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Introduction 

1. Relevance, Goals and Main Results of the Dissertation 

Modern technology level causes automation, to one degree or another, to affect 

almost all areas of human activity. At the same time, the pace of automation is 

increasing every year, and more and more professions are being replaced by machine 

labor. In turn, such progress is impossible without the use of automatic control 

systems based on the application of the feedback principle. The problems of motion 

control of various objects – mobile robots, unmanned aerial vehicles, sea vessels, 

robotic manipulators, etc. – are of particular interest here. It is important to note that 

the development of industry and economics determines the constant tightening of 

requirements for the quality of controlled motion dynamics in various modes and 

under various conditions. There are several important current areas of research in this 

area that are discussed in the dissertation. 

First of all, these include the basic task of the moving plants motion 

stabilization. For example, it is important for a container ship to maintain a given 

heading angle when moving at sea, taking into account the specified requirements for 

the quality of control processes. In this case, the task is further complicated due to the 

possible presence of external disturbances. In this case, it is extremely important to 

have an on-board system for automatical stabilization of the vessel along the course, 

which would allow the cargo to be delivered without damage within a given time 

frame, with minimal fuel consumption. Let us note that the quality of control 

processes in various operating modes can be significantly improved by taking into 

account the dynamics of a moving plant. 

The second important task is the use of visual information in the feedback 

loop. Generally, such tasks are relevant for automobile autopilots, mobile robots in 

warehouses and factories, as well as for aerial drones. These types of moving plants 

are equipped with a video camera rigidly mounted on the body. The control task may 

consist, for example, of positioning the robot relative to a given object. In this case, it 

is necessary to ensure the required quality of control processes taking into account 
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the influence of external disturbances. Here it is also important to take into account 

the equations of the dynamics of a moving plant in conjunction with equations 

representing changes in visual information in order to develop effective control 

algorithms. 

Finally, let us explicitly note the problem of motion control of robotic 

manipulators. Here it is especially important to ensure the specified accuracy and 

speed of positioning, since, for example, the quality of car assembly on an automated 

conveyor may depend on it. In this case, vibrations of the body and the unaccounted 

mass of the load also act on the plant as external disturbances that must be 

compensated. 

The implementation of modern control systems is usually carried out using 

digital devices. This inevitably leads to a delay in the feedback loop. The value of the 

delay can be small enough to not have a noticeable effect on the dynamics of the 

system. However, in some cases, delay can significantly deteriorate the quality of 

control processes, up to loss of stability. Therefore it is often necessary to take into 

account the presence of the delay during the design of the control systems. 

Thus, we can highlight the main features of the problems considered in the 

dissertation: synthesis of multipurpose feedback taking into account the dynamics of 

a moving object, the use of visual information, the presence of a delay in the control 

signal, optimization of control processes in various operating modes, as well as the 

possibility of the practical implementation of the control algorithms on board of a 

moving plant in real time. 

The problems of analysis and synthesis of stabilizing feedbacks in general 

have been studied quite thoroughly. For example, the works of V. I. Zubov [17–19], 

A. A. Krasovsky [24, 25], A. M. Letov [28–30], R. Kalman [20, 70], B. Francis [ 66], 

D. Doyle [63] and other outstanding scientists [1–3, 14, 21, 22, 26, 27, 33, 39, 50, 52, 

57, 69, 71, 93] laid the fundamental foundations for control processes optimization. 

Problems of the moving plants control, including sea vessels, are widely studied in 

the works of Y.A. Lukomsky and V.M. Korchanov [32], Pelevin A.E. [15, 35], Y. P. 



6 

Petrov [36–38], T. Fossen [64, 65, 75], T. Perez [83] and other researchers [4, 13, 37, 

91, 96]. 

However, published works usually tend to focus on individual operating 

modes. To take into account the entire complex of requirements for the dynamics of a 

closed-loop system in various operating modes, we can note the methodology of 

multipurpose control structure synthesis, first mentioned in [5]. In works [5–10], this 

idea was developed, and the application of multipurpose regulators to the problems 

of stabilizing marine moving plants is described, for example, in [99, 100]. 

The main advantage of a multipurpose structure usage is the fact that the 

initially complex task of the regulator synthesis of taking into account the entire set 

of requirements in all possible modes can be divided into separate simpler tasks 

corresponding to the synthesis of individual elements of the multipurpose structure. 

These problems can be solved relatively independently of each other, which 

simplifies the process of the full regulator synthesis. This leads to another 

advantage of the multipurpose structure: individual elements can be turned on or 

off depending on the current operating mode, for example, for more economical 

use of computing resources. 

The issues of using visual information in the feedback loop are also quite 

widely covered in the literature. Here we can highlight, for example, the Visual 

Servoing approach [61, 62, 78]. The essence of this approach is to calculate the 

required motion velocity vector to minimize the error between the current and 

desired projection of some object in the image plane. The problems of achieving 

the required velocity usually are not considered in the literature devoted to Visual 

Servoing, thus the dynamics of the plant is not taken into account. 

Motion stabilization taking into account the delay is one of the key topics in 

control theory. One of the first theoretical works in this area is the monograph [24], 

and practical issues are discussed in the book [54]. In [16], algebraic methods for 

studying the dynamics of systems with delay are considered. Questions of 

Lyapunov stability of motion of dynamic systems from the perspective of the 
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methods developing the ideology of Lyapunov-Krasovsky functionals usage are 

given in the monograph [72]. 

Currently we can mark out the two main practical approaches for solution of 

the problem of ensuring the stability of systems with delay. The first approach, 

described in [80], is based on the use of static feedback for linear systems with 

delay with an infinite-dimensional spectrum, providing a shift of a finite number of 

rightmost eigenvalues into the left open half-plane. Despite the simplicity of the 

feedback structure, the synthesis procedure in this case has a number of 

disadvantages that limit its practical application. 

The idea of the second approach is to use the system state prediction in the 

feedback for the delay compensation. Closed-loop system with such feedback has a 

finite set of eigenvalues. This idea was first mentioned in the paper [94]. Further 

development is described in the monograph [79], and a generalization to the case 

of nonlinear systems is given in [73]. The details of the implementation of this 

approach are of a particular interest, as well as its generalization to the case of the 

dynamic regulators usage. Similar issues are discussed in article [10], and the main 

problem here is to preserve the transfer matrix of the original system without 

delay, closed by a multipurpose controller. 

The possibility of the described methods combination: a multipurpose 

approach to the control laws synthesis, the visual information usage in the feedback 

loop, as well as the delay compensation through the prediction usage is a promising 

area of research and determines the relevance of this work. 

The goal of the dissertation is to conduct a research aimed at the 

development of new methods for synthesis of multipurpose algorithms for moving 

plants control, allowing to increase the efficiency and quality of their functioning 

in various modes. 

To achieve this goal, the following specific areas of research are considered 

in the work: 

• development of the methods for multipurpose control laws synthesis for 

moving plants with delay compensation; 
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• research of the issues and development of the methods for multipurpose 

regulators synthesis using visual information for dynamic positioning of the 

moving plants taking delay into account; 

• development of the methods for multipurpose regulators synthesis for moving 

plants with nonlinear mathematical models that allow the possibility of the 

application of the feedback linearization; 

• building software systems for modeling the dynamics of the plants closed by 

the specified regulators, as well as conducting the numerical experiments. 

Specific examples of the plants to demonstrate the performance of the 

proposed methods include a hovercraft, a mobile robot with a video camera, and a 

two-link robot manipulator. 

The main results submitted to the defense: 

1. New methods have been developed for equivalent transformation of the 

multipurpose controllers for the feedback delay compensation. 

2. New algorithms are proposed for the synthesis of the multipurpose 

regulators with visual information in the feedback loop in the problem of dynamic 

positioning of moving plants in various modes. 

3. New effective methods for the multipurpose regulators synthesis for 

moving plants based on the feedback linearization method have been constructed. 

4. Multipurpose control algorithms with the delay compensation have been 

developed for the air cushion vehicle. 

Theoretical and practical value of the dissertation results. 

The theoretical value of the results obtained in the dissertation is based on 

the creation of new methods and algorithms for the multipurpose regulators 

synthesis for the moving plants in various operating modes, taking into account 

external disturbances, delay of the control signal and using the visual information 

in the feedback loop. 

The practical significance of the obtained results is determined by the 

possibility of the onboard implementation of the described multipurpose regulators 
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on the real plants, which, in turn, is supported by the results of numerical 

experiments demonstrating the effectiveness of the proposed approach. 

Dissertation results are successfully used in the research of the moving 

plants control systems design, in particular – air cushion vehicle and mobile robots 

(RFBR Grants № 18-37-00463 мол_а, № 20-07-00531, SPBU Contracts № 

9.21.1415.2017, № 11456826). 

Approbation of work. Results of this dissertation were reported at the 

following conferences: XLV International Scientific Conference of Post-Graduate 

Students and Students «Control Processes and Stability» (Saint-Petersburg, 2014), 

XI International Scientific-Practical Conference «Modern Information 

Technologies and IT-Education» (Moscow, 2016), XI International Conference 

«Modern Methods of Applied Mathematics, Control Theory and Computer 

Technologies», (PMTCT-2018, Voronezh, 2018), III International Scientific 

Conference «Convergent Cognitive Information Technologies» (Moscow, 2018), 

IV International Scientific Conference «Convergent Cognitive Information 

Technologies» (Moscow, 2019), IV International Conference «Stability and 

Control Processes» (SCP2020, Saint-Petersburg, 2020), Conference «Mathematical 

Control Theory and its Applications» Saint-Petersburg, 2020), VI International 

Scientific Conference «Convergent Cognitive Information Technologies» 

(Moscow, 2021), VII International Scientific Conference «Convergent Cognitive 

Information Technologies» (Moscow, 2022), 22nd International Conference on 

Mathematical Optimization Theory and Operations Research (MOTOR, 

Yekaterinburg, 2023), and at the seminars at the Department of computer 

technology and systems of Saint-Petersburg State University. 

2. Brief Summary of the Work 

The thesis consists of the introduction, four chapters, a conclusion, and a list 

of references that includes 103 titles. The volume of the thesis is 132 pages. 

The introduction is devoted to a brief presentation of the considered 

problems, and also contains a review of the literature on the research topic. 

The first chapter describes the main operating modes of the moving plants 
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and the requirements for the plants dynamics in these modes, introduces a formal 

definition of a multipurpose regulator, discusses the search of the multipurpose 

feedback tunable element, and also presents a methodology for the control channel 

delay compensation and the corresponding transformation of the multipurpose 

regulator. 

The second chapter is devoted to the issues of the dynamic positioning of 

moving plants using visual information in a feedback loop, taking into account 

delay and external disturbances. An approach to the synthesis of the control law 

has been developed based on a combination of a multipurpose approach, the 

ideology of the visual servoing, and the delay compensation. The performance of 

the proposed methods is demonstrated based on the numerical experiments with a 

computer model of the fully-actuated omni-wheeled mobile robot with a video 

camera and the underactuated differential-drive robot with a video camera. 

The third chapter is related to the problem of delay-compensating control 

synthesis for moving plants based on a multipurpose approach and the feedback 

linearization method. The issues of the constant and polyharmonic external 

disturbances compensation are investigated. The results of numerical experiments 

with a computer model of a two-link robot manipulator are presented. 

In the fourth chapter, as a practical application to demonstrate the 

effectiveness of the developed approach, the solution to the problem of the 

multipurpose feedback synthesis with delay compensation for the air cushion 

vehicle is considered, and the results of numerical experiments are also presented. 

Publications. The main content of the thesis is reflected in 17 publications, 

3 of which are published in the journals included in the List of peer-reviewed 

journals recommended for publication of papers that represent the main results of 

dissertations, 5 works are published in journals indexed in the Web of Science CC 

and Scopus and 9 papers – in the journals indexed in the Russian Science Citation 

Index. 
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Chapter 1. Issues of the Multipurpose Control With Delay 

Compensation 

This chapter discusses the main issues of multipurpose regulator synthesis 

for the moving plants motion stabilization, taking into account the delay of the 

control signal. Delays are inevitably presented in real physical control systems and, 

generally, lead to worse dynamics quality, up to loss of stability. Multipurpose 

regulators turn out to be useful in the case when the problem formulation implies 

the presence of a number of requirements for the controlled motion dynamics in 

various operating modes. A special transformation of the multipurpose regulator, 

synthesized for a system without delay, makes it possible to compensate the delay 

while maintaining the original transfer matrix. 

The first paragraph is devoted to the basic operating modes of moving plants 

that are of interest within the framework of this work, and the requirements for the 

dynamics of the plants in these modes. The second paragraph introduces a 

description of the multipurpose control structure and the general approach to 

tunable elements search. Finally, the last paragraph presents the delay 

compensation approach by using the prediction of the plant state. 

 

1.1. Plant Operating Modes 
Let us consider an arbitrary moving plant with nonlinear dynamics that can 

be described by a system of differential equations 

 
),,(

),,,(
δxSy

dδxFx
=

= e
 (1.1) 

where nE∈x  – plant state vector, including linear and angular velocity 

components, mE∈δ  – control action vector (actuator deflections from the neutral 

position), dn
e E∈d  – external disturbances vector, F  – vector function with 

elements that are continuously differentiable by a set of arguments, kE∈y  – 

measurement vector, S  – vector function. 
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Assume that feedback is defined for system (1.1) by specifying some 

operator U  on the measurement vector in the form 

 )(yUδ = . (1.2) 

Let us list the main operating modes and requirements for the dynamics of 

the plant in these modes. Necessary prerequisite for all modes is to ensure 

asymptotic stability of motion. To formalize the requirements for dynamics, we 

define a generalized quality functional on the movements of system (1.1), (1.2) 

 )(),( Uδy JJJ == , (1.3) 

particular form of which depends on the current operating mode. 

1) Proper motion is characterized by zero initial conditions with the absence 

of the external disturbance. The control goal is to ensure the transition of the 

system from the initial position to the equilibrium position, determined by a 

constant reference signal r  which is fed to the feedback loop. The dynamics 

requirements in this mode are the most important. 

Let us introduce an auxiliary scalar function with the Euclidean space norm 

 )()( tt y=ρ ,  

defined at ),0[ ∞∈t . One option for representation of the functional (1.3) might be 

overshoot magnitude for variable ρ  in the form 

 
r

rmJ
ρ
ρρ −

=1 , (1.4) 

where r=rρ , )(sup
),0[

t
t

m ρρ
∞∈

= . 

Besides (1.4) let us introduce another functional 

 { }mrmp ttMttT ≥∀∈= ),,()(:inf ∆ρρ , (1.5) 

where { }∆ρρρρ∆ρ ≤−= rrrM /:),( , ∆  – fixed real number. Functional (1.5), in 

fact, defines closed-loop settling time. Fig. 1.1 shows schematic representation of 

the essence of the given functionals (1.4) and (1.5). 

The selected values of the tunable feedback elements must provide a 

simultaneous minimum of the functionals (1.4) and (1.5) on such a set that ensures 
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the asymptotic stability of the equilibrium position of the closed-loop system. In 

particular, it is possible to introduce a more rigid requirement for the location of the 

roots of the characteristic polynomial of the linear approximation of a closed-loop 

system in a certain given region of the open left complex half-plane. 

 

 
Fig. 1.1. Visualization of the overshoot and settling time. 

 

Let us note that simultaneous achievement of the minimum of functionals (1.4) 

and (1.5) is often impossible in practice, and therefore tunable elements of the control 

law must be selected taking into account the desired restrictions of the specified 

functionals 

 101 JJ ≤ , 0pp TT ≤ ,  

where constant values 10J  and 0pT  are taken from the practical perspective. 

2) Forced motion under the influence of a constant external disturbance 

0)( ee t dd =  (for example, side wind or sea current) with zero initial conditions. 

There is no reference signal in this mode, and the control goal is to provide 

astatism of the closed system, i.e. ensure the condition 

 0)(lim =
+∞→

t
t

ρ   
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for any vector 0ed . 

Let us define a functional on the movements of the closed-loop system that 

determines the maximum deviation of the controlled variables 

 )(max
),0[

t
t

p ρρ
∞∈

= .  

In fact, it is necessary to ensure the minimum value of the «dip» of the 

controlled coordinates when exposed to a step disturbance, without deteriorating the 

quality of operation of the control system in the previous mode. 

3) Forced motion under the influence of a periodic external disturbance (for 

example, sea waves or rough roads). The initial conditions in this mode are zero, 

and there is no reference signal. The control goal is to minimize the influence of 

disturbance on the control signal response to save the actuators resource. The 

quality functional here can be the norm of the transfer matrix from the disturbance 

to the control signal. 

 

1.2. Multipurpose Control Structure 
Let us define some controlled motion of the plant by specifying vector 

functions )(tcxx = , )(tcδδ =  and )(tсe dd = , satisfying the system (1.1): 

 ),,( сссс dδxFx = . (1.6) 

Let us introduce the notations 

 )()()( ttt cxxx −= , )()()( ttt сδδδ −= , )()()( ttt сe ddd −=   

for the deviations of the variable values of the system (1.1) from the defined 

motion. Taking into account (1.1) and (1.6), the dynamics of these deviations can 

be described by a system of equations 

 ),,( dδxPx = , (1.7) 

where 

 ),,(),,(),,( сссссс dδxFddδδxxFdδxP −+++= ,  

from which it is clear that system (1.7) has an equilibrium position with zero 

values of the variables x , δ  and d . 
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Let us linearize system (1.7) in the vicinity of the zero equilibrium position. 

As a result we get 

 HdBδAxx ++= , (1.8) 

assuming that the initial plant model is such that the matrices A , B  and H  of the 

linearized system (1.8) are constant. 

Let us assume that in general case the complete state vector is not available 

for measurement. In this regard, we add to system (1.8) the output equations 

 ,Cxy =  (1.9) 

where kE∈y  – measurement vector, С  – matrix with constant components. 

Let us also assume that the actuator drives has their own linear dynamics in 

the form 

 uδ = , (1.10) 

where mE∈u  – control signal, which is directly fed to the input of the plant. 

Let us consider the linear equations of dynamics of a moving object (1.8) – 

(1.10) without the delay, taking into account the measurement vector and the linear 

equation of the actuator drives dynamics: 

 

.

,
,

uδ

Cxy
HdBδAxx

=

=
++=





 (1.11) 

In general, the multipurpose structure of the control law for system (1.11) 

includes the following elements [7]: 

)( CzyGBδAzz −++=  – asymptotic observer equation; 

))(( CzyFξ −=
dt
d  – dynamic corrector equation; (1.12) 

ξyνzμu ++=   – speed control signal equation. (1.13) 

The asymptotic observer is used mainly to solve two problems. First of all, in 

the case when the dimension of the measurement vector is less than the dimension of 

the state vector, but the system is completely observable, the observer provides an 

estimate of the complete state vector of the system. In addition, the choice of matrix 
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G  affects the dynamics of the closed-loop system, including the response to the 

constant external disturbances. 

The dynamic corrector (1.12) can also be used for several purposes 

depending on the selection of tunable elements. Basically, two modes of operation 

of the corrector can be distinguished, subject to the presence of external periodic 

disturbances (for example, sea waves). In the first mode, the corrector ensures that 

the influence of disturbances on the measured parameters of the system is 

minimized, acting as an optimal dynamic compensator. In the second mode, the 

corrector is an optimal dynamic filter, minimizing the reaction of the actuator 

drives to the disturbance. This makes it possible, for example, to ensure an 

increased wear resistance of rudders and fuel economy for sea vessels in the case 

of motion in conditions of strong waves. 

The most important part of the multipurpose regulator is the speed control law 

equation (1.13). This element ensures the asymptotic stability of the closed-loop 

system, as well as providing the desired characteristics of the dynamics quality of 

controlled motion either in the absence or the presence of external disturbances. 

Equation (1.13) can be transformed to an equivalent positional control law for the 

output of an asymptotic observer in the form [7] 

 ξyνδkkzu +++= 00 , (1.14) 

где )( GCAμk −= , μBk =0 , νμGν +=0 . 

We will further use the control law in the form (1.14), since this form is the 

most preferable for taking into account the delay of the control signal, which is 

described in the following paragraphs. 

Let us note that in the optimal control synthesis process, constant matrices 

G , μ , ν  and the corrector transfer matrix F  are subject to search. The search is 

carried out depending on the specified requirements for the plant dynamics in 

various operating modes, including in the presence of external disturbances. 

Let us pay attention to the fact that the dynamic corrector equation (1.12) can 

be transformed to the linear system 
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),(

),(
czympγξ

czyβpαp
−+=

−+=

f


 (1.15) 

where 1nE∈p  – corrector state vector, mE∈ξ  – its output vector (dimension of this 

vector must be same as the dimension of the actuators deflection vector δ ), α , β , γ , 

fm  – are the constant matrices satisfying the condition 

 )()( 1
1

ss fn FmβαEγ ≡+− − . 

Taking into account (1.14) and (1.15), multipurpose regulator equations can be 

represented as 

 
.

),(
),(

00 ξyνδkkzu
Czyβpαp

CzyGBδAzz

+++=
−+=

−++=




 (1.16) 

Since modern control systems are implemented on the digital onboard devices, 

direct application of the continuous system (1.16) to the plant is impossible. 

Therefore let us specify some discretization period dT  and transform regulator (1.16) 

to the linear difference equations system 

 
],[][][][][

]),[][(][]1[
]),[][(][][]1[

00 nnnnn
nnnn

nnnnn

dd

ddd

ξyνδkkzu
Czyβpαp

CzyGBzAz

+++=
−+=+

−++=+ δ

 
subject to the direct plant onboard implementation. 

Let us discuss the issues of the multipurpose regulator tunable elements 

synthesis. The first task is searching the coefficients of the feedback (1.14) which 

are uniquely determined by the parameters of the basic control law 

 δKrxKu δ+−= )(x , (1.17) 

where nEr∈  – given fixed reference signal vector, xK  and δK  – constant matrices 

subject to search. Feedback (1.17) must not be directly implemented, but it is a basis 

for solving the further problems. 

The coefficients of the law (1.17) must be chosen based on the requirements 

for the dynamics quality of the plant’s proper motion. These are the highest 
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priority requirements, the fulfillment of which is mandatory for any mode of 

operation of the control system. 

The next step is the transition to a speed control law to ensure astatism of the 

closed-loop system. In the general case, this transition is quite complicated, but in 

particular cases the approach to deriving speed control law formulas can be 

significantly simplified [11, 12]. The procedure for searching the tunable elements 

will be demonstrated in the fourth chapter for the problem of stabilizing a hovercraft. 

The next element to find is the matrix G  of the asymptotic observer 

coefficients, based on the requirements for the dynamics of controlled motion 

under the influence of external step disturbances. In this mode, we will assume that 

the reference signal is zero. 

Finally, the last required element of the multipurpose structure is the corrector 

transfer matrix )(sF . In this work, the main requirement that determines the value of 

this matrix is to minimize the intensity of the control signal in the presence of 

external periodic disturbances. 

Let us formalize the problem of searching a transfer matrix )(sF . Note that the 

actuators channel in the closed-loop system (1.11), (1.16) is an LTI system, the input 

of which receives measurements y , and the output is the vector δ  of the actuator 

drives state. In this case, we can assume that this system itself is closed by a 

dynamic corrector as feedback. The plant here is the main part of the control 

channel in the form 

 
.

),(

00 ξyνδkkzδ
CzyGBδAzz

+++=

−++=



 (1.18) 

Assuming that the input of the main part is the vector 







ξ
y

, let us add to the system 

(1.18) the output equation for the vector 







ζ
δ

, where Czyζ −= , thus in the state 

space the model of the main part of the actuator drives channel can be represented 

as 
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In the frequency domain (1.19) is of the form 
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where )(sT  – transfer matrix of the main part of the actuator drives channel. In the 

explicit form this matrix can be expressed through the constant matrices of the 

system (1.19) as 
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Closing the system (1.20) by the dynamic corrector we get 
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 (1.21) 

Excluding the variables ζ  and ξ  from (1.21) we are getting the transfer 

matrix from the input y  to the output δ  

 [ ] )()()()()()()( 21
1

221211 sssssss ky TFTEFTTF −−+=δ . 

Next let us introduce the functional 

 ),()(22 FFF sJJ yδ== , 

which is defined in the set Ω  of the matrices )(sF  with regular rational 

components whose denominators have roots in the left open half-plane. Then 

minimization of the control intensity comes down to the optimization problem 
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Let us also note here that in particular cases the problem of optimal search 

for the corrector transfer matrix is significantly simplified due to a number of 

assumptions, which will be shown in the fourth chapter using the example of the 

problem of a hovercraft control. 

 

1.3. Usage of the Prediction for the Delay Compensation 
Now let us face the problem of plant stabilization in case of the presence of a 

constant delay in the control channel. To demonstrate the general idea of the 

proposed approach, let us first consider the simplest solution to the problem. Let us 

introduce the linearized system (1.8), (1.9) without taking into account the dynamics 

of the drives and adding a constant delay h  to the control channel and external 

disturbance: 

 
.

),()(
Cxy

HdBδAxx
=

−+−+= htht
 (1.22) 

Consider together with system (1.22) an auxiliary LTI object without the delay 

in control channel 

 
.

),(
Cxy

HdBδAxx
=

−++= ht
 (1.23) 

For system (1.23) let us synthesize stabilizing control 

 ,Kxδ =  (1.24) 

ensuring the matrix BKA +  is Hurwitz. Equations of the closed-loop system 

(1.23), (1.24) are converted to the form 

 
( )

.
),(

Cxy
HdxBKAx

=
−++= ht

 (1.25) 

Now let us return to the original system with delay (1.22) and formulate the 

delay compensation problem, i.e. synthesis of such a control 

 ),,( dxδ ℜ=  (1.26) 

that closed-loop system (1.22), (1.26) takes form (1.25). This problem for delay 

systems is also called the finite spectrum assignment problem in the literature [81]. 
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It is known (for example, [73]) that the solution to this problem is ensured by 

choosing control (1.26) in the form 

 )()( tht Kxδ =− , 

or equivalently 

 )()( htt += Kxδ . (1.27) 

It is obvious that direct implementation of control (1.27) is generally 

impossible from the physical perspective, since that requires knowledge of the 

future state of the plant at the moment of time ht + . However, since the plant is 

the LTI system, it is possible to use the Cauchy formula to calculate the prediction 

of the future system state. 

Theorem 1.1. If the matrix A  is Hurwitz, then the dynamic regulator 
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htee p
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p
h

pp

−−+=

++=

zKKzxKδ

HdBδAzz
AA


 (1.28) 

is equivalent to the regulator (1.27). 

Proof. Knowing the current vector )(tx  and vectors )(tδ  and )(td , defined 

on the segment ],[ thtt −∈ , from Cauchy formula we get 

 [ ]∫
+

−− −+−+=+
ht

t

thh dhheeteht ττττ )()()()( )( HdBδxx AAA . (1.29) 

Next let us transform the prediction representation (1.29). Let us introduce 

auxiliary vector variable n
p E∈z : 
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Consider the identity 

 
[ ] [ ]

[ ] ,)()(

)()()()(
00

∫

∫∫

−

−

−
−−

++

++≡+

t

ht

htt

de

dede

θθθ

θθθθθθ

θ

θθ

HdBδ

HdBδHdBδ

A

AA

 

from which it follows that 
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Thus the prediction (1.28) can be transformed to the 

 [ ])()()()( httetht p
h

p −−+≡+ zxzx A . (1.30) 

Taking into account (1.30), let us rewrite the prediction feedback formula (1.27) in 

the form  

 )( htee p
h

p
h −−+= zKKzxKδ AA . (1.31) 

Since, as noted in a number of works (for example, [73]), the direct 

implementation of feedback (1.31) causes a number of significant problems 

associated with numerical integration, let us transform the resulting representation 

of the prediction (1.30). Differentiating the auxiliary variable pz  we get 

 
[ ] [ ]
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ttt
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t
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HdBδHdBδAz AAAA

++≡

≡+++= −−∫ θθθθ
 (1.32) 

Usage of the expression (1.32) allows instead of the feedback (1.31) to get 

the dynamic regulator (1.28), onboard implementation of which is quite easy. 

However we should note that such replacement is possible only if matrix A  is 

Hurwitz. To prove this fact let us consider the characteristic polynomial of the 

closed-loop system 
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 (1.33) 

Assume that 0zx == )0()0( , 0dδ == )()( tt  0<∀t . Excluding δ  and applying 

Laplace transform we get 
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Thus, characteristic polynomial of the system (1.33) can be written as 
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shhh

shshhshh

eese
eeeeess AA
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BKBKBKAE 2

det)(∆ .  

Multiplying second row by she−  and subtracting it from the first one we get 
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= −
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shhh

shsh

eese
esess AA BKBKAEBK

AEAEdet)(∆ .  

Now let us multiply the first column by she−  and add it to the second one: 

( ) ( )BKAEAE
BKAEBK

0AE
A −−−=








−−−

−
= ss

se
s

s h detdetdet)(∆ ,  

which shows that the system (1.33) will be stable if and only if the matrix A  is 

Hurwitz. 

Finally, let us consider the question of the equivalence of regulators (1.27) 

and (1.28). Transfer matrix )(sdyF  of the closed-loop system (1.22), (1.27) from 

the input d  to the output y  can be described by the expression 

 ( ) sh
dy ess −−−−= HBKAECF 1)( .  

Not let us multiply the second equation of the system (1.34) by she−  and 

subtract it from the first one, thus getting 

 ( ) ( ) 0=−−− −
p

shess zAExAE ,  

whence it follows that sh
p exz = . Substituting the derived expression into the 

second equation of the system (1.34): 
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 ( ) HdxBKAE =−− shes ,  

i.e. 

 ( ) shes −−−−= HdBKAEx 1 ,  

from where 

 ( ) shes −−−−= HdBKAECy 1 .  

Thus the transfer matrix )(sdyG  of the closed-loop system (1.22), (1.28) matches 

the transfer matrix )(sdyF . ■ 

Let us additionally note that transfer matrix )(sdyG  matches the transfer 

matrix of the closed-loop system (1.25) without the delay in control channel. 

The above reasoning was about the delay compensation problem in case of 

the static feedback. However this chapter is focused on the multipurpose structure 

which is in fact dynamic regulator, i.e. it has its own dynamics. Taking this fact 

into account, let us consider the generalization of the above method to the case of 

the arbitrary dynamic regulator usage. 

Such generalization is possible for the following reason. Usually, a system 

of linear equations describing the dynamics of a moving object in the considered 

operating modes (this is especially typical for marine plants) is stable, but not 

asymptotically, since the matrix A  has a nonzero eigenvalue. However, this matrix 

can be considered as Hurwitz with a low degree of stability, since the use of the 

prediction to some extent compensates the dynamics of the plant. 

We will assume that for an auxiliary system without delay in the control 

channel (1.23), a dynamic regulator on the output of the general form is 

synthesized as 

 yWδ )( p= , (1.35) 

where dtdp /= . 

Regulator (1.35) can be represented in state space with equations 
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kk

kk

+=
+=

 (1.36) 
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where qE∈ξ – regulator state vector. Constant matrices of the system (1.36) 

satisfy the identity 

 ( ) kkkqk ss DBAECW +−≡ −1)( ,  

where qE – identity matrix with dimensions qq× . 

Let us transform closed-loop system (1.23), (1.36), excluding δ : 

 
( )

.

),(

ξACxBξ

HdξBCxCBDAx

kk

kk ht
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 (1.37) 

Next let us close the delay system (1.22) by the stabilizing feedback 

 )()()( htpt += CxWδ , (1.38) 

reducing system (1.22) to the form (1.37). System state prediction, as it was 

mentioned in the previous paragraph, can be calculated using the formula (1.30): 

 )()()()( htetteht p
h

p
h −−+≡+ zzxx AA ,   

The dynamics of the vector function )(tpz  is defined by the equation 

 ΗdBδAzz ++= pp .  

Substituting the prediction into the equation (1.38), we get the compensating 

regulator on the output 

 [ ])()()( hteept p
h

p
h −−+= zzxCWδ AA .  

Next, to represent the output prediction of the system (1.22), we introduce 

the auxiliary variable 

 ( ))( htee p
h

p
h −−+= zzxCγ AA , 

which we will consider as the input of the regulator (1.35). By adding the 

dynamics of the vector function )(tpz  to the regulator equations, we get the 

feedback in the form 
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 (1.39) 
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It is important to note that the generalized dynamic regulator (1.39) allows 

the control system delay compensation based on the feedback which stabilizes the 

system without the delay while keeping the transfer matrix of the original system. 

Theorem 1.2. If matrix A  is Hurwitz, then the dynamic regulator (1.39) is 

equivalent to the regulator (1.38). 

Proof. Consider the closed-loop system equations (1.22), (1.39): 
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 (1.40) 

Exclude the variable γ : 
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Then we substitute the expression for δ  into the first two equations: 

( )
( )

( ).)(

,)(

),()2()()()(

htee

htee

hthtehthteht

p
h

p
h

kk

p
h

p
h

kkpp

p
h

p
h

kk

−−++=

+−−+++=

−+−−−+−+−+=

zzxCBξAξ

HdzzxCBDξBCAzz

HdzzxCBDξBCAxx

AA

AA

AA







  

Applying the Laplace transform: 
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 (1.41) 

Thus, the characteristic polynomial of the closed-loop system (1.40) is defined by 

the expression 
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Multiplying second row by hse−  and substituting from the first one, we get 
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Now let us multiply the first column by hse−  and substitute from the second one, 

then 
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Thus we get that 
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where )(1 s∆  – characteristic polynomial of the asymptotically stable closed-loop 

system 
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Therefore the polynomial )(sd∆  is Hurwitz if and only if the matrix A  is Hurwitz. 

Now let us prove the equivalency of the regulators (1.38) and (1.39). First of 

all, notice that the transfer matrix )(sdyF  of the closed-loop system (1.37) from the 

input d  to the output y  can be described by the expression 

 

( ) .)()(
11 hs

kkkkdy esss −−−−−−−= HCBAEBCCBDAECF  (1.42) 

Now let us return to the system (1.41). Multiplying the second equation by 
hse−  and substituting from the first one, we get 
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From the first equation let us express xz hs
p e=  and substitute to the rest: 
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Transforming: 
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From the last equation let us express xCBAEξ hs
kk es 1)( −−=  and substitute to the 

first one: 

 

( ) ,)( 1 HdxCBAEBCxCBDAE =−−−− − hs
kkk

hs
k eses   

from where: 

 

( ) ,)(
11 hs

kkkk ess −−−−−−−= HdCBAEBCCBDAEx  

therefore 

 

( ) .)(
11 hs

kkkk ess −−−−−−−= HdCBAEBCCBDAECy  

Thus, transfer matrix of the closed-loop system (1.22), (1.39) matches the transfer 

matrix (1.42) of the closed-loop system (1.37). ■ 

It is worth noting the fact that feedback (1.39) requires knowledge of the full 

system state vector at the each time moment. In case of the compensation on the 

output it can be shown that it is possible to keep the dynamics not of the initial 

plant but the auxiliary in the form [10] 
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closed by some dynamic regulator 

 ηWδ )(~ p= .  
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However we will further use feedback of the form (1.39), because the focus 

of this work is keeping the dynamics of the initial system (1.22) by the delay 

compensation based on the multipurpose regulator. Particular structure of the 

multipurpose delay compensating feedback for the moving plant (e.g. marine 

vessel) can be expressed as 
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where mδ  – model actuator, zδ  – current deflection, calculated for the stabilization 

taking the delay into account. 

The following feature should be noted. Feedback equations (1.39) imply that 

the calculated control signal is supplied to the plant directly. However, in reality, 

for a moving object, it is not the deflection of the rudders itself that is controlled, 

but rather the change rate. Because of this fact to ensure convergence of the 

deflection δ  to the calculated position zδ  the actuator drive can be fed with the 

control signal 

 )( δδku −= zu ,  

transforming the actuator equation to the form 

 )( δδkδ −= zu
 ,  

where 0>uk  – diagonal matrix with sufficiently large elements for rapid 

convergence of the dynamic processes. 

Next we introduce the notation 
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Taking into account the introduced notations, we express the equations of 

the multipurpose delay-compensating regulator for arbitrary moving plant 

stabilization in the form 
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 (1.43) 

Closed-loop system (1.22), (1.43) scheme is shown in Fig. 1.2. 

 
Fig. 1.2. Closed-loop control system with the delay-compensating regulator (1.43). 

 

Taking into account the fact that multipurpose delay compensating regulator 

is subject to the implementation on the digital onboard device, let us discretize the 

feedback (1.43) with the given discretization period dT . Let us pay attention to the 

fact that when calculating the auxiliary variable kγ  in the discrete time the 

exponents must be replaced with the powers of matrix dA , which is in fact the 

descretized version of the matrix A . As a result, we obtain a system of difference 

equations 
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where ][ dh Thn = . 

Discrete regulator (1.44) is subject to the direct implementation on the plant 

onboard equipment, while the linear nature of the derived equations implies a 

relatively small amount of necessary calculations, which allows the use of fairly 

low-power and inexpensive computing devices. 

 

1.4. Conclusions 
The approach presented in this chapter makes it possible to synthesize 

stabilizing multipurpose regulators taking into account the set of requirements for 

the dynamics quality of the plant in various operating modes. Moreover, individual 

elements of such regulators can be turned off under appropriate conditions, and the 

initial rather complex synthesis problem is divided into a number of simpler 

problems that can be solved relatively independent of each other. It is also shown 

that with the help of a special transformation of the initial regulator, it is possible 

to compensate the delay in the channels of the control and external disturbances. 

It is worth noting that the specific form of the equations of system (1.16) 

may differ depending on the problem being solved. For example, the next two 

chapters will examine control problems with visual feedback, as well as control of 

a nonlinear system using the feedback linearization method. In these cases, the 

multipurpose regulator takes appropriate specific forms different from (1.16). 

However, the general structure, consisting of an asymptotic observer, a dynamic 

corrector and a control signal equation remains unchanged, as well as the ideology 

of searching of the values of the tunable elements of this structure. 
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Chapter 2. Multipurpose Visual Positioning of the Moving 

Plants Considering Delay 

This chapter discusses the use of a multipurpose approach to solve the problem 

of a moving plant positioning using visual information in a feedback loop, taking into 

account a set of requirements for the motion of an object in various operating modes, 

as well as taking into account the presence of delay in the control channel. 

Paragraph 2.1 provides the problem formulation. Paragraph 2.2 is devoted to 

the multipurpose regulator synthesis procedure. Paragraph 2.3 describes the trans-

formation of a multipurpose regulator for the delay compensation. Paragraphs 2.4 

and 2.5 are devoted to performance demonstration of the above approach using the 

experiments with computer models of fully-actuated and underactuated mobile ro-

bots as examples. 

 

2.1. Problem Formulation 
Let us consider an arbitrary moving plant with mathematical model that can 

be described using the equations 
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+=+



 t  (2.1) 

where TMM =  – positive definite inertia matrix, D  – positive definite damping 

matrix, 6E∈υ  – linear and angular velocities vector, 6E∈u  – control signal, 
6)(~ Et ∈d  – external disturbances vector, 6E∈η  – vector describing the position 

of a rigid body in space relative to a fixed coordinate system, ( )ηR  – rotation ma-

trix with ( ) 0det ≠ηR , η∀ . For convenience, let us solve the first equation of sys-

tem (2.1) with respect to the derivative: 
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),(

υηRη
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=
++=



 t
 (2.2) 

where DMA 1−−= , 1−= MB , )(~)( tt dBd = . 
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Let us consider the coordinate systems used for plant mathematical models 

formulation and for positioning visual targets (Fig. 2.1). Let us denote the inertial 

coordinate system rigidly connected to the ground as gggg zyxO . This system is 

stationary; the position of the plant and visual markers in space is specified relative 

to it. The system is right-handed, gg zO  axis is directed upwards, ggg yxO  – hori-

zontal plane. 

 

 
Fig. 2.1. Reference frames. 

 

The body frame Oxyz  is located at the center of mass of the plant and is rig-

idly connected to it. The system is right-handed, Oz  axis is directed upwards, Ox  

axis is longitudinal, Oy  axis is directed to the left side of the plant. The velocity 

vectors of the plant are projected onto the axes of this system. 

Let us assume that in the geometric center of a plant (pretend that it coin-

cides with the center of mass) there is a rigidly fixed video camera, the optical axis 

of which is directed along the Ox  axis, and the optical center is located at the point 

O . Let ccc zyOx  be the reference frame connected with the camera. Along with 

that cOz  axis of the camera reference frame is aligned with Ox  axis of the body 
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frame, cOx  axis is aligned with the Oy  axis, and cOy  axis – with Oz . Let us also 

consider the normalized image plane [51], located at the focal length 1=f  from 

the optical center and perpendicular to the optical axis. Let us define reference 

frame sss yxO  in this plane, center of which is located on the optical axis, ss yO  ax-

is aligned with cOy  axis, and ss xO  axis is opposite to cOx  axis. 

Let ),,( ccc ZYX  be the coordinates of some point in the space, defined in the 

camera reference frame. Then projections of this point onto the image plane can be 

calculated using the formulas [51] 

 
с

с
s Z

Xx −= ,
с

с
s Z

Yy = .  

We will assume that there is always a certain visual marker in the camera’s 

field of view, represented in the image plane by a set of points ),( ii yx=s , Ni ,1= , 

which, in turn, are projections of the marker points ),,( iii ZYX , Ni ,1= , defined in 

the camera reference frame. Let us formulate the problem of positioning the plant 

relative to a marker in such a way that the projections of the marker points s  on the 

image must be in the desired position ds , i.e. it is necessary to ensure the fulfill-

ment of the condition: 

 dt
t ss =

+∞→
)(lim . (2.3) 

Let us supplement the system (2.2) with an equation for the dynamics of 

changes in the marker points projections onto the image plane in accordance with 

the mathematical models described in [78]: 

 )(),( tccs dυZsLs += . (2.4) 

Vector N
c E∈Z  consists of the values iZ , Ni ,1=  for each projected marker 

point, )(tcd  – external disturbances vector, ),( cs ZsL  – interaction matrix, com-

ponents of which for each pair ),( ii yx  are defined as follows: 
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System (2.4) must be supplemented with the vector cZ  dynamics equation: 

 ( ) )(, tzczc dυZsLZ += , (2.5) 

where )(tzd  – external disturbance, ),( cz ZsL  – matrix with rows 

 ( )iiiiiiiz ZxZyZyx −−= 0001),,(L . 

Thus, the dynamics of a moving plant and marker projections in the image 

plane are completely defined by equations (2.2), (2.4), (2.5). We will assume that 

the vectors υ , s  and cZ  are available for direct measurement. 

Additionally, we introduce the error vector dsse −=  between the actual and 

the desired positions of the points in the image plane. The error dynamics, accord-

ingly, can be described by the equation 

 )(),( tccs dυZeLe += . (2.6) 

Taking into account the introduced notation, condition (2.3) can be rewritten 

in the form 

 0e =
+∞→

)(lim t
t

. (2.7) 

To achieve the control goal (2.7), within the framework of a multipurpose 

approach, we consider three basic operating modes of the plant motion. 

 1) The proper motion is characterized by the absence of external disturb-

ances, while the control goal is described by equation (2.7). In this mode, the main 

requirements for the controlled motion dynamics are to ensure the stability of the 

equilibrium position and to satisfy the specified restrictions on overshoot and the 

settling time. 

 2) Forced motion under the influence of a constant external disturbance is 

characterized by the absence of a reference signal, zero initial conditions, as well 

as the presence of constant external disturbances 

 0)( dd ≡t , 0)( cc t dd ≡ , 0)( zz t dd ≡ . 
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The control goal is to compensate for disturbances and ensure astatism of the 

controlled output )(ts  of the closed-loop system. The main requirement for dynam-

ics in this mode is satisfying the specified limit on the maximum permissible devi-

ation of the controlled variables )(ts . 

3) Forced motion under the influence of a periodic external disturbance is 

determined by the presence of a disturbance in the form of a polyharmonic signal 

also under zero initial conditions and the absence of a reference signal. In this 

mode, the quality of dynamics is determined by minimizing the control intensity 

while maintaining the accuracy of system stabilization. 

 

2.2. Multipurpose Control Law Synthesis 
Let us set the task of the multipurpose control law synthesis that ensures the 

achievement of the control goal (2.7) and the fulfillment of all requirements in the 

operating modes given above. Let us introduce the multipurpose structure of the 

control law, which includes the following elements: 

1) asymptotic observer 

 
( )

),(),(
,

eeυcse

υυυυ

zeHzZeLz
zυHBuAzz
−+=

−++=



 (2.8) 

 2) dynamic corrector 

 
),()(
),()(

eeυυ

eeυυ

zeμzυμγpζ
zeβzυβαpp

−+−+=
−+−+=

 (2.9) 

 3) control signal equation 

 .ζzKzKu +−−= eeυυ  (2.10) 

Here 6Eυ ∈z  and N
e E 2∈z  – asymptotic observer state vectors; pnE∈p  – dynam-

ic corrector state vector; 6E∈ζ  – dynamic corrector output. Tunable elements of 

the multipurpose structure (2.8) – (2.10) are matrices: 

 a) υK  and eK  of the basic control law; 

b) υH  and eH  of the asymptotic observer; 
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 c) α , υβ , eβ , γ , υμ , eμ  of the dynamic corrector. 

The asymptotic observer (2.8) provides an estimate of the state variables that 

are not available for direct measurement, and can also influence the response of the 

closed-loop system (2.2), (2.8) – (2.10) to external disturbances by the tunable el-

ements selection. The observer's state vector is also fed to the input of the dynamic 

corrector, the main purpose of which is to compensate for external disturbances. 

The search of the tunable elements, which is the essence of the multipurpose 

synthesis problem, can be formalized as an optimization problem. One of the main 

advantages of the multipurpose approach is the ability to search for tunable ele-

ments relatively independently of each other [5–9]. Individual elements of the mul-

tipurpose structure can also be turned on and off depending on the current operat-

ing mode. 

Let us consider sequentially the tasks of searching the tunable elements of a 

multipurpose structure (2.8) – (2.10) in accordance with the requirements in the 

above mentioned operating modes. 

 

 1) Basic control law synthesis. 

 Basic control law is defined by the equation 

 eKυKu eυ −−= . (2.11) 

The desired dynamics quality of the plant proper motion is ensured by the 

choice of the υK  and eK  matrices. Taking into account (2.2) and (2.6), proper mo-

tion dynamics can be described by the system 

 
.),(

,
υZeLe

BuAυυ

cs=
+=




 (2.12) 

Theorem 2.1. Feedback (2.11) ensures the stability of the zero equilibrium 

position 0υ =0 , 0e =0  of the system (2.12) with T
se LK µ= , 0>µ , 0υK . 

Proof. Consider the quadratic form 

 0)(
2
1

2
T1TT ≥+= − υBυeeµV . 
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Note from the problem formulation that 01 −B , and 0=V  only with simultane-

ous 0e =  and 0υ = . Calculating the quadratic form derivative with respect to the 

system (2.12), we obtain 

 =++=+= −− uυAυBυeLυυBυee T1TTT1TT
)12(),11( sV µµ   

 )( TT1T ueLυAυBυ ++= −
sµ . 

If we accept 

 υKeLu υs −−= Tµ , (2.13) 

where 0υK  – arbitrary positive definite matrix, we get 

 0T1T
)12(),11(

≤−= − υKυAυBυ υV , 

Because the matrix DAB −=−1  is negative definite. 

Thus, according to Lyapunov’s theorem, the control law (2.13) ensures the 

stability of the zero equilibrium position 0υ =0 , 0e =0  of the closed-loop system 

(2.12), (2.13). ■ 

Note that in this case no restrictions are imposed on the matrix υK  other 

than positive definiteness. This property can be used to satisfy specified require-

ments for the plant dynamics. 

 

2) Asymptotic observer synthesis. 

Next, we turn to the problem of finding tunable elements of an asymptotic 

observer. Let us consider the dynamics of the estimation error vectors υυ zυε −= , 

es zee −= , which, according to (2.2), (2.6), (2.8) satisfy the system 

 
.),(

,)(

seυcss

υυυ

eHεZeLe
εHAε

−=
−=




 (2.14)  

Theorem 2.2. Asymptotic stability of the zero equilibrium position 0ε =0υ , 

0e =0s  of the system (2.14) is ensured with 0υHA −  and 0eH . 

Proof. Equilibrium position of the system (2.14) is defined by 
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.),(

,)(

00

0

0eHεZeL
0εHA

=−
=−

seυcs

υυ   

Obviously, in this case the system has a zero equilibrium position 0ε =0υ , 0e =0s . 

Let us consider the first equation of system (2.14). Global asymptotic stability of 

the zero equilibrium position is guaranteed under the condition that the matrix 

υHA −  is Hurwitz. 

 Let us consider the second equation of system (2.14). Since there is global 

asymptotic stability of the zero equilibrium position 0ε =υ , and components of the 

matrix ),( cs ZeL  are restricted, then we can conclude that the term 

0εZeL →υcs ),(  with +∞→t . According to the cascade systems theorem [75], 

global asymptotic stability of the zero equilibrium position for the vector se  is en-

sured if the matrix 0eH  is positive definite. ■ 

Thus, in addition to the specified requirements, no restrictions are imposed 

on the tunable elements of the asymptotic observer. Therefore, just as for the basic 

control law, observer matrices can be selected taking into account the requirements 

for dynamics: 

 1) quality of the closed-loop system dynamics with the basic control law 

(2.11) and with a control signal on the state of the observer eeυυ zKzKu −−=  in 

the proper motion operating mode should be as identical as possible, while it is ac-

cepted that in the case of the basic law (2.11) the quality of the dynamics may be 

slightly better; 

 2) L2-norm value of the error vector )(te  should not exceed the specified 

value in the operating mode with constant external disturbance. 

 

3) Dynamic corrector synthesis. 

Let us now consider the problem of searching for tunable elements of a dy-

namic corrector. First of all, we prove the following theorem. 
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Theorem 2.3. Multipurpose regulator (2.8) – (2.10) ensures stability of the 

zero equilibrium position 0υ =0 , 0e =0  of the system (2.12), if the matrices υK  

and eH  are positive definite, T
se LK µ= , and matrices α  and υHA −  are Hurwitz. 

Proof. Consider the equations of the closed-loop system (2.14), (2.8) – 

(2.10) in the proper motion operating mode: 

 

.
,
,

,),(
,

.),(
,)(

ζzKzKu
eμεμγpζ
eβεβαpp

eHzZeLz
εHBuAzz

eHεZeLe
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++=
++=

+=
++=
−=

−=

eeυυ

seυυ

seυυ

seυcse

υυυυ

seυcss

υυυ











 (2.15) 

Excluding the variables u  and ζ , we obtain 
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which can be represented in the matrix form as 

 













































−−+
−

−

=























p
z
z
e
ε

α00ββ
00ZeLH0

BγBKBKABμHBμ
000HZeL
0000HA

p
z
z
e
ε

e

υ

s

υ

eυ

cse

eυeυυ

ecs

υ

e

υ

s

υ

),(

),(











. (2.16) 

Characteristic polynomial of the closed-loop system (2.16) is equal to 

=−







−

+−








+−

+−
= )det(

),(
det

),(
det)( αE

EZeL
BKBKAE

HEZeL
0HAE

s
s

s
s

s
s

cs

eυ

ecs

υ∆   

 ),()()( sss bo Φ∆∆=   

where 

• )(so∆  is the characteristic polynomial of the asymptotic observer (2.8); 
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• )(sb∆  is the characteristic polynomial of the system (2.12), closed by the 

basic control law (2.11); 

• )(sΦ  is the characteristic polynomial of the dynamic corrector. 

Polynomial )(so∆  is asymptotically stable according to the theorem 2.2. 

Stability of the polynomial )(sb∆  follows from the theorem 2.1. Polynomial )(sΦ  

is asymptotically stable because the matrix α  is Hurwitz according to the formula-

tion of the theorem 2.3. Thus, closed-loop system (2.15) is stable. ■ 

From Theorem 2.3 it follows that the only mandatory requirement for a dy-

namic corrector is the Hurwitz property of the matrix α . Let us now turn to the is-

sue of ensuring astatism of the closed-loop system (2.2), (2.6), (2.8) – (2.10). We 

will assume that external disturbances are constant: 0)( dd =t , 0)( cc t dd = . Let us 

represent the dynamic corrector (2.9) in tf-form: 

 ),)(())(( eeυυ ss zeFzυFζ −+−=  (2.17) 

where s  is the Laplace variable, ( ) υυnυ ss
p

μβαEγF +−= −1)(  and 

( ) eene ss
p

μβαEγF +−= −1)(  are the corrector transfer matrices. 

Theorem 2.4. The closed system (2.2), (2.6), (2.8) – (2.10) is astatic with re-

spect to the vectors υ  and e  for any constant disturbances 0)( dd =t  and 

0)( cc t dd = , if the transfer matrices of the dynamic corrector satisfy the conditions 

 

,)(

),()0(

,)0(

T
0

1
0

T
0

1

1

e

eυe

υυ

HLLLT

BKATTBKBF

HBF

−

−

−

−=

−−=

−=

 (2.18) 

where ),( 000 cs ZeLL =  is the value of the interaction matrix in the equilibrium 

position. 

Proof. According to (2.17) the closed-loop system equations can be repre-

sented as 
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Let us calculate the equilibrium position for this system. As a result we get 

 

,
,)0()0(

,
,

000

000000

0000

000

0eHzL
0eBFεBFzBKzBKεHAz

0deHεL
0dεHAε

=+
=++−−+

=+−
=+−

seυ

seυυυυeeυυυ

cseυ

υυυ

 (2.19) 

where 0υε , 0se , 0υz , 0ez  are the the values of the corresponding variables in the 

equilibrium position. From the first two equations of the system (2.19) it is clear 

that the estimation error vectors 0υε , 0se  and external disturbances 0d , 0cd  are di-

rectly related to each other. In this regard, vectors 0υε  and 0se  can be considered 

further as external disturbances. 

From the last equation of system (2.19) we obtain 

 0
T
0

1
0

T
00 )( seυ eHLLLz −−= . (2.20) 

Introducing auxiliary matrix eHLLLT T
0

1
0

T
0 )( −−=  and substituting (2.20) in-

to the third equation of the system (2.19), we get the relation 

 [ ] .)0())0(( 000 υυυseeυe εBFHeBKBFTBKATeBK ++++−=   

Thus, in order to ensure condition (2.7) in the presence of constant external 

disturbances, i.e. to fulfill the property of astatism, it is necessary that the multipli-

ers of the vectors 0se  and 0υε  are equal to zero, which is ensured by the conditions 

(2.18). ■ 

Now consider the operating mode in the presence of a polyharmonic disturb-

ance in the form ∑
=

=
ω

ω
N

i
ii tAtd

1
)sin()( , where ωN  – number of harmonics. We will 

assume that in this mode the motions of the system are small enough to replace the 

matrix ),( cs ZeL  with constant value ),( 000 cs ZeLL = , corresponding to the equi-
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librium position. Then the equations of the multi-purpose controller (2.8) – (2.10) 

are taking the form 
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Excluding the third equation: 
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or in matrix form: 
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where 
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Let us represent (2.21) in tf-form: 

 ,)(















=









ζ
e
ε

P
z
z

s

υ

e

υ s  (2.22) 

where 

 







=−= −

)()()(
)()()(
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232221

1312111
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ss ss PPP
PPP

BAEP . 

Theorem 2.5. Filtering polyharmonic disturbance with frequencies iω , 

ωNi ,1=  in the control channel is ensured by the conditions 

 
)],()()[()(

)],()()[()(

2212
1

2111
1

ieiυiie

ieiυiiυ

jjjj

jjjj

ωωωω

ωωωω

PKPKFF

PKPKFF

+−=

+−=
−

−

 (2.23) 

where EPKPKF −+= )()()( 2313 ieiυi jjj ωωω . 

Proof. Let us substitute (2.22) into the equation of the control signal: 



44 

.)()()(
)()(

231322122111

232221131211

ζEPKPKePKPKεPKPK
ζζPePεPKζPePεPKu
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Taking into account EPKPKF −+= )()()( 2313 sss eυ  we obtain 
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 (2.24) 

Multipliers of υε  and se  in the right part of the (2.24) represent transfer matrices 

from the corresponding inputs to the output control signal. Thus, to ensure filtering 

properties across frequencies iω , ωNi ,1=  it is necessary that these transfer func-

tions are equal to zero: 
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from which we obtain the conditions (2.23). ■ 

Now let us consider the problem of the synthesis of the dynamic corrector 

transfer matrices ( )Tυυυυ 621 FFFF =  and ( )Teeee 621 FFFF =  that 

satisfy the conditions of astatism (2.18) and disturbance filtering (2.23). To do this, 

we rewrite conditions (2.18) and (2.23) in the following form: 
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where 0
υF , *

υiF , 0
eF  and *

eiF  are constant matrices. Next, we present the reasoning 

for synthesizing the transfer matrix υF , because for matrix eF  the procedure is 

completely similar. 

Each component of the υF  corrector with transfer matrix )(sυkF , 6,1=k , can 

be described in the tf-form by the equation 

 υυkυk s εFζ )(= , 
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or in state space 
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where ωN
υk E2∈p  – corrector state vector. In this case, the transfer matrix )(sυkF  

is equal to υkυkυknυkυk ss
p

μβαEγF +−= −1)()( . Taking into account the notations 
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conditions (2.18) and (2.23) can be rewritten as 
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 (2.25) 

Let us choose arbitrary Hurwitz matrices υkα  and arbitrary vectors υkγ . In-

troducing the notations 
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and subtracting the first equation of the system (2.25) from the second one, we ob-

tain 
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which can be written as 

 ,υkυkυk BβA =  (2.26) 

where 
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Thus, the vector υkβ  can be found as a result of solving the linear system 

(2.26). Next, substituting υkβ  into the first equation of the system (2.25), we calcu-

late υkμ  using the formula 

 υkυkυkυkυk βαγFμ 10 −+= , 6,1=k . (2.28) 

The resulting matrices υkα , υkβ , υkγ , υkμ , 6,1=k  determine the dynamic 

corrector, which provides filtering at frequencies iω , ωNi ,1=  and the astatism of 

the closed-loop system. 

In accordance with the above reasoning, let us formulate the algorithm for 

the multipurpose regulator (2.8) – (2.10) synthesis. 

 

Algorithm № 1 (multipurpose regulator synthesis) 

1) Fix the values of the µ  coefficient and matrix υK  for the basic con-

trol law (2.11). These values can be found, for example, from the perspective of 

minimizing the time constant of the transient process in a closed system. 

2) Set the values of the matrices υH  and eH  of the asymptotic observer 

(2.8) to ensure the fastest convergence of estimates to the actual values of the plant 

state variables. 

3) Calculate the values )0(υF  and )0(eF  of the dynamic corrector trans-

fer matrices in accordance with the conditions (2.18) to ensure astatism of the 

closed-loop system. 

4) Set the frequencies iω , ωNi ,1=  of the external polyharmonic dis-

turbance and calculate the corresponding values )( iυ jωF  and )( ie jωF  of the dy-

namic corrector transfer matrices. 
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5) Fix the Hurwitz matrices υkα , υkγ  and ekα , ekγ  of the dynamic cor-

rectors, 6,1=k . In particular, we can take ( )100 =υkγ , set the eigenvalue 

λ  of multiplicity ωN2 , and calculate the corresponding Frobenius form for matri-

ces υkα  with 0)Re( <λ . Define matrices ekα  and ekγ in the same way. 

6) Calculate matrices υkA  and in accordance with formulas (2.27). From 

the linear system (2.26) find the vector υkβ . Calculate the vector υkμ  using formu-

la (2.28). Similarly, find the vectors ekβ  and ekμ . 

 

2.3. Constant Delay Compensation 
Let us introduce the constant delay h  to the control channel and to the dis-

turbance channel of the system (2.2). Also, for convenience, we will assume that 

the matrix B  is taken into account in the term d . As a result, we obtain a system of 

the form 

 ( ) ).()()(
),()()()(

ttt
hthttt

υηRη
dBuAυυ

=
−+−+=




  

As noted in the previous chapter, delay, usually, affects the controlled mo-

tion dynamics in a negative way. Let us set the problem of taking into account the 

delay to preserve the same dynamic properties as in the closed-loop system (2.2), 

(2.6), (2.8) – (2.10). As in the previous chapter, we will use the compensation ap-

proach, which consists of estimating the system velocity vector prediction using 

the Cauchy formula 

 [ ]∫
+

−− −+−+=+
ht

t

thh dhheeteht .)()()()( )( ττττ dBuυυ AAA  (2.29) 

Equation (2.29), in turn, is more convenient to use in the form of a dynamic 

system [10] 

 [ ].)()()()(
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++=

zυzυ
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A


 (2.30) 
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Taking into account (2.30), we can transform the controller (2.8) – (2.10) for 

the delay compensation, in a way that preserves the original transfer matrix of the 

closed-loop system. Note that in this case, asymptotic observers evaluate the sys-

tem state prediction by the amount of delay. Here it is also required to have an es-

timation of the prediction of the moving plant position ηz  through the future veloc-

ity estimation υz . Let us denote the velocity prediction )( ht +υ  as λ  variable. As a 

result, we obtain a multipurpose regulator with delay compensation in the form 
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 (2.31) 

Note that the regulator (2.31), indeed, is nothing more than a transformation 

of the original regulator (2.8) – (2.10) without taking into account the delay, and 

uses the same synthesized set of adjustable elements. In other words, if a multi-

purpose regulator is synthesized without taking into account the delay, which satis-

fies all the stated requirements, then for the constant delay compensation there is 

no need to carry out additional synthesis of any elements of the multipurpose struc-

ture; it is enough to use a transformed controller in the form (2.31). 

Thus, it is possible to formulate an algorithm for the multipurpose regulator 

synthesis for the constant delay h  compensation. 

 

Algorithm № 2 (multipurpose delay compensating regulator synthesis) 

1) Synthesize the basic controller (2.8) – (2.10) for a closed-loop system 

without delay in accordance with Algorithm 1. 
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2) Add equations (2.30) to the resulting controller to calculate the system 

velocity prediction by the amount of delay, as well as the observer equation to es-

timate the position ηz  of the moving object. 

3) Replace all occurrences of the velocity υ  in the basic controller with 

the predicted value λ . 

 

2.4. Positioning the Mobile Robot Relative to the Visual Marker 
Let us consider a mobile robot with the omni-wheeled chassis (Fig. 2.2), 

which ensures that the system is fully-actuated when moving in a plane. We will 

assume that the control in this case is the forces and moment acting on the chassis 

when the wheels move. Let us assume that in the control channel (as well as in the 

external disturbance channel) there is a constant transport delay h . The mathemat-

ical model of the robot dynamics is described by a system of equations [82] 
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 (2.32) 

where T),,( ωvv n=υ  is the velocity vector: v  – longitudinal linear velocity, nv  – 

linear normal velocity, ω  – angular velocity; T)( ωvnv ,u,uu=u  – control actions 

vector: vu  – longitudinal traction force, vnu  – normal traction force, ωu  – rotating 

momentum; T),,( ϕyx=η  – center of mass position and robot’s heading angle; d  – 

external disturbances vector; A  – diagonal matrix of the friction coefficients; B  – 

diagonal matrix of the control coefficients. The only nonlinearity of system (2.32) 

is described by the rotation matrix 
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Basic issues of accounting for delay based on a compensation approach in 

the tasks of mobile robot control were first described in [48, 49], and a multipur-

pose approach to the stabilizing feedback synthesis for such robots is presented in 
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the article [47]. Issues of visual positioning with multipurpose feedback without 

taking delay into account are addressed in [41, 44, 45, 87, 95], and articles [42, 86] 

develop the results obtained for delay compensation. 

Let us assume that a video camera is rigidly fixed in the geometric center of 

the robot, oriented in the direction of the robot’s motion. In the camera's field of 

view there is always a certain visual marker, in the image plane represented by a 

set of points ),( ii yx=s , Ni ,1= , which in turn are projections of marker points 

),,( iii ZYX , Ni ,1=  in the camera reference frame. Let us set the task of position-

ing the robot relative to the marker in such a way that the projections of the marker 

points on the image are in the desired position. In this case, it is necessary to com-

pensate for constant and polyharmonic external disturbances, as well as delay. 

 

 
Fig. 2.2. Omni-wheeled robot model. 

 

Note that in this case the interaction matrix ),( cs ZsL  is much simpler: 
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Let us consider the application of the multipurpose regulator in various op-

erating modes by experimenting with a computer model implemented in the 

Matlab-Simulink environment. For initial conditions, we will assume that the robot 

is located at the origin of reference frame and is directed in the direction of the Ox  

axis, and the center of the square-shaped visual marker is located at the point 

( )3973096011 .-.  and rotated by an angle of 0.2 rad. The control goal is to achieve 

the position of the robot at which the distance to the marker is 1 m, and the angle 

between the heading angle of the robot and the vector directed from the center of 

the marker to the center of the robot is zero. This position corresponds to a point 

( )1987098010 .-. . Let us take the corner points of the marker as the set of points 

of interest. Let us accept the following values for the parameters of the system and 

the multipurpose regulator: 

 ])733302654025870diag([ .-.-.-=A , 

 ])7665140051400diag([ ...=B , 

 310EH =υ , 810EH =e , 4=µ , 

 ])9891068782744262diag([ ...υ =K . 

Let us first consider the simplest situation in which there is no external dis-

turbance and delay; accordingly, the dynamic corrector is turned off and delay 

compensation is not applied. Fig. 2.3 demonstrates the dynamics of the system in 

this case – the left plot shows the trajectory of the corner points of the marker in 

the image plane, and the right plot shows the dynamics of the robot’s position. As 

it can be seen, the desired marker position is reached in about 10 seconds and the 

robot stops. 
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Fig. 2.3. Dynamics of the points on the image plane (left) and the robot motion in the absence of 

the delay and external disturbance (right). 

 

Now consider the case when the robot is already in the desired position, but 

it is affected by a constant external disturbance [ ]T1.02.04.0=d . The dynam-

ics of the system for this situation is presented in Fig. 2.4. One can notice that the 

robot deviates from the initial position and cannot return back. 

 
Fig. 2.4. Dynamics of robot motion in the presence of constant external disturbance with the dy-

namic corrector turned off. 

 

Now we will apply the dynamic corrector synthesized in accordance with the 

procedure described in paragraph 2.2 for a constant disturbance compensation, as 

well as a polyharmonic disturbance consisting of three frequencies 
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4159311 .ω = -1s , 6991372 .ω = -1s  and 9823433 .ω = -1s . For υkα  matrices we take 

matrices in the Frobenius form with eigenvalues 6−=λ  of multiplicity 6. As it can 

be seen from Fig. 2.5, in this case the presence of a corrector allows the robot to 

return to its initial position under the influence of a constant external disturbance. 

 

 
Fig. 2.5. Dynamics of robot motion in the presence of a constant external disturbance with the 

dynamic corrector turned on. 

 

Finally, let us consider the influence of polyharmonic external disturbance in 

the form 

 
( ) ,)(1.0)(2.0)(4.0)(

),sin()sin()sin()(
T

321

twtwtwt

tωtωtωtw

=

++=

d
 

while the dynamic corrector will be turned on only after 5 seconds of the experi-

ment. The dynamics of the system for this case are presented in Fig. 2.6 and Fig. 

2.7. It can be seen that turning on the corrector does not have a noticeable effect on 

the dynamics of the system, while the intensity of the control signal decreases al-

most to zero. 



54 

 
Fig. 2.6. Dynamics of robot motion in the presence of polyharmonic disturbance. 

 

 
Fig. 2.7. Control signal in the presence of polyharmonic disturbance. 

 

Now let us apply a constant delay 06.0=h  s to the system. Let us consider 

the first case when the robot moves towards a visual marker without external dis-

turbance and with the dynamic corrector turned off. As it can be seen from Fig. 

2.8, there is a noticeable deterioration in the quality of the dynamics along the 

heading angle, and oscillatory processes begin. A further increase in delay makes 

the system unstable. 
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Fig. 2.8. Dynamics of robot motion in the presence of constant delay. 

 

Let us transform the multipurpose regulator for the constant delay compen-

sation in accordance with the previous paragraph. Analysis of Fig. 2.9 allows us to 

conclude that in this case the dynamics of the robot practically matches the case 

without the presence of delay. 

 
Fig. 2.9. Dynamics of robot motion with constant delay compensation. 

 

Let us also not that the dynamics of the system in the presence of a constant 

or polyharmonic external disturbance in the case of delay compensation is also al-

most identical to the corresponding cases without delay, as it can be seen from Fig. 

2.10, 2.11 and 2.12. 
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Fig. 2.10. Dynamics of robot motion in the presence of a constant external disturbance with the 

corrector turned on and with constant delay compensation. 

 
Fig. 2.11. Dynamics of robot motion in the presence of a polyharmonic external disturb-

ance with the corrector turned on and with constant delay compensation. 

 
Fig. 2.12. Control signal in the presence of a polyharmonic external disturbance with the 

corrector turned on and with constant delay compensation. 



57 

 

Thus, the multipurpose regulator in this task is indeed an effective tool for 

stabilizing and compensating for external disturbances, and delay compensating 

transformation allows to obtain the dynamics of the system, which coincides with 

the dynamics in case without the delay. 

 

2.5. Positioning the Underactuated Robot  

Relative to the Visual Marker 
Now let us consider a similar problem using the example of an 

underactuated robot. Assume that the plant is a differential drive mobile robot, 

which is controlled by setting the voltages on the electric motors of two driving 

wheels (Fig. 2.13). As before, we assume that there is a constant transport delay h  

in the control channel and the external disturbance channel. The mathematical 

model of the robot dynamics is described by a system of equations [59] 
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 (2.33) 

where T),( ωv=υ  – velocity vector: v  – linear velocity, ω  – angular velocity; 

T)( ωv,uu=u  – control actions vector: vu  – drives voltage sum, ωu  – drives volt-

age difference; T),,( ϕyx=η  – center of mass position and the robot’s heading an-

gle; d  – external disturbance vector; A  – diagonal matrix of the friction coeffi-

cients; B  – diagonal matrix of the control coefficients. The only nonlinearity of 

system (2.33) is described by the rotation matrix 
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Fig. 2.13. Differential drive robot model. 

 

Interaction matrix ),( cs s ZL  in this case is also rather simple: 
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 As in the previous paragraph, we set the problem of positioning the robot 

relative to a square-shaped visual marker. The initial conditions and the desired po-

sition also the same. Let us accept the following values for the parameters of the 

system and the multipurpose regulator: 

 2x2EA −= , 2x2EB = , 

 3x3100EH =υ , 8x8100EH =e , 

 ])28([diagυ =K , 4=µ . 

Let us first consider the simplest situation in which there is no external dis-

turbance and delay; accordingly, the dynamic corrector is turned off and delay 

compensation is not applied. Fig. 2.14 demonstrates the dynamics of the system in 

this case. As it can be seen, the desired marker position is reached in about 3 se-

conds and the robot stops. 

 



59 

 
Fig. 2.14. Dynamics of the system in the absence of external disturbances and delay. 

 

Next, we apply a constant external disturbance T)12(=d  with the dynamic 

corrector turned off in a case when the robot is already in the desired position. 

From Fig. 2.15 it is clear that in this case the robot is displaced and cannot com-

pensate the displacement, since the closed-loop system does not have astatism. 

 
Fig. 2.15. Dynamics of the system in the presence of external disturbance. 

 

As before, we synthesize a dynamic corrector to compensate simultaneously 

for constant disturbance and polyharmonic disturbance with three frequencies 

4159311 .ω =  -1s , 6991372 .ω =  -1s  and 9823433 .ω =  -1s . For matrices υkα  we 

will take matrices in Frobenius form with eigenvalues 8.2−=λ  of multiplicity 4. 
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The dynamics of the system with the corrector turned on are shown in Fig. 2.16. It 

can be seen that in this case the robot returns to its initial position. 

 
Fig. 2.16. Dynamics of points in the image plane in the presence of external disturbance with the 

dynamic corrector turned on. 

 

Now consider the influence of a polyharmonic disturbance in the form 

 
( ) ,)()(2)(

),sin()sin()sin()(
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while the dynamic corrector remains turned off for the first 5 s. From Fig. 2.17 and 

2.18 it is clear that after turning on the corrector, the control intensity is signifi-

cantly reduced, without having a noticeable effect on the dynamics of the robot’s 

motion. 

 

 
Fig. 2.17. Dynamics of the system in the presence of polyharmonic disturbance. 
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Fig. 2.18. Control signal dynamics in the presence of polyharmonic disturbance. 

 

Let us return again to the original task of moving to a visual marker and ap-

ply a constant delay 04.0=h  s to the system. Fig. 2.19 shows the dynamics of the 

system in this case, from which it can be seen that the system becomes unstable 

with respect to the heading angle. 

 
Fig. 2.19. System dynamics in the presence of constant delay. 

 

As in the previous paragraph, we will apply a delay-compensating transfor-

mation of the regulator. Fig. 2.20, 2.21, 2.22 and 2.23 demonstrate that the use of a 

transformed regulator allows to obtain dynamics almost identical to the case with-

out delay in all operating modes – without external disturbance and with constant 

and polyharmonic external disturbance using a dynamic corrector. 
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Fig. 2.20. System dynamics in the presence of a constant delay using a compensating regulator. 

 
Fig. 2.21. System dynamics in the presence of a constant external disturbance. 

 
Fig. 2.22. System dynamics in the presence of polyharmonic disturbance. 
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Fig. 2.23. Control signal dynamics in the presence of polyharmonic disturbance. 

 

Thus, the presented approach can also be used for the underactuated sys-

tems, at least for a certain subset of positions. 

 

2.6. Conclusions 
The results of the experiments with a computer model allow to conclude that 

multipurpose regulators can be effectively used in tasks of visual positioning of 

moving objects. At the same time, all the advantages of such regulators are re-

tained: independence of the synthesis of adjustable elements and the ability to dis-

able individual elements of the multipurpose structure of the control law. 

As in the previous chapter, it is shown that the presence of delay negatively 

affects the quality of the dynamics of controlled motion. A special transformation 

of the multipurpose regulator makes it possible to compensate for the delay, pre-

serving the dynamic characteristics of a closed-loop system synthesized without 

taking into account the delay. Provided that the external disturbance is available for 

direct measurement, the compensating controller also works along with the dynam-

ic corrector turned on. 
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Chapter 3. Multipurpose Control of the Nonlinear Systems 
Based on the Feedback Linearization 

Currently, robotic manipulator arms are an integral part of automated 

production, replacing human labor where accuracy and speed of work are required 

[55]. Of particular interest when solving problems of controlling such objects is the 

fact that mathematical models of the dynamics of such robots contain significant 

nonlinearities. In this case, an approach called feedback linearization [69] is often 

used to get rid of nonlinearity. 

This chapter describes the combination of multipurpose control structure usage 

with compensation approach presented in previous chapters, as well as feedback 

linearization in the problem of stabilizing a given position of nonlinear control 

objects taking into account external disturbances and delays. It is worth noting that 

there are alternative methods for taking into account delay, for example, the use of 

asymptotic observers of a special type [88] or the continuous pole placement method 

[80, 89], however, the procedure for designing a controller in this case is quite 

complex and does not always guarantee the stability of a closed-loop system. 

Paragraph 3.1 provides formulation of the problem. Paragraph 3.2 is devoted 

to the feedback linearization method in the given problem. Paragraph 3.3 introduces 

a multipurpose regulator for a linearized system, as well as a procedure for 

synthesizing such a controller. Paragraph 3.4 describes the transformation of a 

multipurpose regulator for constant delay compensation. Finally, paragraph 3.5 is 

devoted to the results of experiments with a computer model of a two-link robotic 

manipulator arm in various operating modes. 

 

3.1. Problem Formulation 
Let us consider a nonlinear mathematical model of the dynamics of an 

arbitrary control object taking into account the constant delay in the control 

channel and in the external disturbance channel in the form 

 )()()]([)](),([)()]([ hthtttttt e −+−=++ ττθgθθCθθM  , (3.1) 
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where nE∈θ  – generalized coordinates vector, TMM =  – positive definite 

symmetric inertia matrix, C  – Coriolis and centripetal forces vector, g  – 

gravitational forces vector, nE∈τ  – control torque vector, n
e E∈τ  – external 

disturbance vector, t  – current time, h  – constant delay. 

We will assume that the control goal is to stabilize the current position θ  of 

the control object in a given position dθ , i.e. ensuring condition 

 dt
t θθ =

+∞→
)(lim . (3.2) 

Let us consider various operating modes in which special requirements for 

system dynamics are set. 

1) In the absence of external disturbances, the system is in the proper 

motion mode, where the main requirements for the quality of dynamics, in addition 

to condition (3.2), may include restrictions on the settling time and overshoot. 

2) In case 0)( ee t ττ =  the system is in the forced motion under the 

influence of a constant external disturbance mode. We will assume that in this 

mode the desired position dθ  corresponds to the initial position 0θ , while 

restrictions are set on the maximum deviation of the current state )(tθ  from the 

given position dθ , and the control goal is to ensure astatism of the system taking 

into account these restrictions. 

3) In the forced motion under the influence of a periodic external 

disturbance mode, it is necessary to minimize the intensity of the response of the 

control signal to a polyharmonic disturbance with known frequencies, without 

deteriorating the quality of stabilization. In this mode we will also accept 0θθ =d . 

 

3.2. Feedback Linearization 
Let us first consider a simpler problem of stabilizing the plant current 

position in the proper motion mode (i.e. in the absence of external disturbance), 

and also without taking into account the delay. Then the mathematical model will 

take the form 
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 τθgθθCθθM =++ )(),()(  . (3.3) 

Before introducing the multipurpose control structure, let us consider the 

following problem. The matrices )(θM , ),( θθC   and )(θg  in equations (3.3) are 

generally nonlinear. In this regard, let us linearize the system (3.3) by generating a 

control signal in such a way that gets rid of nonlinearities. 

Resolving (3.3) with respect to the highest derivative, we obtain 

 )).(),()((1 θgθθCτθMθ −−= −   (3.4) 

Next, we reduce (3.4) to a system of first-order ODEs. Let us introduce the 

vector )()( tt θω = . Then system (3.4) can be represented in the form 

 
)).(),()((

,
1 θgωθCτθMω

ωθ

−−=

=
−


 (3.5) 

Let us represent the control signal in the form 

 ,)()(),( uθMθgωθCτ ++=  (3.6) 

where )(tuu =  is some vector function. Substituting (3.6) into (3.5), we obtain a 

linear time-invariant (LTI) system 

 
,
,

uω
ωθ
=
=



 (3.7) 

for which u  is a control signal. 

The asymptotic stability of system (3.7) can be achieved by synthesizing the 

vector u  in the form 

 ,ωKθKu ωθ −−=  (3.8) 

where θK  and ωK  are arbitrary matrices that ensure the Hurwitz property of the 

matrix 

 







−− ωθ KK

Ε0
,  

as well as the required quality of the closed-loop system dynamics. For example, if 

a quadratic quality functional is given, then the matrices θK  and ωK  can be found 

as a solution to the LQR synthesis problem. 
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3.3. Multipurpose Regulator Synthesis 
Now consider the general case for an arbitrary operating mode in which 

external disturbances may be present. Let us consider the issue of regulator 

synthesis for generating a control signal in a linearized system (3.7), taking into 

account the requirements for dynamics in various motion modes. To begin with, 

we will assume that there given an arbitrary linear system in the form 

 
,

,
Cxy

dBuAxx
=

++=
 (3.9) 

where x  – system state vector, y  – measurement vector, )(tdd =  – external 

disturbance vector, A , B  and C– constant matrices. To stabilize system (3.9) 

taking into account the specified requirements, we will generate a control signal 

using a multipurpose regulator in the form 
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 (3.10) 

The first equation of the system (3.10) is an asymptotic observer whose task 

is to model the dynamics of the original control object. The output of the observer 

is used in the dynamic corrector, represented by the second and third equations of 

the system (3.10). The corrector is used to compensate for external disturbances in 

various operating modes. For example, it can be used to ensure astatism in the 

output y  of a control object in the presence of a constant external disturbance, or 

to minimize the intensity of the control signal in response to a polyharmonic 

disturbance. Finally, the last equation of the regulator (3.10) is a control signal that 

is directly fed to the input of the linear system (3.9). 

Let us turn to the problem of the multipurpose regulator synthesis. The 

adjustable elements of structure (3.10) are the matrix H  of the asymptotic 

observer, the matrix K  of the control law and the matrices α , β , γ , μ  of the 
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dynamic corrector. Let us consider the equations of the closed-loop system (3.9) – 

(3.10) without external disturbance, excluding the variables y , ξ , u : 
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or in the matrix form: 
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The characteristic polynomial of system (3.11) is equal to 
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Adding the second column to the first one, we obtain 
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Next, subtracting the first row from the second one, we get 
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According to the property of the quasi-triangular matrix determinant, we can write 
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where )(Δ sb , )(Δ so  and )(Φ s  – characteristic polynomials of the system (3.9), 

closed by the basic control law, of the asymptotic observer and of the dynamic 

corrector, correspondingly. Thus, in the general case, to ensure the asymptotic 

stability of the closed-loop system (3.9) – (3.10), the following conditions must be 

met: 
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1) matrix K  of the control law must ensure that matrix BKA −  is Hurwitz; 

2) matrix H  of the asymptotic observer must ensure that matrix HCA −  is 

Hurwitz; 

3) matrix α  of the dynamic corrector must be Hurwitz. 

Further refinement of the values of the adjustable elements depends on the 

specific requirements for the quality of the controlled motion dynamics. 

Let us consider, in particular, the issues of ensuring astatism and 

minimization of the control signal response to a polyharmonic disturbance in the 

corresponding modes. Let us return to the linearized system (3.7). Despite the fact 

that precise measurements of the variables θ  and ω  are used to the nonlinearities 

compensation, we will assume that the output of the linearized system is the vector 

θy = . It will be shown below that this is sufficient for the efficient operation of a 

multipurpose regulator, which in this case can be represented as 
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 (3.12) 

where θz  and ωz  – state vector of the corresponding asymptotic observers for the 

variables θ  and ω . Tunable elements of the regulator (3.12) are matrices θH , 

ωH , θK , ωK , α , β , γ , μ . From the considerations given above for the regulator 

(3.10) it follows that: 

1) matrices θK  and ωK  of the basic control law must ensure the Hurwitz 

property of the matrix 

 







−−

=
ωθ KK

Ε0
Kb ;  

2) matrices θH  and ωH  of the asymptotic observer are set from the similar 

reasoning, providing the Hurwitz property of the matrix 
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3) matrix α  of the dynamic corrector must be Hurwitz. 

Next, we turn to the issue of dynamic corrector synthesis to ensure astatism 

of a closed-loop system in the presence of a constant external disturbance. The 

corrector can be represented in tf-form as 

 ),)(( θs zθFξ −=   

where s  – Laplace variable, μβαEγF +−= −1)()( ss  – corrector transfer matrix. 

The presence of an external disturbance in equation (3.3) leads to the fact 

that, actually, as a result of feedback linearization, instead of (3.7), we obtain the 

system 

 
,

,
duω

ωθ
+=

=



 (3.13) 

where )()]([)( 1 ttt eτθMd −= . 

In the considered mode of motion, the external disturbance is constant or 

slowly changing, i.e. we can assume that 0)( dd =t . 

Theorem 3.1. Closed-loop system (3.13), (3.12) is astatic with respect to 

any constant disturbance 0)( dd =t , if the transfer matrix of the dynamic corrector 

satisfies the condition 

 .)0( ωθωθ HHKKF −−−=  (3.14) 

Proof. The dynamics equations of the closed-loop system (3.13), (3.12) can 

be written as 
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where θzθε −=θ . Subtracting the third and fourth equations from the first two, 

introducing the notation ωω zωε −= , and excluding the vectors u  and ξ , we get 
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 (3.15) 

Consider the equilibrium position of the system (3.15): 
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 (3.16) 

where 0ωε , 0θε , 0ωz  and 0θz  – steady values of the corresponding vectors. From 

the second equation (3.16) it is clear that 00 θεHd ω= , i.e. the steady error vector 

0θε  and external disturbance vector 0d  are directly related to each other. Hence we 

can further consider the vector 0θε  as the external disturbance 

From the third equation of (3.16) we obtain that 00 θεHz θω −= . Substituting 

this equality into the last equation of system (3.16) we get 

 ,0))0(()( 000 =+++−− θθ εHFεHKθzK ωθωdθθ   

or, substituting 000 θεθz −=θ , where 0θ  – steady value of the θ : 

 ,))0(()( 00 θεHFHKKθθK ωθωθdθ +++=−   

from which it follows that in order for the equality dθθ =0  to hold in the 

equilibrium position, it is necessary to ensure that the multiplier of 0θε  is equal to 

zero, i.e. 

 ,0)0( =+++ ωθωθ HFHKK   

which is equivalent to the condition (3.14). ■ 

Thus, if the dynamic corrector transfer matrix satisfies condition (3.14), then 

the closed-loop system (3.13), (3.12) has the property of astatism with respect to 

external disturbance 0d . 
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Now let us turn to the problem of the dynamic corrector synthesis in the 

presence of the polyharmonic disturbance in the form 
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where ωN  – number of harmonics, iA  – constant amplitudes, iω – frequencies, a  – 

constant coefficients vector. Consider the multipurpose regulator in the form 
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 (3.17) 

Substituting the expression for the control signal u  into the second equation 

of the (3.17), we obtain 
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or in matrix form: 
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Introducing notations 
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let us represent (3.18) in the tf-form: 
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where 

 







=−= −

)()(
)()(

)()(
2221

12111

ss
ss

ss ss PP
PP

BAEP . 

Theorem 3.2. Filtration of the polyharmonic disturbance with frequencies 

iω , ωNi ,1=  in the control channel is ensured with 
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 )]()()[()( 2111
1

iiii jjjj ωωωω ωθ PKPKTF +−= − , (3.20) 

where EPKPKT −+= )()()( 2212 iii jjj ωωω ωθ . 

Proof. From (3.19) it follows that 
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Substituting (3.21) into the expression for the control signal in (3.17), we obtain 
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Let us introduce the notation EPKPKT −+= )()()( 2212 sss ωθ , then 
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The expression )]()()()([)( 2111 sssss ωθ FTPKPKG ++−=  from the (3.22) is the 

transfer matrix from the input θε  to the output u . To ensure minimization of the 

response of the control signal to a polyharmonic disturbance with frequencies iω , 

ωNi ,1= , it is necessary to provide the condition 0)( =ijωG  by the choice of the 

transfer matrix )(sF  of the dynamic corrector, from where we obtain the 

conditions (3.20). ■ 

Finally, let us discuss the issue of synthesizing the dynamic corrector 

transfer matrix ( )T21 )()()()( ssss nFFFF = , which satisfies the conditions 

(3.14) and (3.20), i.e. ensuring the closed-loop system astatism and polyharmonic 

external disturbance filtration. Let us introduce the notations 
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where 0F  and *
iF  – constant matrices. Each individual component of the dynamic 

corrector corresponding to a generalized coordinate with an index nk ,1= , can be 

described by the equation 

 ,)( θεF sξ kk =   

which can be represented in state space as 
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θ

θ
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kkkk
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ξ +=
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 (3.23) 

Here ωN
k E2∈p  – state vector of the corresponding component of the dynamic 

corrector. Note that, taking into account (3.23), the transfer matrix )(skF  can be 

represented as kkkNkk ss μβαEγF +−= −1
2 )()(

ω
. 

Thus, conditions (3.14) and (3.20) can be rewritten as 
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where 
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Let us define in an arbitrary way non-zero vectors kγ  with dimensions 

n21×  and Hurwitz matrices kα  with dimensions nn 22 × . Note that in this case the 

matrices kiN j αE −ω
ω2  from (3.24) are non-singular. Let us subtract the first 

equation (3.24) from the second one and pick out the real and imaginary parts, then 
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where 
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 , nk ,1= , (3.26) 

then (3.25) can be represented as linear system 

 kkk BβA =  (3.27) 

with nN ×ω2  equations and nN ×ω2  variables for each fixed k . According to the 

fact that matrices kA  are non-singular, system (3.27) has a unique solution – the 

matrix kβ . In turn, knowing kβ , it is possible to calculate the matrix kμ  by using 

the formula 

 kkkkk βαγFμ 10 −+= , nk ,1= . (3.28) 

obtained from the first equation of the system (3.24). 

Thus, the dynamic corrector, represented by the resulting matrices kα , kβ , 

kγ , kμ , nk ,1= , provides astatism of the closed-loop system at the output θ  and 

filtration of the polyharmonic disturbance with frequencies iω , ωNi ,1=  in the 

control channel. 

The above considerations allow us to formulate the following algorithm for 

the multipurpose regulator synthesis. 

 

Algorithm № 1 (multipurpose regulator synthesis) 

1) Set the values of the matrices θK  and ωK  of the basic control law 

(3.8), ensuring the Hurwitz property of the matrix bK  and the required quality of 

the closed-loop system dynamics. 
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2) Fix the matrices θH  and ωH  of the asymptotic observers that ensure 

the Hurwitz property of the matrix oH  and the desired degree of convergence of 

the errors between the estimates and the actual plant state. 

3) Using the formulas from condition (3.14), calculate the corresponding 

value 0)0( FF =  of the corrector transfer matrix which ensures astatism of the 

closed-loop system with respect to the constant external disturbances. 

4) Calculate the values )( ijωF  of the dynamic corrector transfer matrix 

corresponding to the given frequencies iω , ωNi ,1=  of the external polyharmonic 

disturbance. 

5) Fix the Hurwitz matrices kα  and vectors kγ , nk ,1=  of the 

corresponding the dynamic corrector components. In particular, matrices kα  can 

be represented in Frobenius form by specifying eigenvalue λ  with a negative real 

part and with multiplicity ωN2 , and the row vector kγ  can be taken in the form 

( )100 =kγ . 

6) Calculate the matrices kA  and kB , using formulas (3.26). Find the 

vectors kβ  by solving the linear system (3.27). Using formula (3.28), calculate the 

vectors kμ . 

 

3.4. Constant Delay Compensation 
Now let us return to the system with constant delay (3.1). The use of 

linearizing feedback (3.6) with a multipurpose regulator (3.12) in the presence of 

delay does not allow to ensure the desired quality of the controlled motion 

dynamics, and in certain cases can lead to complete loss of stability. First of all, the 

delay of the control signal τ  leads to the fact that the terms and multipliers 

compensating the nonlinearities cease to coincide with the actual values at the 

moment of action of the delayed control. Due to this, feedback linearization no 

longer works. In addition, even if linearization is successful, the term u , which is 
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the control for the linear system, will also be delayed, which will lead to a 

deterioration in the control quality. 

In this regard, to overcome these shortcomings, we will consider the 

compensation approach [73]. Its essence is to use the plant state prediction based 

on the amount of delay in the feedback: 
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Let us reduce (3.1) to the system of first-order ODEs: 
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then, knowing the current values of the state variables )(tθ  and )(tω , prediction 

(3.29) can be obtained by integrating right-hand sides of the system (3.30): 
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Transforming the integrals on the right-hand sides of (3.31), we obtain 
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The first terms on the right-hand sides of (3.32) represent the current values )(tθ  

and )(tω , therefore 
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Next we denote h−= δσ , then 



78 

 [
] σσσσ

σσσ

σσ

d

tt

dtt

ppp

t

ht
epp

t

ht
pp

)))(())(),((

)()())((()()(

,)()()(

1

θgωθC

ττθMωω

ωθθ

−−

−++=

+=

∫

∫

−

−

−

 (3.33) 

Note that direct numerical solution of the integrals in the right-hand sides of 

(3.33) can cause certain difficulties, as indicated, for example, in [73]. In 

connection with this fact, we introduce the auxiliary dynamic system 
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and besides in the time interval ]0,[ ht −∈  the following conditions are met: 
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Taking (3.34) into account, we can rewrite system (3.31) in the form 
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Let us transform the linearizing feedback (3.6) and the multipurpose 

regulator (3.12), using the prediction according to the formulas (3.35): 
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System (3.36) is a regulator that compensates the constant delay in the 

feedback channel and external disturbance channel. Note that (3.36) is a 

transformation of the multipurpose regulator (3.12), preserving its transfer matrix. 

Thus, to synthesize a regulator (3.36), it is enough to synthesize a controller 

without delay (3.12), which satisfies all the requirements for dynamics in various 

operating modes, and then add the calculation of the prediction in accordance with 

(3.36). The disadvantage of this approach is the need to directly measure the 

external disturbance without the delay. 

Taking into account the above considerations, we formulate the following 

algorithm. 

 

Algorithm № 2 (multipurpose compensating regulator synthesis) 

1) In accordance with algorithm № 1, synthesize the basic regulator 

(3.12) for a closed-loop system without delay. 

2) To calculate the system state prediction by the value of the constant 

delay, add equations (3.34) and (3.35) to the synthesized regulator. 

3) Replace all the occurrences of the current state measurements θ  and 

ω , accordingly, in the equation of the control signal τ  and in the equation of its 

linear part u  with the predicted values pθ  and pω . 

 

3.5. Experimental Results 
To test the performance of the described algorithms, a computer model was 

implemented in the Octave environment. A two-link manipulator was chosen as a 

plant (Fig. 3.1). 
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Fig. 3.1. Two-link manipulator. 

 

The matrices of system (3.1) in this case has the values [77] 
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where 1m  and 2m  – point masses at the link ends, 1L  and 2L  – link lengths, g  – 

gravitational acceleration, ( )T21 θθ=θ  – joint angles. Let us take 121 == mm kg, 

121 == LL m, 8.9=g m/s2. 

For adjustable elements of the multipurpose regulator (3.12), we take the 

values 
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The matrices kα  of the dynamic corrector were taken as Frobenius matrices with 

eigenvalue 3−=λ  of multiplicity 6. The values kγ  were chosen as vectors 
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( )100000=kγ . A constant disturbance in the corresponding mode was 

set in the form 

 ( )T1.01.0)( =teτ  (3.37) 

Finally, in the periodic disturbance mode, the vector eτ  was represented as 

 ( )
),sin()sin()sin()(

,)()()(

321

T

tωtωtωtw
twtwte

++=
=τ  (3.38) 

with 31.4161 =ω -1s , 37.6992 =ω -1s  and 43.9823 =ω -1s . 

 

3.5.1. System without the delay 

First, let us consider the mode without external disturbance and delay with 

the dynamic corrector turned off. Let us take T
0 )00(=θ , T

0 )00(=ω  as the 

initial position. Assume that the desired position is T)6045(=dθ  degrees. The 

dynamics of the system in this mode is shown in Fig. 3.2. Note that the desired 

position has been achieved. 

 

 
Fig. 3.2. Dynamics of the system without external disturbance and delay. 
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Now let us consider the influence of the external disturbance. Let us set the 

initial position corresponding to the desired one, i.e. T
0 )6045(== dθθ  degrees. 

Apply a constant disturbance (3.37) to the plant with the dynamic corrector turned 

off. As can be seen from Fig. 3.3, in this case the manipulator deviates from the 

desired position and cannot return to it. Thus, without a dynamic corrector, 

astatism is not ensured. 

 

 
Fig. 3.3. Dynamics of a system without delay under the influence of a constant external 

disturbance. 

 

Now, under the same conditions, let us turn on the dynamic corrector. The 

dynamics of the system presented in Fig. 3.4 demonstrates that the corrector 

actually provides astatism – after the initial deviation, the robot returns back to the 

desired position. 
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Fig. 3.4. Dynamics of a system without delay with constant external disturbance and enabled 

dynamic corrector. 

 

Finally, let us consider the influence of polyharmonic disturbance (3.38). In 

this mode, for clarity, the dynamic corrector will be turned on only after 10s of 

system movement. From Fig. 3.5 it can be seen that the periodic disturbance also 

displaces the robot from the given position, but turning on the corrector brings it 

back, while the intensity of the θ  output oscillations does not change. However, 

from paying attention to the dynamics of the control signal τ  (Fig. 3.6), a decrease 

in the intensity of control action can be noted after turning on the corrector. Let us 

also note that the lack of complete compensation for periodic disturbances is 

explained by the fact that in reality in this case the influence of external 

disturbances on the linear part u  of the control signal τ  is minimized. 
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Fig. 3.5. Dynamics of a system without delay with a polyharmonic external disturbance and with 

a dynamic corrector enabled at the moment t = 10 s. 

 
Fig. 3.6. Dynamics of the control signal τ  without delay with a polyharmonic external 

disturbance. 
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Fig. 3.7 shows the dynamics of the linear part u  of the control signal τ  

directly. It can be seen here that the influence of external disturbance is completely 

compensated by turning on the dynamic corrector, as expected. 

 
Fig. 3.7. Dynamics of the linear part u  of the control signal τ  without delay with polyharmonic 

external disturbance 

 

The influence of a periodic disturbance on the control signal τ  can be 

reduced by usage of outputs of asymptotic observers θz  and ωz  instead of actual 

measurements θ  and ω  in the calculation of the values of matrices M , C  and g  

which compensate nonlinearities. An example of dynamics with this approach is 

shown in Fig. 3.8 and 3.9. It can be seen that the amplitude of oscillations of the 

joint angles θ  becomes slightly smaller, while a more significant decrease in the 

intensity of the control signal τ  is noticeable after turning on the corrector. The 

influence of the disturbance on the linear part u  in this case is also completely 

compensated, as shown in Fig. 3.10. 
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Fig. 3.8. System dynamics when using observer outputs to calculate matrices in the control 

signal. 

 

 
Fig. 3.9. Dynamics of the control signal τ  when using observer outputs to calculate matrices in 

the control signal. 
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Fig. 3.10. Dynamics of the linear part u  of the control signal τ  when using observer outputs to 

calculate matrices in the control signal. 

 

3.5.2. System with constant delay without the delay compensation 

Now let us consider the effect of a constant delay 1.0=h s when using the 

same multipurpose regulator (3.12) without compensating transformation. Let us 

again turn to the proper motion mode in the absence of external disturbances. The 

dynamics of the system for this case are presented in Fig. 3.11. One can notice a 

significant deterioration in the quality of the dynamics. A further increase in the 

delay leads to instability of the system. 

The influence of a constant external disturbance when the corrector is turned 

off, as in the case without delay, leads to a displacement of the manipulator from 

the specified position, while the dynamics also worsen (Fig. 3.12). Turning on the 

corrector under such conditions leads to instability of the system, as can be seen 

from Fig. 3.13. The operation of the corrector under the influence of periodic 

disturbances also leads to instability. 
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Fig. 3.11. Dynamics of a system without external disturbance with constant delay without 

compensation. 

 

 
Fig. 3.12. Dynamics of a system under constant external disturbance and with constant delay 

without compensation and corrector. 
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Fig. 3.13. Dynamics of the system with a constant external disturbance and an enabled corrector 

with a constant delay without compensation. 

 

Let us demonstrate the operation of a dynamic corrector without loss of 

stability. To do this, we lower the delay value to 05.0=h s, using the value 10−=λ  

as an eigenvalue for synthesizing the corrector matrices kα . The dynamics of the 

system under the influence of a constant disturbance with the corrector turned on 

for this case is presented in Fig. 3.14. It can be seen that the corrector manages to 

ensure that the manipulator returns to the specified position, but the dynamics of 

the system is much worse than in the case without delay. When applying a periodic 

disturbance under similar conditions with the corrector turned on after 10 s, as can 

be seen from Fig. 3.15 and Fig. 3.16, changes in dynamics are insignificant. 
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Fig. 3.14. Dynamics of the system with a constant external disturbance and a turned on corrector 

with reduced delay. 

 

 
Fig. 3.15. Dynamics of a system under periodic external disturbance with reduced delay. 
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Fig. 3.16. Dynamics of the control signal τ  under periodic external disturbance with reduced 

delay. 

 

3.5.3. Constant delay compensation 

Now we will demonstrate the effect of the compensating transformation 

(3.36) of a multipurpose regulator synthesized without taking into account the 

delay. Again we will use the delay value 1.0=h s and the eigenvalue 3−=λ  to 

synthesize the dynamic corrector matrices kα . First, let us consider the proper 

motion mode without external disturbance and with the corrector turned off. The 

dynamics of the system for this case is presented in Fig. 3.17. It can be seen that 

the plots are almost identical to Fig. 3.2 for the case without delay. 

Next, we will apply a constant external disturbance and turn on the dynamic 

corrector. Fig. 3.18 also demonstrates dynamics that is almost identical to the case 

without delay. 
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Fig. 3.17. System dynamics without external disturbance with constant delay compensation. 

 

 
Fig. 3.18. System dynamics under constant external disturbance with constant delay 

compensation and corrector turned on. 
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Finally, let us turn to the operating mode under the influence of a periodic 

external disturbance and the presence of a constant delay in the channels of control 

and external disturbance. As before, we will turn on the dynamic corrector here 

only after 10 seconds of movement. The dynamics of the system motion for this 

case is presented in Fig. 3.19, while Fig. 3.20 shows the dynamics of the control 

signal τ  and Fig. 3.21 demonstrates the dynamics of the linear part u  of the 

control signal τ . As it can be seen from the presented plots, the dynamics in this 

case is again almost identical to the dynamics in the case without delay. 

 

 
Fig. 3.19. Dynamics of a system under periodic external disturbance with constant delay 

compensation. 
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Fig. 3.20. Dynamics of the control signal τ  under periodic external disturbance with constant 

delay compensation. 

 

 
Fig. 3.21. Dynamics of the linear part u  of the control signal τ  under periodic external 

disturbance with constant delay compensation. 
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Note that the use of asymptotic observers outputs θz  and ωz  instead of the 

predicted values pθ  and pω  in the calculation of matrices M , C  and g  

compensating for nonlinearity in the regulator with delay compensation also leads 

to a decrease in the intensity of the control signal τ  after turning on the dynamic 

corrector, as in the case without delay. The dynamics of the system motion for this 

case is presented in Fig. 3.22, the dynamics of the control signal τ  is shown in Fig. 

3.23, and Fig. 3.24 demonstrates the dynamics of the linear part u  of the control 

signal τ . It can be seen that the presented plots also practically coincide with 

similar plots for the case without delay. 

 

 
Fig. 3.22. System dynamics when using observer outputs to calculate matrices in the control 

signal. 
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Fig. 3.23. Dynamics of the control signal τ  when using observer outputs to calculate matrices in 

the control signal. 

 

 
Fig. 3.24. Dynamics of the linear part u  of the control signal τ  when using observer outputs to 

calculate matrices in the control signal. 
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Thus, the delay-compensating transformation (3.36) of a multipurpose 

regulator actually makes it possible to obtain the dynamics of a closed-loop system 

which practically coincides with the dynamics in the case without the presence of a 

constant delay. 

 

3.6. Conclusions 
Analysis of the plots obtained as a result of experiments with a computer 

model of a two-link manipulator allows to conclude that multipurpose regulators 

can effectively solve problems of stabilization of nonlinear systems when using the 

feedback linearization method, taking into account the requirements for dynamics 

in various modes, in particular in the presence of external disturbances. Let us 

recall that the main advantage of multipurpose regulators is the fact that the 

synthesis of separate adjustable elements can be done relatively independently of 

each other, and individual elements can be turned off depending on the current 

operating mode. 

At the same time, the presence of a delay in the control channel significantly 

degrades the quality of the dynamics of the closed-loop system, up to the loss of 

stability. It is shown that for the delay compensation it is enough to synthesize a 

multipurpose regulator with the desired characteristics for a system without delay, 

and then carry out a special transformation of the resulting regulator. Such a 

transformation makes it possible to provide dynamic characteristics of a system 

with a delay that are almost identical to the case without a delay, i.e., in essence, to 

preserve the transfer matrix of the original regulator. 

The disadvantages of the presented approach include the need to know the 

exact dynamic model to provide feedback linearization, difficult filtering of 

periodic external disturbances, and the need to measure external disturbances 

without delay. 
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Chapter 4. Multipurpose Control of the Air Cushion Vehicle 
This chapter is devoted to the issues of the motion stabilization of a special 

class of marine objects – air cushion vehicles. A multipurpose approach is 

extremely important here, since the motion of such vessels is carried out under 

multi-mode conditions, in the presence of external disturbances of various kinds 

[90]. The implementation of control systems on the digital on-board equipment 

[43] also leads to the presence of delay in the control channel, which must be taken 

into account [46]. This chapter provides details of the synthesis process of a delay-

compensating multipurpose regulator, described in the first chapter, for the motion 

stabilization, taking into account the described features. 

Paragraph 4.1 provides a general description of the air cushion vehicle 

features and describes nonlinear equations for the dynamics of lateral motion, as 

well as a linearized model. Paragraph 4.2 is devoted to the formulation of the 

problem for a specific vessel with given numerical parameters. Paragraph 4.3 

reveals the details of the synthesis of a multipurpose regulator without taking delay 

into account and presents the results of experiments with a computer model. 

Paragraph 4.4 is devoted to experiments in the presence of a constant delay with 

conventional and compensating controllers. 

 

4.1. Air Cushion Vehicles 
In order to demonstrate the efficiency of the proposed methods, let us 

consider a particular situation. Let us take an air cushion vehicle (ACV) as a plant. 

It is a special type of transport that reduces surface resistance due to the formation 

of an area of increased aerostatic pressure under the hull of the vessel. It is worth 

noting that, depending on the type of air cushion enclosure, there are two types of 

ACV – surface effect ships and amphibious vessels. The first type is characterized 

by a rigid side fence, partially submerged in water. The dynamics of such ships are 

more similar to classic ships. The fencing of the second type of hovercraft is 
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flexible and, as a rule, does not have direct contact with the underneath surface. 

The focus of this work is on amphibious vessels. 

Let us consider the air cushion formation scheme in a simplified form (Fig. 

4.1). The high-pressure zone (actually, the air cushion itself), which compensates 

for the weight of the vessel, receives an air flow from the lift fans. The air flow can 

optionally be directed through the rigid receiver 1 and flexible receiver 2 zones in 

order to distribute air pressure more evenly. The flexible air cushion fence is 

integrated with the ship's hull. Such a fence ensures that the hovercraft rises to a 

certain height, due to which, as a rule, the ship’s hull does not have direct contact 

with the underneath surface. Because of this, amphibious hovercrafts are capable 

of moving not only on water, but also on land, as well as through swamps, ice, etc. 

 

Fig. 4.1. Excess pressure generation under the bottom of the ACV. 

The propulsors of the ACV are variable-pitch propellers installed on the 

deck. The motion direction can be changed either by controlling vertical 

aerodynamic rudders, or, in the case of multiple propulsors, by varying the thrust 

of the propellers. The first method is typical when moving at high speeds, and the 

second is more effective when accelerating the ship. It is worth noting that the 

presence of aerodynamic rudders is not necessary in cases where the propulsors 

themselves can be rotated, however, hovercraft models with such technologies are 

much less common. Next, we will consider an ACV model with a single 

propulsion device and vertical aerodynamic rudders in the mode of movement on 

the sea surface. 
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Let us note a few more features of the ACV dynamics. Unlike classical ship 

models, the motion of the hovercraft along the sea surface is not affected by the 

added masses of water, due to the absence of direct contact of the hull with the 

water. However, the air cushion still interacts with the surface of the water, so 

taking into account hydrodynamic drag forces is necessary. The following ACV-

specific feature should also be noted here. Under the air cushion, a depression is 

formed in the water surface when moving at low speeds. However, the deepening 

disappears when overcoming a speed of about 30 knots (the so-called “hump 

speed”), while the hydrodynamic resistance decreases significantly [31]. 

Let us give a description of the nonlinear mathematical model of ACV. The 

necessary reference frames are shown in Fig. 4.2. Here ξηζgO  is the base 

(terrestrial) coordinate system, which is stationary. 111 ζηξO  – a semi-coupled 

(intermediate terrestrial) system, the origin of which is rigidly connected to the 

center of mass of the hovercraft, and the axes are parallel to the axes of the base 

coordinate system and, accordingly, have a fixed orientation. Finally, Oxyz  is a 

coupled coordinate system, the axes of which, unlike the previous system, rotate 

together with the ship. 

 
Fig. 4.2. Reference frames. 
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Taking into account the most significant forces influencing the dynamics of 

the ACV, the nonlinear differential equations of lateral motion can be written as a 

system [13, 103] 
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which can be transformed to a system of ordinary differential equations of the form 
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 (4.1) 

where xV  and zV  – linear velocities, xω  and yω  – angular velocities, m  – ship’s 

mass, xI  and yI  – moments of inertia. Forces and moments, marked with a index, 

are related to the aerodynamic drag, h – to the hydrodynamic drag. Index r denotes 

forces and moments, acting on the rudders. zcF  – reactive jet force, occurring in 

the case of a roll on the one side of the air cushion. θM  – restoring moment during 

roll due to air pressure inside the air cushion. T  – propulsor thrust force. 

Aerodynamic drag forces and moments can be described by the formulas 
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where aβ  – aerodynamic drift angle with respect to the wind, aρ  – air density, 0V  

– ACV velocity with respect to the wind, S  – ship’s lateral surface area, L  and H  

– vessel’s length and height accordingly; ),( axa βC  ),( aza βC  ),( amya βC  yω
myaC  – 

ship’s hull aerodynamic coefficients. 
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Hydrodynamic drag is represented in the form 
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where β  – vehicle’s drift angle, wρ  – water density, V  – ship’s velocity, W  – 

vessel displacement. ),,( βFrCxh  ),,( βFrCzh  ),,( βFrCmxh  ),,( βFrCmyh  yω
myhC  – 

hydrodynamic coefficients. Fr  – Froude number (dimensionless quantity used in 

shipbuilding to compare the hydrodynamic properties of hulls of different sizes). 

Froude number can be calculated as 

Lg
VFr = , 

where g  – gravitational acceleration. 

Note the fact that, in general, the aerodynamic and hydrodynamic 

coefficients of real ship models are calculated during experiments in a wind tunnel 

and a specialized pool. Due to the complexity of the corresponding aerodynamic 

processes, an accurate description of the forces and moments acting on the rudders 

is quite complicated. In this regard, we will use the experimental approximation 

given in [13]: 
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where rC  – force coefficient, δ  – rudder deflection, rx  and ry  – rudder center 

geometric coordinates, r1C  – coefficient of the model without the propulsors. rS  – 

rudder surface area, '
rS  and ''

rS  – rudder surface areas in and out of the air flow, rλ  

and r1λ  – corresponding parts of the rudder lengths, D  – air propeller diameter. rk  

and s  – auxiliary coefficients. 

The theoretical description of the reactive force zcF  of the air flow and the 

restoring moment θM  is also quite difficult. Generally, for modeling purposes it is 

sufficient to provide simplified formulas, which are experimental approximations: 

,
,F

xθθ

θzc

ωNmghθM
θmgk
−−=

=
 

where θ  – roll angle, h  – metacentric height, θk  – air flow coefficients, θN  – air 

cushion restoring moment coefficient. Coefficients θk  and θN  are calculated 

experimentally. 

Assuming that there are no external disturbances, let us linearize the 

nonlinear system (4.1) in the vicinity of the equilibrium position constVx = , 

0==== ryzV δθω . The dynamics of roll and longitudinal velocity in this mode 

can be neglected. Let us also note that for linear models of marine moving objects 

it is accepted to consider drift angle, which can be represented as 
x

z
V
Vβ = , instead 

of the lateral vessel velocity zV . 

Taking into account the above considerations, the linear model of the lateral 

dynamics of the ACV used for a stabilizing regulator synthesis can be described by 

the system of the equations 
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 (4.2) 

where ϕ  – heading angle, d  – scalar external disturbance (wind or waves); ija , ib , 

ih  – constant model coefficients. 
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4.2. Problem Formulation 
For specific parameter values of the ACV nonlinear model let use averaged 

data of various vessels from the works [13, 23, 31, 103]. The main characteristics 

are given in Table 4.1. 
Table 4.1. Main characteristics of the considered ACV model. 

Characteristic Units Value Notation 
Volumetric displacement m3 3 628.8 W  
Length m 27 L  
Width m 14 B  
Height m 9.6 H  
Mass kg 70 000 m  
Longitudal moment of inertia kg m2 1 680 933.3 xxJ  
Vertical moment of inertia kg m2 5 395 833.3 yyJ  
Transvers moment of inertia kg m2 4 790 100 zzJ  
Maximum rudder angle deg 40 maxδ  

Maximum rudder change rate deg/s 15 maxδ  
Maximal velocity m/s 28 maxV  

Rudder surface area m2 5.4 rS  

Longitudinal rudder arm m 13.5 rx  

Vertical rudder arm m 2.4 ry  
Water density kg/m3 1000 wρ  

Air density kg/m3 1.292 aρ  
 

We will assume that there is a constant delay τ  in the control and external 

disturbance channels. Taking into account the dynamics of the rudder drive and 

considering that the measured output is the value of the heading angle ϕ , the linear 

model of the lateral motion of the ACV in the vicinity of the described equilibrium 

position is represented as a system 
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Let us consider the straightforward motion of the hovercraft with a constant 

longitudinal velocity 12=xV  m/s. It is necessary to synthesize a delay-

compensating multipurpose regulator to ensure the following characteristics of a 

closed-loop system in various driving modes: 

1) In any mode, the asymptotic stability of the hovercraft motion must be 

ensured. 

2) In the proper motion mode, it is necessary to ensure that the hovercraft is 

capable of rotating along the heading angle by °10  in 10 s with a maximum 

overshoot value of 3% of the specified angle. 

3) In the operating mode under the influence of a constant external 

disturbance in the form of a side wind at a speed of 10 m/s (i.e. 10)( =td ), the 

deviation of the heading angle from the current value should not exceed °4.0 . 

4) For a periodic external disturbance consider the sea surface waves, 

approximately corresponding to 4 points on the Beaufort scale. In this mode, it is 

necessary to minimize the intensity of rudder deflections. As an approximate wave 

model, we will take a polyharmonic disturbance of the form 

 ).50.1sin(0.7)50.1sin(0.5)50.2sin(0.6)( ttttd ++=  (4.4)

 

 

 

4.3. Practical Implementation of the Multipurpose Regulator 

Without the Delay 
In order to test the above methods, a computer model of the nonlinear lateral 

ACV dynamics was implemented in the Matlab-Simulink environment. While 

performing straightforward motion at a speed of 12 m/s, the coefficients of the 

linear model (4.3) have the following values: 
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Let us compare nonlinear dynamics with the linear approximation. Fig. 4.3 

demonstrates the transient process corresponding to the response to a step rudder 

deflection of magnitude °1 . It can be noted that the models match almost perfectly. 

The dynamics of the models under the influence of an external step disturbance in 

the form of a side wind with a speed of 10 m/s is presented in Fig. 4.4. It can be 

seen that during the first few seconds there is a noticeable discrepancy in the drift 

angle, but in general the dynamics is also almost identical. Thus, we can conclude 

that the dynamics of the calculated linear model is a sufficient approximation of 

the original nonlinear system in the considered mode and is suitable for further 

synthesis of multipurpose and compensating controllers. 

 

 
Fig. 4.3. Comparison of linear and nonlinear models with unit rudder deflection. 
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Fig. 4.4. Comparison of linear and nonlinear models when exposed to side wind. 

 
The adjustable elements of the positional control law (1.17) corresponding to 

the requirements given in the problem formulation have the following values 

obtained as a result of LQR-optimal synthesis: 

 ( ) 006.1,7.071123.17420.3365 =−−= δkxK , 

with the following quadratic functional weight matrices: 

 [ ]( ) 01.0,00.51.50diag == RQ . 

Now we will derive expressions for calculating the coefficients of the basic 

speed control law (1.13). In accordance with the remark given in paragraph 1.2, the 

search procedure in specific situations can be significantly simplified. Let us 

consider the linear system (4.2) without taking into account the external 

disturbance: 
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The specified system must be resolved with respect to state variables yω , β  

and δ , obtaining the relations 
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Substituting the resulting equations (4.5) into the positional control law 

(1.17), we obtain the coefficients of the speed control law 
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where ( ) xkkk K=321 , ( ) μ=321 µµµ . 

Let us substitute the calculated values xK  and δk  into the given equations, 

as a result of which we obtain particular values of the speed control law 

parameters: 

 
( )
7.0711

,29.803246.22690.2757
=
−=

ν
μ . 

Now we present the results of experiments with a computer model without 

delay. The dynamics of the controlled motion of the hovercraft in the proper 

motion mode with reference signal when turning along the heading angle for °10  

with a synthesized speed control law is shown in Fig. 4.5. It can be seen that in just 

10 s there is a transition to the zone of 3% of the reference signal, i.e. requirements 

for overshoot and settling time are satisfied. 
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Fig. 4.5. Dynamics of heading angle when turning by 10º. 

 
Next we move on to the synthesis of an asymptotic observer. In accordance 

with the requirement for dynamics in the motion mode under the influence of a 

constant external disturbance specified in the problem statement, as a result of 

synthesizing the observer as a Kalman filter, we obtain a matrix G  for estimation 

errors in the form 

 ( )T1.9771.95431.4272=G . 

In accordance with the methodology presented in the first chapter, we now 

proceed to the positional control law (1.14) based on the output of the asymptotic 

observer: 

( ) 155.94271.0006,,148.871723.17420.3843 00 =−=−−= νkk . 

The dynamics of a system with a synthesized observer under the influence of 

a side wind is shown in Fig. 4.6. It can be noted that the stated requirement is met, 

the deviation does not exceed °4.0 , while the convergence of the heading angle to 

a zero value is ensured, that is, the property of astatism is provided. 
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Fig. 4.6. Dynamics of the heading angle when exposed to a side wind at a speed of 10 m/s. 

 
In conclusion let us proceed to the problem of synthesizing the dynamic 

corrector (1.12). In the framework of this work, as stated above, the goal of the 

corrector is to minimize the intensity of the rudder deflections in case of the 

influence of external periodic disturbances, such as sea waves. 

For simplicity, let us take a harmonic oscillation with a constant frequency 

0ω  as an approximate model of a periodic disturbance. Let us note the fact [9] that 

in this situation, in order to solve the problem, it is necessary to ensure that the 

transfer function from the current output to the position of the rudders is equal to 

zero at a given frequency 0ω , i.e. 0),( 0 =FjFyδ ω . In turn, to satisfy this 

condition, the transfer function )(sF  of the dynamic corrector must satisfy the 

equality 

 ,~)](~)([)( 1
0220120 TjTTjTjF −−= ωωω  (4.6) 

where )()(~
0

1
21011 ωω jTjTT −= ; 11T , 12T , 21T  and 22T  – elements from (1.20). 

For the value calculated using formula (4.6), we introduce a special notation 

)( 00 ωjFf = . We take the matrix α  of the system (1.15) (i.e., the representation of 

the dynamic corrector in the state space) in the form 
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Let us note the fact that the transfer function )(sF  of the corrector is a 

rational function of the form 
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Let us take the particular frequency value 65.00 =ω  as average frequency of 

the disturbance (4.4). Set the roots of the denominator of the corrector transfer 

function as 2.010 −== λλ . Then, in accordance with the described approach, the 

matrices of the corrector model in the state space have the following values: 
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Fig. 4.7 shows a plot of the frequency response of a closed-loop system from 

external disturbance to rudder deflection in two modes: with the corrector turned 

on and without it. It can be noted that at a given frequency the amplitude with the 

filter turned on is zero, which was the goal of the synthesis. 

 
Fig. 4.7. Frequency response of a closed-loop system (4.6), (1.16) from disturbance to rudder 

deflection. 

 

Let us consider the dynamics of the vessel in this mode, shown in Fig. 4.8 

and Fig. 4.9. The ACV is affected by a polyharmonic external disturbance (4.4). 

The dynamic corrector was turned off during the first 300 s, and during this time 

period significant oscillations in the rudder deflections can be noted. Further 

activation of the corrector, as can be seen, leads to a significant decrease in the 

intensity of oscillations of the rudders, and the amplitude of oscillations of the 

heading angle also decreases. As a result, it can be noted that the dynamic 

corrector in the above situation really makes it possible to achieve the control goal, 

effectively reducing the control intensity without losing the quality of the heading 

angle stabilization. Note also that the presence of additional harmonics in the 

adopted disturbance model (4.4) has almost no effect on the quality of the 
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corrector’s work, since the values of the frequency response at these frequencies 

are also significantly lower than in the case of the corrector being turned off. 

 
Fig. 4.8. Dynamics of heading angle under the influence of sea waves. 

 

 
Fig. 4.9. Dynamics of rudder deflections under the influence of sea waves. 
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4.4. Practical Implementation of the Delay-Compensating  

Multipurpose Regulator 

Let us now face the issue of the delay influence on the dynamics of a closed-

loop system with a multipurpose regulator synthesized earlier. First, consider the 

proper motion mode in a situation where there are no external disturbances. Fig. 

4.10 shows the ACV turning by 10º in the presence of a constant delay 8.0=τ s. 

One can note a significant deterioration in the quality of control due to the 

appearance of noticeable oscillations in the transient process. As the delay 

increases to 2.1=τ s, the oscillations cease to be damped and the amplitude 

becomes constant and significant (Fig. 4.11). 

 

 
Fig. 4.10. Dynamics of heading angle while turning by 10º with delay 8.0=τ s. 
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Fig. 4.11. Dynamics of heading angle while turning by 10º with delay 2.1=τ s. 

 

The presented plots convincingly demonstrate that delay must be taken into 

account when designing plant control systems. In accordance with the 

compensation approach described in paragraph 1.3, we transform the original 

multipurpose regulator for the delay compensation. Taking into account the 

notation adopted in the first chapter, the control signal will be supplied to the 

rudder drives in the form 

 100),( =−= uzu kku δδ . 

Fig. 4.12 shows the dynamics of a closed-loop system with a multipurpose 

compensating regulator when turning by 10º with a delay 8.0=τ s. In this case, the 

quality of control in general is identical to the dynamics of a closed-loop system 

without delay, which is the goal of the compensation approach. 
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Fig. 4.12. Dynamics of a system closed by compensating feedback when rotated by 10º with 

delay 8.0=τ s. 

 

Now we introduce a constant external disturbance in the form of a side wind 

with a speed of 10 m/s. In this situation, the quality of the dynamics deteriorates 

significantly even with a delay 5.0=τ s, as can be seen from Fig. 4.13. As the 

delay increases to 0.8s, the amplitude of the oscillations becomes constant (Fig. 

4.14). Thus, in this mode, it is also necessary to take the delay into account. 

 
Fig. 4.13. Dynamics of the system under the influence of a side wind with a speed of 10 m/s with 

delay 5.0=τ s. 
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Fig. 4.14. Dynamics of the system under the influence of a side wind with a speed of 10 m/s with 

delay 8.0=τ s. 

 

Let us now consider the behavior of a system closed by a compensating 

regulator in this situation. From Fig. 4.15 it is clear that in this case, the 

compensation approach makes it possible to preserve the dynamic characteristics 

of the original system without delay, eliminating the negative impact of delay. 

 
Fig. 4.15. Dynamics of a system closed by compensating feedback under the influence of a side 

wind with a speed of 10 m/s with delay 5.0=τ s. 
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Finally, let us face the issue of the influence of delay on the dynamics of the 

system in the presence of a periodic disturbance. As it can be seen from Fig. 4.16 

and Fig. 4.17, the amplitude of oscillations in a closed-loop system without delay 

compensation with the corrector turned off increases noticeably with the delay 

value 8.0=τ s. However, turning on the dynamic corrector leads to a significant 

reduction in the oscillation amplitude. 

Now we apply a compensating regulator; the corresponding dynamics is 

shown in Fig. 4.18 and Fig. 4.19. And again, it can be noted that the dynamics of 

controlled motion in this case corresponds to the dynamics of the system without 

delay, i.e. the applied regulator actually compensates the delay. Thus, we can 

conclude that the multipurpose compensating regulator can be effectively used in 

sea waves, even if provided there is a delay. 

 

 
Fig. 4.16. Dynamics of the heading angle under the influence of waves and delay 8.0=τ s. 
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Fig. 4.17. Dynamics of rudder deflections under the influence of waves and delay 8.0=τ s. 

 
Fig. 4.18. Dynamics of the heading angle when using a compensating regulator under the 

influence of waves and delay 8.0=τ s. 
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Fig. 4.19. Dynamics of the rudder deflections when using a compensating regulator under the 

influence of waves and delay 8.0=τ s.  
 

4.5. Conclusions 
The results obtained demonstrate the effectiveness of the multipurpose 

regulator applications for plant motion stabilization in various modes, while taking 

into account a whole range of requirements for the dynamics of controlled motion. 

The process of the multipurpose structure elements synthesis is greatly simplified due 

to the relative independence of the pieces that make up the regulator. The ability to 

turn off individual elements of the controller depending on the current mode is also a 

significant advantage. 

It should be noted that the quality of control of a system closed by a 

multipurpose regulator is significantly deteriorated in the presence of a delay in the 

control channel. The degree of degradation may vary depending on the selected 

values of the adjustable elements of the multipurpose structure and the magnitude of 

the delay, up to loss of stability. Thus, when designing a control system, it is 

necessary to take the delay into account. 
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Using the compensation approach allows to preserve the dynamic 

characteristics of the original system without delay, i.e. to keep its transfer matrix. 

The results of numerical experiments show that the transient processes in both cases 

are almost identical. It is important to note the fact that with the compensation 

approach there is no need to solve a separate synthesis problem for a system with a 

delay. If the controller of the original system has been synthesized, then it is enough 

to add the dynamics equation of the auxiliary vector function and transform the 

controller input taking into account the prediction. 

The disadvantages of the described approach include the need to measure the 

magnitude of the external disturbance. In some cases, accurate measurement is not 

possible. In addition, the issue of robust properties of the used controller is also 

subject to further research. 

Nevertheless, we can conclude that the application of the approach described 

in this chapter in general makes it possible to ensure optimal control of moving 

plants, taking into account external disturbances of various nature and delay of the 

control signal. 
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C O N C L U S I O N  

The dissertation is devoted to the issues of modeling, analysis and synthesis of 

multipurpose laws for moving plants motion control taking delay into account. 

As a result of the research, the following main results were obtained: 

• The issues of the prediction usage for the delay compensation in the problem of 

multipurpose control of moving plants with linear dynamic models have been studied. A 

method has been developed for transforming a multipurpose regulator synthesized for 

an object without delay, providing delay compensation and preserving the transfer ma-

trix of the original closed-loop system. 

• Multipurpose control methods have been developed for the problem of visual 

positioning of moving objects. An algorithm for the multipurpose regulator synthesis 

with visual feedback has been developed, taking into account the dynamics of the con-

trol object. 

• A delay-compensating transformation of a multipurpose regulator with visual in-

formation in the feedback loop has been described. Examples of the synthesis of such 

regulators for two types of mobile robots, fully-actuated and underactuated, taking into 

account the delay are considered. 

• Methods for multipurpose control of moving objects with non-linear dynamic 

models have been developed. An algorithm for the synthesis of a multipurpose regulator 

with feedback linearization is proposed. 

• A method has been developed for the transformation of the described multi-

purpose regulator for the delay compensation. An example of the synthesis of such a 

regulator for a two-link robot manipulator with a delay is considered. 

• An example of the delay-compensating multipurpose regulator synthesis for the 

stabilization of a hovercraft motion is presented. 
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