САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

на правах рукописи

Домнин Антон Владимирович

Неэмпирическое изучение свойств квази-одномерных углеродных и WS₂ наноструктур

Научная специальность 1.4.4. Физическая химия

Диссертация на соискание ученой степени

кандидата химических наук

Научный руководитель:

доктор физико-математических наук

профессор Эварестов Р. А.

Санкт-Петербург 2024

Оглавление

Введение	3
Глава 1. Обзор литературных данных	. 12
1.1. Свойства квази-одномерных наноструктур	12
1.2. Экспериментальное и теоретическое изучение квази-одномерных	•••••
наноструктур	13
Глава 2. Методическая часть	. 24
2.1. Теория лайн групп	24
2.2. Приложение теории лайн групп к нанотрубкам с гексагональной	•••••
морфологией	30
2.3. Квантовохимические методы моделирования квази-одномерных	•••••
объектов	34
Глава 3. Результаты моделирования квази-одномерных наноструктур	. 38
3.1. Моделирование наноструктур содержащих <i>sp³</i> -гибридизованные ато	мы
углерода	38
3.2. Моделирование структуры и свойств наногелиценов	49
3.3. Моделирование торсионных искажений углеродных и неорганически	ИХ.
нанотрубок	69
Заключение	. 79
Список условных сокращений и обозначений	. 83
Список цитируемой литературы	. 85
Приложение	. 98

Введение

Актуальность работы

Квази-одномерные (Q1D) наноструктуры представляют собой перспективный класс наноматериалов, который привлекает исследователей из различных научных дисциплин. Благодаря своим уникальным электронным, оптическим и механическим свойствам эти наноструктуры имеют большой потенциал для революционизации различных областей, таких как электроника, фотоника, биомедицина и хранения энергии. Одномерная природа этих наноструктур придает им исключительные механические свойства, включая значительное отношение сторон, гибкость и механическую прочность, открывая новые возможности для наномеханических устройств и нанороботики.

Политвистан, полимерная структура, состоящая из взаимосвязанных мономеров твистана, стала объектом пристального изучения в материаловедении. Твистан — это жесткая, сильно напряженная углеводородная молекула, характеризующаяся своей уникальной каркасной структурой, образованной из четырех циклогексановых колец в изогнутой «twist» конформации. Политвистан представляет собой новое слово в полимерной химии, поскольку структура, образованная из ковалентно связанных блоков твистана наделяет политвистан замечательной механической прочностью, термической стабильностью и химической инертностью, делая его привлекательным кандидатом для широкого спектра применений в материаловедении. Хотя потенциал применения политвистана огромен, его синтез и описание свойств остаются, на сегодняшней день, остаётся не решенной задачей. Фундаментальные вопросы о соотношениях структура-свойство и практической применимости этого вещества до сих пор требуют дальнейшего изучения. Настоящее исследование направлено на анализ структурных характеристик и потенциальных областей применения политвистана путем расширения представлений о его свойствах.

Свойства наногелиценов (NH) и их производных активно изучаются с использованием теоретических методов из-за их уникальной, естественно

«пружинной» топологии. Эта топология открывает значительные возможности для обратимой механической модуляции свойств NH. Исследования показали, что возможны различные типы NH, включая диамагнитные полупроводники, антиферромагнитные полупроводники, ферромагнетики и металлы. Это разнообразие, в сочетании с их пружиной структурой и спирально скрученной непрерывной π-системой, наделяет наногелицены увлекательными хироптическими свойствами. Среди этих свойств можно выделить циркулярный дихроизм и циркулярно-поляризованную люминесценцию, которые находят применение в хиральной чувствительности, молекулярной электронике и фотонике. Более того, винтовая структура влияет на явления переноса заряда, делая наногелицены многообещающими кандидатами для использования в качестве молекулярных проводников и полупроводников. В области науки о материалах наногелицены показывают перспективы для разработки функциональных материалов, таких как хиральные сенсоры, светодиоды, органические транзисторы с полевым эффектом и молекулярные переключатели. Кроме того, наногелицены проявляют потенциал в области супрамолекулярной химии для таких приложений, как хиральное распознавание, самосборка и взаимодействия «хозяин-гость».

Нанотрубки на основе WS₂ обладают увлекательными электронными свойствами, что делает их многообещающими кандидатами для различных применений в электронике и оптоэлектронике. Исследования показали, что нанотрубки WS₂ ведут себя как полупроводники с запрещенной зоной, которую можно настраивать в зависимости от диаметра нанотрубки. Помимо этого, эти нанотрубки обещают быть перспективными фотокатализаторами для расщепления воды под видимым светом и менее подвержены фотокоррозии по сравнению с объемными кристаллами.

Несмотря на значительный прогресс в области квазиодномерных наноструктур, остаются несколько вызовов и неотвеченные вопросы. Например, влияние крутящих деформаций на квазиодномерные наноструктуры остается в

значительной степени неизученным. Тем не менее, как покажет данная работа, изучение крутильных деформаций наноструктур позволяет более глубоко понять их свойства и способы их тонкой настройки.

Также стоит отметить, что экспериментальные измерения оптических и термодинамических свойств нанообъектов часто осложнены отсутствием методов селективного синтеза. Следовательно, теоретическое моделирование физических и химических свойств квазиодномерных наноструктур становится актуальным и играет ключевую роль в прогнозировании их характеристик и помощи в синтезе новых наноматериалов.

Цель диссертационной работы заключается в изучении влияния крутящих деформаций на свойства различных типов углеродных наноструктур и нанотрубок основе WS₂.

Для достижения поставленных целей необходимо было решить следующие задачи:

- Выбор оптимального подхода для выполнения расчетов с использованием метода функционала плотности для каждого типа наноструктур, находящихся под наблюдением;
- Оптимизация структуры политвистана для изучения его свойств;
- Оптимизация структуры наногелиценов для изучения их свойств;
- Оптимизация структуры хиральных нанотрубок на основе WS₂ и анализ их свойств.

Теоретическая и практическая значимость

В настоящее время, появляется всё больше и больше работ посвященных созданию и изучению квазиодномерных нанообъектов. Одним из ключевых аспектов актуальности изучения квазиодномерных материалов является их потенциал для создания новых материалов с уникальными свойствами. Например, нанотрубки обладают высокой прочностью, гибкостью, теплопроводностью и электропроводностью, что делает их перспективными кандидатами для

применения в сферах электроники, катализа и медицины. Квазиодномерные полимеры могут использоваться для создания ультралегких и прочных материалов, а также для разработки новых методов лекарственной доставки и биомедицинских технологий.

С теоретической точки зрения, понимание воздействия торсионной структуру и свойства однопериодических наноструктур деформации на позволяет углубить наше знание о внутренних механизмах, определяющих поведение этих материалов. Анализ вращательных деформаций полимерных цепей на молекулярном уровне помогает выявить особенности их конформаций, динамики изменения свойств и стабильности. Это открывает возможности для улучшения предсказуемости и контроля свойств наноматериалов, а также для разработки новых материалов с оптимизированными характеристиками. Кроме торсионной того, понимание влияния деформации на структуру квазиодномерных объектов способствует разработке эффективных методов модификации функционализации И квазиодномерных материалов для конкретных приложений, таких как биомедицина, электроника, композитные материалы и многое другое. Научная новизна

В настоящее время большое количество исследований посвящено анализу структуры и характеристик квазиодномерных наноструктур в рамках теории функционала плотности (DFT). Однако в существующей литературе мало внимания уделяется воздействию торсионных деформаций на структуру и свойства данных объектов. Среди ученых, затрагивающих этот вопрос в своих исследованиях, можно выделить П.Н. Дьячкова, М. Damnjanovic и А. S. Banjaree. Тем не менее, в рамках исследований в данной области обычно не применяется *ab initio* оптимизация геометрии, а полагаются на молекулярную динамику, которая не способна учитывать электронные свойства изучаемых материалов, или на полуэмпирические методы расчета, точность которых сильно зависит от используемой параметризации. Исследователи часто пренебрегают симметрией наноструктур в ущерб точности расчетов. Использование симметрии является важным аспектом для более глубокого анализа свойств наноструктур и повышения эффективности расчетов в системах с большим числом атомов в элементарной ячейке. В данном исследовании была рассмотрена полная симметрия рассматриваемых систем, включая не только винтовые оси кристаллографических порядков. Этот подход был применен для изучения воздействия торсионной деформаций на структуру, ширину запрещенной зоны и механические свойства различных квазиодномерных наноструктур. Путем использования *ab initio* методов и полной симметрии можно достичь точных результатов без значительных вычислительных затрат.

В рамках исследования были разработаны и применены методы, основанные на теории спиральных групп, для моделирования квазиодномерных наноструктур.

Методология и методы исследования

Квантово-химические расчеты свойств наноструктур были выполнены с применением гибридных методов теории функционала плотности с использованием лицензионной компьютерной программы CRYSTAL 2017. Данное программное обеспечение использует базисные функции, сосредоточенные вокруг атомных центров, где гауссовы атомные орбитали служат в качестве базиса, обладая преимуществом перед плоскими волнами в системах с уменьшенной периодичностью, что устраняет необходимость в искусственной трехмерной периодичности. Кроме того, в коде CRYSTAL 2017 предусмотрены уникальные встроенные возможности для генерации начальных координат атомов в нанотрубках на основе их положения в исходных слоях, а также различные методы учета дисперсионных взаимодействий в рамках теории функционала плотности.

Степень достоверности и апробации результатов

Основные результаты работы докладывались и обсуждались на следующих конференциях:

- Всероссийской конференции по естественным и гуманитарным наукам с международным участием «Наука СПбГУ - 2023», СПбГУ, (21 ноября 2023 г, Санкт-Петербург)
- Международная конференция им. В.А. Фока по теоретической, квантовой и вычислительной химии. Новгородском государственном университете им. Ярослава Мудрого, (4-8 сентября 2023 г, Великий Новгород)
- Всероссийская молодежная научно-практическая конференция «Актуальные проблемы биологии, экологии и химии», ЯрГУ, (20 апреля 2023 г, Ярославль)
- Всероссийская конференция по естественным и гуманитарным наукам с международным участием «Наука СПбГУ – 2021», СПбГУ, (28 декабря 2021 г, Санкт-Петербург)
- 5. Международная конференция молодых ученых «Менделеев 2021», СПбГУ, (6-10 сентября 2021 г, Санкт-Петербург).

По результатам этого исследования были опубликованы три статьи в международных рецензируемых журналах, индексируемых в Web of Science Core Collection и Scopus:

- Domnin, A.V.; Porsev, V.V.; Evarestov, R.A. DFT Modeling of Electronic and Mechanical Properties of Polytwistane Using Line Symmetry Group Theory. Computational Materials Science 2022, 214, 111704, doi:10.1016/j.commatsci.2022.111704.
- 2. Domnin, A.V.; Porsev, V.V.; Evarestov, R.A. Effect of the Armchair and Zigzag Edge Terminations on the Properties of Nanohelicenes: First-Principles Study.

Computational Condensed Matter 2023, 36, e00826, doi:10.1016/j.cocom.2023.e00826.3

 Domnin, A.V.; Mikhailov, I.E.; Evarestov, R.A. DFT Study of WS₂-Based Nanotubes Electronic Properties under Torsion Deformations. Nanomaterials 2023, 13, 2699, doi:10.3390/nano13192699.

Личный вклад автора

Цели и задачи данной диссертации, а также положения и выводы, защищаемые в ней, были сформулированы совместно с научным руководителем, доктором физико-математических наук, Р.А. Эварестовым. Данные о наногелицене с терминацией граней зигзаг взяты из статьи В.В. Порсева и Р.А. Эварестова [1]. Результаты квантово-химического моделирования рассматриваемых наноструктур были получены автором независимо. Интерпретация результатов и анализ полученных данных проводились при участии доктора физико-математических наук Р.А. Эварестова и кандидата химических наук В.В. Порсева.

Основные научные результаты

В ходе диссертационного исследования были определены следующие характеристики рассматриваемых наноструктур:

- Были определены структурные параметры энергетического минимума политвистана, а также зависимости энергии образования, ширины запрещенной зоны и модуля Юнга от угла скручивания, а также впервые построены карты зависимости ширины от торсионных и аксиальных деформаций. [2, стр. 5–7]. Результаты опубликованы в [2]. Личное участие автора в получении данных результатов: проведение квантово-химических расчетов, сбор и анализ данных, анализ литературных данных, визуализация данных, написание статьи.
- Были определены параметры энергетического минимума для наногелицена с терминацией граней типа "кресло", а также были

изучены четыре возможных магнитных электронных состояния этой наноструктуры [3, стр. 4]. Результаты опубликованы в [3]. Личное участие автора в получении данных результатов: проведение квантово-химических расчетов, сбор и анализ данных, анализ литературных данных, визуализация данных, написание статьи.

- Использование методики увеличения мономера открывает больше возможностей для структурных преобразований, на основании чего было заключено, что эту методику следует использовать при моделировании экстремальных торсионных деформаций [2, стр. 5] или учета спинового распределения [3, стр. 4]. Результаты опубликованы в работах [2,3]. Личное участие автора в получении данных результатов: проведение квантово-химических расчетов, сбор и анализ данных, анализ литературных данных, визуализация данных, написание статьи.
- В исследовании серии хиральных нанотрубок на основе WS₂, было изучено влияние торсионной деформировании на структуру, энергию, ширину запрещенной зоны, положения вершины валентной зоны и дна зоны проводимости [4, стр. 8–10]. Результаты опубликованы в [4]. Личное участие автора в получении данных результатов: проведение квантово-химических расчетов, сбор и анализ данных, анализ литературных данных, визуализация данных, написание статьи.

Научные положения, выносимые на защиту

 Анализ торсионной энергетической кривой политвистана позволил определить структуру энергетического минимума и его электронные и механические свойства. Моделирование влияния аксиальных и торсионных деформаций на свойства политвистана может позволить создавать наноматериалы на его основе с заранее известным откликом на механические деформации.

- На основании изучения свойств наногелиценов сделаны выводы а влиянии нековалетных взаимодействий между витками на электронные, структурные и механические свойства. Также была показана возможность влияния терминации граней на магнитные свойства наногелиценов.
- Анализ влияния торсионной деформации на свойства нанотрубок на основе WS₂ показал, что величина диаметра нанотрубки обратно пропорциональна степени влияния деформации на структуру и свойства нанотрубки. Также показана, возможность использования торсионных деформаций для изменения свойств нанотрубок.
- На основе анализа всех изученных наноструктур показано, что использование теории спиральных групп является обязательным требованием для моделирования их свойств и структуры. Кроме того, ни одну из рассмотренных наноструктур нельзя было описать с в рамках теории пространственных или стержневых групп.

Глава 1. Обзор литературных данных

1.1. Свойства квази-одномерных наноструктур

Квазиодномерные (Q1D) наноструктуры представляют собой класс объектов, характеризующихся своей длинной (Рисунок 1), вдоль одного направления, значительно превосходя остальные. Благодаря этому, такие объекты могут обладать уникальными механическими и магнитными свойствами, например такой класс соединений как углеродные нанонити, могут одновременно быть гибкими, прочными и устойчивыми к торсионным деформациям, а наногелицены могут являться магнитными полимерами.

Одним из примечательных аспектов квазиодномерных наноструктур является их чувствительность к структурным деформациям, особенно изменениям торсионного угла. Торсионный угол может прямо влиять на электронные и магнитные свойства системы. Более того, квазиодномерные объекты могут проявлять магнитные свойства. Например, они могут демонстрировать магнитную анизотропию, когда магнитные свойства сильно зависят от ориентации магнитного поля относительно основной оси наноструктуры. Этот феномен находит применение в различных технологиях, включая спинтронику и магнитное хранение информации, где важно точное управление магнитными свойствами. Более того, за счет однопериодичности этих систем может порождать редкие электронные явления, такие как зарядовые волны, спиновые флуктуации и экситонные эффекты, предлагая обширные возможности для фундаментальных исследований и технологических инноваций.

Одной из определяющих особенностей квазиодномерных наноструктур является их симметрия. В то время как трехпериодические или двупериодические структуры обладают симметрией, описываемой пространственными или слоевыми группами, соответственно, которые факторизуются по трансляционной подгруппе, однопериодические объекты характеризуются спиральными группами симметрии (line groups). Спиральные группы могут быть описаны подгруппой обобщенных трансляций, порожденной операцией "обобщенной трансляции". Эта

операция, определяется винтовой осью порядка Q, включает как вращение на "спиральный угол", так и "сдвиг" вдоль оси симметрии. Если Q является иррациональным числом, получающаяся система лишена трансляционной симметрии, но обладает спиральной.

Рисунок 1. Различные типы Q1D наноструктур.

Несмотря на то, что спиральных групп бесконечное много [5], их можно разделить на 15 [6] или 13 [7] семейств в зависимости от способа классификации. В данной работе мы придерживаемся классификации, описанной в книге "Line groups in physics" [7]. Стрежневые группы, которые часто используются для описания симметрии квазиодномерных объектов, представляют собой лишь подмножество всех спиральных групп, поскольку они могут содержать винтовые оси только кристаллографических порядков. На практике это требование редко выполняется для квазиодномерных объектов.

1.2. Экспериментальное и теоретическое изучение квази-одномерных наноструктур

Существование квазиодномерных углеродных нанонитей *sp*³ (УНН) было предсказано в теоретических работах [8–11]. Авторы этих работ предположили о существовании УНН на основе различных предпосылок. В частности, Хоффман и

др. [10] предсказали такие структуры на основе моделирования кристаллического бензола под высоким давлением, а авторы работы [9] рассматривали политвистан (Рисунок 2) и олиготвистаны как продукты органического синтеза (олигомеризация твистана).

Углеродные нанонити представляют особый интерес благодаря своим механическим свойствам [12–15]. Они могут использоваться для создания нанокомпозитных материалов [16,17]; пучки таких нитей также обладают хорошими механическими свойствами и могут использоваться для хранения механической энергии [18] или создания нановолокон [19–21]. Еще одним теоретическим предсказанием была возможность создания наносеток/мембран/нанопористых материалов на основе нанонитей [22,23].

Новое направление в области изучения углеродных наноструктур связано с работой Fitzgibbons и соавт. [24]. Авторы первыми успешно синтезировали однопериодические наноструктуры на основе *sp*³ гибридизованных атомов углерода в процессе контролируемого сжатия бензола. В этой работе структура УНН изучалась с помощью рентгеновской и нейтронной дифракции, трансмиссионной электронной микроскопии, Рамановской спектроскопии и методом твердотельного ядерного магнитного резонанса. К сожалению, даже при использовании такого широкого спектра экспериментальных методов не удалось получить окончательного ответа о структуре полученных соединений из-за их малого размера [25].

Последующие исследования структуры углеродных нанонитей, полученных из бензола, также не смогли дать ответ на вопрос о точной структуре этих соединений. Однако использование твердотельного ядерного магнитного резонанса позволило определить состав нанонитей [26], а результаты экспериментальных исследований и теоретического моделирования дало возможность значительно сократить количество наиболее вероятных структурных кандидатов [27].

Успешный синтез УНН стимулировал теоретическое изучение этих новых объектов. Наиболее важные работы принадлежат Хи и соавт. [28] и Chen и соавт. [29], которые заложили основу для изучения УНН на основе бензола, систематизации нанонитей и определения их относительной устойчивости. Для перечисления структур авторы ввели концепцию "топологической ячейки" - фундаментальной повторяющейся единицы углеродного скелета; для упрощения расчетов рассматривались УНН, содержащие не более двух бензольных колец в топологической ячейке. Согласно исследованиям [28,29] политвистан (Рисунок 26) оказывается наиболее стабильной УНН из рассмотренных.

Углеродный скелет политвистана формирует ультратонкую трубку. Атомы водорода находятся на внешней части этой трубки. Каждый атом углерода связан с тремя атомами углерода и одним атомом водорода, при этом симметрийно неприводимыми является только – СН фрагмент, а все остальные атомы получаются путем применения операций группы симметрии описывающий структуру политвистана к этому фрагменту.

Рисунок 2. (а) Формальная схема образования политвистана из твистана, и (b) структура политвистана.

Еще одно важное исследование политвистана представлено в [8]. Авторы использовали «молекулярное приближение» для моделирования структуры политвистана. Количество атомов в молекулярной структуре постепенно

увеличивалось, таким образом авторы пытались смоделировать полимер (Рисунок 2a). Однако, такой подход является времязатратным и ограничивает возможности анализа свойств УНН. По результатам исследования авторы полагают, что политвистан представляет собой неповторяющуюся σ-спираль или, другими словами, структуру, не имеющую трансляционной периодичности.

В работе [29] было показано, что политвистан является наиболее энергетически выгодной УНН на основе бензола и обладает достаточно жесткой структурой. Учитывая этот факт, а также потенциал нанонитей для создания нановолокон и нанотканей, изучение влияния крутильных деформаций представляется весьма перспективным исследованием.

Наногелицены (NH) — это тип однопериодических наноструктур на основе углерода, обладающей Римановой топологией. NH состоят из связанных ортоаннулированных бензольных колец (Рисунок 3). Этот тип наноструктур имеет многообещающий потенциал [30] и представляет особый интерес для изучения своих функциональных возможностей, поскольку структура наногелиценов позволяет виткам скользить друг относительно друга, значительно облегчая торсионную деформацию. Эта особенность отсутствует у политвистана.

Рисунок 3. Графеновые наноленты с терминациями граней а) кресло, b) зигзаг. Вид сверху и сбоку на с) ас[1.1]NH, d) zz[1.2]NH с группой симметрии *L*6₁.

Чтобы обеспечить ясность изложения материала, необходимо кратко обсудить номенклатуру гексагональных наногелиценов. Следует отметить, что существует несколько различных номенклатур [31,32], однако в данной работе будет использоваться номенклатура, изложенная в работе [31]. Она основана на ширине ленты и радиусе внутренней шахты, измеряемых в количестве углеродных шестиугольников. Радиус шахты обозначается индексом m, а ширина ленты - индексом n. Это важная структурная характеристика, поскольку она определяет электронные свойства NH с терминацией граней зигзаг, при нечетном n они являются диамагнитными полупроводниками, а в случае с четным n металлами, которые могут испытывать переход металл-изолятор (ПМИ) [31]. Для того чтобы различать терминации кресло и зигзаг, используются сокращения ас и zz, соответственно. Поэтому, наногелицен с терминацией граней зигзаг, шириной стержня в один шестиугольник и шириной ленты в два шестиугольника будем называть zz[1.2]NH. Он рассматривается здесь как представитель zz[m.n]NH с четным n. В случае NH с терминацией граней кресло используются аналогичные обозначения. В данной работе ac[1.1]NH используется в качестве представителя гексагональных наногелиценов с терминацией кресло и металлической проводимостью.

Наногелицены были широко изучены методами молекулярной динамики [33–45]. В этих исследованиях показано, что, благодаря своей топологии, NH могут сильно растягиваться. Было показано, что NH могут обладать большей теплопроводностью по сравнению с многослойными графеновыми структурами, а аксиальная деформация может быть использована для изменения теплопроводности. Ван-дер-Ваальсово (VdW) взаимодействие между витками приводит к негуковскому поведению (нелинейная зависимость между аксиальной нагрузкой и энергией деформации), что может найти применение при создании наноразмерных устройств и нанокомпозитов.

Полуэмпирические методы DFTB (Density Functional based Tight Binding) [46–48] и неэмпирические методы теории функционала плотности (DFT) [1,31,49,49–58] ранее были использованы для исследования электронной структуры нескольких типов NH, включая диамагнитные и антиферромагнитные полупроводники, а также ферромагнитные и диамагнитные металлы. Такое разнообразие электронных состояний в сочетании со спиральной структурой делает NH перспективными объектами для нанотехнологических разработок. На электронные характеристики NH также влияет их растяжимость, способствующая фазовым переходам между различными электронными состояниями [49,53]. Важно отметить, что большинство упомянутых выше исследований ограничены предположением о том, что витки наногелиценов расположены строго друг над другом. Это предположение является упрощением результатов, наблюдаемых в экспериментальных [59,60] и теоретических [1,61] исследованиях. Более того,

было показано [1,61], что наногелицены могут обладать несколькими энергетическими минимумами в зависимости от угла поворота. Все это делает наногелицены перспективным объектом для теоретического изучения.

Нанотрубки (HT) на основе дисульфида вольфрама (WS₂) являются перспективным материалом для теоретических исследований за счет своей цилиндрической структуры, значительно отличающейся от политвистана и наногелиценов. Дисульфид вольфрама также является подходящим материалом для создания нанотехнологий благодаря своей слоистой структуре и гексагональной решетке, которые позволяют формировать нанослои и нанотрубки. Более того, теоретические исследования крутильных деформаций хиральных нанотрубок на основе WS₂ в настоящее время практически отсутствуют.

Первые нанотрубки на основе WS₂ были синтезированы Tenne в 1992 году [62], с тех пор были проведены многочисленные исследования, направленные на изучение их свойств. Экспериментальным исследованиям WS₂ нанотрубок посвящено множество научных статей. Современные методы синтеза включают гетерогенную реакцию между порошкообразными оксидами и оксохлоридами вольфрама с газообразной смесью H₂S и H₂/N₂ при температуре 800-950 °C. С помощью этого метода можно получить нанотрубки длиной 1-10 мкм и диаметром 20-150 нм [63].

В 2017 году в журнале Nanoscale [64] была опубликована статья, в которой авторы заявили об использовании метода дифракции электронов и связанной с ним теории для формулировки метода, экспериментального определения соотношения индексов хиральности нанотрубок, n_2/n_1 . Проведя анализ структуры пятистенной нанотрубки WS₂, авторы установили точные значения диаметров и предложили индексы хиральности для отдельных одностенных компонент. Диаметры компонент пятистенной нанотрубки, измеренные по атомам вольфрама составили 17.67, 16.42, 15.15, 13.88 и 12.61 нм. Для соответствующие индексов хиральности были определены следующие значения:

(159, 30); (147, 30); (134, 30); (121, 30); и (109, 29). Однако смоделировать такую нанотрубку методами квантовой химии не представляется возможным, поскольку при моделировании многостенных нанотрубок важно, чтобы все одностенные компоненты имели одинаковое отношение n_2/n_1 т.к. это гарантирует одинаковый хиральный угол.

Для решения этой проблемы авторы работы [65] предложили метод синтеза нанотрубок, используя наночастицы золота в качестве центров роста нанотрубок. Реакция восстановления субоксида WO_{3-х} происходит при высоких температурах (830-850 °C) в присутствии водорода и серы. Методы сканирующей электронной микроскопии, просвечивающей электронной микроскопии и электронной дифракции подтверждают, что этот процесс обычно приводит к образованию трехстенных нанотрубок с определенными значениями хиральных углов: $\alpha = 2^{\circ}$, 13°, 15°, 17°, 18° и 30°. В предложенном авторами подходе высокая селективность по хиральному углу достигается за счет контроля температуры. Замечено, что в диапазоне температур 835-840 °C преобладают нанотрубки с одним хиральным углом. Более того, повышение температуры на 5 градусов приводит к более типов нанотрубок с различными хиральными углами.

Рисунок 4. Изображение пятистенной WS₂ нанотрубки, полученное с помощью просвечивающей электронной микроскопии высокого разрешения [64].

Кроме того, нанотрубки на основе WS₂ широко исследовались теоретически с помощью методов квантовой механики, молекулярной динамики и молекулярной механики. В работах [66,67] с помощью методов DFT-LCAO и DFT-LACW была рассчитана электронная структура одностенных и многостенных нанотрубок WS₂ с различными индексами хиральности. Это позволяет получить желаемое значение ширины запрещенной зоны, варьируя диаметр HT [67]. Также было показано, что легирующие элементы и структурные дефекты могут влиять на электронные свойства HT [66]. Другие исследования [68,69] показали, что одномерные структуры из переходных металлов, такие как двустенные нанотрубки MoSSe-WSSe и гетероструктуры MoS₂ HT с квантовыми точками PbS_xSe_{1-x}, демонстрируют возможность сверхбыстрого переноса заряда, что даёт возможность для их применения в качестве солнечных элементов. В качестве альтернативы можно исследовать механическую деформацию нанотрубок с фиксированной хиральностью, а не изучать нанотрубки с различными индексами хиральности.

Геометрия нанотрубок может быть полностью охарактеризована индексами хиральности (n₁, n₂). Эти индексы дают информацию о симметрии нанотрубки, длине вектора трансляции, количестве атомов в элементарной ячейке и диаметре [70–72]. Нанотрубки с индексами (n, n) и (n, 0) являются ахиральными, обладающими инверсионной симметрией, в то время как другие нанотрубки являются хиральными [72].

Известно, что деформации оказывают влияние электронные свойства нанотрубок, такие как ширина запрещенной зоны, положение вершины валентной зоны (E_{VB}) и дна зоны проводимости (E_{CB}). Исследованию аксиальной деформации нанотрубок на основе MoS₂ и WS₂ было посвящено несколько работ [73–75]. Эти исследования показали, что нанотрубки MoS₂ могут растягиваться до 16 %, а нанотрубки WS₂ - до 12 % перед разрывом. Структура электронных зон этих нанотрубок может быть изменена путем приложения растягивающей силы,

что делает их потенциальными кандидатами для применения в наноэлектронике, например в переключателях и пьезорезистивных сенсорах.

Торсионная деформация нанотрубок теоретически изучалась на примере углеродных и кремниевых нанотрубок [76–78]. Дьячков и соавт. [77] исследовали углеродные и кремниевые нанотрубки методом линеаризованных присоединенных цилиндрических волн (LACW) и показали, как изменение угла скручивания ω влияет на запрещенную зону, а также на положение вершины валентной зоны (E_{VB}) и дна зоны проводимости (E_{CB}). Зонная структура хиральных и ахиральных нанотрубок также меняется в зависимости от ω . При этом диапазон угла скручивания ω был ограничен [-2°, 2°], чтобы избежать возможного разрушения нанотрубки, поскольку, данный подход не предполагает оптимизации геометрии.

В работе [79] торсионные деформации нанотрубок на основе MoS₂ были исследованы методом молекулярной динамики с упором исключительно на механические свойства. В последующей работе [80] были проведены DFTрасчеты нанотрубок дисульфидов переходных металлов с различными металлами, но изучались только ахиральные нанотрубки, и рассматривались только аксиальные деформации.

Таким образом, *ab initio* расчеты, направленные на изучение влияния торсионной деформации на электронные свойства НТ на основе WS₂ практически отсутствуют.

Было проведено несколько исследований по экспериментальному изучению торсионных деформаций многостенных нанотрубок на основе WS₂. В работах [81,82] описан метод, при котором нанотрубка WS₂ фиксируется по краям, а игла атомно-силового микроскопа толкает " весло", закрепленное в середине HT, вызывая торсионную деформацию структуры (Рисунок 5). Эта методика позволяет точно измерять механические и электронные свойств, таких как модуль сдвига и проводимость материала. Кроме того, с помощью полуэмпирического

метода DFTB были проведены теоретические исследования изменения зонной структуры ахиральных нанотрубок на основе WS₂ под действием торсионных деформаций [83].

Рисунок 5. Схематическое изображение экспериментальной установки для изучения торсионных деформаций нанотрубок [82].

Глава 2. Методическая часть

2.1. Теория лайн групп

Рассмотрим элементы теории спиральных групп симметрии. Более подробное описание можно найти в книге М. Дамняновича и И. Милошевич [7]. Q1D полимеры — это системы, в которых основные компоненты (мономеры) регулярно повторяются в одном направлении. Симметрия таких систем может быть описана путем изучения правила описывающего расположения мономеров в цепи и внутренней симметрии самого мономера [7].

В данном исследовании термины "мономер" и "минимальная ячейка" (symcell) используются в соответствии с определением, предоставленным М. Дамняновичем [7]. А именно: Мономер - минимальная часть системы, достаточная для генерации всей системы только действием обобщенных трансляций (**Z**). Минимальная ячейка (Symcell): минимальная часть мономера, способная воспроизвести всю систему действием полной линейной группы (*L* = *ZP*).

При изучении квази-одномерных наносистем, исследователи обычно ограничиваются использованием стержневых групп, которые являются подгруппами пространственных групп, и, следовательно, порядки осей вращения могут принимать значения 1,2,3,4,6. Группы стержней составляют подмножество более общих спиральных групп, используемых для описания симметрии одномерных наносистем [72].

В общем виде, лайн-группа *L* описывающая симметрию Q1D факторизуется следующим образом:

$$\boldsymbol{L} = \boldsymbol{Z}\boldsymbol{P} \tag{1}$$

где *P* аксиальная точечная группа, отражающая симметрию мономера, совместимая с группой обобщенных трансляций *Z*. Известно 13 семейств лайн групп [7]. Однако симметрия рассматриваемых в диссертации систем описывается

лайн группами первого ($L = Z \otimes C_n$) или пятого ($L = Z \otimes C_n \wedge D_1$) семейств соответственно.

Группа **Z** – это циклическая группа, образованная операцией обобщенной трансляции Z = (X|f), где X – либо операция вращение C_Q , либо плоскость скольжения σ_v , а f > 0 — частичный перенос вдоль оси *Oz*. C_Q представляет из себя вращение вокруг винтовой оси на угол φ определяемый по формуле:

$$\varphi = \frac{2\pi}{Q} \text{ or } \varphi = \frac{360^{\circ}}{Q}, Q \ge 1$$
(2)

таким образом, Q является порядком винтовой оси.

При этом, лайн группа может как содержать, так и не содержать подгруппу чистых трансляций. Если *Q* является иррациональным числом, то система обладает только спиральной периодичностью и называется «несоразмерной». Трансляционная периодичность появляется только в случае, когда *Q* может быть представлено в виде:

$$Q = q/r \tag{3}$$

здесь q и r – взаимно простые положительные числа, такие что $q \ge r$, в этом случае $Z = (C_q^r | f)$, а угол вращения определяется по формуле:

$$\varphi = \frac{2\pi r}{q} \text{ or } \varphi = \frac{360^{\circ} r}{q}.$$
(4)

Операции Z повторённая q раз даёт вращение на угол $2\pi r$ и сдвиг на величину t вдоль оси вращения:

$$\left(C_q^r \middle| f\right)^q = \left((C_q^r)^q \middle| qf\right) = (E|t)$$
⁽⁵⁾

$$t = qf \tag{6}$$

где *t* – вектор трансляции, а *E* – единичная операция. Такие группы называют «соразмерными».

Таким образом, чтобы задать соразмерную структуру, достаточно задать три параметра (q, r, f), где q и r определяются Q, такой способ представления лайн группы называется спиральной факторизацией. Соразмерные группы также

могут быть представлены в трансляционной факторизации как L = TF, где T это циклическая группа одномерных трансляций, а факторгруппа F = L/T описывает точечную симметрию системы [72].

Группы линий в трансляционной факторизации могут быть разделены на левые смежные классы по подгруппе T(t):

$$\boldsymbol{L} = \sum_{j=1}^{q} \left(C_{q}^{j} \middle| \left\{ \frac{jp}{q} \right\} t \right) \boldsymbol{T}(t) - \text{первое семейство}$$
(7)

$$\boldsymbol{L} = \sum_{j=1}^{q} \left(C_{q}^{j} \middle| \left\{ \frac{jp}{q} \right\} t \right) \boldsymbol{T}(t) + D_{1} \sum_{j=1}^{q} \left(C_{q}^{j} \middle| \left\{ \frac{jp}{q} \right\} t \right) \boldsymbol{T}(t) - \text{пятое}$$
(8)

семейство

Элемент $\left(C_q^j \middle| \left\{\frac{jp}{q}\right\} t\right)$ представляет собой вращение на угол $\frac{2\pi}{q}j$ (j = 1, 2, ..., q)и сдвиг вдоль оси Oz на дробную часть $\frac{jp}{q}t$. Здесь присутствует параметр p, который задаёт сдвиг на долю вектора трансляции, при этом, обязательным условием является требование p < q. В случае если $C_n = C_1$, то группа L = $Z \times C_1$ полностью совпадает с группой Z, а параметры q и p взаимно простые. В случае, если n > 1, наибольший общий делитель (НОД) будет равен НОД(q, p) =n, тогда удобно выделять не только q и p, но ещё и $\tilde{q} = \frac{q}{n}$ и $\tilde{p} = \frac{p}{n}$. Использование \tilde{q} вместо q удобно при наличии систем с одинаковыми Z и разными P. При этом, для того чтобы получить минимальный вектор трансляции в уравнение 6 необходимо подставлять именно \tilde{q} .

Наличие трансляционной факторизации позволяет использовать кристаллографическую нотацию для обозначения лайн групп. Лайн группы первого семейства обозначаются как Lq_p . Лайн группы пятого семейства обозначаются как Lq_p22 или Lq_p2 для четных и нечетных n соответственно.

Как было сказано ранее, группы с рациональным Q могут быть описаны в рамках двух факторизаций – спиральной, описываемой параметрами (q, r, f) и кристаллографической факторизации (q, p, t). Параметр q одинаковый в обоих

факторизациях, а параметры t, f связаны уравнением 6. Параметры r, p связаны уравнением:

$$rp = lq + n \tag{9}$$

здесь *l* – некоторое целое положительное число.

Поскольку *r* – число оборотов на 360° вокруг винтовой, эту величину удобно использовать как число витков. Таким образом, можно рассчитать высоту витка *h* по формуле:

$$h = A/r = f \cdot Q \tag{10}$$

Для наглядности, величины представленные в формулах 4, 6, 10 представлены на рисунке 6.

Рисунок 6. Графическое представление сдвига f, высоты витка h, вектора трансляции t и угла скручивания φ на примере наногелицена ас[1.1]NH с группой симметрии L13₇. Оранжевый и розовый фрагменты связаны операцией обобщенной трансляции ($C_0|f$).

Аналогично вышеуказанным формулам, энергия на мономер считается по формуле:

$$E_{mono} = E_{total}/q \tag{11}$$

В ходе изучения свойств квази-одномерных наноструктур возникает необходимость понизить симметрию изучаемого объекта. При понижении симметрии растёт число симметрийно неприводимых атомов. Необходимость в понижении симметрии возникает при изучении электро-электронных или фононфононных взаимодействий, а также при изучении областей экстремальных деформаций.

Предположим, что есть некоторая группа симметрии $L_1 = Z \wedge D_1$, принадлежащая к пятому семейству. Операцию U (поворот на 180° вокруг оси, перпендикулярной вектору трансляции) можно удалить, таким образом, получив новую группу L_2 , однако для того, чтобы смоделировать ту же наноструктуру, необходимо удвоить симметрийно неприводимую часть ячейки для сохранения исходной структуры. Таким образом, для описания одной и той же структуры можно использовать разные группы симметрии, что, в некоторых случаях может приводить к разным результатам.

Помимо этого, возможно создание различных лайн групп путем дополнительного снижения симметрии, нет препятствий для формирования групп L_3 , L_4 или L_5 (Z' и Z'' являются подгруппами группы Z с индексами 2 и 3 соответственно):

$$\boldsymbol{L}_1 = \boldsymbol{Z} \wedge \boldsymbol{D}_1 \tag{12a}$$

$$\boldsymbol{L}_2 = \boldsymbol{Z} \otimes \boldsymbol{C}_1 \tag{12b}$$

$$\boldsymbol{L}_3 = \boldsymbol{Z}' \wedge \boldsymbol{D}_1 \tag{12c}$$

$$\boldsymbol{L}_4 = \boldsymbol{Z}' \otimes \boldsymbol{C}_1 \tag{12e}$$

$$\boldsymbol{L}_5 = \boldsymbol{Z}^{\prime\prime} \otimes \boldsymbol{C}_1 \tag{12d}$$

Для того, чтобы перейти от группы **Z** к подгруппе индекса 2, необходимо воспользоваться следующими формулами для изменения соответствующих параметров:

$$f' = 2 \cdot f \tag{13a}$$

$$Q' = \frac{Q}{2} = \frac{q}{2 \cdot r} \rightarrow \begin{cases} \frac{q'}{r}, & q' = \frac{q}{2}, & \text{для четных } q \\ \frac{q}{r'}, & r' = 2 \cdot r, & \text{для нечетных } q \end{cases}$$
(13b)

$$\varphi' = 2 \cdot \varphi \tag{13c}$$

Примеры понижения симметрии продемонстрирован на примере политвистана на рисунке 7.

Рисунок 7. Структуры политвистана, представленные с использованием различных линейных групп симметрии и ячеек симметрии: a) $L8_32$ с минимальной ячейкой CH и мономером C_2H_2 ; b) $L4_32$ с минимальной ячейкой C_2H_2 и мономером C_4H_4 ; c) $L8_3$ с минимальной ячейкой C_2H_2 и мономером C_2H_2 ; d) $L8_1$ с минимальной ячейкой C_6H_6 и мономером C_6H_6 . Атомы водорода обозначены белым цветом, атомы углерода – темным. Красное выделение указывает на атомы, относящиеся к минимальной ячейке, синим выделены атомы, полученных в результате действия операции U на минимальную ячейку (обозначена черной стрелкой), зеленое выделение используются для атомов, полученных в результате действия операции Z на атомы мономера.

Очевидно, что при сравнении структурных или энергетических характеристик вещества, сосчитанных с разными группами симметрии,

необходимо пересчитать их таким образом, чтобы они относились к мономерам с одинаковым составом. Т.е. для сравнения энергий на мономер, рассчитанных для структур 7а и 7d, необходимо первую величину умножить на 3.

Спиральная зона Бриллюэна (HBZ) или "зона Джонса" - еще одна важная часть изучения объектов со спиральной периодичностью. В рамках концепции HBZ учитывается спиральная симметрия наноструктуры. Так как группа Z является циклической абелевой группой, ее неприводимые представления задаются как $A_{\tilde{k}}(Z) = e^{i\tilde{k}f}$, где $\tilde{k} \in \left(-\frac{\pi}{f}, \frac{\pi}{f}\right]$. Здесь \tilde{k} может быть определен как спиральный волновой вектор, а его интервал $\left(-\frac{\pi}{f}, \frac{\pi}{f}\right]$ называется спиральной зоной Бриллюэна. Если симметрия системы определяется рациональным числом Q, то можно ввести неприводимые представления, которые определяются более традиционными квантовыми числами k, основанными на представлениях подгруппы трансляций T и изогональной группы $C_q: A_k(I|t) = e^{ikt}$, где $k \in$ $\left(-\frac{\pi}{t},\frac{\pi}{t}\right]$. Этот интервал является так называемой одномерной зоной Бриллюэна. Поскольку $\frac{\pi}{f} = q \frac{\pi}{a}$, очевидно, что спиральная зона Брильона в q раз больше ее трансляционного аналога несмотря на то, что они относятся к одной и той же наноструктуре. Это существенное преимущество данного подхода, поскольку он позволяет проследить эволюцию электронных полос при торсионных искажениях, давая ценное представление о том, как структурные изменения влияют на электронные свойства материала. Методика построения спиральных зон Бриллюэна на основе результатов расчетов CRYSTAL17 была представлена в статье [84].

2.2. Приложение теории лайн групп к нанотрубкам с гексагональной морфологией

В данном разделе диссертационной работы будет дан краткий обзор использования теории лайн-групп в контексте моделирования нанотрубок с гексагональной морфологией. Для большего погружения в материал, обратитесь к монографиям [7,72] и статьям [70,71,85]. Симметрия НТ на основе дихалькогенидов переходных металлов подробна описана в работе [86].

Структуры нанотрубок с гексагональной морфологией, получаются путём сворачивания гексагонального слоя ($a = |\vec{a}_1| = |\vec{a}_2|$; $\alpha = 60^\circ$) и определяются парой ортогональных векторов: трансляционный вектор \vec{T} и хиральный вектор \vec{R} , в силу ортогональности выполняется условие $\vec{R} \cdot \vec{T} = 0$ [72]. Хиральный вектор определяется как $\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2$, где n_1 и n_2 – индексы хиральности нанотрубки, которые можно записать в виде $n(\tilde{n}_1, \tilde{n}_2)$, где $n = \text{HOД}(n_1, n_2)$. Компоненты вектора трансляции $\vec{T} = t_1 \vec{a}_1 + t_2 \vec{a}_2$ можно определить через индексы хиральности используя условие ортогональности:

$$\frac{t_1}{t_2} = -\frac{2\tilde{n}_2 + \tilde{n}_1}{2\tilde{n}_1 + \tilde{n}_2} \tag{14}$$

Не менее важной характеристикой структуры НТ является спиральный вектор $\vec{H} = h_1 \vec{a}_1 + h_2 \vec{a}_2$. Индексы h_1 и h_2 могут быть определены по формуле:

$$\tilde{n}_1 h_2 - \tilde{n}_2 h_1 = 1 \tag{15}$$

Важно заметить, что вектора \vec{H} и \vec{T} определяются именно (\tilde{n}_1, \tilde{n}_2), что означает, что все НТ вектор хиральности которых лежит на одном луче, имеют одинаковые спиральные и трансляционные вектора, это показано на рисунке 8.

Рисунок 8. Векторы хиральности нанотрубок, свернутых из слоя с гексагональной морфологией; фиолетовые сферы представляют атомы W, желтые сферы - атомы S.

В зависимости от значений, которые принимают индексы, существует три типа HT: два типа ахиральных, а именно "зигзаг" и "кресло", для которых векторы хиральности равны (n, 0) и (n, n), соответственно. Хиральные трубки определяются вектором сворачивания (n_1, n_2) , где $n_1 \neq n_2$, и ни один из индексов не равен нулю. Структурные различия между тремя типами HT показаны на рисунке 9. Ахиральные WS₂ нанотрубки относятся к семействам 4 с $P = C_{nh}$ (кресло) и 8 с $P = C_{nv}$ (зигзаг). Все остальные комбинации индексов (n_1, n_2) дают хиральные трубки $P = C_n$. Важно также отметить, что в случае, когда n_1 и n_2 имеют наибольший общий делитель n, отличный от единицы, его удобно выносить за скобки: $n(\tilde{n}_1, \tilde{n}_2)$, так как в этом случае векторы $(\tilde{n}_1, \tilde{n}_2)$ и (n_1, n_2) коллинеарны.

В зависимости от значений, которые принимают индексы существует три вида HT: два вида ахиральных, а именно «зигзаг» и «кресло», для которых вектора хиральности равны (n, 0) и (n, n) соответственно. Хиральные трубки задаются вектором (n, m), где n $\neq m$ и ни один из индексов не равен нулю. Структурные между тремя типами HT показаны на рисунке 9 различия показаны.

Рисунок 9. Типы нанотрубок: a) ахиральные типа «кресла» (n, n), b) ахиральные типа «зигзаг» (n, 0), c) хиральные (n_1, n_2) .

При сворачивании слоя WS_2 в хиральную нанотрубку группа симметрии слоя заменяется на спиральную группу $L = T_q^r C_n$, которая принадлежит к первому семейству.

Все параметры группы симметрии НТ можно найти, зная вектора $\vec{R}, \vec{T}, \vec{H}$:

$$q = n\tilde{q} = n \begin{vmatrix} \tilde{n}_1 & \tilde{n}_2 \\ t_1 & t_2 \end{vmatrix}$$
(16)
$$r = h_1 t_2 - h_2 t_1$$
(17)

С практической точки зрения удобно ввести переменную $\tilde{Q} = \frac{\tilde{q}}{r}$, поскольку она относиться только к винтовой оси и не зависит от операций группы C_n , таким образом, для любого набора нанотрубок определяемого формулой $n(\tilde{n}_1, \tilde{n}_2)$ значение \tilde{Q} , а также $\tilde{\varphi} = \frac{360^\circ}{\tilde{Q}}$, остаётся неизменным.

Для определения групп, описывающих деформированные структуры HT, необходимо найти такой набор \tilde{Q}_x , чтобы угол кручения $\omega = \tilde{\varphi}_x - \tilde{\varphi}$ попадал в заранее заданный диапазон, который определяется структурой и составом изучаемой HT.

Используя формулы (16) и (17), можно легко определить значение \tilde{Q} для начальной нанотрубки. С помощью метода перечисления возможно выявить набор значений \tilde{q} и r, при которых угол кручения ω попадает в заданный

диапазон. Важно установить максимальное значение для \tilde{q} , чтобы избежать избыточной вычислительной сложности. Увеличение $\tilde{q} < \tilde{q}_{max}$ приводит к соответствующему увеличению количества формульных единиц в элементарной ячейке согласно формуле $q = n\tilde{q}$, что усложняет квантово-химические расчеты.

2.3. Квантовохимические методы моделирования квази-одномерных объектов

В работе [61] был представлен алгоритм, предназначенный для изучения квазиодномерных наноструктур методами квантовой химии. Он основан на использовании программы CRYSTAL17 [87,88], позволяющей моделировать соразмерные структуры в трансляционной факторизации, оптимизировать атомную и электронную структуры и рассчитывать физические свойства.

Поскольку CRYSTAL17 требует трансляционной периодичности, свойства структур с иррациональным *Q* определяются путем интерполяции между свойствами структур с рациональным *Q* [61] с помощью SciPy [89] реализации интерполяции Акимы [90]. Для визуализации структур используется VMD [91] с трассировкой лучей tachyon [92]. Для визуализации данных также использовались Matplotlib [93], seaborn [94] и gnuplot [95]. Расчеты нековалентных взаимодействий (NCI) проводили с помощью программы NCImilano [96].

Все квантовохимические расчеты в данной работе были выполнены в программе CRYSTAL17 [87,88] в рамках теории функционала плотности, различные квантовохимические методы были использованы для моделирования политвистана, наногелиценов и нанотрубок на основе WS₂.

Наногелицены

Гибридный обменно-корреляционный функционал PBE0 [97] и базисный набор POB-TZVP [98] использовались для моделирования наногелиценов. Критерий сходимости для полной электронной энергии при оптимизации геометрии был выбран 10⁻⁸ а.u. При расчете решеточных сумм кулоновских и обменных интегралов использовались строгие критерии точности (10⁻⁷ 10⁻⁷ 10⁻⁷

CRYSTAL17 [99]. Постоянные решетки и позиции атомов были полностью оптимизированы до уменьшения всех сил, действующих на атомы, ниже значения 0.0003 а.u. Для генерации k-точек в зоне Бриллюэна использовался метод Монкхорста-Пака (Monkhorst-Pack) [100], с 32 k-точками. Учет спиральной симметрии на всех этапах расчета значительно снижает вычислительные затраты. Для проверки расчетной схемы были проведены расчеты атомной и электронной структуры графита и алмаза. Полученные результаты демонстрируют хорошее согласие между параметрами кристаллической решетки, энергией образования графена и удовлетворительное согласие с величиной запрещенной зоны алмаза, см. Таблицу 1.

Энергия межслоевого связывания графита (E_b), которая представляет собой энергию, необходимую для разделения объемного кристалла на отдельные слои, была рассчитана как разница между энергиями графита и графена на один атом: $E_b = E(graphene)/2 - E(graphite)/4$, где 2 и 4 - количество атомов углерода в периодической ячейке графена и графита, соответственно. Рассчитанное значение E_b находится в интервале экспериментальных значений.

	Графит (<i>P</i> 6 ₃ / <i>mmc</i>)		Алмаз ($Fd\overline{3}m$)	
	эта работа	эксперимент	эта работа	эксперимент
Параметры	a = 2.444,	a = 2.464,	a = 3544	a = 3.567
решетки, Å	c = 6.437	$\mathbf{c} = 6.711 \ [101]$	a = 3.544	[102]
Расстояние С-С, Å	1.411	1.422 [101]	1.535	1.544 [102]
BM ^a , ГПа	68.1	36 [103]	480.4	442 [104]
<i>Е</i> ь ^ь , мэВ/атом	56.5	31 [105], 44.0 ± 3.8	_	_
		[106], 60.4 [107]		
$E_{\rm gap}^{\rm c}, \Im { m B}$	метал	метал	6.08	5.5 [108]

T 🖌 1	Л		U	1
Гаолина Г.	. Расчетные и	экспериментальные	своиства гг	афита и апмаза
I uooningu I			ebonie i ba i p	

а - объёмный модуль упругости;

b - энергия межслоевого связывания графита;

с – ширина запрещенной зоны.

Политвистан

Гибридный обменно-корреляционный функционал PBE0 [97] и базисный набор POB-TZVP [98] использовались для моделирования политвистана. Критерий сходимости для полной электронной энергии при оптимизации геометрии был выбран 10⁻⁸ а.u. При расчете решеточных сумм кулоновских и обменных интегралов использовались строгие критерии точности (10⁻⁸ 10⁻⁸ 10⁻⁸ 10⁻⁹ 10⁻¹⁶). Постоянные решетки и позиции атомов были полностью оптимизированы до уменьшения всех сил, действующих на атомы, ниже значения 0.00001 а.u. Для генерации k-точек в зоне Бриллюэна использовался метод Монкхорста-Пака [100], с 8 k-точками. Полученные результаты свидетельствуют о хорошем согласии между параметрами кристаллической решетки и удовлетворительном согласии с величиной запрещенной зоны алмаза, см. Таблицу 2.

	Алмаз ($Fd\overline{3}m$)	
	эта работа	эксперимент
Параметры решетки, Å	a = 3.544	a = 3.567 [102]
Расстояние С-С, Å	1.535	1.544 [102]
ВМ, ГПа	480.4	442 [104]
$E_{gap},$ эВ	6.04	5.5 [108]

Таблица 2. Расчетные и экспериментальные свойства графита и алмаза.

Нанотрубки WS₂

Гибридный обменно-корреляционный функционала HSE06 [109] использовался для систем на основе WS₂. Для учета межслоевого взаимодействия Ван-дер-Ваальса в объемном кристалле была использована полуэмпирическая поправка Гримме [110]. Релятивистские псевдопотенциалы и соответствующие базисные наборы были взяты те же, что и в [67]. Более подробную информацию
об использованном в работе базисе и псевдопотенциалах можно найти в Приложении.

Критерий сходимости для полной электронной энергии при оптимизации геометрии был выбран 10⁻⁸ а.u. Постоянные решетки и позиции атомов были полностью оптимизированы до уменьшения всех сил, действующих на атомы, ниже значения 0.005 а.u. Для генерации k-точек в зоне Бриллюэна использовался метод Монкхорста-Пака [100], с 18 k-точками. При расчете решеточных сумм кулоновских и обменных интегралов использовались строгие критерии точности (10⁻⁸ 10⁻⁸ 10⁻⁸ 10⁻⁸ 10⁻¹⁶).

Для подтверждения расчетной схемы были проведены атомные и электронно-структурные расчеты для 2H-WS₂ и одного монослоя 0001, состоящего из трехатомных плоскостей (S-W-S). Экспериментальные измерения показали, что фундаментальная запрещенная зона 2.4 эВ для нанолиста WS₂ (0001) толщиной 1 монослой на подложках Si [111] и α-Al₂O₃ [112], что значительно больше, чем экспериментальная запрещенная зона объемного кристалла WS₂ (1.4 эB).

Полученные результаты демонстрируют хорошее согласие с экспериментальными значениями параметров кристаллической решетки и разумное согласие с величиной запрещенной зоны, см. Таблицу 3.

Таблица 3. Сравнение расчетных свойств объемного кристалла 2H-WS₂ и монослоя с экспериментальными данными.

	2H-WS	₂ (P6 ₃ /mmc)	Монослой		
	эта работа	эксперимент	эта работа	эксперимент	
Параметры	a = 3.157,	<i>a</i> = 3.153 [113],	2 161		
решетки, Å	c = 12.530	<i>c</i> = 12.323 [113]	5.101	-	
$E_{\rm gap},{\rm eV}$	1.63	1.4 [114]	2.53	2.4 [111,112]	

37

Глава 3. Результаты моделирования квази-одномерных наноструктур 3.1. Моделирование наноструктур содержащих *sp*³-гибридизованные атомы углерода

На первом этапе исследования было решено смоделировать структуру и свойства углеродных нанонитей, принимая во внимание результаты работ [28,29]. Была построена структура политвистана (рисунок 10), который, согласно литературным данным, является наиболее стабильной УНН. Политвистан представляет собой сверхтонкую углеродную нанонить, на внешней стороне которой расположены атомы водорода. Каждый атом углерода связан с тремя атомами углерода и одним атомом водорода. Симметрийно неприводимым является фрагмент CH, а все остальные атомы получены путем применения к фрагменту операций симметрии спиральной группы.

Помимо изучения влияния торсионных деформаций на свойства политвистана, было решено изучить влияние выбора симметрийно неприводимого фрагментами (СНФ) на результаты моделирования. После проведения некоторых предварительных расчетов, было решено использовать минимально возможный СНФ СН, и фрагмент, соответствующий «топологической элементарной ячейке» С₆Н₆. Для сравнения нанонитей с используемыми СНФ необходимо учитывать, что значения углов поворота для этих структур отличаются, но удовлетворяют соотношению:

$$\varphi_{\rm CH} = \frac{\left(\phi_{C_6H_6} + 360^\circ\right)}{3}; \tag{18}$$

Аналогичным образом следует поступать и для сравнения энергии образования структур с разными СНФ. Необходимо привести используемые значения энергии к одной формульной единице бензола (т.е. все энергии рассчитаны с учетом формульной единицы С₆Н₆):

38

$$\Delta E(\varphi_{\rm CH}) = \begin{cases} \frac{3 \cdot E_{CH}(\varphi_{CH})}{q} - E(Benzene) \\ \frac{E_{C_6H_6}(\varphi_{CH})}{q} - E(Benzene) \end{cases}$$
(19)

где E(Benzene) - энергия молекулы бензола в вакууме, $E_{CH}(\varphi_{CH})$ и $E_{C_6H_6}(\varphi_{CH})$ суммарные энергии структур с СНФ СН и С₆H₆ соответственно. Для простоты, φ_{CH} будет использоваться в тексте и на рисунках вместо $\varphi_{C_6H_6}$, значение $\varphi_{C_6H_6}$ используется только для структур, которые не могут быть описаны с помощью СНФ СН.

Рисунок 10. Структура политвистана с $\varphi_{C_6H_6} = 22.5^\circ$ с СНФ С₆H₆ в двух вариантах: винтовая ось проходит через центр нити политвистана (a, b); винтовая ось смещена к краю политвистана (c, d). (Винтовая ось показана красным цветом).

Изучение таких искажений как показано на Рисунке 10с также было частью данной работы: структура политвистана искажалась, после чего геометрия структуры полностью оптимизировалась. Во всех случаях конечная геометрия соответствует "прямой" конфигурации политвистана (Рисунок 10а).

Полученные данные (Рисунок 11) показывают, что в области энергетического минимума наблюдаются очень схожие результаты, независимо от используемой СНФ. В таблице 4 приведены характеристики обнаруженных энергетических минимумов для каждого СНФ в сравнении с имеющимися литературными данными. Небольшие различия обусловлены разным количеством расчетных точек в области минимума, используемых при аппроксимации, так как группы с рациональным Q в этой области имеют очень высокие значения q, что значительно усложняет расчеты.

Рисунок 11. График зависимости относительной энергии ΔE от ϕ_{CH} .

Значительное различие наблюдается в точке $\varphi_{CH} = 140^{\circ}$. Этот эффект показан на Рисунках 11 и 12. При использовании СНФ С₆Н₆ происходит необратимая деформация политвистана с образованием новой УНН. Переход между этими нанонитями вызывает значительные изменения геометрии. Это можно объяснить нарушением симметрии, вызванным кручением. Обе структуры имеют одинаковую элементарную ячейку: $L18_{13}2$ содержит 36 СНФ СН, а $L6_1$ - 6 СНФ С₆Н₆, что дает одну и ту же элементарную ячейку С₃₆Н₃₆. Уменьшение числа операций симметрии для одной и той же структуры (36 для $L18_{13}2$ и 6 для $L6_1$) дает возможность структуре с более низкой симметрией превратиться в нанонить с меньшей энергией путем спонтанного нарушения политвистановой симметрии. Таким образом, использование φ_{CH} вместо $\varphi_{C_6H_6}$ для структуры $L6_1$ (C₆H₆) является грубым приближением, так как она не может быть определена с помощью СНФ СН.

Поскольку в случае сильного кручения выбор СНФ может повлиять на результат моделирования, было решено ограничить исследование механических и электронных свойств небольшой областью вокруг точки энергетического минимума с использованием СНФ СН, так как, согласно топологической теореме Abud-Sartori [115], экстремумы значений полной энергии соответствуют особым конфигурациям, обладающих повышенной симметрией. Для политвистана наблюдается только один энергетический минимум, но в случае других квазиодномерных структур возможны более сложные ситуации [61].

В таблице 4 полученные результаты сравниваются с литературными данными. Различия в величине E_{gap} объясняются использованием разных расчетных схем. В одной работе [28] представлены результаты, полученные с использованием периодических граничных условий (ПГУ) без учета симметрии линейных групп. Другая работа [8] основана на моделировании политвистана как достаточно длинной олигомерной молекулы. Рассчитанные структурные

41

параметры политвистана находятся в хорошем согласии с литературными данными. Расчеты для обеих СНФ также хорошо согласуются, небольшие различия могут быть вызваны погрешностями аппроксимации. Тем не менее, основанный на теории спиральных групп, позволяет достаточно точно определить положение энергетического минимума для бесконечной политвистана.

Рисунок 13. Структура политвистана (СНФ - СН) на которой связи С-С различной длины окрашены разными цветами. Связи С-Н окрашены белым цветом.

В точках, близких к энергетическому минимуму (*L*83₃₆2 (CH) и *L*12₁ (C₆H₆)), рассчитаны фононные частоты в Г-точке зоны Бриллюэна (см. Таблицы SI1 и SI2). Отсутствие мнимых частот в полученных результатах позволяет сделать вывод о том, что полученные структуры политвистана колебательно устойчивы.

Таблица 4. Сравнение энергетических, геометрических и электронных свойств для структур, наиболее близких к энергетическим минимумам.

	Эта работа	Эта работа	Ref. [28,29]	Ref. [8] (мол.	
	СН СНФ	C_6H_6 CH Φ	(период. модель)	модель)	
Q ^a	2.763	11.667	2.769	-	
φ_{CH} ^b , ^o	~130.289	~130.285	130.000	-	
<i>∆Е</i> °, кДж/моль	-188.65	-188.65	-56.93 [29]	-	
E_{gap} ^d , \Im B	8.12	8.12	3.52 [29]	-	
f ^e , Å	0.806	0.806	0.82	0.926^{*}	
C1-H ^f , Å	1.094	1.094	-	1.096	
C1-C2 ^f , Å	1.525	1.523		1.5402	
C1-C3 ^f , Å	1.549	1.550	1.54 - 1.57	1.5731	
C1-C4 ^f , Å	1.531	1.532		1.5571	
C3-C1-C2 ^g , °	104.20	104.19		104.42	
C4-C1-C2 ^g , °	110.36	110.35	-	109.27	
C3-C1-C4 ^g , °	109.37	109.42		109.78	
R _{inner} ^h , Å	1.26	1.26	1.29	1.28	

а – порядок винтовой оси;

b – спиральный угол, указанный на СН фрагмент;

с – относительная энергия ф-ла (19);

d – ширина запрещенной зоны;

е-частичный перенос;

f – длины связей, показанных на рисунке 13;

g – значения углов, показанных на рисунке 13;

h – радиус углеродной трубки;

* - пересчитано согласно представленным данным;

Рисунок 14. а) график зависимости $E_{gap}(\varphi_{CH})$ b) электронные PDOS для структур с разными φ_{CH} .

Еще одним показателем небольшого влияния выбора различных СНФ на свойства структуры является сравнение *E*_{gap} (Рисунок 14а): точки, рассчитанные с СНФ С₆Н₆, лежат точно на интерполяционной кривой СН.

Сопоставление данных, представленных на рисунке 14, позволяет сделать вывод, что изменение ширины запрещенной зоны происходит в основном за счет 2*p*-состояний углерода в вершине валентной зоны. По-видимому, это приводит к относительно небольшому изменению запрещенной зоны вблизи точки минимума.

Изучение механических свойств

Следующим шагом в изучении свойств политвистана стало исследование механических свойств, таких как модуль Юнга и модуль сдвига для структуры с минимальной энергией. Для расчета модуля Юнга была использована стандартная формула, основанная на расчете изменения энергии при аксиальной деформации структуры:

$$Y = \frac{1}{V} \frac{d^2 E}{d\varepsilon^2} \tag{20}$$

$$V = \pi R^2 f_{eq} \tag{21}$$

$$\varepsilon = \frac{f}{f_{eq}} - 1 \tag{22}$$

в (20) - (22) *Y*,*V*, ε - модуль Юнга, объем наноструктуры и аксиальное напряжение соответственно. Выбор радиуса *R* не очевиден. В данной работе в качестве радиуса была выбрана сумма внутреннего радиуса углеродной трубки структуры с минимальной энергией и ван-дер-Ваальсова радиуса атома углерода. Под радиусом углеродной трубки следует понимать расстояние от атома углерода до винтовой оси. Такое приближение представляется разумным и позволяет избавиться от шума на торсионной кривой.

Рисунок 15. Зависимость *Y* от спирального угла в области, близкой к энергетическому минимуму.

Полученные значения модуля Юнга варьируются в диапазоне ~625-650 ГПа в зависимости от ϕ_{CH} , при этом существует только один экстремум, и он находится в точке ϕ_{CH} , близкой к энергетическому минимуму. На рисунке 15 показано, что увеличение модуля Юнга происходит достаточно плавно, независимо от направления скручивания.

Согласно [116], энергия кручения *E*(Δφ) на единицу длины (в области, близкой к энергетическому минимуму) выражается как:

$$E(\Delta\varphi) = C \frac{\Delta\varphi^2}{2}$$
(23)

где *C* - жесткость на кручение, а $\Delta \phi$ - угол поворота на единицу длины. В теории спиральных групп угол ϕ определяется как угол на частичный перенос *f*, которую можно рассматривать как единицу длины.

$$\varphi = \varphi_{eq} - \Delta \varphi \tag{24}$$

46

При расчете модуля сдвига политвистана для трех нижайших энергетических структур справедлива аппроксимация полиномом второго порядка:

$$E(\varphi) = a\varphi^2 + b\varphi + c \tag{25}$$

Подставляя уравнение (24) в (25), получаем:

$$E(\Delta\varphi) = a\Delta\varphi^2 - \Delta\varphi(2a\varphi_{eq} + b) + a\varphi_{eq}^2 + b\varphi_{eq} + c$$
(26)

Сравнивая формулы (23) и (26), получим, что $(2a\varphi_{eq} + b)$ и $(a\varphi_{eq}^2 + b\varphi_{eq} + c)$ должны быть равны нулю, и следовательно С = $\alpha/2$ Поскольку политвистан можно рассматривать как цилиндрический стержень, для расчета модуля упругости *G* была использована следующая формула [61]:

$$G = \frac{2C}{\pi R^4} \tag{27}$$

Таблица 5. Механические свойства политвистана в точке энергетического минимума.

		Расчеты период. Расчеты мол			
	9 1a paoota	модель [28]	мех. [19]		
<i>Y</i> , ГПа	0.62*10 ⁻³	$1.11 \cdot 10^3$	$0.95 \cdot 10^3$		
<i>С</i> , Дж*м/рад ²	3.35.10-28	-	-		
<i>G</i> , ГПа	27.74	-	-		

В таблице 5 представлены результаты расчетов механических характеристик политвистана, из которых следует, что политвистан характеризуется как очень прочный и негибкий материал.

Рисунок 16. Двухпараметрические карты зависимости $E_{gap}(\varphi_{CH}, \varepsilon)$ политвистана. Область исследования определена интервалами $\varphi_{CH} \in [126.486^\circ, 133.333^\circ]$ и ε [-0.04, 0.04].

Следующим шагом был расчет карты зависимости запрещенной зоны политвистана от аксиальной деформации (ε) и спирального угла (ϕ_{CH}). Согласно данным представленным на рисунке 16, видно, что аксиальная деформация оказывает ограниченное влияние на ширину запрещенной зоны. Помимо этого, карта показывает, что запрещенная зона является гладкой функцией и увеличивается с ростом аксиальной напряжения и спирального угла.

Полученные результаты дают нам представление о влиянии торсионных и аксиальных деформаций на электронные и механические свойства политвистана, что может быть использовано для создания материалов не только с заданными свойствами, но и с предсказуемым поведением. Потенциально это может

48

привести к прогрессу в создании, нановолокон, нанокомпозитов и армирование композитов с заранее известными свойствами и предсказуемым поведением. 3.2. Моделирование структуры и свойств

3.2. Моделирование структуры и свойств наногелиценов

В данной работе проведено сравнение свойств наногелиценов ac[1.1]NH и zz[1.2]NH с терминациями граней кресло и зигзаг соответственно. Данные наногелицены были выбраны, поскольку являются наименьшими представителями металлов в своих классах, за счет чего испытывают переход метал-изолятор (ПМИ) в следствии спонтанного понижения симметрии, что позволяет изучать и сравнивать влияние торсионных деформаций на магнитные свойства данных объектов.

Для каждого наногелицена было рассмотрено четыре состояния, каждое из которых имеет свою энергетическую кривую:

- «топо» диамагнитный металл, рассчитанный с наименьшим возможным СНФ. Расчеты проводились в интервалах φ: φ ∈ [56.25°, 68.57°] для ac[1.1]NH_{mono}, φ ∈ [54°, 69.23°] для zz[1.2]NH_{mono};
- 2. «ferro» ферромагнитный металл, спин-поляризованный вариант состояния "mono". Расчеты проводились в интервалах φ:
 φ ∈ [56.25°, 68.57°] для ac[1.1]NH_{ferro}, φ ∈ [54°, 69.23°] для zz[1.2]NH_{ferro};
- «dim» диамагнитный полупроводник, расчеты с удвоенным СНФ без спиновой поляризации. Расчеты проводились в интервалах φ: φ ∈ [112.5°, 137.14°] для ас[1.1]NH_{dim}, φ ∈ [112.50°, 132.63°] для zz[1.2]NH_{dim};
- 4. «af» антиферромагнитный полупроводник, расчеты «dim» состояния
 с учетом спиновой поляризации. Расчеты проводились в интервалах
 φ:

Перечисленные электронные состояния соответствуют минимальным (C_7H_3 и C_9H_3) и удвоенным ($C_{14}H_6$ и $C_{18}H_6$) СНФ ас[1.1]NH и zz[1.2]NH, соответственно (Рисунок 17).

Рисунок 17. Вид сверху на структуры рассмотренных NH. Представлены однопериодические ячейки с симметрией $L6_1$ (шесть СНФ) и $L3_1$ с удвоенным СНФ; интенсивность затемнения указывает на положение вдоль оси *Oz*. Увеличенные атомы представляют собой атомы одного СНФ. Черные и серые сферы — это атомы углерода и водорода, соответственно.

При учете спиновой поляризации состояния с удвоенным СНФ могут соответствовать антиферромагнитному полупроводнику (если имеет место переход Мотта-Хаббарда) или диамагнитному полупроводнику (переход Пайерлса) в зависимости от того, какое состояние энергетически более выгодно. Если спиновая поляризация невыгодна, то расчет с предварительной антиферромагнитной упорядоченностью «af» при оптимизации геометрии сходится к диамагнитному состоянию «dim». В этом случае энергия состояния «af» оценивается по расчету без оптимизации геометрии.

На рисунке 18 показаны зависимости относительной энергии от спирального угла для ac[1.1]NH и zz[1.2]NH. Поскольку рассматриваемые NH имеют разные атомные составы, их энергии нельзя сравнивать напрямую. В качестве точки нулевой энергии для наногелиценов были выбраны *L*6₁ "mono" состояния. Для расчетов относительной энергии использовалась следующая формула:

$$\Delta E_{\rm rel}(state, \varphi) = k \frac{E(state, \varphi)}{q} - \frac{E(mono, 60^\circ)}{3}$$
(27)

где *q* – число СНФ в примитивной элементарной ячейке, *E*(*state*, φ) - энергия NH_{state} со спиральным углом φ, k = 1 для «af» и «dim» состояний, и k = 2 для "mono" и "ferro" состояний.

Рис. 18. Зависимость относительной энергии (ф-ла 27) от спирального угла φ для a) ac[1.1]NH, b) zz[1.2]NH. Для сравнения приведены энергии «mono» и «ferro» состояний при удвоенных значениях спирального углов.

На рисунке 18 показано, что оба наногелицена имеют схожие свойства, которые определяются общими закономерностями в поведении Q1D-металлов [79,80]. Значения относительной энергии ас[1.1]NH сопоставимы со значениями

энергии zz[1.2]NH. В обоих случаях полупроводниковые состояния «dim» и «af» гораздо более предпочтительнее, металлических состояний «ferro» и «mono»

В обоих случаях глобальные энергетические минимумы расположены в районе ~123°. Для zz[1.2]NH также наблюдается очень неглубокий локальный минимум в районе ~116°, который отсутствует для ac[1.1]NH.

Рисунок 19. Виды сверху и сбоку атомных структур NH, соответствующих минимумам глобальной энергии. а) ac[1.1]NH_{dim}; ΔE_{rel} 123.73° = -24.96 кДж/моль, b) zz[1.2]NHaf; ΔE_{rel} 123.09° = -21.57 кДж/моль.

Состояния «ferro» существуют только в области глобальных минимумов для наногелиценов обоих терминаций. Понижение энергии «ferro» состояния

относительно энергетического минимума «mono» достигает 4 кДж/моль в случае ac[1.1]NH, что значительно превышает 0,4 кДж/моль для zz[1.2]NH.

Энергетическая стабилизация при спонтанном понижении симметрии максимальна в области глобального минимума. Согласно рисунку 18, оба состояния с пониженной симметрией («af» и «dim») в области минимумов характеризуются понижением энергии относительно «mono» на 13,3 кДж/моль и 10,4 кДж/моль в случае ac[1.1]NH и zz[1.2]NH, соответственно.

Наиболее интересным фактом является то, что тип наинизшего энергетическое состояние отличается для ac[1.1]NH и zz[1.2]NH. Согласно рисунку 18 и таблице 6, ac[1.1]NH в области глобального минимума является диамагнитным полупроводником, a zz[1.2]NH - антиферромагнитным. Другими словами, по крайней мере для исследованных NH, терминация граней определяет предпочтительность магнитного состояния («af» или «dim»), что воспроизводит поведение углеродных нанолент [9].

Общий вид энергетических кривых кручения также различается для NH с разными терминациями. Помимо уже упомянутого наличия локального минимума в области ~116°, характерного для наногелиценов с терминацией зигзаг (см. торсионные кривые в ([1,61]), энергетические кривые ас[1.1]NH антиферромагнитного и диамагнитного состояний чрезвычайно близки для φ > 127°. Важно отметить, что в этой области система не переходит спонтанно из одного состояния в другое, несмотря на близость значений относительной энергии, поэтому существует вероятность их взаимного сосуществования.

энергетическим минимумам.

Параметр	«mono»*		«ferro»*		«dim»		«af»	
Тип NH**	ac	ZZ	ac	ZZ	ac	ZZ	ac	ZZ
<i>φ</i> ^a , °	62.52	61.49	62.02	61.52	123.73	123.05	124.25	123.09
Q^{b}	5.7580	5.8558	5.8048	5.8522	2.9096	2.9257	2.8973	2.9246
ΔE_{rel} с, кДж/моль	-11.62	-11.16	-15.61	-12.59	-24.96	-18.89	-22.84	-21.57
$f^{d}, Å$	0.58	0.55	0.57	0.56	1.13	1.11	1.16	1.11
h ^e , Å	3.35	3.22	3.28	3.27	3.35	3.25	3.30	3.26
E_{gap}^{f} , $\Im B$	металл	металл	металл	металл	1.59	1.01	1.67	1.26
G ^g , ГПа	1.0	8.6	1.6	9.5	2.7	10.4	1.5	10.7

а – спиральный угол;

b – порядок винтовой оси;

с – относительная энергия ф-ла 27. В этой статье энергия рассчитывается для удвоенного СНФ, в отличие от работы [1];

d – частичный перенос;

е – высота витка;

f – ширина запрещенной зоны;

g – модуль сдвига;

* – в таблице для параметров Q, ϕ и f приведены их фактические значения, см. ф-лы 13а - 13с;

** – для zz[1.2]NH, значения свойств из данного исследования и работы [1] отличаются в последних значащих цифрах, поскольку использовались разные алгоритмы интерполяции.

Структурные, механические и электронные характеристики наногелиценов в полученных глобальных энергетических минимумах представлены в таблице 6.

Атомные структуры NH в их глобальных минимумах представлены на рисунке

19. Краевые шестиугольники ас[1.1]NH демонстрируют некоторые искажения,

характерные для терминации типа кресло.

Расчеты модулей сдвига показывают, что ac[1.1]NH более гибкий, чем zz[1.2]NH. Высота витка спирали имеет относительно небольшой диапазон

Таблица 6. Свойства структур NH, соответствующих полученным

значений для обоих наногелиценов и примерно равен межслоевому расстоянию в графите 3,35 Å [101]; тем не менее, шаг спирали ac[1.1]NH имеет тенденцию быть немного выше, чем у zz[1.2]NH для всех рассматриваемых состояний, как и частичный перенос. Можно предположить, что эти эффекты вызваны дополнительными взаимодействиями между p_z -орбиталями соседних витков в zz[1.2]NH. Действительно, на рисунке 19 видно, что у zz[1.2] больше углеродных шестиугольников в одном витке. Для более детального изучения взаимодействия между витками был проведен анализ нековалентных взаимодействий (NCI) для наиболее стабильных электронных состояний.

Рисунок 20. Карты $sign(\lambda_2) \cdot \rho$ нанесённые на изоповерхность (iso=0.5 a.u.) приведенного градиента электронной плотности (RDG) для NH с группой $L3_1$ a) ac[1.1]NH, e) zz[1.2]NH; диаграммы RDG - $sign(\lambda_2) \cdot \rho$: b) $L3_1$ ($\phi = 120^\circ$), c) $L32_3$ ($\phi = 123.750^\circ$), d) $L17_3$ ($\phi = 127.059^\circ$) для ac[1.1]NH. f) $L3_1$ ($\phi = 120^\circ$), g) $L41_3$ ($\phi = 122.927^\circ$), h) $L20_3$ ($\phi = 126^\circ$) для zz[1.2]NH. Области красного цвета относятся соответствуют

отталкиванию, области зеленого цвета - к ван-дер-ваальсовым взаимодействиям, а синий цвет используется для сильного притяжения.

Для лучшего понимания природы нековалентных взаимодействий и их анализа, рекомендуется ознакомиться с обзорной статьей [117].

Результаты анализа нековалентных взаимодействий для структур с различным спиральным углом представлены на рисунке 20. Заметное отталкивание в области $sign(\lambda_2) \cdot \rho \sim 0.02$, остается более или менее постоянным и демонстрирует стерический эффект внутри ароматических колец. Кроме того, в обоих случаях наблюдается отталкивание в области $sign(\lambda_2) \cdot \rho \geq 0.01$, связанное с отталкиванием внутри шахты. Видно (Рисунки 20f - 20d), что это отталкивание увеличивается за счет скручивания, так как оно больше всего влияет на атомы шахты. На рисунке 20f показаны две области притяжения - область примерно $sign(\lambda_2) \cdot \rho \leq -0.01$ соответствует притяжению внутри шахты, а область $sign(\lambda_2) \cdot \rho \in (-0.1, 0.1)$ смещенная к нулю указывает на межслоевое взаимодействие. Примечательно, что NCI в пределах шахты в большей степени подвержены изменениям из-за значительных структурных модификаций, что видно из рисунков 20f - 20h.

Аналогичную картину демонстрирует и наногелицен типа кресло, хотя в пиках наблюдается больше несоответствий, вызванных структурными различиями (рисунки 20b - 20d). Наличие дополнительного отталкивания для ac[1.1]NH (в области $sign(\lambda_2) \cdot \rho \sim 0.015$ на рисунке 20b) связано с отталкиванием между углеродами на краю ленты (рисунок 20a). Кроме того, взаимодействие между соседними парами водорода (рисунки 20b - 20d) дает наиболее отрицательные пики, которые не связаны с взаимодействием между витками.

Анализ NCI показывает, что для обоих рассматриваемых NH шахта имеет самые сильные области отталкивания и притяжения (очевидно, исключая области сильного отталкивания в центре ароматического кольца). Как и ожидалось, взаимодействия между витками обусловлены ван-дер-Ваальсовыми взаимодействиями, точнее π — π стэкингом. Наногелицен типа кресло имеет больше вариаций в профиле NCI из-за структурных различий с наногелиценом типа зигзаг.

Рисунок 21. Зависимость ширины запрещенной зоны от спирального угла ϕ of a) ac[1.1]NH, b) zz[1.2]NH.

На рисунке 21 показан график зависимости ширины запрещенной зоны, $E_{gap}(state, \phi)$, от спирального угла. Наибольшие значения $E_{gap}(state, \phi)$ расположены вблизи соответствующих энергетических минимумов, но не совпадают с ними. В случае zz[1.2]NH кривые $E_{gap}(dim, \phi)$ и $E_{gap}(af, \phi)$ не пересекаются и демонстрируют симбатное изменение (см. также [1]). Напротив, функции $E_{gap}(state, \phi)$ для ас[1.1]NH пересекаются в нескольких точках на торсионной кривой. Такое поведение не наблюдалось для наногелиценов типа зигзаг, но было показано для спиральных полиацетиленов [118].

Согласно данным в таблице 6, $E_{gap}(state, \varphi)$ несколько больше для ac[1.1]NH, чем для zz[1.2]NH. Торсионное искажение в любом направлении приводит к уменьшению $E_{gap}(state, \varphi)$ примерно на 0.5 эВ. Это делает наногелицены обеих хиральностей перспективными для механоэлектрических наноустройств, особенно если учесть, что торсионные искажения в изученном диапазоне обратимы.

Рисунок 22. Изоповерхность (iso = 0.005 a.u.) спиновой плотности рассматриваемых наногелиценов, для структур ближайших к энергетическому минимуму: ac[1.1]NH_{ferro} – $L64_{35}$, ac[1.1]NH_{af} – $L32_3$, zz[1.2]NH_{ferro} – $L41_6$, zz[1.2]NH_{af} – $L41_3$.

На рисунке 22 видно, что спиновая плотность «ferro»-состояний обоих NH сосредоточена в основном на атомах шахты. Можно предположить, что такое распределение является следствием искажений плоской *π*-системы, которые максимальны для атомов, расположенных ближе всего к винтовой оси. Дополнительным фактом, подтверждающим это предположение, является

отсутствие состояния «ferro» для zz[2.2]NH, то есть NH с удлиненным шахтой, m = 2 (см. [1]). В случае zz[1.2]NH спиновая плотность на внутренних атомах приводит к возникновению спиновой плотности на атомах внешних углеродах, аналогично графеновым нанолентам с зигзагообразной терминацией [119].

Спиновая поляризация в случае состояний «af» проявляется гораздо сильнее, что является следствием перехода Мотта-Хаббарда для структур с удвоенным СНФ. Это явление также известно для графена и подобных структур. Как показано на рисунке 22, оба варианта терминации граней приводят к примерно одинаковому, чередующемуся распределению спиновых плотностей α и β по всей ленте наногелицена.

На рисунке 23 показаны зависимости спиновой плотности на симметрийно неприводимых атомах углерода внутри шахты наногелицена ас[1.1]NH.

Рисунок 23. Зависимость спиновой плотности на симметрийно неприводимых атомах углерода от спирального угла для магнитных состояний наногелицена ac[1.1].

Спиновая плотность в «ferro» состоянии заметно ниже, чем в состоянии ac[1.1]NH_{af}. Кроме того, изменение торсионного угла для «ferro» приводит к уменьшению спиновой плотности и переходу из состояния ac[1.1]NH_{ferro} в состояние ac[1.1]NH_{mono}. Это наблюдение согласуется с данными, представленными на рисунке 18а, где энергии ac[1.1]NH_{mono} и ac[1.1]NH_{ferro} состояний сближаются из-за торсионных деформаций.

В случае ac[1.1]NH_{af} видно, что спиновая плотность значительно выше и сохраняет примерно одинаковое значение на всей торсионной кривой. Это наблюдение представляет особенный интерес, поскольку подтверждает гипотезу о том, что ac[1.1]NH_{af} и ac[1.1]NH_{dim} сосуществуют при определенных спиральных углах как разные состояния, с минимальными различиями в значениях энергии.

Рисунок 24. Электронных зон построенные в спиральной зоне Бриллюэна (HBZ) для всех рассматриваемых состояний структур, наиболее близких к энергетическому минимуму. Синяя пунктирная линия представляет уровень Ферми. Полузаселённая зона, верхняя валентная зона и нижняя зона проводимости обозначены штрихпунктирными линиями. HBZ для «af» и «dim» в два раза меньше, поскольку они претерпевают нарушение симметрии, так что f в два раза больше (ф-ла 13а).

Анализ электронных зон в HBZ (рисунок 24) удобно начать с наиболее симметричного состояния «mono». Для обоих наногелиценов полузаселенная спиральная зона (ПЗСЗ) пересекается с уровнем Ферми, что приводит к металлическим свойствам этого состояния. Топология ПЗСЗ отличается в случае

разных терминаций. В частности, в случае zz[1.2]NH, ПЗСЗ пересекает уровень Ферми три раза (в области $k_h = \frac{\pi}{2f}$), и только один раз в случае ac[1.1]NH.

В случае состояния «ferro», которое также является металлическим, ПЗСЗ ac[1.1]NH разделена на две спин-поляризованные подзоны, которые сдвинуты в разные стороны на шкале энергии, так что для каждой из них существует только одно пересечение уровней Ферми. Однако общий вид этой спиральной полосы сохраняется, включая отличие от спин-поляризованной ПЗСЗ zz[1.2]NH.

Спонтанное понижение симметрии приводит к разрыву ПЗСЗ в точке $k_h = \frac{\pi}{2f}$ и переходу этой точки в $k'_h = \frac{\pi}{f'}$ HBZ, соответствующей димеризованным состояниям. Таким образом, в случае HBZ димеризованных состояний верхняя валентная спиральная зона (BBC3) и нижняя спиральная зона проводимости (HC3П) являются частями исходной ПЗСЗ, разорванной в точке $k'_h = \frac{\pi}{2f}$ и сложенной пополам.

Этот эффект характерен для изученных NH, поскольку спонтанное понижение симметрии является общим эффектом. Однако можно отметить качественное различие в том, как происходит расщепление спиральных зон. В случае ac[1.1]NH обе спиральные зоны расходятся примерно на одинаковое расстояние относительно исходного уровня Ферми (т.е. BBC3 опускается, а HC3П поднимается примерно на 1 эВ). В случае zz[1.2]NH уровень BBC3 уменьшается на 1 эВ, а HC3П увеличивается примерно на 0,5 эВ.

Рисунок 25. Спиральные зоны построенные для NH с разными спиральными углами a) ac[1.1]NH_{dim}, b) zz[1.2]NH_{af}. Верхние валентные спиральные зоны и нижние спиральные зоны проводимости обозначены пунктирными линиями.

На рисунке 25 показано изменение электронных зон в HBZ при изменении спирального угла. Несмотря на изменение значений ширины зоны при изменении спирального угла, BBC3 и HC3Π качественно похожи друг на друга. Видно, что при скручивании NH происходит некоторое изменение структуры спиральных зон, но в целом торсионная деформация оказывает малое влияние на спиральные зоны. Это объясняется тем, что атомная структура наногелиценов не сильно меняется в изученном диапазоне φ из-за плавного скольжения витков спирали.

Данный анализ электронных энергетических полос наногелиценов показывает, что концепция спиральной зоны Бриллюэна может быть применена к различным типам Q1D-наноструктур, что делает ее полезным инструментом для изучения их электронных свойств.

Согласно данным, представленным на рисунке 26, видно, что переход от ac[1.1]NH_{dim} к ac[1.1]NH_{afm} неблагоприятен для исследуемой системы. Однако в некоторых случаях сочетание торсионных и аксиальных деформаций может сделать такой переход энергетически выгодным.

Значительное увеличение стабильности состояния ac[1.1]NH_{afm}, наблюдаемое в диапазоне спиральных углов [130°,135°], связано с необратимой деформацией внутри шахты наногелицена, приводящей к появлению свободных валентностей на атомах углерода. Это состояние в некоторой степени стабилизируется антиферромагнитным распределением электронов.

Для zz[1.2]NH наблюдается схожая тенденция. Аксиальная деформация стабилизирует диамагнитное димерное состояние. Резкая стабилизация этого состояния в области ~110° не связано с необратимыми деформациям, и, по всей видимости, соответствует истинному переходу «af» состояния в «dim». Последующая деформация приводит к уменьшению стабильности в силу деформации структуры.

 $ac[1.1]NH_{dim} \longrightarrow ac[1.1]NH_{afm}$ $\Delta\Delta E_{rel}, \frac{kJ}{mol}$

113.684	1.69	-0.42	-0.54	-0.46	1.65	16.45	47.29	89.87	145.80	215.33	
116.76	8.46	6.30	6.35	6.44	9.20	16.56	43.48	89.29	154.68	236.97	
120.0	3.82	4.37	4.44	5.33	8.69	16.63	45.95	96.01		258.03	
123.428	-0.27	1.49	2.39	3.42	8.74	18.74	49.17	100.37		264.53	
125.217	-0.34	0.29	0.93	1.93	7.86	18.45	51.04	103.55		269.93	
127.059	0.76	0.20	-0.18	1.22	6.05	16.97	50.94	106.01	183.23	278.58	
130.909	1.63	-10.87	0.04	-6.91	9.45	15.84	18.26	13.36	-156.57	-22.16	
135.0	4.29	-8.56	-0.27	-4.72	11.51	17.36	24.32	26.87	-98.79	23.70	
	-0.05	-0.01	0.0	0.01	0.05	0.1	0.2	0.3	0.4	0.5	

Рисунок 26. Зависимость энергии перехода между различными димерными состояниями исследуемых наногелиценов от торсионных и аксиальных деформаций.

На рисунке 27 показана зависимость ширины запрещенной зоны для димерных состояний ac[1.1.]NH и zz[1.2]NH в зависимости от торсионных и аксиальных деформаций.

Рисунок 27. Зависимость ширины запрещенной зоны от торсионной и аксиальной деформации для димерных состояний рассматриваемых наногелиценов.

Анализ данных, представленных на рисунке 27, показывает, что растяжение наногелиценов приводит к заметному увеличению запрещенной зоны, что согласуется с представлением о взаимодействии витков посредством *p_z*-орбиталей. И наоборот, сжатие наногелиценов приводит к уменьшению или незначительному увеличению ширины запрещенной зоны.

Еще одним объектом исследования стал наногелицен, обозначенный как «pseudo», как показано на рисунке 28. Несмотря на то что это наногелицен, он обозначен как «pseudo» из-за отсутствия нековалентных взаимодействий между его витками. Что достигается путем модификации структуры для создания стерических затруднений внутри шахты, что приводит к заметному увеличению расстояния между витками. В данном случае эта модификация достигается путем включения в структуры бензольных колец, ориентированных в направлении шахты.

Рисунок 28. Структура наногелицена pseudo[3.1] с спиральным углом $\varphi = 75^{\circ}$ (*L*24₅).

На рисунке 29 показаны зависимости относительной энергии и ширины запрещенной зоны от спирального угла. Этот наногелицен демонстрирует характеристики диамагнитного полупроводника без каких-либо дополнительных электронных состояний. Примечательно, что в его структуре имеется только один энергетический минимум, угол кручения которого значительно отклоняется от исходного 60°. Кроме того, значения ширины запрещенной зоны заметно выше по сравнению с наногелиценами zz[1.2] и ac[1.1].

Рисунок 29. Зависимости ΔE_{rel} и E_{gap} от спирального угла φ для pseudo[3.1]NH.

При анализе этого наногелицена мы рассчитали его модуль сдвига в точке энергетического минимума, в результате чего получили значение 0.36 ГПа. Это значение значительно отличается от данных, полученных для ac[1.1]NH и zz[1.2]NH. Этот результат подтверждает нашу гипотезу о влиянии нековалентных взаимодействий (NCI) на механические и электронные характеристики наногелиценов. 3.3. Моделирование торсионных искажений углеродных и неорганических нанотрубок

В данном исследовании изучалось влияние торсионных деформаций на свойства нанотрубок WS_2 с индексами хиральности n(4,1), где n = 2, 3, 6, 9 (рисунок 30). Эти НТ соответствуют одинаковым хиральным и спиральным углам, 10.893° и 282.857° соответственно, см. рисунки 8 и 30. Торсионные деформации были смоделированы с использованием теории спиральных групп. Учет симметрии на каждом этапе расчетов позволил значительно снизить сложность квантово-химических расчетов.

Рисунок 30. Вид сбоку и сверху на рассматриваемые нанотрубки: а) (8, 2), b) (12, 3), c) (24, 6), d) (36, 9). На рисунках атомы серы представлены желтыми сферами, а атомы вольфрама - красными сферами.

Для того чтобы выделить группы, описывающие деформированные структуры нанотрубок, необходимо найти для каждой из них $\tilde{Q}_x = \frac{\tilde{q}_x}{r_x}$ такие, что угол торсионной деформации $\omega = \tilde{\varphi}_x - \tilde{\varphi}$ попадает в определенный диапазон. Этот диапазон определяется структурой и составом конкретной нанотрубки. В таблице 7 представлены торсионные углы и соответствующие им группы симметрии, указанные как в кристаллографических ($Ln \cdot \tilde{q}_{n \cdot \tilde{p}}$), так и в спиральных обозначениях ($T_q^r C_n$). **Таблица 7.** Торсионные углы исследуемых нанотрубок. Для каждого торсионного угла указаны соответствующие группы симметрии.

ω, °	(8, 2)	(12, 3)	(24, 6)	(36, 9)
-2.857	$L18_8(T_{18}^7C_2)$	$L27_{12}(T_{27}^{7}C_{3})$	$L54_{24}(T_{54}^{7}C_{6})$	$L81_{36}(T_{81}^{7}C_{9})$
-1.607	$L64_{18}(T_{64}^{25}C_2)$	$L96_{27}(T_{96}^{25}C_3)$	$L192_{54}(T_{192}^{25}C_6)$	$L288_{81}(T_{288}^{25}C_9)$
-1.118	$L46_{18}(T_{46}^{18}C_2)$	$L69_{27}(T_{69}^{18}C_3)$	$L138_{54}(T_{138}^{18}C_6)$	$L207_{81}(T_{207}^{18}C_9)$
-0.695	$L74_{46}(T_{74}^{29}C_2)$	$L111_{69}(T_{111}^{29}C_3)$	$L222_{138}(T_{222}^{29}C_6)$	$L333_{207}(T_{333}^{29}C_9)$
-0.326	$L158_{130}(T_{158}^{62}C_2)$	$L237_{195}(T_{237}^{62}C_3)$	$L474_{390}(T_{474}^{62}C_6)$	$L711_{585}(T_{711}^{62}C_9)$
0.000	$L28_{18}(T_{28}^{11}C_2)$	$L42_{27}(T_{42}^{11}C_3)$	$L84_{54}(T_{84}^{11}C_6)$	$L126_{81}(T_{126}^{11}C_9)$
0.343	$L150_{28}(T_{150}^{59}C_2)$	$L225_{42}(T_{225}^{59}C_3)$	$L450_{84}(T_{450}^{59}C_6)$	$L675_{126}(T_{675}^{59}C_9)$
0.547	$L94_{28}(T_{94}^{37}C_2)$	$L141_{42}(T_{141}^{37}C_3)$	$L282_{84}(T_{282}^{37}C_6)$	$L423_{126}(T_{423}^{37}C_9)$
1.353	$L38_{28}(T_{38}^{15}C_2)$	$L57_{42}(T_{57}^{15}C_3)$	$L114_{84}(T_{114}^{15}C_6)$	$L171_{126}(T_{171}^{15}C_9)$
2.143	$L48_{38}(T_{48}^{19}C_2)$	$L72_{57}(T_{72}^{19}C_3)$	L 144 ₁₁₄ ($T_{144}^{19}C_6$)	$L216_{171}(T_{216}^{19}C_9)$
3.025	$L68_{58}(T_{68}^{27}C_2)$	$L102_{87}(T_{102}^{27}C_3)$	$L204_{174}(T_{204}^{27}C_6)$	$L306_{261}(T_{306}^{27}C_9)$

Здесь мы рассмотрим торсионную деформацию хиральных нанотрубок на основе WS₂ со структурами, определяемыми выражением n(4,1) для n = 2,3,6,9. Результаты наших расчетов приведены в таблице 8. Кристаллографическая факторизация Lq_p соответствующих линейных групп приведена во второй строке таблице 8.

Таблица 8. Результаты расчетов объемного кристалла WS₂, монослоя и хиральных нанотрубок $n(4,1), \tilde{q} = 14, q = n\tilde{q}, t = 14 \cdot f$

	Bulk	Mono	(8, 2)	(12, 3)	(24, 6)	(36, 9)
Lq_p	Lq_p -		L 28 ₁₈	L 42 ₂₇	L 84 ₅₄	<i>L</i> 126 ₈₁
D, Å	-		9.22	13.82	21.66	41.49
ΔD , Å	-	-	1.46	1.07	0.60	0.42
t, Å	3.15	3.16	8.36	8.36	8.36	8.36
Δt , Å	-	0.01	0.17	0.07	0.03	0.01
<i>E</i> (f.u.), a.u, -88	.297269	.288675	.220688	.255304	.279788	.284615
<i>E_{form}</i> (f.u.), кДж/моль	-	22.56	201.06	110.18	45.9	33.22
<i>E_{str}</i> (f.u.), кДж/моль	-	-	178.5	87.62	23.33	10.66
$E_{gap},$ эВ	1.63	2.53	0.82	1.38	2.15	2.39
$E_{\nu},$ $\Im \mathbf{B}$	-3.96	-6.43	-5.62	-6.02	-6.37	-6.47
$E_c, \Im \mathbf{B}$	-2.33	-3.90	-4.80	-4.64	-4.22	-4.08

Входные значения диаметров HT $D = \frac{a}{\pi} n \sqrt{\tilde{n}_1^2 + \tilde{n}_1 \tilde{n}_2 + \tilde{n}_2^2}$ увеличиваются с 9.22 Å до 41.49 Å. Изменение входных диаметров за счет оптимизации геометрии ΔD приведено в таблице 8. Видно, что в результате оптимизации геометрии ΔD уменьшается с увеличением входного диаметра, так как для монослоя это изменение становится формально нулевым.

Для всех рассматриваемых НТ вектор трансляции \vec{T} длины t совпадает с тем, что определяется подгруппой Z спиральной группы L в спиральной факторизации $L = ZP \left(P = C_2, C_3, C_6, C_9; Z = T \left(C_q^{11} | f \right)^l; l = 0, 1, ..., q - 1, t = 14f \right)$. Из данных в таблице 8 видно, что длина вектора трансляции t изменяется

при оптимизации геометрии, а Δt уменьшается с увеличением диаметра HT, и приходит к значению 0.01 Å.

В таблице 8 показано, что значение энергии *E* на формульную единицу примитивной ячейки уменьшается с увеличением диаметра HT по сравнению с монослоем.

Энергии образования E_{form} и сворачивания E_{str} НТ определяются соотношениями:

$$E_{form} = \frac{E}{N} - \frac{E_{bulk}}{N_{bulk}} \tag{28}$$

$$E_{str} = \frac{E}{N} - \frac{E_{mono}}{N_{mono}}$$
(29)

где N, N_{bulk} и N_{mono} - количество формульных единиц в примитивной ячейке нанотрубки, объемного кристалла и монослоя соответственно. Соответствующие энергии на примитивную ячейку - E, E_{bulk} и E_{mono} . Очевидно, что разница $(E_{form} - E_{str}) = 22.56$ кДж/моль одинакова для всех нанотрубок, так как это энергия образования монослоя из объемного кристалла.

В таблице 8 приведена зависимость ширины запрещенной зоны от диаметра нанотрубки. Поскольку энергетическая щель для объемного кристалла меньше, чем для монослоя (1.68 эВ вместо 2.53 эВ), запрещенная зона увеличивается с ростом диаметра нанотрубки (НТ). Более того, она смещается в сторону значения запрещенной зоны, наблюдаемой для монослоя. В двух последних строках таблицы 8 приведены одноэлектронные энергии E_v и E_c для вершины валентной зоны и дна зоны проводимости, соответственно. Известно, что катализаторы расщепления воды под действием видимого света должны удовлетворять следующим энергетическим требованиям: $E_v < -5.67$ эВ и $E_c > 4.44$ эВ (значения окислительного и восстановительного потенциалов воды). Наши результаты показывают, что это условие выполняется только для HT (24, 6) и (36, 9). Этот вывод согласуется с выводами, сделанными в работе [67]: HT с
диаметром более 19 Å потенциально способны служить фотокатализаторами для расщепления воды.

Для каждой анализируемой нанотрубки влияние торсионной деформации изучалось в диапазоне $\omega \in [-2.857^\circ, 3.025^\circ]$. Такой диапазон углов скручивания был выбран потому, что он позволяет получить единственный энергетический минимум для каждой рассматриваемой нанотрубки. Дальнейшее увеличение абсолютного значения угла скручивания за пределы этого диапазона приведет к увеличению относительной энергии, что свидетельствует о структурных деформациях нанотрубки. Атомная структура деформированных НТ была оптимизирована для каждого выбранного угла кручения (таблица 7)

На рисунке 31 показана зависимость относительной энергии от угла скручивания на формульную единицу, которая рассчитывалась по следующей формуле:

$$\Delta E_{rel}(\omega) = \frac{E(\omega)}{q_{\omega}} - \frac{E(0)}{q_0}$$
(30)

где относительная разница энергий, обозначенная как $\Delta E_{rel}(\omega)$, рассчитывается как разница между полными электронными энергиями исходной нанотрубки, E(0), и деформированной нанотрубки с углом скручивания ω , $E(\omega)$. Количество формульных единиц в исходной нанотрубке представлено через q_0 , а q_{ω} соответствует количеству формульных единиц в структуре нанотрубки с углом скручивания ω .

На рисунке 31 показаны зависимости ΔE_{rel} от угла скручивания. Видно, что при уменьшении диаметра нанотрубки положение энергетического минимума сильнее отклоняется от $\omega = 0$. Кроме того, предпочтительное направление кручения меняется в зависимости от диаметра нанотрубки. В случае самой маленькой нанотрубки (8, 2) скручивание в сторону положительного ω менее благоприятно по сравнению с НТ большего диаметра. И наоборот, в диапазоне

отрицательных ω скручивание самой большой нанотрубки менее предпочтительно.

Рисунок 31. Зависимость ΔE_{rel} от угла скручивания.

В таблице 9 представлены характеристики энергетических минимумов, полученных с помощью интерполяции $\Delta E_{rel}(\omega)$. Наблюдаемая тенденция показывает, что с увеличением диаметра нанотрубок запрещенная зона увеличивается, а модуль сдвига уменьшается. Кроме того, энергетический минимум смещается в сторону недеформированной структуры нанотрубки.

Таблица 9. Свойства структур НТ, соответствующих определённым энергетическим минимумам.

	D ^{a*} , Å	ω, °	<i>ΔE_{rel}</i> , кДж/моль	E_{gap}^{*} ,	G*, ГПа
				эВ	
(8, 2)	10.67	-0.443	-1.601	0.79	39.16
(12, 3)	14.89	-0.234	-0.348	1.36	7.59
(24, 6)	28.26	-0.109	-0.139	2.15	0.84
(36, 9)	41.90	-0.053	-0.029	2.38	0.17

а – значение диаметров измерено по положению центров атомов W.

* - значения соответствуют результатам, полученным в результате квантовохимического расчета для торсионного угла, наиболее близкого к минимуму энергии.

Рисунок 32 иллюстрирует зависимость от угла скручивания структурных параметров исследованных нанотрубок. В данном контексте увеличение параметра частичного (рисунок 32a) переноса $f = \frac{t}{\tilde{q}}$ соответствует растяжению нанотрубки. С увеличением диаметра нанотрубки частичный перевод демонстрирует тенденцию к росту и переходит в постоянное значение. В целом зависимость частичного перевода от угла скручивания остается примерно одинаковой для всех нанотрубок, однако для самой маленькой нанотрубки (8, 2) увеличение несколько усиливается при скручивании в диапазоне положительных углов скручивания.

Из рисунка 32b видно, что диаметр исследованных нанотрубок слегка колеблется в диапазоне углов кручения [-2°, 2°]. Для всех исследованных нанотрубок наиболее значительная деформация происходит при отрицательных углах скручивания, в частности, нанотрубка (36, 9) демонстрирует наиболее значительные изменения диаметра. Аналогичная картина наблюдается при переходе деформации в область положительных углов кручения, однако изменение диаметра заметно меньше.

Примечательно, что физические свойства нанотрубок претерпевают более существенные изменения при кручении по мере увеличения начального диаметра нанотрубки. Асимметричные значения запрещенной зоны относительно угла скручивания $\omega = 0$ являются следствием хиральной природы исследуемых нанотрубок.

На рисунке 33 показано, что для нанотрубок с наименьшим диаметром (8, 2) и (12, 3) в диапазоне торсионных деформаций ширина запрещенной зоны изменяется незначительно, не более чем на 0.15 эВ и 0.25 эВ, соответственно.

Для нанотрубок (24, 6) и (36, 9) запрещенная зона уменьшается при торсионной деформации, что согласуется с результатами предыдущих исследований [82,83], демонстрирующих увеличение электропроводности нанотрубок на основе WS₂ за счет деформации, вызванной кручением. Хотя наблюдаемые тенденции изменения запрещенной зоны для (24, 6) и (36, 9)

76

сопоставимы, можно предположить, что нанотрубки (НТ) с большим диаметром демонстрируют аналогичные тенденции в электронных свойствах.

На рисунке 34 показаны зависимости энергий верхней части валентной полосы и нижней части полосы проводимости для исследуемых нанотрубок. Очевидно, что нанотрубки (24, 6) и (36, 9) демонстрируют потенциальную применимость для расщепления воды, что согласуется с устоявшимся представлением о том, что нанотрубки с меньшим диаметром менее пригодны для этой цели.

Кроме того, очевидно, что с увеличением диаметра вклад вершины валентной зоны в изменение E_{gap} уменьшается. Кроме того, значительная торсионная деформация приводит к тому, что E_c становится ниже восстановительного потенциала воды. В таблице S3 приведены данные о поведении запрещенной зоны при торсионных деформациях. Примечательно, что для нанотрубки (8, 2) в одном случае наблюдается переход от непрямой к прямой запрещенной зоне, тогда как для других исследованных нанотрубок подобного перехода не происходит. В настоящее время мы не можем определить, является ли это изменение специфическим для нанотрубок с малым диаметром или оно может наблюдаться при более сильном кручении. Тем не менее, это явление заслуживает дальнейшего изучения.

Исходя из полученных данных, очевидно, что исследуемые нанотрубки не подходят для фотокаталитического расщепления воды, поскольку они демонстрируют поведение полупроводника с непрямой полосой пропускания.

Заключение

В настоящей работе проведено теоретическое исследование влияния торсионной деформации на различные типы квазиодномерных наноструктур с использованием гибридных методов теории функционала плотности. Все результаты получены с использованием теории симметрии спиральных групп и общего алгоритма *ab initio* моделирования квазиодномерных непериодических спиральных нанообъектов с помощью компьютерных кодов, предназначенных для расчетов периодических структур. Преимуществом применяемой методики является возможность более объемлющего изучения квазиодномерных структур, не требующего большого количества вычислительных ресурсов. Данная методика может быть использовано для расчета любых спиральных структур в рамках программы CRYSTAL17.

Исследование было посвящено различным квазиодномерным наноструктурам, а именно, политвистану, наногелиценам и нанотрубкам. Изучалось влияние торсионных деформаций на энергетические и электронные свойства этих наноструктур. Результаты опубликованы и представлены в работах [2–4].

Впервые изучены электронные и механические свойства политвистана с учетом его спиральной симметрии и использованием DFT-расчетов. Сканирование торсионной кривой энергии показало только один энергетический минимум, соответствующий несоизмеримой структуре (с отсутствием трансляционной симметрии). Обнаружено, что изменение симметрийно неприводимого фрагмента (symcell) с CH на C₆H₆ дает эффект только при экстремальном скручивании.

Для структуры политвистана, соответствующей энергетическому минимуму, были рассчитаны ширина запрещенной зоны, модуль Юнга, модуль сдвига и структурные параметры. Положение энергетического минимума на торсионной кривой и свойства, полученные для этой структуры, находятся в разумном согласии с ранее опубликованными данными. Результаты, полученные для модуля Юнга и ширины запрещенной зоны, свидетельствуют о плавном изменении этих свойств в относительно небольших пределах при деформации структуры.

Наше исследование включает в себя *ab initio* моделирование наногелиценов с различными краевыми терминациями (зигзаг и кресло. Были получены торсионные энергетические кривые для четырех различных электронных состояний (двух диамагнитных, ферромагнитного и антиферромагнитного). Установлено, что энергетический минимум ac[1.1]NH определяется переходом Пайерлса (переход метал-изолятор), что делает его диамагнитным полупроводником. Напротив, наиболее стабильное состояние zz[1.2]NH является антиферромагнитным, из-за перехода Мотта-Хаббарда.

Для ac[1.1]NH существует область угла поворота φ ∈ [125°, 137°], где энергии антиферромагнитного и диамагнитного состояний близки по значению. Таким образом, эти состояния потенциально могут сосуществовать, что может оказаться полезным для будущих приложений.

Было показано, что терминация краев влияет на высоту витка *h*. Были изучены нековалентные взаимодействия между соседними витками. Как и ожидалось, межслоевые взаимодействия меньше для ac[1.1]NH, чем для zz[1.2]NH. Это различие может быть объяснено различием между взаимодействиями *p_z*-орбиталей соседних витков. Этот вывод также подтверждается различием в значениях запрещенной зоны: *E_{gap}* меньше для zz[1.2]NH, чем для ac[1.1]NH.

Спонтанное нарушение симметрии приводит к образованию запрещенной зоны полузаселенной электронной зоны в центре спиральной зоны Бриллюэна наиболее симметричного состояния, формируя спиральную зонную структуру димеризованных состояний путем складывания зон. Показано, что торсионные деформации оказывают ограниченное влияние на спиральные зонные структуры благодаря плавному скольжению витков относительно друг друга.

80

Расширяя наше исследование, мы проанализировали влияние торсионной деформации на свойства хиральных нанотрубок на основе WS₂, используя анализ первых принципов. Мы использовали теорию спиральных групп для снижения вычислительных затрат и применили теорию функционала плотности (DFT) для квантово-химических расчетов.

Наши результаты показывают, что нанотрубки с меньшим диаметром демонстрируют более значительное отклонение в положении энергетического минимума на кривой кручения. При этом чем меньше диаметр, тем существеннее отклонение. Уменьшение диаметра также приводит к уменьшению относительных изменений диаметра с частичным увеличением трансляции, что согласуется с растяжением нанотрубки.

Кроме того, наше исследование показывает, что кручение оказывает незначительное влияние на диаметр нанотрубки в диапазоне от -2° до 2°, но приводит к более значительным изменениям при сильном кручении, особенно в случае нанотрубки (36, 9).

Мы показали, что торсионная деформация оказывает ограниченное влияние на запрещенную зону в нанотрубках с малым диаметром, но становится более заметной с увеличением диаметра нанотрубки, что согласуется с результатами предыдущих исследований. Это свойство открывает перспективы для применения в наноэлектронике на основе нанотрубок WS₂.

Благодарности

Выражаю благодарность сотрудникам кафедры квантовой химии Химического института Санкт-Петербургского государственного университета, в частности Андрею Виловичу Бандуре и Виталию Вениаминовичу Порсеву, за ценную помощь, оказанную в ходе выполнения данного проекта. Кроме того, я выражаю искреннюю признательность моему научному руководителю, профессору Роберту Александровичу Эварестову, за руководство и поддержку в ходе исследования.

Список условных сокращений и обозначений

- Q1D квазиодномерный
- УНН углеродные нанонити
- NH наногелицен
- ас кресло
- zz зигзаг
- VdW Ван-дер-Ваальс
- DFTB Density Functional based Tight Binding
- DFT теория функционала плотности
- BZ зона Бриллюэна
- НТ нанотрубка
- LCAO линейная комбинация атомных орбиталей
- LACW линеаризованные присоединенные цилиндрические волны
- AFM атомно-силовой микроскоп
- НОД наибольший общий делатель
- СНФ симметрийно неприводимый фрагмент
- PDOS спроектированная плотность электронных состояний
- ПМИ переход металл-изолятор
- NCI нековалентные взаимодействия
- RDG приведённый градиент электронной плотности
- HBZ спиральная зона Бриллюэна
- ПЗСЗ полузаселенная спиральная зона
- BBC3 верхняя валентная спиральная зона

НПСЗ - нижняя проводящая спиральная зона

Список цитируемой литературы

1. Porsev V., Evarestov R. Magnetic Properties of Zig-Zag-Edged Hexagonal Nanohelicenes: A Quantum Chemical Study: 3 // Nanomaterials. Multidisciplinary Digital Publishing Institute, 2023. Vol. 13, № 3. P. 415.

2. Domnin A.V., Porsev V.V., Evarestov R.A. DFT modeling of electronic and mechanical properties of polytwistane using line symmetry group theory // Computational Materials Science. 2022. Vol. 214. P. 111704.

3. Domnin A.V., Porsev V.V., Evarestov R.A. Effect of the armchair and zigzag edge terminations on the properties of nanohelicenes: First-principles study // Computational Condensed Matter. 2023. Vol. 36. P. e00826.

 Domnin A.V., Mikhailov I.E., Evarestov R.A. DFT Study of WS2-Based Nanotubes Electronic Properties under Torsion Deformations: 19 // Nanomaterials.
 Multidisciplinary Digital Publishing Institute, 2023. Vol. 13, № 19. P. 2699.

5. Shubnikov A.V., Koptsik V.A. Symmetry in Science and Art [By] A.V. Shubnikov and V.A. Koptsik. Translated From Russian by G.D. Archard. Edited by David Harker. Plenum Press, 1974.

Вайнштейн Б.К. Современная кристаллография. Симметрия кристаллов, методы структурной кристаллографии. Москва: Наука, 1979. Vol. 1. 384 p.

7. Damnjanović M., Milošsević I. Line Groups in Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. Vol. 801.

Barua S.R. et al. Polytwistane // Chemistry – A European Journal. 2014.
 Vol. 20, № 6. P. 1638–1645.

9. Olbrich M., Mayer P., Trauner D. A step toward polytwistane: synthesis and characterization of C2-symmetric tritwistane // Org. Biomol. Chem. The Royal Society of Chemistry, 2013. Vol. 12, № 1. P. 108–112.

10. Wen X.-D., Hoffmann R., Ashcroft N.W. Benzene under High Pressure: a Story of Molecular Crystals Transforming to Saturated Networks, with a Possible Intermediate Metallic Phase // J. Am. Chem. Soc. American Chemical Society, 2011. Vol. 133, № 23. P. 9023–9035.

Stojkovic D., Zhang P., Crespi V.H. Smallest Nanotube: Breaking the
Symmetry of \${\mathit{sp}}^{3}\$ Bonds in Tubular Geometries // Phys. Rev. Lett.
American Physical Society, 2001. Vol. 87, № 12. P. 125502.

Saha B., Pratik S.Md., Datta A. Coexistence of Normal and Auxetic
 Behavior in a Thermally and Chemically Stable sp3 Nanothread: Poly[5]asterane //
 Chemistry – A European Journal. 2017. Vol. 23, № 52. P. 12917–12923.

13. Silveira J.F.R.V., Muniz A.R. First-principles calculation of the mechanical properties of diamond nanothreads // Carbon. 2017. Vol. 113. P. 260–265.

14. Zhan H. et al. From brittle to ductile: a structure dependent ductility of diamond nanothread // Nanoscale. The Royal Society of Chemistry, 2016. Vol. 8, № 21.
P. 11177–11184.

15. Roman R.E., Kwan K., Cranford S.W. Mechanical Properties and Defect Sensitivity of Diamond Nanothreads // Nano Lett. American Chemical Society, 2015. Vol. 15, № 3. P. 1585–1590.

16. Li C. et al. Effective Enhancement of a Carbon Nanothread on the Mechanical Properties of the Polyethylene Nanocomposite // J. Phys. Chem. C. American Chemical Society, 2021. Vol. 125, № 10. P. 5781–5792.

17. Zhan H. et al. Diamond Nanothread as a New Reinforcement for Nanocomposites // Advanced Functional Materials. 2016. Vol. 26, № 29. P. 5279–5283.

18. Zhan H. et al. High density mechanical energy storage with carbon nanothread bundle: 1 // Nat Commun. Nature Publishing Group, 2020. Vol. 11, № 1. P. 1905.

19. Saha B., Datta A. Reactive Molecular Dynamics Simulations of Self-Assembly of Polytwistane and Its Application for Nanofibers // J. Phys. Chem. C. American Chemical Society, 2018. Vol. 122, № 33. P. 19204–19211.

20. Zhan H. et al. The best features of diamond nanothread for nanofibre applications: 1 // Nat Commun. Nature Publishing Group, 2017. Vol. 8, № 1. P. 14863.

21. Wang P., Zhan H., Gu Y. Molecular Dynamics Simulation of Chiral Carbon Nanothread Bundles for Nanofiber Applications // ACS Appl. Nano Mater. American Chemical Society, 2020. Vol. 3, № 10. P. 10218–10225.

22. Silveira J.F.R.V., Muniz A.R. Diamond nanothread-based 2D and 3D materials: Diamond nanomeshes and nanofoams // Carbon. 2018. Vol. 139. P. 789–800.

23. Demingos P.G., Pagnussatti R.A., Muniz A.R. Strain-Tunable Carbon Nanothread-Derived Membranes for Water Desalination // J. Phys. Chem. B. American Chemical Society, 2021. Vol. 125, № 26. P. 7311–7319.

24. Fitzgibbons T.C. et al. Benzene-derived carbon nanothreads: 1 // Nature Mater. Nature Publishing Group, 2015. Vol. 14, № 1. P. 43–47.

25. Juhl S.J. et al. Local Structure and Bonding of Carbon Nanothreads Probed by High-Resolution Transmission Electron Microscopy // J. Am. Chem. Soc. American Chemical Society, 2019. Vol. 141, № 17. P. 6937–6945.

26. Duan P. et al. The Chemical Structure of Carbon Nanothreads Analyzed by Advanced Solid-State NMR // J. Am. Chem. Soc. American Chemical Society, 2018. Vol. 140, № 24. P. 7658–7666.

27. Wang T. et al. Constraining Carbon Nanothread Structures by Experimental and Calculated Nuclear Magnetic Resonance Spectra // Nano Lett. American Chemical Society, 2018. Vol. 18, № 8. P. 4934–4942.

28. Xu E., Lammert P.E., Crespi V.H. Systematic Enumeration of sp3
Nanothreads // Nano Lett. American Chemical Society, 2015. Vol. 15, № 8. P. 5124–
5130.

29. Chen B. et al. Linearly Polymerized Benzene Arrays As Intermediates, Tracing Pathways to Carbon Nanothreads // J. Am. Chem. Soc. American Chemical Society, 2015. Vol. 137, № 45. P. 14373–14386.

30. Gingras M. One hundred years of helicene chemistry. Part 3: applications and properties of carbohelicenes // Chem. Soc. Rev. The Royal Society of Chemistry, 2013. Vol. 42, № 3. P. 1051–1095.

31. Porsev V.V. et al. Expanded hexagonal nanohelicenes of zigzag
morphology under elastic strain: A quantum chemical study // Carbon. 2019. Vol. 152.
P. 755–765.

32. Porsev V.V., Evarestov R.A. Current State of Computational Modeling of Nanohelicenes: 16 // Nanomaterials. Multidisciplinary Digital Publishing Institute,
2023. Vol. 13, № 16. P. 2295.

33. Zhu C. et al. Molecular dynamics study on mechanical properties of helical graphenes/epoxy nanocomposites // Computational Materials Science. 2022. Vol. 209.P. 111408.

34. Norouzi S., Kianfar A., Fakhrabadi M.M.S. Multiscale simulation study of anisotropic nanomechanical properties of graphene spirals and their polymer nanocomposites // Mechanics of Materials. 2020. Vol. 145. P. 103376.

35. Zhan H. et al. Graphene Helicoid: Distinct Properties Promote Application of Graphene Related Materials in Thermal Management // J. Phys. Chem. C. American Chemical Society, 2018. Vol. 122, № 14. P. 7605–7612.

36. Norouzi S., Seyyed Fakhrabadi M.M. Anisotropic nature of thermal conductivity in graphene spirals revealed by molecular dynamics simulations // Journal of Physics and Chemistry of Solids. 2020. Vol. 137. P. 109228.

37. Norouzi S., Fakhrabadi M.M.S. Nanomechanical properties of single- and double-layer graphene spirals: a molecular dynamics simulation // Appl. Phys. A. 2019. Vol. 125, № 5. P. 321.

38. Zhan H. et al. Breakdown of Hooke's law at the nanoscale – 2D material-based nanosprings // Nanoscale. The Royal Society of Chemistry, 2018. Vol. 10, № 40.
P. 18961–18968.

39. Liu R. et al. Nonlinear vibrations of helical graphene resonators in the dynamic nano-indentation testing // Nanotechnology. IOP Publishing, 2019. Vol. 31, №
2. P. 025709.

40. Zhu C. et al. Huge stretchability and reversibility of helical graphenes using molecular dynamics simulations and simplified theoretical models // Mechanics of Materials. 2021. Vol. 153. P. 103683.

41. Li H. et al. A comprehensive investigation of thermal conductivity in of monolayer graphene, helical graphene with different percentages of hydrogen atom: A molecular dynamics approach // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023. Vol. 656. P. 130324.

42. Narjabadifam A., Abazadeh B., Seyyed Fakhrabadi M.M. Graphyne nanospirals under tension: Effects of base structures on superelasticity and fracture mechanisms // Mechanics of Materials. 2022. Vol. 171. P. 104367.

43. Sharifian A. et al. Hydrogenation-controlled mechanical properties in graphene helicoids: exceptional distribution-dependent behavior // Phys. Chem. Chem. Phys. The Royal Society of Chemistry, 2019. Vol. 21, № 23. P. 12423–12433.

44. Sharifian A. et al. Role of Chemical Doping in Large Deformation Behavior of Spiral Carbon-Based Nanostructures: Unraveling Geometry-Dependent Chemical Doping Effects // J. Phys. Chem. C. American Chemical Society, 2019. Vol. 123, № 31. P. 19208–19219.

45. Zhan H. et al. Graphene helicoid as novel nanospring // Carbon. 2017. Vol.120. P. 258–264.

46. Zhou Z. et al. The sensitive energy band structure and the spiral current in helical graphenes // Results in Physics. 2022. Vol. 35. P. 105351.

47. Xu F. et al. Riemann Surfaces of Carbon as Graphene Nanosolenoids // Nano Lett. American Chemical Society, 2016. Vol. 16, № 1. P. 34–39.

48. Korhonen T., Koskinen P. Electromechanics of graphene spirals // AIP Advances. 2014. Vol. 4, № 12. P. 127125.

49. Xu X. et al. Mechanism of mechanically induced optoelectronic and spintronic phase transitions in 1D graphene spirals: insight into the role of interlayer coupling // Nanoscale. The Royal Society of Chemistry, 2017. Vol. 9, № 27. P. 9693–9700.

50. Treboux G. et al. Electronic conductance of helicenes // Chemical Physics Letters. 1999. Vol. 301, № 5. P. 493–497.

51. Tian Y.-H., Park G., Kertesz M. Electronic Structure of Helicenes, C2S Helicenes, and Thiaheterohelicenes // Chem. Mater. American Chemical Society, 2008. Vol. 20, № 10. P. 3266–3277.

52. Avdoshenko S.M. et al. Topological Signatures in the Electronic Structure of Graphene Spirals: 1 // Sci Rep. Nature Publishing Group, 2013. Vol. 3, № 1. P. 1632.

53. Zhang X., Zhao M. Strain-induced phase transition and electron spin-polarization in graphene spirals: 1 // Sci Rep. Nature Publishing Group, 2014. Vol. 4, №
1. P. 5699.

54. Šesták P. et al. Extraordinary deformation capacity of smallest carbohelicene springs // Phys. Chem. Chem. Phys. The Royal Society of Chemistry, 2015. Vol. 17, № 28. P. 18684–18690.

55. He Y.-Y. et al. Spiral Graphene Nanoribbons with Azulene Defects as Potential Nonlinear Optical Materials // ACS Appl. Nano Mater. American Chemical Society, 2019. Vol. 2, № 3. P. 1648–1654.

56. Liu Z.-P. et al. A metal-semiconductor transition in helical graphene nanoribbon // Journal of Applied Physics. 2019. Vol. 126, № 14. P. 144303.

57. Liu Z.-P. et al. Electrical control of spin polarization of transmission in pure-carbon systems of helical graphene nanoribbons // Journal of Applied Physics. 2020. Vol. 128, № 15. P. 154301.

58. Thakur R. et al. Stability and electronic properties of bilayer graphene spirals // Physica E: Low-dimensional Systems and Nanostructures. 2021. Vol. 129. P. 114638.

59. Hoffmann N. Photochemical reactions applied to the synthesis of helicenes and helicene-like compounds // Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2014. Vol. 19. P. 1–19.

60. Sehnal P. et al. An organometallic route to long helicenes // Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences, 2009. Vol. 106, № 32. P. 13169–13174.

61. Porsev V.V., Bandura A.V., Evarestov R.A. Ab initio modeling of helically periodic nanostructures using CRYSTAL17: A general algorithm first applied to nanohelicenes // Computational Materials Science. 2022. Vol. 203. P. 111063.

62. Tenne R. et al. Polyhedral and cylindrical structures of tungsten disulphide: 6403 // Nature. Nature Publishing Group, 1992. Vol. 360, № 6403. P. 444–446.

63. Sinha S.S. et al. MoS2 and WS2 Nanotubes: Synthesis, Structural Elucidation, and Optical Characterization // J. Phys. Chem. C. American Chemical Society, 2021. Vol. 125, № 11. P. 6324–6340.

64. Chen Y., Deniz H., Qin L.-C. Accurate measurement of the chirality of WS2 nanotubes // Nanoscale. The Royal Society of Chemistry, 2017. Vol. 9, № 21. P. 7124–7134.

65. An Q. et al. Direct growth of single-chiral-angle tungsten disulfide nanotubes using gold nanoparticle catalysts // Nat. Mater. Nature Publishing Group, 2023. P. 1–9.

66. D'yachkov E.P., D'yachkov P.N. Electronic Structure of WS2
Nanotubes—Potential Catalysts of Water Photolysis // Russ. J. Inorg. Chem. 2019. Vol.
64, № 9. P. 1152–1155.

67. Piskunov S. et al. First-Principles Evaluation of the Morphology of WS2 Nanotubes for Application as Visible-Light-Driven Water-Splitting Photocatalysts // ACS Omega. American Chemical Society, 2019. Vol. 4, № 1. P. 1434–1442.

68. Cai B. et al. Optimized photoelectric conversion properties of PbSxSe1-x-QD/MoS2-NT 0D-1D mixed-dimensional van der Waals heterostructures // New J. Phys. IOP Publishing, 2022. Vol. 24, № 6. P. 063012.

69. Cai B. et al. Ultrafast interfacial charge transfer and superior photoelectric conversion properties in one-dimensional Janus-MoSSe/\${\mathrm{WSe}}_{2}\$ van der Waals heterostructures // Phys. Rev. B. American Physical Society, 2023. Vol. 108, № 4. P. 045416.

70. Damnjanović M., Nikolić B., Milošević I. Symmetry of nanotubes rolled up from arbitrary two-dimensional lattices along an arbitrary chiral vector // Phys. Rev.
B. American Physical Society, 2007. Vol. 75, № 3. P. 033403.

71. Damnjanovic M. et al. Symmetry and lattices of single-wall nanotubes // J. Phys. A: Math. Gen. 1999. Vol. 32, № 22. P. 4097.

72. Evarestov R.A. Theoretical Modeling of Inorganic Nanostructures: Symmetry and ab initio Calculations of Nanolayers, Nanotubes and Nanowires. Cham: Springer International Publishing, 2020.

73. Grillo A. et al. WS2 Nanotubes: Electrical Conduction and Field Emission
Under Electron Irradiation and Mechanical Stress // Small. 2020. Vol. 16, № 35. P.
2002880.

74. Li W. et al. Strain-tunable electronic and transport properties of MoS2 nanotubes // Nano Res. 2014. Vol. 7, № 4. P. 518–527.

75. Lorenz T. et al. Theoretical Study of the Mechanical Behavior of Individual TiS2 and MoS2 Nanotubes // J. Phys. Chem. C. American Chemical Society, 2012. Vol. 116, № 21. P. 11714–11721.

76. D'yachkov P.N. Influence of Torsional Strains on the Band Structure of Carbon Nanotubes according to the Cylindrical Waves Method // Russ. J. Inorg. Chem. 2021. Vol. 66, № 6. P. 852–860.

77. D'yachkov P.N., D'yachkov E.P. Rashba spin–orbit interaction effect in twisted silicon nanotubes for chiral spintronics // Applied Physics Letters. 2022. Vol. 120, № 17. P. 173101.

78. D'yachkov E.P., D'yachkov P.N. Influence of Tension and Compression on the Band Structure of Carbon Nanotubes as Probed by the Cylindrical Wave Method // Russ. J. Inorg. Chem. 2021. Vol. 66, № 11. P. 1688–1695.

79. Zhang D.-B., Dumitrică T., Seifert G. Helical Nanotube Structures of MoS2 with Intrinsic Twisting: An Objective Molecular Dynamics Study // Phys. Rev. Lett. American Physical Society, 2010. Vol. 104, № 6. P. 065502.

80. Bhardwaj A., Sharma A., Suryanarayana P. Torsional strain engineering of transition metal dichalcogenide nanotubes: an ab initio study // Nanotechnology. IOP Publishing, 2021. Vol. 32, № 47. P. 47LT01.

81. Nagapriya K.S. et al. Torsional Stick-Slip Behavior in WS2 Nanotubes // Phys. Rev. Lett. American Physical Society, 2008. Vol. 101, № 19. P. 195501.

82. Ben-Shimon Y. et al. Self-Sensing WS2 Nanotube Torsional Resonators // Nano Lett. American Chemical Society, 2022. Vol. 22, № 19. P. 8025–8031.

83. Levi R. et al. Nanotube Electromechanics beyond Carbon: The Case of WS2 // ACS Nano. American Chemical Society, 2015. Vol. 9, № 12. P. 12224–12232.

84. Porsev V. V., Evarestov R. A. Quantum mechanical calculation of electronic band structure of helically periodic systems: a case of nanotubes and nanohelicenes // Physics of the Solid State. 2022. Vol. 64, № 11. P. 1807.

85. Damnjanović M. et al. Symmetry of commensurate double-wall carbon nanotubes // J. Phys. A: Math. Gen. 2003. Vol. 36, № 41. P. 10349.

86. Milosević I. et al. Symmetry based properties of the transition metal dichalcogenide nanotubes // Eur. Phys. J. B. 2000. Vol. 17, № 4. P. 707–712.

87. Dovesi R. et al. The CRYSTAL code, 1976–2020 and beyond, a long story // The Journal of Chemical Physics. 2020. Vol. 152, № 20. P. 204111.

88. Dovesi R. et al. Quantum-mechanical condensed matter simulations with CRYSTAL // WIREs Computational Molecular Science. 2018. Vol. 8, № 4. P. e1360.

89. Virtanen P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python: 3 // Nat Methods. Nature Publishing Group, 2020. Vol. 17, № 3.
P. 261–272.

90. Akima H. A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures // J. ACM. 1970. Vol. 17, № 4. P. 589–602.

91. Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics // Journal of Molecular Graphics. 1996. Vol. 14, № 1. P. 33–38.

92. Stone J.E. An efficient library for parallel ray tracing and animation. University of Missouri–Rolla, 1998.

93. Hunter J.D. Matplotlib: A 2D Graphics Environment // Computing in Science & Engineering. 2007. Vol. 9, № 3. P. 90–95.

94. Waskom M.L. seaborn: statistical data visualization // Journal of Open Source Software. 2021. Vol. 6, № 60. P. 3021.

95. Williams T., Kelley C. gnuplot 5.4. An interactive plotting program. Version 5.4. December, 2020. 2021.

96. Saleh G. et al. NCImilano: an electron-density-based code for the study of noncovalent interactions // J Appl Cryst. International Union of Crystallography, 2013. Vol. 46, № 5. P. 1513–1517.

97. Perdew J.P., Ernzerhof M., Burke K. Rationale for mixing exact exchange with density functional approximations // The Journal of Chemical Physics. 1996. Vol. 105, № 22. P. 9982–9985.

98. Peintinger M.F., Oliveira D.V., Bredow T. Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations // Journal of Computational Chemistry. 2013. Vol. 34, № 6. P. 451–459.

99. Dovesi R. et al. CRYSTAL17 user's manual. University of Torino // URL http://www. crystal. unito. it. 2017.

100. Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations // Phys. Rev. B. American Physical Society, 1976. Vol. 13, № 12. P. 5188–5192.

101. Trucano P., Chen R. Structure of graphite by neutron diffraction: 5531 // Nature. Nature Publishing Group, 1975. Vol. 258, № 5531. P. 136–137.

102. Hom T., Kiszenik W., Post B. Accurate lattice constants from multiple reflection measurements. II. Lattice constants of germanium silicon, and diamond // Journal of Applied Crystallography. 1975. Vol. 8, № 4. P. 457–458.

103. Liu Z. et al. Interlayer binding energy of graphite: A mesoscopic determination from deformation // Phys. Rev. B. American Physical Society, 2012. Vol. 85, № 20. P. 205418.

104. Zacharia R., Ulbricht H., Hertel T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons // Phys. Rev. B. American Physical Society, 2004. Vol. 69, № 15. P. 155406.

105. Wang W. et al. Measurement of the cleavage energy of graphite // Nat Commun. 2015. Vol. 6. P. 7853.

106. Weippert J. et al. A TPD-based determination of the graphite interlayer cohesion energy // The Journal of Chemical Physics. 2018. Vol. 149, № 19. P. 194701.

107. Phys. Rev. B 76, 115424 (2007) - Energetics of interlayer binding in graphite: The semiempirical approach revisited [Electronic resource]. URL: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.76.115424 (accessed: 27.03.2024).

108. Woo K. et al. A study on sub-bandgap photoexcitation in nitrogen- and boron-doped diamond with interdigitated device structure // Applied Physics Letters. 2022. Vol. 120, № 11. P. 112104.

109. Krukau A.V. et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals // The Journal of Chemical Physics. 2006. Vol. 125, № 22. P. 224106.

110. Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction // J Comput Chem. 2006. Vol. 27, № 15. P. 1787–1799.

111. Zhao W. et al. Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2 // ACS Nano. American Chemical Society, 2013. Vol. 7, № 1. P. 791–797.

112. Zhang Y. et al. Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary // ACS Nano. American Chemical Society, 2013. Vol. 7, № 10. P. 8963–8971.

113. Schutte W.J., De Boer J.L., Jellinek F. Crystal structures of tungsten
disulfide and diselenide // Journal of Solid State Chemistry. 1987. Vol. 70, № 2. P. 207–
209.

114. Braga D. et al. Quantitative Determination of the Band Gap of WS2 with Ambipolar Ionic Liquid-Gated Transistors // Nano Lett. American Chemical Society, 2012. Vol. 12, № 10. P. 5218–5223.

115. Abud M., Sartori G. The geometry of spontaneous symmetry breaking // Annals of Physics. 1983. Vol. 150, № 2. P. 307–372.

116. Landau L.D. et al. Theory of elasticity: volume 7. Elsevier, 1986. Vol. 7.

117. Bartashevich E.V., Tsirelson V.G. Interplay between non-covalent interactions in complexes and crystals with halogen bonds // Russ. Chem. Rev. IOP Publishing, 2014. Vol. 83, № 12. P. 1181.

118. Porsev V.V., Evarestov R.A. Ab initio modeling of helical polyacetylenes:Peierls and Mott-Hubbard metal–insulator transitions // Computational MaterialsScience. 2022. Vol. 213. P. 111642.

119. Dutta S., Pati S.K. Novel properties of graphene nanoribbons: a review // J.
Mater. Chem. The Royal Society of Chemistry, 2010. Vol. 20, № 38. P. 8207–8223.

Приложение

Таблица S1. Расчитанные фононные частоты политвистана $\varphi_{CH} = 130.120^{\circ}$ *L*83₃₆2 (СН СНФ) в Г-точке зоны Бриллюэна.

MODES	FREQUENCIES, CM ⁻¹	IRREP
1-1	0.0000	A2
2-3	0.0000	E1
4-4	3.7697	A2
5-6	5.4475	E37
7-8	5.9261	E35
9-10	24.1753	E10
11-12	28.1489	E12
13-14	43.4180	E36
15-16	51.7086	E26
17-18	61.7255	E24
19-20	83.8880	E11
21-22	85.3163	E21
23-24	89.3867	E36
25-26	102.0616	E23
27-28	123.0230	E15
29-30	124.2826	E25
31-32	145.1515	E13
33-34	163.3471	E32
35-36	163.6594	E22
37-38	176.9423	E11
39-40	188.2304	E34
41-42	201.8784	E14
43-44	204.7858	E4
45-46	229.6682	E2
47-48	238.3663	E33
49-50	245.8457	E40
51-52	261.1043	E25
53-54	268.6787	E38
55-56	273.0424	E3
57-58	284.4428	E7
59-60	304.8362	E9
61-62	305.5071	E39
63-64	317.1728	E29
65-66	335.4529	E8
67-68	337.4764	E27
69-70	337.6001	E18
71-72	340.2535	E22

73-74	362.4169	E28
75-76	366.2139	E20
77-78	385.8179	E19
79-80	390.2821	E16
81-82	404.9488	E17
83-84	409.1403	E31
85-86	412.9191	E14
87-88	418.9428	E30
89-90	421.8512	E5
91-92	426.8132	E6
93-94	427.8408	E41
95-96	477.6802	E33
97-98	483.8000	E35
99-100	485.8753	E12
101-102	497.2530	E1
103-104	502.6753	E24
105-106	510.0972	E18
107-108	523.3826	E37
109-110	525.9890	E29
111-112	530.5761	E23
113-114	533.0358	E3
115-116	549.6383	E7
117-118	556.7007	E10
119-120	563.9624	E13
121-122	574.4637	E40
123-124	577.4815	E39
125-126	590.4120	E26
127-128	594.9250	E34
129-130	596.6393	E4
131-132	609.4789	E8
133-134	613.5630	E32
135-136	614.9130	E2
137-138	615.4609	E21
139-140	620.4187	E31
141-142	620.9654	E5
143-144	621.2948	E16
145-146	622.0831	E15
147-148	622.9317	E20
149-150	623.3216	E41
151-152	623.3558	E38
153-154	624.6618	E27
155-156	625.4154	E9
157-158	627.4233	E6

159-160	628.3380	E28
161-162	632.3507	E30
163-164	636.2070	E17
165-166	636.2072	E19
167-168	662.3722	E10
169-170	662.8106	E26
171-172	662.8603	E37
173-174	663.7702	E1
175-176	665.0500	E35
177-178	666.8458	E12
179-180	667.4408	E21
181-182	669.2212	E24
183-184	672.8039	E23
185-186	679.2991	E13
187-188	681.1232	E15
189-190	692.9697	E34
191-192	697.6747	E32
193-194	710.8743	E4
195-196	718.8638	E2
197-198	720.4587	E40
199-200	727.3900	E7
201-202	732.0785	E29
203-204	734.4775	E18
205-206	754.4702	E38
207-208	791.3437	E9
209-210	822.4848	E27
211-212	826.5431	E15
213-214	827.1326	E21
215-216	828.4134	E39
217-218	828.8149	E3
219-220	830.4607	E8
221-222	830.6828	E33
223-224	832.8340	E32
225-226	833.3156	E14
227-228	833.6942	E26
229-230	834.9527	E28
231-232	836.1376	E22
233-234	838.6605	E25
235-236	840.7746	E11
237-238	841.1050	E19
239-240	842.1095	E36
241-241	842.3283	A1
242-243	843.2525	E20

244-245	844.0045	E4
246-247	844.4598	E10
248-249	847.1556	E17
250-251	852.1969	E30
252-253	854.2406	E16
254-255	856.0034	E6
256-257	856.3209	E40
258-259	857.3745	E37
260-261	858.5390	E41
262-263	858.7396	E31
264-265	859.6635	E5
266-267	866.6688	E7
268-269	870.8453	E1
270-271	873.7715	E29
272-273	877.1984	E18
274-275	884.0118	E35
276-277	895.6779	E12
278-279	905.4482	E24
280-281	913.1315	E23
282-283	918.5039	E13
284-285	922.1101	E34
286-287	924.7343	E2
288-289	927.4968	E38
290-291	931.8807	E9
292-293	936.3626	E6
294-295	936.8366	E30
296-297	937.9999	E41
298-299	939.0886	E17
300-301	939.4857	E27
302-303	941.6656	E5
304-305	943.0383	E19
306-307	946.9264	E31
308-309	948.3895	E20
310-311	948.8961	E28
312-313	950.9968	E16
314-315	957.0251	E8
316-317	967.4511	E39
318-319	979.9082	E3
320-321	993.7550	E33
322-323	1006.8450	E20
324-325	1008.2872	E14
326-327	1008.9657	E18
328-329	1011.5699	E29

330-331	1012.4249	E27
332-333	1015.3870	E16
334-335	1016.7674	E7
336-337	1022.6031	E22
338-339	1024.6213	E40
340-341	1025.3661	E9
342-343	1034.7129	E31
344-345	1034.7175	E4
346-347	1036.0632	E25
348-349	1040.4917	E38
350-351	1045.6664	E32
352-353	1048.3228	E11
354-355	1054.0628	E2
356-357	1056.1457	E15
358-359	1056.1913	E5
360-361	1058.3697	E36
362-363	1060.6250	E24
364-365	1060.6562	E23
366-367	1061.0115	E34
368-369	1061.4859	E13
370-371	1061.7937	E12
372-372	1062.3295	A1
373-374	1063.8927	E35
375-376	1064.2845	E21
377-378	1066.4739	E1
379-380	1068.8203	E37
381-382	1068.8418	E26
383-384	1069.9049	E10
385-386	1075.4841	E41
387-387	1082.9785	A2
388-389	1083.7511	E18
390-391	1084.7482	E29
392-393	1086.4548	E36
394-395	1086.5831	E7
396-397	1086.7793	E2
398-399	1088.8327	E38
400-401	1089.0951	<u>E40</u>
402-403	1090.8023	E6
404-405	1091.5058	E34
406-407	1092.1163	<u> </u>
408-409	1093.0024	<u>E11</u>
410-411	1093.4911	E9
412-413	1095.6298	E32

414-415	1098.4748	E27
416-417	1099.5905	E25
418-419	1099.9619	E15
420-421	1101.6179	E30
422-423	1102.6289	E13
424-425	1102.9043	E20
426-427	1104.3895	E19
428-429	1104.6579	E17
430-431	1105.6737	E22
432-433	1105.6834	E21
434-435	1105.9930	E28
436-437	1106.3502	E16
438-439	1108.5034	E30
440-441	1108.6507	E31
442-443	1109.4142	E6
444-445	1109.8332	E5
446-447	1109.9637	E8
448-449	1110.1057	E41
450-451	1110.8804	E14
452-453	1111.9380	E17
454-455	1113.0168	E26
456-457	1114.4807	E23
458-459	1114.8121	E39
460-461	1115.0455	E33
462-463	1117.0361	E19
464-465	1117.0890	E3
466-467	1120.7967	E28
468-469	1120.9349	E10
470-471	1123.4311	E8
472-473	1124.0784	E24
474-475	1124.9367	E39
476-477	1126.9037	E3
478-479	1127.6498	E37
480-481	1130.3409	E12
482-483	1130.4977	E33
484-485	1131.8393	E1
486-487	1133.0020	E35
488-489	1134.1214	E14
490-491	1137.4171	E22
492-493	1140.2398	E25
494-495	1141.2384	E8
496-497	1141.9182	E28
498-499	1142.4300	E11

500-501	1143.8314	E39
502-503	1143.8781	E36
504-504	1144.2406	A1
505-506	1144.7813	E19
507-508	1149.9181	E17
509-510	1151.1723	E3
511-512	1157.6847	E30
513-514	1162.7577	E33
515-516	1168.2200	E6
517-518	1177.1057	E14
519-520	1180.9099	E41
521-522	1192.7980	E22
523-524	1194.8851	E5
525-526	1208.7098	E25
527-528	1209.0401	E31
529-530	1222.9265	E16
531-532	1224.2014	E11
533-534	1236.2526	E20
535-536	1238.3550	E36
537-538	1248.5989	E27
539-540	1249.0318	E24
541-542	1249.3346	E12
543-543	1249.5584	<u>A1</u>
544-545	1249.5893	E23
546-547	1250.2444	E35
548-549	1251.2164	E13
550-551	1251.5291	E1
552-553	1252.4414	E37
554-554	1252.6434	A2
555-556	1253.4025	E10
557-558	1253.9089	E34
559-560	1254.8173	E26
561-562	1257.1724	E21
563-564	1257.4062	E2
565-566	1259.1820	E9
567-568	1261.0999	E15
569-570	1261.1952	E38
571-572	1263.1683	E36
573-574	1266.5567	E32
575-576	1269.0443	E9
577-578	1272.5813	E38
579-580	1273.3089	E4
581-582	1273.7777	E27

583-584	1274.5976	E11
585-586	1279.8368	E20
587-588	1280.9771	E40
589-590	1281.3865	E2
591-592	1285.4448	E25
593-594	1286.6260	E16
595-596	1288.6591	E7
597-598	1289.7369	E34
599-600	1294.2246	E31
601-602	1295.1062	E29
603-604	1296.8370	E22
605-606	1297.0721	E13
607-608	1298.8538	E18
609-610	1302.5436	E5
611-612	1303.3106	E23
613-614	1308.1744	E14
615-616	1308.3997	E24
617-618	1311.4004	E41
619-620	1311.9386	E12
621-622	1313.9083	E35
623-624	1314.6718	E1
625-626	1314.7451	E37
627-628	1315.4327	E10
629-630	1316.9369	E26
631-632	1317.7981	E33
633-634	1319.3874	E21
635-636	1320.1876	E6
637-638	1322.8013	E15
639-640	1324.9468	E3
641-642	1327.0410	E32
643-644	1327.2124	E30
645-646	1328.7483	E16
647-648	1328.7557	E20
649-650	1329.2924	E31
651-652	1329.4360	E39
653-654	1329.4959	E27
655-656	1330.4056	E5
657-658	1330.8809	E17
659-660	1330.9826	E9
661-661	1330.9855	A2
662-663	1331.4834	E36
664-665	1331.7219	E8
666-667	1331.8515	E4

668-669	1331.9271	E41
670-671	1332.2276	E19
672-673	1332.5138	E28
674-675	1332.6772	E11
676-677	1333.0724	E38
678-679	1334.0849	E6
680-681	1334.4095	E25
682-683	1335.5592	E2
684-685	1336.6574	E22
686-687	1336.8648	E40
688-689	1337.7812	E30
690-691	1338.2529	E34
692-693	1339.3840	E14
694-695	1340.8995	E13
696-697	1341.6126	E7
698-699	1342.7909	E33
700-701	1343.1401	E23
702-703	1343.5986	E17
704-705	1345.3172	E24
706-707	1345.4841	E29
708-709	1346.9369	E3
710-711	1347.6759	E18
712-713	1348.0613	E12
714-715	1349.3962	E19
716-717	1351.2305	E39
718-719	1351.6745	E35
720-721	1353.1141	E28
722-723	1353.6932	E8
724-725	1356.8695	E1
726-727	1363.3088	E37
728-729	1370.3482	E10
730-731	1372.5690	E18
732-733	1373.7593	E29
734-735	1375.9336	E7
736-737	1377.1687	E26
738-739	1378.5418	E40
740-741	1381.0969	E4
742-743	1382.9654	E21
744-745	1383.3054	E32
746-747	1384.8003	E15
748-749	1387.9277	E18
750-751	1388.1845	E21
752-753	1389.5254	E15

754-755	1389.5760	E29
756-757	1389.7186	E26
758-759	1391.7824	E7
760-761	1391.9812	E10
762-763	1392.3969	E32
764-765	1393.4028	E40
766-767	1393.7140	E4
768-769	1394.8918	E37
770-771	1398.3999	E1
772-773	1399.7404	E39
774-775	1400.2249	E8
776-777	1400.4282	E3
778-779	1401.5667	E33
780-781	1402.2682	E35
782-783	1402.6366	E28
784-785	1402.8538	E14
786-787	1404.1524	E22
788-789	1405.3497	E25
790-791	1406.3200	E12
792-793	1406.3591	E11
794-795	1406.5792	E19
796-797	1407.1437	E36
798-798	1407.6103	A1
799-800	1410.1009	E24
801-802	1412.0446	E17
803-804	1413.4987	E23
805-806	1416.5463	E13
807-808	1416.7102	E30
809-810	1419.2255	E34
811-812	1420.6897	E6
813-814	1421.4984	E2
815-816	1423.4472	E38
817-818	1423.7108	E41
819-820	1425.1154	<u>E9</u>
821-822	1425.8548	E5
823-824	1426.3514	E27
825-826	1427.0166	E31
827-828	1427.1972	E20
829-830	1427.4669	E16
831-831	3043.6982	A2
832-833	3044.1128	E36
834-835	3044.7327	E11
836-837	3045.6638	E25

838-839	3046.5790	E22
840-841	3047.4276	E21
842-843	3047.4902	E26
844-845	3047.7380	E14
846-847	3047.7835	E15
848-849	3048.0051	E10
850-851	3048.4751	E32
852-853	3048.8348	E37
854-855	3048.9832	E33
856-857	3049.5666	E4
858-859	3049.9940	E1
860-861	3050.2481	E3
862-863	3050.8149	E40
864-865	3051.5003	E35
866-867	3051.5237	E39
868-869	3052.2248	E7
870-871	3052.7269	E8
872-873	3053.2410	E12
874-875	3053.3781	E29
876-877	3053.8886	E28
878-879	3054.2615	E18
880-881	3054.8732	E19
882-883	3054.9451	E5
884-885	3054.9764	E31
886-887	3055.0730	E24
888-889	3055.1481	E41
890-891	3055.3693	E16
892-893	3055.4990	E17
894-895	3055.5501	E6
896-897	3055.6529	E30
898-899	3056.1622	E20
900-901	3056.9298	E23
902-903	3057.3593	E27
904-905	3058.6908	E13
906-907	3058.8901	E9
908-909	3060.2166	E34
910-911	3060.5484	E38
912-913	3061.3019	E2
914-915	3063.6441	E38
916-917	3064.0860	E2
918-919	3064.2104	E6
920-921	3064.2339	E41
922-923	3064.2376	E9
924-925	3064.4078	E5
---------	-----------	-----
926-927	3064.6244	E30
928-929	3064.6363	E31
930-931	3064.6730	E27
932-933	3064.7200	E16
934-935	3064.8266	E20
936-937	3064.8578	E18
938-939	3065.7295	E29
940-941	3065.7715	E17
942-943	3066.0188	E34
944-945	3067.1553	E7
946-947	3067.4491	E19
948-949	3068.2992	E13
950-951	3068.8133	E40
952-953	3069.6963	E28
954-955	3070.5263	E4
956-957	3070.6420	E23
958-959	3072.2108	E8
960-961	3072.2519	E32
962-963	3072.7502	E24
964-965	3073.9101	E15
966-967	3074.6408	E12
968-969	3074.7447	E39
970-971	3075.1714	E21
972-973	3076.1451	E35
974-975	3076.3987	E26
976-977	3077.2779	E3
978-979	3077.2914	E10
980-981	3077.4861	E1
982-983	3077.5303	E37
984-985	3079.8921	E33
986-987	3082.4916	E14
988-989	3085.1435	E22
990-991	3087.3368	E25
992-993	3089.2766	E11
994-995	3090.4766	E36
996-996	3091.9485	A1

Таблица S2. Расчетные фононные частоты политвистана $\varphi_{CH} = 130.000^{\circ}$ *L*12₁ (C₆H₆ CH Φ) в Г-точке зоны Бриллюэна

MODES	FREQUENCIES, CM ⁻¹	IRREP
1-2	0	E1

3-3	0	Α
4-4	12.9093	Α
5-6	32.4353	E2
7-7	38.3101	Α
8-8	38.8479	Α
9-10	90.9328	E1
11-12	107.5139	E3
13-14	129.0531	E1
15-16	180.6217	E2
17-18	199.8375	E4
19-20	203.2335	E1
21-22	226.7606	E2
23-24	263.1105	E3
25-26	290.3311	E5
27-28	312.6684	E3
29-30	335.4314	E4
31-31	338.8652	В
32-33	379.5157	E4
34-35	385.756	E2
36-37	392.0067	E5
38-39	419.2545	E5
40-40	422.7763	В
41-41	423.8635	В
42-42	487.4628	Α
43-43	489.3905	А
44-45	496.1089	E1
46-46	510.0419	В
47-48	529.5214	E3
49-50	547.1017	E5
51-52	550.6197	E1
53-54	566.9517	E2
55-56	601.4805	E4
57-58	613.9496	E2
59-60	615.4371	E4
61-62	620.9959	E5
63-64	621.5865	E4
65-66	623.7424	E3
67-68	624.8263	E3
69-69	628.4789	В
70-70	629.548	В
71-72	637.8432	E5
73-74	663.1525	E2
75-76	663.5973	E1

77-77	666.1786	A
78-78	666.8758	A
79-80	674.5658	E1
81-82	675.9743	E3
83-84	710.8616	E4
85-86	714.9763	E2
87-88	729.6005	E5
89-89	735.9214	В
90-91	799.8941	E3
92-93	824.8862	E3
94-95	829.4834	E3
96-97	832.016	E4
98-99	834.7702	E2
100-101	840.405	E1
102-103	841.2258	E4
104-105	841.4477	E2
106-106	842.3537	A
107-108	845.9492	E5
109-110	852.7568	E4
111-111	857.6678	В
112-112	858.4441	В
113-114	862.6764	E5
115-116	867.4429	E5
117-118	871.6007	E1
119-119	877.0186	В
120-120	897.4914	A
121-121	899.4586	A
122-123	915.1756	E1
124-125	923.2766	E2
126-127	932.8359	E3
128-128	935.6251	В
129-129	935.9948	В
130-131	941.364	E5
132-133	941.4638	E5
134-135	950.4601	E4
136-137	956.7941	E4
138-139	983.2017	E3
140-140	1008.1252	В
141-142	1008.272	E4
143-144	1014.9294	E5
145-146	1015.9441	E2
147-148	1021.7299	E3
149-150	1035.5123	E4

151-152	1046.4901	E1
153-154	1052.3274	E5
155-156	1055.8433	E2
157-158	1060.6694	E3
159-159	1061.3002	А
160-160	1061.6049	А
161-162	1061.9561	E1
163-163	1064.9401	А
164-165	1067.183	E1
166-167	1070.9804	E2
168-168	1084.1742	В
169-169	1084.182	А
170-171	1085.9782	E2
172-173	1086.4762	E5
174-175	1091.6592	E4
176-176	1092.1615	В
177-177	1093.0692	В
178-179	1093.2208	E3
180-181	1095.8307	E1
182-183	1099.2349	E3
184-185	1103.1019	E4
186-187	1104.2262	E5
188-189	1107.0659	E1
190-190	1107.3744	В
191-192	1107.8877	E5
193-193	1108.7432	В
194-195	1109.1792	E2
196-197	1111.146	E4
198-199	1114.4345	E2
200-201	1115.6043	E5
202-203	1118.6172	E3
204-205	1123.0421	E4
206-207	1126.1586	E3
208-208	1126.2864	A
209-209	1128.0763	<u>A</u>
210-211	1128.4055	E1
212-213	1132.7901	E2
214-215	1136.885	E1
216-217	1137.5872	E4
218-218	1138.5237	А
219-220	1144.9445	E5
221-222	1149.3577	E3
223-223	1164.9383	В

224-224	1166.9048	В
225-226	1182.3914	E2
227-228	1196.9367	E5
229-230	1219.8526	E1
231-232	1228.9444	E4
233-233	1248.563	А
234-235	1250.3899	E1
236-236	1251.1646	А
237-237	1252.4117	А
238-239	1254.1063	E2
240-240	1254.7487	А
241-242	1256.0821	E1
243-244	1256.6152	E3
245-246	1260.3755	E3
247-248	1261.3024	E2
249-250	1272.0522	E3
251-252	1272.4716	E4
253-254	1279.1882	E1
255-256	1281.1644	E2
257-258	1285.8881	E4
259-260	1290.0257	E5
261-261	1299.3061	В
262-263	1299.6227	E1
264-265	1303.4286	E5
266-267	1304.6557	E2
268-268	1310.9069	А
269-269	1314.0807	А
270-271	1316.4127	E1
272-273	1317.1138	E2
274-275	1321.8766	E3
276-276	1323.041	В
277-277	1323.2509	В
278-279	1323.6367	E3
280-281	1327.5534	E4
282-283	1328.1265	E5
284-285	1329.7193	E4
286-287	1330.0718	E5
288-288	1330.4537	Α
289-289	1330.5557	В
290-291	1330.7558	E3
292-293	1332.461	E1
294-295	1332.7052	E4
296-296	1333.2475	В

297-298	1335.9933	E2
299-300	1338.1157	E2
301-302	1342.2832	E1
303-304	1342.4893	E5
305-305	1345.8232	А
306-307	1347.0533	E3
308-308	1347.4292	А
309-310	1349.0575	E5
311-311	1350.1236	В
312-313	1355.4877	E4
314-315	1356.567	E1
316-316	1372.2421	В
317-318	1373.3828	E2
319-320	1373.7478	E5
321-322	1379.0901	E4
323-324	1383.7423	E3
325-325	1387.287	В
326-327	1389.2326	E3
328-329	1390.0259	E2
330-331	1392.1212	E5
332-333	1394.9583	E4
334-335	1397.5279	E1
336-337	1402.8667	E3
338-339	1403.8476	E4
340-340	1405.2889	A
341-342	1405.7725	E2
343-343	1407.4405	A
344-345	1408.4155	E1
346-346	1411.2846	A
347-348	1412.6683	E5
349-350	1415.0255	E1
351-352	1420.7966	E2
353-353	1422.3999	В
354-354	1422.9627	В
355-356	1425.4187	E3
357-358	1427.9149	E5
359-360	1428.3068	E4
361-361	3043.71	A
362-363	3044.989	E1
364-365	3047.1373	E2
366-367	3047.5649	E3
368-369	3048.0244	E2
370-371	3049.3153	E4

372-373	3050.1386	E3
374-375	3050.1495	E1
376-377	3052.1919	E5
378-379	3052.957	E4
380-380	3053.0517	А
381-381	3053.8584	В
382-383	3054.7791	E5
384-384	3054.894	А
385-385	3055.3907	В
386-387	3055.6533	E5
388-389	3056.0542	E4
390-390	3056.1882	В
391-392	3058.287	E1
393-394	3058.8222	E3
395-396	3061.3874	E2
397-397	3063.7173	В
398-399	3064.3134	E2
400-401	3064.3488	E3
402-403	3064.4133	E5
404-405	3064.84	E4
406-406	3065.0434	В
407-407	3065.7706	В
408-409	3066.8904	E5
410-411	3067.6096	E5
412-413	3069.3373	E1
414-415	3071.003	E4
416-417	3072.2329	E4
418-418	3073.9934	А
419-420	3074.6146	E3
421-421	3074.7972	А
422-423	3077.266	E2
424-425	3077.9787	E1
426-427	3078.2585	E3
428-429	3084.1793	E2
430-431	3089.0378	E1
432-432	3092.707	A

Таблица S3. Поведение запрещенной зоны исследуемых нанотрубок при торсионной деформации.

ω, °	(8, 2)	(12, 3)	(24, 6)	(36, 9)
-2.857	Direct	Indirect	Indirect	Indirect

-1.607	Indirect	Indirect	Indirect	Indirect
-1.118	Indirect	Indirect	Indirect	Indirect
-0.695	Indirect	Indirect	Indirect	Indirect
-0.326	Indirect	Indirect	NA*	NA*
0.000	Indirect	Indirect	Indirect	Indirect
0.343	Indirect	Indirect	NA*	Indirect
0.547	Indirect	Indirect	Indirect	NA*
1.353	Indirect	Indirect	Indirect	Indirect
2.143	Indirect	Indirect	Indirect	Indirect
3.025	Indirect	Indirect	Indirect	Indirect

* - Cannot be obtained due to technical reasons.

Орбитальные экспоненты и коэффициенты разложения гауссовых базисных функций и псевдопотенциалов, используемых в квантово-химических расчетах наносистем на основе WS₂, в формате входных файлов для CRYSTAL17:

Базисный набор для атома W:

274 10

INPUT

 $14\ 6\ 8\ 8\ 8\ 8\ 0$

- 1.16069996 -0.54709101 0
- 3.19729996 -9.24740410 0
- 8.38640022 -52.48021317 0
- 22.00390053 -106.44053650 0
- 73.78410339 -320.76925659 0
- 241.43850708 -47.99345398 -1
- 2.27020001 -39.29640198 0
- 2.63599992 124.15521240 0
- 3.46090007 -228.80580139 0

5.08890009	432.31655884	0
7.92360020	-361.88928223	0
12.65060043	357.38705444	0
35.13869858	30.99152946	-1
32.79159927	6.80353212	-2
1.82889998	-31.35513878	0
2.16409993	103.97112274	0
2.87249994	-200.15911865	0
4.19990015	372.58468628	0
6.40469980	-344.03176880	0
9.77509975	300.36007690	0
25.06100082	36.69195175	-1
34.81399918	5.78834915	-2
1.33169997	-24.22998619	0
1.55110002	75.06442261	0
2.06049991	-149.58029175	0
2.91930008	267.75427246	0
4.37589979	-291.28921509	0
6.54969978	253.97956848	0
16.10079956	26.81559563	-1
20.45079994	7.90078878	-2
0.87849998	37.99953842	0

0.95969999	-73.81892395	0
1.22749996	102.53340149	0
1.33510005	-60.67398453	0
3.73200011	25.93541336	0
10.76949978	93.24456787	0
28.34440041	33.22473145	-1
66.98750305	1.05253196	-2
0 0 1 2.0 1.0		
2.8533000	1.0000000	
0 0 1 2.0 1.0		
0.9067000	1.0000000	
0 0 1 0.0 1.0		
0.2815000	1.0000000	
0 2 1 6.0 1.0		
3.0085000	1.0000000	
0 2 1 0.0 1.0		
1.7265000	1.0000000	
0 2 1 0.0 1.0		
0.7364000	1.0000000	
0 2 1 0.0 1.0		
0.3189000	1.0000000	

0 3 1 4.0 1.0

- 0310.01.0
- 0.4026000 1.0000000
- 0310.01.0
- 0.1632000 1.0000000

Базисный набор для атома S:

- 216 10
- INPUT
- 6455000
- 2.69159999 -1.09096500 0
- 7.70099998 -9.88182199 0
- 22.82830000 -26.41339898 0
- 70.11800003 -6.83946300 -1
- 2.79040000 -59.91221809 0
- 3.26820001 182.12236595 0
- 3.99610001 -115.52312756 0
- 6.41450000 5.37397599 -1
- 4.27050000 2.95619199 -2
- 2.23629999 -48.71918821 0
- 2.60190001 140.84932518 0
- 3.14840001 -100.90417099 0
- 5.23589998 4.19983298 -1

3.34340000	4.77143699	-2
0 0 1 2.0 1.0		
17.0300000	1.0000000	
0 0 1 0.0 1.0		
1.7770000	1.0000000	
0 0 1 0.0 1.0		
0.4184000	1.0000000	
0 0 1 0.0 1.0		
0.1449000	1.0000000	
0 2 1 4.0 1.0		
11.8400000	1.0000000	
0 2 1 0.0 1.0		
3.5990000	1.0000000	
0 2 1 0.0 1.0		
0.5082000	1.0000000	
0 2 1 0.0 1.0		
0.1492000	1.0000000	
0 3 1 0. 1.0		
1.705	1.0	
0 3 1 0. 1.0		

0.354 1.0

Параметры эмпирической поправки к энергии, предложенной Гримме, включающие в себя вклады дисперсии на дальних расстояниях в вычисленную полную энергию и градиенты в формате Crystal17:

 $0.5 \ 20 \ 25$

2

274 0.291 0.60

216 22.98 1.84