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Introduction

Relevance of thesis topic

People exchange their thoughts and opinions for a long time beginning from

face-to-face communication and letters to using nowadays online platforms. We

all are involved in social interactions, such as discussions of popular topics on

social media, voters’ decision-making during political elections, and small-scale

interactions in daily life. The social environment in which people live, their inter-

actions with others, media influence on them, and many other factors can affect

people’s thoughts and opinions, thus creating a complex and rich network. In this

network, dissemination, acceptance, and transformation of opinions are not only

the result of individual behaviors, but also the reflection of group dynamics. In

this dynamic process, people may reach a consensus, or there may be a disagree-

ment. We will study this phenomenon and establish mathematical models of the

process called opinion dynamics.

The study of opinion dynamics covers several disciplinary fields, including social

sciences, computer sciences, mathematics, and physics, and it is used to under-

stand and analyze a number of complex social phenomena. The results of our

research on opinion dynamics can provide important references for policy makers,

helping them to better understand the trends of social and public opinions, and

formulate policies to be in line with public needs and expectations. Researchers

can also analyze the influential and key nodes among individuals in social net-

works, which can play an important role in information dissemination, thus help-
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ing to effectively guide public opinions and for reaching the target opinion. In

opinion dynamics models, we also study the patterns of changes in networks to

better identify the paths of information spreading in the network, and provide

real-time information spreading strategies for epidemic prevention and control,

disaster warning, etc. In addition, the study of opinion dynamics can help com-

panies to better understand consumer’s attitudes and preferences, and they can

develop more targeted marketing strategies to increase product sales and brand

awareness. Enterprises can also predict consumer’s behavior and purchase inten-

tions to optimize product design, pricing and promotion strategies.

In summary, opinion dynamics modeling is conducted to understand the process

of individual strategy adjustment. This means that opinion formation modeling is

sensitive to new ideas and may change over time. In order to find a better model

to describe the evolutionary process of opinion dynamics, many researchers tend

to use game theory in their studies. Game theory is a mathematical area to study

the interaction of individuals, and combined with the study of opinion dynam-

ics, it helps to deepen analysis of information transmission among people. This

integrated approach enables mathematical modeling to be based on the character-

istics of the problem and finding appropriate solutions. For example, in product

marketing, choosing the right time for advertising and promotional activities is

crucial for product sales. Other domains such as social media platforms, polit-

ical elections, and social movements face similar timing problems. In addition,

considering the influence of other individuals and their number also affects the

change of individual opinions. Therefore, analyzing the impact of social network

structure on opinion dynamics is also one of my research priorities.

This thesis focuses on modeling of opinion dynamics in small social networks. In

the proposed models, we consider the aspects of “right time” choice to validate and

influence social network when influencers solve the cost minimization problems.
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We hope that our analysis and research can provide some ideas to solve the real-

world problems.

Overview of the results in this area

According to the different aims of social development, opinion dynamics mod-

eling has many classifications. For example, they are categorized into continuous

opinion [11, 20] and discrete opinion [15, 28] cases taking into account the form

of opinions. Opinion dynamics models can be studied in a macro or micro way

taking into account the complexity of social networks. Macro models are gener-

ally used to describe the evolution of opinions in large social networks, which can

selectively simplify the rules of evolution, such as the Ising model [55, 73], and

the voter model [14, 47, 70]. In contrast, micro-models are suitable for small so-

cial networks, which describe opinion evolution from an individual’s perspective,

e.g., the DeGroot model [19]. Microscopic models are also suitable for explaining

large social networks, which can describe interactions between individuals in more

detail. Opinion dynamics originated from French’s paper [25], which goes from

simple assumptions about interpersonal relationships to many complex phenom-

ena related to groups, and has been used in the study of sociology and psychology.

Later G. Ray Funkhouser formally proposed the dynamics of public opinion [27],

revealing that the news in media plays an important role in shaping public opin-

ions and perceived reality. Based on French’s research, DeGroot further suggested

his model of reaching consensus, which made his model the most classic and fun-

damental in the field. It was the first to use the Markov process theory to model

the dynamics of opinions in social networks.

The DeGroot model is applicable to different scenarios, which can lead to a

number of corresponding variants, such as the bounded confidence model taking

into account the fact that an individual’s opinion is influenced only by the opin-

ions of other people whose opinions do not differ from that of an individual by
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more than a certain confidence level in the opinion updating rule. Among bounded

confidence models, the Deffuant-Weisbuch model [18] and the Hegselmann-Krause

model [46] are the most representative. They are quite similar, but differ in opin-

ion updating rules, with the former focusing on two-by-two interactions between

individuals and the latter one focuses on inter-group interactions. The Friedkin-

Johnsen model [26, 69] proposes a modification of the DeGroot model assuming

that individuals are partially stubborn, i.e., that individuals will hold on to their

initial opinions due to certain factors.

The models in [67, 50] are used to explore multidimensional opinion dynamics in

social networks. Both models have open-loop information structures, and the for-

mer considers the impact of such factors as individual interactions, recalcitrance,

and the speed of opinion change on reaching consensus and disagreement, while

the latter focuses on strategic individuals with recalcitrant strategies and pro-

poses a distributed implementation of the Nash/worst-case equilibrium solution.

By studying group behavior [66], factors affecting opinion formation in multilayer

networks can be analyzed, in particular, race, and ideology may affect network

aggregation. The work [6] focuses on similarity of opinion attributes, the multiple-

population mean-field game (MPMFG) is proposed, and the model can be used

to estimate and predict the effects of people’s behaviors of different groups or

populations on other groups’ beliefs and opinions, and the validity of the theory

is demonstrated in analyzing the dynamics of multiple-population opinions.

The opinion maximization model can be used to design suitable algorithms for

information spreading in specific groups. The work [44] considers the realism of

dynamic changes (previous studies, where opinions remain unchanged after node

activation, do not correspond to real scenarios where opinions change over time),

the algorithm improves spreading rational opinions. In [36], the authors provide

practical and effective algorithms for forming favorable opinions for targeted users
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forms overall favorable opinions for specific items of information. The research

[57] combines opinion estimation and influence propagation in the marketing pro-

cess to maximize the number of users who know about the product through seed

user exposure, the proposed active learning framework improves overall opinion

propagation in social networks. The interplay between social relationships, indi-

vidual stubbornness, and opinion evolution is considered in [5] and it is demon-

strated that opinion dynamics converge to consensus under certain conditions,

but requires reasonable assumptions about changes in social relationships and

individual beliefs. Paper [68] explores consensus formation in social networks us-

ing a dynamic non-cooperative game model where each member minimizes a cost

function representing its motivation.

Nowadays, researchers are interested in examining and modeling of social net-

works over time. There are a large number of network participants and also

external forces trying to influence these participants. The social network partici-

pants are usually called agents, and the external forces influencing their opinions

are called players. The emergence of multi-agent systems [21] promises to ad-

dress the complexity of social networks. It serves as a tool to decompose and

assign complex problems to agents, who use the collected information to make

decisions. These systems are widely used to model the opinion dynamics. Mod-

els are designed to describe the exchange of information among participants in a

social network. Over time, a participant’s information can be influenced by his

neighbors or by external forces. It is important to understand how users in the

network update their opinions based on their neighbors’ opinions and the global

opinion structure that is implied when users update their opinions interactively.

It is worth mentioning that the paper [16] proposing the Biased Voter model

studying the update of users’ opinions based on the opinions of their neighbors.

It also gives a preliminary theory about the convergence and structure of opin-
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ions in the whole network. However, in real life, consensus is rarely reached in

actual opinion dynamics, so how do people form their own opinions? The paper

[12] studies a sociological model by interpreting repeated averaging as the best

response dynamics in the underlying game with natural payoffs, and examines the

cost of disagreement for these models relative to the social optimum. Assume that

each agent exchanges views with all his neighbors in each round. In particular, in

the Hegselmann-Krause model, determining each agent’s neighbors requires ac-

cess to the opinions of all agents. However, this assumption can be questionable

in modern society. Therefore, the paper [24] considers the convergence properties

of dynamic views with local interactions and limited information exchange. They

do this through a generic model where agents update their opinions rounded to

a weighted average of the opinions in their neighborhood. Two variants of the

Hegselmann-Krause model are considered, one accompanied by a fixed social net-

work, and the other by a neighborhood of agents determined by random sampling

in each round. The determination of interaction rules is important when studying

opinion dynamics and consensus shapes. The paper [64] inspired by gas dynamics

theory proposes a model of opinion dynamics in a multi-agent system consisting

of two classes of agents. Since understanding of public opinion change patterns is

often neglected, in paper [54] the authors propose a multi-subject model that can

be used to identify some mechanisms that cause opinion change. Public opinion

change in this model is a process of individual opinion shifts triggered by changes

in the opinions of highly correlated subjects.

The mean-field game theory has been extensively used in the study of opin-

ion dynamics. It was originated in [53] and it is characterized by the fact that

the strategy choice of a single agent is influenced by the mass behavior of other

agents. It has also been applied to many different fields, including economics,

physics, biology, networks, and production engineering (see [1, 8, 9, 42]). For the
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situation when multiple social groups interact, the authors of [10] study emula-

tion, imitation, and herding behavior in this phenomenon. The paper presents

a detailed analysis of the mean-field game results for the polymorphic boundary

and L2 boundary cases on control and perturbation.

Combining opinion dynamics with optimization theory leads to some new re-

sults, for example, the linear-quadratic optimal control problem or game [61]

focuses on the effect of different communication structures on information for-

mation and the minimization of control costs. The study [7] analyzes the opti-

mization problem of information control and proposes a reduction of a certain

class of dynamic control problems to the typical problem of controllability study

and design of linear discrete control systems. Some works on opinion dynamics

are also formulated as discrete-time linear-quadratic problems or games [48, 58].

The opinion dynamics models with cooperative and noncooperative influencers

are considered in [71, 72]. The mean-field optimal control problems are studied in

[2, 22, 23]. Among many existing models, we found that external factors play an

extremely important role in reaching consensus among the agents. The purpose

of paper [77] is to investigate whether external factors influence the members to

reach consensus in social networks. Controlling all participants’ opinions around a

predetermined level, the cases of one-player or two-player games were considered,

and the optimal control and equilibrium were found using Bellman’s equations.

There are several studies considering the influence of average opinion in the so-

ciety on individuals’ opinions with limited capabilities of validated opinions in a

linear-quadratic optimal control problem [32, 33]. The papers [31] and [30] con-

sider linear-quadratic optimization problems in the opinion dynamics modeling.

The former paper focuses on validating agents’ opinions in the terminal time of a

finite-time horizon. The latter paper focuses on the optimization problem when

the difference between agents’ opinions and socially desirable opinions are taken
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into account for a given number of validation periods.

Opinion dynamics modeling can play an important role in addressing the is-

sue of information spreading in social networks. In this context, this research

addresses the multifaceted theme of competitive opinion dynamics, and a phe-

nomenon of increasing prominence in diverse social scenarios, such as online mar-

keting, advertising, promotions, voting [13, 40, 52], etc. The overarching objective

is to delve into the intricate mechanisms that underlie competition and opinion

diffusion, which are pivotal factors in shaping opinions within connected com-

munities. A scenario in which two centers of influence compete for the agents’

attention within a network is considered in [62]. The analysis is limited with

constraints imposed by a network structure. They find the necessary conditions

of the Nash equilibrium and steady state for a given state dynamics. In an-

other aspect, the SI1SI2S model is introduced to control dissemination of two

opinions [41]. This model presents open-loop Nash control strategies that em-

power campaigners to actively monitor opinion spread and adapt their strategies

in response. An innovative perspective is offered through the introduction of the

cost-effective competition (CEC) problem [59]. A multi-objective optimization

approach (MOCEC) is developed to aim at achieving more votes with minimized

recruitment costs. Unlike the DeGroot model, this research [45] introduces an

innovative dimension accounting for both individual competition and switching

topologies within a social network. The analysis reveals whether the structure

of the network topology (balanced or not) affects opinions to reach consensus.

The paper [60] examines a problem of influence maximization in a social network

where two players compete by means of dynamic targeting strategies. The au-

thors obtained some elements for the characterization of equilibrium strategies

through a model analysis. A game-theoretic model for competitive information

dissemination in social network is proposed in [78]. It is shown that the speed
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of information spreading is influenced by characteristics of individuals. In the

paper [39], the authors investigate the idea of keeping a scalar opinion of every

agent above a predetermined ferment level over a finite time horizon. They obtain

the optimal control trajectory with the turnpike property by using Pontryagin’s

maximum principle.

Influencers or media centers use various methods to control opinions of the

social network members on the given topic, and then they try to keep the opinions

closer to the desired level, this process can be modeled as a dynamic game of

competition for agents’ opinions [29, 49, 51].

Goals of the thesis

The main goal of this work is to study the opinion dynamics in small social net-

works in a non-cooperative and game-theoretic settings, taking the two aspects:

(i) an influencer or player can optimally choose the periods in which the opin-

ions of the agents in the network are taken under consideration in her objective

function, (ii) an influencer or player can optimally choose the periods in which

she controls (puts some impulse to) the agents’ opinions, and these two sets of

periods may be the same or different depending on the purpose of modeling. I

am willing to find the corresponding optimal strategies, optimal state trajectories

in the optimization problems, and equilibrium strategies and corresponding state

trajectories for the given settings. Experiments are set up to discuss the efficiency

of each influencing factor. The three sections of this thesis answer specific research

questions:

Question 1: What is the optimal set of significant periods which should be

taken into account into the objective function of the influencer?

Question 2: When would it be an optimal set of periods for a player to control

for agents’ opinions?

Question 3: What is the effect of competition between influencers on opinion



13

dynamics and what are their costs when the number of players is more than one?

What are the equilibrium outcomes?

Main tasks

In order to carefully examine the opinion dynamics optimal control and com-

petitive models with the specific restrictions on influencers’ or players’ behavior

and to answer the research questions given above, I formulate the following tasks

of my work:

1. For small social groups, we first consider the effect of time validations on

their members’ opinions. We assume that participants are engaged in the

social network using different models of choosing the periods: 1) the player

assumes the agent’s opinion in the last time is significant and we include

the term with the agents’ opinions in her functional, no other opinions are

included in the functional, and 2) the player can choose the set of periods

being significant ones and take them into her objective functional. The task

is to find the optimal solution, i.e. the optimal set of periods minimizing the

player’s costs.

2. We consider the effect of choosing the set of periods to control agents’ opin-

ions. We study three scenarios: 1) the player includes all periods in her

objective functional but she can choose the set of a limited number of peri-

ods in which she controls the agents’ opinions; 2) the player chooses a set of a

limited number of periods in which she can control agents and exactly these

periods are included in the player’s objective functional; and 3) the player

can choose two different sets of periods (both of limited sizes) at which she

controls opinions and validates opinions but does not control them. The

task is to find the optimal policy and the optimal state trajectory under

these restrictions on player’s strategies.
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3. The effect of competition between players when they both influence agents’

opinions is considered. I increase the number of players while keeping the

rules for opinion evolution unchanged. We extend the scenarios involved

in the first two chapters. This task is to find the Nash equilibrium and

corresponding state trajectories in considered games.

Scientific novelty

This thesis builds on the results of opinion dynamics research and proposes

several new models with restrictions on players’ or influencers’ behavior. We

analyze in detail the factors that affect solutions of the formulated optimization

problems, including validation sets, sets of periods to control opinions, and the

competition between players. These refinements help decision makers to make

their solutions of the actual problems arising in social networks.

In this thesis, we consider the development of optimal or equilibrium strategies

by decision makers in the absence of cooperation. Time is a key factor influencing

opinion dynamics. We examine at what time players validate and control agents’

opinions from a time perspective to minimize their costs. First, players do not

need to monitor the opinion updating process all the time, which may greatly

reduce the costs. Second, players make decisions or influence network members

at the right periods, which can significantly improve the efficiency of influencers.

Finally, for different factors, we conducted comparative analysis and controlled

variable experiments in the experimental section. The experimental results show

that it is significant that the theorem provides the necessary conditions to find

the optimal and equilibrium solutions. All models have Matlab code for faster

computational screening of results. All theoretical results and program codes used

in this thesis are produced by the author of this work.
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Research methods

In this thesis, I used main concepts and methods of game theory (the Nash

equilibrium, Pareto optimality, and normal-form games) and dynamic game the-

ory (the Nash equilibrium in open-loop strategies, the Euler-equation approach,

and Pontryagin’s maximum principle), optimization theory, and basic concepts of

mathematical programming. The comparative analysis is applied in the experi-

mental part of my thesis.

Theoretical and practical significance

The theoretical results in this work further improve and extend the applications

of average-oriented opinion dynamics from non-cooperative game theory perspec-

tive. Compared with research that requires a large amount of real data, such as

deep learning and artificial intelligence, the models we built for simulations and

analysis can reflect the real situation relatively accurately. This is because in

reality, people’s opinion data are often difficult to obtain, and a lot of them are

ambiguous. Moreover, it is often difficult to analyze these data directly. Instead,

modeling the problem by simplifying the interaction rules is more likely to provide

reliable theoretical references for decision makers.

In Chapter 1, the models of opinion dynamics with two types of constraints on

player’s behavior are proposed. The models are applicable to real-world situations

because influencers in reality do not validate the society opinion all the time, but

rather find some specific periods significant in order to understand how opinions

are evolving. I characterized the player’s optimal behavior in these cases.

In Chapter 2, the issue of decision making with time restrictions is mainly

considered. In the new models presented in this chapter, the player can choose

the limited number of periods to validate opinions and to control them. I formu-

lated the optimization problems for the influencer or player and characterized her

optimal behavior in various cases of restrictions on controls.
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Chapter 3 extends the models presented in Chapters 1 and 2 and the results

on a multi-player case to better adapt for real world. The research in this chapter

provides more options and guidance for practical decision making and helps deci-

sion makers to better cope with various scenarios. In this chapter, I characterized

the Nash equilibria for two-player games in all examined cases.

The research conducted in the thesis is supported by the Chinese Govern-

ment Scholarship (CSC), No. 202109010042 (2021-2024), and the Russian Science

Foundation (RSF), grant No. 22-21-00346 “Game theoretic methods of opinion

dynamics control in social networks” (2022-2023).

Brief description of the thesis structure

The thesis consists of an introduction, three chapters, conclusion, a list of

references, and appendices. Each chapter begins with a description of the model

and formulation of the problem, then theoretical results with their proofs are

provided. The results including numerical simulations illustrating the theory are

presented at the end of each chapter. The thesis consists of 124 pages (128 pages

in Russian), including 19 tables and 38 figures. The bibliography is organized in

the alphabetical order and contains 78 citations.

Chapter 1 focuses on the use of different time patterns by players to influence

agents’ opinions. In Section 1.1, we describe a small social network model where

players validate opinions only in the last time over an arbitrary horizon, introduce

the necessary terminology, and present theorems and proofs. In Section 1.2, we

show numerical simulations. In Section 1.3, we describe the model where players

validate opinions in restricted periods, the theorems and their proofs are also

provided there. In Section 1.4, we set up experiments with control variables to

compare the effect of target opinions and the number of validation periods on

opinion dynamics, respectively. Section 1.5 summarizes the results of Chapter 1.

Chapter 2 focuses on opinion dynamics under three control scenarios. In Sec-
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tion 2.1, we describe a model of opinion dynamics with players controlling their

opinions in limited number of periods, providing corresponding theorems and their

proofs. In Section 2.2, the model where a player both validates and controls opin-

ions in the same periods is described, the notation and opinion updating rules in

the model are briefly described, and theorems and proofs are provided. In Section

2.3, the opinion dynamics when validating and controlling periods are represented

by two sets without overlapping are considered. We explain the meaning of the

notation and the opinion updating rules and prove the theorems. Section 2.4 pro-

vides numerical simulations and analyses of all the models of this chapter, and, in

particular, sets up comparative experiments in Sections 2.4.2 and 2.4.3 to check

the difference between the best and the worst results in terms of the corresponding

costs. Finally, Section 2.5 summarizes the chapter.

Chapter 3 focuses on modeling noncooperative opinion dynamics with com-

petition between players. This chapter mainly extends the models presented in

Chapters 1 and 2 in a two-player case, so Section 3.1 is an extension of the model

of Section 1.1. Section 3.2 is an extension of the model of Section 1.2. Section

3.3 is an extension of the model of Section 2.1. The first three sections of this

chapter provide the corresponding model descriptions, theorems and proofs. In

Section 3.4, numerical simulations of each model are shown and, in particular,

comparative experiments are conducted and presented in Section 3.3. They are

testing the validity of the resulting Nash equilibrium. We conclude the chapter

with Section 3.5.

The conclusion of the thesis contains a brief description of the results obtained

in the work.

Results submitted for defense

1. Models of opinion dynamics with different scenarios of restrictions on players’
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or influencers’ behavior in small social networks are presented. The restric-

tions are as follows: (i) the player assumes the agent’s opinion at the last

time significant and includes the term with the agents’ opinions at the termi-

nal time in her functional, no other opinions are considered in the functional,

and (ii) the player can choose the set of periods to include into the set of

significant ones and take them into her objective functional. For all these

models, the optimization problems are formulated for a one-player case. The

necessary conditions for the optimal strategies are found. A series of nu-

merical simulations is conducted to test the results and to make conclusions

about parameter influence on optimal strategies.

2. Models of opinion dynamics with different scenarios of restrictions on players’

or influencers’ controls in small social networks are presented. The restric-

tions are as follows: (i) the player can choose the periods when she controls

opinions, and the size of this set is limited, and (ii) the player can choose the

set of periods to control the opinions but they should be different from the

periods when she is validating these opinions among agents. For all these

models, the optimization problems are formulated and necessary conditions

for the optimal strategies are proved. A series of numerical simulations is

conducted to represent theoretical results.

3. The necessary condition for the Nash equilibria and corresponding state tra-

jectories for several models described in Items 1 and 2 are found assuming

the presence of two players influencing the network agents and competition

on the opinions between them.

Main scientific results

1. The study proposes and implements a solution for selecting optimal opin-

ion verification moments in finite time, see paper [33] in the bibliography
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(personal contribution is at least 80%).

2. Equilibria dynamic games modeling competition when players optimize in-

fluence and reduce the costs are found, see paper [35] in the bibliography

(personal contribution is at least 100%).

3. In the case when a player influences an agent’s opinion at specific time pe-

riods in order to bring the community’s opinion closer to her target opinion

and to minimize costs, the optimal solution is found, see paper [34] in the

bibliography (personal contribution is at least 100%).

4. In the case when players can exert influence on agents only for the limited

number of periods and minimize costs by choosing moments of control, the

optimal solution is found, see paper [32] in the bibliography (personal con-

tribution is at least 80%).

5. In the case when a center of influence chooses the limited number of validation

moments and at the same time it influences the agents’ opinions at these

moments, the optimal solution of the problem when to influence the agents

is solved, see paper [30] in the bibliography (personal contribution is at least

80%).

6. The minimization of the costs of influence on agents’ opinions making it

closer to the target opinion when only terminal time period is validated is

solved, optimal solution is found, see paper [31] in the bibliography (personal

contribution is at least 80%).

7. The game of competition of two players minimizing their costs on influence of

agents’ opinions when there is the limited number of validation time moments

is examined, the Nash equilibrium is found in open-loop strategies, see paper

[29] in the bibliography (personal contribution is at least 100%).
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The main results obtained in the thesis were presented at the International

Conferences “Game Theory and Management” (Saint Petersburg, 2021, 2022);
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Petersburg, 2021, 2022), at the seminars of Department of Mathematical Game
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Chapter 1

Average-oriented opinion dynamics in

social groups with limitations on

validating periods

1.1 The case when opinions in terminal period are

significant

We consider a small social network consisting of two agents. The agents can

influence each other, and their opinions change over time, which is discrete and

finite. Define the opinion of agent 1 at time t by x1 (t) ∈ R, t = 0, . . . , T and the

opinion of agent 2 at time t by x2 (t) ∈ R, t = 0, . . . , T . Vector (x1 (t) , x2 (t))

represents the state variable at time t.

We also assume that there is a player who can influence agent 1 at any time

t = 0, . . . , T − 1 with the control variable u(t). The player does not influence the

opinion of agent 1 at time T . The player has a target opinion s and is interested

in converging the agents’ opinions to this target opinion at the termination time,

i.e. he is willing to minimize the difference between target opinion and opinions

of the agents in the social network at the terminal time. We could also assume

that the player can have no option to validate the agents’ opinions along the time



23

line.

The dynamics of two agents 1 and 2 opinions is given by

x1 (t+ 1) = x1 (t) + a1

(
x1 (t) + x2 (t)

2
− x1 (t)

)
+ u (t) , (1.1)

x2 (t+ 1) = x2 (t) + a2

(
x1 (t) + x2 (t)

2
− x2 (t)

)
(1.2)

with initial condition

x1 (0) = x01, x2 (0) = x02 (1.3)

where a1, a2 ∈ R+.

The minimized functional for the player is

J(u) =
T−1∑
t=0

δt
(
cu2(t)

)
+ δT

(
(x1(T )− s)2 + (x2(T )− s)2

)
. (1.4)

Theorem 1.1. Let {u∗(t) : t = 0, . . . , T − 1} be the optimal strategy minimiz-

ing functional (1.4) subject to initial conditions (1.3) and state dynamics (1.1)

and (1.2), and {(x∗1(t), x∗2(t)) : t = 0, . . . , T} be the corresponding state trajectory,

then the optimal strategy u∗(t), t = 0, . . . , T − 1 is

u∗(t) = z∗(t+ 1)− Az∗(t)

and corresponding optimal state trajectory (x∗1(t), x
∗
2(t)) , t = 1, . . . , T satisfy

equations: 

cAδ2z(t+ 1)−Bz(t) + Cz(t− 1)− Acz(t− 2) = 0,

t = 2, . . . , T − 1,

−
(
cA− a2δ

2

)
z(T ) +

(
A2c+ c

δ

)
z(T − 1)− A c

δz(T − 2)

= −δa2 (x2(T )− s) ,

c
δ (z(T )− Az(T − 1)) + z (T ) + x2 (T )− s = 0,

x2(t+ 1) = x2(t) +
a2
2 z(t), t = 1, . . . , T − 1,

(1.5)

where z∗(t) = x∗1(t) − x∗2(t), A = 1 − a1+a2
2 , B = cAδ + cδ + cA2δ, and C =

c+ cAδ + cA2δ.
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Proof. We consider a new variable z (t)

z (t) = x1 (t)− x2 (t) , t = 0, · · · , T.

From state equations (1.1), (1.2) substituting z (t), we obtain the new state

equations:

z (t+ 1) = Az (t) + u (t) , (1.6)

x2 (t+ 1) = x2 (t) +
a2
2
z (t) (1.7)

with initial condition

z (0) = x01 − x02, x2 (0) = x02,

where A = 1− a1+a2
2 .

We find expression of u (t) from (1.6):

u (0) = z (1)− Az (0)

u (t) = z (t+ 1)− Az (t) = q (z (t) , z (t+ 1)) , t = 0, · · · , T − 1.

Then we substitute expression to
∑T

t=0 δ
tgt(x(t), x(t+ 1)), we can get

J (z, x2) = c (z (1)− Az (0))2 +
T−1∑
t=1

δt
[
c (z (t+ 1)− Az (t))2

]
+ δT

[
(z (T ) + x2 (T )− s)2 + (x2 (T )− s)2

]
.

Minimizing J (z, x2) under equations (1.6)-(1.7), we form the Lagrange function

L (z, x2, k) = J (z, x2) +
T−1∑
t=1

kt

(
x2 (t+ 1)− x2 (t)−

a2
2
z (t)

)
.

The first order conditions should be ∂L(z,x2)
∂z(t) = 0, t = 1, . . . , T and ∂L(z,x2)

∂x2(t)
= 0, t =

1, . . . , T.

Using Euler equation approach, we get

∂J (z, x2)

∂z (t)
= 2c (z (t)− Az (t− 1))− 2Aδc {z (t+ 1)− Az (t)} ,
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∂J (z, x2)

∂x2 (t)
= 0,∀t ̸= T,

∂J (z, x2)

∂x2 (T )
= δT {2 (z (T ) + x2 (T )− s) + 2 (x2 (T )− s)} ,

−cA
δ z (t− 1) + z (t)

(
c
δ + cA2

)
− cAz (t+ 1) = a2

4 ktδ
−t,

t = 1, . . . , T − 1,

c
δ (z(T )− Az(T − 1)) + z (T ) + x2 (T )− s = 0, t = T,

kt−1 − kt = 0, t = 2, . . . , T − 1,

δt [2z (t) + 4 (x2 (t)− s)] + kt−1 = 0, t = T

(1.8)

with initial condition z (0) = x01 − x02, x2 (0) = x02.

Excluding kt from system (1.8) we can get
cAδ2z(t+ 1)−Bz(t) + Cz(t− 1)− Acz(t− 2) = 0, t = 2, . . . , T − 1,

−
(
cA− a2δ

2

)
z(T ) +

(
A2c+ c

δ

)
z(T − 1)− A c

δz(T − 2) = −δa2 (x2(T )− s) ,

c
δ (z(T )− Az(T − 1)) + z (T ) + x2 (T )− s = 0,

where B = cAδ + cδ + cA2δ, and C = c+ cAδ + cA2δ.

The theorem is proved.

1.2 Numerical examples for Section 1.1

Example 1.1. Let a1 = 0.2, a2 = 0.6, δ = 1, c = 2 and initial opinions be

x1(0) = 0.7, x2(0) = 0.2. For time horizon T = 10 and target opinion s = 0.4,

the optimal state and optimal control trajectories are presented in Table 1.1. The

optimal value for functional (1.4) is 0.068.

For the same parameters and duration T = 10 we introduce optimal state and

strategy trajectory on Figures 1.1 and 1.2, respectively.
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Table 1.1: Optimal control trajectories and state.

t 0 1 2 3 4 5

x1(t) 0.7 0.4714 0.4159 0.4024 0.3991 0.3984

x2(t) 0.2 0.35 0.3864 0.3953 0.3974 0.3979

z(t) 0.5 0.1214 0.0295 0.0071 0.0017 0.0005

u(t) -0.1786 -0.04334 -0.0106 -0.00256 -0.00052 -0.0004

t 6 7 8 9 10

x1(t) 0.398 0.3984 0.3976 0.3984 0.3989

x2(t) 0.3981 0.398 0.3982 0.398 0.3981

z(t) -0.0001 0.0004 -0.0006 0.0004 0.0008

u(t) 0.00046 -0.00084 0.00076 0.00056

Figure 1.1: State trajectories (blue - x1(t), red - x2(t)).

From Figure 1.1, it can be seen that the opinions of both agents gradually

approach the target opinion under the player’s influence. From figure 1.2 it can

be seen that the player’s influence on the agents also tends to be stable.
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Figure 1.2: Strategy trajectory u(t).

Example 1.2. Let a1 = 2, a2 = 6, δ = 1, c = 2, and initial opinions be x1(0) =

0.5, x2(0) = 0.2. For time horizon T = 10 and target opinion s = 0.8, the

optimal state and control trajectories are presented in Table 1.2. The optimal

value of player’s functional (1.4) is 1.499.

Table 1.2: Optimal control and state trajectories.

t 0 1 2 3 4 5

x1(t) 0.5 0.9738 0.7323 0.7847 0.8171 0.7735

x2(t) 0.2 1.1 0.7215 0.7539 0.8463 0.7588

z(t) 0.3 -0.1262 0.0108 0.0308 -0.0292 0.0147

u(t) 0.7738 -0.3678 0.0632 0.0632 -0.0729 0.0411

t 6 7 8 9 10

x1(t) 0.7998 0.7918 0.7908 0.796 0.7978

x2(t) 0.8028 0.7938 0.7878 0.7967 0.7945

z(t) -0.003 -0.002 0.003 -0.0007 0.0033

u(t) -0.011 -0.003 0.0083 0.0012

We introduce optimal state and strategy trajectories on Figures 1.3 and 1.4,

respectively.
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Figure 1.3: State trajectories (blue - x1(t), red - x2(t)).

Figure 1.4: Strategy trajectory u(t).

On Figure 1.3 we see that the opinions of both agents under the influence of the

player gradually approach the target opinion at the terminal time. From Figure

1.4 it can be seen that the player’s influence on the agent also tends to be stable.

1.3 The case when opinions in limited number of periods

are validated

We consider a small social network with 2 agents. The opinion of agent 1 is

denoted by x1 and the opinion of agent 2 is x2. The agents can influence each

other, and their opinions change over time. We assume that the opinions change
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over discrete and finite time. Define the opinion of agent 1 at time t by x1 (t) ∈

R, t = 0, . . . , T and the opinion of agent 2 at time t by x2 (t) ∈ R, t = 0, . . . , T .

Vector (x1 (t) , x2 (t)) represents the state variable at time t.

We also assume that there is a player in the social network and denote his

influence on agent 1 at time t = 0, . . . , T−1 by u(t). The player does not influence

the opinion of agent 1 at time T . The dynamics of the agent’s opinion depend on

the current state and player’s control. Agent 1’s next opinion is composed of agent

1’s current opinion, the social average opinion and the player’s influence. Agent

2’s next opinion is composed of agent 2’s current opinion and the average social

opinion. The dynamics of their opinions are defined by the following equations:

x1 (t+ 1) = x1 (t) + a1

(
x1 (t) + x2 (t)

2
− x1 (t)

)
+ u (t) , (1.9)

x2 (t+ 1) = x2 (t) + a2

(
x1 (t) + x2 (t)

2
− x2 (t)

)
(1.10)

with initial condition

x1 (0) = x01, x2 (0) = x02. (1.11)

In the above equation, a1 > 0, a2 > 0 denote the agent’s beliefs about the

average social opinion, respectively.

We assume that the player can only monitor the level of opinion along the state

trajectory at some periods. The number of periods to put in the functional is k

and it is fixed, 1 ≤ t1 < t2 < · · · < tk ≤ T − 1, where k < T is known but which

periods are chosen is unknown. The player’s target opinion is s ∈ R. The player

aims to choose the periods 1 ≤ t1 < t2 < · · · < tk ≤ T − 1 to minimize his costs,

which are the following:

J (u) =
T−1∑
t=0

δt
(
cu2(t)

)
+

k∑
j=1

δtj
(
(x1 (tj)− s)2 + (x2 (tj)− s)2

)
+ δT

(
(x1(T )− s)2 + (x2(T )− s)2

)
,

(1.12)
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where δ ∈ (0, 1] is the discount factor and c > 0 is the player’s cost per unit level

of influence.

Theorem 1.2. Let {u∗(t) : t = 0, . . . , T − 1} be the optimal strategy minimizing

functional (1.12) subject to initial conditions (1.11) and state dynamics (1.9) and

(1.10), and {(x∗1(t), x∗2(t)) : t = 0, . . . , T} be the corresponding state trajectory,

then the optimal strategy u∗(t), t = 0, . . . , T − 1 is

u∗(t) = z∗(t+ 1)− Az∗(t)

and corresponding optimal state trajectory (x∗1(t), x
∗
2(t)) , t = 1, . . . , T satisfying

the following equations:

Acδz(t+ 1) +Bz(t− 1)− Cz(t)

+Ac
δ z(t− 2) = 0, t = 2, . . . , T − 1,

Dz (t)− Ez (t− 1)− Aδcz (t+ 1) + Ac
δ z (t− 2)

= (a2 − δ) (x2 (t)− s) + x2 (t− 1)− s, t = tj, j = 2, · · · , k,

c (z (t)− Az (t− 1)) + δ (z (t) + x2 (t)− s) = 0, t = T,(
c
δ + A2c

)
z (T − 1)− Ac

δ z (T − 2)−
(
Ac− a2

2

)
z (T )

= a2 (x2 (T )− s) ,

x2 (t+ 1) = x2 (t) +
a2
2 z (t) , t = 1, . . . , T − 1,

(1.13)

where z∗(t) = x∗1(t)−x∗2(t), A = 1− a1+a2
2 , B = Ac+ c

δ −A2c, C = A2δc+Ac−c,

D = c− A2δc+ δ + Ac− a2
2 and E = Ac− c

δ + A2c− 1.

Proof. We represent a new variable z (t) as

z (t) = x1 (t)− x2 (t) , t = 0, . . . , T.

From state equations (1.9), (1.10) taking into account expression of z (t), we

obtain the new state equations:

z (t+ 1) = Az (t) + u (t) , (1.14)
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x2 (t+ 1) = x2 (t) +
a2
2
z (t) , (1.15)

with initial condition

z (0) = x01 − x02, x2 (0) = x02,

where A = 1− a1+a2
2 .

We find an expression of u (t) from (1.14) and obtain

u (t) = z (t+ 1)− Az (t) , (1.16)

with

u (0) = z (1)− Az (0) .

Substitute these expressions into
∑T

t=0 δ
tgt(x(t), x(t + 1)), we can rewrite the

functional in the following form:

J (z, x2) =c (z (1)− Az (0))2 +
T−1∑
t=0

δt
[
c (z (t+ 1)− Az (t))2

]
+

k∑
j=1

δtj
[
(z (tj) + x2 (tj)− s)2 + (x2 (tj)− s)2

]
+ δT

[
(z (T ) + x2 (T )− s)2 + (x2 (T )− s)2

]
.

To minimize J (z, x2) under condition given by equations (1.15) and (1.16), we

form the Lagrange function

L (z, x2, k) = J (z, x2) +
T−1∑
t=1

kt

(
x2 (t+ 1)− x2 (t)−

a2
2
z (t)

)
.

The first-order conditions are ∂L(z,x2,k)
∂z(t) = 0, t = 1, . . . , T and ∂L(z,x2,k)

∂x2(t)
= 0, t =

1, . . . , T.

First, we find the derivatives and get

∂J (z, x2)

∂z (t)
=δt−12c (z (t)− Az (t− 1))− δt2Ac (z (t+ 1)− Az (t)) ,

t = 1, . . . , T − 1, t ̸= tj,
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∂J (z, x2)

∂z (t)
= δt−12c (z (t)− Az (t− 1))− δt2Ac (z (t+ 1)− Az (t))

+ δt2 (z (t) + x2 (t)− s) , t = tj, j = 1, . . . , k,

∂J (z, x2)

∂x2 (t)
= 0, t = 1, . . . , T − 1, t ̸= tj,

∂J (z, x2)

∂x2 (t)
= δt [2 (z (t) + x2 (t)− s) + 2 (x2 (t)− s)] , t = tj, j = 1, . . . , k,

Second, we write the systems of the first-order conditions that are

c
δ (z (t)− Az (t− 1))− Ac (z (t+ 1)− Az (t)) = a2

4 ktδ
−t,

t = 1, . . . , T − 1, t ̸= tj,

c
δ (z (t)− Az (t− 1))− Ac (z (t+ 1)− Az (t))

+ (z (t) + x2 (t)− s) = a2
4 ktδ

−t, t = tj, j = 1, · · · , k,

c (z (t)− Az (t− 1)) + δ (z (t) + x2 (t)− s) = 0, t = T,

kt−1 − kt = 0, t = 1, . . . , T − 1, t ̸= tj,

δt [2z (t) + 4 (x2 (t)− s)]− kt + kt−1 = 0, t = tj, j = 2, . . . , k,

δt [2z (t) + 4 (x2 (t)− s)] + kt−1 = 0, t = T,

(1.17)

with initial conditions z (0) = x01 − x02, x2 (0) = x02.

Excluding kt from system (1.17), finally we obtain the system of equations

Acδz(t+ 1) +Bz(t− 1)− Cz(t)− Ac
δ z(t− 2) = 0, t = 2, . . . , T − 1,

Dz (t)− Ez (t− 1)− Aδcz (t+ 1) + Ac
δ z (t− 2)

= (a2 − 1) δ (x2 (t)− s) + x2 (t− 1)− s, t = tj, j = 2, · · · , k,

c (z (t)− Az (t− 1)) + δ (z (t) + x2 (t)− s) = 0, t = T,(
c
δ + A2c

)
z (T − 1)− Ac

δ z (T − 2)−
(
Ac− a2δ

2

)
z (T ) = a2 (x2 (T )− s) ,

where B = Ac+ c
δ +A2c, C = Ac− c−A2δc, D = c+A2δc+ δ +Ac− a2δ

2 and

E = Ac+ c
δ + A2c+ 1.

The theorem is proved.
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1.4 Numerical simulations for Section 1.3

1.4.1 Experiment Description

We initially set up 6 sets of experiments. The parameters a1, a2, δ, c, x0, y0, T

were the same in all experiments. In Experiments 1-3, given the same target

opinion and varying only the number of validation periods, we compare changes

in state trajectories and strategy trajectories. We then do not change the number

of validation periods in Experiments 1-3 and only change the target opinion for

each experiment, which produces Experiments 4-6. We compare changes in state

trajectories and strategy trajectories.

Experiment 1 Set the initial parameters a1 = 0.2; a2 = 0.8; δ = 1; c =

0.1;x1 (0) = 0.9;x2 (0) = 0.1;T = 10. Given the target opinion s = 0.4 and the

number of validation periods k = 3. By combining, we get 84 cases to choose

three periods.

Experiment 2 Set the initial parameters a1 = 0.2; a2 = 0.8; δ = 1; c =

0.1;x1 (0) = 0.9;x2 (0) = 0.1;T = 10. Given the target opinion s = 0.4 and

the number of validation periods k = 4. By combining, we get 126 cases for four

validation periods.

Experiment 3 Set the initial parameters a1 = 0.2; a2 = 0.8; δ = 1; c =

0.1;x1 (0) = 0.9;x2 (0) = 0.1;T = 10. Given the target opinion s = 0.4 and

the number of validation periods k = 5. By combining, we get 126 cases for five

periods.

Experiment 4 Set the initial parameters a1 = 0.2; a2 = 0.8; δ = 1; c =

0.1;x1 (0) = 0.9;x2 (0) = 0.1;T = 10. Given the target opinion s = 0.5 and the

number of validation periods k = 3. By combining, we get 84 cases to choose

three periods.
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Experiment 5 Set the initial parameters a1 = 0.2; a2 = 0.8; δ = 1; c =

0.1;x1 (0) = 0.9;x2 (0) = 0.1;T = 10. Given the target opinion s = 0.5 and

the number of validation periods k = 4. By combining, we get 126 cases for four

periods.

Experiment 6 Set the initial parameters a1 = 0.2; a2 = 0.8; δ = 1; c =

0.1;x1 (0) = 0.9;x2 (0) = 0.1;T = 10. Given the target opinion s = 0.5 and the

number of validation periods k = 5. By combination, we obtain 126 cases for five

periods.

1.4.2 Experimental flowchart

Figure 1.5: Experimental flowchart.

Detailed steps

1. Set parameters: a1 = 0.2; a2 = 0.8; δ = 1; c = 0.1;x1 (0) = 0.9;x2 (0) =

0.1;T = 10.
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2. Set target: s = 0.4 (e.g., experiments 1, 2, 3) or s = 0.5 (e.g., experiments

4, 5, 6).

3. Fix the number of validation periods: k = 3 (e.g., experiments 1 and 4) or 4

(e.g., experiments 2 and 5) or 5 (e.g., experiments 3 and 6).

4. Generate validation periods sets: three periods are randomly selected from

periods 1,...,9 to form a set {t1, t2, t3}, such as {1, 2, 3}, {2, 3, 4}, and 84

sets of periods can be obtained. From periods 1,...,9, the four periods

are randomly selected to form validation period set {t1, t2, t3, t4}, such as

{1, 2, 3, 4}, {2, 3, 4, 5}, and 126 sets of periods can be obtained. From pe-

riods 1, . . . , 9, there are five periods which are randomly selected to form a

set {t1, t2, t3, t4, t5}, such as {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6}, and 126 sets can be

obtained.

5. Build a system of equations: input system (1.13) in Theorem 1.2 to form a

system of equations.

6. Input validation period sets in order: Substitute the selected sets into system

(1.13) respectively.

7. Obtain any time state and control: each validation period set is calculated

in system (1.13), which can output 0, 1, 2, . . . , 9, 10 periods corresponding to

the state and control.

8. Calculate the cost function: put 0, 1, . . . , 9 periods corresponding to the

control, the validation period set corresponding to the state and the end

state are substituted into the cost function (1.12), and the result is obtained.

9. Compare the cost values of all validation period sets: In each of the six

experiments, compare all the cost values of each experiment.
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10. Output the minimum cost value: output the minimum cost value of each

experiment.

11. Output the corresponding state and control: According to the validation

period set corresponding to the minimum cost value, output this set corre-

sponding to the state and control.

12. Get the optimal validation period set: the set corresponding to the minimum

cost value is the optimal one, and output the set.

1.4.3 Experimental results

In this section we represent the optimal state, control trajectories and player’ s

cost corresponding to each case, we obtain the following results.

Example 1.3. We start with k = 3. Solving minimization problem of (1.12) with

respect to periods 1 ≤ t1 < t2 < t3 ≤ 9. The player sets the number of validation

periods 2, 3, 4 and the target opinion being s = 0.4. The optimal state and

control trajectories are presented in Table 1.3. The optimal cost for the player is

0.016417.

In this run, the player obtains the optimal state trajectory and optimal control

by choosing periods 2, 3, 4 within the total time T = 10, in Figures 1.6 and 1.7

respectively.
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Table 1.3: Optimal state trajectory and control

t 0 1 t1 = 2 t2 = 3 t3 = 4 5

x1(t) 0.9 0.4252 0.3977 0.4001 0.4045 0.4061

x2(t) 0.1 0.42 0.4221 0.4123 0.4075 0.4063

z(t) 0.8 0.0052 -0.0244 -0.0122 -0.0029 -0.0001

u(t) -0.3948 -0.027 0.000003 0.0032 0.0013 -0.0016

t 6 7 8 9 10

x1(t) 0.4045 0.4056 0.4112 0.3974 0.3999

x2(t) 0.4062 0.4055 0.4056 0.4078 0.4036

z(t) -0.0017 0.0001 0.0056 -0.0105 -0.0038

u(t) 0.001 0.0055 -0.0133 0.0014

Figure 1.6: Optimal state trajectories, validation periods are 2, 3, 4 (blue — x1(t), red — x2(t)).
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Figure 1.7: Optimal strategy trajectory u(t).

Example 1.4. Let k = 4. His target opinion is s = 0.4. The solution of the

problem is to choose validation periods as 2, 3, 4, 5 periods. The optimal state

and control trajectories are presented in Table 1.4. The optimal cost for the player

is 0.016413. We should mention that the cost for k = 3 are a bit larger than for

k = 4. It can be easily explained by additional term in function (1.12) in case of

this example.

We also notice that when we add one more period, in the optimal solution of

the problem the new additional period t = 5 is added to the set {2, 3, 4, 5}. But

the latter set remains the same. The optimal state and control trajectories are

presented in Figures 1.8 and 1.9 respectively.
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Table 1.4: Optimal state trajectory and control.

t 0 1 t1 = 2 t2 = 3 t3 = 4 t4 = 5

x1(t) 0.9 0.4246 0.3965 0.3979 0.4002 0.4026

x2(t) 0.1 0.42 0.4219 0.4117 0.4062 0.4038

z(t) 0.8 0.0046 -0.0253 -0.0139 -0.0059 -0.0012

u(t) -0.3954 -0.0276 -0.0012 0.001 0.0018 -0.0005

t 6 7 8 9 10

x1(t) 0.4022 0.4028 0.4057 0.3987 0.3999

x2(t) 0.4033 0.4029 0.4029 0.404 0.4019

z(t) -0.0011 -0.00002 0.0028 -0.0053 -0.0019

u(t) 0.0006 0.0028 -0.0067 0.0007

Figure 1.8: Optimal state trajectories, validation periods are 2, 3, 4, 5 (blue — x1(t), red —

x2(t)).
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Figure 1.9: Optimal strategy trajectory u(t).

Example 1.5. Let k = 5. The player’ s target opinion is s = 0.4. The solution

of the problem is to choose 2, 3, 4, 5, 9 periods as validation periods. The optimal

state and control trajectories are presented in Table 1.5. The optimal cost for the

player is 0.016405. We mention that the costs for k = 4 are also a bit larger than

for k = 5.

Table 1.5: Optimal state trajectory and control

t 0 1 t1 = 2 t2 = 3 t3 = 4 t4 = 5

x1(t) 0.9 0.4245 0.3963 0.3974 0.3993 0.4009

x2(t) 0.1 0.42 0.4218 0.4116 0.4059 0.4033

z(t) 0.8 0.0045 -0.0255 -0.0142 -0.0066 -0.0023

u(t) -0.3955 -0.0278 -0.0015 0.0005 0.001 0.0006

t 6 7 8 t5 = 9 10

x1(t) 0.4018 0.4045 0.399 0.3987 0.3999

x2(t) 0.4023 0.4021 0.4031 0.4015 0.4004

z(t) -0.0005 0.0024 -0.004 -0.0027 -0.0005

u(t) 0.0026 -0.0052 -0.0007 0.0009



41

Noticing that when we add one more period in the optimal solution of the

problem, the new additional period t = 9 is added to the set {2, 3, 4, 5, 9}. The

optimal state trajectory and control trajectory are presented in Figures 1.10 and

1.11 respectively.

Figure 1.10: Optimal state trajectories, validation periods are 2, 3, 4, 5, 9 (blue — x1(t), red

— x2(t)).

Figure 1.11: Optimal strategy trajectory u(t).

From examples 1.3-1.5, we find that when the target opinion s = 0.4, the

2 agents can reach consensus quickly under the influence of the player. Player’s
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control tends to stabilize after period 2. There is no significant effect on the agents’

opinions approaching the target opinion after each increase of one validation point.

The corresponding cost value also slightly reduces.

Example 1.6. Let k = 3, the player choose 3, 4, 5 periods and his target opinion

is s = 0.5. The optimal state and control trajectories are presented in Table 1.6.

The optimal cost for the player is 0.004486.

Table 1.6: Optimal state trajectory and control

t 0 1 2 t1 = 3 t2 = 4 t3 = 5

x1(t) 0.9 0.6556 0.5061 0.4986 0.5003 0.5026

x2(t) 0.1 0.42 0.5142 0.511 0.506 0.5037

z(t) 0.8 0.2356 -0.0082 -0.0124 -0.0057 -0.0012

u(t) -0.1644 -0.126 -0.0083 0.0005 0.0017 -0.0005

t 6 7 8 9 10

x1(t) 0.5021 0.5028 0.5056 0.4987 0.4999

x2(t) 0.5033 0.5028 0.5028 0.5039 0.5018

z(t) -0.0011 -0.00002 0.0028 -0.0053 -0.0019

u(t) 0.0006 0.0028 -0.0067 0.0007

In this experiment, the player obtains the optimal state trajectory and optimal

control by choosing periods 3, 4, 5 within the total time T = 10, in Figures 1.12

and 1.13 respectively.
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Figure 1.12: Optimal state trajectories, validation periods 3, 4, 5 (blue — x1(t), red — x2(t)).

Figure 1.13: Optimal strategy trajectory u(t).

Example 1.7. Let the number of validation periods k = 4, the player monitors

agents’ opinions close to the target opinion s = 0.5 by choosing 3, 4, 5, 6 periods.

The optimal state and control trajectories are presented in Table 1.7. The optimal

cost for the player is 0.004472.

Noticing that when we add one more period t = 6 in the optimal solution of

the problem. The optimal state trajectory and optimal control are obtained by

choosing periods 3, 4, 5, 6 within the total time T = 10, in Figures 1.14 and 1.15
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Table 1.7: Optimal state trajectory and control

t 0 1 2 t1 = 3 t2 = 4 t3 = 5

x1(t) 0.9 0.6561 0.5057 0.4978 0.4987 0.4997

x2(t) 0.1 0.42 0.5144 0.5109 0.5057 0.5029

z(t) 0.8 0.2361 -0.0088 -0.0132 -0.007 -0.0032

u(t) -0.1639 -0.1268 -0.0088 -0.0004 0.0003 0.0005

t t4 = 6 7 8 9 10

x1(t) 0.5005 0.501 0.5021 0.4995 0.5

x2(t) 0.5016 0.5011 0.5011 0.5015 0.5007

z(t) -0.0011 -0.0002 0.001 -0.002 -0.0007

u(t) 0.0004 0.0011 -0.0025 0.0003

respectively.

Figure 1.14: Optimal state trajectories, validation periods 3, 4, 5, 6 (blue — x1(t), red — x2(t)).
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Figure 1.15: Optimal strategy trajectory u(t).

Example 1.8. Let k = 5, the player chooses 3, 4, 5, 6, 7 periods and his target

opinion is s = 0.5. The optimal states and control trajectories are presented in

Table 1.8. The optimal cost for the player is 0.004474.

Table 1.8: Optimal state trajectory and control

t 0 1 2 t1 = 3 t2 = 4 t3 = 5

x1(t) 0.9 0.6561 0.5056 0.4977 0.4986 0.4994

x2(t) 0.1 0.42 0.5145 0.5109 0.5056 0.5028

z(t) 0.8 0.2361 -0.0088 -0.0132 -0.0071 -0.0034

u(t) -0.1639 -0.1269 -0.0088 -0.0005 0.0001 0.0002

t t4 = 6 t5 = 7 8 9 10

x1(t) 0.5 0.5006 0.5014 0.4996 0.5

x2(t) 0.5015 0.5009 0.5008 0.501 0.5005

z(t) -0.0015 -0.0003 0.0006 -0.0014 -0.0005

u(t) 0.0004 0.0008 -0.0017 0.0002

In this experiment, by choosing periods 3, 4, 5, 6, 7 we obtain the optimal state

trajectory and optimal control, given in Figures 1.16 and 1.17 respectively.
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Figure 1.16: Optimal state trajectories, validation periods 3, 4, 5, 6, 7 (blue — x1(t), red —

x2(t)).

Figure 1.17: Optimal strategy trajectory u(t).

From examples 1.6-1.8, with the remaining parameters unchanged, we only

change the target opinion s = 0.5 and the 2 agents reach a consensus. Player’s

control is relatively stable after period 3. Although the latter three sets of exper-

iments did not have much larger target opinions (s = 0, 5) than the first three

sets of experiments (s = 0.4), we found that the change in the target opinion led

agents to reach consensus more quickly. The optimal cost was smaller for the last

three sets of experiments.
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1.5 Conclusion to Chapter 1

We propose two models of opinion dynamics that facilitate the player’s ability

to monitor the state trajectory of the agent’s opinion. The goal of the player

in the first model is to bring the social opinion closer to the target opinion at

the terminal time and to minimize its influence costs. When there is a unique

center of influence in the social network, we can find the optimal control for this

player. We use the Euler equation method to find the optimal strategy. In the

numerical simulation, when the player validates the agent’s opinion only at the

terminal period and does not care about other periods, he can minimize the costs

and make the agent’s opinion close to the goal opinion.

For the case when the player validates the agent’s opinion at multiple periods,

we set up a comparison experiment with different target opinions, thus finding

the optimal setting of the periods to validate opinions. We find that the optimal

costs that decreases when the number of validation periods increases. We also note

that if we increase the number of validation periods while other parameter values

remain constant, the optimal set of validation periods under a smaller number of

validation periods is included in the optimal set of validation periods under a larger

number of them. We can easily extend our model to make it applicable to more

agents and participants. When there is more than one participant, competition

can arise if the participants have different goal perspectives and long-term goals.
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Chapter 2

Average-oriented opinion dynamics in

small groups when periods to control

opinions are player’s decision variable

2.1 Model of opinion dynamics in small social groups when

player chooses to control opinions in the limited

number of periods

We consider a multiagent system representing a small social network with two

agents. Let x1(t) ∈ R (x2(t) ∈ R) be the opinion of agent 1 (agent 2) at time t,

t = 0, . . . , T . We assume that the player, who is not an agent in the system, can

control agent 1 at several (limited number of) periods but he finds opinions of the

agents significant at any time t. We denote the player’s influence on agent 1 at

time t by u(t) ∈ R, t = 0, . . . , T − 1. The set of periods at which player controls

agent 1 is denoted by G and called the set of control periods. The number of

elements in the set G is given, and it is equal to k < T . Therefore, we consider

the problem, when k is known to the player, but the set of control periods G is

not fixed. Let this set be represented as G = {t1, t2, . . . , tk}.

When time t belongs to the set of control periods G, agent 1’s future opinion
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depends on his own present opinion, the present average opinion of the society,

and the player’s present control. When time t does not belong to the set of control

periods G, agent 1’s future opinion depends on his own present opinion and the

present average opinion of the society. Agent 2 is not influenced by the player, and

his future opinion depends on his own present opinion and the present average

opinion of the society. The dynamics of the agents’ opinions are defined by the

following equations:

x1 (t+ 1) = x1 (t) + a1

(
x1 (t) + x2 (t)

2
− x1 (t)

)
+ u (t) , t ∈ G, (2.1)

x1 (t+ 1) = x1 (t) + a1

(
x1 (t) + x2 (t)

2
− x1 (t)

)
, t /∈ G, (2.2)

x2 (t+ 1) = x2 (t) + a2

(
x1 (t) + x2 (t)

2
− x2 (t)

)
, t = 0, . . . , T − 1, (2.3)

with the initial condition

x1 (0) = x01, x2 (0) = x02. (2.4)

In the equations of dynamics (2.1)–(2.3), the constants a1 > 0, a2 > 0 denote the

agent 1 and agent 2’s beliefs about the average social opinion, respectively.

The player needs to define a set of control periods G = {t1, t2, . . . , tk} for a

given k. Let 0 ≤ t1 < t2 < . . . < tk ≤ T − 1, where k < T . The player’s target

opinion is s ∈ R. The player aims to minimize his costs by choosing the set of

control periods and choosing the values of controls for the periods from the set of

control periods. We first solve the optimization problem over the set of controls

for a given set of control periods G. The player’s functional is

min
u

J (u) =
k∑

j=1

δtj
(
cu2(tj)

)
+

T∑
t=0

δt
(
(x1 (t)− s)2 + (x2 (t)− s)2

)
, (2.5)

where δ ∈ (0, 1] is the discount factor and c > 0 is the player’s cost per unit level

of influence.
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Second, we choose the set of control periods over all possible ones with the

player’s minimal costs.

The necessary conditions of the optimal control problem (2.5) s.t. (2.1)–(2.3)

with initial condition (2.4) are given in the following theorem.

Theorem 2.1. Let {u∗(t) : t = t1, t2, . . . , tk} be the optimal strategy minimizing

functional (2.5) subject to initial conditions (2.4) and state dynamics equations

(2.1), (2.2) and (2.3), and {(x∗1(t), x∗2(t)) : t = 0, . . . , T} be the corresponding

state trajectory. The periods 0 ≤ t1 < t2 < . . . < tk ≤ T − 1 are given. Then the

optimal strategy u∗(t), t = t1, t2, . . . , tk is defined as

u∗(t) = z∗(t+ 1)− Az∗(t)

and corresponding optimal state trajectory (x∗1(t), x
∗
2(t)) , t = 1, . . . , T satisfy the
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system of equations:

(
a2δ
2 − δ

)
z (t) + z (t− 1) = (δ − a2δ) (x2 (t)− s)− x2 (t− 1) + s,

t = 1, . . . , T − 1, t, t− 1 /∈ {t1, t2, . . . tk, } ,

Bz (t) + Cz (t− 1)− Acz (t− 2) =
(
δ2 − a2δ

2
)
(x2 (t)− s)

−δ (x2 (t− 1)− s) , t = 1, . . . , T − 1,

t /∈ {t1, t2, . . . , tk} , t− 1 ∈ {t2, . . . , tk} ,

Dz (t) + Ez (t− 1)− Acz (t− 2) + Acδ2z (t+ 1)

=
(
δ2 − a2δ

2
)
(x2 (t)− s)− δ (x2 (t− 1)− s) , t = 1, . . . , T − 1,

t, t− 1 ∈ {t2, . . . , tk} ,

Fz (t) +
(
A2c+ 1

)
z (t− 1) + Acδz (t+ 1) = (δ − a2δ) (x2 (t)− s)

−x2 (t− 1) + s, t = 1, . . . , T − 1,

t ∈ {t1, t2, . . . , tk} , t− 1 /∈ {t1, t2, . . . , tk} ,
a2δ
2 z (t) + z (t− 1) = −a2δ (x2 (t)− s)− x2 (t− 1) + s,

t = T, T /∈ {t1, t2, . . . , tk} , T − 1 /∈ {t1, t2, . . . , tk} ,
a2δ

2

2 z (t) + (c+ δ) z (t− 1)− Acz (t− 2) = −a2δ
2 (x2 (t)− s)

−x2 (t− 1) + s, t = T, T /∈ {t1, t2, . . . , tk} , T − 1 ∈ {t2, . . . , tk} ,

z (t) + x2 (t)− s = 0, t = T, T − 1 /∈ {t1, t2, . . . , tk} ,

c (z (t)− Az (t− 1)) + δ (z (t) + x2 (t)− s) = 0,

t = T, T − 1 ∈ {t1, t2, . . . , tk} ,

x2 (t+ 1) = x2 (t) +
a2
2 z (t) , t = 0, . . . , T − 1,

(2.6)
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where z∗(t) = x∗1(t)− x∗2(t), and

A = 1− a1 + a2
2

,

B =
a2δ

2

2
− cδ − δ2,

C = Acδ − c− δ,

D =
a2δ

2

2
− Acδ − cδ − A2cδ2 − δ2,

E = Acδ + c+ A2cδ + δ,

F =
a2δ

2
− Ac− δ − A2cδ.

Proof. We represent a new variable z (t) as

z (t) = x1 (t)− x2 (t) , t = 0, . . . , T.

From state equations (2.1), (2.2), and (2.3) taking into account expression of z (t),

we obtain the new state equations:

z (t+ 1) = Az (t) + u (t) , t ∈ {t1, t2, . . . , tk} , (2.7)

z (t+ 1) = Az (t) , t /∈ {t1, t2, . . . , tk} ,

x2 (t+ 1) = x2 (t) +
a2
2
z (t) , t = 0, . . . , T − 1, (2.8)

with initial condition

z (0) = x01 − x02, x2 (0) = x02,

where A = 1− a1+a2
2 .

We find an expression of u (t) from (2.7) and obtain

u (t) = z (t+ 1)− Az (t) , t ∈ {t1, t2, . . . , tk} . (2.9)

Substituting these expressions into
∑T

t=0 δ
tgt(x(t), x(t + 1)), we can rewrite the
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functional in the following form:

J (z, x2) = (x1(0)− s)2 + (x2(0)− s)2 +
k∑

j=1

δtj
[
c (z (tj + 1)− Az (tj))

2
]

+
T∑
t=1

δt
[
(z (t) + x2 (t)− s)2 + (x2 (t)− s)2

]
.

To minimize J (z, x2) under condition given by equations (2.8) and (2.9), we

form the Lagrange function

L (z, x2, k) = J (z, x2) +
T−1∑
t=0

kt

(
x2 (t+ 1)− x2 (t)−

a2
2
z (t)

)
.

The first-order conditions are ∂L(z,x2,k)
∂z(t) = 0, t = 1, . . . , T , and ∂L(z,x2,k)

∂x2(t)
= 0,

t = 1, . . . , T.

First, we find the derivatives and get

∂J (z, x2)

∂z (t)
= δt2 (z (t) + x2 (t)− s) , t = 1, . . . , T − 1, t, t− 1 /∈ {t1, t2, . . . , tk} ,

∂J (z, x2)

∂z (t)
= δt−12c (z (t)− Az (t− 1)) + δt2 (z (t) + x2 (t)− s) ,

t /∈ {t1, t2, · · · tk} , t− 1 ∈ {t1, t2, . . . , tk} ,
∂J (z, x2)

∂z (t)
= δt−12c (z (t)− Az (t− 1))− δt2Ac (z (t+ 1)− Az (t))

+ δt2 (z (t) + x2 (t)− s) , t, t− 1 ∈ {t1, t2, . . . , tk} ,
∂J (z, x2)

∂z (t)
= −δt2Ac (z (t+ 1)− Az (t)) + δt2 (z (t) + x2 (t)− s) ,

t ∈ {t1, t2, · · · tk} , t− 1 /∈ {t1, t2, . . . , tk} ,
∂J (z, x2)

∂z (t)
= δt2 (z (t) + x2 (t)− s) , t = T, t− 1 /∈ {t1, t2, . . . , tk} ,

∂J (z, x2)

∂z (t)
= δt−12c (z (t)− Az (t− 1)) + δt2 (z (t) + x2 (t)− s) ,

t = T, t− 1 ∈ {t1, t2, . . . , tk} ,
∂J (z, x2)

∂x2 (t)
= δt [2 (z (t) + x2 (t)− s) + 2 (x2 (t)− s)] , t = 1, . . . , T.
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Second, we rewrite the system of the first-order conditions in the following form:

z (t) + x2 (t)− s = a2
4 ktδ

−t, t = 1, . . . , T − 1,

t, t− 1 /∈ {t1, t2, . . . , tk} ,

c (z (t)− Az (t− 1)) + δ (z (t) + x2 (t)− s) = a2
4 ktδ

−t+1,

t /∈ {t1, t2, . . . , tk} , t− 1 ∈ {t1, t2, . . . , tk} ,
c
δ (z (t)− Az (t− 1))− Ac (z (t+ 1)− Az (t)) + z (t) + x2 (t)− s

= a2
4 ktδ

−t, t, t− 1 ∈ {t1, t2, . . . , tk} ,

−Ac (z (t+ 1)− Az (t)) + z (t) + x2 (t)− s = a2
4 ktδ

−t,

t ∈ {t1, t2, · · · tk} , t− 1 /∈ {t1, t2, . . . , tk} ,

z (t) + x2 (t)− s = 0, t = T, t− 1 /∈ {t1, t2, . . . , tk} ,

c (z (t)− Az (t− 1)) + δ (z (t) + x2 (t)− s) = 0,

t = T, t− 1 ∈ {t1, t2, . . . , tk} ,

δt [2z (t) + 4 (x2 (t)− s)] + kt−1 − kt = 0, t = 1, . . . , T − 1,

δt [2z (t) + 4 (x2 (t)− s)] + kt−1 = 0, t = T,

(2.10)

with initial conditions z (0) = x01 − x02, x2 (0) = x02.
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Excluding kt from system (2.10), finally we obtain the system of equations

(
a2δ
2 − δ

)
z (t) + z (t− 1) = (δ − a2δ) (x2 (t)− s)− x2 (t− 1) + s,

t = 1, . . . , T − 1, t, t− 1 /∈ {t1, t2, . . . , tk} ,

Bz (t) + Cz (t− 1)− Acz (t− 2) =
(
δ2 − a2δ

2
)
(x2 (t)− s)− δ (x2 (t− 1)− s) ,

t = 1, . . . , T − 1, t /∈ {t1, t2, . . . , tk} , t− 1 ∈ {t2, . . . , tk} ,

Dz (t) + Ez (t− 1)− Acz (t− 2) + Acδ2z (t+ 1)

=
(
δ2 − a2δ

2
)
(x2 (t)− s)− δ (x2 (t− 1)− s) , t = 1, . . . , T − 1,

t, t− 1 ∈ {t2, . . . , tk} ,

Fz (t) +
(
A2c+ 1

)
z (t− 1) + Acδz (t+ 1) = (δ − a2δ) (x2 (t)− s)

−x2 (t− 1) + s, t = 1, . . . , T − 1, t ∈ {t1, t2, . . . , tk} , t− 1 /∈ {t1, t2, . . . , tk} ,
a2δ
2 z (t) + z (t− 1) = −a2δ (x2 (t)− s)− x2 (t− 1) + s,

t = T, T /∈ {t1, t2, . . . , tk} , T − 1 /∈ {t1, t2, . . . , tk} ,
a2δ

2

2 z (t) + (c+ δ) z (t− 1)− Acz (t− 2) = −a2δ
2 (x2 (t)− s)− x2 (t− 1) + s,

t = T, T /∈ {t1, t2, · · · tk} , T − 1 ∈ {t2, . . . , tk} ,

z (t) + x2 (t)− s = 0, t = T, T − 1 /∈ {t1, t2, . . . , tk} ,

c (z (t)− Az (t− 1)) + δ (z (t) + x2 (t)− s) = 0, t = T, T − 1 ∈ {t1, t2, . . . , tk} ,

where B = a2δ
2

2 − cδ − δ2, C = Acδ − c− δ, D = a2δ
2

2 − Acδ − cδ − A2cδ2 − δ2,

E = Acδ + c+ A2cδ + δ, F = a2δ
2 − Ac− δ − A2cδ.

The theorem is proved.

2.2 The case when the player validates agents’ opinions

and controls them in the same periods

We consider a simple social network, i.e., a two-agent opinion dynamic system.

The characteristic of the network is that there exists a player, different from the

agents, who can choose to validate the opinion of agents 1 and 2, and use a

strategy to influence opinion of agent 1 at that time. The state variables are the
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agents’ opinions xi(t) ∈ R at time t ∈ [0, T ], i = 1, 2. The control variable, that

is, the influence strategy of the player, is intensity u (t) ∈ R. First, we assume

that the validation and influence set of periods U ⊂ {1, 2, . . . , T − 1} is given

to the player. We provide the solution of the optimal control problem for set U ,

then allow to choose set U optimally. Let the number of elements k in set U be

given, and k < T . In a nutshell, we have

• xi(t), i = 1, 2: the opinion of agent i at time t ∈ [0, T ];

• u (t): the player’s influence on agent 1’s opinion at time t ∈ [0, T − 1];

• U = {t1, . . . , tk | 0 ≤ t1 < t2 < · · · < tk ≤ T − 1}: the set of periods, in

which the player adds a control and validates agents’ opinions.

The dynamics of agents’ opinions are defined by the following equations:

x1 (t+ 1) = x1 (t) + a1

(
x1 (t) + x2 (t)

2
− x1 (t)

)
+ u (t) , t ∈ U, (2.11)

x1 (t+ 1) = x1 (t) + a1

(
x1 (t) + x2 (t)

2
− x1 (t)

)
, t /∈ U, (2.12)

x2 (t+ 1) = x2 (t) + a2

(
x1 (t) + x2 (t)

2
− x2 (t)

)
, t = 0, . . . , T − 1(2.13)

with initial condition

x1 (0) = x01, x2 (0) = x02. (2.14)

In the above equation, a1 > 0, a2 > 0 denote the agents’ beliefs about the

average social opinion, respectively.

The dynamics of agents’ opinion are describing the following idea:

1. When t belongs to set U , agent 1 updates his opinion according to equation

(2.11). The agent 1’s opinion, the social average opinion, and the player’s

strategy at the previous stage will influence the formation of the opinion at

the next stage.
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2. When t does not belong to set U , agent 1 updates his opinion according to

equation (2.12). The agent 1’s opinion and the social average opinion but

not player’s strategy at the previous stage will influence the formation of the

opinion in the next stage.

3. When t ∈ {0, . . . , T − 1}, agent 2 updates his opinion according to equation

(2.13) at any stage. Agent 2’s opinion and the social average opinion at the

previous stage will influence the formation of the opinion in the next stage,

as agent 2 is not influenced by the player.

The player’s target opinion is s ∈ R. The player aims to minimize his costs,

which are as follows:

J (u) =
∑k

j=1 δ
tj
(
(x1 (tj)− s)2 + (x2 (tj)− s)2 + cu2(tj)

)
+δT

(
(x1(T )− s)2 + (x2(T )− s)2

)
, (2.15)

where δ ∈ (0, 1] is the discount factor and c > 0 is the player’s cost per unit level

of influence.

Therefore, the LQ optimization problem with a given set U may be rewritten

in the following way: minimize (2.15)

subject to u satisfying (2.11) , (2.12) , and (2.13).
(2.16)

The Euler-equation method gives the necessary conditions (see e.g. [17, 37, 38]).

We can notice that the problem considered in the paper belongs to the class of

linear-quadratic optimization problems. We apply the Euler-equation method to

find the player’s optimal strategy in the dynamic problem with average-oriented

opinion dynamics (see [63]). The same method is used in [30, 31] to find the

optimal control in opinion dynamics problem.
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Theorem 2.2. Let {u∗(t) : t = t1, t2, . . . , tk} be the optimal strategy minimizing

functional (2.15) subject to state dynamics equations (2.11), (2.12), and (2.13)

with initial conditions (2.14), and {(x∗1(t), x∗2(t)) : t = 0, . . . , T} be the corre-

sponding state trajectory. The periods 0 ≤ t1 < t2 < · · · < tk ≤ T − 1, are

given. Then the optimal strategy u∗(t), t = t1, t2, . . . , tk is defined as

u∗(t) = z∗(t+ 1)− Az∗(t),

and corresponding optimal state trajectory (x∗1(t), x
∗
2(t)), t = 1, . . . , T satisfy the

system of equations:

z (t+ 1) = Az (t) , t = 1, . . . , T − 1, t, t− 1 /∈ U,

δcz (t)− (c+ Acδ) z (t− 1) + Acz (t− 2) = 0, t /∈ U, t− 1 ∈ U,

Bz (t) + Cz (t− 1) + Acδz (t+ 1)− Ac
δ z (t− 2)

= (δ − a2δ) (x2 (t)− s)− x2 (t− 1) + s, t, t− 1 ∈ {t2, . . . , tk} ,

Dz (t) +
(
1 + A2c

)
z (t− 1) + Acδz (t+ 1) = (δ − a2δ) (x2 (t)− s)

−x2 (t− 1) + s, t ∈ U, t− 1 /∈ U,

(c+ δ) z (t)− Acz (t− 1) + δ (x2 (t)− s) = 0, t = T, t− 1 ∈ U,

z (t) + x2 (t)− s = 0, t = T, t− 1 /∈ U,

a2δ
2

2 z (t) + cz (t− 1)− Acz (t− 2) = a2δ
2 (x2 (t)− s) ,

t = T, t− 1 ∈ {t2, . . . , tk} ,

z (t) + 2 (x2 (t)− s) = 0, t = T, t− 1 /∈ U,

x2 (t+ 1) = x2 (t) +
a2
2 z (t) , t = 1, . . . , T − 1,

(2.17)

where z∗(t) = x∗1(t) − x∗2(t), A = 1 − a1+a2
2 , B = a2δ

2 − c − A2cδ − δ − Ac,

C = Ac− c
δ − A2c− 1, D = a2δ

2 − A2cδ − δ − Ac.

Proof. We represent a new variable z (t) as

z (t) = x1 (t)− x2 (t) , t = 0, . . . , T.
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From state equations (2.11), (2.12) taking into account expression of z (t), we

obtain the new state equations:

z (t+ 1) = Az (t) + u (t) , t ∈ U, (2.18)

z (t+ 1) = Az (t) , t /∈ U,

x2 (t+ 1) = x2 (t) +
a2
2
z (t) , t = 0, . . . , T − 1, (2.19)

with initial condition

z (0) = x01 − x02, x2 (0) = x02,

where A = 1− a1+a2
2 .

We find an expression of u (t) from (2.18) and obtain

u (t) = z (t+ 1)− Az (t) , t ∈ {t1, t2, . . . , tk} , (2.20)

Substitute these expressions into the functional, we can rewrite it in the following

form:

J (z, x2) =
k∑

j=1

δtj
[
(z (tj) + x2 (tj)− s)2 + (x2 (tj)− s)2 + c (z (tj + 1)− Az (tj))

2
]

+ δT
[
(z (T ) + x2 (T )− s)2 + (x2 (T )− s)2

]
.

To minimize J (z, x2) under condition given by equations (2.18) and (2.20), we

form the Lagrange function

L (z, x2, l) = J (z, x2) +
T−1∑
t=1

lt

(
x2 (t+ 1)− x2 (t)−

a2
2
z (t)

)
,

where l = (l1, . . . , lT−1).

The first-order conditions are ∂L(z,x2,l)
∂z(t) = 0, t = 1, . . . , T and ∂L(z,x2,l)

∂x2(t)
= 0,

t = 1, . . . , T.
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First, we find the derivatives and get

∂J (z, x2)

∂z (t)
= 0, t = 1, . . . , T − 1, t, t− 1 /∈ U,

∂J (z, x2)

∂z (t)
= δt−12c (z (t)− Az (t− 1)) , t, /∈ U, t− 1 ∈ U,

∂J (z, x2)

∂z (t)
= δt−12c (z (t)− Az (t− 1))− δt2Ac (z (t+ 1)− Az (t))

+δt2 (z (t) + x2 (t)− s) , t, t− 1 ∈ U,

∂J (z, x2)

∂z (t)
= −δt2Ac (z (t+ 1)− Az (t)) + δt2 (z (t) + x2 (t)− s) ,

t ∈ U, t− 1 /∈ U

∂J (z, x2)

∂z (t)
= δt−12c (z (t)− Az (t− 1)) + δt2 (z (t) + x2 (t)− s) ,

t = T, t− 1 ∈ U,

∂J (z, x2)

∂z (t)
= δt2 (z (t) + x2 (t)− s) , t = T, t− 1 /∈ U,

∂J (z, x2)

∂x2 (t)
= 0, t = 1, . . . , T − 1, t /∈ U,

∂J (z, x2)

∂x2 (t)
= δt [2 (z (t) + x2 (t)− s) + 2 (x2 (t)− s)] , t ∈ U,

∂J (z, x2)

∂x2 (t)
= δt [2 (z (t) + x2 (t)− s) + 2 (x2 (t)− s)] , t = T,
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Second, we write the system of the first-order conditions, that is,

lt = 0, t = 1, . . . , T − 1, t, t− 1 /∈ U,

c (z (t)− A ∗ z (t− 1)) = a2
4 ltδ

−t+1, t /∈ U, t− 1 ∈ U,(
c
δ + A2c+ 1

)
z (t)− Ac

δ z (t− 1)− Acz (t+ 1) + x2 (t)− s

= a2
4 ltδ

−t, t, t− 1 ∈ U,(
A2c+ 1

)
z (t)− Acz (t+ 1) + x2 (t)− s = a2

4 ltδ
−t,

t ∈ U, t− 1 /∈ U,

(c+ δ) z (t)− Acz (t− 1) + δ (x2 (t)− s) = 0, t = T, t− 1 ∈ U,

z (t) + x2 (t)− s = 0, t = T, t− 1 /∈ U,

lt−1 − lt = 0, t = 1, . . . , T − 1, t /∈ U,

δt [2z (t) + 4 (x2 (t)− s)] + lt−1 − lt = 0, t ∈ U,

δt [2z (t) + 4 (x2 (t)− s)] + lt−1 = 0, t = T,

(2.21)

with initial conditions z (0) = x01 − x02, x2 (0) = x02.

Excluding lt from system (2.21), finally we obtain the system of equations

z (t+ 1) = Az (t) , t = 1, . . . , T − 1, t, t− 1 /∈ U,

δcz (t)− (c+ Acδ) z (t− 1) + Acz (t− 2) = 0, t /∈ U, t− 1 ∈ U

Bz (t) + Cz (t− 1) + Acδz (t+ 1)− Ac
δ z (t− 2) = (δ − a2δ) (x2 (t)− s)

−x2 (t− 1) + s, t, t− 1 ∈ {t2, . . . , tk} ,

Dz (t) +
(
1 + A2c

)
z (t− 1) + Acδz (t+ 1) = (δ − a2δ) (x2 (t)− s)

−x2 (t− 1) + s, t ∈ U, t− 1 /∈ U,

(c+ δ) z (t)− Acz (t− 1) + δ (x2 (t)− s) = 0, t = T, t− 1 ∈ U,

z (t) + x2 (t)− s = 0, t = T, t− 1 /∈ U,

a2δ
2

2 z (t) + cz (t− 1)− Acz (t− 2) = a2δ
2 (x2 (t)− s) ,

t = T, t− 1 ∈ {t2, . . . , tk} ,

z (t) + 2 (x2 (t)− s) = 0, t = T, t− 1 /∈ U,

where B = a2δ
2 −c−A2cδ−δ−Ac, C = Ac− c

δ−A2c−1, D = a2δ
2 −A2cδ−δ−Ac.
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The proof is finished.

The system given in Theorem 2.2 represents the necessary conditions for the

optimal control problem.

Remark 2.1. In Theorem 2.2, given set U , the solution of system (2.17) gives

the optimal state trajectory and the unique corresponding optimal control. When

the set U is not given to the player, he may consider an optimization problem

and consider all possible sets U and then compare the costs corresponding to the

possible sets to get the minimal costs. Therefore, the set U corresponding to the

minimal costs is optimal.

2.3 The case when validation and control time sets are

different

We consider also a two-agent opinion dynamic system, in which the player can

choose different sets of periods to validate and control opinions. Assume that for

the player the two time sets are given, i.e., the control time set M and the valida-

tion time set N . We assume that a player divide the set of periods {0, 1, . . . , T}

into two disjoint subsets: (i) when he influences an agent, set M , and (ii) when he

validates the agents’ opinions, set N . Therefore, t ∈ {0, 1, ..., T − 1, T} = M∪N ,

where M = {m1,m2, . . . ,mp}, and 0 ≤ m1 < m2 < · · · < mp ≤ T − 1 with

p < T . Let N be the set {n1, n2, . . . , nk}, 1 ≤ n1 < n2 < · · · < nk ≤ T with

k < T , and M ∩N = ∅. The notations are as follows:

• xi(t): the opinion of agent i at time t ∈ [0, T ], i = 1, 2;

• u (t): the player’s influence level on agent 1’s opinion at time t ∈ [0, T − 1];

• M = {m1,m2, . . . ,mp}: the control time set of the player, p < T ;
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• N = {n1, n2, . . . , nk}: the validation time set, k < T .

The dynamics of agents’ opinions are defined by the following equations:

x1 (t+ 1) = x1 (t) + a1

(
x1 (t) + x2 (t)

2
− x1 (t)

)
+ u (t) , t ∈ M, (2.22)

x1 (t+ 1) = x1 (t) + a1

(
x1 (t) + x2 (t)

2
− x1 (t)

)
, t /∈ M, (2.23)

x2 (t+ 1) = x2 (t) + a2

(
x1 (t) + x2 (t)

2
− x2 (t)

)
, t = 0, . . . , T − 1(2.24)

with initial condition

x1 (0) = x01, x2 (0) = x02. (2.25)

In the above equations, a1 > 0, a2 > 0 denote the agent’s beliefs about the

average social opinion, respectively.

The dynamics of agents’ opinion satisfy the following idea:

1. When t belongs to the set M , agent 1 updates his opinion according to

equation (2.22). Agent 1’s opinion, the social average opinion and player’s

strategy at the previous stage will influence the formation of the opinion at

the next stage.

2. When t belongs to the set N , agent 1 updates his opinion according to

equation (2.23). Agent 1’s opinion and the social average opinion at the

previous stage will influence the formation of the opinion at the next stage.

3. When t ∈ {0, . . . , T − 1}, agent 2 updates his opinion according to equation

(2.24) at any stage. Agent 2’s opinion and the social average opinion at the

previous stage will influence the formation of the opinion at the next stage

as agent 2 is not influenced by the player.

The player’s target opinion is s ∈ R. The player aims to minimize his costs,
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which are as follows:

J (u) =

p∑
i=1

δmi
(
cu2(mi)

)
+

k∑
j=1

δnj

(
(x1 (nj)− s)2 + (x2 (nj)− s)2

)
+ δT

(
(x1(T )− s)2 + (x2(T )− s)2

)
,

(2.26)

where δ ∈ (0, 1] is the discount factor and c > 0 is the player’s cost per unit level

of influence.

Therefore, LQ optimization problem may be rewritten in the following way: minimize (2.26)

subject to u, satisfying (2.22) , (2.23) , and (2.24).
(2.27)

Theorem 2.3. Let {u∗(t) : t = m1,m2, . . . ,mp} be the optimal strategy minimiz-

ing functional (2.26) subject to initial conditions (2.25), state dynamics equations

(2.22), (2.23), and (2.24), and {(x∗1(t), x∗2(t)) : t = 0, . . . , T} be the correspond-

ing state trajectory. The set of periods M and N are given. Then the optimal

strategy u∗(t), t ∈ M is defined as

u∗(t) = z∗(t+ 1)− Az∗(t),

and corresponding optimal state trajectory (x∗1(t), x
∗
2(t)) , t = 1, . . . , T , satisfy the
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system of equations:

Bz (t) + Acδz (t+ 1) + Cz (t− 1)− Ac
δ z (t− 2) = 0,

t ∈ M, t = mi, i = 2, . . . , p,(
a2δ
2 − δ

)
z (t) + z (t− 1) = (δ − a2δ) (x2 (t)− s)− x2 (t) + s,

t ∈ N,(
Ac− a2δ

2

)
z (t)−

(
c
δ + A2c

)
z (t− 1) + Ac

δ z (t− 2)

= a2δ (x2 (t)− s) , t = T, t− 1 ∈ M, t = mi, i = 2, . . . , p,

−a2δ
2 z (t)− z (t− 1) = a2δ (x2 (t)− s) + x2 (t)− s,

t = T, t− 1 ∈ N,

(c+ δ) z (t)− Acz (t− 1) + δ (x2 (t)− s) = 0, t = T, t− 1 ∈ M,

z (t) + x2 (t)− s = 0, t = T, t− 1 ∈ N,

x2 (t+ 1) = x2 (t) +
a2
2 z (t) , t = 1, . . . , T − 1,

(2.28)

where z∗(t) = x∗1(t) − x∗2(t), A = 1 − a1+a2
2 , B = −

(
Ac− c− A2cδ

)
, C =

c
δ + A2c+ Ac.

Proof. We represent a new variable z (t) as

z (t) = x1 (t)− x2 (t) , t = 0, . . . , T.

From state equations (2.22), (2.23) and (2.24)taking into account expression of

z (t), we obtain the new state equations:

z (t+ 1) = Az (t) + u (t) , t ∈ M, (2.29)

z (t+ 1) = Az (t) , t /∈ M,

x2 (t+ 1) = x2 (t) +
a2
2
z (t) , (2.30)

with initial condition

z (0) = x01 − x02, x2 (0) = x02,

where A = 1− a1+a2
2 .
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We find an expression of u (t) from (2.22) and obtain

u (t) = z (t+ 1)− Az (t) , t ∈ M. (2.31)

Substituting these expressions into functional, we can rewrite it in the following

form:

J (z, x2) =

p∑
i=1

δmi

[
c (z (mi + 1)− Az (mi))

2
]

+
k∑

j=1

δnj

[
(z (nj) + x2 (nj)− s)2 + (x2 (nj)− s)2

]
+ δT

[
(z (T ) + x2 (T )− s)2 + (x2 (T )− s)2

]
.

To minimize J (z, x2) under condition given by equations (2.24) and (2.31), we

form the Lagrange function

L (z, x2, k) = J (z, x2) +
T−1∑
t=1

kt

(
x2 (t+ 1)− x2 (t)−

a2
2
z (t)

)
.

where k = (k1, . . . , kT−1). The first-order conditions are ∂L(z,x2,k)
∂z(t) = 0, t =

1, . . . , T and ∂L(z,x2,k)
∂x2(t)

= 0, t = 1, . . . , T.

First, we find the derivatives and get

∂J (z, x2)

∂z (t)
= δt−12c (z (t)− Az (t− 1))− δt2Ac (z (t+ 1)− Az (t)) , t ∈ M,

∂J (z, x2)

∂z (t)
= δt2 (z (t) + x2 (t)− s) , t ∈ N,

∂J (z, x2)

∂z (t)
= δt−12c (z (t)− Az (t− 1)) + δt2 (z (t) + x2 (t)− s) ,

t = T, t− 1 ∈ M,

∂J (z, x2)

∂z (t)
= δt2 (z (t) + x2 (t)− s) , t = T, t− 1 ∈ N,

∂J (z, x2)

∂x2 (t)
= 0, t ∈ M,

∂J (z, x2)

∂x2 (t)
= δt [2 (z (t) + x2 (t)− s) + 2 (x2 (t)− s)] , t ∈ N,

∂J (z, x2)

∂x2 (t)
= δt [2 (z (t) + x2 (t)− s) + 2 (x2 (t)− s)] , t = T.



67

Second, we write the system of the first-order conditions, that is

(
c
δ + A2c

)
z (t)− Ac

δ z (t− 1)− Acz (t+ 1) = a2
4 ktδ

−t, t ∈ M,

z (t) + x2 (t)− s = a2
4 ktδ

−t, t ∈ N,

(c+ δ) z (t)− Acz (t− 1) + δ (x2 (t)− s) = 0, t = T, t− 1 ∈ M,

z (t) + x2 (t)− s = 0, t = T, t− 1 ∈ N,

kt−1 − kt = 0, t ∈ M,

δt [2z (t) + 4 (x2 (t)− s)] + kt−1 − kt = 0, t ∈ N,

δt [2z (t) + 4 (x2 (t)− s)] + kt−1 = 0, t = T,

(2.32)

with initial conditions z (0) = x01 − x02, x2 (0) = x02.

Excluding kt from system (2.32), finally we obtain the system of equations

Bz (t) + Acδz (t+ 1) + Cz (t− 1)− Ac
δ z (t− 2) = 0,

t ∈ M, t = mi, i = 2, . . . , p,(
a2δ
2 − δ

)
z (t) + z (t− 1) = (δ − a2δ) (x2 (t)− s)− x2 (t) + s, t ∈ N,(

Ac− a2δ
2

)
z (t)−

(
c
δ + A2c

)
z (t− 1) + Ac

δ z (t− 2) = a2δ (x2 (t)− s) ,

t = T, t− 1 ∈ M, t = mi, i = 2, . . . , p,

−a2δ
2 z (t)− z (t− 1) = a2δ (x2 (t)− s) + x2 (t)− s, t = T, t− 1 ∈ N,

(c+ δ) z (t)− Acz (t− 1) + δ (x2 (t)− s) = 0, t = T, t− 1 ∈ M,

z (t) + x2 (t)− s = 0, t = T, t− 1 ∈ N,

where B = −
(
Ac− c− A2cδ

)
, C = c

δ + A2c+ Ac.

The theorem is proved.

Remark 2.2. In Theorem 2.3, given the validation and control sets M and N ,

the solution of system (2.28) gives the optimal state trajectory and the unique cor-

responding optimal control trajectory. If sets M and N are not given, the player

can find them in an optimal way by considering all possible sets N (after that, M

is uniquely defined) and comparing the costs corresponding to all these sets to get
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the minimum costs. Therefore, the set N corresponding to the minimum costs is

optimal.

2.4 Numerical simulations

2.4.1 Numerical example for Section 2.1

Let a1 = 0.2, a2 = 0.9, δ = 1, c = 0.8 and initial agents’ opinions be x1(0) = 0.7,

x2(0) = 0.2. The player’s target opinion is s = 0.5. We also assume that k is

equal to three. For the time horizon T = 10, we realize the algorithm and obtain

that the player’s minimal costs are obtained when the set of control periods is

{0, 8, 9}. The values of the optimal agents’ opinion trajectories and the optimal

control trajectory are given in Table 2.1. The optimal value of functional (2.5) is

0.1511.

Table 2.1: Optimal control trajectories and state.

t t1 = 0 1 2 3 4 5

x1(t) 0.7000 0.5193 0.5084 0.5036 0.5016 0.5007

x2(t) 0.2000 0.4250 0.4674 0.4858 0.4939 0.4973

z(t) 0.5000 0.0943 0.0409 0.0178 0.0077 0.0034

u(t) -0.1307

t 6 7 t2 = 8 t3 = 9 10

x1(t) 0.5003 0.5001 0.5001 0.5000 0.5000

x2(t) 0.4988 0.4995 0.4998 0.4999 0.5000

z(t) 0.0015 0.0006 0.0003 0.0001 0.00005

u(t) -0.000007 -0.000006

We introduce the optimal opinion trajectory (for both agents 1 and 2) and

player’s strategy trajectory on Figures 2.1 and 2.2 respectively.
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Figure 2.1: Optimal state trajectories (blue — x1(t), red — x2(t)).

Figure 2.2: Optimal strategy trajectory u(t).

Behaving optimally, the player chooses to control agent 1 at periods 0, 8, and 9

to influence his opinion. We should remind that the player validates the opinions

of both agents at each period. Calculations show that the player finds this set of

the control periods optimal, i.e. the set of control periods {0, 8, 9} minimizes his

total costs which are 0.1511 over all possible set of periods. We can easily notice

looking at Figure 2.1 that after period 4 the opinions of both agents almost reach

the target opinion s = 0.5.
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2.4.2 Numerical example for Section 2.2

Consider 11-stage problem with T = 10 (periods 0, . . ., 10). Let k = 3. The

parameters are as follows:

a1 = 0.4, a2 = 0.5, δ = 1, c = 0.7, s = 0.5,

x1(0) = 0.2, x2(0) = 0.8.

There are 2 agents in a network. The initial opinion state is x(0) = (0.2, 0.8), i.e.

x1(0) = 0.2 and x2(0) = 0.8 for any i = 1, 2. The agent 1 and agent 2’ beliefs

about the average social opinion are a1 = 0.4 and a2 = 0.5, respectively. The

discount factor is δ = 1. The unit costs for level of influence is c = 0.7 for player

1. His target opinion is s = 0.5.

Table 2.2: Optimal control and state trajectories.

t 0 1 2 3 4 5

x1(t) 0.2000 0.3930 0.4444 0.4727 0.4882 0.4968

x2(t) 0.8000 0.6500 0.5858 0.5504 0.5310 0.5203

z(t) -0.6000 -0.2570 -0.1413 -0.0777 -0.0428 -0.0235

u(t)

t t1 = 6a t2 = 7a t3 = 8a 9 10

x1(t) 0.4987 0.4955 0.4929 0.4901 0.5000

x2(t) 0.5144 0.5105 0.5067 0.5033 0.5000

z(t) -0.0157 -0.0150 -0.0138 -0.0132 0

u(t) -0.0063 -0.0056 -0.0056
a The player validates and influences agent 1’s opinion in these three periods to get the

minimum cost.

Based on Theorem 2.2, we find the necessary conditions, and solve system

(2.17). The player’s minimal costs are obtained when the set of control and
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validation periods is {6, 7, 8}. This set is optimally chosen among 120 sets. The

values of the optimal agents’ opinion trajectories and optimal control trajectory

are given in Table 2.2. The optimal value of functional (2.15) is 0.000507.

Figure 2.3: Optimal state trajectories (blue — x1(t), red — x2(t)).

Figure 2.4: Optimal control trajectory u(t).

Agents’ opinions are “stabilized” over time. Player controls the opinion of agent

1. The optimal state trajectories of the agents are shown in Figure 2.3. The

optimal control trajectory is represented in Figure 2.4.
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We can see in Figure 2.3 that the player chooses to control an agent and val-

idates the agents’ opinions at periods 6, 7, and 8, which minimizes his cost, up

to 0.000507. After period 5, the agents’ opinions almost reach target opinion

s = 0.5.

The minimum costs correspond to the “best” result (optimal value of the costs),

and we can also examine if these costs are much less then the costs in the “worst”

result (when the validation periods are chosen to have maximal costs, or this can

be called as the worst-case scenario). The maximum cost can be calculated in the

same way. The player’s maximum costs are 2.07173297, and they are obtained

when the set of control and validation periods is {1, 3, 5}. Comparing the gap

between the “worst” and “best” results, i.e., Jmax−Jmin

Jmax
· 100% = 99.98%, and we

can notice that if the player optimizes following the procedure proposed in the

paper, he can reduce almost all his costs by zero level.

Remark 2.3. We calculate the set of all possible periods by Ck
T ways. When

T = 10, the player chooses three periods to validate and influence the agent’s

opinion, i.e. C3
10 = 120. To find the optimal solution of the optimization problem,

we need to solve 120 systems given in Theorem 2.2.

2.4.3 Numerical example for Section 2.3

We also assume that k is equal to 3 like in the previous section. Let the parameters

be as follows:

fa1 = 0.2, a2 = 0.6, δ = 1, c = 0.7, s = 0.5,

x1(0) = 0.3, x2(0) = 0.9, T = 10.

By Theorem 2.3, we need to solve system (2.28) and obtain player’s minimal

costs when the set of control periods is {0, 1, 9}. The values of optimal agents’

opinion trajectories and the optimal control trajectory are given in Table 2.3. The
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optimal value of functional (2.26) is 0.034872.

Table 2.3: Optimal control and state trajectories.

t t1 = 0a t2 = 1a 2 3 4 5

x1(t) 0.3000 0.4312 0.4588 0.4759 0.4868 0.4943

x2(t) 0.9000 0.7200 0.6334 0.5810 0.5495 0.5307

z(t) -0.6000 -0.2888 -0.1745 -0.1051 -0.0627 -0.0364

u(t) 0.0712 -0.0012

t 6 7 8 t3 = 9a 10

x1(t) 0.5003 0.5064 0.5141 0.5059 0.5027

x2(t) 0.5198 0.5139 0.5117 0.5124 0.5104

z(t) -0.0195 -0.0075 0.0024 -0.0065 -0.0077

u(t) -0.0039
a The player can get the minimum cost by influencing agent 1’s opinion in these three periods.

Agents’ opinions are “stabilized” over time. Player controls the opinion of agent

1. The optimal state trajectories are presented in Figure 2.5. The optimal control

trajectory is shown in Figure 2.6.

Figure 2.5: Optimal state trajectories (blue — x1(t), red — x2(t)).
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Figure 2.6: Optimal control trajectory u(t).

From Figure 2.5, we can see that the player chooses to add controls at periods

0, 1, and 9, and monitor the agents’ opinion at the remaining periods, making

his costs minimal, that are 0.034872. After period 5, the agents’ opinions almost

reach the target opinion s = 0.5.

We use the same idea as in Example 2.4.2 to highlight that Theorem 2.3 is also

very efficient to reduce the player’s costs. The player’s maximum costs (the worst-

case scenario) are 44.0362762, and they are obtained when the set of control and

validation periods is {3, 4, 6}. Comparing the gap between the “worst” and “best”

scenarios, we get Jmax−Jmin

Jmax
· 100% = 99.92%. Therefore, the player can reduce

almost all his costs to zero by using optimal control obtained from Theorem 2.3.

One can mention that for the this case (this section) of the numerical simula-

tions the player’s costs are larger for the previous case (Section 2.2), and moreover,

the control sets are different for these two cases. When the player has a possibility

to monitor the opinion of the agent at the same time as he controls it, then he

prefers to do it at the end of the time interval. In the second case, he first controls

the agent’s opinion at the beginning of the time interval, then only validates the

opinion, and finally, controls the agents at the end of time interval at t = 9.
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2.5 Conclusions to Chapter 2

We present three mathematical models of small social networks in multi-agent case

with the presence of a player or a decision maker. In these models, the player’s

objective is to bring the social opinion closer to the target opinion minimizing

costs, then he takes the approach of optimally choosing the “right periods” to

influence an agent, thus minimizing the cost. The first model is characterized

by the fact that the player can control only one agent in the system and can

influence that agent for a limited time. We find necessary conditions for the

optimal solution of the problem, i.e., the minimization of his costs. In numerical

simulations, we find the set of optimal control periods chosen by the player to

minimize the costs.

We next simulated two more cases when players have restrictions to create

the set of periods: 1) player validates agents’ opinions and controls one agent’s

opinion at the same time, and 2) player validates agents’ opinions and controls

them at different time, but without overlapping. These two ideas allow players

to add control more efficiently and avoid wasting time and money. We obtain

the optimal time-controlled set and optimal control for the player in numerical

simulations. The models presented in this chapter can also be extended to larger

number of agents and players.
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Chapter 3

Opinion dynamics in small social groups

with two influencers

3.1 The case when both influencers validate opinions in the

last time

We assume that there are two influencers or players and they directly influence

agent 1 and agent 2, respectively. The players have the same discount factors but

they are different in their costs per unit of influence intense (c1 and c2) and target

opinion levels (s1 and s2). The state equations for opinions of agents 1 and 2 are

x1(t+ 1) = x1(t) + a1

(
x1(t)+x2(t)

2 − x1(t)
)
+ u1(t), (3.1)

x2(t+ 1) = x2(t) + a2

(
x1(t)+x2(t)

2 − x2(t)
)
+ u2(t), (3.2)

with initial condition

x1 (0) = x01, x2 (0) = x02. (3.3)

.

Players 1 and 2 are willing to minimize their functionals:

J1 (u1, u2) =
T−1∑
t=0

δt
(
c1u

2
1(t)

)
+ δT

(
(x1(T )− s1)

2 + (x2(T )− s1)
2
)
, (3.4)
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J2 (u1, u2) =
T−1∑
t=0

δt
(
c2u

2
2(t)

)
+ δT

(
(x1(T )− s2)

2 + (x2(T )− s2)
2
)
, (3.5)

correspondingly, where ci > 0 is player i’s costs per unit of influence intensity.

We define a two-player game in a normal-form representation with the set of

players’ strategies U1, U2, where Uj = (uj(t) ∈ R : t = 0, . . . , T − 1) , j = 1, 2,

players’ cost functions J1, J2, defined by formulae (3.4) and (3.5) s.t. state equa-

tions (3.1) and (3.2) with initial state x(0) = (x1(0), x2(0)) =
(
x01, x

0
2

)
. The game

belongs to the class of linear-quadratic games.

The following theorem gives the necessary conditions of the Nash equilibrium

in the game described above.

Theorem 3.1. Let {(u1, u2) , ui = (ui(t) : t = 0, . . . , T − 1) , i = 1, 2} be the Nash

equilibrium in the game described above, then the Nash equilibrium is defined by

ui(t) = xi(t+ 1)−
(
1− ai

2

)
xi(t)−

ai
2
xj(t), (3.6)

and {(x1(t), x2(t)) : t = 0, . . . , T} be the corresponding equilibrium state trajec-

tory with initial condition x1(0) = x01, x2(0) = x02, they satisfy the system:

−aici
(
xi (t+ 1)−

(
1− ai

2

)
xi (t)− ai

2 xj (t)
)

=
(
1− aj

2

)
k̂it −

k̂it−1

δ , t = 2, . . . , T − 1,

ci
(
xi (t)−

(
1− ai

2

)
xi (t− 1)− ai

2 xj (t− 1)
)

+δ (xi (t)− si) = 0, t = T,

xj(t) = si − 1
2δ k̂

i
t−1, t = T,

(3.7)

where i, j = 1, 2, i ̸= j and

k̂it =
4

ajδ

[(
ci + δci

(
1− ai

2

)2
)
xi (t)− ci

(
1− ai

2

)
xi (t− 1)

−δci

(
1− ai

2

)
xi (t+ 1)− ciai

2
xj (t− 1) +

δciai
2

(
1− ai

2

)
xj (t)

]
,

t = 1, . . . , T−1 taking into account the state equations (3.1) and (3.2) and initial

state (x1(0), x2(0)) =
(
x01, x

0
2

)
.
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Proof. Let us fix u2(t), t = 0, . . . , T −1 and find the best response of player 1. We

use the Euler equation approach to find the Nash equilibrium in the game. First,

we find expressions of u1(t) from state equation (3.1) as a function of x1 and x2,

and u2(t) from state equation (3.2) as a function of x1 and x2:

u1(t) = x1(t+ 1)−
(
1− a1

2

)
x1(t)−

a1
2
x2(t).

The goal of the first player is to minimize

J1 (x1, x2, u2) =
T−1∑
t=0

δt
(
c1

(
x1(t+ 1)−

(
1− a1

2

)
x1(t)−

a1
2
x2(t)

)2
)

+ δT
(
(x1(T )− s1)

2 + (x2(T )− s1)
2
)
,

subject to condition (3.2). We form the Lagrange function

L1

(
x1, x2, k

1
)
= J1 (x1, x2, u2) +

T−1∑
t=0

k1t

(
x2(t+ 1)−

(
1− a2

2

)
x2(t)

−a2
2
x1(t)− u2(t)

)
,

where k1 =
{
k1t , t = 0, . . . , T − 1

}
. Finding the derivatives and solving equations:

∂L1(x1,x2,k
1)

∂x1(t)
= 0 and

∂L1(x1,x2,k
1)

∂x2(t)
= 0, t = 1, . . . , T , we obtain the corresponding

systems:

(
c1 + δc1

(
1− a1

2

)2)
x1 (t)− c1

(
1− a1

2

)
x1 (t− 1)

−δc1
(
1− a1

2

)
x1 (t+ 1)− c1a1

2 x2 (t− 1) + δc1a1
2

(
1− a1

2

)
x2 (t)

= a2
4 k

1
t δ

−(t−1), t = 1, . . . , T − 1,

c1
(
x1 (t)−

(
1− a1

2

)
x1 (t− 1)− a1

2 x2 (t− 1)
)

+δ (x1 (t)− s1) = 0, t = T,

(3.8)


−a1c1

(
x1 (t+ 1)−

(
1− a1

2

)
x1 (t)− a1

2 x2 (t)
)

=
((
1− a2

2

)
k1t − k1t−1

)
δ−t, t = 1, . . . , T − 1,

x2(t)− s1 = −1
2k

1
t−1δ

−t, t = T.

(3.9)
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From the first equation of system (3.8) we obtain

k1t =
4

a2
δt−1

[(
c1 + δc1

(
1− a1

2

)2
)
x1 (t)− c1

(
1− a1

2

)
x1 (t− 1)

δc1

(
1− a1

2

)
x1 (t+ 1)− c1a1

2
x2 (t− 1) +

δc1a1
2

(
1− a1

2

)
x2 (t)

]
,

t = 1, . . . , T − 1.

Denoting k̂1t = k1t δ
−t and substituting it to system (3.9), and taking into ac-

count the second equation in system (3.8), we obtain the system of equations to

define the best response strategy of player 1:

−a1c1
(
x1 (t+ 1)−

(
1− a1

2

)
x1 (t)− a1

2 x2 (t)
)

=
(
1− a2

2

)
k̂1t −

k̂1t−1

δ , t = 2, . . . , T − 1,

c1
(
x1 (t)−

(
1− a1

2

)
x1 (t− 1)− a1

2 x2 (t− 1)
)

+δ (xi (t)− si) = 0, t = T,

x2(t) = s1 − 1
2δ k̂

1
t−1, t = T,

where

k̂1t =
4

a2δ

[(
c1 + δc1

(
1− a1

2

))
x1 (t)− c1

(
1− a1

2

)
x1 (t− 1)

−δc1

(
1− a1

2

)
x1 (t+ 1)− c1a1

2
x2 (t− 1) +

δc1a1
2

(
1− a1

2

)
x2 (t)

]
,

t = 1, . . . , T − 1.

We determine the best response strategy of player 2 in the same way.

Let us fix u1(t), t = 0, . . . , T − 1 and find the best response of player 2. We use

the Euler-equation approach to find the Nash equilibrium in the game described.

First, we find expressions of u2(t) from state equation (3.2) as a function of x1

and x2 and u1(t) from state equation (3.1) as a function of x1 and x2:

u2(t) = x2(t+ 1)−
(
1− a2

2

)
x2(t)−

a2
2
x1(t).
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The goal of the second player is to minimize

J2 (u1, x1, x2) =
T−1∑
t=0

δt
(
c2

(
x2(t+ 1)−

(
1− a2

2

)
x2(t)−

a2
2
x1(t)

)2
)

+ δT
(
(x1(T )− s2)

2 + (x2(T )− s2)
2
)
,

subject to condition (3.12). We form the Lagrange function

L2

(
x1, x2, k

2
)
= J2 (u1, x1, x2) +

T−1∑
t=0

k2t

(
x1(t+ 1)−

(
1− a1

2

)
x1(t)

−a1
2
x2(t)− u1(t)

)
,

where k2 =
{
k2t , t = 0, . . . , T − 1

}
. Finding the derivatives and solving equations:

∂L2(x1,x2,k
2)

∂x1(t)
= 0 and

∂L2(x1,x2,k
2)

∂x2(t)
= 0, t = 1, . . . , T , we obtain the corresponding

systems: 
−a2c2

(
x2 (t+ 1)−

(
1− a2

2

)
x2 (t)− a2

2 x1 (t)
)

=
((
1− a1

2

)
k2t − k2t−1

)
δ−t, t = 1, . . . , T − 1,

x1(t)− s2 = −1
2k

2
t−1δ

−t, t = T,

(3.10)



(
c2 + δc2

(
1− a2

2

)2)
x2 (t)− c2

(
1− a2

2

)
x2 (t− 1)

−δc2
(
1− a2

2

)
x2 (t+ 1)− c2a2

2 x1 (t− 1) + δc2a2
2

(
1− a2

2

)
x1 (t)

= a1
4 k

2
t δ

−(t−1), t = 1, . . . , T − 1,

c2
(
x2 (t)−

(
1− a2

2

)
x2 (t− 1)− a2

2 x2 (t− 1)
)

+δ (x2 (t)− s2) = 0, t = T.

(3.11)

From the first equation of system (3.11) we obtain

k2t =
4

a1
δt−1

[(
c2 + δc2

(
1− a2

2

)2
)
x2 (t)− c2

(
1− a2

2

)
x2 (t− 1)

−δc2

(
1− a2

2

)
x2 (t+ 1)− c2a2

2
x1 (t− 1) +

δc2a2
2

(
1− a2

2

)
x1 (t)

]
,

t = 1, . . . , T − 1.

Denoting k̂1t = k1t δ
−t and substituting it to system (3.10) and taking into

account the second equation in system (3.11), we obtain the system of equations
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to define the best response strategy of player 2:

−a2c2
(
x2 (t+ 1)−

(
1− a2

2

)
x2 (t)− a2

2 x1 (t)
)

=
(
1− a1

2

)
k̂2t −

k̂2t−1

δ , t = 2, . . . , T − 1,

c2
(
x2 (t)−

(
1− a2

2

)
x2 (t− 1)− a2

2 x1 (t− 1)
)
+ δ (x2 (t)− s2) = 0, t = T

x1(t) = s2 − 1
2δ k̂

2
t−1, t = T,

where

k̂2t =
4

a1δ

[(
c2 + δc2

(
1− a2

2

)2
)
x2 (t)− c2

(
1− a2

2

)
x2 (t− 1)

−δc2

(
1− a2

2

)
x2 (t+ 1)− c2a2

2
x1 (t− 1) +

δc2a2
2

(
1− a2

2

)
x1 (t)

]
,

t = 1, . . . , T − 1.

The theorem is proved.

3.2 The case when players have the same set of validation

periods

Based on the above model, we can consider the model with 2 players involved

in the same situation. We assume that there are two players and they directly

influences agent 1 and agent 2, respectively. The players have the same discount

factors but they are different in their costs per unit of influence intense (c1 and

c2) and target opinion levels (s1 and s2). The state equations for opinions of

agents 1 and 2 are

x1(t+ 1) = x1(t) + a1

(
x1(t) + x2(t)

2
− x1(t)

)
+ u1(t), (3.12)

x2(t+ 1) = x2(t) + a2

(
x1(t) + x2(t)

2
− x2(t)

)
+ u2(t) (3.13)

with initial condition

x1 (0) = x01, x2 (0) = x02. (3.14)
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In comparison with the previous section, players 1 and 2 can choose the vali-

dation periods of agents’ opinions and these sets are the same for both players.

The players are willing to minimize the functionals:

J1 (u1, u2) =
T−1∑
t=0

δt
(
c1u

2
1(t)

)
+

k∑
j=1

δtj
(
(x1 (tj)− s1)

2

+(x2 (tj)− s1)
2
)
+ δT

(
(x1(T )− s1)

2 + (x2(T )− s1)
2
)
,

(3.15)

J2 (u1, u2) =
T−1∑
t=0

δt
(
c2u

2
2(t)

)
+

k∑
j=1

δtj
(
(x1 (tj)− s2)

2

+(x2 (tj)− s2)
2
)
+ δT

(
(x1(T )− s2)

2 + (x2(T )− s2)
2
) (3.16)

correspondingly, where ci > 0 is player i’s costs per unit of influence intensity,

si ∈ R, i = 1, 2.

We can define a two-player game in a normal-form representation with the set

of players’ strategies U1, U2, where Uj = (uj(t) ∈ R : t = 0, . . . , T − 1), j = 1, 2,

players’ cost functions J1, J2, defined by formulae (3.15) and (3.16) s.t. state

equations (3.12) and (3.13) with initial state x(0) = (x1(0), x2(0)) =
(
x01, x

0
2

)
.

The game belongs to the class of linear-quadratic games. We provide the necessary

conditions for the Nash equilibrium for the case when the set of validation periods

is given by {1 ≤ t1 < . . . < tk ≤ T − 1}.

Theorem 3.2. Let {(u1, u2) , ui = (ui(t) : t = 0, . . . , T − 1) , i = 1, 2} be the Nash

equilibrium in the game described above in this section, then the Nash equilibrium

is defined as

ui(t) = xi(t+ 1)−
(
1− ai

2

)
xi(t)−

ai
2
xj(t), (3.17)

and {(x1(t), x2(t)) : t = 0, . . . , T} be the state trajectory corresponding to this

equilibrium with initial condition x1(0) = x01, x2(0) = x02, then they satisfy the
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system:

−aici
(
xi (t+ 1)−

(
1− ai

2

)
xi (t)− ai

2 xj (t)
)
=

(
1− aj

2

)
k̂it −

k̂it−1

δ ,

t = 2, . . . , T − 1,

−aici
(
xi (t+ 1)−

(
1− ai

2

)
xi (t)− ai

2 xj (t)
)
− 2 (xj (t)− si)

=
(
1− aj

2

)
k̂it −

k̂it−1

δ , t = tj, j = 2, . . . , k,

ci
(
xi (t)−

(
1− ai

2

)
xi (t− 1)− ai

2 xj (t− 1)
)

+δ (xi (t)− si) = 0, t = T,

xj(t) = si − 1
2δ k̂

i
t−1, t = T,

(3.18)

where i, j = 1, 2, i ̸= j and

k̂it =
4

ajδ

[(
ci + δci

(
1− ai

2

)2
)
xi (t)− ci

(
1− ai

2

)
xi (t− 1)

−δci

(
1− ai

2

)
xi (t+ 1)− ciai

2
xj (t− 1) +

δciai
2

(
1− ai

2

)
xj (t)

]
,

t = 1, . . . , T − 1,

k̂it =
4

ajδ

[(
ci + δci

(
1− ai

2

)2
)
xi (t)− ci

(
1− ai

2

)
xi (t− 1)

−δci

(
1− ai

2

)
xi (t+ 1)− ciai

2
xj (t− 1) +

δciai
2

(
1− ai

2

)
xj (t)

+δ (xi (t)− si)] , t = tj, j = 1, . . . , k,

taking into account the state equations (3.12) and (3.13) and initial state

(x1(0), x2(0)) =
(
x01, x

0
2

)
.

Proof. Let us fix u2(t), t = 0, . . . , T − 1 and find the best response of player 1.

We use the Euler-equation approach to find the Nash equilibrium in the game

described. First, we find expressions of u1(t) from state equation (3.12) as a

function of x1 and x2 and u2(t) from state equation (3.13) as a function of x1 and

x2:

u1(t) = x1(t+ 1)−
(
1− a1

2

)
x1(t)−

a1
2
x2(t).



84

The goal of the first player is to minimize

J1 (x1, x2, u2) =
T−1∑
t=0

δt
(
c1

(
x1(t+ 1)−

(
1− a1

2

)
x1(t)−

a1
2
x2(t)

)2
)

+
k∑

j=1

δtj
(
(x1 (tj)− s1)

2 + (x2 (tj)− s1)
2
)

+ δT
(
(x1(T )− s1)

2 + (x2(T )− s1)
2
)
,

subject to condition (3.13). We form the Lagrange function

L1

(
x1, x2, k

1
)
= J1 (x1, x2, u2) +

T−1∑
t=0

k1t

(
x2(t+ 1)−

(
1− a2

2

)
x2(t)

−a2
2
x1(t)− u2(t)

)
,

where k1 =
{
k1t , t = 0, . . . , T − 1

}
. Finding the derivatives and solving the equa-

tions:
∂L1(x1,x2,k

1)
∂x1(t)

= 0 and
∂L1(x1,x2,k

1)
∂x2(t)

= 0, t = 1, . . . , T , we obtain the corre-

sponding systems:

(
c1 + δc1

(
1− a1

2

)2)
x1 (t)− c1

(
1− a1

2

)
x1 (t− 1)

−δc1
(
1− a1

2

)
x1 (t+ 1)− c1a1

2 x2 (t− 1) + δc1a1
2

(
1− a1

2

)
x2 (t)

= a2
4 k

1
t δ

−(t−1), t = 1, . . . , T − 1, t ̸= tj,(
c1 + δc1

(
1− a1

2

)2)
x1 (t)− c1

(
1− a1

2

)
x1 (t− 1)

−δc1
(
1− a1

2

)
x1 (t+ 1)− c1a1

2 x2 (t− 1) + δc1a1
2

(
1− a1

2

)
x2 (t)

+δ (x1 (t)− s1) =
a2
4 k

1
t δ

−(t−1), t = tj, j = 1, . . . , k,

c1
(
x1 (t)−

(
1− a1

2

)
x1 (t− 1)− a1

2 x2 (t− 1)
)

+δ (x1 (t)− s1) = 0, t = T,

(3.19)



−a1c1
(
x1 (t+ 1)−

(
1− a1

2

)
x1 (t)− a1

2 x2 (t)
)

=
((
1− a2

2

)
k1t − k1t−1

)
δ−t, t = 1, . . . , T − 1,

−a1c1
(
x1 (t+ 1)−

(
1− a1

2

)
x1 (t)− a1

2 x2 (t)
)
+ 2 (x2 (t)− s1)

=
((
1− a2

2

)
k1t − k1t−1

)
δ−t, t = tj, j = 1, . . . , k,

x2(t)− s1 = −1
2k

1
t−1δ

−t, t = T.

(3.20)
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From the first equation of system (3.19) we obtain

k1t =
4

a2
δt−1

[(
c1 + δc1

(
1− a1

2

)2
)
x1 (t)− c1

(
1− a1

2

)
x1 (t− 1)

−δc1

(
1− a1

2

)
x1 (t+ 1)− c1a1

2
x2 (t− 1) +

δc1a1
2

(
1− a1

2

)
x2 (t)

]
,

t = 1, . . . , T − 1, t ̸= tj,

k1t =
4

a2
δt−1

[(
c1 + δc1

(
1− a1

2

)2
)
x1 (t)− c1

(
1− a1

2

)
x1 (t− 1)

−δc1

(
1− a1

2

)
x1 (t+ 1)− c1a1

2
x2 (t− 1)

+
δc1a1
2

(
1− a1

2

)
x2 (t) + δ (x1 (t)− s1)

]
, t = tj, j = 1, . . . , k.

Denoting k̂1t = k1t δ
−t and substituting it to system (3.20) and taking into

account the second equation in system (3.19), we obtain the system of equations

to define the best response strategy of player 1:

−a1c1
(
x1 (t+ 1)−

(
1− a1

2

)
x1 (t)− a1

2 x2 (t)
)
=

(
1− a2

2

)
k̂1t −

k̂1t−1

δ ,

t = 1, . . . , T − 1, t ̸= tj,

−a1c1
(
x1 (t+ 1)−

(
1− a1

2

)
x1 (t)− a1

2 x2 (t)
)
+ 2 (x2 (t)− s1)

=
(
1− a2

2

)
k̂1t −

k̂1t−1

δ , t = tj, j = 1, . . . , k,

x2(t)− s1 = − 1
2δ k̂

1
t−1, t = T,

c1
(
x1 (t)−

(
1− a1

2

)
x1 (t− 1)− a1

2 x2 (t− 1)
)
+ δ (x1 (t)− s1) = 0, t = T,

where

k̂1t =
4

a2δ

[(
c1 + δc1

(
1− a1

2

)2
)
x1 (t)− c1

(
1− a1

2

)
x1 (t− 1)

−δc1

(
1− a1

2

)
x1 (t+ 1)− c1a1

2
x2 (t− 1) +

δc1a1
2

(
1− a1

2

)
x2 (t)

]
,

t = 1, . . . , T − 1, t ̸= tj,
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k̂1t =
4

a2δ

[(
c1 + δc1

(
1− a1

2

)2
)
x1 (t)− c1

(
1− a1

2

)
x1 (t− 1)

−δc1

(
1− a1

2

)
x1 (t+ 1)− c1a1

2
x2 (t− 1)

+
δc1a1
2

(
1− a1

2

)
x2 (t) + δ (x1 (t)− s1)

]
, t = tj, j = 1, . . . , k.

We determine the best response strategy of player 2 in the same way.

Let us fix u1(t), t = 0, . . . , T − 1 and find the best response of player 2. We use

the Euler-equation approach to find the Nash equilibrium in the game described.

First, we find expressions of u2(t) from state equation (3.13) as a function of x1

and x2 and u1(t) from state equation (3.12) as a function of x1 and x2:

u2(t) = x2(t+ 1)−
(
1− a2

2

)
x2(t)−

a2
2
x1(t).

The goal of the second player is to minimize

J2 (u1, x1, x2) =
T−1∑
t=0

δt
(
c2

(
x2(t+ 1)−

(
1− a2

2

)
x2(t)−

a2
2
x1(t)

)2
)

+
k∑

j=1

δtj
(
(x1 (tj)− s2)

2 + (x2 (tj)− s2)
2
)

+ δT
(
(x1(T )− s2)

2 + (x2(T )− s2)
2
)
,

subject to condition (3.12). We form the Lagrange function

L2

(
x1, x2, k

2
)
= J2 (u1, x1, x2) +

T−1∑
t=0

k2t

(
x1(t+ 1)−

(
1− a1

2

)
x1(t)

−a1
2
x2(t)− u1(t)

)
,

where k2 =
{
k2t , t = 0, . . . , T − 1

}
. Finding the derivatives and solving the equa-

tions:
∂L2(x1,x2,k

2)
∂x1(t)

= 0 and
∂L2(x1,x2,k

2)
∂x2(t)

= 0, t = 1, . . . , T , we obtain the corre-
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sponding systems:

−a2c2
(
x2 (t+ 1)−

(
1− a2

2

)
x2 (t)− a2

2 x1 (t)
)

=
((
1− a1

2

)
k2t − k2t−1

)
δ−t, t = 1, . . . , T − 1, t ̸= tj,

−a2c2
(
x2 (t+ 1)−

(
1− a2

2

)
x2 (t)− a2

2 x1 (t)
)
+ 2 (x1 (t)− s2)

=
((
1− a1

2

)
k2t − k2t−1

)
δ−t, t = tj, j = 1, . . . , k,

x2(t)− s2 = −1
2k

2
t−1δ

−t, t = T,

(3.21)



(
c2 + δc2

(
1− a2

2

)2)
x2 (t)− c2

(
1− a2

2

)
x2 (t− 1)

−δc2
(
1− a2

2

)
x2 (t+ 1)− c2a2

2 x1 (t− 1) + δc2a2
2

(
1− a2

2

)
x1 (t)

= a1
4 k

2
t δ

−(t−1), t = 1, . . . , T − 1, t ̸= tj,(
c2 + δc2

(
1− a2

2

)2)
x2 (t)− c2

(
1− a2

2

)
x2 (t− 1)

−δc2
(
1− a2

2

)
x2 (t+ 1)− c2a2

2 x1 (t− 1) + δc2a2
2

(
1− a2

2

)
x1 (t)

+δ (x2 (t)− s2) =
a1
4 k

2
t δ

−(t−1), t = tj, j = 1, . . . , k,

c2
(
x2 (t)−

(
1− a2

2

)
x2 (t− 1)− a2

2 x2 (t− 1)
)

+δ (x1 (t)− s2) = 0, t = T.

(3.22)

From the first equation of system (3.22) we obtain

k2t =
4

a1
δt−1

[(
c2 + δc2

(
1− a2

2

)2
)
x2 (t)− c2

(
1− a2

2

)
x2 (t− 1)

−δc2

(
1− a2

2

)
x2 (t+ 1)− c2a2

2
x1 (t− 1) +

δc2a2
2

(
1− a2

2

)
x1 (t)

]
,

t = 1, . . . , T − 1, t ̸= tj,

k2t =
4

a1
δt−1

[(
c2 + δc2

(
1− a2

2

)2
)
x2 (t)− c2

(
1− a2

2

)
x2 (t− 1)

−δc2

(
1− a2

2

)
x2 (t+ 1)− c2a2

2
x1 (t− 1) +

δc2a2
2

(
1− a2

2

)
x1 (t)

+δ (x2 (t)− s2)] , t = tj, j = 1, . . . , k.

Denoting k̂1t = k1t δ
−t and substituting it to system (3.21) and taking into

account the second equation in system (3.22), we obtain the system of equations
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to define the best response strategy of player 2:

−a2c2
(
x2 (t+ 1)−

(
1− a2

2

)
x2 (t)− a2

2 x1 (t)
)
=

(
1− a1

2

)
k̂2t −

k̂2t−1

δ ,

t = 2, . . . , T − 1, t ̸= tj,

−a2c2
(
x2 (t+ 1)−

(
1− a2

2

)
x2 (t)− a2

2 x1 (t)
)
+ 2 (x1 (t)− s2)

=
(
1− a1

2

)
k̂2t −

k̂2t−1

δ , t = tj, j = 2, . . . , k,

x2(t)− s2 = − 1
2δ k̂

2
t−1, t = T,

where

k̂2t =
4

a1δ

[(
c2 + δc2

(
1− a2

2

)2
)
x2 (t)− c2

(
1− a2

2

)
x2 (t− 1)

−δc2

(
1− a2

2

)
x2 (t+ 1)− c2a2

2
x1 (t− 1) +

δc2a2
2

(
1− a2

2

)
x1 (t)

]
,

t = 1, . . . , T − 1, t ̸= tj,

k̂2t =
4

a1δ

[(
c2 + δc2

(
1− a2

2

)2
)
x2 (t)− c2

(
1− a2

2

)
x2 (t− 1)

−δc2

(
1− a2

2

)
x2 (t+ 1)− c2a2

2
x1 (t− 1) +

δc2a2
2

(
1− a2

2

)
x1 (t)

+δ (x2 (t)− s2)] , t = tj, j = 1, . . . , k.

The theorem is proved.

3.3 The case when two players choose different sets of the

periods to influence agents’ opinions

In this section, we propose the following model: in a small social network, the

opinions of agents are represented by xi(t) at time t, where i is the number of an

agent. Suppose there are two players who directly influence opinions of agents 1

and 2, respectively, and the level of influence is denoted by uj(t), j is the number of

a player. The sets V1, V2, where Vj =
{
tj1, . . . , t

j
k

}
, j = 1, 2, are the sets of periods,

in which players control the opinions of agents, and the number of elements k in

set Vj is given. We assume that k is the same for both players, but sets V1 and
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V2 may be different. Define a two-player game of competition for agents’ opinions

with the set of players’ strategies U1, U2, where Uj = (uj(t) ∈ R | t ∈ Vj), j = 1, 2.

The players have the same discount factor, but their levels of influence per unit

cost and target opinions are different. Summarize the notations:

• xi(t), i = 1, 2: the opinion of agent i at time t ∈ {0, 1, . . . , T};

• uj (t), j = 1, 2: player 1 influences agent 1’s opinion with u1(t), t ∈ V1,

player 2 influences agent 2’s opinion with u2(t) at time t ∈ V2;

• Vj =
{
tj1, . . . , t

j
k | 0 ≤ tj1 < tj2 < · · · < tjk ≤ T − 1

}
, j = 1, 2: the set of

periods when player j controls the corresponding agent’s opinion;

• Uj = (uj(t) ∈ R | t ∈ Vj), j = 1, 2: players’ strategy sets of control variables.

The small social network we examine is represented in Figure 3.1.

Figure 3.1: Small social network.

The dynamics of agents’ opinions are defined by the following equations:

x1 (t+ 1) = x1 (t) + a1

(
x1 (t) + x2 (t)

2
− x1 (t)

)
+ u1 (t) , t ∈ V1, (3.23)

x1 (t+ 1) = x1 (t) + a1

(
x1 (t) + x2 (t)

2
− x1 (t)

)
, t /∈ V1, (3.24)
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x2 (t+ 1) = x2 (t) + a2

(
x1 (t) + x2 (t)

2
− x2 (t)

)
+ u2 (t) , t ∈ V2, (3.25)

x2 (t+ 1) = x2 (t) + a2

(
x1 (t) + x2 (t)

2
− x2 (t)

)
, t /∈ V2, (3.26)

with initial condition

x1 (0) = x01, x2 (0) = x02.

In equations (3.23)–(3.26), a1 > 0, a2 > 0 denote agent 1 and 2’s beliefs about

the average social opinion, respectively.

The players’ target opinions are s1 and s2 ∈ R. Players 1 and 2 are willing to

minimize functionals:

J1 (u1, u2) =
∑
ti∈V1

δti
(
c1u

2
1(ti)

)
+

T∑
t=0

δt
(
(x1 (t)− s1)

2 + (x2 (t)− s1)
2
)
,

J2 (u1, u2) =
∑
ti∈V2

δti
(
c2u

2
2(ti)

)
+

T∑
t=0

δt
(
(x1 (t)− s2)

2 + (x2 (t)− s2)
2
)
,

where δ ∈ (0, 1] is a discount factor and cj > 0 is player j’s cost per unit level of

influence.

Theorem 3.3. Let {(u∗1, u∗2) , uj = (uj(t) : t ∈ Vj) , j = 1, 2} be the Nash equilib-

rium in the game described above in this section and {(x∗1(t), x∗2(t)) : t = 0, . . . , T}

be a state trajectory corresponding to this equilibrium with initial condition x1(0) =
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x01, x2(0) = x02, then they satisfy the system:

u1(t) =
δ
2c1

λ1
1 (t+ 1) , t ∈ V1,

λ1
1 (t+ 1) = 2

δ(2−a1)

[
2 (x1 (t)− s1)− λ1

1 (t)− λ2
1 (t+ 1) a2δ

2

]
, t = 0, . . . , T − 1,

λ2
1 (t+ 1) = 2

δ(2−a2)

[
2 (x2 (t)− s1)− λ1

1 (t+ 1) a1δ
2 − λ2

1 (t)
]
, t = 0, . . . , T − 1,

λ1
1 (T ) = 2 (x1 (T )− s1) ,

λ2
1 (T ) = 2 (x2 (T )− s1) ,

u2(t) =
δ
2c2

λ2
2 (t+ 1) , t ∈ V2,

λ1
2 (t+ 1) = 2

δ(2−a1)

[
2 (x1 (t)− s2)− λ1

2 (t)− λ2
2 (t+ 1) a2δ

2

]
, t = 0, . . . , T − 1,

λ2
2 (t+ 1) = 2

δ(2−a2)

[
2 (x2 (t)− s2)− λ1

2 (t+ 1) a1δ
2 − λ2

2 (t)
]
, t = 0, . . . , T − 1,

λ1
2 (T ) = 2 (x1 (T )− s2) ,

λ2
2 (T ) = 2 (x2 (T )− s2) ,

taking into account state equations (3.23)–(3.26) and initial state (x1(0), x2(0)) =(
x01, x02

)
.

Proof. We find the strategy profile (u∗1, u
∗
2), which is the Nash equilibrium in the

game described above. We find the equilibrium in open-loop strategies using the

Pontryagin maximum principle. The Hamiltonian of player 1 is

H1
1

(
x1 (t) , x2 (t) , λ

1
1 (t+ 1) , λ2

1 (t+ 1) , u1 (t) , u2 (t) , t
)

= c1u
2
1(t) + (x1 (t)− s1)

2 + (x2 (t)− s1)
2

+ δλ1
1 (t+ 1)

(
x1 (t+ 1)− x1 (t)− a1

(
x1 (t) + x2 (t)

2
− x1 (t)

)
− u1 (t)

)
+ δλ2

1 (t+ 1)

(
x2 (t+ 1)− x2 (t)− a2

(
x1 (t) + x2 (t)

2
− x2 (t)

)
− u2 (t)

)
,
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for any t ∈ V1, and it takes the form

H2
1

(
x1 (t) , x2 (t) , λ

1
1 (t+ 1) , λ2

1 (t+ 1) , t
)

= (x1 (t)− s1)
2 + (x2 (t)− s1)

2

+ δλ1
1 (t+ 1)

(
x1 (t+ 1)− x1 (t)− a1

(
x1 (t) + x2 (t)

2
− x1 (t)

))
+ δλ2

1 (t+ 1)

(
x2 (t+ 1)− x2 (t)− a2

(
x1 (t) + x2 (t)

2
− x2 (t)

))
,

for any t /∈ V1.

Finding the derivatives ∂H1
1 (t)

∂u1(t)
= 0, t ∈ V1, λ1

1 (t) =
∂H1

1 (t)
∂x1(t)

= ∂H2
1 (t)

∂x1(t)
and λ2

1 (t) =

∂H1
1 (t)

∂x2(t)
= ∂H2

1 (t)
∂x2(t)

, t = 1, . . . , T − 1, we obtain the system of equations:

∂H1
1 (t)

∂u1 (t)
= 2c1u1(t)− δλ1

1 (t+ 1) = 0, t ∈ V1,

λ1
1 (t) =

∂H1
1 (t)

∂x1 (t)
=

∂H2
1 (t)

∂x1 (t)

= 2 (x1 (t)− s1)− δλ1
1 (t+ 1)

(
1− a1

2

)
− δλ2

1 (t+ 1)
a2
2
,

t = 1, . . . , T − 1,

λ2
1 (t) =

∂H1
1 (t)

∂x2 (t)
=

∂H2
1 (t)

∂x2 (t)

= 2 (x2 (t)− s1)− δλ1
1 (t+ 1)

a1
2
− δλ2

1 (t+ 1)
(
1− a2

2

)
,

t = 1, . . . , T − 1,

λ1
1 (T ) =

∂
(
(x1 (T )− s1)

2 + (x2 (T )− s1)
2
)

∂x1 (T )
= 2 (x1 (T )− s1) ,

λ2
1 (T ) =

∂
(
(x1 (T )− s1)

2 + (x2 (T )− s1)
2
)

∂x2 (T )
= 2 (x2 (T )− s1) .
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It can be rewritten as:

u1(t) =
δ
2c1

λ1
1 (t+ 1) , t ∈ V1,

λ1
1 (t+ 1) = 2

δ(2−a1)

[
2 (x1 (t)− s1)− λ1

1 (t)− λ2
1 (t+ 1) a2δ

2

]
,

t = 0, . . . , T − 1,

λ2
1 (t+ 1) = 2

δ(2−a2)

[
2 (x2 (t)− s1)− λ1

1 (t+ 1) a1δ
2 − λ2

1 (t)
]
,

t = 0, . . . , T − 1,

λ1
1 (T ) = 2 (x1 (T )− s1) ,

λ2
1 (T ) = 2 (x2 (T )− s1) .

(3.27)

From the last four equations of system (1.5) we obtain expressions of λ1
1(t) and

λ2
1(t) as functions of x1 and x2, t = 0, . . . , T . We substitute these expressions of

λ1
1(t) and λ2

1(t) into the first equation of system (1.5) if t belongs to V1. We get

an expression of u1 as a function of x1 and x2. Substituting the new expression

of u1 into equation (3.23), we get new state equation x1(t+1) as a function of x1

and x2.

Then, we write the Hamiltonian of player 2 as

H1
2

(
x1 (t) , x2 (t) , λ

1
2 (t+ 1) , λ2

2 (t+ 1) , u1 (t) , u2 (t) , t
)

= c2u
2
2(t) + (x1 (t)− s2)

2 + (x2 (t)− s2)
2

+ δλ1
2 (t+ 1)

(
x1 (t+ 1)− x1 (t)− a1

(
x1 (t) + x2 (t)

2
− x1 (t)

)
− u1 (t)

)
+ δλ2

2 (t+ 1)

(
x2 (t+ 1)− x2 (t)− a2

(
x1 (t) + x2 (t)

2
− x2 (t)

)
− u2 (t)

)
,

for any t ∈ V2, and

H2
2

(
x1 (t) , x2 (t) , λ

1
2 (t+ 1) , λ2

2 (t+ 1) , t
)

= (x1 (t)− s2)
2 + (x2 (t)− s2)

2

+ δλ1
2 (t+ 1)

(
x1 (t+ 1)− x1 (t)− a1

(
x1 (t) + x2 (t)

2
− x1 (t)

))
+ δλ2

2 (t+ 1)

(
x2 (t+ 1)− x2 (t)− a2

(
x1 (t) + x2 (t)

2
− x2 (t)

))
,
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for any t /∈ V2.

Finding the derivatives ∂H1
2 (t)

∂u2(t)
= 0, t ∈ V2, λ1

2 (t) =
∂H1

2 (t)
∂x1(t)

= ∂H2
2 (t)

∂x1(t)
and λ2

2 (t) =

∂H1
2 (t)

∂x2(t)
= ∂H2

2 (t)
∂x2(t)

, t = 1, . . . , T − 1, we obtain the system:

∂H1
2 (t)

∂u2 (t)
= 2c2u2(t)− δλ2

2 (t+ 1) = 0, t ∈ V2,

λ1
2 (t) =

∂H1
2 (t)

∂x1 (t)
=

∂H2
2 (t)

∂x1 (t)

= 2 (x1 (t)− s2)− δλ1
2 (t+ 1)

(
1− a1

2

)
− δλ2

2 (t+ 1)
a2
2
,

t = 1, . . . , T − 1,

λ2
2 (t) =

∂H1
2 (t)

∂x2 (t)
=

∂H2
2 (t)

∂x2 (t)

= 2 (x2 (t)− s2)− δλ1
2 (t+ 1)

a1
2
− δλ2

2 (t+ 1)
(
1− a2

2

)
,

t = 1, . . . , T − 1,

λ1
2 (T ) =

∂
(
(x1 (T )− s2)

2 + (x2 (T )− s2)
2
)

∂x1 (T )
= 2 (x1 (T )− s2) ,

λ2
2 (T ) =

∂
(
(x1 (T )− s2)

2 + (x2 (T )− s2)
2
)

∂x2 (T )
= 2 (x2 (T )− s2) .

Finally, we rewrite the system as follows:

u2(t) =
δ
2c2

λ2
2 (t+ 1) , t ∈ V2,

λ1
2 (t+ 1) = 2

δ(2−a1)

[
2 (x1 (t)− s2)− λ1

2 (t)− λ2
2 (t+ 1) a2δ

2

]
,

t = 0, . . . , T − 1,

λ2
2 (t+ 1) = 2

δ(2−a2)

[
2 (x2 (t)− s2)− λ1

2 (t+ 1) a1δ
2 − λ2

2 (t)
]
,

t = 0, . . . , T − 1,

λ1
2 (T ) = 2 (x1 (T )− s2) ,

λ2
2 (T ) = 2 (x2 (T )− s2) .

(3.28)

We use the same idea as above to find new state equation x2(t+ 1) as a function

of x1 and x2. Taking into account the state equation (3.24) and (3.26), we can
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find the equilibrium state trajectories of agent 1 and agent 2 according to the

initial condition x1 (0) = x01, x2 (0) = x02. The equilibrium strategy trajectories

of players 1 and 2 are also found. Joining two systems (3.27) and (3.28) we finish

the proof.

Remark 3.1. In Theorem 3.3, the Nash equilibrium is found under an assump-

tion that the sets of periods V1 and V2, when players 1 and 2 choose their controls,

are given. These sets may be different for the players. If we consider the problem

of choosing these sets from the optimization perspective, then we need to find all

possible combinations of periods for a given number k, and find the Nash equi-

librium for any such a pair of sets V1 and V2. Moreover, some pair of sets may

be preferable (in terms of minimizing the costs) for one player, and another pair

may be preferable for another player. Therefore, we could find Pareto optimal

sets V1 and V2 such that no other pair of sets can give at least the same costs and

strictly smaller costs for at least one player. We demonstrate how we find such

Pareto-optimal sets V1 and V2 for numerical examples provided in Section 3.4.2.

3.4 Numerical simulations

3.4.1 Numerical examples for Section 3.1

Example 3.1. Let a1 = 0.3, a2 = 0.6, δ = 1, c1 = 8, c2 = 7 and initial opinions

be x1(0) = 0.7, x2(0) = 0.6. For time horizon T = 10 and target opinion s1 =

0.3, s2 = 0.1, the equilibrium state and control trajectories are presented in Table

3.1. The equilibrium costs to players 1 and 2 are 0.125 and 1.305, respectively.
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Table 3.1: Equilibrium state and control trajectories

t 0 1 2 3 4 5

x1(t) 0.7 0.7129 0.6337 0.5663 0.5087 0.4591

x2(t) 0.6 0.6372 0.4532 0.3245 0.2343 0.1712

u1(t) 0.0279 -0.0678 -0.0403 -0.0213 -0.0084 0.0002

u2(t) 0.0072 -0.2067 -0.1829 -0.1627 -0.1454 -0.1305

t 6 7 8 9 10

x1(t) 0.4161 0.3777 0.3419 0.3057 0.2643

x2(t) 0.1271 0.0962 0.0745 0.0594 0.0489

u1(t) 0.0050 0.0064 0.0040 -0.0045

u2(t) -0.1176 -0.1062 -0.0953 -0.0844

We also introduce equilibrium state and strategy trajectories on Figures 3.2

and 3.3.

Figure 3.2: State trajectories (blue - x1(t), red - x2(t)).
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Figure 3.3: Strategy trajectory (blue - u1(t), red - u2(t)).

Example 3.2. Let a1 = 0.1, a2 = 0.2, δ = 1, c1 = 9, c2 = 5 and initial opinions

be x1(0) = 0.4, x2(0) = 0.5. For time horizon T = 10 and target opinion s1 =

0.8, s2 = 0.9, the equilibrium state and control trajectories are presented in Table

3.2. The equilibrium costs of players 1 and 2 are 0.134 and 0.203, respectively.

Table 3.2: Equilibrium state and control trajectories

t 0 1 2 3 4 5

x1(t) 0.4 0.4665 0.5025 0.5343 0.5615 0.5838

x2(t) 0.5 0.5638 0.5803 0.5941 0.6053 0.6138

u1(t) 0.0615 0.0311 0.0279 0.0242 0.0201 0.0157

u2(t) 0.0738 0.0262 0.0216 0.0172 0.0129 0.0090

t 6 7 8 9 10

x1(t) 0.601 0.6125 0.6178 0.6162 0.6069

x2(t) 0.6198 0.6232 0.6238 0.6215 0.6161

u1(t) 0.0106 0.0048 -0.0019 -0.0096

u2(t) 0.0053 0.0017 -0.0017 -0.0049

We also introduce the equilibrium state and control trajectories on Figures 3.4
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and 3.5.

Figure 3.4: State trajectories (blue - x1(t), red - x2(t)).

Figure 3.5: Strategy trajectory (blue - u1(t), red - u2(t)).

Example 3.3. Let a1 = 0.2, a2 = 0.1, δ = 1, c1 = 8, c2 = 4 and initial opinions

be x1(0) = 0.8, x2(0) = 0.2. For time horizon T = 10 and target opinions s1 =

0.3, s2 = 0.8, the equilibrium state and control trajectories are presented in Table

3.3. The equilibrium costs to players 1 and 2 are 0.350 and 0.641, respectively.
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Table 3.3: Equilibrium state and control trajectories

t 0 1 2 3 4 5

x1(t) 0.8 0.7489 0.6824 0.6218 0.5666 0.516

x2(t) 0.2 0.3459 0.4392 0.5218 0.593 0.6522

u1(t) 0.0089 -0.0262 -0.03628 -0.0452 -0.05324 -0.06022

u2(t) 0.1159 0.07315 0.07044 0.0662 0.06052 0.05311

t 6 7 8 9 10

x1(t) 0.4694 0.4262 0.3858 0.3478 0.3116

x2(t) 0.6985 0.7307 0.7475 0.7473 0.7279

u1(t) -0.06611 -0.07085 -0.07417 -0.07615

u2(t) 0.043655 0.032025 0.017885 0.000575

The equilibrium state and strategy trajectories are presented on Figures 3.6

and 3.7.

Figure 3.6: State trajectories ((blue - x1(t), red - x2(t)).
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Figure 3.7: Strategy trajectory (blue - u1(t), red - u2(t)).

3.4.2 Numerical examples for Section 3.2

Example 3.4. We consider the following example. Let the parameters of the

game be as follows: a1 = 0.8, a2 = 0.7, δ = 1, c1 = 0.7, c2 = 0.9, and initial

opinions be x1(0) = 0.7, x2(0) = 0.9. The time horizon is T = 10 and target

opinions are s1 = 0.3, s2 = 0.2. The equilibrium costs of Players 1 and 2 are

1.3684 and 1.1657, respectively.

Figure 3.8: Equilibrium state trajectories, validation periods 7, 8, 9 (solid — x1(t), dashed—

x2(t)).
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Table 3.4: Nash equilibrium state trajectories and controls

t 0 1 2 3 4 5

x1(t) 0.7000 0.9906 0.805 0.6936 0.6266 0.5862

x2(t) 0.9000 1.0733 0.9409 0.8547 0.7979 0.7581

u1(t) -0.7800 -0.4293 -0.3764 -0.3419 -0.3192 -0.3033

u2(t) 0.2533 0.2969 0.2901 0.2851 0.2794 0.2658

t 6 7 8 9 10

x1(t) 0.5608 0.5409 0.5151 0.4662 0.2917

x2(t) 0.7207 0.6501 0.5520 0.4222 0.2353

u1(t) -0.2883 -0.2600 -0.2208 -0.1689

u2(t) 0.2177 0.1619 0.0910 -0.0181

The equilibrium state and strategy trajectories are presented in Fig. 3.8 and

Fig. 3.9.

Figure 3.9: Equilibrium strategy trajectories (solid — u1(t), dashed — u2(t)).

3.4.3 Numerical examples for Section 3.3

Example 3.5. Let the time horizon be T = 9 (periods 0, . . ., 9), and k = 2 be

the number of periods in which players influence agents. The parameters are as
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follows:

a1 = 0.7, a2 = 0.5, δ = 1, c1 = 0.4, c2 = 0.6, s1 = 0.6, s2 = 0.6,

x1(0) = 0.9, x2(0) = 0.1.

The initial opinion state of two agents is x(0) = (0.9, 0.1), i.e. x1(0) = 0.9,

x2(0) = 0.1. The agent 1 and 2’ beliefs about the average social opinion are

a1 = 0.7, a2 = 0.5, respectively. The discount factor is δ = 1. The unit costs

of influence are c1 = 0.4, c2 = 0.6 for player 1 and player 2, respectively. Their

target opinions are s1 = 0.6, s2 = 0.6. We find the Nash equilibrium for any

possible sets V1 and V2 consisting of two periods of influence. We obtain that

for the sets V1 = {2, 5} and V2 = {0, 2}, both players have the lowest costs in

the Nash equilibrium in comparison with all other Nash equilibria. So, this pair

of sets V1 and V2 is Pareto optimal. We characterize this equilibrium describing

equilibrium strategies and state trajectories (see Table 3.5). The equilibrium costs

of players 1 and 2 are 0.3845 and 0.3963, respectively.

Table 3.5: Nash equilibrium strategies and state trajectories, V1 = {2, 5} and V2 = {0, 2}

t t12 = 0 1 t11 = t22 = 2 3 4

x1(t) 0.9000 0.6200 0.5577 0.7001 0.6074

x2(t) 0.1000 0.4420 0.3943 0.4352 0.5014

u1(t) 0.1117

u2(t) 0.1515 0.0745

t t21 = 5 6 7 8 9

x1(t) 0.5703 0.5410 0.5401 0.5398 0.5396

x2(t) 0.5279 0.5385 0.5391 0.5394 0.5395

u1(t) -0.0242

u2(t)
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Agents’ opinions are becoming closer to target opinions over time. The equilib-

rium state and strategy trajectories are shown in Figures 3.10 and 3.11, respec-

tively.
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Figure 3.10: Equilibrium state trajectories (solid — x1(t), dotted — x2(t)).
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Figure 3.11: Equilibrium strategy trajectories (solid — u1(t), dotted — u2(t)).

In this scenario, we see that among all Nash equilibria when we vary V1 and

V2, the minimal costs for both players emerge at the Nash equilibrium with V1 =
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{2, 5} and V2 = {0, 2}.

Remark 3.2. We calculate the set of all possible periods V1 and V2 by Ck
T combi-

nations for each player. When T = 9, and players choose two periods to influence

the agents’ opinions, then C2
9 = 36. Considering that the two players may have

different choices, the number of all possible combinations is 36 · 36 = 1296. To

find the Nash equilibrium, we solved 1296 systems given in Theorem 3.3 to find

Pareto-optimal equilibrium costs.

Example 3.6. Let the time horizon be T = 8 (periods 0, . . ., 8), and k = 3 be

the number of periods in which players influence agents. The parameters are as

follows:

a1 = 0.1, a2 = 0.7, δ = 1, c1 = 0.4, c2 = 0.6, s1 = 0.2, s2 = 0.1,

x1(0) = 0.7, x2(0) = 0.9.

The initial opinion state of two agents is x(0) = (0.7, 0.9), i.e. x1(0) = 0.7, x2(0) =

0.9. The agent 1 and agent 2’ beliefs about the average social opinion are a1 = 0.1,

a2 = 0.7, respectively. The discount factor is δ = 1. The unit costs of influence

are c1 = 0.4, c2 = 0.6 for player 1 and player 2, respectively. Their target opin-

ions are s1 = 0.2, s2 = 0.1. We consider all possible sets V1 and V2 consisting

of three periods when players can influence agents’ opinions. Remind that these

sets may be different. In this example, we find that different Nash equilibria, i.e.

different combinations of sets V1 and V2 give the lowest costs to different players.

Therefore, the set of Pareto-optimal pairs of sets V1 and V2 consists of two ele-

ments. We describe both equilibria when (i) V1 = {0, 5, 7} and V2 = {0, 4, 5}

and (ii) V1 = {0, 1, 2} and V2 = {0, 2, 7}. Player 1 prefers case (i) and player

2 prefers case (ii). First, we characterize the Nash equilibrium for V1 = {0, 5, 7}

and V2 = {0, 4, 5} (see Table 3.6). The equilibrium costs of players 1 and 2 are

0.9491 and 1.4566, respectively.
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Table 3.6: Nash equilibrium strategies and state trajectories, V1 = {0, 5, 7} and V2 = {0, 4, 5}

t t11 = t12 = 0 1 2 3 t22 = 4

x1(t) 0.7000 0.1584 0.1698 0.1766 0.1807

x2(t) 0.9000 0.3855 0.3060 0.2583 0.2297

u1(t) -0.5516

u2(t) -0.4445 -0.1421

t t21 = t32 = 5 6 t31 = 7 8

x1(t) 0.1831 0.1747 0.1812 0.2100

x2(t) 0.0704 0.3047 0.2592 0.2319

u1(t) -0.0029 0.0249

u2(t) 0.1948

Table 3.7: Nash equilibrium strategies and state trajectories, V1 = {0, 1, 2} and V2 = {0, 2, 7}

t t11 = t12 = 0 t21 = 1 t31 = t22 = 2 3 4

x1(t) 0.7000 0.0130 0.2241 0.1555 0.1520

x2(t) 0.9000 0.2885 0.1921 0.0842 0.1092

u1(t) -0.6970 0.1973 -0.0670

u2(t) -0.5415 -0.1191

t 5 6 t32 = 7 8

x1(t) 0.1498 0.1486 0.1478 0.1473

x2(t) 0.1241 0.1331 0.1385 0.2206

u1(t)

u2(t) 0.0789

Agents’ opinions are becoming closer to target opinions over time (see Fig-

ure 3.12). The equilibrium state trajectories and strategy trajectories are shown

in Figure 3.12 and Figure 3.14, respectively.

Second, we characterize the Nash equilibrium for the case when V1 = {0, 1, 2}
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Figure 3.12: Equilibrium state trajectories,

V1 = {0, 5, 7} and V2 = {0, 4, 5} (solid

— x1(t), dotted — x2(t))
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Figure 3.13: Equilibrium state trajectories,

V1 = {0, 1, 2} and V2 = {0, 2, 7} (solid

— x1(t), dotted — x2(t))
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Figure 3.14: Equilibrium strategies, V1 =

{0, 5, 7} and V2 = {0, 4, 5} (solid —

u1(t), dotted — u2(t))
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Figure 3.15: Equilibrium strategies, V1 =

{0, 1, 2} and V2 = {0, 2, 7} (solid —

u1(t), dotted — u2(t))

and V2 = {0, 2, 7}, which is preferable for player 2. The equilibrium costs of

player 1 and 2 are 1.0462 and 1.2884, respectively. The values of equilibrium

state and strategy trajectories are given in Table 3.7, and they are represented in

Figure 3.13 and Figure 3.15.

In order to examine the two Nash equilibria and differences in players’ costs,

we conducted a comparative analysis in Table 3.8.
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Table 3.8: Comparison of the two Nash equilibria

Players Time set, equil. 1 Costs Time set, equil. 2 Costs Index

Player 1 {0, 5, 7} 0.9491∗ {0, 1, 2} 1.0462 10.23%

Player 2 {0, 4, 5} 1.4566 {0, 2, 7} 1.2884∗ 13.05%

In Table 3.8, the costs with an asterisk are minimal for the corresponding

player. To estimate the difference between the two Nash equilibria we use the

following index for player 1:

J1(equil2)− J∗
1 (equil1)

J∗
1 (equil1)

· 100% = 10.23%,

where by equil1 and equil2 we mean the Nash equilibria with time sets V1 =

{0, 5, 7}, V2 = {0, 4, 5}, and V1 = {0, 1, 2}, V2 = {0, 2, 7}, respectively.

Although this value is not very large, it implies that in the second Nash equilib-

rium, the cost loss borne by player 1 is not too high compared to the first Nash

equilibrium. Similarly, for player 2, the index comparing two Nash equilibria is

J2(equil1)− J∗
2 (equil2)

J∗
2 (equil2)

· 100% = 13.05%.

We could notice that player 2 does not bear much costs in the first Nash equilib-

rium relative to the second one.

To sum up, Theorem 3.3 provides the necessary conditions for the Nash equi-

librium for a competition game when the periods of controls are fixed. As we

showed above, some equilibrium may be preferable for one player while not for

another player. In this case, if players have an option to choose sets V1 and V2

when they control the agents, there may be a conflict of interests between the

players. We do not discuss how one of the Nash equilibria can be chosen, but it

can be modeled as a bargaining process.
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3.5 Conclusion to Chapter 3

We propose three models of opinion dynamics with two centers of influence (play-

ers). Two cases are considered: first, players validate agents’ opinions only at the

last time; second, players are willing to find the optimal validation periods by

choosing a fixed number of periods k. In an arbitrary period, the player takes

into account the difference between an agent’s opinion and the socially desired

opinion. We present the opinions of all members of the society as an average as

a summary of the opinions of network members. We find the Nash equilibrium

in the case of two centers, and the equilibrium set of periods that players choose.

The Euler equation approach is used to find the Nash equilibrium.

The last model of opinion dynamics where agents’ opinions are influenced by

the players is such that the players are willing to minimize their costs represented

by the sum of squared distances of the agents’ opinions from the desired opinion

and quadratic functions of controls. The main feature of the model is that the

players can influence agents’ opinions in a limited number of periods. We find the

Nash equilibrium in the game where the number of such periods is given and it is

the same for both players. But the sets of periods may be different. We also find

the Pareto-optimal sets of periods in our numerical simulations.
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Conclusions

The thesis focuses on modeling opinion dynamics in small social networks with dif-

ferent types of constraints. Combining opinion dynamics, noncooperative games,

and optimization problems, it discusses how the opinions of social network mem-

bers change over time under some outside influence which is also constrained.

The study is divided into three main parts: studying effects of different modes

of choosing significant periods to validate the agents’ opinions in a network to

reach the target opinion (Chapter 1); providing different modes to choose periods

to control when players have a limit on the number of such periods to influence

agents (Chapter 2); providing the necessary conditions for the Nash equilibrium

in a competition on agents’ opinions when players minimize their costs in a linear-

quadratic form (Chapter 3).

The main results of the work are the following:

1. In Chapter 1, the models of opinion dynamics with different scenarios of

restrictions on players’ or influencers’ behavior in small social networks are

presented. The restrictions are as follows: (i) the player assumes the agent’s

opinion in the last time is significant and we include the term with the agents’

opinions in the terminal time in her functional, no other opinions are con-

sidered in the functional, and (ii) the player can choose the set of periods to

include into the set of significant ones and take them into her objective func-

tional. For all models of Chapter 1, the optimization problems are formulated
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for a one-player case. The necessary conditions for the optimal strategies are

found. A series of numerical simulations is conducted to test the results and

to make conclusions about parameter influence on optimal strategies. From

our numerical experiments, we find that the increasing number of validation

periods reduces the player’s costs, and that if the validation period is opti-

mal for the given number of such periods, then it will be also optimal if the

number of periods is increased (see [30, 31, 33]).

2. In Chapter 2, the models of opinion dynamics with different scenarios of re-

strictions on players’ or influencers’ control strategy in small social networks

are presented. The restrictions are as follows: (i) the player can control the

agents or validate their opinions, but these two actions cannot be done at the

same time, (ii) the player can choose the periods when she controls opinions

and simultaneously validates the opinions, and the size of this set is limited,

and (ii) the player can choose the set of periods to control the opinions but

they should be different from the time when she is validating opinions of

agents. For all these models, the optimization problems are formulated and

necessary conditions for the optimal strategies are proved. It is worth men-

tioning that in the numerical simulations the control sets are different for

the three cases. The numerical simulation shows that when the player has

a possibility to validate the agent’s opinion while controlling it, she prefers

to do it at the end of the time horizon. In the first and third cases, she first

controls the agent’s opinions at the beginning of the planning time horizon,

then only validates the opinions, and finally controls the agent at the end of

time horizon (see [32, 34]).

3. Chapter 3 considers the models of opinion dynamics in small networks with

two players or influencers and examines their competition on social opinion
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under constraints on the number of validation periods or periods to control

them. Three main scenarios are considered in this chapter: (i) players val-

idate the agents’ opinions only in the terminal time, and (ii) players can

choose the set of validation periods with the limitation on the size of this

set, and this set is the same for both players, or (iii) this set may be different

for the players. I find the necessary conditions for the Nash equilibria for

all scenarios when players’ goals are to minimize the linear-quadratic costs.

I determine the Pareto optimal sets of periods for validation and periods to

control through numerical simulations (see [29, 35]).

I conclude that all the tasks formulated in this thesis are achieved, and the

objectives are fully accomplished.
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Appendix

Research methods

The Euler-Equation Approach

Let X ⊂ Rn and U ⊂ Rm be the state space and the control set, respectively.

Given an initial state x0 ∈ X, the state of a system evaluates with respect to

dynamics:

x(t+ 1) = ft(x(t), u(t)), t = 0, 1, . . . , T − 1. (3.29)

The optimal control problem is to find a control u(t) ∈ U maximizing func-

tional:
T∑
t=0

δtrt(x(t), u(t)) (3.30)

with respect to the state dynamics equations (3.29) and a given initial condition

x(0) = x0, where rt(x(t), u(t)) is a reward or cost function of a player.

We can reformulate this problem in terms of the state trajectory x(t). Suppose

that we can express u(t) from equation (3.29) as a function of x(t) and x(t+ 1),

say u(t) = q(x(t), x(t + 1)). Therefore, we can rewrite functional (3.30) in the

following form:
T∑
t=0

δtgt(x(t), x(t+ 1)), (3.31)

where gt(x(t), x(t+1)) = rt(x(t), q(x(t), x(t+1))), t = 0, 1, . . . , T −1. The Euler

equation approach gives the necessary conditions (see [17, 37, 38]) for the optimal
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trajectory x∗(t):

∂gt−1 (x
∗(t− 1), x∗(t))

∂y
+ δ

∂gt (x
∗(t), x∗(t+ 1))

∂x
= 0, t = 1, . . . , T − 1. (3.32)

We can notice that games considered in the thesis belong to the class of linear-

quadratic games. We will apply the Euler-equation method to find the optimal

strategies in the dynamic games with average-oriented opinion dynamics (see [63]).

The Pontryagin maximum principle

This section is written following [43].

Definition 3.1. The multistage two-player game is defined, for the finite-horizon

case, by the following utility functions (or performance criterions) and state equa-

tions:

Jj =
T−1∑
t=0

gj (x(t),u1(t),u2(t), t) + Sj(x(T )), for j = 1, 2, (3.33)

uj(t) ∈ Uj, (3.34)

x(t+ 1) = f (x(t),u1(t),u2(t), t) , t = 0, 1, . . . T − 1, (3.35)

x(0) = x0. (3.36)

If the game is played in open loop, each player, having observed the initial state

x0 chooses an admissible control sequence ũT
j = (uj(0), . . . ,uj(T − 1)) , j = 1, 2.

This generates, from the initial position
(
0,x0

)
, a state trajectory x̃T solution.

We can utilize an optimal-control technique based on the maximum principle

to characterize open-loop Nash-equilibrium solutions. For that purpose, we define

the Hamiltonian for each Player j by

Hj (pj(t+ 1),x(t),u1(t),u2(t), t) ≡

gj (x(t+ 1),u1(t),u2(t), t) + pj(t+ 1)′f (x(t),u1(t),u2(t), t) ,
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where pj(t) is a costate vector in Rn and indicates the transposition of the vector

pj(t+ 1) in a scalar product.

Assumption 3.1. Assume that f(x,u, t) and gj(x,u, t) are continuously differ-

entiable in state x and continuous in controls u for each t = 0, . . . , T − 1 and

Sj(x) is continuously differentiable in x. Assume that, for each j, Uj is compact

and convex. Assume also that, for each t,x, the function Hj (p,x,uj,u−j, t) is

concave in uj.

We can then formulate the following lemma that provides the necessary condi-

tions that the open-loop equilibrium strategies need to satisfy:

Lemma 3.1. Under assumption 3.1, if ũ∗is an open-loop Nash equilibrium pair

of controls, generating the trajectory x̃∗ from initial state x0 for the game (3.33),

(3.35), then there exist functions of time pj(·), with values in Rn, such that the

following relations hold

u∗
j(t) = arg max

uj(t)∈Uj

Hj

(
pj(t+ 1),x∗(t),uj(t),u

∗
−j(t), t

)
,

pj(t)
′ =

∂

∂x
Hj (pj(t+ 1),x∗(t),u∗

1(t),u
∗
2(t), t) ,

pj(T )
′ =

∂

∂x(T )
Sj (x

∗(T )) , j = 1, 2.

Proof. See [43].


