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Introduction 

Relevance and development of the thesis topic 

The analogy between the fracture models of continuous media and the fracture 

of discrete systems is of fundamental importance, since it allows one to understand the 

behavior of materials and structures at both macroscopic and microscopic scales. 

Finding such analogies is important for a number of reasons. By drawing parallels 

between continuous media (such as solids) and discrete systems (such as oscillators, 

networks of particles or atoms), scientists and engineers can develop a common 

understanding of the fundamental principles that determine the strength and fracture 

toughness of materials. The unified framework provides possibility to apply all 

concepts and methodologies at different scales and systems. 

The history of identifying patterns and dependencies in critical processes shows 

that concepts and principles obtained in one area can be transferred to another area. For 

example, knowledge gained from studying the fracture mechanics of discrete systems, 

such as networks of interconnected particles, can be applied to understand of the 

behavior of continuous materials such as metals or ceramics. This transferability allows 

researchers to use knowledge and methods developed in one field to make progress in 

another areas. 

In addition to this by viewing the behavior of materials and structures through 

the lens of both continuous and discrete models, researchers can identify new patterns 

and phenomena that may not be obvious when considering only one point of view. This 

holistic approach facilitates the discovery of new mechanisms and relationships that 

determine strength and fracture toughness, leading to advances in materials design and 

more precise engineering predictions of structural load-bearing capacity. 
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Analogies between continuous and discrete systems play a particularly important 

role in computational modeling and numerical experiments. Methods developed for the 

discrete systems modeling, such as molecular dynamics or discrete element methods, 

can be adapted and applied based on the identified analogies to model the behavior of 

continuous materials at different length and time scales. This allows researchers to 

predict and understand the response of materials and structures under different loading 

conditions and in different environments. 

Thus, in essence, the fundamental nature of the analogies between continuum 

and discrete system models lies in their ability to provide a common basis for 

understanding, communicating concepts, discovering new patterns, and facilitating 

computer simulations that are needed to advance our knowledge of the behavior of 

materials and to improve their design, as well performance of engineering systems. 

When quasi-static fracture problems are discussed, the strength of a material 

with defects such as cracks is often associated with the value of the stress intensity 

factor (SIF) !"  (mode I load is considered in the work) measured at the moment of 

fracture: according to the well-known Irvin failure criterion, a crack initiates if 

!"	reaches a certain critical value !"с, which is interpreted as a material property. This 

failure criterion works well for problems with quasi-static loads, however, with 

increasing loading rates, the critical value of the SIF also increases, which requires the 

introduction of a new critical value of the SIF for each loading rate [1]. However, even 

this modification of the Irwin criterion cannot be used to study cases of fracture when 

the local stress field at the fracture point has already exceeded its maximum values and 

has reached a stage of noticeable decrease [2-4]. This fundamental fracture effect is 

poorly understood and cannot be explained within the framework of classical 

approaches. 

For convenience, the term fracture delay is introduced: if, under given boundary 

and initial conditions, fracture at the vicinity of the crack tip occurs after the peak of 

the local tensile force field has passed (this can be expressed, for example, in terms of 
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the current value of the stress intensity factor), then the fracture delay is considered to 

take place. The time elapsed from the peak of local tensile stress to the moment of 

macroscopic rupture of the material will characterize the magnitude of the fracture 

delay. The first Chapter of the thesis shows that this phenomenon is a fundamental 

feature of the dynamic fracture process, which manifests itself in threshold situations 

and is associated with the presence of incubation processes occurring at the 

microscopic level and taking up certain time preceding the macroscopic rupture. The 

thesis explores this phenomenon using a fracture model based on the concept of 

incubation time. It is worth noting that the authors of the work on crack initiation due 

to short pulses [5] proposed an approach called the “minimum fracture time criterion”, 

which theoretically admits the fracture delay phenomenon, but the proposed approach 

lacks universality, since the minimum time parameter, as well as the value of the 

critical stress intensity cannot be considered as material parameters. 

Additionally, a simple “mass-on-a-spring” model was used to show that the 

dynamic fracture process can exhibit inertial behavior when high rate or short-pulse 

loading is considered in Chapter 1 The linear oscillator model is used to study failure 

delay conditions for systems with inertia and to show that dynamic crack initiation has 

features similar to linear oscillator failure. It is shown that a sample with a crack can 

behave like an oscillator when loaded with short pulses, and thus it is possible to 

construct an analogy between a crack and some virtual oscillator. Inertial models based 

on the linear oscillator model have been widely used to study and simulate dynamic 

failure (see, for example, [6, 7, 8]). Moreover, linear oscillator-based models can 

provide some insight into very complex features of dynamic crack propagation, such 

as the dependence of the SIF value on crack velocity [9]. More complex discrete 

models (for example, chains and lattice of springs [10,11]) are actively used to study 

dynamic fracture and dynamic propagation of cracks.  

The concept and term of crack inertia has been used in the literature for some 

time when moving cracks are considered, however the term inertia is either used to 

classify the mode of crack motion [12] or is discussed formally due to the presence of 
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crack acceleration value in the energy balance equations [13]. The authors of the 

mentioned works concentrate their efforts on the effect of fluctuations in crack speed 

and on the problem of limiting crack speed, while the phenomenon of fracture delay 

remains beyond the attention of the authors. It is worth mentioning here that both the 

issue of crack speed limitation and the effect of crack speed fluctuations can be studied 

using the incubation time approach [14,15]. 

The simplest short-pulse load – a rectangular force pulse – was studied in the 

first Chapter. The choice of such a simple load provides possibility to study two 

fundamental scenarios for the crack initiation in detail. The first is the threshold case, 

when the minimal loads necessary to cause failure are applied to the system. For 

example, for a fixed load pulse amplitude, the minimum load duration is determined. 

The opposite case is the system overload, when excessive loads are applied. Threshold 

cases appear to reveal fundamental fracture effects, but are difficult to implement 

experimentally. In contrast, the overload cases are less difficult to implement in 

practice. 

The study of the dynamic fracture using simple fracture models such as spring 

oscillators is critical to practical understanding of the laws governing the fracture of 

solids due to dynamic loads for many reasons. Firstly, simple models such as spring 

oscillators clearly demonstrate the fundamental principles underlying dynamic 

fracture. By simplifying complex phenomena down to more manageable systems, 

engineers can use simple "oscillatory" language to better understand the physics and 

mechanics underlying shock wave propagation and material failure. Secondly, systems 

of dynamic oscillators can provide insight into wave propagation through structural 

media. Understanding how waves behave in a simplified system can help the engineers 

to understand waves’ interactions, reflections, and energy dissipation, which is 

necessary to predict the behavior of shock waves in real materials. Third, simple 

models allow engineers to perform parameter sensitivity analysis to evaluate the 

influence of various factors on the fracture behavior. By systematically varying 

parameters that correspond to effective material properties and initial conditions, 
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engineers can identify the key factors influencing dynamic rupture and design materials 

and structures that can resist or mitigate the dynamic fracture effects. Fourth, simple 

models serve as valuable tools for validation of more complex numerical simulations 

and experimental results. For example, engineers can use simplified analytical 

solutions of spring oscillators to test the accuracy of numerical models and 

experimental data, ensuring that predictions match the observed phenomena. Fifth, 

simple models are an effective educational tool for teaching students and young 

engineers the basic principles of the dynamic fracture of continuum. Starting with basic 

concepts and gradually increasing their sophistication can help to provide a solid 

foundation for understanding the complex process of failure of solids under extreme 

loads. Sixth, information obtained from studying simple failure models can be used to 

design and optimize materials and structures to improve their resistance to damage 

under high rate loading conditions. Engineers can use this knowledge to develop 

innovative materials, protective barriers and structural reinforcements that mitigate the 

effects of dynamic failure in a variety of industrial applications such as aerospace, 

mining and civil engineering. 

Thus, studying dynamic fracture using simple models such as spring oscillators 

is necessary to gain a deeper understanding (from the engineer’s perspective) of the 

laws governing failure of solids under extreme conditions. These models provide 

insight into wave propagation, parameter sensitivity, validation of more complex 

numerical models and design optimization, ultimately leading to the development of 

durable materials and structures that can withstand extreme dynamic loads. 

Dynamic fracture of media and structures can be the result of various types of 

loads applied to a material or structure, including static loads [16,17]. However, 

explicit dynamic loading can reveal specific effects associated with the strength of the 

material. 

One of the main effects characterizing the dynamic fracture of materials is 

associated with a high loading rate, when a rapidly growing stress field is created in 

the material, leading to fracture. When the stress field growth rate is relatively small, 
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the material exhibits static strength properties, and static strength theories such as 

Irwin's crack instability criterion for cracked specimens [18] or the ultimate stress 

criterion for materials without defects are applicable. However, at high strain/stress 

rates, the material exhibits increased strength, and failure occurs at higher stress levels, 

which requires the introduction of separate critical parameters for each strain/stress 

rate. For example, in the case of samples with cracks, the ultimate stress intensity factor 

!"%  value is replaced by its dynamic counterpart – dynamic fracture toughness !"&
' , 

which, as shown in literature, can depend on the loading rate [1]. Thus, the strength of 

a material should be studied for a range of strain rates or rates of change in stress fields, 

providing possibility to construct a dynamic strength curve, which consists of two 

characteristic parts (branches) – a static (or low rate) branch and a dynamic branch with 

significantly higher strength parameters [19,20]. These types of curves are commonly 

interpreted as a material property, but when proper dynamic failure models are applied, 

the curve is actually computable. Note that the described phenomenon is also observed 

for plastic materials – the values of the yield strength increase with increasing 

stress/strain rate, which requires the introduction of dynamic parameters of the yield 

strength [21,22]. 

The fracture delay effect, which manifests itself when materials and structures 

are loaded with short pulses, is less common in the literature. When short dynamic 

loads (short impulse loads) are applied to a material, failure may occur after the stresses 

have exceeded their maximum values, which means failure is delayed. Experimental 

confirmation of this effect can be found both in experiments with samples with cracks 

(the crack initiation under pulse loading) [2,4] and on samples without initial defects 

[3,23]. 

Theoretical study and prediction of the above-mentioned and other effects 

associated with dynamic fracture (for example, issues of limiting crack speed and crack 

speed oscillations, the issue of the dependence of the current stress intensity factor on 

crack speed [16,24,25]) poses a serious challenge for theorists. Static failure criteria 

are naturally modified for use in the case of dynamic loading – critical static values are 
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replaced by their higher dynamic counterparts or even complex functionals [26]. These 

models are usually difficult to calibrate since they require a set of complex 

experiments. Another approach involves an explicit introduction of stress/strain rates 

into the expressions for material strength. The most prominent representative of this 

family of models is the Johnson-Holmquist 2 (JH2) model, which is widely used in 

practice to simulate fracture in the impact events [27]. 

A completely different way of processing the dynamic fracture phenomena is 

based on integral fracture criteria. Here one can mention Nikiforovsky’s condition 

[28,29], as well as Tuler’s and Butcher’s failure criteria [30]. The failure criterion based 

on the concept of incubation time (incubation time criterion) [31] also has an integral 

form; the integration interval over time is determined by the characteristic relaxation 

time is called the incubation time, which should be interpreted as a material parameter. 

The incubation time criterion in its most complete form also contains the integration 

of stresses with respect to spatial coordinate, which emphasizes the nonlocality of this 

approach. 

The second Chapter examines the dynamic fracture effects using the “mass-on-

a-spring” model, which has certainly been used to study fracture before (see, for 

example, [32-34]). To study dynamic fracture and crack propagation, more complex 

discrete models are actively used, for example, chains of oscillators and lattices for 

studying dynamic crack propagation [10,35,36]. Models based on the concept of 

adhesion zone, enriched with inertia [37] should also be mentioned here – the approach 

used in the second Chapter is vaguely reminiscent of the method used in [37]. 

Moreover, interesting combinations of well-developed numerical approaches and ideas 

based on failure of the “mass-on-a-spring” system have recently appeared in the 

literature (see, for example, work [38] devoted to modifications of the SPH numerical 

approach (Smoothed Particle hydrodynamics). Models similar to the “mass-on-a-

spring” system are also used in engineering and even biomedical problems [39,40]. It 

is worth noting the use of springs in the analytical and very valuable experimental 

analysis of how boundary conditions affect crack resistance in different types of 
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specimens [41]. Chapter 2 also discusses the failure of a linear oscillator under short 

pulse loading conditions, as well as failure due to a linearly increasing force. These 

problems provide possibility to study two effects of the dynamic fracture – the fracture 

delay and increase in the system’s strength at higher loading rates. Next, the considered 

“mass-on-a-spring” model is calibrated to describe experimental results on crack 

initiation and spallation. The similarities between failure in a “mass-on-a-spring” 

system and the results obtained using a failure model based on the concept of 

incubation time are also discussed. In contrast to the first Chapter of the thesis, the 

second Chapter presents a simpler approach, which is based on an allocation of a 

certain volume in the body, which serves as the mass of the oscillator, and the oscillator 

spring stiffness is determined from considerations of the applicability of the oscillator 

model for the static cases. 

Studying the characteristics of the dynamic fracture occurring in periodic 

structures, such as chains of oscillators, subjected to rapid dynamic loading, provides 

valuable information about the behavior of materials and structures under extreme 

loads. These characteristics provide fundamental information about the dependencies 

and peculiarities of the dynamic fracture process, which are essential for assessing the 

load-bearing capacity of structures and systems with a periodic discrete structure. The 

oscillator chains provide a simplified but representative model of periodic structures. 

This simplicity facilitates a deeper understanding of the physics underlying dynamic 

fracture. Analysis of the dynamic fracture of such structures allows researchers to 

obtain analytical or approximate solutions that reflect the main aspects of their 

behavior.  

Moreover, the oscillator chains make it possible to study the propagation and 

interaction of waves in periodic media. As waves propagate through a structure, 

interactions between adjacent oscillators influence the overall response, including the 

initiation and propagation of cracks or defects. Understanding these interactions sheds 

light on how energy is transferred and dissipated in course of the dynamic fracture. 
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Observations and analysis of the dynamic fracture in the oscillator chains can 

lead to the discovery of scaling laws and universal behavior. These scaling laws 

describe how failure properties depend on system size, loading rate, or other relevant 

parameters. This versatility allows researchers to generalize insights from simple 

models to more complex systems and apply them across different length and time 

scales. It also opens up the possibility of testing theoretical models, since, for example, 

chains of oscillators can serve as a tool for testing theoretical models and computational 

methods used to simulate the dynamic fracture observed in periodic structures. 

Comparing analytical predictions with numerical simulations or experimental data 

helps to verify the accuracy and reliability of the theoretical approaches, allowing them 

to be applied to real-world problems. 

The study of periodic oscillating systems is important for the design of 

sustainable materials and structures. By understanding how periodic structures 

influence failure behavior, engineers can tailor material architectures to improve 

resistance to dynamic loads, improve energy absorption, and mitigate catastrophic 

failure. 

In essence, studying the characteristics of dynamic failure using the oscillator 

chain models and special periodic model structural elements discussed below offers a 

valuable basis for understanding the fundamental principles governing the failure of 

periodic structures. Using the simplicity, analytical solutions, and clear patterns 

provided by these models, it is possible to enhance our understanding of the dynamic 

failure phenomena and to develop strategies which would improve the strength and 

performance of materials and structures exposed to extreme environments. 

Most of the structures around us are subjected to static load and the material of 

these systems has uneven strength due to various defects, impurities etc. As shown in 

the work, the failure of a statically loaded system with obvious periodicity reveals 

dynamic effects, which appear to be determined by the discreteness of the structure. In 

other words, the sudden removal of a static load which caused uniform subcritical 
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deformation of each element of the system, can possibly lead to subsequent dynamic 

failure of the entire system. 

In the third Chapter of the thesis, a discrete analogue of an elastic rod is 

considered – a chain of identical linear oscillators with one fixed end. A special effect 

that is not observed in a continuum system is investigated. If at the initial moment of 

time the chain was uniformly stretched, and the distance between the masses was close 

to a critical value, then at one of the subsequent moments of time, when the system 

freely oscillates, the deformation of one of the links will exceed the initial value, which 

can lead to a failure. Thus, a pre-stretched chain of linear oscillators can collapse when 

the static load is suddenly removed. This effect is observed for a chain of arbitrary 

length, but is absent in a continuous medium. 

A linear oscillator is a highly simplified model of many processes. In particular, 

consideration of a chain of oscillators has been used by some authors [42-44] to clarify 

the issue of the influence of the discrete structure of solids on their mechanical 

properties. In [42] the author considered the travelling longitudinal wave passing 

through a chain of oscillators, and in work [43] dynamic fracture of a chain was 

considered, however, in both cases an infinite chain was studied. Some works [44,45] 

considered finite chains, however, the authors did not study the fracture issues. The 

book [46] examines many aspects of the chains’ oscillations and also contains studies 

of limiting transitions to continuum equations. The classic monograph devoted to the 

propagation of waves in discrete media is the work [47]. An approach to heat 

conduction problems based on chains is given in [48]. 

The third Chapter of the thesis also presents numerical analysis of samples with 

a peculiar geometry, which demonstrates that the studied effect can be found in real 

structures. According to the calculations, the special design of the samples makes it 

possible to observe an excess of the initial stresses by 20% for a long time after sudden 

unloading (for example, after the failure of one of the weakened structural elements). 



 

 

13 

  

The crack propagation problems are a separate area of the dynamic fracture 

mechanics with its own well-established approaches. Some of them are based on 

further development and deep modification of Irwin’s failure condition, others use the 

ideas of the cohesion zone [49]. Recent research in this area provides valuable 

information on crack propagation in heterogeneous materials with electromechanical 

properties [50]. New promising numerical approaches [51,52] are also worth 

mentioning. Dynamic crack propagation was considered an area of purely fundamental 

research, but modern numerical models, material models and experimental methods 

help to successfully solve complex engineering and construction problems as well 

[53,54]. However, it should be noted that these material models are often material 

specific (see, for example, the Riedel-Hiermaier-Thom (RHT) model [54,55]) and 

contain a fairly long list of parameters that need to be determined to perform the 

numerical simulation. 

Dynamic crack propagation is one of the most challenging areas of the dynamic 

fracture mechanics, as numerous effects observed in this area require a proper 

theoretical explanation. Both fundamental and practical aspects of the propagating 

crack phenomenon are of significant importance, since, on the one hand, studies of a 

moving crack make it possible to identify the fundamental laws of the fracture 

mechanics [56], and on the other hand, problems of dynamic crack initiation and 

propagation arise in the engineering practice. Despite the fact that the uncontrolled 

dynamic crack propagation is considered as a hazardous phenomenon in some cases 

[57,58], crack initiation may be desirable, for example in the oil and gas industry [59]. 

In the second half of the 20th century, various analytical results in the field of 

moving cracks were obtained. In the works by Broberg [60,61], Kostrov [62], Freund 

[63-66], Slepyan [10,42,43], Achenbach and Bazant [67], Achenbach and Dunaevsky 

[68] one can find analytical formulas characterizing the field stresses near the tip of a 

moving crack, considerations for energy release, and theoretical predictions for the 

value of the ultimate crack velocity. 
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Most of the classical experimental works on dynamic crack propagation 

presenting significant effects of dynamic fracture were carried out in the last decades 

of the 20th century: Ravi-Chandar and Knauss [1,69-71], Feinberg et al. [16], 

Kobayashi and Dalli [72,73], Dalli [74], Kaltoff et al. [75], Rozakis et al. [76], Zender 

and Rozakis [77], Maigret and Rittel [78]. It was found that some dependencies and 

parameters characterizing the crack propagation process exhibit unstable behavior. The 

following phenomena may be mentioned here: crack speed oscillations, the 

discrepancy between theoretical and experimentally observed limiting crack speeds 

[16], instability of the stress intensity factor (SIF) values for crack initiation (Kalthoff 

and Shockey [2]), effects associated with a change in fracture mode [79], dependence 

of the stress intensity factor on the crack speed (!" − )̇ dependence) [25, 26]. Some of 

the mentioned effects were considered in [15] (oscillations of the crack velocity), [80] 

(unstable behavior of the SIF at the start of a crack). 

According to one of the most common approaches to problems of the dynamic 

crack propagation (the first loading mode is considered), the concept of a critical stress 

intensity factor value (!"с) is extended to the dynamic case. Classic failure criterion 

proposed by Irwin !" = !"&  [18], is transformed into the crack initiation condition for 

the case of dynamic loading, which reads as !"
'(-, /(-), )1) = !"%

' 2!"
'̇(-)3 [26], 

where /(-) is the generalized loading function, )1 is the initial crack length, and the 

right side is the critical value for a particular material, which also depends on the rate 

of the local stress field change. This approach provides the following equation of the 

crack tip motion !"
'(-, /(-), )(-), )̇(-)‘) = !"56)̇(-)7, where the right-hand side is a 

crack velocity-dependent functional, which is assumed to be a material property to be 

determined from experiments. As can be seen from this brief description, the model 

implies existence of a unique (for a particular material) dependence of the stress 

intensity factor on the crack propagation speed and this dependence is considered to be 

a material property. The existence and uniqueness of this dependence was confirmed 

in a number of experimental works by Owen et al. [81], Rosakis et al. [76], Dally [74]. 

However, when testing samples of various shapes, non-unique !" − )̇ dependencies 
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were observed [82]. In these tests, the specimens were loaded either using a wedge or 

tensile testing machines. Single edge notched (SEN), double cantilever beam (DCB) 

and compact tension (CT) specimens produce different curves !" − )̇ for a particular 

material, especially in high crack velocity regimes. The dependence of the !" − )̇ 

dependence on the shape of the samples was also discussed in [73,83]. 

Ravi-Chandar and Knauss found that this relationship depends on the loading 

conditions [70]. In [70], the samples were loaded using short pressure pulses generated 

by an electromagnetic loading device. In this case, the stress intensity factor varied 

significantly for a crack that propagated at a constant speed. Thus, the existence of a 

single curve !" − )̇ was doubted. The influence of the velocity effects was also 

discussed in [84], where the authors argue that the acceleration and deceleration 

regions of a crack form different curves !" − )̇. 

Determination of the !" − )̇ curve is a complex experimental task, since it is 

necessary to record and analyze the complete evolution of the crack, as well as the 

stress-strain state near the crack. As shown in [25], the characteristics of the !" − )̇ 

curve	can vary depending on the experimental method used for the determination. 

Despite all the discussions surrounding this relationship, it is a widely used tool for 

characterization of the dynamic fracture of materials (for example, results on crack 

propagation in graphene are given in [85]). 

Accounting for the discreteness of both spatial and time scales gives a more 

realistic idea of the dynamic fracture of solids. Fracture processes in materials, as a 

rule, occur in discrete spatial elements and over finite periods of time [86,87]. Ignoring 

this discreteness can lead to overly simplified models that do not reflect the true 

behavior of cracks as they propagate through the material.  

Cracks generally propagate through materials through discrete events such as the 

initiation, growth, and coalescence of microcracks. These events occur in certain 

representative volumes and develop over finite time intervals being influenced by 

material properties, stress states and microstructural features. Modeling spatial and 
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time discreteness allows one to describe more accurately the dynamics of crack 

propagation, including the initiation of new cracks and their interaction with existing 

ones. 

It is known that the microstructure of a material plays an important role in 

determining its fracture behavior. Discrete features such as grain boundaries, 

dislocations, and defects influence crack initiation and propagation. By incorporating 

spatial and time discreteness into the fracture models, the influence of microstructural 

features on crack propagation can be better captured and fracture patterns in real 

materials can be more accurately predicted. 

Scale effects are also worth noticing. Fracture processes exhibit scale-dependent 

behavior in which spatial and time discreteness becomes more pronounced at smaller 

length and time scales. Models that account for this discreteness can capture large-

scale effects such as size-dependent fracture toughness and the transition from 

continuous to discrete behavior. Understanding and accounting for these scale effects 

are necessary to predict fracture behavior at different scales of space and time. 

Thus, accounting for space and time discreteness of the fracture process is 

important for accurate description of the dynamic crack propagation in materials. By 

accounting for the discrete events and their evolution in space and time at multiple 

scales, models can provide more realistic predictions of crack behavior, leading to 

improved understanding, design and optimization of materials and structures subjected 

to extreme dynamic loading. 

The fourth Chapter of the thesis provides a numerical analysis of the effects 

accompanying the dynamic propagation of cracks. The analysis is based on the 

incubation time criterion, which provides possibility to account for the spatial and time 

discreteness of the dynamic fracture processes. The crack velocity oscillations and 

unstable behavior of the current stress intensity factor are among the studied effects. 

In addition to this the fourth Chapter presents a numerical approach to problems 

with an arbitrary crack propagation trajectory. The developed calculation scheme was 



 

 

17 

  

used to analyze the characteristics of fragmentation when impactors penetrate barriers. 

The calculation scheme is based on the incubation time fracture criterion and the finite 

element method in a two-dimensional formulation. The developed scheme makes it 

possible to study the characteristics of fragmentation processes due to the projectile 

penetration – the size distribution of fragments, the dependence of the total number of 

fragments on the impactor speed. The obtained dependences qualitatively resemble 

experimental data on fragmentation in brittle media [88]. 

The characteristics of dynamic fragmentation are the subject of research by 

several scientific groups both in Russia and worldwide. Classic experimental and 

theoretical works in this area include the studies of D.E. Grady and his colleagues [89]. 

In Russia, studies of fragmentation processes are carried out in groups by O.B. 

Naimark [90,91] and at Tomsk State University [92]. 

A more detailed study of the dynamic fracture processes caused by impact is 

presented in the fifth Chapter of the thesis. The impact fracture of materials is of great 

importance for engineering applications, since this phenomenon is widespread: the 

development of military protective systems (bulletproof vests, vehicle armor, etc.), the 

automotive industry (crash safety), aviation (bird strikes, space debris threats, solid 

particle erosion of turbine blades [193-199]) and so on. 

Experiments on impact fracture of materials are very labor-intensive, since they 

require high-speed recording systems and precise synchronization of equipment. 

Moreover, such experiments can be quite expensive since the samples are disposable. 

Numerical modeling can serve as a tool to optimize experimental research and design 

of structures and materials thanks to the ever-increasing computing capabilities of 

modern machines [201,202]. Nowadays a wide variety of numerical approaches to 

dynamic fracture problems are presented in the literature, which include the finite 

element method enriched with the adhesion zone models (classical works by 

Needleman [49]), particle hydrodynamics methods [93,94], and the discrete particle 

approach [95], meshless Galerkin methods [96], peridynamics [97,98]. However, in 

addition to choosing a numerical scheme, an appropriate fracture model should be 
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used, since materials can exhibit complex behavior under intense dynamic loading: an 

increase in strength with increasing strain rate [99,100], features associated with 

dynamic crack propagation [24,101]. 

In one of the most common approaches to dynamic fracture modeling, strain or 

stress rate dependencies are explicitly introduced into the material models. The 

constitutive Johnson-Cook model [102,103] is a prominent representative of this 

approach and is one of the most commonly used material models in the field of impact 

engineering, dynamic fracture and deformation. This model has been successfully 

applied in a large number of studies, however it contains a relatively large set of 

parameters that must be determined using fairly complex procedures [104,105], and 

not all of these parameters have a clear physical interpretation. In general, strain rate-

dependent fracture models are based on a relatively large set of parameters and 

functional relationships requiring complex experimental evaluation. 

A relatively effective approach to solving engineering problems is based on the 

introduction of special dimensionless parameters [106,107], which describe the 

behavior of a structure subjected to dynamic loading. These values are determined 

using parameters characterizing the load, sample geometry and mechanical properties 

of the material. These dimensionless parameters make it possible to evaluate the 

response of a structure to a dynamic load and compare the characteristics of the 

structure under various test conditions (shape and dimensions of the object, load 

parameters, material parameters). 

Another group of the dynamic fracture criteria is based on the time 

characteristics of the fracture process. In the fifth Chapter the incubation time-based 

fracture model [31,80,108] was used to numerically simulate the PMMA 

(Polymethylmethacrylate) plate penetration experiments [109] conducted as part of the 

study. During these tests, a decrease in projectile speed due to interaction with the 

target was recorded. Experiments were carried out on samples with three thicknesses, 

and the incubation time model, which includes a single time parameter, was able to 

provide good agreement between experiments and numerical simulations for all three 
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sample geometries and a wide range of initial impactor velocities. The value of the 

incubation time for the PMMA has been assessed in previous works using spall fracture 

experiments. 

PMMA was used in the studies presented since can be considered as a reference 

material for the dynamic fracture studies. This material has remarkable properties that 

are valuable for fundamental fracture research: PMMA is transparent and birefringent, 

and thus caustic stress analysis and photoelastic methods are applicable, in addition to 

this, PMMA can be regarded as brittle material. PMMA has been used in numerous 

studies on dynamic crack propagation [15,16], impact [110,111], spallation [112,113], 

and its strength parameters and behavior are well known. On the other hand, PMMA 

is widely used for various engineering applications [114], and the presented results 

(both experimental and numerical) can be useful for practical needs. 

As mentioned before, the modelling of the dynamic fracture due to impact is a 

computationally demanding task. In addition to requirements to the processing power 

the impact problems can also exhibit computational difficulties associated with 

excessive distortion of the finite element mesh and unstable behavior of the contact 

algorithms [115–117]. Such computational challenges are quite expected in the impact 

problems due to the high rates of stress change in the contact zone. 

A method developed to address the mentioned problems is discussed in the work. 

The proposed approach is based on application of artificial neural networks (ANN) 

which have been trained on a set of numerical results. The approach is demonstrated 

on model problem describing a projectile penetrating a target with a discrete structure 

– a perforated plate.  

The work discusses application of the ANNs for rapid numerical assessment of 

the strength of perforated PMMA targets [118]. The ANN models were trained using 

sets of numerical results obtained for a problem of the PMMA plates impact using a 

dynamic FEM combined with the incubation time failure criterion. The developed 

approach makes it possible to estimate the strength of a specific target configuration 
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without complex FEM calculations that require significant computing resources. A 

simple static problem of a perforated plate deformation is discussed before solving the 

impact problem, and preferred ANN architectures are presented for both problems. 

In general application of machine learning methods to engineering problems and 

mechanical problems is being intensively studied by a significant number of research 

groups around the world. Considerable progress has been made in combining the 

ANNs with numerical methods used in fluid dynamics. Here one can mention works 

on the use of deep reinforcement learning for shape optimization and control [119,120]. 

ANNs are also used to quickly obtain solutions to the fluid dynamics problems, which 

typically require significant computational resources [121]. 

ANNs are actively introduced into the field of solid mechanics, being especially 

effective for the design of composites and predicting their mechanical properties [122-

124]. Currently, deep learning methods are also being actively studied for topology 

optimization problems [125]. Moreover, machine learning-based approaches are used 

to efficiently design complex materials such as metamaterials and nanomaterials with 

unconventional specific mechanical properties [126,127]. 

Many of the above-mentioned works combine machine learning methods with 

classical numerical methods such as finite difference or finite element methods: neural 

networks are trained using numerically obtained data sets and are then able to predict 

outcomes for as-yet-unsolved problems. This approach seems particularly promising 

for solving problems that require significant computational resources. Assessing the 

strength of a material under impact loading is a typical example of such problems, since 

it is necessary to state and to solve the problem in a dynamic formulation, using 

dynamic fracture models and contact algorithms. A number of works can be mentioned 

here [128-131], including the prediction and optimization of the impact strength of 

laminates and the use of machine learning methods to accelerate dynamic finite 

element calculations [132] – autoencoders trained on data sets generated by FEM are 

used to estimate strength of pipes and to significantly speed up calculations and to 

ensure high accuracy. A number of works [133,134] have shown that ANNs are 
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effective for predicting time series resulting from impact tests, for example, the 

dependence of force on time obtained by modeling the dynamic failure of pipes and 

honeycomb structures under impact conditions. The ANNs trained on FEM results can 

also be used to predict the reliability of complex manufacturing processes such as 

riveting [135]. 

ANNs are also used for comprehensive material characterization, such as 

estimating the JH-2 damage model parameters [27] from the experimental results 

[136]. Moreover, the ANNs trained on the experimental results can be used as material 

models that describe complex material behavior under different loading rates and 

temperature conditions [137]. Plasticity modeling using ANNs is a growing area of 

research showing high potential for handling relatively standard cases [138] as well as 

complex effects such as necking failure and yield stress decline phenomena [139,140]. 

Thus, the ANNs are currently actively used to optimize properties (for example, 

see the use of reinforcement learning methods for designing composites [141]), 

accelerating calculations both by replacing direct calculations with a trained neural 

network [132], and by implementation of efficient ANN-based material models that 

are trained either on experimental data or on computational results [142]. In addition, 

one can mention cases where the ANNs trained on sets of experimental results are used 

to facilitate further experimental studies by giving insight into possible experimental 

results [143,144]. 

The ANNs are used to quickly assess the strength of the PMMA plates with a 

discrete structure (perforation). The ANNs are trained using datasets generated by 

FEM, and thus the ANNs are considered as a fast alternative to a full finite element 

analysis. A possible method for handling computationally complex cases where the 

finite element mesh is significantly distorted is also proposed. The developed approach 

makes it possible to estimate the strength of a specific target configuration without 

complex calculations using FEM, which require significant computing resources. 

Moreover, the ANNs are shown to be able to predict results for configurations that 

cannot be processed using the developed FEM code due to numerical instabilities and 
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errors: the trained neural network uses information from successful calculations to 

produce results for problematic cases. It is worth noting that the dynamic fracture of 

perforated samples has attracted the attention of researchers from the crack trajectories 

point of view [145,146]. In addition to this, the interaction of a propagating crack with 

microcracks is also intensively studied [147] as well as fracture of metamaterials [200]. 

Goals and objectives of the study 

The main objectives of the research are: the development of discrete approaches 

to the problems and effects of dynamic fracture of continuous media, the analysis of 

the dynamic fracture of media with a discrete periodic structure, the analysis of the 

discrete nature of the instabilities of the dynamic fracture process, as well as the 

adaptation of the incubation time approach for the analysis of fracture in impact 

problems and development of new approaches to numerical problems encountered in 

these problems. 

In order to achieve the objectives of the study, the following problems were set: 

To study the analogy between the dynamic fracture processes taking place when 

the crack starts to move due to dynamic pulse load and failure of the “mass-on-a-

spring” system. To Associate the fracture process with an oscillator with a certain 

natural frequency. 

To develop a relatively simple engineering approach to problems of the dynamic 

fracture, which would allow one to analyze the main effects of the dynamic fracture: 

an increase in the strength of the system with growth of the loading/strain rate and the 

effect of the fracture delay, manifesting itself when the fracture takes place a stage of 

decreasing local stress fields. The proposed approach is based on the study of a discrete 

system failure – a linear oscillator. The parameters of their oscillator are selected in 

order to adequately describe available experimental data. 
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To investigate the dynamic fracture of periodic mechanical discrete systems 

using the example of linear oscillator chains with an arbitrary finite number of links. 

In order to accomplish this task, it is necessary to find an analytical solution to the 

problem of the movement of masses in a chain of linear oscillators with an arbitrary 

finite number of links, particular load as well as initial and boundary conditions. 

To conduct a numerical analysis of strength in a system with a discrete structure 

in order to study the effect of secondary failure which can follow the system unloading. 

Provide recommendations for a possible experimental study of the fracture effects 

identified using the oscillator chains. 

To investigate effects that manifest instabilities of the dynamic crack 

propagation processes and can be associated with the discrete nature of the dynamic 

fracture. To develop a numerical scheme for the analysis of the moving cracks, based 

on the incubation time fracture criterion – a model that implies spatial and time 

discreteness of the fracture processes. To modify the developed numerical scheme in 

order to make it applicable for analysis of cracks with arbitrary trajectories and this 

way for the study of the dynamic fragmentation processes taking place in brittle bodies 

under impact loading. 

To develop a numerical method for the analysis of fracture under impact loading 

conditions, to conduct simulations of experiments penetration of barriers by projectiles. 

Particular attention should be paid to the threshold values of the impactor velocity. To 

propose an approach that allows one to circumvent the main difficulties associated with 

the dynamic fracture modeling in impact problems – the complex and demanding 

calculations, long calculation times, unstable operation of the numerical schemes. 
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Scientific novelty of the research, theoretical and practical significance of the 

obtained results 

Most of the problems formulated and set within the framework of the work are 

solved for the first time, and the methods used to solve the problems are also unique 

and cannot be found in literature. 

The analogy between the dynamic fracture processes and failure of discrete 

systems with inertia (in this case, a linear oscillator) is discussed for the first time. 

Moreover, consideration of rectangular loading pulses made it possible to determine 

the natural frequency of the oscillator, which is identified with the fracture process 

accompanying the crack initiation. This result was obtained only in the works of the 

author and the co-authors. 

As noted in the first paragraph of the introductory Chapter, a linear oscillator has 

previously been used to model dynamic fracture, but the main advantage of the 

approach presented in this work is the physical and mechanical meaning of the model 

parameters, as well as the minimization of the number of parameters that one needs to 

define for the model to operate. In fact, we managed to reduce this number to one 

parameter, which is responsible for the size of the region of the material responsible 

for the formation of the oscillator mass. Moreover, for the first time, the oscillator 

model was used to study the dynamic fracture effects – the fracture delay and the 

system strength increase with a growing loading/stress rate. 

The effect of secondary system failure, observed in discrete periodic structures 

and discussed in the third Chapter of the thesis, was first studied by a team of 

researchers, which includes the author of the thesis. Moreover, for the first time it is 

shown that the discussed effect can be expected in real systems and samples with a 

discrete periodic structure, which opens up a wide field of activity for experimenters. 

The approach used in the fourth Chapter of the work is based on the incubation 

time approach, which implies spatial and time discretization of the fracture process. 
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Integration of this approach into a calculation scheme based on the finite element 

method made it possible for the first time to study two points of view on the dependence 

of the current value of the stress intensity factor on the crack speed. Calculations have 

shown that this dependence can indeed be constructed for relatively low crack 

velocities and slow loading, but for intense and rapid loading and high crack velocities, 

the scatter of SIF values does not allow constructing an unambiguous dependence. The 

duality of the SIF–crack velocity relationship was obtained for the first time. It is also 

worth noting the first implementation of the dynamic method of virtual crack 

propagation within the framework of a commercial FEM software. The computational 

scheme for analyzing dynamic fragmentation presented in the fourth Chapter has a 

unique structure: the finite element method is supplemented with graph theory 

algorithms, which makes it possible to analyze the fragmentation of the studied object 

at each time step of the solution. 

The three-dimensional calculation scheme presented in the fifth Chapter is the 

first three-dimensional numerical implementation of the criterion based on the concept 

of incubation time. It is worth noting that the implemented calculation scheme is based 

on a commercial FEM software, which can facilitate the introduction of the developed 

approach into the engineering practice. Chapter 5 also proposes for the first time a 

method which could help to overcome the numerical difficulties that often accompany 

modeling of fracture under impact conditions. The approach is based on the use of 

artificial neural networks (ANN) for the problems whose formulation results in the 

unstable behavior of contact interaction and excessive distortion of elements due to 

high stresses and strain rates. The proposed approach will not provide an exact solution 

to the problem, but will allow one to obtain an estimate of the solution without changes 

in the formulation of the problem and without changing the settings of the numerical 

solution algorithms. This method of overcoming numerical difficulties encountered in 

the impact problems has been proposed for the first time. 
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Research methods 

The problems formulated within the framework of the study are solved 

analytically, numerically and experimentally. The first three Chapters of the thesis, 

which are devoted to the study of fracture in discrete systems, mainly use an analytical 

approach. In particular, exact formulas for the movement of a mass on a spring under 

pulse and linearly increasing loads made it possible to analytically study the effect of 

the fracture delay and to demonstrate an increase in the strength of the system with a 

growing loading rate. At the same time, when calibrating the linear oscillator model, 

numerical methods for solving ordinary differential equations were used to describe 

the experimental data due to the complexity of the functions describing the system 

load. The problem of oscillations of a chain of linear oscillators was also solved 

completely analytically. 

The work widely uses the finite element method (FEM) to analyze the strength 

of structures. In particular, FEM was used to demonstrate the effect of secondary 

fracture in samples with a periodic structure. FEM made it possible to design the 

approximate shape of samples for possible experimental study of this effect. The results 

of the fourth Chapter of the thesis were almost completely obtained using FEM – the 

dynamic crack propagation was simulated using a FEM-based numerical approach and 

the incubation time fracture criterion. In this case, the dynamic solver of a commercial 

software is used to determine the strain and stress fields in the sample; the fracture 

criterion is implemented using an external program. An external program was created 

to calculate the current value of the stress intensity criterion, based on the method of 

virtual crack extension. The analysis of a barrier fragmentation was carried out using 

a sophisticated calculation scheme for analyzing the dynamic propagation of cracks. In 

a modified version of the scheme, the cracks can propagate in any direction and several 

cracks can be studied simultaneously. The analysis of the properties of fragments was 

carried out using graph theory methods – fragments are regarded as subgraphs of the 

graph of elements of a mesh. 
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A more complex three-dimensional calculation scheme has been developed for 

the impact problem analysis (Chapter 5). The fracture criterion (the incubation time 

criterion) in this case is implemented as a new material for the commercial FEM 

software package with an explicit time integration scheme. The obtained numerical 

results were compared with the results of experiments conducted as part of the study. 

The numerical analysis of the impact problem was supplemented with a module 

based on artificial neural networks (ANN). The ANN is trained on a set of already 

solved problems and thus a solution to a similar problem can be quickly obtained. In 

addition to this the module can be used to obtain approximate solutions for problems 

that are difficult to solve using a full calculation due to numerical instabilities, for 

example, excessive distortion of mesh elements. The module’s performance was 

demonstrated using the samples with a discrete structure – the perforated plates. Firstly, 

sets of solution of the impact problems with various perforation schemes are obtained 

and then the ANNs are trained using these data sets. The trained ANN is capable of 

predicting the answer for a new sample with a new perforation scheme. The ANNs are 

also applied to problems in which the perforation scheme led to excessive distortion of 

the mesh and premature termination of the calculation. 

Results of the work and their theoretical and practical significance 

The work uncovers an analogy between the dynamic fracture process taking 

place at the crack onset and the linear oscillator failure, which is important for a deeper 

understanding of the features of the dynamic fracture occurring in brittle bodies. The 

possibility to attribute some inertia to the fracture process allows one to clearly explain 

the key effects of the dynamic fracture – an increase in the strength of the system with 

increasing loading speed and a fracture delay. The problem of a crack initiation as a 

result of rectangular pulse loads applied to the crack faces was solved used the 

incubation time fracture criterion. This made it possible to identify the dynamic 

fracture process with a certain linear oscillator with a particular natural frequency, 

which can serve as the basis for an experimental search for resonance phenomena in 
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the crack initiation problems. It is also worth noting that the optimal rectangular pulses 

from the point of view of the force impulse were determined. This result can be useful 

from a practical point of view for problems in which fracture is a favorable outcome 

(for example, problems encountered in the mining industry). 

An applied model for fracture analysis based on a linear oscillator has been 

constructed. The stiffness and critical deformation of the oscillator spring are 

determined from considerations of the static strength of the studied material, while the 

mass is responsible for the dynamic fracture effects can either be selected based on 

compliance with experimental data, or the mass can be defined as the mass of a certain 

volume of the studied material involved into the fracture process. On the one hand, this 

approach, demonstrates clearly that the effects observed in course of the dynamic 

fracture are natural, and on the other hand, the developed approach allows one to 

quickly analyze the structure strength under dynamic loads. 

Studying fracture and failure of periodic structures due sudden unloading is 

important both theoretically and practically. The effect of a secondary fracture has been 

demonstrated using a chain of linear oscillators – if in a uniformly stretched chain one 

of the links breaks, a secondary rupture can occur. In the continuum problem, such 

effect cannot be not observed, which makes it possible to set problems on the limiting 

transition from a discrete system to the rod problem, as well as to examine questions 

about the applicability of continuum models for describing real materials and media. 

The numerical analysis carried out in the third Chapter will make it possible to design 

samples for experimental verification of the studied effect and to possibly develop a 

new method of loading a material with short pulses, which can be possibly used to 

analyze the fracture delay effect. 

The work developed a number of numerical approaches to problems of dynamic 

fracture and dynamic crack propagation. The constructed numerical schemes are based 

on the finite element method and the incubation time fracture criterion. They are 

designed to solve two-dimensional problems of the propagation of straight main cracks 

and multiple cracks with an arbitrary direction, as well as to solve three-dimensional 
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fracture problems defect-free media (for example, in problems of penetration of 

barriers by projectiles). Some of the calculation schemes are equipped with additional 

functions: solving the problem of propagation of a main crack can be accompanied by 

calculating the current value of the stress intensity factor using the method of virtual 

crack extension; a fragmentation analysis method based on graph theory has been also 

proposed. All the developed numerical schemes can be used in practice to calculate the 

strength of structures. The calculation schemes are based on commercial software 

packages, which can facilitate their implementation in engineering practice. 

The work also proposes a numerical approach based on artificial neural networks 

(ANN), which allows one to quickly obtain solutions to demanding problems, as well 

as to solve problems which are hard to process with classic numerical schemes due to 

instabilities. Performance of the proposed approach is demonstrated using the impact 

problem involving barriers with a discrete structure – plates with perforation. The 

performance of various ANN architectures has been studied, and it has been shown 

that the mechanical formulation of the problem can greatly influence the choice of the 

preferred ANN architecture. This result has high practical significance for developers 

of computational software systems and environments. 

The credibility of the results is ensured by the correspondence of theoretical 

calculations with the experimental data presented in the scientific literature, as well as 

the reproducibility of the results obtained in the work. 

Approbation of results  

The main results of the work were presented at the following conferences: 

1. International conference Current problems in mechanics, St. Petersburg 2018 

2. International conference Current problems in mechanics, St. Petersburg 2019 

3. International conference Current problems in mechanics, St. Petersburg 2021 
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4. International Conference 6th International Conference on Crack Paths, Verona 

2018 

5. International conference 7th International Conference on Crack Paths, online 

conference, 2021 

6. International Conference European Conference on Fracture 21, Catania, 2016 

7. International conference European Conference on Fracture 22, Belgrade, 2018 

8. International conference First Virtual European Conference on Fracture, online 

conference, 2020 

9. International Conference European Conference on Fracture 23, Funchal, 

Madeira, 2022. 

10. International Conference 14th International Conference on Fracture, Rhodes, 

Greece, 2017 

11. International Conference 11th International Symposium on Plasticity and Impact 

Mechanics, Delhi, 2016 

12. International Conference 10th European Solid Mechanics Conference, Bologna, 

2018 

13. International Conference XII All-Russian Congress on Fundamental Problems 

of Theoretical and Applied Mechanics, Ufa, 2019 

14. International Conference XIII All-Russian Congress on Fundamental Problems 

of Theoretical and Applied Mechanics, St. Petersburg, 2023 

15. LXVII International Conference Current problems of strength of APP-2024, 

Ekaterinburg, 2024 

The research results were published in the following 20 papers (WoS/SCOPUS); 

9 papers published in Q1 CJR/SJR journals: 
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1. N.A. Kazarinov, V.A. Bratov, Yu.V. Petrov, Simulation of dynamic crack 

propagation under quasi-static loading, Doklady Physics 59(2), 2014, 99-102 (author’s 

contribution 50%) 

2. I. Smirnov, N. Kazarinov,Y. Petrov, Experimental observation and numerical 

modeling of unstable behaviour of a fast crack velocity, Theoretical and Applied 

Fracture Mechanics 101, 2019, 53-58 (author’s contribution 30%) 

3. Yu.V. Petrov, A.A. Gruzdkov, N.A. Kazarinov, Features of the dynamic fracture 

of one-dimensional linear chains, Doklady Physics 53(11) ,2008, 595-599 (author’s 

contribution 50%) 

4. N.A. Kazarinov, S.A. Smirnov, Y.V. Petrov, Revisiting mass-on-spring model 

to address key dynamic fracture effects, Theoretical and Applied Fracture Mechanics 

132, 2024, 104470 (author’s contribution 80%) 

5. N.A. Kazarinov, Y.V. Petrov, A.V. Cherkasov, Instability effects of the dynamic 

crack propagation process, Engineering Fracture Mechanics 242(1), 2021, 107438 

(author’s contribution 70%) 

6. N.A. Kazarinov V.A. Bratov, Dynamic fracture of ceramic plates due to impact 

loading. Numerical investigation, Materials physics and mechanics 4(42), 2019, 389-

395 (author’s contribution 80%) 

7. N.A. Kazarinov, V.A. Bratov, N.F. Morozov, Y.V. Petrov, V.V. Balandin, M.A. 

Iqbal, N.K. Gupta, Experimental and numerical analysis of PMMA impact fracture, 

International Journal of Impact Engineering 143, 2020, 103597 (author’s contribution 

60%) 

8. N. Kazarinov, A. Khvorov, Predicting impact strength of perforated targets using 

artificial neural networks trained on FEM-generated datasets, Defense Technology 32, 

2024, 32-44 (author’s contribution 70%) 
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9. N. Kazarinov, Yu. Petrov, A. Utkin, Fracture delay effect: analogy between 

crack initiation due to short pulse loads and mass-spring system failure, International 

Journal of Impact Engineering 175, 2023, 104513 (author’s contribution 60%) 

10. M.O. Ignatiev, Y.V. Petrov, N.A Kazarinov, Simulation of Dynamic Crack 

Initiation Based on the Peridynamic Numerical Model and the Incubation Time 

Criterion, Technical Physics 66(3), 2021, 422-425 (author’s contribution 50%) 

11. M.O. Ignatiev, Y.V. Petrov, N.A. Kazarinov, E. Oterkus, Peridynamic 

formulation of the mean stress and incubation time fracture criteria and its 

correspondence to the classical Griffith’s approach, Continuum Mechanics and 

Thermodynamics 35(4), 2023, 1523-1534 (author’s contribution 40%) 

12. N.A. Kazarinov, Y.V. Petrov, A.V. Cherkasov, Spatial and Temporal 

Discreetness as a Crucial Property of the Dynamic Fracture Process, Mechanics of 

Solids 55(5), 2020, 673-678 (author’s contribution 70%) 

13. N.A. Kazarinov, V.A. Bratov, Yu.V. Petrov, G.D. Fedorovsky, Evaluation of 

fracture incubation time from quasistatic tensile strength experiment, Materials Physics 

and Mechanics 19(1), 2014, 16-24 (author’s contribution 50%) 

14. Y.V. Petrov, A.V Cherkasov, N.A. Kazarinov, Instability of critical 

characteristics of crack propagation, Acta Mechanica 232(5), 2021, 1997-2003 

(author’s contribution 70%) 

15. N.A. Kazarinov, Y.V. Petrov, V.A. Bratov, V.Yu. Slesarenko, Numerical 

investigation of stress intensity factor - crack velocity relation for a dynamically 

propagating crack, Materials Physics and Mechanics 29(1), 2016, 39-42 (author’s 

contribution 70%) 

16. N.A. Kazarinov, A.D. Evstifeev, Y.V. Petrov, S.A. Atroshenko, R.R. Valiev, 

The Effect of Grain Refinement on Solid Particle Erosion of Grade 5 Ti Alloy, Journal 

of Materials Engineering and Performance 27(6), 2018, 3054-3059 (author’s 

contribution 40%) 



 

 

33 

  

17. N.A. Kazarinov, A.D. Evstifeev, Y.V. Petrov, S.A. Atroshenko, V.A. Lashkov, 

R.Z. Valiev, A.S. Bondarenko, Surface Roughness Investigation of Ultrafine-Grained 

Aluminum Alloy Subjected to High-Speed Erosion, Journal of Materials Engineering 

and Performance 25(9), 2016, 3573-3579 (author’s contribution 40%) 

18. A. Evstifeev, N. Kazarinov, Y. Petrov, L. Witek, A. Bednarz, Experimental and 

theoretical analysis of solid particle erosion of a steel compressor blade based on 

incubation time concept, Engineering Failure Analysis 87, 2018, 15-21 (author’s 

contribution 40%) 

19. R.Z. Valiev, E.A. Prokofiev, N.A. Kazarinov, G.I. Raab, T.B. Minasov, J. 

Stráský, Developing nanostructured Ti alloys for innovative implantable medical 

devices, Materials 13(4), 967 (author’s contribution 60%) 

20. N. Kazarinov, A. Stotskiy, A. Polyakov, R.Z. Valiev, N. Enikeev, Finite Element 

Modeling for Virtual Design to Miniaturize Medical Implants Manufactured of 

Nanostructured Titanium with Enhanced Mechanical Performance, Materials 15(21), 

2022, 7417 (author’s contribution 60%) 

Author’s contribution 

The thesis materials are a generalization of the author’s work on the research 

topic and reflect his personal contribution to the development of this topic. All results 

presented in the thesis were obtained either by the author himself or with his direct 

participation. 
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Structure of the thesis 

The thesis consists of an introduction, five Chapters, a conclusion, and a list of 

references. The work is presented on 191 pages, contains 66 figures and 10 tables. The 

reference list contains 202 sources. 

Main scientific results  

• An analogy between the processes of dynamic fracture and the failure of a linear 

oscillator has been discovered and investigated [148]. 

• A dynamic fracture model based on a linear oscillator has been constructed. The 

model was used to describe experimental results and to study key dynamic fracture 

effects [34]. 

• The effects of unstable behavior of parameters characterizing the crack 

propagation process, in particular, crack velocity oscillations and variation of the stress 

intensity factor values have been studied. The stress intensity factor – crack velocity 

relation was shown to be defined by the type of the applied load 

[14,15,86,183,184,186,188-190]. 
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• A numerical study of dynamic fragmentation processes under shock loading has 

been carried out. Numerical results describe qualitatively the experimentally observed 

dynamic fragmentation [88]. 

• New numerical and experimental approaches to analysis of strength of materials 

under quasi-static, cyclic and dynamic types of loads have been developed 

[86,109,183,184,193,195,199,201,202]. 

• The effect of fracture in periodic structures in case of sudden unloading has been 

discovered and studied [17]. 

• A method to accelerate calculations and to overcome numerical instabilities in 

impact problems of breaking through obstacles. The method is based on artificial 

neural networks [118]. 

Thesis defense key points 

The analogy between fracture in the “mass-on-a-spring” system and the dynamic 

start of a crack has been discovered and studied. The use of the incubation time fracture 

criterion to analyze the start of cracks under loading with rectangular pulses made it 

possible to associate a linear oscillator with a certain natural frequency with the fracture 

process. Thus, it is shown that the process of the dynamic fracture exhibits inertial 

properties and characteristic times that cause the instability effects observed when 

classic fracture models are applied to problem with high rates of loading and high stress 

rates. The application of the fracture models containing characteristic times implies the 

introduction of the time scale to the fracture process study. 

A dynamic fracture model based on the “mass-on-a-spring” system is proposed, 

which makes it possible to describe and predict the key effects of the dynamic fracture, 

which cannot be processed using classic critical value-based approaches (the fracture 

delay and the increase of the system strength when the loading rate/stress rate grows). 

The study provides a simple engineering interpretation of the complex and unstable 
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behavior of critical fracture characteristics that cause problems with traditional 

approaches. 

An effect associated with fracture taking place in a system with a periodic 

structure after the unloading has been discovered: it has been proven that unloading 

waves initiated even by a quasi-static rupture can cause secondary fracture of a in 

multicomponent periodic structures. The effect is shown using the example of a chain 

of linear oscillators. For this system equations of mass motion were obtained and 

analytically solved. The numerical analysis has been carried out indicating the 

possibility of experimental confirmation of the studied effect using specially designed 

material samples. 

A numerical scheme based on the finite element method and the incubation time 

criterion has been developed to analyze the dynamic propagation of straight cracks. A 

numerical analysis of the effects that cause discussions among specialists, such as K. 

Ravich-Chandar, V. Knauss, A. Rosakis, J. Dally has been carried out: the strong 

scatter in the values of the stress intensity factor observed in experiments under intense 

loading of samples and high rates of crack movement, as well as oscillations of the 

crack velocity. These effects are explained for the first time from the point of view of 

the incubation time, which implies spatial and time discretization of the fracture 

process. 

A two-dimensional numerical scheme has been developed for modeling the 

fragmentation of brittle bodies under impact loading, which makes it possible to 

simulate the propagation of multiple cracks in an arbitrary direction. The numerical 

scheme is based on the finite element method, incubation time criterion and graph 

theory methods. It is shown that in order to simulate the main effects of fragmentation, 

it is not necessary to introduce complex rheological models based on a large number 

of defining parameters and functions of the material. For ceramic materials, the 

dependences of the number of fragments on their size, as well as on the speed of the 

projectile hitting the obstacle, have been obtained. The nature of the numerically 
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obtained dependences is qualitatively confirmed by the experimentally observed 

results. 

A numerical approach for modeling fracture in impact problems has been 

proposed. The developed three-dimensional computational scheme is based on the 

finite element method in a three-dimensional formulation and the incubation time 

fracture criterion. This calculation scheme makes it possible to determine the threshold 

speeds of the projectile. The experiments on penetration of the PMMA 

(polymethilmethacrylate) plates have been simulated and the threshold speed of the 

impactor for the studied samples has been determined, and the accordance of the model 

with the experiments has been shown. 

A new approach based on artificial neural networks (ANNs) has been proposed, 

making it possible to significantly speed up the solution process for the dynamic 

fracture problems, as well as to possibly overcome the computational difficulties 

inherent in this class of problems (excessive deformation of elements, unstable 

performance of the contact algorithms). An ANN-based algorithm has been developed 

that allows one to analyze the fracture process in media and materials with a discrete 

structure – the perforated plates. The algorithm makes it possible to obtain a solution 

to the problem without carrying out a full calculation, as well as to obtain a solution 

for computationally difficult cases.  



 

 

38 

  

Chapter 1. Analogy between the dynamic fracture processes in brittle 

solids and failure of a "mass-on-a-spring" system 

The incubation time fracture criterion (ITFC) is used to analytically investigate 

dynamic crack initiation under short pulse loads. Particular attention is paid to the 

phenomenon of delayed fracture – a fundamental fracture effect which can be observed 

in experiments with short pulse loads. The effect can be described in the following 

way: the material failure occurs after local stresses reached their maximum values, 

meaning that the fracture takes place at a drop stage of the load and thus delay is 

present. It is shown that the fracture delay effect manifests itself when minimal required 

critical loads are applied to the system. Such loads are called threshold loads being a 

key tool for experimental investigation of the dynamic fracture effects. It is found that 

the experimentally registered fracture delay can be clearly explained within the 

incubation time framework. The conditions for the delay are found, threshold load 

parameters are evaluated and the corresponding analytical formulas are given. 

Additionally, a simple analogy based on a mass-spring model is discussed. Analytical 

formulas available for the oscillator model are used to find some non-obvious 

similarities between the crack instability under short pulse loads and the oscillator 

failure when analogous loads are applied. 

1.1. Dynamic failure of a linear oscillator 

Let’s consider mass 8 on an elastic spring with stiffness 9 and force :(-) applied 

to the mass. The mass deflection is described by function ;(-), which satisfies the 

following balance equation, initial conditions and a critical deflection failure condition: 

8
<=;
<-= + 9; = :(-)	

;(0) = ;̇(0) = 0 

;(-) ≥ ;% ⇔ разрушение 

 

(1.1). 
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Fig. 1.1. Oscillator and loading pulse. 

Problem (1.1) can be solved for a rectangular force pulse, when :(-) =

J[L(-) − L(- − M)], where J and M are the pulse amplitude and duration 

correspondingly and L(-) is Heaviside step function. The solution of problem (1) is 

the following: 

;(-) = O

J
9

(1 − cos(T-)), 	- ≤ M

J
9

6cos6T(- − M)7 − cos(T-)7, 	- > M
 (1.2), 

where T = W9 8⁄  is the oscillator natural frequency. If the system failure is 

considered and fracture time is denoted by -∗, equation ;(-∗) = ;% can be used to build 

dependence of the pulse duration M on the fracture time -∗ for a fixed pulse amplitude. 

If fracture time exceeds pulse duration (-∗ > M), fracture delay takes place because 

fracture takes place right when the tearing force drops to zero (or prior to this moment) 

(-∗ ≤ M) and there is no delay we can calculate minimal possible fracture time -Z[\
∗ : 

-Z[\
∗ = M]^_`	'^abc =

1
T

)d99ef 21 −
:%
J

3 (1.3) 

In (1.3) and further :% = 9;% is critical static force for the oscillator. All pulses 

with durations longer than M(-Z[\
∗ ) result in the exact same fracture time -Z[\

∗  yielding 

a vertical line on the M(-∗) graph (figure 1.2).  
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Fig. 1.2. Dependence of pulse amplitude on fracture time for pulsed causing 

oscillator failure with fixed amplitudes. 

The fracture with a delay can be studied if - > M case from (1.2) is considered. 

For this case solution of the equation ;(-∗) = ;% yields the following M(-∗) 

dependence: 

M = −
1
T

)d99ef g
:%
J

+ 9ef(T-∗)h+-∗ (1.4). 

Analyzing (1.4) one can evaluate minimal pulse duration for a given amplitude 

Mij_^kj`a', which corresponds to a maximal fracture time -Zbl
∗  indicating maximal 

fracture delay:  

-Zbl
∗ =

1
T

gm − )d99ef 2
:%
2J

3h 

Mij_^kj`a' =
1
T

gm − 2)d99ef 2
:%
2J

3h 

(1.5a), 

 

 

(1.5b). 
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Formulas (1.5a,b) impose natural limitation on the pulse amplitude J due to 

restrictions on the )d99ef argument which should belong the [−1,1] range. Thus, in 

order to cause the system failure, the tearing force pulse amplitude should be equal or 

exceed half of static critical force (a static force which would break the spring if static 

problem was considered): J ≥ :% 2⁄ . If minimal pulse amplitude J = :% 2⁄  is 

considered, points -Z[\
∗  and -Zbl

∗  merge and no fracture delay can be observed and 

hence the M(-∗) degenerates into a single vertical line. On the contrary, larger 

amplitudes result in longer possible fracture delay times. These variants of the M(-∗)  

dependence are shown with dotted lines in figure 1.2. 

Formula (1.3) can be used to construct a dependence of the tearing pulse duration 

on the pulse amplitude for the two limiting cases: for the zero-delay case -∗ = M should 

be substituted into (1.4) and if maximal fracture delay is considered (5b) should be 

used in order to study the threshold case. The corresponding M(J) dependencies are 

shown in figure 3a. The graph shows a minimal admissible pulse amplitude and shorter 

pulses require higher amplitudes to cause the system failure – threshold loads. Note 

that the oscillator failure effectively occurs for pulses that lie between the two lines 

since we suppose that the loading stops when the system fails – the points “drop” to 

the zero delay M(J) curve, which describes the system overloading case. 

 

Fig. 1.3. Dependencies of loading pulse duration (a) and load impulse (b) on 

amplitude for pulses that cause fracture with and without delay.  
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Finally, we can use the obtained M(J) curves to investigate impulse o = J ∙ M(J) 

for the loads which result in the system failure. The corresponding o(J) curves are 

shown in figure 1.3b. The zero delay o(J) dependence appear to have a minimum point 

6J`qi, o`qi7 = (0.592:%, 1.38:% T⁄ ) providing optimal (in terms of impulse) regime 

for the oscillator failure when no fracture delay is considered and the system is 

overloaded. Thus, in order to break the oscillator optimally in terms of the load impulse 

and without the fracture delay (which is practically the simplest way to cause fracture, 

since one has to apply the force pulse and wait until the system fails) the system should 

be loaded with a pulse with a 0.592:%  amplitude. Obviously, if fracture with a delay is 

considered, one should use very short pulses with high amplitudes in order to minimize 

the impulse of the tearing force. 

This way, it was shown that the oscillator can exhibit the fracture delay effect 

when short tearing pulses are applied. Parameters of the critical pulses belong to 

particular intervals depending on which regime is considered: threshold loading or the 

overloading of the system. Moreover, there is a minimum value for the tearing pulse 

amplitude for pulses that cause the system failure and this minimal amplitude equals 

half of the static critical force :%.  In addition to this one can calculate an optimal (in 

terms of the load impulse) amplitude for a pulse which causes the oscillator failure 

without a delay. 

1.2. The incubation time fracture model 

The incubation time fracture criterion was originally proposed in works 

[31,80,108]. The model implies that macroscopic fracture event requires specific time 

– the incubation time – to develop from microscopic fracture processes such as 

microcracking and defect movement and coalescence. The incubation time is regarded 

as a material parameter to be evaluated from available dynamic fracture experiments 

for a given material.  
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According to the ITFC the fracture at point ; and fracture time -∗ is controlled 

by the following inequality: 

1
w

x
1
<

i∗

i∗yz

x {(;|, -|)<;|<-| ≥

l

ly'

{% (1.6), 

where {(;, -) is a time-dependent tearing stress, {% is ultimate stress for the 

studied material and w stands for the incubation time. Criterion (1.6) also contains 

linear size parameter <, which was firstly introduced in [149,150]. This parameter is 

treated as the fracture process zone size, coinciding with the minimal distance the crack 

tip can travel. The linear size < can be calculated using the formula < = 2!"%
= m{%

=⁄ , 

where where !"%  is the critical stress intensity factor for the studied material. The 

incubation time w is considered to be a material property which should be evaluated 

experimentally. It is independent of other parameters and the best way to measure it 

experimentally is to conduct a test, where one knows the fracture zone location ;, 

fracture time -∗ and stress history at points of interest {(;, -). This way, one simply 

needs to substitute the stress history into the integral condition and to find the w, which 

provides the equality in the formula (1.6). The stress history can be measured 

experimentally (the best option, which is attainable in spallation tests) or can be taken 

from numerical or even analytical analysis. Another way is to operate with threshold 

loads, which can sometimes provide possibility to calculate w without knowing fracture 

time -∗. The fracture criterion (1.6) can be simplified to perform analysis of crack 

growth initiation due to dynamic loads when bodies with cracks are considered: 

1
w

x !(-|)<-′ ≥ !"%

i∗

i∗yz

 (1.7). 

For relatively slow loads criterion (1.7) is equivalent to Irwin’s criterion 

!" ≥ !"% [18] but cannot be used to simulate the crack propagation process due to 

possible lack of stress intensity factor dominance in case of moving cracks [151]. 
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1.3 Crack initiation analysis and analogy with an oscillator 

All the dependencies in this section will be constructed and demonstrated for 

experiments on crack initiation due to pulse loading from works [2,5]. Firstly, we will 

provide a detailed description of the incubation time model application and consequent 

association with the oscillator model for the results from [5] where steel samples were 

tested. Then experiments on plexiglass from [2] will be analyzed analogously, but in a 

briefer manner. 

In fact, we will follow steps we made for the oscillator model described in the 

first section: to construct the M(-∗) dependence for some given load pulse amplitude J 

in order to clearly show the fracture delay effect, then we will find the zone in the M −

J plane where critical pulses belong and finally we will calculate optimal load pulse 

parameters which will help us to associate some virtual oscillator with the considered 

crack initiation problem.  

Experiments on crack initiation due to pressure pulses in 4340 steel sample from work 

[5] 

In [5] experiments on crack initiation in 4340 steel samples due to rectangular 

pressure pulses are described. The authors provide data on pulses with threshold 

amplitudes (minimal amplitude for a given pulse duration leading to crack instability) 

for three pulse durations – 18 µs, 40 µs and 80 µs (figures 6 and 7 in [5]) for cracks 

with different initial lengths. In this study we are interested in relatively long cracks so 

that semi-infinite approximation could be considered applicable and corresponding 

formulas for the SIF would be available.  

Consider an elastic plane with a semi-infinite cut ~ = 0, ; ≤ 0 (figure 1.4). If 

the material behavior is considered to be elastic, the deformed state is defined by the 

following system of equations: 
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Рис. 1.4. Crack initiation problem scheme. The sample is unbounded and crack is 

semi-infinite. 

�=Ä
�;= +

�=Ä
�~= =

1

9Å
=

�=Ä
�-=  

�=Ç
�;= +

�=Ç
�~= =

1

9=
=

�=Ç
�-=  

(1.8), 

where Ä and Ç are the Helmholz decomposition potentials, 9Å and 9= are 

dilatational and transversal elastic wave velocities. Horizontal and vertical 

displacements (É, Ñ) can be obtained according to formulas  

É =
�Ä
�;

+
�Ç
�~

, Ñ =
�Ä
�~

−
�Ç
�;

 (1.9). 

The crack faces are supposed to be loaded with a time-dependent normal 

pressure /(-) and the plane is stress-free for - < 0. Thus, the following boundary 

conditions and initial conditions are applied: 
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{lcÜcá±1,
lâ1

= 0 

{cÜcá±1,
lâ1

= /(-) 

Ä|iâ1 = Ç|iâ1 = 0 

(1.10). 

If the step load /(-) = J ∙ L(-) is considered, the stress intensity factor is given 

by formula [65] 

!ã(-) = J ∙ å ∙ √-, å =
49=W9Å

= − 9=
=

9Å√m9Å
 (1.11). 

If arbitrary load è(-) is applied to the crack faces, the expression for the 

corresponding SIF dependence !ê(-) is calculated using convolution: 

!ê(-) = x!ã(f) ⋅ è′(- − f)<f

i

1

 (1.12). 

This way formula (1.12) can be used to evaluate the !(-) function for a 

rectangular pulse load /(-) = J6L(-) − L(- − M)7 with amplitude J and pulse 

duration M: 

!(-) = J ∙ å ∙ 6√- − √- − M7 (1.13) 

In (1.13) and in the rest of the formulas in the paper the roots are supposed to be 

multiplied by a Heaviside function with the same argument. Now we can substitute 

(1.13) into criterion (1.7) (supposing that in (1.7) equality takes place) in order to 

investigate the crack initiation. Direct definite integral evaluation using the 

antiderivative formula for the square root (∫√;<; = 2 3⁄ ∙ ;ì =⁄ ) yields expression 

(1.14), which connects fracture time -∗, pulse duration M and load amplitude J and thus 

can be used to construct the M(-∗) dependence for a fixed pulse amplitude. 

2Jå
3w!"%

6(-∗)ì =⁄ − (-∗ − M)ì =⁄ − (-∗ − w)ì =⁄ + (-∗ − M − w)ì =⁄ 7 = 1 
(1.14) 
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If the zero-delay case (-∗ ≤ M) is considered, meaning that fracture takes place 

before the stress intensity factor reaches its maximum (see figure 1.5), the second and 

the fourth terms of (1.14) disappear (due to multiplication by the Heaviside function) 

and -Z[\
∗  value can be found numerically from the simplified equation. Note that for 

the case when -∗ < w (1.14) is obviously further simplified providing explicit formula 

for the -Z[\
∗ . The -Z[\

∗  value corresponds to a vertical line in the M(-∗) dependence 

(figure 1.6).  

The 4340 steel material properties used in the analysis are listed in table 1.1. 

Note that the incubation time value w = 7ïf provides the best fit of the experimental 

curves by a theoretical threshold M(J) curve (figure 1.7). 

Material property Value 

Critical stress intensity factor, !"%  

ñ/)√8 

47 

Longitudinal wave velocity, 9Å,8/f 6000 

Transversal wave velocity, 9=,8/f 3240 

Incubation time, w, f 7e-6 

Table 1.1. 4340 steel material properties used in the calculations. 

In order to investigate possible fracture delay, we should consider -∗ > M case 

and search for a threshold minimal pulse duration Mij_^kj`a' for a given fixed 

amplitude J which corresponds to a maximal fracture time -Zbl
∗  and thus to a maximal 

fracture delay. Obviously, at a point	-Zbl
∗  the M(-∗) dependence has minimum. Since 

this is a threshold case, the - = -Zbl
∗  value can be found as a root of the following 

equation which arises from (1.7): 

max
i

x !(-|)<-′ = w!"%

i

iyz

 (1.15) 
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Fig. 1.5. Stress intensity factor for a pulse load applied to the crack faces. 

The maximum condition can be evaluated if integral in (1.15) is differentiated 

with respect to -. This way, we deduce that !(	-Zbl
∗ − w) = !(	-Zbl

∗ ). If we consider 

shape of the !(-) function (see figure 5), we can conclude that -Zbl
∗ − w < M < -Zbl

∗  

and that fracture takes place after the !(-) has passed its maximum and <!(-) <-⁄ <

0. Thus, if expression for the -Zbl
∗  is sought for, formula (1.14) should be used without 

the fourth term since it vanishes due to multiplication by a Heaviside function: 

2Jå
3w!"%

6(-∗)ì =⁄ − (-∗ − M)ì =⁄ − (-∗ − w)ì =⁄ 7 = 1 (1.16) 

Now we can use (1.16) to implicitly calculate minimum of the M(-∗) function. 

A known formula for minimum of implicit function yields the following equation: 

√- − √- − M = √- − w (1.17). 

Expression (1.17) can be transformed to quadratic equation with respect to -∗ 

and one of its roots gives a formula for the -Zbl
∗  we are looking for: 

-Zbl
∗ =

1
3
õM + w + 2WM= + wM + w=ú 

(1.18) 

Figure 1.6 shows the M(-∗) dependence for the 4340 steel and the loading pulse 

amplitude J = 500	ñ/) (added by two supplementary amplitude values). Calculated 

values for the key points of the curve are also provided. The dependence looks almost 
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identical to the M(-∗) curve for the oscillator (figure 1.2). Note that lowering of the 

amplitude J leads to a decrease of the -Zbl
∗  value and -Zbl

∗ → -Z[\
∗ . However, these 

points never coincide, since there is no minimal pulse amplitude if the semi-infinite 

crack approximation is used for the analysis: even vanishingly small pulse amplitudes 

will result in fracture if the load duration is long enough for the load signal to arrive 

from distant points of the crack faces. This fact is also clear from the shape of the !(-) 

function (figure 1.5): the stress intensity factor increases until the load ends and thus 

the pulse duration M can be selected to be long enough so that the fracture condition 

could be always met. 

 

Fig. 1.6. Dependence of load duration on fracture time for 4340 steel [5] material and 

pulse amplitude 500 MPa.  

Now, we can substitute -Zbl
∗  from (1.18) into (1.14) to obtain an equation that 

relates load pulse amplitude J and load duration M for the case of a maximal delay – a 

threshold case, when for a given pulse amplitude we obtain minimal admissible pulse 

duration causing crack movement. Another M(J) relation can be built for the zero-

delay (overloading case) fracture substituting -∗ = M into formula (1.14). Both these 



 

 

50 

  

dependencies have been constructed using implicit plotting tools (figure 1.7) for the 

4340 steel and the threshold M(J) curve is used to fit experimental points and thus to 

evaluate the incubation time value w as parameter providing the best fit of the 

experimental data. Analogously to the oscillator model (see figure 1.3a) the crack 

initiation is possible for loads which belong to a zone bounded by the constructed M(J) 

curves for zero delay and maximal delay cases. However, there is no minimal 

admissible pulse amplitude for the considered problem and thus, the vertical axis is an 

asymptote for both M(J) curves, while the oscillator model provides a minimal pulse 

amplitude :% 2⁄ . This should be expected since we consider a problem with a semi-

infinite loaded crack and if the problem for a bounded sample was solved (e.g. using 

numerical methods to obtain the !(-) function), it would be possible to calculate 

minimal load pulse amplitude leading to the crack onset. In figure 1.7 experimental 

points are taken from [5]. Note that all of them lie in a range of values that do not admit 

observable fracture delay – the studied load pulses are too long and the samples are 

obviously overloaded. In order to obtain visible fracture delay effect, much shorter 

pulses with higher amplitudes should be used (see grey zone between the two M(J) 

curves in figure 1.7). 
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Fig. 1.7. Dependencies of loading pulse duration on pulse amplitude. Region 

describing pulses causing fracture marked with grey. Calculations made for 

experiments on 4340 steel described in [5]. 

Finally, we are able to calculate the load impulse o(J) = J ⋅ M(J) for the two 

studied cases (zero delay and maximum delay). These two o(J) curves are shown in 

figure 8a and the upper curve has an obvious minimum corresponding to an optimal in 

terms of impulse load pulse when fracture with zero delay is considered. Note that this 

regime is the simplest to implement practically since the load with the optimal 

amplitude should be kept until the fracture occurs. This minimum can be calculated 

numerically for the given material (4340 steel): 6J`qi
%_b%û, 	o`qi

%_b%û7 =

(2.93	ñ/), 30.48	/) ∙ f). 

As seen from the constructed graphs, the crack loaded with short pulses exhibits 

a very similar behavior to an oscillator in terms of fracture. It can be said that the 

fracture process (crack initiation in our case) has inertia and cannot occur instantly and 

thus we can associate a virtual oscillator with a particular cracked material. In this study 

it is impossible to calculate independently the virtual oscillator mass and stiffness since 

for the considered statement of the crack problem there is no minimal admissible load 
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pulse amplitude. However, it is possible to evaluate the eigen frequency of the virtual 

oscillator using expressions for the minimum of the o(J) dependence for the zero-delay 

case.  

As shown in section 1.2, this minimum for the oscillator model is calculated 

according to formula 6J`qi
`k% , 	o`qi

`k%7 = (0.592:%, 1.38:% T⁄ ). Thus, if we suppose that 

6J`qi
`k% , 	o`qi

`k%7 = (0.592:%, 1.38:% T⁄ ) =	

= (2.93, 30.48) = (J`qi
%_b%û, 	o`qi

%_b%û) 
(1.19), 

we can calculate the eigen frequency of the virtual oscillator T = 288.4	üL†. 

As it was mentioned above, in order to evaluate the virtual oscillator mass and spring 

stiffness, a problem with a bounded sample should be considered and minimal pulse 

amplitude formula would then be used as an addition to equation (1.19) providing 

possibility to evaluate the virtual oscillator mass and stiffness separately. 

 

 Fig. 1.8. Dependencies of load impulse on load amplitude for a crack in 4340 steel 

[5] and for a calibrated oscillator. Minima of the zero delay curves for the both 

problems are indicated. 
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It should be mentioned that the constructed analogy utilizes the fact that for the 

considered crack problem the local stress field drop starts right after the end of the 

loading pulse (- = M, see figure 1.5) and thus the whole cracked sample behaves 

similarly to some oscillator loaded with a rectangular tearing force.  

Processing of experiments on polycarbonate from [2] 

Here we will fully repeat the analysis from the previous subsection omitting all 

the deductions and providing final results and graphs. In [2] polycarbonate samples 

with penny-shaped cracks were loaded with rectangular pressure pulses with duration 

2.8 ïf. The authors were interested in threshold amplitudes for various diameters of 

the initial cracks. It is worth noticing that in this particular work authors report that 

fracture delay took place, however they describe this effect in slightly different terms 

indicating that fracture occurs at a decreasing stage of the !(-) function. Despite the 

fact that in [2] penny-shaped cracks are discussed, we consider the above described 

semi-infinite crack approximation applicable since the considered pulse duration is 

remarkably short and the authors of [2] report the threshold pulse amplitude for 

relatively large cracks. The polycarbonate properties used for the calculations are listed 

in table 1.2.  

Material property Value 

Critical stress intensity factor, !"%  

ñ/)√8 

3.08 

Longitudinal wave velocity, 9Å,8/f 2264 

Transversal wave velocity, 9=,8/f 1250 

Incubation time, w, f 5e-6 – from fitting of experimental 

points by the threshold M(J) curve. 

Table 1.2. Polycarbonate material properties used in the calculations  
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Figure 1.9 shows the J(M) dependencies and the  J(M) for the threshold 

(maximal delay) case was used to calculate the incubation time value for the studied 

polycarbonate material. In the discussed experiments the load duration was short 

enough so that the fracture delay could be observed.  

 

Fig. 1.9. Dependencies of loading pulse duration on pulse amplitude for 

polycarbonate samples [2]. 

The obtained J(M) for polycarbonate dependencies can be used to evaluate the 

load impulse versus load amplitude dependencies o(J) = J ⋅ M(J) for both zero delay 

and maximal delay scenarios. These dependencies are shown in figure 1.10. Again, the 

zero delay o(J) curve has a minimum which provides an optimal load in terms of 

required impulse minimization. This minimum can be used to evaluate eigen frequency 

of the associated virtual oscillator: T = 403.8	üL†. 
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Fig. 1.10. Dependencies of load impulse on load amplitude for a crack in 

polycarbonate samples [2] and for a calibrated oscillator. Minima of the zero delay 

curves for the both problems are indicated. 

1.4 Chapter 1 conclusions 

The following conclusions can be driven from the conducted research. Firstly, it 

is shown that the incubation time model is able to predict the fracture delay 

phenomenon in the crack initiation problem. This phenomenon can take place when 

material is loaded with short pulses and fracture occurs after the local stresses passed 

their peak values. The widespread SIF-based models usually are unable to catch this 

effect, but the ITFC introduces a new material parameter, the incubation time, which 

accounts for preparatory microscopic processes which lead to macroscopic fracture. 

These processes need time to develop and thus macroscopic fracture can take place 

after the local stress maximum is passed. The incubation time represents a 

characteristic time associated with these processes and should be regarded as a material 

property. The ITFC can be applied in practical applications where short pulse loads are 

to be investigated (e.g. design of protective systems using CAD/CAE approaches). 
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We also show the fracture delay effect can be observed when a linear oscillator 

failure is considered when the system is loaded with short pulses. This lets one 

conclude that the fracture process can exhibit inertial features making it possible to 

attribute some virtual oscillator to a media with a crack. In fact, one can think of an 

imaginary sample with a “black box” indicating either a crack or an oscillator with 

appropriate parameters and load it with a stress pulse (see graphical abstract). Both 

variants of this sample will be almost indistinguishable if fracture is considered. This 

analogy opens the way for simple engineering interpretation of numerous fracture 

dynamics phenomena associated with brittle crack initiation and propagation 

processes.  

In addition to this we demonstrate that there is an optimal (in terms of the load 

impulse) loading regime which leads to fracture – threshold pulses (lower curves in 

figures 1.8, 1.10) provide minimal load impulse. This way, if fracture is favorable (e.g. 

in rock grinding), the best strategy is to load the system with a properly calculated short 

load which ends before the system fails. However, even if one loads the system until it 

fails, there is an optimal pulse minimizing the load impulse. This optimal pulse was 

found for both considered systems – a linear oscillator and a crack when the system 

overloading case is considered. This made it possible to attribute a virtual oscillator to 

the crack problem which behaves in a similar manner when loaded with short pulses. 

For this particular problem it is impossible to calculate uniquely values of the oscillator 

mass and stiffness, however the eigen frequency of the virtual oscillator was provided. 

This limitation can be overcome if a more realistic problem with a bounded cracked 

sample is studied. However, we deliberately avoid discussion about mechanical value 

which is described by the constructed virtual oscillator, since it is a complicated and 

yet unsolved question. This value should probably describe the material damage, but 

here our goal is to show that the fracture process inertia is a natural consequence of 

microscopic fracture processes which precede crack initiation and which can be 

accounted for using the ITFC. 
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It can also be concluded that for the dynamic fracture studies it is essential to 

investigate threshold cases in which the most important time effects appear that do not 

fit into the classical concepts of strength and crack resistance – the concepts that rely 

on local ultimate stress and/or critical intensity factor parameters. In the present work 

these cases are described by maximum delay curves of the load characteristics 

dependencies (lower curves in figures 1.3,1.7,1.8,1.9,1.10). These loads provided 

minimal sufficient load helping to reveal fracture delay – a fundamental fracture effect. 

On the contrary, overloading (upper curves in figures 1.3,1.7,1.8,1.9,1.10) hides effects 

(fracture delay in this particular case) from the observer. These excessive loads are 

much easier to implement experimentally compared to the threshold loads, which 

appear to be optimal for fracture initiation at least in terms of the load impulse 

minimization. However, even generally non-optimal excessive loads appear to have 

optimal amplitude and duration values. The abovementioned results reveal the 

fundamental feature of the ITFC: it is able to operate correctly with these important 

threshold loads. It distinguishes the ITFC from classic quasistatic SIF based criteria 

and their generalized extrapolations onto dynamics.  

More information can be found in [33,34,148]. 
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Chapter 2. Fracture in a "mass-on-a-spring" system. Direct modelling 

of the dynamic fracture using the linear oscillator model 

The second Chapter considers failure of a linear oscillator (a “mass-on-a-spring” 

system) and the corresponding simple engineering approach to dynamic fracture of 

solids. In addition to the results obtained in Chapter 1 (the effect of the fracture delay 

in the "mass-on-a-spring" system when loaded with short pulses of force has been 

investigated), the linear oscillator failure due to linearly increasing load is investigated 

and it is shown that the effect of increasing the strength of the system with increasing 

loading speed can be investigated using the linear oscillator. Thus, the inertia of the 

considered system makes it possible to investigate key effects of the dynamic fracture. 

The conducted studies have clearly demonstrated the inapplicability of standard 

strength models of continuous media when dynamic loads are considered. 

Additionally, the second Chapter presents the results of calibration of the linear 

oscillator model. The model has been used to describe experiments on crack initiation 

under dynamic loading, as well as on spallation in rods. The model shows good results, 

despite its simplicity and the strength of the assumptions made in course of the 

modeling. 

2.1 Fracture in the “mass-on-a-spring” system 

Here we will investigate movement and failure of a linear oscillator subjected to 

different load types. In all cases we will use analytical solution of the following 

problem: 

Rectangular pulse load 

Repeating some of the results of the first Chapter, we present the formulation of 

the fracture problem for the linear oscillator, as well as the main results obtained for 

the pulse loading. 
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Let’s consider the following problem of a linear oscillator failure. The mass 

movement is described by a second order ordinary differential equation: 

8;̈ + 9; = :(-)	

;(0) = ;̇(0) = 0 
(2.1), 

where 8 and 9 are mass the spring stiffness correspondingly. We will use the 

critical mass deflection (;%) fracture condition: 

;(-) ≥ ;% ⇔ разрушение (2.2). 

Condition (2.2) means that for a static case (no inertia term in (2.1)) force 

equaling :% = 9;% will be critical leading to the spring break.  

The initial value problem (1) can be explicitly solved using Duhamel’s integral: 

;(-) =
1

8T
x:(f) sin6T(- − f)7 <f

i

1

 (2.3), 

where T = W9 8⁄  is the oscillator natural frequency. For relatively simple 

loading cases integration in (2.3) yields analytical formulas for the mass deflection 

function ;(-). These formulas can be used to investigate the load parameters resulting 

into the system failure.  

Here are some results for the pulse loads from the first Chapter are presented. 

For example, the following formula describes the dependence of the critical pulse 

duration M on the fracture time -∗ and amplitude J  

M = −
1
T

)d99ef g
:%
J

+ 9ef(T-∗)h+-∗ (2.4). 

Formula (2.4) can be used to demonstrate the fracture delay effect and to show 

that the minimal critical amplitude value equals half of the static critical force – :% 2⁄ . 

It has been shown that parameters of the critical loading pulses (rectangular ones) 
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belong to some specific zone in the (M − J) plane since the fracture can take place with 

a delay meaning that the system breaks after the load has ended. (see figure 1.3 in 

Chapter 1).  

Linearly raising load 

Multiple experimental works show that if a high-rate load is applied to a 

material, stresses measured at the fracture time can considerably exceed the material’s 

static critical stress. This effect can be also seen when the oscillator failure is 

considered. 

Let’s consider the case when the loading force in (2.1) grows with a constant 

rate å, thus :(-) = å-. Then, solution of the problem (2.1) according to (2.3) is the 

following: 

;(-) =
å
9
§- −

1
T

f•¶(T-)ß , T = W9 8⁄  (2.5). 

If the fracture time is denoted as -∗, the load force value acting at the fracture 

time is :∗ = å-∗. The :∗ is regarded as the system strength. Then the fracture condition 

(2.2) can be written in two forms for convenience: 

T-∗ − f•¶(T-∗) = ü; 	ü =
:%T
å

 

:∗

:%
− 1 = 2

1
ü
3 f•¶(T-∗) = 2

1
ü
3 f•¶ 2

T:∗

å
3 

(2.6a) 

 

(2.6b) 

Expressions (2.6a,b) can be used to investigate dependence of the system 

strength :∗ on the loading rate å. As discussed above, :% is the static critical force 

causing the spring break if a static problem is considered. This value is an analogue of 

the ultimate static stress for a brittle material. Let’s consider the case when ü ≪ 1. This 

case refers to a dynamic fracture regime: according to (2.6a) T-∗ ≈ f•¶(T-∗) and this 

way from (2.6b) ´
∗

´̈
− 1 ≫ 1. This can only happen if ´

∗

´̈
≫ 1 meaning that the load at 

the break time -∗ exceeds considerably the critical static force. In the dynamic fracture 
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mechanics of solid bodies this phenomenon is known as a dynamic branch of the 

material strength curve. If the opposite ü ≫ 1 case is considered, (2.6b) yields ´
∗

´̈
− 1 

≈ 0, since f•¶(T-∗) is bounded. Thus, static fracture regime is present for this case, 

which is an analogue of a static branch of the strength curve. This way coefficient ü 

(2.6a) determines the fracture regime of the system subjected to a given rising load.  

Expression (2.6b) can be used to actually build the strength curve (:∗(å) curve) 

using implicit plotting. Let’s consider two systems with the following parameters: T[ 

and :%[, • = 1,2. These parameters can be chosen so that system 1 is stronger than 

system 2 for slow loads (:%Å > :%=), but for higher loading rates the situation is inverted 

meaning that the strength-rate curves intersect and system 2 becomes stronger than the 

system 1. Figure 2.1 shows such case for specially chosen parameters of the oscillators. 

This is a well-known phenomenon observed in experiments on real construction 

materials [152]. The intersection of the strength-rate curves takes place due to the fact 

that the system 2 starts to operate in dynamic regime earlier than the system 1: a 

particular load rate å corresponds to a static branch of the :∗(å) curve for the system 

1, while activating dynamic regime for the second system. As seen from the graphs, 

there is a clear transitional regime with oscillations which occur due to behavior of the 

;(-) function for particular loading rate values. For low loading rates (“static branch”) 

the mass follows the load with almost no oscillations yielding static branch of the 

:∗(å) curve. While the loading rate increases the ;(-) oscillations become more 

pronounced and the strength curve enters the transitional oscillatory phase. For the 

highest å values the fracture condition (2.2) holds within the first oscillation of the 

;(-) function generating the dynamic branch of the :∗(å) strength curve.  
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Fig. 2.1. Intersecting strength – rate curves built for the oscillators with different 

parameters. 

2.2 Experiments on crack initiation 

As it is discussed above, the linear oscillator model can reveal some fundamental 

dynamic fracture effects if short pulse and high-rate loads are considered. In this 

section the oscillator parameters (mass 8, spring stiffness 9 and critical mass 

deflection) will be evaluated to model some known experimental results on dynamic 

fracture. Ideally the oscillator parameters will be calculated using some other problem 

data reducing number of adjustment parameters.   
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Firstly, dynamic crack initiation due to loading with various rates and due to 

short pulse loads will be considered and the spallation experiment will finalize this 

section.  

Crack initiation due to dynamic loading 

The general concept of the oscillator model application to the crack initiation 

problems is the following: the crack starts to propagate if a virtual oscillator breaks 

according to critical spring elongation criterion. The virtual oscillator is put in the 

vicinity of the crack tip and its parameters are calculated from the supposed crack 

elongation ∆Ø and the material data. The oscillator load is calculated from analytical 

formulas for the stress field near the crack tip for the corresponding crack problem. 

Consider a semi-infinite crack ; ≤ 0, ~ = 0 which is loaded with a step function 

JL(-), where L(-) is a Heaviside function and J is the load amplitude. The load is 

supposed to be applied to the crack faces and the problem is set and solved in two-

dimensional plain strain formulation. Full expression for the resulting stress acting on 

the crack trajectory {cc
∞ã_´b%^k(;, ~ = 0, -) = {cc

∞ã_´b%^k(;, -)  are provided in several 

works (e.g. see [65,155,156]), however this formula while being exact is complicated 

for further manipulations and calculations. Thus, a two-term approximation is used in 

this study to simplify the calculations while keeping acceptable accuracy of the stress 

field calculations. A procedure for the approximation evaluation is given in [154] and 

here the final result is used:  

{cc
∞ã(i)≤≥¨¥µ(;, -) = J ∙ §

ñ√-

√;
−

∂√;

√-
− 1ß ∙ L(; − 9Å-) 

ñ =
2√2√9Å∑W1 − ∑=

m
;∂ =

√2∑W1 − ∑=(2∏Å∑π + ∑π − 2)

m∑π√9Å
 

∏Å =
1
m

x arctang
4∑ìf=√f= − 1 ∙ W1 − ∑=f=

(1 − 2∑=f=)=
h <f

yÅ

yÅ º⁄
 

∑ =
9=

9Å
;	∑π =

9π

9Å
 

(2.7). 
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In (2.7) and in the corresponding footnote 9Å and 9= are the longitudinal and 

transverse wave speeds, 9π is the Rayleigh wave speed and L(-) is the Heaviside step 

function. 

Formula (2.7) is used to derive Green’s function – a solution that corresponds to 

loading the crack faces with a Delta function Ω(-): 

{cc
æ(i)_´b%^k(;, -) = ø(;, -) =

�{cc
ã (;, -)

�-
∙ L(; − 9Å-) (2.8), 

which can be further applied to evaluate stress {cc
¿(i)_´b%^k(;, -) for arbitrary load 

/(-) applied to the crack faces: 

{cc
¿(i)_´b%^k(;, -) = x /(-)´b%^k ∙ ø(;, - − f)<f

i

1
 (2.9). 

Formula (2.9) will be further used to evaluate tearing stresses for each of the 

considered crack initiation problems. 

The oscillator model 

8¡̈ + 9¡ = :(-)	

¡(0) = ¡̇(0) = 0 

¡ ≥ ¡% ⇔ :d)9-Éd¬ 

(2.10) 

is calibrated by consecutive evaluation of parameters 8, 9, ¡% and load :(-) 

(figure 2.2). For each parameter the corresponding evaluation procedure and 

suppositions are provided.  

1) Firstly, the oscillator mass 8 is defined. Two squares with a side ∆Ø are virtually 

cut from a sample in the vicinity of the crack tip (see figure 3a). These squares have 

mass 

8 = √∆Ø= (2.11). 
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and are supposed to be linked by a virtual spring with stiffness 9. The spring 

elongation is 2¡(-). Parameter ∆Ø is regarded as a key fitting parameter and ideally the 

rest of the model parameters should be expressed in terms of ∆Ø and other standard 

material data. It should be noted that higher ∆Ø values result into larger oscillator mass 

which obviously increases inertia of the  

2) Applied load. The loading force :(-) applied to the mass of the virtual oscillator 

is calculated by integration of the analytical formula for transient stress 

{cc
¿(i)_´b%^k(;, -) (3.4) acting on the crack continuation 

:(-) = x {cc
¿(i)_´b%^k(;′, -)	<;′

∆a

1
 (2.12). 

3) The oscillator spring stiffness 9 and critical mass deflection ¡%. In order to 

evaluate these parameters, the following supposition is made: the Irwin’s fracture 

criterion (!" ≥ !"%) is applicable for the crack initiation due to static load and the 

oscillator model should perform correctly in the static load regime as well. Thus, the 

critical static force value :% applied (in a static sense) to the virtual oscillator should 

result into both the mass coordinate reaching its critical value ¡% and into the SIF 

reaching its ultimate static value !"%. This way, the :% value can be evaluated via spatial 

integration of the SIF-based approximation for static stresses near the crack 

:% = x
!"%

√2m;′

∆a

1
<;′ (2.13). 

On the other hand, it is supposed that when the critical static load is applied the 

crack length increases by ∆Ø and the resulting stress intensity factor value !"
\^ƒ does 

not differ much from !"% and this way crack opening 2¡%  corresponding to the critical 

static case can be calculated at a point at ∆Ø distance counting from the new crack tip 

location (see figure 2.2b for clarification). The ¡% value is calculated using the SIF-

based approximation formulas for the displacement field and is afterwards regarded as 
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a critical mass deflection causing the virtual oscillator failure. Thus, the following 

expression is used for the ¡% evaluation: 

¡% =
!"%(1 + ü)√∆Ø

2ø√2m
 (2.14). 

Expression (2.14) contains shear module ø = ≈ 2(1 + ∆)⁄  and parameter ü =

3 − 4∆, where ≈ and ∆	are Young’s module and Poisson’s ratio correspondingly. 

Finally, the virtual spring stiffness 9 is to be evaluated using the critical static 

force :% and critical mass deflection ¡%: 

9 =
):%
¡%

 (2.15). 

Note that (2.15) contains an additional fitting parameter ). Ideally the whole 

model is calibrated using only one parameter – the zone size ∆Ø and ) = 1, however 

assumptions made for the spring stiffness calculations are rather strong and some 

additional fitting is to be expected. For example, the SIF value will of course drop when 

the crack length will increase by ∆Ø and generally speaking selection of the ∆Ø value 

defines the crack elongation at least at the initial stage, which can possibly lead to 

discrepancies with the experimental observations. On the other hand, it will be shown 

that for one of the studied problems ) = 1 provides good results, while another 

problem can be processed with ) = 0.85. 
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Fig. 2.2. The virtual oscillator model scheme (the load /(-) is shown from work [1]) 

(a) and scheme for evaluation of the critical spring elongation ¡% (b). 

High-rate loading. Experiments by Ravi-Chandar and Knauss [1] 

In a well-known work [1] the following experiments are reported: Homalite-100 

specimens with an initial crack were loaded with trapezoid pulses applied to the crack 

faces. The authors varied amplitude of the loading pulse J keeping identical time of 

load rising (25 µs) and thus different loading rates were tested (the loading rate range 

was «2.1¬4
»¿b

k^%
,			6.2¬5	

»¿b

k^%
 . The starting stress intensity factor (SIF) value !"5 was 

found to be strongly dependent on the loading rate: for relatively slow load application 

the !"5  value was almost equal to the static critical SIF !"%, while for high-rate loads 

the starting SIF appeared to be considerably higher than the !"%  value. This result is 

shown in figure 4 in [1], which depicts dependence of the starting SIF value on the 

crack initiation time !"5(-∗). The samples were large enough to eliminate effects 

related to the wave reflection from the sample edges.   
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For simulation of the experiments described in [1] the following loading function 

was used: 

/(-)´b%^k = À
J
M

-, - < M

J, - ≥ M
 (2.16). 

In (3.11) M is the load rise time and J is the load amplitude. In [1] the rise time 

had a fixed M = 25ïf value and thus the amplitude J variation provided different 

loading rates fitting into the above-mentioned range. Substitution of (2.16) into (2.9) 

lets us calculate the corresponding tearing stress: 

!cc
[Ã](#, %, &) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 0,			% < #

0Å
&123√#(0Å%)ì =⁄ − 67#√#√%0Åì =⁄ + 37#0Å=% − 33#0Å% + 37#=0Å +3#=:

30Åì =⁄ #;
,			 #0Å

≤ % ≤ #
0Å
+ ;

& =2√#(0Å)ì =⁄ >13%ì =⁄ − 37#√%:√% − ; + (% − ;)(3; −3% + 47#)@ − 3#;√% − ;(3 − 70Å)A
30Åì =⁄ ;#√% − ;

, #
0Å
+ ; < %	

 (2.17). 

Formula (2.17) is then used to evaluate force applied to the virtual oscillator 

using (2.12): 

:(-, J) = x {cc
[Å](;, -, J)(;′, -)	<;′

∆a

1
 (2.18). 

The used Homalite-100 material data and the calculated oscillator model 

parameters are collected in table 2.1.  

Parameter name and units Value 

Young’s modulus, ≈ (Pa) 3900e6 

Poisson’s ratio, ∆ 0.35 

Density, √ (kg/m3) 1230 

Longitudinal wave velocity,	9Å (m/s) 2057 

Shear wave velocity,	9= (m/s) 1176 

Rayleigh wave velocity,	9π (m/s) 1081 

Ultimate stress intensity factor, !"%  
(MPa√8)  

0.48 
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Zone size, ∆Õ (m) 0.00463 

Oscillator mass, 8 (kg) 0.2636 

Oscillator spring stiffness, 9 (N/m) 2.2222e9 or 1.8888e9 
(modified å = 0.85 in (3.10)  

Oscillator spring critical deformation, ¡%, m 0.1172e-4  

Table 2.1. Homalite-100 material data used for the oscillator model calibration and 

the model parameters. 

Our goal is to construct the !"5(-∗) dependence using the described oscillator 

model. After parameters of the system (2.10) are evaluated, the ¡(-) function is found 

numerically for each loading rate (or for each amplitude J) and fracture time -∗ is 

evaluated from equation ¡(-∗	) = ¡%. The obtained -∗ is substituted into the formula 

for the stress intensity factor for the given load [80]: 

!"(-) =
=∞Œ6iœ –⁄ ã(i)y(iy—)œ –⁄ ã(iy—)7

ì—
, Φ =

Ã%–”%‘
–y%–

–

%‘√’%‘
 (2.19) 

Firstly, we found the ∆Ø value which provides the best fit to experimental data 

using weighted least square method. The found value ∆Ø = 4.63	88 appeared to be 

surprisingly close to the sample thickness value (4.8	88) indicated in [1]. The 

experimental data fitting with no additional parameters () = 1 in (2.15)) is shown in 

figure 2.3a. The dynamic branch of the !"5(-∗) dependence can be obtained 

immediately and even the model with a standard spring stiffness value manages to 

capture one of the key results of the experimental study [1]: for higher load amplitudes 

(and thus higher loading rates the crack initiation time is smaller and the corresponding 

starting SIF value exceeds considerably the static ultimate SIF !"% and visa-versa: for 

relatively slow loading the starting SIF value equals !"% . However, the static branch 

(the one which is characterized by low loading rates and higher fracture times) requires 

lowering of the oscillator stiffness and thus the weighted least square fitting was 

performed for the parameter ) providing ) = 0.85 value. Results for ∆Ø = 4.63	88 
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and ) = 0.85 are shown in figure 2.3b. In figures 2.3a,b each point corresponds to a 

particular load amplitude J from (2.16) and thus to a particular loading rate.  

 

Fig. 2.3. Dependence of a starting SIF value on the fracture time: experimental points 

approximated by the oscillator model with standard (a) and reduced (b) stiffness. 

Short pulse loading and fracture delay 

In this section experiments on crack initiation in PMMA samples due to short 

pressure pulses applied to the crack faces are discussed. Details of experiments can be 

found in [4]. The pressure pulse is considered to be properly described by formula 

(2.20) (Figure 2.4): 

/(-)´b%^k
[Ã] = /1¬;÷ 2−

2-
MÅ

3 f•¶= 22m
-
M
3 (2.20), 

where M = 5.5	ïf and MÅ~4	ïf. For the given M and MÅ values the applied 

pressure reaches its maximum value /Z at time -Za`b' = 1.186	ïf: 

-Z =
M
2m

)d9-)¶ 2
2mMÅ

M
3 

/Z = /(-Z)´b%^k
[Ã]  

(2.21). 
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Fig. 2.4. Pressure applied to the crack faces versus time from work [4]. Load duration 

parameters: M = 5.5	ïf and MÅ = 4	ïf. 

The corresponding SIF formula can be evaluated using fundamental solution 

!æ(-) = å 2√-⁄ , å = 49=W9Å
= − 9=

= 9Å√m9Åÿ  for the /(-) = Ω(-): 

!(-) =
å
2

x √f
i

1
/(- − f)´b%^k

[Ã] <f (2.22). 

According to numerical calculations using (2.22) the !(-) function reaches its 

maximum at point -ZŸ = 1.675	ïf. Thus, it is clear from the provided experimental 

data that the crack onset takes place far after the local stress field (characterized by 

!(-)) and the load reach their maxima and this way, the fracture delay is observed. 

The virtual oscillator model is applied here in a similar to the previous section 

way: a square with size ∆Ø is virtually cut in the vicinity of the crack forming the virtual 
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oscillator mass according to (2.11). The rest of the virtual oscillator parameters and the 

loading force are calculated according to formulas (2.11)-(2.15). Note, that the load 

function (2.20) has a much more complicated expression and thus no analytical 

formulas for stress acting on the crack continuation are available. In this case we select 

the ∆Ø parameter to be almost equal to the sample thickness – 9.7 mm (the actual sample 

thickness in [4] was 10 mm). This value provides good fit to the experimental points. 

In work [4] the load amplitude /Z is reported to vary in a 140 – 320 MPa range and for 

each amplitude value fracture time is found. 

We studied two loading regimes applying the virtual oscillator model: 

1) The first regime corresponds to the loading used in [4]: load amplitude /Z is 

varied in a 72 – 320 MPa range and the load time characteristics are fixed M = 5.5	ïf 

and MÅ = 4	ïf. Note, that in [4] the load was in a 140 – 320 MPa range and 72 MPa 

was evaluated as a threshold value for M = 5.5	ïf and MÅ = 4	ïf time parameters. 

2) In the second regime the load duration is stretched while the amplitude is kept 

to be of a threshold type: M	and MÅ are proportionally (MÅ = M 1.375⁄ ) increased and 

for each M value minimal load amplitude /Z which causes failure is found (see figure 

2.5 for clarification of threshold/non-threshold (overloaded) fracture regimes). When 

M → ∞ the threshold /Z value is expected to tend to /Zkibi[% − a critical static pressure 

which causes the crack instability according to Irwin’s condition !" = !"% . 
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Fig. 2.5. Fracture of a threshold (left) and above-threshold (right) types. 

The modelling results within the first loading regime are shown in figure 2.6a. 

Note that lower fracture times (and higher load amplitudes) are well-described by the 

oscillator model, however discrepancy is found for the /Z values which are close to 

lower bound of the studied range. On the other hand, the oscillator model is able to 

catch the fracture delay effect: fracture takes place after load and local stress field 

(expressed both in terms of SIF !(-) and force applied to the virtual mass :(-)) have 

passed their maxima. Normalized !(-) and :(-) functions for M = 5.5	ïf are plotted 

in figure 2.6b with indicated maxima points. Material parameters and corresponding 

oscillator parameters are shown in table 2.2. 

Parameter name and units Value 

Young’s modulus, ≈ (Pa) 3300e6 

Poisson’s ratio, ∆ 0.35 

Density, √ (kg/m3) 1230 

Longitudinal wave velocity,	9Å (m/s) 2057 

Shear wave velocity,	9= (m/s) 1176 

Rayleigh wave velocity,	9π (m/s) 967 

Ultimate stress intensity factor, !"%  (MPa√8)  1.47 

Zone size, ∆Õ (m) 0.0097 
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Oscillator mass, 8 (kg) 0.1157 

Oscillator spring stiffness, 9 (N/m) 1.8803e9  

Oscillator spring critical deformation, ¡%, m 0.6143e-4  

Table 2.2. PMMA material data used for the oscillator model calibration and the 

model parameters. 

 

Fig. 2.6 (a): Dependence of the load function maximum on the fracture time for the 

loads from experimental work [4]. The maximum points of the force function -Z
´  and 

the SIF function -ZŸ  for M = 5.5	ïf and MÅ = 4	ïf are indicated on (a) and (b) 

showing the fracture delay effect taking place both experimentally and according the 

virtual oscillator model. In (b) functions are normalized.  

When second loading regime is studied and the /Z values are further decreased 

and the fracture times increase accordingly. The value /Z = 72.9	ñ/) was found to 

be threshold for M = 5.5	ïf and MÅ = 4	ïf. Further increase of the load duration and 

thus drop of the /Z values provide transition to static strength of the system. The 

modelling results for the two regimes are collected in figure 2.7. The figure also shows 

a purely static /Zkibi[% value which was calculated using finite element method. It is 

worth noticing that the experimental points appear to belong to dynamic fracture 
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regime according to the proposed approach and the static branch of the /Z − -∗ curve 

is a prediction.  

 

Fig. 2.7. All load regimes combined. Note that for the 1st regime the load duration is 

not altered – M = 5.5	ïf and MÅ = 4	ïf. In the 2nd regime the load duration is 

increased while the /Z value is kept minimal for the fracture to occur (threshold 

value). Note a smooth transition from a dynamic fracture regime to the static 

strength. 

In order to calculate critical static pressure /Zkibi[% leading to fracture according 

to criterion !" = !"% when applied to the crack faces, finite element calculations were 

performed using ANSYS software. A symmetry condition was used (only top half of 
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the specimen was simulated) and a uniform rectangular mesh was used after 

appropriate mesh sensitivity studies. The stress intensity factor value was calculated 

using J-integral. In figure 2.8 one can see the meshed sample with loads and boundary 

conditions together with the solution – a {cc stress field. The /Zkibi[% = 0.89	ñ/) 

value triggers the static fracture condition as for this load !" = 1.47	ñ/)√8. This 

/Z
kibi[% value is used in figure 2.7.  

 

Fig. 2.8. Details and results of FEM simulations used to calculate critical static 

pressure /Zkibi[% for a problem from [4]. 

Let’s briefly summarize the section writing out key points: 
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• Experiments on crack initiation due to intensive load applied to crack faces are 

studied using the virtual oscillator approach.  

• A rectangular zone is cut in the vicinity of the crack tip forming the oscillator 

mass. The oscillator spring stiffness is defined in order to make the model applicable 

in static and quasistatic loading conditions. The zone size is a fitting parameter.  

• The loading force is evaluated from analytic solutions for the corresponding 

elasticity problems. 

• If the zone size is selected to be equal to the sample thickness, the experimental 

points are fit surprisingly well.  

• The oscillator model is able to describe (at least qualitatively) key dynamic 

fracture effects observed in the studied experiments on cracks: strength dependence on 

loading rate [1] and fracture delay [4].  

2.3 Experiments on spallation in rods by Mikhailova et al. [3] 

In this section the oscillator model will be calibrated to theoretically describe 

experimental data on the material strength and dynamic fracture from spallation tests. 

We will work with the results from work [3], where steel samples were used. The 

essence of the spallation test is the following: the sample is hit by a projectile which 

generates a compressive wave travelling through the sample; the compressive wave 

reflects from the sample free boundary and converts to a tensile stress wave which 

causes fracture. The stress profile can be measured using the free surface velocity 

detection with consequent processing. The loading rate can be altered through the 

projectile length and velocity variation. As a result, material strength – stress rate 

dependence can be experimentally constructed (figure 10 in [3]). Moreover, results of 

the work [3] are particularly interesting since fracture delay was observed: in some 

experiments spallation was registered at the decrease stage of the tensile stress (figure 

4b in [3]).  
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Fig. 2.9. Reduction of spallation problem to an oscillator failure problem. 

Here we again try to reduce the rod spallation problem to a failure of an oscillator 

described by (2.10). The procedure consists of the following steps (the steps are 

schematically shown in figure 2.9): 

1) The sample is substituted by a rod with radius of an experimentally observed 

crack d and length € which equals the tested sample thickness.  

2) The rod is then sliced into ∂ pieces connected by ∂ − 1 springs. Summation of 

all masses yields the initial rod mass: 

8_`' = √‹€ = ∂8, ‹ = md= −	the rod cross section area (2.23) 

3) The following considerations are made to calculate the single spring stiffness 9. 

Suppose we fix one end of the rod and apply force : to its free end. Since we suppose 

that the rod deformation › follows Hooke’s law › = { ≈⁄  ({ = : ‹⁄ − stress in the rod 

and ≈ − Young’s modulus), the displacement of the free end ¡ can be calculated 

according to formula  

¡ = €
{
≈

=
€
‹≈

: =
:

9_`'
 (2.24), 
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which can be used to evaluate the rod stiffness 9_`' which in its turn equals the 

total stiffness of the oscillator chain. Finally, the stiffness of a singular spring 9 is 

calculated according to formula  

9 = 9_`'(∂ − 1) =
‹≈
€

(∂ − 1) (2.25). 

4) Analogously to 3) we calculate critical mass deflection ¡% using critical stress 

{% of the studied steel: 

¡% =
{%€

≈(∂ − 1)
 (2.26). 

Next, we will show that a proper choice of the ∂ value lets one obtain 

experimentally observed dependence of the material strength on stress rate and even 

an experimentally observed fracture delay effect. The used parameters are listed in 

table 2.3.  

Parameter name and units Value 

Young’s modulus, ≈ (Pa) 200e9 

Density, √ (kg/m3) 7850 

Sample length, € (m) 0.0091 

Oscillator mass, 8 (kg) 0.033 

Oscillator spring stiffness, 9 (N/m) 6.11e10 

Oscillator spring critical deformation, ¡%, m 0.1046e-4 

Table 2.3. Material data used for the model calibration. 

We will operate with the experimental data for the 6th specimen presented in [3]. 

As seen from figure 4b in [3], fracture occurs after the peak of the stress pulse. If one 

uses ∂ = 3 value and if the oscillator is loaded by force :(-) = {(-)‹, where {(-) is 

the stress profile taken for the 6th specimen from figure 4b from [3], the oscillator fails 

at time -`k%[abi`_
∗ = 3.2	ïf which exceeds the stress function maximum point as does 

the experimentally observed fracture time (-^lq^_[Z^\i
∗ = 3.13	ïf) and thus fracture 
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delay effect is qualitatively predicted (figure 2.10a). The ∂ = 3 value also let us 

adequately describe the strength – rate curve (figure 2.10b), however ∂ = 5 provides 

a better fit, but in this case fracture delay is not predicted by the oscillator model – the 

oscillator failure takes place before the stress reaches its maximum value.  

 

Fig. 2.10. Fracture delay predicted by the oscillator model (left) and strength-

stress rate dependence built using the oscillator model for two ∂ values (right). 

The strength-stress rate curve in figure 2.10 was constructed using linear loading 

force applied to the oscillator mass :(-) = ∏‹-, where ∏ is rate and ‹ is the rod cross 

section area. It should be noted that in fact the results do not depend on parameter d − 

the circular crack radius and thus the cross-section area ‹ is excluded from the 

calculations. The oscillator mass and stiffness contain ‹ as a multiplier analogously to 

the load :(-) and thus both sides of differential equation (2.10) can be divided by ‹. 

The critical spring deflection ¡% (2.26) does not depend on ‹ either. This way, ∂ is the 

only fitting parameter in the presented case. 

Thus, the oscillator model was calibrated using experimental data on spallation 

providing good fit to strength-rate experimental points and even managing to capture 

the fracture delay effect reported in work [3]. 
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2.4 Analysis of the obtained results 

Chapter 2 shows that the oscillator model can be calibrated to address some 

complicated dynamic fracture phenomena arising in complex dynamic tests despite 

being the simplest possible dynamic system with inertia. The oscillator parameters 

were evaluated from material properties, static strength considerations and some 

physically motivated values, such as sample thickness. This approach worked 

surprisingly well requiring small extra adjustments only in one of the considered crack 

problems. However, we consider the studied examples to serve mostly demonstrational 

and educational goals as the simulation success based on the described approach might 

be a pure coincidence. The biggest problem of the demonstrated oscillator model is its 

crudeness – in fact, extraction of some physical volume with relatively big dimensions 

is a very rough averaging and simplification. If one would like to build a lattice model 

of a solid in order to study the dynamic fracture relying on the mases’ inertia, the mesh 

can appear to be unacceptably coarse. For example, in the studied crack problems there 

would be just one layer of elements throughout the specimen thickness. The other way 

to apply the proposed model for the engineering purposes is to avoid physical meaning 

of the oscillator mass and to treat the model as a standard fracture condition. For 

example, if some problem is solved using dynamic finite element method, the element 

can be deleted from the mesh if some virtual oscillator breaks due to stresses acting on 

an area inside this element. Here the oscillator parameters, especially its mass, might 

serve as purely fitting parameters lacking adequate mechanical and physical meaning.  

On the other hand, it is useful to show that some inertia can be attributed to the 

dynamic fracture process which helps to understand dynamic fracture effects such as 

strength increase for high loading rates or the fracture delay. The oscillator model 

shows that these effects are to be expected when short and/or high-rate loads are 

applied to the system.  Moreover, the discussed model does not contain any first order 

time derivatives and thus, no explicit rate sensitivity terms are involved – all the effects 

are observed in a purely elastic system and are due to the model inertia.  
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It is also worth noticing that in Chapter 1 and in work [148] a purely virtual 

oscillator was attributed to the dynamic fracture process and the oscillator was defined 

with accuracy to the eigen frequency. Here a more straightforward approach was used 

as material volume was cut from the sample forming the oscillator mass. In both cases 

some frequency T was introduced bringing characteristic time into the system – the 

natural oscillation period M = 2m T⁄ . As shown in section 2.1 (figure 2.1), the 

oscillator static strength :% = 9;% and its eigen frequency T (or period M = 2m T⁄ ) 

define completely the dynamic strength curve. This is very reminiscent of the 

incubation time fracture criterion (ITFC) used to analyze dynamic fracture, where a 

characteristic relaxation time called the incubation time w is introduced to account for 

microscopic fracture events (e.g. development of micro cracks, coalescence of pores 

etc.) which precede and cause the macroscopic fracture. According to the simplest 

implementation of the incubation time approach, fracture at time -∗ takes place if   

1
w

x {(-′)<-|

i∗

i∗yz

≥ {% (2.27), 

where {% is the static material strength. It can be shown that the parameter couple 

(w, {%) completely defines the strength stress rate curve. If rising stress profile is 

considered ({(-) = d- with d being stress rate), fracture stress {∗ = d-∗ can be 

evaluated in terms of the loading rate d after {(-) = d- is substituted into criterion 

(2.27): 

{∗ = {% +
wd
2

 (2.28). 

If we consider two model materials characterized by couples of parameters 

(wÅ, {%Å) and (w=, {%=), where wÅ > w= and {%Å < {%=, the corresponding material – 

stress rate curves will intersect, meaning that material 2 is stronger in in static loading 

conditions, but for high loading rates material 1 exhibits higher strength – see figure 

2.11.  



 

 

83 

  

 

Fig. 2.11. Strength – rate curves built using incubation time fracture model.  

According to the ITFC for relatively low stress rates (“static branch” of the 

strength-rate curve) the material strength is controlled by static ultimate stress {%. The 

material performance for higher rates is defined by the incubation time value – the 

“dynamic branch” is shifted left for higher w values and vice versa. This is a complete 

analogy to the oscillator failure for different loading rated discussed in section 2.1 of 

this Chapter. For low rates the system’s strength is obviously defined by the spring 

static strength – critical force :% and the system’s dynamic strength is controlled by the 

eigen frequency of the oscillator T = W9 8⁄ : lower T (and thus higher natural period 

M = 2m T⁄ ) shifts the “dynamic branch” of the strength curve to the left and vice versa. 

The discussed spring model cannot be considered as an alternative to the ITFC which 

has been proven to be a robust tool for the dynamic phenomena investigation. See also 

work [157] for similar approach to the ITFC. The spring model can be rather regarded 

as a simplified illustration of the ITFC operation. However, the demonstrated results 

may be interesting for researchers working with elastic lattice method providing some 
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insight into possible element size, though, as discussed above, it might appear to be 

unacceptably big.  

2.5 Chapter 2 conclusions 

The second Chapter of the thesis discusses failure of the linear oscillator 

subjected to short and high rate loads and corresponding dynamic fracture effects were 

investigated. A simple fracture condition was applied – when the oscillator mass 

deflection reaches some critical value, the system fails. Firstly, it was shown that two 

modes of the oscillator failure can be observed when the system is loaded with 

relatively short force pulses: the oscillator can break with a delay (the failure takes 

place after the load finished) and without a delay – the failure takes place before the 

loading pulse termination. The latter situation means that the system was overloaded 

and lower amplitudes pulse amplitudes can be used to cause the oscillator failure. For 

both failure regimes lower load pulse durations expectedly require higher amplitudes 

in order to cause the system failure. If rectangular load pulses are considered, a minimal 

pulse amplitude sufficient for the system failure exists: the pulse amplitude must equal 

at least half of the static critical force. Secondly, loads with different rates were studied. 

It was shown that higher load rates result in higher force values acting at the fracture 

time and two branches of the fracture force – loading rate curve (or strength – rate 

curve) are clearly demonstrated – a static branch where the fracture force value equals 

static strength of the oscillator spring and a dynamic branch with higher fracture force 

values for higher loading rates. In addition to this it was shown that higher static 

strength of the system does not necessarily mean its superior performance for high 

loading rates – the strength – rate curves may intersect. This result is analogous to 

behavior of real brittle materials when high loading rates are explored. Moreover, it 

can be shown that the oscillator failure is indeed very similar to dynamic fracture of 

real materials subjected to high rate loads and the oscillator model exhibits features 

which are similar to the incubation time fracture criterion (ITFC): according to both 

models the strength – rate curve shape is controlled by static strength and some 
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characteristic time – the incubation time for the ITFC and a natural oscillation period 

in case of the oscillator.  

This way, it has been shown that inertia of the mass of an oscillator provides 

possibility to investigate two key effects of dynamic fracture: the system strength 

dependence on the loading rate and fracture delay. 

Next, three sets of experimental results have been processed using the calibrated 

oscillator model. It was shown that even such simple model yields surprisingly good 

fit of experimental data requiring little or no extra fitting. The obtained results serve 

demonstrational and educational purposes: key dynamic fracture effects observed in 

multiple experiments are shown to be very natural and easy to understand since they 

can be observed in the simplest possible dynamic system – a “mass on a linear spring” 

model.  

More information can be found in [33,34]. 
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Chapter 3. Features of dynamic fracture processes observed in 

periodic structures 

The third Chapter examines fracture of a chain of identical linear oscillators. The 

considered system consists of an arbitrary finite number of links. The first mass of the 

chain is supposed to be motionless. The following problem is studied: at the initial 

moment of time the chain is uniformly stretched, further it performs free oscillations 

due to a sudden release – a relaxation wave propagates through the chain. The problem 

is solved analytically – the motion equation for the masses of are obtained. The study 

of the obtained solution made it possible to identify the dynamic fracture effect, which 

is associated with the discrete structure of the system: the relaxation wave propagating 

through the chain is distorted, and the deformation of some links can exceed the critical 

value even under non-destructive initial static loading (the initial deformation of the 

links is supposed to be subcritical). The obtained solutions for the chain of oscillators 

are compared with the solution of a similar continuum problem – the problem of an 

elastic rod unloading. The work demonstrates that the effect observed in a chain of 

oscillators cannot be detected in a one-dimensional rod. In addition to this, calculations 

using the finite element method have been carried out, confirming the hypothesis about 

the possibility of secondary fracture following the rupture of one of the components of 

the preloaded periodic structure. 

3.1 Statement of the problem for a single oscillator 

This subsection repeats the formulation of the problem of a single oscillator 

fracture, discussed in previous Chapters, however it contains a procedure for transition 

to dimensionless coordinates, which plays an important role in the analysis of 

oscillations and fracture of a chain with an arbitrary number of links. Let’s consider an 

oscillator with free vibrations described by the equation 
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8;̈ + 9; = 0 (3.1). 

In (3.1) 8 – is the oscillating mass and 9 – is the spring stiffness. Let’s consider 

the following condition for the system integrity 

; ≤ ;%_[i (3.2) 

Linear variable change M = -W9 8⁄  provides an equation with dimensionless 

parameters with differentiation with respect to M: 

;̈ + ; = 0 (3.3) 

Let's perform another variable change fi = ; ;%_[i⁄ . Transition to a new variable 

will allow one to rewrite the equation and integrity condition in the following form: 

fï + fi = 0,					fi ≤ 1    (3.4). 

From the same point of view, consider a chain of ¶ connected oscillators with 

one free end and one fixed end (the chain is uniformly stretched). The chain integrity 

is the main focus of the study. Let’s assume that the oscillating masses and springs are 

identical and equal 8, 9 respectively. At the initial moment of time, the chain integrity 

condition is supposed to be satisfied. 

3.2 System of two oscillators 

Let's consider a system consisting of two links. Let’s introduce generalized 

coordinates fiÅ, fi=that describe the displacement of masses from the equilibrium 

position in the absence of load. The movement of masses is described by a system of 

linear differential equations of the second order 

Jfl̈ + ‡fl = 0 (3.5), 

where 
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J = õ8 0
0 8

ú , ‡ = õ29 −9
−9 9

ú , fl = õ
fiÅ
fi=

ú (3.6). 

Differentiation is with respect to time -. The link fails if its deformation exceeds 

a certain critical value, and, accordingly, the condition for the integrity of the system 

for the chain has the following form: 

·
fi= − fiÅ ≤ Ø%_[i
fiÅ − fi1 ≤ Ø%_[i

 (3.7). 

Here fi1 = 0, meaning that the edge of the chain is fixed, the mass with the zero 

number is motionless, Ø%_[i – the critical distance between the masses. We will assume 

that at the initial moment of time the chain is uniformly deformed, and the relative 

deformation of each link is equals to Ø%_[i. This way, the initial conditions take the 

following form: 

	

⎩
⎨

⎧
fi=(- = 0) − fi=(- = 0) = Ø%_[i

fiÅ(- = 0) = Ø%_[i
fiÅ̇(- = 0) = 0
fi=̇(- = 0) = 0

  (3.8). 

By a variable change M = -W9 8⁄  the system of equations with dimensionless 

parameters is obtained. As a result, the matrices are transformed: 

J = õ1 0
0 1

ú , ‡ = õ 2 −1
−1 1

ú (3.9). 

Let's move on to new generalized coordinates ØÅ = fiÅ − fi1, Ø= = fi= − fiÅ. In 

matrix form, the dependence of the new coordinates on the old ones can be written in 

the following way: 

€ = õ 1 0
−1 1

ú fl = ‹fl, € = 2
ØÅ
Ø=

3 (3.10). 

Hence, fl = ‹yÅ€. System (3.5) takes the form 	

€̈ + è€ = 0, where 
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è = ‹‡‹yÅ = õ 1 −1
−1 2

ú (3.11). 

The integrity condition for the links takes the form: 

·
ØÅ ≤ Ø%_[i
Ø= ≤ Ø%_[i

 (3.12). 

Let's put 

¡ = õ
ÉÅ
É=

ú = 2
ØÅ/Ø%_[i
Ø=/Ø%_[i

3 (3.13). 

Then the system of equations can be rewritten as follows: 

¡̈ + è¡ = 0 (3.14), 

As a result of the coordinates change, the integrity condition form: ¡Å ≤ 1, ¡= ≤

1. The initial conditions, accordingly, have the following form: ¡Å(- = 0) =

1, ¡=(- = 0) = 1. Let us solve the system (3.14) considering the initial conditions and 

the first mass fixation. 

Solving the equation Â¬-(è − Ê≈) = 0 allows one to determine the eigenvalues 

of the matrix è(Â¬- denotes the matrix determinant), which are the squares of the 

natural frequencies of oscillations of the system: 

TÅ,= = Á3 ± √5
2

 (3.15). 

Let's define the eigenvectors of the matrix è: 

ËÅ = È
1

√5 − 1
2

Í , ËÅ = È
1

−
√5 + 1

2
Í (3.16). 

Thus, accounting for the initial and boundary conditions, the solution to the 

system of equations (3.14) reads as: 
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¡Å =
√5 + 3

2√5
cos(TÅ-) +

√5 − 3

2√5
cos(T=-) ≅	

≅ 1.17 cos(TÅ-) − 0.17 cos(T=-) 

¡= =
√5 + 1

2√5
cos(TÅ-) +

√5 − 1

2√5
cos(T=-) 

(3.17). 

In fact, in (3.17) M should be used to denote time, considering the performed 

variable change. However, starting from this moment, for convenience we will suppose 

9 = 8 = 1 and, accordingly, M = -. 

Note that in the formula for ¡Å the cosines are multiplied by factors of different 

signs, and when added they give a number greater than one. Let's find a moment in 

time -∗ when cos(TÅ-) = 1, a cos(T=-) = −1: 

TÅ-
∗ = 2m•, • = 0,1,2,3,… 

T=-
∗ = m + 2mü, ü = 0,1,2,3, … 

(3.18a) 

(3.18b). 

From (3.18) we obtain: 

T=

TÅ
=

3 − √5
2

=
1 + 2ü

2•
 (3.19). 

Meaning (3 − W5)/2 (the golden ratio) will be approximated by continued 

rational representation: 

1
2
;	
1
3
;	
2
5
;	
3
8
;	

5
13

;	
8
21

… (3.20). 

Let’s choose the fraction 3 8⁄ , then ü = 1, • = 4, -∗ = 15.534	and -∗ = 15.250 

according to (3.18a) and (3.18b), respectively. When substituting these values, one gets 

¡Å > 1 – meaning failure of the first link. The choice of a proper rational representation 

of (3.19) allows one to evaluate -∗ from (3.18) with any needed accuracy. 
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3.4. A chain with an arbitrary finite number of links 

Let's consider a chain with an arbitrary number of links ¶. The chain is supposed 

to be uniformly stretched and at the initial moment of time relaxation wave (generated 

for example by a link break, figure 3.1) starts to propagate through the system. 

 

Fig. 3.1. A statically loaded chain of an arbitrary finite number of oscillators. The 

dotted line indicates a broken link. 

The movement of masses is described by a system of differential equations 

ñfl̈ + ‡fl = 0 (3.21). 

The change M = -W9 8⁄ 	provides the transition to dimensionless matrices: 

ñ = ≈	is	¶ × ¶	unity	matrix 

‡ =

⎝

⎜
⎛

2 −1 ⋯ 0 0
−1 2 −1 ⋯ 0

⋱ ⋱ ⋱
0 −1 2 −1
0 0 ⋯ −1 1 ⎠

⎟
⎞

 
(3.22). 

The integrity conditions for the chain are written for each link: |fi[ − fi[yÅ| ≤

Ø%_[i, ∀• = 1. . ∂, the initial conditions are the following: 

·
fi[(- = 0) − fi[yÅ(- = 0) = Ø%_[i

fi˘̇(- = 0) = 0
 (3.23) . 

The fixation condition is fi1(-) = 0	∀-. Let’s introduce new generalized 

coordinates in the following way: 
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Ø[ = fi[ − fi[yÅ, ∀• = 1. . ¶,	 

€ = 	 (ØÅ, Ø=, … , Ø\)— 
(3.24) 

The variable change is carried out using a transition matrix ‹: 

‹ =

⎝

⎜
⎛

1 0 ⋯ 0 0
−1 1 0 ⋯ 0

⋱ ⋱ ⋱
0 −1 1 0
0 0 ⋯ −1 1⎠

⎟
⎞

 (3.25), 

and, therefore fl = ‹yÅ€, € = ‹fl. Thus, we get a system of differential 

equations 

€̈ + è€ = 0 (3.26), 

where 

è = ‹‡‹yÅ =

⎝

⎜
⎛

1 −1 ⋯ 0 0
−1 2 −1 ⋯ 0

⋱ ⋱ ⋱
0 −1 2 −1
0 0 ⋯ −1 2 ⎠

⎟
⎞

 (3.27). 

The initial conditions read as: 

·
Ø[(- = 0) = Ø%_[i
Ø˘̇(- = 0) = 0

		∀• = 1. . ¶ (3.28). 

The fixation condition is Ø1 = 0	∀-. The chain integrity conditions have the 

following form: 

|Ø[(-)| ≤ Ø%_[i, ∀-, ∀• = 1. . ¶ (3.29). 

Let's make a change of variables Éû = Øû Ø%_[i⁄  to get a system of differential 

equations with the initial conditions: 
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À
¡̈ + è¡ = 0	

Éû(- = 0) = 1
Éû̇(- = 0) = 0

	∀ü = 1. . ¶ (3.30), 

and conditions of the integrity of the links 

|É[(-)| ≤ 1, ∀-, ∀• = 1. . ¶ (3.31) 

and the fixation condition ¡1 = 0	∀-. 

Natural frequencies of the system 

Natural frequencies are determined by calculating the eigenvalues of the matrix 

è using the equation Â¬-(è − ÊJ) = 0. Let's write the equation explicitly: 

˙
˙

1 − Ê −1 ⋯ 0 0
−1 2 − Ê −1 ⋯ 0

⋱ ⋱ ⋱
0 −1 2 − Ê −1
0 0 ⋯ −1 2 − Ê

˙
˙ = 0 (3.32). 

Let put å = 2 − Ê, then: 

˙
˙

å − 1 −1 ⋯ 0 0
−1 å −1 ⋯ 0

⋱ ⋱ ⋱
0 −1 å −1
0 0 ⋯ −1 å

˙
˙ = 0 ( 3. 3 3 ) 

or Â\ = 0,where	Âû is the determinant of order ü. The determinant can be 

expanded with respect to the last line: 

Â\ = 	åÂ\yÅ − Â\y= (3.34) 

The recurrent equation (3.34) is supplemented with the conditions 

Â1 = 1,ÂÅ = å − 1	 (3.35). 
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We will look for a solution to equation (3.34) in the form Â\ = ÷\. Substituting 

this expression into (3.34) and dividing by ÷\y=, we obtain a quadratic equation ÷= −

å÷ + 1 = 0. It has the following roots: 

÷Å,= =
å ± √å= − 4

2
 (3.36). 

This way we get the expression for Â\ 

Â\ = 9Å÷Å
\ + 9=÷=

\ (3.37). 

Let's make another variable change å = 2cos	(˛). Thus ÷Å = ¬[ˇ, ÷= = ¬y[ˇ. 

From the system 

·
9Å + 9= = 1

9Å¬
[ˇ + 9=¬

y[ˇ = ¬[ˇ + ¬y[ˇ − 1
 (3.38) 

one can find the constants 9Å and 9=, then substitute them into (3.37) and obtain 

the transformed equation: 

2f•¶ 2
˛
2
3 9ef 2

(2¶ + 1)˛
2

3 = 0 (3.39). 

The roots of (3.39) are ˛Å = 2mü, ˛= =
’(=û!Å)

=\!Å
, ü = 1. . ¶. The first set should 

be discarded (the stiffness matrix is non-degenerate). The second set of roots provides 

a series of ¶ squared eigen frequencies 

Êû = 2 − 29ef §
m(2ü − 1)

2¶ + 1
ß , ü = 1. . ¶ (3.40). 

Thus, the formula for natural frequencies reads as: 

Tû = 2f•¶ 2
m(2ü − 1)
4¶ + 2

3 , ü = 1. . ¶ (3.41). 
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Determination of the stiffness matrix eigenvectors 

Considering the initial conditions, the general solution of the system of 

differential equations describing the movement of the chain reads as: 

¡(-) = " 9#$%cos	(T#-)
\

#áÅ

 (3.42). 

Here $% – are the eigenvectors of the stiffness matrix è, and 9# are the constants 

satisfying the initial conditions. 

Let's find the eigenvectors of the matrix è. For the •ij component of an 

eigenvector number & the recurrent formula can be easily derived: 

d[
(#) = 62 − Ê#7d[yÅ

(#) − d[y=
(#)  (3.43). 

Let's put dÅ
(#) = 1, ∀& = 1. . ¶. Also note that d=

(#) = 1 − Ê# , ∀& = 1. . ¶. Let’s put 

d1
(#) = 1 so that for d=

(#)the recurrent formula would be also be valid. 

In order to satisfy the condition É#(- = 0) = 1, ∀& = 1. . ¶, it is necessary to 

satisfy the following equalities: 

⎩
⎪⎪
⎨

⎪⎪
⎧ " 9û = 1

\

ûáÅ

" 9û(1 − Êû) = 1
\

ûáÅ
⋮

" 9ûd\
(û) = 1

\

ûáÅ

 (3.44). 

Let’s determine the components of the eigenvectors. Let’s denote 2 − Ê# = ∆#. 

Then the recurrent relation for the components of the eigenvectors (3.43) would read 

as: 

d[
(#) = ∆#d[yÅ

(#) − d[y=
(#)  (3.45). 
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This recurrent formula coincides exactly with the recurrent formula for the 

Chebyshev polynomials. Let’s recall the formulas for Chebyshev polynomials: 

M[(~) = 2~M[yÅ(~) − M[y=(~) (3.46). 

In this case, particular values are specified for the first two polynomials: 

M1(~) = 1, MÅ(~) = ~ (3.47). 

Let's temporarily omit the index (&) to simplify the calculations. In our case, the 

recurrence relation has the following form: 

d[(;#) = 2;#d[yÅ(;#) − d[y=(;#) (3.48), 

where ;# = ∆#/2 and thus dÅ6;#7 = 1, d=6;#7 = 2;# − 1. Note that if we choose 

d1(;#) to equal 1, the recurrent relation will give correct expressions for the 

components starting from the second one. 

We cannot use the formula for the Chebyshev polynomials due to the difference 

in the first two values. Let’s turn to the Chebyshev polynomials of the second kind. For 

them the recurrent relation for them and the zero polynomial coincide with those for 

the Chebyshev polynomials of the first kind, however, the first polynomial is given by 

the formula 

/Å(~) = 2~ (3.49). 

The general formula for the Chebyshev polynomials of the second kind has the 

following form 

/[yÅ(~) =
sin	(• ∗ arccos(~))
sin	(arccos(~))

 (3.50). 

Now let's notice the obvious relation 

d[6;#7 = /[yÅ6;#7 − /[y=6;#7 (3.51). 
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Using formulas (3.48) and (3.49) and considering the relation 

;# =
∆#
2

=
2 − T#

=

2
= 1 − 2sin= §

m(2& − 1)

4¶ + 2
ß = cos§

m(2& − 1)

2¶ + 1
ß (3.52), 

let's calculate 

d[
(#) =

2sin g
1
2 arccos §

2 − T#
=

2 ßh cosg
2• − 1

2 arccos §
2 − T#

=

2 ßh

sin garccos §
2 − T#

=

2 ßh

 (3.53). 

After trigonometric transformations, the formula for the component with the 

number • of the eigen vector with number & reads as: 

d[
(#) =

9ef 2
m(2• − 1)(2& − 1)

4¶ + 2 3

9ef 2
m(2& − 1)
4¶ + 2 3

 (3.54), 

where is ¶ −the number of masses in the chain. 

Derivation of formulas for the constants 9# using the initial conditions 

Considering formula (3.51), the system of linear equations for g the constants 9# 

has the following form: 

)
/1(;Å) /1(;=) ⋯ /1(;\)

/Å(;Å) − /1(;Å) /Å(;=) − /1(;=) ⋯ /Å(;\) − /1(;\)
⋮ ⋮ ⋮ ⋮

/\yÅ(;Å) − /\y=(;Å) /\yÅ(;=) − /\y=(;=) ⋯ /\yÅ(;\) − /\y=(;\)

*)
9Å
9=
⋮
9\

* = )
/1(1)

/Å(1) − /1(1)
⋮

/\yÅ(1) − /\y=(1)

* (3.55). 

On the right side of the system there is a single column, written in a convenient 

for the transformations way. Row additions allows one to transform the system as 

follows: 
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)
/1(;Å) /1(;=) ⋯ /1(;\)
/Å(;Å) /Å(;=) ⋯ /Å(;\)
⋮ ⋮ ⋮ ⋮

/\yÅ(;Å) /\yÅ(;=) ⋯ /\yÅ(;\)

*)
9Å
9=
⋮
9\

* = )
/1(1)
/Å(1)
⋮

/\yÅ(1)

* (3.56). 

If explicit formula for the polynomials is used the system can be rewritten in the 

following way: 

)
1 1 ⋯ 1
;Å ;= ⋯ ;\
⋮ ⋮ ⋮ ⋮

;Å
\yÅ ;=

\yÅ ⋯ ;\
\yÅ

*)
9Å
9=
⋮
9\

* = È

1
1
⋮
1

Í (3.57). 

The matrix of the system (3.57) is the Vandermonde matrix and an expression 

for its determinant is well known. Let's find the constants 9#using Cramer's formulas 

9# =
∆#
∆

 (3.58), 

where is ∆ is the Vandermonde determinant ∆# is the determinant of a matrix 

with a &ij column replaced by a unity column. The elementary transformations yield: 

9# =
(1 − ;Å)⋯ (1 − ;#yÅ)(1 − ;#!Å)⋯ (1 − ;\)

(;# − ;Å)⋯ (;# − ;#yÅ)(;# − ;#!Å)⋯ (;# − ;\)
 (3.59). 

The notation ñ\(;) = 2\ ∏ (; − ;û)
\
ûáÅ  allows one to rewrite (3.59): 

9# =
ñ\(1)

ñ\
|(;#)(1 − ;#)

 (3.60). 

Consider the function 

:(;) =
cos	 õ

2¶ + 1
2 arccos	(;)ú

cos 2
arccos	(;)

2 3
 (3.61). 

Let’s show that the introduced ;# 	are zeros of :(;): 
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:(;) =
cos 2

m(2& − 1)
2 3

cos 2
m(2& − 1)
4¶ + 2 3

= 0 (3.62). 

Note that the denominator of the :(;) function is non-zero, since the angle 
’(=#yÅ)

Ã\!=
, & = 1. . ¶	belongs to the interval õ0,

’

=
ú. It is easy to show that :(;) it is a 

polynomial of degree ¶ if (3.61) is multiplied and divided by sin(arccos(;) 2⁄ ): 

:(;) =
cos	 õ2¶ + 1

2 arccos	(;)ú sin 2arccos
(;)

2 3

cos 2
arccos	(;)

2 3 sin2arccos
(;)

2 3
=

sin6(n + 1) arccos(x)7 − sin	(n ∗ arccos(x))
sin	(arccos(;))

= /\(;) − /\yÅ(;) 

(3.63) 

. 

The coefficient of the ¶ij degree term of /\(;)	equals 2\. Then 

ñ\(;) = 2\, (; − ;û)
\

ûáÅ
=

cos	 õ
2¶ + 1

2 arccos	(;)ú

cos 2
arccos	(;)

2 3
= /\(;) − /\yÅ(;) (3.64). 

It is obvious that ñ\(1) = 1 and therefore 

ñ\
|6;#7 =

(−1)#!Å(2¶ + 1)

2sin 2
m(2& − 1
2¶ + 1 3 cos 2

m(2& − 1
4¶ + 2 3

 (3.65). 

Thus, the following formula is valid for the constants: 

9# =
(−1)#!Å2sin 2

m(2& − 1)
2¶ + 1 3 cos 2

m(2& − 1)
4¶ + 2 3

(2¶ + 1) §1 − 9ef 2
m(2& − 1)
2¶ + 1 3ß

 (3.66). 

This way, the following system solution is obtained: 

É[(-) = 2"
(−1)#!Åsin õ

m(2& − 1)
2¶ + 1 ú cos õ

m(2& − 1)(2• − 1)
4¶ + 2 ú

(2¶ + 1)§1 − cos õ
m(2& − 1)
2¶ + 1 úß

\

#áÅ

cos	(T#-) (3.67). 
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Here is • is the number of the link of the chain, T# are the natural frequencies of 

the system, calculated using formula (3.41). 

Calculation results for chains with different numbers of links 

Figure 3.2 shows ÉÅ(-) (deformation of the first link of the chain) graphs for 

chains consisting of 35 and 200 links. The effect of exceeding the initial distance 

between the masses (and hence the link failure) is obvious in both cases. The proof of 

the existence of the discussed effect can be carried out on the basis of the Kronecker’s 

theorem [157]. 
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Fig. 3.2. Deformation of the first link for chains with different numbers of links. 

3.5 Analysis of the solutions for the chain and for an elastic rod. Gibbs effect 

A chain of oscillators can be the basis for deriving a one-dimensional wave 

equation. If we denote the distance between masses in a state of equilibrium by the 

parameter ℎ =
.
\
( € – length of the rod), then the formal transition to the limit ℎ → 0 

yields the following:  

Éû

ℎ →
�¡(~, -)

�;
/
cá

û.
\

	 

fiûyÅ − 2fiû + fiû!Å

ℎ= →
�=¡
�;=  

(3.68). 

In (3.68) ¡ is the rod deformation. The chain problem can be interpreted as a 

solution of the wave equation by the finite difference method with a time only 

discretization. Solution to the corresponding problem for the rod can be found in the 

form of a piecewise linear function in time if the d'Alembert method is applied. 
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According to the calculations carried out for different numbers of links, the 

excess of the initial stretch remains for any number of links, and its value 

(approximately 54%) does not decrease with increasing number of links ¶. 

Let’s consider an effect that is similar to the discussed one – the Gibbs 

phenomenon for the Fourier series [158]. Let’s solve the problem of longitudinal 

vibrations of an elastic rod fixed at one end using the Fourier method. At the initial 

moment of time, the rod is supposed to be uniformly stretched. For simplicity, we will 

consider the length of the rod and the speed of propagation of waves in the rod to be 

equal to unity, and › = 1 the be the critical deformation for the studied model material. 

It the stress in the rod exceeds unity, fracture takes place. We will also assume that at 

the initial moment of time the stress at all points of the rod was equal to unity. 

The wave equation for our system will look like: 

�=¡(;, -)
�;= =

�=¡(;, -)
�-=  (3.69). 

Here ¡(;, -)is the displacement at point ;. In this case, the boundary and initial 

conditions read as: 

⎩
⎪⎪
⎨

⎪⎪
⎧

¡(;, 0) = ;
�¡(;, -)

�-
/
iá1

= 0

¡(0, -) = 0
�¡(;, -)

�;
/
láa

= L(−-)

 (3.70). 

The first condition from (3.70) means the uniform rod deformation at the initial 

moment of time, the third condition denotes the rod end fixation the fastening of one 

of the ends of the rod, and the fourth – the sudden unloading of the rod at the initial 

moment of time (L(-)is the Heaviside function). Following the Fourier method, 

solution (3.69) is obtained as an infinite series: 
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¡(;, -) = " 8(−1)û

m=(2ü + 1)=
cos 2

m(2ü + 1)
2

-3 sin 2
m(2ü + 1)

2
;3

0

ûá1

 (3.71). 

Let’s calculate the rod deformation › deformation in the rod at 	; = 0	(the 

fixation point). 

›(; = 0, -) =
�¡(;, -)

�;
/
lá1

= " 4(−1)û

m(2ü + 1)
cos 2

m(2ü + 1)
2

-3

\

ûá1

 (3.72). 

If in (3.72) only partial sums of the series are considered, the solution will exhibit 

considerable oscillations near points of the solution sign shift. The Fourier solution 

exceeds the d’Alembert solution by about 18% and this value does not decrease if more 

terms of the series are considered. This numerical phenomenon is called the Gibbs 

effect. The figures below show graphs of the relative deformation of the rod at the 

fixation point versus time. Black stripes show the exact solution for the problem of 

longitudinal vibrations of a rod, obtained by the d'Alembert method. 
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Fig. 3.3. Gibbs effect for a finite sum of the Fourier series of 20 (a) and 200 (b) 

terms. The black lines are d'Alembert solution. 

The Gibbs phenomenon resembles the discovered effect for the chain. The effect 

observed in the chain is much more pronounced – the excess of the initial deformation 

is three time bigger for the chain. The effect obtained for the chain of oscillators should 

be considered as a physical phenomenon, in contrast to the Gibbs effect, which is 

actually a defect of the numerical scheme. 

Thus, the use of numerical methods for solving problems of wave propagation 

based on spatial discretization of the studied bodies (the finite difference method, the 

finite element method, and so on) can cause non-physical behavior of the solution and 

the mesh refinement does not change the situation.  

All real materials have a discrete structure. Under highly dynamic loading 

conditions, the behavior of discrete structures can reveal properties that cannot be 

accounted for by continuous models. In such situations, the continuum mechanics itself 

may turn out to be inadequate for the studied phenomenon. 
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3.7 Numerical study of fracture a periodic structure in course of relaxation 

This section provides a numerical study of the effect discovered in the chain of 

oscillators. The propagation of a relaxation wave in PMMA (polymethyl methacrylate) 

samples with different shapes, including a periodic structure, was simulated. Samples 

with a 2mm thickness and 10 mm working area were studied. The primary failure 

occurs at a certain stress at a certain point of the sample, located near the top of the 

sample. This primary failure generated a relaxation wave travelling through the sample. 

After the first rupture, the dynamic problem of the relaxation wave propagation was 

solved and stresses at a certain point were checked and compared with initial stresses 

in the sample. Figure 3.4 shows examples of the studied specimens – a standard sample, 

a sample with discretization. Additionally, a mesh is shown and zones with added 

weight are demonstrated (in these zones the PMMA was replaced by steel).  
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Fig. 3.4. Samples studied used in the numerical study. (a) – standard sample, (b) – 

sample with a discrete structure and (c) – the finite element mesh, purple color 

indicates the zones with extra weight where the material properties are changed – the 

PMMA is replaced by steel. The black circles indicate the points where {cc stress 

was calculated, the red line indicates the initial break in the sample. 

Figure 3.5 shows the calculation results, namely the dependence of the {cc stress 

on time at the points indicated in Figure 3.6. According to the obtained results the initial 

stress in the sample can be exceeded even in the standard sample, however, the 

increased stresses act for a relatively short time – 15 µs (only the first excess is 

considered). This excess may be associated with the numerical features of obtaining a 
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solution – the use of partitioning the region into finite elements, which is actually a 

discretization of the region. 

 

Fig. 3.5. Calculation results. Dependence of the {cc stress on time at the points 

indicated in figure 3.4. 

In samples with artificial discretization, the maximum excess of the initial stress 

is by 39.6% and the duration of this excess is 85 µs. The addition of masses leads to 

the same excess of the initial stress – 38.9%, however, the duration of the excess 
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increases up to156 µs, and thus the likelihood of a secondary rupture in the system 

increases. 

3.8 Chapter 3 conclusions 

An exact analytical solution to the problem of oscillations of a homogeneous 

finite chain of linear identical oscillators has been found. It has been shown that a 

preloaded (stretched) chain can fail after the static load has been suddenly removed. 

This effect is absent in the corresponding continuum model, but occurs for a chain of 

arbitrary finite length. The studied effect is similar to the Gibbs phenomenon found in 

trigonometric series, but is much more pronounced and, unlike the Gibbs phenomenon, 

can be considered as a real physical phenomenon rather than a defect of the numerical 

scheme. The effect can be important for the analysis of discrete periodic structures in 

particular the nanostructures. 

According to the performed calculations, the effect of fracture following a 

sudden system unloading (for example, after a primary rupture) can be observed in 

very real structures and samples. Thus, it has been shown that introducing discreteness 

into the shape of samples and adding masses to their design (in fact, bringing the 

properties of the sample closer to the chain of oscillators discussed in the Chapter) 

leads to a significant excess of the initial stresses in the material (about 40%) for 

hundreds of microseconds. Such stress field can lead to fracture, and this possibility 

must be accounted for in the design of real structures. 

More information can be found in [17,156]. 
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Chapter 4. Space and time discreetness of the crack propagation 

process  

Chapter 4 discusses the dynamic propagation of cracks in brittle materials under 

various loading conditions. The propagation of cracks under quasi-static loading, as 

well as under the shock-pulse loads has been studied. Special attention has been paid 

to the dependencies characterizing the crack propagation and a non-stationary 

character of these dependencies. This way, for the case of crack propagation under 

quasi-static loading, the issue of the crack velocity oscillations has been investigated. 

The issue related to the variation of stress intensity factor observed in a number of 

experiments on crack propagation due to intensive loading has been also considered. 

The research was carried using the finite element method with the incubation time 

fracture criterion embedded into the numerical scheme. This fracture model 

fundamentally determines the discrete mechanism of the fracture process at a given 

scale level. Both quantitative and qualitative comparison of the numerical results with 

the available experimental data has been carried out. It has been shown that accounting 

for the spatial and time discreteness of the fracture process makes it possible to predict 

and explain a number of experimentally observed effects that do not fit into traditional 

theoretical concepts of the dynamic fracture. A calculation scheme for the modeling of 

the cracks propagating in arbitrary directions under shock loading conditions has been 

also developed This numerical model makes it possible to study fragmentation in brittle 

bodies under dynamic loading, in particular, to study the size distribution of fragments. 

The results of the application of this numerical model are presented and the results 

qualitatively correspond to experiments on fragmentation in brittle bodies. 

4.1 The incubation time fracture criterion for the crack propagation problems 

The incubation time concept has been introduced in the first Chapter (section 

1.3). According to the proposed model fracture is not an instantaneous event, and even 
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though stresses reach certain critical level at some point of the material, a particular 

time is needed for the fracture to develop (this effect of dynamic fracture is well known 

among experimentalists, (see ex. [2,5,159]). The observed macroscopic fracture is a 

result of series of preceding microscopic events, such as growth and coalescence of 

microcracks and/or micropores, and a notion of preparatory incubation process was 

introduced in order to account for these events. Terms “macroscopic” and 

“microscopic” should be regarded just as notations of two scale levels, and dynamic 

fracture is regarded as an evolution of the “microscopic” fracture into “macroscopic” 

fracture event, which essentially develops as a relaxation process and can be integrally 

characterized by a special characteristic time – the incubation time parameter w, which 

is used in (1.6). The incubation time is treated as a material property, which can be 

assessed experimentally. Time-based fracture models were also discussed in [28-30], 

where fracture criteria involving critical time integrals were presented, but no 

fundamental temporal material characteristics were introduced. In [2] a short-pulse 

fracture theory based on assumption that fracture occurs, if stress intensity factor 

exceeds critical values for some minimal time, was presented. This minimum time 

interval depends on conditions and history of applied load and clearly reveals itself in 

a special case of short pulse loading with close to threshold parameters. Historically it 

was an important step in proclaiming an existence of special preparatory process itself, 

but the introduced minimum time parameter and corresponding stress intensity factor 

critical levels cannot be regarded as material properties. It is fundamentally important 

that the incubation time fracture model is able to predict values of all these parameters 

for various loading conditions. 

The incubation time fracture criterion has been successfully used to study and 

predict some effects of dynamic crack propagation for various materials and loading 

conditions. Experiments with both quasistatic [16] and dynamic [160] loading were 

successfully simulated. Numerically obtained crack trajectory together with 

experimental data from [16] are shown in figure 4.1. The incubation time approach 

provides a clear interpretation for a lower than theoretical crack velocity: the crack is 
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“slowed down” by the preliminary microscopic fracture process which require time to 

develop due to acting stress field. 

 

Fig. 4.1. Crack trajectory obtained using FEM and incubation time criterion 

compared to experimental data on quasistaic loading [16]. 

4.2 Numerical implementation of the incubation time approach for the dynamic 

crack propagation problems 

For the numerical investigation of the dynamic crack propagation, the fracture 

criterion (1.6) is used in combination with the finite element method. Criterion (1.6) 

has been implemented into the ANSYS calculation software as an external procedure 

designed to control the crack propagation process. Integration by spatial coordinate and 

time in (1.6) is performed numerically. The procedure saves the history of stresses in 

the nodes lying on the crack trajectory, which makes it possible to calculate the time 

integral at each step of the problem solution. Spatial integration is performed at several 

nodes lying in the interval [0, <], counting from the crack tip. This calculation scheme 
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allows one to solve problems of a straight crack propagation in symmetrical samples 

and with a symmetrical method the load application and the crack trajectory coinciding 

with the line of symmetry. Despite the fact that dividing the area into elements with 

size < provides satisfactory results, elements with size </3 along the crack trajectory 

have been used. A regular mesh with equal square elements has been used along the 

crack trajectory. The size of the elements was gradually increased towards the top of 

the sample in order to reduce the total number of elements and therefore to improve 

the performance of the numerical scheme. The full mesh and the enlarged area near the 

top of the crack with a regular mesh are shown in figure 4.2. 

 

Fig. 4.2. Meshed used in the computations; a) – full model; b) – crack tip region with 

a regular mesh. Areas involved in J-integral calculations are indicated. 

If сondition (1.6) holds in a particular set of nodes forming the fracture process 

zone, displacement restrictions are removed from these nodes and crack tip travels to 

a subsequent node forming a new crack tip. This way, minimal distance of crack 

propagation equals <, which lies within the framework of the incubation time 
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approach: crack increments smaller than d are not regarded as fracture on the 

considered scale level. Solution time step <- is calculated according to formula <- =

< 9'⁄ , where 9' is the fastest elastic wave velocity. Integrals in (1.6) are computed 

numerically according to a trapezoid formula for both time and space integrals. The 

computations use the stored history of tensile stresses ({cc) in nodes, which are located 

on the crack path. 

Material of the simulated specimens is supposed to exhibit linear elastic 

behavior, which can be described by Lame equations and Hooke’s law:  

√
�=¡[

�-= = (Ê + ï)∇[6∇ ∙ ¡22⃗ 7 + ï∆¡[ 

{[# = Ω[#Ê	∇ ∙ ¡22⃗ + 	ï §
�¡[

�;#
+

�¡#
�;[

ß 
(4.1). 

At time - = 0 the specimens are supposed to be stress free and velocities of all 

points of the body are supposed to be zero. The loading was simulated by displacement 

of the corner of the crack faces according to linear law. Thus, the initial and boundary 

conditions take the following form (quasistatic load case is described, figure 4.3): 

¡22⃗ (4, 0) = 0;	
5622⃗
5i (4, 0) = 0   

{==(4 ∈ Γì, -) = {Å=(4 ∈ Γì, -) = 0 

¡=(4 ∈ Γ=, -) = 0, {Å=(4 ∈ Γ=, -) = 0 – symmetry 

condition 

¡=(4 = ΓÅ, -) = Ñ-, Ñ – loading rate 

 

(4.2) 
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Fig. 4.3. Numerical simulation scheme. Quasistatic load case is shown. 

In (4.1) and (4.2) 4 = (;Å, ;=), ¡22⃗ (4, -) = (¡Å(4, -), ¡=(4, -)) is the 

displacement vector, √ is the material density, Ê	and	ï are the Lame constants. 

Computation of the stress intensity factor 

The stress intensity factor is computed using the J-integral which is computed 

with a specially developed software. The computation procedure is based on a formula 

for the J-integral:  

: = lim
<→1

x =(¡ + M)8Å − {[#8#
�É[

�;Å
>

<
 (4.3). 

A more detailed expression for the :-integral can be obtained if integration over 

area Ω is considered (area bounded by contours Γ and Γ1, figure 4.4a) using divergence 

theorem and expression for kinetic energy M =
Å

=
√
5@A
5i

5@A
5i . Here linear elastic material 

is considered, ¶2⃗  is an external normal to Ω and partial space and time derivatives are 
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supposed to be connected by formula 5@A5i = −Ñ
5@A
5l‘

, where Ñ is the crack velocity 

[163,164]. 

: = x =(¡ + M)¶Å − {[#¶#
�É[

�;Å
><Γ

<B

+ x √
�=É[

�-=

�É[

�;Å
<Ω

C

− x √
�É[

�-
�=É[

�;Å�-
<Ω− x -[

�É[

�;Å
<Γ

´D⋃´FC
 

(4.4). 

In (4) and (5) ¡ and M are strain energy and kinetic energy densities, Γ is a 

shrinking contour close to the crack tip, while  Γ1 is a distant curve around the crack 

tip, :! and :y denote the crack faces with applied traction -⃗, É[ is the displacement 

vector component and ¶2⃗  and 822⃗  are the normal vectors (figure 4a). In order to evade 

inaccurate contour integration in (5), the virtual crack extension method [163,164] is 

applied and thus, contour integration is substituted by integration over area. Additional 

contour ΓÅ bounding area ΩÅ is constructed (figure 4.4b) and a smooth transition 

function fi(;, ~) equaling 1 at Ω1 and Γ1 points and 0 at ΓÅ points is introduced.  

 

Fig. 4.4. Contour schemes used for J-integral evaluation. 
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The ΩÅ boundary is composed of contours ΓÅ, Γ1 and the crack faces :! and :y 

with external normal 822⃗ . Hence the following expression holds, if fi(;, ~) properties 

and formula for traction on the crack faces -[ = {[#8# are accounted for: 

x =(¡ + M)8Å − {[#8#
�É[

�;Å
> fi<Γ

5C‘

= x =(¡ + M)8Å − {[#8#
�É[

�;Å
><Γ

<B

− x -[
�É[

�;Å
fi<Γ

‘́
D⋃ ‘́

F
 

(4.5). 

On the other hand, the integral on the left side of (4.5) can be rewritten using the 

divergence theorem and thus expression for the contour integral over Γ1 can be 

deduced: 

x =(¡ + M)¶Å − {[#¶#
�É[

�;Å
><Γ = x ={[#

�É[

�;Å
− (¡ + M)ΩÅ#>

�fi
�;#

<Ω
C‘<B

+ x √
C‘

�=É[

�-=
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(4.6). 

In (4.6) ΩÅ# is Kronecker symbol. Finally, substitution of (4.6) into (4.4) yields 

formula for :-integral used in the calculations: 
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(4.7), 

where :1Å
± = :1

±⋃:Å
± и Ω1Å = Ω1⋃ΩÅ. 
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The :-integral calculations are significantly simplified since regular mesh is built 

along the crack path. Area Ω1 is a square centered at the crack tip with 8 elements on 

the side, while the ΩÅ area is a 1-element thick layer covering Ω1. However, due to 

symmetry of the problem the : value calculation involves only half of the area (figure 

4.2b) and then the obtained result is multiplied by two. 

At each time step the displacement values for node ¶ of element ¬ and their time 

derivatives 2(É[)\
^ , õ

5@A
5i ú\

^
, õ
5–@A
5i– ú

\

^
3 are imported from ANSYS. Additionally, the 

following approximation is used for the fi(;, ~) transition function: 

(fi)\
^ = ·1, if	node	n	of	elment	e	belongs	to	Ω1JJJJ	

0, otherwise
 (4.8). 

The (É[)
^, õ

5@A
5i ú

^
, õ
5–@A
5i– ú

^
and (fi)^ (all denoted as :^ for short) values at 

arbitrary point (KÅ, K=) inside the element ¬ can be calculated using the element shape 

functions ∂[(KÅ, K=) and values at nodes :\^: 

:^(KÅ, K=) = " :[
^∂[(KÅ, K=)

Ã

[áÅ

 

∂Å(KÅ, K=) = (1 − KÅ)(1 − K=) 

∂=(KÅ, K=) = KÅ(1 − K=) 

∂ì(KÅ, K=) = KÅK= 

∂Ã(KÅ, K=) = (1 − KÅ)K= 

(4.9). 

Approximation (4.9) is also used to evaluate spatial derivatives in (4.7). 

Integrands in (4.7) are calculated from displacements using formula for small 

deformations and Hooke’s law. The area integrals in (4.7) are calculated by summing 

integrals over elements comprised by the area, which are evaluated using Gauss 

integration rule. 
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The applied :-integral calculation method does not rely on assumption that 

stresses are characterized by inversed root singularity which is an advantage over 

standard methods which are embedded into the majority of FEM software. 

The stress intensity factor for a moving crack is then formally calculated using 

formula  

!" = Á
≈:

(1 − ∆=)J()̇)
 (4.10a), 

where 

J()̇) = )̇=å' 6(1 − ∆)9k
=Â7ÿ , Â = 4å'åk − (1 + åk

=)=, 

å' = ”1 − )̇= 9'
=⁄ , åk = W1 − )̇= 9k

=⁄  
(4.10b). 

In (4.10a,b) : is calculated using (4.7), ≈ and ∆ are the material’s elastic 

parameters, 9' and 9k are dilatational and shear wave velocities in the material and )̇ 

is the crack velocity. The developed scheme was tested for the case of a dynamically 

loaded stationary crack. In the test problem history of the numerically computed SIF 

(using both standard ANSYS procedure CINT and the developed software 

implementing (4.7)) and analytical solution from [153] (formula 3.15) are compared. 

The sample is loaded using the pressure applied to the crack faces: linear rise region 

switches to the constant value at time M. The results and the load are shown in figure 

4.5. The ANSYS generated values coincide with the analytical formula, while the 

values obtained using (4.7) lie slightly lower. This can be attributed to the fact that the 

developed software does not utilize any kind of asymptotic solutions, while ANSYS 

procedures and the analytical solution suppose inverse square root behavior of stresses 

in the vicinity of the crack tip.  
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Fig. 4.5. Comparison of analytical solution for !"(-) dependence with numerical 

results. Red curve represents values obtained using the developed numerical scheme. 

4.3 Instability of SIF for moving cracks 

Paper [82] presents experimental data on dynamic crack propagation in Araldite 

B specimens of three types: double cantilever beam (DCB), single edge notches 

specimen (SEN) and a mixed type specimen. In order to measure stress intensity factor 

for a moving crack, method of caustics was used. In addition to this, crack tip position 

was registered and thus crack velocity could be assessed. All specimens had an 

artificial initial crack, which started to grow due to wedge loading. Shape and 

dimensions of the investigated specimens are shown in figure 4.6.   
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Fig. 4.6. Geometry of specimens studied in [82]. 

Material properties for the simulations were taken from [163]. Incubation time 

is still not available for Araldite B and value 1.1 µs was used. 

Results of the performed calculations together with experimental points from 

[82] are shown in figure 4.7. Since time and spatial integration in (1.6) provide 

possibility to account for history of stresses and therefore consider the processes, which 

precede minimal crack expansion, numerically obtained crack velocities match 

experimental values. Good coincidence of experimental and numerical !" − )̇ data was 

achieved, especially for high crack velocity regimes, which are the most representative 

for the studied problem. It is important to stress, that material properties for both DCB 

and SEN samples were identical.  

 

Fig. 4.7. Stress intensity factor – crack velocity dependence for DCB and SEN 

samples. Experimental data from [82] and the simulation results. 
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According to works by Ravi-Chandar and Knauss [70] a wide range of stress 

intensity factor values can correspond to a crack, moving with a constant velocity for 

the case of dynamic loading by uniform pulse pressure applied to the crack faces. On 

the contrary, slow or quasistatic loading resulted in a well-established !" − )̇ 

dependence. In order to study these two cases, crack propagation process was 

simulated for a model material with properties similar to PMMA properties. For both 

studies samples had a square shape with a 200 mm side. Quasistatic case was 

implemented using application of slow displacement to the corners of the crack faces 

and pulse loading was applied to whole area of the crack faces representing Ravi-

Chandar and Knauss loading scheme. Figure 4.8 shows numerically obtained values of 

the !" − )̇ dependence together with the loading schemes. 

Both scatter results (separate vertical bars of the !"  values for a discrete set of 

the crack velocities) and fitting are shown on the SIF – velocity graph in figure 4.8a. 

According to the incubation time approach, crack propagates with finite increments, 

which equal < and transient solution implies a particular value of the solution time step. 

This way, crack velocity obtains discrete values, as the crack tip remains for a number 

of time steps in a certain node and then travels the < distance, when (1.6) holds. Such 

numerical discretization qualitatively reflects experimentally observed data on 

incremental crack propagation, since discontinuous crack tip trajectories were 

observed experimentally (see e.g. [164]). Fitting of the scatter data was performed in 

order to obtain classic shape of the !" − )̇ curve for the quasistatically loaded samples 

presented in figure 4.8a. The same fitting procedure was also utilized in simulation of 

Kalthoff's tests for the DCB and SEN samples in figure 4.7.  

Figure 4.8b shows only scatter data, as fitting for this loading scheme is 

inapplicable and thus no classic !" − )̇ can be obtained for the case. Faces of the initial 

crack were loaded with a trapezoidal pressure pulse. Amplitude and shape of the pulse 

were adjusted in order to initiate the crack movement during pressure growth time 

interval. Only several crack velocity values were observed in course of this simulation 

and a wide range of the SIF values correspond to each of them. This corresponds to 
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experimental results, obtained by Ravi-Chandar and Knauss [1,69-71] and thus, both 

quasistatic and dynamic loading cases were obtained using numerical simulation and 

incubation time model with equal shape of the samples and equal material properties. 

Mesh size variation does not affect this result as it has been seen from the mesh 

sensitivity testing: the crack velocity value set changed slightly, however the !"  

scattering remained.  

 

Fig. 4.8. SIF	–	crack	velocity	dependencies	for	a	model	material	for	two	loading	
cases;	a	–	quasistatic	splitting	of	the	crack	faces,	b	–	pulse	loading	of	the	crack	

faces. 

4.4 Crack velocity oscillations 

As noted above, the dynamic crack propagation can be accompanied by unstable 

behavior of the characteristics and dependencies describing this process. The SIF 
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variation effect at relatively high crack velocities considered in the previous section is 

an example of such instabilities. This section is devoted to the numerical study of the 

effect of crack velocity oscillations, which has been observed in a number of 

experimental works (see, for example, [15,16,164,165]. 

In [16], the propagation of cracks in PMMA plates due to displacements applied 

to the upper and lower boundaries of the samples was investigated. The authors of [16] 

recorded the position of the crack tip and the current crack velocity. At the same time, 

the authors discovered considerable fluctuations in the crack velocity. 

Figure 4.9 shows experimental data from [16], as well as the results of 

calculations using criterion (1.6). The choice of the characteristic size < = 0.2	 mm 

according to the formula < = 2!"%
= m{%

=⁄  allows one to numerically obtain crack 

velocity oscillations with the amplitudes corresponding well to the experimentally 

observed phenomenon.  

 

Fig. 4.9. Crack velocity oscillations. Experimental data from [16] and the simulation 

results. 
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In [15], the results on experimental and numerical studies of the dynamic crack 

propagation in PMMA samples are presented (experimental studies were conducted by 

I.V. Smirnov). The application of the developed numerical approach, made it possible 

to obtain a fairly accurate correspondence between the numerical results and 

experimental data. For example, the dependence of the crack length on time almost 

completely coincides with the experimental curve (figure 4.10). Some discrepancy is 

observed in the crack acceleration – in the experiment, the crack velocity reaches a 

constant value faster.  

 

Fig 4.10. The dependence of the crack length on time. The experiment and processing 

of the experimental results were carried out by I.V. Smirnov.  
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The stages of the numerical simulation are shown in Figure 4.11: the evolution 

of the stress field ({== component) and the crack advancement due to the removal of 

constraints from the node in which the condition (1.6) was fulfilled. 

 

Fig. 4.11. The crack propagation process: the development of a stress state in the 

vicinity of the crack (a, b) and the subsequent shift of the crack tip to the next node 

(removal of the constraint in the node) when condition (1.6) is fulfilled (c). 

For the experiments carried out in [15], it was also possible to numerically study 

the crack velocity oscillations. The numerically obtained amplitudes of crack velocity 

oscillations fit into the experimentally obtained values (Figure 4.12). 
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Fig. 4.12. The dependence of the crack velocity on time. 1 – the crack velocity 

according to modeling; 2 – the smoothed upper and lower bounds of the crack 

velocities oscillations observed in the experiment; 3 – the average crack velocity 

according to modeling; 4 – the average crack velocity from the experiment. The 

experiment and the data processing were carried out by I.V. Smirnov 

4.5 The propagation of multiple cracks with arbitrary directions. Dynamic 

fragmentation 

Studies of the dynamic fracture under impact loading conditions lets one 

investigate transition between the fracture scale levels. In fact, application of the 

incubation time fracture model for the crack propagation modelling makes it possible 

to describe this transition. According to criterion (1.6), the fracture scale is defined by 
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the linear size <, which determines the minimum characteristic size of the zone of 

recorded destruction. Thus, the propagation of the main crack is a set of discrete 

increments with a characteristic size <, and in fact, the propagation of the crack is the 

result of the evolution of the fracture from the scale level characterized by parameter 

< to the next larger scale level. In the case of the penetration or impact problems, the 

analogue of such a transition is the fragmentation of the barrier: fracture at a d-sized 

scale leads to the formation of larger fragments, which can be interpreted as the 

transition of the fracture process to a larger scale level. 

This section presents the results of numerical modeling of the dynamic 

fragmentation processes observed in brittle materials and the study of the 

characteristics of this process. In order to study the dynamic fragmentation, a two-

dimensional numerical scheme based on FEM and the incubation time criterion has 

been developed. It is worth noting that in this scheme uses another implementation of 

fracture compared to the approach developed in the fifth Chapter.  

The model problem of penetration of round ceramic barriers by steel cylindrical 

strikers is considered in the section. The mechanical properties of Al2O3 and 

ZrO2(Y2O3) ceramics have been used (Table 4.1 [166-168]). Both materials (ceramic 

target and steel impactor) are considered to be elastic. The target has the following 

dimensions: a diameter of 100 mm and a thickness of 10 mm, while the length of the 

steel impactor is 100 mm and the diameter is 10 mm. The developed numerical scheme 

is based on the finite element method in a two-dimensional axisymmetric formulation 

with implicit time integration. The ANSYS solver was used to calculate the stress-

strain state, and external control procedures were developed to implement criterion 

(1.6) and to control the solution progress. Figure 4.13 shows a part of the finite element 

mesh and the complete model with the symmetry extension applied.  
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Fig. 4.13. Part of the finite element mesh (contact zone) and full model with 

symmetry expansion applied. 

 Al2O3 ZrO2(Y2O3) Steel projectile 

Young’s modulus, ≈, GPa 366 200 200 

Poisson’s ratio, ∆ 0.21 0.25 0.25 

Density, √, kg/m3 3880 6000 7860 

Ultimate stress, {%, MPa 260 750 – 

Incubation time, w, µs 1 1 – 

Table 4.1. Mechanical properties of the materials used in the calculations. 

The mesh for the finite element solution was constructed manually for the 

studied problem. Elements do not share nodes, however nodes with equal coordinates 

have coupled degrees of freedom acting as a single node. This restriction is maintained 

until the condition (1.6) holds. When fracture occurs according to (1.6), nodes are 

decoupled and elements are separated leading to the fracture surface generation (see 

figure 4.14). Since the axial symmetry is applied, each crack contributes to the total 

fracture surface area (‹) according to equation ‹ = ‹ + 4< ∗ 2m∏, where ∏ is distance 

between the crack and the symmetry axis. 
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Fig. 4.14. Decoupling of the matching nodes and fracture surface generation. 

Element size equals < and thus minimal fracture increment is also < which lies 

within the incubation time approach framework. The solution time step is chosen to be 

smaller than the time needed for the fastest wave to travel the < distance. 

In order to investigate fragmentation of the ceramic targets a separate program 

was developed. The finite element mesh is regarded as a graph with the mesh elements 

being nodes of the graph. This way, separate fragments of the target are connected 

components of the element graph.  

Dynamic fragmentation modelling results 

Fracture surface area. This section presents results of the fracture surface area 

calculations. Figure 4.15 shows typical evolution of the fracture surface are on time: 

abrupt growth of the surface area indicates active cracking of the sample and the 

fracture surface area value reaches its maximum and stops growing when the fracture 

process is completed. 
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Fig. 4.15. Fracture surface area evolution. The data for the Al2O3 target and 350 m/s 

impactor velocity is presented. 

The computations were made with 1 µs incubation time parameter for the both 

materials. The dependence of the fracture surface area on the impactor velocity is 

shown in figure. 4.16. For the studied regimes the fracture surface area increases with 

the growing impactor velocity for the Al2O3 material. However, the results stabilize 

for the ZrO2(Y2O3) ceramics. This might indicate that maximal level of energy 

absorption has been reached by the dynamic fracture process. 
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Fig. 4.16. Fracture surface area versus impactor velocity dependence. 

Residual impactor velocity. In figure 4.14 dependence of the residual impactor 

velocity on the initial velocity is presented. Negative residual velocities indicate that 

the impactor did not penetrate the target and was repulsed from it. For the both 

materials residual impactor velocity depends linearly on the initial impactor velocity 

when target is penetrated. In general, the ZrO2(Y2O3) ceramics demonstrated much 

better ballistic performance with a much higher limit velocity (around 380 m/s) 

comparing to around 80 m/s for the Al2O3 target. For all the computations in this 

section 1 µs incubation time was used. 
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Fig. 4.17. Residual impactor velocity versus initial impactor velocity. 

Dynamic fragmentation. Number of fragments. Figure 4.18 presents dependence 

of the total number of fragments on the impactor velocity. Higher impactor velocities 

result in a more extensive target fragmentation and higher total number of fragments. 

This result naturally correlates with the fracture surface are – impactor velocity 

dependence (figure 4.16): here number of fragments remains almost constant for the 

800 m/s impactor velocity comparing to the value obtained for the 700 m/s velocity.  
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Fig. 4.18. Number of fragments versus impactor velocity.  

Dynamic fragmentation. Fragment size distribution. In this section distributions 

of the fragments are studied. Cumulative size fraction of fragments of all the fragment 

sizes is presented using logarithmic scale axes. Size of a fragment is measured as the 

number of elements it consists of. Experimental investigations of the dynamic 

fragmentation process usually reveal power law distribution of the fragments [89]. The 

power law approximation (a straight line if logarithmic coordinates are used) works 

reasonably well for the small fragment region of the distribution, while discrepancies 

can be encountered for the larger fragments. Figure 4.19 shows fragment size 

distribution reprinted from work [169], where the above-mentioned trend can be 

observed.  
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Fig. 4.19. Experimentally observed fragmentation of glass. The figure is reprinted 

from work [169]. 

The obtained numerical results qualitatively resemble experimental data – 

straight lines are observed for smaller fragments with different behavior for medium 

and larger fragments. It appears that fragments with particular sizes contribute less 

comparing to the other fragment sizes. Figure 4.20 presents typical distributions of the 

fragments for both materials and 350 m/s impactor velocity. Corresponding 

fragmentation patterns, showing fragments distinguished by color (excepting for the 

smallest one-element fragments which are all colored in black) are shown below each 

graph. 
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Fig. 4.20. Cumulative distribution of the fragment sizes and corresponding 

fragmentation patterns; a) – Al2O3, b) – ZrO2. Left edge of the of the presented 

fragmentation patterns coincides with the target symmetry axis. 

4.6 Chapter 4 conclusions 

The 4th Chapter discusses nonstationary effects accompanying the dynamic 

crack propagation in brittle materials. Numerical studies were carried out using the 

finite element method and the incubation time fracture criterion. The incubation time 

fracture model implies spatial and time discretization of the fracture process, since, the 

minimal volume of the fracture material is introduced (in the case of crack movement, 

the minimum possible crack advancement), as well as the characteristic fracture time 

– the incubation time. 

Discretization of the fracture process within the framework of the incubation 

time approach allows one to obtain a number of fundamental results consistent with 

experiments. Firstly, the introduction of a minimum crack advancement provides 

possibility to numerically investigate the unsteady behavior of the velocity of a moving 

crack: for example, the experimentally observed oscillations of the crack velocity 

propagating in PMMA plates under quasi-static loading were obtained. The amplitude 
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of the crack velocity oscillations obtained by the calculations coincides well with the 

experimental values. 

In addition to this, the use of the incubation time approach made it possible to 

investigate the problem of uniqueness of the dependence of the stress intensity 

coefficient on the crack velocity (!" − )̇ dependence). Due to the discrete nature of 

crack propagation according to the incubation time and FEM, there is a noticeable 

variation in the values of SIF corresponding to the selected values of the crack velocity. 

At the same time, the scatter of the SIF values for the case of quasi-static loading is 

relatively small, and the classical !" − )̇ dependence can be constructed "on average". 

In the case of high-speed loading, a significant SIF scatter prohibits the construction of 

such a dependence: the crack can move at an almost constant speed, whereas the 

intensity coefficient corresponding to its value varies within a wide range. This 

behavior corresponds to the experiments [70,71]. 

Thus, on the one hand, application of the incubation time approach allows us to 

resolve the contradictions that have arisen regarding the uniqueness of the !" − )̇ 

dependence for a given material, and on the other hand, to simulate fracture without an 

a priori given !" − )̇ relation. This determines the significant advantage of the 

developed approach compared to the traditional ones, since the experimental 

determination of the SIF-crack velocity dependence is a very time–consuming process 

leading to ambiguous results.  

More information can be found in [14,15,86,87,88,183,184,186,187,188,190]. 
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Chapter 5. Incubation time approach for impact problems 

The fifth Chapter presents experimental and numerical results on dynamic 

fracture of PMMA plates subjected to impact loading. The experimental tests were 

conducted using steel cylinder-shaped projectile accelerated using a gas gun.  In order 

to evaluate performance of the tested specimens, residual impactor velocity was 

assessed using high-speed photography setup. Square-shaped PMMA specimens with 

three thicknesses were investigated using various projectile velocities. For all the three 

specimen types the ballistic limits were experimentally obtained. The conducted 

experiments were numerically simulated using finite element method with explicit time 

integration scheme and incubation time fracture model for the material failure 

prediction. Experiments with all three specimen configurations were successfully 

simulated using one parameter – incubation time, which was evaluated from existing 

experimental data on the dynamic fracture of PMMA. In addition to the simulations of 

the real experiments estimates on performance of a sample with a virtual geometry 

were made using the developed numerical approach.  

Moreover, the fifth Chapter presents an approach to overcome difficulties which 

are typical for the impact problems – high demands on computing resources and 

potential numerical instabilities arising from high stresses in the contact zone and high 

strain rates. The approach is based on the use of artificial neural networks (ANNs) 

trained on arrays of numerical results. Performance of the approach is demonstrated 

using the problem of impact of perforated barriers. 

5.1 The incubation time approach for numerical simulations of impact fracture 

This section is devoted to experimental and numerical studies of dynamic 

fracture under impact loading conditions, namely, modeling the penetration of 

obstacles by impactors. Experimental studies were carried out using a gas gun and 
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high-speed filming equipment. The modeling is carried out using the finite element 

method (FEM) and the incubation time fracture criterion. 

Experiments 

Square (100mm x 100mm) PMMA plates with three thicknesses (4 mm, 6 mm 

and 10 mm) were studied. The sample was clamped in a four-arm holder (see figure 

5.1)  

 

Fig. 5.1. The sample mounting device: four grips fixing the specimen. 

 In order to conduct impact tests a gas gun experimental facility was used. The 

setup is schematically shown in figure 5.2. The initial projectile velocity was controlled 

by air pressure in the system and appropriate choice of the membranes placed in the 

gun shatter. Two membranes were used in the shatter and each could sustain half of 

the operating pressure. Due to pressure drop in the auxiliary pressure chamber the 

membranes broke and the projectile started to move through the barrel. The initial 

velocity was measured using a magnetic coil placed at the exit end of the barrel, while 

the residual impactor velocity was evaluated using HSFC pro high-speed photography 

equipment, produced by PCO AG. This setup consists of four Dicam pro modules, 

which provide possibility to capture eight frames with a variable time interval. For 

almost all the experiments 150 µs inter-frame time interval. 
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Fig. 5.2. Scheme of the experimental setup; 1 – high pressure chamber, 2 – shatter 

device, 3 – membranes, 4 – barrel, 5 magnetic coil for the impactor velocity 

measurements, 6 – pressure drop valve to trigger a shot, 7 – high-speed camera rig, 8 

– sample, 9 – protection chamber; P indicates pressure. 

Steel cylindrical impactor (diameter 6.9 mm, length 30 mm and mass 8.7 grams) 

was accelerated to velocities ranging from 40 m/s to 350 m/s. The impactor was placed 

in a disposable aluminum bed which fitted precisely the gun barrel. The bed was 

stopped by a barrier at the end of the barrel and the impactor continued to move leaving 

the bed. The contact between the bed and the barrier caused linkage of the electrical 

circuit and enabled triggering the high-speed photography setup with a programmable 

time delay.  

Numerical scheme 

The developed modelling procedure is based on the finite element method and 

he incubation time fracture model. The LS-DYNA software was used as a solver. The 

incubation time approach has been discussed section 1.3. 

According to the incubation time model the fracture at point ; and time moment 

-takes place if: 

1
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where {(;, -) is a time-dependent stress at point ;, {% is the material static 

ultimate tensile stress and w stands for the incubation time. 

The left side of inequality (5.1) contains integration over time and thus history 

of the stresses is accounted for. The microscopic fracture processes are supposed to 

develop due to these stresses and specific time w is needed for the macroscopic fracture 

to evolve. The fracture is non-local and occurs at the areas splitting the considered d-

sized volume in two parts. 

The incubation time parameter w can be evaluated from experiments on dynamic 

fracture. In order to calculate the incubation time value, one should register fracture 

initiation time and the stress – time dependence in the point of interest. The stress – 

time function is then substituted to formula (5.1) and w is evaluated as a fitting 

parameter so that fracture occurs at the registered fracture initiation time. Experiments 

on spallation or dynamic crack initiation can be used to obtain the incubation time 

value. It should be noted here that an adequate choice of the fracture scale level is 

crucial for the sake of the simulation correctness. One should define fracture scale level 

to be considered in the studied problem and then use an appropriate w value, which was 

measured on an appropriate scale level. For a more detailed discussion on the fracture 

scales please refer to the work presented in [170]. 

The incubation time fracture criterion was implemented via user defined material 

(UMAT41 routine) in the LS-DYNA code. Evolution of stresses for each element is 

stored in additional array parameter and time integral in the inequality (5.1) is 

computed according to the trapezoidal integration rule. The element size equals linear 

size < used in the incubation time fracture condition (5.1) and element deletion 

technique is implemented in order to simulate the fracture development. This scheme 

fits perfectly the incubation time approach since the minimal characteristic size of a 

fractured region equals <. Mesh sensitivity testing revealed that further reduction of 

the element size does not affect the computation results. fully integrated (with 8 

integration points) solid element was found to be the most robust in terms of stability 
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of the numerical simulation. The finite element mesh is shown in figure 5.3. The 

problem is solved in a three-dimensional statement and the boundary conditions are 

satisfied due to displacement restrictions imposed on the nodes lying under the holder 

grips (see figure 5.1). 

 

Fig. 5.3. Finite element mesh with an enlarged contact area (b). The model for a 6 

mm plate is shown. 

The material parameters used in the simulations are listed in Table 1. All the 

properties were either taken from the material information sheet supplied by the 

PMMA manufacturer or from elsewhere [171]. The material behavior was supposed to 

be governed by Hooke’s law and thus two material parameters (Young’s modulus and 

Poisson’s ratio) were sufficient for the stress-strain dependency description. The 

incubation of 1 µs provided a good coincidence between the numerical results and the 

experimental data. This value is close to the PMMA incubation time for a “small” scale 

level (0.8 µs) calculated in [170]. According to [170] the 0.8 µs value was obtained 

from experiments on spallation of PMMA rods, where microcracking (small-scale 

fracture) was registered. Element erosion applied in our scheme can be also considered 

as a small-scale fracture since the element size is small comparing to the sample 

dimensions. way, application of a 1 µs incubation time is correct within the studied 
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case. The incubation time values close to 1 µs have been also used to simulate dynamic 

crack propagation in PMMA specimens [14,15]. 

 PMMA 

target 

Steel 

projectile 

Young’s modulus, ≈, Pa 3.3e9 2.09e11 

Poisson’s ratio, ∆ 0.35 0.28 

Density, √, kg/m3 1180 7720 

Ultimate tensile stress, {%, Pa 72e6 - 

Ultimate stress intensity factor, !"% , MPa 1.7 - 

Incubation time, w, µs 1 - 

Table 5.1. Material properties used in the numerical model. 

Results 

Here we provide both experimentally obtained data and results of numerical 

simulations using the developed scheme. Figure 5.4 shows typical set of frames from 

the high-speed camera obtained from the conducted tests. Frames 5-8 were used to 

calculate the residual projectile velocity.  

 

 



 

 

143 

  

 

Fig. 5.4. The speed-photography frame sequence used to calculate the impactor 

residual velocity. 10 mm thick target and 144 m/s initial impactor velocity case 

depicted. Experiments were conducted with V.V. Balandin and V.V. Balandin Jr. 

A typical case of a threshold impactor velocity (ballistic limit) is shown in Figure 

5.5 The impactor is almost completely stopped by the target and no penetration is 

observed, however the target is severely damaged. 

 

Fig. 5.5. High-speed photography of the threshold velocity impact: 10 mm plate 

thickness and 70 m/s impactor velocity. Experiments were conducted with V.V. 

Balandin and V.V. Balandin Jr. 

Experimental and numerically obtained dependencies of the residual impactor 

velocity (Ë_) on the initial impactor velocity (Ë[) are shown in figure 5.6 together with 

the ballistic limits. The dependencies can be approximated with a straight line for 

middle range and high impactor velocities, while the Ë_  values drop abruptly in the near 
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ballistic limit velocity range. Some graphs of the numerical results in figure 6 contain 

negative Ë_  values, which means that the impactor bounced from the target and no 

penetration occurred. 

The numerical results fit well the experimental data, especially for the thinner 

plates. In all cases the numerical model could reliably predict the ballistic limit for the 

studied targets. The Ë_ − Ë[ dependence was numerically predicted using the model for 

a 5mm plate and the ballistic limit for this virtual test configuration was assessed. 

 

Fig. 5.6. Residual velocity – initial velocity dependencies for different specimen 

thicknesses; (a)-(c) comparison of the experimental and numerical data (d) a mere 

numerical prediction and the arrows indicate the ballistic limit.  
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Fig. 5.7 shows both the experimental and numerically evaluated dependencies 

of the ballistic limit on the specimen thickness together with the numerical prediction 

for a 5 mm thick plate. 

 

Fig. 5.7. Ballistic limit – sample thickness dependence; 5 mm point is a numerical 

prediction. 

The numerically obtained fracture patterns generally resemble the experimental 

results. The impact results in crater formation and cracks propagating towards the 

edges of the sample. For relatively low impactor velocities the fracture pattern is 

similar. Higher impactor speeds result in shorter cracks comparing to the experimental 

results. The crack propagation trajectories are defined by the applied boundary 

conditions – the sample bracing in our case. The fracture patterns for relatively low 

impact velocities resemble those for the purely quasistatic case – cracks propagating 
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towards the clamps. The fracture pattern changes for the higher impactor velocities, 

since the effect of the fixation method is less pronounced in this case due to shorter 

target – projectile interaction time. Relatively short interaction times lead to 

concentration of the impact energy in the contact spot leading to a more localized 

fracture. Figure 5.8 compares numerical results and experimental fracture patterns for 

the 10 mm thick plate at three impact velocities including a threshold one (70 m/s). 

 

Fig. 5.8. Fracture patterns: experiment and numerical simulation; 10 mm plate results 

are shown.  

Thus, the application of the criterion based on the concept of incubation time 

allowed a fairly accurate correspondence between the calculated and experimental 

dependencies describing the dynamic fracture in the impact problems. In particular, the 

dependence of the residual velocity of the impactor on its initial velocity was obtained, 

as well as the threshold values of the projectile velocity (ballistic limit) for three sample 

thicknesses. The applied model actually contains one new material parameter – the 
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incubation time, as well as a parameter characterizing the spatial discretization of the 

fracture process and the choice of the fracture scale level. 

5.2 Application of artificial neural networks to predict strength of perforated 

targets 

Solving dynamic fracture impact problems usually requires a lot of computing 

power and takes a lot of time. For example, solution of the problem from the first 

paragraph of this Chapter required up to 100 gigabytes of RAM and took about 10 

hours when using a processor with 16 computing cores. In this particular case, this is 

largely due to the fracture model – according to the incubation time fracture criterion, 

the scale level is selected using the parameter<, which in turn determines the choice of 

the element size. In paragraph 5.1, < = 0.3 mm and the total number of elements 

reached 2 million (for a barrier with a thickness of 10 mm). It is impossible to quickly 

obtain a solution to such a problem, as well as it is impossible to simultaneously solve 

several such problems. It is also worth noting that computational difficulties are not 

uncommon when modeling the impact problems. Sometimes the element mesh is 

heavily distorted due to high stresses in the contact zone and high deformation rates. 

In particular, when solving the problem from the section 5.1, for the impactor velocities 

above 150 m/s, the option of forcibly disabling elements from calculations (the so-

called erosion of elements) was activated when they are excessively deformed. Such 

forced removal of the elements leads to a physically non-motivated fracture which 

naturally reduces the accuracy of modeling. 

This section discusses a possible approach to solving the described problems that 

arise when modeling the penetration of obstacles. As an example, barriers with a 

discredited structure are used, namely plates with perforations. The method is based on 

the use of artificial neural networks (ANNs) for rapid numerical estimation of the 

residual velocity of the impactor for a family of perforated targets made of PMMA 

(polymethylmethacrylate). 
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The impact strength of the targets is characterized by residual velocity of the 

projectile after passing through the target: the higher is the residual projectile velocity 

the lower is the target impact strength. The trained ANN is able to predict the residual 

projectile velocity for the configurations which are not present in the training dataset 

and the strength estimations using the ANNs are instant compared to rather time-

consuming FEM calculations. This can be beneficial for certain use cases (e.g. 

calculations using underpowered mobile devices or for web-based CAD/CAE 

applications where the result is expected to be obtained instantly and simultaneously 

by multiple users). Moreover, some plate perforation patterns appear to be problematic 

and cannot be processed using the developed FEM procedures due to extensive mesh 

distortion causing a prematurely terminated solution procedure. For such situations the 

ANN predictions can be useful as the result can be obtained without reducing the 

solution time step or any other FEM solver tuning. It is worth noticing that inconsistent 

element behavior is a common problem for the FEM-based impact simulations 

especially for high projectile velocities and complicated target shapes [172]. 

Statement of problems 

The study objective can be formally stated in the following way: let’s consider 

a family of ñ problems and each problem is characterized by a vector consisting of ∂ 

parameters /# = 6/Å
# , /=

# … , /T
#7, & ∈ [1,ñ]. Each problem (configuration) /# is 

mapped to a result ∏# using FEM or any other numerical approach and situations when 

there is no result (∏# = ∅) for a particular parameter configuration are not excluded 

(problematic cases). Thus, the data set (or the configuration family) can be encoded as 

V/# → ∏# 	W, & ∈ [1,ñ], !& = 6!1
& , !2

& … , !∂
& 7 (5.2). 

The goal is to construct an algorithm that would map some new unsolved 

configuration /»!Å to a result ∏»!Å without performing the full problem solution and 

would possibly process the ∏# = ∅ situations. The problematic ∏# = ∅ cases are 

supposed to be processed using data obtained from the normally solved problems. 
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Vector /# can potentially describe the shape of the sample, material properties, loading 

or even mixture of them. In this study the /# vector describes the perforation patterns 

and artificial neural networks are used as the predicting algorithm while the data set 

consisting of ñ solved problems is used to train the ANNs. The data set size ñ is 

considered as sufficient for the ANN efficiency to stabilize.  

Two problems are considered in the paper: A very simple static plate 

deformation problem is discussed prior to the main impact problem in order to test the 

approach and to see how mechanical aspects of the problem can potentially influence 

the ANN model architecture and efficiency. For the plate deflection problem, the 

solution is binary: the plate deflects either to left or right. The impact problem solution 

is a residual projectile velocity.  

A two-dimensional formulation is used for the discussed problems, however 

axial symmetry is applied in the impact problem. The specimen models are composed 

of two types of square cells – a normal solid cell and a cell with a hole – a perforated 

cell. Combination of these cells yields the perforation configuration and thus random 

configurations can be generated forming a configuration set. The cell size can be varied 

and this way perforation patterns with different numbers of cells (perforation 

resolutions) can be obtained providing different configuration sets. Thus, in (5.2) ∂ 

equals number of cells composing the sample and /[ equals zero or unity describing a 

solid or a perforated cell, while ñ denotes the size of the data set needed for successful 

training of the ANN model. 

The following issues and questions are to be covered for the problems: 

● Sufficient size of the dataset for each configuration set which ensures high 

efficiency of the ANN model and therefore ability to rapidly obtain the problem 

solution without performing full FEM analysis. 

● Suitable ANN architecture for the particular problem: balance between the 

architecture complexity, accuracy of the model and required data set size is sought for. 



 

 

150 

  

● Possibility to obtain the result for the configurations which cause failure of the 

FEM solver using the trained ANN models. 

● Applicability of the developed ANN models as a fast FEM alternative for the 

optimization purposes and construction of optimized perforation patterns for higher 

impact resistance. 

For both problems the PMMA material is considered (properties are listed in 

table 1) and the material behavior is supposed to be elastic. 

 PMMA target Steel projectile 

Young’s modulus, ≈, Pa 3.3e9 2.09e11 
Poisson’s ratio, ∆ 0.35 0.28 
Density, √, kg/m3 1180 7720 
Ultimate tensile stress, {%, Pa 72e6 - 
Ultimate stress intensity factor, 
!"% , MPa 

1.4 - 

Incubation time, w, µs 2.1 - 

Table 5.2. Material properties used in the study. 

Static deformation of a plate 

A rectangular PMMA (properties listed in table 5.2) plate with dimensions 20 

mm x 51 mm is considered and plain strain formulation is applied. A 1 mm thick grip 

area is used and the perforated area is 20 mm x 50 mm. The bottom edge of the plate 

is fixed and 60 MPa stretching stress is applied to the upper plate edge. Five 

configuration sets are studied: 2 cells by 5 cells (2x5 notation will be further used for 

the perforation resolutions), 6x15, 10x25, 14x35 and 20x50. The load causes 

nonhomogeneous plate deformation and therefore deflection of the specimen to left or 

right depending on the perforation pattern. In this case the calculation result is the plate 

deflection side – left or right and the ANN is supposed to predict it for an arbitrary 

perforation configuration. 

ANSYS FEM software is used to both generate the configurations and to obtain 

the solution. The meshed cells, a configuration example and a resulting deformation 
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are shown in figure 5.9. The bottom edge nodes are constrained in all directions. The 

plate deflection is measured using averaged horizontal displacements of the three nodes 

located on the upper edge of the plate.  

 

Fig. 5.9. A particular 6x15 configuration for the static problem. Meshed cells (a), 

whole assembled mesh (b) and a resulting plate deflection to the left as seen from 

comparison with the dashed vertical reference lines; in (c) 15X magnification is used 

to show the plate deflection. 

Impact problem 

A 10 mm thick round PMMA plate with diameter 100 mm is hit by a cylindrical 

steel projectile (material properties are given in table 5.2). The projectile has the 

following dimensions: diameter 6.9 mm and 30 mm height. The problem is solved in 

a two-dimensional statement with axial symmetry applied meaning that the target and 
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the projectile are both modelled as rectangles and perforation holes are in fact 

concentric canals inside the target. The target edge is fixed. 

The projectile is slowed down due to interaction with the target and the 

calculation result is the residual projectile velocity. Obviously, the projectile 

deceleration depends on the perforation configuration, thus the ANN is supposed to 

predict the projectile’s residual velocity for a given perforation pattern.  

In this case three perforation resolutions and therefore three sets of 

configurations are studied: 2 cells x 12 cells (2x12), 4x24 and 8x48, additionally, the 

plate is supposed to have a non-perforated layer for the contact stabilization – the 

sample plate models are shown in figure 5.10. The base configuration model (with no 

perforation) is calibrated using experimental results on the PMMA plates impact 

discussed in section 5.1. 

 

Fig. 5.10. Representatives of the three configuration sets: 2 cells x 12 cells (a), 4x24 

(b), 8x48 (c). All the configurations have a nonperforated layer. 

Sets of solutions were obtained for each configuration resolution, which made it 

possible to train neural networks to predict the solution of a problem for a specific 

configuration without performing a full calculation. 

 In the impact problem the target meshes are also assembled from solid and 

perforated cells using ANSYS APDL script. However, the problem is solved using LS-

DYNA solver with an explicit time integration scheme. Thus, the LS-DYNA input is 

generated which is then modified in order to implement the custom dynamic fracture 

criterion. Square elements with four integration points are used to build the model. 
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Here all the configurations are meshed with equally sized square elements as the 

element size is prescribed by the applied fracture model. The model is integrated into 

the LS-DYNA code using subroutines for the user-defined materials (UMAT41). The 

stress histories are written to dedicated arrays and the time integration in (5.1) is carried 

out using trapezoidal integration rule. The mesh element size is chosen to be < (regular 

mesh with square elements is used for all models) and stress values calculated at four 

integration points are averaged and thus inner space integral in (5.1) is calculated. If 

criterion (5.1) predicts fracture for any of eight imaginary areas inside the element, the 

element is deleted from the mesh. The following area angles are considered (see figure 

5.11b): å = 0,
’

=
, ±

’

ì
, ±

’

Ã
,±

’

X.  

 

Fig. 5.11. Interval of spatial integration in the incubation time fracture model (a) and 

element with a fracture area, where å = 0,
’

=
, ±

’

ì
, ±

’

Ã
, ±

’

X. 

The developed two-dimensional model is calibrated in order to fit experimental 

results on the PMMA plates impact: the non-perforated base configuration model with 

2.1 µs incubation time yield good matching with the experimental data (see figure 

5.12). 
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Fig. 5.12. The FEM Model calibration – non-perforated base configuration; 

experimental results from [109]. 

The meshed cells, particular hole configuration and a resulting fracture pattern 

for a 95 m/s impact are shown in figure 5.13. 
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Fig. 5.13. Cells, whole mesh and resulting fracture at time 25 µs for particular 2x12 

(a), 4x24 (b) and 8x48 (c) configurations. 

Tested architectures of the ANN models 

Generally speaking the artificial neural network is a complicated function that is 

capable of matching some set of data to a certain result. This function contains multiple 

parameters (weights and biases for the fully connected networks and filter parameters 

for the convolutional ones) which are adjusted to yield the best possible fit for the given 

data set and thus some trends and dependencies are established providing the 

possibility to predict the result with a certain level of accuracy. This parameter 

adjustment process is known as training. In the studied case the data set member is 
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encoded with a matrix containing information about the specimen perforation: 1 stands 

for a perforated cell and 0 – for a solid one. The matrix components are the parameters 

/# from (5.2) describing the particular problem. The results ∏# are the plate deflection 

(to the left or to the right) and the projectile residual velocity depending on the problem. 

Two types of the ANN models are investigated. Fully-connected models 

constitute the first class which also contains the very basic linear regression model. 

The studied problems resemble some known image processing problems (e.g. 

categorization of the depicted objects) and thus it is fair to suppose that the machine 

learning techniques used in this area can be applicable for the discussed mechanical 

problems. Thus, the second used model type is a convolutional neural network (CNN) 

[173]. Models with different numbers of intermediate layers are tested. The 3x3 filter 

is used in the convolutional architecture (figure 5.16b). 

For the fully connected ANN model the matrix describing the perforation pattern 

is converted into a single column: the matrix columns are stacked on top of each other 

and the resulting single column is then used as input for the fully-connected ANN. The 

convolutional neural networks operate with matrices without conversion. Further in the 

text the ANN models are denoted using the following notations: FC[¶Å, ¶=, … , ¶Z] 

stands for a fully-connected model with ¶[-sized 8 intermediate layers and FC[0] is a 

simple linear model, while CONV[¶Å, ¶=,… , ¶Z] denotes convolutional ANN with ñ 

convolutional layers containing ¶[ filters. In all cases ReLu activation was applied. For 

the CNNs 3x3 filters were used. ADAM algorithm was used for the parameter 

optimization.  

Effectiveness and robustness of the two model architectures are investigated for 

both static problem and the impact problem. The model architecture selection is made 

based on the model’s efficiency, simplicity (the simplest possible layer and filter 

design) and universality (high model efficiency for all configuration sets). All the 

models have been built using Python libraries Scikit-learn and PyTorch. 



 

 

157 

  

The model efficiency is evaluated using two metrics depending on the problem. 

The R2 metric which is a widespread tool for the regression model efficiency 

assessment is to analyze the ANN models predicting the projectile residual velocity, 

while accuracy metric is utilized for the cases with binary results – the static plate 

problem and prediction of the FEM calculation failure for the impact problem. The R2 

metric is based on the coefficient of determination [174] which shows the model 

advantage over the baseline prediction – the constant which stands for the data average. 

If the dataset is an array of ¶ values {~[}, the model predictions are {÷[} and ~J =
Å

\
∑ ~[

\
[áÅ  is the data average, then the coefficient of determination is evaluated 

according to the following expression: 

R2 = 1 −
∑ (÷[ − ~[)

=\
[áÅ

∑ (~J − ~[)=
\
[áÅ

 (5.3). 

Obviously R2 ranges from −∞ to 1 and R2 = 1 indicates the highest possible 

efficiency of the model, while R2 = 0 corresponds to the baseline prediction. The 

accuracy metric is a ratio of number of correct predictions to total number of 

predictions. The 0.5-0.6 accuracy scores for the problems with balanced binary results 

sets (e.g. left or right; yes or no) are considered as poor since the model is essentially 

guessing. 

The data sets are divided into train and test disjoint subsets. For the majority of 

studied problems, the test section has 1000 problems except for the perforation patterns 

with lowest resolutions (2x5 and 2x12 problems). 

Solution of the static plate deflection problem 

Figure 5.14 contains results on training of the ANN models developed for 

different configuration sets of the static problem. In all the graphs in figure 5.14 the X 

axis is the number of configurations used to train the model and the Y axis is the model 

accuracy metric. The FC[0] model appeared to be the most effective for this particular 

static problem: while being the simplest one, it requires the smallest number of 
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configurations for the model accuracy score to stabilize at the highest levels. Much 

more complicated models with higher numbers of intermediate layers are at most as 

efficient as the linear model requiring more data for training. Moreover, the 

convolutional models appear to be far less effective in this case failing to reach even 

0.6 accuracy score for the higher resolution configuration sets. This probably should 

be expected as the plate deflection is controlled by how holes in the left and right halves 

of the plate are balanced. The convolutional neural network looks for certain local 

patterns which involve neighbor cells ignoring respective hole locations in the left and 

right plate halves. On the contrary, fully connected neural networks account for 

position of each cell and thus are able to analyze how holes and whole cells are 

balanced in the left and right plate halves.  

 

Fig. 5.14. Dependence of the accuracy score of the ANN models built for static test 

problem and different perforation resolutions. 

Efficiency of the selected models applied to the different configuration sets with 

indicated dataset size are provided in table 5.3. 
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              Configuration    

 

 

ANN architecture            

2х5 

 

6x15 

 
 

10х25 14x35 20х50 

FC [] 0,97 0,956 0,91 0,937 0,911 

FC [5] 0,97 0,954 0,919 0,931 0,936 

FC [10] 0,97 0,962 0,902 0,926 0,906 

FC [20] 0,97 0,959 0,897 0,91 0,914 

FC [50] 0,98 0,952 0,903 0,918 0,92 

FC [200] 0,97 0,956 0,906 0,919 0,933 

FC [20, 20] 0,98 0,951 0,91 0,906 0,924 

FC [20, 20, 20] 0,97 0,958 0,909 0,909 0,916 

FC [20, 20, 20, 20] 0,97 0,958 0,908 0,909 0,911 

FC [20, 20, 20, 20, 20] 0,97 0,958 0,892 0,918 0,919 

      

CONV [20, 20] 0,96 0,8 0,653 0,683 0,632 

CONV [20, 20, 20] 0,97 0,858 0,751 0,687 0,502 

CONV [20, 20, 20, 20] 0,97 0,909 0,739 0,754 0,502 

CONV [20, 20, 20, 20, 20] 0,97 0,519 0,5 0,644 0,502 

CONV [20, 20, 20, 20, 20, 20] 0,96 0,519 0,5 0,644 0,502 

CONV [30, 30, 30, 30] 0,97 0,887 0,5 0,764 0,502 

Table 5.3. Accuracy scores of different ANN architectures for the static plate 

deflection problem; the optimal one is highlighted. For all configurations the test data 

subset has 1000 problems except for the 2x5 case with 100 problems in the test 

subset. 

To sum up, the following results were obtained for the static plate deflection 

problem: 
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● The ANN models provide high accuracy predictions as it is probably expected, 

since the observer is able to predict the plate deflection side for lower resolution 

perforation patterns (2x5, 6x15) just looking at the perforation pattern.   

● The simplest fully-connected model appears to be both accurate and easy to build 

and to train while the convolutional models fail to yield any accurate prediction despite 

the fact that the problem formulation is similar to the image processing problems – the 

model is supposed to distinguish the cell configurations.  

Solution of the impact problem 

For the impact problem a number of architectures of the neural networks are 

investigated. Table 5.4 contains information about performance of various 

architectures of the ANN models. In this case two models appear to be preferable in 

terms of accuracy, universality and required amount of train data: a fully-connected 

model with two intermediate layers (FC[20,20]) and a convolutional neural network 

with four layers – CONV[20,20,20,20]. Information on training of these two models 

for the studied configuration sets is shown in figure 5.15.  

 

Fig. 5.15. Efficiency (R2 score) of two types of neural networks depending on the 

dataset size for the impact problem. 
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                      Configuration 

 

 

ANN architecture                                       

2х12 

95 m/s 

4x24 95 

m/s 

8x48 95 

m/s 

4x24 199 

m/s 

FC [] 0,78 0,81 0,78 0,95 

FC [5] 0,97 0,92 0,84 0,98 

FC [10] 0,97 0,95 0,87 0,99 

FC [20] 0,97 0,95 0,88 0,99 

FC [50] 0,98 0,96 0,89 0,99 

FC [200] 0,98 0,96 0,89 0,99 

FC [20, 20] 0,98 0,96 0,91 0,99 

FC [20, 20, 20] 0,99 0,95 0,90 0,99 

FC [20, 20, 20, 20] 0,98 0,95 0,89 0,99 

FC [20, 20, 20, 20, 20] 0,99 0,95 0,89 0,99 

     

CONV [20, 20] 0,97 0,92 0,74 0,98 

CONV [20, 20, 20] 0,99 0,95 0,86 0,98 

CONV [20, 20, 20, 20] 0,99 0,97 0,91 0,98 

CONV [20, 20, 20, 20, 20] 0,99 0,95 0,90 0,98 

CONV [20, 20, 20, 20, 20, 20] 0,98 0,95 0,85 0,99 

CONV [30, 30, 30, 30] 0,98 0,96 0,91 0,99 

Table 5.4. Efficiency (R2 score) of various ANN architectures for different 

configurations of the impact problem. Projectile velocity is indicated for each 

problem. Optimal models are highlighted. For all configurations the test data subset 

has 1000 problems except for the 2x12 case with 500 problems in the test subset. 

Figure 5.16 schematically shows two utilized types of the ANN models, while 

figure 5.17 depicts diagrams with comparison of the ANN predictions with the FEM 

results. The spread of results for the 199 m/s impactor velocity is smaller compared to 
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other cases, since for a higher projectile velocity, the result is mainly determined by 

the number of holes in the contact zone, rather than their exact location – many 

configurations are indistinguishable from the point of view of the ANN, which reduces 

the complexity of the task. 

 

Fig. 5.16. Schematic representation of the two utilized ANN architectures: a) – the 

fully connected ANN (FC[20,20] for the 2x12 impact problem is shown); b) – 

convolutional neural network with four convolutional layers with 20 filters each 

(CONV[20,20,20,20] and a final fully connected layer for categorization.  

 

Fig. 5.17. Accuracy of the ANN models developed for the impact problem, each dot 

indicates one problem from the test configuration set, dashed line indicates 

performance of the non-perforated target.  
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As expected the required data set size increases for problems with higher 

resolution of the perforation patterns and the increase is much more pronounced 

compared to the plate deflection problem. The 8x48 configuration appeared to be rather 

complex, requiring a lot of data to safely surpass the R2=0.9 efficiency level.  

Predictions using the trained ANN models take considerably less time compared 

to the full FEM computation: fractions of a second compared to around 50 seconds (8-

core processor). 

It is known that finite element meshes can be prone to considerable distortion 

when problems with high deformations are solved leading to errors and premature 

calculation stoppages [175-177]. 

General recommendations include reduction of a time step, mesh refinement, 

alternation of the contact parameters, changes of the material rheology [178], rezoning 

techniques [175,179] and simple deletion of heavily distorted elements which leads to 

fracture with no physical motivation. Alternative computational methods can be used 

to manage with highly deformed media such as Material Point Method, Smoothed 

Particle Hydrodynamics [180,181], Peridynamics [182-184] or coupling of different 

methods [185]. 

All the datasets for the impact problem contain configurations that resulted in an 

excessive element deformation causing the solver failure. For the 4x24 configuration 

set and a 95 m/s projectile velocity the solution could not be obtained for 199 

configurations (out of 25000). The problem is much more pronounced for the 199 m/s 

case: 7828 cases of premature computation termination due to error (out of 48000).  

Some of the failed configurations were processed using FEM with a reduced 

time step (from 7.15e-8 s to 5.56e-8 s) leading to a normal termination of the 

computation. These results were used to evaluate efficiency of the ANN models 

applied to the problematic configurations and R2=0.961 score was obtained for the 

4x24 perforation pattern and 199 m/s projectile velocity. These figures indicate that the 
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ANN models are applicable to configurations which are hard to process using the 

developed FEM scheme without tuning and adjustments.  

An example of a problematic 4x24 configuration stroke at a 199 m/s velocity is 

shown in figure 10a and figure 10b depicts a zone with inconsistent mesh behavior 

leading to an abrupt computation termination. This particular configuration could not 

be fixed by the time-step reduction and the ANN yields 151.2 m/s prediction for the 

residual projectile velocity. 

 

Fig. 5.18. An example of a 4x24 configuration causing the computation failure and a 

zone with extensive element deformation (b). 

The conducted studies have shown that the artificial neural networks were found 

to be a powerful tool for reduction of computational costs for the particular problem of 

impact of perforated plates. The networks were trained using a preliminarily obtained 

set of FEM results and the number of required data is dependent on the perforation 

pattern resolution. On the one hand considerable computation resources are needed in 

order to obtain the dataset (for example, more than 100 000 problems should be solved 

for the 8x48 impact problem), on the other hand after the dataset has been obtained the 

solution of each next problem can be obtained instantly with high accuracy. Moreover, 

each next computation run does not require any FEM software which is often costly 

and requires licenses. Besides this the dataset generation is a completely automated 

procedure which is also beneficial for reduction of the development costs. This way, if 

the total number of problems to be solved exceeds the needed dataset size, the ANN 

based approach is worth considering. Such an approach might be useful for prototyping 
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when general trends of the designed structure are of interest and many construction 

variants should be tested to obtain the desirable performance. Another possible use 

case is simultaneous solution of multiple problems, e.g. web-based CAD/CAE 

applications. It should be noted that realistic engineering problems would involve a 

complicated set of parameters to be varied which describe shape of the object, material 

properties and loading conditions or even a mixture of these parameters and each case 

should be studied separately. As it has been found even similar problems might require 

different architectures of the neural networks: while the convolutional neural network 

appeared to be successful for the impact problem, it was found to be inapplicable for 

the plate deflection problem due to purely mechanical reasons. 

In addition to reduction of computational time and costs the developed approach 

can be used to overcome some known computational difficulties of FEM (or actually 

any other numerical method) applied to impact problems such as contact instabilities 

or inconsistent mesh behavior due to high strains. In the studied case some of the 

perforation patterns led to FEM failure however the information obtained from the rest 

of the dataset helped the neural network to predict the solution for the problematic 

cases too. The problematic configurations were found not to exhibit any specific 

features which could be distinguished by the neural network and thus they did not form 

a standalone subclass inside the dataset from the viewpoint of the neural network. This 

means that the developed ANN could be used to predict results for the problematic 

cases as they share features with the rest of the dataset. Consider a case when the 

computation fails for a particular combination of parameters /# (expression (5.2)) that 

characterize the problem (e.g. material model parameters or sample fixation and 

loading method or both, etc.) This problem can be potentially resolved using neural 

network model trained on a dataset consisting of problems with slightly altered /# 

parameters (if alternation of /# leads to successful FEM computations, of course). 

Inapplicability of the developed ANN model to prediction of FEM failure or success 

can be regarded as an indication that the ANN efficiency for the problematic 

configurations is comparable to the normal cases, since the problematic configurations 
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do not form a subclass within the main dataset sharing features with the rest of the data 

and are not distinguished by the ANN model. It is worth noticing that high velocity of 

the projectile is a common cause of the FEM solution failure and the above described 

ANN based approach should not be expected to be very successful for the case. If the 

projectile velocity is included into the parameter array /# and for all the projectile 

velocities higher than some critical value FEM fails, the problematic configurations 

clearly form a separate class. Thus, the train data would lack information about features 

of the problematic configurations which can possibly reduce the ANN model efficiency 

or make it completely inapplicable. This approach can be considered as deserving 

attention since such methodology can be possibly introduced in FEM routines to 

provide better user experience.  

5.3 Chapter 5 conclusions 

The work contains experimental and numerical results on impact of PMMA 

plates with various thicknesses using a steel projectile. Dependence between initial 

impactor velocity Ë[ and the residual impactor velocity Ë_  was experimentally assessed 

using a gas gun and a high-speed photography setup. In addition to this, the ballistic 

limit for all three sample types was obtained. The experimental data was used to test 

and validate a numerical approach, which uses the finite element method and the 

incubation time fracture model for the material failure predictions. The applied scheme 

is rather simple and involves a limited number of the material parameters. All of the 

parameters are either standard material data or can be evaluated from the experiments 

on the PMMA described in the literature (e.g. the incubation time value).  

The simulation results appear to be promising: both ballistic limits for the 

particular targets and the projectile and the Ë_ − Ë[ function can be predicted using 

relatively simple numerical scheme. This way the developed numerical approach can 

be applied to predict the impact fracture in other cases: for other brittle materials (e.g. 

ceramics) and other specimen configurations. For example, numerical estimates for the 
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ballistic limit and for the Ë_ − Ë[ dependence of the 5 mm thick PMMA plate are 

presented in the work. 

The second paragraph of Chapter 5 is devoted to an attempt to partially solve the 

fundamental difficulties encountered when dynamic fracture due to impact is 

simulated. The impact problem involving obstacles with a discrete structure – plates 

with perforation - was chosen as a model problem. The essence of the approach is to 

solve an array of similar problems (in this case, problems with different perforation 

schemes) and then to train an artificial neural network on the resulting array. The 

trained ANN is able to instantly predict the solution for a problem with a new 

perforation scheme, as well as process problems for which the use of direct calculation 

using FEM is difficult. 

More information can be found in [109,118] 
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Conclusions 

• The work investigates discrete features of the dynamic fracture processes, and 

offers discrete models for the analysis of this phenomenon. In particular, an analogy 

between the processes of fracture at the start of a crack under conditions of pulse 

loading and fracture in the "mass-on-a-spring" system has been discovered. This 

analogy is based on the incubation time fracture criterion applied to the problem of 

crack initiation due to pulse loading. The analogy allows one to interpret the dynamic 

fracture processes as "inertial" processes and, thus, provides a natural and simple 

explanation of the key fracture effects, for example, the fracture delay effect. A simple 

engineering approach to fracture under dynamic loads initiation has been also 

proposed. The model is based on the linear oscillator failure. As shown in the study, 

the inertia of this system provides possibility to observe the key effects of the dynamic 

fracture of materials – the dependence of the strength of the system on the loading rate 

and the fracture delay when short pulse loads are applied. This model was shown to be 

applicable for prediction of fracture taking place in structural materials subjected to 

rapidly growing and short loads. 

• The results obtained in the work and the developed model emphasize the 

importance of the incubation characteristics of the dynamic fracture process and allow 

us to build parallels between the failure of the "mass-on-a-spring" system and the 

incubation time fracture criterion. Both models imply the existence of characteristic 

times of dynamic fracture processes and, thus, allow one to set the time scale to be used 

when these processes are studied. 

• The incubation time fracture model is based on the space and time discretization 

of the dynamic fracture process. According to this approach, a minimum size of the 

fracture zone is introduced, which allows one to set the scale level of the analysis. In 

addition to this the incubation time – a characteristic relaxation time of fracture is 

introduced as a material parameter. The incubation time approach, which assumes, in 
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particular, the discrete nature of the crack propagation, was introduced into the finite 

element method, and provided possibility to numerically investigate a number of 

effects accompanying the crack movement. Thus, it has been shown that the 

discretization of the crack propagation process makes it possible to obtain 

experimentally observed crack velocity oscillations. Moreover, the developed 

numerical approach helped to resolve the question of the uniqueness of the stress 

intensity factor – crack velocity dependence: for intense loading and high crack 

velocities, there is a strong variation in the SIF values, which prohibits a single curve 

construction and thus classic theory applicability is questioned. At slow loads and 

relatively low crack velocities, the SIF variation is small and the approximation yields 

the SIF-crack velocity curve. Moreover, the approaches developed for modeling of 

straight cracks have been redesigned to analyze cracks propagating in an arbitrary 

direction. This modification of the numerical scheme made it possible to study the 

fragmentation of brittle bodies under shock loading and to obtain experimentally 

observed characteristics of the fragmentation process, for example, the size distribution 

of fragments. 

• The transition from continuous models to discrete systems, which in many ways 

more realistically describe structural materials, provide possibility to explore new 

effects, which cannot be predicted within the framework of continuum mechanics 

based on traditional approaches. The chains of linear oscillators were used to 

demonstrate that a relaxation wave resulting from initial fracture and travelling through 

the system may cause secondary fracture. Such effect cannot be found in an elastic rod. 

However, according to the conducted numerical calculations, this effect can be 

possibly observed in specially designed samples with a discrete periodic structure. 

Thus, the study of a discrete model – a chain of linear oscillators – made it possible to 

detect an effect that can be implemented in real structures and which should be 

considered in the engineering practice. 

• The work proposes new numerical methods applicable to the design of structures 

and the analysis of their strength under shock loading conditions. The developed 
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numerical schemes are based on the finite element method and the incubation time 

fracture model. Commercial computer software packages serve as the basis for the 

developed numerical schemes, which can help to introduce the presented approaches 

into the engineering practice. The performance of the numerical scheme is 

demonstrated using the impact problem – experimental dependences of the residual 

velocity of the projectile from its initial velocity have been numerically constructed, 

and threshold values of the projectile velocity for the obstacles of different thickness 

have been determined. 

• The application of the developed numerical approach to the impact experiments 

modelling has fully revealed difficulties which are often encountered in course of the 

dynamic fracture modelling. Such problems are often very resource demanding and 

take long time to solve even using powerful computers. In addition to this, in problems 

with high strain rates and high stress values (the impact problems represent well this 

category of problems), computational difficulties are often observed due to excessive 

distortion of elements and unstable operation of contact algorithms. The study proposes 

an approach that partially solves these difficulties. The approach is based on artificial 

neural networks (ANNs). The ANNs are trained on an array of solutions to a family of 

problems and predict the solution of a new representative of this family. In this case, 

the solution can also be predicted for the problems which are hard to solve using a 

complete calculation due to computational difficulties. 

• The successful application of the developed approach was demonstrated using 

an example of the impact problem: the barriers with a discrete structure (perforated 

plates) were hit by projectiles. Each problem was described by a set of discrete 

parameters characterizing the perforation pattern. Correlation between the perforation 

pattern and the plate strength was investigated. The developed ANN which was trained 

on an array of results for various perforation patterns has been shown to be able to 

predict the result for new perforation schemes. Moreover, one can obtain the result for 

configurations which are hard to process using the finite method due to computational 

instabilities. Different values can be used as parameters describing a specific problem 
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– material properties, sample geometry, loading parameters, and many others. In the 

considered case, the problem is described by a perforation scheme, which greatly 

simplifies the application of the proposed approach and makes it possible to solve the 

considered model problem. The proposed approach looks promising for practical 

purposes, especially for obtaining approximate solutions in computationally complex 

cases. 

The study used a wide range of methods to solve the formulated problems – from 

analytical solutions of differential equations to numerical methods and experimental 

studies. The results obtained in this work can be useful from the theoretical point of 

view – as a foundation for further research, however, the practical value of the 

developed approaches is also obvious. For example, the effect of fracture in periodic 

structures in course of unloading requires experimental confirmation and can be used 

to load materials with short pulses. Linear oscillator-based fracture models demonstrate 

the fundamental nature of the key effects of the dynamic fracture and provide simple 

tool for the fracture analysis. The developed numerical schemes and approaches can 

be used to analyze strength of the designed structures. 
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