
SAINT-PETERSBURG UNIVERSITY

Manuscript copyright

Gershteyn Arkady Mikhail

Thesis: Software tools for building safe transport routes

Scientific specialty 2.3.5. Mathematical and software support of computer systems,

complexes and computer networks

Translation from Russian

DISSERTATION

for the academic degree of Candidate of Physical and Mathematical Sciences

Scientific Supervisor:

Doctor of Physics and Mathematics, professor,

Andrey Nikolaevich Terekhov

Saint Petersburg

2024

 2

Table of Contents

Introduction ... 4

Approaches to clustering .. 5

Using Statistically Significant TA Clusters... 6

Road segments as TAHS .. 7

Routing efficiency evaluation .. 7

Theoretical and practical significance .. 8

Research methodology and methods .. 9

Author’s published articles on the topic of this thesis ...10

Main scientific results ..11

Main points to be defended...12

Chapter 1. Review of Literature ...14

Chapter 2. Identifying TA hotspots on Massachusetts roads in 2013-201819

Introduction ..19

2.1 Input Data ...20

2.2 Research methods ...22

2.2.1 DBSCAN ..22

2.2.2 Matrix of intra-network distances (scale 20m) ...23

2.2.3 Hybrid approach to clustering ...25

2.2.4 Scale 10m ...26

2.2.5 Hybrid clustering with 10m ...27

2.3 An example ...27

2.3.1 Massachusetts 2013, clustering of severe TAs ..27

2.3.2 Meta-clusters in Massachusetts: Hybrid Bottom-Up Approach ...30

Conclusions ...34

Chapter 3. Vehicle routing in the presence of dangerous sections on the road (using the city of
Springfield, MA as a case study) ..35

Introduction ..35

3.1 Tools and Data ...36

3.2 Method ...38

3.3 Bypassing High Risk Areas (HRA) ..39

3.3 Relative risk of an accident when choosing a route bypassing the HRA ..46

Conclusions ...51

Chapter 4. A simple way to improve road safety by bypassing dangerous sections of the route
(using the city of Moscow as a case study) ..52

Introduction ..52

4.1 Data ..53

 3

4.2 Tools and method ..54

4.3 Results ..56

Conclusions ...64

Chapter 5. Bypassing dangerous sections of the route to improve traffic safety (case study of St.
Petersburg) ...66

Introduction ..66

5.1 Data ..66

5.2 Tools and method ..68

5.3 Results ..69

Findings ..77

Chapter 6. A package of programs modifying a road graph according to the number of accidents
belonging to it ..78

6.1 Introduction ..78

6.2 Getting a road graph in OSMNX format and (separately) edges and vertices of the road network in
ShapeFile format ...78

6.3. Combining TAs and a road graph ...79

6.4. Counting the number of TAs for each edge of the road graph ...81

6.5 Statistical tests to identify edges with a statistically significant number of TAs84

6.6 Selecting edges with a statistically significant number of TAs ..85

6.7 Constructing routes on the modified graph and collecting statistics of relative TA risk86

6.8. Final data processing and visualization ..88

Conclusion (main scientific results) ...90

Acknowledgements ..90

Glossary of terms ..91

References ..92

Appendix 1. Loading a road graph in native OSMNX format and in ShapeFile format (for GIS
application) ..98

Appendix 2. Finding the edges of the road graph closest to an TA ...99

Appendix 3. Estimation of the accuracy of calculating distances in UTM coordinates using the
Euclid formula... 101

Appendix 4. Counting the number of accidents for each edge of the road graph 102

Appendix 5. Statistical tests on a road graph with uniformly distributed points 104

Appendix 6. Representation of uniformly distributed points obtained using the SANET program in
the form of .csv file ... 106

Appendix 7. Finding statistically significant values of road traffic accidents 108

Appendix 8. Creating a square grid superimposed on a road graph ... 109

Appendix 9. Program for collecting relative risk statistics ... 111

Appendix 10. Data visualization ... 116

 4

Introduction

“Yeah, bye,” said Harry and instead of turning right, he turned

 left, taking a longer but safer route up to the Owlery.
 J.K. Rowling, «Harry Potter and the Order of the Phoenix»

 In this work, a software package has been created that allows one to construct safer

routes for vehicles. The need to create such a software package arises from the fact that

traffic accidents lead to immense human mortality and injuries. According to data from

the WHO (World Health Organization) [https://ww.who.int/news-room/fact-

sheets/detail/road-traffic-injuries] about 1.3 million people worldwide die annually in

traffic collisions and about 50 million are injured to various degrees of severity.

 Therefore, the task of reducing the number of road traffic accidents (RTAs) and,

consequently, of reducing the number of deaths and injuries in road traffic accidents

seems very important and consequential. This is also evidenced by the numerous works

on the subject (see Chapter 1, devoted to the literature review). Here, in the Introduction,

I will consider the most obvious approaches to solving this problem, applied in this work.

The first task that comes to mind is to collect data on Traffic Accidents (TA) for several

years (coordinates, severity, etc.), select clusters (i.e. places of substantially increased

concentration of TA) from these data — and then bypass these clusters when building a

safer route.

 To move further, it is necessary to understand in general terms how vehicular routing

is designed. Although in reality there are road segments and intersections, however all

sorts of navigators use another, more abstract representation of roads in the city — a road

network consisting of edges and vertices, and called a graph [1]. Edges replace road

segments, and vertices indicate the transition from one segment to another (as a result,

for example, of a change of direction). Vertexes are also present at road intersections,

where the vertex marks the place where several road segments meet.

 5

The road network is a directed graph, since many edges allow vehicles to pass only in

one direction. There are also bidirectional edges in the road network, along which it is

feasible to move in both directions.

 Now let each edge of the road graph have an attribute, for example, the length of the

edge. If one also knows the starting and ending vertices of the route, then one of the

routing algorithms on the road graph (for example, Dijkstra's algorithm [2] is able to build

a route of minimal length from the initial vertex to the final one. This route may turn out

to be the fastest, but the routing algorithm does not take into account its security in any

way. If one takes as an attribute of the edge the number of accidents that occurred on the

corresponding segment of the road, calculated over several previous years, then such a

route, although it will be the safest, since it minimizes the number of accidents along the

route, is unlikely to be the shortest1. Obviously, an approach is needed that would make

it possible to build a compromise route — safer, and at the same time not very long

(compared to the minimum length route). Chapter 1 examines various approaches to

achieving this goal, but here in the Introduction I will discuss our original approach to

this problem.

 The essence of this approach is to identify TA hotspots (TAHS) on the traffic route

and then bypass them. I define TAHS as a compact area with an increased concentration

of traffic accidents. Such an area can be a cluster detected by one of the numerous

clustering algorithms [3] or a whole road segment with an increased number of TAs.

Approaches to clustering

 In this Thesis, the well-known DBSCAN algorithm [4] is used for clustering, since it

detects compact (with a given maximum distance between points) clusters of any shape.

The resulting clusters will have a different size (the number of TAs in the cluster) from

the specified minimum to the maximum determined by the data itself. Obviously, not all

1 Estimates show that the length of the route calculated in this way will be 2-3 times longer than the minimum, which is
hardly practical.

 6

the clusters obtained need to be taken into account, since some of them will be just random

noise, and if one had a second sample of accidents, clustering would show that only a part

of the clusters is stably located in the same places, while the rest change their position.

 In order to eliminate cluster noise, statistical tests and verification of statistical

hypotheses are used in this Thesis. In other words, clusters obtained from real TA data

are compared with clusters obtained using the same number of points evenly distributed

over the road network. Having generated several hundred sets of uniformly distributed

points, with the number of points in each set equal to the number of real accidents, and

having carried out clustering for each such set, I will receive material for testing statistical

hypotheses and will be able to identify "statistically significant" clusters [5]).

Using Statistically Significant TA Clusters

 The resulting clusters can be easily interpreted due to the fact that when obtaining

them, the maximum distance between accidents is set to 10 meters. Due to such a short

distance, clusters very often look like "clots" of TAs located at crossroads, road

intersections, where vehicles move from one line to another, etc. These locations require

investigation and taking administrative measures (lowering the speed, increasing the

transit time, etc.) designed to reduce the number of TAs there.

It is also possible to improve road safety by simply bypassing the selected clusters of

accidents. If, for example, the road graph is modified in such a way that the edges (road

segments) leading to the cluster receive an additional length (penalty)2, the routing

algorithm will take this into account and, if possible, bypass the cluster. For details on

finding a route that bypasses the accident clusters, see Chapter 3.

2 The penalty can also be practically infinite (a very large number). Then it will become prohibitive and the algorithm for
finding the route will be forced to avoid such edges.

 7

Road segments as TAHS

 Cluster avoidance, as I have outlined, is about bypassing the designated road segments.

Where does the question come from: is it possible to highlight «dangerous» road

segments without any clusters? The answer is almost obvious: select those edges of the

road graph (e.g. road segments) where the number of accidents exceeds a certain

threshold defined by statistical tests, mark these edges as «dangerous», i.e. add an

additional length (penalty) which will be considered by the routing algorithm when laying

the route from the starting point to the end point. Note that this approach seems more

natural, since the road graph itself is modified without involving additional objects (TA

clusters). Clustering is also associated with a lot of manual work: it is necessary to

consider each cluster and mark the edges of the road graph leading to it. Automation of

this task is very cumbersome. See Chapters 4 and 5 for details of the route design that

bypasses «dangerous» road segments.

Routing efficiency evaluation

 Once the route is laid on the modified graph, the next problem arises: how to evaluate

the effectiveness of the new routing, how much does it make traffic safer? To do this,

firstly, I need to somehow create a set of routes covering the entire road graph, and,

secondly, to use the average efficiency of the new routing.

In this Thesis, a computer simulation of all possible routes is constructed by overlaying a

square grid on the entire road graph network. Then all points of the grid, except for

identical ones, serve as target starting and ending points for routes. Actual starting and

ending points of the route are the ones that are most proximal to the grid points and lie on

 8

the road network (nodes). Thus, I get a set of routes of the type "the node closest to the

initial point of the grid" - "the node closest to the final point of the grid".

Now for each pair of nodes let's calculate the relative risk ratio of accidents (RRR) as the

ratio of the number of accidents along the modified route to the number of accidents along

the original route (i.e. obtained on the original, unmodified graph). If the average of all

such ratios is significantly less than 1, then I can say that the routes calculated on the

modified graph are on average safer than the routes obtained on the original graph. It

makes sense to average the RRR only for certain binned lengths of the unmodified route,

which will make the picture more accurate and precise.

Theoretical and practical significance

 The theoretical significance of the work consists in the creation of a new method of

transport routing based on bypassing of the TAHS on the road, determined by statistical

methods on road traffic accidents.

 The practical significance of the work is apparent, and is that the routing methods

described should lead to a reduction in the number of accidents and hence in the number

of injuries and deaths. Bypassing of the TAHS can be particularly useful for those who

have increased exposure to roads (taxi drivers) or drivers who are in other risk groups

(the elderly, people with reduced reaction, etc.). The author has created a package of

programs in Python that enables one to modify the road graph of any city in such a way

that the route drawn on such a graph will be safer on average than the original route3.

 In addition, administrative measures (reduced speed, increased travel time, etc.) to

reduce the number of accidents can be applied to the TAHS identified.

3 The program package treats road edges as obstacles and is described in detail in Chapter 6. The program texts are given in
Appendices 1-10.

 9

Research methodology and methods

 Various statistical methods are widely used in the Thesis: calculation of elementary

statistics, getting confidence intervals by bootstrap method, clustering, random sampling

method (Monte Carlo). The geographic information system (GIS) QGIS 3 is widely used

to evaluate the results of the work and to visualize the road network.

Scientific specialty

The subject and content of this work fully corresponds to the passport of the scientific

specialty 2.3.5. "Mathematical and software support of computer systems, complexes and

computer networks", point 4 (Intelligent systems of machine learning, database and

knowledge management, toolkits for development of digital products).

 10

Author’s published articles on the topic of this thesis

1. A. M. Gershteyn and A. N. Terekhov “Hotspots of Traffic Accidents that cause injuries

or death in Massachusetts from 2013 to 2018 “Computer tools in education”,no.1, pp.45–

57, 2021(in Russian); DOI: http://dx.doi.org/10.32603/2071-2340-2021-1-46-58

2. A. M. Gershteyn and A. N. Terekhov, “Routing Algorithm for Vehicles that Avoids

Severe Traffic Accident Hotspots on the Road Network (Using the City of Springfield,

Massachusetts as a Case Study), ”Computer tools in education, no.2, pp.5–18, 2022(in

Russian) http://cte.eltech.ru/ojs/index.php/kio/article/view/1729

3. Gershteyn A. M., Terekhov A. N. “A Simple Way to Improve Road Safety by Avoiding

Dangerous Sections of the Route” Programmnaya Ingeneria, 2023, vol. 14, no. 3, pp.

103—109. DOI: https://dx.doi.org/10.17587/prin.14.103-109 (in Russian).

4. A. M. Gershteyn and A. N. Terekhov, “Bypassing Dangerous Sections of the Route as

a Way to Improve Traffic Safety (Using St. Petersburg as an Example),” Computer tools

in education, no. 1, pp. 30–39, 2023 (in Russian);

http://cte.eltech.ru/ojs/index.php/kio/article/view/1755

http://dx.doi.org/10.32603/2071-2340-2021-1-46-58
http://cte.eltech.ru/ojs/index.php/kio/article/view/1729
https://dx.doi.org/10.17587/prin.14.103-109
http://cte.eltech.ru/ojs/index.php/kio/article/view/1755

 11

Main scientific results

1. The relative risk ratio of accidents (RRR) is used as an indicator of the effectiveness

of routing, equal to the average ratio of the number of accidents along the altered

(taking into account obstacles on the roads) route to the number of accidents along

the unaltered (not taking into account obstacles) route ([57], p. 8 par. 6).

2. Statistically significant clusters of accidents are used as obstacles in the

construction of an alternative (safer) route ([48], p. 47 par. 6, [57], p. 8 par. 7).

3. Separate road segments (edges of the road graph) containing the number of

accidents statistically exceeding the number of accidents obtained from the

assumption of the uniformity of the distribution of accidents on the road network

are used as obstacles ([58] p. 103 par. 2, p. 104 par. 6, [61] p. 30 par 1, p. 32 par.

2).

4. To design a safer route, each obstacle is subject to a penalty, i.e. a fixed number is

added to the attribute of the length of the corresponding edge. By calculations, the

optimal value of the penalty is determined, which ensures a minimum risk of a TA

with a minimum increase in the length of the route and the number of traversable

vertices of the road graph (([58], p. 103 par. 2, [61], p. 32 par. 3).

All articles on the subject of the thesis were written in co-authorship with Dr. A.N.

Terekhov. A.N. Terekhov carried out the general supervision of the work, the author of

the dissertation proposed to use the average relative risk (RRR) of accidents and the

corresponding confidence intervals as an indicator of the safety of the route, and the

penalty length added to the appropriate attribute of the road graph edge (= road segment)

as a means to reach a compromise between the route length and its safety profile. The

author also performed all calculations using the Python language and graph libraries:

OSmnx [6] and NetworkX [7].

 12

Main points to be defended

1. Statistically significant clusters with severe traffic accidents have been

shown to exist in recent datasets from villages (Newton, Springfield) to an

entire State (e.g. Massachusetts) applying DBSCAN algorithm to real data

and comparing to results of applying DBSCAN to simulated data based on

uniform distribution of severe traffic accidents along pertinent network of

roads.

2. Severe traffic accident clusters in Massachusetts have been shown to repeat

from year to year at a rate of ~30%, thus suggesting that they are related to

the specific location and road conditions in that vicinity. These stable and

statistically significant clusters, with compact radius of ~20 meters, are

identified as road areas that should be fixed first by municipal authorities.

3. In Moscow, by comparing the number of actual accidents with the number

expected according to a uniform distribution over the entire road network

(using Monte Carlo simulation), road segments with a statistically significant

high number of accidents were found.

4. Optimal value of penalty at 2000 meters has been established for Moscow,

that results in substantial risk reduction of 9-31%, while increasing route

length by 6-11%.

5. The algorithm developed for Moscow (items 3-4) was tested on the road

network of St. Petersburg. The penalty of 1000m should be considered

optimum for St. Petersburg, leading to smaller increase in the length of a route

in comparison with the penalty of 2000m, while the relative risk in this case

practically does not change (the average length of a route increases by 8.0-

10.0% for 1000m (in comparison with 8.8-14.8% for 2000m). The average

relative risk appears to be in the range of 14.5 - 36% (1000m) compared to the

 13

range of 13.9 - 36% for the 2000m penalty.

6. The routing algorithm developed for Moscow [58] is stable, that is, it can be

applied to the road network of other cities with minimal changes (except for

choosing the optimal penalty).

 The approach applied to Moscow and St. Petersburg is planned to be combined in the

future with real-time data (traffic jam data) to find alternative and safer routes.

 14

Chapter 1. Review of Literature

 Invented in the late 50s, the Dijkstra algorithm [2], the Bellman-Ford algorithm: [8],

[9], as well as the algorithm A* [21], which appeared in 1968, allow to construct an

optimal, in some sense, route on a weighted oriented graph G(V, E), where V is the set

of vertices of the graph, and E is the set of its edges. Originally such simple properties as

length or travel time were considered as weights of edges, the minimal sum of which is

obtained in the process of construction of a route. This seemed to make these algorithms

ideal at designing transport routes between two given graph vertices (two points chosen

on a map). However, it soon became clear that in reality these simple properties need to

be adjusted.

 So, for example, in real conditions there are traffic jams that make building a route of

minimum length meaningless. This means that it is necessary to somehow detect traffic

jams in real time and adjust the weights of the corresponding edges of the road graph (for

example, to make a traffic jam completely impassable by increasing the length of the

corresponding edge of the road graph to infinity) - and then the routing algorithm will

have to seek another route, in one way or another, free of traffic jams.

 With the advent of smartphones and the widely available Internet access, this has

become a realistic task. It is enough to install on a smartphone the appropriate application,

which transmits the coordinates of the vehicle to the server so that the appropriate

algorithms determine the location of the vehicle (the appropriate edge of the road graph)

and vehicle speed, which makes it possible to identify the coordinates and the severity of

traffic jams. Examples of such applications include Yandex, Waze and Google Maps.

Of course, the application installed on the smartphone is able to determine not only the

coordinates of the vehicle, but also other features of its behavior (how often the driver

slows down — accelerates, switches from one line to another, etc.) Therefore, there are

systems that try to take into account not only traffic jams, but also the probability of

 15

accidents within the road segment, other road features, and the behavior and preferences

of the driver specified by himself in the mobile app. For example, the work [22] uses a

weighted sum of the length of the road, the average time of its passage and the number of

accidents registered on it during the year, and in [18] when determining the final route

some segments of the road are excluded from the road network based on the analysis of

driver behavior and preferences. For the remaining segments, the routing algorithm

determines the final route, using a combination of the road segment quality indicator (road

health), the average travel time and driver preferences as an edge attribute. This approach,

in principle, can improve driving safety along with finding a route that is passed in the

minimum time. A similar approach to [18] can be found in [23], but in the latter work the

driver's behavior is determined by exchanging data between vehicles.

 Another, perhaps somewhat unexpected, example of routing is related to the

transportation of various dangerous goods. Safety becomes the priority of the route from

the starting point to the destination, because an accident during the transportation of a

poisonous or explosive substance can lead to an environmental disaster and immense

human casualties. In contrast to the previous example, in the task of routing dangerous

goods the priority becomes not the time of the route, but its safety. Often the problem can

be solved using already accumulated data, and the solution itself will depend on two key

factors - the probability of an accident on each of the road segments and the population

density around each segment [10]. Consideration of the population density where each

road segment is located will obviously depend on the nature of the cargo, its ability to

affect larger or smaller areas in the event of an accident. Real-time weather data (e.g.,

wind speed) may also be required. A more detailed overview of the problem can be found

in [11], [12], [15]

 The third example of routing is related to the safety of the pedestrian route. A safety

problem may arise when there are, for example, HRA associated with criminal activity

[13]. The task of routing in this case is to bypass dangerous areas with increased criminal

activity. As usual, the routing algorithm must know the "danger" value for each road

section. To get this value from individual points - the coordinates of various crimes

committed in the city - one can use the standard KDE (Kernel Density Estimation)

 16

technique [14], which allows us to find the risk value for any point in the city. In some

works, such as [28], Bayes' theorem is used to determine the probability of a crime for a

given place and time (see [30], [31]).

 Since this kind of routing is done mainly for pedestrians, one encounters a new and

important problem here: too high a price to pay for safety. The route that minimizes the

risk may be too long, so one has to find a compromise, either by complicating the

expression for the edge attribute for the routing algorithm (including the combination of

the risk itself and the length of the road segment), or by obtaining several most appropriate

routes and choosing from them a compromise: both safer and not very long.

In addition to a "safe" route with minimal criminal activity, a pedestrian may also seek to

choose a route with maximum illumination, a sufficient number of landmarks, a minimum

number of turns and maximum wide sidewalks [19].

 Interestingly, for bicycle walking routes, unlike walking routes, the travel time from

the starting point to the destination may not play a great role, so in [19] to find the optimal

route, such properties of the road segment as slope, road type, its width, the presence of

road signs and lighting are used. The work also applies an original algorithm for finding

the optimal route based on dynamic programming (see, for example, [32]) for dynamic

programming).

 Let us move, finally, to the understanding of safety, adopted in this paper. It consists

in the fact that it is necessary to construct such a route, along which the risk of getting

into a severe traffic accident, that causes human damages (injuries or death), will be less

than on the original route (with the same starting and ending points) that minimizes route

length or travel time. For this purpose, the approach used in relevant literature is typically

to alter attributes of edges, combining length of an edge or time of passage and (in one

form or another) - risk of an TA4.

 For example, in [17] the weighted sum of the length of the edge and the estimate of

the risk of accidents within this edge is used as an attribute of the edge. Note that the

estimates of the risk of accidents in this work are purely subjective and are reported by

4 This is due to the fact that building a route that minimizes only the risk of an accident will, according to our estimates,
lead to a too long route, exceeding the original 2-3 times.

 17

students, who indicate dangerous points in the campus road network in terms of accidents,

along with an estimate of the risk of accidents. This approach to identifying dangerous

places on the road network can be extended to a large city, for example, as part of the

OpenStreetMap project [33].

 Another idea of building a high-security route is related to obtaining several alternative

routes and choosing among them a route of acceptable length. For example, in [16], a

modification of the standard Dijkstra routing algorithm is used, which utilizes as an

attribute of the edge the number of accidents that occurred in each segment of the road,

and additional normalized indicators that take into account the weather, time of day, age

of the driver, etc. Modification of the algorithm allows you to get several route options,

and then select routes with a compromise combination of risk and length.

 Additional to the number of previously recorded TAs indicators (current properties of

the road segment, weather, drivers' behavior) are also used in [24], [25].

Several alternative routes are also considered in [20], which is interesting because it

attempts to predict the probability of an accident for elderly drivers and cyclists using

traffic properties (speed and density of flow, driver reaction time), as well as the length

of the road segment and the coefficient of friction of tires and the road surface.

An attempt to predict the probability of accidents while driving along a given route is also

made in [26]. To predict the probability of accidents, the volume of traffic, road

characteristics and current weather conditions are used. The traffic volume (for those road

segments where no traffic data are recorded) is obtained as a result of interpolation -

determining the traffic for a given time by the nearest road segments for which this value

is known. The probability of an accident for a given segment is determined using a trained

binary classifier (see [34]), and the probability along the entire route is calculated as the

result of a series of Bernoulli tests. If the obtained probability is used as an edge attribute,

the routing algorithm will determine a route for which the probability of an accident is on

average half as much (compared to the standard route, which takes the minimum time)

and 1.7 times as long.

 18

 The paper then uses a combined edge attribute for routing that contains a weighted

sum of travel time and TA probability to find an acceptable compromise between the

length of the route and its safety.

 The probability of an TA for each road segment is also proposed in [27], but with a

completely different mathematical apparatus - Bayesian networks [35], using a

combination of static (road type, map) and dynamic (weather, lighting, vehicle density,

information about changing road lanes, vehicle speed, etc.) data, which are offered by

the vehicle itself, and from the sensors located along the road.

 19

Chapter 2. Identifying TA hotspots on Massachusetts roads in 2013-

2018

Introduction

 The purpose of this chapter is to find compact stable TA hotspots (TAHS) on roads,

i.e., locations with a statistically significant increased density of severe traffic accidents

(TA) that do not change their position over several consecutive years.

The danger of such hotspots is caused either by the road structure (places of intersection

of roads, entry/exit to the highway), or by other factors (quality of road surfaces, poor

visibility, etc.). All these factors can be adjusted to a certain extent by municipal or state

authorities, moreover, these dangerous sections can be excluded from the routes of

commercial and private transport.

 Detection of dangerous areas on the earth's surface is an important step in the study of

phenomena of various natures. For example, locations with higher crime densities

identify the most dangerous areas as a prime target for police and other organizations

whose activities are aimed at reducing crime [36], [37].

 There are several methods of dangerous area detection: KDE (Kernel Density

Estimates) [2, 4, 14], Moran I-statistics [39], Getis-Ord Gi* statistics [41], and various

clustering algorithms. KDE uses various kernel functions to convert points on a surface

(e.g., crime scenes) into some smooth function in an attempt to reconstruct the density

distribution of these points. KDE identifies hazardous locations in the plane, but cannot

estimate their statistical significance. Moran's I and Getis-Ord Gi* statistics identify

statistically significant areas (clusters). According to their nature, it is not easy to use

KDE, getis-ord GI* or Moran's statistics to detect dangerous areas of a given size. In

addition, the Getis-Ord Gi* and Moran's I statistics work only in the 2d case [37], but the

 20

road network is essentially a one-dimensional object with different distance

representations. Note that KDE can in principle be applied to the clustering of traffic

accidents belonging to the road network, using special, rather complex kernels developed

in [40]. However, this method requires much more time-consuming calculations, and the

results are not so easy to interpret, and the shape of clusters in the case of application of

KDE will be determined by the kernel used, while in the case of application of clustering

methods, the shape of clusters can be arbitrary.

 As for the clustering algorithms, such as DBSCAN [4], they can be easily adapted to

search for clusters of traffic accidents belonging to a road network by specifying the

corresponding distance matrix, which can be computed using, for example, the SANET

package [47]. In addition, the DBSCAN algorithm, as shown in Section 2.2.1, can easily

be configured to detect clusters with a given maximum distance between points.

 There is another difficulty in detecting dangerous areas belonging to a road network:

the lack of appropriate statistics. Getis-Ord Gi* and Moran's I statistics, as already

mentioned, work only in the 2d case [37]; for clustering methods such statistics are very

rare. So, computer simulations (Monte Carlo method) [5] are used to statistically justify

the obtained clusters in this paper. The SANET package allows one to rapidly generate

millions of points uniformly distributed over the road network. Thus, the plan of this

chapter is to perform a cluster analysis on selected TA using distances over the road

network, and then use the same network and the same number of evenly distributed points

as in the real data to perform computational simulations at least several hundred times to

obtain cluster size statistics. Then, I compare the size distributions for the real and

simulated TA clusters. As a result, statistically valid clusters are identified.

2.1 Input Data

 This Chapter uses road networks provided by the Massachusetts Department of

Transportation [10] in Esri shapefile format, which is very easy to visualize using GIS

 21

applications such as QGIS [44] и OpenJUMP [45]. MassDOT portal data [46] on

Massachusetts traffic accidents from 2013-2018 in “.csv” spreadsheet format, which can

be easily converted to other formats, such as the same Esri shapefile, was also used.

As usual, the resulting data must be preprocessed. The isolated road network fragments

(if any) must be connected to the main network. Disconnected Islands plug-in and QGIS

editing tools were used to connect the fragments to the main network. In files containing

information about TAs, one needs to leave only those records where the coordinates of

the accident are present (approximately 96% of all records). Since I obtained the accident

data and the files where the road network is stored from different sources, the individual

accidents do not belong exactly to the elements of the network. Meanwhile, for some

types of analysis, it is important that the accident and the road network be a single entity.

Therefore, TA points were projected onto the elements of the network, for which I used

the plugin QGIS NNJoin, which creates an additional layer in QGIS. This additional layer

contains original coordinates of the accident location, and there is an additional attribute

that stores the start and end coordinates of the endpoints of a line segment that is nearest

to the accident location and belongs to the road network. These coordinates allows one to

project the point of the accident on the corresponding line of the road network using a

simple Python script:

def dropPoint2Line (point, line):

 #point (x,y)

 #line (point1,point2)

 x0 = point[0]

 y0 = point[1]

 x2 = line[0][0]

 y2 = line[0][1]

 x3 = line[1][0]

 y3 = line[1][1]

 m = x3 - x2

 p = y3 - y2

 t = (m * x0 + p * y0 - m * x2 - p * y2)/(m**2 + p**2)

 x1 = m * t + x2

 y1 = p * t + y2

 return (x1,y1)

 22

2.2 Research methods

2.2.1 DBSCAN

 As a clustering algorithm, I chose DBSCAN (Density-Based Spatial Clustering of

Applications with Noise) — a heuristic algorithm that finds clusters of the same minimum

density (the letters DB in the name of the algorithm mean Density-Based) and has

arbitrary shape. At the same time, the number of clusters is determined automatically.

Each point after the algorithm operation turns out to either belong to some cluster or be

classified as an outlier - a point that does not belong to any cluster. Another advantage of

DBSCAN is also that this algorithm, implemented in the sklearn library, works very

rapidly, which is important for processing large amounts of data and conducting statistical

tests when the algorithm must be run hundreds of times.

 DBSCAN uses a matrix of distances between points or the coordinates themselves (in

the case of Euclidean distances), as well as two parameters: “eps” (distance) and

“min_samples” (positive integers starting at 1). The algorithm first selects the main points

— those in the eps neighborhood that contain at least “min_samples” of other points. The

first main point allocated by the algorithm becomes the "seed" of the cluster. Let's denote

it Q1-0. All points reachable from Q1 are assigned to the cluster. These can be points that

are directly reachable, that is, located in the “eps” neighborhood of Q1-0, or points for

which there is a path Q1-0 -> Q1-1 -> Q1-2 ..., and Q1-1 is in the “eps” neighborhood of

Q1-0, and the point Q1-2 – in “eps”-neighborhood Q1-1. Note that all points of such a

path, except the last one, must be the main ones. The cluster can include both main points

and ordinary ones, for which there is a path from Q1-0, but which do not contain

“min_samples” in their “eps” neighborhood.

 When the cluster is formed, the algorithm will try to find the main point that does not

belong to the already allocated cluster and form a new cluster around it. The algorithm

 23

will terminate when it cannot find the main point that does not belong to the already

allocated clusters.

2.2.2 Matrix of intra-network distances (scale 20m)

Figure 2-1. Severe Traffic Accidents (Newton MA, 2013)

Having prepared the data, I will try to detect High Risk Areas (HRA) in the city of

Newton, Massachusetts, using data on severe accidents in 2013 (a total of 369 cases). In

our first clustering attempt, I will use the network distance matrix computed using the

SANET package and the parameters “eps”=20m and “min_samples” = 3 of the DBSCAN

algorithm. The choice of the parameter “eps”=20m seems reasonable, since 20m is

approximately the distance of the width of a road consisting of four to six lanes (3.6m per

lane, 14.4 m – 21.6 m width) and the resulting clusters would apparently be compact

 24

enough to be easily avoided by using a suitable routing algorithm. Note that the DBSCAN

algorithm is designed so that “eps”=20m specifies the “eps”-edge of the point, that is, the

minimum density, not the cluster size. The clusters themselves can be arbitrarily shaped

and can be stretched over a distance many times greater than 20m.

 As a result, 63 clusters with sizes from 3 to 9 TAs were obtained. To select statistically

significant clusters from these clusters, I formulate the null hypothesis: Accidents are

distributed evenly across the road network. I will assume that a cluster of size n is

statistically significant at level a if the probability of detecting at least one cluster of size

greater than or equal to n (if the null hypothesis is correct) is less than a clusters [5]. Given

that there are no statistics on cluster sizes in the case of the DBSCAN algorithm, I

conducted a number of statistical tests using the Monte Carlo method. Using the SANET

package, 1024 samples of points evenly distributed over the Newton road network were

obtained (each sample contains 369 points, as in the original data), then these samples

were used to calculate 1024 distance matrices along the road network (1024 is the number

of Monte Carlo tests) and then the DBSCAN algorithm was applied to each matrix with

the same parameters as in the case of real data (“eps”=20 and “min_samples”=3). The

simulation results are shown in Table 2-1.

Table 2-1. Simulation results (1024 tests, Newton, Massachusetts road network)

Cluster size
The number of clusters of the same or

larger size
P

3 59 0.058

4 0 0

 Table 2-1 shows that clusters with n ≥ 4 are significant at the 0.05 level. Removing

clusters with n=3 from the 63 initially detected yields 5 statistically significant clusters.

 25

2.2.3 Hybrid approach to clustering

 Clustering using the network distance matrix presented in the previous section requires

very large computational resources and is possible (taking into account the need to

conduct at least several hundred tests) only for small data sets, such as data on severe

accidents in Newton, a suburb of Boston with a population of about 90 thousand people.

Therefore, it is very tempting to replace the network distances between individual TAs

with the corresponding Euclidean metric. In this case, the DBSCAN algorithm

implemented in the sklearn package (Python) calculates the distance matrix extremely

quickly, and for a scale of 20m it seems reasonable that the distances (Euclidean and over

the network) are very similar. After repeating all the calculations — this time with

Euclidean distances and obtaining a new set of statistically significant clusters, I can

compare them with the clusters obtained in Section 2.2.2.

Comparing two sets of clusters, I get the following:

• 5 network clusters are located identically to their Euclidean counterparts;

• 2 Euclidean clusters are located differently;

identical clusters can be very different when zooming in.

Table 2-2. Newton 2013. Two clustering methods (Euclidean and Network, eps=20)

Method
N

Percentage of the total

number of severe TAs

False clusters

number/percentage

Corrupted clusters

number/percentage

Network 5 7.3 0/(0%) 0/(0%)

Euclidean 7 10 2/(29%) 3/(43%)

So, considering network clustering as "true", I can list some disadvantages of Euclidean

clustering:

1. False clusters — have no network counterpart

 26

2. Corrupted clusters — have true (the same as in the network case) and false fragments

(on different road lines or on different roads).

Now I can summarize the two approaches to clustering with “eps”=20 in Table 2-2.

2.2.4 Scale 10m

 It follows from the previous section (Table 2-2) that the Network and Euclidean

approach to clustering at eps = 20m differ significantly.

 Meanwhile, it is obvious that at some sufficiently small scale, the network and

Euclidean distance should be identical. Of course, this scale is less than 20 m. To estimate

this scale, I investigate the dependence of the difference between Euclidean and Network

distances on Euclidean distances and find the point of divergence where Euclidean

distances become inadequate for our task (Fig. 2-2).

Figure 2-2. Newton, Massachusetts, 2013, severe TAs. Dependence of the difference

between Euclidean and Network distances on Euclidean distances

 27

 As can be seen in Figure 2-2, the network distance is always at least as long as the

Euclidean distance, because the straight line connecting the two points has the minimum

length in the Euclidean space. One can also see that the discrepancy between the

Euclidean distance and the Network distance starts at a scale of 10 m. Large spikes near

15 m are clearly visible in the graph, and this likely distorts the Euclidean clustering with

eps = 20. Thus, I chose 10m as the scale, where the Euclidean distance, which requires

much less computation, can replace the distance along the road Network.

The value of 10m seems very small, but in fact it is not. It is only slightly less than the

width of a 3-lane highway (in the United States, each lane is about 12 feet or 3.6 meters

wide. In other words, 10 meters is the natural scale for the movement of vehicles in one

direction on the road network.

2.2.5 Hybrid clustering with 10m

Looking at Fig. 2-2 and taking into account the natural scale for the road network given

at the end of the previous section, it is possible to justify a hybrid clustering method: use

the road network only to generate sets of uniformly distributed points and perform all

clustering (for detecting real clusters and for static tests) with “eps”=10 using Euclidean

distances between TAs.

2.3 An example

2.3.1 Massachusetts 2013, clustering of severe TAs

 According to available data, 30,696 severe accidents were registered in Massachusetts

in 2013, of which 23,964 (78%) occurred on major roads.

 28

The application of clustering with “eps”=10 and “min_samples”=3 to 23,964 severe TAs

gives 1,340 clusters, from which statistically significant ones need to be identified. To do

this, clustering was performed 1,502 times on sets of 23,964 points evenly distributed

over the road network generated by the SANET software package. The results of the

Monte Carlo tests are shown in Table 2-3.

Table 2-3. Monte Carlo simulation results for Massachusetts, 2013 (1,502 tests, 23,964

points in each)

Cluster size
The number of clusters of the same

or larger size
P

3 1502 1

4 160 0.1

5 6 0.004

 Thus, at the 0.05 level, clusters of size ≥5 should be considered statistically significant.

Removing from the initial clusters those whose size is less than 5, I get 354 clusters, the

total number of severe TAs in clusters is 2,301, that is, 9.6% of the total number of severe

TAs.

 Figure 2-3 shows statistically significant clusters of severe TAs that occurred in

Massachusetts in 2013.

 29

Figure 2-3. Massachusetts 2013, significant clusters of severe TAs (DBSCAN, eps=10)

 As can be seen from Fig. 2-3, the spatial distribution of clusters throughout the state

is far from uniform. 166 (47%) clusters were found in thirteen cities (Table 2-4). Newton

with 3 clusters ranks 38th in the general list and is included in the table only because I

studied it in detail in Section 2.

Table 2-4. Massachusetts cities with the maximum number of clusters
City Number of Clusters Number of Severe Traffic Accidents

SPRINGFIELD 38 234

BOSTON 24 209

WORCESTER 23 148

LOWELL 15 93

BROCKTON 14 87

BRAINTREE 8 68

NEW BEDFORD 9 55

 30

Continuation of Table 2-4
City Number of Clusters Number of Severe Traffic Accidents

QUINCY 7 53

WOBURN 5 39

WEYMOUTH 5 36

HOLYOKE 5 35

RAYNHAM 7 35

WALTHAM 6 35

NEWTON 3 19

Figure 2-3 also shows that most clusters have sizes from 5 to 7.

2.3.2 Meta-clusters in Massachusetts: Hybrid Bottom-Up Approach

 In the previous section, clusters of severe traffic accidents that occurred in

Massachusetts in 2013 were analyzed. My next goal is to use data for 2013-2018 to

identify time-stable clusters, that is, places that remain dangerous for at least several

years. I will use two-stage clustering, that is, obtaining significant clusters for each year,

and then clustering these clusters again with the parameter min_years ≥minimum number

of years. For example, “min_years” = 4 indicates that the resulting cluster contains data

for at least 4 different years.

 As in Section 2.3.1, I will first get all (including statistically insignificant) clusters for

6 years: 2013, 2014, 2015, 2016, 2017, 2018. Then I will conduct Monte Carlo

simulations to identify significant clusters. The results of the Monte Carlo simulations for

all 6 years are collected in Table 2-5.

 31

Table 2-5. Monte Carlo simulation results for six years, DBSCAN (eps=10,

min_years=3) uniformly distributed random points on the road network

Year
Total

severe TA

Number of

trials
Cluster size

The number of

clusters of a given

or larger size

p

2013

23964

1502

3 1502 1.0

4 160 0.11

5 6 0.004

2014

24921

1444

3 1442 0.99

4 171 0.12

5 6 0.004

2015

25959 1386

3 1384 0.99

4 208 0.15

5 11 0.008

2016

26772

1344

3 1344 1.0

4 214 0.16

5 8 0.006

6 1 0.0007

2017

26672

1349

3 1349 1.0

4 206 0.15

5 9 0.007

2018

24763

1453

3 1453 1.0

4 201 0.14

5 7 0.005

 After removing statistically insignificant clusters, I will combine the clusters for all 6

years, adding a year label to each cluster, and then perform a second clustering with

 32

“eps”=10 and the “min_years”=3. Some statistical characteristics of meta-clusters are

shown in Table 2-6. The number of severe TAs in all meta-clusters – 7,456 is 4.8% of

15,3051 – the total number of severe accidents used for two-stage clustering. Figure 2-4

shows the distribution of clusters on a map of Massachusetts. It is apparent that the spatial

distribution of meta-clusters is similar to 2013.

Table 2-6. Meta-cluster statistics

Different

years in

the cluster

Clusters Severe TA
Severe TA /

Cluster

Severe TA

median

Severe TA

standard deviation

3 115 2269 19.7 19 3.29

4 74 1979 26.7 25 5.77

5 36 1412 39.2 36 10.68

6 29 1796 61.9 56 21.71

Total 254 7456 29.3 24 16.23

Figure 2-4. Meta-clusters in Massachusetts, 3-6 different years in each cluster

 33

 In addition to the statistical characteristics of meta-clusters containing a different

number of years when severe TAs occurred, the characteristics of the repeatability of

clusters from year to year are very interesting. For example, for each cluster of severe

TAs that occurred in one year, one can find (if it exists) a spatially equivalent cluster of

accidents that occurred in another year. The results are presented in Table 2-7, which

resembles a distance matrix and contains the relative number of clusters observed during

one year and remaining in subsequent years. For example, 0.36 at the intersection of row

2018 and column 2017 means that the ratio (number of clusters in 2017 found in

2018/total number of clusters in 2017) is 0.36. The total number of statistically significant

clusters in the corresponding year is shown in the Clusters column.

Table 2-7. Relative repeatability of clusters from year to year

Годы 2017 2016 2015 2014 2013 Clusters

2018 0.36 0.35 0.35 0.33 0.36 378

2017 0.35 0.35 0.34 0.32 369

2016 0.39 0.33 0.3 374

2015 0.3 0.33 334

2014 0.36 349

2013 354

 It is also interesting to find out how the repeatability of clusters depends on the annual

interval. In Table 2-8, the data in Table 2-7 are presented somewhat differently. Column

1 year contains the "distances" of one year between sets of clusters (i.e. the repeatability

of clusters for 2013-2014, 2014-2015 and so on), column 2 years represents data on two-

year repeatability (i.e. 2013-2015, 2014-2016 and so on). The last column (3 years)

represents data for a three-year repeatability. The last two rows of the table contain

elementary repeatability statistics for different annual intervals. It can be seen that the

"distance" between sets of clusters remains relatively constant, decreasing slightly with

an increase in the time interval. Apparently, the road conditions for the studied accidents

 34

do not change significantly from year to year, i.e. they belong to the same distribution

and can be combined if necessary, for further analysis.

Table 2-8. Repeatability of clusters for different time intervals

1 year: 13-14, 14-15, 15-

16, 16-17,17-18

2 years: 13-15, 15-17, 14-

16, 16-18

3 years: 13-16, 14-17, 15-

18

1 year 2 years 3 years

0.36 0.33 0.3

0.3 0.33 0.34

0.39 0.35 0.35

0.35 0.35

0.36

Average 0.35 0.34 0.33

STD 0.03 0.01 0.02

Conclusions

 This Chapter shows that the hybrid DBSCAN clustering method using Euclidean

distance applied to data on severe TAs in Massachusetts, combined with Monte Carlo

simulations on the state road network, can identify statistically significant hotspots of

severe traffic accidents. These hotspots (clusters) are compact, with about a third of the

clusters repeated next year. It is advisable for drivers to avoid identified areas of increased

risk of severe TAs, and city and state authorities need to use information about such areas

to plan measures aimed at reducing injuries and deaths on theses roads.

Further research may be useful to identify spatial and other features of the TA hotspots

(e.g. intersection, highway entry/exit, road junction, road width, speed limit, poor

visibility, time of day, weather conditions, etc.).

 35

Chapter 3. Vehicle routing in the presence of dangerous sections on the

road (using the city of Springfield, MA as a case study)

Introduction

 The task of constructing an optimal route in one sense or another for a vehicle is one

of the problems that is well-studied and has been solved long ago. If a road network is

represented by a bidirectional multigraph (i.e., a graph where several edges can pass

through any two vertices, and each edge can be unidirectional or bidirectional), then

routing is performed using the Dijkstra algorithm [2] or Bellman-Ford [8, 9] one. It is

enough to assign a number to each edge (for Dijkstra's algorithm it is strictly non-

negative) and the algorithms will construct an optimal (in the sense of minimizing the

sum of such numbers) route.

 For usual routing problems, an edge is assigned either its length or delay time - a much

more complex parameter that depends not only on the geometry of the road network, but

also on the current state of the route: presence of traffic jams, weather conditions, etc..

Unfortunately, conventional routing very rarely considers other important factors, in

particular, road sections with compact sections of high risk (see [48]) or with a large

number of severe (i.e., resulting in injuries or fatalities) TAs located within the same road

segment (edge). There is a work [49] (see also the literature review in Chapter 1), where

an attempt is made to create an integrated attribute for each edge of a road graph

containing some weighted sum of the delay time and the crash risk indicator.

 This approach is very labor-intensive and requires separate and complex calculations

for each edge of the graph representing the road network. Meanwhile, there is a simple

technique that allows bypassing dangerous sections by marking them as "impassable".

 36

Imagine a road network graph where each edge is assigned its length as an attribute used

by the routing algorithm. Then I can assign an infinite or, which is more practical, a very

long length (several orders of magnitude greater than the length of the longest edge) to

the edges leading to a HRA, and then the routing algorithm will automatically bypass the

dangerous road section.

3.1 Tools and Data

 Let's apply this simple technique to the road network of the city of Springfield

(Springfield, MA), extracted from the OpenStreetMap (OSM) global map of the Earth's

surface. OSM maps obtained as a result of many years of work of a non-commercial wiki

project can be of different quality depending on the locality, but for the purposes of

routing algorithms research (and as shown in [50] on the example of the Vienna road

network, also for real routing) they are quite suitable.

 The only difficulty is to extract the road network for a given surface area. When the

OSM API was used for this, the task was far from trivial. Fortunately, the recently

appeared OSMnx library for Python (see details in [51]) simplified this task to a couple

of lines of code. So, to get a map of any city, it is enough to specify the city itself, the

state (for the USA) and the country. For example, the Springfield road network is loaded

using the graph_from_place() function of the OSMnx package:

import osmnx as ox

ox.config(use_cache=True, log_console=True, all_oneway=False)

G = ox.graph_from_place('SPRINGFIELD, MA, USA', network_type='drive')

 The only task remaining is to save the G object containing the road network to disk

for later use. Object G stores the road network in the form of a MultiDiGraph, that is, a

graph with the possibility of the existence of many one- and two-way edges passing

through the same pair of vertices. Such a graph format is not always convenient for

 37

geographic information systems (GIS) like QGIS or ArcGIS, so the OSMnx package has

the ability to save in vector “.shp” files, standard for GIS. In “.shp” files information is

stored separately for MultiDiGraph edges and vertices, which I will extensively use to

determine edges, leading to the HRA.

 Table 3.1 presents some statistical characteristics of the edges of the Springfield road

graph.

Table 3.1 Elementary statistics of the lengths of the road graph edges of Springfield (in

meters)
Average 130

Median 92

Standard deviation 116

Minimum 1.47

Maximum 2084.8

 I will also need data on TAs in Massachusetts for 2013-2018, which can be obtained

in text format “.csv” on the MassDOT portal website 5.

Figure 3-1. A grid of equidistant points placed on the map of Springfield

5 https://massdot-impact-crashes-vhb.opendata.arcgis.com/search

https://massdot-impact-crashes-vhb.opendata.arcgis.com/search

 38

3.2 Method

 To study the effectiveness of routing in the presence of dangerous sections of the road

network, I will set a grid of equidistant points and put it on the map of Springfield (Fig.

3-1). The map contains 95 grid nodes with a distance of about 830 meters between

neighboring nodes, which gives 95 x 94 = 8930 different directional routes. My further

actions can be put into the following scheme:

a. Combine all severe traffic accidents that occurred in Springfield between 2013 and

2018 with the traffic graph extracted from OSM. Note that the accident coordinates and

the road graph are derived from independent sources, so the accident points may not

coincide with the graph edges. Consequently, I need a procedure that projects each

accident to the nearest edge. As a result, each edge of the graph will be matched with a

non-negative number of accidents that occurred along it.

b. Let's prepare two versions of the road graph: G0 and G1. Version G0 will contain the

original graph extracted from OSM. In version G1 the attribute storing the edge length

will be replaced for some edges by a very large number, many orders of magnitude greater

than the maximum edge length, which makes such edges practically impassable (in the

presence of alternatives) for the routing algorithm.

c. Using the grid placed on the Springfield map, I will construct all possible routes for

graphs G0 and G1. Then select from all the routes connecting the same points in the same

direction only those that differ in G1 compared to G0, i.e. those affected by changes in

graph G1.

 39

d. For all selected routes, compare their length and number of vertices (according to the

data stored in the graph G0), that is, see how the length and "divisibility" of the route

change when passing obstacles.

e. For all selected routes, compare the number of accidents along the route, that is, enables

one to see how the relative risk ratio of accidents changes when bypassing obstacles. By

the Relative Risk Ratio (RRR) here I mean the ratio of accidents TAS1/TAS0, where

TAS0 is the number of accidents counted along the original route on the graph G0, and

TAS1 is the number of accidents along the route connecting the same starting and ending

points, but on the graph G1.

3.3 Bypassing High Risk Areas (HRA)

 Let's try to construct vehicle routes so as to bypass HRA (statistically significant

severe TA meta-clusters), i.e. clusters resulting from secondary clustering of clusters of

severe TAs that occurred in Springfield from 2013-2018. Of all such secondary clusters,

only those containing clusters of crashes in at least three different years (31 in total) were

selected. See [48] for details.

 My task is quite complex, so it is reasonable to break it into several steps, saving

(where necessary) intermediate data in “.csv” files:

1. Load two original road graphs from the hard disk drive and name them G0 and G1.

2. Find all edges leading to the HRA (meta-clusters). This task has to be performed

manually, because a cluster may be located in different ways. If the cluster is

located on a unidirectional edge, it is enough just to assign a very large number to

the attribute storing the length of the edge, and the edge becomes almost

impassable for routing algorithms, that is, the cluster will be excluded from the

route laid on the graph G1.

 40

3. If the cluster is on a bi-directional edge, the problem of graph modification

becomes more complicated, because it will be necessary to attribute the cluster to

one of the directions of the edge6.

4. Finally, in the case of a cluster located at an intersection, I have to "close" all paths

leading to the cluster, because there is no single dedicated edge where the accidents

can be attributed to, instead accidents may have come from all directions. Thus,

graph G1 can be easily changed if I prepare a list of "forbidden" edges in advance,

considering each meta-cluster and all edges leading to it.

5. For all the edges of graph G1 defined in the previous paragraph, replace the value

of the edge length attribute with a very large number 100,000,000,000, which is

many orders of magnitude greater than the length of the longest edge in G1 7.

Figure 3-2. Ratios of route lengths calculated from graphs G1 (with obstacles) and G0

(without obstacles)

6 For a small number of accidents that make up the cluster, it is possible if one uses additional information: address,
direction of travel. If the cluster cannot be attributed to a particular direction, one must "prohibit" both.
7 The maximum length of the edge according to Table 3-1 is 2085 meters, so the number 100,000,000,000, exceeding the
maximum length by 48 million times, may from a practical point of view, be considered infinite.

 41

6. For all start and end points given by the grid of equally spaced points (see Fig. 3-

1) I calculate optimal routes and select those that are different for graphs G0 and

G1 with the same start and end points of the routes. The result is 4,822 such routes,

and the length of some routes (a total of 91, which is less than 2% of all obtained)

exceeds 100,000,000,000, indicating that in these cases, the routing algorithm has

not found ways around the obstacles. Excluding such routes from our data, I finally

get 4,731 route pairs on the graphs G0 and G1, which have the same start and end

points.

 These remaining routes can be displayed as points on the graph, where the X-axis

shows the original lengths of the routes without taking into account obstacles, and the Y-

axis shows the ratio of the lengths of the routes: calculated from graphs G1 and G0 (Fig.

3-2) and the ratio of the number of vertices computed by the graph G1 to the number of

vertices computed by the graph G0 (Fig. 3-3).

Figure 3-3. Ratio for number of vertices along route of graph G1 (avoiding obstacles)

and G0 (original route, without avoiding obstacles)

 42

 To get a better idea of where the bulk of the data is concentrated, Figures 3-2 and 3-3

show different regression dependencies of the form y = a0 + a1*x of length ratios (Figure

3-2) or vertex number ratios (Figure 3-3). Since the data are highly scattered, the figures

also show regression straight lines obtained using two robust (outlier-resistant)

algorithms: Huber regression (see 52, 53]) (yellow line) and quantile regression (see [54])

(green line), which allows to predict arbitrary quantiles of the dependent variable. In this

case, I used prediction for the median (50% quantile). The regression coefficients are

shown in the legends to the figures.

 From the diagrams shown in Figures 3-2 and 3-3, it is apparent that the path length

in the case of obstacle avoidance is always greater than the "original" path built without

obstacles. It is also evident that the ratio of the length of routes G1/G0 decreases as the

length of the original path increases.

 As for the ratio of the number of vertices G1/G0, for individual routes it can be

either more or less than one, depending on which route the bypass route "lay" on. As the

data in Table 3-3 (the last column) show, the average ratio of the number of vertices

tends to one for long (more than 6 km. routes)8, and increases (apparently due to the fact

that bypass routes are significantly longer here) to 1.52 on the shortest routes.

Since the ratio of the number of vertices turns out to be uninformative and tends to 1.0

for sufficiently long routes, the main interest is the loss in distance that occurs when

choosing an alternative (cluster avoiding) route.

 First of all, I will provide general descriptive statistics on all routes that differ (at the

same initial and final coordinates) (Table 3-2). Since the distribution of the ratios of

various variables in this case is not Normal9, the bootstrap method is used everywhere

to calculate confidence intervals (see, for example, [55]). Specific calculations were

performed using the bootstrapped Python package

(https://github.com/facebookarchive/bootstrapped).

8 The difference from the 1.0 of the average G1/G0 vertex ratio for routes with original (without HRA) lengths greater than
13 km. is probably due to the small sample size and the consequent loss of accuracy of the average calculation.
9 For example, for length ratios whose descriptive statistics are shown in Table 3-2, the D'Agostino test (see [56])
scipy.stats.normaltest() gives pvalue = 0.0

 43

 Table 3-2. General descriptive statistics of route length ratios (length when bypassing

the HRA/initial length)
Statistical measure Value 95% confidence interval

Average 1.128 (1.122 - 1.133)

Median 1.07 (1.069 - 1.074)

Standard deviation 0.18 (0.161 - 0.203)

Min 1.00

Max 3.52

Table 3-3. The dependence of the average ratios of route lengths (Length when

bypassing the HRA/Initial length) and the number of vertices along the routes (Number

of vertices when bypassing the HRA/Number of vertices of the original route) for

different lengths of the original (laid without avoiding HRA) route. 95% confidence

intervals are indicated in parentheses for the ratio of lengths and the number of vertices

Distance intervals (km) Routes Average ratio of lengths
Average ratio of the

number of vertices

1-2 63
1.58

(1.404 – 1.747)

1.52

(1.33 – 1.69)

2-3 156
1.36

(1.299 – 1.423)

1.25

(1.17 – 1.32)

3-4 354
1.22

(1.192 – 1.245)

1.18

(1.13 – 1.22)

4-5 471
1.16

(1.142 – 1.174)

1.09

(1.06 – 1.11)

5-6 562
1.13

(1.122 – 1.146)

1.07

(1.04 – 1.09)

6-7 659
1.12

(1.107 – 1.125)

1.02

(1.00 – 1.04)

7-8 626
1.10

(1.088 – 1.103)

1.02

(1.01 – 1.04)

8-9 593
1.09

(1.085 – 1.100)

1.02

(1.00 – 1.03)

9-10 502
1.08

(1.077 – 1.091)

1.00

(0.98 – 1.02)

10-11 349
1.07

(1.069 – 1.083)

1.00

(0.97 – 1.02)

 44

Continuation of Table 3-3

Distance intervals (km) Routes Average ratio of lengths
Average ratio of the

number of vertices

11-12 220
1.07

(1.060 – 1.076)

1.00

(0.96 – 1.03)

12-13 119
1.06

(1.054 – 1.072)

1.01

(0.97 – 1.04)

13-14 45
1.05

(1.040 – 1.061)

1.05

(1.00 – 1.09)

14-15 9
1.04

(1.021 – 1.058)

1.05

(1.01 – 1.08)

Table 3-4. Descriptive ratio statistics (Length at of HRA avoiding route/Original route

Length) for selected intervals of the original route length. For the mean, median, and

standard deviation, 95% confidence intervals are shown in parentheses

Length

km
N Average Median

Standard

deviation
Min Max

Range

(Max–

Min)

1-5 1044
1.23

(1.216 – 1.255)

1.12

(1.106 -1.137)

0.317

(0.286 - 0.358)
1.001 3.521 2.52

5-9 2440
1.11

(1.105 - 1.114)

1.07

(1.061 - 1.072)

0.115

(0.102 - 0.121)
1.000 1.707 0.707

9-13 1190
1.08

(1.073 - 1.081)

1.06

(1.060 - 1.067)

0.069

(0.067 - 0.077)
1.000 1.439 0.439

13-15 54
1.05

(1.04 - 1.059)

1.04

(1.028 - 1.045)

0.034

(0.027 - 0.043)
1.005 1.151 0.146

The results of calculations showing the route that avoids HRAs compared to binned

lengths of the original route are shown in Table 3-3 and in Fig. 3-4.

 45

Figure 3-4. Dependence of the average ratios of route lengths (Length when bypassing

the HRA/Original length) for different lengths of the original route constructed without

considering the HRA areas

 Finally, Table 3-4 provides more detailed descriptive statistics of the ratios (Length

when bypassing the HRA /Initial length) for four-kilometer intervals of the original route

length, from which it is apparent that all indicators (mean, median, standard deviation,

the difference between the maximum and minimum values) gradually decrease as the

length of the original route increases.

 46

3.3 Relative risk of an accident when choosing a route bypassing

the HRA

 As evident from the previous section, bypassing the HRA guarantees an increase in

the length of the route. Simultaneously, it is not at all obvious that the alternative route

will be safer. It is therefore critical to assess the relative risk of an accident when choosing

a route that bypasses the HRA.

 Suppose it is necessary to plot a route from A to B. Let's denote A-----> B a route with

a bypass of the HRA, and A-> B is a route without a bypass of the HRA. Let TA1 be the

number of severe traffic accidents registered along route A-----> B, and TA2 be the

number of severe traffic accidents along route A->B. Then the TA1/TA2 ratio will be a

measure of the relative risk on the two routes (Relative Risk Ratio - RRR).

 To calculate the relative risk, it is necessary to enumerate the coordinates of all severe

traffic accidents that occurred in Springfield in 2013-2018 and determine for each severe

traffic accident the closest edge to it in the graph G0. To do this, I use the

get_nearest_edge() method of the OSMnx package.

 Unfortunately, get_nearest_edge() gives unambiguous results only for unidirectional

edges and is unable to determine which direction of the bidirectional edge a particular

accident belongs to. To find tease this out, it would seem that you can compare the data

on the direction of the accident with the data on the direction of the route (for example,

S, W, N, E) to which this edge of the graph belongs. But the data on the direction of

movement is not known for all TAs, besides, they are not particularly reliable and one

observes that for a route going from north to south, the direction W or E may still be

listed.

 Thus, I can only assign half of all the accidents found to each direction of the

bidirectional face and hope that averaging over many edges for a sufficiently long route

compensates for the inaccuracy of determining the number of accidents for a specific

direction of the bidirectional edge.

 47

 So, bearing in mind the comments about the number of accidents for a bidirectional

edge, I will calculate for each pair of routes A-----> B and A-> B the number of accidents

along the route, after which I can obtain general descriptive statistics of the TA1/TA2

ratios for all routes (Table 3-5).

Таble 3-5. General descriptive statistics for ratio of severe Traffic Accidents (TAs

along A-----> B/TAs along A-> B)
Metric Value 95% confidence interval

Mean 0.91 (0.89 – 0.93)

Median 0.84 (0.83 – 0.842)

Standard deviation 0.73 (0.49 – 0.96)

Minimum 0.13

Maximum 27.75

Table 3-6. Dependence of average ratios (TAs along A-----> B/TAs along A-> B) for

binned route lengths A-> B

Distance, km

N
Average ratio of TAs 95% confidence interval

1-2 63 1.32 (0.834 - 1.689)

2-3 156 1.16 (0.978 - 1.335)

3-4 354 1.02 (0.948 - 1.087)

4-5 471 0.94 (0.894 - 0.979)

5-6 562 0.88 (0.850 - 0.909)

6-7 659 0.85 (0.828 - 0.874)

7-8 626 0.85 (0.830 - 0.871)

8-9 593 0.84 (0.823 - 0.859)

9-10 502 0.82 (0.808 - 0.842)

10-11 349 0.82 (0.803 - 0.846)

11-12 220 0.81 (0.789 - 0.839)

12-13 119 0.84 (0.809 - 0.870)

13-14 45 0.84 (0.796 - 0.886)

14-15 9 0.83 (0.738 - 0.926)

 48

Table 3-7. Descriptive statistics for ratio of severe TAs (TAs along A-----> B/TAs

along A-> B) for selected intervals of the original route length. 95% confidence

intervals are indicated in parentheses for the mean, median and standard deviation

Length

km
N Average

Median

Standard

deviation

Min Max
Range

Max-Min

1-5 1044
1.02

(0.97 - 1.07)

0.85

(0.84 - 0.87)

0.80

(0.64 - 0.95)
0.17 10.0 9.83

5-9 2440
0.86

(0.84 - 0.87)

0.83

(0.82 - 0.84)

0.29

(0.27 - 0.31)
0.25 3.57 3.32

9-13 1190
0.82

(0.81 - 0.840)

0.84

(0.82 - 0.85)

0.20

(0.19 - 0.21)
0.27 1.56 1.29

13-15 54
0.83

(0.80 - 0.88)

0.85

(0.83 - 0.9)

0.15

(0.12 - 0.18)
0.43 1.22 0.79

 Table 3-6 shows the relative risk of an accident as a function of the length of the

original route A-> B. As before, the bootstrap method was used to calculate the

confidence interval. The same results as in Table 3-6 are shown more clearly in Figure 3-

5, where the gray horizontal line corresponds to a relative risk level of 1.0. The values

themselves are shown in blue, and the 95% confidence intervals are shown in orange

(lower bound) and green (upper bound).

 49

Figure 3-5. Dependence of the average ratios (TAs along A-----> B/TAs along A-> B)

for binned route lengths A-> B

 As is apparent, the reduction of relative risk occurs for routes that are at least of

moderate length (in this case those that are longer than 4 kilometers). As for the shorter

routes (less than 4 kilometers), there is a substantial increase in the length of the

alternative route (avoiding HRAs), as per Table 3-3, and consequently an increased

number of severe TAs along this new path.

 In Table 3-7 a more detailed picture is presented of the descriptive statistics for the

ratio of severe traffic accident (severe traffic accident along A-----> B/severe traffic

accidents along A-> B) for 4-kilometer intervals of the original route. It is observed that,

all the statistical metrics decrease (standard deviation, range) or reach a plateau (average,

median) as the original route length increases.

 Considering Table 3-4 and 3-7 together, one may juxtapose the increase in mean ratio

of route length with the change in mean relative risk of severe Traffic Accidents for

different bins of the original route length. The findings are summarized in Table 3-8.

 50

For example, for the interval 5 to 9 kilometers, one observed an increase in the average

path length of 11% and a reduction of relative risk of severe Traffic Accidents by 14%.

Table 3-8. Dependence of change in average relative risk (RRR) on average increase in

route length bypassing the HRA, for different intervals of the original route.

The corresponding 95% confidence intervals are shown in parentheses
Length of the

original route km

Increase in the average

ratio of route lengths, %

Change in the average

relative risk of TA, %

1-5 23% (21,6% - 25,5%) +2% (-3%, + 7%)

5-9 11% (10,5% - 11,4%) -14% (-13%, - 16%)

9-13 8% (7,3% - 8,1%) -18% (-16%, -19%)

13-15 5% (4,1% - 5,9%) -17% (-12%, -20%)

 Note: “Collision risk” will henceforth be used as synonymous to “severe traffic

accident risk”, for brevity.

 For the original (not considering HRA) route lengths in the 1-5 km interval, the HRA

bypass route was on average 23% (95% confidence interval 21.6% - 25.5%) longer than

the route not including obstacles, and the collision risk increased by 2% on average (95%

confidence interval: -3%, +7%).

 For the original (not including HRA) route lengths in the 5-9 km interval, the HRA

bypass route is on average 11% (95% confidence interval 10.5% - 11.4%) longer than the

route that does not consider obstacles, and the collision risk decreases by an average of

14% (95% confidence interval: 13%-16%).

 For the original (not including HRA) route lengths in the 9-13 km interval, the HRA

bypass route is on average 8% (95% confidence interval 7.3% - 8.1%) longer than the

route that does not consider obstacles, and the collision risk of crash decreases by an

average of 18% (95% confidence interval: 16%-19%).

 51

 For the original (not including HRA) route lengths in the 13-15 km interval, the HRA

bypass route is on average 5% (95% confidence interval 4.1% - 5.9%) longer than the

route that does not take into account obstacles, and the collision risk decreases by an

average of 17% (95% confidence interval: 12%-20%).

Conclusions

 The meta-clusters of severe traffic accidents identified in Chapter 2 (see also [48])

may be used by the appropriate services to identify the causes leading to the occurrence

of accidents and reduce their incidence.

 For car drivers, taxi driver, and buses operators in the city of Springfield, when using

a route with a length of more than 4 km, I can recommend an algorithm that allows one

to bypass the meta-clusters of severe TAs described in this chapter, and thereby reduce

the risk of a severe traffic accident by an average of 16% with an increase in the length

of the route by an average of 8%.

 52

Chapter 4. A simple way to improve road safety by bypassing dangerous

sections of the route (using the city of Moscow as a case study)

Introduction

 It is shown in [57], by the case-study of the city of Springfield, MA that by bypassing

dangerous sections of the road network (clusters of TAs), it is possible to reduce the

relative risk of an accident with an associated limited increase in the length of the route

and the number of traversable vertices of the graph representing the road network.

Building a safer route required some manual work in [57]: it was necessary to consider

all the roads (edges of the road graph) leading to a HRA (cluster) and mark them in such

a way that they became impassable for the routing algorithm. For a small city, this did

not require much effort, but for a megalopolis like Moscow, this task becomes too time-

consuming. In addition, there are always doubt whether it is worth banning all paths

leading to the cluster, or perhaps only some of the most "dangerous" ones?

 This chapter proposes a slightly different method based on the method of determining

the danger of individual road sections (edges of the road graph) without clustering. The

null hypothesis was that severe traffic accidents are distributed uniformly along the road

network. Accordingly, 1,000 Monte Carlo computer simulations were executed and the

number of simulated severe traffic accidents on each road segment was tabulated along

with the 95th and 99th percentiles. Subsequently, those road segments along which the

actual observed number of severe traffic accidents was greater than the 95th percentile, or

99th percentile of the simulated data, were considered statistically significant at the 5%

and 1% level, respectively. These statistically significant edges were marked in the

modified road graph by adding a fixed number to their length attribute, which made a

conventional routing algorithm, such as the Dijkstra algorithm [63] or Bellman-Ford

 53

algorithm [69, 70], change the route and include less dangerous (unmarked) edges of the

road graph. Note that in [57] an essentially infinite number was added to the edge length

attribute, which led to the fact that such an edge was practically excluded from the route.

As shown in this chapter, this approach was not optimal and adding to the length attribute

a finite number, comparable with the average route length, leads to better results.

4.1 Data

 I will use the global OpenStreetMap (OSM) map of the world to obtain the road

network of Moscow. OSM maps are usually of excellent quality and are widely used in

works devoted to routing (see, for example, [13] which touches a similar problem of

pedestrian avoidance of criminally dangerous areas). The easiest way to get the road

network of Moscow is to use the OSMnx library for the Python language (see [6]). The

resulting road network is a multidigraph, that is, a directed graph, the edges of which can

be unidirectional and bidirectional, and through any two vertices of the graph can pass

any number of edges. The OSMnx package allows you to save the original multidigraph

as two separate objects - edges and vertices - in vector “.shp” format. This allows you to

display the road network in a geographic information system (for example, in QGIS [59]).

 The Moscow road network obtained from OSM contains 25,397 edges (15,696

unidirectional and 9,701 bidirectional) and 16,797 vertices. Descriptive statistics of some

edge attributes are given in Table 4-1.

As for the accident data, they are obtained from an official GIBDD source [60]. For this

study, I selected data on 27,798 road accidents recorded in Moscow in 2019-2021. Since

the Moscow road network and accident data are obtained from independent sources, it is

necessary to delete accidents that clearly do not belong (for example, due to a registration

error) to the road network. For this purpose, I included for further analysis only those

 54

accidents whose distance to the nearest edge of the road network is less than 35m10. There

were 21,956 such accidents (79% of the total number).

Table 4-1. Descriptive statistics of some attributes of Moscow road graph edges
Statistical measure Length m Speed km/h Travel time min.

Average 217.4 51.7 15.9

St. Deviation 275.5 12.13 20.9

Min 1.06 5 0.1

25% percentile 47.2 41.9 3.3

Median 127.9 50.5 9.2

75% percentile 291.6 53.1 21.2

Max 8043 100 673

4.2 Tools and method

 The list of filtered TAs that occurred in Moscow in 2019-2021, which I discussed in

the previous paragraph, contains the coordinates of the TA, the distance from the accident

to the nearest edge and the edge itself in the form of <vertex1> <vertex2> <key>, where

<vertex1> and <vertex2> are the identifiers of the vertices of the road graph through

which an edge passes, and <key> is the number of the edge passing through specific

vertices. In the case when there is only one edge <key> = 0. In the case when there are

two edges, there are two keys numbered 0,1, etc. Thus, the keys allow you to identify

edges passing through the same vertices. Now you can sort through all the edges of the

road graph and search for each one in this list, thereby determining which accidents

belong to this edge. Naturally, for bidirectional edges, you need to look for both the edge

<vertex 1> <vertex 2> <key> and the edge <vertex 2> <vertex 1> <key>. The resulting

list of edges can be sorted by the number of accidents belonging to them, and then

significant edges can be identified by conducting Monte Carlo simulations.

10 If I consider the width of the lane to be 3.5 m, and the maximum number of lanes to be 10, then 35 m will serve as an
estimate of the maximum width of the road in Moscow.

 55

 For Monte Carlo simulations, I used the software package SANET [47], which allows

one to obtain millions of points evenly distributed along the road network. The tests

consist in forming groups of 21956 points (as many as there were severe traffic accidents

in 2019-2021) and for each group all edges are enumerated again and the number of points

belonging to each edge is found. By performing, say, 1000 runs, I get the statistics of

accidents when the accidents are evenly distributed over the road network. If the number

of real accidents of an edge exceeds the 95th or 99th percentile obtained from the Monte

Carlo simulations, I will consider the number of accidents of that edge to be significant

at 5% and 1% level, respectively. The "dangerous" edges obtained in this way can be used

in the same way as in [57].

 To do this, I will create two identical road graphs G0 and G1. I will leave graph G0

unchanged, and in graph G1 I will change the <Length> attribute of the edges selected as

statistically significant, adding to it a sufficiently large number, the same fixed value for

all such edges, to show the routing algorithm that this edge is undesirable in the route

being laid and it should be avoided whenever possible.

I just need to compare all the routes laid on graphs G0 and G1 and make sure that the

routes on graph G1 are in some sense safer. To do this, I will set a square grid with a fixed

step equal to 3 km in our case. (Fig. 4-1), and I will construct all routes starting and ending

at the nodes of this grid11.

 Let's denote any two grid nodes as A and B and find the route A->B on graph G0 and

the route A—>B on graph G1. To compare these routes, I calculate the relative risk ratio

(RRR) equal to the ratio of accidents that occurred along route A—>B to the number of

accidents that occurred along route A->B. If the upper bound of the 95% confidence

interval for the average RRR is < 1, then the routes laid on graph G1 are safer than the

routes defined on the original graph G0.

11 More precisely, beginning and ending in the vertices of the graph closest to the nodes of the grid

 56

Figure 4-1. Nodes of the square grid placed on the road map of Moscow

Note that in [57], only routes that differ for graphs G0 and G1 were used to collect

statistics. In this chapter, all routes are used, because depending on the value added to

the <Length> attribute, the number of routes that differ for G0 and G1 will be different.

4.3 Results

 For statistical tests I chose the first 2000 edges of the road graph, which contain the

largest number of accidents, because the calculations for all 25397 edges are extremely

time consuming and provide minimal added value. One thousand (1,000) tests were

performed for every edge out of 2000, 815 edges were significantly "dangerous" at 0.05

 57

level and 469 edges of the road graph - at 0.01 level. The elementary statistics for the

"dangerous" edges are shown in Table 4-1. Table 4-1 demonstrates that at the 0.01

significance level, obstacles are characterized by a greater average number and a greater

dispersion (as per Interquartile Range, Q3-Q1) in the number of severe TAs.

Table 4-2. The elementary statistics for the "dangerous" edges
P p = 0.05 p = 0.01

Total edges 815 469

Average 6.6 7.8

St. deviation 5.4 6.3

Min 3 3

25% percentile (Q1) 4 4

Median 5 6

75% percentile (Q3) 7.5 9

Max 58 58

 Fig. 4-2 shows 815 obstacle edges on the map of Moscow. Edges with different

numbers of accidents are binned and shown in different colors (3-7 accidents – green, 7-

20 accidents – red, more than 20 accidents - yellow). It should be noted that the edges

with the largest number of accidents are located on the Central Ring Road, as well as on

the section of Kutuzovsky Avenue from Minskaya Street to Alexey Sviridov Street and

on the section of the Third Ring from the Enthusiasts Highway to Novaya

Perevedenovskaya.

 After obtaining obstacles, the order of actions becomes the same as in [57]. It is

necessary, using a square grid placed on the map of Moscow (see Fig. 4-1), to sort through

all the starting and ending points and for each route A->B calculated without obstacles,

calculate the route A—>B having the same starting and ending points, but considering

obstacles. Next, one should compare all such routes and understand how the relative risk

of an accident (RRR), the length of the route and the number of traversable vertices of

the road graph changes on average. In contrast to [57], I conducted this analysis for

different values of the penalty imposed on the obstacle in order to understand how it

affects the effectiveness of alternative routing.

 58

Figure 4-2. Obstacles displayed on the Moscow road map

 The results of the calculations are shown in Figures 4-3...4-5 and in Tables 4-3...4-5.

In addition to the values themselves, Tables 4-3...4-5 show in a smaller font and the

figures show the less saturated color of the 95% confidence intervals of the values

obtained by the bootstrap method. The first 800 edges significant at the 0.05 level were

used as obstacles, and the values of 200, 500, 1000, 2000, 5000, and 10000000000000

meters were used as penalties. The latter value, which far exceeds all conceivable

distances in Moscow, can be considered infinite, as shown in Figures 4-3...4-5 and Tables

4-3...4-5.

 As can be seen from the figures and tables, the optimal value of the penalty is equal to

2000m. At this value the curve showing the dependence of the average relative risk of

accident on the length of the original route (Fig. 4-3) lies slightly below all others and the

minimum value of the relative risk reaches, according to Table 4-3, the value of 0.686.

 59

Figure 4-3. Relative TA risk as a function of the length of the original route and the

penalty for an obstacle edge (with 95% confidence intervals)

Table 4-3. Relative TA risk as a function of the length of the original route and the

penalty for an obstacle edge (with 95% confidence intervals)

Interval km
Number of

routes
200 m 500 m 1000 m 2000 m 5000 m ∞

1-6 535
0.952

0.942-0.963

0.935
0.922-0.949

0.920
0.905-0.935

0.908
0.892-0.925

0.909
 0.892-0.927

0.945
0.907-0.977

6-11 1524
0.931

 0.924-0.938

0.883
0.874-0.891

0.847
0.838-0.857

0.829
0.819-0.839

0.835
0.824-0.846

0.862
0.846-0.877

11-16 2679
0.914

0.909-0.919

0.857
0.850-0.863

0.819
0.812-0.825

0.798
0.791-0.805

0.800
0.792-0.808

0.821
0.812-0.831

16-21 3065
0.893

 0.888-0.898

0.824
0.818-0.829

0.777
0.771-0.783

0.756
0.750-0.763

0.759
0.752-0.766

0.774
0.766-0.782

21-26 3255
0.876

0.872-0.881

0.798
0.793-0.804

0.751
0.745-0.757

0.732
0.726-0.738

0.733
0.727-0.739

0.741
0.734-0.748

26-31 2854
0.857

0.852-0.863

0.767
0.761-0.773

0.723
0.717-0.729

0.704
0.698-0.710

0.707
0.701-0.714

0.712
0.705-0.719

31-36 2196
0.849

0.843-0.855

0.752
0.745-0.758

0.709
0.702-0.715

0.687
0.681-0.694

0.695
0.687-0.703

0.698
0.690-0.706

36-41 1315
0.848

0.841-0.856

0.747
0.740-0.755

0.706
0.698-0.713

0.686
0.678-0.693

0.698
0.687-0.708

0.703
0.692-0.713

 60

Continuation of Table 4-3.

Interval km
Number of

routes
200 m 500 m 1000 m 2000 m 5000 m ∞

41-46 591
0.856

0.846-0.866

0.742
0.732-0.751

0.706
0.695-0.716

0.688
0.678-0.698

0.691
0.680-0.701

0.695
0.685-0.706

46-51 179
0.869

0.854-0.885

0.759
0.743-0.775

0.731
0.713-0.749

0.713
0.695-0.731

0.721
0.703-0.740

0.722
0.704-0.741

51-56 32
0.888

0.867-0.917

0.772
0.735-0.813

0.737
0.693-0.780

0.708
0.660-0.752

0.726
0.676-0.774

0.728
0.679-0.774

Share of changed routes 0.7 0.84 0.9 0.92 0.94 0.94

 Moreover, at this penalty the dependence of route length ratios (length including

obstacles/length without obstacles) on the length of the original route (Fig. 4-4) behaves

much more smoothly than at a penalty equal to infinity and 5000m. According to Table

4-4, the average route length ratio at a 2000m penalty ranges from 1.064 to 1.105, that is

(see Tables 4-3, 4-4) an average relative risk reduction of 9-31% is achieved at a 2000m

penalty by increasing the average route length by 6-11%.

 As can be seen from Figure 4-4, with an infinite value of the penalty and small lengths

of the original path, the ratio of route lengths increases greatly, apparently because the

routing algorithm has difficulty in finding an alternative route. Meanwhile, the 2000m

penalty gives a very smooth dependence and a small change in the average path length

ratio after/before (6%-10.5%)

 61

Figure 4-4. Dependence of the average ratios of route lengths (Length when bypassing

the HRA/ Initial length) for different lengths of the original route and different values of

the penalty for the obstacle edge

Table 4-4. Average ratios of route lengths (after/before) for different lengths of the

original route and different penalty values for the obstacle edge (with 95% confidence

intervals)

Interval km
Number of

routes
200 m 500 m 1000 m 2000 m 5000 m ∞

1-6 535
1.005

1.003-1.006

1.013
1.010-1.016

1.029
1.023-1.035

1.064
 1.051-1.075

1.103
 1.084-1.120

1.154
 1.111-1.190

6-11 1524
1.006

1.005-1.007

1.022
1.021-1.024

1.052
1.048-1.055

1.084
1.079-1.090

1.133
1.124-1.143

1.187
1.170-1.203

11-16 2679
1.007

1.007-1.007

1.026
1.025-1.027

1.059
 1.056-1.061

1.096
 1.092-1.099

1.137
 1.132-1.143

1.175
 1.166-1.184

16-21 3065
1.009

1.009-1.009

1.031
1.030-1.033

1.068
1.066-1.070

1.102
1.099-1.105

1.137
1.133-1.142

1.158
1.152-1.164

21-26 3255
1.010

1.010-1.011

1.034
1.033-1.035

1.073
 1.071-1.075

1.105
 1.102-1.107

1.133
 1.130-1.137

1.146
 1.141-1.150

26-31 2854
1.012

1.012-1.013

1.038
1.037-1.039

1.076
1.074-1.078

1.105
1.102-1.107

1.125
 1.122-1.128

1.132
1.128-1.135

31-36 2196
1.013

1.012-1.014

1.041
1.040-1.042

1.077
 1.075-1.079

1.104
 1.102-1.107

1.123
1.120-1.126

1.126
 1.123-1.130

36-41 1315
1.013

1.013-1.014

1.042
1.040-1.043

1.073
1.071-1.076

1.100
1.097-1.103

1.121
 1.117-1.124

1.125
1.121-1.129

 62

Continuation of Table 4-4

Interval km
Number of

routes
200 m 500 m 1000 m 2000 m 5000 m ∞

41-46 591
1.013

1.012-1.014

1.044
1.042-1.046

1.071
 1.067-1.074

1.098
 1.094-1.102

1.120
1.115-1.125

1.125
 1.120-1.130

46-51 179
1.012

1.010-1.013

1.040
1.037-1.044

1.064
1.058-1.069

1.092
1.086-1.098

1.128
 1.119-1.136

1.131
1.122-1.139

51-56 32
1.007

1.005-1.009

1.036
1.027-1.044

1.053
 1.046-1.061

1.085
 1.074-1.095

1.125
1.114-1.137

1.129
 1.118-1.141

 The decrease in relative risk is accompanied, as it follows from Fig. 4-5 and Table 4-

5, by another loss: an increase in the number of traversable vertices of the road graph by

about 6-27.6%, depending on the length of the original route.

Figure 4-5. Average ratios of the number of vertices of routes (after/before) for

different lengths of the original route and different penalty values for the obstacle edge

(with 95% confidence intervals)

 63

Table 4-5. Average ratios of the number of vertices of routes (after/before) for different

lengths of the original route and different penalty values for the obstacle edge (with

95% confidence intervals)

Interval km
Number of

routes
200 m 500 m 1000 m 2000 m 5000 m ∞

1-6 535
1.006

1.000-1.011

1.013
1.005-1.021

1.027
1.015-1.038

1.060
1.042-1.076

1.098
1.073-1.121

1.173
1.108-1.227

6-11 1524
1.014

1.009-1.018

1.038
1.031-1.045

1.086
1.075-1.096

1.127
 1.114-1.139

1.194
 1.175-1.213

1.272
 1.243-1.300

11-16 2679
1.026

1.021-1.030

1.062
1.056-1.068

1.124
 1.115-1.132

1.179
1.168-1.190

1.244
1.229-1.258

1.299
1.281-1.317

16-21 3065
1.039

1.035-1.044

1.084
1.078-1.091

1.163
1.154-1.172

1.224
 1.213-1.235

1.279
 1.265-1.292

1.311
 1.296-1.326

21-26 3255
1.049

1.045-1.054

1.101
1.094-1.107

1.188
 1.179-1.197

1.250
1.238-1.261

1.295
1.281-1.308

1.315
1.300-1.329

26-31 2854
1.055

1.050-1.061

1.116
1.107-1.124

1.192
1.182-1.202

1.244
 1.233-1.256

1.279
 1.266-1.292

1.291
 1.277-1.305

31-36 2196
1.063

1.056-1.070

1.135
1.124-1.145

1.206
 1.193-1.219

1.256
1.241-1.271

1.287
1.271-1.303

1.295
1.279-1.311

36-41 1315
1.074

1.063-1.084

1.151
1.137-1.165

1.217
1.200-1.232

1.257
 1.240-1.274

1.292
 1.274-1.310

1.303
 1.284-1.322

41-46 591
1.071

1.058-1.084

1.156
1.133-1.177

1.213
 1.188-1.237

1.250
1.225-1.275

1.285
1.259-1.311

1.294
1.268-1.319

46-51 179
1.059

1.038-1.082

1.136
1.103-1.167

1.172
1.137-1.206

1.213
 1.183-1.240

1.279
 1.243-1.311

1.280
 1.243-1.312

51-56 32
1.086

1.041-1.131

1.273
1.139-1.395

1.232
 1.103-1.339

1.276
1.151-1.375

1.366
1.252-1.458

1.372
1.261-1.463

 Finally, I will briefly focus on the optimal choice of obstacles (their number and level

of significance), which would provide the best value of the relative risk of an accident.

Unfortunately, this problem still has to be solved empirically – with the help of rather

laborious calculations. First of all, let's compare the first 400 obstacles with a significance

level of 0.05 and 0.01, designated as 95_400 and 99_400 in Fig. 4-6. It is perceptible that

the reliability of 0.01 turns out to be preferrable, which is not surprising, because

according to Table 4-2 (and common sense), edges that are reliable at the level of 0.01,

contain more accidents (on average) and are more suitable for the role of obstacles. Now

let's compare the different number of obstacles, reliable at the level of 0.05, and indicated

in Fig. 4-6 as 95_400, 95_500 and 95_800. It is apparent that in our particular case, the

largest number of obstacles 800 turns out to be optimal, although it is impossible to

deduce from this the rule "the more, the better", since too many obstacles may leave few

 64

alternatives for changing the route, which will lead to an increase in the relative risk of

an accident instead of reducing it.

Figure 4-6. Dependence of the average relative risk of accidents for different obstacles

and different lengths of the original route (penalty = 2000m)

Conclusions

 Using the example of Moscow, a way to improve road safety is considered, which

consists in building a route that bypasses obstacles identified on the road map (graph).

The obstacles are the edges of the road graph containing a statistically significantly higher

number of severe traffic accidents (TAs).

 To check the effectiveness of routing, the indicator proposed in [57] is used – the

relative risk of an accident is equal to the ratio of the number of accidents along the route

that takes into account obstacles to the number of accidents counted along the original

route built without taking into account obstacles.

 65

 It is shown that obstacle avoidance reduces the relative risk of an accident by 9-31%

(depending on the length of the original route) by increasing the average length of the

route by 6-11% and increasing the average number of traversable vertices of the road

graph by 6-27.6%.

 66

Chapter 5. Bypassing dangerous sections of the route to improve traffic

safety (case study of St. Petersburg)

Introduction

 In Chapter 4, using the example of Moscow, a way to improve road safety was

developed, consisting in building a route that bypasses obstacles identified on the road

map (graph). The obstacles are the edges of the road graph (road segments) containing a

statistically significantly higher number of severe traffic accidents (TAs). Each identified

obstacle is subject to a penalty – adding some value to the length attribute of the

corresponding edge of the road graph, after which the usual routing algorithm is launched,

determining the route of the minimum (taking into account penalties) length.

 In this chapter, the same approach is applied to the city of St. Petersburg (see [61]).

The results of calculations show that in the case of St. Petersburg, the selection and

subsequent bypass of obstacles can significantly reduce the average relative risk of an

accident due to a limited increase in the length of the route and the number of vertices of

the road graph traversed along the route. Hence, the algorithm developed in Chapter 4 is

validated by the new data provided by Saint-Petersburg traffic history.

5.1 Data

 As in the previous chapter, I will use the OpenStreetMap (OSM) global map of the

world to obtain the road network, this time for the city of St. Petersburg. The easiest way

to load the road network is to use the OSMnx library for the Python language (see [6]).

 67

The resulting road network is a multidigraph, that is, a directed graph, the edges of which

can be unidirectional and bi-directional, and through any two vertices of the graph can

pass any number of edges. The package OSMnx allows you to save the original graph as

two separate objects - edges and vertices in vector format .shp, which allows you to

display the road network in a geographic information system, such as QGIS [59].

Table 5-1. Parameters of the Moscow and St. Petersburg road networks

Metric Moscow St. Petersburg

Total vertices 16797 14624

Total edges 25415 22787

One-directional edges 15696 15222

Two-directional edges 9719 7565

Table 5-2. Descriptive statistics for lengths (in meters) of edges of road networks for

Moscow and St. Petersburg
Metric Moscow St. Petersburg

Average length 217.4 155.1

St. deviation 275.5 219.2

Min 1.06 0.66

25% percentile 47.2 24.1

Median 127.9 81.9

75% percentile 291.6 197.9

Max 8043 4542

 Despite the much smaller population of St. Petersburg compared to Moscow, it’s road

network obtained from OSMnx is not much simpler, as shown in Table 5-1, compared to

that of Moscow and has 30352 edges (35134 edges for Moscow). The statistics of the

lengths of the edges of the road graph for both cities, given in Table 5-2, shows that the

road segments (edges of the road graph) for St. Petersburg are on average shorter than for

Moscow (by 36%, as measured by the median metric).

As for the data on traffic accidents, they were obtained from the official source of the

traffic police (GIBDD) [60]. For this study, I selected records of 16,865 serious (that is,

resulting in injury or death to at least one of the participants) traffic accidents recorded in

 68

St. Petersburg in 2019-2021. Since the St. Petersburg road network and accident data

were obtained from independent sources, it was necessary to remove accidents that

clearly did not belong (e.g., due to registration error) to the road network. For this

purpose, only those accidents whose distance to the nearest edge of the road network is

less than 35m12 were left for further analysis. The total number of such accidents was

13503 (80% of the total number).

5.2 Tools and method

 As in [58], for each edge of the road graph, one can count the number of severe TAs

belonging to it and then find edges in which the number of accidents exceeds, say, the

95th percentile of the values obtained as a result of Monte Carlo numerical simulations

described in sufficient detail in [58]. Considering the number of accidents of such edges

statistically significant (at the level of 0.95), I will continue to use such "dangerous" edges

as obstacles.

 To do this, I will create a graph G0 representing the road network of St. Petersburg,

and it’s copy - graph G1. I will leave graph G0 unchanged, and in graph G1 I will add a

sufficiently large number (penalty) to the length attribute of the edges selected by

hypothesis testing using Monte Carlo simulations. The penalty will be the same for all

these dangerous edges and will imply to the routing algorithm that these edges are

undesirable and should be avoided if possible.

 I just need to compare all the routes laid on graphs G0 and G1 and make sure that the

routes on graph G1 are in some sense safer. To do this, I will set a square grid with a fixed

step equal to 3 km in this case (see Fig. 5-1), and I will plot all routes starting and ending

at the vertices of the graph closest to the grid nodes.

12 If I consider the width of the lane to be 3.5 m, and the maximum number of lanes to be 10, then 35 m will serve as an
estimate of the maximum width of the road in Moscow.

 69

Figure 5-1. Nodes of the square grid placed on the road map of St. Petersburg

 Let's denote any two grid nodes as A and B and find the route A->B on graph G0 and

the route A—>B on graph G1. To compare these routes, I calculate the relative risk ratio

of accidents (RRR) equal to the ratio of accidents that occurred along route A—>B to

the number of accidents that occurred along route A->B. If the upper bound of the

confidence interval for the RRR < 1, then the routes along the graph G1 are safer than the

routes defined on the original graph G0.

5.3 Results

 The first 2,000 edges of the road graph containing the largest number of severe traffic

accidents were chosen for hypothesis testing, because calculations for all 30352 edges are

extremely time-consuming13 and provide little added value.

13 All calculations were performed on a workstation with a quad-core processor and 32GB of RAM

 70

Figure 5-2. Obstacles displayed on the road map of St. Petersburg

 In total, 1000 tests were carried out for each edge out of 2000, significantly

"dangerous" were at the level of 0.95 – 983 edges, of which, as in [58], the first 800 edges

containing the largest number of severe traffic accidents were used. Fig. 5-2 shows 983

obstacle edges on the map of St. Petersburg. Edges with different numbers of accidents

are binned and shown in different colors (0-4 accidents – green, 4-7 accidents – blue, 7-

13- red, 13-18 accidents - yellow). Table 5-3 shows a list of 10 road segments (with the

coordinates of the beginning and end of the segment) with the largest number of

accidents.

 After receiving obstacles, the procedure steps is the same as in [58]. It is necessary,

using a square grid placed on the map of St. Petersburg, to sort through all the starting

 71

and ending points of the grid and for each route A->B laid without obstacles, calculate

the route A->B having the same starting and ending points, but laid with obstacles. Next,

one should compare all such routes and understand how the relative risk of an accident,

the length of the route and the number of traversable vertices change on average. This

analysis was carried out for various values of the penalty imposed on the obstacle to

understand how it affects the effectiveness of alternative routing.

Table 5-3. Ten Road segments in St. Petersburg with the highest number of severe

traffic accidents

Road segment Start (latitude. longitude) End (latitude. longitude) TAs
KAD14 58-60 км. внутр. 59.8523, 30.4745 59.8352, 30.4484 18

KAD 81-83км. внешн. 59.8344, 30.4477 59.8524, 30.4753 18

KAD 74км 59.8114, 30.3423 59.8151, 30.3615 17

KAD 35-37км 60.0155, 30.4664 59.9931, 30.4798 16

Liteyniy Ave from . Pestelja St.

to Nekrasova St.
59.9429, 30.3484 59.9390. 30.3482 15

Engel’sa Ave from Pr.

Lunacharskogo. to Vyborg

highway

60.0438, 30.3279 60.0361, 30.322 14

Leninskiy Ave from ul. Ziny

Portnovoy to Bulvar Novatorov
59.8518, 30.2564 59.8518, 30.2678 14

Sverdlovskaya Naberezhnaya

from Ul. Vatutina to Ul.

Arsenal’naya

59.9595, 30.3839 59.9549, 30.3746 14

Prospect Nauki from

Grazhdanskiy Prospect to Ul.

Butlerova

60.0130, 30.3978 60.011, 30.4058 14

KAD 102km 59.9824, 30.5070 59.9866, 30.4904 14

 Calculation results are shown in Figures 5-3...5-5 and in Tables 5-4...5-6. In addition

to the values themselves, Tables 5-4...5-6 show in smaller font, and the figures show in

less saturated color the 95% confidence intervals of the values obtained by the bootstrap

14 St. Petersburg Ring Road (КАД in Russian)

 72

method. The first 800 edges significant at the 0.95 level were used as obstacles, and the

values of 200, 500, 1000, 2000, and 5000 meters were used as penalties.

Figure 5-3. Relative risk of an TA depending on the length of the initial route and the

penalty for the obstacle edge with 95% confidence intervals

 If only the relative risk of an accident is taken into account, then a penalty equal to

5000m will be optimal (see Figure 5-3). Table 5-4 shows that the minimum risk value for

this penalty is 0.616. But at the same time, with a penalty of 5000m (see Figures 5-4 and

5-5), the cost in the length of the route and the number of traversable vertices of the road

graph will greatly increase.

 As Figure 5-3 and Table 5-4 show, penalties equal to 1000 m and 2000 m give almost

the same dependence of the average relative risk on the length of the initial route. But at

the same time, as it follows from Figures 5-4 and 5-5, for a penalty of 1000 m, the loss in

the length of the route and the number of traversable vertices of the road graph is

significantly reduced. Therefore, a penalty of 1000 m should be considered optimal for

Saint-Petersburg.

 73

Table 5-4. Relative risk of an TA depending on the length of the initial route and the

penalty for the obstacle edge with 95% confidence intervals

Interval km
Number of

routes
200 m 500 m 1000 m 2000 m 5000 m

1-6 297 0.909

0.890-0.928

0.878

0.857-0.899
0.855

0.831-0.879
0.861

0.834-0.888
0.874

0.844-0.904

6-11 853 0.867

0.857-0.878
0.815

0.803-0.828
0.786

0.773-0.800
0.785

0.771-0.799
0.788

0.773-0.803

11-16 1231 0.833

0.824-0.843
0.773

0.763-0.783
0.733

0.722-0.743
0.730

0.720-0.742
0.730

0.718-0.741

16-21 1272 0.804

0.795-0.813
0.739

0.730-0.749
0.708

0.699-0.718
0.706

0.696-0.715

0.703

0.692-0.713

21-26 1088 0.786

0.776-0.795
0.712

0.702-0.721
0.684

0.674-0.694
0.685

0.675-0.694
0.677

0.667-0.687

26-31 768 0.758

0.747-0.769
0.676

0.665-0.686
0.655

0.645-0.665
0.660

0.649-0.670
0.648

0.637-0.658

31-36 493 0.747

0.734-0.760
0.658

0.646-0.670
0.640

0.628-0.652
0.642

0.630-0.654
0.628

0.615-0.640

36-41 233 0.750

0.733-0.768
0.662

0.646-0.678
0.646

0.630-0.661
0.646

0.630-0.662
0.630

0.613-0.646

41-46 97 0.767

0.748-0.787
0.677

0.659-0.695
0.654

0.636-0.672
0.646

0.628-0.664
0.616

0.598-0.633

46-51 53
0.757

0.733-0.780

0.686

0.666-0.707
0.672

0.651-0.694
0.675

0.654-0.696
0.634

0.614-0.655

Proportion of changed routes 0.82 0.88 0.92 0.94 0.95

Figure 5-4. Dependence of the average ratios of route lengths (Length when bypassing

the HRA/ Initial length) for different lengths of the original route and different values of

the penalty for the obstacle edge

 74

Table 5-5. Average ratios of route lengths (after/before) for different lengths of the

original route and different penalty values for the obstacle edge (with 95% confidence

intervals)

Interval km
Number of

routes
200 m 500 m 1000 m 2000 m 5000 m

1-6 297 1.015

1.011-1.018

1.038

1.030-1.045
1.083

1.070-1.096
1.137

1.115-1.158
1.221

1.183-1.257

6-11 853 1.018

1.016-1.019
1.045

1.041-1.049
1.097

1.090-1.103
1.148

1.138-1.157
1.213

1.199-1.226

11-16 1231 1.020

1.018-1.021
1.052

1.049-1.054
1.100

1.096-1.104
1.144

1.138-1.150
1.190

1.182-1.198

16-21 1272 1.023

1.022-1.025
1.053

1.051-1.056
1.099

1.095-1.103
1.135

1.130-1.140

1.173

1.167-1.179

21-26 1088 1.025

1.023-1.026
1.056

1.054-1.059
1.095

1.092-1.099
1.127

1.123-1.132
1.161

1.155-1.166

26-31 768 1.028

1.026-1.030
1.059

1.056-1.062
1.098

1.094-1.101
1.130

1.125-1.136
1.162

1.155-1.168

31-36 493 1.029

1.027-1.031
1.056

1.053-1.060
1.089

1.085-1.093
1.124

1.117-1.130
1.152

1.145-1.160

36-41 233 1.028

1.025-1.031
1.051

1.047-1.055
1.080

1.075-1.085
1.117

1.109-1.125
1.147

1.138-1.157

41-46 97 1.023

1.020-1.025
1.045

1.041-1.050
1.083

1.077-1.089
1.108

1.098-1.117
1.143

1.131-1.154

46-51 53 1.022

1.019-1.026
1.039

1.033-1.045
1.080

1.074-1.086
1.088

1.078-1.097
1.140

1.128-1.150

Proportion of changed routes 0.82 0.88 0.92 0.94 0.95

 For this penalty value, according to Table 5-5, the average ratio of route lengths ranges

from 1.08 – 1.1, that is (see Table 5-5,) the average reduction in relative risk by 14.5-36%

is achieved with a penalty of 1000m by increasing the average route length by 8-10%.

The decrease in relative risk is accompanied, as it follows from Fig. 5-6 and Table 5-6,

by another cost: an increase in the number of traversable vertices of the road graph by

about 3-12% (for a fine of 1000 m), depending on the length of the original route.

 75

Figure 5-5. Average ratios of the number of vertices of routes (after/before) for

different lengths of the original route and different penalty values for the obstacle edge

(with 95% confidence intervals)

Table 5-6. Average ratios of the number of vertices of routes (after/before) for different

lengths of the original route and different penalty values for the obstacle edge (with

95% confidence intervals)

Interval km
Number of

routes
200 m 500 m 1000 m 2000 m 5000 m

1-6 297 1.028

1.007-1.047

1.064

1.038-1.088
1.116

1.081-1.149
1.171

1.129-1.208
1.245 1.193-1.296

6-11 853 1.026

1.016-1.035
1.054

1.041-1.067
1.118

1.102-1.134
1.183

1.163-1.203
1.233 1.210-1.256

11-16 1231 1.024

1.016-1.032
1.056

1.046-1.066
1.119

1.105-1.132
1.175

1.159-1.190
1.209 1.192-1.226

16-21 1272 1.023

1.015-1.031
1.049

1.039-1.059
1.106

1.094-1.118
1.159

1.146-1.173

1.189 1.175-1.203

21-26 1088 1.030

1.022-1.038
1.047

1.037-1.057
1.089

1.077-1.101
1.150

1.138-1.162
1.170 1.158-1.183

26-31 768 1.035

1.026-1.045
1.025

1.014-1.036
1.074

1.061-1.087
1.140

1.127-1.153
1.141 1.128-1.154

31-36 493 1.034

1.023-1.045
1.007

0.996-1.019
1.045

1.031-1.059
1.126

1.111-1.140
1.121 1.106-1.136

 76

Continuation of Table 5-6

Interval km
Number of

routes
200 m 500 m 1000 m 2000 m 5000 m

36-41 233 1.012

0.999-1.026
0.985

0.971-0.999
1.026

1.009-1.042
1.116

1.098-1.133
1.107 1.086-1.128

41-46 97 0.987

0.973-1.001
0.963

0.947-0.980
1.028

1.006-1.050
1.089

1.069-1.109
1.035 1.012-1.058

46-51 53 0.997

0.982-1.011
0.985

0.966-1.004
1.071

1.049-1.094
1.090

1.071-1.110
1.007 0.988-1.026

Share of changed routes 0.82 0.88 0.92 0.94 0.95

Figure 5-6. The proportion of routes for which a safety gain is not achieved,

depending on the length of the original route and the penalty

 Figures 5-3...5-5 and Tables 5-4...5-6 give values of average values (average relative

risk, average route lengthening etc.). However, a particular route calculated with

obstacles in mind may not coincide with these average values. In particular, a route may

not provide a safety benefit compared to a route based on the original (unchanged) road

network. Figure 5-6 shows the proportion of these routes as a function of the length of

the original route.

 It is clearly seen From Fig. 5-6 that the share of unsuccessful routes is maximal for

short (1-6 km) original route lengths and reaches 0.23 (e.g. 23%) for the highest penalty

value (5000m). For the optimal value of the penalty (1000 m) the share of unsuccessful

 77

routes ranges from 12.7% (for the shortest routes with length less than 6 km) to 0% (for

routes longer than 31 km). Hence, for practical calculations it is necessary to check each

calculated route and if it is not safer use a different value of the penalty or refuse

alternative routing at all.

Findings

 Bypassing obstacles, which are the edges of the road graph of St. Petersburg15,

containing a statistically significantly large number of severe traffic accidents (TAs),

reduces the average relative risk of accidents by 14.5-36% (depending on the length of

the original route) by increasing the average length of the route by 8-10% and increasing

the average number of passable vertexes of the road graph by 3-12%.

 Obtaining similar results for St. Petersburg by repeating the algorithm previously used

for Moscow [58], allows us to talk about the stability of the proposed method and the

possibility of its application for other cities.

15 It means that a fine of 1000m is imposed on each obstacle.

 78

Chapter 6. A package of programs modifying a road graph according to
the number of accidents belonging to it

6.1 Introduction

 This chapter will describe in detail a package of Python programs that allows one to

modify a road graph in such a way that applying conventional routing algorithms to it

leads to the construction of safer routes on average, as shown in Chapters 4 and 5.

Constructing a modified road graph is a rather complex task (both algorithmically and

in terms of computational size). It seems to me that it is more convenient to solve this

problem using a set of sequentially applied compact programs than using one immense

program. In addition, I use third-party programs (SANET) to solve the problem, which

allow us to generate points uniformly distributed over the road network, necessary for

Monte Carlo simulations and statistical hypothesis testing (see 4.2).

6.2 Getting a road graph in OSMNX format and (separately) edges and
vertices of the road network in ShapeFile format

Appendix 1 shows a program that allows one to download a vector map (road graph) of

the selected city from the OpenStreetMap repository. In Appendix 1, this is St.

Petersburg. The loading process is controlled by the ox.config() function, where the

most important option - all_oneway = False means that the bidirectional edge of the

road graph is stored as one edge with the oneway = 1 attribute (and the unidirectional

edge with the oneway = 0 attribute).

The graph loading itself is performed by the method ox.graph_from_place(), the

following two methods ox.add_edge_speeds(G) and ox.add_edge_travel_times(G) load

an estimate of the maximum speed and minimum travel time through the edge of the

graph (the length of the edge is simply divided by the maximum speed) accordingly.

 79

The remainder of the program saves the original graph and its representations as sets of

edges and vertices (as a file in ShapeFile format) onto the disk.

6.3. Combining TAs and a road graph

By definition, each TA must belong to a road graph, that is, be located on one and only

one of its edges. But since the road graph and TAs are obtained from different sources,

they do not coincide with each other. This means that I will have to determine for each

accident the edge of the road graph closest to it and then assume that it was on this edge

of the road graph that the accident occurred. Simultaneously, in the case of a

bidirectional edge, a difficulty arises due to the inability to determine which direction of

the edge belongs to the TA. In principle, this can be found out by examining the

metadata of the TA, which indicates the street and the house near which the accident

occurred, but it is very difficult to algorithmize this process, and it is impossible to

manually sort out several thousand accidents. Therefore, where necessary, I have to

"split" the accident, assigning half of it to one direction, and half to another. The Python

program that defines the edge of the road graph closest to an accident is shown in

Appendix 2. The «heart» of the program is a string

u, v, key, dist = ox.get_nearest_edge(Gp, (y, x), return_dist=True)

In which, for a TA with coordinates (y, x), four values are calculated – (u, v, key) –

three values defining the edge closest to the accident, where u is the identifier of the

beginning of the edge (= the identifier of the vertex of the graph located at the

beginning of the edge), v is the identifier of the end of the edge, and key is an integer

number by which one of the edges passing through two vertices (u, v) is determined. If

 80

only one edge passes through the given vertices, the key has a single value of 0. If two

edges pass through these vertices, the key has two values – 0,1, etc.

Note that the ox.get_nearest_edge() method has as parameters the projected (projected)

graph Gp and coordinates (x,y), not the expected latitude and longitude (lat, lon). This is

done in order to compute the distances between an accident and an edge of the road

graph, since this cannot be done when the accident is defined by latitude and longitude.

In this thesis, the UTM (Universal Transverse Mercator) coordinate system (see e.g.

[62]) is used to determine the distances. The advantage of the UTM system is that the

distance between two points can be calculated with high accuracy

using the usual Euclidean formula d = sqrt((x1-x2)**2 + (y1-y2)**2)

Appendix 3 provides a program that evaluates the accuracy of calculating distances

between two points in the UTM system. The coordinates (latitude and longitude) of the

northernmost and southernmost point of St. Petersburg are taken as two points.

The distance calculated taking into account the curvature of the earth surface in the line

dist = geopy.distance.geodesic(coords_1, coords_2).m is 31,879 meters.

Calculations show that the difference between the "true" distance and the distance

calculated by Euclid's formula using UTM coordinates is only 4m. Since I am interested

in distances < 35m, the accuracy of the distance calculation can be considered quite

satisfactory

Transition to UTM coordinates for the road graph (see Appendix 2) is performed by the

project_graph() method:

Gp = ox.project_graph(G)

And the projection of the accident point utilizes the ox.projection.project_geometry

method

point_geom_proj, crs = ox.projection.project_geometry(Point(reversed(point)),{

to_crs=Gp.graph['crs']) ,

 81

where point is the latitude and longitude, and crs is the UTM zone, equal to 36 for St.

Petersburg.

I only need to describe the input and output of the program. The input is a list of traffic
accidents in .csv format:

YEAR,DATE,TIME,LAT,LON,X,Y
19,31.01.2019,14:50,59.896364,29.842107,658989.2947785741,6643282.0244597355
19,31.01.2019,11:20,59.752223,30.288019,347630.30501833995,6626933.342702196
19,31.01.2019,22:35,59.884464,30.387443,353794.9774347632,6641428.438857373
19,31.01.2019,12:10,60.004061,30.436099,357032.93212231743,6654634.490192406

Each line, as can be seen from the file header, contains a description of one accident:

year (last two digits), date, time, latitude and longitude, and x,y coordinates, the origin

of which was not clear from the data provided by the traffic police GIBDD, so it was

decided to switch to the UTM system.

The output of the program is a .csv file:

YEAR,DATE,TIME,ID,X,Y,LAT,LON,NODE1,NODE2,KEY, DIST

9, 31.01.2019, 11:20, 126439, 347630.30501808145, 6626933.341987754, 59.752223,
30.288019, 800275641, 1038407432, 0, 2.23623
19, 31.01.2019, 11:20, 126439, 347630.30501808145, 6626933.341987754, 59.752223,
30.288019, 1038407432, 800275641, 0, 2.23623
19, 31.01.2019, 22:35, 126440, 353794.97743462917, 6641428.438138614, 59.884464,
30.387443, 1710211567, 300429771, 0, 0.72741
19, 31.01.2019, 12:10, 126441, 357032.93212221784, 6654634.489469756, 60.004061,
30.436099, 25896964, 276609, 0, 1.30547

This is also a list of TAs, but now 4 parameters have been added to each accident:

(NODE1, NODE2, KEY) - the ID of the nearest edge and DIST - the distance of the

accident to the nearest edge.

6.4. Counting the number of TAs for each edge of the road graph

 In the previous paragraph, I went through all the registered TAs and for each one I

determined the edge of the graph to which the accident belongs. The result is a list

where, for each accident, the identifiers of the edge to which the accident belongs are

included.

 82

Nothing prevents one from performing the reverse operation: iterate through all the

edges of the graph and look for each edge in the file where all TAs are listed. How

many times an edge of the graph will be found in this file, corresponds to how many

accidents belong to this edge. The program counting the number of accidents for each

edge is given in Appendix 4.

At the input of the program, the previously obtained road graph G and the list of TAs

with the ids of the edges to which the TA’s belong are used:

(tas_to_edges_2019_2021_twoway_proj_spb_gibdd_flt_35.csv).

It is futile to search for some lines directly in the .csv file. Therefore, in the program the

.csv file is converted to a Pandas object using the pd.read_csv() method

ta_edges =

pd.read_csv('data/tas_to_edges_2019_2021_twoway_proj_spb_gibdd_flt_35.csv')

After the information about the TAs goes into the Pandas object, the calculation of

accidents for each edge is reduced to a search implemented in the main function of the

tas_along_edge() program:

def tas_along_edge(u, v, key):
 edges_outg = ta_edges.loc[ta_edges['NODE1'] == u]
 edge_tas = edges_outg.loc[(edges_outg['NODE2'] == v) &\
 (edges_outg['KEY'] == key)]
 tas = edge_tas.shape[0]
 oneway = G.edges[u, v, key]['oneway']
 if not oneway:
 tas = tas/2.0
 return tas

The search is implemented in the first three lines of the function. The remaining lines

are needed to check the edge for bidirectionality. If the edge is bidirectional, I need to

split the found TA’s between two directions. I have already mentioned in paragraph 6.3

that it is extremely difficult, if not impossible, to assign an accident to a direction using

real accident data. Therefore, in the program I simply assign half of the found accidents

to each edge. This should not affect the routing results much, since bidirectional edges,

as it follows from Table 5-1, make up about one third of all edges, and for long routes

(the most important from the safety point of view), which include dozens of edges, there

 83

should be averaging of errors associated with attributing an accident to the wrong

direction of a bidirectional edge.

It remains for us to mention only some features of the program. The collect_edges()

function prepares a list of all edges of the road graph. It would seem that this list can be

obtained from the edges attribute of the G: G.edges (keys = True, data = True), but it

turns out that some edges in this initial list are repeated, and the collect_edges() function

simply filters it.

The main function of the program tas_to_edges(G) iterates through all edges from the

edge_list[] list and for each edge calculates the number of accidents, the density of

accidents equal to the number of accidents divided by the length of the edge, as well as

the coordinates of the beginning and end of the edge. Next, the list of edges is sorted, so

that the edges with the largest number of accidents are the first in the list (descending

order). The calculation result is recorded in the

edges_most_populated_spb_sorted_by_ta_flt_35_debug.css file, the first lines of which

are similiar to listing 6.4.1.

Listing 6.4.1. A file containing a sorted list of edges of the road graph, the number and
density of accidents for each edge

cn,node_start,node_end,key,lat0,lon0,lat1,lon1,tas,ta_density
0,10593917,10593888,0,59.8523445,30.4745321,59.835247,30.4484255,18,0.007
1,339921466,248196221,0,59.834425,30.4477147,59.8523655,30.4752937,18,0.007
2,251397970,251398032,0,59.9159712,30.4137958,59.8928928,30.4469675,17,0.005
3,2490216682,187587141,0,59.8113625,30.3422923,59.8151242,30.361476,17,0.014
4,587052882,245828,0,60.0154892,30.4663785,59.9930789,30.4798397,16,0.006
5,9708925354,9708927324,0,59.9428586,30.3484161,59.9390119,30.3481549,15,0.035

The file header shows that there are 10 parameters in the line: the edge number, its identifiers
(node_start,node_end,key), the coordinates of the beginning and end, the number of accidents (tas) and
the density of accidents (ta_density).

 84

6.5 Statistical tests to identify edges with a statistically significant
number of TAs

 I will consider as statistically significant such a value of the number of TAs for a given

edge that exceeds the 95th or 98th percentile of the distribution of accidents for this edge

- provided that the accidents are distributed uniformly over the road network.

To obtain points uniformly distributed over the road network, the SANET software

package [47] is used, which allows us to obtain (in ShapeFile format) millions of points

uniformly distributed over the road network. To obtain these points, it is enough to have

the edges of the road graph in ShapeFile format (their obtaining is briefly described in

Section 6.2).

The statistical tests themselves are performed by the program shown in Appendix 5. In

the while True loop: first, the list of edges sorted by the number of TAs belonging to

them is read line by line, from which the edge identifier (edge1, edge2, key) and the

number of TA’s are extracted:

if edge_cnt > tot_edges: break;
 line = ta_edges.readline()
 vals = line.split(',')
 if len(vals) < 10: break
 vals[-1] = vals[-1].strip() #delete last symbol ‘\n’
 edge1 = int(vals[hp.index('node_start')])
 edge2 = int(vals[hp.index('node_end')])
 key = int(vals[hp.index('key')])
 tas = vals[hp.index('tas')]

Then, from the general list of lists of uniformly distributed points sanet_trials, the points

for a particular trial are extracted and an edge (edge1, edge2, key) is searched among

these points. The number of times an edge is found is the number of points that belong

to it. A total of 1000 trials are conducted for a given edge and their results are recorded

in the sanet_trials_file file as follows:

node_start,node_end,key,tas,trial_values
10593917,10593888,0,18,15#14#9#7#12#8#10#6#8#6#7#13#9#15#10#8#8#14#8#8#12#7#9#6…

 85

First comes the identifier of the edge for which the trials are conducted

(10593917,10593888,0), then the number of TA’s for this edge, and then the results of

the trials themselves (1000 values separated by the '#' sign). I only need to mention the

auxiliary function prepare_sanet_points(trials, size), which divides the total list of

generated uniformly distributed points into portions of size equal to the real number of

accidents. In total, 1000 such portions are required for 1000 trials.

6.6 Selecting edges with a statistically significant number of TAs

I will consider the number of TAs belonging to an edge of the road graph significant if

it exceeds the 95th percentile of the values obtained as a result of Monte Carlo

simulation from a uniform distribution along the road network. This means that having

the file obtained in Section 6.5 as input, it is necessary to read it line by line, extracting

the number of accidents from each line and calculating the 95th percentile of Monte

Carlo simulations. Then it is necessary to compare the number of TAs and the

percentile, and if the number of TAs is higher, write the corresponding line to the output

file, which will contain edges with statistically significant high numbers of TAs. The

program that performs the actions described above is provided in Appendix 7.

In the main loop of the program the while True: the actions described above are

performed. The percentile of the values of Monte Carlo simulations is found using the

function percentile(vals, p), which has as a parameter the values of Monte Carlo

simulation vals and percentile, for example, 95.

 86

6.7 Constructing routes on the modified graph and collecting statistics of
relative TA risk

Finally, I am ready to modify the road graph in such a way that edges with statistically

significant high number of TAs will receive a "penalty" - the same increase in the length

of each edge. But this increase may not always lead to the construction of a safer route.

To make sure that the route from point A to point B is safer, let us calculate the ratio of

TAs on the modified route/TAs on the original (on the unmodified graph) route (let us

call this metric relative risk of TA). If this ratio is less than one, the route based on the

modified graph is safer.

Naturally, in order to determine the optimal value of the penalty, it is necessary to

collect statistics on some set of routes and make sure that the average value of the

relative risk of an accident is statistically significantly less than one.

To specify the set of routes I will use a square grid placed on a road graph, and to obtain

the relative risk statistics I will construct the routes between all the different pairs of

nodes on the grid.

To create the grid, I will use the program shown in Appendix 8. This program, although

quite lengthy, is quite simple in essence. It starts with the coordinates of the upper left

corner of the lattice ilat, ilon and width and height of the lattice: width, height. Then the

latitude and longitude of the grid start are translated into UTM system, which I briefly

described in section 6.3:

ini_coords = utm.from_latlon(ilat, ilon)

Then the origin coordinates are slightly corrected (moved 3 km to the left and 4.5 km

up). Finally, the grid nodes are computed in an intuitive way and saved in a file. This

file is then opened to filter the nodes of the grid - leaving only those nodes that are

located no further than half a grid step. This is done so that the nodes of the lattice are

located on the road graph itself. Nodes that are far away from the nearest road are

useless for us. The grid created for St. Petersburg is shown in Figure 5.1.

 87

Now that the grid has been created and written to a file, I can start the main task -

collecting statistics on the relative risk of road accidents. The program shown in

Appendix 9 does this. Unlike other programs, this one is run from the command line.

The point is that the program performs a large amount of calculations and runs for quite

a long time. To speed up the calculations, several copies of the program can be executed

with different parameters from the command line. If, say, the processor has 4 cores, one

can easily run 3 copies of the program with different parameters.

The program itself first loads the necessary files (two copies of the road graph - G and

GO, a square grid and a list of edges with a statistically significant high number of

TA’s), and then modifies the GO graph so that edges with a statistically significant high

number of accidents receive a penalty - an increase in length by the value entered on the

command line. This is done in the set_obstacles(fname, penalty, maxp) function, where

fname is the name of the file with the list of edges containing a statistically significant

number of TAs (see Section 6.6), penalty is the value in meters, and maxp is the number

of edges that participate in the GO graph modification, i.e. the program allows using

either all edges with a significant number of accidents or a subset of them.

In the main loop of the program
for rin,rend in product(range(grd_pnt), range(grd_pnt)):

all non-identical pairs of nodes in the grid are enumerated. For each pair of nodes, the

nearest nodes of the graph are calculated:

start_node = ox.get_nearest_node(G, start)
end_node = ox.get_nearest_node(G, end) ,

where start, end are the coordinates of the corresponding nodes of the grid.

For GO and G, routes with common start (start_node) and common end (end_node) are

constructed, and for each pair of routes the relative risk of accidents is calculated, which

is equal to the ratio of the number of accidents along the modified route along the GO

graph to the number of accidents along the original route along the G graph. The

calculation of accidents along the route is performed by the function tas_along_route(G,

route), where route is the list of graph vertices traversed along the route.

 88

In addition, for each route, its length and the number of road graph vertices traversed

along the route are calculated.

The calculation results are written to a .csv file with the following structure:

Listing 6.7.1. The structure of the output file
BEGIN,END,ROUTE_LENGTH,ROUTE_O_LENGTH,ROUTE_NODES,ROUTE_O_NODES,TA_DIRECT,TA_AVOID
,AFFECTED
60.035373133218066#30.08738874095845, 60.0084702205044#30.089756684912672,
4734.367, 4734.367, 10, 10, 0.0, 0.0, no
60.035373133218066#30.08738874095845, 59.873953156252696#30.10152938432629,
40672.12399999999, 40781.512999999984, 186, 186, 163.0, 155.5, yes
60.035373133218066#30.08738874095845, 59.847049243899896#30.10387060306932,
40015.45499999998, 40124.843999999975, 180, 180, 162.5, 155.0, yes
60.035373133218066#30.08738874095845, 59.82014516525566#30.10620740887939,
44565.799000000006, 44629.78200000001, 228, 223, 165.5, 160.0, yes
60.035373133218066#30.08738874095845, 60.03654801588501#30.141163834961077,
5827.031, 5827.031, 13, 13, 2.0, 2.0, no

Here BEGIN, END - coordinates of the beginning and end of the route,

ROUTE_LENGTH - length of the unmodified route, ROUTE_O_LENGTH - length of

the modified route, ROUTE_NODES and ROUTE_O_NODES - number of nodes of

the graph along the original and modified route respectively, TA_DIRECT - number of

accidents along the original route, TA_AVOID - number of accidents along the

modified route, AFFECTED is yes if the route has changed, no if not.

6.8. Final data processing and visualization

Having several files for different penalty values (their structure is shown in Listing

6.7.1), it is possible to plot graphs of the main routing indicators (relative risk of an TA,

the ratio of the lengths of the modified and the original route, as well as the ratio of the

number of vertices of the road graph for the modified and the original route) depending

on the length of the original, built without modification graph G, route. On such a

graph, it is necessary to show not only average values, but also confidence intervals for

averages. All these tasks are performed by the program shown in Appendix 10.

Main function plot_dependency(ylabel, column, label, legend): receives as the input

ylabel – an inscription on the ordinate axis, column – displayed values, for example, an

 89

array of relations Length of the modified route / Length of the original route, label – a

list of penalties (in the form of strings), and legend – the graph title.

To display the data, it is necessary to calculate their averages and confidence intervals

of the averages. This is done by the interval_stat() function, which in turn uses the

bootstrap package bootstrapped. For more information about using bootstrap ratings,

see section 3.3.

The rest of the program is not too complicated and is not of much interest, since it

prepares data for the plot_dependency(ylabel) function.

Examples of graphs constructed by this program are shown in Fig. 5.3, 5.4, 5.5.

Examining the constructed graphs, studying the corresponding tables, as described in

Chapters 4-5, it is possible to find the optimal value of the penalty, which, paired with a

list of edges with a statistically significant high number of accidents (see section 6.6),

gives complete information necessary to modify the road graph. The

set_obstacles(fname, penalty, max) function, briefly described in section 6.7, is suitable

for modification, which should be used with the optimal penalty value for this graph.

 90

Conclusion (main scientific results)

1. The relative risk ratio of accidents (RRR) is used as an indicator of the effectiveness

of routing, equal to the average ratio of the number of accidents along the altered

(taking into account obstacles on the roads) route to the number of accidents along

the unaltered (not taking into account obstacles) route ([57], p. 8 par. 6).

2. Statistically significant clusters of accidents are used as obstacles in the

construction of an alternative (safer) route ([48], p. 47 par. 6, [57], p. 8 par. 7).

3. Separate road segments (edges of the road graph) containing the number of

accidents statistically exceeding the number of accidents obtained from the

assumption of the uniformity of the distribution of accidents on the road network

are used as obstacles ([58] p. 103 par. 2, p. 104 par. 6, [61] p. 30 par 1, p. 32 par.

2).

4. To design a safer route, each obstacle is subject to a penalty, i.e. a fixed number is

added to the attribute of the length of the corresponding edge. By calculations, the

optimal value of the penalty is determined, which ensures a minimum risk of a TA

with a minimum increase in the length of the route and the number of traversable

vertices of the road graph (([58], p. 103 par. 2, [61], p. 32 par. 3).

Acknowledgements

 With acknowledgement, the author is grateful to Dr. A.N. Terekhov for his scientific

guidance, support, and assistance in working on the Thesis. The author is grateful to his

parents Mikhail and Masha, his wife Galina and children: Arielle, Oscar and Alik for their

constant encouragement and support.

 91

Glossary of terms

Bootstrap — a statistical method for estimating quantitative statistical measures by

averaging estimates over several small samples of data. Samples are created by extracting

observations from a large sample of data one at a time and returning them to the data

sample after they have been selected.

Confidence interval — the interval of values of a random variable within which the

mean of that variable falls with a given probability, for example, the 95% confidence

interval.

DBSCAN — clustering algorithm that selects clusters of points of arbitrary shape and a

given local density.

GIS – Geographic information system - a system for collecting, storing, analyzing and

graphically visualizing spatial (geographic) data

HRA — High Risk Areas – in this Thesis, either a cluster of accidents or a road segment

with an increased number of accidents

KDE – kernel density estimation

Monte-Carlo method — a broad class of computational algorithms that rely on repetitive

random sampling to obtain numerical results. In this Thesis, sets of points evenly

distributed over the road network are generated to assess the statistical significance of the

values.

Relative Risk Ratio — the ratio of the number of accidents along the modified

(presumably safer) route to the number of accidents of the original route having the same

starting and ending points.

RRR — Relative Risk Ratio of accidents

TA – Traffic Accident

 92

References

1. F. А. Novikov, discrete mathematics for programmers // Piter, 2002 (in Russian).

2. E. W. Dijkstra, A note on two problems in connexion with graphs // Numerische

Mathematik volume 1, pages 269–271 (1959), doi:10.1007/BF01386390

3. Rodriguez MZ, Comin CH, Casanova D, Bruno OM, Amancio DR, Costa LdF, et al.

(2019) Clustering algorithms: A comparative approach. PLoS ONE 14(1): doi:

10.1371/journal.pone.0210236

4. Ester M., Kriegel H-P., J. S, Sander J., Xu X., A density-based algorithm for

discovering clusters in large spatial databases with noise, AAAIPress, 1996, pp.

226–231.

5. Yiqun Xie, Shashi Shekhar, 2019. Significant DBSCAN towards Statistically

Robust Clustering. In '19: Proceedings of the 16th International Symposium on

Spatial and Temporal Databases, August 2019, Pages 31–40. DOI:

10.1145/3340964.3340968

6. Boeing, G. 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing,

and Visualizing Complex Street Networks." Computers, Environment and Urban

Systems 65, 126-139. doi:10.1016/j.compenvurbsys.2017.05.004

7. Edward L. Platt, Network Science with Python and NetworkX Quick Start Guide:

Explore and visualize network data effectively // Packt Publishing, 2019, 190pp.

8. R. Bellman: On a Routing Problem // Quarterly of Applied Mathematics. 1958. Vol

16, No. 1. C. 87-90, 1958.

9. L. R. Ford, Jr., D. R. Fulkerson. Flows in Networks, Princeton University Press,

1962.

10. Highway routing of hazardous materials, NHI Course 38064, National Highway

Institute.

11. Gustavo Alfredo Bula. Vehicle Routing for Hazardous Material Transportation.

Operations Research [cs.RO]. Université de Technologie de Troyes; Universidad

nacional de Colombia, 2018. English. NNT : 2018TROY0014 . tel-03146101

 93

12. Safe route-finding: A review of literature and future directions, Soheil Sohrabi,

Yanmo Weng Subasish Das, Stephanie German Paal, Accident Analysis &

Prevention, ISSN: 0001-4575, Vol: 177, Page: 106816

13. Urban navigation beyond shortest route: The case of safe paths, Esther Galbrun,

Konstantinos Pelechrinis, Evimaria Terzia, Information Systems, Volume 57, April

2016, Pages 160-171

14. https://en.wikipedia.org/wiki/Kernel_density_estimation

15. Safe and secure vehicle routing: a survey on minimization of risk exposure, Georg

E. A. Fröhlicha, Margaretha Gansterera, and Karl F. Doernera, Intl. Trans. in Op.

Res. 0 (2022) 1–35, DOI: 10.1111/itor.13130

16. Driver Route Planning Method Based on Accident Risk Cost Prediction, Xiaoleng

Liao, Tong Zhou, Xu Wang, Rongjian Dai, Xuehui Chen and Xiangmin Zhu, Journal

of Advanced Transportation Volume 2022, Article ID 5023052,

DOI:https://doi.org/10.1155/2022/5023052

17. A Route Navigation System for Reducing Risk of Traffic Accidents, Ryo Takeno,

Yosuke Seki, Masahiko Sano, Kenji Matsuura, Kenji Ohira, Tetsushi Ueta, 2016

IEEE 5th Global Conference on Consumer Electronics.

18. Abdelhamid, S., Elsayed, S. A., AbuAli, N. & Hassanein, H. S. Driver-centric route

guidance. 2016 2016. IEEE, 1-6.

19. Bao, S., Nitta, T., Yanagisawa, M., Togawa, N., 2017. A Safe and Comprehensive

Route Finding Algorithm for Pedestrians Based on Lighting and Landmark

Conditions. In: IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, pp. 2439–2450.

20. Chandra, S., 2014. Safety-based path finding in urban areas for older drivers and

bicyclists. Transp. Res. Part C: Emerg. Technol. 48, 143–157.

21. Hart, P., Nilsson, N. and Raphael, B. (1968) A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. IEEE Transactions Systems Science and

Cybernetics, 4, 100-107. http://dx.doi.org/10.1109/TSSC.1968.300136

22. Hayes, S., Wang, S. & Djahel, S. Personalized Road Networks Routing with Road

Safety Consideration: A Case Study in Manchester. 2020 2020. IEEE, 1-6.

https://en.wikipedia.org/wiki/Kernel_density_estimation

 94

23. Hoseinzadeh, N., Arvin, R., Khattak, A.J., Han, L.D., 2020. Integrating safety and

mobility for pathfinding using big data generated by connected vehicles. J. Intell.

Transp. Syst. 24, 404–420.

24. Jiang, S., Jafari, M., Kharbeche, M., Jalayer, M., Al-Khalifa, K.N., 2020. Safe route

mapping of roadways using multiple sourced data. IEEE Trans. Intell. Transp. Syst.

25. Jiang, S., Zhang, Y., Liu, R., Jafari, M., Kharbeche, M., 2022. Data-Driven

Optimization for Dynamic Shortest Path Problem Considering Traffic Safety. IEEE

Trans. Intell. Transp. Syst.

26. John Krumm, Eric Horvitz, Risk-aware planning: methods and case study on safe

driving routes, Proceedings of the Thirty-First AAAI Conference on Artificial

Intelligence February 2017 Pages 4708–4714.

27. Liu, Q., Kumar, S. & Mago, V. SafeRNet: Safe transportation routing in the era of

Internet of vehicles and mobile crowd sensing. 2017 14th IEEE Annual Consumer

Communications & Networking Conference (CCNC), 8-11 Jan. 2017 2017. 299-

304.

28. Mata, F., Torres-Ruiz, M., Guzm ́an, G., Quintero, R., Zagal-Flores, R., Moreno-

Ibarra, M.,Loza, E., 2016. A Mobile Information System Based on Crowd-Sensed

and Official Crime Data for Finding Safe Routes: A Case Study of Mexico City.

Mobile Inf. Syst. 2016, 1–11.

29. Ouyang, W., Yu, C.-W., Yu, K.-M., Lin, K.-J., Chang, H.-T., 2014. Safe path

planning strategy for bike net. Wireless Pers. Commun. 78, 1995–2007

30. Scott Hartshorn, Tell Me The Odds: A 15 Page Introduction To Bayes Theorem,

2017 (Kindle Edition)

31. https://ru.wikipedia.org/wiki/Теорема_Байеса (in Russian)

32. https://ru.wikipedia.org/wiki/Динамическое_программирование (in Russian)

33. Jamal Jokar Arsanjani, Alexander Zipf, Peter Mooney, Marco Helbich

(eds.),OpenStreetMap in GIScience: Experiences, Research, and Applications //

Springer International Publishing, 2015, 324pp.

34. https://en.wikipedia.org/wiki/Binary_classification

https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%91%D0%B0%D0%B9%D0%B5%D1%81%D0%B0
https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5

 95

35. Heckerman, D. Geiger, and D. M. Chickering, Learning bayesian networks: The

combination of knowledge and statistical data, Machine learning, vol. 20, no. 3, pp.

197–243, 1995.

36. Chainey S, Tompson L, Uhlig S., 2008. "The utility of hotspot mapping for

predicting spatial patterns of crime". Secur J 21(1):4–28, DOI:

10.1057/palgrave.sj.8350066

37. Chainey, S., Ratcliffe, J., 2005. GIS and Crime Mapping. John Wiley and Sons, UK.

DOI: 10.1002/9781118685181

38. Gramacki Artur, Nonparametric Kernel Density Estimation and Its Computational

Aspects, Springer International Publishing, 2018. DOI: 10.1007/978-3-319-71688-6

39. Moran, P. A. P., 1950. Notes on Continuous Stochastic Phenomena. Biometrika,

Vol. 37, No. 1/2 (Jun., 1950), pp. 17-23. DOI: 10.2307/2332142.

40. Okabe, A., Sugihara, K., 2012. Spatial Analysis along Networks: Statistical and

Computational Methods; John Wiley & Sons: Hoboken, NJ, USA,

DOI:10.1002/9781119967101

41. Songchitruksa, P., Zeng X., 2010. Getis–Ord Spatial Statistics to Identify Hot Spots

by Using Incident Management Data. Transportation Research Record: Journal of

the Transportation Research Board. 2165. pp 42-51. DOI: 10.3141/2165-05.

42. Yingjie, L., Liwei,Zh., Junping,Y., Pengtao,W., Ningke,H., Wei,Ch., and

Bojie,F.2017. Mapping the hotspots and coldspots of ecosystem services in

conservation priority setting. Journal of Geographical Sciences,27(6):681-696. DOI:

10.1007/s11442-017-1400-x

43. Massgis data-massachusetts department transportation massdot roads // URL:

docs.digital.mass.gov.

44. QGIS // www.qgis.org, URL:https://www.qgis.org/en/site/

45. Open jump // www.openjump.org. URL:http://www.openjump.org/

46. MassDOT Crash Open Data Portal // Mass.gov. URL:https://massdot-impact-

crashes-vhb.opendata.arcgis.com/search

47. SANET //sanet.csis.u-tokyo.ac.jp. URL:http://sanet.csis.u-tokyo.ac.jp/

https://www.qgis.org/en/site/
http://www.openjump.org/
https://massdot-impact-crashes-vhb.opendata.arcgis.com/search
https://massdot-impact-crashes-vhb.opendata.arcgis.com/search
http://sanet.csis.u-tokyo.ac.jp/

 96

48. A. M. Gershteyn and A. N. Terekhov “Hotspots of Traffic Accidents that cause

injuries or death in Massachusetts from 2013 to 2018 “Computer tools in

education”,no.1, pp.45–57, 2021(in Russian); DOI: http://dx.doi.org/10.32603/2071-

2340-2021-1-46-58

49. Sahnoon, Iyad & Ahmed, Mohamed & Alghafli, Abdulla. (2018). Integrating Traffic

Safety in Vehicle Routing Solution. 251-263. DOI:10.1007/978-3-319-60441-1_25.

50. Is OSM Good Enough for Vehicle Routing? A Study Comparing Street Networks in

Vienna Anita Graser, Markus Straub and Melitta Dragaschnig, 11th International

Symposium on Location-Based ServicesAt: Vienna, AustriaVolume: Progress in

Location-Based Services 2014

51. Boeing, G. 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing,

and Visualizing Complex Street Networks." Computers, Environment and Urban

Systems 65, 126-139. doi:10.1016/j.compenvurbsys.2017.05.004

52. Peter J. Huber, Elvezio M. Ronchetti, Robust Statistics Concomitant scale estimates,

pg 172

53. Art B. Owen (2006), A robust hybrid of lasso and ridge

regression. https://statweb.stanford.edu/~owen/reports/hhu.pdf

54. Koenker, Roger and Kevin F. Hallock. “Quantile Regression”. Journal of Economic

Perspectives, Volume 15, Number 4, Fall 2001, Pages 143–156

55. Alan Agresti, Christine Franklin, Bernhard Klingenberg Statistics: The Art and

Science of Learning from Data, Fourth Edition, Pearson, 2018

56. D’Agostino, R. and Pearson, E. S. (1973), “Tests for departure from normality”,

Biometrika, 60, 613-622

57. A. M. Gershteyn and A. N. Terekhov, “Routing Algorithm for Vehicles that Avoids

Severe Traffic Accident Hotspots on the Road Network (Using the City of

Springfield, Massachusetts as a Case Study), ”Computer tools in education, no.2,

pp.5–18, 2022(in Russian) URL:

http://cte.eltech.ru/ojs/index.php/kio/article/view/1729

58. Gershteyn A. M., Terekhov A. N. “A Simple Way to Improve Road Safety by

Avoiding Dangerous Sections of the Route” Programmnaya Ingeneria, 2023, vol.

http://dx.doi.org/10.32603/2071-2340-2021-1-46-58
http://dx.doi.org/10.32603/2071-2340-2021-1-46-58
https://statweb.stanford.edu/%7Eowen/reports/hhu.pdf
http://cte.eltech.ru/ojs/index.php/kio/article/view/1729

 97

14, no. 3, pp. 103—109. DOI: https://dx.doi.org/10.17587/prin.14.103-109 (in

Russian).

59. https://www.qgis.org/ru/site/

60. http://stat.gibdd.ru/

61. A. M. Gershteyn and A. N. Terekhov, “Bypassing Dangerous Sections of the Route

as a Way to Improve Traffic Safety (Using St. Petersburg as an Example),”

Computer tools in education, no. 1, pp. 30–39, 2023 (in Russian); URL:

http://cte.eltech.ru/ojs/index.php/kio/article/view/1755

62. https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system

https://dx.doi.org/10.17587/prin.14.103-109
https://www.qgis.org/ru/site/
http://stat.gibdd.ru/
http://cte.eltech.ru/ojs/index.php/kio/article/view/1755

 98

Appendix 1. Loading a road graph in native OSMNX format and in
ShapeFile format (for GIS application)

import osmnx as ox
import pickle

city = 'Petersburg'
loc = city + ',RU'
ox.config(use_cache=True, log_console=True, all_oneway=False)

G = ox.graph_from_place(loc, network_type='drive')
G = ox.add_edge_speeds(G)
G = ox.add_edge_travel_times(G)

ox.io.save_graph_shapefile(G, 'data/' + 'spb_one_way_false', encoding='utf-8')

with open(city + '.p', 'wb') as f:
 pickle.dump(G, f)

 99

Appendix 2. Finding the edges of the road graph closest to an TA

#edges_for_all_tas_spb_projected_gibdd.py
import pandas as pd
import networkx as nx
import osmnx as ox
from shapely.geometry import LineString,Point
import geopandas as gpd
from ipyleaflet import *
import pickle
import matplotlib.pyplot as plt
import datetime

max_dist = 35
save_oneway = False

with open("data/Petersburg.p", 'rb') as f: # notice the r instead of w
 G = pickle.load(f)
Gp = ox.project_graph(G)

if save_oneway:
 f = open('zzz_tas_to_edges_2019_2021_oneway_proj_spb_gibdd.csv','w')
else:
 f = open('zzz_tas_to_edges_2019_2021_twoway_proj_spb_gibdd.csv','w')
f.write('YEAR,DATE,TIME,ID,X,Y,LAT,LON,NODE1,NODE2,KEY,DIST\n')

input TAs
ta_data = 'data/tas_raw_spb.csv'
fta = open(ta_data,'r')
ta_header = 'YEAR,DATE,TIME,LAT,LON,X,Y'
ta_items = ta_header.split(',')
fta.readline() # Skip header

def prepareRow(year, date, time, id, x, y, lat, lon, node1, node2, key, d):
 row = str(year) + ', '
 row += date + ', '
 row += time + ', '
 row += str(id) + ', '
 row += str(x) + ', '
 row += str(y) + ', '
 row += str(lat) + ', '
 row += str(lon) + ', '
 row += str(node1) + ', '
 row += str(node2) + ', '
 row += str(key) + ', '
 #row += str(d) + '\n'
 row += "{0:.5f}".format(d) + '\n'
 return row

#def write_csv_row(year, edge, ta_id, x, y, lat, lon, oneway):
def write_csv_row(year, date, time, edge, ta_id, x, y, lat, lon, oneway):
 node1 = edge[0]
 node2 = edge[1]
 key = edge[2]
 d = edge[3]
 row = prepareRow(year, date, time, ta_id, x, y, lat, lon, node1, node2, key,
d)

 100

Continuation of Appendix 2

 f.write(row)
 if not oneway:
 #if the edge is two-way, add adge with opposite direction
 row = prepareRow(year, date, time, ta_id, x, y, lat, lon, node2, node1,
key, d)
 print('two way:', node1,node2,key)
 f.write(row)

def extract_year(date):
 return date.split('-')[0]

count = 0
ta_id = 126438
print(datetime.datetime.now().time())
while True:
 ta = fta.readline().split(',')
 if len(ta) < 7: break
 year = ta[ta_items.index('YEAR')]
 date = ta[ta_items.index('DATE')]
 time = ta[ta_items.index('TIME')]
 lat = ta[ta_items.index('LAT')]
 lon = ta[ta_items.index('LON')]
 point = (float(lat), float(lon))
 point_geom_proj, crs = ox.projection.project_geometry(Point(reversed(point)),\
 to_crs=Gp.graph['crs'])
 x, y = point_geom_proj.x, point_geom_proj.y
 u, v, key, dist = ox.get_nearest_edge(Gp, (y, x), return_dist=True)
 edge = (u, v, key, dist)
 if dist < max_dist:
 if save_oneway:
 write_csv_row(year, date, time, edge, ta_id, x, y, lat, lon, True)
 else:
 oneway = G.edges[u,v,key]['oneway']
 write_csv_row(year, date, time, edge, ta_id, x, y, lat, lon, oneway)
 ta_id += 1
 count += 1
 if count % 100 == 0:
 print(count)
f.close()

 101

Appendix 3. Estimation of the accuracy of calculating distances in UTM
coordinates using the Euclid formula

#_test_utm_eucl.py
import osmnx as ox
import pickle
import math
from shapely.geometry import LineString,Point
from pyproj import Proj

coords_1 = (float(60.098310), float(30.305087))
coords_2 = (float(59.814286), float(30.374339))

with open("data/Petersburg.p", 'rb') as f: # notice the r instead of w
 G = pickle.load(f)
Gp = ox.project_graph(G)

dist = geopy.distance.geodesic(coords_1, coords_2).m

point1 = (coords_1[0], coords_1[1])
point2 = (coords_2[0], coords_2[1])

point_geom_proj, crs = ox.projection.project_geometry(Point(reversed(point1)),\
 to_crs=Gp.graph['crs'])
x1, y1 = point_geom_proj.x, point_geom_proj.y

point_geom_proj, crs = ox.projection.project_geometry(Point(reversed(point2)),\
 to_crs=Gp.graph['crs'])
x2, y2 = point_geom_proj.x, point_geom_proj.y

eucl_dist = math.sqrt((abs(x1-x2)**2) + (abs(y1-y2))**2)
print(eucl_dist - dist)

 102

Appendix 4. Counting the number of accidents for each edge of the
road graph

#edges_most_populated.py
import pandas as pd
import networkx as nx
import osmnx as ox
from shapely.geometry import LineString
import geopandas as gpd
from ipyleaflet import *
import pickle
import matplotlib.pyplot as plt
import numpy as np
import datetime
from operator import itemgetter

with open("data/Petersburg.p", 'rb') as f: # notice the r instead of w
 G = pickle.load(f)
ta_edges =
pd.read_csv('data/tas_to_edges_2019_2021_twoway_proj_spb_gibdd_flt_35.csv')
avoidf = open('edges_most_populated_spb_sorted_by_ta_flt_2_debug.csv', 'w')
avoidf.writelines('cn,node_start,node_end,key,lat0,lon0,lat1,lon1,tas,\
 ta_density\n')

elfn = "edge_list.csv"
elf = open(elfn, 'w')
elf.writelines('NODE1,NODE2,KEY\n')

def tas_along_edge(u, v, key):
 edges_outg = ta_edges.loc[ta_edges['NODE1'] == u]
 edge_tas = edges_outg.loc[(edges_outg['NODE2'] == v) &\
 (edges_outg['KEY'] == key)]

 tas = edge_tas.shape[0]
 oneway = G.edges[u, v, key]['oneway']
 if not oneway:
 tas = tas/2.0
 return tas

def equal_nodes(edge1, edge2):
 ret = False
 if (edge1[0] == edge2[0]) and (edge1[1] == edge2[1]) and\
 (edge1[2] == edge2[2]):
 ret = True
 return ret

edge_list = []
def collect_edges(G):
 edges = G.edges(keys = True, data = True)
 for edge in edges:
 current_edge = [edge[0],edge[1],edge[2]]
 llen = len(edge_list)
 if llen != 0:
 pe = edge_list[llen-1]
 prev_edge = [pe[0],pe[1],pe[2]]
 if llen == 0:
 edge_list.append(edge)
 elif not equal_nodes(prev_edge, current_edge):
 edge_list.append(edge)

 103

Continuation of Appendix 4

def save_paths_to_avoid(edges,n):
 for i in range(n):
 density = f"{edges[i][8]:.3f}"
 line = str(i) + ',' + str(edges[i][0]) + ',' + str(edges[i][1]) +\
 ','+ str(edges[i][2]) + ','+ str(edges[i][3]) +\
 ','+ str(edges[i][4]) +',' + str(edges[i][5]) +\
 ',' + str(edges[i][6])+ ',' + str(edges[i][7])+\
 ',' + str(density) + '\n'
 avoidf.writelines(line)
 avoidf.close()

ds = []
ts_edges = []
def tas_to_edges(G):
 for edge in edge_list:
 node0 = edge[0]
 node1 = edge[1]
 n_edges = G.number_of_edges(node0, node1)
 for key in range(n_edges):
 tas = tas_along_edge(node0, node1, key)
 l = G.edges[node0, node1, key]['length']
 d = tas/l
 lon0 = G.nodes[node0]['x']
 lat0 = G.nodes[node0]['y']
 lon1 = G.nodes[node1]['x']
 lat1 = G.nodes[node1]['y']
 ts_edge = [node0, node1, key, lat0, lon0, lat1, lon1, tas, d]
 ts_edges.append(ts_edge)
collect_edges(G)
print('Total edges:', len(edge_list))
for edge in edge_list:
 row = str(edge[0]) + ',' + str(edge[1]) + ',' + str(edge[2]) + '\n'
 elf.writelines(row)
elf.close()
tas_to_edges(G)
ts_sorted = sorted(ts_edges, key=itemgetter(7), reverse=True)
save_paths_to_avoid(ts_sorted, len(ts_edges))

 104

Appendix 5. Statistical tests on a road graph with uniformly distributed
points

"""
Script:
collect_trials.py – performs Monte-Carlo trials on most TA-populated edges
Input:
Road network (.p file for example "Peterburg.p")
.csv list of Sanet-generated points and respective edges points belong to.
.csv list of the TA-populated edges sorted by TA.
Output:
.csv – TA-populated edges along with results of Monte-Carlo trials.
"""

import pandas as pd
import networkx as nx
import osmnx as ox
from shapely.geometry import LineString
import geopandas as gpd
#import geopy.distance
#import json
from ipyleaflet import *
import pickle
import matplotlib.pyplot as plt
import numpy as np
#import sys
import datetime

tsize = 13503

tot_trials = 1000
tot_edges = 2000

with open("data/Petersburg.p", 'rb') as f: # notice the r instead of w
 G = pickle.load(f)

#points uniformly distributed over edges
points_sanet_edges = pd.read_csv('data/sanet_points_to_edges_flt_35_spb.csv')
print(points_sanet_edges)

"""
def currentTime():
 e = datetime.datetime.now()
 time = "%s:%s:%s" % (e.hour, e.minute, e.second)
 return time
"""

sanet_trials =[]
def prepare_sanet_points(trials, size):
 #df.iloc[2:5]
 for i in range(trials):
 init = i * size
 end = (i+1) * size - 1
 trial = points_sanet_edges.iloc[init:end]
 sanet_trials.append(trial)

 105

Continuation of Appendix 5

prepare_sanet_points(tot_trials, tsize)
print(len(sanet_trials))

ta_edges = open('data/edges_most_populated_spb_sorted_by_ta_flt_35_debug.csv' ,
'r')
mhdr = ta_edges.readline()
hp = mhdr.split(',')
hp[-1] = hp[-1].strip()
print(len(hp))
sanet_trials_file = open('sanet_trials_flt_35_half_two_way.csv', 'w')
hdr = 'node_start,node_end,key,tas,trial_values\n'
sanet_trials_file.writelines(hdr)

edge_cnt = 0
while True:
 if edge_cnt > tot_edges: break;
 line = ta_edges.readline()
 vals = line.split(',')
 if len(vals) < 10: break
 vals[-1] = vals[-1].strip() #delete last symbol ‘\n’
 edge1 = int(vals[hp.index('node_start')])
 edge2 = int(vals[hp.index('node_end')])
 key = int(vals[hp.index('key')])
 tas = vals[hp.index('tas')]
 #oneway = G.edges[edge1,edge2,key]['oneway']

 row = str(edge1)+','+str(edge2)+','+str(key)+','+tas+','
 for trial in sanet_trials:
 pi = trial.loc[trial['EDGEI'] == edge1]
 pe = pi.loc[pi['EDGEE'] == edge2]
 pk = pe.loc[pe['EDGEK'] == key]
 pnts = pk.shape[0]
 #if not oneway: pnts = pnts/2.0
 row = row + str(pnts) + '#'
 row += '\n'
 sanet_trials_file.writelines(row)
 print('edge number:', edge_cnt)
 edge_cnt += 1
sanet_trials_file.close()

 106

Appendix 6. Representation of uniformly distributed points obtained
using the SANET program in the form of .csv file

from configparser import InterpolationError
import shapefile
import networkx as nx
import osmnx as ox
from datetime import datetime
import numpy as np
import pandas as pd
import pickle

with open("data/Petersburg.p", 'rb') as f: # notice the r instead of w
 G = pickle.load(f)

#G_proj = ox.projection.project_graph(G)

def currentTime():
 now = datetime.now()
 current_time = now.strftime("%H:%M:%S")
 return now

fname = 'data/sanet/SANETRandomPoint20m.shp'
#fname = '../prepare_data/data/moscow_random30m.shp'

out_name = 'sanet_points_to_edges_flt_35_spb.csv'
outf = open(out_name,'w')
outf.writelines('N,LAT,LON,EDGEI,EDGEE,EDGEK\n')

print(currentTime(), ' Start reading sanet points')
sf = shapefile.Reader(fname)
mkrecords = sf.records()
print(currentTime(), ' End reading sanet points')

#trials = 1000
trials = 1000
tsize = 13503
#tsize = 10
tr = 0
cnt = 0
X = []
Y = []

 107

Continuation of Appendix 6

for record in mkrecords:
 lat = record[2]
 lon = record[1]
 X.append(record[1])
 Y.append(record[2])
 cnt += 1
 if cnt >= tsize:
 edges = ox.distance.get_nearest_edges(G,X,Y,method='balltree')
 for i, edge in enumerate(edges):
 out_str = str(tr) + ',' + str(Y[i]) + ',' + str(X[i]) + ',' +
str(edge[0]) + ',' + str(edge[1]) + ',' + str(edge[2]) + '\n'
 outf.writelines(out_str)
 X = []
 Y = []
 print(currentTime(), ' Trial: ', tr)
 tr += 1
 cnt = 0

 if tr >= trials: break
outf.close()
print(currentTime(), 'End')

 108

Appendix 7. Finding statistically significant values of road traffic
accidents

"""
Script:
select_significant_edges.py – select statistically significant edges
Input:
sanet_trials_flt_35_half_two_way.csv – sanet points with results of trials
Output:
sanet_trials_flt_35_signifcant_<p>.csv – statistically significant edges used as
input for routing script
routing_finite_penalty.py.

"""
import numpy as np

p = 95

def percentile(vals,p):
 vals[-1] = vals[-1].strip()
 tot_vals = vals[hdrps.index('trial_values')][:-1]
 str_vals = tot_vals.split('#')
 str_vals[-1] = str_vals[-1].strip()
 ivals = [int(str_val) for str_val in str_vals]
 #vls = np.array(ivals)
 percentile = np.percentile(ivals,p)
 return percentile

trialsf = open('data/sanet_trials_flt_35_half_two_way.csv','r')
outpf = open('sanet_trials_flt_35_signifcant_' + str(p)+ '.csv','w')
hdr = trialsf.readline()
outpf.writelines(hdr)
hdrps = hdr.split(',')
hdrps[-1] = hdrps[-1].strip()
while True:
 row = trialsf.readline()
 rowps = row.split(',')
 if len(rowps) < 5: break
 tas = rowps[hdrps.index('tas')]
 perc = percentile(rowps,p)
 if float(tas) > perc:
 outpf.writelines(row)
trialsf.close()
outpf.close()

 109

Appendix 8. Creating a square grid superimposed on a road graph

import pickle
import osmnx as ox
import utm
import sys

with open("data/Petersburg.p", 'rb') as f: # notice the r instead of w
 G = pickle.load(f)

upper left 55,915650900000003, 37,366904099999999
ilat = 60.05
ilon = 30.14
width = 50000
height = 50000
step = 3000

csv_header = 'num,X,Y,LAT,LON\n'
gname = 'spb_grid_' + str(step)+ '.csv'
gf = open(gname,'w')
gf.write(csv_header)

X,Y
ini_coords = utm.from_latlon(ilat, ilon)
print (ini_coords)
x0 = ini_coords[0] - 3000
y0 = ini_coords[1] + 4500

irange = int(width/step)
jrange = int(height/step)

k = 0
for i in range(irange):
 x = x0 + i*step
 for j in range(jrange):
 y = y0 - step*j
 #latlon = utm.to_latlon(x,y, 37, 'U')
 latlon = utm.to_latlon(x,y, 36, 'U')
 row = str(k) + ',' + str(x) + ',' + str(y) + ',' + str(latlon[0]) + ','\
 + str(latlon[1]) + '\n'
 gf.write(row)
 k += 1
gf.close()

#Filter grid poionts
fname = 'grid_filtered_' + str(step) + '.csv'
ff = open(fname,'w')
fg = open(gname,'r')
header = fg.readline()
ff.write(header)
max_dist = step/2

 110

Continuation of Appendix 8

while True:
 row = fg.readline()
 rvals = row.split(',')
 if len(rvals) < 5: break
 lat = float(rvals[3])
 lon = float(rvals[4])
 nodeDist = ox.get_nearest_node(G, (lat,lon), method='haversine',\
 return_dist=True)
 print(nodeDist)

 if nodeDist[1] < max_dist:
 ff.write(row)

ff.close()

 111

Appendix 9. Program for collecting relative risk statistics

import numpy as np
import pandas as pd
import networkx as nx
import osmnx as ox
from shapely.geometry import LineString
import geopandas as gpd
import geopy.distance
from ipyleaflet import *
import pickle
import matplotlib.pyplot as plt
import datetime
from itertools import product
import sys

To run with command line

if len(sys.argv) < 2:
 print ('Usage: routing_finite_penalty.py <p>, <max_path_to_avoid> <obstacles>
<penalty>')
#example: routing_finite_penalty.py 95 800
data/sanet_trials_flt_35_signifcant_95.csv 200
 sys.exit()

p = int(sys.argv[1])
max_paths_to_avoid = int(sys.argv[2])
fobst = sys.argv[3]
penalty = int(sys.argv[4])
print('penalty=', penalty)

"""
p = 95
max_paths_to_avoid = 800
fobst = 'data/sanet_trials_flt_35_signifcant_95.csv'
penalty = 1000
"""

debug = True
#fobst = 'data/paths_to_avoid_moscow_sorted_by_ta.csv'
#node_start,node_end,key,tas,trial_values
#fobst = 'data/paths_to_avoid_moscow_sorted_by_ta_flt_35_half_two_way.csv'
grid_step = 3000
#max_paths_to_avoid = 500
#penalty = 500
obst_edges = []

 112

Continuation of Appendix 9

def read_obst_edges(fname, maxp):
 cnt = 0
 fl = open(fname, 'r')
 hdr = fl.readline().split(',')
 hdr[-1] = hdr[-1].strip()

 while(True):
 ln = fl.readline()
 if ln[0] == '#': continue
 print(ln)
 if(ln == ''): break
 lnp = ln.split(',')
 if len(lnp) < 5: break
 start_node = int(lnp[hdr.index('node_start')])
 end_node = int(lnp[hdr.index('node_end')])
 key = int(lnp[hdr.index('key')])
 edge = [start_node, end_node, key]
 obst_edges.append(edge)
 cnt += 1
 if cnt == maxp: break
 fl.close()

def split_row(header):
 hdrps = header.split(',')
 hdrps[-1] = hdrps[-1].strip()
 return hdrps,len(hdrps)

def set_obstacles(fname, penalty, maxp):
 global GO # with obstacles
 global G # original graph
 fl = open(fname, 'r')
 hd = fl.readline()
 hdr,hl = split_row(hd)
 cnt = 0
 while(True):
 ln = fl.readline()
 if ln[0] == '#': continue
 #print(ln)
 lnp, lcs = split_row(ln)
 if len(lnp) < hl: break
 start_node = int(lnp[hdr.index('node_start')])
 end_node = int(lnp[hdr.index('node_end')])
 key = int(lnp[hdr.index('key')])
 origEdgeLength = G.edges[start_node, end_node, key]['length']
 GO.edges[start_node, end_node, key]['length'] = origEdgeLength + penalty
 cnt += 1
 if cnt == maxp: break
 fl.close()

with open("data/Petersburg.p", 'rb') as f: # notice the r instead of w
 G = pickle.load(f)

with open("data/Petersburg.p", 'rb') as f: # notice the r instead of w
 GO = pickle.load(f)

Read grid points
gridfn = 'data/grid_filtered_' + str(grid_step) + '.csv'
df = pd.read_csv(gridfn)
print(df.shape)

 113

Continuation of Appendix 9

Read TAs with the edges TAs belong to
ta_edges =
pd.read_csv('data/tas_to_edges_2019_2021_twoway_proj_spb_gibdd_flt_35.csv')
print(ta_edges)

def tas_along_edge(u, v, key, oneway, year=0):
 if year == 0:
 edges_outg = ta_edges.loc[ta_edges['NODE1'] == u]
 else:
 edges_outg = ta_edges.loc[ta_edges['NODE1'] == u & ta_edges['YEAR'] ==\
 year]
 edge_tas = edges_outg.loc[(edges_outg['NODE2'] == v) & (edges_outg['KEY'] ==\
 key)]
 tot_tas = edge_tas.shape[0]
 if not oneway:
 tot_tas = 0.5 * edge_tas.shape[0]
 return tot_tas

def tas_along_route(G, route, year=0):
 total_tas = 0
 rl = len(route)
 node0 = route[0]
 for i in range(1,rl):
 node1 = route[i]
 n_edges = G.number_of_edges(node0, node1)
 if n_edges == 1:
 edge = 0
 else:
 #Find edge with min length in case there are several edges between two
 # nodes
 edge = 0
 l_dest = G.edges[node0, node1, 0]['length']
 for k in range(1, n_edges):
 l_attr = G.edges[node0, node1, k]['length']
 if l_attr < l_dest:
 l_dest = l_attr
 edge = k
 oneway = G.edges[node0, node1, edge]['oneway']
 if year == 0:
 total_tas += tas_along_edge(node0, node1, edge, oneway)
 else:
 total_tas += tas_along_edge(node0, node1, edge, oneway, year)
 node0 = node1 # next edge begins where previous one ends
 return total_tas

Compare two routes
def routesAreEqual(route1,route2):
 result = True
 if len(route1) != len(route2): return False
 for i in range(len(route1)):
 if route1[i] != route2[i]:
 result = False
 break
 return result

 114

Continuation of Appendix 9

Check if an edge is in list of "prohibited" edges
def edgeWithPenalty(node1, node2, key):
 ne = obst_edges_n.shape[0]
 for i in range(ne):
 v = obst_edges_n[i]
 trio = np.array([node1,node2,key])
 if (v==trio).all():
 return True
 return False

def inspect_route(G,route):
 extra_length = 0
 penalties = 0
 for i in range(len(route)-1):
 u = int(route[i])
 v = int(route[i + 1])
 n_edges = G.number_of_edges(u, v)
 ek = 0
 if n_edges > 1:
 # Find edge with min length
 minl = G.edges[u,v,0]['length']
 for i in range(1, n_edges):
 li = G.edges[u,v,i]['length']
 if li < minl:
 minl = li
 ek = i
 if edgeWithPenalty(u,v,ek):
 extra_length += penalty
 penalties += 1
 return extra_length, penalties

read_obst_edges(fobst,max_paths_to_avoid)
obst_edges_n = np.array(obst_edges)

set_obstacles(fobst, penalty, max_paths_to_avoid)
grd_pnt = df.shape[0]

f_tar_name = 'routes_' + str(grid_step) + '_pen_' + str(penalty) +\
 '_edges_sorted_by_ta_sign' + str(p) + '_' + str(max_paths_to_avoid)+\

 '.csv'
f_tar = open(f_tar_name, 'w')
f_tar.write("BEGIN,END,ROUTE_LENGTH,ROUTE_O_LENGTH,ROUTE_NODES,ROUTE_O_NODES,\
 TA_DIRECT,TA_AVOID,AFFECTED\n")

print(datetime.datetime.now().time())

cin = 0
cend = 900000000
penalties_G = []
penalties_GO = []
penalties_G = []

 115

Continuation of Appendix 9

for rin,rend in product(range(grd_pnt), range(grd_pnt)):
 ind = rin * grd_pnt + rend
 print(ind, ' of ', grd_pnt * grd_pnt)
 if ind < cin: continue
 if ind >= cend: break
 if rend == rin: continue
 row_from = df.loc[rin,:]
 row_to = df.loc[rend,:]
 start = (row_from[3],row_from[4])
 end = (row_to[3],row_to[4])
 dist = geopy.distance.distance(start, end).km
 start_node = ox.get_nearest_node(G, start)
 end_node = ox.get_nearest_node(G, end)
 try:
 route = nx.shortest_path(G, start_node, end_node, weight='length')
 penalties_G.append(inspect_route(G, route)[1])
 route_length = nx.shortest_path_length(G, start_node, end_node,
weight='length')
 route_nodes = len(route)
 except:
 continue
 try:
 route_o = nx.shortest_path(GO, start_node, end_node, weight='length')
 total_penalty = inspect_route(GO, route_o)[0]
 penalties_GO.append(inspect_route(GO, route_o)[1])
 if total_penalty != 0:
 print('penalty=', total_penalty)
 route_o_length = nx.shortest_path_length(GO, start_node, end_node,
weight='length') - total_penalty
 route_o_nodes = len(route_o)
 except:
 continue

 tas_direct = tas_along_route(G, route)
 equal_routes = routesAreEqual(route, route_o)
 if not equal_routes:
 affected = ', yes'
 tas_avoid = tas_along_route(G, route_o)
 else:
 affected = ', no'
 tas_avoid = tas_direct

 row = str(start[0])+'#'+str(start[1]) + ', ' + str(end[0])+\
 '#'+str(end[1]) + ', ' + str(route_length) + ', ' +\
 str(route_o_length) +\
 ', '
 row += str(route_nodes) + ', ' + str(route_o_nodes) + ', ' +\
 str(tas_direct) + ', ' + str(tas_avoid) + affected + '\n'
 f_tar.write(row)
s = pd.Series(penalties_GO)
print('Modified route penalties')
print(s.describe())

s = pd.Series(penalties_G)
print('Original route penalties')
print(s.describe())

f_tar.close()
print(datetime.datetime.now().time())

 116

Appendix 10. Data visualization

from os import stat_result
import geopy.distance
from math import sqrt
import numpy as np
import pandas as pd
from scipy import stats
import bootstrapped.bootstrap as bs
import bootstrapped.stats_functions as bs_stats
import matplotlib.pyplot as plt
import matplotlib.markers as markers

params = {'xtick.labelsize':'x-large',
 'ytick.labelsize':'x-large'}
plt.rcParams.update(params)

colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b',
'#e377c2', '#7f7f7f', '#bcbd22', '#17becf']

edges = ['200','500','1000','2000','5000']
fnames = ['routes_3000_pen_200_edges_sorted_by_ta_sign95_800.csv',
 'routes_3000_pen_500_edges_sorted_by_ta_sign95_800.csv',
 'routes_3000_pen_1000_edges_sorted_by_ta_sign95_800.csv',
 'routes_3000_pen_2000_edges_sorted_by_ta_sign95_800.csv',
 'routes_3000_pen_5000_edges_sorted_by_ta_sign95_800.csv',
]
pnlts = ['200','500','1000','2000','5000']
paths = open('routes_3000_pen_500_edges_sorted_by_ta_sign95_800.csv', 'r')

header = paths.readline()
hv = header.split(',')

markers = [".","o","v","^","+","h","s","*",]

 117

Continuation of Appendix 10

def plot_dependency(ylabel, column,label,legend):

 rheader = 'eucl_dist','length_before','route_length_after/before',\
 'tas_after_before','nodes_after_before','penalty','affected']
 plots = []
 for i, pnlt in enumerate(pnlts):
 mean_ta_rt = []
 mean_ta_ci_l = []
 mean_ta_ci_u = []
 x = []
 xax = []
 start = 1
 total_routes = 0
 affected = 0
 print(pnlt)
 while start < 50:
 xax.append(str(start) + '-' + str(start + step))
 x.append(stat_result)
 ta_ratios = []
 for r in routes:

 val = r[1]/1000
 if r[5] == pnlt:
 total_routes += 1
 aff = r[rheader.index('affected')].strip()
 if aff == 'yes':
 affected += 1
 if val > start and val < start + step:
 ta_ratios.append(r[rheader.index(column)])
 stats = interval_stat(ta_ratios)
 mean = stats[1]
 mean_ta_rt.append(mean)
 mean_ta_ci_l.append(stats[2])
 mean_ta_ci_u.append(stats[3])
 print(start,start+step, ' ', len(ta_ratios), "{:.3f}".format(mean),\
 "{:.3f}".format(stats[2]), '-', "{:.3f}".format(stats[3]))
 start = start + step
 print('Affected routes:', affected/total_routes)
 print('\n')

 if pnlt == '10000000000000': pnlt = '∞'
 y = np.array(mean_ta_rt)
 yl = np.array(mean_ta_ci_l)
 yu = np.array(mean_ta_ci_u)
 plot = [y,yl,yu]
 plots.append(plot)
 fig, ax = plt.subplots()
 ax.labelsize:'medium' # fontsize of the x any y labels
 for j in range(len(pnlts)):
 ax.plot(xax,plots[j][0],label = label[j], color = colors[j],\
 marker=markers[j])
 ax.fill_between(xax, plots[j][1], plots[j][2], color=colors[j], alpha=.1)
 ht = np.ones(20)
 l = np.linspace(0,10,20)
 ax.plot(l,ht, color = 'lightgrey')
 lg = ax.legend(loc='upper right', fontsize=16)
 lg.set_title(legend,prop={'size':16})
 plt.xlabel('Длина первоначального (без препятствий) маршрута, км',fontsize=18)
 plt.ylabel(ylabel, fontsize=18)

 118

Continuation of Appendix 10

def interval_stat(values):
 ntest = stats.kstest(values, 'norm')
 i_len = len(values)
 lr = np.array(values)
 samples = lr
 mean_ci = bs.bootstrap(samples, stat_func=bs_stats.mean, alpha=0.05)
 med = np.median(values)
 med_ci = bs.bootstrap(samples, stat_func=bs_stats.median, alpha=0.05)
 istat = [i_len, mean_ci.value , mean_ci.lower_bound, mean_ci.upper_bound,\
 med, med_ci.lower_bound, med_ci.upper_bound]
 return istat

def geoDist(col1,col2, prts, header):
 latlon1 = parts[hv.index(col1)].split('#')
 latlon2 = parts[hv.index(col2)].split('#')
 lat1 = float(latlon1[0])
 lon1 = float(latlon1[1])
 lat2 = float(latlon2[0])
 lon2 = float(latlon2[1])
 return geopy.distance.distance((lat1,lon1), (lat2,lon2)).km

routes = []
cnt = 0
for i in range(len(pnlts)):
 pnlt = pnlts[i]
 fname = fnames[i]
 paths = open(fname, 'r')
 header = paths.readline()
 hv = header.split(',')
 hv[-1] = hv[-1].strip()
 while(True):
 line = paths.readline()
 parts = line.split(',')
 if len(parts) < 9: break
 dist = geoDist('BEGIN', 'END', parts, hv)
 d = round(dist,3)
 tas_after = float(parts[hv.index('TA_AVOID')])
 tas_before = float(parts[hv.index('TA_DIRECT')])
 if tas_before != 0:
 tas_after_before = tas_after/tas_before
 else:
 continue
 length_after = float(parts[hv.index('ROUTE_O_LENGTH')])
 length_before = float(parts[hv.index('ROUTE_LENGTH')])
 length_after_before = length_after/length_before

 nodes_after = float(parts[hv.index('ROUTE_O_NODES')])
 nodes_before = float(parts[hv.index('ROUTE_NODES')])
 nodes_after_before = nodes_after/nodes_before
 affected = parts[hv.index('AFFECTED')].strip()
 r = [dist, length_before, length_after_before,\
 tas_after_before, nodes_after_before, pnlt, affected]
 routes.append(r)
 paths.close()

 119

Continuation of Appendix 10

step = 5

plot_dependency(‘Relative TA risk','tas_after_before', edges, 'Penalty m')
plt.show()

plot_dependency(Average route length after/before’,'route_length_after/before',
edges, 'Penalty m')
plt.show()

plot_dependency('Average vertice count after/before','nodes_after_before', edges,
'Penalty m')
plt.show()

	Introduction
	Approaches to clustering
	Using Statistically Significant TA Clusters
	Road segments as TAHS
	Routing efficiency evaluation
	Theoretical and practical significance
	Research methodology and methods
	Author’s published articles on the topic of this thesis
	Main scientific results
	Main points to be defended
	Chapter 1. Review of Literature
	Chapter 2. Identifying TA hotspots on Massachusetts roads in 2013-2018
	Introduction
	2.1 Input Data
	2.2 Research methods
	2.2.1 DBSCAN
	2.2.2 Matrix of intra-network distances (scale 20m)
	2.2.3 Hybrid approach to clustering
	2.2.4 Scale 10m
	2.2.5 Hybrid clustering with 10m
	2.3 An example
	2.3.1 Massachusetts 2013, clustering of severe TAs
	2.3.2 Meta-clusters in Massachusetts: Hybrid Bottom-Up Approach
	Conclusions

	Chapter 3. Vehicle routing in the presence of dangerous sections on the road (using the city of Springfield, MA as a case study)
	Introduction
	3.1 Tools and Data
	3.2 Method
	3.3 Bypassing High Risk Areas (HRA)
	3.3 Relative risk of an accident when choosing a route bypassing the HRA
	Conclusions

	Chapter 4. A simple way to improve road safety by bypassing dangerous sections of the route (using the city of Moscow as a case study)
	Introduction
	4.1 Data
	4.2 Tools and method
	4.3 Results
	Conclusions

	Chapter 5. Bypassing dangerous sections of the route to improve traffic safety (case study of St. Petersburg)
	Introduction
	5.1 Data
	5.2 Tools and method
	5.3 Results
	Findings

	Chapter 6. A package of programs modifying a road graph according to the number of accidents belonging to it
	6.1 Introduction
	6.2 Getting a road graph in OSMNX format and (separately) edges and vertices of the road network in ShapeFile format
	6.3. Combining TAs and a road graph
	6.4. Counting the number of TAs for each edge of the road graph
	6.5 Statistical tests to identify edges with a statistically significant number of TAs
	6.6 Selecting edges with a statistically significant number of TAs
	6.7 Constructing routes on the modified graph and collecting statistics of relative TA risk
	6.8. Final data processing and visualization

	Conclusion (main scientific results)
	Acknowledgements
	Glossary of terms
	References
	Appendix 1. Loading a road graph in native OSMNX format and in ShapeFile format (for GIS application)
	Appendix 2. Finding the edges of the road graph closest to an TA
	Appendix 3. Estimation of the accuracy of calculating distances in UTM coordinates using the Euclid formula
	Appendix 4. Counting the number of accidents for each edge of the road graph
	Appendix 5. Statistical tests on a road graph with uniformly distributed points
	Appendix 6. Representation of uniformly distributed points obtained using the SANET program in the form of .csv file
	Appendix 7. Finding statistically significant values of road traffic accidents
	Appendix 8. Creating a square grid superimposed on a road graph
	Appendix 9. Program for collecting relative risk statistics
	Appendix 10. Data visualization

