑗 ∈ 𝑁 : σ−1(𝑗) < σ−1(𝑖)} the set of players who

arrived before his appearance in the permutation σ. The contribution of player 𝑖

in this coalition is equal to

𝑚𝑖(σ) = 𝑣(𝑃σ(𝑖) ∪ {𝑖})− 𝑣(𝑃σ(𝑖)). (1.8)

Definition. The Shapley value is the average contribution of each player in all

possible permutations

φ𝑖(𝑣) =
1

𝑛!

∑︁
σ

𝑚𝑖(σ) =
1

𝑛!

∑︁
σ

[𝑣(𝑃σ(𝑖) ∪ {𝑖})− 𝑣(𝑃σ(𝑖))] , 𝑖 = 1,..., 𝑛. (1.9)

There are games where players are connected by some relations, which can be

conveniently described by a graph structure, where vertices are players and edges

are interactions between them.

A cooperative game of 𝑛 persons with network structure is called a triple

⟨𝑁,𝑣,𝐺⟩ where 𝑁 is the set of players, 𝑣 : 2𝑁 → R is a characteristic function, 𝐺

is the graph of connections of players from the set 𝑁 . Players 𝑖,𝑗 ∈ 𝑁 can interact

directly only if there exists an edge 𝑖𝑗 in the graph 𝐺.

For games defined on graphs, R. Myerson modified the Shapley vector. He

suggested that it is natural to consider unconnected coalitions as a set of connected

components. For each such component 𝐾, its payoff is 𝑣(𝐾), and it is this payoff

that is distributed among the members of the coalition 𝐾. The distribution of the

gain is done according to the Shapley scheme. R. Myerson [34] introduced axioms

that uniquely define such a payoff distribution for each player 𝑖 ∈ 𝑁 , a given graph

𝐺 and a characteristic function 𝑣.

A1. Axiom of component efficiency. If 𝑆 is a graph component, then the sum

of the payoffs of the coalition players is equal to the value of the whole coalition, i.e.
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∑︁
𝑖∈𝑆

𝑋𝑖(𝑣,𝐺) = 𝑣(𝑆). (1.10)

A2. Fairness axiom. For any pair of players 𝑖,𝑗 ∈ 𝑁 , both players gain or

lose benefits equally if edge 𝑖𝑗 is added or removed:

𝑋𝑖(𝑣,𝐺)−𝑋𝑖(𝑣,𝐺− 𝑖𝑗) = 𝑋𝑗(𝑣,𝐺)−𝑋𝑗(𝑣,𝐺− 𝑖𝑗), (1.11)

where 𝐺 − 𝑖𝑗 – is the graph 𝐺 without edge 𝑖𝑗.

1.2 Myerson vector as the centrality measure

of a directed graph vertices

Let us define a cooperative game Γ = ⟨𝑁,𝑣⟩ on a directed graph 𝐺 = (𝑁,𝐸),

where 𝑁 is the set of vertices and 𝐸 is the set of edges. In this game, 𝑁 is the set of

players on which is given a characteristic function 𝑣(𝐾), 𝐾 ⊂ 𝑁 , 𝑣(𝐾) is equal to

the number of simple paths of fixed length 𝑘 = 1,2, . . . in the subgraph, generated

by the set of players 𝐾. For ranking the vertices in the directed graph the solution

of the cooperative game in the Shapley-Mierson form can be used.

Theorem 1. The Myerson value for player 𝑖 ∈ 𝑁 in a cooperative game on a

directed graph 𝐺, where the characteristic function 𝑣(𝐾) is defined as the number

of directed simple paths of fixed length 𝑘 in the subgraph generated by the set

𝐾 ⊂ 𝑁 , can be found by the formula

𝑋𝑖 =
𝑛𝑘(𝑖)

𝑘 + 1
, (1.12)

where 𝑛𝑘(𝑖) is the number of simple paths of length 𝑘 passing through vertex 𝑖.

Proof. To prove the statement it is sufficient to prove the fulfilment of the Myerson

axioms [34].

For simplicity, assume that the graph 𝐺 is connected. In this case 𝑣(𝑁) is the

number of directed paths of length 𝑘 in the graph 𝐺. Let us renumber all paths
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𝑙 ∈ {1,2,...,𝑣(𝑁)}. We define δ𝑙(𝑖) as follows. We will assume δ𝑙(𝑖) = 1 if vertex 𝑖

is in path 𝑙 and 0 otherwise. Then
𝑛∑︁

𝑖=1

𝑋𝑖 =
1

𝑘 + 1

𝑛∑︁
𝑖=1

𝑛𝑘(𝑖) =
1

𝑘 + 1

𝑛∑︁
𝑖=1

𝑣(𝑁)∑︁
𝑙=1

δ𝑙(𝑖) =
1

𝑘 + 1

𝑣(𝑁)∑︁
𝑙=1

𝑛∑︁
𝑖=1

δ𝑙(𝑖).

Each path consists of 𝑘 + 1 different vertices (𝑖1,...𝑖𝑘+1). Hence
𝑛∑︀

𝑖=1

δ𝑙(𝑖) = 𝑘 + 1.

Therefore
𝑛∑︁

𝑖=1

𝑋𝑖 =
1

𝑘 + 1

𝑣(𝑁)∑︁
𝑙=1

𝑛∑︁
𝑖=1

δ𝑙(𝑖) = 𝑣(𝑁).

Thus, Axiom 1 is satisfied. Let us proceed to Axiom 2.

For example, let 𝑖𝑗 ∈ 𝐸(𝐺). Let’s delete this edge, in this case, directed.

Then all paths of length 𝑘 that previously passed through edge 𝑖𝑗 will be subtracted

when counting paths simultaneously from 𝑛𝑘(𝑖) and 𝑛𝑘(𝑗) in the new graph 𝐺− 𝑖𝑗.

Hence,

𝑋𝑖(𝐺)−𝑋𝑖(𝐺− 𝑖𝑗) = 𝑋𝑗(𝐺)−𝑋𝑗(𝐺− 𝑖𝑗).

Thus axiom 2 is also true, which proves the theorem.

As follows from Theorem 1, the Myerson value is defined in terms of the number

of simple paths of a given length. The problem of computing the number of simple

paths passing through a vertex is non-trivial. However, if we restrict ourselves to

directed graphs with no bidirectional edges, we can compute the number of simple

paths of lengths 2 and 3 from the adjacency matrix. For the calculations we need

the square and cube of the adjacency matrix.

Statement 1.1. Let 𝐴 be the adjacency matrix of a directed graph 𝐺, and

𝐴2 is its square. Then the number of appearances of vertex 𝑖 in simple paths of

length 2 𝑛2(𝑖) can be calculated by the formula

𝑛2(𝑖) =
𝑛∑︁

𝑘=1

(︁
𝑎
(2)
𝑖𝑘 + 𝑎

(2)
𝑘𝑖

)︁
+

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=1

𝑎𝑘𝑖𝑎𝑖𝑗. (1.13)

The first expression corresponds to the number of all simple paths of length 2

starting or ending at the vertex 𝑖. The second expression takes into account paths

in which vertex 𝑖 lies in the middle of the path.
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Statement 1.2. Let 𝐴 be the adjacency matrix of a directed graph 𝐺, and

𝐴2, 𝐴3 be the square and cube of the matrix 𝐴. Then the number of occurrences of

vertex 𝑖 in simple paths of length 3 𝑛3(𝑖) can be calculated by the formula

𝑛3(𝑖) =
𝑛∑︁

𝑘=1
𝑘 ̸=𝑖

(︁
𝑎
(3)
𝑖𝑘 + 𝑎

(3)
𝑘𝑖

)︁
+

𝑛∑︁
𝑘=1

𝑎𝑘𝑖

𝑛∑︁
𝑗=1
𝑗 ̸=𝑘

𝑎
(2)
𝑖𝑗 +

𝑛∑︁
𝑘=1

𝑎
(2)
𝑘𝑖

𝑛∑︁
𝑗=1
𝑗 ̸=𝑘

𝑎𝑖𝑗. (1.14)

Here, the first summand corresponds to the number of all simple paths of

length 3 starting or ending at vertex 𝑖. The second summand takes into account the

paths in which vertex 𝑖 lies at the second position in the path, and the third summand

takes into account the paths in which vertex 𝑖 lies at the third position in the path.

Example 1.1. Let us illustrate the above formula on the example of an

directed graph 𝐺1 of 6 vertices (Fig. 1.1) with the adjacency matrix 𝐴:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0

0 0 0 0 0 0

0 1 0 1 0 1

0 0 0 0 0 0

0 0 1 1 0 0

1 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let us write out, for example, the paths of length 𝑑 = 3 passing through

vertex 3. There are 8 such paths in total:

3654 3612

1365 5361

6132 6134 6532 6534

The first line lists the paths starting at vertex 3. The second line lists paths with

vertex 3 in the second place, and the third line lists vertex 3 in the third place.

There are no other paths with vertex 3.
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Figure 1.1 — Graph 𝐺1

Now let’s calculate the square and cube of the adjacency matrix.

𝐴2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 1

0 0 0 0 0 0

1 0 0 0 1 0

0 0 0 0 0 0

0 1 0 1 0 1

0 1 2 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐴3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0

0 0 0 0 0 0

0 1 2 1 0 0

0 0 0 0 0 0

1 0 0 0 1 0

0 2 0 2 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By the formula from statement 1.2 we find

𝑛3(3) =
6∑︁

𝑘=1
𝑘 ̸=3

(︁
𝑎
(3)
3𝑘 + 𝑎

(3)
𝑘3

)︁
+

6∑︁
𝑘=1

𝑎𝑘3

6∑︁
𝑗=1
𝑗 ̸=𝑘

𝑎
(2)
3𝑗 +

6∑︁
𝑘=1

𝑎
(2)
𝑘3

6∑︁
𝑗=1
𝑗 ̸=𝑘

𝑎3𝑗 =

= (𝑎
(3)
32 + 𝑎

(3)
34 ) + (𝑎13𝑎

(2)
35 + 𝑎53𝑎

(2)
31 ) + (𝑎

(2)
63 𝑎32 + 𝑎

(2)
63 𝑎34) = 2 + 2 + 4 = 8.

This coincides with the number of simple paths of length 3 passing through vertex 3.
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1.3 Integral centrality

Above, on a directed graph 𝐺 = (𝑁,𝐸), |𝑁 | = 𝑛, we considered a cooperative

game of 𝑛 individuals Γ = ⟨𝑁,𝑣(𝐾)⟩, where the characteristic function 𝑣(𝐾) is

defined as the number of directed paths of fixed length 𝑑 passing through the con

sidered vertex in the subgraph generated by the coalition 𝐾. By varying the path

length 𝑑, we can define the characteristic function more generally as a polynomial:

𝑣(𝐾) =
∑︁
𝑖∈𝐾

𝑛−1∑︁
𝑑=1

𝑛𝑑(𝑖)𝑟
𝑑, 𝑟 ∈ [0,1], (1.15)

where 𝑛𝑑(𝑖) is the number of simple paths of length 𝑑 passing through vertex 𝑖.

The value of 𝑟 can be determined by analogy to Jackson’s approach [45], where

players get 𝑟 for creating a direct link, the coalition gets 𝑟2 for creating a path of

length 2, etc. Here the players forming the link get 𝑟 for appearing a pair in paths

of length 1, 𝑟2 for the appearance of a triple in paths of length 2, etc.

Similarly to Section 1.2, it can be shown (see also [27]) that the distribution

of coalition payoff among the players according to the Myerson value has the form:

𝑋𝑖(𝑟) =
𝑛1(𝑖)

2
𝑟 +

𝑛2(𝑖)

3
𝑟2 + · · ·+ 𝑛𝑛−1(𝑖)

𝑛
𝑟𝑛−1 =

𝑛−1∑︁
𝑑=1

𝑛𝑑(𝑖)

𝑑+ 1
𝑟𝑑. (1.16)

By choosing a particular value of 𝑟, one can obtain the value of the payoff

function 𝑋𝑖(𝑟) for all players. To eliminate the step with the choice of the 𝑟 value,

the values of the definite integral of the payoff function on the variable 𝑟 on the

interval [0,1] can be used in the ranking. The payoff functions are polynomial

functions, which makes it easy to write down expressions for determining centrality:

𝐼𝑖 =

1∫︁
0

𝑋𝑖(𝑟)𝑑𝑟 =

1∫︁
0

𝑛−1∑︁
𝑑=1

𝑛𝑑(𝑖)

𝑑+ 1
𝑟𝑑 𝑑𝑟 =

𝑛−1∑︁
𝑑=1

𝑛𝑑(𝑖)

(𝑑+ 1)2
. (1.17)

Definition Value 𝐼𝑖 =
1∫︀
0

𝑋𝑖(𝑟)𝑑𝑟 =
𝑛−1∑︀
𝑑=1

𝑛𝑑(𝑖)
(𝑑+1)2 , where 𝑋𝑖(𝑟) is the payoff

function in the cooperative game Γ on the graph, is the integral centrality of vertex 𝑖.
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Example 1.2. Let us consider as an example a fragment of the Math-Net

citation graph (Fig. 1.2). In this case, the presence of directed edge 𝑖𝑗 means that

the author 𝑖 refers to the work of the author 𝑗.

Figure 1.2 — Math-Net citation graph fragment

Let us find the integral centrality of the vertices of this graph. Let us denote by

𝑛𝑘 the vector of the number of appearances of the graph vertices in paths of length 𝑘.

𝑛1 = (8, 5, 3, 3, 2, 4, 2, 3, 3, 3) ,

𝑛2 = (7, 9, 4, 4, 1, 3, 4, 3, 2, 2) ,

𝑛3 = (4, 6, 3, 3, 0, 0, 5, 2, 1, 0) ,

𝑛4 = (1, 1, 1, 1, 0, 0, 1, 0, 0, 0) ,

all other 𝑛𝑘, 𝑘 ⩾ 5 are zero.
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Then the values of integral centrality according to the definition are:

𝐼 =
𝑛1

4
+

𝑛2

9
+

𝑛3

16
+

𝑛4

25
=

= (3.067, 2.665, 1.421, 1.421, 0.611, 1.333, 1.296, 1.208, 1.034, 0.972).

As a result, vertex 1 has the highest centrality, vertex 2 is also important.

1.3.1 Special cases: cycle and complete graph

Let us calculate the integral centrality of vertices for the cycle and the complete

graph. Obviously, due to symmetry, the centrality of all vertices in this case is the

same and it is enough to calculate the centrality of one of them.

For all vertices of the 𝑝−cycle the payoff is defined by the function:

𝑋(𝑟) =

𝑝−1∑︁
𝑑=1

𝑛𝑑

𝑑+ 1
𝑟𝑑 =

𝑝−1∑︁
𝑑=1

𝑑+ 1

𝑑+ 1
𝑟𝑑 =

𝑝−1∑︁
𝑑=1

𝑟𝑑. (1.18)

Then the value of integral centrality is written as follows:

𝐼𝑝 =

1∫︁
0

𝑋(𝑟)𝑑𝑟 =

1∫︁
0

𝑝−1∑︁
𝑑=1

𝑟𝑑𝑑𝑟 =

𝑝−1∑︁
𝑑=1

1

𝑑+ 1
. (1.19)

For 𝑘−clique vertices the formula is as follows:

𝑛𝑑(𝑘) = (𝑑+ 1)!

(︂
𝑘 − 1

𝑑

)︂
. (1.20)

Indeed, in a path of length 𝑑: 𝑙 = (𝑖1,...,𝑖𝑑+1), vertex 𝑖 can be at the first,

second,..., 𝑑 + 1-th place. The remaining 𝑑 of 𝑘 − 1 vertices can be selected in

𝐴𝑑
𝑘−1 =

(︂
𝑘 − 1

𝑑

)︂
· 𝑑!

ways. Hence,

𝑋(𝑟) =
𝑘−1∑︁
𝑑=1

𝑛𝑑(𝑘)

𝑑+ 1
𝑟𝑑 =

𝑘−1∑︁
𝑑=1

𝑑!

(︂
𝑘 − 1

𝑑

)︂
𝑟𝑑, (1.21)
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and then the integral centrality is

𝐼𝑘 =

1∫︁
0

𝑋(𝑟)𝑑𝑟 =

1∫︁
0

𝑘−1∑︁
𝑑=1

𝑑!

(︂
𝑘 − 1

𝑑

)︂
𝑟𝑑𝑑𝑟 =

1

𝑘

𝑘−1∑︁
𝑑=1

𝑑!

(︂
𝑘

𝑑+ 1

)︂
=

=
𝑘−1∑︁
𝑑=1

(𝑘 − 1)!

(𝑑+ 1)(𝑘 − 𝑑− 1)!
.

(1.22)

1.3.2 Axioms of centrality

Boldi - Vigna [44] describes a system of centrality axioms based on checking

the change of centrality measure when studying cliques and directed cycles. The

following should be checked: whether all vertices of a 𝑘−clique have the same cen

trality value; whether all vertices of a directed 𝑝−cycle have the same centrality

value; whether vertices of a 𝑘−clique are more important than vertices of a directed

𝑝−cycle. Let us give the formulations of the axioms as they are presented in [44; 56].

A1 (Size Axiom). Consider the graph 𝑆𝑘,𝑝 (Fig. 1.3) consisting of two com

ponents: a 𝑘−clique and a 𝑝−cycle. A centrality measure satisfies the size axiom if

for each 𝑘 there exists a number 𝑃𝑘, such that for all 𝑝 ⩾ 𝑃𝑘 in the graph 𝑆𝑘,𝑝, the

centrality of a vertex in a 𝑝−cycle is strictly greater than the centrality of a vertex

in a 𝑘−clique, and for each 𝑝 there exists a number 𝐾𝑝, such that for all 𝑘 ⩾ 𝐾𝑝,

the centrality of a vertex in a 𝑘−clique is strictly greater than the centrality of a

vertex in a 𝑝−cycle.

A2 (Density Axiom). Consider the graph 𝐷𝑘,𝑝 (Fig. 1.4) consisting of a

𝑘−clique and a 𝑝−cycle (𝑘,𝑝 ⩾ 3) connected by a bidirectional bridge 𝑥 ←→ 𝑦,

where 𝑥 is a vertex of the clique and 𝑦 is a vertex of the cycle. A centrality mea

sure satisfies the density axiom if for 𝑘 = 𝑝 the centrality of 𝑥 is strictly greater

than the centrality of 𝑦.

A3 (Score–Monotonicity Axiom). A centrality measure satisfies the score

monotonicity axiom if for every graph 𝐺 and every pair of nodes 𝑥 and 𝑦 such that
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Figure 1.3 — Graph 𝑆𝑘,𝑝

Figure 1.4 — Graph 𝐷𝑘,𝑝

𝑥 → 𝑦 does not belong to the set of edges 𝐸𝐺 of graph 𝐺, if we add to 𝐺 such an

edge, then the centrality of 𝑦 will increase.

Let us add to this system the axiom of connectivity.

A4 (Connectivity Axiom). A centrality measure satisfies the connectivity

axiom if for any graph 𝐺 and any two connectivity components 𝐺1 and 𝐺2 of graph

𝐺, and for every pair of vertices 𝑥 ∈ 𝐺1 and 𝑦 ∈ 𝐺2, the centrality of all vertices

in 𝐺2 does not decrease if an edge 𝑥 → 𝑦 is added.

Theorem 2. For integral centrality (1.17), axioms A1, A2, A3, A4 are true.

Proof. Let us prove that these axioms hold for the integral centrality measure.
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A1 To prove this axiom, it suffices to show that the centrality of the vertices

of both 𝑝−cycle and 𝑘−clique increases unboundedly with increasing 𝑝 and 𝑘. In

the previous section it was shown that for all vertices of the 𝑝−cycle the integral

centrality is determined by the function:

𝐼𝑐𝑝 =

𝑝−1∑︁
𝑑=1

1

𝑑+ 1
.

The centrality value of the 𝑝−cycle vertices can be estimated as 𝐼𝑝 = 𝑆𝑝 − 1,

where 𝑆𝑝 is the sum of the first 𝑝 terms of the harmonic series. L. Euler obtained

an asymptotic expression for the sum of the first 𝑛 terms of the harmonic series:

𝑆𝑛 = ln𝑛+ γ+ ε𝑛,

where γ = 0,5772 . . . – Euler – Mascheroni constant [57], ε𝑛 – error, ε𝑛 → 0,

𝑛→∞. Then 𝐼𝑐𝑝 →∞, 𝑝→∞.

For 𝑘−clique vertices we have the formula

𝐼𝑞𝑘 =
𝑘−1∑︁
𝑑=1

(𝑘 − 1)!

(𝑑+ 1)(𝑘 − 𝑑− 1)!
.

It is easy to see that 𝐼𝑞𝑘 ⩾ 𝐼𝑐𝑘, whence follows the unbounded growth of 𝐼𝑞𝑘 , when

𝑘 →∞.

A2. It was noted above that for 𝑘 = 𝑝 𝐼𝑞𝑘(𝑥) ⩾ 𝐼𝑐𝑘(𝑦) i.e., centrality of vertex

𝑥 in the clique is greater than the centrality of vertex 𝑦 in the cycle. Thus, for any

𝑑, the number of directed paths of length 𝑑 in the clique 𝑛𝑞
𝑑(𝑥) is greater than the

number of directed paths of length 𝑑 in the cycle 𝑛𝑐
𝑑(𝑦). Let us connect vertex 𝑥

of the clique to vertex 𝑦 in the cycle by a bidirectional bridge 𝑥 ←→ 𝑦. Then the

number of paths of any length 𝑑 in both the clique and the cycle increases by the

same value. Therefore, the integral centrality of vertex 𝑥 will still be greater than

the centrality of vertex 𝑦. The validity of axiom 𝐴2 is proved.

A3. Axiom 𝐴3 is obviously true, because after adding the edge 𝑥 → 𝑦, the

vertex 𝑦 will occur in paths ending in it, which will increase the centrality value.

A4. Axiom A4 is true because after adding an edge 𝑥 → 𝑦, the number of

directed paths passing through vertices from the graph 𝐺2 can only increase.
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It is worth noting that according to [44] the axioms 𝐴1, 𝐴2, 𝐴3 without any

conditions are valid only for harmonic centrality [52].

1.4 Computing vertices centrality in directed graphs with cycles

In the proposed approach for determining the centrality of vertices in a graph,

the main problem is to compute the number of simple paths (without cycles) of fixed

length passing through a given vertex. In [54], a modification of Myerson’s value is

given for the case when cycles are also considered in addition to simple paths. In

this case it is possible to obtain quite simple expressions for this characteristic using

the elements of the adjacency matrix of the considered graph. For ranking in this

case the values 𝑠𝑖(𝑘)
𝑘+1 is used, where 𝑠𝑖(𝑘) is the number of appearances of vertex 𝑖

in paths of length 𝑘. Also in [54] proofs of theorems on the number of appearances

of vertices in paths of fixed length, including cycles, in undirected graphs are given.

Further investigation showed that the similar formula is also valid for the number

of occurrences of a vertex in paths in directed graphs.

Theorem 3. Let 𝐴𝑑 be the adjacency matrix of a directed graph 𝐺 raised to

the power 𝑑. Then the number of appearances of vertex 𝑖 in paths of fixed length

𝑑 (including cycles) 𝑛𝑑(𝑖) can be calculated as

𝑛𝑑(𝑖) =
𝑛∑︁

𝑘=1

(︁
𝑎
(𝑑)
𝑖𝑘 + 𝑎

(𝑑)
𝑘𝑖

)︁
+

𝑑−1∑︁
𝑙=1

[︃
𝑛∑︁

𝑘=1

𝑎
(𝑙)
𝑘𝑖 ·

𝑛∑︁
𝑗=1

𝑎
(𝑑−𝑙)
𝑖𝑗

]︃
. (1.23)

Proof. The first sum takes into account the occurrences of vertex 𝑖 at the beginning

and end of paths of length 𝑑. The values 𝑎
(𝑑)
𝑖𝑘 and 𝑎

(𝑑)
𝑘𝑖 – the elements of the 𝐴𝑑

matrix – correspond to the number of paths of length 𝑑 starting in vertex 𝑖 and

ending in it. The second sum allows to take into account the occurrences of the

considered vertex in the middle of paths of length 𝑑: 𝑎(𝑙)𝑘𝑖 is an element of the matrix

𝐴𝑙, equal to the number of paths of length 𝑙 ending in vertex 𝑖; 𝑎(𝑑−𝑙)𝑖𝑗 is an element

of the matrix 𝐴𝑑−𝑙, describing the number of paths of length 𝑑 − 𝑙 starting in the
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same vertex. By adding their products for all admissible 𝑙, we obtain the number of

occurrences of vertex 𝑖 in the middle of paths of fixed length 𝑑.

Example 1.3. Let us illustrate the above formula on the example of an

directed graph 𝐺2 of 6 vertices (Fig. 1.5) with the adjacency matrix 𝐴:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 0

1 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 1

1 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Figure 1.5 — Graph 𝐺2

Let us write out the paths of length 𝑑 = 3. There are 25 such paths in total:

Vertex 2 occurs in paths of length 3 21 times. Let us calculate the number

of occurrences of vertex 2 by formula 1.23:

𝑛3(2) =
6∑︁

𝑘=1

(︁
𝑎
(3)
2𝑘 + 𝑎

(3)
𝑘2

)︁
+

2∑︁
𝑙=1

[︃
6∑︁

𝑘=1

𝑎𝑘2
(𝑙) ·

6∑︁
𝑗=1

𝑎
(3−𝑙)
2𝑗

]︃
.
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1212 2121 3456 4521 5212 6121
1234 2123 3452 4561 5612 6123
1452 2345 4523 5214 6345
1456 2145 4563 5614 6145
1214 5234

5634

The computations require the square and cube of the adjacency matrix.

𝐴2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0

0 1 0 2 0 0

0 0 0 0 1 0

0 1 0 0 0 1

2 0 2 0 0 0

0 1 0 2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐴3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 0 2 0 1

1 0 1 0 2 0

0 1 0 0 0 1

2 0 2 0 0 0

0 2 0 4 0 0

1 0 1 0 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

𝑛3(2) = (2 + 2 + 1 + 1 + 2 + 1) +

[︃
6∑︁

𝑘=1

𝑎𝑘2 ·
6∑︁

𝑗=1

𝑎
(2)
2𝑗 +

6∑︁
𝑘=1

𝑎
(2)
𝑘2 ·

6∑︁
𝑗=1

𝑎2𝑗

]︃
=

= 9 + [2 · 3 + 3 · 2] = 9 + 6 + 6 = 21.

For directed acyclic graphs, i.e., directed graphs without directed cycles but

allowing parallel paths, the number of occurrences of a vertex in paths of fixed length

coincides with the number of simple paths passing through this vertex. Therefore,

the value obtained with the help of formula (1.23) can be used to find the Myerson

value in an directed graph by formula (1.12).

In the case of an arbitrary directed graph, we will define the vertex centrality

in the following form

𝑋𝑖(𝑟) =
𝑛1(𝑖)

2
𝑟 +

𝑛2(𝑖)

3
𝑟2 + · · ·+ 𝑛𝑛−1(𝑖)

𝑛
𝑟𝑛−1 =

𝑛−1∑︁
𝑑=1

𝑛𝑑(𝑖)

𝑑+ 1
𝑟𝑑. (1.24)

The payoff 𝑋 obviously satisfies the first Myerson axiom [34] (by the way

of constructing the payoff and specifying the characteristic function), but it does
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not satisfy the second axiom (fairness axiom), which states that both players 𝑖 and

𝑗 must equally gain or lose benefits when creating or removing the link 𝑖𝑗. This

condition is not fulfilled due to the inclusion of cycles in the consideration. In

general, it is possible that paths of the form . . . 𝑖𝑗𝑖𝑗𝑖𝑗𝑖𝑗𝑖 . . . may appear, which

leads to a different number of appearances of vertices 𝑖 and 𝑗 depending on the

parity of the path length.

Let us illustrate it by means of a counterexample. For this purpose, let us

return to the graph 𝐺2 (Example 1.3). Let’s remove the connection 1 − 4 from

this graph (Fig. 1.6).

Figure 1.6 — Graph 𝐺2 − 14

Let’s write down the payoffs of players 1 and 4 before removing the link

(𝑋1, 𝑋4) and afterwards (𝑋 ′1, 𝑋 ′4).

𝑋1 =
4

2
𝑟 +

10

3
𝑟2 +

21

4
𝑟3 +

42

5
𝑟4 +

82

6
𝑟5

𝑋4 =
3

2
𝑟 +

8

3
𝑟2 +

18

4
𝑟3 +

36

5
𝑟4 +

70

6
𝑟5

𝑋 ′1 =
3

2
𝑟 +

7

3
𝑟2 +

13

4
𝑟3 +

22

5
𝑟4 +

37

6
𝑟5

𝑋 ′4 =
2

2
𝑟 +

5

3
𝑟2 +

11

4
𝑟3 +

19

5
𝑟4 +

34

6
𝑟5
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Starting from the summand corresponding to the number of occurrences of

vertices in paths of length 3, the differences in the substractions 𝑋1−𝑋 ′1, 𝑋4−𝑋 ′4

appears, which violates the condition of Myerson’s axiom.

𝑋1 −𝑋 ′1 =
1

2
𝑟 +

3

3
𝑟2 +

8

4
𝑟3 +

20

5
𝑟4 +

45

6
𝑟5

𝑋4 −𝑋 ′4 =
1

2
𝑟 +

3

3
𝑟2 +

7

4
𝑟3 +

17

5
𝑟4 +

36

6
𝑟5

By choosing a particular value of 𝑟, the value of the payoff function 𝑋𝑖(𝑟) for

all players can be obtained. These values can then be used to rank the vertices of

the graph, which allows us to introduce another approach to calculating centrality.

Fig. 1.7 shows the plots of the payoff functions for the players in the graph

𝐺2. Let us choose the value 𝑟 = 1
2 , then the payoff:

𝑋 = (3.44, 3.44, 2.09, 2.79, 2.79, 2.09) .

It can be seen that with this approach, vertices 1 and 2 still have the highest

centrality values, while vertices 3, 6 have the lowest centrality.

Figure 1.7 — Plots of the payoff functions
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We can also write the 𝐼 vector of integral centrality of the 𝐺2 vertices:

𝐼(𝐺2) = (7.38, 7.38, 4.17, 6.14, 6.14, 4.17) .

The order of the vertices in the ranking is preserved.

1.5 Centrality of graph vertices based on tournament matrix

In [58], a two-stage procedure for ranking the vertices of a graph was proposed,

where, at the first stage, the vertices are ranked based on the absolute potentials of

the nodes of an electric circuit when current is supplied to all nodes in sequence. At

the second stage, a tournament table is constructed and the final ranking is carried

out based on the sum of previously found ranks, by analogy with the Borda rule [59].

In this case, the tournament table can be constructed for values 𝑛𝑑(𝑖) for

different 𝑑. Let us make a tournament table of vertices of the graph 𝐺2 (Table 1).

Centrality estimation based on the total number of appearances of a vertex in paths

of different lengths allows to draw a conclusion about the greatest significance of

nodes 1 and 2. Vertices 3 and 6 have the lowest centrality.

Table 1 — Tournament table of graph 𝐺2

𝑑
Vertex

1 2 3 4 5
∑︀

1 4 10 21 42 82 159
2 4 10 21 42 82 159
3 3 6 11 22 43 85
4 3 8 18 36 70 135
5 3 8 18 36 70 135
6 3 6 11 22 43 85
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Table 2 — Estimation of degree centrality for 𝐺2

Vertex in-degree out-degree
1 2 2
2 2 2
3 2 1
4 2 1
5 1 2
6 1 2

Let us compare these results with the values of degree centrality. Table 2

shows the values of the incoming and outgoing links number in the graph. The

highest centrality is also possessed by vertices 1 and 2; when analysing the least

centrality vertices, different interpretations are possible depending on the applied

problem to be solved. If the directionality of edges is not taken into account, the

ranks for degree centrality will coincide with the ranks of vertices of order 2. If

the direction is taken into account, vertices 5 and 6 get the same ranks in terms of

degree centrality, however, in terms of the involvement of vertices in creating paths

in the graph, vertex 5 is considered more important.

1.6 Myerson vector as a centrality measure

of an undirected graph vertices

We define a cooperative game Γ = ⟨𝑁,𝑣⟩, |𝑁 | = 𝑛 on the graph 𝐺 = (𝑁,𝐸),

where 𝑁 is the set of vertices and 𝐸 is the set of edges. In this game, vertices

are players and the characteristic function 𝑣(𝐾), 𝐾 ⊂ 𝑁 is defined as the number

of simple paths of length 𝑚 in the subgraph generated by the set of vertices 𝐾.

The number 𝑚 = 1,2... is fixed. Obviously, the function 𝑣(𝐾) is monotone, i.e.,

𝑣(𝐾1) ⩽ 𝑣(𝐾2) if 𝐾1 ⊂ 𝐾2. Then we can use the solution of the cooperative game

in the form of a Shapley-Myerson vector to rank the vertices in the graph.
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In Section 1.2 (and in [60]) we give a proof of the Myerson value theorem in

a cooperative game on a directed graph with a characteristic function defined in

terms of the number of simple paths of fixed length in a subgraph generated by a

coalition, based on the validity of the Myerson axiom. In [54] we give another proof

of a similar statement for undirected graphs.

Theorem 1’. Let 𝐺 = (𝑁,𝐸) be a graph. We define the characteristic

function 𝑣(𝐾), 𝐾 ⊂ 𝑁 , as the number of simple paths of length 𝑚 in the subgraph

generated by a coalition 𝐾. Then the Myerson value for player 𝑖 is

φ𝑖 =
𝑎(𝑖)

(𝑚+ 1)
, (1.25)

where 𝑎(𝑖) is the number of simple paths of length 𝑚 passing through vertex 𝑖.

Proof. Consider all permutations σ with non-zero contribution of player 𝑖. Then

the permutation 𝑃σ(𝑖)∪ {𝑖} must necessarily contain vertices from a path of length

𝑚 where vertex 𝑖 is the last to enter. Then the contribution of player 𝑖 is +1.

For a fixed path with exactly 𝑛!/(𝑚 + 1) permutations, vertex 𝑖 comes after

all vertices of this path. Hence, for vertex 𝑖 it is true that the sum of contributions

of vertex 𝑖 over all permutations is

𝑎(𝑖)

𝑛!

𝑛!

𝑚+ 1
=

𝑎(𝑖)

𝑚+ 1
.

From the additivity of the Myerson vector follows the statement of the theo

rem.

Corollary. Let the characteristic function 𝑣(𝐾), 𝐾 ⊂ 𝑁 defined as

𝑣(𝐾) =
∑︁

𝑎𝑚𝑟
𝑚 (1.26)

where 𝑎𝑚 is the number of simple paths of length m in the subgraph generated

by a coalition 𝐾.
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Then the Myerson value for player 𝑖 is

φ𝑖 =
∑︁ 𝑎𝑚(𝑖)

𝑚+ 1
𝑟𝑚, (1.27)

where 𝑎𝑚(𝑖) is the number of simple paths of length 𝑚 passing through vertex 𝑖.

Thus, as a measure of centrality of vertex 𝑖 in a graph we can put the Myerson

value 𝑌 = (𝑌1,...,𝑌𝑛), where 𝑌𝑖 = φ𝑖, 𝑖 = 1,...,𝑛. In [27; 30], the effectiveness of

such an approach for estimating the vertices centrality for different kinds of graphs

was shown. The interpretation of this representation of the characteristic function

and the corresponding centrality measure is as follows.

In the cooperative game the characteristic function is defined by analogy with

Jackson’s scheme [45], where each direct link – a path of length 1 – brings players

a revenue 𝑟, where 0 ⩽ 𝑟 ⩽ 1. In addition, the players also benefit from indirect

links, but in a smaller way. For each path of length 2, the coalition receives 𝑟2, for

each path of length 3 it receives 𝑟3, etc. Since any two vertices can be connected

by several paths of different lengths, only the shortest paths are considered when

constructing the characteristic function. And if two vertices are connected by several

paths of the same length, then all such paths are taken into account, provided that

there is no other shorter path between these vertices.

Thus, the distribution of payoffs between vertices characterises how efficiently

a vertex is located in the graph in terms of information propagation in this network.

Example 1.4. Consider a graph 𝐺3, consisting of five vertices (Fig. 1.8).

1 2

34

5
Figure 1.8 — Graph 𝐺3
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Consider paths of length 3. There are 17 of them:

1234, 1345, 1432, 1543, 2134, 2143, 2145, 2154, 2345,

2314, 2315, 3145, 3154, 3214, 3215, 3415, 4315.

Of these, 16 of them contain 1. Therefore it follows from Theorem 1’

φ1 = 16/4 = 4.

If we count by definition through permutations σ = (σ(1),σ(2),...,σ(5)), then

player 1 gets +1 if he enters the coalition fourth or fifth.

In the first case, in half of the cases its positive contribution will be in 6

permutations and in the other half in two. In the second case, its contribution will

be in 16 permutations.

Thus,

𝑌1 =
1

5

(︂
1

2
6 +

1

2
2

)︂
+

1

5
16 = 4.

1.7 Modification of the Myerson vector

Theorem 3 is also valid for undirected graphs [54]. We denote by 𝑠𝑘(𝑖) the

number of occurrences of vertex 𝑖 of an undirected graph in paths of fixed length

𝑘, including cycles.

Theorem 3’. Let 𝐴(𝑘) be the adjacency matrix of an undirected graph raised

to degree 𝑘. Then the number of appearances of vertex 𝑖 in paths of length 𝑘

starting at vertex 𝑙, including cycles, 𝑠(𝑙)𝑘 (𝑖)

𝑠
(𝑙)
𝑘 (𝑖) = δ{𝑙=𝑖}

𝑛∑︁
𝑗=1

𝑎
(𝑘)
𝑙𝑗 + 𝑎𝑙𝑖

𝑛∑︁
𝑗=1

𝑎
(𝑘−1)
𝑖𝑗 + 𝑎

(2)
𝑙𝑖

𝑛∑︁
𝑗=1

𝑎
(𝑘−2)
𝑖𝑗 + . . .+ 𝑎

(𝑘)
𝑙𝑖 , (1.28)

where δ{𝑙=𝑖} − is the event {𝑙 = 𝑖} indicator.

Proof. Consider vertex 𝑖 and all paths of length 𝑘 in the graph 𝐺. If a path starts

at vertex 𝑖, then vertex 𝑖 occurs at least once in this path. The number of paths of
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length 𝑘 starting at vertex 𝑖 can be calculated using the matrix 𝐴𝑘, by summing all

elements in the row 𝑖. This corresponds to the first summand in formula 1.28.

A vertex 𝑖 can occur several times in a path of length 𝑘. So if vertex 𝑖 occurs

in a path of length 𝑘 at the next step, it will occur at least once in all paths of

length 𝑘 − 1. This corresponds to the second summand in formula 1.28. Reasoning

by induction, we obtain that if vertex 𝑖 is encountered in a path of length 𝑘 at step

𝑚, 𝑚 = 1,...,𝑘, then the number of its occurrences in all paths further on is equal to

the number of paths of length 𝑚 from the initial vertex to vertex 𝑖 (𝑎(𝑚)
𝑙𝑖 ) multiplied

by the number of paths of length 𝑘 −𝑚 from vertex i (
∑︀𝑛

𝑗=1 𝑎
(𝑘−𝑚)
𝑖𝑗 ).

Corollary. The total number of appearances of vertex 𝑖 in paths of length

𝑘 can be calculated as

𝑠𝑘(𝑖) =
𝑛∑︁

𝑗=1

𝑎
(𝑘)
𝑖𝑗 +

𝑛∑︁
𝑙=1

[︃
𝑎𝑙𝑖

𝑛∑︁
𝑗=1

𝑎
(𝑘−1)
𝑖𝑗 + 𝑎

(2)
𝑙𝑖

𝑛∑︁
𝑗=1

𝑎
(𝑘−2)
𝑖𝑗 + . . .+ 𝑎

(𝑘)
𝑙𝑖

]︃
. (1.29)

Example 1.5. The validity of the formula for 𝑠
(𝑙)
𝑘 (𝑖) is illustrated by the

following example. Consider a graph 𝐺4 of 8 vertices (Fig. 1.9) with the adja

cency matrix 𝐴:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 1

1 0 1 0 0 0 1 0

0 1 0 1 0 1 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0

0 0 1 0 1 0 1 0

0 1 0 0 0 1 0 1

1 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We will search all the possible paths of length 4 passing through vertex 1.

Figure 1.10 shows a tree of paths starting at vertex 1.
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1 2 3 4

5678

Figure 1.9 — Graph 𝐺4 of 8 vertices

Since all paths starting at vertex 1 contain this vertex at least once, it is

necessary to calculate the total number of paths of length 4 starting at vertex 1. This

value can be calculated using the sum of the elements of the first row of the matrix

𝐴4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9 0 9 0 4 0 12 0

0 18 0 9 0 16 0 12

9 0 18 0 12 0 16 0

0 9 0 9 0 12 0 4

4 0 12 0 9 0 9 0

0 16 0 12 0 18 0 9

12 0 16 0 9 0 18 0

0 12 0 4 0 9 0 9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

since it is known that the elements of the matrix 𝐴𝑘 = 𝑎
(𝑘)
𝑖𝑗 are equal to the

number of paths of length 𝑘 from vertex 𝑖 to vertex 𝑗. Then
8∑︀

𝑗=1

𝑎
(4)
1𝑗 = 34. At the

next step, the vertices 2 and 8 may meet. At the second step, the vertex 1 may

again be encountered; there are two such paths.

The number of occurrences of node 1 in the subtree at step 2 corresponds to

the number of paths of length 2 starting at node 1. This value can be derived as

the sum of the elements of the first row of the matrix 𝐴2:
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Figure 1.10 — Tree of paths starting at vertex 1

𝐴2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 1 0 0 0 2 0

0 3 0 1 0 2 0 2

1 0 3 0 2 0 2 0

0 1 0 2 0 2 0 0

0 0 2 0 2 0 1 0

0 2 0 2 0 3 0 1

2 0 2 0 1 0 3 0

0 2 0 0 0 1 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

8∑︀
𝑗=1

𝑎
(4−2)
1𝑗 = 5. Thus, vertex 1 will occur 2 · 5 = 10 more times. Finally,

vertex 1 can be found at the end of a path of length 4. The number of such paths

can be found as 𝑎
(4)
1,1 = 9.

Adding according to the formula 1.28, we get 34 + 10 + 9 = 53. This is the

number of times vertex 1 will appear in paths of length 4 starting from vertex 1.
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Example 1.6. Let the adjacency matrix for a graph 𝐺5 of 4 vertices (Fig. 1.11)

have the form

𝐴 =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0

⎞⎟⎟⎟⎟⎟⎠

1 2

3

4
Figure 1.11 — Graph 𝐺5 of 4 vertices

Let’s write out all paths of length 2 contained in the given graph:

121, 123, 124, 212, 232, 234, 242, 243, 321

323, 324, 342, 343, 421, 423, 424, 423, 434

Let us calculate the number of appearances of vertices in paths of length 2. It

is obvious that 𝑠2(1) = 7, 𝑠2(2) = 19, 𝑠2(3) = 14, 𝑠2(4) = 14.

Let us use the above formula. This requires the square of the adjacency matrix.

𝐴2 =

⎛⎜⎜⎜⎜⎜⎝
1 0 1 1

0 3 1 1

1 1 2 1

1 1 1 2

⎞⎟⎟⎟⎟⎟⎠

𝑠2(1) =
4∑︁

𝑗=1

𝑎
(2)
1𝑗 +

4∑︁
𝑙=1

[︃
𝑎𝑙1

4∑︁
𝑗=1

𝑎1𝑗 + 𝑎
(2)
𝑙1

]︃
= 3 + [1 + 1 · 1 + 1 + 1] = 7

𝑠2(2) =
4∑︁

𝑗=1

𝑎
(2)
2𝑗 +

4∑︁
𝑙=1

[︃
𝑎𝑙2

4∑︁
𝑗=1

𝑎2𝑗 + 𝑎
(2)
𝑙2

]︃
= 19
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𝑠2(3) =
4∑︁

𝑗=1

𝑎
(2)
3𝑗 +

4∑︁
𝑙=1

[︃
𝑎𝑙3

4∑︁
𝑗=1

𝑎3𝑗 + 𝑎
(2)
𝑙3

]︃
= 14

𝑠2(4) =
4∑︁

𝑗=1

𝑎
(2)
4𝑗 +

4∑︁
𝑙=1

[︃
𝑎𝑙4

4∑︁
𝑗=1

𝑎4𝑗 + 𝑎
(2)
𝑙4

]︃
= 14

Vertex number 1 is a dangling vertex, so it is less likely to appear in paths,

which is confirmed by the smallest value of 𝑠2(1). Vertex 2 connects a dangling

vertex with a loop, which implies its occurrence in a large number of paths and

hence the highest value of 𝑠2(2). Vertices 3 and 4 are symmetrically located and

for them the values of 𝑠2(3) and 𝑠2(4) coincide.

Theorem 4. The number of paths of length 𝑘 (including cycles) 𝑅𝑘 in a

graph is

𝑛∑︀
𝑖=1

𝑠𝑘(𝑖)

𝑘 + 1
, (1.30)

where 𝑠𝑘(𝑖) is the total number of occurrences of vertex 𝑖 in paths of length 𝑘, 𝑛

is the number of vertices in the graph.

Proof.

𝑛∑︁
𝑖=1

𝑠𝑘(𝑖) =
𝑛∑︁

𝑖=1

(︃
𝑛∑︁

𝑗=1

𝑎
(𝑘)
𝑖𝑗 +

𝑛∑︁
𝑙=1

[︃
𝑎𝑙𝑖

𝑛∑︁
𝑗=1

𝑎
(𝑘−1)
𝑖𝑗 + 𝑎

(2)
𝑙𝑖

𝑛∑︁
𝑗=1

𝑎
(𝑘−2)
𝑖𝑗 + . . .+ 𝑎

(𝑘)
𝑙𝑖

]︃)︃
=

=
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑎
(𝑘)
𝑖𝑗 +

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(︃
𝑎𝑙𝑖

𝑛∑︁
𝑗=1

𝑎
(𝑘−1)
𝑖𝑗 + 𝑎

(2)
𝑙𝑖

𝑛∑︁
𝑗=1

𝑎
(𝑘−2)
𝑖𝑗 + . . .+ 𝑎

(𝑘)
𝑙𝑖

)︃
=

=
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑎
(𝑘)
𝑖𝑗 +

𝑛∑︁
𝑖=1

𝑛∑︁
𝑙=1

𝑎
(𝑘)
𝑙𝑖 +

+
𝑛∑︁

𝑖=1

𝑛∑︁
𝑙=1

(︃
𝑎𝑙𝑖

𝑛∑︁
𝑗=1

𝑎
(𝑘−1)
𝑖𝑗 + 𝑎

(2)
𝑙𝑖

𝑛∑︁
𝑗=1

𝑎
(𝑘−2)
𝑖𝑗 + . . .+ 𝑎

(𝑘−1)
𝑙𝑖

𝑛∑︁
𝑗=1

𝑎𝑖𝑗

)︃
𝑛∑︀

𝑖=1

𝑛∑︀
𝑗=1

𝑎
(𝑘)
𝑖𝑗 — sum of elements of matrix 𝐴(𝑘), i.e., the number of paths of length

𝑘, including cycles, in the graph 𝐺. Then the obtained expression can be rewritten
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as

2𝑅𝑘 +
𝑛∑︁

𝑖=1

𝑛∑︁
𝑙=1

(︃
𝑎𝑙𝑖

𝑛∑︁
𝑗=1

𝑎
(𝑘−1)
𝑖𝑗 + 𝑎

(2)
𝑙𝑖

𝑛∑︁
𝑗=1

𝑎
(𝑘−2)
𝑖𝑗 + . . .+ 𝑎

(𝑘−1)
𝑙𝑖

𝑛∑︁
𝑗=1

𝑎𝑖𝑗

)︃
.

Since the property 𝐴𝑚 ·𝐴𝑛 = 𝐴𝑚+𝑛 is satisfied for the degrees of matrices, the

expression in brackets is the sum of (𝑘 − 1) summands equal to 𝑅𝑘, so
𝑛∑︁

𝑖=1

𝑠𝑘(𝑖) = (𝑘 + 1) ·𝑅𝑘

The theorem is proved.

Thus, if we consider the number of paths of length 𝑘 in a subgraph, including

cycles, as the coalition gain, i.e. the value of
𝑛∑︀

𝑖=1

𝑠𝑘(𝑖)

𝑘 + 1
,

then it is natural to distribute the payoffs between the players in the form(︂
𝑠𝑘(1)

𝑘 + 1
,

𝑠𝑘(2)

𝑘 + 1
, ...,

𝑠𝑘(𝑛)

𝑘 + 1

)︂
.

Definition. The 𝑘-th order centrality of vertex 𝑖 is the number of appearances

of vertex 𝑖 in paths of length 𝑘, including cycles.

Let us introduce a vector σ(𝑘) — a vector of vertices centrality in the graph 𝐺,

the 𝑖-th component of which is equal to σ𝑖(𝑘) =
𝑠𝑘(𝑖)
𝑘+1 , 𝑖 = 1,...,𝑛. For the graph from

Example 3 the following vectors were obtained for paths of lengths 2, 3, 4 and 5:

σ(2) = {2.3; 6.3; 4.67; 4.67}

σ(3) = {4; 14; 10; 10}

σ(4) = {9; 30.6; 22.2; 22.2}

σ(5) = {17.67; 66.3; 48; 48}

The obtained results can be compared with the Myerson vectors φ(𝑘), where

the 𝑖-th component is the contribution of the player – vertex 𝑖 – to the grand-coali

tion payoff, when the characteristic function is the number of paths of length 𝑘
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in the coalition [30].

φ(2) = {2.3; 6.3; 4.67; 4.67}

φ(3) = {4.67; 12.67; 10.3; 10.3}

φ(4) = {10.8; 26.8; 23.17; 23.17}

φ(5) = {23.5; 55.5; 50.5; 50.5}

It can be seen that the obtained values differ insignificantly (and for paths of

length 2 they coincide at all), while the order of vertices is preserved, which allows us

to use the obtained vector to estimate the centrality of vertices, without calculating

the number of paths in the graph, as it is required by the Myerson vector. Moreover,

the standard approach to its computation implies a rather labour-intensive process

of enumerating all possible coalitions.

The proposed centrality values can be used to rank vertices in graphs when

solving applied problems. An example of such tasks is the problem of ranking a

corpus of texts [61].

1.8 Special cases

1.8.1 Star

Let 𝑆 be a star with 𝑛 vertices, in the centre of which player 1 is located

(Fig. 1.12). Then the adjacency matrix is

𝐴 =

⎛⎜⎜⎜⎜⎜⎝
0 1 1 . . . 1

1 0 0 . . . 0
... ... ... . . . ...

1 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ .
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1

2 3

4

𝑛− 1

𝑛 . . .

Figure 1.12 — Star 𝑆

In order to use formula 1.29, we need to raise the matrix 𝐴 to power 𝑘.

Depending on the parity of 𝑘, we obtain two kinds of matrices. Raising the matrix

to an even power, we have:

𝐴𝑘 =

⎛⎜⎜⎜⎜⎜⎝
(𝑛− 1)

𝑘
2 0 0 . . . 0

0 (𝑛− 1)
𝑘−2
2 (𝑛− 1)

𝑘−2
2 . . . (𝑛− 1)

𝑘−2
2

... ... ... . . . ...

0 (𝑛− 1)
𝑘−2
2 (𝑛− 1)

𝑘−2
2 . . . (𝑛− 1)

𝑘−2
2

⎞⎟⎟⎟⎟⎟⎠ .

In the case of odd power the matrix is:

𝐴𝑘 =

⎛⎜⎜⎜⎜⎜⎝
0 (𝑛− 1)

𝑘−1
2 (𝑛− 1)

𝑘−1
2 . . . (𝑛− 1)

𝑘−1
2

(𝑛− 1)
𝑘−1
2 0 0 . . . 0

... ... ... . . . ...

(𝑛− 1)
𝑘−1
2 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ .

Applying formula 1.29, we obtain expressions for centrality of vertices of graph

𝐺. For even values of 𝑘:

𝑠𝑘(1) = (𝑛− 1)
𝑘
2
(︀
𝑘
2𝑛+ 1

)︀
(1.31)

𝑠𝑘(𝑖) = (𝑛− 1)
𝑘−2
2
(︀
𝑘+2
2 𝑛− 1

)︀
(1.32)

for odd values:

𝑠𝑘(1) = (𝑘 + 1) (𝑛− 1)
𝑘+1
2 (1.33)

𝑠𝑘(𝑖) = (𝑘 + 1) (𝑛− 1)
𝑘−1
2 (1.34)
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It should be noted that for odd path lengths the following relation holds

𝑠𝑘(1)

𝑠𝑘(𝑖)
= 𝑛− 1,

the same as for the Myerson vector.

1.8.2 Chain

Let 𝑃 be a chain (path) of 𝑛 vertices (Fig. 1.13).

1 2 3 . . . 𝑛

Figure 1.13 — Chain 𝑃

The corresponding adjacency matrix 𝐴:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0 0

1 0 1 0 . . . 0 0

0 1 0 1 . . . 0 0
... ... ... ... . . . ... ...

0 0 0 0 . . . 0 1

0 0 0 0 . . . 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
If the path length 𝑘 is less than 𝑛

2 , starting from the (𝑘 + 1)−th vertex in

the chain and up to the (𝑛 − 𝑘)−th vertex, a stable centrality value of order 𝑘 is

established. To calculate this value we can use the formula

𝑠𝑘(𝑖) = 2𝑘(𝑘 + 1), 𝑖 = 𝑘 + 1..𝑛− 𝑘. (1.35)
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Chapter 2. Graph vertex ranking using circuit node absolute potentials

Various metrics can be used to estimate the centrality of graph vertices. A

number of works use methods based on the electric circuit model and Kirchhoff’s

laws [18; 22]. The graph is considered as an electric circuit with ideal elements,

the vertices of the graph are nodes of the electric circuit, the edges are conductors

of electric current with known electrical conductivity. An electric current is passed

through the circuit grounded at some vertex. In [20—22], the calculations are based

on the currents flowing through the vertex under consideration. Here we propose

to use the ranks of the graph vertices based on the values of the absolute potentials

of the nodes of the electric circuit calculated with the Kirchhoff’s rules to estimate

centrality. To rank the vertices, one can use the methods of voting theory, when the

ranking is based on the tournament matrix [62], and in the simplest case, after the

calculation of absolute potentials, the Borda rule [59] can be used.

2.1 Graph vertex ranking based on Laplace matrix

Let 𝐺 = (𝑉,𝐸,𝑊 ), where 𝑉 is the set of 𝑛 vertices of the graph, 𝐸 is the set

of edges of the graph, 𝑊 is the edge weight matrix:

𝑊 =

⎛⎜⎜⎜⎜⎜⎝
0 𝑤12 𝑤13 . . . 𝑤1𝑛

𝑤21 0 𝑤23 . . . 𝑤2𝑛

... ... ... . . . ...

𝑤𝑛1 𝑤𝑛2 𝑤𝑛3 . . . 0

⎞⎟⎟⎟⎟⎟⎠ .

The graph 𝐺 is not directed, i.e. 𝑤𝑖𝑗 = 𝑤𝑗𝑖. The weights of the edges are

interpreted as the edge conductivity.

Based on the matrix of weights, we can construct a diagonal matrix 𝐷 of

degrees of a vertex, where 𝑑𝑖 =
𝑛∑︀

𝑗=1

𝑤𝑖𝑗. The matrix 𝐿 = 𝐷 − 𝑊 is called the
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Laplace matrix of the graph 𝐺 and has the form

𝐿(𝐺) =

⎛⎜⎜⎜⎜⎜⎝
𝑑1 −𝑤12 −𝑤13 . . . −𝑤1𝑛

−𝑤21 𝑑2 −𝑤23 . . . −𝑤2𝑛

... ... ... . . . ...

−𝑤𝑛1 −𝑤𝑛2 −𝑤𝑛3 . . . 𝑑𝑛

⎞⎟⎟⎟⎟⎟⎠ .

Next, consider the graph 𝐺′ obtained by adding an artificial vertex with num

ber 𝑛 + 1 connected to all vertices of the original graph by edges with the same

conductivity δ (Fig. 2.1).

1

2

. . .

𝑛 𝑛+ 1

δ

δ

δ

δ

Figure 2.1 — Graph 𝐺′

Then the Laplace matrix for the graph 𝐺′ takes the following form:

𝐿(𝐺′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑1 + δ −𝑤12 −𝑤13 . . . −𝑤1𝑛 −δ

−𝑤21 𝑑2 + δ −𝑤23 . . . −𝑤2𝑛 −δ
... ... ... . . . ... ...

−𝑤𝑛1 −𝑤𝑛2 −𝑤𝑛3 . . . 𝑑𝑛 + δ −δ

−δ −δ −δ . . . −δ δ𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since this matrix is degenerate, it is necessary to remove the row and column

corresponding to the artificially added vertex in order to calculate the potentials:

̃︀𝐿(𝐺′) =
⎛⎜⎜⎜⎜⎜⎝
𝑑1 + δ −𝑤12 −𝑤13 . . . −𝑤1𝑛

−𝑤21 𝑑2 + δ −𝑤23 . . . −𝑤2𝑛

... ... ... . . . ...

−𝑤𝑛1 −𝑤𝑛2 −𝑤𝑛3 . . . 𝑑𝑛 + δ

⎞⎟⎟⎟⎟⎟⎠ .



46

Let a unit of electric current be supplied to some node 𝑣𝑘 (𝑘 = 1, . . . ,𝑛) of an

electric circuit, which is grounded at the vertex 𝑣𝑛+1. Then, applying Kirchhoff’s

rules enables one to calculate the absolute potentials of the nodes in the circuit by

solving the system of equations.

φ𝑘 = ̃︀𝐿−1(𝐺′)𝑏𝑘, (2.1)

where φ𝑘 = (φ𝑘
1,φ

𝑘
2, . . . ,φ

𝑘
𝑛)

𝑇 — absolute potential vector, 𝑏𝑘 — vector-column,

whose elements are defined by the rule 𝑏𝑘(𝑘) = 1, 𝑏𝑘(𝑖 ̸= 𝑘) = 0. The absolute

potential at the vertex 𝑣𝑛+1 is assumed to be zero.

In the paper [21], the graph nodes were ranked based on the currents flowing

through them when the current was randomly supplied to the graph nodes. In our

current research, we suggest ranking the graph vertices, which correspond to the

nodes of an electric circuit, by calculating the potentials in all nodes of the circuit

when current is supplied to node 𝑣𝑘. Thus, applying current sequentially to all

vertices of the graph 𝐺, it is possible to obtain a tournament table of vertices based

on absolute potentials. The higher the potential value obtained by a vertex, the

higher its position in the tournament table.

Example 2.1. As an example, let us consider the graph shown in Fig. 2.2,

with the weight matrix 𝑊 :

𝑊 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 300 100 0 0 0

300 0 100 0 0 0

100 100 0 500 0 0

0 0 500 0 100 100

0 0 0 100 0 300

0 0 0 100 300 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Assuming that a vertex is added to the graph, connected with other vertices

of the graph by edges with carrying conductivity δ = 0.1, in which the electric

circuit is grounded, let’s supply current to vertex 1. The following values of absolute

potentials will be obtained:

φ1 = (1.670, 1.669, 1.666, 1.665, 1.663, 1.663)𝑇 .



47

1

2

3 4

5

6

100100

100 100

300 300
500

Figure 2.2 — Graph with vertices 1 – 6; 100, 300, 500 — edge weights

The vertex with the highest potential is always the vertex to which the electric

current is applied, it will receive rank 1. The other vertices will have ranks 2, 3,

4, 5, 5 respectively. Due to the symmetry of the considered graph, when current is

supplied to vertex 2, the vector of potentials will be different only for vertices 1 and 2:

φ2 = (1.669, 1.670, 1.666, 1.665, 1.663, 1.663)𝑇 .

If the current is supplied to vertex 3, we obtain equal values for equidistant

vertices 1 and 2 and for symmetric vertices 5 and 6.

φ3 = (1.666, 1.666, 1.668, 1.667, 1.665, 1.665)𝑇 .

The values of the absolute potentials, can be written as a matrix Φ, where the

column 𝑘 contains the values corresponding to the vector φ𝑘.

Φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.670 1.669 1.666 1.665 1.663 1.663

1.669 1.670 1.666 1.665 1.663 1.663

1.666 1.666 1.668 1.667 1.665 1.665

1.665 1.665 1.667 1.668 1.666 1.666

1.663 1.663 1.665 1.666 1.670 1.669

1.663 1.663 1.665 1.666 1.669 1.670

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Table 3 shows the ranks of the vertices for each 𝑘 value. It is worth noting

that the introduction of ranks is necessary because the sum of matrix elements in

each row and each column is the same and depends only on the choice of δ.
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Table 3 — Tournament table
𝑘

Vertex
1 2 3 4 5 6

∑︀
1 1 2 3 4 5 5 20
2 2 1 3 4 5 5 20
3 3 3 1 2 4 4 17
4 4 4 2 1 3 3 17
5 5 5 4 3 1 2 20
6 5 5 4 3 2 1 20

Summing up all places for different 𝑘 for each vertex, we find the values on

the basis of which we can perform ranking again. The smaller the value of the sum

of ranks a vertex has, the more favourable position it occupies in the graph. Thus,

vertices numbered 3 and 4 are the most important for this graph, which is logical,

since the edge (3,4) is a link for two groups of vertices. This approach in voting

theory is known as the Borda rule [59].

We can compare our results with PageRank values [19]. The vector of PageR

ank values for this graph is as follows: (0.14, 0.14, 0.21, 0.21, 0.14, 0.14), with the

higher the value obtained, the more important the vertex in the graph, i.e. vertices

3 and 4 also get the highest rank.

A tournament matrix can also be constructed from the tournament table,

which can be used to construct a cooperative game [63].
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2.2 Special cases

2.2.1 Clique

Statement 2.1. For 𝑛 – clique 𝐶𝑛 with unit weights of edges, all vertices

are equal.

Laplace matrix for a clique consisting of 𝑛 vertices:

̃︀𝐿(𝐶 ′𝑛) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑛− 1 + δ −1 −1 . . . −1

−1 𝑛− 1 + δ −1 . . . −1

−1 −1 𝑛− 1 + δ . . . −1
... −1 −1 . . . −1

−1 −1 −1 . . . 𝑛− 1 + δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then the inverse matrix ̃︀𝐿−1(𝐶 ′𝑛) :

̃︀𝐿−1(𝐶 ′𝑛) = 1

δ(𝑛+ δ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + δ 1 1 . . . 1

1 1 + δ 1 . . . 1

1 1 1 + δ . . . 1
... ... ... . . . ...

1 1 1 . . . 1 + δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Obviously, the sums of ranks for all vertices will be the same.

2.2.2 Star

Statement 2.2. For a star graph 𝑆1 (Fig. 2.3) with 𝑛 vertices (𝑛 > 3) with

unit edge weights, the rank distribution does not depend on the value of δ. The

rank of the centre vertex is 1, the ranks of the other vertices are 2.
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1

2 3

4

𝑛− 1

𝑛 . . .

Figure 2.3 — Star graph 𝑆1

For such a graph the Laplace matrix will take the following form:

̃︀𝐿(𝑆 ′1) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑛− 1 + δ −1 −1 . . . −1

−1 1 + δ 0 . . . 0

−1 0 1 + δ . . . 0
... 0 0 . . . 0

−1 0 0 . . . 1 + δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let’s calculate the inverse matrix.

̃︀𝐿−1(𝑆 ′1) = 𝐷

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 + δ)2 (1 + δ) (1 + δ) . . . (1 + δ)

(1 + δ) (1 + 𝑛δ+ δ2) 1 . . . 1

(1 + δ) 1 (1 + 𝑛δ+ δ2) . . . 1
... ... ... . . . ...

(1 + δ) 1 1 . . . (1 + 𝑛δ+ δ2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

𝐷 =
1

δ(1 + δ)(𝑛+ δ)
.

The view of the tournament table for any value of δ is given in Table 4. For the

central vertex of the graph the sum of ranks is 2𝑛−1, for the other vertices — 3(𝑛−3).

If 𝑛 > 3 2𝑛− 1 < 3(𝑛− 1), then the central vertex will always have the best rank.
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Table 4 — Tournament table for graph 𝑆1

𝑘
Vertex

1 2 3 . . . 𝑛

∑︀
1 1 2 2 . . . 2 2𝑛− 1

2 2 1 3 . . . 3 3(𝑛− 1)

3 2 3 1 . . . 3 3(𝑛− 1)

. . . . . . . . . . . . . . . . . . . . .
𝑛− 1 2 3 3 . . . 3 3(𝑛− 1)

𝑛 2 3 3 . . . 1 3(𝑛− 1)

Statement 2.3. For a star graph 𝑆𝑚 (Fig. 2.4) of 𝑛 vertices (𝑛 > 3) with

edge weights 𝑤1𝑗 = 𝑤𝑗1 = 1 (𝑗 = 2, . . . ,𝑛− 1), 𝑤1𝑛 = 𝑤𝑛1 = 𝑚 and Laplace matrix

̃︀𝐿(𝑆 ′𝑚) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑛− 2 +𝑚+ δ −1 −1 . . . −1 −𝑚

−1 1 + δ 0 . . . 0 0

−1 0 1 + δ . . . 0 0
... ... ... . . . ... ...

−1 0 0 . . . 1 + δ 0

−𝑚 0 0 . . . 0 𝑚+ δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
the ranks of vertices will be distributed depending on the weight 𝑚. For

𝑚 ∈ (0,1) we obtain the rank distribution (1,2,2, . . . ,2,3), for 𝑚 > 1 — the rank

distribution (1,3,3, . . . ,3,2), the central vertex always has rank 1.

1

2 3

4

𝑛− 1

𝑛 . . .

𝑚

Figure 2.4 — Star graph 𝑆𝑚
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The inverse matrix containing the values of absolute potentials of the graph

vertices will be constructed according to the following scheme:

̃︀𝐿−1(𝑆 ′𝑚) = 𝐷𝑚

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑙1 𝑙2 𝑙2 . . . 𝑙2 𝑙3

𝑙2 𝑙𝑑 𝑙5 . . . 𝑙5 𝑙4

𝑙2 𝑙5 𝑙𝑑 . . . 𝑙5 𝑙4
... ... ... . . . ... ...

𝑙2 𝑙5 𝑙5 . . . 𝑙𝑑 𝑙4

𝑙3 𝑙4 𝑙4 . . . 𝑙4 𝑙6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

𝐷𝑚 =
1

δ(1 + δ)𝑛−3(𝑛𝑚+ (𝑛− 1)δ+ 2𝑚δ+ δ2)
,

𝑙1 = (𝑚+ δ)(1 + δ)𝑛−2,

𝑙2 = (𝑚+ δ)(1 + δ)𝑛−3,

𝑙3 = 𝑚(1 + δ)𝑛−2,

𝑙4 = 𝑚(1 + δ)𝑛−3,

𝑙5 = (𝑚+ δ)(1 + δ)𝑛−4,

𝑙6 = (1 + δ)𝑛−3(𝑚+ (𝑛− 1)δ+𝑚δ+ δ2),

𝑙𝑑 = (1 + δ)𝑛−4(𝑚+ δ+ 𝑛𝑚δ+ (𝑛− 1)δ2 + 2𝑚δ2 + δ3).

Table 5 shows the rank distribution for the case when 𝑚 ∈ (0,1). For 𝑛 > 3

the sums of ranks satisfy the relation 2𝑛 − 1 < 3𝑛 − 3 < 4𝑛 − 4, respectively, the

central vertex of the star has the best rank; the vertex connected to the central

edge with weight 𝑚 gets the worst rank.

For 𝑚 > 1 and 𝑛 > 3, the sums of ranks follow the relation 2𝑛−1 < 3𝑛−3 <

4𝑛 − 5. The central vertex has the highest rank while the vertices connected to it

by edges of unit weight have the lowest ranks (Table 6).
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Table 5 — Tournament table for the graph 𝑆𝑚, 𝑚 ∈ (0,1)

𝑘
Vertex

1 2 3 . . . 𝑛− 1 𝑛

∑︀
1 1 2 2 . . . 2 2 2𝑛− 1

2 2 1 3 . . . 3 3 3𝑛− 3

3 2 3 1 . . . 3 3 3𝑛− 3

. . . . . . . . . . . . . . . . . . . . . . . .
𝑛− 1 2 3 3 . . . 1 3 3𝑛− 3

𝑛 3 4 4 . . . 4 1 4𝑛− 4

Table 6 — Tournament table for the graph 𝑆𝑚, 𝑚 > 1

𝑘
Vertex

1 2 3 . . . 𝑛− 1 𝑛

∑︀
1 1 2 2 . . . 2 2 2𝑛− 1

2 3 1 4 . . . 4 3 4𝑛− 5

3 3 4 1 . . . 4 3 4𝑛− 5

. . . . . . . . . . . . . . . . . . . . . . . .
𝑛− 1 3 4 4 . . . 1 3 4𝑛− 5

𝑛 2 3 3 . . . 3 1 3𝑛− 3

2.2.3 Double star

By a double star we will understand a graph 𝑆𝑝,𝑞 obtained by joining two star

graphs 𝑆𝑝 and 𝑆𝑞 (𝑝,𝑞 > 2) by a common edge (Fig. 2.5). The Laplace matrix of

such a graph has the form

̃︀𝐿(𝑆 ′𝑝,𝑞) =
⎛⎝𝐴𝑝×𝑝 | 𝐵𝑝×𝑞

𝐶𝑞×𝑝 | 𝐷𝑞×𝑞

⎞⎠ ,

𝐴𝑝×𝑝 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝+ δ −1 −1 . . . −1

−1 1 + δ 0 . . . 0

−1 0 1 + δ . . . 0
... ... ... . . . ...

−1 0 0 . . . 1 + δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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𝐷𝑞×𝑞 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑞 + δ −1 −1 . . . −1

−1 1 + δ 0 . . . 0

−1 0 1 + δ . . . 0
... ... ... . . . ...

−1 0 0 . . . 1 + δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

elements of matrices 𝐵,𝐶 𝑏11, 𝑐11 = −1, the other elements are zero.

1

2 . . .

𝑝+ 1

𝑝− 1

𝑝

𝑝+ 2

𝑝+ 3

. . .

𝑝+ 𝑞 − 1𝑝+ 𝑞

Figure 2.5 — Double star 𝑆𝑝,𝑞

Statement 2.4. For a double star 𝑆𝑝,𝑞 in the case 𝑝 < 𝑞, the rank of the

vertex 𝑣1 having 𝑝 neighbours is always lower than the rank of the vertex 𝑣𝑝+1

with 𝑞 neighbours.

The matrix of absolute potentials is also represented as a block matrix

̃︀𝐿−1(𝑆 ′𝑝,𝑞) = 𝐷𝑝,𝑞

⎛⎝𝐴′𝑝×𝑝 | 𝐵′𝑝×𝑞

𝐶 ′𝑞×𝑝 | 𝐷′𝑞×𝑞

⎞⎠ ,

𝐷𝑝,𝑞 =
1

δ(1 + δ)𝑝+𝑞−4
(︀(︀
1 + (𝑝+ 1)(𝑞 + 1)

)︀
δ+ (𝑝+ 𝑞 + 2)δ2 + δ3

)︀ ,

𝐴′𝑝×𝑝 = 𝑎

⎛⎜⎜⎜⎜⎜⎝
(1 + δ)2 1 + δ 1 + δ . . . 1 + δ

1 + δ 𝑎𝑑 1 . . . 1
... ... ... . . . ...

1 + δ 1 1 . . . 𝑎𝑑

⎞⎟⎟⎟⎟⎟⎠ ,

𝑎 = (1 + δ)(1 + (𝑞 + 1)δ+ δ2),

𝑎𝑑 = δ2 + (𝑝+ 1)δ+ 1 +
(𝑞 − 1)δ

1 + ((1 + 𝑞)δ+ δ2)
,
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Table 7 — Tournament table for the graph 𝑆𝑝,𝑞

𝑘
Vertex

1 2 . . . 𝑝− 1 𝑝 𝑝+ 1 . . . 𝑝+ 𝑞 − 1 𝑝+ 𝑞

∑︀
1 1 2 . . . 2 3 4 . . . 4 4 2𝑝+ 4𝑞 − 2

2 2 1 . . . 3 4 5 . . . 5 5 3𝑝+ 5𝑞 − 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
𝑝− 1 2 3 . . . 1 4 5 . . . 5 5 3𝑝+ 5𝑞 − 4

𝑝 3 4 . . . 4 1 2 . . . 2 2 4𝑝+ 2𝑞 − 2

𝑝+ 1 4 5 . . . 5 2 1 . . . 3 3 5𝑝+ 3𝑞 − 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
𝑝+ 𝑞 − 1 4 5 . . . 5 2 3 . . . 1 3 5𝑝+ 3𝑞 − 4

𝑝+ 𝑞 4 5 . . . 5 2 3 . . . 3 1 5𝑝+ 3𝑞 − 4

𝐵′𝑝×𝑞 = (1 + δ)𝑝+𝑞−4

⎛⎜⎜⎜⎜⎜⎝
(1 + δ)2 1 + δ 1 + δ . . . 1 + δ

1 + δ 1 1 . . . 1
... ... ... . . . ...

1 + δ 1 1 . . . 1

⎞⎟⎟⎟⎟⎟⎠ .

The matrix 𝐶 ′𝑞×𝑝 can be constructed in the similar way.

𝐷′𝑞×𝑞 = 𝑑

⎛⎜⎜⎜⎜⎜⎝
(1 + δ)2 1 + δ 1 + δ . . . 1 + δ

1 + δ 𝑑𝑑 1 . . . 1
... ... ... . . . ...

1 + δ 1 1 . . . 𝑑𝑑

⎞⎟⎟⎟⎟⎟⎠ ,

𝑑 = (1 + δ)𝑝+𝑞−5(1 + (𝑝+ 1)δ+ δ2),

𝑑𝑑 = δ2 + (𝑞 + 1)δ+ 1 +
(𝑝− 1)δ

1 + ((1 + 𝑝)δ+ δ2)
.

The table 7 presents the distribution of vertex ranks. The sums of ranks of

vertices located in the centres of stars satisfy the relation 4𝑝+2𝑞− 2 < 2𝑝+4𝑞− 2,

which is always true for 𝑝 < 𝑞, i.e. a vertex — the centre of a star with 𝑞 neighbours

will always have rank 1. The relation 2𝑝+4𝑞−2 < 5𝑝+3𝑞−4 holds for 𝑞+2 < 3𝑝,
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so rank 2 can be assigned both to vertex 𝑣1 with 𝑝 neighbours and to the hanging

vertices of star 𝑆𝑞. The rank of hanging vertices of the graph 𝑆𝑝 is always the worst,

since 3𝑝 + 5𝑞 − 4 takes the largest values for 𝑝 < 𝑞, 𝑝,𝑞 > 2.

2.2.4 Bipartite graph

Statement 2.5. For a complete bipartite graph 𝐵2,𝑛−2 (Fig. 2.6) with 𝑛

vertices (𝑛 > 4), where the vertices are divided into two non-overlapping sets 𝑉1

and 𝑉2 such that |𝑉1| = 2, |𝑉2| = 𝑛 − 2, and edge weights equal to one, the rank

distribution does not depend on the value of δ. Vertices from set 𝑉1 have ranks 1,

vertices from set 𝑉2 have ranks 2.

1

2

3

4

𝑛− 1

𝑛

. . .

Figure 2.6 — Complete bipartite graph 𝐵2,𝑛−2

The Laplace matrix has the form

̃︀𝐿(𝐵′2,𝑛−2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑛− 2 + δ 0 −1 −1 . . . −1

0 𝑛− 2 + δ −1 −1 . . . −1

−1 −1 2 + δ 0 . . . 0

−1 −1 0 2 + δ . . . 0
... ... ... ... . . . ...

−1 −1 0 0 . . . 2 + δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Table 8 — Tournament table for the graph 𝐵2,𝑛−2

𝑘
Vertex

1 2 3 4 . . . 𝑛− 1 𝑛

∑︀
1 1 3 2 2 . . . 2 2 2𝑛

2 3 1 2 2 . . . 2 2 2𝑛

3 2 2 1 3 . . . 3 3 3𝑛− 4

4 2 2 3 1 . . . 3 3 3𝑛− 4

. . . . . . . . . . . . . . . . . . . . . . . . . . .
𝑛− 1 2 2 3 3 . . . 1 3 3𝑛− 4

𝑛 2 2 3 3 . . . 3 1 3𝑛− 4

The inverse Laplace matrix is formed as follows:

̃︀𝐿−1(𝐵′2,𝑛−2) = 𝐷2,𝑛−2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑙1 𝑙2 𝑙3 𝑙3 . . . 𝑙3

𝑙2 𝑙1 𝑙3 𝑙3 . . . 𝑙3

𝑙3 𝑙3 𝑙5 𝑙4 . . . 𝑙4

𝑙3 𝑙3 𝑙4 𝑙5 . . . 𝑙4
... ... ... ... . . . ...

𝑙3 𝑙3 𝑙4 𝑙4 . . . 𝑙5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

𝐷2,𝑛−2 =
1

δ(2 + δ)𝑛−3(𝑛− 2 + δ)(𝑛+ δ)

𝑙1 = (2 + δ)𝑛−3(𝑛− 2 + 𝑛δ+ δ2)

𝑙2 = (𝑛− 2)(2 + δ)𝑛−3

𝑙3 = (2 + δ)𝑛−3(𝑛− 2 + δ)

𝑙4 = 2(2 + δ)𝑛−4(𝑛− 2 + δ)

𝑙5 = 2(2 + δ)𝑛−4(𝑛− 2 + δ)(2 + 𝑛δ+ δ2)

Table 8 shows the ranks of the vertices of the graph independent of δ. When

𝑛 > 4, the values 2𝑛 < 3𝑛 − 4, so the vertices of set 𝑉1 will always have rank 1,

and the vertices from 𝑉2 – 2.
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Statement 2.6. For a complete bipartite graph 𝐵3,𝑛−3 (Fig. 2.7) with 𝑛

vertices (𝑛 > 6), where the vertices are divided into two non-overlapping sets 𝑉1

and 𝑉2 such that |𝑉1| = 3, |𝑉2| = 𝑛−3, and unit edge weights, the rank distribution

does not depend on the value of δ. Vertices from set 𝑉1 have ranks 1, vertices from

set 𝑉2 have ranks equal to 2.

1

2

3

4

5

𝑛− 1

𝑛

. . .

Figure 2.7 — Complete bipartite graph 𝐵3,𝑛−3

The Laplace matrix has the form

̃︀𝐿(𝐵′3,𝑛−3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑛− 3 + δ 0 0 −1 −1 . . . −1

0 𝑛− 3 + δ 0 −1 −1 . . . −1

0 0 𝑛− 3 + δ −1 −1 . . . −1

−1 −1 −1 3 + δ 0 . . . 0

−1 −1 −1 0 3 + δ . . . 0
... ... ... ... ... . . . ...

−1 −1 −1 0 0 . . . 3 + δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Table 9 — Tournament table for the graph 𝐵3,𝑛−3

𝑘
Vertex

1 2 3 4 . . . 𝑛− 1 𝑛

∑︀
1 1 3 3 2 . . . 2 2 2𝑛+ 1

2 3 1 3 2 . . . 2 2 2𝑛+ 1

3 3 3 1 2 . . . 2 2 2𝑛+ 1

4 2 2 2 1 . . . 3 3 3𝑛− 5

. . . . . . . . . . . . . . . . . . . . . . . . . . .
𝑛− 1 2 2 2 3 . . . 1 3 3𝑛− 5

𝑛 2 2 2 3 . . . 3 1 3𝑛− 5

The inverse matrix

̃︀𝐿−1(𝐵′3,𝑛−3) = 𝐷3,𝑛−3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑙1 𝑙2 𝑙2 𝑙3 𝑙3 . . . 𝑙3

𝑙2 𝑙1 𝑙2 𝑙3 𝑙3 . . . 𝑙3

𝑙2 𝑙2 𝑙1 𝑙3 𝑙3 . . . 𝑙3

𝑙3 𝑙3 𝑙3 𝑙4 𝑙5 . . . 𝑙5

𝑙3 𝑙3 𝑙3 𝑙5 𝑙4 . . . 𝑙5
... ... ... ... ... . . . ...

𝑙3 𝑙3 𝑙3 𝑙5 𝑙5 . . . 𝑙4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝐷3,𝑛−3 =

1

δ(3 + δ)𝑛−4(𝑛− 3 + δ)2(𝑛+ δ)

𝑙1 = (3 + δ)𝑛−4(𝑛− 3 + δ)(𝑛− 3 + 𝑛δ+ δ2)

𝑙2 = (𝑛− 3)(3 + δ)𝑛−4(𝑛− 3 + δ)

𝑙3 = (3 + δ)𝑛−4(𝑛− 3 + δ)2

𝑙4 = (3 + δ)𝑛−5(𝑛− 3 + δ)2(3 + 𝑛δ+ δ2)

𝑙5 = 3(3 + δ)𝑛−5(𝑛− 3 + δ)2

By analogy, a statement can be formulated for the graph 𝐵𝑚,𝑛−𝑚.
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Statement 2.7. For a complete bipartite graph 𝐵𝑚,𝑛−𝑚 (Fig. 2.8) with 𝑛

vertices (𝑛 > 2𝑚), which are divided into two non-overlapping sets 𝑉1 and 𝑉2 such

that |𝑉1| = 𝑚, |𝑉2| = 𝑛 − 𝑚, and with unit edge weights, the rank distribution

does not depend on the value of δ. Vertices from set 𝑉1 have ranks 1, vertices

from set 𝑉2 — ranks 2.

1

. . .

𝑚

𝑚+ 1

𝑚+ 2

. . .

𝑛− 1

𝑛

Figure 2.8 — Complete bipartite graph 𝐵𝑚,𝑛−𝑚

The Laplace matrix is represented in block form

̃︀𝐿(𝐵′𝑚,𝑛−𝑚) =

⎛⎝(𝑛−𝑚+ δ)E𝑚 | −1𝑚×𝑛−𝑚

−1𝑛−𝑚×𝑚 | (𝑚+ δ)E𝑛−𝑚

⎞⎠ ,

where E — unit matrix; 1 — matrix of ones. In this case the inverse matrix can

be found using the Frobenius formula

⎛⎝𝐴 𝐵

𝐶 𝐷

⎞⎠−1 =
⎛⎝𝐴−1 + 𝐴−1𝐵𝐻−1𝐶𝐴−1 −𝐴−1𝐵𝐻−1

−𝐻−1𝐶𝐴−1 𝐻−1

⎞⎠ ,

where 𝐻 = 𝐷 − 𝐶𝐴−1𝐵. Thus

𝐻 = (𝑚+ δ)E𝑛−𝑚 −
𝑚

𝑛−𝑚+ δ
1𝑛−𝑚×𝑛−𝑚,
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Table 10 — Tournament table for the graph 𝐵𝑚,𝑛−𝑚

𝑘
Vertex

1 2 . . . 𝑚 𝑚+ 1 . . . 𝑛− 1 𝑛

∑︀
1 1 3 . . . 3 2 . . . 2 2 2𝑛− 2 +𝑚

2 3 1 . . . 3 2 . . . 2 2 2𝑛− 2 +𝑚

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
𝑚− 1 3 3 . . . 3 2 . . . 2 2 2𝑛− 2 +𝑚

𝑚 2 2 . . . 1 3 . . . 3 3 2𝑛− 2 +𝑚

𝑚+ 1 2 2 . . . 2 1 . . . 3 3 3𝑛− 2−𝑚

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
𝑛− 1 2 2 . . . 2 3 . . . 1 3 3𝑛− 2−𝑚

𝑛 2 2 . . . 2 3 . . . 3 1 3𝑛− 2−𝑚

̃︀𝐿−1(𝐵′𝑚,𝑛−𝑚) = 𝐷𝑚,𝑛−𝑚

⎛⎝(𝑙1 − 𝑙2)E𝑚 + 𝑙21𝑚×𝑚 𝑙31𝑚×𝑛−𝑚

𝑙31𝑚×𝑛−𝑚 (𝑙4 − 𝑙5)E𝑛−𝑚 + 𝑙21𝑛−𝑚×𝑛−𝑚

⎞⎠ ,

𝐷𝑚,𝑛−𝑚 =
1

δ(𝑚+ δ)(𝑛−𝑚+ δ)(𝑛+ δ)
,

𝑙1 = (𝑚+ δ)(𝑛−𝑚+ 𝑛δ+ δ2),

𝑙2 = (𝑛−𝑚)(𝑚+ δ),

𝑙3 = (𝑚+ δ)(𝑛−𝑚+ δ),

𝑙4 = (𝑛−𝑚+ δ)(𝑚+ 𝑛δ+ δ2),

𝑙5 = 𝑚(𝑛−𝑚+ δ).

Consider the tournament matrix for the graph 𝐵𝑚,𝑛−𝑚 (Table 10). The value

2𝑛− 2 +𝑚 < 3𝑛− 2−𝑚 at 𝑛 > 2𝑚, respectively, vertices from set 𝑉1 have ranks

1, vertices from set 𝑉2 — ranks 2.

The above results were published in the paper [58].
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2.3 Ranking taking into account vertex weights

When examining graph models of actual systems, it is not unusual for the

ranking of graph vertices, which only considers the graph topology, to yield in

correct outcomes. For instance, when examining the graph of a transportation

system, if there are numerous closely located vertices connected by edges of tiny

length, these vertices obtain higher ranks. However, such vertices may correspond

to minimally inhabited areas of the so-called "private sector". In this regard, it is

useful to consider additional characteristics of graph vertices, such as the weight

of a vertex, which can be interpreted as the number of inhabitants living in the

neighbourhood of a graph vertex.

Let us consider the graph 𝐺𝑇 = (𝑉,𝐸,𝑊,𝑃 ), where 𝑉 is the set of vertices,

𝐸 is the set of edges, 𝑊 is the matrix of edge weights, 𝑃 is the diagonal matrix of

vertex weights. According to Ohm’s law, as the magnitude of the current applied to

the system increases, the values of the potentials will increase proportionally. Thus,

if an electric current is supplied to some node of the electric circuit 𝑣𝑘, the value of

which depends on the weight of a vertex, the following expression can be used to

calculate the absolute potentials of the graph vertices:

Φ = ̃︀𝐿−1(𝐺′𝑇 )𝑃, (2.2)

where Φ represents the matrix of absolute potentials of the circuit nodes (graph

vertices), in the 𝑘-column of which are the potentials of the nodes obtained by

applying an electric current of magnitude 𝑝𝑘 to node 𝑣𝑘, ̃︀𝐿−1(𝐺′𝑇 ) is the inverse

Laplace matrix for the graph 𝐺𝑇 to which node 𝑣𝑛+1 was artificially added.

The potential difference of two points of the electric field multiplied by the

magnitude of the charge is equal to the work required to move the charge between

these points. Since the artificially added vertex 𝑣𝑛+1 has zero potential, the values ob

tained in the matrix Φ can be interpreted as work to move the charge to vertex 𝑣𝑛+1.
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By multiplying the matrix of absolute potentials with the unit vector-column,

we can obtain the vector of sums of potentials of the graph vertices, whose 𝑖-th

component is equal to
𝑛∑︀

𝑘=1

φ𝑘
𝑖 . Denote it by 𝑎.

The value 𝑎𝑖 represents the total work of moving electric charges from vertex

𝑣𝑖 to vertex 𝑣𝑛+1 at sequential supply of current to the vertices of the graph 𝑣𝑘, 𝑘 =

1, . . . ,𝑛, where the value of the supplied current is equal to the weight of vertex 𝑝𝑘.

Calculating the potentials in this way, we can avoid the mandatory use of ranks

in the previously proposed approach, since in this case the sums of the elements of

the matrix Φ on the rows will be different.

Example 2.2. Consider the star graph 𝑆𝑝, shown in Fig. 2.9, with an edge

weight matrix 𝑊 whose elements are the inverse of the lengths of the edges between

the corresponding vertices.
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Figure 2.9 — Weighted star graph 𝑆𝑝

𝑊 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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1
200 0 0 0 0 0

1
300 0 0 0 0 0

1
400 0 0 0 0 0

1
500 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Calculating the values of potentials without taking into account the weights of

vertices, based only on the graph topology, we obtain the tournament table (table

11) at δ = 0,0002.
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Table 11 — Tournament table of graph 𝑆𝑝

№ 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 6 𝑘 = 7
∑︀

1 1 2 2 2 2 2 11
2 2 1 3 3 3 3 15
3 3 3 1 4 4 4 19
4 4 4 4 1 5 5 23
5 5 5 5 5 1 6 27
6 6 6 6 6 6 1 31

The vertex 𝑣1, located in the centre of the star, expectedly received the smallest

sum of ranks, respectively, it is the most central. The worst ranks were obtained by

the vertex 𝑣6, the most distant from the centre of the star.

If we additionally introduce the matrix of vertex weights 𝑃 :

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

100 0 0 0 0 0

0 200 0 0 0 0

0 0 400 0 0 0

0 0 0 600 0 0

0 0 0 0 800 0

0 0 0 0 0 1000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
so that the central vertex has the smallest weight and the vertex 𝑣6 furthest from

the centre has the largest weight, we obtain the matrix Φ.

Φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

87407.34 171386.93 336182.06 494758.5 647461.75 794612.14

85693.47 187634.25 329590.26 485057.36 634766.42 779031.51

84045.52 164795.13 400175.06 475729.33 622559.37 764050.14

82459.75 161685.79 317152.89 636564.63 610812.97 749634.1

80932.72 158691.6 311279.69 458109.73 895797.91 735751.98

79461.21 155806.3 305620.05 449780.46 588601.59 1176920.13

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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For a star graph 𝑆𝑝, the total work vector 𝑎 will take the following form:

𝑎 = (2531808.72, 2501773.25, 2511354.54, 2558310.11, 2640563.63, 2756189.75),

which corresponds to ranks (4,6,5,3,2,1). The largest sum of potentials is observed

at vertex 𝑣6, despite its remoteness, and vertex 𝑣1 does not get the worst rank, its

favourable location in the graph compensates for the small weight of the vertex.

2.3.1 Special cases: star, clique, complete bipartite graph

Statement 2.8. Elements of the total work vector for a star graph with

edges of unit weight and vertex weight matrix 𝑃

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝1 0 0 . . . 0 0

0 𝑝2 0 . . . 0 0
... ... ... . . . ... ...

0 0 0 . . . 𝑝𝑛−1 0

0 0 0 . . . 0 𝑝𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

can be calculated as follows

𝑎1 =
1

δ(𝑛+ δ)

(︀
𝑝1(1 + δ) +

𝑛∑︁
𝑗=2

𝑝𝑗
)︀
, (2.3)

𝑎𝑖 =
1

δ(1 + δ)(𝑛+ δ)

(︀
𝑝1(1 + δ) + 𝑝𝑖(1 + 𝑛δ+ δ2) +

∑︁
𝑗 ̸=1,𝑖

𝑝𝑗
)︀
. (2.4)

In particular, for a matrix 𝑃 of the form

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0

0 1 0 . . . 0 0
... ... ... . . . ... ...

0 0 0 . . . 1 0

0 0 0 . . . 0 𝑝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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expressions for the elements of vector 𝑎:

𝑎1 =
𝑛− 1 + 𝑝+ δ

δ(𝑛+ δ)
, (2.5)

𝑎𝑖 =
δ2 + δ(𝑛+ 1) + 𝑝+ 𝑛− 1

δ(1 + δ)(𝑛+ δ)
, 𝑖 = 2,...,𝑛− 1, (2.6)

𝑎𝑛 =
𝑝δ2 + δ(𝑝𝑛+ 1) + 𝑘 + 𝑛− 1

δ(1 + δ)(𝑛+ δ)
. (2.7)

Statement 2.9. For 𝑛 – clique 𝐶𝑛 with vertex weight matrix 𝑃 , the elements

of vector 𝑎 are computed as

𝑎𝑖 =
1

δ(𝑛+ δ)

⎡⎣𝑝𝑖(1 + δ) +
∑︁
𝑗 ̸=𝑖

𝑝𝑗

⎤⎦ . (2.8)

Statement 2.10. For a complete bipartite graph 𝐵𝑚,𝑛−𝑚 with 𝑛 vertices

(𝑛 > 2𝑚), where the vertices are partitioned into two non-overlapping subsets 𝑉1

and 𝑉2 such that |𝑉1| = 𝑚 and |𝑉2| = 𝑛−𝑚, with unit edge weights, the elements

of the total work vector can be computed as

𝑎𝑖 =

(𝑛−𝑚)tr(𝑃 ) + (𝑛δ+ δ2)𝑝𝑖 + δ
𝑛∑︀

𝑗=𝑚+1

𝑝𝑗

δ(𝑛−𝑚+ δ)(𝑛+ δ)
, 𝑖 ∈ [1,𝑚]; (2.9)

𝑎𝑖 =

𝑚tr(𝑃 ) + (𝑛δ+ δ2)𝑝𝑖 + δ
𝑛∑︀

𝑗=1

𝑝𝑗

δ(𝑛−𝑚+ δ)(𝑛+ δ)
, 𝑖 ∈ [𝑚+ 1,𝑛], (2.10)

where tr(𝑃 ) is the trace of 𝑃 matrix.
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Chapter 3. Application of the proposed methods to graph vertex

ranking problems

3.1 Transport system of Petrozavodsk

3.1.1 Transport network model building

The condition of the transportation infrastructure plays a significant role in

the socio-economic development of the region. It supports the interdependence of

the city’s resources, including businesses, residential areas, goods movement, pub

lic transport, and retail.Enhancements to the transport system enhance residents’

quality of life, reduce cargo transportation expenses, minimize road accidents, and

foster regional economic efficacy.

There are various ways to improve the transport system. This may involve

improving the road surface, building interchanges, new bypasses, bridges, pedestrian

crossings, increasing traffic lanes, introducing new traffic lights. In addition, it

may be related to changes in traffic rules, restriction of entry to the city centre,

introduction of one-way traffic on some streets, introduction of a special lane for

public transport, rational definition of public transport routes.

To solve the latter type of problems, mathematical modelling of the city’s

transport system is necessary [64—69]. Transport system modelling involves several

steps. At the first stage, the road network graph is constructed. Next, the flows on

the road segments of the transport network are determined. This scheme is based

on the correspondence matrix, which contains information about the movements of

people from one vertex of the graph to another.

The correspondence matrix makes it possible to find equilibrium traffic flows

[70], make an optimal public transport schedule, determine the optimal location of

stops for public transport, determine rational routes for public transport, including
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bicycle lanes [71], estimate the number of transported passengers and the revenue

of public transport companies. Information on correspondences can be obtained

from population surveys or from information obtained from video cameras installed

on roads. However, this information is usually difficult to obtain or may be unre

liable. Traditionally, gravity and entropy models[67; 72; 73] are used to construct

the correspondence matrix. Obviously, they should be combined with the results

of the population survey.

Figure 3.1 — Petrozavodsk urban district

The basis of the Petrozavodsk transport network model was built using the

road graph represented in OpenStreetMap [74]. This is a non-commercial project

aimed at creating a free geographical map of the world by Internet users.

The road class "roads with possibility of motorised traffic" was chosen as

significant. When building the model, a graph was obtained, the edges of which

correspond to roads with the possibility of road traffic, the vertices of the graph
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correspond to intersections of motorways. Thus, the graph of the road network of

Petrozavodsk city was obtained, containing 1531 vertices and 2081 edges (Fig. 3.2).

Figure 3.2 — Petrozavodsk transport graph

According to the summary report on the results of the monitoring of the perfor

mance efficacy of the local government bodies of the urban districts and municipal

areas of the Republic of Karelia in 20211, permanent average population of the

Petrozavodsk urban district was 280 801. To distribute the city’s residents accord

ing to the nodes of the graph, information was required on the number of living

quarters located on the territory of Petrozavodsk. Web portal “Housing reform (Re

forma ZHKKH)” 2 presents information about the houses of the Republic of Karelia
1https://gov.karelia.ru/upload/medialibrary/7d2/inatqynw9blv2ib412inu0u9lwcijshk/

SVODNYY-DOKLAD.pdf
2http://reformagkh.ru

https://gov.karelia.ru/upload/medialibrary/7d2/inatqynw9blv2ib412inu0u9lwcijshk/SVODNYY-DOKLAD.pdf
https://gov.karelia.ru/upload/medialibrary/7d2/inatqynw9blv2ib412inu0u9lwcijshk/SVODNYY-DOKLAD.pdf
http://reformagkh.ru
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that is provided under government decree #731 of 23 September 2010. The exported

data contains the address of each house according to the federal information address

system, as well as the technical specifications of the building.

If we take as a valid approximation that an equal number of people live in an

average dwelling unit, such data can be used to approximate the population density

in a particular part of the city.

In the first stage, residents were distributed evenly over all living quarters,

based on information from open sources. If the number of living quarters for the

house was not specified, the parameter “total number of rooms” was chosen.

total_ppl
total_quarters

= residents_per_quarter,

where total_ppl is the total city population,

total_quarters is the total number of living quarters,

residents_per_quarter is the number of residents per quarter.

The number of the house residents is calculated as the product of the number

of residents per quarter and the number of living quarters in the house:

residents_per_quarter · living_quarters_count,

where living_quarters_count is the number of living quarters in the house.

Next, for each house by the address received on the portal, geographic coordi

nates were obtained using the Yandex Maps service. These coordinates are used to

find the nearest node of the graph to which the house was attached. According to

this binding, the weight of each vertex represents the total number of residents living

in houses in the vicinity of the graph node, i.e. the intersection of urban roads.

Table 12 shows the number of residents living in houses attached to the graph

nodes belonging to the city districts.
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Fig. 3.3 shows the distribution of city residents by vertices of the graph. The

larger vertex size corresponds to a larger weight value. The largest vertex size

corresponds to the dormitory districts of the city and places with new dense building.

Figure 3.3 — Heat map of resident distribution

The next stage of work was to search for data on organizations located in the

territory of the Petrozavodsk City District. Data from the OpenStreetMap project

were used first. All objects described as, for instance, an office, an educational

institution, a shopping center, etc. have been selected. For each type of facility, a

weight was chosen based on both the approximate number of employees typically

employed by that type of establishment and the attendance of such establishments

by visitors. Thus, the number of staff and the visitor flow to the city clinic or

school will exceed the same for the trade organization. The weight value was chosen

from the half-interval (0,1].

Organizations were bound to the graph nodes according to the geographical

coordinates, just like the residential buildings before. Each node was assigned an

additional characteristic ”weight of organizations”, which is a type-weighted sum of

the number of organizations associated with this vertex.
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Fig. 3.4 visualizes the distribution of organizations over the vertices of the

transport graph. The larger vertex size corresponds to the larger weighted sum of

organizations. The figure shows that a large number of organizations are concen

trated in the city center.

Figure 3.4 — Distribution of organisations by vertices of the graph

To visualise the results obtained, a web service was created, the process of

creation of which is presented in [75].
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Table 12 — Districts of Petrozavodsk

№ City district
Residents
number

Organisations
weight

Vertices
number

1 Golikovka 25723.8 69.3 60
2 Drevlyanka 51134.7 123.7 98
3 Zheleznodorozhny 3414.4 6.9 14
4 Zareka 15482.9 36.1 44
5 Kamenny bor 5057.4 10.0 16
6 Kirpichnny zavod 1006.1 0.5 21
7 Klyuchevaya 26689.4 46.2 64
8 Kukkovka 36887.5 77.5 86
9 Oktyabrsky 35685.6 80.1 44
10 Pervomaisky 17684.1 91.0 42
11 Perevalka 26275.2 41.5 113
12 Peski 0.0 0.8 7
13 Ptizefabrika 850.8 0.7 16
14 Rybka 4017.6 4.6 37
15 Sainavolok 582.9 0.0 7
16 Severnaya promzona 747.2 19.4 18
17 Solomennoe 2419.6 5.3 27
18 Sulazhgora 4665.8 18.7 44
19 Teplichny 326.4 4.0 12
20 Tomici 47.3 0.6 15
21 Center 21526.2 264.1 89

3.1.2 Districts of Petrozavodsk

Let us consider a graph with the following structure: the vertices of the graph

based on the Petrozavodsk transport system [76] were divided into non-overlapping

subsets corresponding to the districts of the city (Fig. 3.5). Here, the vertex labels

correspond to the numbering in Table 12. If two districts are directly connected
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by motorways, there is an edge between their corresponding vertices. The lengths

of the edges are proportional to the lengths of the corresponding shortest paths

in the original graph. For example, districts 16 and 12 are connected by a longer

path than districts 16 and 19.

Figure 3.5 — Transport graph of the city districts (see Table 12)

The weights of the edges for calculation are chosen equal to the inverse of the

lengths of the roads connecting the city districts. The value δ = 0,1. Absolute

potentials were calculated for cases when current is supplied sequentially to the

graph vertices from 1 to 21.

Table 13 shows the sums of ranks calculated on the basis of Kirchhoff’s rules

and by the PageRank method. The most important vertices of the graph have the

lowest rank value according to Kirchhoff’s rules, but the highest one calculated by

the PageRank method. For the convenience of comparing the results, the data were
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Table 13 — Ranking the vertices of the neighbourhood graph
№ City district Rank sum PageRank
1 Golikovka 147 0.057171
2 Drevlyanka 155 0.038292
3 Zheleznodorozhny 171 0.037208
4 Zareka 140 0.064489
5 Kamenny bor 160 0.054556
6 Kirpichnny zavod 212 0.021275
7 Klyuchevaya 175 0.052078
8 Kukkovka 166 0.057698
9 Oktyabrsky 156 0.05312
10 Pervomaysky 151 0.054764
11 Perevalka 131 0.074412
12 Peski 202 0.037077
13 Ptizefabrika 205 0.028448
14 Rybka 154 0.060789
15 Sainavolok 195 0.032919
16 Severnaya promzona 156 0.059534
17 Solomennoe 213 0.035842
18 Sulazhgora 174 0.043686
19 Teplichny 169 0.034296
20 Tomici 193 0.040282
21 Centre 133 0.062062

normalised, and PageRank values were considered with opposite sign and ordered

(Fig. 3.6). The best ranks were obtained for the districts of Perevalka, Centre,

Zareka, Golikovka, which are well integrated into the transport system of the city,

and the worst — for remote districts of the city, such as Kirpichny Zavod, Ptize

fabrika, Solomennoe and Sainavolok.
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Figure 3.6 — Comparison of values obtained using Kirchhoff’s rule (KR) and PageR
ank(PR) method

Let us introduce a weight matrix 𝑃 for the graph of city districts, the diagonal

elements of which correspond to the values of the number of residents in the districts

of Petrozavodsk given in the table 14.

The figure 3.7 shows the curves obtained based on 𝑎 vectors for different val

ues of δ, as well as the curve of distribution of residents by vertices of the graph.

The use of vertex weights based on the number of residents allows us to obtain

more meaningful ranks for dormitory areas of the city (e.g., the Kliuchevaya dis

trict) compared to the original method. Fig. 3.8 shows comparison of the results

of ranking of the graph nodes at δ = 0.00061, 𝑅1 corresponds to ranking without

taking into account the node weights, 𝑅2 takes into account the number of inhab

itants in the graph nodes. Such districts as Drevlyanka, Kliuchevaya, Kukkovka

and Oktyabrsky are the most densely populated and loaded, their ranks have in

creased compared to the unweighted approach, while there is a decrease in ranks

for sparsely populated districts.
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Table 14 — Number of residents in the city districts
№ City district Number of residents
1 Golikovka 25723.8
2 Drevlyanka 51134.7
3 Zheleznodorozhny 3414.4
4 Zareka 15482.9
5 Kamenny bor 5057.4
6 Kirpichnny zavod 1006.1
7 Klyuchevaya 26689.4
8 Kukkovka 36887.5
9 Oktyabrsky 35685.6
10 Pervomaysky 17684.1
11 Perevalka 26275.2
12 Peski 0.0
13 Ptizefabrika 850.8
14 Rybka 4017.6
15 Sainavolok 582.9
16 Severnaya promzona 747.2
17 Solomennoe 2419.6
18 Sulazhgora 4665.8
19 Teplichny 326.4
20 Tomici 47.3
21 Centre 21526.2

3.1.3 City transport network graph vertex ranking

Next, let us consider the graph of the city transport system (Fig. 3.2). Above

(and in [76]) the construction of an undirected graph of the transport network of

Petrozavodsk is described. This graph can be considered as an directed graph if

we take into account the direction of traffic on the road sections corresponding to

the edges of the graph. It consists of 1530 vertices and 3781 edges. The values in
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Figure 3.7 — Ranking curves depending on the choice δ

the graph adjacency matrix are equal to the inverse of the lengths of road segments

between the corresponding pairs of vertices.

Let us compute the number of simple paths of length 3 passing through the

vertices of the graph, according to statement 1.2. Figure 3.9 shows a heat map

of 𝑛3 values. Larger and darker coloured nodes correspond to the more frequent

occurrence of a vertex in simple paths of length 3.

It can be seen that there is an accumulation of high ranking vertices in the

districts of Kukkovka and Perevalka, as well as in the remote district of Solomennoye.

This result can be explained by the fact that these areas are mainly low-rise buildings

of the so-called private sector. The length of road segments there is usually small,

which generates a large number of shortcuts.

Let us calculate the values of integral centrality of vertices. Since the calcu

lation of the number of occurrences of a vertex in the paths requires raising the

adjacency matrix to power 𝑑, to simplify the calculation process in graphs with a

large number of vertices, we can restrict ourselves to considering paths of length
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Figure 3.8 — Comparison of vertex ranking results

less than 𝑛 − 1 to estimate centrality. Fig. 3.10 shows a heat map of the vertices

of the transport graph for which the integral centrality values for path lengths up

to 𝑑 = 100 have been computed.

This approach also allows to obtain a cluster of high rank vertices at Kukkovka,

Perevalka and Solomennoe. In this case, a large number of short cycles appear

in the transport graph, which significantly increases the total number of vertex

appearances in the paths.

Further we will consider an undirected graph of the transport network of

Petrozavodsk. Fig. 3.11 shows the visual representation of centrality values of ver

tices of the road network graph. The larger vertex size corresponds to the larger

Myerson centrality value. The approach that takes into account the number of

occurrences of vertices in paths of length 10, including cycles, also indicates the

importance of vertices located in Kukkovka and Perevalka districts. In addition, it

can be seen that large nodes are located in the city centre.
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Figure 3.9 — Heat map of 𝑛3 nodes of the Petrozavodsk transport network graph.

Let us calculate the sums of the ranks of the graph nodes based on the val

ues of the absolute potentials of the nodes. A heat map was constructed for the

rank vector (Fig. 3.12).

Similar results for these areas were obtained above when calculating the cen

trality values of vertices using the modified Myerson method, integral centrality and

finding the number of occurrences of vertices in simple paths of length 3. Such re

sults can be explained by the accumulation of a significant number of small streets
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Figure 3.10 — Heat map of integral centrality values of the Petrozavodsk transport
network graph vertices

with a small length of roads, which in turn leads to the appearance in the graph of

edges with significant carrying capacity (the weight of the edge is chosen equal to

the value inverse of the road length), as well as a large number of short cycles.

Let us compare the obtained results with the ranking results using the PageR

ank method. Fig. 3.13 shows the heat map of the nodes of the unweighted graph

of the transport network; Fig. 3.14 – heat map of the vertices of the graph with
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Figure 3.11 — Centrality of vertices by Myerson at 𝑘 = 10

weighted edges. The weights of the edges are equal to the inverse of the lengths

of the corresponding road segments. For PageRank, vertex ranks are distributed

more evenly, the heat map has a large number of vertices with average ranks. But

adding edge weights "lightens" the heatmap.

Applying the method of ranking the vertices of the graph based on Kirchhoff’s

rules, taking into account the weights of vertices equal to the number of residents

living in close proximity to the road intersection corresponding to the vertex, to
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Figure 3.12 — Heat map of transport graph vertex ranks based on absolute potential
values (weighted edges)

the transport graph, we obtain a heat map of ranks (Fig. 3.15), where there are no

clusters of vertices with high ranks. The darkest vertices of the graph on the heat

map correspond to new districts with dense building.

Above, when estimating the centrality of the graph vertices, the weights of

the edges were considered as values inverse to the lengths of the corresponding road

segments. Based on the data obtained during the preparation of the [76] paper, the
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Figure 3.13 — Heatmap of vertex ranks of unweighted transport graph, PageRank
method

traffic flows on the edges of the transport graph were calculated. These values can

also be used as weights of the edges.

Fig. 3.16 shows the heat map of graph vertex ranks, where the weights of

edges are equal to the values of transport flows obtained on the basis of integral

centrality, Fig. 3.17 – heat map of ranks obtained on the basis of absolute potential

values, Fig. 3.18 – ranks calculated using the total work of charge transfer between



85

Figure 3.14 — Heatmap of vertex ranks of weighted transport graph, PageRank
method

the nodes of the electric circuit. Here, the nodes with the highest centrality are

coloured red, those with the lowest are coloured green.

The results obtained with the integral centrality in this case match well with

the real traffic situation in the city, for example, the vertices corresponding to the

intersections with Komsomolsky Avenue received the highest centrality values; this

street is one of the most loaded in the city.
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Figure 3.15 — Heat map of graph vertex ranks (weighted vertices and edges) based
on values of total charge transfer work

3.2 Ant colony

Data from Swiss biologists obtained during the [77] study were used as initial

data. A group of scientists recorded the interaction time between pairs of ants within

a colony, provided that at a certain moment several ants are exposed to an infection.

This resulted in interaction graphs (Fig. 3.19, Fig. 3.22), where the vertices are ants,
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Figure 3.16 — Heat map of graph vertex rankings where the weight of edges is equal
to the traffic flow (integral centrality)

and the weights of the edges between these vertices are equal to the total contact

time during the experiment. For convenience of data presentation, edges describing

interactions between ants that lasted less than 15 % of the maximum possible within

a colony were removed. The colony under consideration consists of 105 ants.

Within a colony, ants are divided into groups "nurses" (n) – nurses, "foragers"

(f) – foragers, and "queen" (q) – the colony’s queen.
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Figure 3.17 — Heat map of graph vertex ranks, where edge weights are equal to the
transport flow (absolute potentials)

Fig. 3.19 shows the graph of colony interactions before infection. The vertex

corresponding to the mate ("queen") is shown as a triangle. We rank the vertices

of the pre-infestation interaction graph using the modified Myerson value and based

on the values of absolute potentials that take into account the weights of edges.

Since the method of calculating the vector of centrality using the modified Myerson

value involves working with the adjacency matrix, we chose a threshold value of
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Figure 3.18 — Heat map of graph vertex ranks, where edge weights are equal to the
transport flow (charge transfer work)

interaction time equal to 0.15 · 𝑇𝑚𝑎𝑥, where 𝑇𝑚𝑎𝑥 is the maximum interaction time

between ants in the colony. All edges whose weights were less than the threshold

were labelled 0 in the adjacency matrix, while the rest were labelled 1.

The highest ranks were obtained by ants from the "nurses" group (nodes 19,

45, 59); on the heat maps (Fig. 3.20, Fig. 3.21) the corresponding nodes are shaded

darkest. Table 15 shows the ranks of the vertices that will be subsequently infected.

After infestation, the structure of the graph changes markedly (Fig. 3.22).

Healthy ants minimise communication with infected ants. Meanwhile, isolated
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Figure 3.19 — Pre-infestation ant colony interaction graph

Table 15 — Ranks of vertices before the infection
Id 9 37 47 49 50 64 73
Ranks based on potentials 75 54 79 - 47 89 77
Ranks based on the Myerson vector 78 64 76 - 34 90 74

infected ants form their own network of interactions in which some nodes have

increasing ranks, which may be due to becoming leaders in their community. The

infected individuals were selected from the "foragers" group. All of them, with the

exception of vertex 25, were isolated.

Table 16 presents the ranks of the vertices corresponding to the ants that

were exposed to the infestation. Close ranks indicate equal roles of vertices in the

system. The highest ranked node after infestation is the node corresponding to

the queen of the colony.
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Figure 3.20 — Heat map of graph vertex ranks prior to infection. Modified Myerson
value

Table 16 — Ranks of infected vertices
Id 9 37 47 49 50 64 73
Ranks based on potentials 54 74 72 69 78 70 73
Ranks based on the Myerson vector 55 75 72 64 70 49 69

3.3 St. Petersburg Subway

As an object of computational experiment we used the graph constructed on

the basis of the St. Petersburg Subway scheme (Fig. 3.25). The corresponding

graph (Fig. 3.26) contains 72 vertices.

Let us estimate the centrality of vertices in this graph using the modified My

erson vector for paths of length 5 and 10 (Table 17). The lowest centrality values

are observed at Devyatkino, Pr.Veteranov, Parnas, Kupchino, Rybatskoe, Dybenko

St., Komendantsky Prospekt, Mezhdunarodnaya, Begovaya stations. All these sta
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Figure 3.21 — Heat map of graph vertex ranks prior to infection. Absolute potentials

Figure 3.22 — Post-infestation ant colony interaction graph

tions are terminal stations. The highest centrality values are at transfer stations,

the highest at Sadovaya, Spasskaya, Sennaya Ploshchad stations. According to St.

Petersburg Subway statistics (see appendix 3.4) these stations have the highest daily
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Figure 3.23 — Heat map after infestation. Modified Myerson value

Figure 3.24 — Heat map after infestation. Absolute potentials

and monthly passenger traffic. Although, according to the same statistics, the pas

senger flow is also quite high at the end stations of dormitory districts.
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Figure 3.25 — Scheme of St. Petersburg Subway

Next, we rank the vertices of the metro graph based on the values of absolute

potentials of the corresponding nodes of the electric circuit. Since the information

on the length of distances between stations is not freely available, the inverse of

the time required to travel between pairs of neighbouring stations was chosen as

the weights of the edges. Fig. 3.27 shows a heat map of the graph vertex ranks.

A darker colouring corresponds to a higher rank of a vertex; the numbers indi

cated on the vertices correspond to the ranks. The highest ranks were obtained

for stations Vladimirskaya, Dostoevskaya, Spasskaya, Sadovaya, Sennaya, Ligovsky

Prospekt. The worst ranks are observed on the red line: Akademicheskaya, Grazh

dansky Prospekt, Devyatkino stations.

In the case of metro graph analysis, for example, in order to evaluate more

favourable places for advertising placement, information about passenger flow by

stations per day can be used as the weights of vertices (appendix 3.4). The ranking



95

Figure 3.26 — Graph of St. Petersburg Subway

result considering passenger flow is shown in Fig. 3.28. Here, the vertex with the

highest rank is Ploshchad Vosstaniya (in the ranking considering only the edge

weights, this station had a rank of 9). It is worth noting that some peripheral

stations, which had the worst ranks, became significant in this approach, because

the flow at these terminal stations of branches is quite high.

3.4 The social network of the Star Wars saga

Dr Evelina Gabasova – a member of the Alan Turing Institute – conducted a

study based on the scripts3 of the Star Wars film series [78]. As a result, the social

network graph of the whole saga was constructed (Fig. 3.29), as well as the social

network graphs of each episode (Fig. 3.30). The nodes of the graphs correspond to

the characters in the films; the presence of a connection between a pair of vertices
3https://imsdb.com/

https://imsdb.com/
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Table 17 — Centrality values of some vertices, modified Myerson value
Station 𝑠𝑖(5) σ𝑖(5) 𝑠𝑖(10) σ𝑖(10)

Devyatkino 44 7.33 1 588 144.36
Prospect Veteranov 44 7.33 1 784 162.18

Parnas 44 7.33 1 598 145.27
Kupchino 44 7.33 1 648 149.82
Rybatskoe 44 7.33 2 154 195.82

Komendantsky Prospekt 44 7.33 1 992 181.09
Dybenko Street 46 7.67 2 927 266.09
Mezdunarodnaya 46 7.67 4 281 389.18

Begovaya 46 7.67 3 563 323.91
Spasskaya 1 988 331.33 964 437 87 676.09
Sadovaya 2 578 429.67 1 224 429 111 311.73

Sennaya Ploshchad 2 810 468.33 1 342 204 122 018.55

Figure 3.27 — Heat map of vertex ranks of the St. Petersburg subway graph
(weighted edges)

means that the corresponding characters both speak in the same scene. The size

of each vertex corresponds to the total number of scenes in which the character
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Figure 3.28 — Heat map of vertex ranks of the St. Petersburg subway graph
(weighted vertices and edges)

appears. It can be seen that the saga graph is visually divided into two parts

(corresponding to the classic trilogy and the prequel trilogy), which are connected

by the nodes Obi-Wan Kenobi, R2-D2 and C-3PO. These characters appear in all

episodes. There are a total of 144 characters in the film series.

Let us analyse the overall graph of the saga and the graphs of the individual

episodes using the methods proposed in the thesis. These graphs are undirected. The

weight of an edge is equal to the number of scenes in which the characters correspond

ing to the vertices incident to the edge participate together. The weight of a vertex

is equal to the number of scenes in which the corresponding character participates.

The 18 table lists the most central characters in the saga, determined using the

Myerson vector, absolute circuit potentials, total charge transfer work, and integral

centrality. These ranking results can be compared with the results obtained earlier

in [78] using degree centrality and betweenness centrality.
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Figure 3.29 — Star Wars social network graph

Tables 19 – 24 list character ranks for each episode of the saga separately,

obtained using the Myerson vector, absolute potentials, total charge transfer work,

and integral centrality.

Star Wars creator George Lucas said in an interview that the saga is the

story of Anakin Skywalker, but analysing the centrality of the vertices in the overall

graph, we can also conclude that Obi-Wan Kenobi, Han Solo and Chewbacca are

the links of the story, despite the fact that the second and third characters take

part only in the classic trilogy.

In the first three episodes of the saga, the vertex corresponding to Anakin has

the highest centrality, but calculating centrality using the total charge transfer work

indicates the centrality of the R2-D2 vertex. This approach to calculating centrality

takes into account the weight of the vertex, in this case the number of episodes in
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Table 18 — Star Wars character ranks
Rank Myerson vector Absolute po

tentials
Total work

1 ANAKIN OBI-WAN CHEWBACCA
2 C-3PO R2-D2 HAN
3 OBI-WAN ANAKIN LEIA
4 PADME PADME REY
5 R2-D2 QUI-GON LUKE
Rank Integral cen

trality
Degree central
ity

Betweenness cen
trality

1 HAN ANAKIN OBI-WAN
2 CHEWBACCA R2-D2 PADME
3 C-3PO OBI-WAN R2-D2
4 LEIA PADME C-3PO
5 LUKE C-3PO LUKE

Table 19 — Episode I character ranks
Rank Myerson vector Absolute poten

tials
1 QUI-GON QUI-GON
2 ANAKIN PADME
3 PADME OBI-WAN
4 JAR JAR ANAKIN
5 OBI-WAN R2-D2
Rank Total work Integral central

ity
1 R2-D2 QUI-GON
2 PADME ANAKIN
3 OBI-WAN JAR JAR
4 QUI-GON PADME
5 ANAKIN OBI-WAN

which the character has participated, but R2-D2 is not an actor in his own right,

most often he accompanies Anakin or Obi-Wan Kenobi.
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Table 20 — Episode II character ranks
Rank Myerson vector Absolute poten

tials
1 ANAKIN ANAKIN
2 OBI-WAN PADME
3 PADME OBI-WAN
4 MACE WINDU R2-D2
5 COUNT

DOOKU
MACE WINDU

Rank Total work Integral central
ity

1 R2-D2 ANAKIN
2 PADME PADME
3 OBI-WAN OBI-WAN
4 LAMA SU R2-D2
5 ANAKIN C-3PO

Table 21 — Episode III character ranks
Rank Myerson vector Absolute poten

tials
1 ANAKIN ANAKIN
2 OBI-WAN R2-D2
3 BAIL ORGANA OBI-WAN
4 EMPEROR C-3PO
5 PADME BAIL ORGANA
Rank Total work Integral central

ity
1 R2-D2 ANAKIN
2 OBI-WAN OBI-WAN
3 ANAKIN R2-D2
4 C-3PO EMPEROR
5 YODA PADME

In the classic trilogy (episodes IV, V and VI) in the ranking that takes into

account the frequency of appearances on the screen, the most important vertices are
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Table 22 — Episode IV character ranks
Rank Myerson vector Absolute poten

tials
1 LUKE LUKE
2 LEIA CHEWBACCA
3 C-3PO R2-D2
4 R2-D2 C-3PO
5 BIGGS OBI-WAN
Rank Total work Integral central

ity
1 R2-D2 LUKE
2 C-3PO HAN
3 CHEWBACCA C-3PO
4 LUKE CHEWBACCA
5 OBI-WAN LEIA

Table 23 — Episode V character ranks
Rank Myerson vector Absolute poten

tials
1 HAN CHEWBACCA
2 LEIA HAN
3 LUKE LEIA
4 CHEWBACCA C-3PO
5 DARTH VADER LANDO
Rank Total work Integral central

ity
1 C-3PO HAN
2 CHEWBACCA LEIA
3 LEIA C-3PO
4 HAN CHEWBACCA
5 R2-D2 LANDO

those corresponding to Chewbacca, R2-D2 and C-3PO, the other methods indicate

the importance of vertices corresponding to Han Solo, Luke and Leia Skywalker.

But the Darth Vader vertex is in the top 5 only in episode V for the Myerson vector.
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Table 24 — Episode VI character ranks
Rank Myerson vector Absolute poten

tials
1 LUKE HAN
2 C-3PO CHEWBACCA
3 HAN LEIA
4 LANDO R2-D2
5 MON MOTHMA LUKE
Rank Total work Integral central

ity
1 CHEWBACCA HAN
2 HAN C-3PO
3 R2-D2 LEIA
4 LEIA CHEWBACCA
5 C-3PO LUKE
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a) Episode I: The Phantom Menace; b) Episode II: Attack of the Clones;

c) Episode III: Revenge of the Sith; d) Episode IV: A New Hope;

e) Episode V: The Empire Strikes Back; f) Episode VI: Return of the Jedi;
Figure 3.30 — Social network graphs of the saga’s episodes.
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Conclusion

The main results of the thesis work are as follows:

1. In the course of this work we proposed a method for computing the cen

trality of vertices of a directed graph as the Myerson value in a cooperative

game, where the characteristic function is defined in terms of the number of

simple paths of fixed length in the subgraph generated by the coalition. To

calculate centrality, formulas were proposed to find the number of appear

ances of a vertex in simple paths of lengths 2 and 3 through the adjacency

matrix.

2. We introduced the notion of integral centrality through the value of the

definite integral of the function defining the payoff in a cooperative game,

whose characteristic function is given by the number of total appearances of

a graph vertex in simple paths. It is shown that the Boldi – Vigna axioms

are valid for such a measure of centrality.

3. For vertices of undirected graphs, we modified the Myerson value in the

cooperative game, where the characteristic function corresponds to the num

ber of simple paths of fixed length, allowing cycles to be included in the

consideration.

4. A method for estimating the centrality of vertices of a graph with weighted

edges was developed, based on the values of absolute potentials of nodes of

an electric circuit calculated on the basis of Kirchhoff’s rules using the

Laplace matrix. After calculating the absolute potentials, a two-stage

ranking procedure using the voting theory approach is proposed. Rank

distributions are found for a number of special cases (for clique, star graph,

double star and complete bipartite graph).

5. A method for finding the centrality values of the vertices of a graph with

weighted vertices and edges was proposed, based on the values of the total

work required to move charges between the nodes of an electric circuit. The
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choice of different characteristics as vertex weights allows us to evaluate

the importance of vertices from different points of view. For a number of

special cases (for clique, star graph and complete bipartite graph) analytical

expressions for finding centrality values are found.

6. The graph model of the transport system of the city of Petrozavodsk is

constructed in this paper. The intersections of motorways are considered

as the vertices of the graph. The distribution of city residents and organ

isations registered on the territory of Petrozavodsk urban district on the

graph vertices is performed.

7. The proposed methods of graph vertex ranking have been applied to the

graph of the transport network of Petrozavodsk, to the graph of districts of

Petrozavodsk, to the graphs of interactions between individuals of an ant

colony, to the graph of the St. Petersburg subway, as well as to the social

graph of the Star Wars saga.

In conclusion, the author expresses her gratitude and great appreciation to

her supervisor Mazalov V. V. for support, assistance, discussion of results and sci

entific guidance.
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Appendix А. Daily passenger traffic at St. Petersburg Subway stations

Station Passenger traffic (persons/day)
Devyatkino 71400
Grazhdansky Prospekt 45421
Akademicheskaya 42991
Polytechnicheskaya 26456
Ploshchad Muzhestva 26736
Lesnaya 25774
Vyborgskaya 30957
Ploshchad Lenina 65354
Chernyshevskaya 45976
Ploshchad Vosstaniya 91531
Vladimirskaya 26879
Pushkinskaya 18527
Tekhnologichesky Institut-1 17188
Baltiyskaya 38076
Narvskaya 40650
Kirovsky Zavod 29174
Avtovo 40703
Leninsky Prospekt 56625
Prospect Veteranov 82598
Parnas 29648
Prospekt Prosveshvaniya 60942
Ozerki 38083
Udelnaya 26386
Pionerskaya 61119
Chyornaya Rechka 39185
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Station Passenger traffic (persons/day)
Petrogradskaya 57749
Gorkovskaya 38473
Nevsky Prospekt 58222
Sennaya Ploshchad 40241
Tekhnologichesky Institut-2 30187
Frunzenskaya 16484
Moskovskie Vorota 22981
Elektrosila 24378
Park Pobedy 31589
Moskovskaya 76041
Zvyozdnaya 31866
Kupchino 73487
Begovaya 29387
Zenit 10056
Primorskaya 44434
Vasileostrovskaya 52817
Gostiny Dvor 35434
Mayakovskaya 25889
Ploshchad Aleksandr Nevsky-1 23577
Elizarovskaya 22595
Lomonosovskaya 30471
Proletarskaya 17646
Obukhovo 9064
Rybatskoe 27158
Spasskaya 22603
Dostoevskaya 17178
Ligovsky Prospekt 18143
Ploshchad Aleksandr Nevsky-2 11213
Novocherkasskaya 29485
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Station Passenger traffic (persons/day)
Ladozhskaya 79378
Prospekt Bolshevikov 48245
Ulitsa Dybenko 52545
Komendantsky Prospekt 47872
Staraya Derevnya 38496
Krestovsky Ostrov 18534
Chkalovskaya 25204
Sportivnaya 30374
Admiralteyskaya 33079
Sadovaya 17068
Zvenigorodskaya 15852
Obvodny Kanal 17707
Volkovskaya 5722
Bukharestskaya 11064
Mezdunarodnaya 32718
Prospekt Slavy 26409
Dunayskaya 21420
Shushary 8039
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