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Introduction

Inelastic processes in collisions of atoms, molecules, and ions of var-

ious chemical elements determine the properties of gas and plasma media,

such as gas laser media, planetary atmospheres, star photospheres, and so

on. Astrophysical research plays an important role in modern science be-

cause it allows us to learn and understand the laws and evolution of the

Universe. The essence of astrophysical research has been and remains un-

changed – observation of the spectra in various ranges of electromagnetic

waves. Based on the absorption spectra obtained, conclusions can be drawn

about the qualitative and quantitative composition of stars.

The main source of spectra is stars. The spectrum of stars is a contin-

uous spectrum with absorption lines. The qualitative composition is quite

easy to determine, because each chemical element has a unique spectrum

that allows it to be distinguished from other elements. But determining the

quantitative composition is a rather difficult. Since only spectra are exper-

imentally observed, the analysis of the quantitative composition is possible

based on the study of the characteristics of spectral absorption lines - width,

depth, shape. These characteristics are influenced by many factors. There-

fore, it is necessary to construct a model spectral lines of the element and,

by varying the parameters, obtain a coincidence of the modelled line and

the experimentally observed one. Since there are many parameters, and

their various combinations can lead to the same result, it is necessary to

determine as many unknown parameters as possible by calculating their

exact or approximate values in some way.

Such parameters are the rate coefficients of the inelastic processes in

collisions of atoms with other particles. Collisions with hydrogen atoms

and ions plays the main role, which is due to the high abundance of these

particles in the stars photospheres, as well as with electrons. In particular,

taking into account inelastic collisions plays an important role for stars

of spectral classes F, G, K with a low abundance of heavy elements1,
1So-called low metallicity, metals mean elements heavier than helium.
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because for such cases the assumption of local thermodynamic equilibrium

in modeling leads to unsatisfactory results (see, for example, recent work

[1, 2]). It is necessary to take into account the deviation from the local

thermodynamic equilibrium, and the accuracy of the inelastic processes

rate coefficients can very significantly affect the final result.

Therefore, the study and analysis of inelastic processes at low-energy

(10−2 – 10 2 eV) collisions of certain atoms and ions with hydrogen atoms

and ions is important for astrophysical investigations (see, for example, [3–

5]). This is confirmed by the great need for such data (see, for example,

[3,6]). For the most accurate quantitative determination of the composition

of the stars photospheres, the most accurate data on inelastic processes

are needed, namely the cross sections and the rate coefficients of these

processes. Such data can be obtained both from experiment and from

theoretical calculations. However, the level of technical development at the

moment does not allow us to obtain complete information about inelastic

processes at low collision energies, being limited only to information about

ion collisions (see, for example, recent papers [7–10]), while information

about neutral atoms collisions is often more important, since the spectral

lines of such processes are well observed. Therefore, theoretical studies of

inelastic processes in collisions of atoms and ions at low energies are today

the main source of information about cross sections and rate coefficients of

inelastic processes, and therefore relevant.

Often, due to the lack of accurate data on the inelastic processes rate

coefficients obtained within the framework of physically correct based quan-

tum methods, astrophysicists use the semi-classical Dravin formula [11,12]

in the form proposed by Steenbook and Holweger [13] for estimating the

values of rate coefficients. In Barklem et al. [14] it is shown that the use

of this formula, which is a modification of the classical Thompson formula

for calculations of ionization cross sections at electron impact, for inelastic

cross sections in collisions with hydrogen, is not physically justified and

leads to differences by several orders of magnitude from the cross sections
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obtained by ab initio quantum methods (or even to zero cross sections for

charge exchange processes, which have the largest cross sections, see, for

example, [15–18]). For this reason, the use of physically justified methods

for the study of inelastic processes in collisions of atoms and ions of vari-

ous chemical elements with hydrogen atoms and ions, and obtaining reliable

characteristics of inelastic processes is relevant.

The most accurate values of the rate coefficients can be obtained by

means of a complete quantum calculation. The standard Born-Oppenheimer

formalism, proposed in 1927 in [19], was the most widely used in the study

of slow inelastic collisions. The main idea of this approach is that due to

the large difference in the masses of electrons and nuclei, it is possible to

separate the movement of fast-moving electrons and slow-moving nuclei.

Within this formalism, the solution of the collision problem is divided into

two steps: the calculation of the electronic structure of a quasimolecule

with fixed nuclei and the calculation of nuclear dynamics. The big dis-

advantage of accurate quantum calculations is their time-consuming and

large computations required for calculations. For example, an electronic

structure calculations can consume a months for elements with a complex

electronic structure, such as iron-peak elements (Sc, Ti, V, Cr, Mn, Fe,

Co, Ni), which have a significant number of energy levels and a complex

fine structure, which together leads to the need to calculate hundreds of

molecular potential energy curves (PECs) while calculating even a dozen

of PECs using ab initio quantum chemical methods is a very resource-

intensive and time-consuming task. The nuclear dynamics calculations is

also quite complicated and often involves a number of technical difficulties

due to numerical methods of solution (see, for example, [20]). For these

reasons, there are various model methods for solving both the electronic

problem and nuclear dynamics. These model methods allow us to quickly

obtain a good estimate of the rate coefficients of inelastic processes with the

largest cross sections of inelastic processes with an accuracy of one order

of magnitude compared to ab initio quantum calculations (see, for exam-
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ple, [21, 22]). It is often inelastic processes with the largest cross sections

and rate coefficients that are most important for non-Local Thermodynamic

Equilibrium (non-LTE) modelling (see, for example, [3]).

This work is devoted to the theoretical study of low-energy inelastic

processes in collisions of atoms and ions of various chemical elements with

hydrogen atoms and ions by various model methods. The object of this

study are atoms and ions of various chemical elements. The subject of

this study is inelastic processes in collisions of atoms and ions of various

chemical elements with hydrogen atoms and ions, as well as cross sections

and rate coefficients of inelastic processes.

The purpose of the dissertation is to study inelastic processes in col-

lisions of atoms and ions of lithium, calcium, oxygen with hydrogen atoms

and ions, calculations of cross sections and rate constants of inelastic pro-

cesses of excitation, de-excitation, charge exchange, as well as further

development of the asymptotic method of accounting for the fine structure

in the case of elements of group II of the periodic table of Mendeleev (al-

kaline earth metals). To achieve these goals, the following problems were

solved:

1. A search and analysis of the literature concerning previously con-

ducted studies of inelastic processes in collisions of lithium, calcium,

oxygen atoms and ions with hydrogen atoms and ions has been car-

ried out, as well as the current literature devoted to the problems of

non-LTE modelling of the spectra of lithium, calcium, oxygen atoms

and ions has been analyzed.

2. The electronic structures of LiH, OH, CaH quasimolecules, as well as

the molecular ion CaH+ , obtained by various research groups using

ab initio quantum chemical methods from the first principles, are

investigated and analyzed.

3. The total probabilities of non-adiabatic transitions (from all possible

initial states to all final states among the considered ones) for colli-
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sions of lithium, calcium, oxygen atoms and ions with hydrogen atoms

and ions by various methods (multichannel formula, the probability

current method) are calculated.

4. Cross sections of inelastic processes of excitation, de-excitation,

charge exchange are calculated, 1432 inelastic processes in total. In

particular, 56 processes for collisions of lithium with hydrogen; 240

for collisions of oxygen with hydrogen, investigated by the probability

current method, and 292 processes investigated by the multichannel

formula; 110 for collisions of neutral calcium with hydrogen; 272 for

collisions of calcium ion with hydrogen in LS representation and 462

in JJ representation.

5. The rate coefficients of all the above inelastic processes are calculated.

6. All the results obtained, namely cross sections and rate coefficients of

inelastic processes, are analyzed.

7. Asymptotic method of accounting for the fine structure of energy

levels in collisions with hydrogen is generalized for elements of group

II of the periodic table.

The statements put forward for defense:

1. The largest values of cross sections and rate coefficients correspond to

inelastic neutralization processes into scattering channels with elec-

tron binding energy in an atom ≈2 eV, which is shown in collisions

of lithium, calcium, oxygen with hydrogen, which is consistent with

the predictions of the simplified model.

2. The presence of non-adiabatic regions located at small internuclear

distances has a significant effect on the values of cross sections and

rate coefficients of processes involving highly excited states, while for

states with electron binding energy in an atom ≈2 eV, this effect is

insignificant.
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3. Accounting for non-adiabatic transitions in molecular symmetries not

generated by ionic states A++H− practically does not affect the values

of cross sections and rate coefficients of processes with large values

(> 10−8 cms), but it can significantly affect the rate coefficients of

processes with values < 10−9 cms.

4. For some processes with the values of rate coefficients < 10−9 cms,

cross sections at low collision energies are mainly determined by non-

adiabatic transitions in molecular symmetries other than those of the

ionic state.

The results obtained in this scientific research are important for stellar

photospheres modelling (especially for stars of spectral classes F, G, K,

characterized by low metallicity) under conditions of deviation from local

thermodynamic equilibrium.

The scientific novelty of this work is due to:

1. For the first time, the characteristics of inelastic processes, such as

cross sections and rate coefficients in slow collisions of oxygen atoms

and ions with hydrogen atoms and ions, using the potential energies of

a quasi-molecule OH, obtained by ab initio quantum chemical meth-

ods, are calculated using the quantum probability current method and

a multichannel formula.

2. For the first time, the cross sections and rate coefficients for inelastic

collisions Ca+H+ , Ca++H and Ca 2++H− are obtained by the quan-

tum probability current method (240 partial processes in total) using

the potential energies of the molecular ion CaH+ obtained using ab

initio quantum chemical calculations.

3. For the first time, cross sections and rate coefficients for inelastic

collisions Ca++H and Ca 2++H− are obtained using a multichannel

formula, taking into account the fine structure of energy levels (462

partial processes in total) using the potential energies of the molecular
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ion CaH+ , obtained using ab initio quantum chemical calculations and

modified within the framework of the asymptotic model of accounting

for the fine splitting of energy levels.

4. The quantum probability current method have been used to obtain

refined cross sections and rate coefficients of inelastic processes in

collisions of lithium atoms and cations with hydrogen atoms and an-

ions. The effect of replacement of lithium isotopes ( 6𝐿𝑖 ↔ 7𝐿𝑖 ) and

hydrogen ( 1𝐻 ↔ 2𝐻 ↔ 3𝐻 ) in collisions on the values of cross

sections and rate coefficients of inelastic processes is investigated.

5. The quantum probability current method (stochastic version of the

algorithm) obtained the full probabilities of non-adiabatic transitions,

cross sections and rate coefficients of inelastic processes in collisions

of calcium with hydrogen using the potential energies of the quasi-

molecule CaH obtained by ab initio quantum chemical methods, tak-

ing into account the non-adiabatic regions located at relatively small

internuclear distances.

6. Modified asymptotic method of accounting for fine structure proposed

in [23,24], received a further generalization for collisions with hydro-

gen of elements of group II of the Periodic table.

The theoretical significance of this work consists in the fact that

models based on quantum concepts of atomic collisions are used, as a result

of which new knowledge was obtained about the mechanisms of inelastic

processes in atomic collisions, data on inelastic processes in collisions of

lithium, oxygen, calcium with hydrogen, and a modified asymptotic method

was further developed taking into account the fine structure of energy levels

in collisions of elements of group II of the Periodic table with hydrogen.

The practical significance of this work is due to the following:

1. The cross sections and rate coefficients of inelastic processes in col-

lisions of lithium, calcium, oxygen atoms and ions with hydrogen
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atoms and ions are calculated, which are necessary for further use in

the stars photospheres modelling in conditions of deviation from local

thermodynamic equilibrium and obtaining more accurate data on the

quantitative composition of the stars photospheres.

2. Computer programs designed to calculate the full probabilities of non-

adiabatic transitions from the given initial state to a given final state

by the probability current method have been written and debugged

(deterministic and stochastic versions of the algorithm), as well as

cross sections and rate coefficients of inelastic processes. The stochas-

tic version of the algorithm uses CUDA technology designed for par-

allel calculations on the GPU (which allows to either significantly

increase the accuracy while maintaining the same calculation time, or

significantly reduce the calculation time while maintaining the accu-

racy of the results obtained, or get some acceleration of calculations

with a slight increase in accuracy compared to calculations on the

CPU).

Connection of the topic with the plan of scientific works. This

dissertation is a part of the scientific research of the Department of Theo-

retical Physics and Astronomy and the Laboratory of Atomic and Molecular

Physics of the Theoretical Department of the Research Institute of Physics

of the Herzen State Pedagogical University.

This work was supported by grants:

1. State assignment of the Ministry of Science and Higher Education

No. 3.1738.2017/PCH 2017-2019, head of Prof. Belyaev A. K.

2. RSF Grant no. 17-13-01144 2017-2019, head of Prof. Belyaev A. K.

3. State assignment of the Ministry of Education No. 2020-0026 2020-

2022, head of Prof. Gorokhovatsky Yu. A., head of the subgroup prof.

Belyaev A. K.
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4. Grant of the Foundation for the Development of Theoretical Physics

and Mathematics BASIS, head of Prof. Belyaev A. K.

5. RFBR Grant No. 20-33-90047 "Aspirant" , head of Prof. Belyaev A. K.

The reliability and scientific validity of the results and conclusions

of the dissertation is ensured by a clear formulation of the tasks set, the use

of reliable quantum methods for calculating nuclear dynamics, as well as

cooperation with international scientific groups engaged in solving problems

of quantum chemistry and being experts in this field. In this work, the

following theoretical research methods are used: the Born-Oppenheimer

approach; the Landau-Zener model; the probability current method; the

multichannel formula; the asymptotic method for constructing adiabatic

potential energies; the modified asymptotic method that takes into account

a fine splitting of the energy levels of atoms.

All these methods are physically justified and correct. The Born-

Oppenheimer approach is a fundamental method for studying slow collisions

of atoms and ions with each other. The remaining methods used in this sci-

entific work are constructed within the framework of the Born-Oppenheimer

approach. The Landau-Zener model is an analytical solution for a system

of two interacting diabatic terms and allows to determine the probability of

a non-adiabatic transition from one state to another with a single passage

of the non-adiabatic region by the system. Within the framework of the

Landau-Zener model, the probability current method that allows to calcu-

late the full probability of a non-adiabatic transition from a given initial

state to a given final state in the presence of many states was developed.

In the particular case of taking into account only the non-adiabatic regions

caused by ion-covalent interaction, it becomes possible to obtain an analyti-

cal formula for calculating the total probability of a non-adiabatic transition

from the given initial state to a given final one within the framework of

the probability current method. The asymptotic method allows to calculate

adiabatic potential energies, taking into account only the non-adiabatic re-
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gions caused by ion-covalent interaction (it has been repeatedly shown that

non-adiabatic transitions in the non-adiabatic regions caused by ion-covalent

interaction make the greatest contribution to the values of cross sections

and rate coefficients of inelastic processes, which is also confirmed in this

work).

The author’s personal contribution to obtaining the presented scientific

results is as follows:

1. The current literature on the subject of the study is analyzed.

2. Quantum chemical data (electronic structure of quasi-molecules OH,

LiH, CaH, quasi-molecular ion CaH+ ) have been analyzed and pre-

pared for use in calculations.

3. Calculations of the total probabilities of non-adiabatic transitions from

each initial state to each final state for all the listed quasimolecules

have been carried out.

4. According to the obtained probabilities, the cross sections and rate co-

efficients of inelastic processes of excitation, de-excitation, and charge

exchange are calculated.

5. 9 articles have been prepared and published in international peer-

reviewed scientific journals on the subject of the scientific work.

6. The asymptotic model is modified for the case of taking into account

the fine structure of energy levels in collisions with hydrogen of ele-

ments of group II of the Periodic table.

The main content and results of the scientific work carried out are re-

flected in the following publications in international peer-reviewed journals:

1. Voronov Ya. V. et. al. Atomic data on inelastic processes

in boron-hydrogen collisions with accounting for fine structure /

Ya. V. Voronov, S. A. Yakovleva, A. K. Belyaev // Monthly Notices

of the Royal Astronomical Society. – 2023 [25].
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2. Voronov Ya. V. et. al. Isotopic effects in low-energy lithium-hydrogen

collisions / A. K. Belyaev, Ya. V. Voronov // Physical Review A. –

2021. – Vol. 104, No. 2. – Article ID 022812 [26].

3. Voronov Ya. V. et. al. Solar oxygen abundance / M. Berge-

mann, R. Hoppe, E. Semenova, M. Carlsson, S. A. Yakovleva,

Ya. V. Voronov, M. Bautista, A. Nemer, A. K. Belyaev, J. Leenaarts,

L. Mashonkina, A. Reiners, M. Ellwarth // Monthly Notices of the

Royal Astronomical Society. – 2021. – Vol. 508. – P. 2236–2253

[27].

4. Voronov Ya. V. et. al. Inelastic processes in calcium-hydrogen

ionic collisions with account for fine structure / A. K. Belyaev,

Ya. V. Voronov, S. A. Yakovleva // Physical Review A. – 2019. –

Vol. 100. – Article ID 062710 [24].

5. Voronov Ya. V. et.al. Inelastic excitation and charge transfer pro-

cesses for oxygen in collision with H atoms / A. Mitrushchenkov,

M. Guitou, A. K. Belyaev, Ya. V. Voronov, N. Feautrier // Journal of

Chemical Physics. – 2019. – Vol. 150. – Article ID 064312 [28].

6. Voronov Ya. V. et.al. Inelastic processes in oxygen–hydrogen colli-

sions / A. K. Belyaev, Ya. V. Voronov, A. Mitrushchenkov, M. Guitou,

N. Feautrier // Monthly Notices of the Royal Astronomical Society.

– 2019. – Vol. 487. – P. 5097–5105 [29].

7. Voronov Ya. V. et. al. Data on Inelastic Processes in Low-energy

Calcium–Hydrogen Ionic Collisions / A. K. Belyaev, Ya. V. Voronov,

F. X. Gadéa // The Astrophysical Journal. – 2018. – Vol. 867. –

Article ID 87 (7pp) [30].

8. Voronov Ya. V. et. al. Atomic Data on Inelastic Processes in Low-

energy Lithium–Hydrogen Collisions / A. K. Belyaev, Ya. V. Voronov
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// The Astrophysical Journal. – 2018. – Vol. 868. – Article ID 86

(6pp) [31].

9. Voronov Ya. V. et. al. Atomic Data on Inelastic Processes

in Calcium–Hydrogen Collisions / A. K. Belyaev, Ya. V. Voronov,

S. A. Yakovleva, A. Mitrushchenkov, M. Guitou, N. Feautrier // The

Astrophysical Journal. – 2017. – Vol. 851. – Article ID 59 (5pp) [32].

The results were also presented at the following international scientific

conferences:

1. International Conference "Stars, Planets and Magnetic Fields"

(September 17-21, 2018, St. Petersburg, Russia). Poster report "Cal-

culations of atomic data on inelastic processes in collisions of various

chemical elements with hydrogen".

2. International Conference "XXI Mendeleev Congress on General and

Applied Chemistry", symposium "The Periodic Table through Space

and Time" (September 9-13, 2019, St. Petersburg, Russia). Poster

report "Application of the probability current method to nuclear dy-

namic calculations in collisions with hydrogen".

3. International Conference "Physics of Stars and Planets: Atmosphere,

activity and magnetic fields" (September 16-20, 2019, N. Tusi

Shamakhi Astrophysical Observatory, Shamakhi, Azerbaijan). Poster

report "Application of the probability current method to nuclear dy-

namic calculations in collisions with hydrogen".

Volume and structure of the dissertation. The dissertation consists
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Chapter 1. Theoretical methods for the study

of inelastic processes in atomic collisions

§ 1.1 Preliminary remarks

Theoretical methods for studying inelastic processes in slow collisions

of atoms and ions play an important role in the physics of gas and plasma

media. Despite the fact that in recent decades, technological progress

has significantly advanced experimental studies of slow ion collisions (see,

for example, investigations of neutralization processes in Li++D− [7, 8],

Mg++D− [9], Na++D− [10] collisions, etc.), experimental methods for

studying collisions of neutral atoms at low energies (< (1-10) eV) still

require further development of technologies and are practically unrealizable

at the moment.

Astrophysics is one of the important applications of the slow atomic

collisions theory. Observation of the spectra of various stars and numerical

modelling of these spectra makes it possible to determine both the qual-

itative composition of stars and to determine the quantitative content of

an element in the photosphere of a star. For this, the assumption of local

thermodynamic equilibrium (LTE) is often used, but for certain types of

stars, modelling under the assumption of LTE leads to unreliable results.

For such stars, it is necessary to use modeling under conditions of deviation

from local thermodynamic equilibrium (non-LTE).

When modelling the stars photosphere under non-LTE conditions, it

is necessary to take into account the processes of collisions with atoms,

ions and electrons. Collisions with hydrogen are of particular importance,

since hydrogen is the most abundant element in the Universe. Therefore,

the study and analysis of inelastic processes in collisions of certain atoms

and ions with hydrogen atoms and ions are important for astrophysical

investigations (see, for example, [3–5]). This is confirmed by the great

need for such data (see, for example, [3, 6]). Therefore, theoretical studies



— 18 —

of low-energy atomic collisions are currently in high demand for obtaining

characteristics of atomic processes.

Often, due to the lack of the most physically reliable data on the rate

coefficients of inelastic processes obtained within the framework of quan-

tum methods, astrophysicists use the semi-classical Dravin formula [11–13]

for estimating the rate coefficients values, the use of which for hydrogen

collision processes is not physically justified [14]. It has been shown re-

peatedly (see, for example, [3, 14, 15, 33]) that the accuracy of the results

obtained is insufficient for the use of these data in modelling the spectra

of stars: for excitation/de-excitation processes, the rate coefficients can be

either overestimated or underestimated by several orders of magnitude; at

the same time, Dravin’s formula gives zero values of rate coefficients for

charge exchange processes, although quantum calculations show that these

processes are characterized by the largest values of rate coefficients (see,

for example, [15–18], etc.). At the same time, the modelled spectra are

very sensitive to input data. Often astrophysicists introduce a scaling factor

that is selected empirically, it is different for different systems. For this rea-

son, the application of physically justified methods for the study of inelastic

processes in collisions of atoms and ions of various chemical elements with

hydrogen atoms and ions, and obtaining reliable characteristics of inelastic

processes is very relevant.

In this dissertation, inelastic processes are considered:

• excitation: 𝐴+𝐵 → 𝐴* +𝐵 ;

• de-excitation: 𝐴* +𝐵 → 𝐴+𝐵 ;

• charge exchange: 𝐴+ +𝐵 → 𝐴+𝐵+ .

Separately, we will also highlight two important special cases of charge

exchange processes:

• mutual neutralization: 𝐴+ + 𝐵− → 𝐴* + 𝐵* ;
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• ion-pair formation: 𝐴+𝐵 → 𝐴+ +𝐵− .

This chapter provides an overview of various theoretical methods for

the study of atomic collisions, which were used by the author in this

work. Particular attention is paid to model methods, since all the work

was done using various model methods within the framework of the Born-

Oppenheimer formalism. Most of the chapter is devoted to the methods of

nuclear dynamics research, they are considered in the most detail. Also, in

general terms, the methods that the author considers important to mention

are considered.

Slow atomic collisions are understood as collisions of atoms with a

collision energy in the range from about 0.01 to 100 eV, which corresponds

to gas and plasma temperatures in the range from about 10 2 to 10 6 K.

Everywhere in the dissertation, unless the opposite is said, an atomic sys-

tem of units is used, in which the electron charge, the electron mass and

the reduced Planck constant are equal to one. Unit of length – Bohr radius

𝑟𝐵 = 0.529 Å.

§ 1.2 The standard Born-Oppenheimer adiabatic ap-

proach

Since the exact analytical solution of the Schrödinger equation has only

two problems – a quantum harmonic oscillator and a hydrogen atom – then

to solve more complex problems it is necessary to use some approxima-

tions. In general, when considering atomic or molecular collisions, one

has to solve a problem with an arbitrary number of bodies. In the case

of molecular collisions, the number of interacting bodies can be measured

in tens and hundreds of thousands (for complex organic molecules). For

atomic collisions, this number is noticeably less, but it is still measured

in tens and even hundreds. The situation with atom-atom collisions (or

atom-ion, or ion-ion), which will be further considered, is also simplified by
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the fact that, in general, two nuclei and a certain number of electrons are

considered.

Consider collisions of two atoms. We will consider a stationary prob-

lem, since there is no explicit dependence on time in the operators and wave

functions when two atoms collide, although in general the non-stationary

Schrödinger equation can also be considered. To solve the stationary prob-

lem of atomic collisions, it is necessary to solve the Schrödinger equation:

�̂�(�⃗�, �⃗�)Ψ𝑡𝑜𝑡(�⃗�, �⃗�) = 𝐸𝑡𝑜𝑡Ψ
𝑡𝑜𝑡(�⃗�, �⃗�) , (1.1)

where is the total wave function of the system Ψ𝑡𝑜𝑡(�⃗�, �⃗�) depends on the

coordinates of all electrons �⃗� ( �⃗� = {�⃗�1, �⃗�2, ..., �⃗�𝑁} ) and the coordinates of

all nuclei �⃗� ( �⃗� = {�⃗�1, �⃗�2, ..., �⃗��̃�} ). We will use Jacobi coordinates to

describe colliding atoms. The vector of the internuclear distance �⃗� is

drawn from the center of mass of one core to the center of mass of the

other. The first electronic coordinate 𝑟1 is counted from the center of mass

of the system «core» - «core» to the first electron, 𝑟2 – from the center of

mass of the system «center of mass «core» - «core»» - «first electron» to the

second electron, and so on, depending on how many bodies are considered.

The great advantage of this coordinate system is the ability to consider the

problems of many bodies.

One of the most common approximations when considering collision

processes is the standard Born-Oppenheimer adiabatic approach [19]. The

idea of this approach is that at relatively small energies of atomic motion,

a slow-moving subsystem consisting of nuclei and a fast-moving subsystem

consisting of electrons can be distinguished. Such an approximation looks

justified, since due to the large difference in the masses of the electron

and the nucleus (already for the hydrogen atom this difference is about

1800 times), their velocities differ significantly (by about three orders of

magnitude). Therefore, for fast-moving electrons, the nuclei look almost
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at rest, and with an infinitesimal change in the internuclear distance, the

electrons have time to almost instantly rebuild their configuration.

Then the whole initial problem of atomic collisions can be divided into

two subtasks:

I: finding electronic wave functions and electronic potential energies at

fixed nuclei;

II: solving the problem of nuclear dynamics and finding nuclear wave

functions taking into account the electronic wave functions obtained

in the first problem.

Let’s write down the Hamiltonian of the original equation (1.1) without

taking into account the spin-orbit and spin-spin interactions in the center-

of-mass system for a system consisting of two nuclei and 𝑘 electrons:

�̂� = 𝑇𝑀 + 𝑇 𝜇 +
𝑘∑︁

𝑖=1

𝑇 𝑒
𝑖 + �̂�𝑛𝑛 +

1

2

𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=1,𝑗=/=𝑖

�̂� 𝑒𝑒
𝑖𝑗 +

2∑︁
𝑖=1

𝑘∑︁
𝑗=1

�̂�𝑛𝑒
𝑖𝑗 , (1.2)

where 𝑇𝑀 – the kinetic energy operator of the motion of the center of

mass, 𝑇 𝜇 – the kinetic energy operator of the motion of a fictitious particle

with a reduced mass of nuclei 𝜇 = 𝑀𝑛1𝑀𝑛2

𝑀𝑛1+𝑀𝑛2
, 𝑇 𝑒

𝑖 – operators of kinetic

energy of electron motion, �̂�𝑛𝑛 – operator of potential energy of interaction

of nuclei, �̂� 𝑒𝑒
𝑖𝑗 – operators of the potential energy of interaction of electrons

with each other, �̂�𝑛𝑒
𝑖𝑗 – operators of the potential energy of interaction of

electrons with nuclei. In the future, we will not consider the motion of

the system as a whole, that is, we will not take into account the kinetic

energy operator of the motion of the center of mass 𝑇𝑀 , since we will be

interested only in the internal states of the system.

In the framework of the Born-Oppenheimer formalism, at the first step

it is assumed that the nuclei are at rest. Let us explicitly distinguish the so-

called electronic Hamiltonian, consisting of all potential energy operators,
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as well as all kinetic energy operators of electron motion:

�̂�𝑒 =
𝑘∑︁

𝑖=1

𝑇 𝑒
𝑖 + �̂�𝑛𝑛 +

1

2

𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=1,𝑗=/=𝑖

�̂� 𝑒𝑒
𝑖𝑗 +

2∑︁
𝑖=1

𝑘∑︁
𝑗=1

�̂�𝑛𝑒
𝑖𝑗 , (1.3)

At the first step of solving the problem of atomic collisions within the

framework of the Born-Oppenheimer approach, the problem of eigenvalues

and eigenfunctions of the electronic Hamiltonian is solved:

�̂�𝑒𝜑𝑗(�⃗�, 𝑅) = 𝑈𝑗(𝑅)𝜑𝑗(�⃗�, 𝑅), (1.4)

moreover, we note that the wave function 𝜑𝑗(�⃗�, 𝑅) is called an adiabatic

molecular electronic wave function and depends on the internuclear distance

𝑅 as a parameter. 𝑈𝑗(𝑅) are called adiabatic molecular potential energies,

or electronic terms.

At the second step we will solve the original equation (1.1) taking into

account the results obtained in the first stage. Write the complete wave

function Ψ𝑡𝑜𝑡(�⃗�, �⃗�) in the form of partial wave expansion:

Ψ𝑡𝑜𝑡(�⃗�, �⃗�) =
∑︁
𝐽

∑︁
𝑀𝐽

Ψ𝐽𝑀𝐽
(�⃗�, �⃗�) , (1.5)

where 𝐽 and 𝑀𝐽 – the quantum numbers of the total angular momentum

of the system and its projection onto the internuclear axis. It is possible

to decompose each partial wave according to some orthonormal basis set,

and in the general case both discrete and continuous states are taken into

account. Let’s choose the eigenfunctions of the electronic Hamiltonian as

the basis (1.3), while neglecting the continuous spectrum2. Then the partial

wave will be the product of the nuclear 𝜒𝑗(�⃗�) and electronic 𝜑𝑗(�⃗�, 𝑅) wave

functions:

Ψ𝐽𝑀𝐽
(�⃗�, �⃗�) =

∑︁
𝑗

𝜒𝑗(�⃗�)𝜑𝑗(�⃗�, 𝑅) . (1.6)

2This is justified in this dissertation, since ionization reactions, i.e. with electron separation, are not
considered.
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From the wave function (1.6), I would like to explicitly isolate the radial

nuclear wave function 𝐹𝑗(𝑅) . In general, this can be done via generalized

spherical harmonics (see, for example, [34]):

Ψ𝐽𝑀𝐽
(�⃗�, �⃗�) =

∑︁
𝑗

∑︁
Λ

𝐹𝑗Λ(𝑅)

𝑅
𝐼𝑗Λ(�⃗�, �⃗�) , (1.7)

where are the generalized spherical harmonics 𝐼𝑗Λ(�⃗�, �⃗�) :

𝐼𝑗Λ(�⃗�, �⃗�) = cos(𝑀𝐽𝜙)Θ𝐽𝑀𝐽Λq(𝜃)𝜑𝑗Λs(�⃗�, 𝑅)+

+ 𝑖 sin(𝑀𝐽𝜙)Θ𝐽𝑀𝐽Λ-q(𝜃)𝜑𝑗Λ-s(�⃗�, 𝑅) ,
(1.8)

describing the motion of electrons and the angular part of the nuclear

motion, 𝐹𝑗Λ(𝑅) – the radial nuclear wave function describing the radial

motion, and Λ – the modulus of the quantum number of the projection of

the orbital moment of the electrons of the molecule on the internuclear axis,

𝑠 = ±1 – the parity quantum number of the wave function when reflecting

electronic and nuclear coordinates in the plane 𝑥𝑧 , 𝑞 = 𝑠 × 𝑡 = ±1 – the

quantum parity number.

For the case of Σ symmetry, spherical harmonics represent angular

functions, and then the nuclear wave function can be represented as the

product of the radial 𝐹𝑗(𝑅)/𝑅 and the angular 𝑌𝐽𝑀𝐽
(𝜃, 𝜙) wave functions:

𝜒𝑗(�⃗�) =
𝐹𝑗(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙) . (1.9)

Let us consider in more detail the case of Σ molecular symmetry, since in

practice this case turns out to be extremely important. Substitute the wave

function (1.6) into (1.1) taking into account the nuclear wave function (1.9)

and get:

(𝑇 𝜇 + �̂�𝑒)
∑︁
𝑗

𝐹𝑗(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙)𝜑𝑗(�⃗�, 𝑅) = 𝐸𝑡𝑜𝑡

∑︁
𝑗

𝐹𝑗(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙)𝜑𝑗(�⃗�, 𝑅) .

(1.10)
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The kinetic energy operator of the motion of nuclei contains the Laplace

operator in spherical coordinates:

𝑇 𝜇 = − ℎ̄2

2𝜇
∇2

�⃗�
= − ℎ̄2

2𝜇

1

𝑅2

𝜕

𝜕𝑅

(︂
𝑅2 𝜕

𝜕𝑅

)︂
−

− ℎ̄2

2𝜇

{︃
1

𝑅2sin(𝜃)

𝜕

𝜕𝜃

(︂
sin(𝜃)

𝜕

𝜕𝜃

)︂
+

1

𝑅2sin2(𝜃)

𝜕2

𝜕𝜙2

}︃
.

(1.11)

Moreover, the angular part, up to a constant, coincides with the operator

of the square of the total angular momentum:

𝐽2 = −ℎ̄2
[︃

1

sin(𝜃)

𝜕

𝜕𝜃

(︂
sin(𝜃)

𝜕

𝜕𝜃

)︂
+

1

sin2(𝜃)

𝜕2

𝜕𝜙2

]︃
. (1.12)

Then we can write:

𝑇 𝜇 = − ℎ̄2

2𝜇

[︃
1

𝑅2

𝜕

𝜕𝑅

(︂
𝑅2 𝜕

𝜕𝑅

)︂
− 𝐽2

ℎ̄2𝑅2

]︃
= − ℎ̄2

2𝜇

1

𝑅2

𝜕

𝜕𝑅

(︂
𝑅2 𝜕

𝜕𝑅

)︂
+

𝐽2

2𝜇𝑅2
.

(1.13)

The angular functions 𝑌𝐽𝑀𝐽
(𝜃, 𝜙) are the eigenfunctions for the operator

𝐽2 :

𝐽2𝑌𝐽𝑀𝐽
(𝜃, 𝜙) = ℎ̄2𝐽(𝐽 + 1)𝑌𝐽𝑀𝐽

(𝜃, 𝜙) . (1.14)

Then, acting by the kinetic energy operator on the function (1.6), we get:

𝑇 𝜇𝐹𝑗(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙) =− ℎ̄2

2𝜇
Δ𝑅

𝐹𝑖(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙)+

+
ℎ̄2𝐽(𝐽 + 1)

2𝜇𝑅2

𝐹𝑖(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙) .

(1.15)

Now, substituting (1.15) in (1.10), multiply on the left by the com-

plex conjugate electronic function 𝜑*𝑘(�⃗�;𝑅) and integrate over all electronic
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coordinates �⃗� :∑︁
𝑗

⟨
𝜑𝑘(�⃗�;𝑅)

⃒⃒⃒
𝑇 𝜇
⃒⃒⃒ 𝐹𝑗(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙)𝜑𝑗(�⃗�;𝑅)

⟩
+

+
∑︁
𝑗

⟨
𝜑𝑘(�⃗�;𝑅)

⃒⃒⃒
�̂�𝑒

⃒⃒⃒ 𝐹𝑗(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙)𝜑𝑗(�⃗�;𝑅)

⟩
=

= 𝐸
∑︁
𝑗

⟨
𝜑𝑘(�⃗�;𝑅)

⃒⃒⃒⃒
𝐹𝑗(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙)𝜑𝑗(�⃗�;𝑅)

⟩ (1.16)

Let’s take a closer look at each of the terms and taking into account the

orthonormality of the electronic wave functions ⟨𝜑𝑘(�⃗�;𝑅)|𝜑𝑗(�⃗�;𝑅)⟩ = 𝛿𝑘𝑗 :

1. The term containing the kinetic energy operator of the motion of nuclei:

∑︁
𝑗

⟨
𝜑𝑘(�⃗�;𝑅)

⃒⃒⃒
𝑇 𝜇
⃒⃒⃒ 𝐹𝑗(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙)𝜑𝑗(�⃗�;𝑅)

⟩
=

=
∑︁
𝑗

⟨
𝜑𝑘(�⃗�;𝑅)

⃒⃒⃒⃒
⃒− ℎ̄2

2𝜇
Δ𝑅 +

𝐽2

2𝜇𝑅2

⃒⃒⃒⃒
⃒ 𝐹𝑗(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙)𝜑𝑗(�⃗�;𝑅)

⟩
.

(1.17)

𝐽2

2𝜇𝑅2
𝑌𝐽𝑀𝐽

(𝜃, 𝜙) =
ℎ̄2𝐽(𝐽 + 1)

2𝜇𝑅2
𝑌𝐽𝑀𝐽

(𝜃, 𝜙) . (1.18)

− ℎ̄2

2𝜇

𝜕2

𝜕𝑅2

(︂
𝐹𝑗(𝑅)

𝑅
𝜑𝑗(�⃗�;𝑅)

)︂
=

= − ℎ̄2

2𝜇

(︃
𝜕2𝐹𝑗(𝑅)

𝜕𝑅2
𝜑𝑗(�⃗�;𝑅) + 2

𝜕𝐹𝑗(𝑅)

𝜕𝑅

𝜕𝜑𝑗(�⃗�;𝑅)

𝜕𝑅
+
𝜕2𝜑𝑗(�⃗�;𝑅)

𝜕𝑅2
𝐹𝑗(𝑅)

)︃
.

(1.19)
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Let us introduce notation for radial matrix elements of non-adiabatic

coupling: ⟨
𝜑𝑘(�⃗�;𝑅)

⃒⃒⃒⃒
𝜕

𝜕𝑅

⃒⃒⃒⃒
𝜑𝑗(�⃗�;𝑅)

⟩
= 𝐷𝑘𝑗(𝑅) ,⟨

𝜑𝑘(�⃗�;𝑅)

⃒⃒⃒⃒
⃒ 𝜕2𝜕𝑅2

⃒⃒⃒⃒
⃒𝜑𝑗(�⃗�;𝑅)

⟩
= 𝐷𝐷𝑘𝑗(𝑅) .

(1.20)

Note that the diagonal matrix element 𝐷𝑗𝑗(𝑅) is strictly zero, whereas

𝐷𝐷𝑗𝑗(𝑅) is not equal to zero and is called an adiabatic correction. Then

we get: (︃
− ℎ̄2

2𝜇

𝜕2

𝜕𝑅2
+
ℎ̄2𝐽(𝐽 + 1)

2𝜇𝑅2

)︃
𝐹𝑘(𝑅) =

=
ℎ̄2

𝜇

∑︁
𝑗

𝐷𝑘𝑗(𝑅)
𝜕𝐹𝑗(𝑅)

𝜕𝑅
+
ℎ̄2

2𝜇

∑︁
𝑗

𝐷𝐷𝑘𝑗(𝑅)𝐹𝑗(𝑅) .

(1.21)

2. The term containing the total energy of the system:

𝐸
∑︁
𝑗

⟨
𝜑𝑘(�⃗�;𝑅)

⃒⃒⃒⃒
𝐹𝑗(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙)𝜑𝑗(�⃗�;𝑅)

⟩
=

= 𝐸
∑︁
𝑗

⟨
𝜑𝑘(�⃗�;𝑅)

⃒⃒
𝜑𝑗(�⃗�;𝑅)

⟩ 𝐹𝑗(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙) = 𝐸
𝐹𝑘(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙) .

(1.22)
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3. The term containing an electronic Hamiltonian:

∑︁
𝑗

⟨
𝜑𝑘(�⃗�;𝑅)

⃒⃒⃒
�̂�𝑒

⃒⃒⃒ 𝐹𝑗(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙)𝜑𝑗(�⃗�;𝑅)

⟩
=

=
∑︁
𝑗

⟨
𝜑𝑘(�⃗�;𝑅)

⃒⃒⃒
�̂�𝑒

⃒⃒⃒
𝜑𝑗(�⃗�;𝑅)

⟩
𝐹𝑗(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙) =

=
∑︁
𝑗

⟨︀
𝜑𝑘(�⃗�;𝑅)|𝑈𝑗(𝑅)𝜑𝑗(�⃗�;𝑅)

⟩︀ 𝐹𝑗(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙) =

=
∑︁
𝑗

⟨︀
𝜑𝑘(�⃗�;𝑅)|𝜑𝑗(�⃗�;𝑅)

⟩︀
𝑈𝑗(𝑅)

𝐹𝑗(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙) =

= 𝑈𝑘(𝑅)
𝐹𝑘(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙) .

(1.23)

As a result, we obtain a system of coupled differential equations of the

second order:(︃
− ℎ̄2

2𝜇

𝜕2

𝜕𝑅2
+
ℎ̄2𝐽(𝐽 + 1)

2𝜇𝑅2
+ 𝑈𝑘(𝑅)− 𝐸

)︃
𝐹𝑘(𝑅) =

=
ℎ̄2

𝜇

∑︁
𝑗=/=𝑘

𝐷𝑘𝑗(𝑅)
𝜕𝐹𝑗(𝑅)

𝜕𝑅
+
ℎ̄2

2𝜇

∑︁
𝑗

𝐷𝐷𝑘𝑗(𝑅)𝐹𝑗(𝑅) .

(1.24)

Let’s introduce the effective potential energy 𝑈 𝑒𝑓𝑓
𝑗 (𝑅) :

𝑈 𝑒𝑓𝑓
𝑗 (𝑅) = 𝑈𝑗(𝑅) +

ℎ̄2𝐽(𝐽 + 1)

2𝜇𝑅2
+𝐷𝐷𝑗𝑗(𝑅) , (1.25)

where 𝐷𝐷𝑗𝑗(𝑅) – adiabatic correction. Then the equation (1.24) will take

the final form:(︃
− ℎ̄2

2𝜇

𝑑2

𝑑𝑅2
+ 𝑈 𝑒𝑓𝑓

𝑘 (𝑅)− 𝐸

)︃
𝐹𝑘(𝑅) =

=
ℎ̄2

𝜇

∑︁
𝑗=/=𝑘

𝐷𝑘𝑗(𝑅)
𝑑𝐹𝑗(𝑅)

𝑑𝑅
+
ℎ̄2

2𝜇

∑︁
𝑗=/=𝑘

𝐷𝐷𝑘𝑗(𝑅)𝐹𝑗(𝑅) .

(1.26)
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Note also that the matrix 𝐷𝑘𝑗(𝑅) is antisymmetric.

In general, it is necessary to take the wave function in the form (1.7).

Then we can get the system of coupled differential equations of the second

order [34] in general form:[︃
− ℎ̄2

2𝜇

𝜕2

𝜕𝑅2
+ 𝑈𝑘Λ(𝑅) +

ℎ̄2
(︀
𝐽(𝐽 + 1)− Λ2

)︀
2𝜇𝑅2

− 𝐸𝑡𝑜𝑡

]︃
𝐹𝑘Λ =

=
ℎ̄2

𝜇

∑︁
𝑗

⟨
𝜑𝑘Λ𝑡(�⃗�;𝑅)

⃒⃒⃒⃒
𝜕

𝜕𝑅

⃒⃒⃒⃒
𝜑𝑗Λ𝑡(�⃗�;𝑅)

⟩
𝜕𝐹𝑗Λ(𝑅)

𝜕𝑅
+

+
ℎ̄2

2𝜇

∑︁
𝑗

⟨
𝜑𝑘Λ𝑡(�⃗�;𝑅)

⃒⃒⃒⃒
⃒ 𝜕2𝜕𝑅2

⃒⃒⃒⃒
⃒𝜑𝑗Λ𝑡(�⃗�;𝑅)

⟩
𝐹𝑗Λ(𝑅)−

− 1

2𝜇𝑅2

∑︁
𝑗

⟨
𝜑𝑘Λ𝑡(�⃗�;𝑅)

⃒⃒⃒
𝐿2
𝜉 + 𝐿2

𝜂

⃒⃒⃒
𝜑𝑗Λ𝑡(�⃗�;𝑅)

⟩
𝐹𝑗Λ(𝑅)−

−
ℎ̄
√︀
(𝐽 + Λ+ 1)(𝐽 − Λ)

𝜇𝑅2

∑︁
𝑗

⟨
𝜑𝑘Λ𝑡(�⃗�;𝑅)

⃒⃒⃒
−𝑖𝐿𝜂

⃒⃒⃒
𝜑𝑗Λ+1𝑡(�⃗�;𝑅)

⟩
𝐹𝑗Λ+1(𝑅)−

−
ℎ̄
√︀
(𝐽 − Λ + 1)(𝐽 + Λ)

𝜇𝑅2

∑︁
𝑗

⟨
𝜑𝑘Λ𝑡(�⃗�;𝑅)

⃒⃒⃒
𝑖𝐿𝜂

⃒⃒⃒
𝜑𝑗Λ−1𝑡(�⃗�;𝑅)

⟩
𝐹𝑗Λ−1(𝑅) ,

(1.27)

where the first three lines do not differ from the equation (1.24) (except that

the term Λ2 appeared explicitly in the centrifugal term), the fourth, fifth

and sixth lines correspond to the matrix elements of the Coriolis interaction

as between terms of the same symmetry (fourth line), so it is between terms

of different symmetry (fifth and sixth lines). This is true for the adiabatic

representation, but in the even more general case of a mixed representation,

non-zero matrix elements of the electronic Hamiltonian may appear:⟨
𝜑𝑘Λ𝑡(�⃗�;𝑅)

⃒⃒⃒
�̂�𝑒

⃒⃒⃒
𝜑𝑗Λ𝑡(�⃗�;𝑅)

⟩
𝐹𝑗Λ(𝑅) .
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Let us now proceed to a more detailed consideration of the methods

for solving both the first and second steps of solving the problem of atomic

collisions within the framework of the Born-Oppenheimer approach.

§ 1.3 Methods for calculating the electronic structure of

molecules

1.3.1 Ab initio (variational) methods

Within the framework of the standard adiabatic approach, the so-called

electronic problem (1.4) is solved at the first step of solving the problem of

atomic collisions: the equations for eigenvalues and eigenfunctions of the

electronic Hamiltonian (1.3) are solved for all the considered states:

𝐻𝑒(�⃗�)𝜑𝑗(�⃗�;𝑅) = 𝑈𝑗(𝑅)𝜑𝑗(�⃗�;𝑅) , (1.28)

where 𝐻𝑒 – electronic Hamiltonian (1.3), 𝑈𝑗(𝑅) – adiabatic molecular

potential energy of the state 𝑗 , 𝜑𝑗(�⃗�;𝑅) – adiabatic molecular electric

wave function of the 𝑗 state, depending on all electronic coordinates �⃗� and

the interniclear distance 𝑅 (as from the parameter).

The calculation of the electronic structure of atoms and molecules is

based on the variational principle, the essence of which is to find, using an

iterative procedure, the minimum of the functional 𝐺 of the form:

𝐺𝑗[{Ψ(�⃗�, 𝑅)}] = ⟨Ψ𝑗(�⃗�, 𝑅)|�̂�𝑒|Ψ𝑗(�⃗�, 𝑅)⟩ , (1.29)

𝑈𝑗(𝑅) = min(𝐺𝑗[{Ψ(�⃗�, 𝑅)}]) , (1.30)

that is, in the limit, the variation of the functional 𝛿𝐺 should be zero.

In case of numerical calculations, a certain value 𝜀 is selected, which

determines the accuracy of the calculation, then 𝛿𝐺 < 𝜀 . Here Ψ𝑗 –
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normalized wave functions of the system state:

⟨Ψ𝑘|Ψ𝑗⟩ = 𝛿𝑘𝑗 , (1.31)

where 𝛿𝑘𝑗 – the Kronecker symbol.

An important issue is the choice of a trial (initial) wave function.

Initially, D. Hartree in [35] proposed to consider the problem of many

electrons in the approximation of a self-consistent field, that is, under the

assumption that each of the electrons moves in some averaged field of all

other electrons and nuclei. The wave function of the system is constructed

as the product of the one-electron wave functions of each electron:

Ψ𝑒𝑙𝑒𝑐(�⃗�) = 𝜑1(𝑟1)𝜑2(𝑟2) ...𝜑𝑁(𝑟𝑁) . (1.32)

However, such a function is not antisymmetric with respect to permutations

of particles, although it is known that the wave functions of fermions are

antisymmetric. Therefore, V. Fok proposed to construct a wave function

using the Slater determinant [36] so that it would be antisymmetric:

Ψ𝑒𝑙𝑒𝑐(�⃗�) =
1√
𝑁 !

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
𝜑1(𝑟1) 𝜑1(𝑟2) ... 𝜑1(𝑟𝑁)

𝜑2(𝑟1) 𝜑2(𝑟2) ... 𝜑2(𝑟𝑁)

... ... ... ...

𝜑𝑁(𝑟1) 𝜑𝑁(𝑟2) ... 𝜑𝑁(𝑟𝑁)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒ , (1.33)

as a result, the accuracy of calculations has increased due to the appear-

ance of another term – an exchange integral that takes into account the

exchange interaction of electrons. Application of the variational principle

for the wave function of the form (1.33) is the essence of the Hartree-Fock

self-consistent field method. There are also modifications of the Hartree-

Fock method, such as the Hartree-Fock-Bogolyubov method (generalization

taking into account the wave functions of particle pairs), the Hartree-Fock-

Dirac method (generalization for the relativistic case) and others. But
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ultimately, all these methods are iterative methods of sequential approxi-

mation to the minimum of the functional 𝐺[{Ψ(�⃗�, 𝑅)}] , and require a long

calculation time and large computing power.

There are other methods for calculating the electronic structures of

molecules, which in some cases are more accurate than the Hartree-Fock

methods. These are the so-called post-Hartree-Fock methods that take into

account electronic correlations. The following groups of methods can be

distinguished here:

1. Configuration Interaction methods (or CI). In these methods, the wave

function is constructed not as a Slater determinant, but as a linear com-

bination of Slater determinants corresponding to various electronic con-

figurations in an atom. In this case, using an iterative procedure, the

optimal values of the the expansion coefficients on the Slater determi-

nants are found.

2. Self-Consistent Field methods (or SCF). These methods are, in fact, a

generalization of the Hartree-Fock method, but take into account the

existence of various electronic configurations. Within the framework of

this group of methods, the optimal values of both the decomposition

coefficients and the electronic configurations themselves are also found

using an iterative procedure.

3. Møller-Plesset perturbation theory (or MP). Greatly simplifying, within

the framework of these methods, the electronic correlation operator is

introduced as a perturbation of the system in addition to the usual

undisturbed electronic Hamiltonian. In the null order, the MP theory

coincides with the Hartree-Fock method.

4. Coupled Cluster methods (or CC). The main idea of this class of methods

is to take into account the electronic correlation using an exponential

term multiplying to the wave function, exponent of which there is a

special cluster operator.
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More about these methods may be found, for example, in the [37,38].

Separately mention the density functional theory, which is a logical

continuation of the Thomas-Fermi model. This method is well described

in [39, 40]. Its essence lies in considering the electronic density, that

is, the probability density of detecting electrons in a particular region of

space. This significantly simplifies the problem, since the consideration of

the electronic wave function depending on 3𝑁 coordinates is replaced by

the consideration of the electronic density depending only on three spatial

coordinates, which leads to a decrease in the calculation time.

The method originates in 1927, when L. Thomas and E. Fermi first cal-

culated the energy of an atom as the sum of its kinetic energy, represented

as an electronic density functional, and the potential energy of the inter-

action of electrons with the nucleus and with each other. The interaction

energy was also expressed in terms of electronic density. However, this

approach proved to be insufficient and led to poor quantitative predictions,

since the exchange interaction was not taken into account in any way. P.

Dirac clarified the energy functional in the Thomas-Fermi model by adding

to it a term describing the exchange interaction (this term also had the

form of an electronic density functional).

This method is based on two Hohenberg-Cohn theorems. The first of

them proves that the properties of the ground state of a multielectronic

system are determined only by the electronic density depending on three

spatial coordinates. The second theorem proves that the energy of the

electronic subsystem, written as the functional of the electronic density,

has a minimum equal to the energy of the ground state. Despite the fact

that initially these two theorems were formulated only for the ground state,

they can be generalized to the case of excited states by introducing a time

dependence.

Despite the noticeable progress in the development of the electronic

density functional method, this method still has a number of problems with

the correct consideration of exchange interaction and electronic correlation,
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so it is not universal and is not suitable for all systems. In addition, the

density functional method is suitable mainly for calculations of the main

and low-lying states.

1.3.2 Asymptotic methods

To study non-adiabatic nuclear dynamics, it is necessary to take into ac-

count many states, including highly excited ones, since one of the problems

in calculating cross sections is the completeness of the basis of electronic

molecular wave functions (for more details, see below, in §1.4.1). All of

the above methods face problems when calculating potential energies and

molecular electronic wave functions of highly excited states, the solution

of which is not always possible. In addition, these calculation methods are

inherently iterative methods of sequential approximation to the minimum

of the functional, they require large computational power and also time-

consuming. In this case, it becomes necessary to use approximate model

methods for calculating the electronic structure of molecules.

In this part of the Chapter, some of them will be considered, which

have become widely used in practical calculations of collisions of various

elements with hydrogen. These methods are asymptotic, that is, they allow

us to determine the potential energy of the interaction of atoms at relatively

large internuclear distances exceeding the characteristic sizes of atoms.

Note that in the monograph of B. M. Smirnov [41] asymptotic methods in

the theory of slow atomic collisions are considered in details.

One of the asymptotic methods is the asymptotic approach proposed by

A. K. Belyaev in the paper [16] and further developed in the papers [21,42].

This method allows us to calculate the adiabatic molecular potential ener-

gies in the approximation of the ion-covalent interaction only, neglecting

the covalent-covalent interaction. This method does not allow to obtain

molecular electronic wave functions of the states of the molecule.

The essence of this method is as follows. First, the electronic Hamilto-

nian is constructed as a function of the internuclear distance in the diabatic
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basis. The diagonal elements of this Hamiltonian correspond to the ener-

gies of molecular states. At large and asymptotic internuclear distances,

these are ≈ 𝑈𝑎𝑠𝑦𝑚𝑝
𝑗 for covalent terms and ≈ − 1

𝑅 + 𝑈𝑎𝑠𝑦𝑚𝑝
𝑖𝑜𝑛 for the ion

term3. At short distances, Coulomb repulsion is added for both ionic and

covalent terms. As mentioned above, taking into account antisymmetriza-

tion of electronic wave functions in the Hartree-Fock method leads to the

appearance of exchange integrals and exchange interactions that are purely

quantum in nature and have no classical analogues. In this method, the

exchange interaction is taken into account approximately as an additional

term of the form 𝐶1exp(−𝐶2𝑅) , which increases the accuracy of the cal-

culated electronic structures. It is also possible to take into account the

dipole-dipole interaction of atoms, but calculations show that for covalent

states, the contribution of these forces for quasimolecules of the form 𝐴+𝐻

can be neglected, since they noticeably manifest themselves at fairly small

distances, i.e. they decrease proportionally to 1/𝑅6 .

The off-diagonal matrix elements of the electric Hamiltonian responsi-

ble for the interaction of terms can be determined using various formulas.

One of such formulas is the Olson-Smith-Bayer [43] formula for single-

electron charge exchange in the form proposed in the paper [44]:

𝐻𝑂𝑆𝐵
𝑗𝑘 (𝑅) = 𝛽𝑗𝑘

√︀
𝐼𝐴*𝐼𝐻− 𝑅𝑒𝑥𝑝(−0.86𝛽𝑗𝑘𝑅) , (1.34)

where I𝐴* is the binding energy of an electron in an excited atom A* , I𝐻−

is the binding energy of an electron in an ion H− , 𝑅 – the internuclear

distance, and 𝛽𝑗𝑘 =
√
𝐼𝐴*+

√
𝐼𝐻−√

2
. This formula has gained popularity due to

the simplicity and good accuracy of the results obtained (see, for example,

[16]).

Note that in the work [45] compares the results obtained using various

formulas for determining matrix elements of ion-covalent interaction on the

example of collisions H− + H+ . In this paper, the results of quantum

3In the atomic system of units.
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ab initio calculations are compared with the Olson-Smith-Bayer formulas

(three variants), the Smirnov formula [46,47] and the Janev formula [48].

The authors conclude that Janev’s formula gives the closest result to quan-

tum calculations (see Table 1 in [45], the difference is no more than 15%).

From Table 1 in [45] it is also seen that the formula (1.34) also allows us

to obtain values of both the positions of the centers of the non-adiabatic

regions and the values of the matrix elements of non-adiabatic coupling

in the centers of the non-adiabatic regions that have reasonable agreement

with the quantum data (the difference does not exceed 50%).

Also often arise a situations when a two-electron transition occurs in

an inelastic process, and the Olson-Smith-Bayer formula (1.34) cannot be

directly applied to evaluate the off-diagonal matrix element. In this case,

the formula proposed in [42,49] can be used:

𝐻2𝑒
𝑗𝑘(𝑅) = [𝐻𝑂𝑆𝐵

𝑗𝑘 (𝑅)]2 ×𝑅 . (1.35)

As a result, the matrix of the electronic Hamiltonian of the system has

the form of an arrow: the main diagonal and the elements of the first row

and the first column responsible for the ion-covalent interaction are filled

(the first state corresponds to the ionic term, the second – the first covalent,

the third – the second covalent, etc.). The remaining matrix elements are

assumed to be zero, which corresponds to the absence of interaction of

covalent terms with each other. To obtain adiabatic molecular terms from

diabatic ones, the procedure of diagonalization of the electronic Hamiltonian

matrix is carried out. The result is a system of adiabatic molecular terms

with one series of sequentially arranged non-adiabatic regions due to ion-

covalent interaction.

Another asymptotic method is the method of Linear Combination of

Atomic Orbitals (LCAO), proposed and described in the P. Barklem pa-

pers [50, 51] and being a further generalization of the works of R. Grice,

S. A. Adelman, D. R. Herschbach [52,53], S. D. Anstey. The main idea of
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this method is to use asymptotic atomic wave functions, which are deter-

mined from the known parameters of atoms.

This method is developed in the approximation of two active electrons,

one of which is bound to hydrogen before the collision, and the second –

to the atom of the collision partner. In the case of hydrogen anions colli-

sions with the collision partner cations – both electrons are bound to the

hydrogen anion before the collision. Adiabatic electronic wave functions

can be represented as a linear combination of some diabatic functions with

expansion coefficients 𝐶𝑗𝑘 . It is necessary to solve the matrix equation:

𝐻 𝐶 = 𝑈 𝑆 𝐶, (1.36)

where 𝐻 is the matrix of the electronic Hamiltonian, 𝑆 is the overlap

matrix, 𝐶 is the matrix of the coefficients, and 𝑈 – diagonal matrix of

adiabatic molecular energies.

The molecular wave function in the asymptotic domain can be writ-

ten in terms of atomic wave functions, following the monograph by E. E.

Nikitin and S. Ya. Umansky (see [54], formula (10.6)). The atomic wave

function of the ground state of the hydrogen atom is known, the atomic

wave function of the hydrogen anion can be approximated by the function:

𝜑𝐻
−

𝑙𝑜𝑛𝑔(𝑟) =

⎧⎪⎨⎪⎩𝑁𝑒𝑥𝑝(−𝛾𝑟)/𝑟, 𝑟 ≥ 𝑟0

0, 𝑟 ≤ 𝑟0
(1.37)

where N = 0.333672 a.u., 𝛾 = 0.2355885 a.u., r 0 = 2.30986 a.u. (see

[50, 51]). The atomic functions of the atoms and ions of the collision part-

ners are represented as the product of unknown radial and known angular

functions. Unknown radial wave functions are further calculated numeri-

cally and become known. In this case, the matrix elements of the electronic

Hamiltonian and the overlap integrals for two different valence states are

assumed to be asymptotically small. In other words, within the framework
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of this method, only the ion-covalent interaction is taken into account when

calculating the electronic structure of molecules.

In this way, an electronic Hamiltonian matrix and the overlap matrix

can be constructed, which have the form of an arrow, as in the previ-

ous asymptotic method. That is, it is now possible to solve the equation

(1.36). Knowing the coefficients, it is possible to determine adiabatic elec-

tronic wave functions and adiabatic potential energies. Thus, the electronic

problem can be completely solved within the framework of this asymp-

totic method. It is worth noting, however, that this method is used in

conjunction with a multichannel formula within the Landau-Zener model

(see §1.4.4), which does not require finding radial non-adiabatic coupling

matrix elements.

§ 1.4 Methods of nuclear dynamics investigations

The second step of solving the problem of atomic collisions within the

framework of the standard Born-Oppenheimer adiabatic approach – calcu-

lation of the dynamics of a system with moving nuclei, using the results

obtained at the first step – adiabatic molecular potential energies 𝑈𝑗(𝑅)

and adiabatic molecular electronic wave functions 𝜑𝑗(�⃗�, 𝑅) . Consider again

Σ molecular symmetry and a system of equations (1.24), although further

reasoning can be applied in the general case of a system of equations (1.27):(︃
− ℎ̄2

2𝜇

𝑑2

𝑑𝑅2
+
ℎ̄2𝐽(𝐽 + 1)

2𝜇𝑅2
+ 𝑈𝑘(𝑅)− 𝐸

)︃
𝐹𝑘 =

ℎ̄2

𝜇

∑︁
𝑗

𝐷𝑘𝑗
𝑑𝐹𝑗

𝑑𝑅
+
ℎ̄2

2𝜇

∑︁
𝑘

𝐷𝐷𝑘𝑗𝐹𝑗 .

Radial weve function 𝐹𝑘(𝑅) satisfies the following boundary conditions:

𝐹𝑘(𝑅) −→ 0 𝑎𝑡 𝑅 → 0 ,

𝐹𝑘(𝑅) −→
1√
𝐾𝑘

(︀
𝑎+𝑘 exp(𝑖𝐾𝑘𝑅) + 𝑎−𝑘 exp(−𝑖𝐾𝑘𝑅)

)︀
𝑎𝑡 𝑅 → ∞ ,

(1.38)
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where 𝐾𝑘 =
√︁

(2𝜇/ℎ̄2)(𝐸 − 𝑈𝑗(∞)) – the wave number 𝑘 th channel, and

𝑎∓𝑗 – the amplitudes of incident and scattered waves.

A system of coupled channel equations (1.24) is solved numerically.

Since the numerical solution does not involve calculating the wave function

to an infinite value of the internuclear distance, some finite but sufficiently

large internuclear distance 𝑅𝑎𝑠𝑦𝑚𝑝 is chosen, at which non-adiabatic tran-

sitions no longer occur. This value 𝑅𝑎𝑠𝑦𝑚𝑝 defines the second criterion for

the convergence of cross sections of inelastic processes (see § 1.5 ) It is

possible to express numerical solutions of the coupled channel equations

system through the 𝑅 -matrix:

𝐹𝑘(𝑅𝑎𝑠𝑦𝑚𝑝) =
∑︁
𝑗

𝑅𝑘𝑗
𝑑𝐹𝑗(𝑅𝑎𝑠𝑦𝑚𝑝)

𝑑𝑅
. (1.39)

The 𝑅 -matrix, in turn, allows to find the 𝑆 -scattering matrix:

𝑆 = (−1)𝐽 𝑒𝑥𝑝(−𝑖𝐾𝑅𝑎𝑠𝑦𝑚𝑝)
√︁
𝐾 (𝐼 − 𝑖𝑅𝐾)−1×

× (𝐼 + 𝑖𝑅𝐾)
√︁
𝐾

−1

𝑒𝑥𝑝(−𝑖𝐾𝑅𝑎𝑠𝑦𝑚𝑝) ,
(1.40)

where 𝐾 – diagonal matrix of wave numbers, 𝐼 – unit matrix.

The elements of the 𝑆 -matrix characterize the total probability of a

system transition from one state to another:

𝑃𝑖𝑓 =
⃒⃒
𝑆𝑖𝑓

⃒⃒2
. (1.41)

Knowing the full probability of a non-adiabatic transition from a given initial

state to some final one, it is possible to find cross sections of inelastic

processes.

However, such a ab initio quantum method has some disadvantages.

Firstly, accurate quantum calculations require considerable time and large

computing power.
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Secondly, since in order to perform accurate quantum calculations it

is required to know all the non-adiabatic coupling matrix elements, it is

impossible to consider a large number of molecular states due to the im-

possibility of calculating all potential energies and matrix elements of non-

adiabatic coupling. While the number of molecular states that need to be

taken into account in calculations easily exceeds several tens (see, for ex-

ample, [55–58]), and matrix elements – several hundred, or even thousands.

Thirdly, there is a fundamental feature of the Born-Oppenheimer ap-

proach, also called the Electron Translation problem, which consists in

the existence of non-zero matrix elements of non-adiabatic coupling in the

asymptotic region. In this case, there is no such asymptotic distance 𝑅𝑎𝑎𝑦𝑚𝑝

at which non-adiabatic transitions stop. This means that the cross sections

of the processes increase infinitely and are not convergent for two reasons:

the condition for a finite distance 𝑅𝑎𝑠𝑦𝑚𝑝 is not fulfilled, since it does not

exist; the condition for a finite value of the quantum number of the total an-

gular momentum 𝐽𝑚𝑎𝑥 is not fulfilled, that is, the number of partial waves

is infinite.

1.4.1 Reprojection method

To solve the last of the above problems, the reprojection method is

used, described in detail in the papers [34, 59–62]. The essence of this

method is as follows. As part of the standard procedure for solving the

nuclear dynamics problem described above, Jacobi molecular coordinates

are used, which are not suitable for describing two non-interacting atoms

at an infinitely large distance from each other. For a correct description

of non-interacting atoms, it is necessary to use atomic Jacobi coordinates,

which have a connection with molecular ones. This problem was first

brought to the attention of Bates and McCarroll in the paper [63]. For Σ

symmetry, the partial wave Ψ𝐽𝑀𝐽
(�⃗�, �⃗�) in molecular coordinates has the
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form (1.6):

Ψ𝐽𝑀𝐽
(�⃗�, �⃗�) =

∑︁
𝑗

𝜒𝑗(�⃗�)𝜑𝑗(�⃗�, 𝑅) =
∑︁
𝑗

𝐹𝑗(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙)𝜑𝑗(�⃗�, 𝑅) . (1.42)

The asymptotic form of the partial wave in this case is:

Ψ𝐽𝑀𝐽
(�⃗�, �⃗�) =

∑︁
𝑗

1√︀
𝐾𝑗

(︁
𝑎+𝑗 𝜓

+
𝑗 (�⃗�, �⃗�) + 𝑎−𝑗 𝜓

−
𝑗 (�⃗�, �⃗�)

)︁
, (1.43)

where

𝜓±
𝑗 (�⃗�, �⃗�) =

exp(±𝑖𝐾𝑗𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙)𝜑𝑗(�⃗�, 𝑅) (1.44)

– incident and scattered waves.

To describe a system of two non-interacting atoms, it is necessary to

write the incident and scattered waves 𝜓±
𝑗 (�⃗�, �⃗�) in atomic Jacobi coordi-

nates. They have the form:

𝜓±
𝑗 (�⃗�, �⃗�) =

exp(±𝑖𝐾𝑗𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙)
∑︁
𝑘

𝑡±𝑗𝑘𝜑𝑘(�⃗�, 𝑅) , (1.45)

where 𝑡±𝑗𝑘 – elements of the so-called 𝑡 -matrix, which are expressed in

terms of the asymptotic values of the momentum 𝐾𝑗 , potential energies

𝑈𝑗(∞), 𝑈𝑘(∞) and the non-adiabatic coupling matrix elements 𝐷𝑗𝑘(∞) :

𝑡±𝑗𝑘 = 𝛿𝑗𝑘 ±
𝑖𝐾𝑗 ℎ̄

2

𝜇(𝑈𝑗(∞)− 𝑈𝑘(∞))
𝐷𝑗𝑘(∞) , (1.46)

Then the partial wave may be written as:

Ψ𝐽𝑀𝐽
(�⃗�, �⃗�) =

∑︁
𝑗

𝐹𝑗(𝑅)

𝑅
𝑌𝐽𝑀𝐽

(𝜃, 𝜙)
∑︁
𝑘

𝑡±𝑗𝑘𝜑𝑘(�⃗�, 𝑅) . (1.47)
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In this case, the expression for the 𝑆 -matrix will change:

𝑆 = (−1)𝐽 exp(−𝑖𝐾𝑅𝑎𝑠𝑦𝑚𝑝)
√︁
𝐾 (𝑡+ − 𝑖𝑅 𝑡+𝐾)−1×

× (𝑡− + 𝑖𝑅 𝑡−𝐾)
√︁
𝐾

−1

exp(−𝑖𝐾𝑅𝑎𝑠𝑦𝑚𝑝) .
(1.48)

All the difference between the expression (1.48) and (1.40) is in 𝑡± ma-

trices. Note that when the values of the non-adiabatic coupling matrix

elements 𝐷𝑗𝑘(∞) are zero at infinity, the matrices 𝑡± turn into unit ma-

trices, and the expression (1.48) turns into (1.40).

Thus, the reprojection method makes it possible to solve the fundamen-

tal problem of inelastic processes cross sections convergence in the general

case (in the presence of non-zero values at infinity of the non-adiabatic

coupling matrix elements).

1.4.2 The Landau-Zener model

Determination of all the necessary data at the first step within the

framework of the Born-Oppenheimer approach (adiabatic energies and adi-

abatic molecular electronic wave functions) is a non-trivial task. It is not

uncommon for situations where there are only molecular potential energies,

but electronic wave functions are unknown, and in such a situation, the

study of nuclear dynamics by solving a coupled channel equations system

is impossible due to the impossibility of obtaining non-adiabatic coupling

matrix elements. Moreover, solving the coupled channel equations system

is a rather complex and time-consuming. In this case, there is a need for

reliable model approaches that allow us to estimate with good accuracy the

full probability of the transition of the system from a given initial state to

a given final one.

In general, non-adiabatic transitions can occur everywhere at small and

intermediate internuclear distances. But the largest transition probability

occurs in the regions of convergence of terms, in the non-adiabatic regions.

Often there are situations of convergence of two terms in the non-adiabatic
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region. But there are also situations when three or more terms converge in

one non-adiabatic region. To describe most non-adiabatic transitions, it is

sufficient to consider the case of two converging terms.

There are several models that describe the probability of a non-adiabatic

transition in the case of two terms. For example, the Landau-Zener model

[64–66] (linear model), Nikitin model [67,68] (exponential model), Demkov

model [69] (a special case of the Nikitin model) and others (see also the

book [54]). The Landau-Zener model, which describes the probability of a

non-adiabatic transition in the case of two diabatic linear intersecting terms

with a constant off-diagonal matrix element, has become quite widespread

in model studies of non-adiabatic transitions. This model was first described

by Landau in [64, 65] for the case of adiabatic and weak coupling of two

terms, and a little later Zener and Stueckelberg in [66, 70] got a solution

for strong coupling as well.

The derivation is described in the book [54], and also discussed in the

papers [71–73]. In this dissertation, we will limit ourselves to the main

results. The Landau-Zener model is formulated as follows: there are two

linear intersecting diabatic terms, the coupling between which is constant.

The starting point is at the intersection of these terms. Then, when the

system moves from -∞ to +∞ , the probability of moving from state 1 to

state 2 will be described by the following formula:

𝑝 = 𝑒𝑥𝑝(−
2𝜋𝐻2

𝑗𝑘

Δ𝐹 𝑣
) , (1.49)

where 𝐻𝑗𝑘 is the coupling of terms, Δ𝐹 – the difference in the slopes

of diabatic terms, 𝑣 – the radial velocity of the nuclei at the intersection

of diabatic terms. It is possible to explicitly isolate the dependence on the

velocity of the radial motion of the system in the center of the non-adiabatic

region by introducing the so-called Landau-Zener parameter 𝜉𝐿𝑍 :

𝜉𝑑𝑖𝑎𝑏𝐿𝑍 =
2𝜋𝐻2

𝑗𝑘

Δ𝐹
. (1.50)
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This model allows us to describe a non-adiabatic transition with a

single passage of the non-adiabatic region. Since the Landau-Zener model

is formulated for two linear intersecting diabatic terms, this model well

describes non-adiabatic transitions in the case when adiabatic terms are

very close and pseudo-crossing takes place (i.e., the terms almost intersect).

This means that the energy splitting in the non-adiabatic region between

the two terms is quite small. The criteria for the applicability of the Landau-

Zener model can be written as follows:

2𝐻𝑗𝑘

Δ𝑈∞
<< 1, (1.51)

𝜋𝐻2
𝑗𝑘

Δ𝐹
<< 𝜉∞, (1.52)

where Δ𝑈∞ is the difference of the asymptotic energies of the terms,

𝜉∞ – the Massey parameter for non-adiabatic coupling between terms with

splitting Δ𝑈∞ .

Condition (1.51) means that a pseudo-crossing picture is actually repro-

duced in the non-adiabatic region, that is, the splitting in the center of the

non-adiabatic region is significantly less than the energy splitting between

terms in the asymptotic region. The condition (1.52) means that the non-

adiabatic coupling is localized near this pseudo-crossing point (see [54]).

The first condition describes terms with low energy splitting in the

non-adiabatic region, and the second condition describes the localization of

the non-adiabatic coupling near the pseudo-crossing point, that is, in the

region of the center of the pseudo-crossing point. It is possible to rewrite

this formula for the case of an adiabatic basis, which was done in the

paper [74] via energy splitting 𝑍(𝑅) = Δ𝑈(𝑅) and the second derivative

by the internuclear distance from it 𝑑2𝑍(𝑅)
𝑑𝑅2 in the center of the non-adiabatic

region 𝑅𝐶 :

𝑝 = 𝑒𝑥𝑝

⎛⎝− 𝜋

2ℎ̄𝑣

√︃
𝑍3(𝑅𝑐)

𝑍 ′′(𝑅𝑐)

⎞⎠ , (1.53)
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where the Landau-Zener parameter:

𝜉𝑎𝑑𝑖𝑎𝑏𝐿𝑍 =
𝜋

2ℎ̄

√︃
𝑍3(𝑅𝑐)

𝑍 ′′(𝑅𝑐)
. (1.54)

The use of the formula (1.53) for adiabatic potentials avoids the diabatiza-

tion procedure, which is not unambiguous (for more information about the

problems of diabatization, see, for example, in [20]).

Thus, the Landau-Zener model makes it possible to calculate the proba-

bility of a non-adiabatic transition with a single passage of the non-adiabatic

region. However, in real systems with a large number of molecular terms,

the number of non-adiabatic regions is tens or even hundreds, besides, the

system passes each non-adiabatic region at least twice: at moving from ∞
to 0 and at moving from 0 to ∞ . Thus, it is necessary to apply methods

that allow us to calculate the full probability of a non-adiabatic transition

from a given initial state to a given final one. At the same time, the

probability of a single passage of each of the non-adiabatic region can be

calculated using the Landau-Zener model, the Nikitin model or the Demkov

model.

1.4.3 Probability current method

One of the methods of studying nuclear dynamics based on the Landau-

Zener model is the probability current method proposed in the paper [75].

This method is similar to the method of classical trajectories developed

in [76–79] et al. for the study of dynamics of polyatomic systems.

The solution for the wave function in the asymptotic region is known:

Ψ(𝑅 → ∞) ∼ 𝑠𝑖𝑛(𝐾𝑅) = 𝑎− 𝑒𝑥𝑝(−𝑖𝐾𝑅) + 𝑎+ 𝑒𝑥𝑝(𝑖𝐾𝑅) , (1.55)

where 𝑎− and 𝑎+ – the amplitudes of incident and scattered waves, 𝐾 –

the wave number, 𝑅 – the internuclear distance. For the wave func-

tion (1.6) decomposition into incident and scattered waves will take the
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form:

Ψ𝐽𝑀𝐽
(�⃗�, �⃗�) ∼

∑︁
𝑗

1√︀
𝐾𝑗

(︁
𝑎−𝑗 𝑒𝑥𝑝(−𝑖𝐾𝑗𝑅) + 𝑎+𝑗 𝑒𝑥𝑝(𝑖𝐾𝑗𝑅)

)︁
, (1.56)

where 𝑗 – the number of the state, 𝐾𝑗 – the wave number of the 𝑗 th

state.

The probability of detecting a system in a particular state before or after

a collision is the square of the modulus of the amplitude of the incident or

scattered wave, respectively:

𝜏±𝑗 = |𝑎±𝑗 |2 , (1.57)

where 𝜏±𝑗 – the probability currents, incident and scattered. The bound-

ary conditions in the asymptotic region for an incident wave are given as

follows:

𝑎−𝑖 = 1, 𝑎−𝑗=/=𝑖 = 0 , (1.58)

that is, only one initial channel 𝑖 is populated. Then the probability of

detecting a system in a particular state after collision in the asymptotic

region is defined as the square of the amplitude modulus of the scattered

wave of the corresponding state:

𝑃𝑖𝑓(𝐽,𝐸) = 𝜏+𝑓 = |𝑎+𝑓 |
2 , (1.59)

with boundary conditions (1.58).

However, the solution for the asymptotic region is not enough to de-

termine the full probability of transition from one state to another, since

the dynamics of the system at small and intermediate internuclear distances

is unknown, that is, it is not known how non-adiabatic transitions are car-

ried out, and which channels are populated after a collision and with what

probability. To solve this problem, the probability current method can be

used. Its essence lies in considering the probability current 𝜏𝑗(𝑅) as a



— 46 —

function of the internuclear distance to trace its dynamics during the colli-

sion. Within the framework of the Demkov-Osherov approach [80] the total

probability of a non-adiabatic transition from one state to another |𝑆𝑘𝑗|2 can

be represented as products of the probabilities of single transitions in iso-

lated non-adiabatic regions traversed by the system during movement. An

important assumption here is that the non-adiabatic regions are considered

isolated from each other, although this is not always the case.

The boundary conditions before the collision are set by the condi-

tion (1.58), and the probability current 𝜏𝑖(𝑅 → ∞) = 1 starts moving in

the 𝑖 th channel from the asymptotic region to the region of small inter-

nuclear distances to the classical turning point (𝑅 → 0 ). In the process

of convergence, the system passes through non-adiabatic regions, where

non-adiabatic transitions to other channels are carried out. Having reached

the classical turning point, the system begins to move into the region of

large internuclear distances 𝑅 → ∞ and again passes the non-adiabatic

regions and makes non-adiabatic transitions. Ultimately, after the expan-

sion in the asymptotic region, all energetically open channels turn out to be

populated, and this population can be calculated by knowing the dynamics

of the probability current at small internuclear distances. At the same time,

the probability of transition with a single passage of each non-adiabatic

region is determined within the framework of the Landau-Zener model.

There are two different approaches to considering the evolution of prob-

ability currents:

• the branching probability current method (deterministic approach):

the probability current is split in each non-adiabatic region into two

currents moving in the corresponding channels, proportional to the

transition probability. When passing the next non-adiabatic region,

each of the split currents is split into two again in accordance with

the probability of non-adiabatic transition. Thus, one initial probabil-

ity current is split into a set of currents that sum up for each 𝑗 th
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channel, and as a result, this one initial probability current inhabits

all energetically open scattering channels after collision;

• the hopping probability current method (stochastic approach): the

probability current in each non-adiabatic region completely passes into

the neighboring channel, or completely remains in this one. This de-

pends on the transition probability in the non-adiabatic region and on

the random number generated in the interval [0, 1]. If the probabil-

ity of transition is greater than the thrown random number, then the

probability current will completely hop to the neighboring channel;

otherwise, the entire probability current will remain in this chan-

nel. Thus, one probability current inhabits only one channel in the

asymptotic region. To determine the total transition probability, it

is necessary to repeat the calculation procedure for one probability

current 𝑁𝑡𝑜𝑡 times, and then the total probability of a non-adiabatic

transition is determined as follows:

𝑃𝑖𝑓(𝐽,𝐸) =
𝑁𝑓

𝑁𝑡𝑜𝑡
, (1.60)

where 𝑁𝑓 – the total number of the probability currents, inhabits

𝑓 th channel at the asymptotic region, 𝑁𝑡𝑜𝑡 – the total number of

probability currents.

For the hopping probability current method, the total number of calcu-

lated probability currents 𝑁𝑡𝑜𝑡 plays an important role, since it determines

the accuracy of the obtained values of the total non-adiabatic transition

probabilities. In the practical implementation of this method, the calcula-

tion of the probability for the given values of the collision energy 𝐸𝑐𝑜𝑙 and

the total angular momentum 𝐽 can take quite a long time, and we have to

limit ourselves to the number of probability currents 𝑁 = 104 − 105 .

The situation is facilitated by the fact that the procedure for calculating

a single probability current is quite simple and takes little time and com-

puting power, so this method can be implemented using parallel computing
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technologies such as CUDA (Compute Unified Device Architecture) [81] for

NVidia GPUs and OpenCL (Open Computing Language) [82] for various

GPUs and CPUs. As known, the central processing unit (CPU) is designed

for efficient sequential execution of a set of commands, while graphics ac-

celerators perform a different role: they must calculate the characteristics

of each pixel on the monitor at any given time, such as colour, intensity,

and others. At the same time, the parameters of each pixel do not de-

pend on the parameters of other pixels, and these parameters are calculated

simultaneously for millions of pixels. It is for this task that the architec-

ture of graphics accelerators has been developed – to process thousands of

independent processes at any given time.

The calculation of each probability current is a process independent of

other calculations, so it is possible to use graphics accelerators to calculate

hundreds and thousands of probability currents at any given time. Although

the central processor has a higher command processing speed, the use

of graphics accelerators allows us to gain in calculation time due to the

number of probability currents calculated simultaneously.

The author of the dissertation has written, optimized and debugged a

program in the C++ programming language that implements the algorithm

of hopping probability currents, using the paradigm of parallel computing

using graphics accelerators (GPU) and CUDA technology. The program

effectively implements the hopping probability current algorithm, which is

expressed in a significant acceleration of calculations of the full probabili-

ties of non-adiabatic transitions, on average 30 times on NVidia GTX 1060,

GTX 1070 graphics accelerators. Also, this program allows us to signif-

icantly increase the total number of calculated probability currents while

maintaining an acceptable calculation time for all states involved in nuclear

dynamics. At the moment, the program can calculate in a few weeks all

the full probabilities of non-adiabatic transitions for a system of ≈10 states

with the number of probability currents ≈10 9 for the values of the quan-
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tum number of the total angular momentum 𝐽 in the range [0,≈3000] and

in the range of collision energies [0.01,100] eV with an adaptive step.

Note that in numerical calculations there are situations when the cal-

culation takes too long due to the large number of partial waves taken into

account, up to tens of thousands of 𝐽 . In this case, it makes sense to cal-

culate the cross section not with a step by the quantum number of the total

angular momentum Δ𝐽 =1, but with a larger step for small values of 𝐽 .

This is justified by the fact that the probability in this situation practically

does not change for values, for example, 𝐽 and 𝐽 + 1 , so we can assume

that 𝑃 (𝐽) = 𝑃 (𝐽 + 1) . In order to correctly account for each term in the

sum of partial waves, the following formula is used (for more information

about cross section calculations, see below, § 1.5 ):

Δ𝐽 = 1 : (2𝐽 + 1)𝑃𝑖𝑓(𝐽,𝐸) ,

Δ𝐽 > 1 : ((2𝐽 +Δ𝐽)Δ𝐽 +Δ𝐽(Δ𝐽 − 1))𝑃𝑖𝑓(𝐽,𝐸) .
(1.61)

It is also worth noting that the author of the dissertation wrote, op-

timized and debugged a program in the C++ programming language that

implements the branching probability current algorithm. At first glance,

the hopping probability current algorithm is not necessary, since it has a

limitation on accuracy, while the branching probability current algorithm

allows us to set any accuracy. However, numerical experiment shows that

the application of the branching probability current algorithm is best suited

for cases when the total energy is higher than the asymptotic energy of

the ion channel. In this situation, there are no energetically closed chan-

nels and no oscillations occur (see below, in §1.4.4). In the case of

oscillations, the calculation time using the branching probability current al-

gorithm increases significantly. At the same time, the hopping probability

current algorithm has no problems with calculating the full probabilities

of non-adiabatic transitions in the presence of oscillations in closed chan-

nels. Therefore, the hopping probability current algorithm should be used

in cases where energetically closed channels arise during the calculation,
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as well as in general in situations where the application of the branching

probability current algorithm leads to a significant calculation time.

1.4.4 Multichannel formula

Another method that allows us to determine the full probability of a

non-adiabatic transition of a system from a given initial state to a given

final state is the multichannel formula. This method has a number of

limitations. Firstly, only the non-adiabatic regions at intermediate and large

internuclear distances due to ion-covalent interaction are taken into account.

Secondly, using a multichannel formula, it is possible to calculate the full

probabilities of non-adiabatic transitions for the processes 𝑖 → 𝑓 , where

𝑖 > 𝑓 , taking into account that the numbering comes from the ground

state (i.e. it is possible to calculate the full probabilities only for the

processes of de-excitation and neutralization). Thirdly, for the application

of the multichannel formula, a certain order of non-adiabatic regions is

required: the center of the non-adiabatic region 𝑅𝐶 between states 𝑖 and

𝑖 + 1 must be to the left of the center of the non-adiabatic region between

states 𝑖 + 1 and 𝑖 + 2 and to the right of the center of the non-adiabatic

region between states 𝑖− 1 and 𝑖 for all non-adiabatic regions:

𝑅𝐶
𝑖−1,𝑖 < 𝑅𝐶

𝑖,𝑖+1 < 𝑅𝐶
𝑖+1,𝑖+2 , (1.62)

with the condition, as noted above, the numbering is carried out from the

ground state:

𝑈(∞)𝑖−1 < 𝑈(∞)𝑖 < 𝑈(∞)𝑖+1 , (1.63)

Despite these disadvantages, the multichannel formula has significant

advantages. Firstly, it is an analytical formula that does not require nu-

merical solution of differential equations or numerical calculations of the

evolution of probability currents. Secondly, the use of the multichannel

formula for the study of non-adiabatic nuclear dynamics allows us to obtain

results almost instantly. The study of the nuclear dynamics of a system
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of dozens of terms takes a few minutes of estimated time on a computer.

Thirdly, the cross sections and rate coefficients obtained by means of a mul-

tichannel formula have good accuracy for processes with the largest values

of cross sections and rate coefficients. In the papers [18, 21] it was shown

that for processes with the largest values of cross sections and rate coef-

ficients, the difference between the values of the rate coefficients obtained

using the multichannel formula from the data obtained by accurate ab initio

quantum calculations does not exceed one order of magnitude for mutual

neutralization processes, which it is much more accurate than the results

obtained using the Dravin formula. Therefore, the use of the multichannel

formula is justified.

Let’s consider the derivation of the multichannel formula in more de-

tail. First of all, consider the case of two channels (see Figure 1). We

denote the probability of a non-adiabatic transition at a single passage of

the non-adiabatic region as 𝑝 . Then the total probability of a non-adiabatic

transition 𝑃 𝑡𝑟𝑎𝑛𝑠 from state 2 to 1 in the presence of one non-adiabatic

region is the sum of two probabilities:

• the probabilities of going from state 2 to state 1 at collision and

remaining in state 1 at separation – 𝑝(1− 𝑝) ;

• the probabilities of remaining in state 2 at collision and going from

state 2 to state 1 at separation – (1− 𝑝)𝑝 ;

so:

𝑃 𝑡𝑟𝑎𝑛𝑠 = 𝑝(1− 𝑝) + (1− 𝑝)𝑝 = 2𝑝(1− 𝑝) . (1.64)

The multichannel formula is a generalization to the case of many chan-

nels. If we consider all possible paths of the system from a given initial

state 𝑖 to a given final state 𝑓 (and 𝑖 > 𝑓 , 𝑖 = / = 𝑖𝑜𝑛 ), then ulti-

mately we can obtain a formula for the full transition probability in the

case when the collision energy is greater than the asymptotic energy of the
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Figure 1. A system of two adiabatic terms.

ion channel:

P trans
if = 2pf(1− pf)(1− pi)

i−1∏
k=f+1

pk


1 +

2(f−1)∑
m=1

m∏
k=1

(
−pf−[k+1

2 ]

)
 , (1.65)

where square brackets mean the integer part of the number. The numbering

of transition probabilities in non-adiabatic regions begins with the lower

term: p1 corresponds to the probability of transition from state 1 to state

2, p2 - from 2 to 3...pk – from k to k+1.

It can be seen that in the case of two channels, this formula turns

into the formula (1.64). Let’s take a closer look at all the terms in the

formula (1.65):

• 2pf(1− pf) – the transition probability in the case of two terms;
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• 1 − 𝑝𝑖 – the probability that the system will make transitions to the

lower states is due to the presence of channels above the 𝑖 th;

•
∏︀𝑖−1

𝑘=𝑓+1 𝑝𝑘 – contribution of channels located between 𝑖 th and 𝑓 th

states;

• 1 +
∑︀2(𝑓−1)

𝑚=1

∏︀𝑚
𝑘=1(−𝑝𝑓−[𝑘+1

2 ]) – contribution due to the presence of

channels below 𝑓 th.

In the case of neutralization (when 𝑖 = 𝑖𝑜𝑛 ) there are no transitions to the

higher-lying channels, respectively 𝑝𝑖 = 0 and (1− 𝑝𝑖) = 1 .

If the total energy of the system is less than the asymptotic energy

of some higher-lying state, then the system cannot enter this and other

higher-lying states. In this case, so-called oscillations occur in the higher-

lying states, and such states are called energetically closed. Consider the

Figure 2. It can be seen that the system can move into the ionic channel,

but there is not enough energy for the system to enter the ion channel at

the asymptotic region.

At collision, the system will enter the ionic state, and will reach the

classical turning point 𝑅1 , will turn around and reach the turning point

𝑅2 , and with the probability 𝑝𝑖 will enter the underlying channels, and

this probability will be redistributed between these channels in the future.

At the same time, with a probability of 1 − 𝑝𝑖 , the system will remain in

the same ionic channel, again reach the point 𝑅1 , will turn around, reach

the point 𝑅2 , and again with a probability of 𝑝𝑖 will move to the lower

channels, and with a probability of 1 − 𝑝𝑖 will again remain in the ionic

channel.

By writing down several such steps sequentially, you can make sure

that in this case there is a geometric progression [22], and using the

formula for the sum of the geometric progression and some simplifications,

it is ultimately possible to obtain a formula for finding the full probability

of a non-adiabatic transition for the case when energetically closed channels
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Figure 2. A system of three terms in the case when the ionic channel is
energetically closed.

take place:

P trans
tot if = P trans

if



1−

F∏
k=i

p2k

(
1 +

2(i−1)∑
m=1

m∏
k=1

{
−pi−[k+1

2 ]

})

2F∑
m=1

m∏
k=1

(
−pF+1−[k+1

2 ]

)




, (1.66)

where F is the full number of energetically open channels.

Also, when considering inelastic collisions, it is important to take into

account the tunnelling effect through a potential barrier that occurs in

the non-adiabatic region. The effective potential depends on the quantum

number of the total angular momentum of the quasimolecule, see the for-

mula (1.25). Accordingly, with an increase of J , the effective potential

may at some point at J = Jforbidden become greater than the total col-
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lision energy at some point 𝑅 = 𝑅𝑓𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛 . Then the transitions in the

non-adiabatic region will be energetically closed from the classical point

of view. At the same time, at 𝑅 < 𝑅𝑓𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛 , there may be regions in

which the total energy is still greater than the effective potential energy.

Then there may be sub-barrier transitions, and this effect must be taken

into account. At paper [83] consideration was given to the tunnelling effect

through a potential barrier. A formula was proposed that allows taking into

account sub-barrier transitions in inelastic collisions by simply multiply-

ing the probability of transition in the non-adiabatic region by the passage

coefficient, which is calculated by the formula:

𝑝𝑡𝑢𝑛𝑖 =

⎡⎣1 + exp

(︃
−
4 (𝜇𝑣2𝑖 + 𝑍𝑖)

√
𝜇 𝜉𝑖

𝑍
3/2
𝑖

)︃⎤⎦−1

. (1.67)

Formula (1.67) allows us to take into account sub-barrier transitions in the

case when the energy splitting in the non-adiabatic region is relatively large.

In the case of small splitting, this formula is not suitable, and tunnelling

must be taken into account otherwise. In general, the passage coefficient

can be found by perturbation theory and is expressed in terms of the Airy

function [83]. We will write down the final form of the multichannel

formula, which will be used in this dissertation in the study of nuclear
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dynamics:

𝑃 𝑡𝑜𝑡
𝑖𝑓 = 2𝑝𝑓(1− 𝑝𝑓)(1− 𝑝𝑖)

𝑖−1∏︁
𝑘=𝑓+1

𝑝𝑘×

×

⎧⎨⎩1 +

2(𝑓−1)∑︁
𝑚=1

𝑚∏︁
𝑘=1

(︂
−𝑝𝑓−[𝑘+1

2 ]

)︂⎫⎬⎭×

×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1−

𝐹∏︀
𝑘=𝑖

𝑝2𝑘

(︃
1 +

2(𝑖−1)∑︀
𝑚=1

𝑚∏︀
𝑘=1

{︂
−𝑝𝑖−[𝑘+1

2 ]

}︂)︃
2𝐹∑︀
𝑚=1

𝑚∏︀
𝑘=1

(︂
−𝑝𝐹+1−[𝑘+1

2 ]

)︂
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

(1.68)

§ 1.5 Calculation of cross sections and rate coefficients

Cross sections of inelastic processes are calculated using well-known

formulas (see, for example, [84]):

𝜎𝑖𝑓(𝐾) =
𝜋

𝐾2
𝑖

∞∑︁
𝐽=0

(2𝐽 + 1)|𝑆𝐽
𝑖𝑓 |2 , (1.69)

where 𝐾 – the wave number, 𝐽 – the quantum number of the total angular

momentum, 𝑆𝐽
𝑖𝑓 – the off-diagonal element of the scattering matrix, which,

when squared, is nothing more than the total probability of a non-adiabatic

transition from the initial state 𝑖 to the final state 𝑓 . Let’s rewrite this

formula in terms of the collision energy, and also take into account the fact

that one scattering channel can generate several molecular symmetries, in

each of which nuclear dynamics proceeds differently:

𝜎𝑖𝑓(𝐸) =
𝜋ℎ̄2𝑝𝑠𝑡𝑎𝑡𝑖

2𝜇𝐸

∞∑︁
𝐽=0

(2𝐽 + 1)𝑃𝑖𝑓(𝐽,𝐸) , (1.70)

where 𝐸 – the total collision energy of the system (the sum of the collision

energy and the asymptotic energy of the initial channel 𝑖 ), and 𝑝𝑠𝑡𝑎𝑡 – the
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statistical weight determining the initial occupancy of the channel in a given

molecular symmetry:

𝑝𝑠𝑡𝑎𝑡𝑖 =
𝑁𝑆𝑁𝐿

𝑁𝑆
𝑡𝑜𝑡𝑁

𝐿
𝑡𝑜𝑡

, (1.71)

where 𝑁𝑆 is the number of quantum numbers of full spin projections 𝑆

that describe the considered 𝑖 th state in this symmetry, and 𝑁𝑆
𝑡𝑜𝑡 – the

total number of quantum numbers of full spin projections that generates

this scattering channel in all molecular symmetries; similarly for 𝑁𝐿 and

𝑁𝐿
𝑡𝑜𝑡 for the quantum number of the total orbital moment 𝐿 .

Note that the cross sections of inelastic processes have three require-

ments in order for them to have finite values, i. e. converge:

1. Completeness of the basis of electronic wave functions.

2. Convergence over the quantum number of the total angular momen-

tum.

3. Convergence over the internuclear distance.

The first condition means that a large number of molecular states, including

highly excited molecular states, must be taken into account in non-adiabatic

nuclear dynamics. The second condition means that the number of partial

waves in the sum (1.70) must be such that all non-zero terms are taken into

account (in other words, the summation must go to such a value 𝐽𝑚𝑎𝑥+1 , at

which all inelastic processes stop and only elastic scattering remains). The

third condition means that the integration of differential equations must be

carried out to such a value 𝑅𝑎𝑠𝑦𝑚𝑝 , at which all the non-adiabatic couplings

matrix elements turn to zero.

According to the formula (1.70) it is possible to calculate the cross

section of any inelastic process, the main thing is to have the entire scat-

tering matrix, or, what is the same thing, to know the full probabilities

of a non-adiabatic transition from all initial states to all final ones. But

some model methods for studying nuclear dynamics in the framework of
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the Landau-Zener model do not allow us to obtain a scattering matrix or

complete probabilities of non-adiabatic transitions for all processes. For

example, the multichannel formula (1.68) allows us to get only the proba-

bilities of exothermic processes, but not endothermic processes. To obtain

cross sections of endothermic processes (excitation, ion-pair formation), it

is necessary to use the balance equation:

𝜎𝑓𝑖(𝐸) = 𝜎𝑖𝑓(𝐸 −Δ𝐸𝑖𝑓)
𝑝𝑠𝑡𝑎𝑡𝑓

𝑝𝑠𝑡𝑎𝑡𝑖

𝐸 −Δ𝐸𝑖𝑓

𝐸
, (1.72)

at the condition 𝑖 > 𝑓 (𝑈(∞)𝑖 > 𝑈(∞)𝑗 ).

The cross section, as can be seen from the formulas (1.70) and (1.72),

implies summation over the quantum number of the total angular momen-

tum 𝐽 from 0 to ∞ . With numerical calculation, this cannot be done, the

summation will go up to some finite value of 𝐽𝑚𝑎𝑥 . It is determined from

the condition that when the value is 𝐽 = 𝐽𝑚𝑎𝑥 +1 all the total probabilities

of non-adiabatic transitions will be zero, that is, only elastic scattering will

occur. For model methods in the framework of the Landau-Zener model,

this value is determined by the condition that for the value of the total

angular momentum quantum number 𝐽𝑚𝑎𝑥 + 1 , the "input" non-adiabatic

region (the non-adiabatic region between the input channel and any neigh-

boring one, located at the greatest internuclear distance) becomes closed,

that is, the current probability cannot reach any non-adiabatic region in

which a non-adiabatic transition could occur, therefore, only elastic scatter-

ing is possible. Mathematically, this condition is expressed by the formula

(for 𝑅 ≤ 𝑅𝑖𝑛𝑖𝑡
𝐶 ):

𝑈 𝑒𝑓𝑓
𝑗 (𝑅) > 𝐸𝑡𝑜𝑡 . (1.73)

In other words, the system cannot pass this non-adiabatic region when

moving from right to left (from 𝑅 → ∞ to 𝑅 → 0 ), the system reaches

the classical turning point, changes the direction of movement and moves

to infinity without making a single non-adiabatic transition.



— 59 —

The rate coefficient is defined as the integral of the cross section over

the entire range of collision energies multiplied by the Maxwell energy

distribution:

𝑘𝑖𝑓(𝑇 ) =

√︃
8

𝜋𝜇(𝑘𝐵𝑇 )3

∞∫︁
0

𝜎𝑖𝑓(𝐸)𝐸 𝑒𝑥𝑝(−
𝐸

𝑘𝐵𝑇
) 𝑑𝐸 , (1.74)

where 𝑘𝐵 – Boltzmann constant. For the rate coefficients, the balance

equation also can be written and use it to calculate the rate coefficients

of endothermic processes through the rate coefficients of exothermic pro-

cesses:

𝑘𝑓𝑖(𝑇 ) = 𝑘𝑖𝑓(𝑇 )
𝑝𝑠𝑡𝑎𝑡𝑓

𝑝𝑠𝑡𝑎𝑡𝑖

exp

(︂
−Δ𝐸𝑖𝑓

𝑘𝐵𝑇

)︂
, (1.75)

where Δ𝐸𝑖𝑓 = 𝐸𝑎𝑠𝑦𝑚𝑝
𝑖 − 𝐸𝑎𝑠𝑦𝑚𝑝

𝑓 – the energy difference of the asymptotic

channels 𝑖 and 𝑓 , again under the condition 𝑖 > 𝑓 .

The partial rate coefficient 𝑘𝑖𝑓(𝑇 ) is hereinafter referred to as the rate

coefficient calculated within a single molecular symmetry for an inelastic

process 𝑖 → 𝑓 by the formula (1.74) or (1.75). The total rate coefficient

𝐾𝑖𝑓(𝑇 ) is hereinafter referred to as the rate coefficient summed over all

molecular symmetries generated simultaneously by the channels 𝑖, 𝑓 . For

example, for two scattering channels 1, 𝐴*(𝑛𝑝 2𝑃 𝑜) + 𝐻(1𝑠 2𝑆) , and 2,

𝐴*(𝑛𝑑 2𝐷) +𝐻(1𝑠 2𝑆) , there are the following possible molecular symme-

tries within which non-adiabatic transitions can occur (excluding rotational

matrix elements): 1,3Σ+ , 1,3Π . Considering non-adiabatic transitions only

within the same symmetry, we get that there are 4 partial rate coefficients:

𝑘
1Σ+

12 (𝑇 ) , 𝑘
3Σ+

12 (𝑇 ) , 𝑘
1Π
12 (𝑇 ) and 𝑘

3Π
12 (𝑇 ) . The total rate coefficient 𝐾12(𝑇 )

of the inelastic process 1 → 2 will then be equal to:

𝐾12(𝑇 ) = 𝑘
1Σ+

12 (𝑇 ) + 𝑘
3Σ+

12 (𝑇 ) + 𝑘
1Π
12 (𝑇 ) + 𝑘

3Π
12 (𝑇 ). (1.76)

Thus, calculations of the inelastic transition probabilities, cross sections

and rate coefficients of inelastic processes in atomic collisions can be carried
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out within the framework of the Born-Oppenheimer approach, using the

division the problem of atomic collisions into two steps: calculations of the

electronic structures of molecules with fixed nuclei and the study of non-

adiabatic nuclear dynamics. There are different methods and approaches for

both steps, partially developed in this dissertation (see Chapter 2), which

can be used depending on the specific situation.
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Chapter 2. Accounting for the fine structure

of energy levels in atomic collisions

§ 2.1 Preliminary remarks

Often there are situations when the atomic energy level has a fine

splitting. For light atoms, this splitting is quite small, but with increasing

atomic number, this splitting increases. For example, collisions of atoms

and ions of the iron-peak elements (Sc – Ni) present a great difficulty

for the correct calculation of the characteristics of inelastic processes in

collisions with hydrogen. The atoms of these elements are characterized by

the presence of a fairly large number of energy levels. The values of the

fine splitting of atomic terms are comparable to the splits between different

atomic terms.

In this situation, it is necessary to consider the Hund coupling type

«c», since consideration within the framework of the Hund coupling type«a»

is not correct. That is, it is necessary to explicitly take into account the

fine structure of energy levels when calculating the electronic structure

of molecules at the first step of the Born-Oppenheimer approach. Such

calculations must be carried out taking into account relativistic effects,

which complicates the calculations. Therefore, the development of model

approximate methods for calculating the electronic structure of molecules

taking into account the fine structure of energy levels is an important

goal. Here and further we will call the Hund coupling type «a» as LS

representation or LS coupling representation 4, and the Hund coupling type

«c» as JJ representation or JJ coupling representation 5.

Such approach was proposed in the papers [23,24] as a modification of

the asymptotic method [75] in case of taking into account the fine structure
4The wave functions are described by the quantum numbers of the total orbital moment L, the module of

the projection of the total orbital moment on the internuclear axis Λ , the full spin S and the projection of
the full spin M 𝑆 .

5The wave function is described by the quantum number of the total angular momentum of the electrons
J, as well as by the module of the projection of the total angular momentum on the internuclear axis Ω .



— 62 —

of energy levels. The original method was proposed and applied to account

for the fine structure in collisions with hydrogen for alkali metal atoms, as

well as alkali-like ions. This Chapter presents a further generalization for

the case of collisions of alkali-earth metal atoms with hydrogen.

§ 2.2 Accounting for fine structure of the energy levels

of atoms of group II of the Periodic Table in colli-

sions with hydrogen

The original asymptotic method for calculations of the electronic struc-

ture of a collisional quasimolecule A + H, proposed in the paper [75], de-

scribed in Chapter 1, §1.3.2. This method is formulated in the LS coupling

representation and takes into account the presence of only ion-covalent in-

teraction. In the diabatic representation, the electronic Hamiltonian matrix

has the form of an arrow: diagonal elements correspond to diabatic potential

energies, and non-zero off-diagonal matrix elements (the first column and

the first row) are responsible for the ion-covalent interaction calculated by

the Olson-Smith-Bayer formula (1.34) [43,44].

First, we briefly present the main ideas and results of the method of

accounting for the fine structure of energy levels in the case of collisions

of alkali metals with hydrogen. The essence of the modified asymptotic

method of accounting for the fine structure of energy levels proposed in

[23,24], is as follows:

a) it is necessary to change representation from the LS to the JJ one;

b) to do this, it is necessary to take into account relativistic effects, includ-

ing spin-orbit interaction;

c) then the electronic Hamiltonian, taking into account relativistic opera-

tors, will take the following form:

�̂�𝑒 = �̂�𝑛𝑜𝑛−𝑟𝑒𝑙
𝑒 + 𝑉 𝑟𝑒𝑙 ; (2.1)
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d) when calculating matrix elements ⟨𝜑𝑘| �̂�𝑒 |𝜑𝑗⟩ with an electronic Hamil-

tonian (2.1), matrix elements of the form ⟨𝜑𝑘| �̂�𝑛𝑜𝑛−𝑟𝑒𝑙
𝑒 𝑘𝑒𝑡𝜑𝑗 and

⟨𝜑𝑘|𝑉 𝑟𝑒𝑙 |𝜑𝑗⟩ will arise;

e) for diagonal matrix elements, taking into account ⟨𝜑𝑘|𝑉 𝑟𝑒𝑙 |𝜑𝑘⟩ will lead

to a fine splitting of energy levels;

f) for off-diagonal matrix elements, the contribution from the relativistic

correction ⟨𝜑𝑘|𝑉 𝑟𝑒𝑙 |𝜑𝑗⟩ in the first approximation is assumed to be small

in comparison with the non-relativistic matrix element ⟨𝜑𝑘| �̂�𝑛𝑜𝑛−𝑟𝑒𝑙
𝑒 |𝜑𝑗⟩ ;

g) it remains only to calculate the matrix elements of the ion-covalent

interaction 𝐻𝐽𝐽
𝑘𝑗 in the JJ representation.

To fulfill the last point, it is necessary to find the correspondence

between the molecular wave functions in the LS and JJ representations.

Let’s first consider the LS representation. Following the monograph by

E. E. Nikitin and S. Y. Umansky [54], we will represent molecular wave

functions in LS representation at large internuclear distances as a linear

combination of atomic wave functions:

|𝐿Λ̃𝑆𝑀𝑆⟩𝐴𝐵 = 𝐴
∑︁

𝑀𝐿𝐴
𝑀𝐿𝐵

∑︁
𝑀𝑆𝐴

𝑀𝑆𝐵

⎡⎣ 𝐿𝐴 𝐿𝐵 𝐿

𝑀𝐿𝐴
𝑀𝐿𝐵

Λ̃

⎤⎦⎡⎣ 𝑆𝐴 𝑆𝐵 𝑆

𝑀𝑆𝐴
𝑀𝑆𝐵

𝑀𝑆

⎤⎦×

× |𝐿𝐴𝑀𝐿𝐴
𝑆𝐴𝑀𝑆𝐴

⟩𝐴 |𝐿𝐵𝑀𝐿𝐵
𝑆𝐵𝑀𝑆𝐵

⟩𝐵 ,

(2.2)

where 𝐴 is the antisymmetrization operator (containing the normalization

coefficient and electron permutation operators), the Clebsch–Gordan coef-

ficients are written in square brackets. Off-diagonal matrix elements of

the electronic Hamiltonian in the diabatic representation responsible for the

ion-covalent interaction

⟨𝐿Λ̃𝑆𝑀𝑆| �̂�𝑒 |𝐿′Λ̃′𝑆 ′𝑀 ′
𝑆⟩ ≈ ⟨𝐿Λ̃𝑆𝑀𝑆| �̂�𝑛𝑜𝑛−𝑟𝑒𝑙

𝑒 |𝐿′Λ̃′𝑆 ′𝑀 ′
𝑆⟩ (2.3)
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within the framework of the asymptotic method, as previously mentioned,

are calculated using the Olson-Smith-Bayer formula:

⟨𝐿Λ̃𝑆𝑀𝑆| �̂�𝑛𝑜𝑛−𝑟𝑒𝑙
𝑒 |𝐿′Λ̃′𝑆 ′𝑀 ′

𝑆⟩ = 𝐻𝑂𝑆𝐵,𝐿𝑆
𝑘𝑘′ . (2.4)

In the case of collisions of alkali metal atoms and cations with hydrogen

atoms and anions (atom A is an alkali metal atom, atom B is a hydrogen

atom), the ionic molecular wave function has only 1Σ+ molecular symmetry

characterized by the following quantum numbers: 𝐿 = 0 , Λ̃ = 0 , 𝑆 = 0 ,

𝑀𝑆 = 0 : |0000⟩ . Covalent molecular wave functions in 1Σ+ symmetry are

written as |𝐿000⟩ . Then the matrix element of the ion-covalent interaction

of the electronic Hamiltonian will be written in the case of 1Σ+ symmetry

in the form:

⟨0000| �̂�𝑛𝑜𝑛−𝑟𝑒𝑙
𝑒 |𝐿000⟩ = 𝐻𝑂𝑆𝐵,𝐿𝑆

𝑘 𝑖𝑜𝑛𝑖𝑐 . (2.5)

Note that the hydrogen atom is always in the ground state 𝐻(1𝑠 2𝑆1/2) ,

and the hydrogen anion has a completely filled (1𝑠2 ) shell. The quantum

number of the total orbital moment 𝐿 of the molecular wave function is

completely determined by the atomic orbital quantum number 𝐿𝐴 , since

the quantum number of the orbital moment of hydrogen 𝐿𝐵 = 0 .

Let us now consider the JJ representation. For the JJ representation,

the molecular wave function is written as:

|𝐽𝐴𝐽𝐵𝐽Ω̃⟩𝐴𝐵 = 𝐴
∑︁

𝑀𝐴𝑀𝐵

⎡⎣ 𝐽𝐴 𝐽𝐵 𝐽

𝑀𝐴 𝑀𝐵 Ω̃

⎤⎦ |𝐽𝐴𝑀𝐴⟩𝐴 |𝐽𝐵𝑀𝐵⟩𝐵 . (2.6)

The off-diagonal matrix element of the electronic Hamiltonian in the JJ

representation will be written as:

𝐻𝐽𝐽
𝑘𝑘′ = ⟨𝐽𝐴𝐽𝐵𝐽Ω̃| �̂�𝑛𝑜𝑛−𝑟𝑒𝑙

𝑒 |𝐽 ′
𝐴𝐽

′
𝐵𝐽

′Ω̃′⟩ . (2.7)

For collisions of alkali metal atoms and cations with hydrogen atoms and

anions, the ionic molecular wave function has only 0+ molecular symmetry
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characterized by the following quantum numbers: 𝐽1 = 0 , 𝐽2 = 0 , 𝐽 = 0 ,

Ω̃ = 0 : |0000⟩ . Covalent molecular wave functions in 0+ symmetry are

written as |𝐽𝐴 1
2𝐽0⟩ . Then the matrix element of the ion-covalent interaction

of the electronic Hamiltonian will be written in the case of 0+ symmetry

in the form:

⟨0000| �̂�𝑛𝑜𝑛−𝑟𝑒𝑙
𝑒 |𝐽𝐴

1

2
𝐽0⟩ . (2.8)

It is necessary to find a correspondence between matrix elements in LS

and JJ representations. To do this, it is necessary to find the correspondence

of molecular wave functions in LS and JJ representations. To do this, we

express atomic wave functions, through which molecular wave functions are

expressed by the formulas (2.2) and (2.6), through the same one-electron

wave functions:

• LS representation: 𝜓𝑎𝑡𝑜𝑚𝑖𝑐
𝐿𝑆 (�⃗�, 𝜎) = 𝜑𝑛 𝑙𝑚𝑙

(�⃗�)𝜒𝑠𝑚𝑠
(𝜎) = |𝑛 𝑙𝑚𝑙⟩𝜒 1

2 𝑚𝑠
;

• JJ representation: 𝜓𝑎𝑡𝑜𝑚𝑖𝑐
𝐽𝐽 (�⃗�, 𝜎) = 𝜑𝑗 𝑚(�⃗�)𝜒𝑠𝑚𝑠

(𝜎) = |𝑗𝑚⟩𝜒 1
2 𝑚𝑠

;

Let’s find a correspondence between atomic wave functions in two repre-

sentations:

|𝑗𝑚⟩ =
∑︁
𝑚𝑙 𝑚𝑠

⎡⎣ 𝑙 𝑠 𝑗

𝑚𝑙 𝑚𝑠 𝑚

⎤⎦ |𝑙 𝑚𝑙 𝑠𝑚𝑠⟩ . (2.9)

Now that it is possible to write down all molecular wave functions

through the same one-electron functions, it is possible to find an unambigu-

ous relationship between the off-diagonal matrix elements of the electronic

Hamiltonian (see [23,24]):

⟨0000| �̂�𝑛𝑜𝑛−𝑟𝑒𝑙
𝑒 |𝐽𝐴

1

2
𝐽0⟩ = ⟨0000| �̂�𝑛𝑜𝑛−𝑟𝑒𝑙

𝑒 |𝐿000⟩×

× 1√
2

⎛⎜⎝
⎡⎣𝐽𝐴 1

2 𝐽
1
2 −1

2 0

⎤⎦⎡⎣𝐿 1
2 𝐽𝐴

0 1
2

1
2

⎤⎦−

⎡⎣𝐽𝐴 1
2 𝐽

−1
2

1
2 0

⎤⎦⎡⎣𝐿 1
2 𝐽𝐴

0 −1
2 −1

2

⎤⎦
⎞⎟⎠ .

(2.10)

Formula (2.10) allows us to take into account the fine structure of

energy levels in collisions with hydrogen of alkali metal atoms and alkali-
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like ions (once ionized alkaline earth metals, twice ionized atoms of the

third group of the Periodic Table, etc.). The expression in parentheses

multiplied by 1√
2
, – the proportionality coefficient 𝐶 , expressed in terms

of the difference of the products of the Clebsch-Gordan coefficients.

Let’s now try to generalize this method to the case of two valence

electrons on an atom A colliding with hydrogen. I.e., consider collisions of

alkali-earth metal atoms with hydrogen and try in the same way to obtain a

correspondence between the off-diagonal matrix elements of the electronic

Hamiltonian in LS and JJ representations. In this case, the atomic function

of the atom A colliding with hydrogen will already be two-electron, and the

molecular functions will be three-electron. The basic ionic molecular state

always generates only 2Σ+ symmetry in the LS representation, and only 1
2

symmetry in the JJ representation. Further, for clarity, we will consider

specific atomic and molecular states on the example of a calcium atom,

without detracting from the generality of reasoning.

Let’s write down the molecular wave functions in LS and JJ repre-

sentations, respectively. The ionic molecular wave function of the ground

ionic state Ca+(4𝑠 2𝑆1/2) + H−(1𝑠2 1𝑆0) , as mentioned above, in the LS

representation generates only 2Σ+ molecular symmetry and will be written

as |001
2 ±

1
2⟩ . In JJ representation for the unique symmetry Ω = 1

2 , this

function is written as |01
2
1
2 ±

1
2⟩ . Both of these functions can be expressed

in terms of atomic wave functions of hydrogen and calcium:

• LS: |001
2 ±

1
2⟩ = 𝐴 |001

2 ±
1
2⟩

𝐶𝑎+ |0000⟩𝐻
−
;

• JJ: |01
2
1
2 ±

1
2⟩ = 𝐴 |12 ±

1
2⟩

𝐶𝑎+ |00⟩𝐻
−
.

Let’s write down explicitly how atomic wave functions are related in JJ and

LS representations, following the formula (2.9), for the case of ion wave

functions:

• LS: |00⟩ =

⎡⎣0 0 0

0 0 0

⎤⎦ |0000⟩ = |0000⟩ ;
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• JJ: |12 ±
1
2⟩ =

⎡⎣0 1
2

1
2

0 ±1
2 ±1

2

⎤⎦ |001
2 ±

1
2⟩ = |001

2 ±
1
2⟩ .

Let’s write down the final form of the ionic wave functions in two repre-

sentations expressed in terms of the same atomic wave functions in the LS

representation:

• LS: |001
2 ±

1
2⟩ = 𝐴 |001

2 ±
1
2⟩

𝐶𝑎+ |0000⟩𝐻
−
;

• JJ: |120
1
2 ±

1
2⟩ = 𝐴 |001

2 ±
1
2⟩

𝐶𝑎+ |0000⟩𝐻
−
.

Let us now write down the molecular wave functions of the covalent

states Ca(𝑛𝑙 𝑛′𝑙′ 1,3𝐿𝐽) + H(1𝑠 2𝑆1/2) in symmetries 2Σ+ and 1
2 . They are

given in the Table 1.

Then we write out all the molecular functions in the LS and JJ repre-

sentations also through the same atomic functions in the LS representation

using the formulas (2.2), (2.6), (2.9), leaving the antisymmetrization op-

erator 𝐴 in an implicit form. We will also limit ourselves to considering

only those functions that have a positive projection of the full spin 𝑀𝑆 = 1
2 ,

since for negative projections the result will be the same.

Let us first consider the simplest case, namely the singlet 𝑆 states

of the calcium atom. In this case, there will be no separation at all, and

the matrix element 𝐻𝐽𝐽
𝑘𝑗 in the JJ representation exactly coincides with

the matrix element in the LS representation 𝐻𝐿𝑆
𝑘𝑗 . We will also consider

further the singlet states of the calcium atom, but different from 𝑆 . Take,

for example, the state of the calcium atom 1𝐷 , which corresponds to the

molecular state Ca(4𝑠3𝑑 1𝐷2) + H(1𝑠 2𝑆1/2) :

• LS:

|201
2

1

2
⟩ = 𝐴

⎡⎣2 0 2

0 0 0

⎤⎦⎡⎣0 1
2

1
2

0 1
2

1
2

⎤⎦ |2000⟩𝐶𝑎 |001
2

1

2
⟩
𝐻

= 𝐴 |2000⟩𝐶𝑎 |001
2

1

2
⟩
𝐻

.
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Table 1. Explicit form of molecular wave functions in LS and JJ
representations in 2Σ+ and 1

2 symmetries, respectively.

State
LS JJ

|𝐿Λ̃𝑆𝑀𝑆⟩ |𝐽𝐶𝑎𝐽𝐻𝐽Ω̃⟩

Ca(4𝑠2 1𝑆0) + H(1𝑠 2𝑆1/2) |001
2 ±

1
2⟩ |01

2
1
2 ±

1
2⟩

Ca(4𝑠4𝑝 1𝑃1) + H(1𝑠 2𝑆1/2) |101
2 ±

1
2⟩ |11

2
1
2 ±

1
2⟩, |1

1
2
3
2 ±

1
2⟩

Ca(4𝑠4𝑝 3𝑃0) + H(1𝑠 2𝑆1/2)
|101

2 ±
1
2⟩

|01
2
1
2 ±

1
2⟩

Ca(4𝑠4𝑝 3𝑃1) + H(1𝑠 2𝑆1/2) |11
2
1
2 ±

1
2⟩, |1

1
2
3
2 ±

1
2⟩

Ca(4𝑠4𝑝 3𝑃2) + H(1𝑠 2𝑆1/2) |21
2
3
2 ±

1
2⟩, |2

1
2
5
2 ±

1
2⟩

Ca(4𝑠3𝑑 1𝐷2) + H(1𝑠 2𝑆1/2) |201
2 ±

1
2⟩ |21

2
3
2 ±

1
2⟩, |2

1
2
5
2 ±

1
2⟩

Ca(4𝑠3𝑑 3𝐷1) + H(1𝑠 2𝑆1/2)
|201

2 ±
1
2⟩

|11
2
1
2 ±

1
2⟩, |1

1
2
3
2 ±

1
2⟩

Ca(4𝑠3𝑑 3𝐷2) + H(1𝑠 2𝑆1/2) |21
2
3
2 ±

1
2⟩, |2

1
2
5
2 ±

1
2⟩

Ca(4𝑠3𝑑 3𝐷3) + H(1𝑠 2𝑆1/2) |31
2
5
2 ±

1
2⟩, |3

1
2
7
2 ±

1
2⟩

Ca(4𝑠5𝑠 1𝑆0) + H(1𝑠 2𝑆1/2) |001
2 ±

1
2⟩ |01

2
1
2 ±

1
2⟩

Ca(4𝑠5𝑠 3𝑆1) + H(1𝑠 2𝑆1/2) |001
2 ±

1
2⟩ |11

2
1
2 ±

1
2⟩, |1

1
2
3
2 ±

1
2⟩

Ca(4𝑠5𝑝 1𝑃1) + H(1𝑠 2𝑆1/2) |101
2 ±

1
2⟩ |11

2
1
2 ±

1
2⟩, |1

1
2
3
2 ±

1
2⟩

Ca(4𝑠5𝑝 3𝑃0) + H(1𝑠 2𝑆1/2)
|101

2 ±
1
2⟩

|01
2
1
2 ±

1
2⟩

Ca(4𝑠5𝑝 3𝑃1) + H(1𝑠 2𝑆1/2) |11
2
1
2 ±

1
2⟩, |1

1
2
3
2 ±

1
2⟩

Ca(4𝑠5𝑝 3𝑃2) + H(1𝑠 2𝑆1/2) |21
2
3
2 ±

1
2⟩, |2

1
2
5
2 ±

1
2⟩

Ca(3𝑑4𝑝 3𝐹2) + H(1𝑠 2𝑆1/2)
|301

2 ±
1
2⟩

|21
2
3
2 ±

1
2⟩, |2

1
2
5
2 ±

1
2⟩

Ca(3𝑑4𝑝 3𝐹3) + H(1𝑠 2𝑆1/2) |31
2
5
2 ±

1
2⟩, |3

1
2
7
2 ±

1
2⟩

Ca(3𝑑4𝑝 3𝐹4) + H(1𝑠 2𝑆1/2) |41
2
7
2 ±

1
2⟩, |4

1
2
9
2 ±

1
2⟩
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• JJ:

|21
2

3

2

1

2
⟩ = 𝐴

⎡⎣ 2 1
2

3
2

𝑀1 𝑀2
1
2

⎤⎦ |2𝑀1⟩𝐶𝑎 |1
2
𝑀2⟩

𝐻

=

= 𝐴

(︃√︂
3

5
|21⟩𝐶𝑎 |1

2
− 1

2
⟩
𝐻

−
√︂

2

5
|20⟩𝐶𝑎 |1

2

1

2
⟩
𝐻
)︃

=

= 𝐴

(︃√︂
3

5
|2100⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻

−
√︂

2

5
|2000⟩𝐶𝑎 |001

2

1

2
⟩
𝐻
)︃
.

|21
2

5

2
± 1

2
⟩ = 𝐴

⎡⎣ 2 1
2

5
2

𝑀1 𝑀2
1
2

⎤⎦ |2𝑀1⟩𝐶𝑎 |1
2
𝑀2⟩

𝐻

=

= 𝐴

(︃√︂
2

5
|21⟩𝐶𝑎 |1

2
− 1

2
⟩
𝐻

+

√︂
3

5
|20⟩𝐶𝑎 |1

2

1

2
⟩
𝐻
)︃

=

= 𝐴

(︃√︂
2

5
|2100⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻

+

√︂
3

5
|2000⟩𝐶𝑎 |001

2

1

2
⟩
𝐻
)︃
.

The multipliers ±
√︁

2
5 ,
√︁

3
5 were obtained from the Klebsch-Gordan coeffi-

cients. We now write down the matrix element of the electron Hamiltonian

in LS and JJ representations, calculated on these molecular wave functions,

as well as on the functions of the ionic state. In this case, we denote the

ionic state |001
2
1
2⟩ as 𝑘 , the covalent state |201

2
1
2⟩ in LS representation as

𝑗 , and the covalent states in JJ representation |21
2
3
2
1
2⟩ and |21

2
5
2
1
2⟩ as 𝑗1 and

𝑗2 respectively:

• LS:

𝐻𝑂𝑆𝐵,𝐿𝑆
𝑘𝑗 = ⟨001

2

1

2
| �̂�𝑒 |20

1

2

1

2
⟩ =

=

⟨
𝐴 ⟨001

2

1

2
|
𝐶𝑎+

⟨0000|𝐻
−
⃒⃒⃒
�̂�𝑒

⃒⃒⃒
𝐴 |2000⟩𝐶𝑎 |001

2

1

2
⟩
𝐻
⟩
.
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• JJ:

𝐻𝐽𝐽
𝑘𝑗1

= ⟨1
2
0
1

2

1

2
| �̂�𝑒 |2

1

2

3

2

1

2
⟩ =

√︂
3

5
�̃�𝐽𝐽

𝑘𝑗1
−
√︂

2

5
𝐻𝑂𝑆𝐵,𝐿𝑆

𝑘𝑗 =

=

⟨
𝐴 ⟨001

2

1

2
|
𝐶𝑎+

⟨0000|𝐻
−
⃒⃒⃒
�̂�𝑒

⃒⃒⃒ √︂3

5
𝐴 |2100⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻
⟩
−

−

⟨
𝐴 ⟨001

2

1

2
|
𝐶𝑎+

⟨0000|𝐻
−
⃒⃒⃒
�̂�𝑒

⃒⃒⃒ √︂2

5
𝐴 |2000⟩𝐶𝑎 |001

2

1

2
⟩
𝐻
⟩
.

𝐻𝐽𝐽
𝑘𝑗2

= ⟨1
2
0
1

2

1

2
| �̂�𝑒 |2

1

2

5

2

1

2
⟩ =

√︂
2

5
�̃�𝐽𝐽

𝑘𝑗2
+

√︂
3

5
𝐻𝑂𝑆𝐵,𝐿𝑆

𝑘𝑗 =

=

⟨
𝐴 ⟨001

2

1

2
|
𝐶𝑎+

⟨0000|𝐻
−
⃒⃒⃒
�̂�𝑒

⃒⃒⃒ √︂2

5
𝐴 |2100⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻
⟩
+

+

⟨
𝐴 ⟨001

2

1

2
|
𝐶𝑎+

⟨0000|𝐻
−
⃒⃒⃒
�̂�𝑒

⃒⃒⃒ √︂3

5
𝐴 |2000⟩𝐶𝑎 |001

2

1

2
⟩
𝐻
⟩
.

It can be seen that in the JJ representation, the matrix elements of the

ion-covalent interaction 𝐻𝐽𝐽
𝑘𝑗1,𝑘𝑗2

will be the sum of two matrix elements

�̃�𝐽𝐽
𝑘𝑗1,𝑘𝑗2

and 𝐻𝑂𝑆𝐵,𝐿𝑆
𝑘𝑗 multiplied by some coefficients calculated from the

Klebsch-Gordan coefficients. Matrix elements �̃�𝐽𝐽
𝑘𝑗1,𝑘𝑗2

represent the con-

tribution from the interaction of the ionic state with the state described

by the molecular wave function 𝐴 |2100⟩𝐶𝑎 |001
2 −

1
2⟩

𝐻 corresponding to the
2Π symmetry representation in LS. Within the framework of the asymptotic

method, only the interaction between the ionic state and all covalent ones in

the same molecular symmetry is calculated, that is, such matrix elements

�̃�𝐽𝐽
𝑘𝑗1,𝑘𝑗2

are assumed to be zero. As a result, we obtain the following rela-

tionship between the matrix elements of the ion-covalent interaction in LS

and JJ representations:

𝐻𝐽𝐽
𝑘𝑗1

= −
√︂

2

5
𝐻𝑂𝑆𝐵,𝐿𝑆

𝑘𝑗 ,

𝐻𝐽𝐽
𝑘𝑗2

=

√︂
3

5
𝐻𝑂𝑆𝐵,𝐿𝑆

𝑘𝑗 ,

(2.11)



— 71 —

which coincides with the results obtained to account for the fine structure

in collisions with hydrogen of elements of the first group of the Periodic

table, namely for the states Elem(𝑛𝑑 2𝐷3/2,5/2) + H(1𝑠 2𝑆) . Note that in

the case of alkali metals, the molecular states are not doubly degenerate,

as in the case of alkaline earth metals. Similar results can be obtained

for the atomic terms 1𝑃, 1𝐹 and so on, with the corresponding coefficients(︂
−
√︁

1
3 ,
√︁

2
3

)︂
and

(︂
−
√︁

3
7 ,
√︁

4
7

)︂
and so on, according to the results for

alkali metals.

Let us now consider a more complex case, namely triplet states. To

begin with, consider the state of calcium 3𝑆 . Let’s write down the wave

functions of the corresponding covalent states Ca(4𝑠5𝑠 3𝑆1) + H(1𝑠 2𝑆1/2) :

• LS:

|001
2

1

2
⟩ = 𝐴

⎡⎣0 0 0

0 0 0

⎤⎦⎡⎣ 1 1
2

1
2

𝑀𝐶𝑎
𝑆 𝑀𝐻

𝑆
1
2

⎤⎦ |001𝑀𝐶𝑎
𝑆 ⟩𝐶𝑎 |001

2
𝑀𝐻

𝑆 ⟩
𝐻

=

= 𝐴

(︃√︂
2

3
|0011⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻

−
√︂

1

3
|0010⟩𝐶𝑎 |001

2

1

2
⟩
𝐻
)︃
.

• JJ:

|11
2

1

2

1

2
⟩ = 𝐴

⎡⎣ 1 1
2

1
2

𝑀1 𝑀2
1
2

⎤⎦ |1𝑀1⟩𝐶𝑎 |1
2
𝑀2⟩

𝐻

=

= 𝐴

(︃√︂
2

3
|11⟩𝐶𝑎 |1

2
− 1

2
⟩
𝐻

−
√︂

1

3
|10⟩𝐶𝑎 |1

2

1

2
⟩
𝐻
)︃

=

= 𝐴

(︃√︂
2

3
|0011⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻

−
√︂

1

3
|0010⟩𝐶𝑎 |001

2

1

2
⟩
𝐻
)︃
.
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|11
2

3

2

1

2
⟩ = 𝐴

⎡⎣ 1 1
2

3
2

𝑀1 𝑀2
1
2

⎤⎦ |1𝑀1⟩𝐶𝑎 |1
2
𝑀2⟩

𝐻

=

= 𝐴

(︃√︂
1

3
|11⟩𝐶𝑎 |1

2
− 1

2
⟩
𝐻

+

√︂
2

3
|10⟩𝐶𝑎 |1

2

1

2
⟩
𝐻
)︃

=

= 𝐴

(︃√︂
1

3
|0011⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻

+

√︂
2

3
|0010⟩𝐶𝑎 |001

2

1

2
⟩
𝐻
)︃
.

As in the previous case, we will write down the matrix element of

the electron Hamiltonian in LS and JJ representations, calculated on these

molecular wave functions and the ionic state wave functions. We also denote

the ionic state |001
2
1
2⟩ as 𝑘 , the covalent state |001

2
1
2⟩ in LS representation

as 𝑗 , and the covalent states in JJ representation |11
2
1
2
1
2⟩ and |11

2
3
2
1
2⟩ as 𝑗1

and 𝑗2 respectively:

• LS:

𝐻𝑂𝑆𝐵,𝐿𝑆
𝑘𝑗 = ⟨001

2

1

2
| �̂�𝑒 |00

1

2

1

2
⟩ =

=

⟨
𝐴 ⟨001

2

1

2
|
𝐶𝑎+

⟨0000|𝐻
−
⃒⃒⃒
�̂�𝑒

⃒⃒⃒ √︂2

3
𝐴 |0011⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻
⟩

−

−

⟨
𝐴 ⟨001

2

1

2
|
𝐶𝑎+

⟨0000|𝐻
−
⃒⃒⃒
�̂�𝑒

⃒⃒⃒ √︂1

3
𝐴 |0010⟩𝐶𝑎 |001

2

1

2
⟩
𝐻
⟩
.

• JJ:

𝐻𝐽𝐽
𝑘𝑗1

= ⟨1
2
0
1

2

1

2
| �̂�𝑒 |1

1

2

1

2

1

2
⟩ = 𝐻𝑂𝑆𝐵,𝐿𝑆

𝑘𝑗 =

=

⟨
𝐴 ⟨001

2

1

2
|
𝐶𝑎+

⟨0000|𝐻
−
⃒⃒⃒
�̂�𝑒

⃒⃒⃒ √︂2

3
𝐴 |0011⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻
⟩
−

−

⟨
𝐴 ⟨001

2

1

2
|
𝐶𝑎+

⟨0000|𝐻
−
⃒⃒⃒
�̂�𝑒

⃒⃒⃒ √︂1

3
𝐴 |0010⟩𝐶𝑎 |001

2

1

2
⟩
𝐻
⟩
.
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𝐻𝐽𝐽
𝑘𝑗2

= ⟨1
2
0
1

2

1

2
| �̂�𝑒 |1

1

2

3

2

1

2
⟩ =

=

⟨
𝐴 ⟨001

2

1

2
|
𝐶𝑎+

⟨0000|𝐻
−
⃒⃒⃒
�̂�𝑒

⃒⃒⃒ √︂1

3
𝐴 |0011⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻
⟩
+

+

⟨
𝐴 ⟨001

2

1

2
|
𝐶𝑎+

⟨0000|𝐻
−
⃒⃒⃒
�̂�𝑒

⃒⃒⃒ √︂2

3
𝐴 |0010⟩𝐶𝑎 |001

2

1

2
⟩
𝐻
⟩
.

In this case, it is not enough to consider only molecular functions ex-

pressed in terms of atomic ones, although it is clear that the matrix element

in the JJ representation of 𝐻𝐽𝐽
𝑘𝑗1

exactly coincides with the matrix element

of 𝐻𝑂𝑆𝐵,𝐿𝑆
𝑘𝑗 in the LS representation. In order to deal with the matrix

element 𝐻𝐽𝐽
𝑘𝑗2

, it is necessary to express all atomic functions (calcium and

hydrogen) through one-electron wave functions, and when calculating the

matrix element, integrate over all coordinates and sum over the spin vari-

able. Omitting the rather cumbersome calculations, which occupy about 8

A4 pages for one of this matrix element, we will only give the final result.

Let’s introduce the notation:

�̃�1 =

⟨
𝐴 ⟨001

2

1

2
|
𝐶𝑎+

⟨0000|𝐻
−
⃒⃒⃒
�̂�𝑒

⃒⃒⃒
𝐴 |0011⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻
⟩
,

�̃�2 =

⟨
𝐴 ⟨001

2

1

2
|
𝐶𝑎+

⟨0000|𝐻
−
⃒⃒⃒
�̂�𝑒

⃒⃒⃒
𝐴 |0010⟩𝐶𝑎 |001

2

1

2
⟩
𝐻
⟩
.

(2.12)

In these notations , matrix elements in LS and JJ representation will be

written as:

LS : 𝐻𝑂𝑆𝐵,𝐿𝑆
𝑘𝑗 =

√︂
2

3
�̃�1 −

√︂
1

3
�̃�2 ,

JJ : 𝐻𝐽𝐽
𝑘𝑗1

=

√︂
2

3
�̃�1 −

√︂
1

3
�̃�2 ,

𝐻𝐽𝐽
𝑘𝑗2

=

√︂
1

3
�̃�1 +

√︂
2

3
�̃�2; .

(2.13)
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Further, it can be shown that both matrix elements �̃�1, �̃�2 , when expressed

in terms of the same one-electron functions, can be expressed in terms of

the same matrix element �̃� :

�̃�1 = �̃� ,

�̃�2 = −
√︂

1

2
�̃� .

(2.14)

Finally (2.13) will be written as:

LS : 𝐻𝑂𝑆𝐵,𝐿𝑆
𝑘𝑗 =

√︂
2

3
�̃� +

√︂
1

6
�̃� = 𝐻𝑂𝑆𝐵,𝐿𝑆

𝑘𝑗 ,

JJ : 𝐻𝐽𝐽
𝑘𝑗1

=

√︂
2

3
�̃� +

√︂
1

6
�̃� = 𝐻𝑂𝑆𝐵,𝐿𝑆

𝑘𝑗 ,

𝐻𝐽𝐽
𝑘𝑗2

=

√︂
1

3
�̃� −

√︂
1

3
�̃� = 0 .

(2.15)

Thus, despite the fact that in collisions Ca(4𝑠5𝑠 3𝑆1) + H(1𝑠 2𝑆1/2) in the

JJ representation, two states are obtained in symmetry 1
2 , only one of them

participates in nuclear dynamics, while the matrix elements are identically

equal to each other in LS and JJ representations.

Finally, consider the triplet states of the calcium atom other than

𝑆 . For example, consider the 3𝑃 state. This atomic state in collisions

with hydrogen in the ground state generates five molecular states in JJ

representation (which we will denote 𝑗1, 𝑗2, 𝑗3, 𝑗4, 𝑗5 , respectively). Let’s

write down the wave functions of the covalent states Ca(4𝑠4𝑝 3𝑃1/2,3/2,5/2)+

𝑟𝑚𝐻(1𝑠 2𝑆1/2) :

• LS:

|101
2

1

2
⟩ = 𝐴

⎡⎣1 0 1

0 0 0

⎤⎦⎡⎣ 1 1
2

1
2

𝑀𝐶𝑎
𝑆 𝑀𝐻

𝑆
1
2

⎤⎦ |100𝑀𝐶𝑎
𝑆 ⟩𝐶𝑎 |001

2
𝑀𝐻

𝑆 ⟩
𝐻

=

= 𝐴

(︃√︂
2

3
|1011⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻

−
√︂

1

3
|1010⟩𝐶𝑎 |001

2

1

2
⟩
𝐻
)︃
.
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• JJ:

|01
2

1

2

1

2
⟩ = 𝐴

⎡⎣0 1
2

1
2

0 1
2

1
2

⎤⎦ |00⟩𝐶𝑎 |1
2

1

2
⟩
𝐻

=

= 𝐴

(︃√︂
1

3
|111− 1⟩𝐶𝑎 |001

2

1

2
⟩
𝐻

+

√︂
1

3
|1− 111⟩𝐶𝑎 |001

2

1

2
⟩
𝐻

−

−
√︂

1

3
|1010⟩𝐶𝑎 |001

2

1

2
⟩
𝐻
)︃
.

|11
2

1

2

1

2
⟩ = 𝐴

⎡⎣ 1 1
2

1
2

𝑀1 𝑀2
1
2

⎤⎦ |1𝑀1⟩𝐶𝑎 |1
2
𝑀2⟩

𝐻

=

= 𝐴

(︃√︂
2

3
|11⟩𝐶𝑎 |1

2
− 1

2
⟩
𝐻

−
√︂

1

3
|10⟩𝐶𝑎 |1

2

1

2
⟩
𝐻
)︃

=

= 𝐴

(︃
−
√︂

2

3

√︂
1

2
|1011⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻

+

√︂
2

3

√︂
1

2
|1110⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻

−

−
√︂

1

3

√︂
1

2
|111− 1⟩𝐶𝑎 |001

2

1

2
⟩
𝐻

+

√︂
1

3

√︂
1

2
|1− 111⟩𝐶𝑎 |001

2

1

2
⟩
𝐻
)︃
.

|11
2

3

2

1

2
⟩ = 𝐴

⎡⎣ 1 1
2

3
2

𝑀1 𝑀2
1
2

⎤⎦ |1𝑀1⟩𝐶𝑎 |1
2
𝑀2⟩

𝐻

=

= 𝐴

(︃√︂
1

3
|11⟩𝐶𝑎 |1

2
− 1

2
⟩
𝐻

+

√︂
2

3
|10⟩𝐶𝑎 |1

2

1

2
⟩
𝐻
)︃

=

= 𝐴

(︃
−
√︂

1

3

√︂
1

2
|1011⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻

+

√︂
1

3

√︂
1

2
|1110⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻

−

−
√︂

2

3

√︂
1

2
|111− 1⟩𝐶𝑎 |001

2

1

2
⟩
𝐻

+

√︂
2

3

√︂
1

2
|1− 111⟩𝐶𝑎 |001

2

1

2
⟩
𝐻
)︃
.
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|21
2

3

2

1

2
⟩ = 𝐴

⎡⎣ 2 1
2

3
2

𝑀1 𝑀2
1
2

⎤⎦ |1𝑀1⟩𝐶𝑎 |1
2
𝑀2⟩

𝐻

=

= 𝐴

(︃√︂
3

5
|21⟩𝐶𝑎 |1

2
− 1

2
⟩
𝐻

−
√︂

2

5
|20⟩𝐶𝑎 |1

2

1

2
⟩
𝐻
)︃

=

= 𝐴

(︃√︂
3

5

√︂
1

2
|1011⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻

+

√︂
3

5

√︂
1

2
|1110⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻

−

−
√︂

2

5

√︂
1

6
|111− 1⟩𝐶𝑎 |001

2

1

2
⟩
𝐻

−
√︂

2

5

√︂
1

6
|1− 111⟩𝐶𝑎 |001

2

1

2
⟩
𝐻

−

−
√︂

2

5

√︂
2

3
|1010⟩𝐶𝑎 |001

2

1

2
⟩
𝐻
)︃
.

|21
2

5

2

1

2
⟩ = 𝐴

⎡⎣ 2 1
2

5
2

𝑀1 𝑀2
1
2

⎤⎦ |1𝑀1⟩𝐶𝑎 |1
2
𝑀2⟩

𝐻

=

= 𝐴

(︃√︂
2

5
|21⟩𝐶𝑎 |1

2
− 1

2
⟩
𝐻

+

√︂
3

5
|20⟩𝐶𝑎 |1

2

1

2
⟩
𝐻
)︃

=

= 𝐴

(︃√︂
2

5

√︂
1

2
|1011⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻

+

√︂
2

5

√︂
1

2
|1110⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻

+

+

√︂
3

5

√︂
1

6
|111− 1⟩𝐶𝑎 |001

2

1

2
⟩
𝐻

+

√︂
3

5

√︂
1

6
|1− 111⟩𝐶𝑎 |001

2

1

2
⟩
𝐻

−

+

√︂
3

5

√︂
2

3
|1010⟩𝐶𝑎 |001

2

1

2
⟩
𝐻
)︃
.

For further consideration, in order to associate the matrix elements

in the JJ representation with the only one matrix element of the 2Σ+

molecular symmetry in the LS representation, we will leave only those

wave functions on which the matrix element in the LS representation is
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calculated, and also introduce the designation:

𝐻𝐻1 =

⟨
𝐴 ⟨001

2

1

2
|
𝐶𝑎+

⟨0000|𝐻
−
⃒⃒⃒
�̂�𝑒

⃒⃒⃒
𝐴 |1011⟩𝐶𝑎 |001

2
− 1

2
⟩
𝐻
⟩
,

𝐻𝐻2 =

⟨
𝐴 ⟨001

2

1

2
|
𝐶𝑎+

⟨0000|𝐻
−
⃒⃒⃒
�̂�𝑒

⃒⃒⃒
𝐴 |1010⟩𝐶𝑎 |001

2

1

2
⟩
𝐻
⟩
.

(2.16)

Then the matrix elements calculated on the above-mentioned molecular

wave functions in LS and JJ representations will be written in the following

form:

LS : 𝐻𝑂𝑆𝐵,𝐿𝑆
𝑘𝑗 =

√︂
2

3
𝐻𝐻1 −

√︂
1

3
𝐻𝐻2 ,

JJ : 𝐻𝐽𝐽
𝑘𝑗1

= −
√︂

1

3
𝐻𝐻2 ,

𝐻𝐽𝐽
𝑘𝑗2

= −
√︂

1

3
𝐻𝐻1 ,

𝐻𝐽𝐽
𝑘𝑗3

= −
√︂

1

6
𝐻𝐻1 ,

𝐻𝐽𝐽
𝑘𝑗4

=

√︂
3

10
𝐻𝐻1 −

√︂
4

15
𝐻𝐻2 ,

𝐻𝐽𝐽
𝑘𝑗5

=

√︂
1

5
𝐻𝐻1 +

√︂
2

5
𝐻𝐻2 .

(2.17)

Again, it can be shown that both matrix elements 𝐻𝐻1, 𝐻𝐻2 , when ex-

pressed in terms of the same one-electron functions, can be expressed in

terms of the same matrix element 𝐻𝐻 :

𝐻𝐻1 = 𝐻𝐻 ,

𝐻𝐻2 = −
√︂

1

2
𝐻𝐻 .

(2.18)
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Finally (2.17) can be written as:

LS : 𝐻𝑂𝑆𝐵,𝐿𝑆
𝑘𝑗 =

√︂
2

3
𝐻𝐻 +

√︂
1

6
𝐻𝐻 =

√︂
9

6
𝐻𝐻 ,

JJ : 𝐻𝐽𝐽
𝑘𝑗1

=

√︂
1

6
𝐻𝐻 ,

𝐻𝐽𝐽
𝑘𝑗2

= −
√︂

2

6
𝐻𝐻 ,

𝐻𝐽𝐽
𝑘𝑗3

= −
√︂

1

6
𝐻𝐻 ,

𝐻𝐽𝐽
𝑘𝑗4

=

√︂
9

30
𝐻𝐻 +

√︂
4

30
𝐻𝐻 =

√︂
5

6
𝐻𝐻 ,

𝐻𝐽𝐽
𝑘𝑗5

=

√︂
1

5
𝐻𝐻 −

√︂
1

5
𝐻𝐻 = 0 .

(2.19)

Expressing (2.19) through 𝐻𝑂𝑆𝐵,𝐿𝑆
𝑘𝑗 , we get the final relationship between

matrix elements in LS and JJ representations:

𝐻𝐽𝐽
𝑘𝑗1

=

√︂
1

9
𝐻𝑂𝑆𝐵,𝐿𝑆

𝑘𝑗 ,

𝐻𝐽𝐽
𝑘𝑗2

= −
√︂

2

9
𝐻𝑂𝑆𝐵,𝐿𝑆

𝑘𝑗 ,

𝐻𝐽𝐽
𝑘𝑗3

= −
√︂

1

9
𝐻𝑂𝑆𝐵,𝐿𝑆

𝑘𝑗 ,

𝐻𝐽𝐽
𝑘𝑗4

=

√︂
5

9
𝐻𝑂𝑆𝐵,𝐿𝑆

𝑘𝑗 ,

𝐻𝐽𝐽
𝑘𝑗5

= 0 .

(2.20)

Similarly, expressions can be obtained for all matrix elements. Finally,

it can be possible to collect all the results into a single table 2.

Let’s analyze the results given in the Table 2. Firstly, it can be seen

that the sum of the squares of the matrix elements in the JJ representation

is exactly equal to the square of the matrix element in the LS representation,

as it should be, following [23, 24]. Secondly, it can be noted that each

coefficient 𝐶𝑗𝑖 is the square root of a fraction, and the denominator of the
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Table 2. Coefficients 𝐶𝑗𝑖 of relationship of matrix elements in LS and JJ
representations: 𝐻𝐽𝐽

𝑘𝑗𝑖
= 𝐶𝑗𝑖𝐻

𝑂𝑆𝐵,𝐿𝑆
𝑘𝑗 .

j State
Coefficient 𝐶𝑗𝑖

𝐽𝐶𝑎 − 1
2 𝐽𝐶𝑎 + 1

2

1 Ca(4𝑠2 1𝑆0) + H(1𝑠 2𝑆1/2) – 1.0

2 Ca(4𝑠4𝑝 1𝑃1) + H(1𝑠 2𝑆1/2) −
√︁

1
3

√︁
2
3

3
Ca(4𝑠4𝑝 3𝑃0) + H(1𝑠 2𝑆1/2) –

√︁
1
9

Ca(4𝑠4𝑝 3𝑃1) + H(1𝑠 2𝑆1/2) −
√︁

2
9 −

√︁
1
9

Ca(4𝑠4𝑝 3𝑃2) + H(1𝑠 2𝑆1/2)
√︁

5
9 0.0

4 Ca(4𝑠3𝑑 1𝐷2) + H(1𝑠 2𝑆1/2) −
√︁

2
5

√︁
3
5

5
Ca(4𝑠3𝑑 3𝐷1) + H(1𝑠 2𝑆1/2) 0.0

√︁
3
15

Ca(4𝑠3𝑑 3𝐷2) + H(1𝑠 2𝑆1/2) −
√︁

3
15 −

√︁
2
15

Ca(4𝑠3𝑑 3𝐷3) + H(1𝑠 2𝑆1/2)
√︁

7
15 0.0

6 Ca(4𝑠5𝑠 1𝑆0) + H(1𝑠 2𝑆1/2) – 1.0

7 Ca(4𝑠5𝑠 3𝑆1) + H(1𝑠 2𝑆1/2) 1.0 0.0

8 Ca(4𝑠5𝑝 1𝑃1) + H(1𝑠 2𝑆1/2) −
√︁

1
3

√︁
2
3

9
Ca(4𝑠5𝑝 3𝑃0) + H(1𝑠 2𝑆1/2) –

√︁
1
9

Ca(4𝑠5𝑝 3𝑃1) + H(1𝑠 2𝑆1/2) −
√︁

2
9 −

√︁
1
9

Ca(4𝑠5𝑝 3𝑃2) + H(1𝑠 2𝑆1/2)
√︁

5
9 0.0

10
Ca(3𝑑4𝑝 3𝐹2) + H(1𝑠 2𝑆1/2) 0.0

√︁
5
21

Ca(3𝑑4𝑝 3𝐹3) + H(1𝑠 2𝑆1/2) −
√︁

4
21 −

√︁
3
21

Ca(3𝑑4𝑝 3𝐹4) + H(1𝑠 2𝑆1/2)
√︁

9
21 0.0
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fraction is exactly equal to the sum of the terms 2𝐽𝑎𝑡.𝑠𝑡𝑎𝑡𝑒 + 1 through all

fine structure levels. That is, for example, for the state of the calcium

atom 3𝑃0,1,2 we have the sum (2 * 0 + 1) + (2 * 1 + 1) + (2 * 2 + 1) = 9 .

It is also worth noting that for the minimum and maximum values of

the total angular momentum of the calcium atom 𝐽𝑎𝑡.𝑠𝑡𝑎𝑡𝑒
𝑚𝑖𝑛 and 𝐽𝑎𝑡.𝑠𝑡𝑎𝑡𝑒

𝑚𝑎𝑥 ,

the relationship coefficient 𝐶𝑗𝑖 has a non-zero value for only one of two

possible molecular states in the symmetry 1
2 (or only one non-zero value

if 𝐽𝑎𝑡.𝑠𝑡𝑎𝑡𝑒 = 0 and only one molecular state is generated in the symmetry
1
2 ). At the same time, these coefficients are positive, while the coefficients

for the total angular momentum 𝐽𝑎𝑡.𝑠𝑡𝑎𝑡𝑒
𝑚𝑖𝑛 < 𝐽 < 𝐽𝑎𝑡.𝑠𝑡𝑎𝑡𝑒

𝑚𝑎𝑥 are negative. In

the case of singlet states of the atom, the minus sign always stands before

the smaller coefficient, while the plus sign always stands before the larger

coefficient. Thirdly, the sum of the numerators values of the coefficients

𝐶𝑗𝑖 , excluding the square root and the signs before it, is equal to the value

of 2𝐽𝑎𝑡.𝑠𝑡𝑎𝑡𝑒 + 1 for each level of the fine structure.

§ 2.3 Concluding remarks

In this Chapter, an asymptotic method for taking into account the

fine structure in collisions of alkali atoms and alkali-like metal ions with

hydrogen, proposed in [23,24], was further generalized to the case of atoms

of elements of II group of the Periodic table (alkaline earth metals), as well

as ions with a similar structure. It is shown that the matrix elements in the

JJ representation are related to the matrix elements in the LS representation

through the coefficients 𝐶𝑗𝑖 , which obey the same laws as in the case of

alkali metal atoms or alkali-like ions.

The results of the method of accounting for the fine structure of energy

levels in collisions of potassium and calcium ions Ca+ with hydrogen were

tested in [85]. In this paper, it is shown that in the case of potassium,

taking into account the fine structure in collisions of potassium with hydro-

gen by the method proposed in [23,24], leads to a better agreement of the
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potassium abundance for the Sun with the meteoritic potassium abundance

than in the case of not taking into account the fine structure. For Ca+ ,

the consideration of the influence of the fine structure turned out to be less

pronounced.

Also, this method can be generalized to the case of elements of III

group of the Periodic table. The calculation of the electronic structure

by a modified asymptotic method was carried out for collisions of boron

with hydrogen. The cross sections and rate coefficients of the processes

of excitation, de-excitation, ion-pair formation and mutual neutralization

calculated using a multichannel formula are published in [25], which also

presents a comparison of the results obtained with (see [25]) and without

taking into account (see [86]) fine structure. In this work it is shown

that from the rate coefficients obtained without taking into account the fine

structure, it is impossible to obtain the rate coefficients of processes with

taking into account the fine structure by means of any simple formula.

This research was supported by the RFBR grant Graduate Students

No. 20-33-90047, head of Prof. Belyaev A. K.
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Chapter 3. Investigation of inelastic processes

in collisions of oxygen atoms and ions with

hydrogen atoms and ions

§ 3.1 Preliminary remarks

Oxygen is the third most abundant element in the Universe after hy-

drogen and helium (see, for example, [3,29]). The determination of oxygen

abundance plays an important role in understanding the formation and evo-

lution of planets, stars and galaxies (see, for example, [87–92]). The ratio

of oxygen to iron abundances is a widely used indicator for determining the

stages of the chemical evolution of stars (see [87, 93, 94]). It is believed

that the main source of oxygen is collapsing supernova nuclei formed from

massive stars, so a detailed study of the oxygen abundance allows us to

understand the history of star formation [95].

As mentioned in [95], the main source of the data on the evolution of

oxygen abundance in our Galaxy is the data on the oxygen abundance in the

atmospheres of cold stars (spectral classes F, G, K). Based on the above,

it can be concluded that it is necessary to determine oxygen abundance

in the photospheres of cold stars as accurately as possible. Unfortunately,

different methods of spectral analysis lead to different results (see [95–99]).

For these reasons, the most accurate atomic data, such as data on collisions

of oxygen with hydrogen, electrons, photoionization data, and so on, are

needed to modelling of the oxygen spectra in the stars photospheres.

Most often, the triplet O I 777 nm, corresponding to the transitions

between the fine structure levels 𝑂(2𝑝33𝑝 5𝑃3,2,1) ↔ 𝑂(2𝑝33𝑠 5𝑆∘
2) , is used

for analysis. In many papers (see, for example, [87, 92, 100, 101]) it was

shown that this line is formed under conditions of deviation from local

thermodynamic equilibrium. In the paper [92] it is shown that the accuracy

of the rate coefficients of inelastic processes in collisions with hydrogen
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have the greatest impact on the accuracy of modelling spectral lines under

conditions of deviation from local thermodynamic equilibrium for stars of

spectral classes F, G, K.

As discussed earlier, the Dravin formula [11–13] is often used to de-

termine the values of the rate coefficients of inelastic processes in collisions

with hydrogen, due to the complexity and time-consuming of the ab initio

calculations. In this case, a scaling factor is used, the value of which is se-

lected for some reasons and varies from element to element. However, it has

been shown repeatedly (see, for example, [3, 14, 15, 33]) that the accuracy

of the results obtained by the Drawin formula is insufficient for the use of

these data in modelling the spectra of stars: for excitation/de-excitation pro-

cesses, the rate coefficients can be either overestimated or underestimated

by several orders of magnitude; at the same time, for charge-exchange pro-

cesses, Dravin’s formula gives zero values of the rate coefficients, although

quantum calculations show that these processes are characterized by the

largest values of the rate coefficients.

This Chapter is devoted to the study of the characteristics of inelas-

tic processes (cross sections and rate coefficients) in collisions of oxygen

atoms and ions with hydrogen atoms and ions for astrophysical applications

in the field of modelling of oxygen spectra in the photospheres of stars

under conditions of deviation from local thermodynamic equilibrium. The

use of the most accurate quantum reprojection method for calculating the

cross sections of inelastic processes requires the presence of calculated non-

adiabatic couplings, which currently do not exist. Nevertheless, there is a

set of molecular adiabatic potential energies calculated in the paper [28]

by the Multireference Configuration Interaction method (or MRCI) for 13

scattering channels. Up to date, these data are the most complete. Using

them, it is possible to calculate the full probabilities of non-adiabatic tran-

sitions from a given initial state to a given final state within the framework

of model methods based on the two-channel Landau-Zener model.
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In this part of the dissertation, the full probabilities of non-adiabatic

transitions from all initial states to all final ones are calculated by two

model methods of nuclear dynamics investigation based on the Landau-

Zener model: the probability current method and the multichannel formula.

The cross sections of all inelastic processes in the collision energy range

0.01 – 100 eV (the probability current method) and 0.0001 – 100 eV (the

multichannel formula) were calculated from the calculated total probabilities

of non-adiabatic transitions. All the rate coefficients of inelastic processes

in the temperature range 1000 – 10000 K are calculated through the cross

sections. The analysis of the obtained cross sections and rate coefficients

was carried out.

§ 3.2 Adiabatic potential energies of the OH molecule

The OH molecule is one of the most studied molecules at the mo-

ment (see papers [28, 102], as well as references therein). The electronic

structure of this molecule was calculated for various states in [102–105]

etc. Inelastic processes in collisions of oxygen with hydrogen were pre-

viously investigated in [106] by the LCAO model method for calculation

of the potential energies and the multichannel formula for nuclear dynam-

ics investigation. In [28], the adiabatic potential energy curves of the OH

molecule were obtained for the first time using the MRCI quantum chem-

ical method for a sufficiently large number of scattering channels, namely

for 13 scattering channels, two of which correspond to closely spaced ionic

states O+ + H− and O− + H+ . This makes it possible for the first

time to study non-adiabatic nuclear dynamics with potentials obtained by

ab initio quantum chemical methods, and to calculate cross sections and

rate coefficients of inelastic processes with a more complete basis of states

than before.

In [28], 43 molecular adiabatic PECs (40 covalent and three ionic) were

calculated in ten molecular symmetries, namely: 11 PECs in 4Σ− molecular
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symmetry (Figure 3), 7 in 2Π symmetry (Figure 5), 4 in 2Σ+ symmetry

(Figure 4), 3 in 6Σ− symmetry (Figure 8), 7 in 2Σ− symmetry (Figure 6),

6 in 4Π symmetry (Figure 7), 2 in 2Δ symmetries and one term each in
4Δ , 6Π , 4Σ+ symmetries. The Table 3 shows all the scattering channels

of the OH molecule taken into account in this study: the PECs of the 11

lower atomic scattering channels, as well as two ionic scattering channels,

were obtained by the MRCI method, atomic scattering channels j = 12-16

were taken into account within the asymptotic model. For each scattering

channel, all molecular symmetries generated by this scattering channel are

given, as well as the asymptotic energies calculated from the ground state

O(2p4 3P) + H(1s 2S) , in the Table 4 presents statistical populations of all

molecular channels calculated by the MRCI method in [28].

Simplified model [107,108] predicts that the maximum of the so-called

"optimal window" located at the value of the excitation energy of the oxygen

atom approximately 11.62 eV. This indicates that the maximum rate coeffi-

cients will correspond to neutralization processes into scattering channels,

for which the excitation energy of the oxygen atom lies approximately in

the range of 11.0 – 12.2 eV. Quantum chemical calculations end, however,

at the state O (2𝑝34𝑠 3S 𝑜 )+H (1𝑠) with an asymptotic energy of 11.9304 eV

according to NIST (The National Institute of Standards and Technology)

(12.07 eV according to calculations in the paper [28]). In addition to the

PECs obtained in [28], five additional scattering channels (states 12-16 in

the Table 3) were also taken into account when calculating cross sections

using the multichannel formula within the framework of the asymptotic

model. For these additional channels, the nuclear dynamics was investi-

gated only for 4Σ− molecular symmetry, since the asymptotic model allows

us to determine only the non-adiabatic regions due to ion-covalent interac-

tion, that is, for 4Σ− , 2Σ+ and 2Π symmetries, but none of these states

generates 2Σ+ symmetry, and for 2Π symmetry, the non-adiabatic regions

is located at a relatively large internuclear distance (greater than 100 a.u.),

as a result, the energy splitting in the centers of these non-adiabatic regions
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is very small, and the nature of the passage of these non-adiabatic regions

by the system is practically diabatic. In turn, this leads to a negligible

(within the framework of the multichannel formula) probabilities of non-

adiabatic transitions from some initial channel to the final channels 12-16,

and, consequently, negligible values of cross sections and rate coefficients

of inelastic processes involving these scattering channels in molecular sym-

metry 2Π .

§ 3.3 Non-adiabatic nuclear dynamics investigation

As stated above, non-adiabatic couplings in the paper [28] were not

presented, and therefore the study of non-adiabatic nuclear dynamics can-

not be carried out within the framework of the most accurate quantum

reprojection method. Nevertheless, the nuclear dynamics can be calcu-

lated within the framework of model methods based on the Landau-Zener

model [64–66], which is the probability of a non-adiabatic transition in a

single passage of the non-adiabatic region. For convenience, the calcula-

tions in this work used the Landau-Zener formula, rewritten for adiabatic

representation in terms of energy splitting and its second derivative in the

center of the non-adiabatic region [74] (see the formula (1.53)).

Since the Landau-Zener model allows us to consider non-adiabatic tran-

sitions only between states with the same molecular symmetry, and the ro-

tational couplings for theconsidered OH molecule were also not calculated

in the paper [28], non-adiabatic transitions between different symmetries

were not taken into account in this study. This solution is justified by the

fact that the contribution to the partial cross sections of inelastic processes

from non-adiabatic transitions between different molecular symmetries is

less than the contribution from transitions within the same molecular sym-

metry (see, for example, [20, 110]) at low collision energies (less than a

few eV). The cross sections in this range mainly determine the values of
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Figure 3. Adiabatic potential energy curves U 𝑗 of the OH quasimolecule
depending on the internuclear distance R for molecular symmetry 4Σ− ,

calculated in [28]. For the notation, see the Table 3.
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Figure 4. Adiabatic potential energy curves U 𝑗 of the OH quasimolecule
depending on the internuclear distance R for molecular symmetry 2Σ+ ,

calculated in [28]. For the notation, see the Table 3.
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Figure 5. Adiabatic potential energy curves U 𝑗 of the OH quasimolecule
depending on the internuclear distance R for molecular symmetry 2Π ,

calculated in [28]. For the notation, see the Table 3.
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Figure 6. Adiabatic potential energy curves U 𝑗 of the OH quasimolecule
depending on the internuclear distance R for molecular symmetry 2Σ− ,

calculated in [28]. For the notation, see the Table 3.



— 91 —

Figure 7. Adiabatic potential energy curves U 𝑗 of the OH quasimolecule
depending on the internuclear distance R for molecular symmetry 4Π ,

calculated in [28]. For the notation, see the Table 3.
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Figure 8. Adiabatic potential energy curves U 𝑗 of the OH quasimolecule
depending on the internuclear distance R for molecular symmetry 6Σ− ,

calculated in [28]. For the notation, see the Table 3.
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Table 3. The molecular states of the OH molecule, their corresponding
atomic scattering channels, all possible molecular symmetries of each

molecular state, the asymptotic energies of the states of the OH molecule
presented in [28] and the asymptotic energies taken from the NIST [109]
database. The asymptotic energies are calculated from the ground state of

the OH molecule O (2𝑝4 3P)+H(1𝑠 2𝑆 ).

j Scattering Molecular Asymptotic Asymptotic
channel state energy (eV) energy (NIST, eV)

1 O(2𝑝4 3P) +H(1𝑠 2𝑆) 2Σ−,2 Π,4 Σ−,4 Π 0 0.0000
2 O(2𝑝4 1D) +H(1𝑠 2𝑆) 2Σ+,2 Π,2 Δ 2.05 1.9674
3 O(2𝑝4 1S) +H(1𝑠 2𝑆) 2Σ+ 4.69 4.1897
4 O(2𝑝33𝑠 5S𝑜) +H(1𝑠 2𝑆) 4Σ−,6 Σ− 9.16 9.1461
5 O(2𝑝33𝑠 3S𝑜) +H(1𝑠 2𝑆) 2Σ−,4 Σ− 9.59 9.5214
6 O(2𝑝4 3P) +H(2𝑠 2𝑆) 2Σ−,2 Π,4 Σ−,4 Π 10.20 10.2000
7 O(2𝑝4 3P) +H(2𝑝 2𝑃 ) 2Σ+,2 Σ−(×2),2 Π(×2),2 Δ 10.27 10.2000

4Σ+,4 Σ−(×2),4 Π(×2),4 Δ
8 O(2𝑝33𝑝 5P) +H(1𝑠 2𝑆) 4Σ−,4 Π,6 Σ−,6 Π 10.82 10.7406
9 O(2𝑝33𝑝 3P) +H(1𝑠 2𝑆) 2Σ−,2 Π,4 Σ−,4 Π 11.07 10.9888
10 O(2𝑝34𝑠 5S𝑜) +H(1𝑠 2𝑆) 4Σ−,6 Σ− 11.93 11.8376
11 O(2𝑝34𝑠 3S𝑜) +H(1𝑠 2𝑆) 2Σ−,4 Σ− 12.07 11.9304
12 O(2𝑝33𝑑 5𝐷𝑜) +H(1𝑠 2𝑆) 4Σ−,4 Π,4 Δ,6 Σ−,6 Π,6 Δ – 12.0786
13 O(2𝑝33𝑑 3𝐷𝑜) +H(1𝑠 2𝑆) 2Σ−,2 Π,2 Δ,4 Σ−,4 Π,4 Δ – 12.0870
14 O(2𝑝34𝑝 5𝑃 ) +H(1𝑠 2𝑆) 4Σ−,4 Π,6 Σ−,6 Π – 12.2861
15 O(2𝑝34𝑝 3𝑃 ) +H(1𝑠 2𝑆) 2Σ−,2 Π,4 Σ−,4 Π – 12.3589
16 O(2𝑝33𝑠 3𝐷𝑜) +H(1𝑠 2𝑆) 2Σ−,2 Π,2 Δ,4 Σ−,4 Π,4 Δ – 12.5402
i1 O−(2𝑝5 2P) +H+ 2Σ+,2 Π 12.39 12.1500
i2 O+(2𝑝3 4S𝑜) +H−(1𝑠2 1𝑆) 4Σ− 12.90 12.8641

Table 4. Statistical populations of all 43 molecular adiabatic states
calculated in paper [28].

j
Scattering 4Σ− 2Σ+ 2Π 2Σ− 4Π 6Σ− 2Δ 4Δ 6Π 4Σ+

channel
1 O(2𝑝4 3P)+H(1𝑠) 4/18 - 4/18 2/18 8/18 - - - - -
2 O(2𝑝4 1D)+H(1𝑠) - 1/5 2/5 - - - 2/5 - - -
3 O(2𝑝4 1S)+H(1𝑠) - 1 - - - - - - - -
4 O(2𝑝33𝑠 5S𝑜)+H(1𝑠) 4/10 - - - - 6/10 - - - -
5 O(2𝑝33𝑠 3S𝑜)+H(1𝑠) 4/6 - - 2/6 - - - - - -
6 O(2𝑝4 3P)+H(2𝑠) 4/18 - 4/18 2/18 8/18 - - - - -
7 O(2𝑝4 3P)+H(2𝑝) 4/54 2/54 4/54 2/54 8/54 - 4/54 8/54 - 4/54

4/54 - 4/54 2/54 8/54 - - - - -
8 O(2𝑝33𝑝 5P)+H(1𝑠) 4/30 - - - 8/30 6/30 - - 12/30 -
9 O(2𝑝33𝑝 3P)+H(1𝑠) 4/18 - 4/18 2/18 8/18 - - - - -
10 O(2𝑝34𝑠 5S𝑜)+H(1𝑠) 4/10 - - - - 6/10 - - - -
11 O(2𝑝34𝑠 3S𝑜)+H(1𝑠) 4/6 - - 2/6 - - - - - -
i1 O−(2𝑝5 2P)+H+ - 1/3 2/3 - - - - - - -
i2 O+(2𝑝3 4S𝑜)+H−(1𝑆) 1 - - - - - - - - -
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the rate coefficients for the temperature range of 1000 – 10000 K studied

in this work.

In this regard, in this work, the study of nuclear dynamics was carried

out only in six molecular symmetries, namely: 4Σ− , 2Π , 2Σ+ , 6Σ− , 2Σ− ,
4Π . The molecular symmetries 4Δ , 6Π , 4Σ+ were not considered due

to the fact that only one molecular term was calculated in these symme-

tries, therefore, within the framework of the chosen approach, non-adiabatic

transitions in these symmetries were not taken into account. The molecular

symmetry 2Δ was also not taken into account due to the fact that there is a

significant energy splitting (about 2.8 eV) between the two calculated PECs

in the center of the non-adiabatic region, which leads to an extremely small

probability of non-adiabatic transition within the Landau-Zener model and

negligibly small cross sections of inelastic processes. Thus, in this study,

non-adiabatic transitions between states of the same molecular symmetry

were considered independently for six molecular symmetries.

To calculate the total probability of non-adiabatic transitions from one

initial state to all final states for all states with the same molecular sym-

metry, two quantum model methods were used for all six considered sym-

metries: the multichannel formula (see §1.4.4) and the probability current

method (see §1.4.3) in its stochastic version. At the same time, the total

number of calculated probability currents for each symmetry in this study

is 𝑁 𝑡𝑜𝑡 =2.62144×108 , which allows us to calculate the total inelastic tran-

sition probability with a minimum value of the order of 4.0×10−9 and an

accuracy of the order of 1√
𝑁 𝑡𝑜𝑡

=6.3×10−5 . For each non-adiabatic region,

the parameters necessary for calculation were determined, such as the posi-

tion of the center of the non-adiabatic region 𝑅𝑐 , the energy splitting 𝑍 in

the center of the non-adiabatic region, the average potential energy < 𝐸 >

in the center of the non-adiabatic region and the Landau-Zener parameter

𝜉 (see the formula (1.54)).

240 inelastic processes were investigated in total by the of probability

current method: 108 in symmetry 4Σ− , 42 in symmetry 2Π , 12 in symme-
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try 2Σ+ , 6 in symmetry 6Σ− , 42 in symmetry 2Σ− and 30 in symmetry
4Π . 292 inelastic processes were studied by the multichannel formula: 238

in symmetry 4Σ− , 42 in symmetry 2Π , 12 in symmetry 2Σ+ . Cross sec-

tions of inelastic processes were calculated by the formula (1.70). The

cross sections calculated from probabilities obtained by the probability cur-

rent method are calculated in the collision energy range 0.01 - 100 eV,

by the multichannel formula – in the range 0.0001 - 100 eV. The par-

tial rate coefficients were calculated from the cross sections according to

the formula (1.74) for exothermic processes and according to the balance

equation (1.75) for endothermic processes in the temperature range 1000 –

10000 K. The total rate coefficients of inelastic processes are obtained by

summing the partial rate coefficients over all molecular symmetries (see

formula (1.76)).

§ 3.4 Analysis of cross sections of inelastic processes in

O+H collisions

Let’s analyze the results obtained, starting with the analysis of cross

sections of inelastic processes. The following question is relevant: which

cross sections in collisions in various molecular symmetries have the largest

values and, accordingly, make the greatest contribution to the value of

the total partial cross section of the inelastic process (meaning the cross

section summed over all molecular symmetries)? The oxygen-hydrogen

collision system is a pretty good system for investigating this issue, since

inelastic transitions occur in a variety of molecular symmetries: 2Σ+ ,
2Σ− , 4Σ+ , 4Σ− , 6Σ− , 2Π , 4Π , 6Π , 2Δ , 4Δ , 6Δ . As mentioned earlier,

in this study, only transitions within the same molecular symmetry were

considered, therefore cross sections of inelastic processes for molecular

symmetries 4Σ− , 2Π , 2Σ+ , 6Σ− , 2Σ− , 4Π , obtained in this investigation

by the probability current method as more accurate in comparison with the

multichannel formula, will be considered.
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Let’s consider some specific inelastic processes. Figure 9 shows

the de-excitation cross sections of the process O(2p33p 5P) + H(1s 2S) →
O(2p33s 5So) + H(1s 2S) , obtained in the molecular symmetries 4Σ− and
6Σ− . It can be seen from the figure that, over the entire studied range

of collision energies, the dominant contribution to the total partial cross

section is made by transitions within the 4Σ− symmetry, while in the 6Σ−

symmetry, the cross section value is negligible at collision energies < 10

eV (not less than five orders of magnitude less). Hence, it can be concluded

that for this inelastic process in the studied range of collision energies, the

dominant mechanism is the ion-covalent interaction, which causes transi-

tions within the 4Σ− molecular symmetry.

Figure 10 shows the de-excitation cross sections of the process

O(2p33p 3P) + H(1s 2S) → O(2p4 3P) + H(2s 2S) calculated in the molecu-

lar symmetries 2Σ− , 4Σ− , 2Π and 4Π . As can be seen in comparison

with the figure 9, the situation for this process is different. At collision

energies less than 0.2 eV, the processes in 2Σ− and 4Σ− symmetries can

practically be neglected, while the main contribution is made by the cross

section in 4Π symmetry, the cross section in 2Π symmetry on average

three to four times lower than the cross section in symmetry 4Π . With

a further increase of the collision energy, the contribution of 4Σ− symme-

try begins to grow, and the contribution of 4Π steadily decreases. In the

range of 1 – 10 eV, the cross section in the 2Π symmetry dominates, and

at 10 eV, the contribution of 2Π and 4Σ− becomes approximately equal,

while the contribution of the cross section in the 2Σ− symmetry is at least

less by an order of magnitude and is comparable to the contribution of the

cross section in the 4Π symmetry. With a further increase of the collision

energy, the main contribution to the value of the total partial cross sec-

tion is already made by transitions in the symmetries 4Σ− and 2Π . This

suggests that for this inelastic process at low collision energies, not only

the ion-covalent interaction makes a great contribution to the final value of

the total partial cross section, but also the covalent-covalent interaction at
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Figure 9. Cross sections of the inelastic process
O(2p33p 5P) + H(1s 2S) → O(2p33s 5So) + H(1s 2S) as a function of the
collision energy. The black solid line corresponds to the cross section

obtained in the molecular symmetry 4Σ− , the red solid line corresponds to
the cross section obtained in the molecular symmetry 6Σ− , the symbols

denote the sum of two partial cross sections.
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small internuclear distances in molecular symmetries other than the sym-

metries of ionic states plays an important role. It should be noted that the
2Π symmetry is generated by the ionic state O− +H+ , which indicates the

importance of taking into account this ionic state when considering at least

some inelastic processes in collisions of oxygen with hydrogen.

Another interesting question is: which of the two main mechanisms of

non-adiabatic interaction – ion-covalent interaction or covalent-covalent in-

teraction – is decisive for certain processes. As mentioned earlier, it is the

ion-covalent interaction that most often leads to the largest cross sections

of inelastic processes. Taking into account the covalent-covalent interac-

tion may be important for processes with not the largest cross sections

(<10Å 2 ). In order to clarify this issue in the case of collisions of oxygen

and hydrogen, we will analyze the results obtained by two different meth-

ods: the multichannel formula (taking into account only the non-adiabatic

regions due to ion-covalent interaction) and the probability current method

(taking into account both the non-adiabatic regions due to ion-covalent in-

teraction and the regions due to covalent-covalent interaction).

Consider the molecular symmetries generated by the ionic states

O+ + H− and O− + H+ , namely 4Σ− , 2Σ+ and 2Π . Figure 11 shows

cross sections of mutual neutralization processes O+(2p3 4So)+H−(1s2 1S) →
O* + H* as a function of the collision energy for molecular symmetry 4Σ−

calculated by the multichannel formula (solid lines) and the probability cur-

rent method (symbols). It can be seen that for cross sections with the

largest values (processes i2→8, 9, 10, 11, see Table 3 with characteristic

values of cross sections 10 – 10 4 AA 2 ) both methods have a good agree-

ment in the considered energy range 0.01 – 100 eV. For cross sections

of inelastic processes corresponding to transitions from the ionic state to

low-lying states 4 and 5, the cross sections agree well at collision energies

exceeding 10 eV, and at lower collision energies, the multichannel formula

gives values several orders of magnitude lower than the values obtained

using the probability current method, which indicates a significant role
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Figure 10. Cross sections of the inelastic process
O(2p33p 3P) + H(1s 2S) → O(2p4 3P) + H(2s 2S) as a function of the

collision energy. The black line corresponds to the partial cross section
obtained in the molecular symmetry 4Σ− , the red line corresponds to the
partial cross section obtained in the molecular symmetry 2Π , the green
line corresponds to the partial cross section obtained in the molecular
symmetry 2Σ− , the blue line is the partial cross section obtained in
molecular symmetry 4Π , the purple line is the sum of all four partial

sections.
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covalent-covalent interaction at low collision energies. The cross sections

calculated for processes involving the excited states of the hydrogen atom

H(2s) and H(2p) (processes i2→6, 7(a,b), see Table 3) do not agree well

in the entire studied range of collision energies. This suggests that the

main mechanism of non-adiabatic transitions for these processes is due not

to ion-covalent interaction, but to covalent-covalent interaction at relatively

short distances, which are not taken into account when calculating using

the multichannel formula.

The Figure 12 shows cross sections of mutual neutralization processes

O−(2p5 2 rmP) + H+ → O* + H* as a function of the collision energy for

molecular symmetry 2Σ+ , calculated by the multichannel formula (solid

lines) and by the probability current method (symbols). It can be seen that

the cross sections obtained by two different methods are almost identical,

which suggests that for the molecular symmetry 2Σ+ , the ion-covalent

interaction is the dominant mechanism causing non-adiabatic transitions,

while the covalent-covalent interaction does not give any noticeable contri-

bution to the values of the cross sections.

The Figure 13 shows cross sections of mutual neutralization processes

O−(2p5 2 rmP) + H+ → O* + H* as a function of the collision energy for

molecular symmetry 2Π , calculated by the multichannel formula (solid

lines) and by the probability current method (symbols). It can be seen that

for processes whose cross section values are the largest (in the range 10 –

10 4 Å 2 , processes i1→2, 6, 7(a, b), see Table 3), the results obtained by

the two methods agree quite well. However, it can be seen that if we take

into account the non-adiabatic regions at short distances (by the probability

current method), the cross sections of the processes i1→6, 7(a, b) decrease

somewhat relative to the situation when only the non-adiabatic regions due

to ion-covalent interaction are taken into account. At the same time, for the

process i1→9, the difference in the values of the cross sections is about

six orders of magnitude. For this process, the characteristic values of the

cross section obtained by the probability current method are 0.1 – 100 Å 2 ,
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Figure 11. Cross sections of mutual neutralization processes
O+ +H− → O* +H* as a function of the collision energy for molecular

symmetry 4Σ− . Solid lines denote cross sections calculated by the
multichannel formula, symbols – cross sections calculated within the
framework of the probability current method. For a description of the

legend, see the Table 3.
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Figure 12. Cross sections of mutual neutralization processes
O− +H+ → O* +H* as a function of the collision energy for molecular

symmetry 2Σ+ . Solid lines denote cross sections calculated by the
multi-channel formula, symbols – cross sections calculated within the
framework of the probability current method. For a description of the

legend, see the Table 3.
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while the results obtained by the multichannel formula give the values 10−7

– 10−4 Å 2 , which says about the dominant contribution of the covalent-

covalent interaction. It is obvious that in the non-adiabatic regions located

at short distances, the probability is redistributed in a non-trivial way, due

to which the cross sections of processes i1→6, 7(a, b) decrease and the

cross section of the process i1→9 increases greatly. This situation is often

found for processes involving highly excited states, which was previously

shown in the paper [30] and will be discussed in Chapter 4.

Let us now consider molecular symmetries generated only by covalent

states. In this case, the application of a multichannel formula becomes im-

possible, since a series of consecutive non-adiabatic regions is not formed

in these molecular symmetries, therefore, the study of non-adiabatic nu-

clear dynamics in this situation is possible only by the probability current

method. Figures 14, 15 and 16 show cross sections of de-excitation pro-

cesses as a functions of the collision energy for various initial channels

for molecular symmetries 6Σ− , 4Π and 2Σ− respectively. The presented

cross sections have the largest values, so these processes were chosen. The

excitation processes have smaller cross sections than the cross sections of

the de-excitation processes. From the Figures 14, 15 and 16, as well as

Figures 9 and 10 it can be seen that the largest values of the cross sections

over the entire studied range of collision energies do not exceed 100Å 2 ,

and moreover, rarely exceed the value of 10 Å 2 . Consequently, the thesis

that the largest cross sections and, consequently, the rate coefficients are

correspond to processes in those molecular symmetries that are generated

by ionic states is again confirmed. Nevertheless, non-adiabatic transitions

in molecular symmetries not generated by ionic states can make a non-

negligible contribution to the final values of the cross sections of inelastic

processes. This is of great importance from an applied point of view, since

processes with the largest cross sections and rate coefficients mainly deter-

mine the parameters of gas and plasma media, and the correct definition of
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Figure 13. Cross sections of mutual neutralization processes
O− +H+ → O* +H* as a function of the collision energy for molecular

symmetry 2Π . Solid lines denote cross sections calculated by the
multichannel formula, symbols – cross sections calculated within the
framework of the probability current method. For a description of the

legend, see the Table 3.
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processes with the largest cross sections is important for physically correct

modelling of gas and plasma media.

§ 3.5 Analysis of the rate coefficients of inelastic pro-

cesses in O+H collisions

Let us now proceed to the analysis of the rate coefficients of the studied

processes, as well as the comparison of the results obtained within the

framework of this study with the results of other previous studies. For all

inelastic processes, the rate coefficients are calculated in this paper using

the formulas (1.74) and (1.75) in the temperature range 1000 – 10000 K.

In general, all calculated rate coefficients can be divided into three groups,

according to their values:

• group I: the processes with a rate coefficient exceeding 10−8 cm 3 /s;

• group II: the processes with a rate coefficient lying in the range

10−8 −−10−12 cm 3 /s;

• group III: the processes with a rate coefficient smaller than

10−12 cm 3 /s.

Here are some concrete examples of rate coefficients for temperature

T = 6000 K:

• group I includes the processes of mutual neutralization O+(2𝑝3 4𝑆∘)+

H−(1𝑠2 1𝑆) → O(2𝑝34𝑠 5𝑆𝑜) + H(1𝑠 2𝑆) , O−(2𝑝5 2𝑃 ) + H+ →
O(2𝑝4 3𝑃 )+H(2𝑝2𝑃 ) and O+(2𝑝3 4𝑆∘)+H−(1𝑠2 1𝑆) → O(2𝑝33𝑝 3𝑃 )+

H(1𝑠 2𝑆) with the values of the rate coefficients (2.95, 2.56,

1.98)×10−8 cm 3 /s respectively;

• group II includes many processes of excitation/de-excitation, as well

as the processes of ion-pair formation and mutual neutralization;

among the processes of excitation/de-excitation, the highest value of
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Figure 14. Cross sections of de-excitation processes for the initial state
O(2p34s 5So) + H(1s 2S) as a function of the collision energy for molecular

symmetry 6Σ− . Lines and symbols denote the cross sections obtained
within the framework of the probability current method. For a description

of the legend, see the Table 3.
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Figure 15. Cross sections of de-excitation processes for the initial state
O(2p33p 3P) + H(1s 2S) as a function ofthe collision energy for molecular

symmetry 4Π . Lines and symbols denote the cross sections obtained
within the framework of the probability current method. For a description

of the legend, see the Table 3.
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Figure 16. Cross sections of de-excitation processes for the initial state
O(2p34s 3So) + H(1s 2S) as a function of the collision energy for molecular

symmetry 2Σ− . Lines and symbols denote the cross sections obtained
within the framework of the probability current method. For a description

of the legend, see the Table 3.
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the rate coefficient corresponds to the process O (2𝑝4 3P)+H (2𝑠) →
O (2𝑝4 3P)+H (2𝑝) with the value 3.91×10−9 cm 3 /s;

• group III includes some processes of excitation, de-excitation, ion-pair

formation and mutual neutralization; for example, all processes of ex-

citation from the three lower states do not exceed 1.63 ×10−16 cm 3 /s,

and the processes of de-excitation in these three states do not exceed

the magnitude 4.88 ×10−11 cm 3 /s.

The analysis of partial rate coefficients obtained for the same pro-

cess, but in different molecular symmetries, shows that the rate coefficients

calculated for symmetries generated by ionic states make the greatest con-

tribution to the values of the total rate coefficients. For example, the con-

tribution to the values of the rate coefficients for processes involving the

channel O(2𝑝33𝑠 5𝑆𝑜) + H(1𝑠) give inelastic transitions within two sym-

metries – 4Σ− and 6Σ− ; at the same time, the values of the partial rate

coefficients for 6Σ− symmetries are at least six orders of magnitude less

than for 4Σ− .

At the same time, for processes involving the channel O(2𝑝33𝑝 5𝑃 ) +

H(1𝑠) the situation is different: of the possible four molecular symmetries,

this work takes into account transitions within three of them – 4Σ− , 4Π

and 6Σ− . The main contribution to the value of the total rate coefficient is

also made by the 4Σ− symmetry rate coefficients, however, for the process

O(2p33p 5P)+H(1s) → O(2p34s 5So)+H(1s) at a temperature of 6000 K the

value of the rate coefficient in symmetry 6Σ− reaches ≈30% of the value

of the constant 4Σ− (1.51×10−12 and 4.45×10−12 cm 3 /s respectively). At

the same time, for other processes, the values of the rate coefficients in the
4Π symmetry reach ≈66% of the value of the rate coefficients in the 4Σ−

symmetry.

It is also of interest to compare the total partial rate coefficients, that

is, summed over all molecular symmetries (see the formula (1.76)) cal-

culated by various methods. Since the available quantum-chemical data
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obtained by ab initio methods of calculating the electronic structure are

currently insufficient for nuclear dynamics calculations within the frame-

work of the reprojection method, and experimental data are also missing,

then a comparison of the results obtained in this study by the probability

current method and by the multichannel formula using potential energies

obtained by ab initio calculations by the MRCI method in the work [28],

will be conducted only with the available data, obtained by various model

methods, namely:

• simplified model [107,108];

• the multichannel formula using the electronic structure of the OH

quasimolecule obtained by a Linear Combination of Atomic Orbitals

(hereinafter referred to as LCAO+multichannel formula) [106].

Consider the behavior of the rate coefficients as a function of tem-

perature in the studied range of 1000 – 10000 K. The Figures 17 and

18 show the dependences of the rate coefficients of the processes of de-

excitation/neutralization and excitation/ion-pair formation, respectively, on

temperature. The presented neutralization processes from both ion channels

in Figure 17 have the largest values in the entire temperature range studied.

The de-excitation process O(2p34s 5So) + H(1s2S) → O(2p33p 3P) + H(1s2S)

has a value exceeding 10−9 cm 3 /sover the entire temperature range. Fig-

ure 17 shows that the rate coefficients of exothermic neutralization and

de-excitation processes are practically independent of temperature, while

Figure 18 shows that endothermic processes of excitation and ion-pair for-

mation strongly depend on temperature, especially in the region of T <

5000 K. It is also seen that for exothermic processes, the rate coefficients

in the entire studied temperature range exceed the rate coefficients of en-

dothermic processes by at least an order of magnitude, even at a temper-

ature of T = 10000 K. The strong dependence of endothermic processes

on temperature is due to the fact that the cross sections of endothermic

processes (excitation and ion-pair formation) have a reaction threshold. For
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this reason, it is better to compare and analyze the rate coefficients of

exothermic processes, since they do not have a reaction threshold.

Since the modelling of stellar photospheres under conditions of devia-

tion from local thermodynamic equilibrium is important for stars of spectral

classes F, G, K, which are characterized by temperatures less than 10000 K,

further comparison of the values of the rate coefficients obtained by differ-

ent methods will be carried out for a temperature of 6000 K. Figures 19

and 20 show the rate coefficients of mutual neutralization processes as a

function of the excitation energy of the oxygen atom, obtained by different

methods:

• by the probability current method using potentials obtained by the

MRCI quantum method (black balls are marked in both figures);

• by the multichannel formula using potentials obtained by the MRCI

quantum method (marked with red asterisks in both figures);

• by the multichannel formula using model potentials obtained by the

LCAO method (marked with green diamonds in all figures);

• by the simplified model (marked with a black solid line in both fig-

ures).

For processes involving the ion channel O− + H+ , the calculation of

cross sections and rate coefficients was performed for the first time in

this work, calculations by other methods have not been carried out before,

so in the Figure 20 the rate coefficients obtained by the multichannel

formula and the probability current method, as well as the predictions of

the simplified model, are presented. It can be seen that for the processes

i1→6, 7, the results agree well with each other, but there is a difference

several times with respect to the predictions of the simplified model. But

for the process i1→9, the rate coefficients obtained by the probability

current method and by the multichannel formula differ by about six orders of

magnitude, and the predictions of the simplified model give a value greater
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Figure 17. The dependence of the rate coefficients of some neutralization
and de-excitation processes on temperature.
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Figure 18. The dependence of the rate coefficients of some processes of
ion-pair formation and excitation on temperature.
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Figure 19. The dependence of the total partial rate coefficients of the
mutual neutralization processes for the initial channel O+ +H− on the
excitation energy of the oxygen atom. Black circles corresponds to the

rate coefficients obtained from the cross sections calculated by the
probability current method; red asterisks – the rate coefficients obtained
from the cross sections calculated by the multichannel formula; green

diamonds – the rate coefficients obtained in the work [106] by the
multichannel formula using potentials obtained by the LCAO method; the
black solid line corresponds to the predictions of the simplified model. For

the notation, see the Table 3.
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Figure 20. The dependence of the total partial rate coefficients of the
mutual neutralization processes for the initial channel O− +H+ on the
excitation energy of the oxygen atom. Black circles corresponds to the

rate coefficients obtained from the cross sections calculated by the
probability current method; red asterisks – the rate coefficients obtained

from the cross sections calculated by the multichannel formula; black solid
line corresponds to the predictions of the simplified model. For the
notation, see the Table 3. The rate coefficient of the process i1→9,

obtained by the multichannel formula, is multiplied by 105 .
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by about two orders of magnitude than the value of the rate coefficient

obtained by the probability current method. It is worth remembering that

the simplified model describes neutralization processes for a situation where

the ion channel corresponds to the collision of the cation of the considered

element with the hydrogen anion, and not vice versa. Nevertheless, it

can be said that this process is greatly influenced by transitions in non-

adiabatic regions due to covalent-covalent interaction and located at short

distances, see Figures 4 and 5, since taking into account these regions by

the probability current method leads to an increase in the rate coefficient

of this process by about six orders of magnitude.

For neutralization processes involving the ion channel O+ + H− (Fig-

ure 19) the situation is different. The Table 5 shows the values of all the

values of the rate coefficients obtained by all four methods. For processes

ı2→8, 9, 10, 11, the values of the rate coefficients obtained by four different

methods agree well with each other. These processes fall into the so-called

"optimal window" of the simplified model and have the highest values of

the rate coefficients. The processes falling into the optimal window are

mainly determined by non-adiabatic transitions in the non-adiabatic regions

due to ion-covalent interaction. At the same time, the rate coefficients

obtained by the multichannel formula on the LCAO model potentials and

on the MRCI ab initio potentials for the processes i2 →4, 5, 6, 7 agree

with each other up to about one order of magnitude, and do not exceed the

values of 10−11 cm 3 /s. But the values of the rate coefficients obtained by

the probability current method are significantly greater than the values of

the rate coefficients obtained by the multichannel formula, and at the same

time these rate coefficients are significantly better consistent with the pre-

dictions of the simplified model. This suggests that for these processes, the

influence of non-adiabatic transitions in the non-adiabatic regions at short

distances due to covalent-covalent interaction is significant. Taking into

account transitions at small internuclear distances leads to an increase in
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Table 5. Comparison of the rate coefficient values of the mutual
neutralization processes O+ +H− → O* +H* at the temperature

T = 6000 K obtained by four different methods: the probability current
method + ab initio potentials from the paper [28] (PC-MRCI, this study),

the multichannel formula + ab initio potentials from the
paper [28](MC-MRCI, this study), the multichannel formula + model

LCAO potentials [106] (MC-LCAO), the simplified model [107] (SM). All
rate coefficient have dimension cm 3 /s. 𝐸 denotes the power of ten.

j Scattering Excitation
PC-MRCI MC-MRCI MC-LCAO SM

channel energy, eV

4 O(2𝑝33𝑠 5S𝑜) +H(1𝑠 2𝑆) 9.1461 2.15E-13 1.1E-13 1.55E-14 3.76E-11
5 O(2𝑝33𝑠 3S𝑜) +H(1𝑠 2𝑆) 9.5214 2.68E-10 6.04E-13 8.6E-12 6.84E-11
6 O(2𝑝4 3P) +H(2𝑠 2𝑆) 10.2000 4.14E-10 4.35E-13

3.34E-13
4.36E-10

7 O(2𝑝4 3P) +H(2𝑝 2𝑃 ) 10.2000 1.44E-9 1.12E-12 4.36E-10
8 O(2𝑝33𝑝 5P) +H(1𝑠 2𝑆) 10.7406 1.73E-9 1.41E-9 3.65E-9 3.45E-9
9 O(2𝑝33𝑝 3P) +H(1𝑠 2𝑆) 10.9888 1.98E-8 1.75E-8 2.34E-8 1.04E-8
10 O(2𝑝34𝑠 5S𝑜) +H(1𝑠 2𝑆) 11.8376 2.95E-8 2.32E-8 3.2E-8 5.11E-8
11 O(2𝑝34𝑠 3S𝑜) +H(1𝑠 2𝑆) 11.9304 8.48E-9 4.94E-9 1.33E-8 3.36E-8
12 O(2𝑝33𝑑 5𝐷𝑜) +H(1𝑠 2𝑆) 12.0786 – 1.76E-8 6.85E-9 1.14E-8
13 O(2𝑝33𝑑 3𝐷𝑜) +H(1𝑠 2𝑆) 12.0870 – 9.96E-9 3.95E-9 1.08E-8
14 O(2𝑝34𝑝 5𝑃 ) +H(1𝑠 2𝑆) 12.2861 – 2.49E-10 4.65E-10 5.04E-10
15 O(2𝑝34𝑝 3𝑃 ) +H(1𝑠 2𝑆) 12.3589 – 5.46E-11 3.65E-11 7.10E-11
16 O(2𝑝33𝑠 3𝐷𝑜) +H(1𝑠 2𝑆) 12.5402 – 8.53E-13 – 3.06E-14

the final value of the rate coefficients for these processes by several orders

of magnitude, up to the value of 10−9 cm 3 /s.

It is also worth noting that in Chapter 4, a comparison of the results

obtained by the probability current method using potentials obtained by ab

initio methods with the results obtained by the reprojection method for

Ca+H collisions will be considered. Good agreement of the results of the

most accurate quantum calculations with predictions of the simplified model

will be shown, which suggests that the comparison of the results obtained

by various theoretical methods with the predictions of the simplified model

allows us to judge the correctness of these results.

In the figures 21, 22, 23, 24 the dependences of the rate coefficients val-

ues of the excitation and de-excitation processes on the excitation energy of

the oxygen atom for the initial channels O(2p4 3P)+H(2p 2P),O(2p33p 5P)+
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H(1s 2S),O(2p34s 5So) + H(1s 2S),O(2p34s 3So) + H(1s 2S) (7, 8, 10 and 11),

respectively, are shown. It can be seen from the figures that for almost all

processes, the values of the rate coefficients obtained within the framework

of the probability current method exceed the values of the rate coefficients

obtained by the multichannel formula, regardless of whether model poten-

tials are used or obtained by the MRCI method. At the same time, the data

obtained by the probability current method agree with the predictions of the

simplified model better than the data obtained by other methods. The rate

coefficients obtained by the multichannel formula have particularly small

values (not exceeding 10−13 cm 3 /s) in the region of the excitation ener-

gies of the oxygen atom < 10.5 eV, with the exception of several processes

for which channel 8 is the initial channel (processes 8→5, 6, 7, see Fig-

ure 22), as well as process 7→6 (see Figure 21). This result confirms the

thesis that the largest cross sections and rate coefficients are determined

by non-adiabatic transitions in the non-adiabatic regions caused by ion-

covalent interaction and usually located at distances of 20-40 atomic units.

At the same time, taking into account the non-adiabatic regions caused

by covalent-covalent interaction and located at distances less than 10 – 15

atomic units can lead to an increase in the values of the rate coefficients

for processes having values less than 10−12 cm 3 /s.

Thus, the conducted research shows the importance of taking into

account all possible molecular symmetries when calculating non-adiabatic

nuclear dynamics, since they can have a significant impact on the values

of the rate coefficients of the excitation/de-excitation processes, despite the

fact that such accounting affects only the values of constants from groups

II and III.

§ 3.6 Concluding remarks

In this study, the processes of excitation, de-excitation, ion-pair for-

mation and mutual neutralization in collisions of oxygen atoms and ions
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Figure 21. The dependence of the values of the total partial rate
coefficients of the excitation and de-excitation processes for the initial
channel 7 on the excitation energy of the oxygen atom. Black circles
corresponds to the rate coefficients obtained from the cross sections
calculated by the probability current method; red asterisks – the rate

coefficients obtained from the cross sections calculated by the
multichannel formula; green diamonds – the rate coefficients obtained in
the work [106] by the multichannel formula using potentials obtained by
the LCAO method; black solid line corresponds to the predictions of the

simplified model. For the notation, see the Table 3.
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Figure 22. The dependence of the values of the total partial rate
coefficients of the excitation and de-excitation processes for the initial
channel 8 on the excitation energy of the oxygen atom. Black circles
corresponds to the rate coefficients obtained from the cross sections
calculated by the probability current method; red asterisks – the rate

coefficients obtained from the cross sections calculated by the
multichannel formula; green diamonds – the rate coefficients obtained in
the work [106] by the multichannel formula using potentials obtained by
the LCAO method; black solid line corresponds to the predictions of the

simplified model. For the notation, see the Table 3.
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Figure 23. The dependence of the values of the total partial rate
coefficients of the excitation and de-excitation processes for the initial
channel 10 on the excitation energy of the oxygen atom. Black circles
corresponds to the rate coefficients obtained from the cross sections
calculated by the probability current method; red asterisks – the rate

coefficients obtained from the cross sections calculated by the
multichannel formula; green diamonds – the rate coefficients obtained in
the work [106] by the multichannel formula using potentials obtained by
the LCAO method; black solid line corresponds to the predictions of the

simplified model. For the notation, see the Table 3.
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Figure 24. The dependence of the values of the total partial rate
coefficients of the de-excitation processes for the initial channel 11 on the

excitation energy of the oxygen atom. Black circles corresponds to the
rate coefficients obtained from the cross sections calculated by the

probability current method; red asterisks – the rate coefficients obtained
from the cross sections calculated by the multichannel formula; green

diamonds – the rate coefficients obtained in the work [106] by the
multichannel formula using potentials obtained by the LCAO method;

black solid line corresponds to the predictions of the simplified model. For
the notation, see the Table 3.
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with hydrogen atoms and ions were considered. Inelastic processes for 11

covalent states and two ionic states in six molecular symmetries have been

studied by the hopping probability current method (stochastic version), for

a total of 240 processes. By the multichannel formula, processes for 16

covalent states and two ionic ones for three molecular symmetries were

studied, a total of 292 processes. In the study of nuclear dynamics, molec-

ular adiabatic potential energies were used, obtained in paper [28] by the

MRCI method for 11 lower covalent states and two ionic ones, as well as

obtained within the framework of the asymptotic method for 5 high-lying

covalent states.

It is shown that:

• rate coefficients with the largest values correspond to the neutraliza-

tion processes O+(2𝑝3 4𝑆∘) +H−(1𝑠2 1𝑆) → O(2𝑝34𝑠 5𝑆𝑜) +H(1𝑠 2𝑆) ,

O−(2𝑝5 2𝑃 ) + H+ → O(2𝑝4 3𝑃 ) + H(2𝑝2𝑃 ) and O+(2𝑝3 4𝑆∘) +

H−(1𝑠2 1𝑆) → O(2𝑝33𝑝 3𝑃 ) + H(1𝑠 2𝑆) ; these processes, as well as

processes with the rate coefficients values greater than 10−12 cm 3 /s,

that is, processes belonging to groups I and II, are the most important

to take into account in modelling stellar spectra under conditions of

deviation from local thermodynamic equilibrium;

• taking into account non-adiabatic transitions in molecular symmetries

not generated by ionic states practically does not affect the values of

cross sections and rate coefficients of processes belonging to group I,

but can significantly affect processes belonging to groups II and III;

in particular, for some processes, the values of cross sections at low

collision energies are mainly determined by the contribution of non-

adiabatic transitions in molecular symmetries not generated by ionic

states;

The results obtained in this Chapter are published in the following

articles:
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• Mitrushchenkov A. et al. Inelastic excitation and charge transfer

processes for oxygen in collision with H atoms / A. Mitrushchenkov,

M. Guitou, A. K. Belyaev, Ya. V. Voronov, N. Feautrier // The

Journal of chemical physics. – 2019. – Vol. 150. – No. 6. – P.

064312 [28];

• Belyaev A. K. et al. Inelastic processes in oxygen–hydrogen collisions

/ A. K. Belyaev, Ya. V. Voronov, A. Mitrushchenkov, M. Guitou and

N. Feautrier // Monthly Notices of the Royal Astronomical Society.

– 2019. – Vol. 487. – No. 4. – P. 5097-5105 [29];

• Bergemann M. et al. Solar oxygen abundance / M. Bergemann, R.

Hoppe, E. Semenova, M. Carlsson, S. A. Yakovleva, Ya. V. Voronov,

M. Bautista, A. Nemer, A. K. Belyaev, J. Leenaarts, L. Mashonkina,

A. Reiners, M. Ellwarth // Monthly Notices of the Royal Astronomi-

cal Society. – 2021. – Vol. 508. – No. 2. – P. 2236-2253 [27].

Also, the results of this study were presented at two international

scientific conferences in the form of poster presentations:

• XXI Mendeleev Congress on General and Applied Chemistry, Sym-

posium "The Periodic Table through Space and Time" (9-13 Septem-

ber, 2019, Saint-Petersburg, Russia). Poster "Application of the

probability current method to nuclear dynamical calculations in

collisions with hydrogen";

• Physics of Stars and Planets: atmospheres, activity and magnetic

fields (16-20 September, 2019, N. Tusi Shamakhi Astrophysical Ob-

servatory, Shamakhi, Azerbaijan). Poster "Application of the prob-

ability current method to nuclear dynamical calculations in col-

lisions with hydrogen".
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Chapter 4. Investigation of inelastic processes

in collisions of calcium atoms and ions with

hydrogen atoms and ions

§ 4.1 Preliminary remarks

Calcium, along with other alkaline earth metals, as well as their ions, is

of great importance for astrophysical applications and for spectroscopy (see,

for example, papers [3–5,111–115] and references therein). It is one of the

best observed chemical elements in late-type stars [113, 116, 117]. In the

paper [116] noted: "In very metal-poor stars with metallicity [Fe/H]< −5 ,

calcium is the only chemical element visible in two ionized states, and the

Ca I and Ca II lines can also be a powerful tool for obtaining accurate values

of the fundamental parameters of stars and the Ca abundance itself."6

Calcium belongs to the group of 𝛼 -elements and is of particular im-

portance for astrophysics. For example, calcium is well suited for dis-

tinguishing stellar populations in the galactic disk and halo, and also

allows us to understand the relationship with dwarf spheroidal galaxies

(see [113,118,119] and references therein).

The main mechanism of calcium formation is explosive nucleosynthesis

in supernovae, with the yield coefficient [Ca/Fe] depending on the mass

and energy of the explosion [120]. However, it has been suggested that

a certain amount of calcium may also be synthesized during hydrostatic

combustion in the hot CNO cycle in stars belonging to stellar population III

(for example, [121]). Observations of the calcium content in stars with low

metallicity can help distinguish between these two mechanisms of calcium

formation.

Previously using the classical Drawin formula [11–13] several stud-

ies have been conducted to model calcium spectral lines under condi-

6[Fe/H]= 𝑙𝑜𝑔10(𝑁𝐹𝑒/𝑁𝐻)𝑠𝑡𝑎𝑟𝑠−𝑙𝑜𝑔10(𝑁𝐹𝑒/𝑁𝐻)𝑆𝑢𝑛 , where N is the concentration of atoms of an element.
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tions of deviation from local thermodynamic equilibrium (see, for exam-

ple, [116, 122–124]), although it has been repeatedly shown (see, for ex-

ample, [3, 14, 15]) that Drawin’s formula gives incorrect results. There

are also more accurate calculations of cross sections and rate coefficients

of inelastic processes in collisions of Ca+H and Ca+ + H− , carried out

by quantum model methods within the framework of the Landau-Zener

model [50, 125, 126]. Then the obtained quantum data were used to sim-

ulate the formation of Ca I lines under conditions of deviation from local

thermodynamic equilibrium in the works [113, 117]. The availability of

these data has eliminated the main source of uncertainty in the formation

of the Ca I line associated with the deviation from the local thermodynamic

equilibrium, so it is also important to expand the work on Ca II.

Thus, knowledge of the characteristics of inelastic processes in colli-

sions of calcium atoms and ions with hydrogen is of great importance for

astrophysical applications. This study is aimed at obtaining more accurate

values of cross sections and rate coefficients of inelastic processes in col-

lisions of Ca+H and Ca+ + H− within the framework of the probability

current method by taking into account non-adiabatic transitions at small

internuclear distances, as well as obtaining new collision data Ca+ + H ,

Ca+H+ and Ca2++H− . Moreover, the study of inelastic processes for the

quasimolecular ion CaH+ was carried out both without taking into account

the fine splitting of energy levels, and taking it into account, that is, in the

LS- and JJ representation, respectively. The account for the fine structure

is carried out within the framework of the approach proposed in [23,24].

Relatively recently, the paper of A. K. Belyaev et al. [18] was published,

in which nuclear dynamics was investigated within the framework of the

quantum reprojection method. In this regard, it is possible to analyze the

accuracy of the probability current method.
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§ 4.2 Investigation of inelastic processes in atom-atomic

collisions of Ca+H, as well as ion-ion collisions of

Ca++ H−

Let us proceed directly to the study of inelastic processes in collisions

of Ca+H and Ca+ + H− . The study was conducted within the frame-

work of the Born-Oppenheimer approach [19]. The electronic structure

of the CaH quasimolecule used in this work was obtained by the MRCI

method in [126]. Nuclear dynamics is investigated by the probability cur-

rent method (stochastic version of the algorithm). The cross sections of all

inelastic processes are calculated in the collision energy range 0.01 – 100

eV according to the formulas (1.70) and (1.72). The rate coefficients are

calculated in the temperature range 1000 – 10000 K according to the for-

mula (1.74) for exothermic processes and according to the balance equation

(1.75) for endothermic processes.

4.2.1 Adiabatic potential energies of a CaH quasimolecule

The adiabatic molecular potential energies used in this study were

calculated in the paper [126] by the MRCI quantum chemical method.

In total, 11 molecular states corresponding to 10 covalent and one ion

scattering channel in the molecular symmetry 2Σ+ were taken into account.

All the states taken into account in the study of nuclear dynamics are given

in the Table 6. Figure 25 shows the adiabatic molecular potential energies

of all the considered states, as a function of the internuclear distance.

4.2.2 Investigation of non-adiabatic nuclear dynamics by

the hopping probability current method

Non-adiabatic nuclear dynamics in this study is investigated by the

probability current method (see §1.4.3), namely the stochastic version of

the algorithm. To calculate the full probabilities of a non-adiabatic transition
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Figure 25. Adiabatic potential energies U 𝑗 of a CaH quasimolecule as a
function of the internuclear distance R for molecular symmetry 2Σ+ ,

calculated in [126]. See the notation in the Table 6.
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Table 6. Molecular states of a CaH quasimolecule in molecular symmetry
2Σ+ , corresponding scattering channels, asymptotic energies calculated

from the ground state Ca(4𝑠2 1𝑆) + H(1𝑠 2𝑆) , as well as statistical
weights, characterizing populations of molecular states 2Σ+ .

𝑗 Scattering Asymptotic 𝑝𝑠𝑡𝑎𝑡𝑗

channel energy (eV)

1 Ca(4𝑠2 1𝑆) + H(1𝑠 2𝑆) 0.0 1.0
2 Ca(4𝑠4𝑝 3𝑃 ∘) + H(1𝑠 2𝑆) 1.88585 0.11111
3 Ca(3𝑑4𝑠 3𝐷) + H(1𝑠 2𝑆) 2.52317 0.06667
4 Ca(3𝑑4𝑠 1𝐷) + H(1𝑠 2𝑆) 2.70920 0.2
5 Ca(4𝑠4𝑝 1𝑃 ∘) + H(1𝑠 2𝑆) 2.93215 0.33333
6 Ca(4𝑠5𝑠 3𝑆) + H(1𝑠 2𝑆) 3.91022 0.33333
7 Ca(4𝑠5𝑠 1𝑆) + H(1𝑠 2𝑆) 4.13066 1.0
8 Ca(3𝑑4𝑝 3𝐹 ∘) + H(1𝑠 2𝑆) 4.44114 0.04762
9 Ca(4𝑠5𝑝 3𝑃 ∘) + H(1𝑠 2𝑆) 4.53218 0.11111
10 Ca(4𝑠5𝑝 1𝑃 ∘) + H(1𝑠 2𝑆) 4.55395 0.33333
𝑖𝑜𝑛𝑖𝑐 Ca+(4𝑠 2𝑆) + H−(1𝑠2 1𝑆) 5.36308 1.0

from a given initial state to all possible final states, a GPU-based program

was used, which allowed for an acceptable time (several weeks) calculate

the dynamics of 𝑁 𝑡𝑜𝑡 =122,880 probability currents for each individual

launch in the collision energy range from 0.01 to 100 eV with variable

step (ΔE = 0.01 eV in the range [0.01,0.1) eV, ΔE = 0.1 eV in the

range [0.1,1.0) eV, ΔE = 1.0 eV in the range [1.0,10.0) eV, ΔE = 10.0

in the range [10.0,100.0) eV) for each value of the quantum number of

the total angular momentum J (in the range from 0 to several thousand

in increments of Δ𝐽 = 2 to speed up calculations, for more information,

see §1.4.3). This allows us to calculate the full probability of an inelastic

transition with a minimum value of the order of 8.1×10−6 . The accuracy

of determining the total probability of a non-adiabatic transition from some

initial state to some final one is 1√
𝑁 𝑡𝑜𝑡

≈0.003.



— 131 —

Since the probability current method is based on the Landau-Zener

model [64–66] to determine the probability of a single passage of a non-

adiabatic region, then data on the parameters of all non-adiabatic regions

are needed for calculations. For all non-adiabatic regions, all necessary pa-

rameters are obtained from adiabatic potential energies, such as the position

of the center of the non-adiabatic region, the energy splitting in the center

of the region, the average energy and the Landau-Zener parameter 𝜉 (see

the formula (1.53)).

Knowing the full probability of a non-adiabatic transition 𝑃 𝑡𝑜𝑡
𝑖𝑛→𝑜𝑢𝑡 , the

cross sections of all inelastic processes in the entire considered range of

collision energies were calculated using the formulas (1.70) and (1.72).

Then the rate coefficients were calculated in the temperature range 1000 –

10000 K in increments of Δ𝑇 = 1000 K according to the formula (1.74)

for exothermic processes and according to the balance equation (1.75) for

endothermic processes.

4.2.3 Analysis of cross sections and rate coefficients of inelastic pro-

cesses

A total of 110 inelastic processes have been investigated by the prob-

ability current method. The Figure 26 shows a comparison of the cross

sections of mutual neutralization Ca++H− → Ca*+H as a function of the

collision energy calculated by the probability current method (this study)

and within the framework of the reprojection method in the paper [18]. It

can be seen that the largest cross sections correspond to the neutralization

processes in the scattering channels Ca(4𝑠5𝑠 3𝑆)+H(1𝑠 2𝑆),Ca(4𝑠5𝑠 1𝑆)+

H(1𝑠 2𝑆),Ca(4𝑠5𝑝 3𝑃 ∘) + H(1𝑠 2𝑆),Ca(4𝑠5𝑝 1𝑃 ∘) + H(1𝑠 2𝑆) . At the same

time, the cross sections obtained by two different methods for these pro-

cesses agree with each other very well. Also, the cross sections of neutral-

ization processes Ca+ + H− → Ca(3d4s 1D) + H(1s 2S),Ca(3d4p 3F∘) +

H(1s 2S) have a good agreement, the cross sections of the processes

Ca++H− → Ca(4s2 1S)+H(1s) 2S),Ca(4s4p 3P∘)+H(1s 2S),Ca(3d4s 3D)+
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H(1s 2S),Ca(4s4p 1P∘) + H(1s 2S) are somewhat less consistent. For most

cross sections in almost the entire range of collision energies, the difference

in the values of the cross sections obtained by two different methods does

not exceed ≈30%, the largest differences do not exceed one order of mag-

nitude for neutralization processes in the lower three scattering channels.

Figure 27 shows a graphical representation of the rate coefficients of

the processes of excitation, de-excitation, ion-pair formation and mutual

neutralization at a temperature T = 6000 K, calculated from the cross

sections obtained by the probability current method. The calculated rate

coefficients can be divided into three groups, according to their values:

• group I: the processes with a rate coefficient exceeding 10−8 cm 3 /s;

• group II: the processes with a rate coefficient lying in the range

10−8 −−10−12 cm 3 /s;

• group III: the processes with a rate coefficient smaller than

10−12 cm 3 /s.

Let’s consider which groups the various processes belong to among

all inelastic processes at temperature T = 6000 K, as well as at some

other temperatures. The processes of mutual neutralization of Ca+ +

H− → Ca(4s5s 3S) + H(1s 2S),Ca(4s5s 1S) + H(1s 2S),Ca(4s5p 3P∘) +

H(1s 2S),Ca(4s5p 1P∘) + H(1s 2S) belong to the I group of processes

with characteristic values of rate coefficients lying in the range (2.4-

5.5)×10−8 cm 3 /s (in the Figure 27 are marked by red).

The second group of processes includes many processes of excitation,

de-excitation, ion-pair formation and mutual neutralization. The largest

values of the cross sections correspond to some processes of mutual neu-

tralization and ion-pair formation (at temperatures exceeding 4000 K), as

well as the process of de-excitation 7→6, with values of rate coefficients

at a temperature T = 6000 K, lying in the range (1.1-8.5)×10−9 cm 3 /s. In

the Figure 27, the processes belonging to group II are marked by orange,

yellow, green and blue.
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Figure 26. Cross sections of mutual neutralization processes
Ca+ +H− → Ca* +H as a function of the collision energy obtained by the

probability current method and by the reprojection method in the
paper [18]. Solid lines represent cross sections obtained by the probability

current method, symbols with a dotted line represent cross sections
obtained within the framework of the reprojection method. For the

notation, see the Table 6.
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Figure 27. Graphical representation of the rate coefficients of the processes
of excitation, de-excitation, ion-pair formation and mutual neutralization at

a temperature T = 6000 K. For the notation, see the Table 6.
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Group III at the temperature T = 6000 K includes the processes of

excitation, de-excitation and several processes of ion-pair formation, mainly

involving three low-lying states, as well as most of the processes of ion pair

formation at temperatures below 3000-4000 K. In the Figure 27, the pro-

cesses belonging to group III are marked by blue. Taking into account the

processes belonging to groups I and II is most important when modelling

gas and plasma media, in particular, the photospheres of stars.

Let us compare the rate coefficients of inelastic processes calculated

from cross sections obtained by various methods. Figure 28 shows the

dependence of the values of the rate coefficients of neutralization processes

on the excitation energy of the calcium atom for the temperature T = 6000

K. It can be seen that the rate coefficients obtained by both the probability

current method and the reprojection method agree very well with each

other, as well as with predictions of a simplified model. The rate coefficients

obtained by the probability current method for most processes ( 𝑖𝑜𝑛𝑖𝑐 →
3−10 ) differ from the rate coefficients obtained by the reprojection method

by less than two times. However, for neutralization processes in scattering

channels 1 and 2, the difference is 4.02 and 5.60 times, respectively.

Such a large discrepancy in the values of cross sections and rate co-

efficients of neutralization processes into low-lying scattering channels is

due to the fact that for non-adiabatic regions between these channels, the

Landau-Zener model does not describe the probability of non-adiabatic tran-

sition very well, while for higher-lying states, non-adiabatic transitions in

non-adiabatic regions between these high-lying channels can be described

with good accuracy within this model. This is confirmed by comparing

the cross sections of inelastic processes obtained by the probability current

method, taking into account the probability of a non-adiabatic transition in

each non-adiabatic region according to the Landau-Zener model, with the

cross sections obtained by calculating a system of coupled equations by the

reprojection method taking into account the radial matrix elements of non-

adiabatic coupling obtained by the ab initio quantum chemical calculations.
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Figure 28. The rate coefficients of the mutual neutralization processes
Ca+ +H− → Ca* +H as a function of the excitation energy of the calcium
atom for the temperature T = 6000 K, obtained by the probability current
method and the reprojection method in the paper [18]. Balls represent rate

coefficients calculated from cross sections obtained by the probability
current method, asterisks represent rate coefficients calculated from cross
sections obtained by the reprojection method, the solid line corresponds to
the predictions of the simplified model [107,108]. For the notation, see the

Table 6.
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The results of the comparison suggest that for most inelastic processes,

the probability current method reproduces the results of accurate quantum

calculations with good accuracy. At the same time, the probability current

method has a number of advantages, such as less demanding of compu-

tational resources, less computing time, and no need for data on matrix

elements of non-adiabatic couplings.

The Figures 29 and 30 show the temperature dependences of the rate

coefficients of the processes of mutual neutralization and ion-pair formation,

respectively. It can be seen that the data obtained by the probability current

method agree very well with the data obtained within the framework of the

reprojection method. Also, for processes 𝑖𝑜𝑛𝑖𝑐 ↔6, 7, 9, 10, these data

agree well with the data obtained by the multichannel formula (1.68). How-

ever, rate coefficient of the process 𝑖𝑜𝑛𝑖𝑐↔8 obtained by the multichannel

formula differ by about seven orders of magnitude from the rate coefficients

obtained by the probability current method and the reprojection method.

This suggests that the cross sections of these processes are strongly influ-

enced by non-adiabatic transitions at small internuclear distances, since the

non-adiabatic region due to ion-covalent interaction between states 8 and

9 is quite narrow (the energy splitting in the center of this non-adiabatic

region is very small). This is due to the fact that processes involving state

8 correspond to two-electron transitions within the 2Σ+ molecular symme-

try, and the passage of this region by the system has a diabatic character.

In this case, the total probability of a non-adiabatic transition from any 𝑗

channel to this one (the 𝑗 →8 process) has a small value when taking

into account only the non-adiabatic region due to the ion-covalent interac-

tion. Additional consideration of the non-adiabatic region at short distances,

caused primarily by covalent-covalent interaction, can lead to a significant

increase in the total probability of non-adiabatic transition to this state,

which will eventually lead to a significant increase in the cross sections of

inelastic processes, which is observed in this situation.

From the above analysis, the following conclusions can be drawn:
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Figure 29. The rate coefficients of the mutual neutralization processes
Ca+ +H− → Ca* +H as a function of temperature. Solid lines correspond

to rate coefficients calculated from cross sections obtained by the
probability current method, dotted lines – rate coefficients obtained from
cross sections calculated by the multichannel formula, symbols – rate
coefficients calculated from cross sections obtained by the reprojection

method in [18]. For the notation, see the Table 6. The value of the
𝑖𝑜𝑛→ 8 process rate coefficient obtained by the multichannel formula are

multiplied by 107 .
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Figure 30. The rate coefficients of the ion-pair formation processes
Ca* +H → Ca+ +H− as a function of temperature. Solid lines correspond

to rate coefficients calculated from cross sections obtained by the
probability current method, dotted lines – rate coefficients obtained from
cross sections calculated by the multichannel formula, symbols – rate
coefficients calculated from cross sections obtained by the reprojection

method in [18]. For the notation, see the Table 6. The value of the
𝑖𝑜𝑛→ 8 process rate coefficient obtained by the multichannel formula are

multiplied by 107 .
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1. For collisions of calcium with hydrogen, the probability current

method gives values of cross sections and rate coefficients that differ

little from the results obtained in the framework of ab initio quantum

calculations by the reprojection method: for most processes, the dif-

ference in the values of cross sections and rate coefficients lies in the

range of 30-50%, for all processes, the difference in the values of rate

coefficients does not exceed two orders of magnitude.

2. Taking into account non-adiabatic regions at small distances practi-

cally does not affect the final values of cross sections and rate co-

efficients of processes with large values, while for processes charac-

terized by small values of cross sections and rate coefficients, taking

into account these non-adiabatic regions can affect the values of cross

sections and rate coefficients significantly, which can be seen, for

example, when comparing cross sections and rate coefficients of the

neutralization process 𝑖𝑜𝑛𝑖𝑐↔8 obtained by the multichannel formula

(taking into account only the non-adiabatic regions due to ion-covalent

interaction) and by the probability current method: the difference in

the values of the rate coefficients reaches more than seven orders

of magnitude. At the same time, the values of cross sections and

rate coefficients for the same process obtained by the probability cur-

rent method are in good agreement with the results obtained by the

quantum reprojection method.

§ 4.3 Investigation of inelastic processes in ion-atomic

collisions Ca+ + H, Ca + H+ , as well as ion-ion

collisions Ca 2+ + H−

Let’s consider inelastic processes in atom-ion collisions of calcium and

hydrogen, namely Ca++H, Ca+H+ and Ca 2++H− . The electronic struc-

ture of the molecular ion CaH+ , used in this work in the study of nuclear
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dynamics, was obtained by the method of configuration interaction (full CI)

for a system of two valence electrons, taking into account the non-empirical

pseudopotential of the core of the ion Ca2+(3s23p6) in the paper [115],

initially the potentials were obtained in the diabatic representation in the

paper [114]. Nuclear dynamics is investigated by the probability current

method (stochastic version of the algorithm). The cross sections of all in-

elastic processes are calculated in the collision energy range 0.01 –100 eV

according to the formulas (1.70) and (1.72). The rate coefficients are cal-

culated in the temperature range 1000 – 10000 K according to the formula

(1.74) for exothermic processes and according to the balance equation (1.75)

for endothermic processes.

4.3.1 Adiabatic potential energies of the molecular ion CaH+

Adiabatic molecular potential energies for 17 molecular states in the

molecular symmetry 1Σ+ were obtained in [114] by the configuration in-

teraction method (full CI) for a system of two valence electrons: one on a

hydrogen atom, the second on a calcium ion Ca+(4s) . The pseudopotential

of the core Ca2+(3s23p6) was calculated for the calcium atom, which was

taken into account in the calculations. Initially, the potentials were calcu-

lated in the diabatic representation, then adiabatic potential energies were

obtained from these potentials (see [115]), which are used in this study of

nuclear dynamics. All 17 considered states are shown in the Table 7. Fig-

ure 31 shows the adiabatic molecular potential energies of all the considered

states, as a function of the internuclear distance. It can be seen that there

is an extremely large energy splitting between the third and fourth terms,

about 3 eV in the center of the non-adiabatic region. Because of this, it is

expected that the cross sections of inelastic processes involving the three

lower channels will have extremely low values, with the possible exception

of transitions between these three channels.
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Figure 31. Adiabatic potential energies U 𝑗 of the molecular ion CaH+ as
a function of the internuclear distance R for the molecular symmetry 1Σ+ ,

calculated in [115]. See the notation in the Table 7.
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Table 7. Molecular states of the molecular ion CaH+ in molecular
symmetry 1Σ+ , corresponding scattering channels, asymptotic energies
calculated from the ground state Ca+(4𝑠 2𝑆) + H(1𝑠 2𝑆) and statistical

weights characterizing populations of molecular states in 1Σ+ symmetry.

𝑗 Scattering Asymptotic 𝑝𝑠𝑡𝑎𝑡𝑗

channel energy (eV)

1 Ca+(4𝑠 2𝑆) + H(1𝑠 2𝑆) 0.0 0.25
2 Ca+(3𝑑 2𝐷) + H(1𝑠 2𝑆) 1.69682 0.05
3 Ca+(4𝑝 2𝑃 ∘) + H(1𝑠 2𝑆) 3.14173 0.0833
4 Ca+(5𝑠 2𝑆) + H(1𝑠 2𝑆) 6.44250 0.25
5 Ca+(4𝑑 2𝐷) + H(1𝑠 2𝑆) 7.05761 0.05
6 Ca+(5𝑝 2𝑃 ∘) + H(1𝑠 2𝑆) 7.50988 0.0833
7 Ca(4𝑠2 1𝑆) + H+ 7.51040 1.0
8 Ca+(4𝑓 2𝐹 ∘) + H(1𝑠 2𝑆) 8.44472 0.035714
9 Ca+(6𝑠 2𝑆) + H(1𝑠 2𝑆) 8.74708 0.25
10 Ca+(5𝑑 2𝐷) + H(1𝑠 2𝑆) 9.01708 0.25
11 Ca+(6𝑝 2𝑃 ∘) + H(1𝑠 2𝑆) 9.23838 0.0833
12 Ca+(7𝑠 2𝑆) + H(1𝑠 2𝑆) 9.85033 0.05
13 Ca+(4𝑠 2𝑆) + H(2𝑠 2𝑆) 10.20165 0.25
14 Ca+(4𝑠 2𝑆) + H(2𝑝 2𝑃 ) 10.20505 0.0833
15 Ca(3𝑑4𝑠 1𝐷) + H+ 10.22470 0.2
16 Ca(4𝑠4𝑝 1𝑃 ) + H+ 10.37681 0.3333
17 Ca2+(3𝑝6 1𝑆) + H−(1𝑠2 1𝑆) 11.16617 1.0

4.3.2 Investigation of nonadiabatic nuclear dynamics by

the hopping probability current method

Non-adiabatic nuclear dynamics in this study is investigated by the

probability current method (see §1.4.3), namely the stochastic version of

the algorithm. To calculate the full probabilities of a non-adiabatic tran-

sition from a given initial state to all possible final states, a GPU-based

program was used, which allowed for an acceptable time (several weeks)
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calculate the dynamics of 𝑁 𝑡𝑜𝑡 =65,536 probability currents for each in-

dividual launch in the collision energy range from 0.01 to 100 eV with

variable step (ΔE = 0.01 eV in the range [0.01,0.1) eV, ΔE = 0.1 eV in

the range [0.1,1.0) eV, ΔE = 1.0 eV in the range [1.0,10.0) eV, ΔE =

10.0 in the range [10.0,100.0) eV) for each value of the quantum number

of the total angular momentum J (in the range from 0 to several thousand

in increments of Δ𝐽 = 2 to speed up calculations, for more information,

see §1.4.3). This allows us to calculate the full probability of an inelastic

transition with a minimum value of the order of 1.526×10−5 . The accuracy

of determining the total probability of a non-adiabatic transition from some

initial state to some final one is 1√
𝑁 𝑡𝑜𝑡

≈0.004.

In the course of further research, it turned out that such accuracy

is not enough to describe processes involving the three lower states. The

program for calculating cross sections by the method of probability currents

has been upgraded:

1) the algorithm for calculating the dynamics of probability currents has

been upgraded: an adaptive step along the internuclear distance has been

taken into account, which significantly accelerates the calculation of the

dynamics of each probability current;

2) the program for calculating the full probabilities of a non-adiabatic tran-

sition from a given initial state to all final ones has been upgraded

using GPU calculation capabilities: now not only different threads and

blocks are used, but also several grids, which allows to multiply the

number of simultaneously calculated probability currents; also, in ad-

dition, for greater accuracy, several sequentially launched calculations

are now being launched on the video card, which, together with the

modernization of the algorithm, allows for more than an order of mag-

nitude improvement in the accuracy of calculations with approximately

the same calculation time.
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As a result, the total probabilities of non-adiabatic transitions, cross sec-

tions and rate coefficients of inelastic processes were recalculated with the

number of probability currents 𝑁 𝑡𝑜𝑡 =104,857,600, which gives a minimum

probability of 9.53×10−9 and an accuracy of the order of 1√
𝑁 𝑡𝑜𝑡

≈ 10−4 .

Further comparison will be carried out with the second, recalculated data

set (cross sections and rate coefficients). For all non-adiabatic regions, all

the parameters necessary for the application of the Landau-Zener model

are obtained from adiabatic potential energies (the position of the center

of the non-adiabatic region 𝑅𝐶 , the energy splitting in the center of the

non-adiabatic region, the value of the average energy and the Landau-Zener

parameter 𝜉 , see (1.53)).

4.3.3 Analysis of cross sections and rate coefficients of inelastic pro-

cesses

Figure 32 shows cross sections of neutralization processes

Ca2+ + H− → Ca+/Ca* + H*/H+ as a function of the collision

energy, calculated by the probability current method. Solid lines corre-

spond to the cross sections obtained by the modernized probability current

method, symbols and dotted lines correspond the cross sections obtained

by the old version of the probability current method. It can be seen that

for almost all the cross sections presented, both versions give the same re-

sult, however, for cross sections of neutralization processes into scattering

channels 4, 5, 6 at low collision energies (less than a few eV), the new

version of the program gives smoother cross sections, without fluctuations.

The cross sections of the neutralization processes into three lower channels

not shown in this figure, the old version of the program gave reasonable

values of the cross sections (estimated by the multichannel formula) only

at very large values of the collision energy (exceeding 30-40 eV). At lower

energies, due to artifacts of numerical calculations, the cross sections were

overestimated by several orders of magnitude. At the same time, it was

not possible to obtain cross sections with both versions of the programs
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for collision energies less than 1 eV, there was not enough accuracy. For

this reason, for processes involving the three lower channels, it is better

to use estimates obtained by the multichannel formula, since there are no

non-adiabatic regions located at short distances for these states.

Figure 33 shows the dependence of the rate coefficients values of neu-

tralization processes on the excitation energy of the calcium ion Ca+ at a

temperature T = 6000 K, obtained by the probability current method and

by the multichannel formula. It can be seen that for most processes, the

results obtained by two different methods agree very well with each other,

which suggests that the main contribution to the cross sections of these

processes is made by inelastic transitions in the non-adiabatic regions due

to ion-covalent interaction. However, it is also seen that for neutralization

processes involving highly excited molecular states, the results calculated

by the multichannel formula differ from the results obtained by the prob-

ability current method. This suggests that for processes involving highly

excited states, transitions in the non-adiabatic regions located at short dis-

tances can have a significant effect on the values of the final cross sections

and rate coefficients.

Figure 34 shows a graphical representation of the values of the rate co-

efficients of all the studied inelastic processes for temperature T = 6000 K.

We divide, as before, all the rate coefficients into three groups, according

to their values:

• group I: the processes with a rate coefficient exceeding

10−8 cm 3 /s (marked by red squares in the Figure 34);

• group II: the processes with a rate coefficient lying in the range

10−8 − −10−12 cm 3 /s (marked by orange, yellow, green and light

blue squares in the Figure 34;

• group III: the processes with a rate coefficient smaller than

10−12 cm 3 /s (marked by blue squares in the Figure 34).
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Figure 32. Cross sections of neutralization processes
Ca2+ +H− → Ca+/Ca* +H*/H+ as a function of the collision energy

calculated by the probability current method. Solid lines represent cross
sections obtained by the modernized probability current method, symbols

with a dotted line represent cross sections obtained by the probability
current method without optimization and modernization. For the notation,

see the Table 7.
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Figure 33. Rate coefficients of neutralization processes
Ca2+ +H− → Ca+/Ca* +H*/H+ as a function of the excitation energy of
calcium ion Ca+ for a temperature T = 6000 K, obtained by the upgraded

probability current method and by the multichannel formula. Balls
represent rate coefficients calculated from cross sections obtained by the
probability current method, asterisks represent rate coefficients calculated

from cross sections obtained by the multichannel formula. The rate
coefficients of the processes 17→6, 14, 15 obtained by the multichannel

formula have values less than 10−15 cm 3 /s, therefore they are not
represented on this figure. For the notation, see the Table 7.
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At a temperature of T = 6000 the neutralization processes 17→8, 9, 10,

11, 12 belong to the I group of processes as well as the process of de-

excitation 16→13 with values of rate coefficients lying in the range (1.79-

15.6)×10−8 cm 3 /s.

Group II of processes includes many processes of excitation, de-

excitation, recharge, ion-pair formation and neutralization. The largest

cross sections correspond to some processes of neutralization, ion-pair for-

mation, de-excitation, excitation and recharge with characteristic values of

rate coefficients at a temperature T = 6000 K, lying in the range (1.22-

9.57)×10−9 cm 3 /s.

Group III includes almost all processes involving the three lower states

(with the exception of one process of de-excitation 4→3), as well as many

processes of excitation, de-excitation, recharge and some processes of ion-

pair formation (involving states 4, 5, 6).

From the above analysis, the following conclusions can be drawn:

1. The rate coefficients of processes involving the three lower states,

namely Ca+(4𝑠 2𝑆) + H(1𝑠 2𝑆) , Ca+(3𝑑 2𝐷) + H(1𝑠 2𝑆) and

Ca+(4𝑝 2𝑃 ∘)+H(1𝑠 2𝑆) have extremely small values, which is caused

by a large energy splitting between the third and fourth molecular

states.

2. Taking into account non-adiabatic regions at short distances can have

a significant impact on the final values of cross sections and rate

coefficients, especially this is typical for high-lying states.

3. For most processes, the dominant mechanism of non-adiabatic transi-

tions is the ion-covalent interaction, which forms non-adiabatic regions

at medium and large internuclear distances.
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Figure 34. Graphical representation of the rate coefficients of the
processes of charge exchange, excitation and de-excitation at a
temperature of T = 6000 K. See the notation in the Table 7.
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§ 4.4 Investigation of inelastic processes in collisions of

calcium cations with hydrogen atoms and anions

Ca++H and Ca 2++H− taking into account the fine

structure of energy levels

The method of accounting for the fine structure of alkali metal atoms

proposed in papers [23, 24] (see also Chapter 2), is also suitable for ac-

counting for the fine structure of alkaline earth metal ions. The following

questions are of interest: how much consideration of the fine structure of

an atom/ion in collisions with hydrogen can affect the final values of the

cross sections and rate coefficients of inelastic processes? And how the rate

coefficients obtained in the LS representation (without taking into account

the fine structure) and in the JJ representation (taking into account the fine

structures), summed up over all levels of the fine structure, correlate with

each other? The study of collisions of calcium ions with hydrogen atoms

provides answers to these questions.

Within the framework of this study, atomic terms in JJ representation

were obtained from quantum chemical adiabatic potential energies and all

parameters of the non-adiabatic regions necessary for the application of

the Landau-Zener model were determined. Only the non-adiabatic regions

due to ion-covalent interaction were taken into account, since the method

proposed in [23], allows us to correctly take into account only such non-

adiabatic regions. In the case of collisions of Ca++H and Ca 2++H− , as

was shown in the previous part of this Chapter, the main mechanism of non-

adiabatic transitions is the ion-covalent interaction. Nuclear dynamics was

investigated by the multichannel formula. The cross sections are calculated

in the collision energy range 0.001 – 100 eV, the rate coefficients are

calculated in the temperature range 1000 – 10000 K according to the same

formulas as before.
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4.4.1 Adiabatic potential energies of a quasimolecular ion CaH+ in

the JJ representation

At the paper [115] the adiabatic potential energies of the quasimolecu-

lar ion CaH+ were presented in the LS representation. In recent work [23]

the asymptotic method for taking into account the fine splitting of energy

levels has been proposed. This method was applied to the original terms

of the quasimolecular ion CaH+ in the LS representation, resulting in the

terms in the JJ representation. These topics are shown in the Figure 35,

all the considered states are listed in the Table 8.

As can be seen from the Figure 35, the result is adiabatic poten-

tial energies, between which there are regions where terms going closer

to each other (non-adiabatic regions) due to the ion-covalent interaction

of molecular terms. At the same time, the non-adiabatic regions caused

by covalent-covalent interaction cannot be correctly described within the

framework of the method proposed in the paper [23], since this method is

asymptotic. At the same time, these non-adiabatic regions are arranged in

a certain order, which allows the use of the multichannel formula (1.68) to

calculate the total probability of a non-adiabatic transition from some initial

state to some final one.

4.4.2 Investigation of non-adiabatic nuclear dynamics in the frame-

work of the multichannel approach

In this study, non-adiabatic nuclear dynamics in collisions of Ca+ + H

and Ca 2+ + H− is investigated within the framework of the multichannel

approach based on the Landau-Zener model. For all non-adiabatic regions,

the parameters necessary for the application of the Landau-Zener model

were determined (see more details (1.53)). Using the multichannel for-

mula (see §1.4.4), the total probabilities of non-adiabatic transitions from

all initial states to all final ones are calculated. According to the calculated

probabilities, the cross sections of all inelastic processes are calculated ac-
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Figure 35. The potential energies of the molecular ion CaH+ , taking into
account the fine structure, obtained within the framework of the method

described in the paper [23] from the adiabatic potential energies calculated
in the work [115]. Solid lines denote the original adiabatic potential
energies, dotted lines represent the potential energies obtained by the

asymptotic method of taking into account the fine structure [23]. See the
notation in the Table 8.
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Table 8. Molecular states CaH+(𝑗 0+) in the JJ representation,
corresponding scattering channels, asymptotic energies calculated from the

ground state Ca+(4𝑠 2𝑆1/2) + H(1𝑠 2𝑆1/2) (data taken from the NIST
database [109]) and statistical populations 𝑝𝑠𝑡𝑎𝑡𝑗 of molecular states 0+ .

j Scattering Asymptotic 𝑝𝑠𝑡𝑎𝑡𝑗

channel energy (eV)

1 Ca+(4𝑠 2𝑆1/2) + H(1𝑠 2𝑆1/2) 0.0 0.25

2 Ca+(3𝑑 2𝐷3/2) + H(1𝑠 2𝑆1/2) 1.692408 0.125
3 Ca+(3𝑑 2𝐷5/2) + H(1𝑠 2𝑆1/2) 1.699932 0.0833

4 Ca+(4𝑝 2𝑃 ∘
1/2) + H(1𝑠 2𝑆1/2) 3.123349 0.25

5 Ca+(4𝑝 2𝑃 ∘
3/2) + H(1𝑠 2𝑆1/2) 3.150984 0.125

6 Ca+(5𝑠 2𝑆1/2) + H(1𝑠 2𝑆1/2) 6.467875 0.25

7 Ca+(4𝑑 2𝐷3/2) + H(1𝑠 2𝑆1/2) 7.047169 0.125
8 Ca+(4𝑑 2𝐷5/2) + H(1𝑠 2𝑆1/2) 7.049551 0.0833

9 Ca+(5𝑝 2𝑃 ∘
1/2) + H(1𝑠 2𝑆1/2) 7.505138 0.25

10 Ca+(5𝑝 2𝑃 ∘
3/2) + H(1𝑠 2𝑆1/2) 7.514841 0.125

11 Ca+(4𝑓 2𝐹 ∘
5/2) + H(1𝑠 2𝑆1/2) 8.437981 0.0833

12 Ca+(4𝑓 2𝐹 ∘
7/2) + H(1𝑠 2𝑆1/2) 8.437981 0.0625

13 Ca+(6𝑠 2𝑆1/2) + H(1𝑠 2𝑆1/2) 8.762908 0.25

14 Ca+(5𝑑 2𝐷3/2) + H(1𝑠 2𝑆1/2) 9.016407 0.125
15 Ca+(5𝑑 2𝐷5/2) + H(1𝑠 2𝑆1/2) 9.017486 0.0833

16 Ca+(6𝑝 2𝑃 ∘
1/2) + H(1𝑠 2𝑆1/2) 9.234953 0.25

17 Ca+(6𝑝 2𝑃 ∘
3/2) + H(1𝑠 2𝑆1/2) 9.239519 0.125

18 Ca+(7𝑠 2𝑆1/2) + H(1𝑠 2𝑆1/2) 9.850331 0.25

19 Ca+(4𝑠 2𝑆1/2) + H(2𝑠 2𝑆1/2) 10.20165 0.25

20 Ca+(4𝑠 2𝑆1/2) + H(2𝑝 2𝑃1/2) 10.20505 0.25
21 Ca+(4𝑠 2𝑆1/2) + H(2𝑝 2𝑃3/2) 10.20505 0.125

22 Ca2+(3𝑝6 1𝑆0) + H−(1𝑠2 1𝑆0) 11.11772 1.0
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cording to the formulas (1.70) and (1.72) in the collision energy range

0.0001 – 100 eV, then the rate coefficients in the temperature range 1000 –

10000 K are calculated according to the formulas (1.74) and (1.75) for

exothermic and endothermic processes, respectively.

4.4.3 Analysis of cross sections and rate coefficients of inelastic pro-

cesses

One of the main questions in this study is the following: how will

taking into account the fine structure of energy levels eventually affect the

values of cross sections and rate coefficients? To answer it, let’s compare the

rate coefficients obtained by the same method – namely, the multichannel

formula – for the same set of potentials in LS and JJ representations,

respectively.

Figure 36 shows the dependences of the values of the rate coefficients

of neutralization processes on the excitation energy of the calcium ion Ca+

at a temperature T = 6000 K, while the rate coefficients obtained taking

into account the fine structure of energy levels are not summed over the

fine structure levels. It can be seen from this figure that practically all the

rate coefficients obtained in the JJ coupling approximation do not individu-

ally exceed the values of the rate coefficients obtained in the LS coupling

approximation, with rare exceptions, as expected, since one scattering chan-

nel in the LS representation corresponds to one or more scattering channels

in the JJ representation.

Therefore, it is also of interest to compare the rate coefficients summed

over all levels of the fine structure, which is shown in Figure 37. In this

case, the comparison can also be carried out with the rate coefficients

obtained by the probability current method in the previous part of this

Chapter. It can be seen from this figure that the rate coefficients with the

largest values (exceeding 10−10 cm 3 /s) do not differ much, no matter what

method they are calculated.
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Figure 36. The rate coefficients of neutralization processes at a
temperature T = 6000 K, as a function of the excitation energy of the
calcium ion in the final state (calculated from the energy of the ground
state). Asterisks correspond to rate coefficients obtained without taking

into account the fine structure (in LS representation), triangles correspond
to rate coefficients obtained taking into account the fine structure (in JJ

representation). Both data sets are calculated by the multichannel formula.
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Figure 37. The rate coefficients of neutralization processes at a
temperature T = 6000 K, as a function of the excitation energy of the
calcium ion in the final state (calculated from the energy of the ground
state). Balls correspond to rate coefficients obtained by the probability

current method (in LS representation), asterisks – rate coefficients
obtained by the multichannel formula without taking into account the fine
structure (in LS representation), triangles – rate coefficients obtained by
the multichannel formula taking into account the fine structure (in JJ

representation), summed over fine structure levels.
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Let us analyze the values of the total rate coefficients of neutralization

processes obtained by different methods. The total rate coefficient of the

neutralization process, obtained from calculations by the probability current

method, is 3.48×10−7 cm 3 /s, by the multichannel formula without taking

into account the fine structure – 2.88×10−7 cm 3 /s, by the multichannel

formula taking into account the fine structure – 3.26×10−7 cm 3 /s. As can

be seen, the difference in values does not exceed 20%. At the same time,

taking into account the fine structure in this case increases the total rate

coefficient of the neutralization process relative to the calculation by the

multichannel formula without taking into account the fine structure and

approximates its value to the value of the rate coefficient obtained by the

more accurate probability current method.

From all of the above, several conclusions can be drawn:

1. The rate coefficients of neutralization processes into low-lying scatter-

ing channels obtained taking into account the fine structure are almost

always smaller in magnitude than the rate coefficients obtained with-

out taking into account the fine structure, see Figure 37, processes in

the vicinity of the excitation energy of the final state of the calcium

ion ≈7 eV and less.

2. The rate coefficients of neutralization processes obtained by the mul-

tichannel formula taking into account the fine structure, with values

exceeding ≈ 10−10 cm 3 /s, differ both in the higher and lower direc-

tion relative to the rate coefficients obtained also by the multichannel

formula but without taking into account the fine structure. This sug-

gests that taking into account the fine structure of energy levels leads

to a non-trivial redistribution of the values of the rate coefficients,

which cannot be reproduced using any simple formulas.
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§ 4.5 Concluding remarks

In this paper, inelastic processes in collisions of calcium atoms and

ions with hydrogen atoms and ions, namely the processes of excitation,

de-excitation and charge exchange, were investigated.

It is shown that:

1. For collisions Ca + H and Ca+ + H− , the probability current method

gives values of cross sections and rate coefficients that differ little

from the results obtained in the framework of ab initio quantum cal-

culations by the reprojection method: for most processes, the differ-

ence in the values of cross sections and rate coefficients lies in the

range of 30-50%, for all processes, the difference in the values of the

rate coefficients does not exceed two orders of magnitude.

2. Taking into account non-adiabatic regions at short distances practi-

cally does not affect the final values of cross sections and rate coef-

ficients of processes with large values, while for processes character-

ized by small values of cross sections and rate coefficients, taking into

account these regions can significantly affect the values of cross sec-

tions and rate coefficients, especially this is typical for highly excited

states.

3. For most of the processes considered in collisions Ca + H,

Ca+ + H− , Ca+ + H, Ca + H+ and Ca 2+ + H− the dominant

mechanism of non-adiabatic transitions is the ion-covalent interaction,

which forms non-adiabatic regions at medium and large internuclear

distances.

4. Taking into account the fine structure of energy levels leads to a

non-trivial redistribution of the values of the rate coefficients, which

cannot be reproduced using any simple formulas.
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Chapter 5. Investigation of inelastic processes

in collisions of lithium atoms and ions with

hydrogen atoms and ions

§ 5.1 Preliminary remarks

Lithium is a fairly common chemical element in the Universe. Lithium

was the third most common element formed during primary nucleosynthe-

sis. Determining the lithium abundance in the photospheres of stars of

various spectral classes is an very important task of modern astrophysics

for several reasons. Firstly, the most accurate determination of the lithium

abundance allows us to build more accurate models of primary nucleosyn-

thesis (see, for example, [127]). Secondly, the lithium abundance, as well

as beryllium and boron, makes it possible to understand the mixing pro-

cesses inside stars (see, for example, [127], and references therein). Thirdly,

the precise determination of lithium abundance makes it possible to better

understand the processes of stellar evolution. In cosmology, there are so-

called primary lithium problem [128] and the Spite plateau problem (or the

secondary lithium problem) [129,130], also see [131].

One of the important problems is also the problem of the primary

nucleosynthesis of the isotope 7Li (see, for example, [132]), which consists

in the fact that the amount of the isotope 7Li predicted by the standard

theory of the Big Bang nucleosynthesis exceeds three to four times the

amount observed in the oldest stars, although the known abundance of

deuterium 2H and helium 4He are good consistent with the predictions of

the theory of primary nucleosynthesis (see [128, 133–139], and references

therein).

The study of the effect of the substitution of isotopes of both lithium

and hydrogen on the values of cross sections and rate coefficients is also

important for the reason that it is easier to investigate collisions with

deuterium rather than hydrogen in an experiment (see, for example, [7–
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9]). But, since collisions with hydrogen are of interest for astrophysical

applications, it is necessary to understand well how the replacement of

hydrogen with deuterium will affect the values of cross sections and rate

coefficients.

The importance of taking into account inelastic collisions of lithium

with hydrogen for lithium thermalization was first noted in [13]. The first

estimates of the rate coefficients of excitation processes were obtained in

the same work using the Dravin formula. Since then, many studies of

the photospheres of stars of various spectral classes have been carried out

within the framework of deviation from local thermodynamic equilibrium

(see, for example, [131, 140–143] and references therein). These studies

were based on various sets of data on rate coefficients. It should be noted

separately that in the work [144] it was shown that, in addition to the

excitation processes, the processes of mutual neutralization and ion-pair

formation are of great importance, especially for stars with low metallicity.

It should also be noted that for lithium-hydrogen collisions, theoretical

calculations are not the only source of information on the characteristics of

inelastic collisions to date. Various scientific teams have conducted many

experimental studies of the processes of mutual neutralization of Li++

H− /D− → Li *+H/D for different collision energies (see, for example,

[7,8,145,146]). This state of affairs allows for a detailed comparison of the

results of theoretical calculations and experimental data and to improve the

models used.

Studies of the electronic structure of the LiH molecule have been car-

ried out in such works as [7,147,148] and others. Nuclear dynamics studies

have also been conducted as part of the most accurate quantum reprojection

method [15], and within the multichannel formula (for example, [7]). At

the paper [15] the nuclear dynamics study within the framework of the

reprojection method was carried out for the four lower lithium states Li(2s,

2p, 3s, 3p), while the excitation cross section into the Li(3p) state was

considered as the total cross section into this state and all the overlying
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ones. The partial cross sections in these overlying states were estimated

using a multichannel formula.

The research to which this Chapter of the dissertation is devoted was

carried out in order to more accurately assess partial cross sections in-

volving lithium states Li(3p, 3d, 4s, 4p), as well as to identify the effect

of lithium and hydrogen isotope substitution in collisions on the values of

cross sections and rate coefficients. For this purpose, the potential energies

obtained in [148] were used, as well as the hopping and branching proba-

bility current method. This Chapter will present the results of studies of

inelastic processes in collisions of lithium and hydrogen. Cross sections of

inelastic processes are calculated in the collision energy range 0.001 – 100

eV, rate coefficients in the temperature range 1000 – 10000 K.

§ 5.2 Adiabatic potential energies of the LiH molecule

The electronic structure of the LiH molecule used in this study was

calculated by the pseudopotential method in [148]. These data are an im-

proved version of the potentials calculated in [147,149]. At the paper [148]

Croft et al. not only calculated the electronic structure of the LiH molecule,

but also compared their results with the experimentally obtained spectro-

scopic data on the vibrational levels of the ground and first excited states

of LiH and obtained good agreement. In the Table 9 presents a comparison

of the results obtained in [7, 148] with experimentally known data on the

asymptotic energies of the LiH molecule [109] (Table 9a), as well as a com-

parison of the positions of the centers of the non-adiabatic regions caused

by ion-covalent interaction and located at relatively large internuclear dis-

tances, and the maximum values of the matrix elements of the non-adiabatic

coupling 𝐻𝑗𝑘 in the centers of the corresponding non-adiabatic regions 𝑅𝑐

(Table 9b). It can be seen that all data sets agree well with each other,

with the exception of non-adiabatic coupling for the last two high-lying

non-adiabatic regions. Thus, it can be concluded that the potential energies
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presented in [148] are sufficiently accurate and suitable for the study of

non-adiabatic nuclear dynamics in lithium-hydrogen collisions.

Table 9. a) comparison of the asymptotic energies of the scattering
channels (in eV) of the quasimolecule LiH( 1Σ+ ); b) comparison of the

positions of the centers of the non-adiabatic regions 𝑅𝑐 (in atomic units)
caused by ion-covalent interaction and located at relatively large
internuclear distances, as well as the maximum values of the

corresponding matrix elements of the non-adiabatic coupling 𝐻𝑗𝑘 in the
centers of the non-adiabatic regions 𝑅𝑐 (in atomic units).

a) asymptotic energies, eV

No.
Scattering

NIST
Croft Launoy

channel et al. [148] et al. [7]
1 Li(2s) + H(1s) 0.0 0.0 0.0
2 Li(2p) + H(1s) 1.8478 1.8480 1.8495
3 Li(3s) + H(1s) 3.3731 3.3738 3.3721
4 Li(3p) + H(1s) 3.8343 3.8343 3.8357
5 Li(3d) + H(1s) 3.8786 3.8795 3.8770
6 Li(4s) + H(1s) 4.3409 4.3416 4.3561
7 Li(4p) + H(1s) 4.5216 4.5223 ——
8 Li+ + H− 4.6377 4.6377 4.639

b) Parameters 𝑅𝑐 and 𝐻𝑗𝑘, a.u.

No. j-k
𝑅𝑐, a.u. 𝐻𝑗𝑘, a.u.

Croft Launoy Croft Launoy
et al. [148] et al. [7] et al. [148] et al. [7]

1 Li(2s)-Li(2p) 7.20 7.19 0.22 0.21
2 Li(2p)-Li(3s) 11.30 11.41 0.17 0.18
3 Li(3s)-Li(3p) 22.05 22.12 0.47 0.50
4 Li(3p)-Li(3d) 34.40 34.05 1.08 1.24
5 Li(3d)-Li(4s) 35.90 35.97 3.69 2.04

The Figure 38 shows the potential energies of the LiH molecule. In

total, 7 covalent states and one ionic state were taken into account. The

Table 10 shows all the states taken into account in this study in 1Σ+ sym-

metry. All other molecular symmetries were not considered, because, as
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Figure 38. Adiabatic potential energies U 𝑗 of a quasimolecule LiH as a
function on the internuclear distance R for molecular symmetry 1Σ+ ,

calculated in [148]. For the notation, see the Table 10.

discussed earlier in Chapters 3, 4, and also mainly confirmed in Chapter 3,

the main contribution to the values of cross sections and rate coefficients

make transitions within the molecular symmetry of the ionic channel. Tran-

sitions between different molecular symmetries were also not considered for

the reasons outlined in Chapter 3.
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Table 10. The molecular states of the quasimolecule LiH in 1Σ+

symmetry, corresponding scattering channels, asymptotic energies (in eV)
calculated from the ground state, and statistical populations of molecular

states in 1Σ+ symmetry.

j Scattering Asymptotic 𝑝𝑠𝑡𝑎𝑡𝑗

channels energies (eV)

1 Li(2𝑠 2𝑆) + H(1𝑠 2𝑆) 0.0 0.2500
2 Li(2𝑝 2𝑃 ) + H(1𝑠 2𝑆) 1.8480 0.0833
3 Li(3𝑠 2𝑆) + H(1𝑠 2𝑆) 3.3738 0.2500
4 Li(3𝑝 2𝑃 ) + H(1𝑠 2𝑆) 3.8343 0.0833
5 Li(3𝑑 2𝐷) + H(1𝑠 2𝑆) 3.8795 0.0500
6 Li(4𝑠 2𝑆) + H(1𝑠 2𝑆) 4.3416 0.2500
7 Li(4𝑝 2𝑃 ) + H(1𝑠 2𝑆) 4.5223 0.0833

ionic Li+(1𝑠2 1𝑆) + H−(1𝑠2 1𝑆) 4.6377 1.0

§ 5.3 Investigation of non-adiabatic nuclear dynamics in

the LiH molecule with averaging over the masses

of lithium isotopes. Analysis of cross sections and

rate coefficients

Usually, when calculating inelastic processes in collisions of various

elements with hydrogen, the mass of various isotopes of the element that

is the partner of the collision with hydrogen is not taken into account. The

mass of an element is considered the weighted average mass of all isotopes,

taking into account the prevalence of these isotopes. This paragraph is

devoted to a calculations, where the weighted average mass of lithium

isotopes 6Li and 7Li , equal to 6.9675 au, was taken into account.

The total probabilities of non-adiabatic transitions from all initial states

to all final ones were calculated by the hopping probability current method

(see § 1.4.3). At the same time, the total number of probability currents for
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each calculation over the quantum number of the total angular momentum

was equal to 𝑁 𝑡𝑜𝑡 =163,840, which gives the minimum probability of ≈
6.1 × 10−6 and the accuracy of calculating the total probability of a non-

adiabatic transition 1√
𝑁 𝑡𝑜𝑡

≈ 2.5 × 10−3 . The cross sections of all inelastic

processes were calculated in the range of collision energies 0.01 – 100 eV

according to the formulas (1.70) and (1.72), the rate coefficients – in the

temperature range 1000 – 10000 K according to the formulas (1.74) and

(1.75) for exothermic and endothermic processes, respectively.

Figure 39 shows cross sections of mutual neutralization processes ob-

tained in this work by the hopping probability current method, in compar-

ison with the results of calculations by Belyaev and Barklem [15]. The

figure shows that for processes with the largest cross sections, namely

processes Li+ +H− → (Li(3s),Li(3p),Li(3d)) + H(1s) , cross sections agree

very well with each other. There is also a good agreement for the pro-

cess Li+ + H− → Li(2p) + H(1s) . At the same time, for processes

Li+ + H− → (Li(4s),Li(4p)) + H(1s) values of the cross sections agree

somewhat worse, especially at low collision energies, but the difference

in general does not exceed two orders of magnitude in the range [0.01,

10.0] eV. It is worth noting that with an increase of the collision energy,

there is a better agreement of the cross sections. The worst agreement is

observed for the process Li+ + H− → Li(2s) + H(1s) . However, it is the

processes Li++H− → (Li(3s),Li(3p),Li(3d))+H(1s) make a dominant con-

tribution to the total cross section of mutual neutralization, from 99.98%

to 98.93% in the range [0.001,10.0] eV according to [15] and in the range

from 99.62% to 98.61% according to the results obtained by the probability

current method in the same energy range. This suggests that the results

obtained by the probability current method reproduce with good accuracy

the results obtained by ab initio quantum methods for processes with the

largest cross sections.

Let us now analyze the values of the rate coefficients. Figure 40

shows the rate coefficients of mutual neutralization processes at a tem-
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Figure 39. Cross sections of mutual neutralization as a function on the
collision energy. Solid lines correspond to calculations carried out by the

probability current method, symbols and dotted lines correspond to
calculations by Belyaev and Barklem [15].
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perature T = 6000 K obtained by various methods. The rate coefficients

obtained by the probability current method and by the multichannel for-

mula were calculated in the present study. The figure shows that, in

general, the agreement of all three data sets is very good for the pro-

cesses Li+ + H− → (Li(2p),Li(3s),Li(3p),Li(3d)) + H(1s) . For the process

Li+ + H− → Li(4s) + H(1s) the rate coefficients obtained by the probabil-

ity current method and by the multichannel formula agree well, but both

of these rate coefficients are about an order of magnitude higher than the

value of the rate coefficient obtained by more rigorous ab initio quantum

methods. At the same time, for the process Li++H− → Li(4p)+H(1s) the

rate coefficients obtained by ab initio quantum method and the probability

current method agree well, and the rate coefficient obtained by the multi-

channel formula has a value more than an order of magnitude higher than

these two rate coefficients. This result suggests that the final values of

the rate coefficients obtained by the probability current method reproduce

well the results of more rigorous quantum calculations for quantities with

large and intermediate values of the rate coefficients, that is, in the range

10−12 − 10−8 cms, with an accuracy of about one order of magnitude. But,

unlike quantum ab initio calculations of nuclear dynamics, the probability

current method does not require knowledge of the matrix elements of non-

adiabatic coupling, and is also generally less resource- and time-consuming.

Figure 41 shows a graphical representation of all calculated rate co-

efficients of inelastic processes by the probability current method at the

temperature T = 6000 K. All calculated rate coefficients can be divided into

three groups, according to their values:

• group I: the processes with a rate coefficient exceeding 10−8 cm 3 /s;

• group II: the processes with a rate coefficient lying in the range

10−8 −−10−12 cm 3 /s;

• group III: the processes with a rate coefficient smaller than

10−12 cm 3 /s.
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Figure 40. The dependence of the values of the rate coefficients of the
mutual neutralization processes on the excitation energy of the lithium
atom. Black balls denote the rate coefficients obtained by the hopping

probability current method, red diamonds are the rate coefficients
presented in [144] (calculated from the cross sections obtained in [15]),
green asterisks are the rate coefficients obtained within the multichannel
formula, the solid line corresponds to the simplified model curve. For the

notation, see the Table 10.
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Figure 41. Graphical representation of the rate coefficients of all inelastic
processes calculated by the hopping probability current method at the

temperature T = 6000 K. For the notation, see the Table 10.

Group I includes only the processes of mutual neutralization Li+ +

H− → (Li(3s),Li(3p))+H(1s) with the values of the rate coefficients (9.47,

4.00)×10−8 cm 3 /s respectively. These processes are marked by red squares

in the Figure 41.

Group II includes 23 inelastic processes (approximately 40% of the

total), the largest values of the rate coefficients correspond to mutual neu-

tralization process Li+ + H− → Li(3d) + H(1s) , ion-pair formation process

Li(3s) + H(1s) → Li+ + H− and de-excitation process Li(4s) + H(1s) →
Li(3d) + H(1s) with values (3.71, 2.05, 1.60)×10−9 cm 3 /s respectively.

These processes are marked by orange squares in the Figure 41. Other

processes belonging to group II are marked by yellow, green and blue

squares in the Figure 41.

Group III includes all processes involving the ground state, almost all

processes involving the first excited state Li(2p) (with the exception of two

processes), as well as several other processes of excitation, de-excitation and
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ion-pair formation, a total of 31 processes (or ≈55% of the total number of

considered inelastic processes). Taking into account the processes belong-

ing to groups I and II is most important when modelling the photospheres of

stars under conditions of deviation from local thermodynamic equilibrium.

§ 5.4 Investigation of the effect of isotope substitution on

the cross sections and rate coefficients of inelastic

processes in collisions 6/7Li+H/D/T

Consider the effect of different masses of lithium and hydrogen isotopes

on the values of cross sections and rate coefficients. This study was con-

ducted in the same way as the previous one, within the framework of the

probability current method, but with significantly greater accuracy. Firstly,

when calculating by the hopping probability current method, the number of

probability currents calculated for each value of the quantum number of the

total angular momentum 𝐽 has been increased to 𝑁 𝑡𝑜𝑡 =2,621,440,000,

since an algorithm using parallel calculations on the GPU has been ap-

plied. This resulted in a minimal probability ≈ 3.8 × 10−10 and accuracy
1√
𝑁 𝑡𝑜𝑡

≈ 2 × 10−5 . Secondly, this was not enough for individual processes,

and in this case the algorithm of branching probability currents with an

accuracy of ≈ 10−10 was used.

The potential energies were used the same as in the previous study.

This is justified by the fact that the potential energies calculated within

the framework of the Born-Oppenheimer approach are calculated under the

assumption of frozen nuclei at each value of the internuclear distance. The

replacement of the masses of a particular nucleus will affect the matrix

elements of non-adiabatic coupling, which are not taken into account in

the framework of the Landau-Zener model, which underlies the probability

current method. Thus, within the framework of the chosen approach, the

isotopic effect will manifest itself only in the second part within the frame-
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work of the Born-Oppenheimer approach, that is, in the study of nuclear

dynamics.

As part of the assessment of the probability of a single non-adiabatic

transition in the non-adiabatic region according to the Landau-Zener model,

it is possible to make assumptions about exactly how different masses of

nuclei will affect the cross-sections:

(I) for a given collision energy E 𝑐𝑜𝑙 , the velocity of radial motion 𝑣 will

be the smaller the greater the reduced mass of the nuclei 𝜇 ; with

a constant Landau-Zener parameter 𝜉𝐿𝑍 , the probability of a non-

adiabatic transition with a single passage through the non-adiabatic

region will decrease (see the formula (1.53)), which will lead to a

decrease in cross section values and rate coefficients;

(II) an increase in the reduced mass 𝜇 leads to a slower growth of the

centrifugal term ℎ̄2𝐽(𝐽+1)
2𝜇𝑅2 and the effective potential U 𝑒𝑓𝑓(𝑅) as a

function of the quantum number of the total angular momentum (see

formula (1.25)); this leads to the fact that the upper limit of sum-

mation by 𝐽 increases for the cross section (see the formula (1.70)),

which in turn leads to an increase in cross sections and rate coeffi-

cients.

It should be noted that the first effect is more contributed at low collision

energies not exceeding ≈1 eV. It turns out that there are two effects that

lead to opposite results. Predicting the effect of both effects on the cross

sections of inelastic processes is a non-trivial task, which is unambiguously

uncertain for an arbitrary collision system. Therefore, for each pair of

colliding particles, it is necessary to carry out its own calculation of nuclear

dynamics.

First of all, we will compare the results obtained with known exper-

imental and theoretical data. Figure 42 shows the proportions of partial

cross sections of mutual neutralization from the total cross section of mu-

tual neutralization for processes 7Li+ + D− →7 Li(3𝑠, 3𝑝, 3𝑑) + D(1𝑠) as
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a function on the collision energy. Presented as experimental data [7, 8],

and ab initio quantum theoretical calculations [148]. It can be seen from

the figure that the agreement of the ab initio calculations with model cal-

culations using the probability current method is almost perfect, the only

discrepancy occurs for the process 7Li+ + D− →7 Li(3𝑑) + D(1𝑠) for colli-

sion energies exceeding ≈4 eV. Comparison of theoretical calculations by

the probability current method with experimental data also shows a fairly

good agreement, especially in the range of collision energies [0.1, 1.0] eV.

At lower collision energies, discrepancies are observed that do not exceed

≈10% of the total neutralization cross section. It is also worth noting that

the discrepancy between experimental and theoretical calculations for the

process 7Li+ + D− →7 Li(3𝑑) + D(1𝑠) at low collision energies (<0.02 eV)

is quite significant: the proportion of the cross section of this process from

the total cross section obtained by the probability current method is ≈3%

versus ≈10% according to the data from the paper [7]. Nevertheless, the

contribution of this process to the total cross section of mutual neutraliza-

tion does not exceed 10%, so it can be concluded that in general there is

a very good agreement of the results obtained by the probability current

method with the experimentally obtained results. It is also worth noting

that in the paper [150] Figure 2 shows a comparison of various theoreti-

cal calculations and experimental data, and shows that the results obtained

by the probability current method (PC) have the best agreement with the

experiment for the process 7Li+ +D− →7 Li(3𝑠) + D(1𝑠) .

Let us now analyze the influence of different isotope masses on the

cross-sections of inelastic processes. Let us first consider the effect of

the masses of various lithium isotopes on the cross sections. Since the

cross sections of the mutual neutralization processes have the largest values

among all inelastic processes, we will mainly consider them in the future.

Let us give the values of the reduced masses for the case when different

lithium isotopes collide with the same hydrogen isotopes:

• 𝜇
6𝐿𝑖𝐻 = 0.863197 a.u., 𝜇

7𝐿𝑖𝐻 = 0.881238 a.u.;
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Figure 42. The branching fractions of partial mutual neutralization cross
sections 𝜎𝑛𝑙 of the total neutralization cross section 𝜎𝑡𝑜𝑡𝑎𝑙 , expressed in %,

in collisions 7Li+ +D− →7 Li(3𝑠, 3𝑝, 3𝑑) + D(1𝑠) as a function of the
collision energy. Solid lines correspond to the results obtained by the

probability current method (PC), red circles correspond to experimental
data from the paper [8], blue, pink and brown circles correspond to

experimental data from the paper [7], triangles and dotted lines correspond
to theoretical calculations from the paper [148].
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• 𝜇
6𝐿𝑖𝐷 = 1.508872 a.u., 𝜇

7𝐿𝑖𝐷 = 1.564870 a.u.;

• 𝜇6𝐿𝑖𝑇 = 2.008810 a.u., 𝜇
7𝐿𝑖𝑇 = 2.109300 a.u.

It can be seen that the values of the reduced masses are quite close to each

other (in each row), so the difference in the values of the cross sections

will be small. This can be seen from the Figures 43 and 44. Compar-

ing dotted lines with solid lines of the same colour, one can be seen that

there is practically no difference for processes with the largest cross sec-

tions (Figure 43). For the processes 6Li/ 7Li + H and 6Li/ 7Li + D,

the difference in cross section values ranges from 1-3% to 25-40%. At

low collision energies (< 1.0eV), the difference is systematically greater

than at high collision energies. For example, cross section of the reso-

nance process 6,7Li (2𝑝) + H(1s) → 6,7Li(2s) + H(1s) at collision energy

𝐸𝑐𝑜𝑙 = 100 eV equals 𝜎
6𝐿𝑖𝐻
2→1 = 0.2561464 Å 2 and 𝜎

7𝐿𝑖𝐻
2→1 = 0.2508187 Å 2

respectively, and the difference it is only ≈ 2% . On the other hand, for

the same process at the collision energy 𝐸𝑐𝑜𝑙 = 0.1eV, the cross sections

are 𝜎
6𝐿𝑖𝐻
2→1 = 2.74831 × 10−7 Å 2 and 𝜎

7𝐿𝑖𝐻
2→1 = 2.26535 × 10−7 Å 2 , and the

difference is ≈ 20% .

From the Figure 43 it is also clear that the dotted lines are slightly

lower or almost coincide with solid lines, that is, the cross sections of

processes involving the lithium isotope 7Li are systematically no less than

the cross sections of processes involving the lithium isotope 6Li. At the

same time, from the Figure 44 it can be seen that for processes Li++H− →
Li(2𝑠, 2𝑝)+H(1𝑠) dotted lines are systematically no less than solid lines, that

is, the opposite situation takes place. This suggests that for the processes of

mutual neutralization when replacing lithium isotopes 6Li ↔7 Li , the values

of which are not the largest, the effect (I) has the greatest effect, while for

the largest cross sections, effect (II) has a slight influence superior to (I).

Nevertheless, for the cross sections with the largest values, the isotopic

effect is quite small.
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Figure 43. Cross sections of mutual neutralization processes
Li+ +H− → Li(3𝑠, 3𝑝, 3𝑑) + H(1𝑠) in collisions of lithium isotopes 6/7Li

with hydrogen isotopes H/D/T as a function of the collision energy. Solid
lines correspond to processes involving the lithium isotope 7Li , dotted

lines correspond to processes involving the lithium isotope 6Li . Collisions
with hydrogen isotopes H/D/T are indicated by different colours.
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Figure 44. Cross sections of mutual neutralization of processes
Li+ +H− → Li(2𝑠, 2𝑝) + H(1𝑠) in collisions of lithium isotopes 6/7Li with
hydrogen isotopes H/D/T as a function of the collision energy. Solid lines

correspond to processes involving the lithium isotope 7Li , dotted lines
correspond to processes involving the lithium isotope 6Li . Collisions with

hydrogen isotopes H/D/T are indicated by different colours.
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Let us now consider the influence of the masses of various hydrogen

isotopes on the cross sections values. The situation is different here. Let

us give the values of the reduced masses for this case:

• 𝜇
6𝐿𝑖𝐻 = 0.863197 a.u., 𝜇

6𝐿𝑖𝐷 = 1.508872 a.u., 𝜇
6𝐿𝑖𝑇 = 2.008810 a.u.;

• 𝜇
7𝐿𝑖𝐻 = 0.881238 a.u., 𝜇

7𝐿𝑖𝐷 = 1.564870 a.u., 𝜇
7𝐿𝑖𝑇 = 2.109300 a.u.

It can be seen that in this case the difference in the values of the reduced

masses is significant (in each row) and reaches more than twice when

replacing H ↔ T . From the figure 44 it can be seen that for the process

Li++H− → Li(2𝑝)+H(1𝑠) at low collision energies (<1 eV), the difference

in cross section values reaches one order of magnitude in collisions 6/7Li+H

and 6/7Li + D and two orders of magnitude in collisions of 6/7Li + H and
6/7Li + T . For the process Li+ + H− → Li(2𝑠) + H the difference in

cross section values at low collision energy is even stronger: two orders of

magnitude in collisions 6/7Li+H and 6/7Li+D and four orders of magnitude

in collisions 6/7Li + H and 6/7Li + T . But on the other hand, from the

Figure 43 it can be seen that for mutual neutralization processes Li+ +

H− → Li(3𝑠, 3𝑝, 3𝑑)+H(1𝑠) the difference reaches no more than two times.

Moreover, it can be noted that, for example, for the process Li+ + H− →
Li(3𝑝)+H (1s), the largest cross section corresponds to collisions 6/7Li+T ,

the slightly smaller cross section corresponds to collisions 6/7Li + D and

the smallest corresponds to collisions 6/7Li + H . Based on this, it can

be concluded that for processes with the largest cross sections, effect (II)

makes a significantly greater contribution than (I). For processes with small

cross sections, effect (I) has a greater influence. It is also worth noting

that for processes Li+ + H− → Li(2𝑠, 2𝑝) + H(1𝑠) with increasing collision

energy, the difference in cross section values becomes smaller, while as for

processes Li+ +H− → Li(3𝑠, 3𝑝, 3𝑑) + H this cannot be said.

For a clearer understanding of exactly how both effects (I) and (II)

affect the final values of the cross sections, it is worth looking at the

Figure 45, where the dependences of the full probabilities of the non-



— 181 —

adiabatic transition of mutual neutralization processes to the states of

Li(2𝑠, 2𝑝, 3𝑠, 3𝑝, 3𝑑) + H(1𝑠) for collisions of lithium isotope 7Li with hy-

drogen isotopes H/D/T are presented. The figure shows that the processes

Li++H− → Li(2𝑠, 2𝑝)+H(1𝑠) are characterized by small values of the total

probabilities of a non-adiabatic transition, not exceeding 0.001. At the same

time, processes Li+ +H− → Li(3𝑠, 3𝑝, 3𝑑) + H(1𝑠) are characterized by the

values of the total probabilities of a non-adiabatic transition exceeding the

value of 0.001 in the entire range of 𝐽 . The essence of the effect (I) is in

changing the total probability of a non-adiabatic transition, while the effect

(II) is to increase the maximum value of 𝐽𝑚𝑎𝑥 , at which the probability of

a non-adiabatic transition is still non-zero. From the Figure 45 it is clearly

seen that for processes with the highest total probabilities of a non-adiabatic

transition (processes Li+ + H− → Li(3𝑠, 3𝑝, 3𝑑) + H(1𝑠) ) the values of the

total probabilities do not change very much (in the range of ≈ 50% in

both directions) depending on which hydrogen isotope collide with lithium.

But the heavier the hydrogen isotope, the more terms in the sum in the

cross section calculation formula (see formula (1.70)), and for the above

processes, 𝐽𝑚𝑎𝑥 increases significantly in collisions with heavier hydrogen

isotopes, up to ≈ .50% when replacing hydrogen with tritium:

• Li+ +H− → Li(3𝑠) + H(1𝑠) : 𝐽
7LiH
𝑚𝑎𝑥 = 278, 𝐽

7LiD
𝑚𝑎𝑥 = 369, 𝐽

7LiT
𝑚𝑎𝑥 = 428 ;

• Li+ +H− → Li(3𝑝) + H(1𝑠) : 𝐽
7LiH
𝑚𝑎𝑥 = 352, 𝐽

7LiD
𝑚𝑎𝑥 = 467, 𝐽

7LiT
𝑚𝑎𝑥 = 542 ;

• Li+ +H− → Li(3𝑑) + H(1𝑠) : 𝐽
7LiH
𝑚𝑎𝑥 = 362, 𝐽

7LiD
𝑚𝑎𝑥 = 482, 𝐽

7LiT
𝑚𝑎𝑥 = 560 ;

For processes Li+ + H− → Li(2𝑠, 2𝑝) + H(1𝑠) the situation is such that

the full probability of a non-adiabatic transition decreases by an order of

magnitude, or even several orders of magnitude, with an increase in the

mass of the hydrogen isotope. In this case, the increase in the number of

summands in the formula for calculating the cross section of the inelastic

process plays a significantly smaller role.

Let us now proceed to consider the effect of isotope substitution in

lithium-hydrogen collisions on the rate coefficients of inelastic processes.
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Figure 45. The total probability of non-adiabatic transition of mutual
neutralization processes

7Li+ +H−/D−/T− →7 Li(2𝑠, 2𝑝, 3𝑠, 3𝑝, 3𝑑) + H/D/T as a function of the
quantum number of the total angular momentum at the collision energy

E 𝑐𝑜𝑙 = 0.1 eV. Solid lines correspond to collisions 7Li+ +H− , dotted lines
correspond to collisions 7Li+ +D− , dotted lines correspond to collisions

7Li+ + T− .
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Table 11. The rate coefficients (in cm 3 /s) of mutual neutralization at the
temperature T = 6000 K, calculated in this work by the probability current

method, as well as presented in [7,144,151]. The number in square
brackets denotes the power of ten.

Collision
Li(3s) Li(3p) Li(3d)

total rate
partners coefficient

7Li+ +H− 8.50[-8] 3.74[-8] 3.53[-9] 1.26[-7]
Probability 7Li+ +D− 6.30[-8] 3.54[-8] 3.51[-9] 1.02[-7]
current method 6Li+ +H− 8.59[-8] 3.74[-8] 3.60[-9] 1.27[-7]

6Li+ +D− 6.43[-8] 3.54[-8] 3.49[-9] 1.04[-7]

experiment [7]
7Li+ +H− 7.43[-8] 2.72[-8] 7.72[-9] 1.10[-7]
7Li+ +D− 5.54[-8] 2.57[-8] 7.48[-9] 8.90[-8]

Croft et al. [151] 7Li+ +H− - - - 1.18[-7]

Barklem et al. [144] 7Li+ +H− 7.95[-8] 3.74[-8] 4.05[-9] 1.21[-7]

The Table 11 shows the values of the partial rate coefficients of the mutual

neutralization processes Li+ + H− → Li(3𝑠, 3𝑝, 3𝑑) + H(1𝑠) calculated by

various methods. It can be seen that the comparison of the total rate

coefficients of the mutual neutralization process shows a good agreement

of all available results with each other. Both for collisions 7Li + H and

for collisions 7Li + D , the total rate coefficients agree within ≈ 15% .

At the same time, the maximum difference in the values of the partial

rate coefficients is approximately 2 times for the process Li+ + H− →
Li(3𝑑) + H(1𝑠) .

Consider separately the resonance process Li(2𝑝) + H(1𝑠) → Li(2𝑠) +

H(1𝑠) corresponding to the 670.776/670.791 nm doublet, which is ex-

tremely important for astrophysical applications. The cross sections of this

process, and also the rate coefficients, have small values, see Figure 46.

These cross sections are strongly affected by the (I) effect, which is also

seen in the Figure 46. In general, the cross section of this process is more
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strongly affected by collisions with various hydrogen isotopes, leading to a

difference of more than two orders of magnitude for collisions Li + H and

Li + D and more than four orders of magnitude for collisions Li + H and

Li + T at collision energies less than 0.1 eV. While collisions of different

lithium isotopes with the same hydrogen isotopes lead to the maximum

difference for collisions of 6Li +T and 7Li +T , not exceeding twice at low

energies collision and decreasing with increasing collision energy.

Figure 47 shows the dependence of the the rate coefficients values of

the mutual neutralization processes on the excitation energy of the lithium

atom at a temperature T = 6000 K. From this figure it can be seen that

for processes Li+ +H− → Li(3𝑠, 3𝑝, 3𝑑, 4𝑠, 4𝑝) +H(1𝑠) the difference in the

values of all six different combinations of collision partners is small and

does not exceed ≈ 60% . In other words, for these processes, the effect

of isotope substitution is weakly expressed. For processes Li+ + H− →
Li(2𝑠, 2𝑝) + H(1𝑠) the difference in the values of the rate coefficients can

reach several orders of magnitude when the same lithium isotopes collide

with different hydrogen isotopes and only ≈ 2 times when different lithium

isotopes collide with the same hydrogen isotopes (compare the black, red

and blue symbols in Fig. 47 and rhombuses with circles, squares with

asterisks and triangles with crosses).

Figure 48 shows the dependence of the values of the total rate coef-

ficients of the mutual neutralization processes for all six combinations of

collision partners on temperature. It can be seen that in the entire temper-

ature range studied, the replacement of lithium isotopes in collisions with

the same hydrogen isotopes has practically no effect on the value of the

total rate coefficient. However, for collisions of 6Li, the value of the rate

coefficient is systematically higher (but not more than 2.2But the replace-

ment of hydrogen isotopes leads to a more significant change in the values

of the rate coefficients:
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Figure 46. The cross section of the resonance de-excitation process
Li(2𝑝) + H → Li(2𝑠) + H as a funtion of the collision energy. Solid lines
correspond to collisions of the lithium isotope 7Li with various hydrogen
isotopes, dotted lines correspond to collisions of the lithium isotope 6Li

with various hydrogen isotopes.
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Figure 47. The rate coefficients of the mutual neutralization processes as a
functions of the excitation energy of the lithium atom at a temperature of
T = 6000 K. Black circles indicate the rate coefficients corresponding to

collisions 7Li + H , red asterisks – collisions 7Li + D , blue crosses –
collisions 7Li+T , black hollow rhombuses – collisions 6Li+H , red hollow
squares – collisions 6Li + D , blue hollow triangles – collisions 6Li + T .
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• when replacing H→D, the values of the total rate coefficients vary

in the range from 30 to 20% at the temperatures 1000 and 10000 K

respectively;

• when replacing D→T, the values of the total rate coefficients vary

in the range from 14 to 12% at the temperatures 1000 and 10000 K

respectively;

• when replacing H→T, the values of the total rate coefficients vary

in the range from 46 to 35% at the temperatures 1000 and 10000 K

respectively;

From all of the above, the following conclusions can be drawn:

1. In collisions of lithium and hydrogen, there is practically no difference

which of the isotopes of lithium collides with hydrogen;

2. Collisions of the same lithium isotopes with different hydrogen iso-

topes can be well distinguished for some processes;

3. resonance process Li(2𝑝) + H(1𝑠) → Li(2𝑠) + H(1𝑠) is quite sensitive

to the replacement of hydrogen isotopes at low collision energies;

4. the total rate coefficients of the mutual neutralization process in col-

lisions 6/7Li + H are approximately 25% higher than the rate coeffi-

cients of the mutual neutralization process in collisions 6/7Li + D in

the temperature range [1000, 10000] K.

§ 5.5 Concluding remarks

In this Chapter, inelastic processes in collisions of lithium atoms and

cations with hydrogen atoms and anions are investigated by the probability

current method. It is shown that the results obtained by the model proba-

bility current method are in good agreement with the results of the most

accurate ab initio quantum calculations.
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Figure 48. The total rate coefficients of mutual neutralization processes as
a function of temperature. Solid lines marked collisions of the lithium

isotope 7Li with various hydrogen isotopes, dotted lines marked collisions
of the isotope 6Li with various hydrogen isotopes. Collisions with

hydrogen H are indicated in black, collisions with deuterium D in red,
collisions with tritium T in blue.
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The influence of different masses of lithium and hydrogen isotopes

on the cross sections and rate coefficients of inelastic processes has also

been studied. It is shown that the replacement of lithium isotopes in col-

lisions with the same hydrogen isotopes has a weak effect on the values

of cross sections and rate coefficients, while the replacement of hydrogen

isotopes in collisions with the same lithium isotopes leads to noticeable

changes in the values of cross sections and rate coefficients for some pro-

cesses, up to several orders of magnitude. Resonance process cross section

Li(2𝑝)+H(1𝑠) → Li(2𝑠)+H(1𝑠) is sensitive to the substitution of hydrogen

isotopes at low collision energies, up to several orders of magnitude. It is

shown that the total rate coefficients of the mutual neutralization process

in collisions 6/7Li+H are approximately 25% higher than the values of the

rate coefficients of the mutual neutralization process in collisions 6/7Li + D

in the temperature range [1000, 10000] K. It is also shown that the results

obtained by the probability current method are in good agreement with the

available experimental data.

The results obtained in this Chapter are published in the following

articles:

• Belyaev A. K., Voronov Ya. V. Atomic Data on Inelastic Processes

in Low-energy Lithium–Hydrogen Collisions / A. K. Belyaev, Ya. V.

Voronov // The Astrophysical Journal. – 2018. – Vol. 868. – No. 2.

– P. 86.

• Belyaev A. K., Voronov Ya. V. Isotopic effects in low-energy lithium-

hydrogen collisions / A. K. Belyaev, Ya. V. Voronov // Physical

Review A. – 2021. – Vol. 104. – No. 2. – P. 022812.

The results were also presented at the following conferences:

• XXI Mendeleev Congress on General and Applied Chemistry, Sym-

posium "The Periodic Table through Space and Time" (9-13 Septem-

ber, 2019, Saint-Petersburg, Russia). Poster "Application of the
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probability current method to nuclear dynamical calculations in

collisions with hydrogen";

• Physics of Stars and Planets: atmospheres, activity and magnetic

fields (16-20 September, 2019, N. Tusi Shamakhi Astrophysical Ob-

servatory, Shamakhi, Azerbaijan). Poster "Application of the prob-

ability current method to nuclear dynamical calculations in col-

lisions with hydrogen".

This research was supported by grants:

• the Ministry of Science and Higher Education grant

No. 3.1738.2017/PCH 2017-2019, the head of Prof. Belyaev

A. K.

• the Ministry of Education grant No. 2020-0026 2020-2022, the head

of Prof. Belyaev A. K.
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Conclusion

In conclusion, let us present the main results obtained in this disserta-

tion:

1. A modified asymptotic method that allows taking into account the

fine structure of energy levels in collisions of alkali metal atoms and

alkali-like ions with hydrogen, proposed in [23,24], received a further

generalization for the case of collisions of alkaline earth metal atoms

with hydrogen. Using the example of collisions of calcium ions with

hydrogen Ca++H, it is shown that taking into account the fine struc-

ture of energy levels leads to a non-trivial redistribution of the values

of the rate coefficients, which cannot be reproduced using any simple

formulas.

2. The processes of excitation, de-excitation, ion-pair formation and mu-

tual neutralization in collisions of oxygen atoms and ions with hy-

drogen atoms and ions are investigated. Inelastic processes for 11

covalent states and two ionic states in six molecular symmetries have

been studied by the hopping probability current method (stochastic

version), for a total of 240 processes. By the multichannel for-

mula, processes for 16 covalent states and two ionic ones for three

molecular symmetries were studied, a total of 292 processes. In

the study of nuclear dynamics, molecular adiabatic potential ener-

gies obtained in [28] by the MRCI method for 11 lower covalent

states and two ionic ones were used, as well as obtained within

the framework of the asymptotic method for 5 high-lying covalent

states. It is shown that the largest rate coefficients correspond to

the processes of mutual neutralization O+(2𝑝3 4𝑆∘) + H−(1𝑠2 1𝑆) →
O(2𝑝34𝑠 5𝑆𝑜) + H(1𝑠 2𝑆) , O−(2𝑝5 2𝑃 ) + H+ → O(2𝑝4 3𝑃 ) + H(2𝑝 2𝑃 )

and O+(2𝑝3 4𝑆∘)+H−(1𝑠2 1𝑆) → O(2𝑝33𝑝 3𝑃 )+H(1𝑠 2𝑆) . These pro-

cesses, as well as processes with rate coefficients values greater than

10−12 cm 3 /s, are most important to take into account when mod-
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elling stellar spectra under conditions of deviation from local ther-

modynamic equilibrium. It is also shown that taking into account

non-adiabatic transitions in molecular symmetries not generated by

ionic states practically does not affect the values of cross sections and

rate coefficients of processes belonging to group I, but can signifi-

cantly affect processes belonging to groups II and III. In particular,

for some processes, the cross sections at low collision energies are

mainly determined by the contribution of non-adiabatic transitions in

molecular symmetries not generated by ionic states.

3. Inelastic processes in collisions of calcium atoms and ions with hydro-

gen atoms and ions, namely the processes of excitation, de-excitation

and charge exchange, are investigated. It is shown that for collisions

Ca+H and Ca++H− , the probability current method gives values of

cross sections and rate coefficients that differ little from the results

obtained in the framework of the ab initio quantum calculations by the

reprojection method: for most processes, the difference in the values

of cross sections and rate coefficients lies in the range of 30-50%, for

all processes, the difference in the values of the rate coefficients does

not exceed two orders of magnitude. As in the case of oxygen, in the

case of calcium, taking into account non-adiabatic regions at short

distances practically does not affect the final values of cross sections

and rate coefficients of processes with large values, while for pro-

cesses with small values of cross sections and rate constants, taking

into account these regions can affect the values of cross sections and

rate coefficients significantly, especially this is typical for highly ex-

cited states. For most of the processes considered in collisions Ca+H,

Ca++H− , Ca++H, Ca+H+ and Ca 2++H− , the dominant mecha-

nism of non-adiabatic transitions is ion-covalent interaction forming

non-adiabatic regions at medium and large internuclear distances.
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4. Inelastic processes in collisions of lithium atoms and cations with

hydrogen atoms and anions by the probability current method are

investigated. It is shown that the results obtained by the model prob-

ability current method are in good agreement with the results of

the most accurate ab initio quantum calculations. The dependence

of the cross sections and rate coefficients of inelastic processes on

the replacement of lithium and hydrogen isotopes in collisions is also

investigated. It is shown that the replacement of lithium isotopes

in collisions with the same hydrogen isotopes has a weak effect on

the values of cross sections and rate coefficients, while the replace-

ment of hydrogen isotopes in collisions with the same lithium isotopes

leads to noticeable changes in the values of cross sections and rate

coefficients for some processes, up to several orders of magnitude.

Resonance process cross section Li(2𝑝) + H(1𝑠) → Li(2𝑠) + H(1𝑠) is

quite sensitive to the substitution of hydrogen isotopes at low collision

energies, up to several orders of magnitude. It is shown that the to-

tal rate coefficients of the mutual neutralization process in collisions
6/7Li + H are approximately 25% higher in magnitude than the rate

coefficients of the mutual neutralization process in collisions 6/7Li+D

in the temperature range [1000, 10000] K. It is also shown that the

results obtained by the probability current method are in good agree-

ment with the available experimental data for neutralization processes

Li+ +H− → Li(3𝑠, 3𝑝, 3𝑑) + H(1𝑠) .
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148. Croft H., Dickinson A. S., Gadéa F. X. A theoretical study of mutual

neutralization in Li+ + H– collisions // Journal of Physics B: Atomic,

Molecular and Optical Physics. 1999. Vol. 32, no. 1. Pp. 81–94.
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