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Introduction

Relevance of thesis topic
In general, stability analysis widely applied in mathematics, engineering, eco-

nomics, environmental science, medicine, etc., is a comprehensive procedure to as-
sess the stability of a complex system or process. The reason why stability analysis
is so important is that the stability provides observable and dependable evidences
for researchers to track down the possible trajectories of complex systems. Or con-
versely, the researchers are capable to detect the threshold such that crossing it
means that the system enters into instability region or even fail. In this way, the
equilibrium in game theory can be interpreted as a stable situation, in which the
development of the game can be predicted accordingly. Furthermore, the ultimate
purpose of stability analysis is to determine the conditions of system stability or
design a well-suited mechanism under which the system remains stable. Similarly,
turning to game theory, the players’ strategies can be finally obtained in correspon-
dence with the equilibrium conditions and this finishes the analysis.

Whereas it comes to the implementation of stability analysis, the story is dif-
ferent. The internal and external factors and elements are significant aspects that
we need to take into consideration. On the one hand, the objective function and
structure symbolizing the internal characteristics of the system have a salient impact
on the way how the analysis should be conducted, whether from the prospective of
linear stability analysis or nonlinear stability analysis. For instance, if the stable
coalition structure in multi-agent system or more specifically, international environ-
ment agreements (IEAs) is our target, the analysis is nonlinear. Meanwhile, for the
simulation of a system through linear regression model, it turns out to be linear. On
the other hand, the external elements contain uncertain information or any other
factors which could indirectly affect the system externally. In differential games,
the players take their actions based on the current information pattern and once the
information has been changed, players need to alter their strategies correspondingly.
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Therefore, this thesis intends to concentrate on the investigation of two aspects in
stability analysis. The focus of this thesis is on stability analysis in environmental
problems, caused, for example, by greenhouse gas (GHG) emissions, which are very
important and challenging in examination. It is much more meaningful to apply the
stability analysis into pollution control games when players are willing to deviate
from tough restrictions prescribed to them by agreements.

We observe how the climate change substantially caused by greenhouse gas (GHG)
emissions is threatening a lot of creatures in a much more complex way than ever
before. Natural disasters such as drought, flood, forest fire, glacial melting and
something similar consistently remind us of the incredible challenges we are facing.
At present, the European Union (EU) is taking more active steps by using emission
trading system (ETS) launched by 2005 to continuously reduce emissions and achieve
climate neutrality in 2050. The “net-zero emissions” goal by 2050 is written in the
road map of the United States, Canada, Australia, South Korea, and Japan.

While the developed world is making its contribution to solving this problem,
targeted solutions in the developing world are still in progress. The developing
countries such as India and Morocco are undoubtedly leading the way in improving
renewable energy among all the nations [112]. China, one of the most representative
developing countries, has made a great achievement in green energy transition, and
its own ETS has been operating to systematically limit and reduce CO2 since last
year [59, 109]. However, developing countries are not generally capable of rapidly
implementing some efficient measures to cope with the climate change without sac-
rificing their economic growth in comparison with developed countries. Moreover,
for the next decade, with further elimination of poverty and improvement of living
standards in developing countries, they will make up the bulk of increase in en-
ergy consumption, i.e., higher level of emissions. The sustainable way to solve this
problem is based on stable cooperation.

The thesis is devoted to studying the stability in pollution control problems in-
volving one or many players on the basis of internal and external factors in terms
of their objective functions, structure, mechanism implementation, and uncertain
information. In addition, it is expected that the stability mechanism concluded in
this thesis can also be extended and applied in other fields to significantly improve
the performance and robustness of the original system.

Overview of the results in this area



6

Starting with the internal factors, the fact is that the United Nations (UN) work-
ing as a significant coordinator is urging all the nations to take concrete actions
to reduce gas emissions. The Kyoto Protocol and Paris Agreement are the inter-
national commitments of the specific actions for the countries in the way to solve
the problem. But an announcement of the US in 2017 to withdraw from the Paris
Agreement of 2015 motivates us to carefully think about maintaining the stability
of international environmental agreements (IEAs) and to make an effort to prevent
other failures [110]. The idea of taking into account countries’ reputations in IEA
modeling, when participants suffer from some members’ deviations from agreement
conditions, is the way to predict players’ behavior [13].

Actually, the analysis of stable IEAs from a game-theoretic perspective can be
traced back to the late 1900s, since then the research in this area has started in
view of different aspects. The necessity of cooperation between nations or players in
pollution control problems is highlighted in [20, 26]. In many publications on IEAs
from a game-theoretical perspective, the comparison of cooperative and noncoop-
erative countries’ behavior when there are only two participants is investigated in
[33, 49, 60, 64, 95]. The interaction between two countries different in terms of their
vulnerabilities to emissions, i.e., vulnerable (developed) and invulnerable (develop-
ing) countries, is modeled as an asymmetric differential game [33, 64, 105]. In [103] a
differential game between developed and developing countries is examined when the
players interact in stochastic environment. A different optimization problem relying
on the same system dynamics is raised in [64]. In [66], a two-player asymmetric
game symbolizing the factor of economic efficiency and environmental vulnerability
in the North-South competitive system is studied. The case of participating more
than two countries in an agreement is considered in [28, 52, 77, 93, 99], where the
authors compare two cases: (i) countries behave individually rational, or (ii) they
cooperate forming the grand coalition. The model of environmental agreements
when participants include adaptive measures in them is proposed in [12], where the
authors reveal that when adaptation is regulated by an agreement, a stability of a
one-coalition structure is reached with a particular coalition size.

Meanwhile, partial cooperation or the coalition structure formed by coalitions of
different sizes is another option to model IEAs according to [35]. In this research,
the partial cooperation structure is the main feature to investigate IEAs. First of
all, the variety of different coalitions that can be formed implies more scenarios
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and provides more solutions to the problem of emission reduction different from
“one coalition plus many singletons” scenario. As the profit of a coalition depends
on other players’ partitioning, it makes the game different from hedonic games, in
which the payoff of any coalition is independent of the players’ behavior outside
the coalition [9, 46, 47]. Besides, based on the empirical evidence on IEAs, the
grand coalition usually can not be created because of a possible conflict of interests
[111], and such a scenario may be not desirable under the lack of multilateral coor-
dination [95]. Therefore, consideration of nontrivial or multiple coalition scenarios
can be motivated by exogenous factors, e.g., countries’ locations, political situation,
communication possibilities, etc., not allowing to form the grand coalition.

As mentioned, the typical situation examined in the literature is when the author-
ity proposes signing an environmental agreement to a set of countries. They may
join the agreement, and form a coalition, while those who disagree to join it become
singletons [4, 20, 37, 63]. In contrast, there may be several agreements proposed to
the players at the same time and they can choose the one to join. A question arises
if a single-agreement coalition structure is better in some sense than a multiple-
agreement coalition structure. It is worth mentioning that in [2, 16, 18, 34, 36] the
authors conclude that a multiple coalition structure can outperform the former one,
although in [11] it is formulated that no multiple coalition structure is profitable. In
this research, we do not restrict the number of agreements in the society meaning
that several coalitions of different sizes can be simultaneously formed.

More importantly, if any coalition and any coalition structure can be formed,
we need to be sure that they are stable in some sense to be practically realized.
In existing literature on dynamic games, the study of stability is focused on the
structure represented by a unique grand coalition [71, 75, 77, 101, 104]. In inter-
national pollution control problems, it is usually assumed that one “big” coalition
may be formed and all other players who have not joined it behave as singletons
[4, 20, 63]. The concept of a coalition stability determined by international envi-
ronmental agreements (e.g., see [53]) is defined by external and internal stability
conditions [19, 82]. These conditions assume that no player has an incentive to de-
viate from a coalition and no singleton would benefit from joining this coalition. But
under an assumption on multiple coalition formation, the agreement stability con-
cept including internal and external stability conditions cannot capture all possible
players’ deviations [16, 18, 23]. One can allow to change one agreement to another
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which may be profitable in a multiple coalition case. In this notion, we can use
stability concepts proposed for the games with coalition structures. In the research,
we verify Nash stability [9, 46, 47, 70] and individual stability [9, 91] conditions
for any possible coalition structure. In a nontransferable case, when players do not
redistribute payoffs inside the coalitions, it is difficult to expect existence of stable
coalition structures. Therefore, we aim at proposing the mechanisms to design sta-
ble scenarios of cooperation or stable coalition structures. We propose three such
mechanisms. The first one is based on defining the transfers between coalition mem-
bers to increase the payoffs to the players who may have profitable deviations. The
transfer scheme can be defined basing on cooperative solutions adopted for the games
with coalition structures [3, 55, 68]. One of such schemes is the Nash bargaining
solution [65] which is mostly used for two-player games [14, 15, 31, 33, 92, 103] mod-
eling cooperative environmental problems. For more than two players, the Shapley
value [84] has become a powerful tool to maintain stable cooperation in differential
games [85, 43, 76]. The transfer scheme is also applied in [88] for designing envi-
ronmental agreements for different cooperative scenarios. The transferable utilities
are considered in [11, 17, 20, 32] in solving environmental problems. The paper [96]
examines a repeated game with transfer at each stage between countries polluting
the atmosphere. Under given conditions, the profile of constructed strategies is a
subgame perfect equilibrium realizing Pareto-optimal payoffs in each period of the
game. The second mechanism is based on defining a taxation scheme for players’
profitable deviations. We define the value of a uniform tax for all players for any
particular scenario when the players pay the same tax in the case of deviation. We
provide the definition of a stable scenario when the taxation scheme is adopted. The
third mechanism proposed to make a desired scenario stable is to define the set of
restricted coalitions or the set of feasible coalition structures. This approach can be
determined basing on the theory of cooperative games with restricted cooperation
and the solutions defined for this class of games [1, 8, 69]. Restricting the formation
of some coalitions we can prevent undesirable scenario to be realized. There are dif-
ferent approaches to define the set of feasible coalitions, e.g., permission structures,
matroids, antimatroids etc., and for a selected class, one can use modified cooper-
ative solution concepts based on, for example, the Shapley value [1, 8]. Moreover,
even with the mechanisms described above, the existence of stable structure is still
an open question. In this research, we can only prove it theoretically under static
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model, because the complexity is much higher in a dynamic setting.
Apart from the investigation on coalition structure, a trade-off mechanism [24]

which differs in its objective functions working in a two-player differential game
is proposed in this research. The idea of a trade-off mechanism comes from a
supply chain theory. Generally, there are two prominent supply chain models in
use: forward supply chain and closed-loop supply chain. The forward supply chain,
namely, the flow of the product is one-directional through the chain. Meanwhile,
the closed-loop supply chain (CLSC), in which the used product can be recycled
and sold again after remanufacturing, is another popular model. Moreover, con-
trary to forward supply chains, CLSC has its inherent characteristics: closed-loop,
which naturally make it implement in an environment-friendly and profitable way
[24]. However, no matter which model is used, various pollution control policies or
constraints have been leveraged concerning the exacerbating environment problems,
such as carbon tax [97, 98], cap-and-trade [40, 58, 106], green supply chain man-
agement [50, 107], consumers’ low-carbon preference [40, 51, 97, 100], low-carbon
subsidy [98, 108], contract design [24], etc. The trade-off mechanism is similar to
the contract design, where players sign a contract and behave following the contract
rules over time, and it is different from a fully cooperative scenario, in which players
completely coordinate their actions to maximize the total profit. The latter scenario
requires a total control of players’ actions along the cooperative trajectory while in
a trade-off mechanism, once the contract is signed, the players act individually and
adopt the Nash equilibrium in a redefined differential game. Therefore, there is no
need to adopt any allocation mechanism [42, 73, 74, 84] along the state trajectory.
What is more, the power structure [58] in the supply chain model indicates if the
manufacture is acting as the bellwether or the retailer is dominating. Noticeably,
this distinguishes the trade-off mechanism from the cost-revenue sharing contract
[24] because the former does not require coordination of players’ order in decision
making.

Coming to the external factors, we can say that the economic activity includ-
ing pollution reduction is a mixture of various joint ingredients, and correspond-
ing decisions are constructed based on its statistical estimation but not on its real
values. It is quite obvious that information plays an important role here. Since
Shannon-Weaver’s model of communication [83] came to the public in 1948, the var-
ious concepts and details for information communication such as information source,
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transmitter, channel, noise, message, receiver, information destination, encoder, and
decoder, have been widely accepted. Because of the intrinsic character of informa-
tion, a value of information (VI) can explain information in connection with its
actual description. In a case of ecology, Vl analysis identifies the best information
collection strategy that leads to the largest net benefit [38]. In case of medicine, the
disclosure and ability to react to the diagnosis test could comprehensively depict the
value of it [67]. In commerce, VI is embedded into the product flow among different
roles [81]. To put it briefly, VI has a broad application in various subjects in which
uncertainty plays an essential part in the decision process. As indicated in [54], the
use of VI analysis at least has started since the 1990s and the rea of application is
widespread over economics, infrastructure, environment, energy, medical systems,
and other fields partially shown in [7, 30, 57, 61, 86, 102]. Among them, VI hidden
in the estimated value of one specific parameter in a model, e.g., the estimation of
potential amount of oil underground, has a vital impact on the stability of players’
decisions in economic activities. Thinking of the role of the estimated value in VI,
usually when we are trying to calculate the velocity of an object moving with a
constant acceleration, the initial speed v0 has to be observed. It is also necessary to
determine the initial condition when we choose to utilize a gradient descent method
to solve the optimization problem. The list of such similar cases can be enormous,
but the unanimous feature of these cases is that the estimated value remains a re-
quired part in all the problems, some of which may even dramatically affect the
interests of a decision maker. In differential games, the accuracy or sufficiency of
information in model formulation is not always guaranteed. Thus, VI is presented to
measure the lack or misjudgment of information when players make their decisions,
and to estimate the impact of their final profits. In [41], the authors elaborately de-
scribe the impact of information of the uncertain estimation of initial storage which
could lead to the profit volatility. One can calculate VI in differential games or in
optimization problems and may highlight how the information originated from pa-
rameter uncertainty actually affects the outcomes. There are several works on the
uncertainty of the parameters in differential games [21, 94]. In particular, in [94],
the pollution control problem with rehabilitation process is considered for the first
time as far as I know. There is a research on the value of cooperation [22], where the
information is represented by the comparison of benefits under cooperation contrary
to noncooperation.
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To conclude, we can say that the two aspects: internal and external elements —
are of great importance for stability analysis. It is critical and helpful to figure out
how the objective functions, structure, mechanism implementation and uncertain
information could influence the stability of environment protection and economic
activities.

Goals of the thesis
The thesis is devoted to contributions in solving the environmental problems

through a deeper research of stability analysis in these problems. The subject of
stability analysis is pollution control games with many players (in special case,
optimization problems with one player). The stability analysis mainly focuses on the
internal and external elements. In this thesis, the research of the impact of internal
elements including objective functions, structure, and mechanism implementation is
more oriented on the investigation of influence of inherent characteristics imposed
on the stability. In terms of uncertain information caused by external elements,
including changes of upper boundary for control and terminal costs, estimation of
initial stock, one may expect to find out the possible changes or instability in players’
decisions under the lack or absence of necessary information.

Broadly speaking, this thesis can be considered as a tutorial on the stability
analysis in a range of problems and one can apply existing or new concepts and
analytical techniques to the problems of job change, moving to another country,
divorce or generally to any multiagent problems.

Main tasks
To fulfill the research plan, key tasks can be identified as follows:

1. Under the static model setting, a game between countries or companies pollut-
ing the common region, when countries are different in their attitudes to the
pollution reduction policy should be considered. One of the tasks is to exam-
ine different scenarios: (i) when all countries behave individually rational, (ii)
when they all form a unique coalition, and (iii) when the countries partially
cooperate implying the formation of different coalition structures. The stability
of all coalition structures is going to be examined. The research proposes three
ways of designing a stable coalition structure in case it is not essentially stable.
These ways are based on transfer payments, restrictions on coalition formation,
and design of the system of transition costs defining a contract between coop-
erating countries. All these schemes support Nash stability and/or individual
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stability properties of the preferred coalition structure.

2. One of the tasks is to investigate an asymmetric differential game of pollution
control with a developing country and two developed countries. The develop-
ing country is invulnerable to the pollution in contrast to the developed ones.
Assuming partial cooperation, all coalition structures composed by three play-
ers should be examined and stability conditions for them should be provided
based on two approaches: (i) Nash stability and (ii) individual stability. First,
the case of nontransferable payoffs is examined. Second, a transfer payment
scheme is proposed to make particular coalition structures stable. A trade-off
mechanism is proposed by sharing partial workload of a pollution disposal be-
tween the developed and developing countries. In return, the developed country
shares its profit with the developing country to make the trade work. The ef-
ficiency of the trade-off mechanism compared with the fully cooperative and
noncooperative cases should be explored.

3. For differential games of pollution control, one of the tasks is to examine how
the payoff can be affected when the required information is unknown. For
this, in particular, two scenarios should be examined: (i) to study the role of
knowledge about the terminal cost and (ii) to analyze the influence of knowledge
about the exact value of the upper bound on the control set. In case of two-
player games of pollution control with uncertain initial disturbance stock, we
present a model of resource extraction with rehabilitation process in which
the firms are required to compensate the local to rehabilitate the polluted
and dilapidated areas. A simulation of initial stock estimation is alternatively
investigated in cooperative and noncooperative cases. In both games, the task
is to estimate VI or Normalized Value of Information (NVI) to quantify the
influence of uncertainty on the final payoff.

Scientific novelty
In the thesis, with regard to the objective function as one of the internal elements

of stability analysis, a trade-off mechanism merging two asymmetric players’ objec-
tive functions in pollution control games is proposed for the first time. This trade-off
mechanism is innovated from the supply chain theory in which the members’ payoff
functions are strongly correlated. The most distinguishable part of the trade-off
mechanism is that it does not require complete coordination of players’ action over
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time in maximizing the total profit. Moreover, a comparison between the trade-off
mechanism and cooperative and noncooperative solutions is investigated. The nu-
merical example demonstrates that the trade-off mechanism could do better than a
cooperative scenario in pollution reduction task.

Referring to stability analysis of the cooperative structures or partitions formed by
players, first, the variety of structures from grand coalition and the set of singletons
to partial cooperative structures in which multiple coalitions can be constructed is
examined. Partial cooperation is “grand coalition plus many singletons” scenario.
Second, contrary to internal and external stability, two appropriate approaches to
partition-form game: Nash stability and individual stability — are applied to verify
the stability of coalition structures. It can be determined that individual stability is
much more reasonable for environmental agreements because any player can reject
the entry of another player if the acceptance of a new participant implies the losses
in payoffs.

Concerning mechanism design of stable scenarios, a toolkit for making coalition
structures stable is proposed. In this toolkit, three mechanisms are primarily pre-
sented: (i) transfer scheme when the utilities can be transferred among the players
to maintain the stability of cooperation, (ii) taxation scheme when the value of a
uniform tax is defined for all players to prevent possible deviations, and (iii) mod-
eling the set of feasible coalitions which can be determined to restrict cooperation.
Within the third approach, some of the coalition structures become prohibited so
that more scenarios can be stable.

In the part of the thesis concerning uncertain information, three detailed cases are
examined: (i) VI for uncertainty about terminal costs, (ii) VI for uncertainty about
possible adjustment of a control upper boundary, and (iii) VI for initial pollution
stock. The first two cases are caused by the government or regulator who implement
new policies based on the current production. The third case concerning estimation
of the initial pollution stock arises under the influence of a decision maker and affects
the stability of a production plan. As far as I know, the pollution control problem
with rehabilitation process is examined from VI prospective for the first time in
this thesis. In this part of the thesis, the new characteristic of NVI is proposed for
measuring the benefit of uncertain information in the three cases mentioned above.

Research methods
This thesis uses the methods of static game theory (stability conditions and mech-
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anism design of stable coalition structures, Nash equilibrium, Pareto optimality), so-
lutions of differential games (stability conditions, Pontryagin’s maximum principle,
Hamiltonian-Jacobi-Bellman equation, subgame consistency), cooperative game the-
ory (with nontransferable and transferable utilities, characteristic function), games
with coalition structures, optimization theory (Kuhn-Tucker conditions), probability
theory (value of information), mechanism design of contracts.

Theoretical and practical significance
In this thesis, the research is focused on implementation of stability analysis which

theoretical significance is justified as a part of a complete study of examined systems
or processes. The theoretical results are within the theory of stability analysis
including the concepts of Nash and individual stability, mechanism design of transfer
schemes in case of transferable utilities, taxation scheme, and design of the set of
feasible coalitions. One of the theoretical contribution of the thesis is a proposition
of the trade-off objective function for the players in pollution control problems with
two players, another one deals with examining the influence of uncertain information
in parameters modeling of the systems.

The practical significance of the work is manifested in the research on creat-
ing environmental agreements and solution of pollution control problems which are
the most significant problems for the last decades. The international community
strongly supports cooperation in solving environmental problems. By exploiting the
cooperative opportunity, the idea of having a grand coalition or “one big coalition
plus many singletons” does not find popularity in some societies due to restrictions
on cooperation and this leads to considering multiple-coalition cases in this thesis.
Moreover, we testify the possibility of “buying cooperation” through various methods
to maintain the stability of particular coalition structures. The support of “buying
cooperation” is a meaningful demonstration of a trading principle. The application
of models with uncertain information is wide and not limited by pollution control
problems. Certain information in the economic activities is definitely important for
a decision maker to take the right actions. Naturally, the stability of decision mak-
ing can be affected if the information is uncertain, and in this thesis the latter case
is carefully examined.

Two critical concepts: Nash stability and individual stability are defined in detail
in Chapters 1 and 2. In particular, Chapter 1 examines a static model in which play-
ers generate all possible structures including two-coalition scenarios. Three mech-
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anisms are proposed as a theoretical tool to make the desirable structure stable,
and each mechanism implementation is demonstrated on a numerical example. The
dynamic model of a pollution control problem is clearly described in Chapter 2.
Starting with two-player trade-off mechanism inspired by the contract design from
supply chain theory, we also consider a three-player differential game for which a
transfer scheme and subgame consistency are investigated. In the last chapter, the
analysis of uncertain information in pollution control problems is revealed. Specifi-
cally, Chapter 3 discloses three scenarios showing the disturbance brought to decision
making measured by NVI.

The research conducted in the thesis is supported by the Chinese Government
Scholarship (CSC) No. 202109010149 (2022-2025) and the Russian Science Foun-
dation (RSF) grant No. 22-11-00051 “Development of methods for managing multi-
agent systems in conflict conditions” (2023).

Brief description of the thesis structure
The thesis consists of an introduction, three chapters, conclusions and bibliogra-

phy. Each chapter starts with model and basic definition description, and problem
formulation. The results including propositions, numerical examples for clear illus-
tration of the theory are presented at the end of each chapter. The thesis contains
117 pages (129 pages in a Russian version) including 19 tables and 14 figures. The
bibliography cites 112 items listed in alphabetical order.

The first chapter is devoted to studying stability mechanisms designed for every
form of a coalition structure including grand coalition, partial cooperation (one
coalition plus several singletons and multiple coalitions), and the structure composed
by many singletons. Section 1.1 properly describes a static model with four players.
The reason for choosing a static model is to reduce the complexity for calculating the
equilibria. In Section 1.2, equilibria for all possible coalition structures are obtained.
The stability analysis based on nontransferable utilities is presented in Section 1.3
after defining Nash stability and individual stability concepts. Since nontransferable
payoffs cannot meet stability conditions, we propose other methods of making some
desired structures stable. Three mechanisms including transfer scheme, taxation
scheme, and design of feasible coalitions are described in Section 1.4. In some cases,
we theoretically verify the existence of a stable coalition structure, but in some cases
it is demonstrated on numerical examples. Finally, Section 1.5 briefly concludes the
first chapter.
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Different from a static setting examined in the first chapter, the second chapter
approaches a dynamic setting. Section 2.1 proposes a trade-off mechanism borrowed
from supply chain contract theory. Compared with a fully cooperative scenario, the
trade-off mechanism does not require entire coordination of players’ behavior. In
this section, advantages of a trade-off mechanism are analyzed through its compar-
ison with cooperative and noncooperative scenarios in terms of the pollution level.
The results are revealed in numerical examples. In Section 2.2, a differential game
with three asymmetric players different in their attitude to the pollution reduction is
examined. Three types of cooperation scenarios are presented and the Nash stability
and individual stability concepts are applied in a dynamic case. Then identification
of stable structures is conducted under cases of nontransferable and transferable
utilities. Furthermore, we determine the boundary of transferable utilities for devel-
oped countries to “buy cooperation” with developing country and maintain a stable
cooperation scenario. Theoretical results are supported by two numerical examples.
In conclusion, a short summary is given in Section 2.3.

In contrast to the internal elements of stability described in Chapters 1 and 2, the
last chapter investigates the influence of external elements, in particular, uncertain
information, on the system stability. Section 3.1 explores VI for uncertainty about
terminal costs. Specifically, the following situation is examined. When a player
finds out that he will have terminal costs, the original strategy constructed without
this information can be possibly affected and then changed by a better one. Sec-
tion 3.2 examines VI in case of uncertainty about possible adjustment of a control
upper boundary. Similarly, once the information about the change of control upper
boundary is revealed, it is expected that the stability of strategy trajectory will be
altered consequently. In Section 3.3, VI about uncertainty in estimation of initial
pollution stock is investigated. When the initial pollution stock is overestimated or
underestimated, the deviation will be enlarged in the final payoff. Under cooperative
and noncooperative scenarios, players’ benefits or losses are determined by making
inaccurate estimations. Section 3.4 contains a brief conclusion to Chapter 3.

At the end of the thesis, a general conclusion of the whole thesis is given. Possible
directions for future research are also discussed in the final conclusion.

Results submitted for defense

1. The Nash and individual stability conditions are defined for static and dy-
namic pollution control games. Conditions for stable coalition structures are
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in particular identified for three- and four-player games in an explicit form.

2. Transfer scheme is designed for making a particular coalition structure stable
by transferring the share of profits between developed and developing countries
to sustain cooperation when the utilities are transferable.

3. Taxation scheme is proposed to increase the cost of deviation from the coalition
structure in which players’ deviations are nonprofitable. In detail, a uniform
transition tax based on the highest benefit from deviation is implemented.

4. Design of the set of feasible coalitions is proposed by implementing restrictions
on coalition formation. Defining the set of feasible coalitions is equivalent to
implementing restrictions on players’ deviation possibilities.

5. The existence conditions for stable coalition structures are proved for a dynamic
model of pollution control and justified on numerical examples. In the static
model, existence can be theoretically verified under the transfer scheme and
feasible coalitions setting.

6. Trade-off mechanism inspired by supply chain contract theory is proposed as a
different approach to sustain cooperation by trading the profit of a developed
country to a developing one in return for its responsibility in taking pollu-
tion reduction costs into account. This idea is realized by designing modified
objective functions for the players.

7. The value of information is calculated for pollution control problems in case of
uncertain terminal costs, uncertain adjustment of control upper boundary, and
inaccurate estimation of initial pollution stock.

Verification of results
The main results obtained in the thesis were presented at the International Confer-

ences “Game Theory and Management” (Saint Petersburg, 2021, 2023); International
Conference “Game Theory and Applications” (Saint Petersburg, 2022); International
Conference “Mathematical Optimization Theory and Operations Research” (online,
2022; Yekaterinburg, 2023), and at the seminars of Department of Mathematical
Game Theory and Statistical Decisions at Saint Petersburg State University.

Publications
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Based on the results of the thesis, the following works were published: [21, 22,
87, 88, 89]. And [90] is under review.
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Chapter 1

Stable Agreements in Static Games of
Pollution Control

In this chapter, we conduct the stability analysis for a static model of pollution
control with four players. The Nash stability and individual stability are verified
for all possible coalition structures including two-coalition scenarios. Moreover, for
making a particular coalition structure stable, three mechanisms – transfer scheme,
taxation scheme and designing the set of feasible coalitions are proposed. The
existence of a stable coalition structure is proved for some parameter values.

1.1 Model

Let a set of countries or players be N = {1, 2, 3, 4}, and players be of two types: I is
a vulnerable player (developed country), and II is an invulnerable player (developing
country).1 The player’s type defines her strategy in pollution reduction activities
and the attitude to environmental policies. Let players 1, 2 be of type I and players
3, 4 be of type II.

The countries produce goods, and this production activity generates emissions.
The strategy of player i is ei which is the quantity of emission. Following the
formulation in [33, 64], the pollution stock S is given by

S = µ
∑
i∈N

ei + δS0, S0 > 0, (1.1)

where µ > 0 is the marginal influence on pollution accumulation S issued by the
players’ emissions, and δ > 0 is the nature’s absorption rate. The value S0 is an
initial level of pollution stock before the players choose their strategies.

1We examine the case of four players for simplicity of calculations, but the results and all the schemes we propose
in the paper can be applied to the case with any number of players.



20

Assuming that invulnerable and vulnerable players are different in their attitudes
to the pollution reduction policy in terms of the damage caused by their industrial
activities, this is modeled by different payoff functions. A vulnerable player aims to
maximize her payoff given by

max
ei≥0

Wi = αiei −
1

2
e2i −

1

2
βS2, (1.2)

where αi > 0, β > 0 is a per-unit damage cost parameter, whereas the objective
function of an invulnerable player goes as

max
ei≥0

Wi = αiei −
1

2
e2i . (1.3)

We should notice that the payoff function given by (1.2) with β = 0 defines the
payoff of any vulnerable player.

1.2 Equilibria under Different Scenarios

In this section, we assume that the players may cooperate and form coalitions of
any size, so cooperation may be full when all the players join to form a unique
coalition, or partial when coalitions of any sizes can be formed. Therefore, not only
the grand coalition may be formed within a partially cooperative scenario, but also
smaller coalitions are possibly formed implying the formation of specific coalition
structures. By coalition structure π we mean any partition of a set of players, that
is, π = {B1, . . . , Bm} such that Bj ⊂ N , Bj ∩Bk = ∅, ∪m

j=1Bj = N . For example,
the number of coalition structures that can be formed by four players is 15.

We specify the possible coalition structures or scenarios in a four-player game:

1. Noncooperative scenario: π1 = {{I}, {I}, {II}, {II}};

2. Cooperative scenario: π2 = {{I, I, II, II}};

3. Partially cooperative scenarios :

(a) Case 1 {{I, I}, {II}, {II}}, {{I, II}, {I}, {II}} (type “2 + 1 + 1”: one
coalition with two members, other players are singletons) :
π31 = {{1, 2}, {3}, {4}}, π32 = {1, 3}, {2}, {4}}, π33 = {{1, 4}, {2}, {3}},
π34 = {{2, 3}, {1}, {4}}, π35 = {{2, 4}, {1}, {3}}, π36 = {{3, 4}, {1}, {2}};
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(b) Case 2 {{I, I}, {II, II}}, {{I, II}, {I, II}} (type “2 + 2”: two coalitions
with two members in each coalition):
π41 = {{1, 2}, {3, 4}}, π42 = {{1, 3}, {2, 4}}, π43 = {{1, 4}, {2, 3}};

(c) Case 3 {{I, I, II}, {II}}, {{I, II, II}, {I}} (type “3 + 1”: one coalition
with three members):
π51 = {{1, 2, 3}, {4}}, π52 = {{1, 2, 4}, {3}},
π53 = {{1, 3, 4}, {2}}, π54 = {{2, 3, 4}, {1}}.

We examine the game described in the previous section when the set of players is
partitioned into structure π. There are assumptions about the players’ behavior:

1. The players belonging to a coalition choose their strategies maximizing the
payoff of this coalition, which is defined as the sum of the payoffs of the players
belonging to this coalition. Therefore, the coalition is considered as a singleton.

2. The coalitions behave noncooperatively with respect to each other, and the
Nash equilibrium is considered as an equilibrium concept in the game between
coalitions.

The following series of propositions provide the conditions of the Nash equilibria
in the game under different coalition structures.

1.2.1 Noncooperaitve scenario

Proposition 1.1. In the noncooperative scenario π1, the Nash equilibrium is given
by

enci =
αi + βµ2αi − βµ2

∑
k∈M\i αk − βµδS0

1 + 2βµ2
, i = 1, 2,

encj = αj, j = 3, 4,

when the equilibrium strategies are nonnegative, the equilibrium pollution stock is

Snc =
δS0 + α1234µ

1 + 2βµ2
, (1.4)

where α1234 = α1 + α2 + α3 + α4.

Proof. First, the objective of player 3 and player 4 does not depend on the stock
variable and other players’ strategies, so we can easily obtain that the maximal



22

values of their objectives W π1
3 = α2

3

2 and W π1
4 = α2

4

2 are reached at e3 = α3 and
e4 = α4 respectively.

Second, Player 1 is of type I. Her optimization problem is

W π1
1 = α1e1 −

1

2
e21 −

1

2
βS2 → max

e1≥0
.

Substituting the stock of form (1.1), we rewrite the optimization problem as follows:

W π1
1 = α1e1 −

1

2
e21 −

1

2
β(δS0 + µα34 + µe1 + µe2)

2 → max
e1≥0

,

where α34 = α3 + α4.
We let the first derivative of W π1

1 on e1 be equal to zero and determine that player
1 can obtain the maximal profit when

enc1 =
α1 − βµ(δS0 + µα34 + µenc2 )

1 + βµ2

based on the sign of the second derivative on enc1 is negative. Similarly, for player 2
we obtain her best reply strategy enc2 = α2−βµ(δS0+µα34+µenc1 )

1+βµ2 . Solving these two linear
equations, we get equilibrium strategies.

Then, by substituting them into expression (1.1) of the stock, we get the value of
equilibrium stock (1.4).

1.2.2 Cooperative scenario

Proposition 1.2. In the cooperative scenario π2, the optimal players’ strategies are
given by

eci =
αi + 6βµ2αi − 2βµ2

∑
j∈N\i αj − 2βµδS0

1 + 8βµ2
, i ∈ {1, 2, 3, 4},

when the optimal strategies are nonnegative, the pollution stock under scenario π2
is

Sc =
δS0 + α1234µ

1 + 8βµ2
. (1.5)

Proof. The optimization problem of the grand coalition M is given by

W π2 =
4∑

i=1

(αiei −
1

2
e2i )− βS2 → max

ei≥0,i∈N
. (1.6)

After finding the first derivative on each ei and verifying the negative sign of the
second derivative, we obtain optimal strategies:

eci =
αi − 2βµ(δS0 + µ

∑
j∈N\i e

c
j)

1 + 2βµ2
. (1.7)
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Then we get the final result by solving these four linear equations. By substituting
expressions of these strategies into (1.1), we get the optimal value of stock (1.5) for
a cooperative scenario.

1.2.3 Partially Cooperative Scenarios

In this section, we examine the players’ equilibrium behavior under partial cooper-
ation.

Proposition 1.3. Under partially cooperative scenarios, the coalitional Nash equi-
librium and corresponding emission stock are as follows:

1. π31 = {{1, 2}, {3}, {4}}: the Nash equilibrium is given by

e31i =
αi + 2βµ2αi − 2βµ2

∑
k∈N\i αk − 2βµδS0

1 + 4βµ2
, i = 1, 2

e31j = αj, j = 3, 4.

The pollution stock is

S31 =
δS0 + α1234µ

1 + 4βµ2
.

2. π32 = {{1, 3}, {2}, {4}}: the Nash equilibrium is given by

e32i =
αi + 2βµ2αi − βµ2

∑
k∈N\i αk − βµδS0

1 + 3βµ2
, i = 1, 2, 3,

e324 = α4.

The pollution stock is

S32 =
δS0 + α1234µ

1 + 3βµ2
. (1.8)

3. π33 = {{1, 4}, {2}, {3}}: the Nash equilibrium is given by

e33i =
αi + 2βµ2αi − βµ2

∑
k∈N\i αk − βµδS0

1 + 3βµ2
, i = 1, 2, 4,

e333 = α3.

The pollution stock is

S33 =
δS0 + α1234µ

1 + 3βµ2
. (1.9)
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4. π42 = {{1, 3}, {2, 4}}: the Nash equilibrium is given by

e42i =
αi + 3βµ2αi − βµ2

∑
k∈N\i αk − βµδS0

1 + 4βµ2
, i ∈M.

The pollution stock is

S42 =
δS0 + α1234µ

1 + 4βµ2
. (1.10)

5. π51 = {{1, 2, 3}, {4}}: the Nash equilibrium is given by

e51i =
αi + 4βµ2αi − 2βµ2

∑
k∈N\i αk − 2βµδS0

1 + 6βµ2
, i = 1, 2, 3,

e514 = α4.

The pollution stock is

S51 =
δS0 + α1234µ

1 + 6βµ2
. (1.11)

6. π52 = {{1, 2, 4}, {3}}: the Nash equilibrium is given by

e52i =
αi + 4βµ2αi − 2βµ2

∑
k∈N\i αk − 2βµδS0

1 + 6βµ2
, i = 1, 2, 4,

e523 = α3.

The pollution stock is

S52 =
δS0 + α1234µ

1 + 6βµ2
. (1.12)

In all items we assume that equilibrium strategies are nonnegative.

Proof. Omitted to save the space.

We also summarize the Nash equilibrium players’ strategies and equilibrium values
of stock for any given scenario in Table 1.1.

1.2.4 Analysis of different scenarios

Using Proposition 1.1–1.3, we first compare the scenarios in terms of equilibrium
pollution stock and then in terms of players’ payoffs. In Table 1.2, in the second
column we rank the equilibrium stock from the minimal one denoted as S - 0 (cor-
responding to the cooperative scenario π2) to the maximal one denoted by S - 4
(corresponding to the noncooperative scenario π1 and partially cooperative scenario
π36). We should notice that the pollution stock under partially cooperative scenarios
π51 and π52 is the second to the best. We summarize the comparative results on
comparison of pollution stocks in Corollary 1.1.



25

Ta
bl

e
1.

1:
T

he
N

as
h

eq
ui

lib
ri

um
pl

ay
er

s’
st

ra
te

gi
es

an
d

eq
ui

lib
ri

um
va

lu
es

of
st

oc
k

fo
r

al
ls

ce
na

ri
os

Sc
en

ar
io

e 1
e 2

e 3
e 4

S

π
1
,π

3
6

α
1
+
β
µ
2
α

1
−
β
µ
2
α

2
3
4
−
β
µ
δ
S
0

1
+
2
β
µ
2

α
2
+
β
µ
2
α

2
−
β
µ
2
α

1
3
4
−
β
µ
δ
S
0

1
+
2
β
µ
2

α
3

α
4

δ
S
0
+
α

1
2
3
4
µ

1
+
2
β
µ
2

π
2

α
1
+
6
β
µ
2
α

1
−
2
β
µ
2
α

2
3
4
−
2
β
µ
δ
S
0

1
+
8
β
µ
2

α
2
+
6
β
µ
2
α

2
−
2
β
µ
2
α

1
3
4
−
2
β
µ
δ
S
0

1
+
8
β
µ
2

α
3
+
6
β
µ
2
α

3
−
2
β
µ
2
α

1
2
4
−
2
β
µ
δ
S
0

1
+
8
β
µ
2

α
4
+
6
β
µ
2
α

4
−
2
β
µ
2
α

1
2
3
−
2
β
µ
δ
S
0

1
+
8
β
µ
2

δ
S
0
+
α

1
2
3
4
µ

1
+
8
β
µ
2

π
3
1
,π

4
1

α
1
+
2
β
µ
2
α

1
−
2
β
µ
2
α

2
3
4
−
2
β
µ
δ
S
0

1
+
4
β
µ
2

α
2
+
2
β
µ
2
α

2
−
2
β
µ
2
α

1
3
4
−
2
β
µ
δ
S
0

1
+
4
β
µ
2

α
3

α
4

δ
S
0
+
α

1
2
3
4
µ

1
+
4
β
µ
2

π
3
2
,π

3
4

α
1
+
2
β
µ
2
α

1
−
β
µ
2
α

2
3
4
−
β
µ
δ
S
0

1
+
3
β
µ
2

α
2
+
2
β
µ
2
α

2
−
β
µ
2
α

1
3
4
−
β
µ
δ
S
0

1
+
3
β
µ
2

α
3
+
2
β
µ
2
α

3
−
β
µ
2
α

1
2
4
−
β
µ
δ
S
0

1
+
3
β
µ
2

α
4

δ
S
0
+
α

1
2
3
4
µ

1
+
3
β
µ
2

π
3
3
,π

3
5

α
1
+
2
β
µ
2
α

1
−
β
µ
2
α

2
3
4
−
β
µ
δ
S
0

1
+
3
β
µ
2

α
2
+
2
β
µ
2
α

2
−
β
µ
2
α

1
3
4
−
β
µ
δ
S
0

1
+
3
β
µ
2

α
3

α
4
+
2
β
µ
2
α

4
−
β
µ
2
α

1
2
3
−
β
µ
δ
S
0

1
+
3
β
µ
2

δ
S
0
+
α

1
2
3
4
µ

1
+
3
β
µ
2

π
4
2
,π

4
3
,

π
5
3
,π

5
4

α
1
+
3
β
µ
2
α

1
−
β
µ
2
α

2
3
4
−
β
µ
δ
S
0

1
+
4
β
µ
2

α
2
+
3
β
µ
2
α

2
−
β
µ
2
α

1
3
4
−
β
µ
δ
S
0

1
+
4
β
µ
2

α
3
+
3
β
µ
2
α

3
−
β
µ
2
α

1
2
4
−
β
µ
δ
S
0

1
+
4
β
µ
2

α
4
+
3
β
µ
2
α

4
−
β
µ
2
α

1
2
3
−
β
µ
δ
S
0

1
+
4
β
µ
2

δ
S
0
+
α

1
2
3
4
µ

1
+
4
β
µ
2

π
5
1

α
1
+
4
β
µ
2
α

1
−
2
β
µ
2
α

2
3
4
−
2
β
µ
δ
S
0

1
+
6
β
µ
2

α
2
+
4
β
µ
2
α

2
−
2
β
µ
2
α

1
3
4
−
2
β
µ
δ
S
0

1
+
6
β
µ
2

α
3
+
4
β
µ
2
α

3
−
2
β
µ
2
α

1
2
4
−
2
β
µ
δ
S
0

1
+
6
β
µ
2

α
4

δ
S
0
+
α

1
2
3
4
µ

1
+
6
β
µ
2

π
5
2

α
1
+
4
β
µ
2
α

1
−
2
β
µ
2
α

2
3
4
−
2
β
µ
δ
S
0

1
+
6
β
µ
2

α
2
+
4
β
µ
2
α

2
−
2
β
µ
2
α

1
3
4
−
2
β
µ
δ
S
0

1
+
6
β
µ
2

α
3

α
3
+
4
β
µ
2
α

3
−
2
β
µ
2
α

1
2
3
−
2
β
µ
δ
S
0

1
+
6
β
µ
2

δ
S
0
+
α

1
2
3
4
µ

1
+
6
β
µ
2

R
em

ar
k

1.
1.

W
e

us
e

th
e

fo
llo

w
in

g
no

ta
ti
on

:
α
S
=

∑ i∈
S
α
i
fo

r
an

y
S
⊂

N
.



26

Corollary 1.1. The equilibrium emission stock corresponding to different scenarios
satisfies the following conditions:

Sc < S51 = S52 < S31 = S41 = S42 = S43

= S53 = S54 < S32 = S33 = S34 = S35 < Snc = S36.

Proof. The result immediately follows from the comparison of emission stocks cor-
responding to possible scenarios, for which the equilibrium values of stock are given
in Propositions 1.1–1.3.

Table 1.2: Equilibrium pollution stock and players’ payoffs under different scenarios

Scenario Pollution (S) VP 1 (W1) VP 2 (W2) InvP 3 (W3) InvP 4 (W4)
π1, π36 S - 4 W1 - 5 W2 - 5 W3 - 0 W4 - 0
π2 S - 0 W1 - 0 W2 - 0 W3 - m W4 - m

π31 , π41 S - 2 W1 - 4 W2 - 4 W3 - 0 W4 - 0
π32 , π34 S - 3 W1 - 3 W2 - 3 W3 - k W4 - 0
π33 , π35 S - 3 W1 - 3 W2 - 3 W3 - 0 W4 - k

π42 , π43 , π53 , π54 S - 2 W1 - i W2 - i W3 - 1 W4 - 1
π51 S - 1 W1 - j W2 - j W3 - 4 W4 - 0
π52 S - 1 W1 - j W2 - j W3 - 0 W4 - 4

Now we compare scenarios in terms of players’ payoffs given in Table 1.2 (the last
four columns). For example, consider the vulnerable player 1. We rank the player’s
payoffs from the maximal one indicated as W1 - 0 (corresponding to cooperative
scenario π2) to the minimal one W1 - 5 (corresponding to scenarios π1 and π36).
We should notice that there are ranks i, j,m, k in the table. They take the values
i, j ∈ {1, 2}, and m, k ∈ {2, 3}, and these values depend on the parameters as
follows: 

i = 1, j = 2, if 28β2µ4 − 1 > 0,

i = 2, j = 1, if 28β2µ4 − 1 < 0,

i = j = 1, if 28β2µ4 − 1 = 0.

(1.13)


m = 2, k = 3, if 3 + 8βµ2 − 28β2µ4 < 0,

m = 3, k = 2, if 3 + 8βµ2 − 28β2µ4 > 0,

m = k = 2, if 3 + 8βµ2 − 28β2µ4 = 0.

(1.14)

Remark 1.2. The non-negativity of players’ Nash equilibrium or optimal strate-
gies should also be satisfied, which indicates we need to ensure that the least Nash
equilibrium or optimal strategies in Table 1.1 are nonnegative. Therefore,
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1. For vulnerable player 1, we have α1 + 2βµ
(
µ(α1 − α234)− δS0

)
≥ 0,

2. For vulnerable player 2, we have α2 + 2βµ
(
µ(α2 − α134)− δS0

)
≥ 0,

3. For invulnerable player 3, we have α3 + βµ
(
µ(2α3 − α124)− δS0

)
≥ 0,

4. For invulnerable player 4, we have α4 + βµ
(
µ(2α4 − α123)− δS0

)
≥ 0.

i.e., we need to satisfy the following inequalities:

αi ≥
2βµ

1 + 2βµ2
(δS0 + µ

∑
j∈N\i

αj), i = 1, 2; (1.15)

αi ≥
βµ

1 + 2βµ2
(δS0 + µ

∑
j=N\i

αj), i = 3, 4. (1.16)

Furthermore, these inequalities can be simplified in a way that only for two players
x, y, argmin

x
αx, x ∈ {1, 2} and argmin

y
αy, y ∈ {3, 4}, their inequalities should be

met, because assume x′ = {1, 2}\x and y′ = {3, 4}\y, we have

αx′ ≥ αx ≥
2βµ

1 + 2βµ2
(δS0 + µ

∑
j∈N\x

αj) ≥
2βµ

1 + 2βµ2
(δS0 + µ

∑
j∈N\x′

αj),

αy′ ≥ αy ≥
βµ

1 + 2βµ2
(δS0 + µ

∑
j∈N\y

αj) ≥
βµ

1 + 2βµ2
(δS0 + µ

∑
j∈N\y′

αj).

Thus, once the player x, y satisfy the inequalities in (1.15) and (1.16), all inequal-
ities stand true.

Besides, we make the following conclusions after comparing different scenarios of
cooperation in the game defined by (1.1)–(1.3):

1. The vulnerable players can obtain their maximal (minimal) payoffs only under
a cooperative (noncooperative) scenario.

2. The invulnerable players can obtain their maximal payoffs when they are acting
alone or in a homogeneous coalition containing only invulnerable players.

3. The pollution stock reaches the minimal level under a cooperative scenario,
while under a noncooperative scenario the pollution stock level is the worst.

4. An invulnerable player gets the least payoff when she cooperates with two
vulnerable players but not with the other invulnerable player.
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1.3 Identification of Stable Coalition Structures

In this section, we assume that the players’ payoffs are nontransferable, i.e., players
obtain their payoffs according to the given payoff functions even if they form a
coalition. Vector W π = (W π

1 , . . . ,W
π
m) ∈ Rm denotes the corresponding players’

payoffs when coalition structure π is formed.
We examine the stability of all possible scenarios or coalition structures. A sta-

ble coalition structure is a candidate to be formed. There are different concepts of
the coalition structure stability proposed for nondynamic games. A coalition struc-
ture π = {B1, . . . , Bm}, such that B1 ∪ · · · ∪ Bm = N and Bi ∩ Bj = ∅ for all
i, j = 1, . . . ,m, i ̸= j is stable when any player cannot increase her payoff if she
changes this structure in an individual way. We should notice that we consider two
possibilities for a deviating player: (i) she can join any possible coalition without any
restrictions (see Section 1.3.1), (ii) the coalition which the deviating player would
like to join can block the player’s joining if there exists at least one coalition member
who can lose by accepting such a player (see Section 1.3.2).

1.3.1 Nash-Stable scenarios with nontransferable payoffs

The first definition of a stable coalition structure assumes that all individual devia-
tions of the players are possible.

Definition 1.1. A coalition structure π = {B1, . . . , Bm} is Nash stable (or, simply,
stable) if for any player i ∈ N it holds that

W π
i ≥ W π′

i for all π′ = {B(i)\{i}, Bj ∪ {i}, π−{B(i),Bj}},

where Bj ∈ π ∪ ∅, Bj ̸= B(i), π−{B(i),Bj} = π\{B(i), Bj}, and W π, W π′ denote
the vectors of players’ payoffs under coalition structures π and π′ respectively.

In Definition 1.1, any player can deviate from her current coalition joining another
existing coalition or becoming a singleton.

Proposition 1.4. In the game of pollution control given by (1.1)–(1.3) with non-
transferable payoffs, there is no Nash-stable coalition structure or scenario.

Proof. Verifying the stability conditions given in Definition 1.1 and taking into ac-
count the equilibrium players’ payoffs under different scenarios (see Table 1.1), we
can conclude that for any scenario, there exists at least one player whose deviation
is profitable. Therefore, a stable scenario does not exist.



29

1.3.2 Individually stable coalition scenarios with nontransferable
payoffs

In this section, we investigate another stability concept for coalition structures. We
assume that the players in a coalition can refuse to cooperate with another player
willing to join them in case this player can bring the loss to anyone’s profit inside
the coalition. This means that not all deviations of a player are possible. Therefore,
we give another definition of a stable coalition structure with a reasonable block of
external entries.

Definition 1.2. A coalition structure π = {B1, . . . , Bm} is individually stable if for
any player i ∈ N it holds that

W π
i ≥ W π′′

i for all π′′ = {B(i)\{i}, Bj ∪ {i}, π−{B(i),Bj}} such that

W π′′

k ≥ W π
k for all k ∈ Bj,

where Bj ∈ π ∪ ∅, Bj ̸= B(i), π−{B(i),Bj} = π\{B(i), Bj}, and W π, W π′′ denote
the vectors of players’ payoffs under the coalition structures π and π′′ respectively.

Obviously, the set of individually stable coalition structures contains the set of
the Nash stable coalition structures [91]. The following proposition characterizes
the conditions of individually stable coalition structures.

Proposition 1.5. In the game of pollution control defined by (1.1)–(1.3) with non-
transferable payoffs, only coalition structures or scenarios π31 and π41 are individu-
ally stable.

Proof. Verifying the stability conditions given in Definition 1.2 and taking into ac-
count the equilibrium players’ payoffs under different scenarios (see Table 1.1), we
can easily obtain that only two coalition structures satisfy them. We demonstrate
which inequalities are satisfied for scenarios π31 and π41 in Table 1.3. They are
colored in blue.

1.4 Designing mechanisms to make scenarios stable

In this section, we propose three mechanisms to make the coalition structure stable
in case it is not stable when the payoffs to the players are nontransferable, i.e., it does
not satisfy Definition 1.1. These mechanisms are based on: (i) adopting a payment
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Table 1.3: Conditions to verify individual stability of coalition structures π31 and π41

Scenario Vul. Player 1 Vul. Player 2 Invul. Player 3 Invul. Player 4

π31 =

{{1, 2}, {3}, {4}}



W
π31
1 ≥ Wπ1

1
{
W

π31
3 < W

π32
3

W
π31
1 ≥ W

π32
1

or W
π31
3 ≥ W

π32
3

{
W

π31
4 < W

π33
4

W
π31
1 ≥ W

π33
1

or W
π31
4 ≥ W

π33
4



W
π31
2 ≥ Wπ1

2
{
W

π31
3 < W

π34
3

W
π31
2 ≥ W

π34
2

or W
π31
3 ≥ W

π34
3

{
W

π31
4 < W

π35
4

W
π31
2 ≥ W

π35
2

or W
π31
4 ≥ W

π35
4






W

π31
1 < W

π51
1

W
π31
2 < W

π51
2

W
π31
3 ≥ W

π51
3

or W
π31
1 ≥ W

π51
1

or W
π31
2 ≥ W

π51
2

{
W

π31
4 < W

π41
4

W
π31
3 ≥ W

π41
3

or W
π31
4 ≥ W

π41
4






W

π31
1 < W

π52
1

W
π31
2 < W

π52
2

W
π31
4 ≥ W

π52
4

or W
π31
1 ≥ W

π52
1

or W
π31
2 ≥ W

π52
2

{
W

π31
3 < W

π41
3

W
π31
4 ≥ W

π41
4

or W
π31
3 ≥ W

π41
3

π41 =

{{1, 2}, {3, 4}}



W
π41
1 ≥ W

π36
1


W

π41
3 < W

π53
3

W
π41
4 < W

π53
4

W
π41
1 ≥ W

π53
1

or W
π41
3 ≥ W

π53
3

or W
π41
4 ≥ W

π53
4



W
π41
2 ≥ W

π36
2


W

π41
3 < W

π54
3

W
π41
4 < W

π54
4

W
π41
2 ≥ W

π54
2

or W
π41
3 ≥ W

π54
3

or W
π41
4 ≥ W

π54
4



W
π41
3 ≥ W

π31
3


W

π41
1 < W

π51
1

W
π41
2 < W

π51
2

W
π41
3 ≥ W

π51
3

or W
π41
1 ≥ W

π51
1

or W
π41
2 ≥ W

π51
1



W
π41
4 ≥ W

π31
4


W

π41
1 < W

π52
1

W
π41
2 < W

π52
2

W
π41
4 ≥ W

π52
4

or W
π41
1 ≥ W

π52
1

or W
π41
2 ≥ W

π52
1

scheme defined by a cooperative solution such as the Shapley value, the CIS-value,
etc. (Section 1.4.1); (ii) implementing taxation scheme for any player’s deviations in
case the scenario is not stable and at least one player can benefit deviating from it
(Section 1.4.2); (iii) implementing the set of feasible coalitions, the set of coalitions
that can be formed in the game, by making restrictions on formation of coalitions
that can destabilize the scenario (Section 1.4.3).

1.4.1 Nash stability of coalition structures with transferable payoffs

In this section, we examine the Nash stability of scenarios when players’ payoffs are
transferable between the coalition members. The transfers between players can be
defined in different ways, e.g., by adopting any cooperative solutions such as the
Shapley value, the CIS-value, and the core [3]. These solutions applied to the games
with coalition structures satisfy the efficiency property, according to which the sum
of the payments to the players is equal to the payoff of the coalition they belong
to. The payoffs that players obtain after making transfers with respect to allocation
ξπ = (ξπi : i ∈ S, S ∈ π) are represented in Table 1.4. In this table, we use the
following notations: ξπS =

∑
i∈S ξ

π
i and W π

S =
∑

i∈SW
π
i .

We demonstrate the mechanism of making transfers based on the CIS-value [29],
but any other cooperative solution can be adopted in a similar way. For any player
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Table 1.4: The players’ payoffs under various coalition structures in a transferable case

Scenarios VP 1 VP 2 InvP 3 InvP 4
π1 = {{1}, {2}, {3}, {4}} Wπ1

1 Wπ1
2 Wπ1

3 Wπ1
4

π2 = {{1, 2, 3, 4}} ξπ2
1 ξπ2

2 ξπ2
3 Wπ2

1234 − ξπ2
123

π31 = {{1, 2}, {3}, {4}} ξ
π31
1 W

π31
12 − ξ

π31
1 W

π31
3 W

π31
4

π32 = {1, 3}, {2}, {4}} ξ
π32
1 W

π32
2 W

π32
13 − ξ

π32
1 W

π32
4

π33 = {{1, 4}, {2}, {3}} ξ
π33
1 W

π33
2 W

π33
3 W

π33
14 − ξ

π33
1

π34 = {{2, 3}, {1}, {4}} W
π34
1 ξ

π34
2 W

π34
23 − ξ

π34
2 W

π34
4

π35 = {{2, 4}, {1}, {3}} W
π35
1 ξ

π35
2 W

π35
3 W

π35
24 − ξ

π35
2

π36 = {{3, 4}, {1}, {2}} W
π36
1 W

π36
2 ξ

π36
3 W

π36
34 − ξ

π36
3

π41 = {{1, 2}, {3, 4}} ξ
π41
1 W

π41
12 − ξ

π41
1 ξ

π41
3 W

π41
34 − ξ

π41
3

π42 = {{1, 3}, {2, 4}} ξ
π42
1 ξ

π42
2 W

π42
13 − ξ

π42
1 W

π42
24 − ξ

π42
2

π43 = {{1, 4}, {2, 3}} ξ
π43
1 ξ

π43
2 W

π43
23 − ξ

π43
2 W

π43
14 − ξ

π43
1

π51 = {{1, 2, 3}, {4}} ξ
π51
1 ξ

π51
2 W

π51
123 − ξ

π51
12 W

π51
4

π52 = {{1, 2, 4}, {3}} ξ
π52
1 ξ

π52
2 W

π52
3 W

π52
124 − ξ

π52
12

π53 = {{1, 3, 4}, {2}} ξ
π53
1 W

π53
2 ξ

π53
3 W

π53
134 − ξ

π53
13

π54 = {{2, 3, 4}, {1}} W
π54
1 ξ

π54
2 ξ

π54
3 W

π54
234 − ξ

π54
23

i ∈ S such that S ∈ π, the ith component of the CIS-value is determined by

ξπi = Ŵi +

W π
S −

∑
j∈S

Ŵj

|S|
, (1.17)

where Ŵi is the player i’s payoff that she obtains by individual deviation from
coalition S and becomes a singleton under assumption that all other players remain
in the coalitions they belong to before the deviation. Formally, Ŵi = W π′

i , where
π′ = {π \S, S \ {i}, {i}}. The value Ŵi can be interpreted as the guaranteed payoff
of player i if she decides to act individually while all other players do not change
the coalitions they belong to.

Proposition 1.6. In the game defined by (1.1)–(1.3), when the players’ payoffs
are transferable and defined by the CIS-value given by (1.17), there exists a stable
coalition structure if βµ2 ≤ 1.9549. Moreover,

1. If βµ2 ∈ (0, 0.125], then coalition structure π2 is Nash stable;

2. If βµ2 ∈ [0.125, 0.333), then coalition structures π53 and π54 are Nash stable;

3. If βµ2 ∈ [0.333, 1.2071), then coalition structures π31, π41, π53, and π54 are
Nash stable;

4. If βµ2 ∈ [1.2071, 1.9549], then coalition structure π31 is Nash stable.
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5. If βµ2 ∈ (1.9549,+∞), there is no Nash stable coalition structure.

Proof. We substitute the values of W π
i for any i ∈ M and π from Table 1.1 into

formula (1.17), then we verify if the conditions of Definition 1.1 are satisfied. We
come to the following conclusions:

1. The coalition structures π1, π32, π33, π34, π35, π36, π42, π43 are never Nash stable,
which can immediately be identified by comparing players’ payoffs under given
structures and their payoffs when they deviate.

2. The coalition structure π2 is Nash stable if

8βµ2 − 1 ≤ 0,

and taking into account that β, µ ≥ 0, we obtain that it is equivalent to the
condition:

βµ2 ∈ (0, 0.125].

It holds true below and for a red curve in the cyan area drawn in Fig. 1.1.

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

2
=1.9549

2
=1.2071

2
=0.333

2
=0.125

Figure 1.1: Stable coalition structures from Proposition 1.6 for colored areas: cyan for π2; yellow
for π53 , π54 ; green for π31 , π41 , π53 , π54 , and blue for π31

3. The coalition structure π31 is Nash stable if

1 + 5βµ2 + 5β2µ4 − 4β3µ6 ≥ 0,

3βµ2 − 1 ≥ 0,
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which is equivalent to condition

βµ2 ∈ [0.333, 1.9549].

It holds true in the green and blue areas, and their borders in Fig. 1.1.

4. The coalition structure π41 is Nash stable if

1 + 4βµ2 − 4β2µ4 ≥ 0,

3βµ2 − 1 ≥ 0,

which is equivalent to condition

βµ2 ∈ [0.333, 1.2071].

It holds true in the green area and its border represented in Fig. 1.1.

5. The coalition structures π51, π52 are Nash stable when the three inequalities

156β3µ6 + 80β2µ4 + 7βµ2 − 1 ≤ 0,

3βµ2 − 1 ≤ 0,

8βµ2 − 1 ≥ 0,

hold true. However, the system has no solution.

6. The coalition structures π53, π54 are Nash stable when the two inequalities

1 + 4βµ2 − 4β2µ4 ≤ 0,

8βµ2 − 1 ≥ 0,

hold true. This system is equivalent to the condition

βµ2 ∈ [0.125, 1.2071],

which holds true in the yellow and green areas, and their borders shown in
Fig. 1.1.

Therefore, for any values of β > 0 and µ > 0, such that βµ2 ≤ 1.9549, there always
exists at least one Nash stable scenario.

We should notice that in the case of nontransferable payoffs, the least polluted
coalition structure π2 (see Table 1.2) is always unstable. However, coalition structure
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π2 can be stable when the players’ payoffs are transferable through the CIS-value
as indicated in Proposition 1.6. Therefore, it is reasonable to adopt a mechanism of
payment transfers through the CIS-value if one has an incentive to make the most
environmentally friendly scenario stable. The scheme of transfers is also adopted for
environmental agreements between developing and developed countries in a dynamic
context in [33, 64, 89].

1.4.2 Transition taxation mechanism

In this section, we propose another mechanism to make a coalition structure Nash
or individually stable by implementing transition costs when a player deviates from
the coalition she belongs to. Let us describe this mechanism through an example.
Consider a coalition structure π51 which is actually not stable, but the authority or
government is willing to make it stable. We prove in Proposition 1.4 and 1.6 that
π51 is not Nash stable either with nontransferable payoffs, or transferable payoffs
with adopted transfers based on the CIS-value, we can involve taxation mechanism
for the stability of this scenario. We define a uniform taxation on players’ payoffs
in case of a deviation from scenario π = {B1, . . . , Bm} as follows:

T π = max
i∈N


[
max
π′

Ŵ π′

i − Ŵ π
i

]+
Ŵ π

i

× 100%, (1.18)

where π′ = {B(i)\{i}, Bj ∪ {i}, π−{B(i),Bj}}; Ŵ π′

i is a payoff to player i under
scenario π′ after adopting transfers if needed; operator [A]+ equals A if A ≥ 0, and
equals zero otherwise.

We give some remarks about the value of taxes T π applied for any scenario π

given by (1.18) and the proposed taxation mechanism in general:

1. The difference max
π′

Ŵ π′

i − Ŵ π
i is the maximal value that player i can obtain by

individual deviation from the coalition she belongs to. As in Definition 1.1, we
assume that player i can join any coalition in π or become a singleton. We can
also determine the taxation mechanism in case of defining individual stability
given in Definition 1.2 in a similar way.

2. If scenario π is stable, then T π equals zero.

3. Formula (1.18) gives a value of a uniform taxation, i.e., a unique tax is applied
for any player for a given scenario π. We can also provide a scheme of individual
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taxation defining different taxes to different players depending on how much
they can benefit from deviations. In the latter case, we need to delete maximum
in formula (1.18).

4. Formula (1.18) is written for the case of positive payoffs Ŵ π
i given in the de-

nominator.

5. An authority or coordination center is needed to implement the taxation scheme.
This mechanism can be involved in a contract determining the players’ payoffs
and taxes when players are realizing a particular scenario.

Now we give a definition of stability of a scenario π with transferable payoffs and
an applied taxation scheme.

Definition 1.3. A coalition structure π = {B1, . . . , Bm} is stable in the game with
transferable payoffs and an applied taxation scheme if for any player i ∈ N it holds
that

Ŵ π
i ≥ Ŵ π′

i − T π

100
Ŵ π

i for all π′ = {B(i)\{i}, Bj ∪ {i}, π−{B(i),Bj}},

where Bj ∈ π∪∅, Bj ̸= B(i), π−{B(i),Bj} = π\{B(i), Bj}, and Ŵ π and Ŵ π′ denote
the vectors of players’ payoffs after adopting transfers under coalition structures π
and π′ respectively.

Proposition 1.7. If the taxes for any player i and given scenario π are equal to
T π given by formula (1.18), then scenario π is stable in terms of Definition 1.3.

Proof. The result immediately follows from substituting the values of taxes given by
(1.18) into stability condition in Definition 1.3.

Example 1.1. Let the parameters of the game satisfied the inequalities given in
(1.15) and (1.16) be as follows:

α1 = 10, α2 = 9, α3 = 4, α4 = 3,

β = 1, µ = 0.4, δ = 0.2, S0 = 3.

Consider scenario π51 = {{1, 2, 3}, {4}} which is not stable that is proved in Propo-
sition 1.6. We define the taxes to the players in this scenario by formula (1.18).
For the given parameters, βµ2 = 0.16, and by Proposition 1.6, coalition struc-
tures π53 = {{1, 3, 4}, {2}} and π54 = {{2, 3, 4}, {1}} are stable after adopting
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CIS-values. In Table 1.5, we provide the payoffs to the players after adopting the
CIS-value in π51 and their payoffs obtained by individual deviations from π51. For
example, player 1 can deviate to scenario π43 if she joins player 4, or to scenario π34
if she becomes a singleton. The corresponding payoffs to player 1 in these deviations
are 17.9602 and 19.1340. Similar calculations can be done for other players. Then,
the uniform tax assigned to each player in scenario π51 is T π51 = 4.24% according
to (1.18).

Table 1.5: Players’ payoffs in π51 = {{1, 2, 3}, {4}} and in possible deviations

Ŵ
π51
i {Ŵπ′

i ,∀π′}
[
max
π′

Ŵπ′

i − Ŵπ
i

]+
Player 1 18.7418 {17.9602; 19.1340} 0.3922

Player 2 9.2418 {8.4602; 9.6340} 0.3922

Player 3 8.7816 {8.0; 8.0} 0
Player 4 4.5 {4.2790} 0

1.4.3 Designing the set of feasible coalition structures

In Section 1.4.1, we showed that in case of transferable payoffs we can define the sys-
tem of transfers based on any cooperative solution. After realization of this system
of transfers, we obtain new stable coalition structures in comparison with a non-
transferable case. Nevertheless, some “desirable” coalition structures may be still
unstable. In this section, we provide a mechanism of designing the set of feasible
coalition structures by defining the set of restricted coalitions. When there are re-
strictions on some coalition formations, the deviations after which these coalitions
are formed cannot be materialized. Therefore, the corresponding players’ deviations
are also blocked meaning that more scenarios are stable. Knowing profitable devia-
tions we can design the set of restricted coalitions to prevent undesirable deviations.

In this section, we introduce a feasible coalition structure by defining a set of
restricted coalitions Ω = {R1, . . . , Rℓ}, where Rj ⊂ N for j = 1, . . . , ℓ. Then we
can define a feasible coalition structure or feasible scenario π = {B1, . . . , Bm} such
that π ∩Ω = ∅, B1 ∪ · · · ∪Bm = N and Bi ∩Bj = ∅ for all i, j = 1, . . . ,m, i ̸= j.
Now we define a stable feasible coalition structure by implementing restrictions
on players’ deviations from the current scenario, i.e., a player cannot individually
deviate to the unfeasible scenario. Therefore, the set of players’ possible deviations is
restricted with respect to the one given in Definition 1.1 when all player’s deviations
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can be materialized.

Definition 1.4. A feasible coalition structure π = {B1, . . . , Bm} is Nash stable (or
simply, stable) in the game with restricted cooperation if for any player i ∈ N it
holds that

W π
i ≥ W π′

i for all π′ = {B(i)\{i}, Bj ∪ {i}, π−{B(i),Bj}}, such that

{B(i)\{i}, Bj ∪ {i}} ∩ Ω = ∅,

where Bj ∈ π ∪ ∅, Bj ̸= B(i), π−{B(i),Bj} = π \ {B(i), Bj}, and W π, W π′ denote
the vectors of players’ payoffs under coalition structures π and π′ respectively.

We can also define individually stable feasible coalition structures assuming that
in the condition from Definition 1.2 only deviations implying feasible scenarios are
possible.

Definition 1.5. A feasible coalition structure π = {B1, . . . , Bm} is individually
stable if for any player i ∈ N it holds that

W π
i ≥ W π′′

i for all π′′ = {B(i)\{i}, Bj ∪ {i}, π−{B(i),Bj}} such that

{B(i) \ {i}, Bj ∪ {i}} ∩ Ω = ∅ and W π′′

k ≥ W π
k for all k ∈ Bj,

where Bj ∈ π ∪ ∅, Bj ̸= B(i), π−{B(i),Bj} = π \ {B(i), Bj}, and W π, W π′′ denote
the vectors of players’ payoffs under the coalition structures π and π′′ respectively.

We give some remarks about stable and individually stable feasible scenarios
and the proposed mechanism of implementing restricted coalitions to make initially
unstable scenarios stable:

1. We should notice that if coalition S is restricted, it does not imply that coalition
S ′ ⊃ S is restricted. For example, if cooperation of two developing countries is
restricted, {3, 4} ∈ Ω, from this it does not follow that any coalition containing
this set is restricted. Then, coalition {1, 3, 4} is feasible if {1, 3, 4} /∈ Ω.

2. By adding a coalition to the set of restricted coalitions Ω, we decrease the
number of feasible scenarios and the number of possible deviations from a
feasible scenario. Following Definitions 1.4 and 1.5, a player cannot deviate to
the unfeasible scenario. This positively influences the stability of the scenario
as less deviations from this scenario can be materialized.
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3. To implement the mechanism of feasible scenarios, an authority or coordina-
tion center is needed. The restrictions on formation of some coalitions can be
implemented by the rules or laws while creating contracts supporting cooper-
ation. We do not focus our research on the conditions when this mechanism
can be technically implemented, but we provide a mathematical model of such
a mechanism implementation.

We demonstrate the adoption of this mechanism when the coalition of two de-
veloping countries is restricted due to the irrationality of the joint work of the two
developing countries. Therefore, Ω = {{3, 4}} is the set of restricted coalitions.
Therefore, the scenarios π36 = {{3, 4}, {1}, {2}} and π41 = {{3, 4}, {1, 2}} are not
feasible. We demonstrate how the sets of stable and individually stable coalitions
change by implementing this restriction for nontransferable and transferable payoff
cases.

Proposition 1.8. In the game of pollution control given by (1.1)–(1.3) with non-
transferable payoffs with the set of restricted coalitions Ω = {{3, 4}}, there is no
Nash-stable feasible coalition structure or scenario, but there exists a unique indi-
vidually stable feasible scenario π31 = {{1, 2}, {3}, {4}}.

Proof. The proof follows from Propositions 1.4 and 1.5 by verifying conditions given
in Definitions 1.4 and 1.5.

Now we provide the conditions for stability of feasible scenarios when the players’
payoffs are transferable and defined by the CIS-value.

Proposition 1.9. In the game defined by (1.1)–(1.3), when the players’ payoffs
are transferable and defined by the CIS-value given by (1.17), there always exists a
stable feasible coalition structure. Moreover,

1. if βµ2 ∈ (0, 0.125], then feasible coalition structure π2 is stable;

2. if βµ2 ∈ [0.125, 0.333) ∪ (1.9549,+∞), then feasible coalition structures π53
and π54 are stable;

3. if βµ2 ∈ [0.333, 1.9549], then feasible coalition structures π31, π53, and π54 are
stable.
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Proof. We substitute the values of W π
i for any i ∈ M and π from Table 1.1 into

formula (1.17), then we verify if the conditions of Definition 1.8 are satisfied. We
come to the following conclusions:

1. The feasible coalition structures π1, π32, π33, π34, π35, π42, π43 are never stable,
which immediately follows from comparison of the players’ payoffs under given
structures and their payoffs when they deviate.

2. The feasible coalition structure π2 is stable if

8βµ2 − 1 ≤ 0,

and it is equivalent to the condition

βµ2 ∈ (0, 0.125],

taking into account that β, µ ≥ 0. This condition holds true below and for a
red curve in Fig. 1.2, i.e., in the blue area.

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

2
=1.9549

2
=0.333

2
=0.125

Figure 1.2: Stable feasible coalition structures from Proposition 1.9: blue for π2; white for π53 ,
π54 ; green for π31 , π53 , π54

3. The feasible coalition structure π31 is stable if

1 + 5βµ2 + 5β2µ4 − 4β3µ6 ≥ 0,

3βµ2 − 1 ≥ 0,

which is equivalent to condition

βµ2 ∈ [0.333, 1.9549].



40

It holds true in the green area and its borders in Fig. 1.2.

4. The feasible coalition structures π51, π52 are stable when the three inequalities

156β3µ6 + 80β2µ4 + 7βµ2 − 1 ≤ 0,

3βµ2 − 1 ≤ 0,

8βµ2 − 1 ≥ 0,

hold true. However, this system has no solution.

5. The feasible coalition structures π53, π54 are Nash stable when the inequality

8βµ2 − 1 ≥ 0,

holds true. This system is equivalent to the condition

βµ2 ∈ [0.125,∞),

which is satisfied in the white and green areas shown in Fig. 1.2.

Therefore, for any values of β > 0 and µ > 0, there always exists at least one Nash
stable feasible scenario.

We compare stable scenarios for a transferable payoff case when there are no re-
stricted coalitions (Proposition 1.6) and when coalition {3, 4} is restricted (Propo-
sition 1.9):

• In the case of restricted coalition {3, 4}, there always exists a stable scenario,
while with no restrictions on cooperation, for βµ2 > 1.9549 there is no stable
coalition structure. With the restriction, in this interval scenarios π53 and π54
are stable.

• The range of parameters, where cooperative scenario π2 is stable, does not
change, it is when βµ2 ∈ (0, 0.125]. It can be easily explained by the fact that
coalition {3, 4} cannot be formed from π2 by individual deviations.

• There are changes in the set of stable scenarios when βµ2 ∈ [1.2071, 1.9549].
With adding a restriction on formation of coalition {3, 4}, the scenarios π53 and
π54 become stable, while they are not stable for the case without restrictions
on the coalition formation.
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If one is aiming to make a particular scenario stable in case it is not stable
by Definition 1.1, even after making transfer payments defined in Section 1.4.1, the
mechanism of designing the set of restricted coalitions or the set of feasible scenarios
may help. We need to verify the profitable deviations and then design the set of
restricted coalitions to prevent players from deviations. This can definitely be done
with the presence of an authority or a regulator.

1.5 Conclusion to Chapter 1

In this chapter, the research focuses on the investigation of stability analysis in a
static model of pollution control. In this static model, we show the analysis for
the case of four players so that the coalition structure formed by them may be
nontrivial, i.e., we may examine the partial cooperation where multiple coalitions
can be generated.

After enumerating all possible coalition structures, the Nash stability and indi-
vidual stability are given for a static model. When the utilities are nontransferable,
we find that there is no Nash stable coalition structure, and only two coalition struc-
tures are individually stable. Therefore, we turn to the case of transferable payoffs
in order to achieve much more environment-friendly stable coalition structures.

In total, three mechanisms are proposed to make some particular coalition struc-
tures stable. The payment transfer scheme is the most common technique. In this
research, we use the CIS-value to redistribute the payoffs among all players and the
result indicates that the grand coalition which generates the least pollution can be
Nash stable under some conditions. As for the taxation scheme, we are manually
building some obstacles for players to stay in the original coalition structures. The
uniform tax applied to the players is determined as the the highest benefit that a
player can achieve by deviation. Finally, the set of feasible coalitions is designed to
further eliminate some desirable coalition formations. In this way, some coalition
structures have a higher possibility to be stable. The examples are given for each
mechanism for better understanding.
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Chapter 2

Stable Agreements in Dynamic Games of
Pollution Control

In this chapter, we investigate the design and existence of stable self-enforcing agree-
ments in dynamic games of pollution reduction compared with static games discussed
in the first chapter. In comparison to cooperative and noncooperative solutions, we
firstly propose a trade-off mechanism [89], i.e., a contract, in which two players are
generally behaving cooperatively but with less restriction on the coordination of
their actions. Later, a Nash stability and individual stability approach is defined
for identifying stable self-enforcing agreements for more than two players in terms
of coalition structures [88].

2.1 Trade-off mechanism approach

In this section, we assume that the set of playersN = {1, 2} consists of two countries:
developed and developing. The asymmetry between two countries is represented by
their nonequivalent vulnerabilities to the pollution problem, i.e., the players are of
two types: player 1 is a vulnerable player (developed country), and player 2 is an
invulnerable player (developing country).

Following the model represented in [33, 64], the dynamics of the pollution stock
S are given by

Ṡ(t) = µ
∑
i∈N

ei(t)− εS(t), S(0) = S0, (2.1)

where ei(t) denotes the quantity of emissions generated by player i, µ > 0 is the
marginal influence on pollution accumulation of the players’ emissions, and ε > 0 is
the nature’s absorption rate.

Vulnerable and invulnerable players vary in their attitudes to the pollution re-



43

duction policy. The reactions to different attitudes are indicated in the model with
adjustment of damage-cost item, i.e., an invulnerable player maximizes her payoff
given by

max
e2>0

W2 =

∫ ∞

0

e−ρt(α2e2 −
1

2
e22)dt, (2.2)

whereas the objective function of a vulnerable player goes as

max
e1>0

W1 =

∫ ∞

0

e−ρt(α1e1 −
1

2
e21 −

1

2
β1S

2)dt, (2.3)

where ρ > 0 is a discount rate, and αi, βi are positive constants. The damage cost
1
2β1S

2 is missed in (2.2), which conveys that an invulnerable player does not make
efforts for pollution reduction on nature.

We consider three possible scenarios in terms of players’ behavior/willingness to
cooperation. In a noncooperative scenario, both players individually maximize their
profits. Such a behavior is not environmentally friendly, i.e., does not overcome
the pollution issue. In a cooperative scenario, players maximize their joint profit,
which allows to address environmental problem, i.e. to reduce the pollution stock
and to achieve the largest joint payoff. There are several problems concerning the
realization of a cooperative scenario, and among them: (i) how to allocate fairly
the joint profit, and (ii) how to achieve a full cooperative behavior, especially, when
full coordination of the players’ behavior is questionable. In the paper, we consider
the third scenario, in which the cooperation is different from a fully cooperative
scenario, but it is carried through a trade-off mechanism (see [24]), usually used
in supply-chain coordination [25, 56]. This mechanism is a form of cooperative
behavior proposed to find an efficient solution to mitigate the pollution damage,
but it does not require full coordination of players’ behavior over time. In the
proposed trade-off mechanism, although two players are still acting by maximizing
their own profits, there is a trade of pollution disposal between them. A vulnerable
player compensates an invulnerable player’s costs on involving her in the production
reduction by transferring the share of her profits to the latter.

2.1.1 Equilibria under different scenarios

In this section, we examine the Nash equilibria in a two-player differential game
under a noncooperative scenario, find the solution of the players’ joint optimization
problem in a cooperative scenario and obtain the Nash equilibrium strategies in a
trade-off mechanism scenario.
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Noncooperaitve scenario

Under a noncooperative scenario, the two players behave as singletons individually
maximizing their profits given by (2.2) and (2.3) subject to the state dynamics (2.1).

Proposition 2.1. Assuming an interior solution, in a noncooperative scenario,
the feedback-Nash equilibrium in two-player differential game defined by objective
functions (2.2) and (2.3) s.t. (2.1), is given by

enc1 (t) = α1 + µ(xncS
nc(t) + ync),

enc2 (t) = α2,

where

xnc =
ρ+ 2ε−

√
(ρ+ 2ε)2 + 4µ2β1
2µ2

< 0,

ync =
µ(α1 + α2)xnc
ρ+ ε− µ2xnc

< 0,

znc =
(α1 + µync)

2 + 2µyncα2

2ρ
.

The corresponding equilibrium state trajectory is

Snc(t) =
µ(α1 + α2) + µ2ync

µ2xnc − ε
(e(µ

2xnc−ε)t − 1) + e(µ
2xnc−ε)tS0.

The steady state stock of emissions is

Snc
∞ =

µ(α1 + α2)(ρ+ ε)

(ε− µ2xnc)(ρ+ ε− µ2xnc)
,

which is globally asymptotically stable when µ2xnc − ε < 0.
The Nash equilibrium players’ payoffs are

V nc
1 =

1

2
xncS

2
0 + yncS0 + znc,

V nc
2 =

α2
2

2ρ
.

Proof. See [33].

Cooperative scenario

In a cooperative scenario, the two players jointly maximize their total payoff, i.e.,
they solve the following optimization problem:

max
ei≥0
i∈N

∑
i∈N

Wi(e1, e2),
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subject to the state dynamics (2.1), and the players’ payoff functions are given by
(2.2) and (2.3).

Proposition 2.2. Assuming an interior solution, in a cooperative scenario, the
optimal feedback strategies in two-player differential game defined by objective func-
tions (2.2) and (2.3) s.t. (2.1), are given by

eci(t) = αi + µ(xSc(t) + y), i = 1, 2,

where

x =
2ε+ ρ−

√
(2ε+ ρ)2 + 8µ2β1
4µ2

< 0,

y =
(α1 + α2)µx

ρ+ ε− 2xµ2
< 0,

z =
(α1 + µy)2 + (α2 + µy)2

2ρ
.

The corresponding cooperative state trajectory is

Sc(t) =
µ(α1 + α2) + 2µ2y

2µ2x− ε
(e(2µ

2x−ε)t − 1) + e(2µ
2x−ε)tS0.

The steady state stock of emissions is

Sc
∞ =

µ(α1 + α2)(ρ+ ε)

(ε− 2µ2x)(ρ+ ε− 2µ2x)
,

which is globally asymptotically stable when 2µ2x− ε < 0.
The joint players’ payoff is

V c
12 =

1

2
xS2

0 + yS0 + z.

Proof. See [33].

Trade-off mechanism scenario

In this section, we represent the third scenario, in which players cooperate by making
an agreement about the trade-off mechanism of payments/costs over time. The
mechanism assumes that players agree on two parameters: (i) the compensation
coefficient 0 < τ < 1 showing the profit share given by a vulnerable player to an
invulnerable player for persuading the latter to deal with pollution problem, (ii) the
cost coefficient 0 < θ < 1 indicating the magnitude of pollution amount which an
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invulnerable player should be responsible for. In this case, an invulnerable player’s
payoff function takes the form:

max
e2>0

W2 =

∫ ∞

0

e−ρt

(
α2e2(t) + τα1e1(t)−

1

2
e22(t)−

1

2
β1θS

2(t)

)
dt, (2.4)

while a vulnerable player’s payoff function is

max
e1>0

W1 =

∫ ∞

0

e−ρt

(
(1− τ)α1e1(t)−

1

2
e21(t)−

1

2
β1(1− θ)S2(t)

)
dt. (2.5)

The parameters (τ, θ) can be interpreted as a contract between two players and can
be negotiated. In this formulation, we do consider these parameters as exogenously
given, but one can assume them as decision variables of the players in a negotiation
process. Obviously, the feedback-Nash equilibrium significantly depends on the
values of (τ, θ).

In the trade-off mechanism scenario, the two players individually maximize their
own profits similar to what we have been described in a noncooperative scenario.
However, the objective functions (2.4) and (2.5) are dependent not only on the state
variable but also on the decision variables e1, e2.

Proposition 2.3. Assuming an interior solution, in a trade-off mechanism sce-
nario, the feedback-Nash equilibrium in a two-player differential game defined by
objective functions (2.4) and (2.5) s.t. (2.1), is given by

eToM1 (t) = α1(1− τ) + µ(x1S
ToM(t) + y1),

eToM2 (t) = α2 + µ(x2S
ToM(t) + y2),

where x1, x2, y1, and y2 are the solutions of the system of the equations (2.12) given
in the proof.

The corresponding equilibrium state trajectory is

SToM(t) =
µB + µ2y12
µ2x12 − ε

(e(µ
2x12−ε)t − 1) + e(µ

2x12−ε)tS0, (2.6)

where x12 = x1 + x2, y12 = y1 + y2, and B = α1(1− τ) + α2.
The steady state stock of emissions is

SToM
∞ =

µB + µ2y12
ε− µ2x12

, (2.7)

which is globally asymptotically stable when µ2x12 − ε < 0.
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The Nash equilibrium players’ payoffs are

V ToM
1 =

1

2
x1S

2
0 + y1S0 + z1,

V ToM
2 =

1

2
x2S

2
0 + y2S0 + z2,

where z1 and z2 are defined in the proof.

Proof. The optimization problem for each player is

W ToM
1 =

∫ ∞

0

e−ρt

(
α1e1(t)(1− τ)− 1

2
e21 −

1

2
β1(1− θ)S2(t)

)
dt→ max

e1≥0
, (2.8)

W ToM
2 =

∫ ∞

0

e−ρt

(
α2e2(t) + τ(α1e1(t))−

1

2
e22(t)−

1

2
β1θS

2(t)

)
dt→ max

e2≥0
. (2.9)

Assuming the linear-quadratic form of the value functions V1(S) = 1
2x1S

2+y1S+

z1 and V2(S) = 1
2x2S

2 + y2S + z2, we write down the HJB equations for (2.8) and
(2.9):

ρV1(S) = max
e1

{
α1e1(1− τ)− 1

2
e21 −

1

2
β1(1− θ)S2 + V ′

1(S)[µ(e1 + e2)− εS]
}
,

(2.10)

ρV2(S) = max
e2

{
α2e2 + τ(α1e1)−

1

2
e22 −

1

2
β1θS

2 + V ′
2(S)[µ(e1 + e2)− εS]

}
.

(2.11)

Maximizing the expression in RHS in (2.10), we obtain that e1 = α1 + µV ′
1(S),

and maximizing the expression in RHS in (2.11), we obtain that e2 = α2 + µV ′
2(S).

Taking into account the derivatives V ′
1(S) = x1S + y1, V

′
2(S) = x2S + y2, and

substituting these expressions into (2.10), we obtain an equation:

ρ
(1
2
x1S

2 + y1S + z1

)
= α1(1− τ)[α1(1− τ) + µ(x1S + y1)]−

− 1

2
[α1(1− τ) + µ(x1S + y1)]

2 − 1

2
β1(1− θ)S2+

+ (x1S + y1)

(
µ[α1(1− τ) + α2 + µ(x1S + y1 + x2S + y2)]− εS

)
.

Taking into account the derivative V ′
2(S) = x2S + y2, and substituting the expres-

sions into (2.11), we obtain an equation:

ρ
(1
2
x2S

2 + y2S + z2

)
= α2[α2 + µ(x2S + y2)]+

+ τα1[µ(x1S + y1) + α1(1− τ)]− 1

2
[α2 + µ(x2S + y2)]

2 − 1

2
β1θS

2+

+ (x2S + y2)

(
µ[µ(x1S + y1) + α1(1− τ) + α2 + µ(x2S + y2)]− εS]

)
.
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By identification, two linear quadratic equations containing x1, x2 can be written
as

µ2x21 + 2µ2x1x2 − 2εx1 − ρx1 − β1(1− θ) = 0,

µ2x22 + 2µ2x1x2 − 2εx2 − ρx2 − β1θ = 0.

Rewriting these equations which should be solved to find x1 and x2, and summarizing
with the rest of equations, we obtain the system:

3µ4x41 − 4µ2(2ε+ ρ)x31 +
(
(2ε+ ρ)2 + 6µ2β1θ − 2µ2β1

)
x21 − (1− θ)2β2

1 = 0,

3µ4x42 − 4µ2(2ε+ ρ)x32 +
(
(2ε+ ρ)2 − 6µ2β1θ + 4β1µ

2
)
x22 − β2

1θ
2 = 0,

y1 =
µ3x1[(x2B + τα1x1)A− µ2x1x2B]

A(A2 − µ4x1x2)
− µx1B

A
,

y2 =
µ3x1x2B − µ(x2B + τα1x1)A

A2 − µ4x1x2
,

z1 =
2µy1B + α2

1(1− τ)2 + µ2y21 + 2µ2y1y2
2ρ

,

z2 =
2µy2B + α2

2 + 2α2
1τ(1− τ) + µ2y22 + 2µ2y1y2 + τα1µy1

2ρ
,

(2.12)
where A = µ2x1 + µ2x2 − ρ− ε and B = α1(1− τ) + α2.

In the system (2.12), we need to solve the first two equations, then substituting
x1 and x2 into the rest four equations we find y1, y2, z1, and z2. We should notice
that we require that x1, x2 be negative to prove the stability of the steady state.

The expression of the equilibrium stock SToM(t) is obtained as a solution of
equation (2.1) and it is given by (2.6). If t tends to infinity in (2.1), we obtain the
steady state of emission stock given by (2.7), which globally asymptotically stable
when µ2x12 − ε < 0.

2.1.2 Comparison of scenarios

In this section, we investigate the performance of trade-off mechanism with vari-
ous set values (τ , θ) by comparing the pollution stock, the players’ strategies and
payoffs under this scenario with noncooperative and cooperative scenarios. We are
interested in finding a set of values (τ , θ) which both players are keen on accepting
the trade-off mechanism, i.e., their profits in this scenario are larger than they could
obtain in a noncooperative case.
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Table 2.1: Types of the set (τ, θ) (trade-off mechanism vs noncooperation)

Vul. Player 1 Invul. Player 2 Steady State

(i) Profitable for invulnerable player W ToM
1 < W nc

1 W ToM
2 ≥ W nc

2 SToM
∞ < Snc

∞

(ii) Profitable for vulnerable player W ToM
1 ≥ W nc

1 W ToM
2 < W nc

2 SToM
∞ < Snc

∞

(iii) Profitable for both players W ToM
1 ≥ W nc

1 W ToM
2 ≥ W nc

2 SToM
∞ < Snc

∞

(iv) Nonprofitable for both players W ToM
1 < W nc

1 W ToM
2 < W nc

2 SToM
∞ < Snc

∞

(v) Not acceptable — — SToM
∞ ≥ Snc

∞

Noncooperative scenario vs trade-off mechanism

In the differential game described above, the set of parameters (τ, θ), where τ ∈
(0, 1), θ ∈ (0, 1), defining the trade-off mechanism can be classified into five types
by comparing players’ payoffs and the steady-state emission level in noncooperative
and trade-off mechanism scenarios: (i) profitable for invulnerable player when only
invulnerable player gets a larger payoff in a trade-off mechanism scenario than in
a noncooperative one, and the steady-state stock in a trade-off mechanism scenario
is lower than in a noncooperative one; (ii) profitable for vulnerable player, when
only vulnerable player benefits from a trade-off mechanism scenario with respect to
noncooperation, and the steady-state stock with the trade-off mechanism is lower
than in noncooperation; (iii) profitable for both players, i.e., both players will obtain
higher payoffs adopting the trade-off mechanism; (iv) nonprofitable for both players,
namely, this set is not profitable for both players, but the steady-state stock with
the trade-off mechanism is lower than in noncooperation; (v) not acceptable, i.e.,
the two players generate more pollution than in a noncooperative scenario.

Apparently, both players accept the set (τ, θ) if and only if both of them will
benefit from it and the steady-state pollution stock is less than in a noncooperative
scenario. The types of (τ, θ) and the corresponding inequalities for the profits and
the steady state are given in Table 2.1.

It is impossible to verify the inequalities in Table 2.1 in a general-form game, thus
we demonstrate these types on a numerical example in Section 2.1.3.

Cooperative scenario vs trade-off mechanism

In this section, we compare the players’ payoffs and steady-state pollution stock in
the trade-off mechanism and cooperative scenarios. Repeating the same classifica-
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Table 2.2: Types of the set (τ, θ) (trade-off mechanism vs cooperation)

Vul. Player 1 Invul. Player 2 Steady State

(i) Profitable for invulnerable player W ToM
1 < W c

1 W ToM
2 ≥ W c

2 SToM
∞ < Sc

∞

(ii) Profitable for vulnerable player W ToM
1 ≥ W c

1 W ToM
2 < W c

2 SToM
∞ < Sc

∞

(iii) Profitable for both players W ToM
1 ≥ W c

1 W ToM
2 ≥ W c

2 SToM
∞ < Sc

∞

(iv) Nonprofitable for both players W ToM
1 < W c

1 W ToM
2 < W c

2 SToM
∞ < Sc

∞

(v) Not acceptable — — SToM
∞ ≥ Sc

∞

tion given in Section 2.1.2, we present five types of parameters (τ, θ) in Table 2.2,
in which we compare the trade-off mechanism and a cooperative scenario. We again
are interested in the subset of (τ, θ) such that both players are beneficial from the
trade-off mechanism, but we expect that we cannot find such a subset comparing
this scenario with the cooperative one.

We verify the inequalities given in Table 2.2 in a numerical example in Sec-
tion 2.1.3.

2.1.3 Numerical example

In this section, we present a numerical example to illustrate the performance of a
trade-off mechanism with respect to the values of (τ, θ). The parameters of the
game are

β1 = 1, α1 = 9, α2 = 4,

ε = 0.4, µ = 0.35, ρ = 0.1, S0 = 1.

As shown in Fig. 2.1, the set (τ, θ) is divided into five areas corresponding to
the particular types described in Table 2.1. The black area represents the subset
of (τ, θ) under which the players in a trade-off mechanism pollute more than in
a noncooperative scenario. The red (blue) area corresponds to the subset of (τ, θ)
when only vulnerable (involnurable) player performs better in a trade-off mechanism
polluting less (in total) than in a noncooperative scenario while the green area gives
the Pareto-improving values of (τ, θ), when both players benefit from adopting a
trade-off mechanism vs noncooperative scenario. The yellow area indicates that
both players are not interested in a trade-off mechanism scenario while they reduce
the steady-state pollution stock.
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Figure 2.1: Trade-off mechanism vs noncooperative scenario. Black: type (v) in Table 2.1; red:
type (ii) in Table 2.1; blue: type (i) in Table 2.1; yellow: type (iv) in Table 2.1; green: type (iii)
in Table 2.1 corresponding to Pareto-improving pairs of values (τ, θ)

We should notice that for any τ ∈ (0, 0.49) there exists a nonempty interval for
θ such that the values (τ, θ) define a Pareto-improving trade-off mechanism for the
players, i.e. both players are interested in adopting it. Although it is clear that both
players are beneficial by choosing (τ, θ) from the green area in Fig. 2.1, the question
is this: how much can they improve their payoffs by a trade-off mechanism? We
can calculate the players’ benefits (in percentage) obtained by adopting a trade-off
mechanism in comparison with a noncooperative scenario using a coefficient

Mi =
∣∣∣W nc

i −W ToM
i

W nc
i

∣∣∣× 100%, i = 1, 2. (2.13)

We represent some values of Pareto optimal set (τ, θ) (from the green area in Fig.
2.1) and the improvement coefficients M1 and M2 for vulnerable and invulnerable
players respectively in Table 2.3. In a numerical example, the maximal percentage of
improvement for player 1 (vulnerable player) is 75.61% and for player 2 (invulnerable
player) is 87.8%. It is expected that player 1 is more beneficial with low τ and high
θ, while player 2 is interested in high τ .

We should notice that the trade-off mechanism is useful to outperform a coop-
erative scenario in terms of the pollution level (the pollution stock in the trade-off
mechanism can be lower than in a cooperative scenario) as indicated in Fig. 2.2
by nonblack area. In this figure we can see the presence of three areas including a
large black area in which the pollution in the trade-off mechanism is larger than in
a cooperative scenario. In the blue area, the trade-off mechanism is beneficial only
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Table 2.3: Benefits from adopting trade-off mechanism vs noncooperative scenario for the Pareto-
improving values of (τ, θ)

(τ, θ) (0.31, 0.89) (0.49, 0.96) (0.4, 0.97) (0.34, 0.89) (0.2, 0.23)

M1 75.61% 0.08% 40.23% 60.22% 1.44%

M2 0.72% 87.8% 46.33% 21.05% 47.35%
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Figure 2.2: Trade-off mechanism vs cooperative scenario. Black: type (v) from Table 2.2; blue:
type (i) in Table 2.2; yellow: type (iv) in Table 2.2

for an invulnerable player. But constructing Fig. 2.2, in a cooperative scenario we
do not use any profit-allocation mechanism to redefine players’ payoffs. Therefore,
the areas may change after adopting any cooperative payoff allocation rule.

Apart from the benefit brought to the players when they adopt the trade-off
mechanism, the comparisons of players’ strategies and pollution stock under differ-
ent scenarios are also of a particular interest. As demonstrated in Fig. 2.3, we select
three representative sets (0.31, 0.89), (0.49, 0.96), (0.4, 0.97) from the Pareto opti-
mal set of pairs (τ, θ). The first (second) pair of parameters benefits player 1 (player
2) at the highest level, while the third one gives more or less the same improvement
to both players (40.23% for player 1 and 46.33% for player 2) as shown in Table. 2.3.
In Fig. 2.3, we observe that after applying trade-off mechanism proposed above, the
emission quantity or the strategy of a vulnerable player becomes almost constant
(relatively horizontal line), and for an invulnerable player, the quantity of emissions
has dropped a lot in comparison with the noncooperative level. More importantly,
the pollution stock indicates that trade-off mechanism is capable of reducing pollu-
tion even more than a cooperative scenario (see Fig. 2.3) and brings benefits to both



53

0 2 4 6 8 10

t

4

4.5

5

5.5

6

6.5

7
e

1

Strategy - Vulnerable Player

0 2 4 6 8 10

t

0

1

2

3

4

e
2

Strategy - Invulnerable Player

0 2 4 6 8 10

t

0

2

4

6

8

S

State Trajectory

Noncooperative Scenario

Cooperative Scenario

Trade-off Mechanism =0.4 =0.97

Trade-off Mechanism =0.49 =0.96

Trade-off Mechanism =0.31 =0.89

Figure 2.3: Strategies of vulnerable and invulernable players, and state trajectory (pollution
stock) under different scenarios: noncooperative, cooperative and three trade-off mechanisms with
parameters (τ, θ) ∈ {(0.31, 0.89), (0.49, 0.96), (0.4, 0.97)}

players in comparison with the Nash equilibrium. For instance, when the players
adopt a trade-off mechanism with parameters (τ, θ) = (0.49, 0.96), then the emis-
sion stock is less than in a cooperative scenario, and the players’ payoffs increase by
0.08% and 87.8% for player 1 and 2 respectively.

2.2 The Nash stability and individual stability approach of
different cooperative scenarios

In this section, we consider three neighboring industries or countries called players
producing goods and generating pollution that damages the environment. The set
of players is N = {1, 2, 3}. The three players are asymmetric in terms of their
profit functions implied by different environmental behavior with respect to emission
concern. The players are of two types: I is a vulnerable player (or developed
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country), and II is a invulnerable player (or developing country). The vulnerable
player has an environmental concern and follows the environmentally friendly policy.
The invulnerable player does not care about the emission stock, i.e. she is following
an environmentally unfriendly policy. Let player 1 be of type II and players 2 and
3 are of type I. The set of players in terms of types is defined as N = {I, I, II}
containing two developed and one developing countries.

The countries produce goods, and this production activity generates emissions.
Inspired by the model introduced in [33], we define the dynamical system of the
pollution stock S as

Ṡ(t) = µ
∑
i∈N

ei(t)− εS(t), S(0) = S0, (2.14)

where ei(t) denotes the quantity of emissions produced by player i, µ > 0 is the
marginal influence on pollution accumulation S issued by the players’ emissions, and
ε > 0 is the nature’s absorption rate.

The invulnerable player is not concerned by the damage done to the environment
and cares only about the revenues from her industrial activities, i.e., this player
maximizes her payoff given by

Wi =

∫ ∞

0

e−ρt(αiei(t)−
1

2
e2i (t))dt, (2.15)

where ρ > 0 is the discount rate, while, due to the obvious reasons, the vulnerable
players have the strength to overtake the responsibility for pollutant reduction.
Therefore, the objective function of a vulnerable player goes as

Wi =

∫ ∞

0

e−ρt(αiei(t)−
1

2
e2i (t)−

1

2
βiS

2(t))dt, (2.16)

where βi > 0, and the last term under the integral in (2.16) represents the damage
costs.

To summarize, we can say that all players have the objective function (2.16) but
for player 1 parameter β1 equals zero, so the term 1

2βiS
2 is omitted in the payoff

function (2.15), while for players 2 and 3 parameters β2, β3 are strictly positive.

Remark 2.1. In a general case, two vulnerable players 2 and 3 are asymmetric
in the parameters, i.e. parameters α and β are assumed to be different for these
players.
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2.2.1 Equilibria under different scenarios

In this section, we examine the cooperative setting of the described game assuming
that cooperation may be partial. Therefore, not only the grand coalition may be
formed, but also smaller coalitions can be formed implying the formation of specific
coalition structures. The following theorems provide the conditions of the Nash
equilibria in the three-player differential game when the objectives of the players
given by (2.16) are subject to the state dynamics (2.14) under different coalition
partitions. We consider the possible coalition structures or scenarios:

1. Noncooperative scenario, π1 = {{I}, {I}, {II}};

2. Cooperative scenario, π2 = {{I, I, II}};

3. Partially cooperative scenarios :

(a) Case 1 (two developed countries cooperate): π3 = {{I, I}, {II}};

(b) Case 2 (one developing and one developed country cooperate): π4 =

{{I, II}, {I}}. This scenario has two variants, these are π41 = {{1, 2}, {3}}
and π42 = {{1, 3}, {2}}. Hereinafter, we refer to a general form of the
coalition structure π4 if the result is true for both structures π41 and π42.

Noncooperative scenario

In this scenario, the three players act as singletons maximizing (2.16) with respect
to state dynamics (2.14), i. e., the coalition structure is π1 = {{I}, {I}, {II}}. In
the following proposition we characterize the Nash equilibrium for a noncooperative
scenario.

Proposition 2.4. Assuming an interior solution, in the noncooperative scenario
π1 = {{I}, {I}, {II}}, the feedback-Nash equilibrium is given by

enc1 (t) = α1,

encj (t) = αj + µ(xjS
nc(t) + yj), j = 2, 3,
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where xj, yj, zj for j = 2, 3 satisfy the following system:

3µ4x4j − 4(2ε+ ρ)µ2x3j + [4µ2β5−j + (2ε+ ρ)2 − 2µ2βj]x
2
j − β2

j = 0, xj < 0

yj =
µα123xj(ρ+ ε− µ2x23 + µ2x5−j)

(ρ+ ε− µ2x23)2 − µ4xjx5−j
< 0,

zj =
α2
j + 2µyjα123 + 2µ2yjy5−j

2ρ
,

where α23 = α2 + α3, α123 = α1 + α2 + α3, x23 = x2 + x3.
The corresponding equilibrium state trajectory is

Snc(t) =
µα123 + µ2y23
µ2x23 − ε

(e(µ
2x23−ε)t − 1) + e(µ

2x23−ε)tS0, (2.17)

where y23 = y2 + y3.
The steady-state emission stock is

Snc
∞ =

µα123 + µ2y23
ε− µ2x23

, (2.18)

which is globally asymptotically stable if µ2x23 − ε < 0.

Proof. First, the objective of player 1 does not depend on the stock variable and we
can easily obtain that the maximal value of her objective is reached when e1 = α1.

Second, players 2 and 3 are of type I, we take the second player to illustrate
calculations. The player 2’s optimization problem is

W π1
2 =

∫ ∞

0

e−ρt(α2e2(t)−
1

2
e22(t)−

1

2
β2S

2(t))dt→ max
e2(t)≥0

. (2.19)

Assuming the linear-quadratic form of the value functions V2(S) = 1
2x2S

2+y2S+z2

and V3(S) = 1
2x3S

2 + y3S + z3, we write down the HJB equation for (2.19), which
looks like

ρV2(S) = max
e2

{(
α2e2 −

1

2
e22 −

1

2
β2S

2
)
+ V ′

2(S)[µ(e1 + e2 + e3)− εS]
}
. (2.20)

Maximizing the expression in the RHS of equation (2.20), we obtain e2 = α2 +

µV ′
2(S), and the corresponding strategy for player 3 is e3 = α3 + µV ′

3(S). Taking
into account the derivatives V ′

j (S) = xjS + yj, j = 2, 3, and substituting these
expressions into (2.20), we obtain an equation:

ρ
(1
2
x2S

2 + y2S + z2

)
=

1

2
[α2 + µ(Sx2 + y2)]

2 + µα1(x2S + y2)+

+ µ(x2S + y2)[α3 + µ(x3S + y3)]−
1

2
β2S

2 − εS(x2S + y2).
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By identification, two linear quadratic equations containing x2, x3 can be written as

µ2x22 − (2ε+ ρ)x2 + 2µ2x2x3 − β2 = 0,

µ2x23 − (2ε+ ρ)x3 + 2µ2x2x3 − β3 = 0.

Correspondingly, the expressions for x2 and x3 are the solutions of the following
equations:

3µ4x42 − 4(2ε+ ρ)µ2x32 + [4µ2β3 + (2ε+ ρ)2 − 2µ2β2]x
2
2 − β2

2 = 0, (2.21)

3µ4x43 − 4(2ε+ ρ)µ2x33 + [4µ2β2 + (2ε+ ρ)2 − 2µ2β3]x
2
3 − β2

3 = 0. (2.22)

We cannot write an explicit solution of the system of (2.21) and (2.22) with respect
to x2, x3, therefore, we introduce this system with new variable values:

y2 =
µα123x2(ρ+ ε− µ2x23 + µ2x3)

(ρ+ ε− µ2x23)2 − µ4x2x3
,

y3 =
µα123x3(ρ+ ε− µ2x23 + µ2x2)

(ρ+ ε− µ2x23)2 − µ4x2x3
,

z2 =
α2
2 + 2µy2α123 + 2µ2y2y3

2ρ
,

z3 =
α2
3 + 2µy3α123 + 2µ2y2y3

2ρ
,

where x23 = x2 + x3.
The global stability of the steady state requires µ2x23 − ε < 0, therefore the

negative roots x2 and x3 from (2.21) and (2.22) are chosen. Subsequently, the
expression of the equilibrium stock Snc(t) is obtained as a solution of (2.14) and it
is given by formula (2.17). The steady state of stock is shown in (2.18) by setting
the equation in (2.14) equal to zero.

In the noncooperative scenario, the invulnerable player has a constant emission
level equal to the coefficient of her linear profits from production, and her instant
payoff is equal to α2

1

2 with the whole-game payoff α2
1

2ρ . Obviously, the equilibrium strat-
egy of the invulnerable player in noncooperative scenario is larger than her strategy
in cooperative scenario and partially cooperative scenario, when she cooperates with
a vulnerable player. This will be proved in Section 3.3.
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Cooperative scenario

In the cooperative scenario, the coalition structure is π2 = {{I, I, II}}, and the
three players coordinate their strategies to maximize their total payoff, that is

max
ei≥0
i∈N

∑
i∈N

Wi(e1, e2, e3), (2.23)

subject to the state dynamics (2.14) with initial condition S(0) = S0. The subse-
quent proposition demonstrates the necessary conditions for the optimal solution.

Proposition 2.5. Assuming an interior solution, in the cooperative scenario, when
π2 = {I, I, II}, the players’ optimal feedback strategies are given by

eci(t) = αi + µ(xcS
c(t) + yc), i ∈ N, (2.24)

where

xc =
2ε+ ρ−

√
(2ε+ ρ)2 + 12µ2β123

6µ2
< 0,

yc =
µxcα123

ρ+ ε− 3µ2xc
< 0,

zc =

∑3
i=1(αi + µyc)

2

2ρ
,

and α123 = α1 + α2 + α3, β123 = β1 + β2 + β3.
The cooperative state trajectory is

Sc(t) =
µα123 + 3µ2yc
3µ2xc − ε

(e(3µ
2xc−ε)t − 1) + e(3µ

2xc−ε)tS0.

The steady-state emission stock is

Sc
∞ =

(ρ+ ε)µα123

(ε− 3µ2xc)(ρ+ ε− 3µ2xc)
,

which is globally asymptotically stable if 3µ2xc − ε < 0.

Proof. In the cooperative scenario, since all players jointly maximize the total profit
(2.23), the optimization problem is given by

W π2 = W π2
1 +W π2

2 +W π2
3

=
3∑

i=1

∫ ∞

0

e−ρt(αiei(t)−
1

2
e2i (t)−

1

2
βiS

2(t))dt→ max
ei≥0
i∈N

. (2.25)
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To solve an optimization problem (2.25), the HJB equation can be written as

ρVc(S) = max
e1,e2,e3

{ 3∑
i=1

(αiei −
1

2
e2i −

1

2
βiS

2) + V ′
c (S)[µ(e1 + e2 + e3)− εS]

}
. (2.26)

Maximizing the expression in the RHS of equation (2.26), we write the first-order
condition and find the optimal control ei = αi + µV ′

c (S). Assuming the linear-
quadratic form of Vc(S), we set Vc(S) = 1

2xcS
2 + ycS + zc. Then substituting the

corresponding variables in (2.26) brings

ρ
(1
2
xcS

2+ycS + zc

)
=

1

2
[α1 + µ(xcS + yc)]

2 − 1

2
(β1 + β2 + β3)S

2 − εS(xcS + yc)

+
1

2
[α2 + µ(xcS + yc)]

2 +
1

2
[α3 + µ(xcS + yc)]

2.

By the procedure of identification, we obtain the system of equations:

3µ2x2c − (2ε+ ρ)xc − β123 = 0, (2.27)

yc =
µxcα123

ρ+ ε− 3µ2xc
,

zc =

∑3
i=1(αi + µyc)

2

2ρ
.

Since the global stability of the steady state is always satisfied under 3µ2xc− ε < 0,
then we take the negative root from (2.27), that is

xc =
2ε+ ρ−

√
(2ε+ ρ)2 + 12µ2β123

6µ2
.

Substituting all necessary variables into (2.14), and solving this differential equation,
we obtain the expression for Sc(t) and Sc

∞ as presented in the proposition.

We should notice that the strategy of invulnerable player 1, that is ec1(t), is
less than her strategy in a noncooperative case enc1 (t) for any t. It follows from
negativity of coefficients xc and yc in (2.24) and the form of enc1 (t), which is equal
to α1 for any t > 0. Obviously, the payoff of player 1 in a cooperative scenario is
less than in a noncooperative one. Therefore, it is not profitable for an invulnerable
player to cooperate with vulnerable players if they do not compensate switching
from noncooperative to cooperative behavior to player 1 (see [33]). The system
of transfers between three players to make their cooperation stable is discussed in
Section 5.
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Partially cooperative scenarios

Case 1: {{I, I}, {II}}. In this subsection, we examine the equilibrium behavior of
the players under partial cooperation. We start with the scenario when coalition
structure {{I, I}, {II}} is formed, in which two vulnerable players form a coalition,
while the invulnerable player acts as a singleton. For convenience, we instantiate
the coalition structure in this case as {{1}, {2, 3}}. The objective of coalition {2, 3}
is given by

max
e2,e3

3∑
i=2

Wi(e1, e2, e3)

constrained to the objective function (2.16) of the invulnerable player and the state
dynamics (2.14).

Proposition 2.6. Assuming an interior solution, under partially cooperative sce-
nario with coalition structure π3 = {{1}, {2, 3}}, the feedback-Nash equilibrium is
given by

epc11 (t) = α1,

epc12 (t) = α2 + µ(xc1S
pc1(t) + yc1),

epc13 (t) = α3 + µ(xc1S
pc1(t) + yc1),

where

xc1 =
2ε+ ρ−

√
(2ε+ ρ)2 + 8µ2β23
4µ2

< 0,

yc1 =
µxc1α123

ρ+ ε− 2µ2xc1
< 0,

zc1 =
(α2 + µyc1)

2 + (α3 + µyc1)
2 + 2µyc1α1

2ρ
,

and β23 = β2 + β3.
The corresponding Nash equilibrium trajectory under partially cooperation sce-

nario (case 1) is

Spc1(t) =
µα123 + 2µ2yc1
2µ2xc1 − ε

(e(2µ
2xc1

−ε)t − 1) + e(2µ
2xc1

−ε)tS0.

The steady-state emission stock is

Spc1
∞ =

(ρ+ ε)µα123

(ε− 2µ2xc1)(ρ+ ε− 2µ2xc1)
,

which is globally asymptotically stable if 2µ2xc1 − ε < 0.
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Proof. Since the invulnerable player 1 maximizes her own payoff, she behaves in the
same way as in the noncooperative scenario since her objective does not depend on
the stock variable. Next, we consider the payoff function of a coalition of the two
other players, who are vulnerable players, and this coalition solves the problem:

W π3 = W π3
2 +W π3

3 =
3∑

i=2

∫ ∞

0

e−ρt(αiei(t)−
1

2
e2i (t)−

1

2
βiS

2(t))dt→ max
e2,e3

.

The HJB equation in this case is as follows:

ρVc1(S) = max
e2,e3

{ 3∑
i=2

(αiei −
1

2
e2i −

1

2
βiS

2) + V ′
c1
(S)[µ(e1 + e2 + e3)− εS]

}
. (2.28)

Maximizing the expression in the RHS of equation (2.28), we obtain strategies:
ej = αj + µV ′

c1
(S), j = 2, 3. Assuming a linear-quadratic form of Vc1, i.e., Vc1(S) =

1
2xc1S

2 + yc1S + zc1, we get:

ρ
(1
2
xc1S

2+yc1S + zc1

)
=

1

2
[α2 + µ(Sxc1 + yc1)

2 +
1

2
[α3 + µ(Sxc1 + yc1]

2+

+ µα1(xc1S + yc1)−
1

2
β23S

2 − εS(xc1S + yc1).

By identification, we obtain

2µ2x2c1 − (2ε+ ρ)xc1 − β23 = 0, (2.29)

yc1 =
µxc1α123

ρ+ ε− 2µ2xc1
,

zc1 =
(α2 + µyc1)

2 + (α3 + µyc1)
2 + 2µyc1α1

2ρ
.

Here we also need to take a negative root of xc1 from (2.29) for satisfying the global

stability of the solution, thus xc1 =
2ε+ρ−

√
(2ε+ρ)2+8µ2β23

4µ2 , then Spc1(t) is obtained as
a solution of (2.14) with initial condition S(0) = S0.

Case 2: {{I, II}, {I}}. In this section, we analyze a partially cooperation scenario
when the coalition between a developed country and a developing country is formed,
and the other developed country acts as a singleton. We suppose that an invulnerable
player 1 and a vulnerable player 2 play cooperatively. Then the optimization problem
for a coalition {1, 2} is

max
e1,e2

2∑
i=1

Wi(e1, e2, e3),

where the payoff function Wi, i = 1, 2 is given by (2.15) and (2.16) respectively.
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Proposition 2.7. Assuming an interior solution, in the partially cooperative sce-
nario (case 2) with coalition structure π41 = {{1, 2}, {3}}, the feedback-Nash equi-
librium is given by

epc21 (t) = α1 + µ(xc2S
pc2(t) + yc2), (2.30)

epc22 (t) = α2 + µ(xc2S
pc2(t) + yc2),

epc23 (t) = α3 + µ(x3c2S
pc2(t) + y3c2),

where xc2, x3c2 , yc2, y3c2 , zc2, z3c2 satisfy the following system

12µ4x4c2 − 8(2ε+ ρ)µ2x3c2 +
(
(2ε+ ρ)2 + 4µ2β3 − 4µ2β2

)
x2c2 − β2

2 = 0,

3µ4x43c2 − 4(2ε+ ρ)µ2x33c2 +
(
(2ε+ ρ)2 + 8µ2β2 − 2µ2β3

)
x23c2 − β2

3 = 0,

yc2 =
µα123xc2(ρ+ ε− 2µ2xc2)

(ρ+ ε− 2µ2xc2 − µ2x3c2)
2 − 2µ4xc2x3c2

,

y3c2 =
µα123xc2(ρ+ ε− µ2x3c2)

(ρ+ ε− 2µ2xc2 − µ2x3c2)
2 − 2µ4xc2x3c2

,

zc2 =
α2
1 + α2

2 + 2µyc2(α123 + µyc2 + µy3c2)

2ρ
,

z3c2 =
α2
3 + µy3c2(2α123 + 4µyc2 + µy3c2)

2ρ
.

The corresponding state trajectory is given by

Spc2(t) =
µα123 + µ2(2yc2 + y3c2)

µ2(2xc2 + x3c2)− ε
(e[µ

2(2xc2
+x3c2

)−ε]t − 1) + e[µ
2(2xc2

+x3c2
)−ε]tS0.

The steady-state emission stock is

Spc2
∞ =

µα123 + µ2y3c2 + 2µ2yc2
ε− 2µ2xc2 − µ2x3c2

,

which is globally asymptotically stable if µ2(2xc2 + x3c2)− ε < 0.

Proof. We consider {{I, II}, {I}}, in which player 3 acts as a singleton. There are
two optimization problems to solve. First, for the coalition of players 1 and 2, we
formulate their joint optimization problem:

W π41 = W
π41
1 +W

π41
2 =

2∑
i=1

∫ ∞

0

e−ρt(αiei(t)−
1

2
e2i (t)−

1

2
βiS

2(t))dt→ max
e1,e2

.
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Player 3 aims to maximize

W
π41
3 =

∫ ∞

0

e−ρt(α3e3(t)−
1

2
e23(t)−

1

2
β3S

2(t))dt→ max
e3

.

Following the method of previous cases, we write the HJB equation:

ρVc2(S) = max
e1,e2

{ 2∑
i=1

(αiei −
1

2
e2i −

1

2
βiS

2) + V ′
c2
(S)[µ(e1 + e2 + e3)− εS]

}
, (2.31)

ρV3c2(S) = max
e3

{
(α3e3 −

1

2
e23 −

1

2
β3S

2) + V ′
3c2
(S)[µ(e1 + e2 + e3)− εS]

}
. (2.32)

We infer that Vc2(S) = 1
2xc2S

2 + yc2S + zc2, V3c2(S) = 1
2x3c2S

2 + y3c2S + z3c2 ,
consequently, the optimal strategies can be constructed as

ej(t) = αj + µ(xc2S(t) + yc2), j ∈ 1, 2,

e3(t) = α3 + µ(x3c2S(t) + y3c2).

Then by substituting Vc2(S), V ′
c2
(S), V3c2(S), V

′
3c2
(S) into (2.31) and (2.32), we ob-

tain

ρ
(1
2
xc2S

2+yc2S + zc2

)
=

1

2
[α1 + µ(Sxc2 + yc2]

2 +
1

2
[α2 + µ(Sxc2 + yc2]

2

+ µ(xc2S + yc2)[α3 + µ(x3c2S + y3c2)]−
1

2
β12S

2 − εS(xc2S + yc2),

ρ
(1
2
x3c2S

2+y3c2S + z3c2

)
=

1

2
[α3 + µ(Sx3c2 + y3c2)]

2 −−εS(x3c2S + y3c2)

+ µ(x3c2S + y3c2)[α12 + 2µ(xc2S + yc2)]−
1

2
β3S

2.

The following system is obtained by identification method:

12µ4x4c2 − 8(2ε+ ρ)µ2x3c2 +
(
(2ε+ ρ)2 + 4µ2β3 − 4µ2β2

)
x2c2 − β2

2 = 0,

3µ4x43c2 − 4(2ε+ ρ)µ2x33c2 +
(
(2ε+ ρ)2 + 8µ2β2 − 2µ2β3

)
x23c2 − β2

3 = 0,

yc2 =
µα123xc2(ρ+ ε− 2µ2xc2)

(ρ+ ε− 2µ2xc2 − µ2x3c2)
2 − 2µ4xc2x3c2

,

y3c2 =
µα123xc2(ρ+ ε− µ2x3c2)

(ρ+ ε− 2µ2xc2 − µ2x3c2)
2 − 2µ4xc2x3c2

,

zc2 =
α2
1 + α2

2 + 2µyc2(α123 + µyc2 + µy3c2)

2ρ
,

z3c2 =
α2
3 + µy3c2(2α123 + 4µyc2 + µy3c2)

2ρ
.

We get the negative roots of xc2 and x3c2 as usual, and obtain Spc2(t) and Spc2
∞

afterwards.
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Remark 2.2. In Proposition 2.7, we consider the case 2 with coalition structure
π41 = {{1, 2}, {3}} and omit the case of coalition structure π42 = {{1, 3}, {2}}, for
which the equilibrium can be easily found by Proposition 2.7 by replacing a vulnerable
player 2 in coalition {1, 2} by player 3.

We should notice that the strategy of invulnerable player 1 in a partially coop-
erative scenario epc11 (t) (case 1) is equal to her strategy in a noncooperative case
enc1 (t). It is true as in both these cases player 1’s payoff is not affected by the stock
variable. In the meantime, her strategy in a partially cooperative scenario epc21 (t)

(case 2) is less than her strategy in a noncooperative case enc1 (t) for any t. It follows
from negativity of coefficients xc2 and yc2 in (2.30) and the form of enc1 (t), which is
equal to α1 for any t > 0. Obviously, the payoff of player 1 in partially cooperative
scenario (case 2) is less than in a noncooperative one. Again, it is not profitable
for an invulnerable player to cooperate with a vulnerable player if the latter does
not compensate switching from noncooperative to partially cooperative behavior to
player 1.

Remark 2.3. The Nash equilibrium or optimal strategies obtained above need to be
nonnegative, which requires the following inequalities need to be satisfied:

αi + µ(xiS
nc(t) + yi) ≥ 0, i = 2, 3,

αi + µ(xcS
c(t) + yc) ≥ 0, i = 1, 2, 3,

αi + µ(xc1S
pc1(t) + yc1) ≥ 0, i = 2, 3,

αi + µ(xc2S
pc2(t) + yc2) ≥ 0, i = 1, 2, (2.33)

α3 + µ(x3c2S
pc2(t) + y3c2) ≥ 0,

αi + µ(xc3S
pc3(t) + yc3) ≥ 0, i = 1, 3,

α2 + µ(x2c3S
pc3(t) + y2c3) ≥ 0.

And since some parameters can’t be obtained in the explicit form, these inequalities
can only be verified in the numerical examples.

2.2.2 Identification of stable coalition structures

We examine all possible scenarios or coalition structures on stability. A stable
coalition structure is a candidate to be formed from some perspective. There are
different concepts of a coalition structure stability proposed for nondynamic games
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(see discussion in Introduction). A coalition structure π = {B1, . . . , Bm}, such
that B1 ∪ · · · ∪ Bm = N and Bi ∩ Bj = ∅ for all i, j = 1, . . . ,m, i ̸= j is stable
when any player does not increase her payoff if she changes this structure in an
individual way. We should notice that we consider two possibilities for a deviating
player: (i) she can join any possible coalition without any restrictions (see Section
2.2.2), (ii) the coalition which the deviating player would like to join can block the
deviation if there exists at least one member who can lose by accepting the deviator
(see Section 2.2.2). In Section 2.2.2 we examine a situation when players’ payoffs
are nontransferable, i.e. the payoff of any player acting as a member of a coalition
is equal to her payoff defined by her initially given payoff function. The vector
W π = (W π

1 , . . . ,W
π
n ) ∈ Rn represents the corresponding payoffs to the players in

coalition structure π. We highlight that the players’ payoffs are defined by the given
payoff functions in the Nash equilibrium calculated for the corresponding coalition
structure (see Propositions 2.4–2.7 in Section 2.2.1).

Nash-stable coalition structures

The first definition of a stable coalition structure assumes that all individual devia-
tions of the players are possible.

Definition 2.1. A coalition structure π = {B1, . . . , Bm} is Nash stable (or simply,
stable) if for any player i ∈ N it holds that

W π
i ≥ W π′

i for all π′ = {B(i)\{i}, Bj ∪ {i}, π−B(i)∪Bj
},

where Bj ∈ π ∪ ∅, Bj ̸= B(i), π−B(i)∪Bj
= π\{B(i), Bj}, and W π, W π′ denotes

the vectors of players’ payoffs under coalition structures π and π′ respectively.

In Definition 2.1, any player can deviate from her current coalition joining another
existing coalition or becoming a singleton.

Remark 2.4. If the inequality in Definition 2.1 is strict, i.e., W π
i > W π′

i for all
π′ = {B(i)\{i}, Bj ∪ {i}, π−B(i)∪Bj

}, the coalition structure π = {B1, . . . , Bm} is
called strictly stable.

The following proposition characterizes the conditions of the Nash-stable coalition
structures in the differential game defined by (2.14)–(2.16).

Proposition 2.8. In the differential game given by (2.14)–(2.16), the following
coalition structures or scenarios:
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1) π1 = {{I}, {I}, {II}} (noncooperative scenario);

2) π2 = {{I, I, II}} (cooperative scenario);

3) π3 = {{I, I}, {II}} (partially cooperative scenario when an invulnerable player
is acting as a singleton);

4) π4 = {{I, II}, {I}} (partially cooperative scenario when vulnerable and invul-
nerable players cooperate), including π41 = {{1, 2}, {3}} and π42 = {{1, 3}, {2}}

are stable or Nash stable if and only if the corresponding conditions given in Table
2.4 are satisfied. Each row corresponds to a particular scenario.

Table 2.4: Stability conditions for the Nash stable coalition structures

Invul. Player 1 Vul. Player 2 Vul. Player 3

π1

{
Wπ1

1 ≥ W
π41
1

Wπ1
1 ≥ W

π42
1

{
Wπ1

2 ≥ Wπ3
2

Wπ1
2 ≥ W

π41
2

{
Wπ1

3 ≥ Wπ3
3

Wπ1
3 ≥ W

π42
3

π2 Wπ2
1 ≥ Wπ3

1 Wπ2
2 ≥ W

π41
2 Wπ2

3 ≥ W
π42
3

π3 Wπ3
1 ≥ Wπ2

1

{
Wπ3

2 ≥ Wπ1
2

Wπ3
2 ≥ W

π41
2

{
Wπ3

3 ≥ Wπ1
3

Wπ3
3 ≥ W

π42
3

π41

{
W

π41
1 ≥ Wπ1

1

W
π41
1 ≥ W

π42
1

{
W

π41
2 ≥ Wπ1

2

W
π41
2 ≥ Wπ3

2

W
π41
3 ≥ Wπ2

3

π42

{
W

π42
1 ≥ Wπ1

1

W
π42
1 ≥ W

π41
1

W
π42
2 ≥ Wπ2

2

{
W

π42
3 ≥ Wπ1

3

W
π42
3 ≥ Wπ3

3

It is impossible to write down the conditions given in Proposition 2.8 in an explicit
form. We demonstrate them on the numerical examples in Section 2.2.2.

Individually stable coalition structures

In this section, we investigate another stability concept. Now we assume that the
players in a coalition can refuse to cooperate with another player willing to join
them in case this player can bring the loss in anyone’s profit inside the coalition.
Therefore, we give another definition of a stable coalition structure with a reasonable
block of external entries.

Definition 2.2. A coalition structure π = {B1, . . . , Bm} is individually stable if for
any player i ∈ N it holds that

W π
i ≥ W π′′

i for all π′′ = {B(i)\{i}, Bj ∪ {i}, π−B(i)∪Bj
} such that

W π′′

k ≥ W π
k for all k ∈ Bj,



67

where Bj ∈ π ∪∅, Bj ̸= B(i), π−B(i)∪Bj
= π\{B(i), Bj}, and W π, W π′′ denote the

vectors of players’ payoffs under the coalition structures π and π′′ respectively.

Obviously, the set of individually stable coalition structures contains the set of
the Nash-stable coalition structures [91].

Remark 2.5. If the inequality in Definition 2 is strict, i.e. W π
i > W π′′

i for all
π′′ = {B(i)\{i}, Bj ∪{i}, π−B(i)∪Bj

}, then the coalition structure π = {B1, . . . , Bm}
is said to be strictly individually stable.

The following proposition characterizes the conditions of individually stable coali-
tion structures in the differential game defined by (2.14)–(2.16).

Proposition 2.9. In the differential game defined by (2.14)–(2.16), the following
coalition structures or scenarios:

1) π1 = {{I}, {I}, {II}} (noncooperative scenario);

2) π2 = {{I, I, II}} (cooperative scenario);

3) π3 = {{I, I}, {II}} (partially cooperative scenario when an invulnerable player
does not cooperate with other players);

4) π4 = {{I, II}, {I}} (partially cooperative scenario when vulnerable and invul-
nerable players cooperate), including π41 = {{1, 2}, {3}} and π42 = {{1, 3}, {2}}

are stable or individually stable if and only if the corresponding conditions given in
Table 2.5 are satisfied. Each row corresponds to a particular scenario.

It is impossible to write the conditions given in Proposition 2.9 in an explicit
form. We demonstrate them on the numerical examples in Section 2.2.2.

Numerical simulations

For better understanding how to verify the stability of different scenarios, we provide
two numerical examples.

In the first run, the parameters of the game satisfied the inequalities given in
(2.33) are given as follows:

β1 = 0, β2 = 3, β3 = 4,

α1 = 5, α2 = 6, α3 = 8,

ε = 0.6, µ = 0.3, S0 = 1.
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Table 2.5: Stability conditions for individually stable coalition structures

Invul. Player 1 Vul. Player 2 Vul. Player 3

π1




{
Wπ1

2 < W
π41
2

Wπ1
1 ≥ W

π41
1

or Wπ1
2 ≥ W

π41
2

{
Wπ1

3 < W
π42
3

Wπ1
1 ≥ W

π42
1

or Wπ1
3 ≥ W

π42
3




{
Wπ1

3 < Wπ3
3

Wπ1
2 ≥ Wπ3

2

or Wπ1
3 ≥ Wπ3

3
{
Wπ1

1 < W
π41
1

Wπ1
2 ≥ W

π41
2

or Wπ1
1 ≥ W

π41
1




{
Wπ1

2 < Wπ3
2

Wπ1
3 ≥ Wπ3

3

or Wπ1
2 ≥ Wπ3

2
{
Wπ1

1 < W
π42
1

Wπ1
3 ≥ W

π42
3

or Wπ1
1 ≥ W

π42
1

π2 Wπ2
1 ≥ Wπ3

1 Wπ2
2 ≥ W

π41
2 Wπ2

3 ≥ W
π42
3

π3




Wπ3

2 < Wπ2
2

Wπ3
3 < Wπ2

3

Wπ3
1 ≥ Wπ2

1

or Wπ3
2 ≥ Wπ2

2

or Wπ3
3 ≥ Wπ2

3



Wπ3
2 ≥ Wπ1

2
{
Wπ3

1 < W
π41
1

Wπ3
2 ≥ W

π41
2

or Wπ3
1 ≥ W

π41
1



Wπ3
3 ≥ Wπ1

3
{
Wπ3

1 < W
π42
1

Wπ3
3 ≥ W

π42
3

or Wπ3
1 ≥ W

π42
1

π41



W
π41
1 ≥ Wπ1

1
{
W

π41
3 < W

π42
3

W
π41
1 ≥ W

π42
1

or W
π41
3 ≥ W

π42
3



W
π41
2 ≥ Wπ1

2
{
W

π41
3 < Wπ3

3

W
π41
2 ≥ Wπ3

2

or W
π41
3 ≥ Wπ3

3




W

π41
1 < Wπ2

1

W
π41
2 < Wπ2

2

W
π41
3 ≥ Wπ2

3

or W
π41
1 ≥ Wπ2

1

or W
π41
2 ≥ Wπ2

2

π42



W
π42
1 ≥ Wπ1

1
{
W

π42
2 < W

π41
2

W
π42
1 ≥ W

π41
1

or W
π42
2 ≥ W

π41
2




W

π42
1 < Wπ2

1

W
π42
3 < Wπ2

3

W
π42
2 ≥ Wπ2

2

or W
π42
1 ≥ Wπ2

1

or W
π42
3 ≥ Wπ2

3



W
π42
3 ≥ Wπ1

3
{
W

π42
2 < Wπ3

2

W
π42
3 ≥ Wπ3

3

or W
π42
2 ≥ Wπ3

2

Using Propositions 2.4–2.7, we can calculate the corresponding players’ payoffs for all
scenarios, which are represented in Table 2.6, where we highlight in bold the players’
maximal payoffs among different scenarios. Verifying the Nash stability conditions

Table 2.6: Players’ payoffs under different scenarios (first run)

Player 1 Player 2 Player 3
Invul. player Vul. player Vul. player

π1 = {{1}, {2}, {3}} 4.167 2.772 6.306
π2 = {{1, 2, 3}} 3.734 3.205 7.085
π3 = {{1}, {2, 3}} 4.167 2.810 6.581
π41 = {{1, 2}, {3}} 4.069 2.976 6.596
π42 = {{1, 3}, {2}} 3.995 3.043 1.994

given in Proposition 2.8 and individual stability conditions given in Proposition 2.9,
we perceive that the current parameter setting does not meet any Nash-stable sce-
nario, but there is a unique individually stable scenario, that is, π3 = {{I, I}, {II}},
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in which the developing country acts alone while two developed countries cooper-
ate. The reason is in the concern of paying additional cost for the damage to the
environment. Therefore, even if we do not define the system of transfer payments
between players inside a coalition, we are able to find an individually stable scenario
in the game.

We depict the players’ equilibrium strategies for different scenarios in Fig. 2.4.
The corresponding equilibrium state trajectories are also presented in Fig. 2.4. We
can notice that the smallest (largest) pollution stock is observed with the cooper-
ative (noncooperative) scenario corresponding to coalition structure π2 (π1), which
is expected. It is interesting that the stock corresponding to coalition structure π3,
which is a unique individually stable scenario, is the lowest total pollution stock
among other pollution stocks corresponding to the partially cooperative scenarios.
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Figure 2.4: Equilibrium strategies and state trajectories under different scenarios (first run)

In the second run, the parameters of the game satisfied the inequalities given in
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(2.33) are:

β1 = 0, β2 = 2, β3 = 3,

α1 = 5, α2 = 6, α3 = 7,

ε = 0.6, µ = 0.5, S0 = 1.

Repeating the same calculations as in the first run, we obtain the players’ payoffs
which are represented in Table 2.7. The analysis of stability conditions from Propo-
sitions 2.8 and 2.9 shows that we again have no Nash stable coalition structures,
but we have a unique individually stable scenario, that is, π1 = {{I}, {I}, {II}}
when all players act alone. We should notice that it is different from the first run.
We again obtain that the developing country can only get maximal payoff by acting
alone, but as for the other two developed countries, in the second run the coop-
eration is not stable because player 2 has a profitable deviation when becoming a
singleton.

Table 2.7: Players’ payoffs under different scenarios (second run)

Player 1 Player 2 Player 3
Invul. player Vul. player Vul. player

π1 = {{1}, {2}, {3}} 4.167 2.056 2.029
π2 = {{1, 2, 3}} 3.279 2.859 3.898
π3 = {{1}, {2, 3}} 4.167 2.048 2.813
π41 = {{1, 2}, {3}} 3.965 2.470 2.736
π42 = {{1, 3}, {2}} 3.724 2.672 1.180

As compared with the first run, the most distinguishable difference is recognized
in the equilibrium strategy for player 3. For this player, the control trajectory in
the noncooperative scenario, i.e., with stable coalition structure π1, intersects her
trajectory in the cooperative scenario at some instant of time and becomes lower
after that time. As in the first run, the equilibrium emission stock in scenario π3 is
the lowest one among partially cooperative scenarios, but this scenario is not stable
in this case contrary to the first run.

Dynamically stable coalition structures

In this section, we examine the stability of the coalition structures along the equi-
librium trajectories. Assuming that a coalition structure is stable at the initial time
t = 0, it may become unstable at some instant of time on the corresponding state
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Figure 2.5: Equilibrium strategies and state trajectories under different scenarios (second run)

trajectory. To analyze it, we calculate the players’ payoffs in the subgames starting
at time t̄ = 1, 5, 10 under different scenarios. We also start two runs with the same
set of parameters given in the previous section. The players’ payoffs for these sub-
games under different coalition structures are collected in Tables 2.8 (the first run)
and 2.9 (the second run). In Tables 2.8 and 2.9, there are many zero payoffs, but
they are not precisely equal to zero, but are approximated to zero.

We make the following observations:

• Partially cooperative scenario corresponding to the coalition structure π3 is
Nash stable at any intermediate time t̄ = 1, 5, 10, and it is the unique individ-
ually stable scenario at these time instants.

• For the whole game, there are no Nash stable coalition structures in the initial
time for both runs (see Definition 1). But at any intermediate time t̄ = 1, 5, 10,
the coalition structure π3 turns to be the unique Nash stable coalition structure.
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Table 2.8: The players’ payoffs in the subgames starting at time t̄ = 1, 5, 10 (first run)

t̄ = 1 Player 1 Player 2 Player 3
Invul. player Vul. player Vul. player

π1 = {{1}, {2}, {3}} 4.167 -6.681 -6.382
π2 = {{1, 2, 3}} 0.144 -0.307 -0.255
π3 = {{1}, {2, 3}} 4.167 -0.495 -0.499
π41 = {{1, 2}, {3}} 0.190 -0.569 -4.736
π42 = {{1, 3}, {2}} 0.177 -5.082 -0.786

t̄ = 5 Player 1 Player 2 Player 3
Invul. player Vul. player Vul. player

π1 = {{1}, {2}, {3}} 4.167 -20.911 -25.467
π2 = {{1, 2, 3}} 0 0 0
π3 = {{1}, {2, 3}} 4.167 0 0
π41 = {{1, 2}, {3}} 0 0 -19.807
π42 = {{1, 3}, {2}} 0 -15.464 0

t̄ = 10 Player 1 Player 2 Player 3
Invul. player Vul. player Vul. player

π1 = {{1}, {2}, {3}} 4.167 -21.817 -26.682
π2 = {{1, 2, 3}} 0 0 0
π3 = {{1}, {2, 3}} 4.167 0 0
π41 = {{1, 2}, {3}} 0 0 -20.553
π42 = {{1, 3}, {2}} 0 -15.936 0

2.2.3 Stable coalition structures under transfer payment schemes

The ultimate purpose of the developed countries is not unconditionally pursue their
individual profit, as expected they are looking forward to promoting the cooperation
with a developing country to further reduce the global pollution emissions. In the
previous sections, we examine stable scenarios with nontransferable payoffs, and
from the numerical examples we could notice that there may exist two types of
stable scenarios π1 and π3 in which the developing country always acts as a singleton.
But neither of these scenarios leads to the lowest emissions. Therefore, one can be
interested in motivating two developed countries and a developing one to cooperate
or to make cooperative scenario π2 stable through defining the scheme of payment
transfers between the players (see Section 2.2.3). We also define the payment transfer
scheme to make partially cooperative scenarios stable (see Section 2.2.3). The latter
problem may be actual when the full cooperative scenario cannot be realized by any
reason (e.g., external restrictions on full cooperation).
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Table 2.9: The players’ payoffs in the subgames starting at time t̄ = 1, 5, 10 (second run)

t̄ = 1 Player 1 Player 2 Player 3
Invul. player Vul. player Vul. player

π1 = {{1}, {2}, {3}} 4.167 -10.364 -16.938
π2 = {{1, 2, 3}} 0.094 -0.277 -0.401
π3 = {{1}, {2, 3}} 4.167 -0.578 -0.820
π41 = {{1, 2}, {3}} 0.171 -0.710 -13.159
π42 = {{1, 3}, {2}} 0.132 -6.830 -1.051

t̄ = 5 Player 1 Player 2 Player 3
Invul. player Vul. player Vul. player

π1 = {{1}, {2}, {3}} 4.167 -25.443 -39.911
π2 = {{1, 2, 3}} 0 0 0
π3 = {{1}, {2, 3}} 4.167 0 0
π41 = {{1, 2}, {3}} 0 0 -29.138
π42 = {{1, 3}, {2}} 0 -15.550 0

t̄ = 10 Player 1 Player 2 Player 3
Invul. player Vul. player Vul. player

π1 = {{1}, {2}, {3}} 4.167 -25.998 -40.755
π2 = {{1, 2, 3}} 0 0 0
π3 = {{1}, {2, 3}} 4.167 0 0
π41 = {{1, 2}, {3}} 0 0 -29.526
π42 = {{1, 3}, {2}} 0 -15.722 0

Nash and individual stability of cooperative scenario

To make the cooperative scenario stable, we need to define conditions to satisfy the
system of inequalities from Proposition 2.8. Under these conditions no player has an
incentive to deviate in an individual way. We should notice that for the cooperative
scenario Nash and individual stability conditions are the same, which can be easily
found from Propositions 2.8 and 2.9. Therefore, we need to define the payments to
the players ξi, i = 1, 2, 3, such that

ξ1 + ξ2 + ξ3 =
3∑

i=1

W π2

i ,

ξ1 ≥ W π3
1 ,

ξ2 ≥ W
π42
2 ,

ξ3 ≥ W
π41
3 .

(2.34)

If there exists a solution of system (2.34), then the transfer payment to player i ∈ N

is defined by
θπ2

i = ξi −W π2

i . (2.35)
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The transfer payment θπ2

i to player i can have any sign: (i) positive, and it means
that a player is paid by other players, (ii) negative, when a player pays other players
to support cooperation, (iii) zero, if player i is paid according to her initially given
payoff function W π2

i .

Example 2.1. We demonstrate a construction of a payment scheme for the numer-
ical examples introduced in Section 2.2.2, using parameters for two runs. Substitut-
ing the players’ payoffs under different scenarios into system (2.34), we obtain that
for both runs there exists a solution of this system, and it is a set-valued solution
for both runs. To be precise, the solution is a triangle region drawn in Fig. 2.6a
and 2.6b. As long as as the payment vector (ξ1, ξ2, ξ3) is located within the orange
triangle region for the first run, and the green triangle region for the second run,
the cooperative scenario is stable.

Additionally, according to (2.35) the transfer θ1 to the developing country stands
positive for both runs, which means that two developed countries actually send a part
of their profits to compensate cooperative and vulnerable behavior for the developing
country. The term “buying” cooperation used in [33] is actual to describe such
behavior of the developed countries.

(a) (b)

Figure 2.6: The set of payments to the players (ξ1, ξ2, ξ3) satisfying conditions (2.34) ((a): the
first run, (b): the second run).

The choice of the unique vector of payments is out of consideration in this re-
search paper. But we refer the reader to the literature on cooperative games to define
“reasonable" solution in the set of payments given by (2.34). We may give an intu-
ition support of a “wise" solution from the perspective of developed countries. They
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are aware of the boundary of saving the stability of a cooperative scenario, and it
is reasonable that they would maximally conserve their interest, i.e., contribute the
minimal compensation to the developing country. In Fig. 2.6a and 2.6b, the dashed
line represents the set of payments with ξ1 = 4.167, that is, the minimal payoff
for developing country under which the cooperative scenario is stable. Therefore,
for two developed countries, it may be reasonable to choose the payments from the
intersection of the colored and dashed regions.

Nash stability of partially cooperative scenario

Now we examine if the partially cooperative scenario, say π41 = {{1, 2}, {3}}, is
stable when the system of transfers is applied. First, we define the players’ payoffs
under different scenarios in the case, when any coalition is allowed to make transfers.
When the transfers are made, the efficiency conditions should be satisfied. In Table
2.10, the payoffs to the players with transfers are defined for all scenarios: Table

Table 2.10: Payoffs to the players with transfer payments

Player 1 Player 2 Player 3
Invul. player Vul. player Vul. player

π1 = {{1}, {2}, {3}} 4.167 2.772 6.306
π2 = {{1, 2, 3}} ξπ2

1 ξπ2
2 14.024− ξπ2

1 − ξπ2
1

π3 = {{1}, {2, 3}} 4.167 ξπ3
2 10.290− ξπ3

2

π41 = {{1, 2}, {3}} ξ
π41
1 7.045− ξ

π41
1 6.596

π42 = {{1, 3}, {2}} ξ
π42
1 3.043 5.991− ξ

π42
1

2.10 contains five variables. To make scenario π41 Nash stable we need to satisfy the
following system of inequalities (see Proposition 2.8):

ξ
π41
1 ≥ 4.167, (2.36)

ξ
π41
1 ≥ ξ

π42
1 ,

7.045− ξ
π41
1 ≥ 2.772,

7.045− ξ
π41
1 ≥ ξπ3

2 ,

6.596 ≥ 14.024− ξπ2
1 − ξπ2

2 .

If the transfers are determined in such a way, that any coalition divides the surplus
payoff equally between players, i.e. the cooperative solution concept is the CIS-value
(see Table 2.11), then we can easily check if this system is satisfied for the CIS-value
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[29]. In a blue color, we highlight the stable scenario. As we can easily see, scenario
π41 is not stable if the payments to the players are organized with the CIS-value.

Table 2.11: Payoffs to the players if any coalition uses the CIS-value to allocate the joint profit
(scenario π2 is stable)

Player 1 Player 2 Player 3
Invul. player Vul. player Vul. player

π1 = {{1}, {2}, {3}} 4.167 2.772 6.306
π2 = {{1, 2, 3}} 4.240 3.116 6.669
π3 = {{1}, {2, 3}} 4.167 3.378 6.912
π41 = {{1, 2}, {3}} 4.220 2.825 6.596
π42 = {{1, 3}, {2}} 1.926 3.043 4.065

Table 2.12: Payoffs to the players with the new transfer scheme (scenarios π2, π41 are stable)

Player 1 Player 2 Player 3
Invul. player Vul. player Vul. player

π1 = {{1}, {2}, {3}} 4.167 2.772 6.306
π2 = {{1, 2, 3}} 4.240 3.189 ↑ 6.596 ↓
π3 = {{1}, {2, 3}} 4.167 2.825 ↓ 7.465 ↑
π41 = {{1, 2}, {3}} 4.220 2.825 6.596
π42 = {{1, 3}, {2}} 1.926 3.043 4.065

In the system (2.36), the last two inequalities are not satisfied. Therefore, we can
change the transfer payments to players 2 and 3, e.g. in the cooperative scenario π2
and partially cooperative scenario π3 = {{1}, {2, 3}}. It can be done taking into
account the efficiency of any coalition in any scenario. The new payments to the
players are given in Table 2.12, in which the stable scenarios are colored in blue.
We increase the payoff to player 2 in comparison with the CIS-value in scenario
π2 (3.189 vs. 3.116), but decrease the payoff to player 3 (6.596 vs. 6.669). The
efficiency of coalition {1, 2, 3} in this scenario is still satisfied after transfer changes,
i.e. the joint payoff of the coalition is 14.024. We also increase the payoff to player
3 in comparison with the CIS-value in scenario π3 (7.465 vs. 6.912), but decrease
the payoff to player 2 (2.825 vs. 3.378). The efficiency of coalition {2, 3} in this
scenario is satisfied, i.e. the joint payoff of coalition {2, 3} is 10.290.
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2.3 Conclusion to Chapter 2

In this chapter, our research specifically encircles the design and stability verification
of pollution reduction agreements in differential games with asymmetric players.

In the trade-off mechanism approach, a trade-off mechanism is proposed through a
contract in which the vulnerable player contributes part of revenues to compensate
the invulnerable player for the latter’s effort in pollution reduction. The critical
question arises in the determination of the optimal parameter set value, i.e., percent
of profits given to the invulnerable player and percent of pollution reduction assigned
to the invulnerable player. In our numerical example, we traverse every possible
combination of the parameter set and compare the results with cooperative and
noncooperative scenarios. We conclude that we can find the optimal parameter
sets of the trade-off mechanism, i.e., stable agreement to completely outperform a
noncooperative scenario. It is also clear that this mechanism is worse than a fully
cooperative scenario in terms of improving both players’ profits.

In the Nash stability and individual stability approaches, we consider the differ-
ential game with one invulnerable and two vulnerable players. In contrast to the
trade-off mechanism mentioned above, the stable agreement is applied in coalition
structures formed by three players. We examine different cooperative scenarios when
players can partially cooperate on stability. To examine all possible coalition struc-
tures, we propose three types of scenarios: (i) cooperative, (ii) noncooperative, and
(iii) partially cooperative, in which the coalition’s profit is dependent on the outside
players’ behavior (in particular, it depends on if they form coalitions or not). The
general conditions of Nash and individual stability of coalition structures or scenar-
ios are determined. Two numerical examples demonstrate the procedure of finding
a stable scenario. We also introduce the procedure of making a particular scenario
stable (if possible) by defining a special transfer scheme.
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Chapter 3

Value of Information in Differential Games
of Pollution Control

In this chapter, we consider a differential game where the acquired information,
i.e., a terminal cost [21], an exact value of the upper bound of control [21], and
an initial pollution stock [87, 94] in a pollution control problem are unknown. We
investigate the value of corresponding information by comparing the payoff with
known information and the payoff without it through Value of Information (VI)
initially defined in [80]. In the latter case when the initial pollution stock is unknown,
we take into account its estimation.

3.1 Value of information for uncertainty about terminal costs

In this section, a problem of controlling the volumes of pollutants is being considered
[27]. The total payoff is obtained with a terminal cost corresponding to a fine for
the pollution at the last moment of the production period. Under this condition,
we study the value of information, which shows how the awareness of terminal cost
would affect the player’s payoff.

A cooperative solution in a differential game of pollution control is found in [5].
The conditions for an optimal control solution are obtained in [45] and a cooperative
solution in three-person differential games is provided in [43].

In this section, we formulate a model in a three-player setting for easy tractability
of the results. We assume that the production is proportional to the volume of
environmental pollution. The strategy of player i is a pollution rate per unit time,
ui ∈ [0, bi].
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The system dynamics are defined by equation:

ẋ(t) =
3∑

i=1

ui(t), x(0) = x0, t ∈ [0, T ], (3.1)

where x(t) is the pollution stock. Suppose the penalty at the terminal moment is
also proportional to the level of pollution x. Then the payoff of player i is a mixed
Bolza function:

Ki(x0, T − t0, u) =

∫ T

t0

((
bi −

1

2
ui(t)

)
ui(t)− hix

)
dt−Dix(T ), (3.2)

where u = (u1, u2, u3) and (bi − 1
2ui(t))ui(t) denote the revenue function reflecting

the gross profit the player i could obtain at time t with bi ≥ 0, hix represents the
expenses for elimination of pollution x, while Dix(T ) is a terminal cost. We consider
a cooperative mode of the game, i.e., the players initially agree to use the optimal
control maximizing the total profit assuming t0 = 0, i.e.,

3∑
i=1

Ki(x0, T, u) → max
u

. (3.3)

Proposition 3.1. In the cooperative mode of a differential game defined by an ob-
jective function of the grand coalition (3.3) subject to (3.1), the optimal cooperative
control is given by

u∗i (t) = bi − (T − t)h123 −D123, i ∈ {1, 2, 3}, (3.4)

the corresponding optimal state trajectory is

x∗(t) = (b123 − 3D123 − 3h123T )t+
3

2
t2h123 + x0, (3.5)

where h123 = h1+h2+h3, D123 = D1+D2+D3, b123 = b1+ b2+ b3, Dij = Di+Dj.

Proof. The maximization problem (3.3) can be solved in the open-loop strategies
[39, 79]. The Hamiltonian function goes as

H(x, u, ψ) =
3∑

i=1

[
(bi −

1

2
ui)ui − hix(t)

]
+ ψ(u1 + u2 + u3).

The optimal control has to maximize the Hamiltonian function by complying with
necessary condition that

∂H

∂ui
= bi − ui + ψ = 0,

u∗i = bi + ψ, i = 1, 2, 3.
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Since the second derivative of H at u = u∗i is negative, we confirm that the optimal
control u∗i does maximize the Hamiltonian function.

The conditions for an adjoint equation are

∂ψ

∂t
= −∂H

∂x
= h123, (3.6)

ψ(T ) =
∂H

∂x

∣∣
t=T

= −D123. (3.7)

Solving (3.6) and (3.7) together, we obtain

ψ(t) = (t− T )h123 −D123.

Then the optimal control and optimal state trajectory are acquired accordingly as
presented in (3.4) and (3.5).

Let us introduce additional restrictions on the parameters of the model, which
guarantee that the result to solve some other auxiliary optimization problem is
admissible and belongs to the compact set [0, bi]:

Di ∈ [0,min(b1 −D123, b2 −D123, b3 −D123)],

hi ∈ [0,
min(b1, b2, b3)−D123

T
− h123], i ∈ {1, 2, 3}.

(3.8)

Since calculation of the optimal control and optimal state trajectory is of the same
character, for the following two cases: terminal cost is known/unknown, we gener-
alize the problem and focus on the performance of a symbolized player, say, player
i.

3.1.1 Terminal cost is known

The situation, when the terminal cost is known to the player is investigated in this
section. Contrary to the joint optimization problem (3.3), in this section, we consider
a noncooperative game when players are aimed at maximizing function (3.2) subject
to (3.1). We find the Nash equilibrium, i.e., characterize the players’ equilibrium
strategies and the corresponding equilibrium state trajectory. When we say that
terminal costs are known to the players, we mean that they include linear costs
on terminal stock reduction into their objective functions. Therefore, any player i
maximizes function (3.2).

It is well-known that for a linear-quadratic differential game given by (3.1), (3.2),
the Nash equilibrium exists and it is unique [6]. Similar to the calculations in
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Proposition 3.1, we define the Nash equilibrium using the Pontryagin maximum
principle [79].

Proposition 3.2. In a differential game defined by objective function (3.2) subject
to (3.1), the Nash equilibrium strategy profile is given by

uNE
i (t) = bi − (T − t)hi −Di, i ∈ {1, 2, 3}. (3.9)

The equilibrium state trajectory is

xNE(t) = (b123 −D123 − h123T )t+
1

2
t2h123 + x0. (3.10)

The equilibrium payoff for player 1 is

KNE
1 = K1(x0, T, u

NE
1 )

= −x0(Th1 +D1) +D1T (D123 − b123 + Th123) +
T (b21 −D2

1)

2
+

+
T 2(h1D23 − h1b123 −D1h123)

2
+
T 3h1(h123 + h23)

6
.

(3.11)

For player i = 2, 3, payoff in the Nash equilibrium can be obtained by a cyclic
permutation of the indices in (3.11).

Proof. To find the Nash equilibrium, we define the Hamiltonian function for player
i, that is

Hi(x, u, ψ) = (bi −
1

2
ui)ui − hix(t) + ψ(u1 + u2 + u3), i = 1, 2, 3.

The Nash equilibrium strategy uNE
i = bi+ψ, i = 1, 2, 3 maximizing the Hamiltonian

function due to the second derivative of Hi at u = uNE
i is equal to a negative value.

The conditions for adjoint equation are
∂ψ

∂t
= −∂Hi

∂x
= hi. (3.12)

ψ(T ) =
∂Hi

∂x

∣∣
t=T

= −Di. (3.13)

Solving (3.12) and (3.13) together, we obtain

ψ(t) = (t− T )hi −Di, i = 1, 2, 3.

Then the Nash equilibrium strategy and equilibrium state trajectory are obtained
and given in (3.9) and (3.10). The player’s payoff in the Nash equilibrium (3.11) is
calculated by substituting the obtained control value into (3.2) and integrating the
expressions.
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3.1.2 Terminal cost is unknown

We start with interpreting what we mean by “terminal cost is unknown”. Suppose the
player does not know whether at the terminal time she will be assigned a terminal
penalty dependent on x(T ) or not. So, we assume that the player ignores the
terminal costs in her payoff function, i.e., we set the terminal cost parameter Di = 0

in payoff function (3.2). Then the so-called simulated optimization problem for any
player i is

K̄i(x0, T, ui) =

∫ T

t0

((
bi −

1

2
ui(t)

)
ui(t)− hix

)
dt→ max

ui

, i = 1, 2, 3. (3.14)

We consider a simulated differential game in which players solve problem (3.14) sub-
ject to state dynamics (3.1). However, we can derive the actual payoff to the player
that is, her payoff calculated by formula (3.2) by substituting the Nash equilibrium
strategies when players solve the simulated optimization problem. It is interesting
to estimate how ignorance of the terminal payoff in the optimization problem affects
the actual players’ payoffs. We attain it by substituting the Nash equilibrium of the
simulated differential game into payoff function (3.14), and estimate the importance
of information about a terminal cost. We call this payoff to the player as her “actual
payoff”.

Proposition 3.3. In a simulated differential game defined by objective function
(3.14) subject to (3.1), the so-called simulated Nash equilibrium strategy is given by

u∗NE
i (t) = bi − (T − t)hi, i ∈ {1, 2, 3}. (3.15)

The simulated equilibrium state trajectory obtained as a solution of equation (3.1)
substituting strategies (3.15) is

x∗NE(t) = (b123 − h123T )t+
1

2
t2h123 + x0. (3.16)

The actual payoff according to (3.2) for player 1 is

K∗NE
1 = K1(x0, T, u

NE
1 )

= −x0(D1 + Th1)−D1T (b123 − Th123) +
Tb21
2

−

− T 2(D1h123 + h1b123)

2
+
T 3h1(h123 + h23)

6
.

(3.17)

For player i = 2, 3, the actual payoff can be obtained by a cyclic permutation of the
indices in (3.17).
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Proof. In the optimization problem defined in (3.14), the Hamiltonian function is

Hi(x, u, ψ) = (bi −
1

2
ui)ui − hix(t) + ψ(u1 + u2 + u3), i = 1, 2, 3.

The Nash equilibrium strategy u∗NE
i = bi + ψ, i = 1, 2, 3, maximizing the Hamilto-

nian function due to the second derivative of Hi is negative at u = u∗NE
i .

The conditions for an adjoint equation are

∂ψ

∂t
= −∂Hi

∂x
= hi. (3.18)

ψ(T ) =
∂Hi

∂x

∣∣
t=T

= 0. (3.19)

Solving (3.18) and (3.19) together, we obtain

ψ(t) = (t− T )hi, i = 1, 2, 3.

Then the simulated Nash equilibrium strategy and corresponding state trajectory
are obtained and given in (3.15) and (3.16). The player’s actual payoff (3.17) is
calculated by substituting the obtained control value into (3.2) and integrating the
expression.

3.1.3 Evaluation of value of information

Before defining the value of information, it’s also important to compare the (simu-
lated) Nash equilibrium control and trajectory for the previous two cases: known or
unknown terminal costs. We assume that

b1 = 300, b2 = 305, b3 = 303,

T = 20, h1 = 2, h2 = 3, h3 = 4,

D1 = 3, D2 = 6, D3 = 5, x0 = 5.

We notice that these parameters have to satisfy the conditions in (3.8). As shown in
the left figure of Fig. 3.1, for each player, the Nash equilibrium strategy when the
terminal cost is unknown in a simulated game is above another one obtained when
the terminal cost is known, which confirms the regular expectation that the players
would increase their pollution, i.e., improve the production, when they misunder-
stand that the cost for pollution is lower due to the lack of sufficient information.
Consequently, the pollution stock is higher in this case as depicted in Fig.3.1.
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Figure 3.1: (Simulated) Nash equilibirum strategies and state trajectories when the terminal cost
is known (unknown). The left figure represents (simulated) Nash equilibirum strategies for player
1.

Now in order to evaluate the value of information initially proposed in [80] for
a problem with incomplete information about the terminal cost, we formulate a
definition of the normalized value of information (NVI) calculated on the basis of
the payoffs obtained in Proposition (3.2) and (3.3) as follows.

Definition 3.1. For differential games given by (3.2) and (3.14), the normalized
value of information about the terminal cost is given by:

NV Ii =

∣∣∣∣KNE
i −K∗NE

i

KNE
i

∣∣∣∣× 100%, i = 1, 2, 3. (3.20)

Solving (3.20) with the numerical example given above, we obtain that theNV I1 =
0.96%, NV I2 = 1.73%, NV I3 = 4.34% which is quite small. But if we say that the
payoff is counted in billions, then the information may cost relatively much more.

The described method of calculating the NVI in the form given in (3.20) can be
extended for a cooperative case of the game:

NV Ii =
ξi − ξ∗i
ξi

× 100%,

where ξi, i ∈ N , is a component of the cooperative solution (e.g., the Shapley value,
τ−value, etc.) of the game calculated under conditions of complete information,
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and ξ∗i , i ∈ N , is a component of the cooperative solution calculated with a lack of
information.

3.2 Value of information for uncertainty about possible
adjustment of upper boundary of control

In the classical theory of optimal control [72], the problems are commonly considered
without changing a structure or information that a decision maker possesses. The
work [44] embodies the dynamic update of information. The authors in [10] explore
a differential game with regime switching and spillovers. While in our case, we are
analyzing a model of industrial production, in which at some point the upper limit
of an admissible level of pollution caused by production can be changed. Under
this condition, we are studying the maintaining optimal controls and optimal tra-
jectories. We simplify the model above and consider a process of pollution control
with a unique player. We assume that pollution is proportional to the volume of
production, and the rate of emissions in the atmosphere is most likely restrained by
the government or other parties. The player aims to select an optimal control to
maximize her profit. The model can be generalized for the cases of a noncooperative
or cooperative differential game.

The dynamics of the pollution stock is defined by

ẋ = u(t), x(0) = x0, u ∈ [0, b], t ∈ [0, T ]. (3.21)

The player solves the maximization problem:

J(x0, T, u) =

∫ T

0

((
b− 1

2
u(t)

)
u(t)− hx(t)

)
dt→ max

u
. (3.22)

Proposition 3.4. In the optimization problem defined by objective function (3.22)
subject to (3.21), the optimal control is given by

u∗(t) =

{
0, t ∈ [0, T − b

h ],

b− h(T − t), t ∈ [T − b
h , T ].

(3.23)

The optimal state trajectory is

x∗(t) =

{
x0, t ∈ [0, T − b

h ],

x0 +
(b−Th+ht)2

2h , t ∈ [T − b
h , T ].

(3.24)
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Proof. In the optimization problem (3.22) subject to (3.21), the Hamiltonian func-
tion takes the form:

H(x, u, ψ) = (b− u

2
)u− hx+ ψu. (3.25)

Solving the equation:
∂H

∂u
= b− u+ ψ = 0,

we obtain the optimal control
u∗ = b+ ψ. (3.26)

Since the second derivative of H at u = u∗i is negative, we confirm that we get the
maximal Hamiltonian function at optimal control u∗.

The adjoint equation is
∂ψ

∂t
= −∂H

∂x
= h. (3.27)

The terminal state x(T ) is free and we find the solution of the differential equation
(3.27) with the terminal condition ψ(T ) = 0, therefore,

ψ(t) = h(t− T ).

Then substituting ψ into (3.26), and since the sign of control has to be nonnegative,
as b − h(T − t) < 0, we expect to set u = 0. Considering the solution of the
optimization problem with Kuhn-Tucker condition [48], we confirm that the optimal
control given by (3.23) does maximize the Hamiltonian function (3.25). Finally,
the optimal control u∗ and the optimal state trajectory are such as those given in
Proposition 3.4.

3.2.1 Change of upper boundary of control

Suppose that at time moment τs ∈ [0, T ], the upper boundary of a control variable is
changed to b̄, i.e. for t ∈ [τs, T ], the control should satisfy the constraint u(t) ∈ [0, b̄],
and in case of complete information, the player is aware of that. We also assume
that moment τs is given and known to the player.

In the case when the upper boundary of control can be changed, generally, there
are two scenarios: (i) changed upper boundary b̄ < b, (ii) changed upper boundary
b̄ ≥ b. Moreover, when the player can’t perceive the relevant information about
the changed upper boundary, these two scenarios will make no differences when
describing what we are going to discuss in the following sections, because the player
complies with exactly the same objective function defined in (3.22).
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3.2.2 Upper boundary of control b̄ < b

The change of upper boundary of control is unknown

In this section, the player does not know about the change of upper boundary and we
assume that the changed upper boundary of control b̄ is lower than the original one
b, i.e., b̄ < b in this case. Supposedly, the so-called simulated optimal control under
this situation is identical to the one in (3.23), because the player will still behave to
maximize the objective function (3.22) due to the ignorance of information about
the change of upper boundary. Meanwhile, suppose the optimal control will reach b̄
at time θ, i.e.,

b− h(T − θ) = b̄,

θ = T +
b̄− b

h
< T.

In addition, we suppose θ ≥ τs, which means that the change of upper boundary of
control happens before the optimal control reaches a new limit. Thus, in this case,
this constraint on τs is trivial because the player does not know about the change
of upper boundary.

Consequently, exceeding the changed upper boundary b̄ after time θ, the player
has to be punished. Here we define a penalty estimated by the integral where the so-
called simulated optimal control surpasses b̄ over time, i.e., P

∫ T

θ (b−h(T −t)− b̄)dt,
where P > 0 is a penalty coefficient. Thus we can write the objective function as
follows:

JL(x0, T, u) =

∫ T

0

((
b− 1

2
u
)
u− dx

)
dt− P

∫ T

θ

(
b− h(T − t)− b̄

)
dt. (3.28)

It is noticeable that the so-called simulated optimal control and trajectory are
obtained through the objective function (3.22) considering the player has no infor-
mation about the change of upper boundary of control, however, the calculation of a
player’s payoff is solved by substituting the optimal control and trajectory in (3.28).

Proposition 3.5. In the case when the change of upper boundary of control is
unknown, when b̄ < b, for the optimization problem defined by objective function
(3.22) subject to (3.21), the simulated optimal control is given by

u∗LN(t) =

{
0, t ∈ [0, T − b

h ],

b− h(T − t), t ∈ [T − b
h , T ].
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The simulated optimal state trajectory is

x∗LN(t) =

{
x0, t ∈ [0, T − b

h ],

x0 +
(b−Th+ht)2

2h , t ∈ [T − b
h , T ].

The actual payoff according to (3.28) for the player is

J∗LN = −Thx0 +
b3

6h
− P (b− b̄)2

2h
.

Proof. See Proposition 3.4.

The change of upper boundary of control is known

In this section, just like in the previous case, we also suppose θ ≥ τs and in contrast
to that case, the prominent difference is that the control won’t exceed b̄ if it proceeds
with adequate information about the change of upper boundary of control, i.e.,

0 ≤ u ≤ b̄ < b. (3.29)

Therefore, there will be no extra cost in this case.

Proposition 3.6. In the case when the change of upper boundary of control is
known, when b̄ < b, for the optimization problem defined by objective function
(3.22) subject to (3.29), the optimal control is given by

u∗LY (t) =


0, t ∈ [0, T − b

h ],

b− h(T − t), t ∈ [T − b
h , T + b̄−b

h ],

b̄, t ∈ [T + b̄−b
h , T ].

(3.30)

The optimal state trajectory is

x∗LY (t) =


x0, t ∈ [0, T − b

h ],

x0 +
(b−Th+ht)2

2h , t ∈ [T − b
h , T + b̄−b

h ],

x0 +
b̄2

2h − b̄(T − t) + b̄(b−b̄)
h , t ∈ [T + b̄−b

h , T ].

The maximal payoff to the player is

J∗LY = −Thx0 +
b̄(b− b̄)2

2h
+
b̄2(3b− 2b̄)

6h
.

Proof. Due to the constraint u ≤ b̄ as indicated in (3.29), we construct the Lagrange
function:

L(u, λ) = (b− u

2
)u− hx+ ψu+ λ(b̄− u).
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By applying Kuhn-Tucker condition, we have the following conditions needed to be
satisfied,

∂L

∂u
= b− u+ ψ − λ ≤ 0, (3.31)

∂L

∂λ
= b̄− u ≥ 0, (3.32)

λ, u ≥ 0, (3.33)

λ
∂L

∂λ
= λ(b̄− u) = 0, (3.34)

u
∂L

∂u
= u(b− u+ ψ − λ) = 0. (3.35)

Taking (3.34) as a starting point, if λ = 0, we have u = 0 or u = b+ψ. If u = b̄, we
have λ = b − b̄ + ψ = 0. Combined with ψ in Proposition 3.4, the optimal control
(3.30) can be obtained, and finally the optimal state trajectory and maximal payoff
will be also obtained.

3.2.3 Upper boundary of control b̄ ≥ b

Since the upper boundary of control changed to b̄ > b, the admissible control will
not be larger than b̄ no matter the information about it is known or unknown.
Therefore, the specification of constraints of τs is not necessary as long as τs belongs
to [0, T ].

The change of upper boundary of control is unknown

When the change of upper boundary of control is unknown, it means that the player
will solve the optimization problem defined in (3.22) subject to

0 ≤ u ≤ b ≤ b̄. (3.36)

Proposition 3.7. In the case when the change of upper boundary of control is
unknown, and b̄ ≥ b, for the optimization problem defined by objective function
(3.22) subject to (3.36), the optimal control is given by

u∗HN(t) =

{
0, t ∈ [0, T − b

h ],

b− h(T − t), t ∈ [T − b
h , T ].

The optimal state trajectory is

x∗HN(t) =

{
x0, t ∈ [0, T − b

h ],

x0 +
(b−Th+ht)2

2h , t ∈ [T − b
h , T ].
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The maximal payoff according to (3.22) for the player is

J∗HN = −Thx0 +
b3

6h
.

Proof. See Proposition 3.4.

The change of upper boundary of control is known

Similar to the optimization problem described in Proposition 3.7, when the change
of upper boundary of control is known, the objective function and constraints remain
the same.

Proposition 3.8. In the case when the change of upper boundary of control is
known, more specifically, when b̄ ≥ b, for the optimization problem defined by ob-
jective function (3.22) subject to (3.36), the optimal control is given by

u∗HY (t) =

{
0, t ∈ [0, T − b

h ],

b− h(T − t), t ∈ [T − b
h , T ].

(3.37)

The optimal state trajectory is

x∗HY (t) =

{
x0, t ∈ [0, T − b

h ],

x0 +
(b−Th+ht)2

2h , t ∈ [T − b
h , T ].

The maximal payoff to the player is

J∗HY = −Thx0 +
b3

6h
.

Proof. Repeating the same procedure as described in Proposition 3.6, with Kuhn-
Tucker conditions, we get the identical conditions (3.31)-(3.35) needed to be satisfied.

If λ = 0, we have u = 0 or u = b+ψ. If λ ̸= 0, we have u = b̄ and λ = b−b̄+ψ ≥ 0.
However, since b − b̄ ≤ 0 in our case, and ψ < 0 as shown in Proposition 3.4,
therefore, λ < 0 which doesn’t meet the condition. In this way, we only have u = 0

and u = b+ψ, two options as described in (3.37). As for the optimal state trajectory
and maximal payoff, see Proposition 3.7.

3.2.4 Evaluation of value of information

Suppose T = 25, b = 20, h = 1, x0 = 10, P = 8 for both cases. Let b̄ = 5 when b̄ < b

and b̄ = 25 when b̄ ≥ b. As shown in Fig. 3.2, the information about the change of
upper boundary of control plays an important role only in the case when b̄ < b is
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known and influences the (simulated) optimal control and (simulated) optimal state
trajectories. Especially, when b̄ ≥ b, the (simulated) optimal control and (simulated)
optimal state trajectories do not change, and the payoffs under these two cases are
equal, which shows that the information brings no value to the player.
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*

(Simulated) Optimal Controls

0 5 10 15 20 25

t
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100
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(Simulated) Optimal State Trajectories

Other three cases

Upper boundary < b, known

Figure 3.2: (Simulated) optimal controls and state trajectories under the situation when the upper
boundary of control is changed. The red (dashed) line denotes the case when b̄ < b is known (see
Proposition 3.6), and the blue (solid) line represents other three cases considered in Propositions
3.5, 3.7 and 3.8.

For evaluating the value of information, we again consider the normalized value
of information.

Definition 3.2. In the optimization problem (3.22) and (3.28) when the change of
upper boundary of control is known or unknown, the normalized value of information
about the terminal cost is given by:

NV I =

∣∣∣∣JMY − JMN

JMY

∣∣∣∣× 100%, M ∈ {L,H}.

For the numerical example above, when b̄ < b, we have NV I = 21.6% and as
expected, this value is an increasing function of parameter P , which indicates that
the information about the change of upper boundary of control is quite crucial in
this case. Moreover, the information about b̄ ≥ b is useless, because the analysis
shows that the player does not improve her payoff, and the NVI is equal to zero.
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3.3 Value of information about initial pollution stock

In this section, we consider a differential game with two firms z ∈ {i, j} working
on resource extraction with disturbance stock pt at time t ∈ [0, T ]. The amount of
firm’s extraction γzpt, the environmental disturbance magnitude ezt = ϵzγzpt and the
abatement azt = αzτ zt are separately denoted, where γz, ϵz, αz are positive constants
and the reclamation effort τ zt is a control variable of player z.

The system dynamics are given by

ṗt = (ϵiγi + ϵjγj − δ)pt − αiτ it − αjτ jt , pt > 0, pt=0 = p0, (3.38)

where δ > 0 is a natural recovery rate of the environment, and a growth rate of the
environmental pollution stock without abatement is ϵiγi + ϵjγj − δ > 0.

The goal of the firms is to take optimal reclamation effort τ zt to minimize their
cost devoted to recovery procedures. Assume that the players behave cooperatively
aiming at minimizing the sum of their costs. The cooperative objective functional
is

K(p0, τ
i
t , τ

j
t ) =

∫ T

0

[
(τ it )

2

2
+

(τ jt )
2

2

]
dt+ ϕp2T → min, (3.39)

while the noncooperative objective functional of player z is

Jz(p0, τ
z
t ) =

∫ T

0

(τ zt )
2

2
dt+

1

2
ϕp2T → min, (3.40)

where p0 stands for the initial disturbance stock, the reclamation cost is denoted as
ℓ(τ zt ) =

(τzt )
2

2 , the abandonment reclamation fee for each firm at the terminal time
is f(pT ) = ϕ

p2T
2 , where ϕ is a positive constant.

If we assume the players to be symmetric, i.e., having equal coefficients ϵi = ϵj =

ϵ, αi = αj = α, γi = γj = γ, we can rewrite (3.38) as

ṗt = (2ϵγ − δ)pt − α(τ it + τ jt ) (3.41)

with the updated constraint 2ϵγ − δ > 0.
This game is presented in [62], where the closed-loop solutions are considered.

In our setting, we assume that the players do not have accurate information about
the initial stock change and cannot observe pt at any moment of time. Under such
conditions, it is not possible to use closed-loop control, so we focus on the open-loop
equilibrium and estimate the value of information about initial state of the system.
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3.3.1 Cooperative case

Proposition 3.9. In the cooperative differential game defined by joint objective
function (3.39) subject to (3.41), the optimal cooperative control for the firms is

(τ it )
∗ = (τ jt )

∗ = −ψα = 2αϕe(2ϵγ−δ)(T−t)p∗T , (3.42)

where p∗T = (2ϵγ−δ)p0e
(2ϵγ−δ)T

2ϵγ−δ+2α2ϕ(e2(2ϵγ−δ)T−1)
.

The corresponding optimal state trajectory is

p∗t = p0e
(2ϵγ−δ)t − 2α2ϕe(2ϵγ−δ)(T+t)p∗T

2ϵγ − δ
+

2α2ϕe(2ϵγ−δ)(T−t)p∗T
2ϵγ − δ

. (3.43)

The total payoff of a coalition of two firms is

K(p0, (τ
i
t )

∗, (τ jt )
∗) = p0ϕe

(2ϵγ−δ)Tp∗T .

Proof. Following [78], to find an open-loop solution of the cooperative problem to
minimize (3.39), we define the Hamiltonian function as

H = −(τ it )
2 + (τ jt )

2

2
+ ψ

[
(2ϵγ − δ)pt − α(τ it + τ jt )

]
,

where ψ is the adjoint variable which can be obtained through a canonical system
with the transversality condition ψ(T ) = − d

dpt
ϕp2T |t=T= −2ϕpT , we get ψ(t) =

−2ϕe(2ϵγ−δ)(T−t)pT . According to the first order extremality condition and the sign
of the second derivative of H on control variable, the optimal control for each firm
is given in (3.42). Correspondingly, the optimal trajectory is obtained as (3.43).

The total payoff of a coalition of two firms is

K(p0, (τ
i
t )

∗, (τ jt )
∗) =

∑
z∈i,j

∫ T

0

((τ zt )
∗)2

2
dt+ ϕ(p∗T )

2

=

∫ T

0

[
2αϕ(2ϵγ − δ)p0e

(2ϵγ−δ)(2T−t)

2ϵγ − δ + 2α2ϕ(e2(2ϵγ−δ)T − 1)

]2
dt+ ϕ(p∗T )

2

=
p20ϕ(2ϵγ − δ)e2(2ϵγ−δ)T

2ϵγ − δ + 2α2ϕ(e2(2ϵγ−δ)T − 1)
= p0ϕe

(2ϵγ−δ)Tp∗T ,

where P ∗
T is found substituting t = T into the expression of p∗t given above. We can

notice that using control (τ zt )∗, z = i, j, the players will not completely clean up the
environment by time T, since p∗T > 0.
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With respect to the uncertainty of the initial pollution stock, there are two possible
cases which could occur: (i) the value of initial stock can be overestimated compared
with the actual one; (ii) the initial stock can be underestimated. Actually, there is
the third case in which the estimation coincides with the actual value, but this case
is trivial and we leave it without further discussion.

Suppose p̂0 represents the estimated initial stock. If we substitute p̂0 into the
expressions of the optimal strategies and optimal state trajectory, we obtain the
following:

(τ̂ it )
∗ = (τ̂ jt )

∗ = −ψα =
2αϕ(2ϵγ − δ)e(2ϵγ−δ)(2T−t)p̂0

2ϵγ − δ + 2α2ϕ(e2(2ϵγ−δ)T − 1)
, (3.44)

p̂∗t = p0e
(2ϵγ−δ)t − [e(2ϵγ−δ)t − 1

e(2ϵγ−δ)t
]

2α2ϕe2(2ϵγ−δ)T p̂0
2ϵγ − δ + 2α2ϕ(e2(2ϵγ−δ)T − 1)

. (3.45)

Overestimation of the initial stock

When the estimated initial stock p̂0 is above the actual one (i.e. p̂0 > p0), there are
two possible outcomes, which depend on how much p̂0 differs from p0. If the differ-
ence is not very large, then we get p̂∗T ≥ 0, as in the original problem. Otherwise, it
is possible that firms will clean up and reclaim the environment by the time t̂ < T ,
and we have p̂∗T < 0.

First, consider the case when p̂∗T ≥ 0.
According to (3.45), we have

p0e
(2ϵγ−δ)T − [e(2ϵγ−δ)T − 1

e(2ϵγ−δ)T
]

2α2ϕe2(2ϵγ−δ)T p̂0
2ϵγ − δ + 2α2ϕ(e2(2ϵγ−δ)T − 1)

≥ 0.

This inequality holds if

p0
p̂0

≥ 2α2ϕ(e2(2ϵγ−δ)T − 1)

2ϵγ − δ + 2α2ϕ(e2(2ϵγ−δ)T − 1)
. (3.46)

Writing p̂0 in terms of p0 as p̂0 = rp0, we rewrite inequality (3.46) in the form:

1 < r ≤ 1 +
2ϵγ − δ

2α2ϕ(e2(2ϵγ−δ)T − 1)
. (3.47)

In the case when inequality (3.47) is satisfied, the players using controls (3.44) will
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have the total payoff in the following form:

K(p0, (τ̂
i
t )

∗, (τ̂ jt )
∗) =

∑
z∈i,j

∫ T

0

((τ̂ zt )
∗)2

2
dt+ ϕ(p̂∗T )

2

=

∫ T

0

[
2αϕ(2ϵγ − δ)p̂0e

(2ϵγ−δ)(2T−t)

2ϵγ − δ + 2α2ϕ(e2(2ϵγ−δ)T − 1)

]2
dt+ ϕ(p̂∗T )

2

=
2α2ϕ2p̂20(2ϵγ − δ)e4(2ϵγ−δ)T (1− e−2(2ϵγ−δ)T )

(2ϵγ − δ + 2α2ϕ(e2(2ϵγ−δ)T − 1))2
+ ϕ(p̂∗T )

2.

When condition (3.47) is not satisfied, we have p̂∗T < 0. This means that firms
will clean up and reclaim the environment by the time t̂ < T . To find the moment
t̂ such that p̂t̂ = 0, one can solve the equation to pinpoint e−2(2ϵγ−δ)t̂ instead of
explicit t̂:

p0e
(2ϵγ−δ)t̂ − [e(2ϵγ−δ)t̂ − 1

e(2ϵγ−δ)t̂
]

2α2ϕe2(2ϵγ−δ)T p̂0
2ϵγ − δ + 2α2ϕ(e2(2ϵγ−δ)T − 1)

= 0.

Then

e−2(2ϵγ−δ)t̂ = 1− 2ϵγ − δ + 2α2ϕ(e2(2ϵγ−δ)T − 1)

2rα2ϕe2(2ϵγ−δ)T
.

The resulting expression for the controls in this scenario thus reads as

(τ̂ it )
∗∗ = (τ̂ jt )

∗∗ =

{
2αϕ(2ϵγ−δ)e(2ϵγ−δ)(2T−t)p̂0
2ϵγ−δ+2α2ϕ(e2(2ϵγ−δ)T−1)

, t ∈ [t0, t̂],

0, t ∈ [t̂, T ].

The corresponding trajectory goes like this:

p̂∗∗t =

{
p0e

(2ϵγ−δ)t − [e(2ϵγ−δ)t − 1
e(2ϵγ−δ)t ]

2α2ϕe2(2ϵγ−δ)T p̂0
2ϵγ−δ+2α2ϕ(e2(2ϵγ−δ)T−1)

, t ∈ [t0, t̂],

0, t ∈ [t̂, T ].

So, if r > 1 + 2ϵγ−δ
2α2ϕ(e2(2ϵγ−δ)T−1)

, the current total payoff is

K(p0, (τ
i
t )

∗∗, (τ jt )
∗∗) =

∑
z∈i,j

∫ T

0

((τ̂ zt )
∗∗)2

2
dt+ ϕ(p̂∗∗T )2

=

∫ t̂

0

[
2αϕ(2ϵγ − δ)p̂0e

(2ϵγ−δ)(2T−t)

2ϵγ − δ + 2α2ϕ(e2(2ϵγ−δ)T − 1)

]2
dt

=
2α2ϕ2p̂20(2ϵγ − δ)e4(2ϵγ−δ)T (1− e−2(2ϵγ−δ)t̂)

(2ϵγ − δ + 2α2ϕ(e2(2ϵγ−δ)T − 1))2

=
p0p̂0ϕ(2ϵγ − δ)e2(2ϵγ−δ)T

2ϵγ − δ + 2α2ϕ(e2(2ϵγ−δ)T − 1)
.
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Underestimation of the initial stock

In the case when the players underestimate the initial stock, i.e., p̂0 < p0 (0 < r < 1),
again we get p̂∗T ≥ 0. The players use strategies (3.44) and the total payoff is equal
to K(p0, (τ̂

i
t )

∗, (τ̂ jt )
∗).

3.3.2 Noncooperative case

Proposition 3.10. In the differential game defined in (3.40) subject to (3.41), the
Nash equilibrium strategy for firm z is

(τ zt )
NC = −ψα = αϕe(2ϵγ−δ)(T−t)p+T , (3.48)

where p+T = (2ϵγ−δ)p0e
(2ϵγ−δ)T

2ϵγ−δ+α2ϕ(e2(2ϵγ−δ)T−1)
.

The equilibrium trajectory is

pNC
t = p0e

(2ϵγ−δ)t − α2ϕe(2ϵγ−δ)(T+t)p+T
2ϵγ − δ

+
α2ϕe(2ϵγ−δ)(T−t)p+T

2ϵγ − δ
. (3.49)

The equilibrium payoff to firm z is

Jz(p0, (τ
z
t )

NC) =
1

2
ϕ(p+T )

2[
α2ϕ(e2(2ϵγ−δ)T − 1)

2(2ϵγ − δ)
+ 1]. (3.50)

Proof. Switching to (3.40), we define a new Hamiltonian function to find the firm’s
Nash equilibrium strategy, that is

Hz = −(τ zt )
2

2
+ ψ[(2ϵγ − δ)pt − α(τ it + τ jt )].

As the same solution is described in a cooperative case, the Nash equilibrium strategy
for each firm is given by (3.48), and the equilibrium trajectory is defined by (3.49).
The equilibrium payoff to firm z is given by (3.50). Then the sum of two firms’
noncooperative payoffs is

J =
∑
z∈i,j

Jz(p0, (τ
z
t )

NC) = ϕ(p+T )
2[
α2ϕ(e2(2ϵγ−δ)T − 1)

2(2ϵγ − δ)
+ 1].

Two cases concerning estimation of the initial stock

In a noncooperative case, the analysis of classification of the initial stock estimation
is identical to the previous one including overestimation, equality and underesti-
mation. Assuming that the estimation of the initial stock p̃0 makes no difference
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to both firms, then the corresponding Nash equilibrium strategy and equilibrium
trajectory are

(τ̃ zt )
NC = −ψα =

αϕ(2ϵγ − δ)e(2ϵγ−δ)(2T−t)p̃0
2ϵγ − δ + α2ϕ(e2(2ϵγ−δ)T − 1)

,

p̃NC
t = p0e

(2ϵγ−δ)t − [e(2ϵγ−δ)t − 1

e(2ϵγ−δ)t
]

α2ϕe2(2ϵγ−δ)T p̃0
2ϵγ − δ + α2ϕ(e2(2ϵγ−δ)T − 1)

.

Due to the similar calculations on overestimation and underestimation as described
above, the result in this case repeats the one given in Proposition 3.12.

3.3.3 Normalized value of information about initial stock

We investigate the ideas of research in [21, 94], and define the problem of determining
the value of information in a continuous-time differential game.

Definition 3.3. The normalized value of information in a cooperative game is de-
fined as

VC =

∣∣∣∣K(p0, (τ
i
t )

∗, (τ jt )
∗)−K(p0, (τ̂

i
t )

∗, (τ̂ jt )
∗)

K(p0, (τ it )
∗, (τ jt )

∗)

∣∣∣∣,
where K(p0, (τ

i
t )

∗, (τ jt )
∗) is the summarized players’ payoff obtained with known in-

formation about the values of parameters, while K(p0, (τ̂
i
t )

∗, (τ̂ jt )
∗) is the summarized

players’ payoff obtained for an imprecise estimation of the values.

In contrast to the cooperative case, for a noncooperative game, when using unreli-
able information, the costs of the players could be less than with known information.
In this case, we assume that the value of information about the initial condition is
equal to zero.

Definition 3.4. The normalized value of information in a noncooperative game for
player z ∈ {i, j} is defined as

VNC
z =


∣∣∣∣Jz(p0,(τzt )NC)−Jz(p0,(τ̃

z
t )

NC)
Jz(p0,(τzt )

NC)

∣∣∣∣, Jz(p0, (τ
z
t )

NC) < Jz(p0, (τ̃
z
t )

NC),

0, Jz(p0, (τ
z
t )

NC) ≥ Jz(p0, (τ̃
z
t )

NC).

where Jz(p0, (τ zt )NC) is the costs of player z obtained in the case of exact information
about the values of parameters, while Jz(p0, (τ̃ zt )NC) is the costs of player z obtained
in the case of uncertain estimation of the values.
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Clearly, the larger the values of VC and VNC are, the more important the infor-
mation about initial disturbance stock in cooperative and noncooperative cases is.
Furthermore, grounding on the results obtained in Section 3.3.1, we can formulate
the following propositions.

Proposition 3.11. In the cooperative game (3.39) subject to (3.41), the value of
information about the initial disturbance stock p0 is given by:

VC =


(1−r)2

θ , 0 < r ≤ 1 + θ,

r − 1, r > 1 + θ.

Here r = p̂0
p0

, p̂0 is an estimation of the initial disturbance stock and

θ =
2ϵγ − δ

2α2ϕ(e2(2ϵγ−δ)T − 1)
.

Proof. See Section 3.3.1 and Definition 3.3.
Note that when 0 < r < 1 or 1 < r ≤ 1 + θ, for the value of information we use

the formula:

VC =

∣∣∣∣K(p0, (τ
i
t )

∗, (τ jt )
∗)−K(p0, (τ̂

i
t )

∗, (τ̂ jt )
∗)

K(p0, (τ it )
∗, (τ jt )

∗)

∣∣∣∣.
If r = 1, then VC = 0.
And if r > 1 + θ, NVI is as follows:

VC =

∣∣∣∣K(p0, (τ
i
t )

∗, (τ jt )
∗)−K(p0, (τ̂

i
t )

∗∗, (τ̂ jt )
∗∗)

K(p0, (τ it )
∗, (τ jt )

∗)

∣∣∣∣.
Proposition 3.12. In the noncooperative game (3.40) subject to (3.41), the value
of information about the initial disturbance stock p0 is given by:

VNC
z =


(1−r)(r(1+θ)−3θ−1)

θ(1+4θ) , 0 < r ≤ 1 or 3θ+1
θ+1 < r ≤ 1 + 2θ,

0, 1 < r ≤ 3θ+1
θ+1 ,

2θ+1
4θ+1r − 1, r > 1 + 2θ.

Here r = p̃0
p0

, p̃0 is an estimation of the initial disturbance stock and

θ =
2ϵγ − δ

2α2ϕ(e2(2ϵγ−δ)T − 1)
.

Proof. See Section 3.3.2 and Definition 3.4.
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3.3.4 Analysis of theoretical results and numerical examples

Comparison of cooperative and noncooperative cases

In the considered game, the players are symmetric which means we can conclude
that in a cooperative game, each player will receive half of the total payoff. Then the
value of information for the total payoff will coincide with the value of information
for each player separately. With such knowledge, a way of comparing the value of
information about the initial disturbance stock in a cooperative and noncooperative
game is quite explicit.

The result of comparison between VC and VNC is presented in Tables 3.1, 3.2. In
Table 3.1, it is assumed that 0 < θ ≤ 1. The results for θ > 1 are given in Table
3.2.

Table 3.1: Comparison of NVI for 0 < θ ≤ 1

0 < r < 1 1 < r ≤ 1+3θ
θ+1

1+3θ
θ+1

< r < 1 + 2θ r ≥ 1 + 2θ

VC > VNC VC > VNC VC < VNC VC > VNC

Table 3.2: Comparison of NVI for θ > 1

0 < r < 1 1 < r ≤ 1+3θ
θ+1

1+3θ
θ+1

< r < 1 + θ r ≥ 1 + θ

VC > VNC VC > VNC VC < VNC VC > VNC

It can be noticed that in most cases the value of information in a cooperative game
is higher than that of in a noncooperative one, which indicates that the impact of
estimation of the initial stock on the players’ payoffs in a cooperative game is much
more significant. Therefore, if the players choose cooperative behavior, they should
pay more attention to the accuracy of information about the initial condition.

Comparison of overestimation and underestimation cases

In order to figure out whether overestimation and underestimation at relatively the
same level will have an identical impact on the final payoff in each case, first of all,
a detailed analysis of a cooperative case is given. The value VC represents the NVI
in the case of overestimation with the shift βp0 away from p0, and VC is the NVI for
the case of underestimation with the same shift. There are various cases depending
on parameters values:
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1. Assume 0 ≤ β < 1, θ < 1.

In the case of overestimation, for p̂0 = p0 + βp0 we have

VC
=


β2

θ , 0 ≤ β ≤ θ,

β, θ < β < 1.

In the case of underestmation, if p̂0 = p0 − βp0, then

VC =
β2

θ
, for all 0 ≤ β < 1.

We can find out that
VC

= VC , if 0 ≤ β ≤ θ,

VC
< VC , if θ < β < 1.

2. Assume 0 ≤ β < 1, θ ≥ 1. In this case, VC
= VC for all 0 ≤ β < 1.

These two cases show that the influence generated by an underestimation rate
always outperforms or is equal to it in overestimation of the counterpart rate.

3. For β ≥ 1, it does not make sense to investigate more information about
uncertain parameter under this circumstance. But it can still be noted, that
the loss in a case of overestimation outweighs the largest lost in a case of
underestimation only if β > 1

θ .

Similar analyses can be made for a noncooperative case and a terminal cost coeffi-
cient case.

Numerical example

Based on Propositions 3.11, 3.12, a numerical example demonstrates how to analyze
the influence of various cases of estimation. The parameter values are assigned
randomly, let they be γ = 1.8, ϵ = 0.1, α = 1, ϕ = 0.06, p0 = 100, δ = 0.1, r ∈
(0, 2] for both cases. Specifically, in our example, we compare four different cases
with terminal times T = 10, 12, 14 and 16.

Fig. 3.3 and Fig. 3.4 show that a mode of game (cooperative and noncooperative)
does demonstrate a similar form of the curve, but with a different magnitude. Obvi-
ously, in these two figures, if we compare the NVI under overestimation, i.e., r > 1,
and underestimation, i.e., r ≤ 1, the underestimation would bring larger costs to
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Figure 3.3: Normalized value of information for different estimated initial pollution stocks under
various time intervals (X-axis denotes the estimation rate, Y-axis denotes the value of VC)
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Figure 3.4: Normalized value of information for different estimated initial pollution stocks under
various time intervals (X-axis denotes an estimation rate, Y-axis denotes a value of VNC)
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the players if we observe them on the whole, which is also proved in our theoretical
analysis. With the fixed initial time is, the larger the terminal time, the sharper
the increased costs would be generated by underestimation. On the contrary, the
linear-like curve of the NVI under overestimation is much more stable and gentle.
Having combined what we have obtained in an analytical analysis, we may believe
that a decision maker would consider to add more weight to the overestimation of
the initial stock after obtaining an observed range of initial volume, e.g. with the
range of initial stock [A ± B], in our case, we turn to A + B. Moreover, because
of the larger influence on a cooperative case, it requires extra efforts for a decision
maker to be sure of a high reliability of the estimated initial stock.

Additionally, we think it’s meaningful to study the implication of the change of
terminal cost coefficient ϕ. This parameter determines the penalty that a firm should
pay to the regulator if he/she fails to reclaim the environment to the terminal time.
Fig. 3.5 demonstrates four plots with ϕ = 0.01, ϕ = 0.03, ϕ = 0.05 and ϕ = 0.1.
The design of these four values for ϕ is out of consideration of the full scale testing
from upper to lower interval. The overall trends of the NVI at different terminal
time in cooperative and noncooperative cases are similar, we only present the result
with T = 10.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

r

0

20

40

60

80

100

120

140

V
C

=0.01

=0.03

=0.05

=1

Figure 3.5: Normalized value of information for different estimated initial pollution stocks under
different coefficients ϕ when T = 10 (X-axis denotes an estimation rate, Y-axis denotes a value of
VC)

From Fig. 3.5, we can learn that in the case of underestimation, the NVI greatly
increases with the growth of ϕ. Moreover, the overall plot here is in accordance with
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the performance of the NVI at different terminal time. Hence, we think it’s more
acceptable to make overestimation of the initial pollution stock when a decision
maker can’t guarantee that the estimation he obtains is accurate enough to use it
in his solution.

3.4 Conclusion to Chapter 3

In this chapter, we explore three different scenarios in which information available
to the players is not accurate. Starting with the uncertainty of a terminal cost and
the unawareness of the upper boundary of control to the estimation of the initial
pollution stock, we use the normalized value of information (NVI).

In the terminal costs and upper boundary of control scenarios, we define the NVI
to separately capture the value of knowledge embedded in terminal costs and upper
boundary of control. Due to the complexity of the theoretical results, we present
numerical examples in which we calculate the value of information. The numeri-
cal examples in both scenarios have demonstrated that the absence of knowledge
mentioned at the beginning does reduce the players’ payoffs with different levels of
pollution reduction, except the latter case when the change of upper boundary of
control b̄ ≥ b. The lack of such information in the latter case has no impact on the
players’ payoffs.

In the scenario with unknown initial pollution stock, we study how the estimated
initial stock could influence the performance of two players involved in a coopera-
tive and non-cooperative differential game. Two cases including overestimation and
underestimation are being explained and the NVI is applied to quantify the value
of information about the initial stock parameter. We conclude that the uncertainty
about the initial stock influences more a cooperative case a noncooperative case,
which reminds players to be more careful with information accuracy in the coop-
erative mode of play. For both cooperative and noncooperative cases, a common
phenomenon that the overestimation of initial stock carries less weight to the fi-
nal payoff of the players is being observed. The results of the numerical example
demonstrate that the players could greatly reduce their costs if they incline towards
overestimation when they receive the evaluation report of the estimated initial stock
from the experts, especially in a cooperative case.
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Conclusions

This thesis is devoted to the stability analysis in pollution control problems with
one or many decision makers. The research can be essentially divided into two
parts: examining internal factors such as coalition structure and objective functions
on stability of cooperation (Chapter 1 and 2), and stability analysis of external
factor influence such as uncertainty of the terminal costs, possible adjustment of
upper boundary of the control variables as well as estimation of initial pollution
stock (Chapter 3). More specifically, a static pollution control problem with four
players is examined in Chapter 1 in which two stability concepts are defined and
three mechanisms are provided to make some particular coalition structures stable,
while Chapter 2 deals with a dynamic model of pollution control and introduces
the trade-off mechanism inspired by the contract design typically used in supply
chain modeling. In Chapter 2, an asymmetric three-player differential game where
the consistency of stable coalition structure in dynamics is also investigated. The
stability analysis given in Chapter 3 is focused on investigating how the uncertain
information could affect the stability of decisions. In Chapter 3, a new characteristic
called normalized value of information is suggested to quantify the value of infor-
mation of uncertainty with respect to terminal cost, upper boundary of control, and
initial pollution stock.

The main results of the work are as follows:

1. We examine the game between polluting countries which are different in their
attitudes to environment protection policies. Some countries take the pollution
reduction costs in their optimization problems, while other countries do not.
We examine different scenarios of cooperation including cooperative, noncoop-
erative, and partially cooperative scenarios when any coalition structures can
be formed. We examine the stability of all scenarios and obtain that there are
no stable scenarios but a unique individually stable scenario. To sustain sta-
bility of desirable scenarios we provide three mechanisms to make them stable
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including (i) implementation of transfers based on any cooperative solution,
(ii) design of the system of transition costs in case of their deviations, and
(iii) restrictions on coalition formation and design of the set of feasible scenar-
ios. We provide numerical examples of four-player games and introduce how
the proposed mechanisms can be realized. We highlight that the number of
computations increases exponentially with an increase of the number of play-
ers. Therefore, theoretically, the results can be applied to the games with any
number of players, but practically, it is difficult to make computations for the
proposed mechanisms.

2. We introduce a trade-off mechanism involving a trade of pollution disposal be-
tween vulnerable and invulnerable players to reduce the actual pollution stock
and provide a new solution of a pollution multi-player control problem. The
comparison between a trade-off mechanism scenario, noncooperative, and co-
operative scenarios specifies the advantages and limitations of the trade-off
mechanism. Basing on a numerical example, we conclude that we can find the
parameters of the trade-off mechanism to outperform a noncooperative sce-
nario. It is also clear that this mechanism is worse than a fully cooperative
scenario in terms of improving both players’ profits. A differential game of pol-
lution control with developing and developed countries is also investigated. We
examine stability of different cooperative scenarios when players can partially
cooperate. To examine all possible coalition structures, we propose three types
of scenarios:(i) cooperative, (ii) noncooperative, and (iii) partially cooperative,
in which the coalition’s profit is dependent on the outside players’ behavior (in
particular, it depends on if they form coalitions or not). The general conditions
of Nash and individual stability of coalition structures or scenarios are deter-
mined. Two numerical examples demonstrate the procedure of finding a stable
scenario in a three-player game. We also introduce the procedure of making a
particular scenario stable (if possible) by defining a special transfer scheme.

3. We consider three models of the pollution emission control with uncertain infor-
mation and introduce a normalized value of information proposed to represent
the value of information in a numerical way. In the analysis of uncertainty in
terminal cost and upper boundary of control, we examine when information
about the existence of such a component, i.e., terminal cost and changed up-



106

per boundary is available or is not available. We also examine the influence
of such information on the final players’ payoffs. The results show that when
the information is unavailable, the players’ payoffs will be reduced except the
case when the changed upper boundary of control is above the original, such
information is meaningless for players. Moreover, we accomplished the study
of how the estimated initial stock could influence the performance of two play-
ers in terms of the rehabilitation process in cooperative and noncooperative
differential games. Through the rigorous analytical analysis by comparing nor-
malized value of information under various terminal times in both cooperative
and noncooperative cases, we find out that the overestimation of initial stock
impacts the final payoff in a trivial way and the uncertainty about the initial
stock brings more disturbance in a cooperative case. It is expected that the
decision maker would incline toward overestimation, especially, in a cooperative
case.

We conclude that all the tasks formulated in this thesis are achieved, and the ob-
jectives are fully accomplished.
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