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Introduction 
 

“Yeah, bye,” said Harry and instead of turning right, he turned  

 left, taking a longer but safer route up to the Owlery.  
                                                                         J.K. Rowling, «Harry Potter and the Order of the Phoenix» 

 

    In this work, a software package has been created that allows one to construct safer 

routes for vehicles. The need to create such a software package arises from the fact that 

traffic accidents lead to immense human mortality and injuries. According to data from 

the WHO (World Health Organization) [https://ww.who.int/news-room/fact-

sheets/detail/road-traffic-injuries] about 1.3 million people worldwide die annually in 

traffic collisions and about 50 million are injured to various degrees of severity.  

     Therefore, the task of reducing the number of road traffic accidents (RTAs) and, 

consequently, of reducing the number of deaths and injuries in road traffic accidents 

seems very important and consequential. This is also evidenced by the numerous works 

on the subject (see Chapter 1, devoted to the literature review). Here, in the Introduction, 

I will consider the most obvious approaches to solving this problem, applied in this work. 

The first task that comes to mind is to collect data on Traffic Accidents (TA) for several 

years (coordinates, severity, etc.), select clusters (i.e. places of substantially increased 

concentration of TA) from these data — and then bypass these clusters when building a 

safer route. 

      To move further, it is necessary to understand in general terms how vehicular routing 

is designed. Although in reality there are road segments and intersections, however all 

sorts of navigators use another, more abstract representation of roads in the city — a road 

network consisting of edges and vertices, and called a graph [1]. Edges replace road 

segments, and vertices indicate the transition from one segment to another (as a result, 

for example, of a change of direction). Vertexes are also present at road intersections, 

where the vertex marks the place where several road segments meet. 
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The road network is a directed graph, since many edges allow vehicles to pass only in 

one direction. There are also bidirectional edges in the road network, along which it is 

feasible to move in both directions. 

     Now let each edge of the road graph have an attribute, for example, the length of the 

edge. If one also knows the starting and ending vertices of the route, then one of the 

routing algorithms on the road graph (for example, Dijkstra's algorithm [2] is able to build 

a route of minimal length from the initial vertex to the final one. This route may turn out 

to be the fastest, but the routing algorithm does not take into account its security in any 

way. If one takes as an attribute of the edge the number of accidents that occurred on the 

corresponding segment of the road, calculated over several previous years, then such a 

route, although it will be the safest, since it minimizes the number of accidents along the 

route, is unlikely to be the shortest1. Obviously, an approach is needed that would make 

it possible to build a compromise route — safer, and at the same time not very long 

(compared to the minimum length route). Chapter 1 examines various approaches to 

achieving this goal, but here in the Introduction I will discuss our original approach to 

this problem. 

     The essence of this approach is to identify TA hotspots (TAHS) on the traffic route 

and then bypass them. I define TAHS as a compact area with an increased concentration 

of traffic accidents. Such an area can be a cluster detected by one of the numerous 

clustering algorithms [3] or a whole road segment with an increased number of TAs. 

 

Approaches to clustering 

 

     In this Thesis, the well-known DBSCAN algorithm [4] is used for clustering, since it 

detects compact (with a given maximum distance between points) clusters of any shape. 

The resulting clusters will have a different size (the number of TAs in the cluster) from 

the specified minimum to the maximum determined by the data itself. Obviously, not all 

 
1 Estimates show that the length of the route calculated in this way will be 2-3 times longer than the minimum, which is 
hardly practical. 
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the clusters obtained need to be taken into account, since some of them will be just random 

noise, and if one had a second sample of accidents, clustering would show that only a part 

of the clusters is stably located in the same places, while the rest change their position. 

     In order to eliminate cluster noise, statistical tests and verification of statistical 

hypotheses are used in this Thesis. In other words, clusters obtained from real TA data 

are compared with clusters obtained using the same number of points evenly distributed 

over the road network. Having generated several hundred sets of uniformly distributed 

points, with the number of points in each set equal to the number of real accidents, and 

having carried out clustering for each such set, I will receive material for testing statistical 

hypotheses and will be able to identify "statistically significant" clusters [5]). 

 

Using Statistically Significant TA Clusters 

 
      The resulting clusters can be easily interpreted due to the fact that when obtaining 

them, the maximum distance between accidents is set to 10 meters. Due to such a short 

distance, clusters very often look like "clots" of TAs located at crossroads, road 

intersections, where vehicles move from one line to another, etc. These locations require 

investigation and taking administrative measures (lowering the speed, increasing the 

transit time, etc.) designed to reduce the number of TAs there. 

It is also possible to improve road safety by simply bypassing the selected clusters of 

accidents. If, for example, the road graph is modified in such a way that the edges (road 

segments) leading to the cluster receive an additional length (penalty)2, the routing 

algorithm will take this into account and, if possible, bypass the cluster. For details on 

finding a route that bypasses the accident clusters, see Chapter 3. 

 

 

 

 
2 The penalty can also be practically infinite (a very large number). Then it will become prohibitive and the algorithm for 
finding the route will be forced to avoid such edges. 
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Road segments as TAHS 

 

     Cluster avoidance, as I have outlined, is about bypassing the designated road segments. 

Where does the question come from: is it possible to highlight «dangerous» road 

segments without any clusters? The answer is almost obvious: select those edges of the 

road graph (e.g. road segments) where the number of accidents exceeds a certain 

threshold defined by statistical tests, mark these edges as «dangerous», i.e. add an 

additional length (penalty) which will be considered by the routing algorithm when laying 

the route from the starting point to the end point. Note that this approach seems more 

natural, since the road graph itself is modified without involving additional objects (TA 

clusters). Clustering is also associated with a lot of manual work: it is necessary to 

consider each cluster and mark the edges of the road graph leading to it. Automation of 

this task is very cumbersome. See Chapters 4 and 5 for details of the route design that 

bypasses «dangerous» road segments. 

 

Routing efficiency evaluation 

 
     Once the route is laid on the modified graph, the next problem arises: how to evaluate 

the effectiveness of the new routing, how much does it make traffic safer? To do this, 

firstly, I need to somehow create a set of routes covering the entire road graph, and, 

secondly, to use the average efficiency of the new routing. 

In this Thesis, a computer simulation of all possible routes is constructed by overlaying a 

square grid on the entire road graph network. Then all points of the grid, except for 

identical ones, serve as target starting and ending points for routes. Actual starting and 

ending points of the route are the ones that are most proximal to the grid points and lie on 
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the road network (nodes). Thus, I get a set of routes of the type "the node closest to the 

initial point of the grid" - "the node closest to the final point of the grid".  

Now for each pair of nodes let's calculate the relative risk ratio of accidents (RRR) as the 

ratio of the number of accidents along the modified route to the number of accidents along 

the original route (i.e. obtained on the original, unmodified graph). If the average of all 

such ratios is significantly less than 1, then I can say that the routes calculated on the 

modified graph are on average safer than the routes obtained on the original graph. It 

makes sense to average the RRR only for certain binned lengths of the unmodified route, 

which will make the picture more accurate and precise. 

 

Theoretical and practical significance 

 

     The theoretical significance of the work consists in the creation of a new method of 

transport routing based on bypassing of the TAHS on the road, determined by statistical 

methods on road traffic accidents. 

      The practical significance of the work is apparent, and is that the routing methods 

described should lead to a reduction in the number of accidents and hence in the number 

of injuries and deaths. Bypassing of the TAHS can be particularly useful for those who 

have increased exposure to roads (taxi drivers) or drivers who are in other risk groups 

(the elderly, people with reduced reaction, etc.). The author has created a package of 

programs in Python that enables one to modify the road graph of any city in such a way 

that the route drawn on such a graph will be safer on average than the original route3.   

     In addition, administrative measures (reduced speed, increased travel time, etc.) to 

reduce the number of accidents can be applied to the TAHS identified. 

 

 
3 The program package treats road edges as obstacles and is described in detail in Chapter 6. The program texts are given in 
Appendices 1-10. 
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Research methodology and methods 

 

     Various statistical methods are widely used in the Thesis: calculation of elementary 

statistics, getting confidence intervals by bootstrap method, clustering, random sampling 

method (Monte Carlo). The geographic information system (GIS) QGIS 3 is widely used 

to evaluate the results of the work and to visualize the road network. 

 

Scientific specialty 

 

The subject and content of this work fully corresponds to the passport of the scientific 

specialty 2.3.5. "Mathematical and software support of computer systems, complexes and 

computer networks", point 4 (Intelligent systems of machine learning, database and 

knowledge management, toolkits for development of digital products). 
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Main scientific results 

 

1. The relative risk ratio of accidents (RRR) is used as an indicator of the effectiveness 

of routing, equal to the average ratio of the number of accidents along the altered 

(taking into account obstacles on the roads) route to the number of accidents along 

the unaltered (not taking into account obstacles) route ([57], p. 8 par. 6). 

2. Statistically significant clusters of accidents are used as obstacles in the 

construction of an alternative (safer) route ([48], p. 47 par. 6, [57], p. 8 par. 7). 

3. Separate road segments (edges of the road graph) containing the number of 

accidents statistically exceeding the number of accidents obtained from the 

assumption of the uniformity of the distribution of accidents on the road network 

are used as obstacles ([58] p. 103 par. 2, p. 104 par. 6, [61] p. 30 par 1, p. 32 par. 

2). 

4. To design a safer route, each obstacle is subject to a penalty, i.e. a fixed number is 

added to the attribute of the length of the corresponding edge. By calculations, the 

optimal value of the penalty is determined, which ensures a minimum risk of a TA 

with a minimum increase in the length of the route and the number of traversable 

vertices of the road graph (([58], p. 103 par. 2, [61], p. 32 par. 3). 

All articles on the subject of the thesis were written in co-authorship with Dr. A.N. 

Terekhov. A.N. Terekhov carried out the general supervision of the work, the author of 

the dissertation proposed to use the average relative risk (RRR) of accidents and the 

corresponding confidence intervals as an indicator of the safety of the route, and the 

penalty length added to the appropriate attribute of the road graph edge (= road segment) 

as a means to reach a compromise between the route length and its safety profile. The 

author also performed all calculations using the Python language and graph libraries: 

OSmnx [6] and NetworkX [7]. 
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Main points to be defended 

 
1. Statistically significant clusters with severe traffic accidents have been 

shown to exist in recent datasets from villages (Newton, Springfield) to an 

entire State (e.g. Massachusetts) applying DBSCAN algorithm to real data 

and comparing to results of applying DBSCAN to simulated data based on 

uniform distribution of severe traffic accidents along pertinent network of 

roads. 

2. Severe traffic accident clusters in Massachusetts have been shown to repeat 

from year to year at a rate of ~30%, thus suggesting that they are related to 

the specific location and road conditions in that vicinity. These stable and 

statistically significant clusters, with compact radius of ~20 meters, are 

identified as road areas that should be fixed first by municipal authorities. 

3. In Moscow, by comparing the number of actual accidents with the number 

expected according to a uniform distribution over the entire road network 

(using Monte Carlo simulation), road segments with a statistically significant 

high number of accidents were found. 

4. Optimal value of penalty at 2000 meters has been established for Moscow, 

that results in substantial risk reduction of 9-31%, while increasing route 

length by 6-11%. 

5. The algorithm developed for Moscow (items 3-4) was tested on the road 

network of St. Petersburg. The penalty of 1000m should be considered 

optimum for St. Petersburg, leading to smaller increase in the length of a route 

in comparison with the penalty of 2000m, while the relative risk in this case 

practically does not change (the average length of a route increases by 8.0-

10.0% for 1000m (in comparison with 8.8-14.8% for 2000m). The average 

relative risk appears to be in the range of 14.5 - 36% (1000m) compared to the 
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range of 13.9 - 36% for the 2000m penalty. 

 

6. The routing algorithm developed for Moscow [58] is stable, that is, it can be 

applied to the road network of other cities with minimal changes (except for 

choosing the optimal penalty). 

 

     The approach applied to Moscow and St. Petersburg is planned to be combined in the 

future with real-time data (traffic jam data) to find alternative and safer routes. 
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Chapter 1. Review of Literature 

 

     Invented in the late 50s, the Dijkstra algorithm [2], the Bellman-Ford algorithm: [8], 

[9], as well as the algorithm A* [21], which appeared in 1968, allow to construct an 

optimal, in some sense, route on a weighted oriented graph G(V, E), where V is the set 

of vertices of the graph, and E is the set of its edges. Originally such simple properties as 

length or travel time were considered as weights of edges, the minimal sum of which is 

obtained in the process of construction of a route. This seemed to make these algorithms 

ideal at designing transport routes between two given graph vertices (two points chosen 

on a map). However, it soon became clear that in reality these simple properties need to 

be adjusted. 

     So, for example, in real conditions there are traffic jams that make building a route of 

minimum length meaningless. This means that it is necessary to somehow detect traffic 

jams in real time and adjust the weights of the corresponding edges of the road graph (for 

example, to make a traffic jam completely impassable by increasing the length of the 

corresponding edge of the road graph to infinity) - and then the routing algorithm will 

have to seek another route, in one way or another, free of traffic jams. 

     With the advent of smartphones and the widely available Internet access, this has 

become a realistic task. It is enough to install on a smartphone the appropriate application, 

which transmits the coordinates of the vehicle to the server so that the appropriate 

algorithms determine the location of the vehicle (the appropriate edge of the road graph) 

and vehicle speed, which makes it possible to identify the coordinates and the severity of 

traffic jams. Examples of such applications include Yandex, Waze and Google Maps. 

Of course, the application installed on the smartphone is able to determine not only the 

coordinates of the vehicle, but also other features of its behavior (how often the driver 

slows down — accelerates, switches from one line to another, etc.) Therefore, there are 

systems that try to take into account not only traffic jams, but also the probability of 
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accidents within the road segment, other road features, and the behavior and preferences 

of the driver specified by himself in the mobile app. For example, the work [22] uses a 

weighted sum of the length of the road, the average time of its passage and the number of 

accidents registered on it during the year, and in [18] when determining the final route 

some segments of the road are excluded from the road network based on the analysis of 

driver behavior and preferences. For the remaining segments, the routing algorithm 

determines the final route, using a combination of the road segment quality indicator (road 

health), the average travel time and driver preferences as an edge attribute. This approach, 

in principle, can improve driving safety along with finding a route that is passed in the 

minimum time. A similar approach to [18] can be found in [23], but in the latter work the 

driver's behavior is determined by exchanging data between vehicles. 

     Another, perhaps somewhat unexpected, example of routing is related to the 

transportation of various dangerous goods. Safety becomes the priority of the route from 

the starting point to the destination, because an accident during the transportation of a 

poisonous or explosive substance can lead to an environmental disaster and immense 

human casualties. In contrast to the previous example, in the task of routing dangerous 

goods the priority becomes not the time of the route, but its safety. Often the problem can 

be solved using already accumulated data, and the solution itself will depend on two key 

factors - the probability of an accident on each of the road segments and the population 

density around each segment [10]. Consideration of the population density where each 

road segment is located will obviously depend on the nature of the cargo, its ability to 

affect larger or smaller areas in the event of an accident. Real-time weather data (e.g., 

wind speed) may also be required. A more detailed overview of the problem can be found 

in [11], [12], [15] 

      The third example of routing is related to the safety of the pedestrian route. A safety 

problem may arise when there are, for example, HRA associated with criminal activity 

[13]. The task of routing in this case is to bypass dangerous areas with increased criminal 

activity. As usual, the routing algorithm must know the "danger" value for each road 

section. To get this value from individual points - the coordinates of various crimes 

committed in the city - one can use the standard KDE (Kernel Density Estimation) 
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technique [14], which allows us to find the risk value for any point in the city. In some 

works, such as [28], Bayes' theorem is used to determine the probability of a crime for a 

given place and time (see [30], [31]). 

     Since this kind of routing is done mainly for pedestrians, one encounters a new and 

important problem here: too high a price to pay for safety. The route that minimizes the 

risk may be too long, so one has to find a compromise, either by complicating the 

expression for the edge attribute for the routing algorithm (including the combination of 

the risk itself and the length of the road segment), or by obtaining several most appropriate 

routes and choosing from them a compromise: both safer and not very long. 

In addition to a "safe" route with minimal criminal activity, a pedestrian may also seek to 

choose a route with maximum illumination, a sufficient number of landmarks, a minimum 

number of turns and maximum wide sidewalks [19]. 

     Interestingly, for bicycle walking routes, unlike walking routes, the travel time from 

the starting point to the destination may not play a great role, so in [19] to find the optimal 

route, such properties of the road segment as slope, road type, its width, the presence of 

road signs and lighting are used. The work also applies an original algorithm for finding 

the optimal route based on dynamic programming (see, for example, [32]) for dynamic 

programming). 

     Let us move, finally, to the understanding of safety, adopted in this paper. It consists 

in the fact that it is necessary to construct such a route, along which the risk of getting 

into a severe traffic accident, that causes human damages (injuries or death), will be less 

than on the original route (with the same starting and ending points) that minimizes route 

length or travel time. For this purpose, the approach used in relevant literature is typically 

to alter attributes of edges, combining length of an edge or time of passage and (in one 

form or another) - risk of an TA4. 

     For example, in [17] the weighted sum of the length of the edge and the estimate of 

the risk of accidents within this edge is used as an attribute of the edge. Note that the 

estimates of the risk of accidents in this work are purely subjective and are reported by 

 
4 This is due to the fact that building a route that minimizes only the risk of an accident will, according to our estimates, 
lead to a too long route, exceeding the original 2-3 times. 
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students, who indicate dangerous points in the campus road network in terms of accidents, 

along with an estimate of the risk of accidents. This approach to identifying dangerous 

places on the road network can be extended to a large city, for example, as part of the 

OpenStreetMap project [33]. 

     Another idea of building a high-security route is related to obtaining several alternative 

routes and choosing among them a route of acceptable length. For example, in [16], a 

modification of the standard Dijkstra routing algorithm is used, which utilizes as an 

attribute of the edge the number of accidents that occurred in each segment of the road, 

and additional normalized indicators that take into account the weather, time of day, age 

of the driver, etc. Modification of the algorithm allows you to get several route options, 

and then select routes with a compromise combination of risk and length. 

     Additional to the number of previously recorded TAs indicators (current properties of 

the road segment, weather, drivers' behavior) are also used in [24], [25]. 

Several alternative routes are also considered in [20], which is interesting because it 

attempts to predict the probability of an accident for elderly drivers and cyclists using 

traffic properties (speed and density of flow, driver reaction time), as well as the length 

of the road segment and the coefficient of friction of tires and the road surface. 

An attempt to predict the probability of accidents while driving along a given route is also 

made in [26]. To predict the probability of accidents, the volume of traffic, road 

characteristics and current weather conditions are used. The traffic volume (for those road 

segments where no traffic data are recorded) is obtained as a result of interpolation - 

determining the traffic for a given time by the nearest road segments for which this value 

is known. The probability of an accident for a given segment is determined using a trained 

binary classifier (see [34]), and the probability along the entire route is calculated as the 

result of a series of Bernoulli tests. If the obtained probability is used as an edge attribute, 

the routing algorithm will determine a route for which the probability of an accident is on 

average half as much (compared to the standard route, which takes the minimum time) 

and 1.7 times as long. 
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     The paper then uses a combined edge attribute for routing that contains a weighted 

sum of travel time and TA probability to find an acceptable compromise between the 

length of the route and its safety. 

     The probability of an TA for each road segment is also proposed in [27], but with a 

completely different mathematical apparatus - Bayesian networks [35], using a 

combination of static (road type, map) and dynamic (weather, lighting, vehicle density, 

information about changing road lanes, vehicle speed, etc.) data, which  are offered by 

the vehicle itself, and from the sensors located along the road. 
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Chapter 2. Identifying TA hotspots on Massachusetts roads in 2013-

2018 

 

Introduction 

 

     The purpose of this chapter is to find compact stable TA hotspots (TAHS) on roads, 

i.e., locations with a statistically significant increased density of severe traffic accidents 

(TA) that do not change their position over several consecutive years. 

The danger of such hotspots is caused either by the road structure (places of intersection 

of roads, entry/exit to the highway), or by other factors (quality of road surfaces, poor 

visibility, etc.). All these factors can be adjusted to a certain extent by municipal or state 

authorities, moreover, these dangerous sections can be excluded from the routes of 

commercial and private transport. 

     Detection of dangerous areas on the earth's surface is an important step in the study of 

phenomena of various natures. For example, locations with higher crime densities 

identify the most dangerous areas as a prime target for police and other organizations 

whose activities are aimed at reducing crime [36], [37]. 

     There are several methods of dangerous area detection: KDE (Kernel Density 

Estimates) [2, 4, 14], Moran I-statistics [39], Getis-Ord Gi* statistics [41], and various 

clustering algorithms. KDE uses various kernel functions to convert points on a surface 

(e.g., crime scenes) into some smooth function in an attempt to reconstruct the density 

distribution of these points. KDE identifies hazardous locations in the plane, but cannot 

estimate their statistical significance. Moran's I and Getis-Ord Gi* statistics identify 

statistically significant areas (clusters). According to their nature, it is not easy to use 

KDE, getis-ord GI* or Moran's statistics to detect dangerous areas of a given size. In 

addition, the Getis-Ord Gi* and Moran's I statistics work only in the 2d case [37], but the 
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road network is essentially a one-dimensional object with different distance 

representations. Note that KDE can in principle be applied to the clustering of traffic 

accidents belonging to the road network, using special, rather complex kernels developed 

in [40]. However, this method requires much more time-consuming calculations, and the 

results are not so easy to interpret, and the shape of clusters in the case of application of 

KDE will be determined by the kernel used, while in the case of application of clustering 

methods, the shape of clusters can be arbitrary.  

     As for the clustering algorithms, such as DBSCAN [4], they can be easily adapted to 

search for clusters of traffic accidents belonging to a road network by specifying the 

corresponding distance matrix, which can be computed using, for example, the SANET 

package [47]. In addition, the DBSCAN algorithm, as shown in Section 2.2.1, can easily 

be configured to detect clusters with a given maximum distance between points. 

     There is another difficulty in detecting dangerous areas belonging to a road network: 

the lack of appropriate statistics. Getis-Ord Gi* and Moran's I statistics, as already 

mentioned, work only in the 2d case [37]; for clustering methods such statistics are very 

rare. So, computer simulations (Monte Carlo method) [5] are used to statistically justify 

the obtained clusters in this paper. The SANET package allows one to rapidly generate 

millions of points uniformly distributed over the road network. Thus, the plan of this 

chapter is to perform a cluster analysis on selected TA using distances over the road 

network, and then use the same network and the same number of evenly distributed points 

as in the real data to perform computational simulations at least several hundred times to 

obtain cluster size statistics. Then, I compare the size distributions for the real and 

simulated TA clusters. As a result, statistically valid clusters are identified. 

 

2.1 Input Data 

 

     This Chapter uses road networks provided by the Massachusetts Department of 

Transportation [10] in Esri shapefile format, which is very easy to visualize using GIS 
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applications such as QGIS [44] и OpenJUMP [45]. MassDOT portal data [46] on 

Massachusetts traffic accidents from 2013-2018 in “.csv” spreadsheet format, which can 

be easily converted to other formats, such as the same Esri shapefile, was also used. 

As usual, the resulting data must be preprocessed. The isolated road network fragments 

(if any) must be connected to the main network. Disconnected Islands plug-in and QGIS 

editing tools were used to connect the fragments to the main network. In files containing 

information about TAs, one needs to leave only those records where the coordinates of 

the accident are present (approximately 96% of all records). Since I obtained the accident 

data and the files where the road network is stored from different sources, the individual 

accidents do not belong exactly to the elements of the network. Meanwhile, for some 

types of analysis, it is important that the accident and the road network be a single entity. 

Therefore, TA points were projected onto the elements of the network, for which I used 

the plugin QGIS NNJoin, which creates an additional layer in QGIS. This additional layer 

contains original coordinates of the accident location, and there is an additional attribute 

that stores the start and end coordinates of the endpoints of a line segment that is nearest 

to the accident location and belongs to the road network. These coordinates allows one to 

project the point of the accident on the corresponding line of the road network using a 

simple Python script: 
 

def dropPoint2Line (point, line): 

    #point (x,y) 

    #line  (point1,point2) 

    x0 = point[0] 

    y0 = point[1] 

 

    x2 = line[0][0] 

    y2 = line[0][1] 

    x3 = line[1][0] 

    y3 = line[1][1] 

     

    m = x3 - x2 

    p = y3 - y2 

    t = (m * x0 + p * y0 - m * x2 - p * y2)/(m**2 + p**2)  

    x1 = m * t + x2 

    y1 = p * t + y2 

    return (x1,y1) 
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2.2 Research methods 

 

2.2.1 DBSCAN 

 
 

     As a clustering algorithm, I chose DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) — a heuristic algorithm that finds clusters of the same minimum 

density (the letters DB in the name of the algorithm mean Density-Based) and has 

arbitrary shape. At the same time, the number of clusters is determined automatically. 

Each point after the algorithm operation turns out to either belong to some cluster or be 

classified as an outlier - a point that does not belong to any cluster. Another advantage of 

DBSCAN is also that this algorithm, implemented in the sklearn library, works very 

rapidly, which is important for processing large amounts of data and conducting statistical 

tests when the algorithm must be run hundreds of times. 

     DBSCAN uses a matrix of distances between points or the coordinates themselves (in 

the case of Euclidean distances), as well as two parameters: “eps” (distance) and 

“min_samples” (positive integers starting at 1). The algorithm first selects the main points 

— those in the eps neighborhood that contain at least “min_samples” of other points. The 

first main point allocated by the algorithm becomes the "seed" of the cluster. Let's denote 

it Q1-0. All points reachable from Q1 are assigned to the cluster. These can be points that 

are directly reachable, that is, located in the “eps” neighborhood of Q1-0, or points for 

which there is a path Q1-0 -> Q1-1 -> Q1-2 ..., and Q1-1 is in the “eps” neighborhood of 

Q1-0, and the point Q1-2 – in “eps”-neighborhood Q1-1. Note that all points of such a 

path, except the last one, must be the main ones. The cluster can include both main points 

and ordinary ones, for which there is a path from Q1-0, but which do not contain 

“min_samples” in their “eps” neighborhood. 

     When the cluster is formed, the algorithm will try to find the main point that does not 

belong to the already allocated cluster and form a new cluster around it. The algorithm 
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will terminate when it cannot find the main point that does not belong to the already 

allocated clusters. 

 

2.2.2 Matrix of intra-network distances (scale 20m) 

 

     

 
Figure 2-1. Severe Traffic Accidents (Newton MA, 2013) 

 

Having prepared the data, I will try to detect High Risk Areas (HRA) in the city of 

Newton, Massachusetts, using data on severe accidents in 2013 (a total of 369 cases). In 

our first clustering attempt, I will use the network distance matrix computed using the 

SANET package and the parameters “eps”=20m and “min_samples” = 3 of the DBSCAN 

algorithm. The choice of the parameter “eps”=20m seems reasonable, since 20m is 

approximately the distance of the width of a road consisting of four to six lanes (3.6m per 

lane, 14.4 m – 21.6 m width) and the resulting clusters would apparently be compact 
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enough to be easily avoided by using a suitable routing algorithm. Note that the DBSCAN 

algorithm is designed so that “eps”=20m specifies the “eps”-edge of the point, that is, the 

minimum density, not the cluster size. The clusters themselves can be arbitrarily shaped 

and can be stretched over a distance many times greater than 20m. 

     As a result, 63 clusters with sizes from 3 to 9 TAs were obtained. To select statistically 

significant clusters from these clusters, I formulate the null hypothesis: Accidents are 

distributed evenly across the road network. I will assume that a cluster of size n is 

statistically significant at level a if the probability of detecting at least one cluster of size 

greater than or equal to n (if the null hypothesis is correct) is less than a clusters [5]. Given 

that there are no statistics on cluster sizes in the case of the DBSCAN algorithm, I 

conducted a number of statistical tests using the Monte Carlo method. Using the SANET 

package, 1024 samples of points evenly distributed over the Newton road network were 

obtained (each sample contains 369 points, as in the original data), then these samples 

were used to calculate 1024 distance matrices along the road network (1024 is the number 

of Monte Carlo tests) and then the DBSCAN algorithm was applied to each matrix with 

the same parameters as in the case of real data (“eps”=20 and “min_samples”=3). The 

simulation results are shown in Table 2-1. 

 

Table 2-1. Simulation results (1024 tests, Newton, Massachusetts road network) 

Cluster size 
The number of clusters of the same or 

larger size 
P 

3 59 0.058 

4 0 0 

 

     Table 2-1 shows that clusters with n ≥ 4 are significant at the 0.05 level. Removing 

clusters with n=3 from the 63 initially detected yields 5 statistically significant clusters. 
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2.2.3 Hybrid approach to clustering 

 

     Clustering using the network distance matrix presented in the previous section requires 

very large computational resources and is possible (taking into account the need to 

conduct at least several hundred tests) only for small data sets, such as data on severe 

accidents in Newton, a suburb of Boston with a population of about 90 thousand people. 

Therefore, it is very tempting to replace the network distances between individual TAs 

with the corresponding Euclidean metric. In this case, the DBSCAN algorithm 

implemented in the sklearn package (Python) calculates the distance matrix extremely 

quickly, and for a scale of 20m it seems reasonable that the distances (Euclidean and over 

the network) are very similar. After repeating all the calculations — this time with 

Euclidean distances and obtaining a new set of statistically significant clusters, I can 

compare them with the clusters obtained in Section 2.2.2. 

Comparing two sets of clusters, I get the following: 

• 5 network clusters are located identically to their Euclidean counterparts; 

• 2 Euclidean clusters are located differently; 

identical clusters can be very different when zooming in. 

 

 

Table 2-2. Newton 2013. Two clustering methods (Euclidean and Network, eps=20) 

 

Method 
N 

Percentage of the total 

number of severe TAs 

False clusters 

number/percentage 

Corrupted clusters 

number/percentage 

Network  5 7.3 0/(0%) 0/(0%) 

Euclidean 7 10 2/(29%) 3/(43%) 

 

So, considering network clustering as "true", I can list some disadvantages of Euclidean 

clustering: 

 

1. False clusters — have no network counterpart 
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2. Corrupted clusters — have true (the same as in the network case) and false fragments 

(on different road lines or on different roads). 

Now I can summarize the two approaches to clustering with “eps”=20 in Table 2-2. 

 

2.2.4 Scale 10m 

 

     It follows from the previous section (Table 2-2) that the Network and Euclidean 

approach to clustering at eps = 20m differ significantly. 

     Meanwhile, it is obvious that at some sufficiently small scale, the network and 

Euclidean distance should be identical. Of course, this scale is less than 20 m. To estimate 

this scale, I investigate the dependence of the difference between Euclidean and Network 

distances on Euclidean distances and find the point of divergence where Euclidean 

distances become inadequate for our task (Fig. 2-2). 

 

 
Figure 2-2. Newton, Massachusetts, 2013, severe TAs. Dependence of the difference 

between Euclidean and Network distances on Euclidean distances 
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     As can be seen in Figure 2-2, the network distance is always at least as long as the 

Euclidean distance, because the straight line connecting the two points has the minimum 

length in the Euclidean space. One can also see that the discrepancy between the 

Euclidean distance and the Network distance starts at a scale of 10 m. Large spikes near 

15 m are clearly visible in the graph, and this likely distorts the Euclidean clustering with 

eps = 20. Thus, I chose 10m as the scale, where the Euclidean distance, which requires 

much less computation, can replace the distance along the road Network. 

The value of 10m seems very small, but in fact it is not. It is only slightly less than the 

width of a 3-lane highway (in the United States, each lane is about 12 feet or 3.6 meters 

wide. In other words, 10 meters is the natural scale for the movement of vehicles in one 

direction on the road network. 

 

2.2.5 Hybrid clustering with 10m 

 
 

Looking at Fig. 2-2 and taking into account the natural scale for the road network given 

at the end of the previous section, it is possible to justify a hybrid clustering method: use 

the road network only to generate sets of uniformly distributed points and perform all 

clustering (for detecting real clusters and for static tests) with “eps”=10 using Euclidean 

distances between TAs. 

 

2.3 An example 

 

2.3.1 Massachusetts 2013, clustering of severe TAs 

 

     According to available data, 30,696 severe accidents were registered in Massachusetts 

in 2013, of which 23,964 (78%) occurred on major roads. 
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The application of clustering with “eps”=10 and “min_samples”=3 to 23,964 severe TAs 

gives 1,340 clusters, from which statistically significant ones need to be identified. To do 

this, clustering was performed 1,502 times on sets of 23,964 points evenly distributed 

over the road network generated by the SANET software package. The results of the 

Monte Carlo tests are shown in Table 2-3. 

 

Table 2-3. Monte Carlo simulation results for Massachusetts, 2013 (1,502 tests, 23,964 

points in each) 

Cluster size 
The number of clusters of the same 

or larger size 
P 

3 1502 1 

4 160 0.1 

5 6 0.004 

 

     Thus, at the 0.05 level, clusters of size ≥5 should be considered statistically significant. 

Removing from the initial clusters those whose size is less than 5, I get 354 clusters, the 

total number of severe TAs in clusters is 2,301, that is, 9.6% of the total number of severe 

TAs. 

     Figure 2-3 shows statistically significant clusters of severe TAs that occurred in 

Massachusetts in 2013. 
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Figure 2-3. Massachusetts 2013, significant clusters of severe TAs (DBSCAN, eps=10) 

      

     As can be seen from Fig. 2-3, the spatial distribution of clusters throughout the state 

is far from uniform. 166 (47%) clusters were found in thirteen cities (Table 2-4). Newton 

with 3 clusters ranks 38th in the general list and is included in the table only because I 

studied it in detail in Section 2. 

Table 2-4. Massachusetts cities with the maximum number of clusters 
City Number of Clusters Number of Severe Traffic Accidents 

SPRINGFIELD  38 234 

BOSTON        24 209 

WORCESTER     23 148 

LOWELL        15 93 

BROCKTON      14 87 

BRAINTREE     8 68 

NEW BEDFORD   9 55 
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Continuation of Table 2-4 
City Number of Clusters Number of Severe Traffic Accidents 

QUINCY        7 53 

WOBURN        5 39 

WEYMOUTH      5 36 

HOLYOKE    5 35 

RAYNHAM    7 35 

WALTHAM       6 35 

NEWTON 3 19 

 

 

Figure 2-3 also shows that most clusters have sizes from 5 to 7. 

 

2.3.2 Meta-clusters in Massachusetts: Hybrid Bottom-Up Approach 

 
     In the previous section, clusters of severe traffic accidents that occurred in 

Massachusetts in 2013 were analyzed. My next goal is to use data for 2013-2018 to 

identify time-stable clusters, that is, places that remain dangerous for at least several 

years. I will use two-stage clustering, that is, obtaining significant clusters for each year, 

and then clustering these clusters again with the parameter min_years ≥minimum number 

of years. For example, “min_years” = 4 indicates that the resulting cluster contains data 

for at least 4 different years. 

     As in Section 2.3.1, I will first get all (including statistically insignificant) clusters for 

6 years: 2013, 2014, 2015, 2016, 2017, 2018. Then I will conduct Monte Carlo 

simulations to identify significant clusters. The results of the Monte Carlo simulations for 

all 6 years are collected in Table 2-5. 
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Table 2-5. Monte Carlo simulation results for six years, DBSCAN (eps=10, 

min_years=3) uniformly distributed random points on the road network 

 

Year 
Total 

severe TA 

Number of 

trials 
Cluster size 

The number of 

clusters of a given 

or larger size 

p 

 

2013 

 

23964 

 

1502 

3 1502 1.0 

4 160 0.11 

5 6 0.004 

 

2014 

 

24921 

 

1444 

3 1442 0.99 

4 171 0.12 

5 6 0.004 

 

2015 

 

25959 1386 

3 1384 0.99 

4 208 0.15 

5 11 0.008 

 

 

 

2016 

 

 

 

26772 

 

 

 

1344 

3 1344 1.0 

4 214 0.16 

5 8 0.006 

6 1 0.0007 

 

2017 

 

26672 

 

1349 

3 1349 1.0 

4 206 0.15 

5 9 0.007 

 

2018 

 

24763 

 

1453 

3 1453 1.0 

4 201 0.14 

5 7 0.005 

 

     After removing statistically insignificant clusters, I will combine the clusters for all 6 

years, adding a year label to each cluster, and then perform a second clustering with 
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“eps”=10 and the “min_years”=3. Some statistical characteristics of meta-clusters are 

shown in Table 2-6. The number of severe TAs in all meta-clusters – 7,456 is 4.8% of 

15,3051 – the total number of severe accidents used for two-stage clustering. Figure 2-4 

shows the distribution of clusters on a map of Massachusetts. It is apparent that the spatial 

distribution of meta-clusters is similar to 2013. 

Table 2-6. Meta-cluster statistics 

Different 

years in 

the cluster 

Clusters Severe TA 
Severe TA / 

Cluster 

Severe TA 

median 

Severe TA 

standard deviation  

3 115 2269 19.7 19 3.29 

4 74 1979 26.7 25 5.77 

5 36 1412 39.2 36 10.68 

6 29 1796 61.9 56 21.71 

Total 254 7456 29.3 24 16.23 

 

 

 
Figure 2-4. Meta-clusters in Massachusetts, 3-6 different years in each cluster 
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     In addition to the statistical characteristics of meta-clusters containing a different 

number of years when severe TAs occurred, the characteristics of the repeatability of 

clusters from year to year are very interesting. For example, for each cluster of severe 

TAs that occurred in one year, one can find (if it exists) a spatially equivalent cluster of 

accidents that occurred in another year. The results are presented in Table 2-7, which 

resembles a distance matrix and contains the relative number of clusters observed during 

one year and remaining in subsequent years. For example, 0.36 at the intersection of row 

2018 and column 2017 means that the ratio (number of clusters in 2017 found in 

2018/total number of clusters in 2017) is 0.36. The total number of statistically significant 

clusters in the corresponding year is shown in the Clusters column. 

 

Table 2-7. Relative repeatability of clusters from year to year 

Годы 2017 2016 2015 2014 2013 Clusters 

2018 0.36 0.35 0.35 0.33 0.36 378 

2017  0.35 0.35 0.34 0.32 369 

2016   0.39 0.33 0.3 374 

2015    0.3 0.33 334 

2014     0.36 349 

2013      354 

 

     It is also interesting to find out how the repeatability of clusters depends on the annual 

interval. In Table 2-8, the data in Table 2-7 are presented somewhat differently. Column 

1 year contains the "distances" of one year between sets of clusters (i.e. the repeatability 

of clusters for 2013-2014, 2014-2015 and so on), column 2 years represents data on two-

year repeatability (i.e. 2013-2015, 2014-2016 and so on). The last column (3 years) 

represents data for a three-year repeatability. The last two rows of the table contain 

elementary repeatability statistics for different annual intervals. It can be seen that the 

"distance" between sets of clusters remains relatively constant, decreasing slightly with 

an increase in the time interval. Apparently, the road conditions for the studied accidents 
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do not change significantly from year to year, i.e. they belong to the same distribution 

and can be combined if necessary, for further analysis. 

 

Table 2-8. Repeatability of clusters for different time intervals 

1 year: 13-14, 14-15, 15-

16, 16-17,17-18 

2 years: 13-15, 15-17, 14-

16, 16-18 

3 years: 13-16, 14-17, 15-

18 

1 year 2 years 3 years 

0.36 0.33 0.3 

0.3 0.33 0.34 

0.39 0.35 0.35 

0.35 0.35  

0.36   

Average 0.35 0.34 0.33 

STD  0.03 0.01 0.02 

 

Conclusions 

      

     This Chapter shows that the hybrid DBSCAN clustering method using Euclidean 

distance applied to data on severe TAs in Massachusetts, combined with Monte Carlo 

simulations on the state road network, can identify statistically significant hotspots of 

severe traffic accidents. These hotspots (clusters) are compact, with about a third of the 

clusters repeated next year. It is advisable for drivers to avoid identified areas of increased 

risk of severe TAs, and city and state authorities need to use information about such areas 

to plan measures aimed at reducing injuries and deaths on theses roads. 

Further research may be useful to identify spatial and other features of the TA hotspots 

(e.g. intersection, highway entry/exit, road junction, road width, speed limit, poor 

visibility, time of day, weather conditions, etc.). 
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Chapter 3. Vehicle routing in the presence of dangerous sections on the 

road (using the city of Springfield, MA as a case study) 

 

Introduction 

 

     The task of constructing an optimal route in one sense or another for a vehicle is one 

of the problems that is well-studied and has been solved long ago. If a road network is 

represented by a bidirectional multigraph (i.e., a graph where several edges can pass 

through any two vertices, and each edge can be unidirectional or bidirectional), then 

routing is performed using the Dijkstra algorithm [2] or Bellman-Ford [8, 9] one. It is 

enough to assign a number to each edge (for Dijkstra's algorithm it is strictly non-

negative) and the algorithms will construct an optimal (in the sense of minimizing the 

sum of such numbers) route. 

     For usual routing problems, an edge is assigned either its length or delay time - a much 

more complex parameter that depends not only on the geometry of the road network, but 

also on the current state of the route: presence of traffic jams, weather conditions, etc.. 

Unfortunately, conventional routing very rarely considers other important factors, in 

particular, road sections with compact sections of high risk (see [48]) or with a large 

number of severe (i.e., resulting in injuries or fatalities) TAs located within the same road 

segment (edge). There is a work [49] (see also the literature review in Chapter 1), where 

an attempt is made to create an integrated attribute for each edge of a road graph 

containing some weighted sum of the delay time and the crash risk indicator.  

     This approach is very labor-intensive and requires separate and complex calculations 

for each edge of the graph representing the road network. Meanwhile, there is a simple 

technique that allows bypassing dangerous sections by marking them as "impassable".  
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Imagine a road network graph where each edge is assigned its length as an attribute used 

by the routing algorithm. Then I can assign an infinite or, which is more practical, a very 

long length (several orders of magnitude greater than the length of the longest edge) to 

the edges leading to a HRA, and then the routing algorithm will automatically bypass the 

dangerous road section. 

 

3.1 Tools and Data 

 

     Let's apply this simple technique to the road network of the city of Springfield 

(Springfield, MA), extracted from the OpenStreetMap (OSM) global map of the Earth's 

surface. OSM maps obtained as a result of many years of work of a non-commercial wiki 

project can be of different quality depending on the locality, but for the purposes of 

routing algorithms research (and as shown in [50] on the example of the Vienna road 

network, also for real routing) they are quite suitable. 

     The only difficulty is to extract the road network for a given surface area. When the 

OSM API was used for this, the task was far from trivial. Fortunately, the recently 

appeared OSMnx library for Python (see details in [51]) simplified this task to a couple 

of lines of code. So, to get a map of any city, it is enough to specify the city itself, the 

state (for the USA) and the country. For example, the Springfield road network is loaded 

using the graph_from_place() function of the OSMnx package: 

 
import osmnx as ox 

ox.config(use_cache=True, log_console=True, all_oneway=False) 

G = ox.graph_from_place('SPRINGFIELD, MA, USA', network_type='drive') 

 

     The only task remaining is to save the G object containing the road network to disk 

for later use. Object G stores the road network in the form of a MultiDiGraph, that is, a 

graph with the possibility of the existence of many one- and two-way edges passing 

through the same pair of vertices. Such a graph format is not always convenient for 
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geographic information systems (GIS) like QGIS or ArcGIS, so the OSMnx package has 

the ability to save in vector “.shp” files, standard for GIS. In “.shp” files information is 

stored separately for MultiDiGraph edges and vertices, which I will extensively use to 

determine edges, leading to the HRA. 

     Table 3.1 presents some statistical characteristics of the edges of the Springfield road 

graph. 

 

Table 3.1 Elementary statistics of the lengths of the road graph edges of Springfield (in 

meters) 
Average  130 

Median 92 

Standard deviation 116 

Minimum 1.47 

Maximum 2084.8 

 

     I will also need data on TAs in Massachusetts for 2013-2018, which can be obtained 

in text format “.csv” on the MassDOT portal website 5. 

 

 
Figure 3-1. A grid of equidistant points placed on the map of Springfield 

 
5 https://massdot-impact-crashes-vhb.opendata.arcgis.com/search 

https://massdot-impact-crashes-vhb.opendata.arcgis.com/search
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3.2 Method 

 

     To study the effectiveness of routing in the presence of dangerous sections of the road 

network, I will set a grid of equidistant points and put it on the map of Springfield (Fig. 

3-1). The map contains 95 grid nodes with a distance of about 830 meters between 

neighboring nodes, which gives 95 x 94 = 8930 different directional routes. My further 

actions can be put into the following scheme: 

 

a. Combine all severe traffic accidents that occurred in Springfield between 2013 and 

2018 with the traffic graph extracted from OSM. Note that the accident coordinates and 

the road graph are derived from independent sources, so the accident points may not 

coincide with the graph edges. Consequently, I need a procedure that projects each 

accident to the nearest edge. As a result, each edge of the graph will be matched with a 

non-negative number of accidents that occurred along it. 

 

b. Let's prepare two versions of the road graph: G0 and G1. Version G0 will contain the 

original graph extracted from OSM. In version G1 the attribute storing the edge length 

will be replaced for some edges by a very large number, many orders of magnitude greater 

than the maximum edge length, which makes such edges practically impassable (in the 

presence of alternatives) for the routing algorithm. 

 

c. Using the grid placed on the Springfield map, I will construct all possible routes for 

graphs G0 and G1. Then select from all the routes connecting the same points in the same 

direction only those that differ in G1 compared to G0, i.e. those affected by changes in 

graph G1. 
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d. For all selected routes, compare their length and number of vertices (according to the 

data stored in the graph G0), that is, see how the length and "divisibility" of the route 

change when passing obstacles. 

 

e. For all selected routes, compare the number of accidents along the route, that is, enables 

one to see how the relative risk ratio of accidents changes when bypassing obstacles. By 

the Relative Risk Ratio (RRR) here I mean the ratio of accidents TAS1/TAS0, where 

TAS0 is the number of accidents counted along the original route on the graph G0, and 

TAS1 is the number of accidents along the route connecting the same starting and ending 

points, but on the graph G1.   

 

3.3 Bypassing High Risk Areas (HRA) 

 

     Let's try to construct vehicle routes so as to bypass HRA (statistically significant 

severe TA meta-clusters), i.e. clusters resulting from secondary clustering of clusters of 

severe TAs that occurred in Springfield from 2013-2018. Of all such secondary clusters, 

only those containing clusters of crashes in at least three different years (31 in total) were 

selected. See [48] for details. 

     My task is quite complex, so it is reasonable to break it into several steps, saving 

(where necessary) intermediate data in “.csv” files: 

1. Load two original road graphs from the hard disk drive and name them G0 and G1. 

2. Find all edges leading to the HRA (meta-clusters). This task has to be performed 

manually, because a cluster may be located in different ways. If the cluster is 

located on a unidirectional edge, it is enough just to assign a very large number to 

the attribute storing the length of the edge, and the edge becomes almost 

impassable for routing algorithms, that is, the cluster will be excluded from the 

route laid on the graph G1.  
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3. If the cluster is on a bi-directional edge, the problem of graph modification 

becomes more complicated, because it will be necessary to attribute the cluster to 

one of the directions of the edge6. 

4. Finally, in the case of a cluster located at an intersection, I have to "close" all paths 

leading to the cluster, because there is no single dedicated edge where the accidents 

can be attributed to, instead accidents may have come from all directions. Thus, 

graph G1 can be easily changed if I prepare a list of "forbidden" edges in advance, 

considering each meta-cluster and all edges leading to it. 

5. For all the edges of graph G1 defined in the previous paragraph, replace the value 

of the edge length attribute with a very large number 100,000,000,000, which is 

many orders of magnitude greater than the length of the longest edge in G1 7. 

 

 
Figure 3-2. Ratios of route lengths calculated from graphs G1 (with obstacles) and G0 

(without obstacles) 

 
6 For a small number of accidents that make up the cluster, it is possible if one uses additional information: address, 
direction of travel. If the cluster cannot be attributed to a particular direction, one must "prohibit" both. 
7 The maximum length of the edge according to Table 3-1 is 2085 meters, so the number 100,000,000,000, exceeding the 
maximum length by 48 million times, may from a practical point of view, be considered infinite. 
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6. For all start and end points given by the grid of equally spaced points (see Fig. 3-

1) I calculate optimal routes and select those that are different for graphs G0 and 

G1 with the same start and end points of the routes.  The result is 4,822 such routes, 

and the length of some routes (a total of 91, which is less than 2% of all obtained) 

exceeds 100,000,000,000, indicating that in these cases, the routing algorithm has 

not found ways around the obstacles. Excluding such routes from our data, I finally 

get 4,731 route pairs on the graphs G0 and G1, which have the same start and end 

points. 

 

     These remaining routes can be displayed as points on the graph, where the X-axis 

shows the original lengths of the routes without taking into account obstacles, and the Y-

axis shows the ratio of the lengths of the routes: calculated from graphs G1 and G0 (Fig. 

3-2) and the ratio of the number of vertices computed by the graph G1 to the number of 

vertices computed by the graph G0 (Fig. 3-3). 

 

 
Figure 3-3. Ratio for number of vertices along route of graph G1 (avoiding obstacles) 

and G0 (original route, without avoiding obstacles) 
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     To get a better idea of where the bulk of the data is concentrated, Figures 3-2 and 3-3 

show different regression dependencies of the form y = a0 + a1*x of length ratios (Figure 

3-2) or vertex number ratios (Figure 3-3). Since the data are highly scattered, the figures 

also show regression straight lines obtained using two robust (outlier-resistant) 

algorithms: Huber regression (see 52, 53]) (yellow line) and quantile regression (see [54]) 

(green line), which allows to predict arbitrary quantiles of the dependent variable. In this 

case, I used prediction for the median (50% quantile). The regression coefficients are 

shown in the legends to the figures. 

     From the diagrams shown in Figures 3-2 and 3-3, it is apparent that the path length 

in the case of obstacle avoidance is always greater than the "original" path built without 

obstacles. It is also evident that the ratio of the length of routes G1/G0 decreases as the 

length of the original path increases. 

     As for the ratio of the number of vertices G1/G0, for individual routes it can be 

either more or less than one, depending on which route the bypass route "lay" on. As the 

data in Table 3-3 (the last column) show, the average ratio of the number of vertices 

tends to one for long (more than 6 km. routes)8, and increases (apparently due to the fact 

that bypass routes are significantly longer here) to 1.52 on the shortest routes. 

Since the ratio of the number of vertices turns out to be uninformative and tends to 1.0 

for sufficiently long routes, the main interest is the loss in distance that occurs when 

choosing an alternative (cluster avoiding) route. 

     First of all, I will provide general descriptive statistics on all routes that differ (at the 

same initial and final coordinates) (Table 3-2). Since the distribution of the ratios of 

various variables in this case is not Normal9, the bootstrap method is used everywhere 

to calculate confidence intervals (see, for example, [55]). Specific calculations were 

performed using the bootstrapped Python package 

(https://github.com/facebookarchive/bootstrapped ). 

 
8 The difference from the 1.0 of the average G1/G0 vertex ratio for routes with original (without HRA) lengths greater than 
13 km. is probably due to the small sample size and the consequent loss of accuracy of the average calculation. 
9 For example, for length ratios whose descriptive statistics are shown in Table 3-2, the D'Agostino test (see [56]) 
scipy.stats.normaltest() gives pvalue = 0.0 
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 Table 3-2. General descriptive statistics of route length ratios (length when bypassing 

the HRA/initial length) 
Statistical measure Value 95% confidence interval 

Average 1.128 (1.122 - 1.133) 

Median 1.07 (1.069 - 1.074) 

Standard deviation 0.18 (0.161 - 0.203) 

Min 1.00  

Max 3.52  

 

Table 3-3. The dependence of the average ratios of route lengths (Length when 

bypassing the HRA/Initial length) and the number of vertices along the routes (Number 

of vertices when bypassing the HRA/Number of vertices of the original route) for 

different lengths of the original (laid without avoiding HRA) route. 95% confidence 

intervals are indicated in parentheses for the ratio of lengths and the number of vertices 

Distance intervals (km) Routes Average ratio of lengths 
Average ratio of the 

number of vertices 

1-2 63 
1.58 

(1.404 – 1.747) 

1.52 

(1.33 – 1.69) 

2-3 156 
1.36 

(1.299 – 1.423) 

1.25 

(1.17 – 1.32) 

3-4 354 
1.22 

(1.192 – 1.245) 

1.18 

(1.13 – 1.22) 

4-5 471 
1.16 

(1.142 – 1.174) 

1.09 

(1.06 – 1.11) 

5-6 562 
1.13 

(1.122 – 1.146) 

1.07 

(1.04 – 1.09) 

6-7 659 
1.12 

(1.107 – 1.125) 

1.02 

(1.00 – 1.04) 

7-8 626 
1.10 

(1.088 – 1.103) 

1.02 

(1.01 – 1.04) 

8-9 593 
1.09 

(1.085 – 1.100) 

1.02 

(1.00 – 1.03) 

9-10 502 
1.08 

(1.077 – 1.091) 

1.00 

(0.98 – 1.02) 

10-11 349 
1.07 

(1.069 – 1.083) 

1.00 

(0.97 – 1.02) 
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Continuation of Table 3-3 

Distance intervals (km) Routes Average ratio of lengths 
Average ratio of the 

number of vertices 

11-12 220 
1.07 

(1.060 – 1.076) 

1.00 

(0.96 – 1.03) 

12-13 119 
1.06 

(1.054 – 1.072) 

1.01 

(0.97 – 1.04) 

13-14 45 
1.05 

(1.040 – 1.061) 

1.05 

(1.00 – 1.09) 

14-15 9 
1.04 

(1.021 – 1.058) 

1.05 

(1.01 – 1.08) 

 

 

Table 3-4. Descriptive ratio statistics (Length at of HRA avoiding route/Original route 

Length) for selected intervals of the original route length. For the mean, median, and 

standard deviation, 95% confidence intervals are shown in parentheses 

 

Length 

km 
N Average Median 

Standard 

deviation 
Min Max 

Range 

(Max– 

Min) 

1-5 1044 
1.23 

(1.216 – 1.255) 

1.12 

(1.106 -1.137) 

0.317 

(0.286 - 0.358) 
1.001 3.521 2.52 

5-9 2440 
1.11 

(1.105 - 1.114) 

1.07 

(1.061 - 1.072) 

0.115 

(0.102 - 0.121) 
1.000 1.707 0.707 

9-13 1190 
1.08 

(1.073 - 1.081) 

1.06 

(1.060 - 1.067) 

0.069 

(0.067 - 0.077) 
1.000 1.439 0.439 

13-15 54 
1.05 

(1.04 - 1.059) 

1.04 

(1.028 - 1.045) 

0.034 

(0.027 - 0.043) 
1.005 1.151 0.146 

 

The results of calculations showing the route that avoids HRAs compared to binned 

lengths of the original route are shown in Table 3-3 and in Fig. 3-4. 
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Figure 3-4. Dependence of the average ratios of route lengths (Length when bypassing 

the HRA/Original length) for different lengths of the original route constructed without 

considering the HRA areas 

 

      Finally, Table 3-4 provides more detailed descriptive statistics of the ratios (Length 

when bypassing the HRA /Initial length) for four-kilometer intervals of the original route 

length, from which it is apparent that all indicators (mean, median, standard deviation, 

the difference between the maximum and minimum values) gradually decrease as the 

length of the original route increases. 
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3.3 Relative risk of an accident when choosing a route bypassing 

the HRA 

 

     As evident from the previous section, bypassing the HRA guarantees an increase in 

the length of the route. Simultaneously, it is not at all obvious that the alternative route 

will be safer. It is therefore critical to assess the relative risk of an accident when choosing 

a route that bypasses the HRA. 

     Suppose it is necessary to plot a route from A to B. Let's denote A-----> B a route with 

a bypass of the HRA, and A-> B is a route without a bypass of the HRA. Let TA1 be the 

number of severe traffic accidents registered along route A-----> B, and TA2 be the 

number of severe traffic accidents along route A->B. Then the TA1/TA2 ratio will be a 

measure of the relative risk on the two routes (Relative Risk Ratio - RRR). 

     To calculate the relative risk, it is necessary to enumerate the coordinates of all severe 

traffic accidents that occurred in Springfield in 2013-2018 and determine for each severe 

traffic accident the closest edge to it in the graph G0. To do this, I use the 

get_nearest_edge() method of the OSMnx package. 

     Unfortunately, get_nearest_edge() gives unambiguous results only for unidirectional 

edges and is unable to determine which direction of the bidirectional edge a particular 

accident belongs to. To find tease this out, it would seem that you can compare the data 

on the direction of the accident with the data on the direction of the route (for example, 

S, W, N, E) to which this edge of the graph belongs. But the data on the direction of 

movement is not known for all TAs, besides, they are not particularly reliable and one 

observes that for a route going from north to south, the direction W or E may still be 

listed. 

     Thus, I can only assign half of all the accidents found to each direction of the 

bidirectional face and hope that averaging over many edges for a sufficiently long route 

compensates for the inaccuracy of determining the number of accidents for a specific 

direction of the bidirectional edge. 
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     So, bearing in mind the comments about the number of accidents for a bidirectional 

edge, I will calculate for each pair of routes A-----> B and A-> B the number of accidents 

along the route, after which I can obtain general descriptive statistics of the TA1/TA2 

ratios for all routes (Table 3-5). 

 

Таble 3-5. General descriptive statistics for ratio of severe Traffic Accidents (TAs 

along A-----> B/TAs along A-> B) 
Metric Value 95% confidence interval  

Mean 0.91 (0.89 – 0.93) 

Median 0.84 (0.83 – 0.842) 

Standard deviation 0.73 (0.49 – 0.96) 

Minimum 0.13  

Maximum 27.75  

 

Table 3-6. Dependence of average ratios (TAs along A-----> B/TAs along A-> B) for 

binned route lengths A-> B 

Distance, km 
 

N 
Average ratio of TAs 95% confidence interval 

1-2 63 1.32 (0.834 - 1.689) 

2-3 156 1.16 (0.978 - 1.335) 

3-4 354 1.02 (0.948 - 1.087) 

4-5 471 0.94 (0.894 - 0.979) 

5-6 562 0.88 (0.850 - 0.909) 

6-7 659 0.85 (0.828 - 0.874) 

7-8 626 0.85 (0.830 - 0.871) 

8-9 593 0.84 (0.823 - 0.859) 

9-10 502 0.82 (0.808 - 0.842) 

10-11 349 0.82 (0.803 - 0.846) 

11-12 220 0.81 (0.789 - 0.839) 

12-13 119 0.84 (0.809 - 0.870) 

13-14 45 0.84 (0.796 - 0.886) 

14-15 9 0.83 (0.738 - 0.926) 
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Table 3-7. Descriptive statistics for ratio of severe TAs (TAs along A-----> B/TAs 

along A-> B) for selected intervals of the original route length. 95% confidence 

intervals are indicated in parentheses for the mean, median and standard deviation 

Length 

km 
N Average 

 

Median 

 

 

Standard 

deviation 

 

Min Max 
Range 

Max-Min 

1-5 1044 
1.02 

(0.97 - 1.07) 

0.85 

(0.84 - 0.87) 

0.80 

(0.64 - 0.95) 
0.17 10.0 9.83 

5-9 2440 
0.86 

(0.84 - 0.87) 

0.83 

(0.82 - 0.84) 

0.29 

(0.27 - 0.31) 
0.25 3.57 3.32 

9-13 1190 
0.82 

(0.81 - 0.840) 

0.84 

(0.82 - 0.85) 

0.20 

(0.19 - 0.21) 
0.27 1.56 1.29 

13-15 54 
0.83 

(0.80 - 0.88) 

0.85 

(0.83 - 0.9) 

0.15 

(0.12 - 0.18) 
0.43 1.22 0.79 

 

 

      Table 3-6 shows the relative risk of an accident as a function of the length of the 

original route A-> B. As before, the bootstrap method was used to calculate the 

confidence interval. The same results as in Table 3-6 are shown more clearly in Figure 3-

5, where the gray horizontal line corresponds to a relative risk level of 1.0. The values 

themselves are shown in blue, and the 95% confidence intervals are shown in orange 

(lower bound) and green (upper bound). 
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Figure 3-5. Dependence of the average ratios (TAs along A-----> B/TAs along A-> B) 

for binned route lengths A-> B 

      

     As is apparent, the reduction of relative risk occurs for routes that are at least of 

moderate length (in this case those that are longer than 4 kilometers). As for the shorter 

routes (less than 4 kilometers), there is a substantial increase in the length of the 

alternative route (avoiding HRAs), as per Table 3-3, and consequently an increased 

number of severe TAs along this new path. 

     In Table 3-7 a more detailed picture is presented of the descriptive statistics for the 

ratio of severe traffic accident (severe traffic accident along A-----> B/severe traffic 

accidents along A-> B) for 4-kilometer intervals of the original route. It is observed that, 

all the statistical metrics decrease (standard deviation, range) or reach a plateau (average, 

median) as the original route length increases.  

     Considering Table 3-4 and 3-7 together, one may juxtapose the increase in mean ratio 

of route length with the change in mean relative risk of severe Traffic Accidents for 

different bins of the original route length. The findings are summarized in Table 3-8. 
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For example, for the interval 5 to 9 kilometers, one observed an increase in the average 

path length of 11% and a reduction of relative risk of severe Traffic Accidents by 14%.  

 

Table 3-8. Dependence of change in average relative risk (RRR) on average increase in 

route length bypassing the HRA, for different intervals of the original route.  

The corresponding 95% confidence intervals are shown in parentheses 
Length of the 

original route km 

Increase in the average 

ratio of route lengths, % 

Change in the average 

relative risk of TA, % 

1-5 23% (21,6% - 25,5%) +2% (-3%, + 7%) 

5-9 11% (10,5% - 11,4%) -14% (-13%, - 16%) 

9-13 8% (7,3% - 8,1%) -18% (-16%, -19%) 

13-15 5% (4,1% - 5,9%) -17% (-12%, -20%) 

 

     Note: “Collision risk” will henceforth be used as synonymous to “severe traffic 

accident risk”, for brevity. 

 

     For the original (not considering HRA) route lengths in the 1-5 km interval, the HRA 

bypass route was on average 23% (95% confidence interval 21.6% - 25.5%) longer than 

the route not including obstacles, and the collision risk increased by 2% on average (95% 

confidence interval: -3%, +7%).  

 

     For the original (not including HRA) route lengths in the 5-9 km interval, the HRA 

bypass route is on average 11% (95% confidence interval 10.5% - 11.4%) longer than the 

route that does not consider obstacles, and the collision risk decreases by an average of 

14% (95% confidence interval: 13%-16%).  

 

     For the original (not including HRA) route lengths in the 9-13 km interval, the HRA 

bypass route is on average 8% (95% confidence interval 7.3% - 8.1%) longer than the 

route that does not consider obstacles, and the collision risk of crash decreases by an 

average of 18% (95% confidence interval: 16%-19%).  
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     For the original (not including HRA) route lengths in the 13-15 km interval, the HRA 

bypass route is on average 5% (95% confidence interval 4.1% - 5.9%) longer than the 

route that does not take into account obstacles, and the collision risk decreases by an 

average of 17% (95% confidence interval: 12%-20%). 

 

Conclusions 

 
     The meta-clusters of severe traffic accidents identified in Chapter 2 (see also [48]) 

may be used by the appropriate services to identify the causes leading to the occurrence 

of accidents and reduce their incidence.  

     For car drivers, taxi driver, and buses operators in the city of Springfield, when using 

a route with a length of more than 4 km, I can recommend an algorithm that allows one 

to bypass the meta-clusters of severe TAs described in this chapter, and thereby reduce 

the risk of a severe traffic accident by an average of 16% with an increase in the length 

of the route by an average of 8%. 
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Chapter 4. A simple way to improve road safety by bypassing dangerous 

sections of the route (using the city of Moscow as a case study) 

 

Introduction 

 

     It is shown in [57], by the case-study of the city of Springfield, MA that by bypassing 

dangerous sections of the road network (clusters of TAs), it is possible to reduce the 

relative risk of an accident with an associated limited increase in the length of the route 

and the number of traversable vertices of the graph representing the road network. 

Building a safer route required some manual work in [57]: it was necessary to consider 

all the roads (edges of the road graph) leading to a HRA (cluster) and mark them in such 

a way that they became impassable for the routing algorithm. For a small city, this did 

not require much effort, but for a megalopolis like Moscow, this task becomes too time-

consuming. In addition, there are always doubt whether it is worth banning all paths 

leading to the cluster, or perhaps only some of the most "dangerous" ones? 

     This chapter proposes a slightly different method based on the method of determining 

the danger of individual road sections (edges of the road graph) without clustering. The 

null hypothesis was that severe traffic accidents are distributed uniformly along the road 

network. Accordingly, 1,000 Monte Carlo computer simulations were executed and the 

number of simulated severe traffic accidents on each road segment was tabulated along 

with the 95th and 99th percentiles. Subsequently, those road segments along which the 

actual observed number of severe traffic accidents was greater than the 95th percentile, or 

99th percentile of the simulated data, were considered statistically significant at the 5% 

and 1% level, respectively. These statistically significant edges were marked in the 

modified road graph by adding a fixed number to their length attribute, which made a 

conventional routing algorithm, such as the Dijkstra algorithm [63] or Bellman-Ford 
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algorithm [69, 70], change the route and include less dangerous (unmarked) edges of the 

road graph. Note that in [57] an essentially infinite number was added to the edge length 

attribute, which led to the fact that such an edge was practically excluded from the route. 

As shown in this chapter, this approach was not optimal and adding to the length attribute 

a finite number, comparable with the average route length, leads to better results. 

 

4.1 Data 

 

     I will use the global OpenStreetMap (OSM) map of the world to obtain the road 

network of Moscow. OSM maps are usually of excellent quality and are widely used in 

works devoted to routing (see, for example, [13] which touches a similar problem of 

pedestrian avoidance of criminally dangerous areas). The easiest way to get the road 

network of Moscow is to use the OSMnx library for the Python language (see [6]). The 

resulting road network is a multidigraph, that is, a directed graph, the edges of which can 

be unidirectional and bidirectional, and through any two vertices of the graph can pass 

any number of edges. The OSMnx package allows you to save the original multidigraph 

as two separate objects - edges and vertices - in vector “.shp” format. This allows you to 

display the road network in a geographic information system (for example, in QGIS [59]). 

     The Moscow road network obtained from OSM contains 25,397 edges (15,696 

unidirectional and 9,701 bidirectional) and 16,797 vertices. Descriptive statistics of some 

edge attributes are given in Table 4-1. 

As for the accident data, they are obtained from an official GIBDD source [60]. For this 

study, I selected data on 27,798 road accidents recorded in Moscow in 2019-2021. Since 

the Moscow road network and accident data are obtained from independent sources, it is 

necessary to delete accidents that clearly do not belong (for example, due to a registration 

error) to the road network. For this purpose, I included for further analysis only those 
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accidents whose distance to the nearest edge of the road network is less than 35m10. There 

were 21,956 such accidents (79% of the total number). 

 

Table 4-1. Descriptive statistics of some attributes of Moscow road graph edges 
Statistical measure Length m Speed km/h Travel time min. 

Average 217.4 51.7 15.9 

St. Deviation 275.5 12.13 20.9 

Min 1.06 5 0.1 

25% percentile 47.2 41.9 3.3 

Median 127.9 50.5 9.2 

75% percentile 291.6 53.1 21.2 

Max 8043 100 673 

      

 

4.2 Tools and method 

 

     The list of filtered TAs that occurred in Moscow in 2019-2021, which I discussed in 

the previous paragraph, contains the coordinates of the TA, the distance from the accident 

to the nearest edge and the edge itself in the form of <vertex1> <vertex2> <key>, where 

<vertex1> and <vertex2> are the identifiers of the vertices of the road graph through 

which an edge passes, and <key> is the number of the edge passing through specific 

vertices. In the case when there is only one edge <key> = 0. In the case when there are 

two edges, there are two keys numbered 0,1, etc. Thus, the keys allow you to identify 

edges passing through the same vertices. Now you can sort through all the edges of the 

road graph and search for each one in this list, thereby determining which accidents 

belong to this edge. Naturally, for bidirectional edges, you need to look for both the edge 

<vertex 1> <vertex 2> <key> and the edge <vertex 2> <vertex 1> <key>. The resulting 

list of edges can be sorted by the number of accidents belonging to them, and then 

significant edges can be identified by conducting Monte Carlo simulations. 

 
10 If I consider the width of the lane to be 3.5 m, and the maximum number of lanes to be 10, then 35 m will serve as an 
estimate of the maximum width of the road in Moscow. 
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     For Monte Carlo simulations, I used the software package SANET [47], which allows 

one to obtain millions of points evenly distributed along the road network. The tests 

consist in forming groups of 21956 points (as many as there were severe traffic accidents 

in 2019-2021) and for each group all edges are enumerated again and the number of points 

belonging to each edge is found. By performing, say, 1000 runs, I get the statistics of 

accidents when the accidents are evenly distributed over the road network. If the number 

of real accidents of an edge exceeds the 95th or 99th percentile obtained from the Monte 

Carlo simulations, I will consider the number of accidents of that edge to be significant 

at 5% and 1% level, respectively. The "dangerous" edges obtained in this way can be used 

in the same way as in [57]. 

     To do this, I will create two identical road graphs G0 and G1. I will leave graph G0 

unchanged, and in graph G1 I will change the <Length> attribute of the edges selected as 

statistically significant, adding to it a sufficiently large number, the same fixed value for 

all such edges, to show the routing algorithm that this edge is undesirable in the route 

being laid and it should be avoided whenever possible. 

I just need to compare all the routes laid on graphs G0 and G1 and make sure that the 

routes on graph G1 are in some sense safer. To do this, I will set a square grid with a fixed 

step equal to 3 km in our case. (Fig. 4-1), and I will construct all routes starting and ending 

at the nodes of this grid11. 

     Let's denote any two grid nodes as A and B and find the route A->B on graph G0 and 

the route A—>B on graph G1. To compare these routes, I calculate the relative risk ratio 

(RRR) equal to the ratio of accidents that occurred along route A—>B to the number of 

accidents that occurred along route A->B. If the upper bound of the 95% confidence 

interval for the average RRR is < 1, then the routes laid on graph G1 are safer than the 

routes defined on the original graph G0. 

 

 
11 More precisely, beginning and ending in the vertices of the graph closest to the nodes of the grid 
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Figure 4-1.  Nodes of the square grid placed on the road map of Moscow 

 

Note that in [57], only routes that differ for graphs G0 and G1 were used to collect 

statistics. In this chapter, all routes are used, because depending on the value added to 

the <Length> attribute, the number of routes that differ for G0 and G1 will be different. 

 

4.3 Results 

 

     For statistical tests I chose the first 2000 edges of the road graph, which contain the 

largest number of accidents, because the calculations for all 25397 edges are extremely 

time consuming and provide minimal added value. One thousand (1,000) tests were 

performed for every edge out of 2000, 815 edges were significantly "dangerous" at 0.05 
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level and 469 edges of the road graph - at 0.01 level. The elementary statistics for the 

"dangerous" edges are shown in Table 4-1. Table 4-1 demonstrates that at the 0.01 

significance level, obstacles are characterized by a greater average number and a greater 

dispersion (as per Interquartile Range, Q3-Q1) in the number of severe TAs. 

 

Table 4-2. The elementary statistics for the "dangerous" edges 
P p = 0.05 p = 0.01 

Total edges 815 469 

Average 6.6 7.8 

St. deviation 5.4 6.3 

Min 3 3 

25% percentile (Q1) 4 4 

Median 5 6 

75% percentile (Q3) 7.5 9 

Max 58 58 

 

     Fig. 4-2 shows 815 obstacle edges on the map of Moscow. Edges with different 

numbers of accidents are binned and shown in different colors (3-7 accidents – green, 7-

20 accidents – red, more than 20 accidents - yellow). It should be noted that the edges 

with the largest number of accidents are located on the Central Ring Road, as well as on 

the section of Kutuzovsky Avenue from Minskaya Street to Alexey Sviridov Street and 

on the section of the Third Ring from the Enthusiasts Highway to Novaya 

Perevedenovskaya. 

     After obtaining obstacles, the order of actions becomes the same as in [57]. It is 

necessary, using a square grid placed on the map of Moscow (see Fig. 4-1), to sort through 

all the starting and ending points and for each route A->B calculated without obstacles, 

calculate the route A—>B having the same starting and ending points, but considering 

obstacles. Next, one should compare all such routes and understand how the relative risk 

of an accident (RRR), the length of the route and the number of traversable vertices of 

the road graph changes on average. In contrast to [57], I conducted this analysis for 

different values of the penalty imposed on the obstacle in order to understand how it 

affects the effectiveness of alternative routing. 
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Figure 4-2. Obstacles displayed on the Moscow road map 

 

     The results of the calculations are shown in Figures 4-3...4-5 and in Tables 4-3...4-5. 

In addition to the values themselves, Tables 4-3...4-5 show in a smaller font and the 

figures show the less saturated color of the 95% confidence intervals of the values 

obtained by the bootstrap method. The first 800 edges significant at the 0.05 level were 

used as obstacles, and the values of 200, 500, 1000, 2000, 5000, and 10000000000000 

meters were used as penalties. The latter value, which far exceeds all conceivable 

distances in Moscow, can be considered infinite, as shown in Figures 4-3...4-5 and Tables 

4-3...4-5. 

     As can be seen from the figures and tables, the optimal value of the penalty is equal to 

2000m. At this value the curve showing the dependence of the average relative risk of 

accident on the length of the original route (Fig. 4-3) lies slightly below all others and the 

minimum value of the relative risk reaches, according to Table 4-3, the value of 0.686. 
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Figure 4-3. Relative TA risk as a function of the length of the original route and the 

penalty for an obstacle edge (with 95% confidence intervals) 

 

Table 4-3. Relative TA risk as a function of the length of the original route and the 

penalty for an obstacle edge (with 95% confidence intervals) 

Interval km 
Number of 

routes 
200 m 500 m 1000 m 2000 m 5000 m ∞ 

1-6 535 
0.952  

0.942-0.963 

0.935  
0.922-0.949 

0.920  
0.905-0.935 

0.908  
0.892-0.925 

0.909 
 0.892-0.927 

0.945  
0.907-0.977 

6-11 1524 
0.931 

 0.924-0.938 

0.883  
0.874-0.891 

0.847  
0.838-0.857 

0.829  
0.819-0.839 

0.835  
0.824-0.846 

0.862  
0.846-0.877 

11-16 2679 
0.914  

0.909-0.919 

0.857  
0.850-0.863 

0.819  
0.812-0.825 

0.798  
0.791-0.805 

0.800  
0.792-0.808 

0.821  
0.812-0.831 

16-21 3065 
0.893 

 0.888-0.898 

0.824  
0.818-0.829 

0.777  
0.771-0.783 

0.756  
0.750-0.763 

0.759  
0.752-0.766 

0.774  
0.766-0.782 

21-26 3255 
0.876  

0.872-0.881 

0.798  
0.793-0.804 

0.751  
0.745-0.757 

0.732  
0.726-0.738 

0.733  
0.727-0.739 

0.741  
0.734-0.748 

26-31 2854 
0.857  

0.852-0.863 

0.767  
0.761-0.773 

0.723  
0.717-0.729 

0.704  
0.698-0.710 

0.707  
0.701-0.714 

0.712  
0.705-0.719 

31-36 2196 
0.849  

0.843-0.855 

0.752  
0.745-0.758 

0.709  
0.702-0.715 

0.687  
0.681-0.694 

0.695  
0.687-0.703 

0.698  
0.690-0.706 

36-41 1315 
0.848  

0.841-0.856 

0.747  
0.740-0.755 

0.706  
0.698-0.713 

0.686  
0.678-0.693 

0.698  
0.687-0.708 

0.703  
0.692-0.713 
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Continuation of Table 4-3. 

Interval km 
Number of 

routes 
200 m 500 m 1000 m 2000 m 5000 m ∞ 

41-46 591 
0.856  

0.846-0.866 

0.742  
0.732-0.751 

0.706  
0.695-0.716 

0.688  
0.678-0.698 

0.691  
0.680-0.701 

0.695  
0.685-0.706 

46-51 179 
0.869  

0.854-0.885 

0.759  
0.743-0.775 

0.731  
0.713-0.749 

0.713  
0.695-0.731 

0.721  
0.703-0.740 

0.722  
0.704-0.741 

51-56 32 
0.888  

0.867-0.917 

0.772  
0.735-0.813 

0.737  
0.693-0.780 

0.708  
0.660-0.752 

0.726  
0.676-0.774 

0.728  
0.679-0.774 

Share of changed routes 0.7 0.84 0.9 0.92 0.94 0.94 

 

     Moreover, at this penalty the dependence of route length ratios (length including 

obstacles/length without obstacles) on the length of the original route (Fig. 4-4) behaves 

much more smoothly than at a penalty equal to infinity and 5000m. According to Table 

4-4, the average route length ratio at a 2000m penalty ranges from 1.064 to 1.105, that is 

(see Tables 4-3, 4-4) an average relative risk reduction of 9-31% is achieved at a 2000m 

penalty by increasing the average route length by 6-11%.  

     As can be seen from Figure 4-4, with an infinite value of the penalty and small lengths 

of the original path, the ratio of route lengths increases greatly, apparently because the 

routing algorithm has difficulty in finding an alternative route. Meanwhile, the 2000m 

penalty gives a very smooth dependence and a small change in the average path length 

ratio after/before (6%-10.5%) 

 



 61 

 
Figure 4-4. Dependence of the average ratios of route lengths (Length when bypassing 

the HRA/ Initial length) for different lengths of the original route and different values of 

the penalty for the obstacle edge 

 

Table 4-4. Average ratios of route lengths (after/before) for different lengths of the 

original route and different penalty values for the obstacle edge (with 95% confidence 

intervals) 

Interval km 
Number of 

routes 
200 m 500 m 1000 m 2000 m 5000 m ∞ 

1-6 535 
1.005  

1.003-1.006 

1.013  
1.010-1.016 

1.029  
1.023-1.035 

1.064 
 1.051-1.075 

1.103 
 1.084-1.120 

1.154 
 1.111-1.190 

6-11 1524 
1.006  

1.005-1.007 

1.022  
1.021-1.024 

1.052  
1.048-1.055 

1.084  
1.079-1.090 

1.133  
1.124-1.143 

1.187  
1.170-1.203 

11-16 2679 
1.007  

1.007-1.007 

1.026  
1.025-1.027 

1.059 
 1.056-1.061 

1.096 
 1.092-1.099 

1.137 
 1.132-1.143 

1.175 
 1.166-1.184 

16-21 3065 
1.009  

1.009-1.009 

1.031  
1.030-1.033 

1.068  
1.066-1.070 

1.102  
1.099-1.105 

1.137  
1.133-1.142 

1.158  
1.152-1.164 

21-26 3255 
1.010  

1.010-1.011 

1.034  
1.033-1.035 

1.073 
 1.071-1.075 

1.105 
 1.102-1.107 

1.133 
 1.130-1.137 

1.146 
 1.141-1.150 

26-31 2854 
1.012  

1.012-1.013 

1.038  
1.037-1.039 

1.076  
1.074-1.078 

1.105  
1.102-1.107 

1.125 
 1.122-1.128 

1.132  
1.128-1.135 

31-36 2196 
1.013  

1.012-1.014 

1.041  
1.040-1.042 

1.077 
 1.075-1.079 

1.104 
 1.102-1.107 

1.123  
1.120-1.126 

1.126 
 1.123-1.130 

36-41 1315 
1.013  

1.013-1.014 

1.042  
1.040-1.043 

1.073  
1.071-1.076 

1.100  
1.097-1.103 

1.121 
 1.117-1.124 

1.125  
1.121-1.129 
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Continuation of Table 4-4 

Interval km 
Number of 

routes 
200 m 500 m 1000 m 2000 m 5000 m ∞ 

41-46 591 
1.013  

1.012-1.014 

1.044  
1.042-1.046 

1.071 
 1.067-1.074 

1.098 
 1.094-1.102 

1.120  
1.115-1.125 

1.125 
 1.120-1.130 

46-51 179 
1.012  

1.010-1.013 

1.040  
1.037-1.044 

1.064  
1.058-1.069 

1.092  
1.086-1.098 

1.128 
 1.119-1.136 

1.131  
1.122-1.139 

51-56 32 
1.007  

1.005-1.009 

1.036  
1.027-1.044 

1.053 
 1.046-1.061 

1.085 
 1.074-1.095 

1.125  
1.114-1.137 

1.129 
 1.118-1.141 

 

     The decrease in relative risk is accompanied, as it follows from Fig. 4-5 and Table 4-

5, by another loss: an increase in the number of traversable vertices of the road graph by 

about 6-27.6%, depending on the length of the original route. 

 
Figure 4-5. Average ratios of the number of vertices of routes (after/before) for 

different lengths of the original route and different penalty values for the obstacle edge 

(with 95% confidence intervals) 
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Table 4-5. Average ratios of the number of vertices of routes (after/before) for different 

lengths of the original route and different penalty values for the obstacle edge (with 

95% confidence intervals) 

Interval km 
Number of 

routes 
200 m 500 m 1000 m 2000 m 5000 m ∞ 

1-6 535 
1.006  

1.000-1.011 

1.013  
1.005-1.021 

1.027  
1.015-1.038 

1.060  
1.042-1.076 

1.098  
1.073-1.121 

1.173  
1.108-1.227 

6-11 1524 
1.014  

1.009-1.018 

1.038  
1.031-1.045 

1.086  
1.075-1.096 

1.127 
 1.114-1.139 

1.194 
 1.175-1.213 

1.272 
 1.243-1.300 

11-16 2679 
1.026  

1.021-1.030 

1.062  
1.056-1.068 

1.124 
 1.115-1.132 

1.179  
1.168-1.190 

1.244  
1.229-1.258 

1.299  
1.281-1.317 

16-21 3065 
1.039  

1.035-1.044 

1.084  
1.078-1.091 

1.163  
1.154-1.172 

1.224 
 1.213-1.235 

1.279 
 1.265-1.292 

1.311 
 1.296-1.326 

21-26 3255 
1.049  

1.045-1.054 

1.101  
1.094-1.107 

1.188 
 1.179-1.197 

1.250  
1.238-1.261 

1.295  
1.281-1.308 

1.315  
1.300-1.329 

26-31 2854 
1.055  

1.050-1.061 

1.116  
1.107-1.124 

1.192  
1.182-1.202 

1.244 
 1.233-1.256 

1.279 
 1.266-1.292 

1.291 
 1.277-1.305 

31-36 2196 
1.063  

1.056-1.070 

1.135  
1.124-1.145 

1.206 
 1.193-1.219 

1.256  
1.241-1.271 

1.287  
1.271-1.303 

1.295  
1.279-1.311 

36-41 1315 
1.074  

1.063-1.084 

1.151  
1.137-1.165 

1.217  
1.200-1.232 

1.257 
 1.240-1.274 

1.292 
 1.274-1.310 

1.303 
 1.284-1.322 

41-46 591 
1.071  

1.058-1.084 

1.156  
1.133-1.177 

1.213 
 1.188-1.237 

1.250  
1.225-1.275 

1.285  
1.259-1.311 

1.294  
1.268-1.319 

46-51 179 
1.059  

1.038-1.082 

1.136  
1.103-1.167 

1.172  
1.137-1.206 

1.213 
 1.183-1.240 

1.279 
 1.243-1.311 

1.280 
 1.243-1.312 

51-56 32 
1.086  

1.041-1.131 

1.273  
1.139-1.395 

1.232 
 1.103-1.339 

1.276  
1.151-1.375 

1.366  
1.252-1.458 

1.372  
1.261-1.463 

 

     Finally, I will briefly focus on the optimal choice of obstacles (their number and level 

of significance), which would provide the best value of the relative risk of an accident. 

Unfortunately, this problem still has to be solved empirically – with the help of rather 

laborious calculations. First of all, let's compare the first 400 obstacles with a significance 

level of 0.05 and 0.01, designated as 95_400 and 99_400 in Fig. 4-6. It is perceptible that 

the reliability of 0.01 turns out to be preferrable, which is not surprising, because 

according to Table 4-2 (and common sense), edges that are reliable at the level of 0.01, 

contain more accidents (on average) and are more suitable for the role of obstacles. Now 

let's compare the different number of obstacles, reliable at the level of 0.05, and indicated 

in Fig. 4-6 as 95_400, 95_500 and 95_800. It is apparent that in our particular case, the 

largest number of obstacles 800 turns out to be optimal, although it is impossible to 

deduce from this the rule "the more, the better", since too many obstacles may leave few 
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alternatives for changing the route, which will lead to an increase in the relative risk of 

an accident instead of reducing it. 

 
Figure 4-6. Dependence of the average relative risk of accidents for different obstacles 

and different lengths of the original route (penalty = 2000m) 

 

Conclusions 

 

     Using the example of Moscow, a way to improve road safety is considered, which 

consists in building a route that bypasses obstacles identified on the road map (graph). 

The obstacles are the edges of the road graph containing a statistically significantly higher 

number of severe traffic accidents (TAs). 

     To check the effectiveness of routing, the indicator proposed in [57] is used – the 

relative risk of an accident is equal to the ratio of the number of accidents along the route 

that takes into account obstacles to the number of accidents counted along the original 

route built without taking into account obstacles. 
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     It is shown that obstacle avoidance reduces the relative risk of an accident by 9-31% 

(depending on the length of the original route) by increasing the average length of the 

route by 6-11% and increasing the average number of traversable vertices of the road 

graph by 6-27.6%. 
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Chapter 5. Bypassing dangerous sections of the route to improve traffic 

safety (case study of St. Petersburg) 

 

Introduction 

 

     In Chapter 4, using the example of Moscow, a way to improve road safety was 

developed, consisting in building a route that bypasses obstacles identified on the road 

map (graph). The obstacles are the edges of the road graph (road segments) containing a 

statistically significantly higher number of severe traffic accidents (TAs). Each identified 

obstacle is subject to a penalty – adding some value to the length attribute of the 

corresponding edge of the road graph, after which the usual routing algorithm is launched, 

determining the route of the minimum (taking into account penalties) length. 

     In this chapter, the same approach is applied to the city of St. Petersburg (see [61]). 

The results of calculations show that in the case of St. Petersburg, the selection and 

subsequent bypass of obstacles can significantly reduce the average relative risk of an 

accident due to a limited increase in the length of the route and the number of vertices of 

the road graph traversed along the route. Hence, the algorithm developed in Chapter 4 is 

validated by the new data provided by Saint-Petersburg traffic history. 

 

5.1 Data 

 

     As in the previous chapter, I will use the OpenStreetMap (OSM) global map of the 

world to obtain the road network, this time for the city of St. Petersburg. The easiest way 

to load the road network is to use the OSMnx library for the Python language (see [6]). 
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The resulting road network is a multidigraph, that is, a directed graph, the edges of which 

can be unidirectional and bi-directional, and through any two vertices of the graph can 

pass any number of edges. The package OSMnx allows you to save the original graph as 

two separate objects - edges and vertices in vector format .shp, which allows you to 

display the road network in a geographic information system, such as QGIS [59]. 

 

Table 5-1. Parameters of the Moscow and St. Petersburg road networks 

Metric Moscow St. Petersburg 

Total vertices 16797 14624 

Total edges 25415 22787 

One-directional edges 15696  15222  

Two-directional edges 9719 7565 

 

 

Table 5-2. Descriptive statistics for lengths (in meters) of edges of road networks for 

Moscow and St. Petersburg  
Metric Moscow St. Petersburg 

Average length  217.4 155.1 

St. deviation 275.5 219.2 

Min 1.06 0.66 

25% percentile 47.2 24.1 

Median 127.9 81.9 

75% percentile 291.6 197.9 

Max 8043 4542 

 

     Despite the much smaller population of St. Petersburg compared to Moscow, it’s road 

network obtained from OSMnx is not much simpler, as shown in Table 5-1, compared to 

that of Moscow and has 30352 edges (35134 edges for Moscow). The statistics of the 

lengths of the edges of the road graph for both cities, given in Table 5-2, shows that the 

road segments (edges of the road graph) for St. Petersburg are on average shorter than for 

Moscow (by 36%, as measured by the median metric). 

As for the data on traffic accidents, they were obtained from the official source of the 

traffic police (GIBDD) [60]. For this study, I selected records of 16,865 serious (that is, 

resulting in injury or death to at least one of the participants) traffic accidents recorded in 
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St. Petersburg in 2019-2021. Since the St. Petersburg road network and accident data 

were obtained from independent sources, it was necessary to remove accidents that 

clearly did not belong (e.g., due to registration error) to the road network. For this 

purpose, only those accidents whose distance to the nearest edge of the road network is 

less than 35m12 were left for further analysis. The total number of such accidents was 

13503 (80% of the total number). 

 

5.2 Tools and method 

     

     As in [58], for each edge of the road graph, one can count the number of severe TAs 

belonging to it and then find edges in which the number of accidents exceeds, say, the 

95th percentile of the values obtained as a result of Monte Carlo numerical simulations 

described in sufficient detail in [58]. Considering the number of accidents of such edges 

statistically significant (at the level of 0.95), I will continue to use such "dangerous" edges 

as obstacles. 

     To do this, I will create a graph G0 representing the road network of St. Petersburg, 

and it’s copy - graph G1. I will leave graph G0 unchanged, and in graph G1 I will add a 

sufficiently large number (penalty) to the length attribute of the edges selected by 

hypothesis testing using Monte Carlo simulations. The penalty will be the same for all 

these dangerous edges and will imply to the routing algorithm that these edges are 

undesirable and should be avoided if possible. 

     I just need to compare all the routes laid on graphs G0 and G1 and make sure that the 

routes on graph G1 are in some sense safer. To do this, I will set a square grid with a fixed 

step equal to 3 km in this case (see Fig. 5-1), and I will plot all routes starting and ending 

at the vertices of the graph closest to the grid nodes. 

 
12 If I consider the width of the lane to be 3.5 m, and the maximum number of lanes to be 10, then 35 m will serve as an 
estimate of the maximum width of the road in Moscow. 
 



 69 

 
Figure 5-1.  Nodes of the square grid placed on the road map of St. Petersburg 

 

     Let's denote any two grid nodes as A and B and find the route A->B on graph G0 and 

the route A—>B on graph G1. To compare these routes, I calculate the relative risk ratio 

of accidents  (RRR) equal to the  ratio of accidents that occurred along route A—>B to 

the number of accidents that occurred along route A->B. If the upper bound of the 

confidence interval for the RRR < 1, then the routes along the graph G1 are safer than the 

routes defined on the original graph G0. 

5.3 Results 

     The first 2,000 edges of the road graph containing the largest number of severe traffic 

accidents were chosen for hypothesis testing, because calculations for all 30352 edges are 

extremely time-consuming13 and provide little added value. 

 
13 All calculations were performed on a workstation with a quad-core processor and 32GB of RAM 
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Figure 5-2. Obstacles displayed on the road map of St. Petersburg 
 

     In total, 1000 tests were carried out for each edge out of 2000, significantly 

"dangerous" were at the level of 0.95 – 983 edges, of which, as in [58], the first 800 edges 

containing the largest number of severe traffic accidents were used. Fig. 5-2 shows 983 

obstacle edges on the map of St. Petersburg. Edges with different numbers of accidents 

are binned and shown in different colors (0-4 accidents – green, 4-7 accidents – blue, 7-

13- red, 13-18 accidents - yellow). Table 5-3 shows a list of 10 road segments (with the 

coordinates of the beginning and end of the segment) with the largest number of 

accidents. 

     After receiving obstacles, the procedure steps is the same as in [58]. It is necessary, 

using a square grid placed on the map of St. Petersburg, to sort through all the starting 
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and ending points of the grid and for each route A->B laid without obstacles, calculate 

the route A->B having the same starting and ending points, but laid with obstacles. Next, 

one should compare all such routes and understand how the relative risk of an accident, 

the length of the route and the number of traversable vertices change on average. This 

analysis was carried out for various values of the penalty imposed on the obstacle to 

understand how it affects the effectiveness of alternative routing. 

 

Table 5-3. Ten Road segments in St. Petersburg with the highest number of severe 

traffic accidents 
 

Road segment Start (latitude. longitude) End (latitude. longitude) TAs 
KAD14 58-60 км. внутр. 59.8523, 30.4745 59.8352, 30.4484 18 

KAD 81-83км. внешн. 59.8344, 30.4477 59.8524, 30.4753 18 

KAD 74км 59.8114, 30.3423 59.8151, 30.3615 17 

KAD 35-37км 60.0155, 30.4664 59.9931, 30.4798 16 

Liteyniy Ave from  . Pestelja St. 

to Nekrasova St. 
59.9429, 30.3484 59.9390. 30.3482 15 

Engel’sa Ave from Pr. 

Lunacharskogo. to Vyborg 

highway 

60.0438, 30.3279 60.0361, 30.322 14 

Leninskiy Ave from ul. Ziny 

Portnovoy to Bulvar Novatorov 
59.8518, 30.2564 59.8518, 30.2678 14 

Sverdlovskaya Naberezhnaya 

from Ul. Vatutina to Ul.  

Arsenal’naya 

59.9595, 30.3839 59.9549, 30.3746 14 

Prospect Nauki from 

Grazhdanskiy Prospect to Ul.  

Butlerova 

60.0130, 30.3978 60.011, 30.4058 14 

KAD 102km 59.9824, 30.5070 59.9866, 30.4904 14 

 

     Calculation results are shown in Figures 5-3...5-5 and in Tables 5-4...5-6. In addition 

to the values themselves, Tables 5-4...5-6 show in smaller font, and the figures show in 

less saturated color the 95% confidence intervals of the values obtained by the bootstrap 

 
14 St. Petersburg Ring Road (КАД in Russian) 
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method. The first 800 edges significant at the 0.95 level were used as obstacles, and the 

values of 200, 500, 1000, 2000, and 5000 meters were used as penalties. 
 

 

Figure 5-3. Relative risk of an TA depending on the length of the initial route and the 

penalty for the obstacle edge with 95% confidence intervals 

 

     If only the relative risk of an accident is taken into account, then a penalty equal to 

5000m will be optimal (see Figure 5-3). Table 5-4 shows that the minimum risk value for 

this penalty is 0.616. But at the same time, with a penalty of 5000m (see Figures 5-4 and 

5-5), the cost in the length of the route and the number of traversable vertices of the road 

graph will greatly increase. 

     As Figure 5-3 and Table 5-4 show, penalties equal to 1000 m and 2000 m give almost 

the same dependence of the average relative risk on the length of the initial route. But at 

the same time, as it follows from Figures 5-4 and 5-5, for a penalty of 1000 m, the loss in 

the length of the route and the number of traversable vertices of the road graph is 

significantly reduced. Therefore, a penalty of 1000 m should be considered optimal for 

Saint-Petersburg. 
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Table 5-4. Relative risk of an TA depending on the length of the initial route and the 

penalty for the obstacle edge with 95% confidence intervals 

Interval km 
Number of 

routes 
200 m 500 m 1000 m 2000 m 5000 m 

1-6 297 0.909 

0.890-0.928 

0.878 

0.857-0.899 
0.855 

0.831-0.879 
0.861 

0.834-0.888 
0.874 

0.844-0.904 

6-11 853 0.867 

0.857-0.878 
0.815 

0.803-0.828 
0.786 

0.773-0.800 
0.785 

0.771-0.799 
0.788 

0.773-0.803 

11-16 1231 0.833 

0.824-0.843 
0.773 

0.763-0.783 
0.733 

0.722-0.743 
0.730 

0.720-0.742 
0.730 

0.718-0.741 

16-21 1272 0.804 

0.795-0.813 
0.739 

0.730-0.749 
0.708 

0.699-0.718 
0.706 

0.696-0.715 

0.703 

0.692-0.713 

21-26 1088 0.786 

0.776-0.795 
0.712 

0.702-0.721 
0.684 

0.674-0.694 
0.685 

0.675-0.694 
0.677 

0.667-0.687 

26-31 768 0.758 

0.747-0.769 
0.676 

0.665-0.686 
0.655 

0.645-0.665 
0.660 

0.649-0.670 
0.648 

0.637-0.658 

31-36 493 0.747 

0.734-0.760 
0.658 

0.646-0.670 
0.640 

0.628-0.652 
0.642 

0.630-0.654 
0.628 

0.615-0.640 

36-41 233 0.750 

0.733-0.768 
0.662 

0.646-0.678 
0.646 

0.630-0.661 
0.646 

0.630-0.662 
0.630 

0.613-0.646 

41-46 97 0.767 

0.748-0.787 
0.677 

0.659-0.695 
0.654 

0.636-0.672 
0.646 

0.628-0.664 
0.616 

0.598-0.633 

46-51 53 
0.757 

0.733-0.780 

0.686 

0.666-0.707 
0.672 

0.651-0.694 
0.675 

0.654-0.696 
0.634 

0.614-0.655 

Proportion of changed routes 0.82 0.88 0.92 0.94 0.95 

 

Figure 5-4. Dependence of the average ratios of route lengths (Length when bypassing 

the HRA/ Initial length) for different lengths of the original route and different values of 

the penalty for the obstacle edge 
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Table 5-5. Average ratios of route lengths (after/before) for different lengths of the 

original route and different penalty values for the obstacle edge (with 95% confidence 

intervals) 

Interval km 
Number of 

routes 
200 m 500 m 1000 m 2000 m 5000 m 

1-6 297 1.015 

1.011-1.018 

1.038 

1.030-1.045 
1.083 

1.070-1.096 
1.137 

1.115-1.158 
1.221 

1.183-1.257 

6-11 853 1.018 

1.016-1.019 
1.045 

1.041-1.049 
1.097 

1.090-1.103 
1.148 

1.138-1.157 
1.213 

1.199-1.226 

11-16 1231 1.020 

1.018-1.021 
1.052 

1.049-1.054 
1.100 

1.096-1.104 
1.144 

1.138-1.150 
1.190 

1.182-1.198 

16-21 1272 1.023 

1.022-1.025 
1.053 

1.051-1.056 
1.099 

1.095-1.103 
1.135 

1.130-1.140 

1.173 

1.167-1.179 

21-26 1088 1.025 

1.023-1.026 
1.056 

1.054-1.059 
1.095 

1.092-1.099 
1.127 

1.123-1.132 
1.161 

1.155-1.166 

26-31 768 1.028 

1.026-1.030 
1.059 

1.056-1.062 
1.098 

1.094-1.101 
1.130 

1.125-1.136 
1.162 

1.155-1.168 

31-36 493 1.029 

1.027-1.031 
1.056 

1.053-1.060 
1.089 

1.085-1.093 
1.124 

1.117-1.130 
1.152 

1.145-1.160 

36-41 233 1.028 

1.025-1.031 
1.051 

1.047-1.055 
1.080 

1.075-1.085 
1.117 

1.109-1.125 
1.147 

1.138-1.157 

41-46 97 1.023 

1.020-1.025 
1.045 

1.041-1.050 
1.083 

1.077-1.089 
1.108 

1.098-1.117 
1.143 

1.131-1.154 

46-51 53 1.022 

1.019-1.026 
1.039 

1.033-1.045 
1.080 

1.074-1.086 
1.088 

1.078-1.097 
1.140 

1.128-1.150 

Proportion of changed routes 0.82 0.88 0.92 0.94 0.95 

 

     For this penalty value, according to Table 5-5, the average ratio of route lengths ranges 

from 1.08 – 1.1, that is (see Table 5-5,) the average reduction in relative risk by 14.5-36% 

is achieved with a penalty of 1000m by increasing the average route length by 8-10%. 

The decrease in relative risk is accompanied, as it follows from Fig. 5-6 and Table 5-6, 

by another cost: an increase in the number of traversable vertices of the road graph by 

about 3-12% (for a fine of 1000 m), depending on the length of the original route. 
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Figure 5-5. Average ratios of the number of vertices of routes (after/before) for 

different lengths of the original route and different penalty values for the obstacle edge 

(with 95% confidence intervals) 

 

Table 5-6. Average ratios of the number of vertices of routes (after/before) for different 

lengths of the original route and different penalty values for the obstacle edge (with 

95% confidence intervals) 
 

Interval km 
Number of 

routes 
200 m 500 m 1000 m 2000 m 5000 m 

1-6 297 1.028 

1.007-1.047 

1.064 

1.038-1.088 
1.116 

1.081-1.149 
1.171 

1.129-1.208 
1.245 1.193-1.296 

6-11 853 1.026 

1.016-1.035 
1.054 

1.041-1.067 
1.118 

1.102-1.134 
1.183 

1.163-1.203 
1.233 1.210-1.256 

11-16 1231 1.024 

1.016-1.032 
1.056 

1.046-1.066 
1.119 

1.105-1.132 
1.175 

1.159-1.190 
1.209 1.192-1.226 

16-21 1272 1.023 

1.015-1.031 
1.049 

1.039-1.059 
1.106 

1.094-1.118 
1.159 

1.146-1.173 

1.189 1.175-1.203 

21-26 1088 1.030 

1.022-1.038 
1.047 

1.037-1.057 
1.089 

1.077-1.101 
1.150 

1.138-1.162 
1.170 1.158-1.183 

26-31 768 1.035 

1.026-1.045 
1.025 

1.014-1.036 
1.074 

1.061-1.087 
1.140 

1.127-1.153 
1.141 1.128-1.154 

31-36 493 1.034 

1.023-1.045 
1.007 

0.996-1.019 
1.045 

1.031-1.059 
1.126 

1.111-1.140 
1.121 1.106-1.136 
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Continuation of Table 5-6 

Interval km 
Number of 

routes 
200 m 500 m 1000 m 2000 m 5000 m 

36-41 233 1.012 

0.999-1.026 
0.985 

0.971-0.999 
1.026 

1.009-1.042 
1.116 

1.098-1.133 
1.107 1.086-1.128 

41-46 97 0.987 

0.973-1.001 
0.963 

0.947-0.980 
1.028 

1.006-1.050 
1.089 

1.069-1.109 
1.035 1.012-1.058 

46-51 53 0.997 

0.982-1.011 
0.985 

0.966-1.004 
1.071 

1.049-1.094 
1.090 

1.071-1.110 
1.007 0.988-1.026 

Share of changed routes 0.82 0.88 0.92 0.94 0.95 

 

 
Figure 5-6. The proportion of routes for which a safety gain is not achieved, 

depending on the length of the original route and the penalty 

 

     Figures 5-3...5-5 and Tables 5-4...5-6 give values of average values (average relative 

risk, average route lengthening etc.). However, a particular route calculated with 

obstacles in mind may not coincide with these average values. In particular, a route may 

not provide a safety benefit compared to a route based on the original (unchanged) road 

network. Figure 5-6 shows the proportion of these routes as a function of the length of 

the original route.  

     It is clearly seen From Fig. 5-6 that the share of unsuccessful routes is maximal for 

short (1-6 km) original route lengths and reaches 0.23 (e.g. 23%) for the highest penalty 

value (5000m). For the optimal value of the penalty (1000 m) the share of unsuccessful 



 77 

routes ranges from 12.7% (for the shortest routes with length less than 6 km) to 0% (for 

routes longer than 31 km). Hence, for practical calculations it is necessary to check each 

calculated route and if it is not safer use a different value of the penalty or refuse 

alternative routing at all. 

 

Findings 

 

      Bypassing obstacles, which are the edges of the road graph of St. Petersburg15, 

containing a statistically significantly large number of severe traffic accidents (TAs), 

reduces the average relative risk of accidents by 14.5-36% (depending on the length of 

the original route) by increasing the average length of the route by 8-10% and increasing 

the average number of passable vertexes of the road graph by 3-12%. 

     Obtaining similar results for St. Petersburg by repeating the algorithm previously used 

for Moscow [58], allows us to talk about the stability of the proposed method and the 

possibility of its application for other cities. 
 

 

 

 

 

 

 

 
15 It means that a fine of 1000m is imposed on each obstacle. 
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Chapter 6. A package of programs modifying a road graph according to 
the number of accidents belonging to it 

 

6.1 Introduction 

 
     This chapter will describe in detail a package of Python programs that allows one to 

modify a road graph in such a way that applying conventional routing algorithms to it 

leads to the construction of safer routes on average, as shown in Chapters 4 and 5. 

Constructing a modified road graph is a rather complex task (both algorithmically and 

in terms of computational size). It seems to me that it is more convenient to solve this 

problem using a set of sequentially applied compact programs than using one immense 

program. In addition, I use third-party programs (SANET) to solve the problem, which 

allow us to generate points uniformly distributed over the road network, necessary for 

Monte Carlo simulations and statistical hypothesis testing (see 4.2). 

6.2 Getting a road graph in OSMNX format and (separately) edges and 
vertices of the road network in ShapeFile format 

 

Appendix 1 shows a program that allows one to download a vector map (road graph) of 

the selected city from the OpenStreetMap repository. In Appendix 1, this is St. 

Petersburg. The loading process is controlled by the ox.config( ) function, where the 

most important option - all_oneway = False means that the bidirectional edge of the 

road graph is stored as one edge with the oneway = 1 attribute (and the unidirectional 

edge with the oneway = 0 attribute). 

The graph loading itself is performed by the method ox.graph_from_place(), the 

following two methods ox.add_edge_speeds(G) and ox.add_edge_travel_times(G) load 

an estimate of the maximum speed and minimum travel time through the edge of the 

graph (the length of the edge is simply divided by the maximum speed) accordingly. 
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The remainder of the program saves the original graph and its representations as sets of 

edges and vertices (as a file in ShapeFile format) onto the disk. 

 

6.3. Combining TAs and a road graph 

 
 
By definition, each TA must belong to a road graph, that is, be located on one and only 

one of its edges. But since the road graph and TAs are obtained from different sources, 

they do not coincide with each other. This means that I will have to determine for each 

accident the edge of the road graph closest to it and then assume that it was on this edge 

of the road graph that the accident occurred. Simultaneously, in the case of a 

bidirectional edge, a difficulty arises due to the inability to determine which direction of 

the edge belongs to the TA. In principle, this can be found out by examining the 

metadata of the TA, which indicates the street and the house near which the accident 

occurred, but it is very difficult to algorithmize this process, and it is impossible to 

manually sort out several thousand accidents. Therefore, where necessary, I have to 

"split" the accident, assigning half of it to one direction, and half to another. The Python 

program that defines the edge of the road graph closest to an accident is shown in 

Appendix 2. The «heart» of the program is a string 

 

u, v, key, dist = ox.get_nearest_edge(Gp, (y, x), return_dist=True) 

 

In which, for a TA with coordinates (y, x), four values are calculated – (u, v, key) – 

three values defining the edge closest to the accident, where u is the identifier of the 

beginning of the edge (= the identifier of the vertex of the graph located at the 

beginning of the edge), v is the identifier of the end of the edge, and key is an integer  

number by which one of the edges passing through two vertices (u, v) is determined. If 



 80 

only one edge passes through the given vertices, the key has a single value of 0. If two 

edges pass through these vertices, the key has two values – 0,1, etc. 

Note that the ox.get_nearest_edge() method has as parameters the projected (projected) 

graph Gp and coordinates (x,y), not the expected latitude and longitude (lat, lon). This is 

done in order to compute the distances between an accident and an edge of the road 

graph, since this cannot be done when the accident is defined by latitude and longitude. 

In this thesis, the UTM (Universal Transverse Mercator) coordinate system (see e.g. 

[62]) is used to determine the distances. The advantage of the UTM system is that the 

distance between two points can be calculated with high accuracy 

using the usual Euclidean formula d = sqrt((x1-x2)**2 + (y1-y2)**2) 

Appendix 3 provides a program that evaluates the accuracy of calculating distances 

between two points in the UTM system. The coordinates (latitude and longitude) of the 

northernmost and southernmost point of St. Petersburg are taken as two points.  

The distance calculated taking into account the curvature of the earth surface in the line  

dist = geopy.distance.geodesic(coords_1, coords_2).m  is 31,879 meters. 

Calculations show that the difference between the "true" distance and the distance 

calculated by Euclid's formula using UTM coordinates is only 4m. Since I am interested 

in distances < 35m, the accuracy of the distance calculation can be considered quite 

satisfactory 

Transition to UTM coordinates for the road graph (see Appendix 2) is performed by the 

project_graph() method: 

 
Gp = ox.project_graph(G) 

 

And the projection of the accident point utilizes the ox.projection.project_geometry 

method  

 
point_geom_proj, crs = ox.projection.project_geometry(Point(reversed(point)),{ 

to_crs=Gp.graph['crs']) , 
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where point is the latitude and longitude, and crs is the UTM zone, equal to 36 for St. 

Petersburg. 

I only need to describe the input and output of the program. The input is a list of traffic 
accidents in .csv format: 
 
YEAR,DATE,TIME,LAT,LON,X,Y 
19,31.01.2019,14:50,59.896364,29.842107,658989.2947785741,6643282.0244597355 
19,31.01.2019,11:20,59.752223,30.288019,347630.30501833995,6626933.342702196 
19,31.01.2019,22:35,59.884464,30.387443,353794.9774347632,6641428.438857373 
19,31.01.2019,12:10,60.004061,30.436099,357032.93212231743,6654634.490192406 
 

Each line, as can be seen from the file header, contains a description of one accident: 

year (last two digits), date, time, latitude and longitude, and x,y coordinates, the origin 

of which was not clear from the data provided by the traffic police GIBDD, so it was 

decided to switch to the UTM system. 

The output of the program is a .csv file: 
 

YEAR,DATE,TIME,ID,X,Y,LAT,LON,NODE1,NODE2,KEY, DIST 

9, 31.01.2019, 11:20, 126439, 347630.30501808145, 6626933.341987754, 59.752223, 
30.288019, 800275641, 1038407432, 0, 2.23623 
19, 31.01.2019, 11:20, 126439, 347630.30501808145, 6626933.341987754, 59.752223, 
30.288019, 1038407432, 800275641, 0, 2.23623 
19, 31.01.2019, 22:35, 126440, 353794.97743462917, 6641428.438138614, 59.884464, 
30.387443, 1710211567, 300429771, 0, 0.72741 
19, 31.01.2019, 12:10, 126441, 357032.93212221784, 6654634.489469756, 60.004061, 
30.436099, 25896964, 276609, 0, 1.30547 

 

This is also a list of TAs, but now 4 parameters have been added to each accident: 

(NODE1, NODE2, KEY) - the ID of the nearest edge and DIST - the distance of the 

accident to the nearest edge. 

 

6.4. Counting the number of TAs for each edge of the road graph 

 

 
     In the previous paragraph, I went through all the registered TAs and for each one I 

determined the edge of the graph to which the accident belongs. The result is a list 

where, for each accident, the identifiers of the edge to which the accident belongs are 

included. 
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Nothing prevents one from performing the reverse operation: iterate through all the 

edges of the graph and look for each edge in the file where all TAs are listed. How 

many times an edge of the graph will be found in this file, corresponds to how many 

accidents belong to this edge. The program counting the number of accidents for each 

edge is given in Appendix 4.  

At the input of the program, the previously obtained road graph G and the list of TAs 

with the ids of the edges to which the TA’s belong are used: 

(tas_to_edges_2019_2021_twoway_proj_spb_gibdd_flt_35.csv).  

It is futile to search for some lines directly in the .csv file. Therefore, in the  program the 

.csv file is converted to a Pandas object using the pd.read_csv() method 

ta_edges = 

pd.read_csv('data/tas_to_edges_2019_2021_twoway_proj_spb_gibdd_flt_35.csv') 

After the information about the TAs goes into the Pandas object, the calculation of 

accidents for each edge is reduced to a search implemented in the main function of the 

tas_along_edge() program: 
 
def tas_along_edge(u, v,  key): 
    edges_outg = ta_edges.loc[ta_edges['NODE1'] == u] 
    edge_tas = edges_outg.loc[(edges_outg['NODE2'] == v) &\ 
                             (edges_outg['KEY'] == key)] 
    tas = edge_tas.shape[0] 
    oneway = G.edges[u, v, key]['oneway'] 
    if not oneway: 
       tas = tas/2.0   
    return tas 
 
The search is implemented in the first three lines of the function. The remaining lines 

are needed to check the edge for bidirectionality. If the edge is bidirectional, I need to 

split the found TA’s between two directions. I have already mentioned in paragraph 6.3 

that it is extremely difficult, if not impossible, to assign an accident to a direction using 

real accident data. Therefore, in the program I simply assign half of the found accidents 

to each edge. This should not affect the routing results much, since bidirectional edges, 

as it follows from Table 5-1, make up about one third of all edges, and for long routes 

(the most important from the safety point of view), which include dozens of edges, there 
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should be averaging of errors associated with attributing an accident to the wrong 

direction of a bidirectional edge. 

It remains for us to mention only some features of the program. The collect_edges() 

function prepares a list of all edges of the road graph. It would seem that this list can be 

obtained from the edges attribute of the G: G.edges (keys = True, data = True), but it 

turns out that some edges in this initial list are repeated, and the collect_edges() function 

simply filters it. 

The main function of the program tas_to_edges(G) iterates through all edges from the 

edge_list[] list and for each edge calculates the number of accidents, the density of 

accidents equal to the number of accidents divided by the length of the edge, as well as 

the coordinates of the beginning and end of the edge. Next, the list of edges is sorted, so 

that the edges with the largest number of accidents are the first in the list (descending 

order). The calculation result is recorded in the 

edges_most_populated_spb_sorted_by_ta_flt_35_debug.css file, the first lines of which 

are similiar to listing 6.4.1. 
 
Listing 6.4.1. A file containing a sorted list of edges of the road graph, the number and 
density of accidents for each edge 
 
cn,node_start,node_end,key,lat0,lon0,lat1,lon1,tas,ta_density 
0,10593917,10593888,0,59.8523445,30.4745321,59.835247,30.4484255,18,0.007 
1,339921466,248196221,0,59.834425,30.4477147,59.8523655,30.4752937,18,0.007 
2,251397970,251398032,0,59.9159712,30.4137958,59.8928928,30.4469675,17,0.005 
3,2490216682,187587141,0,59.8113625,30.3422923,59.8151242,30.361476,17,0.014 
4,587052882,245828,0,60.0154892,30.4663785,59.9930789,30.4798397,16,0.006 
5,9708925354,9708927324,0,59.9428586,30.3484161,59.9390119,30.3481549,15,0.035    
  
The file header shows that there are 10 parameters in the line: the edge number, its identifiers 
(node_start,node_end,key), the coordinates of the beginning and end, the number of accidents (tas) and 
the density of accidents (ta_density). 
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6.5 Statistical tests to identify edges with a statistically significant 
number of TAs 

 

 I will consider as statistically significant such a value of the number of TAs for a given 

edge that exceeds the 95th or 98th  percentile of the distribution of accidents for this edge 

- provided that the accidents are distributed uniformly over the road network. 

To obtain points uniformly distributed over the road network, the SANET software 

package [47] is used, which allows us to obtain (in ShapeFile format) millions of points 

uniformly distributed over the road network. To obtain these points, it is enough to have 

the edges of the road graph in ShapeFile format (their obtaining is briefly described in 

Section 6.2). 

The statistical tests themselves are performed by the program shown in Appendix 5. In 

the while True loop: first, the list of edges sorted by the number of TAs belonging to 

them is read line by line, from which the edge identifier (edge1, edge2, key) and the 

number of TA’s are extracted: 
       
if edge_cnt > tot_edges: break;  
      line = ta_edges.readline() 
      vals = line.split(',') 
      if len(vals) < 10: break 
      vals[-1] = vals[-1].strip() #delete last symbol ‘\n’ 
      edge1 = int(vals[hp.index('node_start')])  
      edge2 = int(vals[hp.index('node_end')]) 
      key   = int(vals[hp.index('key')]) 
      tas = vals[hp.index('tas')] 
 

Then, from the general list of lists of uniformly distributed points sanet_trials, the points 

for a particular trial are extracted and an edge (edge1, edge2, key) is searched among 

these points. The number of times an edge is found is the number of points that belong 

to it. A total of 1000 trials are conducted for a given edge and their results are recorded 

in the sanet_trials_file file as follows:  
 
node_start,node_end,key,tas,trial_values 
10593917,10593888,0,18,15#14#9#7#12#8#10#6#8#6#7#13#9#15#10#8#8#14#8#8#12#7#9#6… 
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First comes the identifier of the edge for which the trials are conducted 

(10593917,10593888,0), then the number of TA’s for this edge, and then the results of 

the trials themselves (1000 values separated by the '#' sign). I only need to mention the 

auxiliary function prepare_sanet_points(trials, size), which divides the total list of 

generated uniformly distributed points into portions of size equal to the real number of 

accidents. In total, 1000 such portions are required for 1000 trials. 

 

6.6 Selecting edges with a statistically significant number of TAs 

 

I will consider the number of TAs belonging to an edge of the road graph significant if 

it exceeds the 95th percentile of the values obtained as a result of Monte Carlo 

simulation from a uniform distribution along the road network.  This means that having 

the file obtained in Section 6.5 as input, it is necessary to read it line by line, extracting 

the number of accidents from each line and calculating the 95th percentile of Monte 

Carlo simulations. Then it is necessary to compare the number of TAs and the 

percentile, and if the number of TAs is higher, write the corresponding line to the output 

file, which will contain edges with statistically significant high numbers of TAs. The 

program that performs the actions described above is provided in Appendix 7. 

In the main loop of the program the while True: the actions described above are 

performed. The percentile of the values of Monte Carlo simulations is found using the 

function percentile(vals, p), which has as a parameter the values of Monte Carlo 

simulation vals and percentile, for example, 95.  
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6.7 Constructing routes on the modified graph and collecting statistics of 
relative TA risk 

 

 
Finally, I am ready to modify the road graph in such a way that edges with statistically 

significant high number of TAs will receive a "penalty" - the same increase in the length 

of each edge. But this increase may not always lead to the construction of a safer route. 

To make sure that the route from point A to point B is safer, let us calculate the ratio of 

TAs on the modified route/TAs  on the original (on the unmodified graph) route (let us 

call this metric relative risk of TA). If this ratio is less than one, the route based on the 

modified graph is safer. 

Naturally, in order to determine the optimal value of the penalty, it is necessary to 

collect statistics on some set of routes and make sure that the average value of the 

relative risk of an accident is statistically significantly less than one. 

To specify the set of routes I will use a square grid placed on a road graph, and to obtain 

the relative risk statistics I will construct the routes between all the different pairs of 

nodes on the grid. 

To create the grid, I will use the program shown in Appendix 8. This program, although 

quite lengthy, is quite simple in essence. It starts with the coordinates of the upper left 

corner of the lattice ilat, ilon and width and height of the lattice: width, height. Then the 

latitude and longitude of the grid start are translated into UTM system, which I briefly 

described in section 6.3: 
 
ini_coords = utm.from_latlon(ilat, ilon) 
 
Then the origin coordinates are slightly corrected (moved 3 km to the left and 4.5 km 

up). Finally, the grid nodes are computed in an intuitive way and saved in a file. This 

file is then opened to filter the nodes of the grid - leaving only those nodes that are 

located no further than half a grid step. This is done so that the nodes of the lattice are 

located on the road graph itself. Nodes that are far away from the nearest road are 

useless for us. The grid created for St. Petersburg is shown in Figure 5.1. 
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Now that the grid has been created and written to a file, I can start the main task - 

collecting statistics on the relative risk of road accidents. The program shown in 

Appendix 9 does this. Unlike other programs, this one is run from the command line. 

The point is that the program performs a large amount of calculations and runs for quite 

a long time. To speed up the calculations, several copies of the program can be executed 

with different parameters from the command line. If, say, the processor has 4 cores, one 

can easily run 3 copies of the program with different parameters. 

The program itself first loads the necessary files (two copies of the road graph - G and 

GO, a square grid and a list of edges with a statistically significant high number of 

TA’s), and then modifies the GO graph so that edges with a statistically significant high 

number of accidents receive a penalty - an increase in length by the value entered on the 

command line. This is done in the set_obstacles(fname, penalty, maxp) function, where 

fname is the name of the file with the list of edges containing a statistically significant 

number of TAs (see Section 6.6), penalty is the value in meters, and maxp is the number 

of edges that participate in the GO graph modification, i.e. the program allows using 

either all edges with a significant number of accidents or a subset of them. 

In the main loop of the program 
for rin,rend in product(range(grd_pnt), range(grd_pnt)): 

all non-identical pairs of nodes in the grid are enumerated. For each pair of nodes, the 

nearest nodes of the graph are calculated: 
 
start_node = ox.get_nearest_node(G, start)  
end_node = ox.get_nearest_node(G, end) , 

 
where start, end are the coordinates of the corresponding nodes of the grid. 

For GO and G, routes with common start (start_node) and common end (end_node) are 

constructed, and for each pair of routes the relative risk of accidents is calculated, which 

is equal to the ratio of the number of accidents along the modified route along the GO 

graph to the number of accidents along the original route along the G graph. The 

calculation of accidents along the route is performed by the function tas_along_route(G, 

route), where route is the list of graph vertices traversed along the route. 
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In addition, for each route, its length and the number of road graph vertices traversed 

along the route are calculated. 

The calculation results are written to a .csv file with the following structure: 

Listing 6.7.1. The structure of the output file 
BEGIN,END,ROUTE_LENGTH,ROUTE_O_LENGTH,ROUTE_NODES,ROUTE_O_NODES,TA_DIRECT,TA_AVOID
,AFFECTED 
60.035373133218066#30.08738874095845, 60.0084702205044#30.089756684912672, 
4734.367, 4734.367, 10, 10, 0.0, 0.0, no 
60.035373133218066#30.08738874095845, 59.873953156252696#30.10152938432629, 
40672.12399999999, 40781.512999999984, 186, 186, 163.0, 155.5, yes 
60.035373133218066#30.08738874095845, 59.847049243899896#30.10387060306932, 
40015.45499999998, 40124.843999999975, 180, 180, 162.5, 155.0, yes 
60.035373133218066#30.08738874095845, 59.82014516525566#30.10620740887939, 
44565.799000000006, 44629.78200000001, 228, 223, 165.5, 160.0, yes 
60.035373133218066#30.08738874095845, 60.03654801588501#30.141163834961077, 
5827.031, 5827.031, 13, 13, 2.0, 2.0, no 
 

Here BEGIN, END - coordinates of the beginning and end of the route, 

ROUTE_LENGTH - length of the unmodified route, ROUTE_O_LENGTH - length of 

the modified route, ROUTE_NODES and ROUTE_O_NODES - number of nodes of 

the graph along the original and modified route respectively, TA_DIRECT - number of 

accidents along the original route, TA_AVOID - number of accidents along the 

modified route, AFFECTED is yes if the route has changed, no if not. 

 

6.8. Final data processing and visualization 

 

Having several files for different penalty values (their structure is shown in Listing 

6.7.1), it is possible to plot graphs of the main routing indicators (relative risk of an TA, 

the ratio of the lengths of the modified and the original route, as well as the ratio of the 

number of vertices of the road graph for the modified and the original route) depending 

on the length of the original, built without modification graph G, route. On such a 

graph, it is necessary to show not only average values, but also confidence intervals for 

averages. All these tasks are performed by the program shown in Appendix 10. 

Main function plot_dependency(ylabel, column, label, legend): receives as the input 

ylabel – an inscription on the ordinate axis, column – displayed values, for example, an 
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array of relations Length of the modified route / Length of the original route, label – a 

list of penalties (in the form of strings), and legend – the graph title. 

To display the data, it is necessary to calculate their averages and confidence intervals 

of the averages. This is done by the interval_stat() function, which in turn uses the 

bootstrap package bootstrapped. For more information about using bootstrap ratings, 

see section 3.3. 

The rest of the program is not too complicated and is not of much interest, since it 

prepares data for the plot_dependency(ylabel) function. 

Examples of graphs constructed by this program are shown in Fig. 5.3, 5.4, 5.5.  

Examining the constructed graphs, studying the corresponding tables, as described in 

Chapters 4-5, it is possible to find the optimal value of the penalty, which, paired with a 

list of edges with a statistically significant high number of accidents (see section 6.6), 

gives complete information necessary to modify the road graph. The 

set_obstacles(fname, penalty, max) function, briefly described in section 6.7, is suitable 

for modification, which should be used with the optimal penalty value for this graph. 
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Conclusion (main scientific results) 

 

1. The relative risk ratio of accidents (RRR) is used as an indicator of the effectiveness 

of routing, equal to the average ratio of the number of accidents along the altered 

(taking into account obstacles on the roads) route to the number of accidents along 

the unaltered (not taking into account obstacles) route ([57], p. 8 par. 6). 

2. Statistically significant clusters of accidents are used as obstacles in the 

construction of an alternative (safer) route ([48], p. 47 par. 6, [57], p. 8 par. 7). 

3. Separate road segments (edges of the road graph) containing the number of 

accidents statistically exceeding the number of accidents obtained from the 

assumption of the uniformity of the distribution of accidents on the road network 

are used as obstacles ([58] p. 103 par. 2, p. 104 par. 6, [61] p. 30 par 1, p. 32 par. 

2). 

4. To design a safer route, each obstacle is subject to a penalty, i.e. a fixed number is 

added to the attribute of the length of the corresponding edge. By calculations, the 

optimal value of the penalty is determined, which ensures a minimum risk of a TA 

with a minimum increase in the length of the route and the number of traversable 

vertices of the road graph (([58], p. 103 par. 2, [61], p. 32 par. 3). 
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Glossary of terms 

 

Bootstrap — a statistical method for estimating quantitative statistical measures by 

averaging estimates over several small samples of data. Samples are created by extracting 

observations from a large sample of data one at a time and returning them to the data 

sample after they have been selected. 

Confidence interval — the interval of values of a random variable within which the 

mean of that variable falls with a given probability, for example, the 95% confidence 

interval. 

DBSCAN — clustering algorithm that selects clusters of points of arbitrary shape and a 

given local density. 

GIS – Geographic information system - a system for collecting, storing, analyzing and 

graphically visualizing spatial (geographic) data 

 

HRA — High Risk Areas – in this Thesis, either a cluster of accidents or a road segment 

with an increased number of accidents 

KDE – kernel density estimation 

Monte-Carlo method — a broad class of computational algorithms that rely on repetitive 

random sampling to obtain numerical results. In this Thesis, sets of points evenly 

distributed over the road network are generated to assess the statistical significance of the 

values. 

Relative Risk Ratio — the ratio of the number of accidents along the modified 

(presumably safer) route to the number of accidents of the original route having the same 

starting and ending points. 

RRR — Relative Risk Ratio of accidents 

TA – Traffic Accident 
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Appendix 1. Loading a road graph in native OSMNX format and in 
ShapeFile format (for GIS application) 

 
import osmnx as ox 
import pickle 
 
city = 'Petersburg' 
loc = city + ',RU' 
ox.config(use_cache=True, log_console=True, all_oneway=False) 
 
G = ox.graph_from_place(loc, network_type='drive') 
G = ox.add_edge_speeds(G) 
G = ox.add_edge_travel_times(G) 
 
ox.io.save_graph_shapefile(G, 'data/' + 'spb_one_way_false', encoding='utf-8') 
 
with open(city + '.p', 'wb') as f: 
    pickle.dump(G, f) 
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Appendix 2.  Finding the edges of the road graph closest to an TA 

 
#edges_for_all_tas_spb_projected_gibdd.py 
import pandas as pd   
import networkx as nx 
import osmnx as ox 
from shapely.geometry import LineString,Point 
import geopandas as gpd 
from ipyleaflet import * 
import pickle 
import matplotlib.pyplot as plt 
import datetime 
 
 
max_dist = 35 
save_oneway = False 
 
with open("data/Petersburg.p", 'rb') as f:  # notice the r instead of w 
    G = pickle.load(f) 
Gp = ox.project_graph(G) 
 
 
if save_oneway: 
   f = open('zzz_tas_to_edges_2019_2021_oneway_proj_spb_gibdd.csv','w') 
else: 
   f = open('zzz_tas_to_edges_2019_2021_twoway_proj_spb_gibdd.csv','w')     
f.write('YEAR,DATE,TIME,ID,X,Y,LAT,LON,NODE1,NODE2,KEY,DIST\n') 
 
# input TAs 
ta_data = 'data/tas_raw_spb.csv' 
fta = open(ta_data,'r') 
ta_header = 'YEAR,DATE,TIME,LAT,LON,X,Y' 
ta_items = ta_header.split(',') 
fta.readline() # Skip header 
 
def prepareRow(year, date, time, id, x, y, lat, lon, node1, node2, key, d): 
    row = str(year) + ', ' 
    row += date + ', ' 
    row += time + ', ' 
    row += str(id) + ', ' 
    row += str(x) + ', ' 
    row += str(y) + ', ' 
    row += str(lat) + ', ' 
    row += str(lon) + ', ' 
    row += str(node1) + ', ' 
    row += str(node2) + ', ' 
    row += str(key) + ', ' 
    #row += str(d) + '\n' 
    row += "{0:.5f}".format(d) + '\n' 
    return row 
 
 
#def write_csv_row(year, edge, ta_id, x, y, lat, lon, oneway): 
def write_csv_row(year, date, time, edge, ta_id, x, y, lat, lon, oneway): 
    node1 = edge[0] 
    node2 = edge[1] 
    key = edge[2]   
    d = edge[3] 
    row = prepareRow(year, date, time, ta_id, x, y, lat, lon, node1, node2, key, 
d) 
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Continuation of Appendix 2 
 
    f.write(row) 
    if not oneway: 
       #if the edge is two-way, add adge with opposite direction  
       row = prepareRow(year, date, time, ta_id, x, y, lat, lon, node2, node1, 
key, d) 
       print('two way:', node1,node2,key) 
       f.write(row) 
 
def extract_year(date): 
    return date.split('-')[0] 
 
 
count = 0 
ta_id = 126438 
print(datetime.datetime.now().time()) 
while True: 
    ta = fta.readline().split(',') 
    if len(ta) < 7: break 
    year = ta[ta_items.index('YEAR')] 
    date = ta[ta_items.index('DATE')] 
    time = ta[ta_items.index('TIME')] 
    lat = ta[ta_items.index('LAT')] 
    lon = ta[ta_items.index('LON')] 
    point = (float(lat), float(lon)) 
    point_geom_proj, crs = ox.projection.project_geometry(Point(reversed(point)),\ 
        to_crs=Gp.graph['crs']) 
    x, y = point_geom_proj.x, point_geom_proj.y 
    u, v, key, dist = ox.get_nearest_edge(Gp, (y, x), return_dist=True) 
    edge = (u, v, key, dist) 
    if dist < max_dist: 
      if save_oneway: 
         write_csv_row(year, date, time, edge, ta_id, x, y, lat, lon, True)  
      else:    
         oneway = G.edges[u,v,key]['oneway'] 
         write_csv_row(year, date, time, edge, ta_id, x, y, lat, lon, oneway) 
      ta_id += 1 
      count += 1 
      if count % 100 == 0: 
         print(count)  
f.close() 
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Appendix 3.  Estimation of the accuracy of calculating distances in UTM 
coordinates using the Euclid formula 

 
#_test_utm_eucl.py 
import osmnx as ox 
import pickle 
import math 
from shapely.geometry import LineString,Point 
from pyproj import Proj 
 
coords_1 = (float(60.098310), float(30.305087)) 
coords_2 = (float(59.814286), float(30.374339)) 
 
with open("data/Petersburg.p", 'rb') as f:  # notice the r instead of w 
    G = pickle.load(f) 
Gp = ox.project_graph(G) 
 
 
dist = geopy.distance.geodesic(coords_1, coords_2).m 
 
point1 = (coords_1[0], coords_1[1]) 
point2 = (coords_2[0], coords_2[1]) 
     
point_geom_proj, crs = ox.projection.project_geometry(Point(reversed(point1)),\ 
    to_crs=Gp.graph['crs']) 
x1, y1 = point_geom_proj.x, point_geom_proj.y 
 
point_geom_proj, crs = ox.projection.project_geometry(Point(reversed(point2)),\ 
    to_crs=Gp.graph['crs']) 
x2, y2 = point_geom_proj.x, point_geom_proj.y 
 
eucl_dist = math.sqrt((abs(x1-x2)**2) + (abs(y1-y2))**2) 
print(eucl_dist - dist) 
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Appendix 4.  Counting the number of accidents for each edge of the 
road graph 

 

#edges_most_populated.py 
import pandas as pd   
import networkx as nx 
import osmnx as ox 
from shapely.geometry import LineString 
import geopandas as gpd 
from ipyleaflet import * 
import pickle 
import matplotlib.pyplot as plt 
import numpy as np 
import datetime 
from operator import itemgetter 
 
 
with open("data/Petersburg.p", 'rb') as f:  # notice the r instead of w 
    G = pickle.load(f) 
ta_edges = 
pd.read_csv('data/tas_to_edges_2019_2021_twoway_proj_spb_gibdd_flt_35.csv') 
avoidf = open('edges_most_populated_spb_sorted_by_ta_flt_2_debug.csv', 'w') 
avoidf.writelines('cn,node_start,node_end,key,lat0,lon0,lat1,lon1,tas,\ 
       ta_density\n') 
 
elfn = "edge_list.csv" 
elf = open(elfn, 'w') 
elf.writelines('NODE1,NODE2,KEY\n') 
 
def tas_along_edge(u, v,  key): 
    edges_outg = ta_edges.loc[ta_edges['NODE1'] == u] 
    edge_tas = edges_outg.loc[(edges_outg['NODE2'] == v) &\ 
                             (edges_outg['KEY'] == key)] 
     
    tas = edge_tas.shape[0] 
    oneway = G.edges[u, v, key]['oneway'] 
    if not oneway: 
       tas = tas/2.0   
    return tas 
 
def equal_nodes(edge1, edge2): 
    ret = False 
    if (edge1[0] == edge2[0]) and (edge1[1] == edge2[1]) and\ 
       (edge1[2] == edge2[2]): 
       ret = True 
    return ret  
 
edge_list = [] 
def collect_edges(G): 
    edges = G.edges(keys = True, data = True) 
    for edge in edges: 
        current_edge = [edge[0],edge[1],edge[2]] 
        llen = len(edge_list) 
        if llen != 0: 
           pe = edge_list[llen-1] 
           prev_edge = [pe[0],pe[1],pe[2]]  
        if llen == 0: 
           edge_list.append(edge)   
        elif not equal_nodes(prev_edge, current_edge): 
             edge_list.append(edge)  
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Continuation of Appendix 4 
 
def save_paths_to_avoid(edges,n): 
    for i in range(n): 
        density = f"{edges[i][8]:.3f}" 
        line = str(i) + ',' + str(edges[i][0]) + ',' + str(edges[i][1]) +\ 
               ','+ str(edges[i][2]) + ','+ str(edges[i][3]) +\ 
               ','+ str(edges[i][4]) +',' + str(edges[i][5]) +\ 
               ',' + str(edges[i][6])+ ',' + str(edges[i][7])+\ 
               ',' + str(density) + '\n' 
        avoidf.writelines(line) 
    avoidf.close() 
 
ds = [] 
ts_edges = [] 
def tas_to_edges(G): 
    for edge in edge_list: 
        node0 = edge[0] 
        node1 = edge[1] 
        n_edges =  G.number_of_edges(node0, node1) 
        for key in range(n_edges): 
            tas = tas_along_edge(node0, node1, key) 
            l = G.edges[node0, node1, key]['length'] 
            d = tas/l 
            lon0 = G.nodes[node0]['x'] 
            lat0 = G.nodes[node0]['y'] 
            lon1 = G.nodes[node1]['x'] 
            lat1 = G.nodes[node1]['y'] 
            ts_edge = [node0, node1, key, lat0, lon0, lat1, lon1, tas, d] 
            ts_edges.append(ts_edge) 
collect_edges(G) 
print('Total edges:', len(edge_list) ) 
for edge in edge_list: 
    row = str(edge[0]) + ',' + str(edge[1]) + ',' + str(edge[2]) + '\n' 
    elf.writelines(row) 
elf.close() 
tas_to_edges(G) 
ts_sorted = sorted(ts_edges, key=itemgetter(7), reverse=True) 
save_paths_to_avoid(ts_sorted, len(ts_edges)) 
 

 

 

 

 

 

 

 



 104 

Appendix 5.  Statistical tests on a road graph with uniformly distributed 
points 

 
""" 
Script: 
collect_trials.py – performs Monte-Carlo trials on most TA-populated edges 
Input: 
Road network (.p file for example "Peterburg.p") 
.csv list of Sanet-generated points and respective edges points belong to. 
.csv list of the TA-populated edges sorted by TA.  
Output: 
.csv – TA-populated edges along with results of Monte-Carlo trials. 
""" 
 
import pandas as pd   
import networkx as nx 
import osmnx as ox 
from shapely.geometry import LineString 
import geopandas as gpd 
#import geopy.distance 
#import json 
from ipyleaflet import * 
import pickle 
import matplotlib.pyplot as plt 
import numpy as np 
#import sys 
import datetime 
 
 
 
tsize = 13503 
 
tot_trials = 1000 
tot_edges = 2000 
 
with open("data/Petersburg.p", 'rb') as f:  # notice the r instead of w 
    G = pickle.load(f) 
 
#points uniformly distributed over edges 
points_sanet_edges = pd.read_csv('data/sanet_points_to_edges_flt_35_spb.csv') 
print(points_sanet_edges) 
 
""" 
def currentTime(): 
    e = datetime.datetime.now() 
    time = "%s:%s:%s" % (e.hour, e.minute, e.second) 
    return time 
""" 
 
sanet_trials =[] 
def prepare_sanet_points(trials, size): 
    #df.iloc[2:5] 
    for i in range(trials): 
        init = i * size 
        end = (i+1) * size - 1 
        trial = points_sanet_edges.iloc[init:end] 
        sanet_trials.append(trial) 
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Continuation of Appendix 5 
 
prepare_sanet_points(tot_trials, tsize) 
print(len(sanet_trials)) 
 
ta_edges = open('data/edges_most_populated_spb_sorted_by_ta_flt_35_debug.csv' , 
'r') 
mhdr = ta_edges.readline() 
hp = mhdr.split(',') 
hp[-1] = hp[-1].strip() 
print(len(hp)) 
sanet_trials_file = open('sanet_trials_flt_35_half_two_way.csv', 'w') 
hdr = 'node_start,node_end,key,tas,trial_values\n' 
sanet_trials_file.writelines(hdr) 
 
edge_cnt = 0 
while True: 
      if edge_cnt > tot_edges: break;  
      line = ta_edges.readline() 
      vals = line.split(',') 
      if len(vals) < 10: break 
      vals[-1] = vals[-1].strip() #delete last symbol ‘\n’ 
      edge1 = int(vals[hp.index('node_start')])  
      edge2 = int(vals[hp.index('node_end')]) 
      key   = int(vals[hp.index('key')]) 
      tas = vals[hp.index('tas')] 
      #oneway = G.edges[edge1,edge2,key]['oneway'] 
       
      row = str(edge1)+','+str(edge2)+','+str(key)+','+tas+',' 
      for trial in sanet_trials: 
          pi = trial.loc[trial['EDGEI'] == edge1] 
          pe = pi.loc[pi['EDGEE'] == edge2] 
          pk = pe.loc[pe['EDGEK'] == key] 
          pnts = pk.shape[0] 
          #if not oneway: pnts = pnts/2.0 
          row = row + str(pnts) + '#' 
      row  += '\n' 
      sanet_trials_file.writelines(row)  
      print('edge number:', edge_cnt) 
      edge_cnt += 1 
sanet_trials_file.close() 
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Appendix 6.  Representation of uniformly distributed points obtained 
using the SANET program in the form of .csv file 

from configparser import InterpolationError 
import shapefile  
import networkx as nx 
import osmnx as ox 
from datetime import datetime 
import numpy as np   
import pandas as pd 
import pickle 
 
 
with open("data/Petersburg.p", 'rb') as f:  # notice the r instead of w 
    G = pickle.load(f) 
 
#G_proj = ox.projection.project_graph(G) 
 
def currentTime(): 
    now = datetime.now() 
    current_time = now.strftime("%H:%M:%S") 
    return now 
 
fname = 'data/sanet/SANETRandomPoint20m.shp' 
#fname = '../prepare_data/data/moscow_random30m.shp' 
 
out_name = 'sanet_points_to_edges_flt_35_spb.csv' 
outf = open(out_name,'w') 
outf.writelines('N,LAT,LON,EDGEI,EDGEE,EDGEK\n') 
 
 
 
print(currentTime(), ' Start reading sanet points') 
sf = shapefile.Reader( fname ) 
mkrecords = sf.records() 
print(currentTime(), ' End reading sanet points') 
 
 
#trials = 1000 
trials = 1000 
tsize = 13503 
#tsize = 10 
tr = 0 
cnt = 0 
X = [] 
Y = [] 
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Continuation of Appendix 6 
 
for record in mkrecords: 
    lat = record[2] 
    lon = record[1] 
    X.append(record[1]) 
    Y.append(record[2]) 
    cnt += 1 
    if cnt >= tsize:  
       edges =  ox.distance.get_nearest_edges(G,X,Y,method='balltree')  
       for i, edge in enumerate(edges): 
           out_str = str(tr) + ',' + str(Y[i]) + ',' + str(X[i]) + ',' + 
str(edge[0]) + ',' + str(edge[1]) + ',' + str(edge[2]) + '\n' 
           outf.writelines(out_str) 
       X = [] 
       Y = [] 
       print(currentTime(), ' Trial: ', tr) 
       tr += 1 
       cnt = 0 

 
 
       if tr >= trials: break 
outf.close()     
print(currentTime(), 'End')  
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Appendix 7.  Finding statistically significant values of road traffic 
accidents 

 
""" 
Script: 
select_significant_edges.py – select statistically significant edges 
Input: 
sanet_trials_flt_35_half_two_way.csv – sanet points with results of trials 
Output: 
sanet_trials_flt_35_signifcant_<p>.csv – statistically significant edges used as 
input for routing script  
routing_finite_penalty.py. 
 
""" 
import numpy as np 
 
 
p = 95 
 
def percentile(vals,p): 
    vals[-1] = vals[-1].strip() 
    tot_vals = vals[hdrps.index('trial_values')][:-1] 
    str_vals = tot_vals.split('#') 
    str_vals[-1] = str_vals[-1].strip() 
    ivals = [int(str_val) for str_val in str_vals] 
    #vls = np.array(ivals) 
    percentile = np.percentile(ivals,p) 
    return percentile 
 
 
trialsf = open('data/sanet_trials_flt_35_half_two_way.csv','r') 
outpf = open('sanet_trials_flt_35_signifcant_' + str(p)+ '.csv','w') 
hdr = trialsf.readline() 
outpf.writelines(hdr) 
hdrps = hdr.split(',') 
hdrps[-1] = hdrps[-1].strip() 
while True: 
    row = trialsf.readline() 
    rowps = row.split(',') 
    if len(rowps) < 5: break 
    tas = rowps[hdrps.index('tas')] 
    perc = percentile(rowps,p) 
    if float(tas) > perc: 
       outpf.writelines(row) 
trialsf.close() 
outpf.close()   
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Appendix 8.  Creating a square grid superimposed on a road graph 

 
 
import pickle 
import osmnx as ox 
import utm 
import sys 
 
with open("data/Petersburg.p", 'rb') as f:  # notice the r instead of w 
     G = pickle.load(f) 
 
 
# upper left 55,915650900000003, 37,366904099999999 
ilat = 60.05 
ilon = 30.14 
width = 50000 
height = 50000 
step = 3000 
 
csv_header = 'num,X,Y,LAT,LON\n' 
gname = 'spb_grid_' + str(step)+ '.csv' 
gf = open(gname,'w') 
gf.write(csv_header) 
 
# X,Y 
ini_coords = utm.from_latlon(ilat, ilon) 
print (ini_coords) 
x0 = ini_coords[0] - 3000 
y0 = ini_coords[1] + 4500 
 
irange = int(width/step) 
jrange = int(height/step) 
 
k = 0 
for i in range(irange): 
    x = x0 + i*step 
    for j in range(jrange): 
        y = y0 - step*j 
        #latlon = utm.to_latlon(x,y, 37, 'U') 
        latlon = utm.to_latlon(x,y, 36, 'U' ) 
        row = str(k) + ',' + str(x) + ',' + str(y) + ',' + str(latlon[0]) + ','\ 
              + str(latlon[1]) + '\n' 
        gf.write(row) 
        k += 1 
gf.close() 
 
#Filter grid poionts 
fname = 'grid_filtered_' + str(step) + '.csv' 
ff = open(fname,'w') 
fg = open(gname,'r') 
header = fg.readline() 
ff.write(header) 
max_dist  = step/2 
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Continuation of Appendix 8 
 
 
while True: 
    row = fg.readline() 
    rvals = row.split(',') 
    if len(rvals) < 5: break 
    lat = float(rvals[3]) 
    lon = float(rvals[4]) 
    nodeDist = ox.get_nearest_node(G, (lat,lon), method='haversine',\ 
               return_dist=True) 
    print(nodeDist) 
     
    if nodeDist[1] < max_dist: 
       ff.write(row)   
     
ff.close() 
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Appendix 9.  Program for collecting relative risk statistics 
 

import numpy as np 
import pandas as pd   
import networkx as nx 
import osmnx as ox 
from shapely.geometry import LineString 
import geopandas as gpd 
import geopy.distance 
from ipyleaflet import * 
import pickle 
import matplotlib.pyplot as plt 
import datetime 
from itertools import product 
import sys 
 
 
# To run with command line 
 
if len(sys.argv) < 2: 
   print ('Usage: routing_finite_penalty.py <p>, <max_path_to_avoid> <obstacles> 
<penalty>') 
#example: routing_finite_penalty.py 95 800 
data/sanet_trials_flt_35_signifcant_95.csv 200 
   sys.exit()  
 
p = int(sys.argv[1]) 
max_paths_to_avoid = int(sys.argv[2]) 
fobst = sys.argv[3] 
penalty = int(sys.argv[4]) 
print('penalty=', penalty) 
 
 
 
""" 
p = 95 
max_paths_to_avoid = 800 
fobst = 'data/sanet_trials_flt_35_signifcant_95.csv' 
penalty = 1000  
""" 
 
 
debug = True 
#fobst = 'data/paths_to_avoid_moscow_sorted_by_ta.csv' 
#node_start,node_end,key,tas,trial_values 
#fobst = 'data/paths_to_avoid_moscow_sorted_by_ta_flt_35_half_two_way.csv' 
grid_step = 3000 
#max_paths_to_avoid = 500 
#penalty = 500 
obst_edges = [] 
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Continuation of Appendix 9 
 
def read_obst_edges(fname, maxp): 
    cnt = 0 
    fl = open(fname, 'r') 
    hdr = fl.readline().split(',') 
    hdr[-1] = hdr[-1].strip() 
     
    while(True): 
         ln = fl.readline() 
         if ln[0] == '#': continue 
         print(ln)  
         if(ln == ''): break 
         lnp = ln.split(',') 
         if len(lnp) < 5: break  
         start_node = int(lnp[hdr.index('node_start')]) 
         end_node = int(lnp[hdr.index('node_end')]) 
         key = int(lnp[hdr.index('key')]) 
         edge = [start_node, end_node, key] 
         obst_edges.append(edge) 
         cnt += 1 
         if cnt == maxp: break 
    fl.close()  
 
def split_row(header): 
    hdrps = header.split(',')  
    hdrps[-1] = hdrps[-1].strip() 
    return hdrps,len(hdrps) 
 
 
def set_obstacles(fname, penalty, maxp): 
    global GO # with obstacles 
    global G  # original graph  
    fl = open(fname, 'r') 
    hd = fl.readline() 
    hdr,hl = split_row(hd) 
    cnt = 0 
    while(True): 
         ln = fl.readline() 
         if ln[0] == '#': continue 
         #print(ln)  
         lnp, lcs = split_row(ln) 
         if len(lnp) < hl: break  
         start_node = int(lnp[hdr.index('node_start')]) 
         end_node = int(lnp[hdr.index('node_end')]) 
         key = int(lnp[hdr.index('key')]) 
         origEdgeLength = G.edges[ start_node, end_node, key]['length'] 
         GO.edges[ start_node, end_node, key]['length'] = origEdgeLength + penalty 
         cnt += 1 
         if cnt == maxp: break 
    fl.close()  
 
with open("data/Petersburg.p", 'rb') as f:  # notice the r instead of w 
    G = pickle.load(f) 
 
with open("data/Petersburg.p", 'rb') as f:  # notice the r instead of w 
    GO = pickle.load(f) 
 
# Read grid points 
gridfn = 'data/grid_filtered_' + str(grid_step) + '.csv' 
df = pd.read_csv(gridfn) 
print(df.shape) 
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Continuation of Appendix 9 
 
# Read TAs with the edges TAs belong to 
ta_edges = 
pd.read_csv('data/tas_to_edges_2019_2021_twoway_proj_spb_gibdd_flt_35.csv') 
print(ta_edges) 
 
 
def tas_along_edge(u, v,  key, oneway, year=0): 
    if year == 0: 
       edges_outg = ta_edges.loc[ta_edges['NODE1'] == u] 
    else: 
       edges_outg = ta_edges.loc[ta_edges['NODE1'] == u & ta_edges['YEAR'] ==\ 
                    year]  
    edge_tas = edges_outg.loc[(edges_outg['NODE2'] == v) & (edges_outg['KEY'] ==\ 
               key)] 
    tot_tas = edge_tas.shape[0] 
    if not oneway: 
       tot_tas = 0.5 * edge_tas.shape[0]  
    return tot_tas 
 
 
def tas_along_route(G, route, year=0): 
    total_tas = 0 
    rl = len(route) 
    node0 = route[0] 
    for i in range(1,rl): 
        node1 = route[i] 
        n_edges =  G.number_of_edges(node0, node1) 
        if n_edges == 1: 
           edge = 0 
        else: 
           #Find edge with min length in case there are several edges between two 
           # nodes  
           edge = 0 
           l_dest = G.edges[node0, node1, 0]['length'] 
           for k in range(1, n_edges): 
               l_attr = G.edges[node0, node1, k]['length'] 
               if l_attr  < l_dest: 
                  l_dest = l_attr 
                  edge = k 
        oneway =  G.edges[node0, node1, edge]['oneway']       
        if year == 0: 
           total_tas += tas_along_edge(node0, node1, edge, oneway) 
        else: 
           total_tas += tas_along_edge(node0, node1, edge, oneway, year)    
        node0 = node1    # next edge begins where previous one ends 
    return total_tas        
 
# Compare two routes 
def routesAreEqual(route1,route2): 
    result = True 
    if len(route1) != len(route2): return False 
    for i in range(len(route1)): 
        if route1[i] != route2[i]: 
           result = False 
           break 
    return result 
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Continuation of Appendix 9 
 
# Check if an edge is in list of "prohibited" edges 
def edgeWithPenalty(node1, node2, key): 
    ne = obst_edges_n.shape[0] 
    for i in range(ne): 
        v = obst_edges_n[i] 
        trio = np.array([node1,node2,key]) 
        if (v==trio).all(): 
           return True 
    return False     
 
 
def inspect_route(G,route): 
   extra_length = 0 
   penalties = 0 
   for i in range(len(route)-1): 
        u = int(route[i]) 
        v = int(route[i + 1]) 
        n_edges =  G.number_of_edges(u, v) 
        ek = 0 
        if n_edges > 1: 
           # Find edge with min length 
           minl =  G.edges[u,v,0]['length']  
           for i in range(1, n_edges): 
              li = G.edges[u,v,i]['length'] 
              if li < minl: 
                 minl = li 
                 ek = i  
        if edgeWithPenalty(u,v,ek): 
              extra_length += penalty  
              penalties += 1   
   return extra_length, penalties 
 
read_obst_edges(fobst,max_paths_to_avoid) 
obst_edges_n = np.array(obst_edges) 
 
set_obstacles(fobst, penalty, max_paths_to_avoid)  
grd_pnt = df.shape[0] 
 
f_tar_name = 'routes_' + str(grid_step) + '_pen_' + str(penalty) +\ 
             '_edges_sorted_by_ta_sign' + str(p) + '_' + str(max_paths_to_avoid)+\ 
               
             '.csv' 
f_tar = open(f_tar_name, 'w')     
f_tar.write("BEGIN,END,ROUTE_LENGTH,ROUTE_O_LENGTH,ROUTE_NODES,ROUTE_O_NODES,\ 
             TA_DIRECT,TA_AVOID,AFFECTED\n") 
 
print(datetime.datetime.now().time()) 
 
cin = 0 
cend = 900000000 
penalties_G = [] 
penalties_GO = [] 
penalties_G = [] 
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Continuation of Appendix 9 
 
for rin,rend in product(range(grd_pnt), range(grd_pnt)): 
    ind = rin * grd_pnt + rend 
    print(ind, ' of ', grd_pnt * grd_pnt ) 
    if ind < cin: continue 
    if ind >= cend: break 
    if rend == rin: continue 
    row_from = df.loc[rin,:] 
    row_to = df.loc[rend,:] 
    start = (row_from[3],row_from[4]) 
    end = (row_to[3],row_to[4]) 
    dist = geopy.distance.distance(start, end).km 
    start_node = ox.get_nearest_node(G, start)  
    end_node = ox.get_nearest_node(G, end) 
    try: 
        route = nx.shortest_path(G, start_node, end_node, weight='length') 
        penalties_G.append(inspect_route(G, route)[1]) 
        route_length = nx.shortest_path_length(G, start_node, end_node, 
weight='length') 
        route_nodes = len(route) 
    except: 
        continue 
    try: 
        route_o = nx.shortest_path(GO, start_node, end_node, weight='length') 
        total_penalty = inspect_route(GO, route_o)[0] 
        penalties_GO.append(inspect_route(GO, route_o)[1]) 
        if total_penalty != 0: 
           print('penalty=', total_penalty)  
        route_o_length = nx.shortest_path_length(GO, start_node, end_node, 
weight='length') - total_penalty 
        route_o_nodes = len(route_o) 
    except: 
        continue 
     
    tas_direct = tas_along_route(G, route)  
    equal_routes =  routesAreEqual(route, route_o) 
    if not equal_routes: 
        affected = ', yes' 
        tas_avoid = tas_along_route(G, route_o) 
    else: 
        affected = ', no'  
        tas_avoid = tas_direct 
     
    row = str(start[0])+'#'+str(start[1]) + ', ' + str(end[0])+\ 
          '#'+str(end[1]) + ', ' + str(route_length) + ', ' +\ 
           str(route_o_length) +\ 
           ', ' 
    row += str(route_nodes) + ', ' + str(route_o_nodes) + ', ' +\ 
           str(tas_direct) + ', ' + str(tas_avoid) + affected + '\n' 
    f_tar.write(row) 
s = pd.Series(penalties_GO) 
print('Modified route penalties') 
print(s.describe()) 
 
 
s = pd.Series(penalties_G) 
print('Original route penalties') 
print(s.describe()) 
 
f_tar.close() 
print(datetime.datetime.now().time()) 
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Appendix 10.  Data visualization 

 
from os import stat_result 
import geopy.distance 
from math import sqrt 
import numpy as np 
import pandas as pd 
from scipy import stats 
import bootstrapped.bootstrap as bs 
import bootstrapped.stats_functions as bs_stats 
import matplotlib.pyplot as plt 
import matplotlib.markers as markers 
 
 
 
params = {'xtick.labelsize':'x-large', 
          'ytick.labelsize':'x-large'} 
plt.rcParams.update(params) 
 
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', 
'#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] 
 
 
edges = ['200','500','1000','2000','5000'] 
fnames = ['routes_3000_pen_200_edges_sorted_by_ta_sign95_800.csv', 
          'routes_3000_pen_500_edges_sorted_by_ta_sign95_800.csv', 
          'routes_3000_pen_1000_edges_sorted_by_ta_sign95_800.csv', 
          'routes_3000_pen_2000_edges_sorted_by_ta_sign95_800.csv', 
          'routes_3000_pen_5000_edges_sorted_by_ta_sign95_800.csv', 
          ] 
pnlts = ['200','500','1000','2000','5000'] 
paths = open('routes_3000_pen_500_edges_sorted_by_ta_sign95_800.csv', 'r') 
 
header = paths.readline() 
hv = header.split(',') 
 
markers = [".","o","v","^","+","h","s","*",] 
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Continuation of Appendix 10 
 
def plot_dependency(ylabel, column,label,legend): 
     
    rheader = 'eucl_dist','length_before','route_length_after/before',\ 
              'tas_after_before','nodes_after_before','penalty','affected'] 
    plots = [] 
    for i, pnlt in enumerate(pnlts): 
        mean_ta_rt = [] 
        mean_ta_ci_l = [] 
        mean_ta_ci_u = [] 
        x = [] 
        xax = [] 
        start = 1 
        total_routes = 0 
        affected = 0 
        print(pnlt) 
        while start < 50: 
            xax.append(str(start) + '-' + str(start + step)) 
            x.append(stat_result) 
            ta_ratios = [] 
            for r in routes: 
                 
                val = r[1]/1000 
                if r[5] == pnlt: 
                    total_routes += 1 
                    aff = r[rheader.index('affected')].strip() 
                    if aff == 'yes': 
                       affected += 1  
                    if val > start and val < start + step: 
                       ta_ratios.append(r[rheader.index(column)]) 
            stats = interval_stat(ta_ratios) 
            mean = stats[1] 
            mean_ta_rt.append(mean) 
            mean_ta_ci_l.append(stats[2]) 
            mean_ta_ci_u.append(stats[3]) 
            print(start,start+step, ' ', len(ta_ratios), "{:.3f}".format(mean),\ 
                  "{:.3f}".format(stats[2]), '-', "{:.3f}".format(stats[3])) 
            start = start + step 
        print('Affected routes:', affected/total_routes) 
        print('\n') 
         
        if pnlt == '10000000000000': pnlt = '∞' 
        y = np.array(mean_ta_rt) 
        yl = np.array(mean_ta_ci_l) 
        yu = np.array(mean_ta_ci_u) 
        plot = [y,yl,yu] 
        plots.append(plot)  
    fig, ax = plt.subplots() 
    ax.labelsize:'medium'  # fontsize of the x any y labels 
    for j in range(len(pnlts)): 
        ax.plot(xax,plots[j][0],label = label[j], color = colors[j],\ 
                marker=markers[j]) 
        ax.fill_between(xax, plots[j][1], plots[j][2], color=colors[j], alpha=.1) 
    ht = np.ones(20) 
    l = np.linspace(0,10,20) 
    ax.plot(l,ht, color = 'lightgrey')  
    lg = ax.legend(loc='upper right', fontsize=16) 
    lg.set_title(legend,prop={'size':16}) 
    plt.xlabel('Длина первоначального (без препятствий) маршрута, км',fontsize=18) 
    plt.ylabel(ylabel, fontsize=18) 
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Continuation of Appendix 10 
 
def interval_stat(values): 
    ntest = stats.kstest(values, 'norm')   
    i_len = len(values) 
    lr = np.array(values) 
    samples = lr 
    mean_ci = bs.bootstrap(samples, stat_func=bs_stats.mean, alpha=0.05) 
    med = np.median(values) 
    med_ci = bs.bootstrap(samples, stat_func=bs_stats.median, alpha=0.05)  
    istat = [i_len, mean_ci.value , mean_ci.lower_bound, mean_ci.upper_bound,\ 
             med, med_ci.lower_bound, med_ci.upper_bound] 
    return istat 
 
def geoDist(col1,col2, prts, header): 
    latlon1 = parts[hv.index(col1)].split('#') 
    latlon2 = parts[hv.index(col2)].split('#') 
    lat1 = float(latlon1[0]) 
    lon1 = float(latlon1[1]) 
    lat2 = float(latlon2[0]) 
    lon2 = float(latlon2[1]) 
    return geopy.distance.distance((lat1,lon1), (lat2,lon2)).km 
 
 
routes = [] 
cnt = 0 
for i in range(len(pnlts)): 
    pnlt = pnlts[i] 
    fname = fnames[i] 
    paths = open(fname, 'r') 
    header = paths.readline() 
    hv = header.split(',') 
    hv[-1] = hv[-1].strip() 
    while(True): 
        line = paths.readline() 
        parts = line.split(',') 
        if len(parts) < 9: break 
        dist = geoDist('BEGIN', 'END', parts, hv) 
        d = round(dist,3) 
        tas_after = float(parts[hv.index('TA_AVOID')]) 
        tas_before = float(parts[hv.index('TA_DIRECT')]) 
        if tas_before != 0: 
            tas_after_before = tas_after/tas_before 
        else: 
            continue     
        length_after = float(parts[hv.index('ROUTE_O_LENGTH')]) 
        length_before = float(parts[hv.index('ROUTE_LENGTH')]) 
        length_after_before = length_after/length_before 
 
        nodes_after = float(parts[hv.index('ROUTE_O_NODES')]) 
        nodes_before = float(parts[hv.index('ROUTE_NODES')]) 
        nodes_after_before = nodes_after/nodes_before 
        affected = parts[hv.index('AFFECTED')].strip() 
        r = [dist, length_before, length_after_before,\ 
             tas_after_before, nodes_after_before, pnlt, affected]  
        routes.append(r) 
    paths.close() 
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Continuation of Appendix 10 
 
step = 5 
 
plot_dependency(‘Relative TA risk','tas_after_before', edges, 'Penalty m')     
plt.show() 
 
plot_dependency(Average route length after/before’,'route_length_after/before', 
edges, 'Penalty m')     
plt.show() 
 
plot_dependency('Average vertice count after/before','nodes_after_before', edges, 
'Penalty m')     
plt.show() 
 

 

 


	Introduction
	Approaches to clustering
	Using Statistically Significant TA Clusters
	Road segments as TAHS
	Routing efficiency evaluation
	Theoretical and practical significance
	Research methodology and methods
	Author’s published articles on the topic of this thesis
	Main scientific results
	Main points to be defended
	Chapter 1. Review of Literature
	Chapter 2. Identifying TA hotspots on Massachusetts roads in 2013-2018
	Introduction
	2.1 Input Data
	2.2 Research methods
	2.2.1 DBSCAN
	2.2.2 Matrix of intra-network distances (scale 20m)
	2.2.3 Hybrid approach to clustering
	2.2.4 Scale 10m
	2.2.5 Hybrid clustering with 10m
	2.3 An example
	2.3.1 Massachusetts 2013, clustering of severe TAs
	2.3.2 Meta-clusters in Massachusetts: Hybrid Bottom-Up Approach
	Conclusions

	Chapter 3. Vehicle routing in the presence of dangerous sections on the road (using the city of Springfield, MA as a case study)
	Introduction
	3.1 Tools and Data
	3.2 Method
	3.3 Bypassing High Risk Areas (HRA)
	3.3 Relative risk of an accident when choosing a route bypassing the HRA
	Conclusions

	Chapter 4. A simple way to improve road safety by bypassing dangerous sections of the route (using the city of Moscow as a case study)
	Introduction
	4.1 Data
	4.2 Tools and method
	4.3 Results
	Conclusions

	Chapter 5. Bypassing dangerous sections of the route to improve traffic safety (case study of St. Petersburg)
	Introduction
	5.1 Data
	5.2 Tools and method
	5.3 Results
	Findings

	Chapter 6. A package of programs modifying a road graph according to the number of accidents belonging to it
	6.1 Introduction
	6.2 Getting a road graph in OSMNX format and (separately) edges and vertices of the road network in ShapeFile format
	6.3. Combining TAs and a road graph
	6.4. Counting the number of TAs for each edge of the road graph
	6.5 Statistical tests to identify edges with a statistically significant number of TAs
	6.6 Selecting edges with a statistically significant number of TAs
	6.7 Constructing routes on the modified graph and collecting statistics of relative TA risk
	6.8. Final data processing and visualization

	Conclusion (main scientific results)
	Acknowledgements
	Glossary of terms
	References
	Appendix 1. Loading a road graph in native OSMNX format and in ShapeFile format (for GIS application)
	Appendix 2.  Finding the edges of the road graph closest to an TA
	Appendix 3.  Estimation of the accuracy of calculating distances in UTM coordinates using the Euclid formula
	Appendix 4.  Counting the number of accidents for each edge of the road graph
	Appendix 5.  Statistical tests on a road graph with uniformly distributed points
	Appendix 6.  Representation of uniformly distributed points obtained using the SANET program in the form of .csv file
	Appendix 7.  Finding statistically significant values of road traffic accidents
	Appendix 8.  Creating a square grid superimposed on a road graph
	Appendix 9.  Program for collecting relative risk statistics
	Appendix 10.  Data visualization

