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Introduction

At the moment, the task of optimizing the energy consumption of smart-
phones, tablets and other portable computers remains relevant both for their
users and, in a broad sense, for the national economy. This is due to the
fact that over the past 20 years the patterns of user access to information
systems and network services have changed: to obtain necessary information,
smartphones, tablets and other types of computers (hereinafter referred to
as mobile devices or simply devices) that support autonomous operation are
much more often used, and therefore battery life becomes one of the main
criteria for the quality and convenience of a human-machine interface.

On the one hand, this problem is solved by the electronics and electro-
chemical industry, which develops both more capacious batteries and more
energy-efficient components for such devices. The latter include central pro-
cessing units (CPUs) based on a heterogeneous architecture. For example,
according to the ARM big.LITTLE architecture, the CPU consists of two
clusters of cores — less productive, but energy efficient (LITTLE cluster),
and more productive and energy intensive (big cluster) [45]. However, it is
also important whether the system and applied software is developed taking
into account the peculiarities of the operation of these components from an
autonomous power source.

One of the most researched power management technologies in operating
systems (OS) is Dynamic Voltage Frequency Scaling (DVFS). The CPU is
capable of operating at a finite set of operating frequencies and switching
between them at run-time. A DVFS governor is an OS module that instructs
the CPU to set one or another operating frequency depending on the observed
state of the system as a whole and the frequency control algorithm. This
module can work in conjunction with the OS task scheduler or be independent
of it [103].

The task of optimizing CPU energy consumption is to maximize perfor-
mance and minimize power drain, with the control signal being the setting of
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the CPU operating frequency. To solve this problem, various strategies are
proposed, but at the same time, determining the best strategy is method-
ologically challenging.

Currently, there are two conceptually different approaches to measur-
ing CPU energy consumption. The first one, the direct approach, consists
of connecting a measuring device to a target component and analyzing the
measurement results under various workloads. In addition to financial costs
and the high requirements for qualification of researchers, this approach also
has the disadvantage that its application is not always realistic, as to connect
an external multimeter to the power circuits of a real device without disturb-
ing its performance might be impossible. The idea of indirect approach is to
measure some characteristics indirectly related to power consumption (the
time the CPU is at a certain frequency, the number of instructions of one
kind or another in the workload), and convert them into power consumption
data using a mathematical model. This approach is much cheaper and less
demanding, but the accuracy of the estimate is directly related to the qual-
ity of the model [73]. The models that exist today do not fully describe the
behavior of modern heterogeneous CPUs. Thus, the task of creating new
models and methods for measuring the power consumption of the CPU of a
mobile device is relevant to assess the quality of the software modules that
optimize power consumption.

To date, several approaches have been developed to optimize the power
consumption of the CPU of a mobile device. X. Li, W. Wen and X. Wang
suggested to include special energy profile of a particular functionality in the
DVFS subsystem before using it [65]. The use of neural networks to predict
the optimal frequency in situations similar to the current one was successfully
used by Y.L. Chen, M.F. Chang, Ch.W. Yu, X.Zh. Chen, W.Y. Liang [19],
J. Lee, S. Nam, and S. Park [60]. Transformation of the current state of
the system, understood in a broad sense, into a predicted optimal frequency
using an empirically established formula, is researched in the works of K.
Poornambigai, M.L. Raj, P. Meena [81], L. Broyd, K. Nixon, X. Chen, H. Li,
and Y. Chen [14]. Among the standard modules included in the distribution
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of the Android OS for mobile devices, the task of optimizing CPU power con-
sumption is solved to a certain extent only in the schedutil governor, which
is a part of the EAS system developed by Linaro and ARM [54]. The fre-
quency is set in proportion to the estimate of energy load of heterogeneous
CPU cluster based on the estimated computational intensity of the tasks
assigned to each core of the cluster. This approach is more energy efficient
than the rule-of-thumb idea behind OnDemand and Interactive governors,
which do not take into account CPU power consumption. However, a com-
mon drawback of the proposed methods is insufficient elaboration of their
theoretical foundations, especially in application to heterogeneous CPU ar-
chitecture. An open question remains whether it is possible to further reduce
power consumption while maintaining the performance and responsiveness of
human-machine interfaces.

At the same time, an approach based on randomized recurrent stochastic
optimization algorithms has been developed since the middle of twentieth
century, which was initiated by the Robbins-Monroe and Kiefer-Wolfowitz
procedures [56,84]. This approach works well in many problems where mea-
surements of target functional are noisy as shown, for example, N.O. Amelina
and A.L. Fradkov in forming consensus on stochastic networks [5], by K.S.
Amelin in controlling a group of quadrocopters [4], by Yu.V. Ivansky in
solving the problem of differentiated consensus [6], by A.V. Gasnikov in de-
termining equilibria in transport networks [33]. A detailed description of
the approach is made in the monograph by O.N. Granichin and B.T. Poljak
“Randomized estimation and optimization algorithms for almost arbitrary
noise” [39]. In particular, one of the most general algorithms described in it
is called Simultaneous Perturbation Stochastic Approximation (SPSA) and
was researched by J. Spall [94], H.-F. Chen, T. Duncan, B. Pasik-Duncan [17],
O.N. Granichin [36, 37], B.T. Polyak and A.B. Tsybakov [79]. The idea be-
hind all variations of this algorithm is to approximate a gradient along a
randomly chosen direction, and therefore SPSA is a type of stochastic gra-
dient descent. The advantages of this approach include significantly weaker
restrictions on measurement noise and the target functional, compared to
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traditionally used methods. In particular, in [36, 37] the efficiency of the al-
gorithm is proved under almost arbitrary noise (for example, if the noise is
“unknown-but-bounded”).

The energy consumption optimization problem can be formalized in such
a way as to satisfy the constraints of these algorithms. An attempt at such
a formalization and an analysis of the obtained solution were published in
the article by O.N. Granichin and V.E. Krasnoshchyokov on the applicability
of stochastic optimization algorithms to optimizing the energy consumption
of an MP3 player CPU [41]. The single-measurement SPSA algorithm can
be applied to solve the problem of tracking the optimal operating frequency
of a single-core CPU under a load of 0 to 3 processes. However, the result
obtained does not scale to modern mobile devices with heterogeneous CPUs,
where the number of simultaneously running processes does not have an
upper limit. Until recently, there were no works devoted to the adaptation
of stochastic optimization algorithms for this case.

The listed trends and problems confirm the relevance of the topic of the
dissertation research.

The goal of the work is to develop mathematical methods and software
for modern mobile operating systems to solve the problem of managing the
energy consumption of a heterogeneous CPU when working in a wide range
of computing loads. To achieve this goal, the following tasks were formulated
and addressed:

1. Explore measurement methods and models for estimating the power
consumption of the CPU of a mobile device, including heterogeneous
architecture-based ones, and related features of program interaction.

2. Investigate the applicability of randomized algorithms for control, opti-
mization and estimation of parameters for mathematical methods and
OS software for managing energy consumption of a heterogeneous CPU
and develop control algorithms based on them.
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3. Create a DVFS module based on the developed control algorithms,
integrate it into a modern mobile OS and evaluate the quality of the
mobile device under its control, including human-machine interfaces,
in conditions of parallel data processing.

Research methods. The dissertation uses methods of control theory, theory
of optimization, theory of estimation, probabilities theory and mathematical
statistics; methods of system programming, stochastic optimization, random-
ized algorithms are applied.

Main results:

1. A model for estimating the power consumption of a CPU built on a
heterogeneous architecture is proposed and justified, taking into ac-
count the dynamic computational load and idle states management,
and practical recommendations for its application are given.

2. An approach has been developed for solving the problem of power con-
sumption management for a heterogeneous CPU based on randomized
stochastic optimization algorithms, within which medium risk function-
als for SPSA algorithms with one and two measurements are proposed
and justified. Theoretical validity of the estimates provided by the
developed algorithms is investigated and established within the limits
imposed by the features of the CPU operation.

3. DVFS modules have been developed that optimize CPU power con-
sumption, taking into account the peculiarities of its operation, based
on the proposed functionals and SPSA algorithms with one and two
measurements. A comparison with existing analogues has been made
on the basis of prepared test benchmarks running in the Android OS.
For modules based on SPSA algorithms with two observations, a cer-
tificate of state registration of computer programs has been obtained.

Scientific novelty. All main scientific results of the dissertation are new.
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Theoretical value and practical significance. The theoretical value of the work
is a study on the applicability of randomized stochastic optimization algo-
rithms for solving the problem of tracking the optimal operating frequency of
a heterogeneous CPU based on its power consumption model under arbitrary
computing loads and identifying various noisy measurements usage strategies
for them.

The developed software, as well as the principles behind it, can be applied
to solve similar problems of CPU frequency control based on other optimiza-
tion criteria. The introduced conceptual apparatus can be applied in the
development of energy-efficient software at both the applied and system lev-
els, as well as for supporting various software.

The system software created during the dissertation research increases
the energy efficiency of data and knowledge processing in computers with
heterogeneous CPUs and can be ported to other OS builds, as well as serve
as the basis for other DVFS modules.

Research validation. The results of the dissertation were presented at the
Fourth Conference on Software Engineering and Information Management
(SEIM’20) (St. St. Petersburg, Russia, May 16, 2020), at the Fifth Con-
ference on Software Engineering and Information Management (SEIM’21)
(St. Petersburg, Russia, April 17, 2021), at the IEEE 7th International
Conference on Event-based Control, Communication, and Signal Processing
(EBCCSP’21) (June 23–25, 2021, Krakow, Poland), at the 60th IEEE con-
ference on Decision and Control (CDC’21) (December 13–17, 2021, Austin,
Texas, USA).

The results of the dissertation were also utilized in research work sup-
ported by Russian Science Foundation (RSF) grant 21-19-00516 “Multi-Agent
Adaptive Control in Networked Dynamic Systems Applied to Groups of
Robotic Devices under Uncertainties” and St. Petersburg University grant
ID: 94062114.

Publication of Results. The main results of the research are reflected in the
works [12, 13, 73, 78, 88–90]. The applicant has published 8 scientific papers,
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of which one publication is a computer program registration certificate, six
published in publications indexed in the Scopus database, and two in a jour-
nals included in the list of peer-reviewed scientific journals in which the main
scientific results of dissertations for the degree of candidate of sciences should
be published.

[12,13,73,78,88–90] are co-authored. In [73] S.Yu. Sartasov was respon-
sible for the methodological and organizational support of the work, review
of sources and analysis of the results, co-authors — for an independent re-
view of sources. In [89] S.Yu. Sartasov provided general statement of the
problem, the architecture of the solution and methodological support, the
co-authors worked on the choice of solution methods and its programming.
In the works [12, 13, 88] O.N. Granichin provided general methodological
guidance, S.Yu. Sartasov contributed to general statement of the problem,
architecture of the medium risk functional and the solution as a whole, test-
ing methodology, processing of experimental results, other co-authors cre-
ated a test bench, provided more details to the medium risk functional, pro-
grammed the solution and test scenarios and conducted experiments. In [90]
S.Yu. Sartasov provided general statement of the problem, the choice of so-
lution methods, the architecture of the solution, the processing of the results
of experiments, the co-authors created test benches, programmed the solu-
tion and conducted experiments. In [78] O.N. Granichin provided general
methodological guidance, S.Yu. Sartasov provided general statement of the
problem, development of the medium risk functional, solution programming,
testing methodology, conducting experiments and processing their results,
M.A. Pelogeiko contributed to modifications of the medium risk functional,
programming of the solution, preparation of a test bench and experiments.

The program modules developed based on the results of the dissertation
research received an implementation acts by Lanit-Tercom LLC and fed-
eral state budgetary educational institution of higher education “Baltic State
Technical University “VOENMEH” D.F. Ustinov” (see Appendix A) and a
certificate of state registration of the computer program № 2023666564 dated
August 2, 2023 [91] (see Appendix B).
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Structure and volume of the dissertation. The dissertation consists of an
introduction, three chapters, a conclusion, a list of references, including 110
sources. The text occupies 90 pages, contains 3 figures and 12 tables.

Brief content of the work.

Introduction substantiates the relevance of the dissertation research,
formulates the goal, sets the research objectives, and summarizes the main
results.

First chapter describes the problem of measuring CPU power consump-
tion, followed by a literature review. Section 1.1 outlines the concept of en-
ergy consumption of mobile devices, defines the problem of optimizing energy
consumption, and considers existing approaches to solving this problem both
at the hardware level and at the level of operating systems and individual
programs and software systems. It is separately noted that the confirmation
of the quality of the solution is the comparison of the energy consumption
of the device or its component before and after its implementation. Section
1.2 discusses the methodology for conducting measurement experiments and
provides an overview of existing approaches to measuring energy consump-
tion. The difference between measuring and estimating energy consumption
is established. Existing approaches for CPU power consumption, their ad-
vantages and disadvantages are described, and a conclusion is made about
the advisability of creating a new evaluation model. Section 1.3 describes
and substantiates a new CPU power consumption model that takes into ac-
count the peculiarities imposed by a heterogeneous architecture and uses the
author’s approach to accounting for CPU idle time.

Second chapter explores the applicability of randomized stochastic opti-
mization algorithms to the heterogeneous CPU power management problem.
Section 2.1 introduces the basic concepts of the theory of stochastic optimiza-
tion, describes the most developed algorithms and their properties. Section
2.1.1 defines the medium risk functional and the problem of finding its op-
timum. Section 2.1.2 describes various variants of the SPSA algorithm and
related theoretical results, including validity of estimates. In Section 2.2, the
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connection between the problem of optimizing processor power consumption
and the problem of tracking changes in the optimal parameters of the non-
stationary medium risk functional is considered, and theoretical results in
this area for the SPSA algorithm are given. Section 2.3 develops the medium
risk functional for the SPSA algorithm with one noisy observation. Section
2.4 develops the medium risk functional for the SPSA algorithm with two
noisy observations. Subsection 2.4.1 defines the concept of program execu-
tion cost and, based on this concept, target function for the SPSA algorithm
with two observations is formed. Section 2.4.2 discusses various approaches
to obtaining noisy observations within the DVFS cycle.

Third chapter is about designing DVFS governors based on the prin-
ciples outlined in Chapter 2 and testing them. Section 3.1 describes the
technical aspects of programming the SPSA1 and SPSA2 governors for An-
droid OS. Section 3.2 presents the methodology and results of experiments
to evaluate the performance of the obtained governors. Subsection 3.2.1 is
devoted to testing the SPSA1 governors, subsection 3.2.2 — testing various
variants of SPSA2. Section 3.3 analyzes the obtained results and concludes
that the properties of the obtained governors satisfy the conditions of the set
goal.

Conclusion formulates the main results of the dissertation.
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Chapter 1. Heterogeneous Central Processing
Unit Power Model

This chapter introduces the basic concepts related to the architecture and
power consumption of modern mobile devices, discusses various approaches
to optimizing power consumption and how to measure or evaluate it, and
formulates a power consumption model for a heterogeneous central processing
unit (CPU).

1.1 Energy consumption of mobile devices

Mobile devices such as smartphones, tablets and smartwatches have be-
come an integral part of modern life. Digital services received through these
devices not only improve the quality of life, but also form new types of re-
lationships in society. The number of actively used smartphones is expected
to exceed 7 billion in 2024 [74]. Android is the most widely used operating
system (OS) for mobile devices today.

Mobile devices are electrical devices with an autonomous power source
(battery) first and foremost, and therefore they have a limited battery life.
From a physical point of view, lithium-polymer batteries used in modern
mobile devices are voltage sources. At a charge level above 90% the voltage
between the battery contacts is higher than the nominal voltage, from 90%
to about 20% the level of voltage produced by the battery changes little,
and then begins to decline sharply. Because of this, and due to additional
circuits, in practice the battery voltage of a mobile device is assumed to be
constant or slightly changing within the framework of the experiment. The



14

main characteristic of a battery is its capacity, measured in ampere-hours
(A·h). For example, a capacity of 4000 mA·h means that the battery can
provide a current of 4 A at its nominal voltage for one hour, while increasing
or decreasing the current proportionally reduces or increases the operating
time [10].

Different modes of operation of mobile device components such as the
CPU, display, Wi-Fi and Bluetooth® wireless modules, graphics card, etc.
have different power consumption levels. In particular, the CPU has the
ability to switch between operating frequencies, and the lower the selected
frequency, the lower the power consumption. The power consumption of
the screen is the sum of the costs for the formation of pixels of a certain
color and the backlight of the screen. Backlight power consumption grows
exponentially with brightness levels, however, the PenTile pixel arrangement
for AMOLED displays uses more power when displaying green images com-
pared to red and blue images due to twice the number of green subpixels
per pixel [16]. Wireless communication modules load the battery much more
heavily in network search and connection establishing modes compared to sta-
ble network operation on a finalized configuration, which leads to increased
power consumption in a situation of unstable network connectivity [90].

System software and applied software use the components of the device
differently, but due to the use of the CPU, any computing load inevitably
drains the battery. Thus, the task of increasing the battery life of a mobile
device is essentially the task of optimizing power consumption. Additional
relevance to the problem is also added by the fact that electrochemical bat-
teries used in mobile devices available on the market degrade over time, that
is, their maximum capacity decreases with each recharge cycle [10]. There-
fore, the additional economic effect of solving this problem arises not only
due to a decrease in the energy consumed when recharging mobile devices
over time, but also due to the ability to increase the time before buying a
new mobile device, for the reason that the battery life of the old one has
decreased to unacceptable level.
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On the other hand, from a user point of view, it is important to maintain
the comfort of using the device, regardless of the chosen energy management
strategy. Since a decrease in power consumption is associated with a de-
crease in performance, then, informally speaking, the goal of optimization is
to make the device to consume as little energy as possible while remaining
as comfortable as possible for the user. However, due to the fact that the
concept of “comfort” cannot be objectively formalized, within the framework
of various approaches to solve the problem more formal optimization crite-
ria are created, which, according to their authors, are associated with this
concept.

The classic approach to solve the problem of increasing battery life is to
physically increase the capacity of electrochemical batteries, and significant
progress has been made in this direction over the past 25 years: nickel-
cadmium batteries used in handheld computers in the early 2000s had a
capacity of about 1000 mA cdoth, while the typical capacity of lithium-
polymer batteries in modern smartphones is 3500-4000 mA·h [10]. Another
widely used scheme is to turn off or put to sleep (hibernate) a component
of a mobile device if it is not used for a long time — in this state, its power
consumption is considerably less. The result of this approach is most often
noticeable when, after some time, the screen of an unused mobile device turns
off, but the drivers for both wireless modules and graphics cards still work [3].

At the applied software level, energy optimization is achieved by intro-
ducing energy profiles into applications — sets of configuration values that
are applied at a certain charge level [86]. For example, when the charge level
reaches 20%, the application starts using the geopositioning module (GPS)
once every 5-60 seconds instead of constantly. To conserve battery power,
dark UI themes may be used instead of light UI themes [24]. A separate
area of research is the processing of computing tasks not on the device itself,
but in the cloud infrastructure with the transfer of results back to the device
— the so called offloading scheme [20, 107], which is complemented by the
spread of the serverless application architecture [77].
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A significant attention is paid to energy consumption issues in the system
software. If a mobile device component has technical capabilities to optimize
power consumption, such capabilities are actively used at the operating sys-
tem level.

Modern CPUs are capable of entering an idle state, during which the
execution of any programs is suspended. Multi-core processors can put one
or more of their cores into an idle state while other cores remain active.
In the idle state, power consumption is reduced by turning off some of the
processor hardware components. The deeper the state, the more components
are disabled, however, this increases the time it takes to get back to the active
state. In terms of Linux and Android OS, the total delay to enter an idle
state and the minimum time that the hardware will be in it is called target
residency.

For example, a dual-core ARM CortexA9 processor has the following idle
states, in order of increasing depth [69]:

• C0 – active state.

• C1 – most processor timers are off. Exit delay is 4 µs.

• C2 — CPU is turned off, Memory Protection Unit (MPU) is turned on
to protect critical data, core is inactive. Exit delay is 1100 µs.

• C3 - analogous to C2, but the core is in CSWR mode. Exit delay is
1200 мкс.

• C4 - analogous to C3, but the core is in OSWR mode. Exit delay is
1500 мкс.

Usage of CPU technical ability to enter a certain idle state depends on the
mobile system-on-chip and OS, therefore there are mobile devices available
on the market that can only enter the C1 state, while the installed CPU
supports deeper idle states.
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An idle state governor is a module in the Android OS kernel that can
monitor the current state of the system and send a signal to the CPU to
enter or exit some idle state for one or more of its cores. There are several
generic controllers available on Android devices and the default algorithm is
menu. This governor tries to predict the current idle duration, then adjusts
the resulting value based on a number of factors, and then tries to find the
deepest idle state given the target residency and exit delay. The current idle
length prediction is based on the history of previous idle length.

The installation of multi-core processors on mobile devices made it pos-
sible to implement true multitasking in mobile operating systems. Many
multi-core processors have a homogeneous architecture, that is, the process-
ing capabilities of each core are the same. Current OS task schedulers that
support this CPU architecture do not include scheduling disciplines aimed at
optimizing power consumption. These include the Completely Fair Scheduler
(CFS). The situation has changed significantly with the advent of multi-core
CPUs with a heterogeneous architecture. An example of such an architec-
ture is big.LITTLE from ARM [45]. All present cores are divided into several
clusters, and the cores are homogeneous only within their cluster. Therefore,
it becomes possible to run programs that are undemanding to computing re-
sources on weaker, but energy-efficient cores (the so-called “LITTLE”), while
more computationally powerful and energy draining cores (“big”) are used for
high priority or resource-intensive tasks.

Energy-aware scheduling (EAS) [54] is a task scheduler that can only work
properly on systems with heterogeneous CPUs. It was developed for Linux
OS but is also supported in Android. EAS uses normalized energy models
for the cores of each cluster, taking into account the available frequencies and
power consumption. It is sufficient to simulate the energy behavior for one
core of the cluster, since the cores inside the cluster are homogeneous, and in
real systems-on-a-chip, power supply and frequency control is carried out for
all cores of the cluster simultaneously and unified. When a task needs to be
scheduled, EAS chooses the core to run that task in such a way that the CPU
power consumption increases as little as possible. EAS runs as long as CPU
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usage is below 80%, otherwise CFS is used until the load is reduced. Unlike
classical schedulers, in order to achieve power savings, EAS must be able to
give control signals to CPU clusters, which is done in other OS modules that
are also considered part of EAS.

One of the most developed approaches is Dynamic Voltage Frequency
Scaling (DVFS) [103]. The CPU is capable of operating not at a single
frequency, but in a certain range. This range is limited from below by con-
siderations of user convenience, and from above by issues with heat dissipa-
tion, since heat generation also increases with increasing frequency. Since
the existing heat dissipation mechanisms are limited both in terms of power
consumption and size, the main way to cool the processor of a mobile device
is air cooling. At the time of writing, the limit of the frequency range in
which heat dissipation can be effectively dissipated by air cooling is about
2 GHz for models available on the market. Although in general the power
dissipated by the processor is proportional to the cube of the operating fre-
quency, in the discussed range the relationship between power consumption
and frequency can still be approximated by a linear function.

The DVFS governor is an algorithm or an OS module that implements
it1 that monitors the current state of the device and sends CPU signals to
increase or decrease the operating frequency according to some strategy. It
should be noted that the signal of the DVFS governor is advisory, and the
CPU can respond to this signal with a noticeable delay from the point of
view of the governor.

There are a number of publicly available DVFS governors for Android
OS. Some of them are specific to this OS, while others were originally used
in the Linux kernel [23]:

• Powersave. This governor sets and holds the lowest available frequency.
It saves the most energy but delivers the worst performance.

1Hereinafter, in the context of theoretical analysis, the DVFS governor will be understood as an
algorithm, and in the context of practical implementation — an OS module
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• Performance. This governor works exactly the opposite: it sets the
maximum frequency for best performance at the cost of maximum
power consumption. Performance and PowerSave correspond to two
extreme optimization strategies and are often used as reference algo-
rithms for comparison.

• OnDemand. This governor sets the CPU frequency in proportion to
the maximum load, defined as the ratio of active CPU time to total
running time among the CPU cores observed between governor calls,
allowing the device to respond to changes in computational activity.
When a certain CPU load threshold is reached (default is 80%), the
maximum frequency is set until the load drops below the threshold
again.

• Conservative. This governor is a continuation on OnDemand ideas: it
increases the frequency when there is activity on the CPU, and reduces
to a minimum gradually, rather than in spikes typical for OnDemand.

• Interactive. This governor is designed specifically for the Android OS
and takes into account the fact that if the user starts interacting with
the device, he will continue to do so for some time. The operating
frequency still depends on the load level, but this level is estimated
not only after a fixed time has elapsed, but also when certain hardware
interruptions occur, which include those resulting from user interaction
with the device, for example, from touching the screen.

• schedutil. This governor is designed to work exclusively with the EAS
task manager. Its basic idea is the same as in OnDemand, but the load
definition is based on the EAS energy model, rather than the ratio of
active time to total time.

There are also conceptually different approaches to this issue.

Unlike EAS, which uses a static energy model, AdaMD implements a
scheduling routine that regularly checks the status of the various device re-
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sources required by currently running processes and reassigns them to more
appropriate cores as needed [9]. Compared to other approaches that bind
threads to cores, this method saves up to 28% of energy while meeting 95%
of performance requirements.

In recent years, the application of neural networks for building general-
purpose DVFS governors has been actively researched. For example, the
“long short memory” effect of a recursive network can be used to avoid the
gradient damping problem, since control signals should only be generated for
data received within a recent time [60]. This network architecture reduces
processor power consumption by up to 19% compared to standard DVFS
algorithms.

The DVFS governor could be built using other optimization criteria than
performance or energy efficiency. The temperature of the CPU chip is an-
other important factor, as an increase in temperature leads to an increase
in power consumption. By using a neural network in the DVFS loop, the
average chip temperature can be reduced by 18 °C with minimal execution
overhead and comparable performance [83]. Chip temperature can be com-
bined with power efficiency as an optimization criterion, and using a deep
learning neural network with reinforcement to determine the CPU tempera-
ture and estimate the ambient temperature can result in a 23.9% reduction in
power consumption while maintaining the required level of performance [58].

DVFS algorithms can also be built to be used with specific applications,
rather than for the general case. For example, a DVFS governor for aug-
mented reality applications that takes into account frame rate and response
time requirements can theoretically reduce power consumption by 80%, but
this has not yet been experimentally confirmed [93].

DVFS is also used for the Graphical Processing Unit (GPU), which is
used to offload a number of computational tasks, most often associated with
graphical algorithms, from the CPU. It can also operate at different frequen-
cies, so there exist a concept of a single DVFS algorithm for both devices.
The rules-based model can reduce power consumption by 18.11%, and the
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frame rate of the smartphone is reduced by 3.1% [75]. Another approach is
to combine load, energy, and temperature data for the CPU, GPU, and op-
erating memory, and assign a frequency to each component using a common
priority list. This method saves at least 26.8% of energy compared to default
regulators and modern approaches [25].

Existing approaches are not without certain drawbacks. To begin with,
it is worth noting that the adaptation of existing DVFS governors, including
classical ones, to work on a heterogeneous CPU architecture is done by in-
terpreting each homogeneous cluster as a separate multi-core processor. Due
to the circuitry features of both crystals and systems-on-a-chip, the same op-
erating frequency is set for all cores within a single cluster. Thus, in theory,
the result of the governor operation at each iteration of the DVFS cycle is
the operating frequency from the list of frequencies available for the cluster,
at which it will operate until the next iteration, where it may change. In
practice, among the considered governors, none of them takes into account
the fact that the cluster can switch the frequency for a longer time than the
duration of one iteration of the DVFS cycle, which makes certain iterations
of DVFS loop meaningless. For example, it was found during this study that
although the typical nominal DVFS cycle length in Android OS is 10ms, the
actual switching time of Helio G90T CPU clusters can reach 30ms. Thus,
upon a successful request to switch the frequency at some iteration of the
DVFS cycle, the results of up to two subsequent DVFS cycles are ignored.
From a technical point of view, it would be useful to take this fact into
account in the work of governors.

Another problem is the fact that classical algorithms like OnDemand,
Interactive and EAS+schedutil optimize power consumption based on em-
pirical observations and models, including the load change model. The main
goal of the dissertation research was to build a DVFS governor based on the
principles of operation with proven validity of estimates to the optimal value
under uncertainty of load from one iteration of the DVFS cycle to the next.



22

1.2 Measurement and evaluation of energy
consumption, methodology of experiments

Methodologically, the comparison of two DVFS approaches in terms of
power consumption optimization is done as follows: on the same device,
which is in the same state before the start of the experiment, the same
sequence of actions is performed in order and in time, while the OS processes
are launched at the same time and the trace of their execution is the same.
After that, data is collected about the power consumption of the device or
its individual component during the passage of the sequence of actions. Such
an experimental methodology requires the solution of a number of issues.

First of all, it is impossible to achieve a perfect match between the state
of the device before the start of experiments and during operation due to the
inability to control a number of factors. For example, triggering a hardware
interrupt can affect the distribution of tasks between cores by the OS task
scheduler. In the literature, there is a vision of how to minimize the influence
of external factors before and during the experiment [73]:

• Using automated tests instead of manual ones [22].

• Reducing the activity of background processes (both system and non-
system) [15,46,53,76,85,102].

• Increase the system priority of the application that is the target of the
experiment [46].

• Reduce screen brightness or turn it off completely [15,47,49,52,76,85,
98].

• Disable all unused device components (Wi-Fi, 4G, GPS, accelerometer,
range finder, etc.) [1, 15,53,76,87].

• Charging the battery to the same level [8, 15,98].
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• Turning off the device to cool the battery [15].

• Warming up by executing tests without measuring power consump-
tion [72].

• Waiting before starting a new test to end or reduce the activity of
background processes [28,85].

• Reinstalling the application under scrutiny [47].

• Clearing the cache of the apps in question [26,85].

• Reboot device [87].

• Factory reset [8, 87].

Nevertheless, it is impossible to completely avoid the influence of all exter-
nal factors on the conduct of the experiment, so they are carried out several
times and the measurement results are statistically processed.

From an experimental point of view, making a device to use a different
DVFS algorithm is well isolated from other factors due to the organization
of the DVFS system in the Android OS.

A much less straightforward issue is how to measure the power consump-
tion of a device or its individual component. From a conceptual point of
view, existing approaches can be divided into two classes:

• Direct measurement approaches directly measure the energy con-
sumption of a device or component using special equipment.

• Indirect measurement approaches measure some secondary met-
rics related to the energy performance of the device and estimate the
resulting energy consumption based on them. Indirect methods are
always based on some model that relates the measured metrics and the
resulting energy consumption, so this class of approaches can also be
called model-based.
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In direct measurement approaches equipment is connected to the
target device to measure voltage, current, or power. Such approaches work
with physical devices and fundamentally cannot work with emulators. Within
this class of approach, the following can be distinguished:

External measuring device: A digital multimeter is connected to the bat-
tery contacts of the device or to the power circuits of the component of
interest, which is much more complicated. Sometimes, in order to compen-
sate for the voltage drop in lithium polymer batteries during discharging and,
therefore, to normalize the power values, instead of the battery, the device
under test is powered from an external voltage source. Within the framework
of the scenario (script) of the experiment, both the considered application or
unit test and the recording of power measurements are launched. Since the
multimeter works in discrete time and averages the current or power over
the past cycle, the total power consumption can be estimated using linear
interpolation:

E =

Nread−1∑︂
i=1

Ui ·
Ii+1 + Ii

2
· (ti+1 − ti),

where E — total energy, Nread — number of multimeter measurements, Ui —
i-th voltage measurement, Ii — i-th current measurement, ti — timestamp
of the i-th measurement. Some multimeters can record the timestamp di-
rectly, for others the difference ti+1 − ti can be defined as the reciprocal of
the multimeter frequency. Step interpolation can be used instead of linear
interpolation.

If a more detailed measurement is needed, for example, at the level of
energy consumption of individual program methods or code blocks, then
the source code is supplemented with instructions for logging the beginning
and end of the method body or code block (instrumented), and two data
traces are recorded — power readings and an execution trace applications, as
described by Couto et al. [22]. In this case, before starting experiments, the
system clock on the device and the multimeter or control computer must be
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synchronized. The power readings can then be compared to the execution
trace to get an idea of the power consumption of a method or block of code.
Since instrumentation of the application requires additional program code,
the energy costs of its execution must be estimated and subtracted from the
final result [15, 21,27,47,57,59,63,97,105].

Internal measuring device: This approach uses the internal power meters
installed on the device by the manufacturer and the Android OS API to
access them. Often the configuration of the measuring device is such that the
energy consumption of the device as a whole is measured, so the measurement
of the energy consumption of an individual component requires additional
methodological processing of the experiment. An external voltage source can
also be used instead of a battery. Since the device and the power sensor use
the same system clock, there are no time synchronization issues. Requests for
power readings may be part of the instrumentation code. The methodology
for obtaining the total value of consumed energy does not differ from that
for the external meter approach [18,31,51,53,59,102,105].

It should be noted that the listed strategies are aimed at measuring the
energy spent by the device or individual components, but changing the bat-
tery level allows you to estimate the amount of energy given to the device,
especially since such sensors are generally available on mobile devices. In
practice, measuring the battery charge level is less preferable than measur-
ing the energy spent, for the following reasons:

• Accuracy of estimation of charge sensors up to tenths of a percent is
insufficient for experiments lasting seconds and minutes.

• Each battery charge cycle reduces its actual capacity, so a change in
charge by 1% can mean a significantly different amount of energy de-
livered even within the same series of experiments. The initial and
subsequent determinations of the actual battery capacity require addi-
tional labor.

Summing up direct measurement approaches, it should be said that their
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main advantage is exactly the measurement of the energy consumption of a
particular physical device, and not an estimate. The main disadvantages are
the financial cost to the experimenters and the higher skill level required to
build the test bench2. In addition, the methodology of experiments within
the framework of this approach should take into account a number of features
of working both with multimeters and with the devices themselves:

1. Even within the same device model, different devices exemplars may
have different power consumption. Although in the documented cases
it did not affect the internal consistency of the results of experiments on
one device, nor the general conclusions for all devices, this risk should
potentially be taken into account [110].

2. Connecting measuring tools to a device is very difficult if you need to
measure the power consumption of a single component, — up to the use
of specialized boards for testing, for example, Odroid-A [92], instead
of a real device. Since the hardware configuration of such boards is
made similar to mobile devices available on the market, and they use
typical versions of mobile operating systems, such a device replacement
for testing is legitimate.

3. The operating frequencies of modern processors and peripherals are
in the gigahertz range. However, the measuring instruments used in
the literature operated at much lower frequencies. The maximum fre-
quency of 100 kHz is documented by Wilke et al. [105,106], other works
use multimeters operating below 10 kHz. Because multimeters aver-
age current between clock pulses, shorter duration power peaks can be
smoothed out to levels of measurement error and go unnoticed. The
following methods of taking this phenomenon into account in the ex-
perimental methodology are known in the literature:

• Mittal et al. [71], Dolezal and Becvar [28], Saksonov [87], Pandiyan
2Although no experimental devices were damaged during this study due to improper assembly of the

test bench, the risks of such a development and subsequent material loss were quite real.
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and Wu [76] disabled DVFS or set the operating frequency to a
constant level, thus making the CPU power consumption more
stable. This method is not suitable if the purpose of the experi-
ment is to compare the power consumption of a device controlled
by different DVFS modules.

• Hung et al. [50], Yoon et al. [109], Zhang et al. [110] include CPU
frequency data as additional input into a formula for estimating
total energy consumption.

• Couto et al. [22], Li and Gallagher [64] set the test run time so that
the duration of the test will average out the power consumption
estimate even when using low-frequency equipment.

• Larsson and Stigelid [59] adjust how often the internal multimeter
is accessed for power consumption data depending on the duration
of the test. According to the results of this study, the use of this
approach is recognized as counterproductive and is not recom-
mended, since for Wi-Fi and Bluetooth modules, an exponential
dependence of the recorded power consumption of an electronic
component on the frequency of accessing the internal multimeter
was experimentally shown. Nevertheless, after calibration, one
can enter a correction factor that will eliminate the influence of
this phenomena [90].

Indirect measurement approach (or model-based approach) assumes
that the profiling software collects some information about code execution
and relates it to energy consumption through a mathematical model. The
work is carried out in two stages: model calibration and energy consumption
estimation. In the first step, the coefficients of the model are determined or
adjusted using auxiliary experiments or reference data. As mentioned above,
this is important not only for different device models, but also for different
devices of the same model [47]. Once the model is configured for the device, it
can be used to estimate power consumption based on indirect data obtained
during the experiments.
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Depending on the type of input data, models can be classified as follows:

Working time models : In this approach, the result of experiments is in-
formation about the operating time of various components of the device [7,8,
22,26,28,32,49,50,52,57,61,62,68,71,85,87,92,98,109,110]. Different operat-
ing modes may have different power consumption profiles. For example, the
Wi-Fi module consumes a different amount of power in standby mode, when
searching for a network, and when transmitting data over the network, and
in the case of the screen, different levels of power consumption at different
levels of backlight intensity could be considered as such profiles. The energy
consumption estimate is calculated as

E =

Ndev∑︂
i=1

NPi∑︂
j=1

Pij · tij,

where E — total energy, Ndev — number of smartphone components included
in the assessment, NPi

— number of energy consumption profiles of the i-th
device, Pij — average value of power consumption for j-th operating mode of
i-th device, tij — total operating time of i-th device in j-th operating mode.

During the calibration phase, experiments are carried out to determine
the energy profiles for individual components using one of the direct mea-
surement approaches. From a conceptual point of view, both external and
internal measuring instruments are suitable. Linear regression is applied to
extract the power parameters used as weights. At the same time, device man-
ufacturers themselves can indicate data on the power consumption of devices
in a special file of power profiles (power profile) of the Android OS [82].

To estimate power consumption, the experiments measure the active time
of each device of interest during the execution of the test load. Certain tech-
nical inconveniences arise due to the fact that various components report
their operating time differently, for example, in the Android OS, the CPU
stores information about the time spent at various operating frequencies in
the proc folder, and the Wi-Fi module generates system events when switch-
ing from one energy profile associated with the current state of the component
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to another. Additional correction factors can also be included in the model,
such as corrections for the battery discharge rate [92].

Instruction energy consumption models : This group of models estimates
power consumption by correlating individual instructions or groups of CPU
instructions — conditional statements, loop control instructions, method
calls, integer operations, floating point operations, etc. — and the energy
spent on their execution [2, 46,64]. Energy consumption is calculated as

E =

Ninstr∑︂
i=1

Pi · ni,

where E — total energy, Ninstr — number of different instructions or groups
of instructions in the model, Pi — power consumption of one i-th instruc-
tion or instruction from i-th group, ni –— number of the i-th instruction or
instructions from the i-th group in the executed code.

Model calibration is performed by measuring the power consumption of
each instruction type in synthetic benchmarks using a direct approach. The
total energy is calculated based on the statistics of instructions in the execu-
tion trace of the experiment code. It should be noted that the actual launch
of the test code under the Android OS is not required if it does not require
a call to the Android API. Instruction statistics may be aggregated in any
suitable environment.

Energy models for method or API calls : This approach is similar to the
previous one, but instead of a power profile for a single instruction, the
power consumption of a system call, an API call, or a software framework
method is calculated [30,48,72,104]. Models in this approach are built on the
assumption that most of the time and energy is spent outside the application
code, and so one can get a pretty good estimate of the application power
consumption by analyzing its API usage.

Summarizing the various options within the indirect measurement ap-
proach, it should be noted that in practice, working time models are used
more often than other types of models. On the one hand, this is due to the
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fact that the time spent by a device component in any state is quite simple to
register, and the Android OS has already implemented the corresponding API
for various components. On the other hand, the power consumption mod-
els of instructions and methods do not take into account all the nuances of
the CPU architecture, for example, pipelining, shared caches between several
CPU cores, preemptive multitasking hardware technologies, for example, In-
tel HyperThreading [66], etc., and therefore their accuracy should be treated
with caution. However, the argument about the accuracy of model calibra-
tion is generally valid for the entire approach, since any model relies in one
way or another on direct measurements. The undoubted advantage of the
approach is its cost and lower demands on the qualification of experimenters.

Google, which supports the Android operating system, recommends using
the working time model to estimate CPU power consumption [67]. According
to this model, the CPU, operating at a certain frequency, consumes a con-
stant (averaged) current at a constant voltage. Therefore, the total energy
is estimated as

(1.1) E = U

nf∑︂
i=1

I(fi) · tfi,

where nf is the number of frequencies available to the CPU, fi is a specific
frequency, I(f)i) is the current consumed at that frequency, tfi is total time
the CPU has been running at fi. Moreover, the equation can easily be
extended to a heterogeneous architecture:

(1.2) E = U

nc∑︂
c=1

nc∑︂
i=1

I(fci) · tfci,

where nc is the number of heterogeneous architecture clusters, and frequencies
and times are taken into account for each cluster separately.
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Table 1.1: Xiaomi Redmi Note 8 Pro CPU clusters frequencies
A55 A76

f (Hz) I (mA) I/f (mA/GHz) f (Hz) I (mA) I/f (mA/GHz)
2000000 90.04 45.02 2050000 324.33 158.21
1933000 85.8 44.39 1986000 307.98 155.08
1866000 80.27 43.02 1923000 291.52 151.60
1800000 72.77 40.43 1860000 269.61 144.95
1733000 66.61 38.44 1796000 247.53 137.82
1666000 62.05 37.24 1733000 233.56 134.77
1618000 58.95 36.43 1670000 209.73 125.59
1500000 52.33 34.89 1530000 177.39 115.94
1375000 44.83 32.60 1419000 152.46 107.44
1275000 39.69 31.13 1308000 130.33 99.64
1175000 35.5 30.21 1169000 105.19 89.98
1075000 31.24 29.06 1085000 91.11 83.97
975000 27.86 28.574 1002000 79.53 79.37
875000 25 28.571 919000 70.65 76.88
774000 23.5 30.36 835000 61.38 73.51
500000 19.55 39.10 774000 56.85 73.45

The data for the equation (1.2) is available in Android OS. In particular,
the tfci values for each core are stored in special time-in-state files in
the /sys directory. Time data is stored line by line for each frequency in
the format “<frequency><time>”. The number of rows is ncf . Since CPU
clusters are registered within OS as separate processors, the composition and
content of lines in time-in-state files varies from core to core, depending on
the clusters they belong to. Time is measured in 10 ms increments and starts
from the moment the corresponding OS driver is started or restarted. The
weights I(fci) are stored in the power profile file power_profile.xml in mA,
as mentioned above. According to the Google specification, this file must be
included by the manufacturer within the Android OS build on the device,
but, unfortunately, manufacturers often neglect to do so [89]. However, if the
file does not exist on the selected device, constants from other devices with
the same CPU model and the same or similar cluster topology will do. An
example of the contents of such a file for the CPU is presented in Tab. 1.1.
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In general, the estimate of power consumption in mA·h is not complete
due to the non-constant voltage. But since it is assumed that in the case
under consideration the voltage on the CPU is constant, this constant factor
is neglected. Moreover, the nominal voltage of mobile CPUs in the current
market is 1 V, so the estimate obtained from this model in mA·h and con-
verted to A·s, in practical terms, turns out to be numerically equal to the
estimated power consumption in J.

1.3 Building a power consumption model for
a heterogeneous CPU

As noted above, although Google’s basic power consumption model finds
its way into research papers, it does not take into account time when the
CPU is idle. Moreover, a study of the source code of the Linux and Android
OS kernels showed that the contents of the time-in-state files are formed
without taking into account the operation of the idle state governors. To
solve this problem, the following modification of the basic model is proposed.

The (1.2) equation implicitly assumes that the CPU, being at a certain
frequency, consumes constant power, regardless of whether it is actively com-
puting or not. This assumption is confirmed by the implementation of the
so-called idle task. When the OS scheduler fails to schedule an active task
for the core, but the core is in the C0 (active) state, the scheduler assigns a
special idle task that consists of a sequence of NOP (No Operation) instruc-
tions. However, the idle state C1 already turns off the core timers, and no
computational task can be processed on it. Considering that only C0 and
C1 states were available on all devices used in this study, and the fact that
the modern implementation of a heterogeneous architecture implies the pres-
ence of several clusters, all cores within which operate at the same operating
frequency, the equation (1.2) can be changed like this:
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(1.3) E =

Ncl∑︂
i=1

Eidlei(t) +
Ncl∑︂
i=1

Ui ·
Nfi∑︂
j=1

Ii(fj) ·
Ncoresi∑︂
k=1

tfjk,

where Ncl — number of core clusters, Eidlei(t) — energy consumed by the
enabled CPU cluster in the absence of active computing processes, Nfi —
number of available frequencies in the i-th cluster, Ui — nominal voltage of
the cores in the i-th cluster, Ii(f) — nominal current for the core in the i-th
cluster operating on selected frequency f , Ncoresi — number of cores in i-th
cluster, tfjk — time spent by k-th core i- th cluster at the jth frequency.

It can be seen that the proposed model differs from Google’s base model
in that instead of cluster-wide power constants, individual core power con-
stants are used. The justification for the legitimacy of such a replacement is
the following experiment with the Samsung Galaxy A3 (2016) smartphone,
which has an Exynos 7578 processor with 4 Cortex-A53 cores and a maxi-
mum clock frequency of 1.5 GHz [88]. The battery power was changed to
a 3.85 V DC supply and an ammeter was added to the circuit. Cores 2
through 4 were disabled using Android OS system calls, while the first only
handled background processes. Peripherals have been disabled or put into
power saving mode. Then, an infinite computational cycle was launched on
the first core (decomposition of an infinite sequence of natural numbers into
prime factors by brute force). The thread executing the program was pinned
using Android OS system calls to run on the first core only. Then, with-
out stopping the first thread, the second core was turned on, and the same
program was executed with pinning to it. So the cores were switched on
sequentially up to the fourth and the current was measured. The experiment
was run in two stages — with the Performance governor and the Powersave
governor to maximize and minimize performance and power consumption.
The measurement results are shown in Fig. 1.1.

It is worth noting that point 0 corresponds to the basic power consump-
tion of the entire device at rest and the flow of background processes. Such
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Figure 1.1: Power consumption of the Samsung Galaxy A3 (2016) smart-
phone depending on the number of active cores

a power consumption graph was obtained for any order in which the cores
were turned on. It can be seen from the graph that although the dependence
of power consumption on the number of active cores is not strictly linear,
from an empirical point of view, it is quite close. Therefore, in this study,
the transition from cluster-level power consumption constants to single-core
level power consumption constants is considered justified and, in the absence
of more detailed information about the operation of the cluster, is made by
simply dividing the corresponding cluster constant by the number of cores in
it.

This model is more complicated than the model described in (1.2), but
for a number of practical reasons it can be simplified. The first term as-
sumes that the idle power consumption of each cluster is linearly dependent
on the operating time. Although it is logical to assume that for a more
accurate calculation of idle state power consumption, it is necessary to di-
vide Eidlei(t) into two parts (baseline CPU power consumption and C1 state
power consumption for each core), due to the lack of information about the
baseline CPU power consumption profile and about the C1 profile both in
power_profile.xml and in the publicly available CPU and system-on-a-
chip specifications for the devices used in this study, we omit this term from
further analysis.
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Next, evaluation of

Ncoresi∑︂
k=1

tfjk

seems redundant, since the cores of the same cluster always operate at the
same frequency. However, this term is necessary when we are trying to
evaluate the effect of deep idle states on power consumption.

Although the idle state stops the CPU core timers, it does not change
the operating frequency of the core itself, i.e. a core running at 1 GHz before
entering the idle state will continue to operate at 1 GHz after exiting the idle
state, if the operating frequency the entire cluster has not changed during
this time. The original assumption was that the idle governors put the core
into one of the idle states, when there are so few tasks that the scheduler
cannot load all the available cores, and in such a situation the DVFS governor
sets the minimum operating frequency for the cluster. Therefore, the original
idea of the model was to subtract the idle time in C1 from the time spent by
the core at the lowest frequency:

E =
Ncl∑︂
i=1

Ui · (
Ncoresi∑︂
k=1

Ii(f1)(tf0k − tidlek ) +

Nfi∑︂
j=2

Ii(fj)tfjk),

where tidlek is the time spent by the k-th core in the idle state. However, this
assumption was not confirmed, since during the experiments situations were
found when tf0k < tidlek . This means that the OS put the kernel to sleep at
a frequency other than the minimum. This phenomenon can be explained
by the fact that under specific conditions, when switching the operating
frequency of the cluster can take even longer than the length of the target
residence, and the load on an individual core during the last DVFS cycle can
be 100%, a number of DVFS regulators may not have reasons to lower the
frequency for the cluster to the minimum. For example, this is how the DVFS
OnDemand governor and the menu idle governor can interact. OnDemand
controls the frequency of the entire cluster, so its estimate of the cluster load
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is defined as the majorant of the load of all cores of the cluster, which means
that in a situation where only one core is loaded, the governor will set a high
frequency for the entire cluster. At the same time, menu can put low load
cores to sleep.

While it is technically possible to modify the Android OS kernel and keep
track of what frequency the kernel has been suspended at, this is quite ex-
pensive. Each individual build of the Android OS may require to modify the
same functionality in different ways. To implement a simpler approach, it will
be assumed that idle state management does not depend on the operation of
the DVFS governors, but depends on the operation of the OS task scheduler,
and the kernel can be put into sleep mode at any frequency at any time. As
part of the modified power consumption model, it is proposed to subtract
from each individual time spent by the core at a particular frequency such
a share of the total idle time that this time at a frequency is from the total
operating time:

E =
Ncl∑︂
i=1

Ui ·
Nfi∑︂
j=1

Ii(fj) ·
Ncoresi∑︂
k=1

(tfjk − tidlek

tfjk∑︁Nfi
m=1 tfmk

).

This approach is not precise, but gives a good estimate of actual power
consumption. However, data on the idle time is easy to obtain from the
Android OS in the same way as information on the time of operation of the
cores at a certain frequency. Since this model was developed in the second
half of the study, both the original base model and the modified model are
used to present the results.
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Chapter 2. Randomized stochastic
optimization algorithms in the problem of

optimizing the power consumption of a mobile
device

This chapter provides an overview of randomized stochastic optimiza-
tion algorithms and shows their applicability to the design of energy efficient
DVFS governors. The concept of the cost of program execution is intro-
duced, and for various variants of the algorithm of simultaneously perturbed
stochastic approximation, target functionals of the average risk are intro-
duced.

2.1 Randomized algorithms of stochastic
optimization

2.1.1 Medium risk functional

In many control problems, the behavior of the target system can be de-
scribed in an empirical quality functional, the averaging of which determines
the medium risk functional. Based on the extrema of this functional, the
choice of optimal control action is carried out.

More formally, let the probability distribution Pw(·) generate a sequence
of p-dimensional random vectors {wn} from Rp. Then finding the minimum
of the function f(·) minimizes the mean risk functional if the function has
the form
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f(x) = EwF (x,w) =

∫︂
Rp

F (x,w)Pw(dw),

where F (x,w) : Rq × Rp → R — loss function differentiable with respect to
the first argument, Ew{·} — expected value of Pw(·).

When the distribution function Pw(·) is unknown, the problem can be at-
tempted to be solved in cases where it is possible to observe (measure) either
values of the function F (xn, wn), or values of the gradient vector ∇xF (xn, wn)

at given points {(xn, wn)}, possibly with additional noise. It is assumed that
the experimenter can set or observe the values of the sequence {xn}, and the
corresponding values of the sequence of random variables {wn} from Rp are
generated by the same distribution Pw(·). In this case, the values of {wn}
may be unknown to the experimenter, or he cannot influence them.

Measurements of the values of the function F (xn, wn) in general case can
be made with some additive error vn ∈ R (observation noise). If the distur-
bances v are centered and independent, then the vector w can be extended
with an additional component v:

w̄ =

(︄
w

v

)︄
.

Then, instead of F (x,w), we can consider a new function F̄ (x, w̄) = F (x,w)+

v, whose observation scheme will not include additional perturbations, but
instead of an unknown distribution Pw(·) it will feature a new unknown dis-
tribution Pw,v(·). But it is impossible to simplify the scheme of observations
in such a way, if the measurement errors do not have “good” statistical prop-
erties, [99].

In practice, non-stationary formulations of problems are relevant, in which
the minimum point of the functional f(x) and the functional itself change
with time. In particular, the problem of controlling the energy consumption
of a heterogeneous CPU can be formulated in terms of tracking the minimum
of the non-stationary medium risk functional based on incoming observation
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(measurement) data.

Let’s define the minimum point ft(x) as:

θt = argmin
x

ft(x).

Then, to find it, it is necessary to construct a sequence of estimates {θ̂n}
such that ||θ̂n− θt|| → min, based on noisy observations of random variables
Ft(xn, wn), n = 1, 2,.. [44]. In other words, the sequence of estimates {θ̂n}
of the unknown vector θ minimizes the function

f(x) = Ew{F (x,w)} =

∫︂
Rp

F (x,w)Pw(dw)

of the medium risk functional type.

Let us assume that the following restrictions are imposed on the function:

Constraint 1: The function f(·) is strongly convex, i.e.

⟨x− θ,∇f(x)⟩ ≥ µ∥x− θ∥22,∀x ∈ Rq.

Constraint 2: The gradients of the function F (·, w) satisfy the Lipschitz
condition:

∥∇xF (x,w)−∇xF (y, w)∥2 ≤ M∥x− θ∥2,∀x, θ ∈ Rq.

Although according to the proof of A.T. Vakhitov and O.N. Granichin
the boundary can also be formulated with weaker restrictions, from which
follow the above, for the purposes of this study they will be sufficient [100].

Next, we consider randomized algorithms that can solve this problem,
and then we design target functions that satisfy the constraints of these
algorithms.
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2.1.2 Simultaneously perturbed stochastic

approximation algorithm

Stochastic optimization methods appeared in the fifties of the XX century,
starting from the Robbins-Monroe and Kiefer-Wolfowitz algorithms [56,84].

J. Kiefer and J. Wolfowitz proposed the following solution to the problem
of finding a stationary local minimum or maximum θ of some function f(·),
when for each value x ∈ R the following observation is available:

Y (x) = f(x) + v,

where Y (x) is the noisy value of f(x) [56]. Under some additional restrictions,
the recurrent sequence

θ̂n = θ̂n−1 − αn
Y (θn−1 + βn)− Y (θn−1 − βn)

2βn

converges to the point θ, where {αn} and {βn} are some decreasing sequences
of numbers that must have certain properties. It can be seen that the speci-
fied algorithm is actually a kind of pseudo-gradient descent — change of the
estimate “on average” goes in the direction of the gradient.

An essential limitation of the Kiefer-Wolfowitz procedure is the implicit
assumption about the conditional centering of observation noise, that is, for
the function

g(x, β) =
Y (x+ β)− Y (x− β)

2β
,

the sample values of which are exactly observed, the mathematical expecta-
tion for small β is close to the value of the derivative of the function:

E{g(x, β)} ≈ f ′(x).
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This invariant is not always true in practical problems, and because of
this, the Kiefer-Wolfowitz procedure does not always converge to the desired
point. However, it is also clear from the above definition that the behavior
of the sequence of estimates depends on the choice of the function g(x, β),
and therefore the best behavior of the estimates can be achieved by choosing
another function that better approximates “on average” the derivative of f ′(·).

Let the function f(·) : Rq → R be twice continuously differentiable, and
let {∆n} be a sequence of independent random vectors, whose components
are independent and have a Bernoulli distribution, i.e. taking the value +1 or
-1 with equal probability, and at each step n there is no correlation between
the values of these random variables and the observation errors. J. Spall
proposed to define a new function as

˜︁g(x, β,∆) = g(x, β∆)

and named {∆n} as trial simultaneous perturbation. He also showed that
under the above conditions

E{˜︁g(x, β,∆)} = ∇(x) +O(β).

This means that if the condition

lim
n→∞

βn → 0

is satisfied, in the limit this function “on average” coincides with the gradient
∇f(·), i.e. for large n the probability distribution of appropriately scaled
estimation errors is approximately normal. Moreover, the same properties
are demonstrated by the function proposed in [34, 79], which uses only one
observation at each iteration,

ḡ(x, β,∆) =
∆

β
Y (x+ β∆).
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In [34] it is proved that the function ḡ(x, β,∆) allows to construct a se-
quence of estimates consistent with almost arbitrary noise in the observation.

The question of the rate of convergence of estimates for stochastic approx-
imation algorithms [11, 70, 101] is topical. It was shown that for the Kiefer-
Wolfowitz procedure and a number of its generalizations, it depends on the
smoothness of the function f(·). For a twice differentiable function, the mean
square error of the original Kiefer-Wolfowitz procedure decreases as O(n− 1

2 ),
for a three times differentiable one — O(n− 2

3 ). Spall showed that his mod-
ification has the same rate of convergence as the original Kiefer-Wolfowitz
procedure. Let the characteristic γ = X + 1 if all partial derivatives of
some function up to order X inclusive satisfy the Lipschitz condition. [79]
suggests using

˜︁gγ(x, β,∆) = K(∆)
Y (x+ β∆)− Y (x− β∆)

2β

and

ḡγ(x, β,∆) =
1

β
Y (x+ β∆),

where K(·) is a differentiating kernel defined using orthogonal Legendre poly-
nomials of degree less than γ, then for two randomized algorithms obtained
using these functions, the root mean squared estimation rate is O(n−γ−1

γ ),
and for a wide class of problems it is optimal in some asymptotically minimax
sense.

For the multidimensional case, the convergence of stochastic approxi-
mation algorithms is proved in [35, 80, 95]. Although the algorithm with
one dimension behaves asymptotically worse than the version with two di-
mensions [79], this is offset by the lower computational complexity of the
algorithm [38].

We define trial simultaneous perturbation as a sequence of equally sym-
metrically distributed independent random vectors ∆n with covariance ma-
trices:



43

cov{∆n∆
T
j } = δnjσ

2
∆I,

where δnj ∈ {0, 1} is the Kronecker symbol, 0 < σ∆ < ∞. It is convenient
to use Bernoulli random vectors as random vectors, since their components
∆n are independent of each other and take equally probable values ±1.

There are three possible ways to construct a sequence of estimates of the
minimum points of the function F (x) without significant loss of convergence
rate:

θ̂n = θ̂n−1 −
αn

βn
∆nyn,

θ̂n = θ̂n−1 −
αn

2βn
∆n(y

+
n − y−n ),

θ̂n = θ̂n−1 −
αn

βn
∆n(y

+
n − yn),

based on three types of noisy observations with one or two measurements per
iteration yn [40]:

yn = F (θ̂n−1, w
+
n ) + vn,

y−n = F (θ̂n−1 − βn∆n, w
+
n ) + v+n ,

y+n = F (θ̂n−1 + βn∆n, w
+
n ) + v−n ,

where {αn} and {βn} are sequences of non-negative numbers satisfying cer-
tain conditions, w+

n is the vector of stochastic disturbances for observation
y+n , v+n is the vector of arbitrary external noise during observations. The third
option is convenient in those cases when, due to the specifics of the problem,
it is impossible to make two measurements in such a way that they are not
correlated with ∆n [17]. This recurrent procedures are called simultaneous
perturbation stochastic approximation (SPSA) because they constitutively
use a random trial perturbation in all directions. SPSA is a type of stochas-
tic gradient descent algorithm.
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The first algorithm uses only one noisy observation, while the second and
third use two noisy observations. To distinguish between these variations of
the SPSA algorithm, we will refer to the version with one noisy observation
as SPSA1, and the last two variations as SPSA2.

Among the conditions for the consistency of estimates, we single out the
condition of weak correlation between the trial perturbation {∆n} and the
sequences of uncertainties {wn} and {vn} as the most important one.

Both variations of the SPSA algorithm work as follows:

1. The target empirical (measured) function F (x,w) is defined.

2. An initial estimate of the optimum point θ̂0 is made.

3. The current estimate of the optimum is subjected to a random pertur-
bation.

4. The required number of noisy observations of the function F is ob-
tained, and the current estimate of the optimum θ̂n is updated.

5. Go to step 3.

It should be noted that SPSA are applicable both for finding a stationary
optimum and in problems where the optimum can shift from iteration to
iteration, i.e. when solving the tracking problem [42,43,96].

2.2 Theoretical results on the properties of
estimates of randomized stochastic

optimization algorithms in the problem of
tracking changes in optimal parameters

In many practical problems, the medium risk functional is non-stationary,
that is, its optimum point can shift over time.



45

In discrete time, the non-stationary mean risk functional can be defined as
follows [43]. Let {Fξ(θ, w)}ξ∈Ξ be the set of differentiable functions Fξ(θ, w) :

Rq × Rp. The set Ξ can be defined as multidimensional, and all further
conclusions will be valid for it as well with minor changes, not relevant for
this study, but further consideration of the simple case will suffice Ξ = N.
Let the sequence {xt} be the observation plan or the sequence of points at
which the observer makes measurements at the time moments t = 1, 2, ...,
and {yt} — sequence of measurement results

yt = Fξt(xt, wt) + vt,

where {ξt} and {wt} are sequences that the observer cannot influence. At
each moment of discrete time t, the value of some function Ft(·) is observed.

Then the task of tracking changes (tracking) of the optimal parameters
of the non-stationary mean risk functional consists in constructing the esti-
mate θt̂ of unknown vector θt from the sequence of noisy observations {yt}
constructed from the points {xt} minimizing the time-varying functional

ft(θ) = EFt−1
Ft(θ, w) → min

θ
,

where Ft−1 is the σ-algebra of all probability events that have occurred up
to the time t = 1, 2, ..., EFt−1

— conditional expectation in the σ-algebra
Ft−1.

The definition of the SPSA algorithms does not distinguish between its
use in stationary and non-stationary cases, but for the non-stationary case,
important theoretical results have been obtained for the variant with two
observations. Let’s introduce the following assumptions for the medium risk
functional:

Assumption 1: The difference between successive noise values v̄n = v2n−
v2n−1, n = 1, 2, ..., is bounded: |v̄n| ≤ cv < ∞.

Assumption 2: The shift of the optimum point is bounded: ∥θt−θt−1∥ ≤
δθ < ∞.
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Assumption 3: The rate of displacement of the optimum point is lim-
ited in such a way that for any point x : ∥EF2n−2

∇φn(x)∥ ≤ a1∥x −
θ2n−2∥ + a0, EF2n−2

φn(x)
2 ≤ a2∥x − θ2n−2∥2 + a3, φn(x) = Fξ2n(x,wξ2n) −

Fξ2n−1
(x,wξ2n−1

).

Assumption 4: The functions ft(·) have unique minimum points θt, and
for them

∀x ∈ Rd : ⟨x− θt, EFt−1
∇ft(x)⟩ ≥ µ∥x− θt∥2,

where µ > 0 is a constant, ⟨·, ·⟩ is the scalar product of vectors.

Assumption 5: The ∇ft gradient is limited in the root mean squared
sense at the minimum points θt:

E∥∇Ft(θt, wt)∥2 ≤ 0, E⟨∇Ft,∇Ft−1(θt−1, wt−1)⟩ ≤ 0.

Assumption 6: ∀ξ ∈ Ξ gradient ∇fξ(x) satisfies the Lipschitz condition:

∀x′x′′ ∈ Rd : ∥∇fξ(x
′, wξ)−∇fξ(x

′′, wξ)∥ ≤ M∥x′ − x′′∥,

where M — constant, M ≥ µ.

The next two assumptions concern the vector ∆n and its differentiating
kernel Kn(∆n) in the SPSA algorithm:

Assumption 7: Для любых n = 1, 2, ...,

1. ∆n does not depend on the σ-algebra F2n−2.

2. Noise v̂n and vector ∆n are independent of each other.

Assumption 8: For any n = 1, 2, ..., vectors ∆n and Kn(∆n) are bounded:
∥∆n∥ ≤ c∆ < ∞, ∥Kn(∆n)∥ ≤ κ < ∞, and the vector functions Kn(·),
along with the symmetric distribution functions of simultaneous perturba-
tions Pn(·), satisfy the following conditions:
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∫︂
Kn(x)Pn(dx) = 0,

∫︂
⟨Kn(x), x⟩Pn(dx) = I,

где I — identity matrix.

A special case that satisfies Assumptions 7 and 8 is the Bernoulli sequence
{∆n} described earlier and Kn(x) ≡ x.

Let’s assume that a sequence of estimates θ̂2n has an asymptotically ef-
fective upper bound L̄ > 0 of the residuals of an estimate if ∀ϵ > 0∃N is
such that ∀n > N

√︂
E∥θ̂2n − θ2n∥2 ≤ L̄+ ϵ.

Without loss of generality, we will interpret the definition of the SPSA
algorithm with two observations in such a way that, at each iteration, obser-
vations are made at the points

x2n = θ̂2n−2 + β+
n ∆n, x2n−1 = θ̂2n−2 + β−

n ∆n,

where {β+
n } и {β−

n } — sequences of non-negative integers, and βn = β+
n +

β−
n > 0.

O.N. Granichin and N.O. Amelins proved in [43] that if assumptions 1–8
hold, βmax + β̄ < ∞, and the constant α is small enough:

kα < 1, α <
µ

3κ2(a2β̄
2
+ c2∆M

2)
,

then the sequence of estimates produced by the SPSA algorithm with two
dimensions has an asymptotically efficient upper bound

L̄ = h+
√︁
h2 + l/k,

где βmax = maxn βn, β̄ = maxn
1
βn
, β̄

+
= maxn

β+
n

βn
, β̄

−
= maxn

β−
n

βn
, k =

2µ−6ακ2(a2β̄
2
+c2∆M

2), h = 2δθ
αk −δθ+

β̄
−
a1+6αc2∆M

2(c∆+β̄
−
σθ)

k , c1 = M((β̄
+
)2+
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3(β̄
−
)2), c2 = M 2(c2∆+(β̄

+
)2σ2

θ+2β+βmaxσθ(c∆+σθ)), l̄ = 2(β−a0+3κ2αa3β̄
2
+

κc2∆(βmaxc1 + κα(3c2 + c2v))).

Assumptions 2–6 impose restrictions on the non-stationary mean risk
functional, but assumption 1 is an assumption on the noise model. Since in
the task of optimizing processor energy consumption, the load on the core
or cluster affected by computational processes, interpreted as noise, changes
within limited limits (from 0 to 100%), if the designed medium risk functional
satisfies assumptions 2–6, then due to the above theorem the estimates made
by the SPSA algorithm with two noisy measurements will converge to the
current optimum point.

2.3 Target function for the simultaneously
perturbed stochastic approximation

algorithm with single observation in the
processor energy consumption optimization

problem

The medium risk functional for the SPSA algorithm with a single obser-
vation was developed first and a number of assumptions were made in its
development. The first is that CPU resources are more often underutilized
than 100% utilized. Since, ceteris paribus, the frequency of a CPU deter-
mines the amount of work it can do in a given amount of time, then by
decreasing the operating frequency, we increase the amount of time it takes
to complete the same computational task.

Let the load L on the CPU core or CPU cluster be defined as a percentage
of active time of the total CPU time (active and inactive) for some period of
time. Similar to the approach in the OnDemand governor, the load on the
CPU cluster is defined as the majorant of the loads of the cores included in
the cluster. The general idea to be implemented using the SPSA algorithm
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is to set the frequency for the next iteration of the DVFS loop based on the
current state of the processor in terms of load level L so that the load level
observed during the next iteration of the DVFS loop is as close as possible
to the preselected LT value. This value should not be close to 100%, so that
additional computing resources can be allocated if the actual load turned out
to be higher than predicted, and should not be close to 0%, since then even
a small load will be calculated at an energy inefficient high frequency.

The second assumption is due to the specifics of the CPU operation. Since
both homogeneous and heterogeneous CPUs operate only at a fixed Freq

frequency set for each processor or core cluster, the continuous estimate of
the optimal frequency is rounded up to the nearest available value.

The objective function is defined as

F (f) = 2((workload(f)−LT )/2) + γ1.5table(f),

where workload(f) — CPU or CPU cluster load obtained from OS metrics,
LT — target load level, table(f) — frequency number in an array of frequen-
cies available to the CPU or CPU cluster, sorted in ascending order. The first
term of the function is the penalty for too low load compared to LT . Since
the same computational load will take less time with increasing frequency,
the workload(f) function is non-increasing. The second term is the penalty
for using too high a frequency from the available set, and it is monotonically
increasing [13].

To set a new operating frequency, calculate

fn = P(f̂n−1 + β∆n),

where P — projection to Freq, f̂n−1 — current frequency estimate, β —
SPSA step parameter. For a new frequency estimate we calculate

f̂n = L (f̂n−1 −
α

β
∆nyn),
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where L — projection into the interval [min(Freq),max(Freq)], α, β —
step parameters of the SPSA algorithm [12]. This algorithm uses constant
values of both parameters from iteration to iteration.

Within the framework of the proposed approach, the change in the com-
putational load caused by the start and end of applications is interpreted
as a change in the optimum point in the non-stationary medium risk func-
tional. On the other hand, the 10 ms DVFS cycle time is longer than many
computational processes running in modern operating systems and on mobile
devices. System interrupts and user event handlers in applications usually
last no more than a few milliseconds, but it is often impossible to predict their
occurrence at any given time from inside the operating system, for example,
it is impossible to predict when the user touches the screen. The change
in the computational load caused by such short-term factors is interpreted
within the framework of this approach as an additive noise of measurements
vn.

As a result, the DVFS cycle for the SPSA1 governor looks like this:

1. Set initial estimate value f̂ 0, select α and β.

2. Generate ∆n.

3. Add a perturbation to the current estimate fn = P(f̂n−1 + β∆n).

4. Set current frequency to fn.

5. Get new noisy observation yn = F (f̂n−1 + β∆n) + vn

6. Update frequency estimate f̂n = L (f̂n−1 − α
β∆nyn).

7. Go to step 2.

To show validity of algorithm estimates, let’s show that the target func-
tion satisfies the requirements stated in section 2.1.2. First, due to the
specifics of the subject area, changes in the optimal frequency are limited:
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∥fn − fn−1∥ ≤ δ < ∞.

Further, F (f) satisfies both assumptions that are necessary to prove the
consistency of algorithm estimates:

Assumption 1: The function F (f) is strictly convex and has a minimum
point f ∗:

⟨f − f ∗,∇F (f)⟩ ≥ γln1.5− 1,∀f ∈ R.

Assumption 2: The gradient ∇F (f) satisfies the Lipschitz condition:

∥∇F (f1)−∇F (f2)∥ ≤ γ1.5max(f1;f2)ln21.5∥f1 − f2∥,
∀f1, f2 ∈ R.

2.4 Target function for the simultaneously
perturbed stochastic approximation

algorithm with two observations in the
processor energy consumption optimization

problem

2.4.1 Cost of program execution and medium risk

functional

From a theoretical point of view, when solving the same problem, different
definitions of the medium risk functionals can differ significantly, but lead to
the same solution [44]. In determining the medium risk functional for SPSA2,
the results obtained in the study of SPSA1 were used, and they were further
developed.
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As in the case of SPSA1, we define the load L of the CPU core or CPU
cluster as the percentage of active time of the total CPU time (active and
inactive) over a certain period of time. In a situation where the frequency
is set simultaneously for all cores of the cluster, we will define not the load
of an individual core, but the load of the cluster as the majorant of the
loads of all the cores included in it. Let’s define computational volume or
simply volume as the product of frequency and load. In essence, volume is
the number of CPU cycles allocated to an active computing process from its
execution to its removal from execution. Although volume correlates with
the number of instructions executed in a process, the correspondence is not
one-to-one: pipelining allows the processor to execute different phases of
sequential instructions at the same time, and the duration of different in-
structions, measured in CPU cycles, can be different. For the DVFS process,
it is important that the same volume creates a different load at different
frequencies: the higher the frequency, the lower the load, and vice versa.

Determining the frequency in the DVFS loop for the next iteration of
the loop is non-trivial in the sense that we can base our strategy on, among
other things, the history of observing CPU load and on the characteristics of
OS processes, as is done in EAS, however, the load in the future cannot be
reliably determined — for example, it is impossible to predict that the device
will receive a phone call in the next second. In view of this uncertainty,
we introduce target or threshold load LT — a specific constant value of the
load during some observation time. Empirically determined values of LT

from 60% to 80% are found in the literature, and they were also used in our
experiments — such target levels guarantee additional computing resources in
a scenario where the actual load turned out to be much higher than expected
from history observations. LT is used as a boundary between two different
DVFS strategies:

• If the current load exceeds LT , then the core is performing a long
enough computational task. In this case, performance considerations
outweigh the energy savings. Therefore, the allocation of resources to
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solve this problem is a priority, and the optimal frequency that the
DVFS governor should set is the one that provides the closest load to
LT at the current observed volume. In the long term, if the load does
not fall below LT , higher and higher operating frequency will be set up
to the maximum, and this strategy will be used until the load drops.

• If the load does not exceed LT , this means that if this trend continues,
it is possible to optimize power consumption by finding a frequency
that provides optimal energy efficiency, and the predicted load still
does not exceed LT .

Let’s define execution efficiency or execution cost (cost of execution,
CoE) of the operating frequency f as follows:

CoE =
E(t)

nticks
=

∫︁ t

0 U(t)I(t) dt

ft
=

IfU

f
,

where CoE is cost of execution, t is the duration of the observation time
period, E(t) is the energy expended over the time period t, nticks is the
number of ticks CPU observed during this time. In fact, CoE is the energy
cost per cycle of the processor core at a certain operating frequency.

CoE can also be thought of as the priority of the DVFS governor when
selecting a frequency — the lower the value, the higher the priority. From this
point of view, instead of CoE, one can use some generalized cost of execution
(GCoE) metric to determine the priority when choosing frequencies. In this
case, GCoE is defined as a mapping of a finite set of CPU cluster frequencies
into some set for which a linear order relation is defined. The strictness of
this relationship is optional: if several operating frequencies have the same
priority, then the choice of one of them remains at the discretion of the DVFS
governor [78].

In this study, GCoE is defined as the ratio of the average current when
the core is running at a certain frequency to that frequency:
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GCoE =
If
f
,

As the operating voltage of the processor can be considered constant, so
removing the constant factor U from the definition of CoE does not change
the order ratio when going to GCoE3.

The key point that influenced the study and use of CoE and GCoE in
this work is the fact that for the available power consumption profiles of CPU
clusters, as f grows, so does If , but GCoE(f) in the general case is a non-
monotonically increasing function. An example of such behavior is shown in
Tab. 1.1, where the A55 core consumes the least amount of power at 500
MHz, but is most energy efficient at 875 MHz.

Thus, when the current load falls below LT , the optimal frequency will
be the one with the lowest GCoE among the frequencies capable of handling
the same amount of predicted load without exceeding LT .

Combining both operating modes of the DVFS governor (performance
mode and power saving mode) together, we define the result of calculating the
medium risk functional and the optimality of the current operating frequency
as the distance between the indices of the current and optimal frequencies in
the sorted list of frequencies:

F (f) =

⎧⎨⎩∥P(f)− P(f L
LT
)∥, LT < L ≤ 1

∥P(f)− S (minf1..fn GCoE(fi) : L
f
fi
<= LT )∥, 0 ≤ L ≤ LT ,

where P(·) is the projection to the index of the nearest frequency in the
array of frequencies, sorted in ascending order, S (·) is the projection of
frequency GCoE to its index in an array of frequencies sorted in ascending
order.

The load level L can vary from measurement to measurement, however,
3Moreover, for used devices U=1V, so CoE and GCoE were numerically equal.
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for such a definition of the target function, it is necessary to consider a special
case when one noisy measurement corresponds to the power saving mode, and
the other to the performance mode. This situation occurs when a period of
intensive work ends, or, conversely, a new computationally intensive process
begins. To overcome this obstacle, we will assume that in such a situation
internally consistent conclusion cannot be made about the upcoming load,
therefore we will discard this pair of measurements without further changing
the frequency in this iteration of the DVFS cycle, and from the next iteration
we will start a new iteration of the SPSA algorithm according to the chosen
scheme.

Note that the device lack of frequencies with the same GCoE means that
for any observed L, the optimal frequency will always be unique. From a
practical point of view, if such a situation occurs, then the collision can be
resolved by assigning a smaller frequency to a smaller GCoE.

Although the target function knows which frequency is best to switch
to at the moment “inside itself”, this information is deliberately not taken
“outside” so that the algorithm takes a step towards the optimal frequency,
but does not immediately set it. Such a strategy leads to better adaptability
of the algorithm both in the situation when the prediction of the algorithm
coincided with reality, and in the situation when the prediction was not
justified.

2.4.2 Obtaining noisy observations

Based on the definition of SPSA2, its implementation requires two noisy
observations, after which the current optimal estimate is established, which
results, for the purposes of this study, in three iterations of the DVFS loop:

1. Let ii be the index of the current operating frequency in an array of
frequencies sorted in ascending order. Let’s generate a random number
∆ = ±1, after which we set the current frequency with index ii +∆β

to obtain the first noisy observation y+ of the medium risk functional.
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2. Next, the frequency with index ii −∆β is set as the current frequency
to obtain the second noisy observation y−.

3. The new optimal frequency estimate ii+1 = ii − α(y+−y−)
2∆β is set as

current.

Note that due to the lack of floating-point operations in the Android OS
kernel, it is easier to work with frequency indices in a sorted array than with
the frequencies themselves. In all cases, when the index goes beyond the
bounds of the array, the lower or upper bound, respectively, is taken as the
result of a subtraction or addition operation.

However, in the very definition of SPSA2 there is an opportunity for
optimization — setting a new estimate of the optimal frequency can be in-
terpreted as the first noisy observation on the next cycle, and therefore the
cycle of the algorithm will require only two iterations of the DVFS cycle:

1. The current value of the function at the selected frequency with index
ii is used as the first noisy observation y0. A random number ∆ = ±1

is generated, and to obtain the second noisy observation of the function
y+, the frequency with index ii +∆β is set.

2. A new frequency is set with index ii+1 = ii − α(y+−y0)
∆β .

However, waiting for two or three DVFS cycles to complete one iteration
of the algorithm can be detrimental to the accuracy of the estimate in dy-
namically changing environment and, as a consequence, to the quality of the
governor. Therefore, a variant of the algorithm is proposed that takes only
one iteration of the DVFS loop, although it deviates from the strict definition
of SPSA2:

1. Let ii be the index of the current operating frequency in an array of
frequencies sorted in ascending order. Let’s generate a random number
∆ = ±1. The load estimate for frequencies with indices ii ± ∆β is
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calculated under the assumption that the volume remains unchanged,
and for the simulated estimates, the function values y+ and y− are
calculated. Next, the operating frequency is set with the index ii+1 =

ii − α(y+−y−)
2∆β .

Moving forward, each scheme will be called, based on the number of
DVFS cycles required for one cycle of the algorithm, SPSA23, SPSA22 and
SPSA21, respectively.
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Chapter 3. Processor Frequency Governors
Based on the Simultaneously Perturbed

Stochastic Approximation Algorithms with
One and Two Observations

This chapter describes the technical peculiarities of the development of
DVFS governors based on the SPSA algorithm and the medium risk func-
tionals from Chapter 2, outlines the methodology and results of comparing
the developed governors with existing ones, and draws conclusions from the
results of their testing.

3.1 Details of governors based on the
simultaneously perturbed stochastic

approximation algorithms with one and two
observations programming

The SPSA1 governor and all three schemes for the SPSA2 governor were
implemented on the basis of the infrastructure of the standard OnDemand
governor in the C programming language. During development, it was nec-
essary to take into account that the Android kernel, like the Linux kernel
on which it is based, does not support floating-point operations, therefore,
if necessary, functions from a floating-point argument were translated to use
integer arguments. Because of this, in a number of cases, tabular definition
of functions, including continuous functions, was used if it was known that,
within the limits of the algorithm, they could be calculated from a finite
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number of different arguments. Additional checks for going beyond the array
of frequencies boundaries were made in all cases before setting the current
estimate of the optimal frequency.

It should be especially noted that within the framework of the dissertation
research, in all developed governors, the energy consumption constants or
GCoE metrics for all frequencies of all clusters of specific CPUs of test
benches were written as constants in the program code. A more correct
approach from an engineering point of view would be to modify the OS
kernel, which would provide these constants by analogy with information on
supported frequencies, however, due to noticeable differences in the code of
Android OS kernels from different manufacturers, it is advisable that such a
programming interface be initially provided by the kernel development team.

For the SPSA21 scheme, an empirical optimization for performance mode
has been added. If the load within the last observation period is 100%,
the value of β is changed so that the operating frequency increases more
significantly. It does not contradict the idea of SPSA2, since in the general
case, at each iteration, the values of the βn sequence can be used, rather than
a specific constant β. If the high load level did not last long, and the decision
to change β turns out to be excessive in terms of power consumption, then
the operating frequency also decreases rapidly, and β returns to its original
value.

The time required for the processor to change the frequency may exceed
the duration of the DVFS loop iteration. For example, the default OnDe-
mand governor DVFS cycle time is 10 ms. But since OnDemand was designed
for desktop computers and servers with more advanced CPU circuitry, this
interval was enough to switch the operating frequency. At the same time,
during preliminary experiments with Xiaomi Redmi Note 8 Pro, it was found
that after the initial request to change the frequency with the OnDemand
governor or another DVFS governor based on it, it may take up to three
consecutive DVFS calls for the updated CPU frequency to be displayed in
the OS APIs. In this case, the DVFS governor can send a new frequency
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change request with each call, which will be ignored until the initial one is
executed. The observed phenomenon suggests that even the most common
DVFS governors can be based on assumptions and invariants that may be
false for the devices they control.

Since the developed SPSA2 governors also use OnDemand clock model,
and it is critical for the algorithm to obtain noisy observations at target
frequencies, the program skips those DVFS calls for which the CPU cluster
frequency still does not match the requested one. The algorithm continues
if and only if the requested frequency is set. Additionally, it is assumed that
within the last DVFS cycle, at the end of which the requested frequency
was reflected in the OS, the requested frequency was active for the entire
duration of its duration, and due to this, no changes are made to the process
of estimating the noisy load of the CPU cluster. For the SPSA1 governor
and the SPSA21 scheme, this factor is not so relevant due to the coincidence
of the duration of the algorithm and the DVFS cycle, and therefore was not
taken into account. However, taking into account this phenomenon can be
used to slightly reduce the running time of the algorithm.

The EAS task scheduler, which takes into account energy efficiency in
its work, actively interacts with the DVFS schedutil governor. According
to the documentation, EAS is not guaranteed to reduce power consumption
unless schedutil is selected as the active governor [55]. From an algorithmic
point of view, schedutil implements the same strategy as the OnDemand
governor, that is, it selects the cluster frequency in proportion to the load
majorant on the cluster cores. The minimum frequency corresponds to a
load of 0%, and the maximum frequency corresponds to a load of 100%.
However, the definition of CPU load in EAS differs significantly from that
used in OnDemand. CPU cluster load is estimated in terms of the EAS
power consumption model and the compute capacity of all tasks assigned to
a particular CPU core. Instead of a posteriori estimate, it is estimated a
priori.

For the proposed schemes, load detection was used as in OnDemand even
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with EAS enabled, and, as experiments have shown, the selection of α, β
and LT parameters is sufficient for SPSA2 to work effectively with EAS.

For the software implementation of three SPSA2 schemes, a certificate of
state registration of a computer program was received with № 2023666564
named “DVFS energy-saving governors for Android OS based on the SPSA
algorithm with two dimensions and the OnDemand governor” from August
2nd, 2023 [91] (see Appendix B).

3.2 Results of testing the developed
governors based on the simultaneously
perturbed stochastic approximation

algorithms with one and two
observations

3.2.1 Results of testing the governor based on the

single observation algorithm

Xiaomi Redmi Note 8 Pro smartphone was chosen for testing SPSA1. It
has Helio G90T heterogeneous CPU with two core clusters — 2 Cortex-A76
(big) cores and 6 Cortex-A55 (LITTLE) cores. The default OS is Android
10. This model was chosen due to the existing set of utilities for running
alternative builds of the Android OS kernel on the device. The begonia4

kernel was taken as the basis for the experimental build, and the SPSA1
governor was added to the list of DVFS governors. Root access was required
to install the experimental build. Switching to the SPSA1 governor was
performed by standard system calls of the cpufreq subsystem [108].

OnDemand and Interactive were selected as governors for comparison,
CFS as the task scheduler, and menu as the idle state governor.

4https://github.com/AgentFabulous/begonia

https://github.com/AgentFabulous/begonia
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Since the goal of the work is to create a general purpose DVFS governor
adapted to handle various loads, a set of test cases reflects various patterns
of human-computer interaction:

1. Playing Hill Climb Racing5.

2. Playing song in Spotify.

3. Displaying and periodically scrolling through a PDF file opened in Foxit
PDF Editor 6.

4. Watching video on YouTube with a quality setting of 480p in a default
browser.

5. Watching video on YouTube with a quality setting of 1080p in a default
browser.

To run and control test scenarios, the device was connected via USB to
the host computer.

The testing methodology was prepared according to the recommendations
collected in [73]:

• All applications not required for operation or testing purposes have
been removed. Apps that can’t be uninstalled have their background
activity disabled or reduced as much as possible.

• All smartphone components not used in the current test, such as Wi-Fi,
3G, GPS, were turned off.

• Before starting each subsequent test, a pause of two minutes was taken
to allow background processes on the device, possibly caused by the
launch of the test, to end, and the device itself to cool down.

5https://play.google.com/store/apps/details?id=com.fingersoft.hillclimb
6https://play.google.com/store/apps/details?id=com.foxit.mobile.pdf.lite

https://play.google.com/store/apps/details?id=com.fingersoft.hillclimb
https://play.google.com/store/apps/details?id=com.foxit.mobile.pdf.lite
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Table 3.1: Comparison of energy consumption of SPSA1, OnDemand and
Interactive governors

Test case SPSA1 OnDemand Interactive
(in mAh) (in mAh) (in mAh)

Hill Climb Racing 34.196 91.862 37.565
Spotify 33.913 24.678 41.343

Foxit PDF Editor 54.729 65.322 77.950
YouTube 480p 32.957 24.579 47.980
YouTube 1080p 32.378 25.319 47.254

• Each script was run five times for fifteen minutes to reduce the impact
of background processes.

• Before each series of runs of each test scenario, the scenario was run
once, and the power consumption during its passage was not taken
into account. Thus, the test scenario was warmed up in order to ex-
clude one-time processes from further launches that could affect power
consumption (for example, loading software libraries).

• Since the device was connected to USB, it was operating in external
power mode, so the battery was not recharged to the same initial level.

The Google base model was used as the energy estimation model. To
compare the performance, we used the AnTuTu7 benchmark — a utility for
evaluating device performance that is widespread among Android OS devel-
opers and provides integral evaluation of device performance under various
computing loads for the CPU, GPU, memory and human-machine interface
responsiveness (User Experience, UX).

Tab. 3.1 contains averaged data on energy consumption based on the
results of experiments, converted to mAh, best results are highlighted in
bold.

In the Hill Climb Racing script, OnDemand performed the worst — it
always brings the A55 and A76 cores to the maximum frequency. SPSA1

7https://www.antutu.com/en/index.htm

https://www.antutu.com/en/index.htm
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Table 3.2: AnTuTu performance scores for Powersame, SPSA1, OnDemand,
Interactive, and Performance governors

Governor CPU GPU Memory UX Total
SPSA 80555 74357 40897 48442 244251

OnDemand 83704 76335 42020 49893 251972
Interactive 79459 76880 39403 49412 245154

Performance 86756 79952 42364 51789 260861
Powersave 28883 50193 30792 18458 128326

performs slightly better than Interactive because it keeps the A55 at lower
frequencies, although the A76 has a wider used frequency range.

In the Spotify scenario, Interactive considers that the need for perfor-
mance on the A76 cores is greater than necessary and overestimates the fre-
quency to set, SPSA1 uses all available frequencies for A55, while OnDemand
keeps the operating frequency closer to the lower boundary.

Although the Foxit PDF Editor script does not appear to be the most
CPU-intensive at first glance, rendering a new page in a PDF file is compu-
tationally expensive. Here SPSA1 wins, since the A76 cores are not actively
used in work.

The difference in power consumption between the Youtube 480p and
YouTube 1080p scripts is negligible, even though significantly more data
is transferred during the second test. Interactive sets the A76 cores to the
maximum frequency and therefore loses to other regulators in terms of power
consumption. OnDemand is more conservative in its estimates for both A55
and A76 cores than SPSA1, so it consumes less power.

In Fig. 3.1 and 3.2 the difference in the behavior of the governors in the
Spotify test is depicted in more detail in the form of distribution histograms of
time spent by clusters at a certain frequency8. It can be seen that fundamen-
tally different strategies for setting the operating frequency of the governors
under consideration lead to fundamentally different time distribution profiles
and, as a result, energy consumption.

8Histograms for all experiments are available at https://drive.google.com/file/d/

https://drive.google.com/file/d/17ki2HxrFVwYjccV4-pPwIZuD8g8iqoLG/view
https://drive.google.com/file/d/17ki2HxrFVwYjccV4-pPwIZuD8g8iqoLG/view
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Figure 3.1: Distribution of times (in ms) spent by the A55 cluster running
various DVFS governors at various frequencies (in MHz) in the Spotify test

Figure 3.2: Distribution of times (in ms) spent by the A76 cluster running
various DVFS governors at various frequencies (in MHz) in the Spotify test

Tab. 3.2 shows the performance scores of SPSA1, OnDemand and Inte-
ractive by the AnTuTu utility in the four listed categories, and the “Total”
column shows their sum as an integral quality metric, best results are high-
lighted in bold. The results of the Powersave and Performance controls
are shown as the minimum and maximum achievable values.

The performance difference between SPSA1, OnDemand and Interactive

17ki2HxrFVwYjccV4-pPwIZuD8g8iqoLG/view

https://drive.google.com/file/d/17ki2HxrFVwYjccV4-pPwIZuD8g8iqoLG/view
https://drive.google.com/file/d/17ki2HxrFVwYjccV4-pPwIZuD8g8iqoLG/view
https://drive.google.com/file/d/17ki2HxrFVwYjccV4-pPwIZuD8g8iqoLG/view
https://drive.google.com/file/d/17ki2HxrFVwYjccV4-pPwIZuD8g8iqoLG/view
https://drive.google.com/file/d/17ki2HxrFVwYjccV4-pPwIZuD8g8iqoLG/view
https://drive.google.com/file/d/17ki2HxrFVwYjccV4-pPwIZuD8g8iqoLG/view
https://drive.google.com/file/d/17ki2HxrFVwYjccV4-pPwIZuD8g8iqoLG/view
https://drive.google.com/file/d/17ki2HxrFVwYjccV4-pPwIZuD8g8iqoLG/view


66

is almost imperceptible to the end user (3.06% and 0.36% compared to OnDe-
mand and Interactive respectively), and the performance achieved by SPSA1
is comparable to the best achievable (6.38% difference) with Performance
governor). When comparing the performance metrics of GPU, memory and
human-machine interface responsiveness, it can be seen that the strategy of
the DVFS regulator indirectly affects the performance of other components
of the mobile device and, consequently, the performance of the entire system
as a whole.

3.2.2 Results of testing the governor based on the two

observations algorithm

The Samsung Galaxy s7 SM-G930F smartphone was used to test SPSA2.
The Exynos 8 Octa (8890) processor installed on it is built on a heterogeneous
architecture with two clusters: 4 Cortex-A53 (LITTLE) cores and 4 Exynos
M1 (big) cores.

Although it originally ran Android 8, Android 10 and 11 OS builds were
installed for testing. Android 11 there uses the EAS task scheduler. For
testing with the CFS scheduler, the kernel build from Samsung Corpora-
tion — android_kernel_samsung_universal8890 for Android 109 — was used.
Thanks to this choice of kernel builds, it became possible to add the sched-
util governor to the comparison with the previously used Interactive and
OnDemand governors.

For the most part, the preparation of the test bench and the methodology
of the experiments remained unchanged. As before, the SPSA23, SPSA22,
and SPSA21 governors were added as separate modules to the assembly, and
switching between governors was also done using standard cpufreq subsys-
tem system calls.

The choice of test scenarios for this series of experiments was dictated by
similar considerations:

9https://github.com/8890q/android_kernel_samsung_universal8890/tree/lineage-17.1

https://github.com/8890q/android_kernel_samsung_universal8890/tree/lineage-17.1
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• Playing an MP4 file using the VLC video player that was previously
selected as the default player.

• Game session in Trial Xtreme 3.

• Game session in Flapy Bird.

• Create a note in the Notes application, write text, and delete the note.

• Launch the default camera application and record video with it. The
resulting video file is deleted at the end of the script.

• View a video stream in the Twitch service in a browser and close the
browser after some time.

As before, to run and control test scenarios, the device was connected via
USB to the host computer and therefore was powered by an external power
source.

The preparation of the device for running the test scenarios followed the
same principles as in Section 3.2. The only difference was that the tests were
run ten times for five minutes per run — experience with SPSA1 showed
that at a five-minute interval the effect of background processes is already
negligible.

Unlike the previous series of experiments, SPSA2 was tested using both
the base power consumption model from Google and the one proposed in
this study. In addition, the Geekbench 5.5.1 utility was used to test the
performance of the device, since its methodology, unlike AnTuTu, is open.
This methodology was suitable for the research [29]. Due to the duration,
performance tests were run 3 times for each governor, and the average values
of the metrics were found.

First, experiments were carried out for Android 11 with the EAS task
scheduler. The selection of integer parameters of the SPSA algorithm showed
that the following sets are the best:
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Table 3.3: Energy consumption (mAh) under Android 11 and EAS scheduler
(base energy model), videoVLC, trialXTreme3 and flappyBird test cases

Algorithm videoVLC trialXTreme3 flappyBird
SPSA23 21.67 27.62 24.86

21.43 24.53 24.62
SPSA22 23.40 37.44 40.64

22.65 32.50 34.36
SPSA21 23.75 43.43 47.04

22.17 30.43 31.23
Schedutil 24.56 44.30 43.56
Interactive 141.21 119.08 104.73
OnDemand 34.86 86.06 92.86

Table 3.4: Energy consumption (mAh) under Android 11 and EAS scheduler
(base energy model), notes, camera and twitch test cases

Algorithm notes camera twitch
SPSA23 32.61 22.43 30.59

30.91 22.02 24.86
SPSA22 46.46 25.27 38.62

39.96 23.67 28.93
SPSA21 52.19 26.44 47.06

35.66 22.86 27.32
Schedutil 47.09 27.36 51.83
Interactive 122.31 55.36 91.33
OnDemand 97.43 56.16 80.68
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Table 3.5: Energy consumption (mAh) under Android 11 and EAS scheduler
(modified energy model), videoVLC, trialXTreme3 and flappyBird test cases

Algorithm videoVLC trialXTreme3 flappyBird
SPSA23 5.90 14.71 10.23

6.11 13.49 10.15
SPSA22 6.34 19.16 16.27

6.24 16.71 14.16
SPSA21 6.31 19.68 18.21

5.93 15.61 12.75
Schedutil 5.91 20.24 15.70
Interactive 33.74 46.78 35.46
OnDemand 8.59 34.84 32.48

Table 3.6: Energy consumption (mAh) under Android 11 and EAS scheduler
(modified energy model), notes, camera and twitch test cases

Algorithm notes camera twitch
SPSA23 8.99 14.41 22.84

8.67 13.71 18.98
SPSA22 7.69 17.18 28.18

12.30 15.24 21.88
SPSA21 13.02 17.76 33.25

9.36 15.43 20.70
Schedutil 10.24 15.62 34.92
Interactive 21.83 30.56 58.48
OnDemand 21.35 25.07 47.53

Table 3.7: GeekBench 5.5.1 performance scores
Algorithm Single core mode Multicore mode
SPSA23 287 970

282 913
SPSA22 302 1025

290 962
SPSA21 331 1073

324 966
Schedutil 319 970
Interactive 321 1112
OnDemand 296 1068
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1. α = 2, β = 1, LT = 70%;

2. LITTLE cluster: α = 2, β = 1, LT = 80%; big cluster: α = 3, β =

1, LT = 98%.

Tab. 3.3–3.6 contain median energy consumption values for the base and
modified energy consumption models. Tab. 3.7 contains performance data.
Best results are highlighted in bold. The first line for SPSA2 governors
corresponds to the first set of parameters, and the second line corresponds
to the second set.

It should be noted that the obtained values for the SPSA and sched-
util regulators have a noticeably lower spread in all experiments compared
to OnDemand and especially Interactive. This is due to the fact that en-
ergy consumption is compared by the median and not by the average value.
For example, Interactive showed the minimum and maximum values in the
videoVLC test with a base model of power consumption of 42.42 and 155.91
mA·h, respectively. However, the observed phenomenon does not affect the
reliability of the analysis, since even the minimum power consumption of
both regulators was higher than the maximum value for schedutil or SPSA.

In terms of performance, both existing and new algorithms perform com-
parably. There are no obvious outliers, and for a single-core scenario, the
difference between the best and worst performance is within 15%, and for a
multi-core scenario, within 18%. Note that the first set of SPSA2 parame-
ters provides better performance than the second set. The performance of
SPSA23 is worse due to the fact that the algorithm requires three iterations
of the DVFS loop, accompanied by waiting for a frequency switch.

Before considering energy consumption estimates, it should be noted that
the modified energy consumption model significantly changes the observed
values compared to the base model, and in some cases their relative standing
between individual test cases. The modified model, in our opinion, better
reflects reality if direct measurement of energy consumption is not available,
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and further analysis is done on its basis, despite the fact that SPSA2 gover-
nors are evaluated to be better under the base energy model.

Among the standard governors, Interactive and OnDemand consistently
consume more power than schedutil when using EAS, and if EAS is present
in the device firmware, it is recommended to use the EAS+schedutil pair
to save power consumption and at the same time keep the human-machine
interface responsive.

SPSA2 governors handle Trial Xtreme 3 and Twitch scenarios better
than schedutil. This is due to the use of the β = 1 parameter in the ex-
periments, since higher values of β lead to faster gradient descent, and in
a situation of rapidly changing processor load with frequency switching de-
lays, a relatively smooth change in the operating frequency shows the best
result. SPSA21 with the first set of options consumes more power in most
tests (up to 27%), but is only 10% better in performance than schedutil, so
it is recommended to use the second set of options, as the performance stays
at the same level, and power consumption can be up to 31% better. SPSA22
is the most balanced governor, because while its power consumption is up
to 20% better in some scenarios and 10% worse in others, a device running
it shows a performance gain of 5.6% in the multi-core case, which is a more
realistic scenario in terms of modern patterns of human-machine interaction.
SPSA23 is the most conservative of the other SPSA family governors in terms
of power consumption and performance, but overall multi-core performance
is comparable to schedutil.

A special case is the videoVLC scenario, where SPSA governors use more
power than schedutil, although the difference is not too great (no more than
7.2% for SPSA22). The ratio of the duration of intensive calculations (frame
decoding) and idle time is such that the SPSA regulators do not have time
to lower the frequency. The only exception is SPSA23, but the difference is
within the statistical error.

In the end, when working with the EAS scheduler, all schemes of the
SPSA2 governor can be used instead of schedutil.
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Table 3.8: Energy consumption (mAh) under Android 10 and CFS scheduler
(base energy model), videoVLC, trialXTreme3 and flappyBird test cases

Algorithm videoVLC trialXTreme3 flappyBird
SPSA23 23.52 49.49 48.67

23.55 43.87 44.68
SPSA22 26.14 66.62 71.74

24.34 63.82 62.85
SPSA21 26.58 101.24 116.08

23.65 57.40 85.69
Interactive 22.25 44.31 53.47
OnDemand 29.18 76.41 94.63

Table 3.9: Energy consumption (mAh) under Android 10 and CFS scheduler
(base energy model), notes, camera and twitch test cases

Algorithm notes camera twitch
SPSA23 57.73 26.25 38.71

51.96 25.08 30.22
SPSA22 81.87 36.10 45.66

70.70 29.28 33.41
SPSA21 116.36 31.28 50.54

68.21 25.23 32.04
Interactive 59.52 24.32 41.73
OnDemand 101.57 41.39 66.24

Table 3.10: Energy consumption (mAh) under Android 10 and CFS scheduler
(modified energy model), videoVLC, trialXTreme3 and flappyBird test cases

Algorithm videoVLC trialXTreme3 flappyBird
SPSA23 5.70 13.51 12.07

5.57 11.13 11.07
SPSA22 6.35 17.53 17.27

5.66 14.57 15.38
SPSA21 6.20 19.83 25.58

5.44 11.67 20.35
Interactive 1.31 13.28 12.30
OnDemand 7.08 21.65 24.03
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Table 3.11: Energy consumption (mAh) under Android 10 and CFS scheduler
(modified energy model), notes, camera and twitch test cases

Algorithm notes camera twitch
SPSA23 13.22 4.88 16.53

11.33 4.48 13.54
SPSA22 17.44 4.88 18.98

15.22 4.18 14.61
SPSA21 23.59 3.27 20.50

14.63 2.14 13.91
Interactive 11.71 2.93 16.92
OnDemand 22.03 4.98 23.61

Tab. 3.8-3.11 contain the median power consumption values for the base
and modified energy consumption models for scenarios executed on a device
running Android 10 OS and the CFS scheduler. Best results are highlighted
in bold. The situation in this case is significantly different. First, schedutil
cannot be used as a benchmark because it will work in conditions for which it
was not designed. The Interactive governor shows a noticeable improvement
in power consumption. All SPSA2 governors exhibit similar energy behavior
to the SPSA1 governor, where in most test scenarios they are between OnDe-
mand and Interactive in terms of power consumption, and in some individual
cases they perform better or worse.

The reason for this energy behavior is a change in the planning strategy.
Unlike EAS, CFS does not prioritize LITTLE cores over big cores, and in
such situations, big cores are loaded more, which in turn leads to more power
consumption. This trend becomes especially noticeable in heterogeneous
configurations, where the number of big cores is equal to or comparable to
the number of LITTLE cores.

While SPSA23 shows acceptable power consumption in general, we found
that the performance of the device under its control is lower, since at load
levels of 99—100% it does not immediately recommend increasing the fre-
quency. Because other algorithms exhibit higher overall power consumption
than Interactive, which is consistent with higher clock speeds, and the latter
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provides acceptable human-machine interface responsiveness, performance
tests have not been conducted for SPSA2 governors.

3.3 Analysis of governors test results

The first conclusion that can be drawn from the results of developed gov-
ernors testing is that, based on all variations of the simultaneously perturbed
stochastic approximation algorithms, it is possible to construct a DVFS gov-
ernors suitable for everyday use in modern mobile devices. Moreover, al-
though the governors were designed for heterogeneous CPU architectures,
they can be used in devices with a homogeneous architecture.

The algorithms with which the comparison was made are deterministic
and try to find the optimal solution under conditions of uncertainty. At
the same time, the analysis of the results shows that governors based on
randomized algorithms can, in some cases, make non-optimal decisions based
on the available data, which actually turn out to be correct. Thus, obtaining
an optimal result on average in the long term turns out to be a competitive
advantage of the developed governors.

Experiments show that one adequately selected set of parameters for each
cluster is enough to build an energy-saving general-purpose governors that
can operate in a wide range of loads. At the same time, the different behavior
of both standard and developed governors shows that different computational
loads load the CPU in different ways. Earlier it was mentioned that the
applied software can have the function of energy profiles, that is, change its
energy behavior depending on the battery charge level [86]. By analogy with
this approach, the set of DVFS governor parameters that is optimal in terms
of power consumption and performance for a particular application can be
called an energy profile on the system software level. Taking into account
the results obtained in this study, the task of OS evolution for the automatic
or user-directed usage of such energy profiles for various loads ceases to be
conceptual and becomes purely technical.
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Conclusion

The main scientific results of the dissertation obtained as a result of
achieving the research tasks:

1. A model for estimating the power consumption of a CPU built on a
heterogeneous architecture is proposed and justified, taking into ac-
count the dynamic computational load and idle states management,
and practical recommendations for its application are given.

2. An approach has been developed for solving the problem of power con-
sumption management for a heterogeneous CPU based on randomized
stochastic optimization algorithms, within which average risk function-
als for SPSA algorithms with one and two measurements are proposed
and justified. Theoretical validity of the estimates provided by the
developed algorithms is investigated and established within the limits
imposed by the features of the CPU operation.

3. DVFS modules have been developed that optimize CPU power con-
sumption, taking into account the peculiarities of its operation, based
on the proposed functionals and SPSA algorithms with one and two
measurements. A comparison with existing analogues has been made
on the basis of prepared test benchmarks running in the Android OS.
For modules based on SPSA algorithms with two observations, a cer-
tificate of state registration of computer programs has been obtained.
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[105] Wilke C., Götz S., Richly S. Jouleunit: a generic framework for soft-
ware energy profiling and testing // Proceedings of the 2013 Workshop
on Green in/by Software Engineering. – 2013. – P. 9–14.

[106] Wilke C. Energy-Aware Development and Labeling for Mobile Appli-
cations. – Ph.D. Thesis. – 2014.

[107] Wu H., Sun Y., Wolter K. Energy-efficient decision making for mobile
cloud offloading // IEEE Transactions on Cloud Computing. — IEEE,
2018. — Vol. 8, no. 2. – P. 570–584.

[108] Wysocky R.J. CPU Performance Scaling. Available at: https://www.
kernel.org/doc/html/latest/admin-guide/pm/cpufreq.html.
(accessed 06.08.2023).

https://www.kernel.org/doc/html/latest/admin-guide/pm/cpufreq.html
https://www.kernel.org/doc/html/latest/admin-guide/pm/cpufreq.html


87

[109] Yoon C. et al. AppScope: Application energy metering framework for
Android smartphone using kernel activity monitoring // Proceedings
of the 2012 USENIX Annual Technical Conference (USENIX ATC 12).
– 2012. – P. 387–400.

[110] Zhang L. et al. Accurate online power estimation and automatic bat-
tery behavior based power model generation for smartphones // Pro-
ceedings of the Eighth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis. – 2010. – P. 105–
114.



88

Appendix A. Implementation acts



89



90

Appendix B. Certificate of state registration of
a computer program


	Introduction
	Chapter 1. Heterogeneous Central Processing Unit CPU Power Model
	Energy consumption of mobile devices
	Measurement and evaluation of energy consumption,  methodology of experiments
	Building a power consumption model for a heterogeneous CPU

	Chapter 2. Randomized Stochastic Optimization Algorithms  in the Problem of Optimizing the Energy Consumption of  a Mobile Device
	Randomized algorithms of stochastic optimization
	Medium risk functional
	Simultaneously perturbed stochastic approximation  algorithm

	Theoretical results on the properties of estimates of  randomized stochastic optimization algorithms in the problem of tracking changes in optimal parameters
	Target function for the simultaneously perturbed stochastic approximation algorithm with single observation in the  processor energy consumption optimization problem
	Target function for the simultaneously perturbed stochastic approximation algorithm with two observations in the  processor energy consumption optimization problem
	Cost of program execution and medium risk functional
	Obtaining noisy observations


	Chapter 3. Processor Frequency Governors Based on the  Simultaneously Perturbed Stochastic Approximation  Algorithms with One and Two Observations
	Details of governors based on the simultaneously perturbed stochastic approximation algorithms with one and two  observations programming
	Results of testing the developed governors based on the  simultaneously perturbed stochastic approximation algorithms with one and two observations
	Results of testing the governor based on the single  observation algorithm
	Results of testing the governor based on the two  observations algorithm

	Analysis of governors test results 

	Conclusion
	Bibliography
	Appendix A. Implementation acts
	Appendix B. Certificate of state registration of a computer  program

