
SAINT-PETERSBURG UNIVERSITY

manuscript

PAVEL ALEXANDROVICH MOZOLYAKO

DISCRETE MODELS OF THE BOUNDARY BEHAVIOUR OF HARMONIC

FUNCTIONS

Scientific specialty 1.1.1. Real, Complex and functional analysis

Doctoral Dissertation

in Physics and Mathematics

Translation from Russian

ST. PETERSBURG

2023



2

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 1 Discrete model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.1 Some basic facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.2 Strong capacitary inequality in one-parametric case . . . . . . . . . . . . . . . . . 49

Chapter 2 Hardy embeddings on finite d-trees . . . . . . . . . . . . . . . . . . . . . 51

2.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2 Surrogate Maximum Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2.1 Estimates on a tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2.2 Estimates on a bi-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2.3 Estimates on a tri-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.2.4 Estimates on d-trees (conditional) . . . . . . . . . . . . . . . . . . . . . . . 62

2.3 Subcapacitary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.3.1 Proof of Proposition 2.3.1: Strong Capacitary Inequality . . . . . . . . . . 63

2.3.2 Getting rid of f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3.3 The diagonal term estimate . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4 From the Carleson condition to the embedding . . . . . . . . . . . . . . . . . . . . 66

2.4.1 From the Hereditary Carleson condition to the embedding . . . . . . . . . 67

2.5 Single box test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.5.1 Main estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.5.2 Single box implies Carleson . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.6 Comments, examples and counterexamples . . . . . . . . . . . . . . . . . . . . . . 74

2.6.1 From finite d-tree T d
N to an infinite d-tree T

d
. . . . . . . . . . . . . . . . . 75

2.6.2 General setting for counterexamples . . . . . . . . . . . . . . . . . . . . . . 76

2.6.3 Box condition does not imply Carleson condition . . . . . . . . . . . . . . 77

2.6.4 Carleson condition does not imply REC . . . . . . . . . . . . . . . . . . . 77

2.6.5 REC does not imply embedding . . . . . . . . . . . . . . . . . . . . . . . . 81

2.6.6 Two-functions small energy lemma . . . . . . . . . . . . . . . . . . . . . . 83

Chapter 3 From the d-tree to the polydisc: Carleson measures . . . . . . . . . . . 92

3.1 Discretization procedure: polydisc and embedding . . . . . . . . . . . . . . . . . . 92

3.1.1 Discretizing the polydisc Dd . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.1.2 Carleson embedding on T d is equivalent to the polydisc embedding . . . . 94



3

3.2 Weighted capacity on T d and Bessel multiparametric capacity on Dd . . . . . . . . 102

Chapter 4 Growth classes of harmonic functions: wavelet decomposition . . . . . 108

4.1 Auxiliary results and facts about MRA . . . . . . . . . . . . . . . . . . . . . . . . 108

4.1.1 Main lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.1.2 Basic facts about smooth multiresolution analysis . . . . . . . . . . . . . . 109

4.1.3 Multiresolution approximation of the Poisson kernel . . . . . . . . . . . . . 110

4.2 Multiresolution analysis in growth spaces . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.1 Decomposition into blocks and direct estimates . . . . . . . . . . . . . . . 111

4.2.2 Converse estimates and coefficient characterization . . . . . . . . . . . . . 114

4.2.3 Wavelet characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Chapter 5 Growth classes on Lipschitz domains: boundary oscillation . . . . . . 118

5.1 Proof of Theorems I.17 and I.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1.1 Main approximation lemma . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1.2 How to deduce Theorem I.17 . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1.3 Proof of Lemma 5.1.1: auxiliary function H . . . . . . . . . . . . . . . . . 119

5.1.4 Proof of Lemma 5.1.1: dyadic martingale . . . . . . . . . . . . . . . . . . . 121

5.1.5 Proof of Theorem I.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.1 Construction of {bj} and Φk . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2.2 Proof of (5.13c): martingale decomposition . . . . . . . . . . . . . . . . . . 125

5.2.3 Proof of (5.13c): inequality (5.22) . . . . . . . . . . . . . . . . . . . . . . . 126

5.2.4 How to create a Bloch function from Φj . . . . . . . . . . . . . . . . . . . 128

Chapter 6 Growth classes: divided differences . . . . . . . . . . . . . . . . . . . . . 132

6.1 Proof of Theorem 6.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2 Proof of Theorem 6.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Chapter 7 Growth classes in the Ball: Cartwright theorem revisited . . . . . . . 143

7.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2 Averaging theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.3 Two lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.3.1 Proof of Lemma 7.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.3.2 Proof of Lemma 7.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4 Intermezzo: some comments about regularity . . . . . . . . . . . . . . . . . . . . . 147

7.5 Main technical theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.5.1 Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.5.2 Theorems 7.5.1 and 7.2.1 imply Theorem I.21 . . . . . . . . . . . . . . . . 149

7.6 The weight lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.6.1 Proof of Lemma 7.6.1: auxiliary surface ΓA . . . . . . . . . . . . . . . . . . 150

7.6.2 Proof of Lemma 7.6.1: auxiliary function vA . . . . . . . . . . . . . . . . . 151



4

7.7 Proof of Theorem 7.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Chapter 8 Normal variation of positive harmonic functions . . . . . . . . . . . . . 156

8.1 Operators By . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.1.1 Integral operators and their kernels . . . . . . . . . . . . . . . . . . . . . . 156

8.1.2 Kernels py, cy, by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.1.3 Outline of the proof of Theorem 8.0.1, measures νε,u . . . . . . . . . . . . . 159

8.2 Construction of measures νε: outline . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.2.1 The plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.2.2 Kernels ψt,u,ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.2.3 Two key facts about ψt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.2.4 Mean variation is finite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.2.5 Differential equations (8.16) . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.3 Kernels ψJ , weak convergence of νt, condition (i) . . . . . . . . . . . . . . . . . . . 162

8.3.1 Kernels bJ , ψ̃J , ψJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.3.2 Behaviour of ψt for small t . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.3.3 Focusing property of the operator Ω∆ . . . . . . . . . . . . . . . . . . . . . 164

8.3.4 Weak convergence of measures γys . . . . . . . . . . . . . . . . . . . . . . 166

8.4 Identity (ii) for operator functions t ↦→ Ψt . . . . . . . . . . . . . . . . . . . . . . 166

8.4.1 Computing the derivative (fx)′ . . . . . . . . . . . . . . . . . . . . . . . . 168

8.5 Properties (b) and (c) of measures νε . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.5.1 Positivity of νε(I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.5.2 Mass distribution of νε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.6 Kernels ψJ : existence, properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.6.1 Some extra notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.6.2 Decomposition of ψΛ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.6.3 Estimating ψΛ − ψ̃J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8.6.4 Estimate of ψΛ̃ − ψΛ, Λ ≻ Λ̃ . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.6.5 Dyadic partitions of ω∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.7 Kernels bt are continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181



5

Introduction

The theory of Harmonic Functions holds a central place in Mathematical Analysis since for almost

two hundred years. As of today it contains areas deemed classical and fundamental, especially if

considered in parallel to its sibling, the Analytic function theory, like Hardy spaces or Subhar-

monic Functions, as well as the most recent and trending disciplines, such as Discrete Harmonic

Functions, Harmonic Measure or inquiries into the growth and decay of Laplacian. It has innu-

merous connections to other domains – extensively and fruitfully exploited in both directions –

Stochastic Processes and Random Fields, Potential Theory (which one might claim to be sired

by Harmonic Function Theory), Analysis on Graphs and Networks, Statistical Physics, Fourier

Analysis, Wavelet and Signal Analysis, and many many more.

Questions regarding the boundary behaviour of harmonic functions permeate the theory from

its very foundations to the newest and freshly developed branches. One could argue that the very

problem of existence – the Dirichlet problem – already contains most of issues usually studied by

researchers in the field. How the function converges to its boundary values, or, in the other way

around, how it grows and/or oscillates (which, mysteriously, is oftentimes easier to investigate –

three-dimensional version of Privalov’s theorem or tail Law of Iterated Logarithm for harmonic

functions come to mind), depending on the manner we are approaching the boundary, infinity

included, the zero sets and level sets, all of these and more was studied since pretty much the

very beginning. Maximum Principle, Hadamard’s three circles, Fatou theorems, angular derivative,

regular points, boundary Harnack’s inequality, propagation of smallness and the Law of Iterated

Logarithm are just a few of those.

The relation between classical Harmonic Function Theory and its discrete models, which is so

explicit in, for example, Stochastic Processes, came to the spotlight somewhat more recently. One

could say that it was present in the background, hidden in, say Littlewood-Paley decomposition,

stopping time arguments in the disc, Carleson tents and others. It did arrive in full power in

early eighties with the famous results by Makarov on the support of harmonic measure. Then it

gained further momentum with the emergence of wavelets, dyadic Singular Integral Theory and

Probability on graphs, and by now discrete harmonic functions (of all flavors) serve both as a

tool and as an independent object of study (in particular their dissimilarity with their continuous

parents – discrete Liouville’s theorem comes to mind among the recent developments).

The thesis is dedicated to studying three types of boundary behaviour problems in relation

with discrete models.
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The first topic considers Carleson measures for a certain class of analytic and harmonic spaces

in the unit polydisc. Given H(Ω) – a Hilbert space of functions, usually harmonic or analytic, on

a domain Ω ⊂ Rd and a Radon measure µ on Ω (or sometimes on its closure Ω – where it makes

sense) we call µ a Carleson measure for H(Ω), if the inequality∫︂
Ω

|f |2 dµ ≤ Cµ∥f∥2H(Ω)

holds for any f ∈ H(Ω) with some absolute constant Cµ.

The notion itself goes back to the famous paper of Carleson [21] about the corona problem,

where, in particular, he gave a description of such measures for the Hardy space H2(D). Later on
the extensions were given for other spaces of analytic and harmonic functions. We mention here

the results of Stegenga [90] (Hardy-Sobolev scale on D), Hastings [40] and Luecking [59] (Bergman

spaces in several variables), [4] and [5] (Besov spaces on complex balls). For the Hardy-Sobolev

scale on the polydisc the main references are [24, 25, 26], where the Hardy space (harmonic version)

on the polydisc was considered. Carleson measures proved to be a central notion in the analysis

of holomorphic spaces, as they intervene in the characterization of multipliers, interpolating se-

quences, and Hankel-type forms, in Corona-type problems, in the characterization of exceptional

sets at the boundary, and more. Moreover in Potential Theory they come in the form of trace

measures – measures that realize the bounded embeddings of Sobolev spaces into Lp(µ) called

trace inequalities. This incarnation goes back to seminal works of V.G. Maz’ya which dealt with

weak solutions of the Schrödinger equations, and later developments produced a stream of results

about properties and descriptions of such measures.

Our aim is to characterize the Carleson measures for a certain scale of Hardy-Sobolev spaces

on the polydisc. Analysis on polydisc is, in general, much more complicated compared to the

classical one-dimensional case, and these difficulties will expose themselves in several places of

the arguments. In particular we note that outside of a number of important papers by S.-Y. A.

Chang and R. Fefferman in early eighties we have mentioned above no other results for Carleson

measures were obtained in the multi-parametric setting, even on the bi-disc. The approach we

used is the dyadic discrete one. Namely, following [6] we transfer our continuous problem into a

discrete medium, reformulating the Carleson embedding as a Hardy embedding on a certain graph

we call a d-tree. We then continue by solving the discrete problem, and show that the solution

can be properly moved back to the polydisc. Moreover, it is the discrete embedding and related

questions that actually come to the forefront of our investigations, as we consider it to be at least

as interesting a problem as the description of Carleson measures due to connections to dyadic

paraproducts, singular integral operators, multiparametric potentials and other notions. Loss of

information when moving between continuous and discrete settings, especially in the context of

analytic functions, is also mentioned.

The second topic considers the so-called growth spaces of harmonic functions. These consist
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of harmonic functions on a domain Ω ⊂ Rd satisfying a growth condition near the boundary

|u(x)| ≤ Cuw(dist(x, ∂Ω)), x ∈ Ω,

where the function w is called the growth weight and it is usually a doubling one.

Such spaces of analytic and harmonic functions in the unit disk were considered by A. Shields

and D. Williams, while the Fourier series of such functions were studied by G. Bennett, D. Stegenga

and R. Timoney, who showed that the growth of the function cannot be characterized by the

growth of the partial sums of its Fourier series (which is directly related to our results). Another

group of results is due to B. Korenblum, whose classical paper on the extension of Nevanlinna

theory was a starting point for the research in the area, and follow-up papers by Yu. Lyubarskii,

E. Malinnikova and P. Thomas. Moreover, these spaces on the unit disc were a subject of classical

works by M. Cartwright who showed that one-sided polynomial growth condition actually implies

the two-sided bound. They were extended to a large class of weights by A. Borichev.

Within this topic we show that functions in growth spaces can be described in terms of their

wavelet decompositions. Wavelet series of the boundary values of a harmonic function is a con-

venient tool that replaces the Fourier series. For instance, the Haar wavelets provide the martin-

gale representation. We chose smooth multiresolution analysis, the smoothness depending on the

weight w. Next we prove that such a function in a Lipschitz domain should oscillate wildly near

the boundary. It is the expected behaviour, expressed in a number of the Law of the Iterated

Logarithm type scenarios, and we give a version adapted for our space.

Another result is the extension of M. Cartwright theorem to the unit ball in Rd and to a large

class of regular weights.

Finally we prove a couple of oscillation-type results for divided differences of Hölder functions

on the real line. On a first glance this is neither harmonic nor growth related, however such

differences behave in a very similar way to the vertical, say, derivative of a harmonic function

under growth condition, and the approach to handle them is very similar to the techniques in the

results mentioned above, especially the dyadic martingale representation (actually they can be

deduced from the wavelet decomposition representation).

The third topic is dedicated to the variation of harmonic functions near the boundary. For

a given smooth domain Ω ⊂ Rd and a positive harmonic function u on Ω we study the points

ξ ∈ ∂Ω such that ∫︂ 1

0

|∇u(p+ tN⃗(ξ))| dt < +∞,

where N⃗(ξ) is the inward normal vector to ∂Ω at ξ.

The study of such an integral – a normal variation of u can be traced to a classical 1955

paper by W. Rudin, where he proved that it can be infinite at almost every boundary point for a

bounded analytic function u in the unit disc. In 1993 Bourgain showed that the set of points of

finite variation of bounded analytic (and later on, of poisitve harmonic) functions must nevertheless
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be quite large in the sense of Hausdorff dimension. This result was later extended to the unit ball

by M. O’Neill. The normal variation turned up in many different contexts, we also mention works

by J. Ortega-Cerda, D. Girela, P. Jones, P.F.X. Müller, D. Walsh and others, who used variants

of this quantity to characterize spaces of analytic functions, or to deduce boundary properties of

functions on such spaces. Our main result here is the extension of Bourgain’s theorem to smooth

domains in Rd. We show that normal variation of a positive harmonic function is finite on a large

set of boundary points. The important idea here is that we avoid using Fourier analysis (as done

by Bourgain and O’Neill), and use the estimates of Green’s functions instead. Hence the method

is not a discrete one, nevertheless a proper discrete statement of the problem would be of interest.

As it happens in mathematics, the results are usually obtained by collaborative work and com-

plex discussions. Nevertheless the author has chosen to present here those theorems and arguments

that he can safely claim to put his name on, unless otherwise specified.

The thesis consists of Introduction, 8 Chapters and a Conclusion. It contains definitions, ar-

guments, historical references, auxiliary statements and Theorems, which are presented to de-

fense. Thesis results are published in 15 articles ([98]-[112]) in peer-reviewed journals. They were

demonstrated many times in talks on international scientific conferences and research seminars.

This provides their reliability.

Further in this chapter we will introduce the main results of the thesis, and formulate their state-

ments as well as describe the setting. For reader’s convenience the theorems are reintroduced and

their proofs are given in the respective chapters. The numbering of displays in the main part of

the thesis consists of three digits: chapter number, section number and the formula number within

section. The numbering in the Introduction is consecutive, with a prefix I. attached.

The relevance of the thesis is justified by the choice of the topics. They are embedded into a

wide mathematical context with numerous connections to Potential Theory, Stochastic Processes,

Functional Analysis (in particular Hilbert Spaces of Analytic Functions), Analysis on Graphs,

PDEs and many other areas of research. All of these are actively developing fields populated

by prominent mathematicians and they attract a lot of interest from specialists. Recent activity

around Nehari’s theorem on the polydisc should be mentioned as well.

I consider the presented results and topics to be appropriately developed and ready for

the defense. The included results contain general statements, their applications, examples and

counterexamples. In addition there is a number of follow-up questions and a number of paths are

opened for further investigations. Some of those are presented in the Conclusion.

The purpose of the work is three-fold. The first aim is to obtain new concrete mathematical

results, the second is to develop new methods and techniques, and to refine already known ones,

and the third is to open up directions for subsequent studies and expand our understanding of

discussed problems.

Most of the results of the thesis are new, this is corroborated by publications in peer-reviewed

journals. When the already known statement is discussed, the actual result is the application or
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presentation of a new approach. This is also of interest.

The work in thesis is of theoretical nature. The obtained results can be (and some of them

already are) applied in the mathematical research in the areas mentioned above.

The methods of the thesis, both new and established, are related to: Functional Analysis,

Measure Theory, Reproducing Kernel Hilbert Spaces, Potential Theory, Harmonic Functions on

Graphs, Combinatorics – for Chapters 1-3 – and also to Probability (especially dyadic martingales),

PDEs, Wavelet Analysis, Bloch Spaces, Harmonic Measure for the rest of the thesis. In particular,

we mention the new techniques of energy majorization and energy decay estimates in multi-

parametric setting, which, generally speaking, belong to the main achievements of the thesis.

Discrete setting

Here we introduce a discrete model which will serve as the working ground for Chapters 1 and 2.

The result obtained in those chapters will be moved to a continuous medium – spaces of harmonic

and analytic functions on the polydisc in Chapter 3. The L2 weighted embedding problem which

is the central object of study in these chapters also appears here first, and it gives rise to (a version

of) Potential Theory. This model comes in two flavors: first, we do it for a finite graph, and then

we consider a variant for a certain type of infinite graphs (d-trees). We discuss several possible

ways to interpret this graph, like a discretization of (D) by Whitney cubes, a subset of Rn (as the

natural embedding of a graph into Euclidean space) and representing of the vertices of a d-tree as

dyadic rectangles in the unit cube [0, 1]d. We define the setting and give preliminary statements.

Some more details (regarding trees mostly) about directed graphs, product graphs and potentials

can be found in [6] or [64], and also in [97, 78].

The vertices of a graph we denote by greek letters α, β, γ etc., in particular by τ, ω we

usually denote the boundary points. Sometimes – when it is more convenient to think of a graph

as a collection of dyadic rectangles – we write vertices as Q,R, I, J instead. We do not make use of

graph edges (though discrete gradients are usually defined on edges in the literature, and somehow

it is a more natural way of thinking, we move all the objects we deal with to vertices). As a result

we identify a graph and its vertex set, which is reflected in notation and definitions.

Also, throughout the text, we write A ≲ B for a couple of quantities A,B, if there exists a

constant C such that A ≤ CB. This constant is usually assumed to not depend on variable

quantities, depending on the context. Also we write A ≈ B, if A ≲ B and B ≲ A.

A directed graph Γ without directed cycles is a partially ordered set such that for any

α, β ∈ Γ there exists γ ∈ Γ such that γ ≥ α, γ ≥ β. The sets {β ∈ Γ : β ≥ α} and {β ∈ Γ : β ≤ α}
are denoted by PΓ(α) and SΓ(α) respectively (we drop the subscript Γ wherever it is convenient).

Similarly, given E ⊂ Γ we put P(E) :=
⋃︁

α∈E P(α) and S(E) :=
⋃︁

α∈E S(α).
If P(α) is totally ordered for any α ∈ Γ, then we call Γ a tree . A tree T is 2n-adic, if any α ∈ T

that is a non-least element (i.e. there is no β ≤ α) has exactly 2n immediate children. A d-tree

T d is a Cartesian product of d copies of T with the product order. For the sake of convenience we
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always assume, unless it is mentioned specifically, that the trees we are dealing with are dyadic.

Most of the results and properties can be easily moved to the 2n-adic case anyway.

By attaching the usual edge-counting distance to a finite graph Γ we make it a compact metric

space (while this is of no importance for finite graphs, we’ll have to tread a bit more carefully

later on).

Next we move to infinite graphs. We start with the infinite dyadic tree T with a single root

(i.e. unique maximal element), which we denote by o, and we make it into a compact metric

space (see [6] for details). First we consider the combinatorial boundary ∂̃T of T which is just a

collection of half-infinite geodesics ω = {o, ω1, ω2, . . . }, ωk ∈ T , with respect to the edge-counting

distance starting at the root. For any two points α, β in T their confluent or the least common

ancestor α ∧ β is the minimal element in P(α) ∩ P(β). Also, for a pair of different geodesics

ω, ζ ∈ ∂̃T the confluent ω ∧ ζ (which is a point of T itself) is the minimal point in ω ∩ ζ, and
we put ω ∧ ω := ω. Now given α, β ∈ T we put

dist(α, β) := 3−|α∧β| − 1

2
(3−|α| + 3−|β|), (I.1)

where |τ | := #P(τ) − 1, τ ∈ T is the usual distance to the root. This is a metric (ultrametric

even) on T , and taking a metric completion of T we obtain a compact metric space T . The metric

boundary ∂T of T is T \ T .
Clearly every ω ∈ ∂̃T is a Cauchy sequence with respect to dist, moreover, if we denote by

[ω] the equivalence class of ω in ∂T , then the map ω ↦→ [ω] is a homeomorphism of ∂̃T onto ∂T ,

thus the metric and combinatorial boundaries are the same. As such the predecessor set P(ω) of

a boundary point ω is just the geodesic ω itself, and we write ω ∈ S(α), α ∈ T , if α belongs to

this geodesic, ω = (o, ω1, . . . , α, . . . ). The balls in ∂T are of the form S(α) ∩ ∂T, α ∈ T .

Next we write T
d
for the product of d copies of T , and extend the metric structure in the usual

way

dist(α, β) = sup
k=1,...,d

dist(αk, βk), αk, βk ∈ T ,

where α = (α1, . . . , αd), β = (β1, . . . , βd). The distinguished boundary (∂T )d is the product

of d copies of ∂T . We also write ∂S(α) to be the ’shadow’ of α on the distinguished boundary,

∂S(α) = S(α) ∩ (∂T )d. As before, the balls are of the form ∂S(α), where all the coordinates of

the vertex α have the same depth.

We also need the restricted tree TN which consists of points α ∈ T such that #P(α) ≤
N, N ∈ N. The restricted d-tree T d

N is again a product of d copies of TN . Clearly T
d =

⋃︁
N≥1 T

d
N .

Discrete setting: graph potentials

Here we attach some new objects to our graph Γ (in what follows by Γ we understand either a

finite graph Γf or an infinite d-tree T
d
) – measures, weights and functions.

A real-valued non-negative Radon measure on a finite graph Γ or on T
d
we usually denote by

letters µ, ν, σ, ρ etc.
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A Borel measurable function is a mapping from Γf or T
d
to R+ (so all functions are assumed to

be non-negative), we denote it by f, φ, ψ etc.

A weight is a mapping from Γf or T d (we do not define it on the boundary ∂T d of an infinite

graph) to positive numbers. In particular, for a finite graph Γf all these are just collections of

positive numbers attached to the vertices of Γf .

Given a function f and a weight w on Γ we define the weighted Hardy operator Iw as

follows

Iwf(α) :=
∑︂
γ≥α

f(γ)w(γ) :=

∫︂
P(α)

f dw. (I.2)

In particular, if w ≡ 1, we write I. Sometimes we also write I(wf) instead of Iwf .

Similarly, given a function φ and a measure µ we define the ’adjoint’ Hardy operator (we’ll justify

this particular notation later) by

I∗µφ(α) :=

∫︂
S(α)

φdµ. (I.3)

For a finite graph Γf it turns into
∑︁

γ≤α φ(γ)µ(γ). Like before we write I∗ for µ ≡ 1.

The weighted potential of a measure µ for the weight w is

Vµ
w(α) := Iw(I

∗µ)(α) =
∑︂
γ≥α

∫︂
S(γ)

dµw(γ) =

∫︂
Γ

w(P(α ∧ τ))dµ(τ), (I.4)

where P(α ∧ γ) = P(α) ∩ P(γ) and w(P(α ∧ γ)) =
∑︁

τ∈P(α∧γ)w(τ). The weighted energy of a

measure µ is

Ew[µ] :=
∫︂
Γ

Vµ
w dµ, (I.5)

and the mutual energy of two measures µ, ν is

Ew[µ, ν] :=
∫︂
Γ

Vµ
w dν. (I.6)

Now we are ready to define the weighted capacity on Γ. Assume that K ⊂ Γ is a compact set.

We let

Capw(K) := inf{∥f∥2L2(Γ,dw) : Iwf(τ) ≥ 1, τ ∈ K}, (I.7)

where ∥f∥2L2(Γ,dw) =
∑︁

γ∈Γ f
2(γ)w(γ). We assume that empty set has infinite capacity. As usual

we say that a property holds quasi-everywhere or q.e. if it holds for all γ ∈ Γ except on a set

with zero capacity.

Remark. Due to our agreement for a weight to be a positive function, we see that the capacity

of a singleton in the interior of Γ is always non-zero. See also the discussion in the beginning of

Section 1.1.
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Potential theory

In this Section we explain how to introduce Potential Theory on graphs, in particular on d-trees,

and on polydisc Dd. We adopt the general point of view presented by Adams and Hedberg in

that we give a general construction (as described in [1, Chapter 2]) which we then adapt to the

respective setting. Unfortunately, we are not able to directly quote [1], since they still use Rn

within their general setting (so, the setting is not general enough for our purposes), and some

additional work is needed to handle graphs. We avoid this issue by embedding our graphs into Rn,

so that the potential kernels we use are interpreted to be defined on euclidean spaces. We could

also have just repeated arguments from [1, Chapter 2] almost verbatim to handle potentials on

d-trees, but it would be just redundant.

In some form or another these arguments can be seen (though mostly on trees) in [6], [10], [62], [63],

[79] and [64, Chapter 16]. Most of the basic capacitary properties for exponential weights (product

capacities and maximum/domination principles discussion in Section 1.1, boundary projection

estimates in Section 3.2) can be seen in [104].

Some more details and basic results about potentials and capacities are provided in Chapter 1.

General Potential Theory

Here we give a very short summary of results in [1, Chapter 2.3-2.5] about the definition of capacity,

potentials and existence of the equilibrium measure.

Let (M, ν) be a measure space, and g :M ×Rn → R+ ∪ {+∞} be a kernel function that is

(a) lower semicontinuous on Rn for each y ∈M and (b) measurable on M for each x ∈ Rn. Given

a positive Radon measure µ on Rn and a non-negative ν-measurable function f we define

Gf(x) :=
∫︁
M
g(x, y)f(y) dν(y), x ∈ Rn, (I.8a)

Ǧµ(x) :=
∫︁
Rn g(x, y) dµ(x), y ∈M. (I.8b)

For E ⊂ Rn let ΩE be a set of admissible functions,

ΩE := {f ∈ L2(M, ν) : f ≥ 0, Gf ≥ 1 on E},

and the g-capacity

Capg(E) := inf

{︃∫︂
M

f 2 dν : f ∈ ΩE

}︃
.

Defined as such Capg is an outer capacity and Borel sets are capacitable. For a measure µ on Rn

let the g-potential be

Vµ
g := GǦ(µ).

We say that a property happens g-quasi everywhere, g-q.e., if it happens everywhere, but on a set

of zero g-capacity.

Theorem I.1 (Frostman theorem for Capg) Let E ⊂ Rn be a compact set. Then there exists a
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measure µE

Capg(E)
1
2 = sup

{︁
µ(E) : µ ≥ 0, suppµ ⊂ E, ∥Ǧ(µ)∥L2(M,ν) ≤ 1

}︁
, (I.9a)

Capg(E) = µE(E) =: |µE| =
∫︁
Rn VµE

g dµ, (I.9b)

VµE
g (x) ≤ 1, x ∈ suppµE, (I.9c)

VµE
g (x) ≥ 1, g-q.e. on E. (I.9d)

Potential theory on graphs

In order to apply the general construction of previous paragraph we have to make a few more

steps. Essentially we want to have our kernel function g to be defined on Γ×Γ, or, in other words,

to let M be a graph (usually d-tree with a positive weight attached). However the other space

above is Rn, and to make the argument work we will consider Γ to be a subset of Rn for some

appropriate n, i.e. embed Γ into Rn.

Finite graphs

When Γ is a finite graph, we almost do not have to do anything, and the embedding is just mapping

the vertices to some separated set of points, say in R2. The only thing we have to remember is

the ordering.

Infinite d-trees

Now assume Γ = T
d
is a d-tree. We embed each coordinate in R2 in a standard way, and then take

the Cartesian product. The idea for this (mostly procedural – throughout the work we interpret

trees in a different way) tree embedding can be found in [64, Chapter 1] or in [6].

We identify the vertices of T with the approximating intervals for the classical Cantor set on the

unit interval. Namely, consider the ternary Cantor set E =
⋂︁∞

j=0Ej, where E0 = [0, 1], and Ej

consists of 2j closed intervals of length 3−j. Then each point of T corresponds to a unique interval

in Ej (or, more precisely, to its centerpoint), and, similarly, ∂T maps to E. In other words, if cjk

is the centerpoint of a k-th segment in Ej, and α is a k-th point (counted, say, from left to right)

on the level j of T , |α| = j, we set

Φ(α) := pkj = (ckj, 3
−k) ∈ R2.

Extend Φ to the boundary ∂T by continuity, so that Φ(∂T ) = E. Hence we have an injective

mapping Φ : T → Φ(T ) ⊂ R2, with euclidean distance of images comparable to the original tree

metric defined in (I.1)

|Φ(α)− Φ(β)| ≈ dist(α, β), α, β ∈ T .

In the same vein the points of T d correspond to ternary rectangles (Cartesian products of cen-

terpoints of intervals in Ei
j). In particular, (∂T )d can be identified with Ed. The predecessor and

successor sets on Φ
(︂
T

d
)︂
are inherited from the graph.
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Applying general theory

We do everything for T
d
, the case of finite graphs is done similarly.

We set M := T d and ν := w to be a discrete measure on M . Let τy ∈ M = T d and x ∈ Φ(T
d
).

Our kernel is

g(x, τy) := 1S(x)(τy) = 1P(τy)(x), x ∈ Φ
(︂
T

d
)︂
, y ∈ T d. (I.10)

On the rest of R2d we set g to be infinity,

g(x, τy) := +∞, x /∈ Φ
(︂
T

d
)︂
. (I.11)

It is easy to check that g is lower semicontinuous in the first variable and measurable (w.r.t.

discrete measure w which is weight) in the second. Also, if x = Φ(τx) ∈ Φ
(︂
T

d
)︂
and τy ∈ T d, then

for any non-negative f on T d and a measure µ̃ supported on F
(︂
T

d
)︂
one has

Gf(x) =
∫︁
M
g(x, τy)f(τy) dν(τy) =

∑︁
τy≥τx

f(τy)w(τy) = Iwf(τx), (I.12a)

Ǧµ̃(τy) :=
∫︁
Rn g(x, τy) dµ̃(x) =

∫︁
S(τy) dµ = I∗µ(τy), (I.12b)

where µ is the Φ-preimage of µ̃. For x /∈ Φ
(︂
T

d
)︂
or for a measure µ̃ with mass outside of Φ

(︂
T

d
)︂
we

get infinity in the expressions above. It turns out that it makes sense to consider only the measures

supported on the image of d-tree. In any case now we can run Adams-Hedberg machinery to obtain

the following discrete version of Frostman theorem.

Theorem I.2 Assume E ⊂ T
d
is a compact set and w : T d → R+ is a weight with w(o) > 0.

Then there exists a unique measure µE such that

|µE| =
∫︁
T

d VµE
w dµE = Capw(E), (I.13a)

VµE
w ≤ 1 on suppµE (I.13b)

VµE
w ≥ 1 q.e. on E. (I.13c)

Same holds for a finite graph Γ.

Hardy embeddings

Formulation of the main Theorem I.3

Our main object of study here is the discrete Hardy embedding on the d-tree in the linear

case. As we have already mentioned before, it can be considered from different points of view: the

multi-linear weighted paraproduct theory (see below), multi-parametric Potential theory, random

walks on d-trees (so random walks with multi-parametric time in sense of [17]), combinatorics of

dyadic rectangles, polydiscs (including probabilistic interpretation like in [38]) etc. We have chosen

to explore it relation to the problem of describing Carleson embeddings of weighted Hardy-Sobolev

spaces on the polydisc – the problem that originally motivated us to study analysis on d-trees.
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In this Section we describe the discrete problem, and we explain how to move to the continuous

case in the next Section. The potential-theoretic meaning, while not taking central place in our

arguments, is almost always at least present in the background, and sometimes we use this language

to formulate the results and study the nature of arising problems from this angle.

We also would like to mention that our results can be viewed as the two-weight paraproduct

estimates, see [112, Section 1] for details and references. Two-weight estimates for singular integrals

were considered by F. Nazarov, S. Treil, and A. Volberg regarding dyadic singular operators and

by M. Lacey, C.-Y. Shen, E. Sawyer, and I. Uriarte-Tuero regarding the Hilbert transform, see

[74], [75], [55], [53], and the references therein. Another example is a recent paper by A. Iosevich,

B. Krause, E. Sawyer, K. Taylor, and I. Uriarte-Tuero [45] on the two weight problem for the

spherical maximal operator. Classically, an estimate of paraproduct tri-linear forms [37] is based

on T1 theorem of G. David and J.-L. Journé. The theory of Carleson measures (or classical BMO

theory) is involved. It is well known [25, 26, 49, 48] that in the multi-parametric setting all these

results and concepts of Carleson measure, BMO, John–Nirenberg inequality, Calderón–Zygmund

decomposition are much more delicate. Paper [72] develops a completely new approach to prove

natural tri-linear bi-parameter estimates on bi-parameter paraproducts, and in [73] a simplified

method was used to address the multi-parameter paraproducts.

Assume that d is fixed. We ask when, for a given weight-measure pair (w, µ), the operator

Iw is bounded acting from L2(T d, w) to L2(T
d
, µ), i.e.∫︂

T
d
(Iwf)

2 dµ ≤ C

∫︂
T d

f 2 dw, f ∈ L2(T d, w), (I.14)

or, if we consider the dual embedding,∫︂
T d

(I∗µφ)
2 dw ≤ C

∫︂
T

d
φ2 dµ, φ ∈ L2(T

d
, µ). (I.15)

The smallest constant C such that the inequalities above hold for any appropriate function we

call the Carleson embedding constant and denote by [w, µ]CE.

A standard way to obtain the conditions on w and µ for [w, µ]CE to be finite is to test the

embedding on a certain subclass of functions (usually characteristic functions of some sets). In

doing this we arrive a number of test embeddings. All sets are assumed to be Borel.

The subcapacitary constant is the smallest number [w, µ]SC such that

µ(E) ≤ [w, µ]SC Capw(E), ∀E ⊂ T
d
. (I.16)

The hereditary Carleson constant (or the restricted energy condition constant or REC

constant) is the smallest number [w, µ]HC such that

Ew(µ|E) =
∑︂
α∈T d

w(α)(I∗µ|E)2(α) ≤ [w, µ]HCµ(E), ∀E ⊂ T
d
. (I.17)
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The Carleson constant (or the multiple box constant) is the smallest number [w, µ]C such

that ∑︂
α∈S(E)

w(α)(I∗µ)2(α) ≤ [w, µ]Cµ(E), ∀E ⊂ T
d
. (I.18)

The box constant is the smallest number [w, µ]B such that∑︂
α≤β

w(α)(I∗µ)2(α) ≤ [w, µ]BI
∗µ(β) = [w, µ]B µ(S(β)), ∀β ∈ T d. (I.19)

All of these are clearly generated by appropriate tests: the subcapacitary condition is the direct

embedding tested on functions admissible for E, the hereditary Carleson is the dual embedding

tested on characteristic functions of sets, the Carleson constant appears when we remove some

extra parts from the left-hand side of (2.3b), and the box constant is the Carleson constant

with sets restricted to be descendants of singletons in T d (which may be considered as dyadic

parallelepipeds in [0, 1]d – hence the naming convention).

For positive numbers A,B we write A ≲ B if A ≤ CB for some absolute constant C.

The inequalities

[w, µ]B ≤ [w, µ]C ≤ [w, µ]HC ≤ [w, µ]CE,

[w, µ]SC ≤ [w, µ]CE

are obvious (also it is not hard to see that [w, µ]SC ≤ [w, µ]HC). The converse inequalities for

d = 1 are known (see, for example, [6] for potential-theoretic proof, or [74] and [108] for the

proof via Bellman function). The main result states that for product weights we have the converse

inequalities also for d = 2 and d = 3 ([112, Theorem 1.4]).

Theorem I.3 Assume that (w, µ) is a weight-measure pair on the d-tree with d = 2 or d = 3, and

w has a product structure, w(α) =
∏︁d

k=1w(αk) for any α = (α1, . . . , αd) ∈ T d. Then

[w, µ]B ≳ [w, µ]C ≳ [w, µ]HC ≳ [w, µ]CE,

[w, µ]SC ≳ [w, µ]CE.
(I.20)

Motivation for the choice of a weight and medium

The reason to study this particular problem originated from the Carleson embedding problem on

the polydisc, as it is explained in the next paragraph. It is because of that, in particular, we are

considering d-trees and weights of product nature. The path we have chosen to obtain this result

is also influenced by this motivation – it is potential-theoretic, at least in spirit, and it follows

the train of thought presented in works of D. Stegenga ([90]), E. Sawyer ([86]), N. Arcozzi, R.

Rochberg, E. Sawyer and B. Wick ([4], [5], [6]), to name a few, and which goes back to V.G.

Maz’ya.

However, while the set of ideas we adopted eventually made it possible to lay down the road to

the result, we had to reinvent most of the arguments along the way. The reason for this lies of
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course in the multi-parametric nature of our setting. This nature can be explained in a number

of ways, like the d-dimensional time or presence of non-radial kernels, in particular we observe

that the d-tree is not a tree – this directed graph has a lot of cycles. Hence the geodesics are not

unique anymore, and the geometric structure becomes much more complicated. We also can not

disintegrate the problem to d one-dimensional statements, since while the weight w is product,

the measure µ is not. Still the product property of w helps immensely, and we will see later that

a general two-weight problem (with general w and µ) is even more difficult, even on subgraphs of

a d-tree.

These difficulties are also hidden in the formulation of equivalent test conditions. In considering

the multi-parametric embeddings the rule of thumb is that the test should be more involved,

compared to d = 1. Not only both the direct and the dual embedding should be tested, but also

the test functions have to be more complicated. This, superficially, is not the case here, since the

reverse inequalities (I.20) look exactly like what one expects from the case d = 1. However this

is not completely true. First, we deal with product weights, so some one-dimensional structure

has to be preserved. In a proper 2D-setting, even for simple subgraphs of T 2, we have to have

several single-box or multiple-box test, as evidenced in [86] (and nothing is known for T 3). Another

reason is that in (I.20), specifically in the [w, µ]B ≳ [w, µ]CE a small miracle happens – just one

single-box test is enough. We attribute this to the tangible presence of Potential Theory in the

structure of our problem, since, for instance, for the Carleson embedding on the bi-disc it is not

true anymore (as is shown in [21], [24]). We can not emulate this embedding with a product weight

– the capacity does not make sense then, and the proper discrete analogue has the roles of w and

µ reversed.

We also want to mention that the restriction d ≤ 3 here is important. We do not know if the

Theorem I.3 is true in higher dimensions (we believe so, though), and the techniques for its proof

should be reinvented once more.

Scheme of the proof

We prove Theorem I.3 in Chapter 2. The key argument in the proof of is the so-called Surrogate

Maximum Principle which replaces the usual Maximum Principle which is absent in the multi-

parametric setting. Actually we show that the main Theorem holds for every dmodulo establishing

said Principle.

Section 2.1

There we recall the formulation of the main Theorem.

Section 2.2

This Section is dedicated to the proof of the Surrogate Maximum Principle for d ≤ 3. Let us

elaborate.

In Section 2.2.1 we prove some auxiliary results on a usual dyadic tree.
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In Sections 2.2.2 and 2.2.3 we extend these results to the 2-tree and 3-tree respectively. We do it

separately, since we want to showcase that another jump of complexity happens when we move

from d = 2 to d = 3, and yet another one when we consider higher dimensions. One would expect

that all dimensions above 2 behave similarly, but this is not the case. Two key results are proven in

these Sections. The first tells us how to rearrange the mass of a function on T d in a more effective

way, if it is supported on a set of small potential.

Lemma I.1 (Small energy majorization on T d for d = 2, 3.) Let d = 2 or d = 3, and

f : T d → R+ be a superadditive (in each variable) function, and w be a product weight. Suppose

that supp f ⊆ {I(wf) ≤ δ}, and let λ ≥ 4δ. Then there exists an energy-effective redistribution

φ : T d → R+ such that

I(wφ)(α) ≥ I(wf)(α), α ∈ {λ ≤ I(wf) ≤ 2λ}, (I.21a)∫︁
T d φ

2w ≤ C
(︁
δ
λ

)︁c(d) ∫︁
T d f

2w, (I.21b)

where C is some absolute constant, and c(2) = 2, c(3) = 1.

The second key result considers the application of small energy majorization to estimate the

capacity of exceptional sets – the sets where the equilibrium potential is very large (see [105,

Theorem 1.11], [2, Lemma 3.1]).

Theorem I.4 Let µ be a measure on T d for d = 2 or d = 3, w a product weight and Vµ
w ≤ 1 on

suppµ. Let Eλ := {Vµ
w ≥ λ ≥ 10}. Then

Capw Eλ ≤ C

λc(d)
Ew[µ],

where C is an absolute constant and c(2) = 4, c(3) = 3.

Finally, in Section 2.2.4 we formulate the Surrogate Maximum principle for d-trees – it is a

conjecture for d ≥ 4 (see [107, Theorem 1.2]).

Theorem I.5 We say that a weight w on a d-tree T d satisfies the surrogate maximum prin-

ciple, if for some κ > 0, C < ∞ and every positive measures µ, ρ : T d → [0,∞) and δ > 0 one

has ∫︂
T d

Vµ
w,δ dρ ≤ C (δ|ρ|)κ (Ew,δ[µ]Ew[ρ])

1−κ
2 . (I.22)

For d = 1, 2, 3 every weight of product form satisfies this principle with κ = 1
d
and C independent

of w.

Conjecture 0.0.1 Let w be of product type. Then w satisfies the surrogate maximum principle

with κ = 1
d
and C = C(d) independent of w.

Remark. As a corollary of the Surrogate Maximum Principle we also obtain the tail energy

estimates for potentials on d-tree, we just substitute ρ = µ into SMP.



19

Section 2.3

In this Section we prove one of the test conditions in Theorem I.3 – the subcapacitary condition

[w, µ]SC ≳ [w, µ]CE.

In order to do this we show another important estimate – the Strong Capacitary Inequality

on a d-tree.

Theorem I.6 Let w on T d satisfy the Surrogate Maximum Principle, and let f : td → R+. Then∑︂
k∈Z

22k Capw

(︁
{α ∈ T d : Iwf(α) > 2k}

)︁
≲
∫︂
T d

f 2w. (I.23)

This is a multi-parametric version of the famous theorem by Maz’ya. Its (very simple) tree

analogue is proven in Section 1.2.

Section 2.4

In this Section we prove another two test conditions in Theorem I.3 – the Carleson and Hereditary

Carleson conditions (the second serves mostly as a procedural step for the first one)

[w, µ]C ≳ [w, µ]HC ≳ [w, µ]CE.

The left inequality above we show via the subcapacitary condition – it provides a nice short-cut.

Section 2.5

In this Section we prove the last remaining test condition in Theorem I.3 – the Box (or the Single

Box Test) condition

[w, µ]B ≳ [w, µ]CE.

This is the most difficult and also the most surprising out of test conditions. As we have al-

ready mentioned above, single box test is not something one would expect to happen in several

parameters, but still it does hold true.

Section 2.6

The last Section of Chapter 2 consists several examples and counterexamples that provide more

information about our previous results, see [110] for a detailed exposition. Namely we explain:

• that it is enough to work on finite d-trees (which is what we were doing throughout the whole

chapter) and how to pass to the limit in the d-tree depth;

• why the product structure of w is important for Theorem I.3 – one has to test more than

just a direct or just a dual embedding (counterexamples from [106], Proposition 1.1);
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• what problems arise when we try to pass to the case d = 4, and what kind of peculiar and

unpleasant behaviour can have the tail energy of a measure even on T 2 with unit weight.

Carleson measures for weighted Hardy-Sobolev spaces

Hilbert spaces of analytic functions in polydisc

Let d ∈ N and s⃗ = (s1, . . . , sd) ∈ Rd. We say that an analytic on the unit polydisc Dd function f

belongs to the weighted Hardy-Sobolev space Hs⃗(Dd), if

f(z) =
∑︂

k∈(Z+)d

ckz
k, z = (z1, . . . , zd) ∈ Dd,

and the Taylor coefficients ck = f̂(k) of f satisfy∑︂
k∈(Z+)d

|ck|2(k1 + 1)s1 · · · · · (kd + 1)sd < +∞,

where k = (k1, . . . , kd), kj ∈ Z+ is the multi-index. The square root of the left-hand side of the

expression above we call the s⃗-Hardy-Sobolev norm of f ,

∥f∥2Hs⃗(Dd) :=
∑︂

k∈(Z+)d

|ck|2(k1 + 1)s1 · · · · · (kd + 1)sd .

Clearly,

Hs⃗(Dd) =
d⨂︂

j=1

Hsj(D). (I.24)

We also introduce the harmonic versions of such spaces, which we define through via tensor product

for the sake of brevity.

Hh
s⃗ (Dd) =

d⨂︂
j=1

Hh
sj
(D),

Hh
sj
(D) =

{︄
f(z) =

∑︂
k≥0

f̂(k)zk +
∑︂
k<0

f̂(k)z̄k :
∑︂
k∈Z

|hatf(k)|2(|k|+ 1)sj < +∞

}︄
.

(I.25)

This is a kind of umbrella definition which includes a number of famous classical spaces. The first

one to mention is of course the Hardy space on the unit disc:

H2(D) := {f(z) =
∑︂
k≥0

ckz
k : ∥f∥2H2 < +∞},

∥f∥2H2 =
1

2π
sup

0<r<1

∫︂ 2π

0

|f(reiθ)|2dθ,
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which corresponds to the situation d = 1, s = 0. The next one is the (unweighted) Dirichlet space

on D

D(D) := {f(z) =
∑︂
k≥0

ckz
k : ∥f∥2D < +∞},

∥f∥2D = ∥f∥2H2 +
1

π

∫︂
D
|f ′(z)|2dA,

which is covered by d = 1, s = 1.

There is an immense amount of literature on Hardy space – it is probably the most well studied

space in Complex Analysis. The Dirichlet space is slightly less popular, but still it is a subject of a

large stream of books and papers (we would like to mention the recent book by Arcozzi, Rochberg,

Sawyer and Wick [7]), also it enjoys being an analytic version of another classical Sobolev W 1,2

space. The polydisc versions are much less understood, with Hardy space again being the most

well-researched.

In view of our definition we prefer to consider them as members of a scale of Hilbert spaces

of analytic functions, which is obtained by varying the parameter s⃗. We restrict ourselves to

s⃗ ∈ [0, 1]d (so Bergman spaces are not considered), moreover, the Hardy endpoint of the scale we

only mention when discussing some counterexamples and open problems. The reason is that we

intend to work with Potential Theory (at least in spirit), which does not survive taking s⃗ across

zero.

Another interesting class of spaces is obtained when we take a diagonal version of Hs⃗ (especially

H1⃗ – see [102] for discussions regarding this space), i.e. we consider functions on the unit disc by

taking all the variables zk to be the same z ∈ D.

Carleson measures: formulation of the main result

Our main object of study here are the so-called Carleson measures for Hs⃗(Dd).

Recall that a measure µ on Dd is called Carleson for Hs⃗, if∫︂
Dd

|f(z)|2 dµ(z) ≤ Cµ∥f∥2Hs⃗(Dd), ∀f ∈ Hs⃗(Dd), (I.26)

or, in other words, if the embedding Id : Hs⃗(Dd) ↦→ L2(Dd, µ) is bounded. We can extend this

definition to measures on a closed polydisc by taking

sup
0<r<1

∫︂
Dd

|f(rz)|2 dµ(z)

instead of the left-hand side of (I.26). There are numerous results that describe Carleson measures

for various spaces of analytic and harmonic functions, we mention again the original paper [19]

and the stream of literature that followed, [90], [40], [59], [24], [25], [26], [4], [5] and many others.

Carleson embeddings can also be viewed in terms of trace inequalities for Sobolev spaces (see, say

[50] and [68], the reference corps is quite vast here as well).
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Generally speaking a typical description of a Carleson measure says that it should satisfy a

testing condition on a Carleson tent erected over a boundary interval or a boundary set.

Our main result on Carleson measures follows this idea as well. We give a description of Carleson

measures for the analytic space Hs⃗(Dd) with d = 1, 2, 3 and s⃗ close to 1⃗ (so our spaces are close

to the unweighted Dirichlet space). We also describe Carleson measures for the harmonic version

Hh
s⃗ (Dd) with the same d, but now with less restrictions on s⃗. This is covered in the following two

theorems (the first one is from [107] and [112]).

Theorem I.7 Let s⃗ = (s1, . . . , sd), sj ∈ (0, 1], j = 1, . . . , d, 1 ≤ d ≤ 3, such that all si are

sufficiently close to 1: 1− sj ≤ εd, for a certain positive absolute ε = ε(d) and j = 1, . . . , d. Let ν

be a non-negative measure in Dd
. Then embedding operator id : Hs⃗(Dd) → L2(Dd

, ν) is bounded,

i.e. ν is Carleson for Hs⃗(Dd), if and only if one of the following conditions holds true

ν(T (E)) ≲ Caps⃗(E), E ⊂ Td (I.27a)∑︁
R⊂E ν

2(T (R))ws⃗(R) ≲ ν(T (Q)), for any E, (I.27b)∑︁
R⊂Q ν

2(T (R))ws⃗(R) ≲ ν(T (Q)), for any Q. (I.27c)

Here Q,R are dyadic rectangles on the (poly) torus Td, and T (Q) is the usual tent area above Q,

while E is any finite union of such rectangles, and T (E) is the union of respective tents.

Theorem I.8 Let s⃗ = (s1, . . . , sd), sj ∈ (0, 1], j = 1, . . . , d, 1 ≤ d ≤ 3. Let ν be a non-negative

measure in Dd
. Then embedding operator id : Hh

s⃗ (Dd) → L2(Dd
, ν) is bounded, i.e. ν is Carleson

for Hh
s⃗ (Dd), if and only if one of the following conditions holds true

ν(T (E)) ≲ Caps⃗(E), E ⊂ Td (I.28a)∑︁
R⊂E ν

2(T (R))ws⃗(R) ≲ ν(T (Q)), for any E, (I.28b)∑︁
R⊂Q ν

2(T (R))ws⃗(R) ≲ ν(T (Q)), for any Q. (I.28c)

These Theorems are proven in Chapter 3.

Scheme of the proof

We deduce Theorems I.7 and I.8 from Theorem I.3 via discretization argument.

Discretization

In Section 3.1 we describe a method of discretizing our problem, which we then can attack with

the help of the Hardy embedding. We note, that we do not discretize the space Hs⃗, but rather we

discretize the Carleson embedding (I.26) using the Reproducing Kernel property of our spaces.

This turns out to be a less direct but a more convenient approach.

Remark. The discretization argument and the reproducing kernel trick are borrowed from [6].

In Section 3.1.1 we consider a discrete model of d-dimensional polydisc which turns out to be

a d-tree. There we have to take some care regarding the difference between hyperbolic geometry
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on trees and in the continuous medium. We handle it by introducing some additional structure on

T d.

In Section 3.1.2 we use the Reproducing Kernel technique to relate the discrete weighted

potential to the adjoint Carleson embedding. It is here that the analytic/harmonic nature of our

continuous space becomes important, depending on the situation we have to reduce the available

values of parameter s⃗ to be able to estimate the Reproducing Kernel. The main result of this

section is the following theorem

Theorem I.9 Let s⃗ = (s1, . . . , sd), sj ∈ (0, 1], j = 1, . . . , d, d ≥ 1, such that all si are sufficiently

close to 1: 1 − sj ≤ εd, for a certain positive absolute ε = ε(d) and j = 1, . . . , d. Let ν be a

non-negative measure in Dd
. Then embedding operator id : Hs⃗(Dd) → L2(Dd

, ν) is bounded, i.e. ν

is Carleson for Hs⃗(Dd), if and only if (ws⃗, ν̃) is a trace weight-measure pair for T
d
,

∑︂
α∈T d

(I∗ψν̃)2(α)ws⃗(α) ≤ C

∫︂
T d

ψ2dν̃, ∀ψ ∈ L2(T
d
, ν̃) . (I.29)

Here ν̃ is the discrete image of ν on T
d
.

The same holds true for the harmonic space Hh
s⃗ (Dd), only we do not require s⃗ to be close to 1⃗.

Remark. It is obvious that for d = 1 the harmonic and analytic spaces are almost the same, at

least in structure. Namely,

Hh
s (D) = Hs(D)

⨁︂
Hs(D).

Thus their Carleson measures are the same. In higher dimensions the analytic space is much

smaller than the harmonic (the Fourier coefficients of its element lie only on a small part of Zd –

the positive octant (Z+)
d, and conjugation does not help any more). We mention this difference

several times, see also the question in Section 8.7.

Capacitary condition

In Section 3.2 we concentrate on the equivalence between subcapacitary conditions for the Carleson

embedding on Dd and Hardy embedding on T d. There are ways to establish continuous versions

of energy conditions as well (see, for example, [102, Theorem 2] for one-dimensional diagonal

Dirichlet space), however the subcapacitary one is the most accessible in this case. In order to

formulate such condition in terms of continuous capacities we have to establish the equivalence

between d-tree and multi-parametric Bessel capacities on the distinguished boundary Td. This

can be viewed as a variation on results and techniques from [6], [12], [62], [63], [64], where similar

results were obtained for trees and metric spaces.

Let us define the Bessel multi-parametric capacity that we are referring to. We use again

the [1]-scheme presented above. Assume that d and s⃗ = (s1, . . . , sd) are fixed. Now we consider
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our kernel g to be defined on Td × Td (polytorus is naturally embedded into R2d). We set

gs⃗(z, ζ) :=
d∏︂

k=1

gsj(zj, ζj), z, ζ ∈ Td,

gsj(zj, ζj) :=
1

|zj − ζj|1−
sj
2

, zj, ζj ∈ T.
(I.30)

The measure on M = Td is just the Lebesgue measure. As a result, for f : Td → R+ and Radon

measure µ on Td we have

Gf(z) =
∫︁
Td gs⃗(z, ζ)f(ζ) dν(ζ), (I.31a)

Ǧµ(ζ) :=
∫︁
Td gs⃗(z, ζ) dµ(z). (I.31b)

It is not hard to see (by comparing with classical Bessel kernels) that

Uµ
s⃗ (z) := GǦµ(z) =

∫︂
Td×Td

g(z, ζ)g(ζ, τ)dµ(ζ) dm(τ) ≈
∫︂
Td

Ks⃗(z, ζ) d µ(ζ), (I.32)

where dm(τ) is just the Lebesgue measure on the polytorus, and

Ks⃗(z, ζ) =
d∏︂

k=1

Ksk(zk, ζk),

Ks(zk, ζk) =
1

|zk − ζk|1−s
, s < 1,

K1(zk, ζk) = log

(︃
1

|zk − ζk|

)︃
.

(I.33)

Now for a compact set F ⊂ Td we can define s⃗-capacity by, say,

Caps⃗(F ) = inf

{︃∫︂
Td

Uµ
s⃗ dµ : Uµ

s⃗ ≥ 1 on F

}︃
.

A polytorus version of Frostman’s theorem is as follows.

Theorem I.10 Assume F ⊂ Td is a compact set. Then there exists a unique measure µF such

that

Es⃗[µF ] := |µF | =
∫︁
Td U

µF

s⃗ dµF = Caps⃗(F ), (I.34a)

UµF

s⃗ ≤ 1 on suppµF (I.34b)

UµF

s⃗ ≥ 1 q.e. on F. (I.34c)

Now that we have defined the capacity on Td we build the tools to establish the relation

between continuous and discrete capacities. The first one says that for exponential product

weights the capacity of a set and its boundary projection are similar. This allows us not to bother

with estimating capacity in the interior, be it Dd or T d. Let s⃗ ∈ (0, 1]d be as above, and ws⃗ be a
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product weight on T d

ws⃗(α) := 2
∑︁d

j=1(1−sj)|αj |, α = (α1, . . . , αj) ∈ T d, (I.35)

where |αj| = #P(αj)− 1.

Theorem I.11 Let E ⊂ T
d
and w = ws⃗ be the product weight generated by Hs⃗. Then the capacity

of E and its boundary projection are equivalent,

Capws⃗
(E) ≈ Capws⃗

(∂S(E)),

where ∂S(E) = {ω ∈ (∂T )d : P(ω) ∩ E ̸= ∅} and the constant in the inequality depends on s⃗ and

d only (it blows up with sj → 0 for any of sj).

After that we prove the equivalence theorem for boundary capacities.

Theorem I.12 Let w := ws⃗ : T d → R+ be an exponential product weight, and assume that

E ⊂ (∂T )d is a compact set. Then the respective capacities of F and its polytorus image F := Λ(E)

are equivalent

Caps⃗(F ) ≈ Capws⃗
(E), (I.36)

and the constant depends only on d and s⃗.

Growth spaces

We proceed to the second part of the thesis. Here we have a tonal change of sorts, since now we

move from functional-analytic approach, where we consider discretization of the embedding (and

of the function space Hs⃗(Dd) itself in a sense), to the estimates and discretizations of individual

functions. In addition, we are more focused on the discretizing process itself. Also, while in the

previous arguments our efforts were more concentrated on the graph side of the discussion, where

we mostly conducted our attack on the problem, here we are shifting to the representation of a

harmonic function in a discrete way (be it wavelets or a martingales), and the discrete machinery

is already mostly available.

In Chapter 4 we give a wavelet representation of a harmonic function in the growth class.

In Chapter 5 we continue studying growth functions, now on Lipschitz domains in Rd and prove

a LIL-type result about their boundary oscillation. Its upper-half space version can be deduced

from the wavelet decomposition result (and it was done in [99]), but we give a separate proof with

a different discretization technique.

In Chapter 6 we consider divided differences of Hölder functions (which behave very much like the

growth functions), and provide a couple of counterxamples.

Finally, in Chapter 7 we give a proof of M. Cartwright’s theorem for the unit ball in Rd.

The results and statements are formulated in the following sections.
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Wavelet representation of functions from growth spaces

Now let us have an overview of our first result on the growth spaces. We still are in the context

of several variables, Rd+1, however it is not a true multi-parametric situation any more, so our

discrete models are tree-like.

Let w : R+ → R+ be a doubling weight , i.e. a continuous decreasing function, limt→0+w(t) =

+∞, w(t) = 1 when t > 1, that satisfies the doubling condition

w(t) ≤ Dw(2t). (I.37)

We consider harmonic functions in Rd+1
+ with the following growth restriction

|u(x, t)| ≤ Kw(t), where (x, t) ∈ Rd+1
+

The space of these functions – the growth space – is denoted by h∞v (Rd+1) and the least K

for which the inequality above is satisfied is called the norm of u in h∞v , we denote it by ∥u∥v,∞.

We note that such a harmonic function is bounded in any half-space

Rd+1
δ = {(x, t) ∈ Rd+1, t ≥ δ > 0} (I.38)

and thus can be represented there by the Poisson integral of its values on the hyperplane {t = δ}.
We denote by h0v the subspace of h∞v consisting of functions u such that u(x, t) = o(w(t)) (t→ 0)

uniformly in x ∈ Rd.

A brief history of such spaces includes works by A. Shields and D. Williams ([88] and [89]),

G. Bennett, D. Stegenga and R. Timoney ([11]), B. Korenblum ([51]), W. Lusky ([61], [60]), A.

Borichev, Yu. Lyubarskii, E. Malinnikova, P. Thomas ([14], [65]), K. Seip ([87]).

We intend to provide a description of functions in the growth spaces in terms of their boundary

wavelet (multiresolutional) approximation. When the weight grows faster than t−a for some a, our

description is in terms of the wavelet coefficients; for slow growing weights we consider partial

sums of the wavelet series.

Multiresolutional approximation: notation

We consider an r-regular multiresolution approximation {Vj} of L2(Rd), [69, ch 2.2], where

r ≥ r0(v) will be specified later. Then there exists ϕ ∈ V0 that satisfies

|∂αϕ(x)| ≤ CN(1 + |x|)−N ,

for any α such that |α| ≤ r and every N ∈ N, and {ϕ(x− k), k ∈ Zd} form an orthonormal basis

for V0. Further, there exists a collection of smooth (of class Cr) functions {ψp}qp=1 that form an

orthonormal basis for V1 ⊖V0, decrease rapidly with all its derivatives of order up to r and satisfy
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the cancellation property. Then

ψp,jk = 2dj/2ψp(2
jx− k), j ∈ Z, k ∈ Zd, p = 1, ..., q,

is an orthonormal wavelet basis in L2(Rd), [69, ch 3.6]. We will use the orthonormal basis

{ϕ(x − k)}k∈Zd ∪ {ψp,jk}1≤p≤q,j≥0,k∈Zd . For any function f ∈ L∞(Rd) we define the wavelet

coefficients

cp,jk(f) =

∫︂
Rd

f(x)ψp,jk(x)dx, j ≥ 0, k ∈ Zd, p = 1, . . . , q,

and

bk(f) =

∫︂
Rd

f(x)ϕ(x− k)dx, k ∈ Zd.

The N-th partial sum of the wavelet decomposition of f is

SN(f)(x) =
∑︂
k

bk(f)ϕ(x− k) +

q∑︂
p=1

N∑︂
j=0

∑︂
k

cp,jkψp,jk(x).

Next, we define the multiresolutional blocks. Given a doubling weight v, we choose A large

enough and define a sequence of integers {nl} such that n0 = 0, nl > nl−1 and w(2
−nl) ∈ [Al, Al+1).

There exists m∗ that depends on v only that satisfies

2−m∗nlw(2−nl)

2−m∗nl−1w(2−nl−1)
< 1− ε (I.39)

for some positive ε. The idea is that instead of dealing with multiresolutional subspaces Vj sepa-

rately we instead group them into blocks Vnl
\ Vnl−1

, and estimate block partial sums.

The main result is

Theorem I.13 Let u(x, t) be a harmonic function on Rd+1
+ bounded on each half-space {(x, t) :

t > t0 > 0}. Then u ∈ h∞v if and only if there exists C such that

MN(u) = sup
t>0

∥SN(u(·, t))∥L∞(Rd) ≤ Cw(2−N).

Similarly, u ∈ h0v if and only if limN→∞MN(u)(w(2
−N))−1 = 0.

The proof of the theorem above combines standard tools of multiresolution analysis with a

clever argument of J. Bourgain, [15], that allows one to squeeze a convolution with the appropriate

Poisson kernel. This trick was also used in [98] (Theorem 1 and Corollary 3.1 there).

We also mention another result from [99]. Let g be a non-zero radial function in Rd such that

g ∈ Cr, where r is large enough r > r0(v) (basically r0 is the rate of growth of v). Assume also

that g with all its partial derivatives of order up to r satisfies

|∂βg(x)| ≤ C

(1 + |x|2)d+1
.
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For example g with compact support will work. Then (1 + |x|d+1)∂βg ∈ L1(Rd) when |β| ≤ r. We

have

|ĝ(τ)| ≤ C

(1 + |τ |)r
, (I.40)

and similar estimates hold for partial derivatives of ĝ up to order d+ 1.

Theorem I.14 Let u be a harmonic function on Rd+1
+ that is bounded in each half-space {(x, t) :

t ≥ t0 > 0} and let g ∈ L1(Rd) be a radial function such that ĝ has derivatives in L1(Rd) up to

order d+ 1, (I.40) holds for ĝ and its derivatives, and ĝ(0) ̸= 0. Then u ∈ h∞v if and only if there

exists a constant Cu such that⃓⃓⃓⃓∫︂
Rd

u(x, t)g

(︃
y − x

a

)︃
dx

⃓⃓⃓⃓
≤ Cua

dw(a), (I.41)

for all t > 0, a > 0 and y ∈ Rd.

Remark. Basically this Theorem says that one can replace Poisson kernel in the convolution

formula for u with something else, which is smooth enough. For example, a Steklov kernel convo-

luted with itself r times would work.

There is a general heuristics that goes more or less like this: if a harmonic function has a good

enough growth estimate (like a Bloch function, or one investigated by Korenblum in [51]), then it

has a natural dyadic martingale equivalent, which satisfies similar growth conditions. If we replace

a martingale (so a Haar wavelet) by something more smooth, then we can obtain the same type of

result with relaxed restrictions on growth. Sometimes it helps, since some of the properties are not

readily transferable from dyadic martingales to the functions they model (and we will see such an

example a bit later), on the other hand smooth wavelets have a certain downside – the supports

of wavelets of the same rank must intersect a lot, so in order to use dyadic martingale machinery

one has to do further work, this time with wavelet series.

Scheme of the proof

In Section 4.1 we collect some Lemmas and wavelet knowledge.

First, in Section 4.1.1 we prove some auxiliary statements, which are essentially a development of

a trick used by Bourgain in [15, 16].

Following Y. Meyer [69] we then collect necessary results on multiresolution analysis in Sections

4.1.2 and 4.1.3.

In section 4.2 we prove Theorem I.13 – we work with blocks of wavelets of consecutive generations,

where the size of the block depends on the weight function v. The proof is based on two following

theorems that cover each direction of Theorem I.13. They are proved in Sections 4.2.1 and 4.2.2

respectively.

Theorem I.15 For any u ∈ h∞v (Rd+1
+ ) we define

g0(x, t) =
∑︂
k∈Zd

⟨u(y, t), ϕ(y − k)⟩ϕ(x− k), and
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gl(x, t) =

nl∑︂
j=nl−1+1

q∑︂
p=1

∑︂
k∈Zd

⟨u(y, t), ψp,jk(y)⟩ψp,jk(x), l ≥ 1.

Then

u(x, t) =
∞∑︂
l=0

gl(x, t), gl(·, t) ∈ Vnl
(∞) and

∥gl(·, t)∥∞ ≤ C∥u∥v,∞w(2−nl), l ≥ 0, (I.42)

where C depends on ϕ and A only.

In other words, the wavelet decomposition block (of size depending on the weight itself) of a

function in the growth space admits the same growth estimate. The converse is also true – if all

such blocks have proper growth, then their sum, which is the function, belongs to the growth

space.

Theorem I.16 Let u be a harmonic function in Rd+1
+ that is bounded on each half-space {(x, t) ∈

Rd+1, t ≥ t0 > 0}. Suppose that for each t > 0

u(x, t) =
∞∑︂
l=0

gl(x, t),

where the series converges uniformly on Rd, g0(·, t) ∈ V0(∞),

gl(x, t) =

nl∑︂
j=nl−1+1

q∑︂
p=1

∑︂
k∈Zd

a(jk)p (t)ψp,jk(x), l ≥ 1

and there exists B such that

∥gl(·, t)∥∞ ≤ Bw(2−nl),

for any t > 0. Then u ∈ h∞v and ∥u∥v,∞ ≤ CB, where C depends on A and ϕ only.

Growth classes on Lipschitz domains

In this Section we present an oscillation estimate for functions from growth classes in Lipschitz

domains in Rd. We describe results from [103].

Notation and statements

Statements

Let w : R+ → R+ be a doubling weight as defined in (I.37). Given a Lipschitz function ϕ : Rd → R,
we denote by Ωϕ the domain above the graph of ϕ,

Ωϕ = {(x, y) : x ∈ Rd, y > ϕ(x)}.
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We consider harmonic functions in Ωϕ with the usual growth restriction

|u(x, y)| ≤ Cw(dist((x, y), ∂Ωϕ)), (x, y) ∈ Ωϕ.

The space of these functions is denoted by h∞w (Ωϕ) and the smallest C for which this inequality is

satisfied is called the norm of u in h∞w (Ωϕ). We denote it by ∥u∥w,∞.

Our main goal is to obtain an estimate in the spirit of the Law of the Iterated Logarithm for

weighted averages of functions from h∞w (Ωϕ) ([103, Theorem 2]).

Theorem I.17 Let ϕ be a Lipschitz function on Rd and let u be a function in h∞w (Ωϕ). For x ∈ Rd

and 0 < δ ≤ 1 put

I(x, δ) =

∫︂ 1

δ

u(x, ϕ(x) + y) d

(︃
1

w(y)

)︃
. (I.43)

Then the following LIL holds

lim sup
δ→0

I(x, δ)√︁
logw(δ) log log logw(δ)

≤ C∥u∥w,∞, a.e. x ∈ Rd, (I.44)

where C depends only on the function ϕ, weight w and dimension d.

By a trivial estimate, if u ∈ h∞w (Rd+1
+ ), then immediately I(x, δ) ≤ C logw(δ). However,

weighted average (I.43) enjoys some nice cancellation properties, so, with the help of the Law

of Iterated Logarithm (LIL) techniques, a better estimate (I.44) is obtained. Since we are now

working with Lipschitz domains, we can not use wavelet decomposition techniques any more.

Now we employ ideas by J. Llorente and A. Nicolau, which, in short, work as follows. First we

approximate I by a Bloch functionH that also happens to belong to h∞logw. Recall thatH is a Bloch

function in Ω if it is harmonic there and |∇H|(ξ) ≤ C
dist(ξ,∂Ω)

. Here we would like to mention two

of the LILs for harmonic functions, namely the Makarov-Llorente LIL for the Bloch functions, [66,

Corollary 3.2] [58, Theorem 1], and the LIL of Bañuelos-Moore, [8, Theorem 3.04]. Unfortunately,

we could not use either of those directly, since the former does not provide the desired estimate

for slow growing weights w, and the latter involves the Lusin area integral, which can not readily

be estimated by the weight. Therefore we modify the ideas used in the proof of those LILs and we

proceed by approximating H by a (super)dyadic martingale and estimating its quadratic function

by w. Then it remains to apply the LIL for the martingales.

We would also like to note that Theorem I.17 remains true if we replace Ωϕ with some star-like

Lipschitz domain.

As a corollary of Theorem I.17 we have the local version of Theorem 5 from [99] (which is [103,

Theorem 3])

Theorem I.18 Let u be a harmonic function in Rd+1
+ . Assume that there exists a set Σ ⊂ Rd of

positive d-dimensional Lebesgue measure such that for every x0 ∈ Σ

|u(x, y)| ≤ Cw(y), |x− x0| ≤My, (I.45)



31

where M is some positive constant. Then

lim sup
δ→0

I(x, δ)√︁
logw(δ) log log logw(δ)

≤ C1 · C, a.e. x ∈ Σ, (I.46)

where the constant C1 depends only on M , w and d.

Note that the condition (I.45) restricts the non-tangential growth of u near the boundary. We

do not know if this result remains true if we replace (I.45) by a radial growth condition.

Notation

By |E| we denote the Lebesgue measure of a set E ⊂ Rd with dimension d depending on the

context.

Given a point x = (x1, x2, . . . , xd) ∈ Rd and r > 0 we denote by Q(x, r) the cube of radius r

centered at x

Q(x, r) =
d∏︂

i=1

(xi − r, xi + r],

we also put Q(x, 1
2
) := Q(x). Further, given a cube Q we denote its center by xQ, so that Q =

Q(xQ, r) for some positive r.

Fix x ∈ Rd. If 2kxi − 1
2
∈ Z for every i = 1 . . . d, and r = 2−k−1 for some k ∈ Z+, we call the

cube Q = Q(x, r) dyadic of rank k. For x ∈ Rn and k ∈ Z+ we denote by ∆k(x) the collection of

all (shifted) dyadic cubes of rank k in Q(x),

∆k(x) =

{︄
d∏︂

i=1

(x− 1

2
+mi2

−k, x− 1

2
+ (mi + 1)2−k), mi ∈ Z+, 0 ≤ mi ≤ 2k − 1

}︄
,

we also put ∆(x) =
⋃︁∞

k=0∆k(x). If Q(x) = (0, 1]d, we write ∆k and ∆ respectively. By Fk(x) we

denote the (finite, obviously) sigma-algebra generated by dyadic cubes of rank k in Q(x). Given

a probability Borel measure µ on Q(x) and an increasing sequence {nk}∞k=0 ⊂ Z+ we can consider

the (super-)dyadic martingales on Q(x) with respect to the filtration {Fnk
(x)}∞k=0, they are

usually denoted by S = {Sk,Fnk
(x), µ}. This means that Sk is a piecewise constant function on

the (shifted) dyadic cubes of rank nk, and if Q̃ is a dyadic cube in ∆nk−1
(x), then

1

µ(Q̃)

∫︂
Q̃

Sk(t) dµ(t) = Sk−1(xQ̃).

In particular, if n = 1 and µ is the Lebesgue measure on Q
(︁
1
2

)︁
= (0, 1] then S has a following

truncated wavelet representation

Sk(t) = L+

nk∑︂
j=0

2j−1∑︂
i=0

bijψij(t), t ∈ (0, 1], (I.47)

where L = ESk =
∫︁
Q0
Sk(t) dt, bij = 2j

∫︁
Q0
Sk(t)ψij(t) dt, ψij(t) = ψ(2jt− i), t ∈ R , and ψ is the
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Haar wavelet , ψ = χ[0,1]−2χ[0, 1
2
] (instead of the usual L2 scaling we use L∞ one here, it is more

convenient for our purposes). For any interval I ⊂ (0, 1] of length 2r, I = [xI − r, xI + r], we put

ψI(t) = ψ

(︃
t− xI + r

2r

)︃
, t ∈ R.

Then (I.47) can be written as follows

Sk(t) = L+

nk∑︂
j=0

∑︂
I∈∆j

bIψI(t), t ∈ (0, 1],

where bI =
1
|I|

∫︁
R Sk(t)ψI(t) dt.

By ⟨S⟩k we denote the quadratic function of S,

⟨S⟩2k =
k∑︂

j=1

E[|Sj − Sj−1|2|Fnj−1
].

If nk = k and we use the Haar representation of S, we can write the quadratic function in the

following way

⟨S⟩2k(t) = L2 +
∑︂

I∈∆:t∈I,|I|≥2−k

b2I . (I.48)

Let u be a harmonic function in Ωϕ. We say that u belongs to the Bloch class in Ωϕ, if there

exists a constant D > 0 such that

|∇u(x, y)| ≤ D

dist((x, y), ∂Ωϕ)
, (x, y) ∈ Ωϕ.

We denote the space of such functions by B(Ωϕ) and the smallest D for which this inequality is

satisfied by ∥u∥B.
The connection between Bloch functions and dyadic martingales is well established, see, for exam-

ple, [66] for the unit disc case and [58] for Lipschitz domains. Here, however, we use a superdyadic

martingale, which is, essentially, a thinned dyadic martingale. It means that instead of the usual

dyadic filtration Fk we use some subsequence of dyadic sigma-algebras Fnk
where nk depends on

the weight w (and is lacunary for slow growing w). The main reason for the transition from the

dyadic to the superdyadic martingale approximation here is that the quadratic function of the

superdyadic martingale is much easier to estimate (similar ideas were used in [65]).

Scheme of the proof

The proof is given in Section 5.1.2 and follows immediately once we have the following Lemma,

which we prove in 5.1.3 and 5.1.4.

Lemma I.2 Assume that u ∈ h∞w (Ωϕ). Then for every x0 ∈ Rd there exists a probability measure

µ on Q(x0) and a (super)dyadic martingale S = {Sk,Fnk
, µ}∞k=0 on Q(x0) such that µ is absolutely
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continuous with respect to the Lebesgue measure on Q(x0) and for every k ∈ Z+

|Sk(x)− I(x, sk)| ≲ 1, (I.49a)

|Sk(x)− Sk+1(x)| ≲ 1, x ∈ Q(x0), (I.49b)

where sk = w−1(2k).

The local Theorem I.18 is proven in Section 5.1.5.

Lemma I.2 above relies on the approximation of I by the Bloch function in h∞logw(Ωϕ), which

satisfies the respective LIL. Now we wonder if a Bloch function in h∞logw(Ωϕ) satisfies the LIL

(I.44). In Section 5.2 we construct an example of a Bloch function that provides the negative

answer to this question.

Growth classes: two counterexamples for divided differences

Here we discuss a couple of constructions that are related to the oscillatory behaviour of divided

differences of Hölder functions. These differences can be seen as yet another example of growth

behaviour of a harmonic function, only now instead of Poisson kernel, the extension to the upper

half-plane is done via Steklov kernel. We restrict ourselves to the real line in this case. The results

described here are from [109].

Statements and notation

Statements

For 0 < a < 1 let Hola(R) be the Hölder class of functions f : R → R such that there exists a

constant C = C(f) > 0 with |f(x) − f(y)| ≤ C|x − y|a for any x, y ∈ R. The infimum of such

constants C is denoted by ∥f∥a.
For a continuous real function f we define an a-divided difference as follows

Da(f)(x, h) =
f(x+ h)− f(x)

|h|a
. (I.50)

Our goal here is to prove two theorems about oscillations of Da for functions from Hola.

Theorem I.19 Let 0 < a < 1. Then there exists a function f ∈ Hola(R) such that at almost every

x ∈ R one has

lim sup
h→0+

Da(f)(x, h) > 0

and

lim inf
h→0+

Da(f)(x, h) = 0.

Theorem I.20 Let 0 < a < 1. Then there exists a function f ∈ Hola(R) and a constant C > 0

such that for any point x ∈ R there exist two sequences {hk}∞k=1, {h′k}∞k=1 of positive numbers,
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converging to zero, such that

lim sup
k→∞

⃓⃓⃓⃓
f(x+ h′k)− f(x)

h′k

⃓⃓⃓⃓
≤ 1,

lim inf
k→∞

|f(x+ hk)− f(x)|
|hk|α

> C.

(I.51)

Notation and reasoning behind Theorems I.19, I.20

One might wonder why are we interested in such properties of Da and the reason is as follows.

For b > 1, G.H. Hardy proved in [39] that the Weierstrass function

fb,a(x) =
∞∑︂
n=0

b−na cos(bnx), x ∈ R, (I.52)

is in Hola(R) and exhibits the extreme behavior

lim sup
h→0

|fb,a(x+ h)− fb,a(x)|
|h|a

> 0

at any point x ∈ R.
In [109] the following improvement that elaborates on this extreme behaviour was obtained.

Theorem Let 0 < a < 1 and f ∈ Hola(R). At almost every point x ∈ R such that there exists a

constant δ = δ(x) > 0 with

lim sup
h→0+

σ{t ∈ [h, 1] : Da(f)(x, t) > δ}
log h−1

> 0, (I.53)

there exists a constant c = c(x) > 0 such that

lim sup
h→0+

σ{t ∈ [h, 1] : Da(f)(x, t) < −c}
log h−1

> 0. (I.54)

Here σ is the standard Haar measure of (0,∞) defined as

σ(E) =

∫︂
E

dh

h
, E ⊂ (0,∞),

so that σ[h, 1] = log h−1, 0 < h < 1.

Remark. In particular, for any b > 1 and 0 < a < 1, the Weierstrass function fb,a defined

above in (I.52) satisfies condition (I.53) (and also (I.54)) at any point x ∈ R for certain uniform

constants δ = δ(b, a) and c = c(b, a).

Observe however that in both the assumption and conclusion of the above theorem, one has to

use σ (or some kind of averaging over scales) to measure the set of scales where Da(f)(x, t) is not

small. This is necessitated exactly by Theorem I.19.
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The arguments in [109] relied heavily on dyadic martingale techniques. Essentially, the divided

differences Da were represented by the martingale

Sk(x) = 2k(f(x2)− f(x1)), x ∈ [x1, x2) ∈ ∆k, (I.55)

where ∆k is the collection of dyadic subintervals of [0, 1] of rank k. In particular, this martingale

satisfies the growth condition

sup
k

2−k(1−a)∥Sk∥∞ ≤ ∥f∥a.

Then the continuous results were obtained through this discretization, and the martingale results

are collected in the following Theorem ([109, Corollary 1]).

Theorem Let 0 < ε < 1 and let {Tn} be a dyadic martingale with supn 2
−nε∥Tn − Tn−1∥∞ ≤ 1.

(a) For 0 < θ < 1, consider the set G(θ) of points x ∈ R such that

lim sup
N→∞

1

N
#{1 ≤ k ≤ N : 2−kεTk(x) ≥ θ} = 1. (I.56)

Then HΦ(θ(1−2−ε))(G(θ)) ≤ 1 and consequently dimG(θ) ≤ Φ(θ(1− 2−ε)).

(b) For 0 < θ < 1 consider the set F (θ) of points x ∈ R such that

lim inf
k→∞

2−kεTk(x) ≥ θ.

Then HΦ(θ(1−2−β))(F (θ)) ≤ 1 and consequently dimF (θ) ≤ Φ(θ(1− 2−ε)).

(c) At almost every point x ∈ R such that there exists a constant δ = δ(x) > 0 with

lim sup
N→∞

1

N
#{1 ≤ k ≤ N : 2−kεTk(x) > δ} > 0,

there exists a constant c = c(x) > 0 such that

lim sup
N→∞

1

N
#{1 ≤ k ≤ N : 2−kεTk(x) < −c} > 0

HereHs is the dyadic Hausdorff measure, dim is the Hausdorff dimension, and Φ is the entropy

function

Φ(η) =
1 + η

2
log2

(︃
2

1 + η

)︃
+

1− η

2
log2

(︃
2

1− η

)︃
, 0 < η < 1.

Remark. We observe that the strategy of obtaining continuous results from their dyadic ana-

logues has certain limitations. Fix 0 < ε < 1 and let {Tn} be a dyadic martingale such that

supn 2
−nε∥Tn∥∞ <∞. J. Fernandez, J. Heinonen and J. Llorente, [35], proved the following 0− 1

Law: for any interval I either {Tn(x)} converges at a set of points x ∈ I of positive length or there
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exists a constant C > 0 such that

H∞
1−ε({x ∈ I : lim

n→∞
Tn(x) = +∞}) > C|I|1−ε.

Here H∞
1−ε denotes the (1 − ε)-Hausdorff content. See [35]. However the continuous analogue of

this result fails, moreover a Hölder continuous function may oscillate wildly around every point.

This is exactly the statement of Theorem I.20.

Scheme of the proof

Section 6.1 contains the proof of Theorem I.19. Section 6.2 is devoted to the proof of Theorem

I.20.

Cartwright’s theorem for growth spaces in balls

For our next result we travel to the unit ball B of Rd+1. There we show, following [100], that u

is harmonic function subject to a one-sided regular growth condition (and now it does not need

to be doubling), then it has the same estimate (possibly multiplied by a constant) from the other

side as well.

Statements

A well-known theorem by M.L. Cartwright [22] states that if a function u, harmonic in the unit

disk, u(0) = 0, satisfies the one-sided growth condition

u(z) ≤ w(1− |z|), z ∈ D,

where w(t) = 1
tp

for some p > 1, then the reverse inequality holds

u(z) ≥ −Cw(1− |z|), z ∈ D,

where C depends only on p. This result was later refined and extended to more general weights

by Cartwright herself ([23]) and C.N. Linden ([56, 57]). The works by N. Nikolskii ([76]) and

A. Borichev ([13]) should also be mentioned, the latter in particular, where a very nice estimate

u(z) ≥ −(1 + o(1))w(1 − |z|) was obtained for sufficiently fast growing weights (see [13, section

1.3]); some estimates for the constant in the reverse inequality were also given earlier in [57]. The

techniques used in all of the works mentioned above involve analytic functions and conformal

mappings and are therefore limited to the complex plane. However, it is natural to ask if similar

results hold for harmonic functions in higher dimensions, related problems in higher dimensions

were studied by P.J. Rippon, K. Samotij and B. Korenblum, see [82, 84, 85, 52].

Let w : R+ → R+ be a strictly decreasing function, such that limy→0w(y) = ∞ and w(1) = 1.

Furthermore we assume that w ∈ C2 and the following growth and regularity conditions are
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satisfied

lim
y→0

w(y)

w′(y)
= 0, (I.57)

and (︃
w(y)

w′(y)

)︃′

≥ −1− δ

d
, 0 < y < 1, (I.58)

for some positive δ.

Remark. Observe that now we do not ask the weight w to be doubling anymore, rather we want

it to be regular, as per estimates above.

Our main result is the following

Theorem I.21 Let U be a harmonic function in the unit ball B = {z ∈ Rd+1 : |z| < 1} and

U(0) = 0. Assume that U admits the growth condition

U(z) ≤ w(1− |z|), z ∈ B, (I.59)

where the weight w satisfies (I.57) and (I.58) above.

Then the following two-sided estimate holds ([100, Theorem 1])

|U(z)| ≤ Cw(1− |z|), z ∈ B, (I.60)

where the constant C = C(d, δ) depends only on the parameter δ and the dimension d.

The conditions (I.57) and (I.58) assure that the weight w grows relatively fast as |z| → 1 and is

regular. The natural regularity for majorants of harmonic functions is logarithmic convexity, how-

ever it is shown in [13, Proposition 4.1] that some additional regularity of the weight is necessary

for Theorem I.21 to hold.

For the rate of the growth, the weight w0(y) = y−d is the natural threshold in this result. We

see that w(y) = y−p satisfies (I.57) and (I.58) if and only if p > d. The result also fails when p ≤ d,

since one can easily see that the Poisson kernel for the ball B is strictly positive, but grows like

w0 near its singularity at the boundary. There is no upper bound on the growth of w.

Scheme of the proof

Section 7.1

Here we collect some notation and technical results.

Section 7.2

Here we restate our main Theorem a bit, formulating it in terms of averages over spherical caps.

Section 7.3

This Section considers with rewriting regularity conditions (I.57) and (I.58) into more convenient

(with relation to our context) form.
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Section 7.4

Here we discuss said regularity conditions and explain their inner workings.

Section 7.5

We get back to the proof, and we formulate the key technical result, from which we deduce

Theorem I.21.

Theorem I.22 Let k̃ : R+ ↦→ R+ be a strictly decreasing absolutely continuous function such that

k̃(0) <∞, (I.61a)∫︁ 1

0

(︂
k̃(y)
y

)︂ 1
d+1

dy ≤ D, (I.61b)

for some constant 1 < D <∞. Let ũ be a harmonic function in B, continuous up to the boundary,

satisfying ũ(0) = 0 and ũ(z) ≤ k̃(|z|) for z ∈ B Then for any x0 ∈ ∂B and b ∈
[︁
0, 1

2

]︁
the following

inequality holds ∫︂
{ϕ(ζ,x0)≤b}

ũ(ζ) dσd(ζ) ≥ −C
(︂
Dd+1 + k̃(0)bd

)︂
. (I.62)

where C depends only on the dimension n.

Here ϕ(ζ, x0) is the angle between two points ζ, x0 ∈ ∂B and σd is the normalized surface

measure on a sphere.

Section 7.6

We have another technical lemma formulated and proven in this Section. The argument involves

a construction of an auxiliary surface, which is a slight modification of one used in [52].

Section 7.7

We finish proving Theorem I.22 in this Section.

Mean variation

The last part of the thesis is devoted to a different kind of estimate of the boundary behaviour –

the normal variation . Under its maiden name, the radial variation , it appeared first as a

separate object probably in the very classical Rudin’s paper [83] where he studied various spaces

of analytic functions (disc algebra, Blaschke products, space H∞(D) bounded analytic functions

) in the unit disc. He proved that for any such space (and, rather trivially, for some others, like

H2(D)) there exists a function f such that its radial variation is infinite at almost every point on
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T. In other words,

var(f)|[0,eiθ] =
∫︂ 1

0

|f ′(reiθ)| dr = +∞, for a.e. θ ∈ [0, 2π). (I.63)

He also gave some examples of spaces where this quantity is finite everywhere or almost everywhere.

Moreover, he actually showed that the set of θ such that the corresponding radial variation is finite

is not only of Lebesgue measure zero, but also of first category. The only remaining thing to show

was to get rid of such a set altogether. This, however, turned out to be not so easy, and in the

following years became a rather interesting and known problem, at some point he actually offered

a symbolic prize for solving it.

After quite a while, 38 years later to be precise, this conjecture was disproved by Bourgain in

[15], where he showed that every bounded analytic function in the unit disc D has finite radial

variation on a certain non-empty set of radii, moreover, this set, while it can be very small in

some sense, it has to be very large in some other sense – it must have full Hausdorff dimension.

In a followup paper, [16], he extended this result to positive harmonic functions, and, answering

a question raised by V.P. Havin, also to extensions by some other types of sufficiently smooth

approximate identities (like Fejer kernel, though not Steklov kernel).

Different forms of weighted integrals of derivatives of analytic functions are ubiquitous, they are

usually used in definitions (Dirichlet or weighted Hardy-Sobolev spaces immediately come to mind)

or characterizations of various spaces of functions, like in works of D. Girela on Besov spaces, or

a very recent series of papers by A. Baranov and I. Kayumov on rational functions.

The estimates of radial variation itself were used, for instance, by P. Jones and P.F.X. Müller in

the proof of Anderson’s conjecture ([47], see also a recent paper [71] for multi-dimensional version).

The main result in [16] was later extended to the unit ball in Rd by M. O’Neill in [77]. A certain

reformulation with different approximate identities was also considered in [16, 98]. In particular,

for a lot of radii a stronger estimate holds∫︂ 1

0

∫︂ 2π

0

|f ′(reiθ̃)|P(r)(θ − θ̃) dθ̃ < +∞, (I.64)

where P(r)(θ) =
1− r2

2π(1 + r2 − 2r cos θ)
is the usual Poisson kernel for the disc. It is easy to see that

the left-hand side majorizes the radial variation. On the other hand the additional convolution by

a Poisson kernel makes this quantity more adjustable and stable (in a sense it is not unlike the

relation between non-tangential and radial maximal functions – the latter is usually trickier to

work with).

Our main goal is to extend Bourgain’s result to positive functions on (smooth) domains in

Rd+1, d ≥ 1. The result described here were obtained (in a slightly more general formulation)

in [101].
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Formulation of main results

Let Ω ⊂ Rd+1 be a domain and S be its boundary that we consider to be C2-smooth. By N⃗(ξ)

we denote the inward normal vector to S at ξ ∈ S. The interval {ta + (1 − t)b : 0 ≤ t < 1},
where a, b ∈ Rd+1, is denoted by (a, b]. Given a point ξ ∈ S let t(ξ) > 0 be a number such that

(ξ,+r(ξ)N⃗(ξ)] ⊂ Ω. Let u be some real-valued function on O. The normal variation of u at

ξ ∈ S is

(Nvar u)(ξ) := var
(︂
u|(ξ,p+t(ξ)N⃗(ξ)]

)︂
.

We are only concerned whether this quantity is finite, and u is assumed to be smooth on Ω.

Therefore the explicit choice of t(ξ) is of no importance.

Let E ⊂ S1 ⊂ S. We say that the set E is ultradense in S1, if for any ξ ∈ S1 and r > 0 we have

dim(E
⋂︂

B(ξ, r)) = d,

here B(ξ, ρ) is the ball in Rd+1 with radius r and center ξ, and dim is the Hausdorff dimension.

Put

V(u) := {ξ ∈ S : (Nvar u)(ξ) < +∞}.

Our main result here is the following Theorem ([101, Theorem 1]).

Theorem I.23 If u is harmonic and positive on Ω, then V(u) is ultradense in S.

It is a well-known fact that ([81], [43]) that any function u that is positive and harmonic on Ω has

finite boundary values along almost all (with respect to d-dimensional Hausdorff measure) normal

vectors N⃗(ξ). Theorem I.23 states that for many ξ a stronger version of this property holds: the

variation (Nvar u)(ξ) is finite.

Our theorem extends previously mentioned results of Bourgain and O’Neill. For d = 1 it can be

easily deduced from [15] via conformal mappings. However, when studying the boundary behaviour

of harmonic function on more or less arbitrary (d + 1)-dimensional domains, the transition from

d = 1 to d ≥ 2 is usually quite complicated (see, for example, [20, pp. 48-49], [43], [44]). On top

of that, the problem we are interested in is further complicated by the fact that the remarkable

results in [15], [16] relied heavily upon the use of Fourier transform, which is well suited for the

case when S is a group of some sort, but that can hardly be adapted to deal with the domains in

Theorem I.23 (the paper [77] used spherical harmonics). While we still follow the general idea of

[15] it was necessary to modify the arguments and to avoid the methods of harmonic analysis.

Let us look again at Theorem I.23. Under its hypothesis we see that

var(u|(ξ, ξ + t(ξ)N⃗(ξ)]) =

∫︂ t(ξ)

0

⃓⃓⃓⃓
∂

∂t

(︂
u
(︂
ξ + tN⃗(ξ)

)︂)︂⃓⃓⃓⃓
dt (I.65)

and Theorem I.23 follows from Theorem I.24 ([101, Theorem 2]), where we replace the integral in

(I.65) by an integral that considers the derivatives of u along all directions (and not just along
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the normal vector N⃗ (ξ))). Put

Vgrad(u) := {ξ ∈ S :

∫︂ t(ξ)

0

⃓⃓⃓
∇u(ξ + tN⃗(ξ))

⃓⃓⃓
dt < +∞}. (I.66)

Theorem I.24 Under hypothesis of Theorem I.23 the set Vgrad(u) is ultradense in S.

As we have already mentioned, the key obstacle to overcome in Theorems I.23 and I.24 is that S

is not a group any more. Nevertheless we will demonstrate our argument on a very simple case

of Ω = R2
+ and u being a positive harmonic function on Ω with compactly supported boundary

values. We will see that one can extend it to general positive functions and proper domains in

Rd+1 (it is done in [101] anyway), and we promise not to use the group structure of R, convolution
arguments and such – unless it is convenient for purposes of notation.

From now on we are acting under such assumptions.

Given a positive harmonic function u on R2
+ (which, as we have agreed, is a harmonic extension

of some positive measure with compact support) and a number y > 0 let

uy(x, t) := u(x, t+ y), x ∈ R, t > 0.

Now let hyu be a least harmonic majorant of a subharmonic function ∇uy (see ([89, Ch. 6,

§4]) for details). Writing it in the convolution form, we get

hyu(x, s) :=

∫︂
R
|∇u(ξ, y)|P(s)(x− ξ) dξ, x ∈ R, y, s > 0,

where P(s)(ξ) =
s

π(ξ2 + s2)
is the Poisson kernel for the upper half-plane.

We define

Mvaru(x) :=

∫︂ 1

0

h2tu (x, t) dt.

This is the analogue of the averaged gradient from (I.64). A point x ∈ R = S is called a Bourgain

point (B-point) of u, if Mvaru(x) < +∞. The set of such points we denote by B(u). It is easy
to show that Vgrad(u) ⊃ B(u). We present the following theorem.

Theorem I.25 The set B(u) is ultradense in S.

Remark. It is of paramount importance that u is bounded from below (or from above). We can

not drop this condition, since there exists a harmonic on D function u with boundary values in

BMO such that V(u) (on the unit circle) is empty (see [46]).

Discussion of the proof of Theorem I.25

In Chapter 8 we will actually be proving only Theorem I.25. It allows us to significantly simplify

the exposition, and the argument is given in full generality in [101].



42

Differential equation for h2t

Given a positive harmonic function φ on R2
+ such that φ(∞) = 0 we write

φ[t](x) := φ(x, t), x ∈ R, t > 0.

In other words we restrict our harmonic function ϕ on the line {(x, t) : x ∈ R}.
Now imagine for a moment that we are gifted with a regular family of integral operators Bt with

kernels bt : R × R → R+ that act on C∞
0 (R), and on a specific choice of the argument – u[t] – it

gives

Bt

[︁
u[t]
]︁
:=
(︁
h2tu
)︁
[t]
, t > 0. (I.67)

Assume also, while we are at it, that for any ε > 0 we have another family Ψt = Ψt,ε (we usually

drop the second subscript) with positive kernels ψt that satisfies the following properties

Ψθ

[︁
φ[t]

]︁
≤ CΨt

[︁
φ[t]

]︁
, ∀φ and 0 < θ ≤ t ≤ 1, (I.68a)

∂
∂t

(︁
Ψt

[︁
φ[t]

]︁)︁
= εΨt

[︁
Bt

[︁
φ[t]

]︁]︁
, 0 < t < 1. (I.68b)

Now let gt := (h2tu )[t] and observe that due to positivity of u,Ψt, Bt for any 0 < θ ≤ δ ≤ 1 we have

Ψ1

[︁
u[1]
]︁
≥ Ψ1

[︁
u[1]
]︁
−Ψδ

[︁
u[δ]
]︁
= ε

∫︂ 1

δ

∂

∂t

(︁
Ψt

[︁
u[t]
]︁)︁
dt = ε

∫︂ 1

δ

Ψt

[︁
Bt

[︁
u[t]
]︁]︁
dt =

ε

∫︂ 1

δ

Ψt[gt] dt ≥
ε

C

∫︂ 1

δ

Ψθ[gt] dt =
ε

C
Ψθ

[︃∫︂ 1

δ

gt dt

]︃
.

(I.69)

Broadly speaking this computation already suggests that Mvaru =
∫︁ 1

0
gt dt is finite at a lot of

points. We need to go deeper, though, so we ask even more from Ψt. Namely, we want the kernel

ψt to have unit mass, ∫︂
R
ψt(x, ξ) dξ ≡ 1,

or, in other words, that Ψ∗
t maps the set of probability measures on R to itself. Moreover, let us

pick any smooth probability measure ν on R – so a Gaussian measure would just suffice. Next we

set νt := Ψ∗
t [ν], 0 < t ≤ 1 (remember that νt do depend on ε) and claim that

a. there exist some positive constants c1, c2 such that for any r > 0

νt(I) ≤ c1r
1−c2ε (I.70)

for any interval I ⊂ R with |I| = r;

b. For an interval I the measure νt has positive mass on I, if ε < εI is small enough.

Having secured all of the above it remains to integrate (I.69) with respect to ν to obtain∫︂
R
Ψ1

[︁
u[1]
]︁
dν ≥

∫︂
R

ε

C
Ψθ

[︃∫︂ 1

δ

gt dt

]︃
dν =

ε

C

∫︂
R

(︃∫︂ 1

δ

gt dt

)︃
Ψ∗

θ[ν].
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Then pass to the limit in δ to arrive at∫︂
R
Mvaru dν0 ≤

C

ε
,

since u[1] is bounded and ν is some reasonable probability measure. Here ν0 is the weak limit of

νθ. The dimension estimate of supp ν0 follows immediately from a and b above.

How to construct such operators

It might seem that Bt and Ψt appear out of thin air, it is not the case though. We write down Bt

explicitly, and then solve the differential equation I.68b, accruing the rest of properties along the

way. Unfortunately the operators Bt do not really commute, so we can not just write down the

solution as an exponent (like in [27]). Hence we have to construct the solution by hand, basically

as a Riemann sum, or more precisely a Riemann product – this is a version of the multiplicative

integral.

Essentially we have to check three main things: that the solution Ψt even exists, that it is a

positive operator, and the ’focusing’ property (I.68a). All of these are in a nutshell given by

an ’extra’ Poisson convolution in the definition of Mvaru and generous application of Harnack

inequality. We stress again, that this not only a half-space result, and our choice of Ω is dictated

by reasons of convenience.

Further comments

Unlike previous topics, here we use ’continuous’ analysis, one can even say that we decided to

move away from discrete techniques of wavelets and martingales that were implicitly present in

[15] (there is also a wavelet description of B(u)). Besides, if we try to do a direct reformulation of

the problem in the martingale language, it will turn out to be rather trivial (see [18] for further

discussions). Nevertheless, it would be very interesting to have a proper look at the equation

(I.68a). So far it seems to be rather elusive to understand properly, and a discrete models usually

help in such things.

Such an attempt was made in [111] where the set of Bourgain points was studied for a special

choice of u – harmonic measure of a Cantor-type set E on the boundary. The description of these

points came in the form of dyadic encoding of E, [111, Theorem 1].

Theorem I.26 Let {qj} ∈ ℓ1 be a sequence of positive numbers, and E ⊂ [0, 1] be a Cantor-type

set generated by {qj}. In other words, on the step k of construction of E we throw away qk-th

proportion of the segment of previous generation (summability of {qj} guarantees that |E| > 0).

Every point x ∈ E can be encoded in a natural way as a sequence of 0 and 1, denote such a sequence

by κ(x) = (κ1(x), κ2(x), . . . ). Then x0 ∈ E is a Bourgain point for the harmonic extension of 1E

to the upper half-plane if and only if∑︂
k≥1

2nk+1(x0)−nk(x0)qnk(x0)−1 < +∞,
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where nk(x0) are the times where the trajectory κ(x0) changes, from 0 to 1 or vice versa.

This Theorem sheds some light on the geometric distribution of Bourgain points – they must

lie deep in E. For instance, the endpoints of E, i.e. such points where trajectory stabilizes after

some number, are definitely not Bourgain, and this can be checked directly. On the other hand, if

nk(x0) + 1 = nk+1(x0), then x0 is a B-point.

Reference list

For the convenience of the reader here we have collected references for the presented results.

Theorems I.3, I.4, I.5, I.6, and Lemma I.1 are presented in [107] and (mostly) in [112]. Paper

[112] contains results that comprise Theorems I.7, I.8 and I.9. One-dimensional version of Theorem

I.3 is proven in [108], Carleson constant estimate for the bitree is done in [105]. Theorem I.11 is

proven in [104], while the discrete-continuous capacity equivalence (Theorem I.12) is shown in [2].

Various examples and counterexamples are collected in papers [106] and [110].

Theorems I.13, I.14, I.15, I.16 are presented in [99] (in particular, Theorem I.14 can be deduced

from the estimates in [98]).

Theorems I.17, I.18 are proven in [103], and Theorems I.19, I.20 in [109].

Multidimensional versions of M. Cartwright’s theorem (Theorems I.21, I.22) are done in Finally,

the results related to the Bourgain points, which are Theorems I.23, I.24, I.25, I.26, are contained

in [101] and [111].
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Chapter 1 Discrete model

1.1 Some basic facts

In this section we collect a few results about the basic behaviour of capacities on (mostly) a d-tree

and the structure of the respective equilibrium measures.

Remark. In what follows the weight w is always assumed to be positive and finite. This is

needed to properly run the Potential Theory on graphs, especially the definition and properties

of weighted capacity. Sometimes in the counterexamples we allow it to take zero values at some

points for our convenience, but we do not invoke any kind of capacity there, they happen on finite

graphs, and the weights can be modified to be made positive (but very small) anyway while still

maintaining the counterexample. See, for example, Section 2.6.4.

The capacity of a given set is usually very hard to compute explicitly, even in the most classical

case Γ = T and w ≡ 1 (which corresponds to the classical harmonic capacity). We give a couple

of examples for the most basic situations.

Proposition 1.1.1 Let w be a weight on a graph Γ. Then the capacity of a singleton is

Capw({α}) =
1

w(P(α))
, α ∈ Γ. (1.1)

Proof. We want to construct a minimizer for (I.7). Clearly the extremal function f{α} should

be supported only on P(α). The elementary solution is immediately given by f(γ) = 1
w(P(α))

·
1(P(α))(γ).

The next proposition considers the structure of the equilibrium measure for subsets of a

weighted tree.

Proposition 1.1.2 Assume T is a tree equipped with a weight w, and E ⊂ T is a compact set.

Then the capacities of E and S(E) coincide, moreover, if µE is the equilibrium measure of E, then

VµE
w = 1 q.e. on S(E). (1.2)

Remark. This equilibrium Frostman property (1.2) definitely does not hold a d-tree with

d ≥ 2, actually most of the times (unless it is a product set, see below) the equilibrium potential

is strictly greater than 1 on the set in question. The equality of capacities though holds on any

graph.
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Proof. The proof is almost immediate. Consider the set Ẽ of maximal points of E (in the directed

graph structure), i.e. α ∈ Ẽ, if α ∈ E and there is no β ∈ E, β > α. Then S(Ẽ) = S(E) and,

by monotonicity, Iwf(α) ≥ Iwf(β) for Ẽ ∋ α ≥ β. It turns out that the ’important’ points from

the point of view of the potential are exactly those in Ẽ, hence if f is admissible for Ẽ, it is also

admissible for S(E). On the other hand, Ẽ ⊂ S(E), therefore the capacity of the second set must

be greater or equal than that of the first set.

For (1.2) we may assume that E is a down-set, E = S(E) by the argument above. Below, in

Proposition1.1.4, we show that Maximum Principle holds with constant 1 on a tree. Hence the

general Frostman Theorem I.2 implies that VµE
w ≤ 1 outside of suppµE. On the other hand by

the same Theorem VµE
w ≥ 1 q.e. on E.

While the next estimate seems to be of a rather specific nature, it will be quite useful later on

– d-trees with exponential product weights serve as a natural model for Hardy-Sobolev spaces on

the polydiscs

Proposition 1.1.3 Assume Γ is a d-tree T
d
, and let w be an exponentially increasing product

weight

w(α) = w1(α1) · · · · · wd(αd), αk ∈ T

wk(αk) := 2(1−sk)|αk|, 0 < sk ≤ 1.
(1.3)

Then the distinguished boundary (∂T )d has positive capacity. If, however, one of sk is less or equal

than zero, then the capacity of the distinguished boundary is zero.

Also the capacity of a product set is a product of capacities,

Capw(E) =
d∏︂

k=1

Capwk
(Ek), E =

d∏︂
k=1

Ek, T ⊃ Ek a compact set. (1.4)

Proof. For the first part of the statement we refer to Theorem I.11, which says that the capacity

of a set (so, say, a root) and its (distinguished) boundary projection (the total distinguished

boundary (∂T )d in this case) are comparable. The capacity of a root is obviously non-zero.

For fast growing weights, i.e. when one of sk’s is ≤ 0, we prove the product estimate first.

If fEk
is the extremizer for the k-th coordinate set, then, clearly,

∏︁d
k=1 fEk

is admissible for E, i.e.

∑︂
α≥ω

w(α)
d∏︂

k=1

fEk
(αk) =

d∑︂
k=1

∑︂
αk≥ωk

d∏︂
k=1

wk(αk)fEk
(αk) ≥ 1, ω ∈ E.

On the other hand, as we have already seen, the one-dimensional equilibrium potential is exactly

1 q.e. not only the support of the equilibrium measure, but q.e. on the whole set Ek itself. Hence,

if µ is a product of equilibrium measures for coordinate sets Ek, its d-weighted potential Vµ
w is

also 1 q.e. on E =
∏︁d

k=1Ek. Hence it can not be but equilibrium for E.

Now assume that a weight w grows too fast on a tree T , i.e. w(α) ≥ 2|α| for α ∈ T . If µ is any
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non-zero measure on ∂T , then I∗(o) = |µ| > 0, and

I∗µ(α) = I∗µ(α1) + I∗µ(α2),

where αi are the two children of α. But then, for two children of the first rank, α1
1, α

2
1 we have

(I∗µ(α1
1))

2w(α1
1) + (I∗µ(α1

1))
2w(α2

1) ≥ 2
1

2

(︁
I∗µ(α1

1) + I∗µ(α1
2)
)︁2

= (I∗(o))2.

By iteration we see that for any level-set of depth k + 1 we have

2k+1∑︂
j=1

(I∗µ(αj
k+1))

2w(αj
k+1) ≥ 2k+1

2k+1∑︂
j=1

(I∗µ(αj
k+1))

2 ≥

2k
2k∑︂
j=1

(I∗µ(αj
k))

2 ≥ · · · ≥ |µ|2.

Hence the energy of µ is infinite, ∑︂
α∈T

(I∗µ(α))2w(α) = ∞.

To estimate the capacity of (∂T )d we use the product property from above. We are done.

Remark. The growth rate 2|α| is a critical one, and it corresponds to the case where the

Potential Theory stops being useful. As we will see later, it is parallel to the Hardy-Sobolev scale

of spaces in the disc, where the end-point of the scale, the unweighted Hardy space H2(D), is
exactly when the capacitary conditions do not work any more. The Carleson condition for H2(D)
is realized with the Lebesgue measure on T, which we can still interpret as a Bessel capacity

(again, at the end-point of the corresponding scale), however most of the arguments break down

here, as they should.

The Potential Theory on the tree is similar enough to the classical theory on the plane (and

the classical Bessel potentials can be modeled by the discrete version with an appropriate choice

of the weight w). However, the bi-parametric version, even in the case w ≡ 1, is quite different in

many ways. The next result provides some details.

Proposition 1.1.4 Let w be a weight on a (dyadic) tree T and µ be a measure on T with finite

w-energy. Then the supremum of its weighted potential is achieved on its support,

sup
τ∈suppµ

Vµ
w(τ) = sup

τ∈T
Vµ

w(τ). (1.5)

Also, if f : T → R+ satisfies f(α) ≥ f(α−)+f(α+) for any point α and its two immediate children

α±, and ν is a measure with finite energy such that Iwf ≥ Vν
w on the support of ν, then the same
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inequality holds true everywhere

Iwf(τ) ≥ Vν
w(τ), τ ∈ T . (1.6)

On the other hand, if w ≡ 1 is a weight on T 2, then both the Maximum and Domination principles

do not hold in general, even for equilibrium measures. In other words, for any N there exists a set

E such that the supremum of the potential of its equilibrium measure µE is greater than N , while

VµE = 1 on suppµE.

Proof. Maximum Principle

It is enough to check (1.5) inside the tree (i.e. for τ ∈ T ), since for any β ∈ ∂T we have Vµ
w(β) =

supτ>β V
µ
w(α). Now assume that there exists a point β ∈ T \ suppµ such that

Vµ
w(β) > Vµ

w(α), α ∈ suppµ.

We see immediately that S(β)
⋂︂

suppµ = ∅, hence there exists a unique point τβ > β such that

S(τβ)
⋂︁

suppµ ̸= ∅, but S(τ)
⋂︁

suppµ = ∅ for every τ < τβ. Then (I∗µ)(τ) = 0 for such points τ ,

and

Vµ
w(β) = Vµ

w(τβ) +
∑︂

τβ>τ≥β

(I∗µ)(β)w(β) = Vµ
w(τβ).

Monotonicity (with respect to natural order on T ) of Vµ
w implies that

Vµ
w(τβ) < Vµ

w(α), for any α ∈ S(τβ)
⋂︂

suppµ,

and we have a contradiction.

Domination Principle

As before, it is enough to show (1.6) only for points inside T . Now suppose there exists α0 ∈ T

such that

(Iwf)(α
0) ≤ Vν

w(α
0),

clearly we may also assume that

(Iwf)(τ) > Vν
w(τ), τ > α0.

It follows immediately that f(α0) ≤ (I∗ν)(α0), hence one of the sons of α0 (which we denote by

α1) satisfies f(α
1) ≤ (I∗ν)(α1) and (I∗ν)(α1) > 0. Repeating this argument we obtain a sequence

{αk}∞0 of nested points such that f(αk) ≤ (I∗ν)(αk), k = 0, 1, . . . and (I∗ν)(αk) > 0. Denote the

endpoint of this geodesic by ω =
⋂︁

k S(αk). Clearly ω ∈ supp ν. It follows that

(Iwf)(ω) = (Iwf)(α
0) +

∞∑︂
k=1

f(αk)w(αk) ≤ Vν
w(α

0) +
∞∑︂
k=1

(I∗ν)(αk)w(αk) = Vν
w(ω),
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and we have a contradiction.

Why the Maximum and Domination principles fail on T 2

See Section 2.6.4 for Maximum Principle, it fails even for an equilibrium measure on a collection of

predecessors of one boundary point. The lack of Domination principle also follows immediately –

we can take ν to be the equilibrium measure without Maximum Principle and f to be a point mass

at the root. Since Iwf ≡ 1 in this case, we have domination on the support of ν, but obviously

not on the set of exceptional potential.

1.2 Strong capacitary inequality in one-parametric case

Below we show a simple version of the so-called Strong Capacitary Inequality (for a 2- or 3-

parametric version see Section 2.3). It is a discrete version of the a collection of results that

consider potentials with radial kernels. Here the main point is that on a tree one has unique

geodesics (so no cycles unlike d-tree) which allows us to make a spherical change of variables of

sorts.

Proposition 1.2.1 Let w be a weight on a tree T , and f be a (non-negative) function there. Then

there exists a constant C = C(w) such that∑︂
k∈Z

22k Capw({τ ∈ T : Iwf(τ) ≥ 2k}) ≤ C∥f∥2L2(T,dw). (1.7)

Proof. For every k ∈ Z we define a stopping time Ek which consists of maximal (in tree order)

points α such that Iwf(α) ≥ 2k. In other words, if α ∈ Ek, then Iwf(α) ≥ 2k, but Iwf(p(α)) < 2k,

where p(α) is the unique parent of α. Clearly,

{τ ∈ T : Iwf(τ) ≥ 2k} = {τ : τ ∈ S(Ek)} = {τ : ∃α ∈ Ek : α ≥ τ}.

If for some geodesic we never have Iw(α) ≥ 2k, i.e. the stopping time is infinite, we just do not

have points from Ek on that geodesic. The sets Ek do not contain any proper descendants of their

points, i.e. if α ∈ Ek, then there is no β < α such that β ∈ Ek.

Next, clearly, we can have Fk := {τ ∈ T : 2k+1 > Iwf(τ) ≥ 2k} on the left-hand side of (1.7)

instead, we just increase the constant a bit. Our goal is to construct an almost partition Ωk of T ,

such that
⋃︁

k Ωk = T , and Ωk are almost disjoint – their union covers any point at most thrice,

and 2−k+2f |Ωk
is admissible for Fk. Such a (almost) partition would provide the desired estimate

(1.7), since then we can write

∩w(Fk) ≤ 16 · 2−2k · ∥f |Ωk
∥2L2T,dw,
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so that ∑︂
k∈Z

22k Capw({τ ∈ T : Iwf(τ) ≥ 2k}) ≤ 16
∑︂
k

∥f |Ωk
∥2L2T,dw ≤ C · ∥f∥2L2T,dw.

The existence of such partition is also almost immediate. Indeed, consider any individual geodesic

P(ω) = (o, τ1(ω), τ2(ω), . . . , ω) where ω is some point on ∂T , and let nk be the stopping time

indices on that particular geodesic, i.e. τnk
(ω) ∈ Ek. Due to discrete nature of the setting, it can

happen that some of these times coincide, nk = nk+1 = · · · = nk+i for some k, i – this happens

when the jump in Iwf is too large. Nevertheless the sets {τj(ω) : nk ≤ j < nk+1} are disjoint,

hence are the sets ⋃︂
ω∈∂T

{τj(ω) : nk ≤ j < nk+1} = Fk.

Now, given ω ∈ ∂T , we put

Ek(ω) := {τnk−1(ω), τnk
(ω), . . . , τnk+1

(ω)}, if nk(ω) < nk+1(ω),

and

Ek(ω) := ∅ otherwise.

Let

Ek :=
⋃︂

ω∈∂T

Ek(ω).

We claim that these sets provide the promised almost partition. Indeed, one can also see that

Ek = Fk

⋃︂
{ immediate parents of points in Fk }

⋃︂
{ immediate children of points in Fk }.

It follows that any point α ∈ Ek cannot be a parent or a children of other Fj’s more than once,

since
⋃︁

k Ek(ω) covers P(ω) at most three times. Finally, if Ek(ω) = ∅, so is Fk(ω) = Fk ∩ P(ω).

Otherwise τnk+1
(ω) is the maximal point of Fk+1(ω) – by definition Iwf(τnk+1−1(ω)) < 2k+1. Clearly,

Iwf |Ek(ω)(τnk+1
(ω)) = Iwf(τnk+1

(ω))− Iwf(τnk−1(ω)) ≥ 2k+1 − 2k = 2k.

Hence 2−kf |Ek
is admissible for Fk+1, and we are done.
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Chapter 2 Hardy embeddings on finite d-trees

2.1 Main results

Let us recall the definitions of the main objects of study and the main statement.

The Hardy embedding inequality is∫︂
T

d
(Iwf)

2 dµ ≤ [w, µ]CE

∫︂
T d

f 2 dw, f ∈ L2(T d, w), (2.1)

and its dual version is ∫︂
T d

(I∗µφ)
2 dw ≤ [w, µ]CE

∫︂
T

d
φ2 dµ, φ ∈ L2(T

d
, µ). (2.2)

The subcapacitary constant [w, µ]SC , hereditary Carleson constant [w, µ]HC , Carleson constant

[w, µ]C , box constant [w, µ]B are the smallest numbers that realize the respective inequalities below

µ(E) ≤ [w, µ]SC Capw(E), ∀E ⊂ T
d
, (2.3a)

Ew(µ|E) =
∑︁

α∈T d w(α)(I∗µ|E)2(α) ≤ [w, µ]HCµ(E), ∀E ⊂ T
d
, (2.3b)∑︁

α∈S(E)w(α)(I
∗µ)2(α) ≤ [w, µ]Cµ(E), ∀E ⊂ T

d
, (2.3c)∑︁

α≤β w(α)(I
∗µ)2(α) ≤ [w, µ]BI

∗µ(β) = [w, µ]B µ(S(β)), ∀β ∈ T d. (2.3d)

The main result of this chapter states that for product weights we have the converse inequalities

also for d = 2 and d = 3.

Theorem 2.1.1 Assume that (w, µ) is a weight-measure pair on the d-tree with d = 2 or d = 3,

and w has a product structure, w(α) =
∏︁d

k=1w(αk) for any α = (α1, . . . , αd) ∈ T d. Then

[w, µ]B ≳ [w, µ]C ≳ [w, µ]HC ≳ [w, µ]CE,

[w, µ]SC ≳ [w, µ]CE.
(2.4)

Remark. It is important that the weight w is of product structure – later on we will provide

some counterexamples to (2.4) with non-product weight even on the T 2 (these counterexamples

can actually be traced to [86]). The measure µ however is not assumed to be of product structure

(otherwise Theorem 2.1.1 would just immediately follow from 1-dimensional result by disintegra-

tion), and this complicates things greatly. Also it is not known what happens for d ≥ 4, we will



52

discuss it later in more detail.

In what follows we will be working on truncated d-tress T d
N , i.e. on product of d copies of trees cut

at the level N . The reason is that it is much more convenient to consider objects on finite graphs

(so that, for instance, all the capacities are non-zero), and to obtain the estimate on the infinite

d-tree we then just pass to the limit with some care. The details are in Section 2.6.1.

As such in what happens below we do not specify the depth N of our truncated d-tree, we only

take care that in any estimate the constants do not depend on N , and we drop the subscript

writing T d instead of T d
N .

Here we mostly use the arguments from [112]. In dimension 2 the chain [w, µ]C ≳ [w, µ]HC ≳

[w, µ]CE was proven in [105] (Theorems 1.8, 1.9) in a slightly different fashion.

2.2 Surrogate Maximum Principle

In this Section we build our main instrument with which we handle various estimates in (2.4) – the

so-called Surrogate Maximum Principle. As we have seen above, in Proposition 1.1.4 the standard

Maximum Principle usually does not hold on T d, even for w ≡ 1. It turns out, however, that we

still can salvage some information by estimating the size of the set where it fails. In doing this we

also obtain the tail energy estimates for measures on T d, d = 2 or d = 3. Within this Section we

write I as the Hardy operator on a tree, bi-tree or a tri-tree, depending on the context. We also

make use of the coordinate projections Ik, where

Ikf(α) =
∑︂

βk≥αk

f(α1, . . . , βk, αk+1, . . . , αd), α = (α1, . . . , αd) ∈ T d,

and f is a function on T d (again, the actual value of the dimension will depend on the context).

Projections I∗k are defined in the same way,

I∗kf(α) =
∑︂

βk≤αk

f(α1, . . . , βk, αk+1, . . . , αd), α = (α1, . . . , αd) ∈ T d.

We observe that these projections commute, i.e. for any A ⊂ {1, 2, . . . , d}∏︂
k∈A

Ik =
∏︂
k∈A

Iσ(k)

for any permutation σ of A. Same goes for I∗k.

2.2.1 Estimates on a tree

We start with a few tree lemmas.

Lemma 2.2.1 Let f, g : T → R+ be any functions. Then

If · Ig ≤ I(If · g + f · Ig).
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Proof. Essentially this is just discrete integration by parts. Indeed, given α ∈ T we have

If(α)Ig(α) ≤ If(α)Ig(α) + I(f · g)(α) =∑︂
α′≥α, α′′≥α

f(α′)g(α′′) +
∑︂
α′≥α

f(α′)g(α′) =∑︂
α′≥α′′≥α

f(α′)g(α′′) +
∑︂

α′′≥α′≥α

f(α′)g(α′′) =∑︂
α′′≥α

If(α′′)g(α′′) +
∑︂
α′≥α

f(α′)Ig(α′) =

I(If · g)(α) + I(f · Ig)(α).

For the next Lemma we introduce another bit of notation. Given a (finite) tree T the set of

children of a vertex β ∈ T consists of the maximal elements of T that are strictly smaller than β,

ch β := max {β′ ∈ T : β′ < β},

in particular, if β ∈ ∂T , then ch β = ∅.
A function g : T → R is called superadditive, if for every β ∈ T we have

g(β) ≥
∑︂

β′∈chβ

g(β′),

and additive, if one has the equality in the expression above. The difference operator is defined by

∆g(β) := g(β)−
∑︂

β′∈chβ

g(β′).

This choice of notation is somewhat motivated by the fact that if G = Ig, then ∆g is just the

graph (non-normalized) laplacian of G.

Lemma 2.2.2 Let T be a finite tree. Then for any pair of functions f, g : T → R we have∑︂
α∈T

f(α)g(α) =
∑︂
α′∈T

∆f(α′)Ig(α′). (2.5)

Proof. Summing down the levels of the tree one can easily see that

f(α) =
∑︂
α′≤α

∆f(α′).

Hence ∑︂
α

f(α)g(α) =
∑︂
α≥α′

∆f(α′)g(α) =∑︂
α′∈T

∆f(α′)
∑︂
α′≤α

g(α) =
∑︂
α′∈T

∆f(α′)Ig(α′).
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We need another ’integration by parts’ result, now with I∗.

Lemma 2.2.3 Let f, g : T → R. Then

I∗(fg) = I∗(∆f · Ig)− f(Ig − g)

Proof. For a given β the set S(β) is a (sub-)tree itself, with the root β. Applying (2.5) on that

tree, we have

I(fg)(β) =

∫︂
S(β)

fg =

∫︂
S(β)

∆f · I(g1S(β)).

Now, if α ∈ S(β), then

I(g1S(β))(α) =
∑︂

α≤γ≤β

g(γ) =
∑︂
α≤γ

g(γ)−
∑︂
β≤γ

g(γ) + g(β) =

Ig(α)− Ig(β) + g(β),

hence

I∗(fg)(β) =

∫︂
S(β)

∆f · (Ig(α)− Ig(β) + g(β)) =∫︂
S(β)

∆f · Ig − (Ig(β)− g(β))

∫︂
S(β)

∆f =

I∗(∆f · Ig)(β)− (Ig(β)− g(β))f(β).

Corollary 2.2.1 Given a pair of non-negative functions f, g : T → R+ one has

I∗(fg) ≤ I∗(∆f · g).

2.2.2 Estimates on a bi-tree

We continue by moving up one dimension, and we prove the biparametric analogues of the

results above. Our first Lemma is the analogue of Lemma 2.2.1.

Lemma 2.2.4 Let f, g : T 2 → R+. Then

If · Ig ≤ I(If · g + I1f · I2g + I2f · I1g + fIg).

Proof. Since I1, I2 commute, we can apply Lemma 2.2.1 obtaining

If · Ig = (I1I2f)(I1I2g) ≤ I1((I1I2f) · I2g + I2f · (I1I2g)),
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and

((I1I2f) · I2g + I2f · (I1I2g)) ≤

I2((I2I1f) · g + I1f · I2g) + I2(I2f · I1g + f · (I1I2g)).

Hence

If · Ig ≤ I1(I2((I2I1f) · g + I1f · I2g) + I2(I2f · I1g + f · (I1I2g))) =

I(If · g + I1f · I2g + I2f · I1g + fIg).

Next three results consider the energy estimates on the bi-tree. Our end goal is to learn how to

estimate the capacities of sets of large potential for measures supported on sets of small potential.

Lemma 2.2.5 Let f : T 2 → R+ be a function which is superadditive separately in each variable,

and let w1w2 = w : T 2 → R+ be a product weight. Suppose also that supp f ⊂ {I(wf) ≤ δ}. Then∫︂
T 2

wf · I1(w1f) · I2(w2f) · I(wf) ≤ δ2
∫︂
T 2

f 2w.

Proof. Observe that (due to the product structure) the operator I1 ’does not see’ w2, that is

I1(wf) = w2I1(w1f). We then apply the hypothesis removing one of the terms in the left-hand

side, ∫︂
T 2

wf · I1(w1f) · I2(w2f) · I(wf) ≤ δ

∫︂
T 2

wf · I1(w1f) · I2(w2f) =

δ

∫︂
T 2

w1f · I1(wf) · I2(w2f) = δ

∫︂
T 2

wf · I∗1 (w1f · I2(w2f)) =

δ

∫︂
T 2

wf · I∗1 (f · I2(wf)) .

(2.6)

By Corollary 2.2.1 we have

I∗1(f · I2(wf)) ≤ I∗1 (∆1f · I1I2(wf)) .

The support of f is an up-set, i.e. it contains all the ancestors of its elements, hence ∆1f is also

supported there, and is positive, ∆1f ≥ 0 by superadditivity of f . Hence,

I∗1 (f · I2(wf)) ≤ I∗1 (∆1f · I(wf)) ≤ I∗1(∆1f · δ) = δf. (2.7)

It remains to plug (2.7) into (2.6).

Lemma 2.2.6 Under the conditions of previous Lemma we also have∫︂
T 2

w(I1(w1f))
2(I2(w2f))

2 ≤ 4δ2
∫︂
T 2

f 2w.
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Proof. By Lemma 2.2.1 and commutativity of I1, I2 we have∫︂
T 2

w(I1(w1f))
2(I2(w2f))

2 ≤ 4

∫︂
T 2

wI1 (w1f · I1(w1f)) · I2 (w2f · I2(w2f)) =

4

∫︂
T 2

I1 (w1f · I1(wf)) · I2 (w2f · I2(wf)) =

4

∫︂
T 2

I∗2 (w1f · I1(wf)) · I∗1 (w2f · I2(wf)) =

4

∫︂
T 2

wI∗2 (f · I1(wf)) · I∗1 (f · I2(wf)) .

It remains to use (2.7)

We are ready to prove the energy majorization Lemma. Namely, we show that if f is supported

on the set of small (≤ δ) Iw-potential (w.r.t. the function f itself), then Iwf , generally speaking,

is not the most effective way, in the sense of energy, to obtain its own values on the set of large

(≥ λ ≥ 4δ) potential. Let us formulate this in a more precise way.

Lemma 2.2.7 Assume that f : T 2 → R+ satisfies the conditions of previous two Lemmas, and

assume λ ≥ 4δ. Then there exists the energy-efficient redistribution φ : T 2 → R+ of f such that

I(wφ)(α) ≥ I(wf)(α), α ∈ {λ ≤ I(wf) ≤ 2λ}, (2.8a)∫︁
T 2 φ

2w ≤ C δ2

λ2

∫︁
T 2 f

2w, (2.8b)

where C is some absolute constant.

Proof. Since 2δλ−1 ≤ 1
2
, we have

(I(wf))1{I(wf)≥λ} ≤ 4λ−1I (I1(w1f) · I2(w2f)) ,

hence

(I(wf))1{λ≤I(wf)≤2λ} ≤ 4λ−1I (I1(w1f) · I2(w2f))1{λ≤I(wf)≤2λ} ≤

4λ−1I
(︁
I1(w1f) · I2(w2f) · 1{λ≤I(wf)≤2λ}

)︁
.

Let

φ := 4λ−1I
(︁
I1(w1f) · I2(w2f) · 1{λ≤I(wf)≤2λ}

)︁
.

Clearly, φ satisfies the condition (2.8a) of the statement. To get (2.8b) we just aaply Lemma

2.2.6.

Now the reason why we do care about this Lemma is that it allows us to estimate the size of

’exceptional’ sets. In other words, if µ is a measure on T 2 supported on the set {Vµ
w ≤ 1} of ’small’

potential, then its set of Eλ = {Vµ
w ≥ λ ≥ 10} ’large’ potential generally should not be empty.

It is possible (for product weights) to estimate its capacity, or, to be more precise, to improve on

the standard weak estimate.
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Theorem 2.2.1 Let µ be as above. Then

Capw Eλ ≤ C

λ4
Ew[µ],

where C is an absolute constant.

Remark. Observe that 1
λ
I∗µ is admissible (i.e. I

(︁
1
λ
I∗µ
)︁
≥ 1 on Eλ). By definition of capacity

it follows immediately that

Capw Eλ ≤ 1

λ2
Ew[µ].

This is a trivial estimate. It turns out, however, that we can say a bit more – that the capacity of

Eλ decays faster than expected as λ→ ∞.

Proof. Put f := I∗µ and δ := 1. If f(α) ̸= 0 then there exists a point β ≤ α such that β ∈ suppµ.

By our assumption it means that Iwf = Vµ
w(β) ≤ 1, so, by motonicity of I it follows that

Iwf(α) ≤ 1. Hence

supp f ⊂ {Iwf ≤ δ = 1},

and we fall squarely into assumptions of Lemma 2.2.7. We apply it with data (f ; δ = 1;λm = 2mλ)

to get functions φm, m = 0, 1, . . . such that

Iwφm ≥ Iwf = Vµ
w, where Vµ

w ∈ [2mλ, 2m+1λ],

which means that

2−mλ−1Iwφm ≥ 1, where Vµ
2 ∈ [2mλ, 2m+1λ].

Let us sum everything up – let φ :=
∑︁

m≥0 2
−mλ−1φm, we first obtain

Iwφ ≥ 1, where Vµ
w ∈ [λ,∞),

and also

∫︂
T 2

φ2w ≤

(︄
λ−1

∑︂
m≥0

2−m

(︃∫︂
T 2

φ2
mw

)︃ 1
2

)︄2

≤

C

(︄
λ−1

∑︂
m≥0

λ−12−2m

(︃∫︂
T 2

f 2w

)︃ 1
2

)︄2

≤

C ′λ−2

∫︂
T 2

f 2w.

Since f = I∗µ, ∫︂
T 2

f 2w =

∫︂
T 2

(I∗µ)2w =

∫︂
T 2

Vµ
2 dµ = Ew[µ],

and we are done.

Remark. The precise decay rate λ−4 is probably not the best possible here (we believe we

can actually improve it to e−c
√
λ at least for w ≡ 1), however we do know that the lower bound is
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indeed exponential, that is there exists a measure µ such that Vµ ≤ 1 on suppµ but with absolute

positive constant c the following holds

Cap({Vµ > λ}) ≥ ce−2λ,

see the lack of Maximum Principle (Proposition 1.1.4).

Finally we need yet another energy estimate, this time about mixed energy behaviour. We

recall that the delta-truncated potential and energy are

Vµ
w,δ(α) =

∑︂
β≥α: Vµ

w(β)≤δ

w(β)I∗µ(β)

Ew,δ[µ] =

∫︂
T 2

Vµ
w,δdµ.

Lemma 2.2.8 Let µ, ρ be positive measures on T 2 and δ > 0. Let w : T 2 → R+ be a product

weight. Then (︃∫︂
T 2

Vµ
w,δ dρ

)︃4

≤ 28 · δ2Ew,δ[µ]Ew[ρ]|ρ|2.

Proof. Let f := 1Vµ
w≤δI

∗µ. Then

∫︂
T 2

Vµ
w,δ dρ =

∫︂
T 2

I(fw) dρ ≤ |ρ|
1
2

(︃∫︂
T 2

(I(wf))2 dρ

)︃ 1
2

≤

by Lemma 2.2.4

|ρ|
1
2

(︃
2

∫︂
T 2

I (I1(wf) · I2(wf) + (wf) · I(wf)) dρ
)︃ 1

2

=

2
1
2 |ρ|

1
2

(︃∫︂
T 2

w (I1(w1f) · I2(w2f) + (wf) · I(wf)) I∗ρ
)︃ 1

2

≤

2
1
2 |ρ|

1
2E

1
4
w [ρ]

(︃∫︂
T 2

w (I1(w1f) · I2(w2f) + (wf) · I(wf))2
)︃ 1

4

.

Now we expand the square while applying Lemmas 2.2.5 and 2.2.6, and obtain

2
1
2 |ρ|

1
2E

1
4
w [ρ]

(︃∫︂
T 2

w (I1(w1f) · I2(w2f) + (wf) · I(wf))2
)︃ 1

4

≤

2
1
2 |ρ|

1
2E

1
4
w [ρ]

(︃
7δ2
∫︂
T 2

f 2w

)︃ 1
4

=

28
1
4 |ρ|

1
2E

1
4
w [ρ]δ

1
2E

1
4
w,δ[µ].

We are done.
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2.2.3 Estimates on a tri-tree

Now we repeat most of the results from the previous Section on T 3 (and the Hardy operator is

now three-dimensional one). Similarly to Lemma 2.2.4 we obtain the following result for tri-trees.

Lemma 2.2.9 Let f, g : T 3 → R+. Then

If · Ig ≤ I

⎛⎝ ∑︂
A⊆{1,2,3}

IAf · IAcg

⎞⎠ ,

where IA =
∏︁

j∈A Ij is the composition of the respective coordinate Hardy operators.

Proof. It goes exactly like in Lemma 2.2.4 with appropriate changes.

Corollary 2.2.2 Let 0 < δ < λ
4
and let f : T 3 → R+ with supp f ⊂ {If ≤ δ}. Then

(If)1λ≤If≤2λ ≤ 4λ−1

⎛⎝ ∑︂
j∈{1,2,3}

Ijf · I{j}cf · 1If≤2λ

⎞⎠ ,

where I{j}c =
∏︁

k ̸=j Ik.

Proof. Substituting f = g Lemma 2.2.9 implies that

(If)2 ≤ I

(︄
2
∑︂

j=1,2,3

Ijf · I{j}cf + 2f · If

)︄
.

Now we apply the support condition, obtaining

(If)1λ≤If≤2λ ≤ λ−1I

(︄
2
∑︂

j=1,2,3

Ij · I{j}c + 2δf

)︄
≤

λ−1I

(︄
2
∑︂

j=1,2,3

Ijf · I{j}cf

)︄
+ 2δλ−1If.

Since 2δλ−1 ≤ 1
2
, we see that

(If)1λ≤If≤2λ ≤ 2λ−1I

(︄
2
∑︂

j=1,2,3

Ijf · I{j}cf

)︄
· 1λ≤If≤2λ ≤

2λ−1

(︄
2
∑︂

j=1,2,3

Ijf · I{j}cf · 1If≤2λ

)︄
.

Lemma 2.2.10 (Energy bound on T 3) Let f : T 3 → R+ be superadditive in each variable. Let

w : T 3 → R+ be a product weight, and suppose that supp f ⊆ {Iwf ≤ δ}. Then for any j = 1, 2, 3∫︂
T 3

w ·
(︁
Ij(wjf) · I{j}c(w{j}cf)

)︁2
1I(wf)≤λ ≤ 2δλ

∫︂
T 3

f 2w,
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where w{j}c =
∏︁

k ̸=j wk.

Proof. Without any loss of generality we may assume that j = 1. Then by Lemma 2.2.1 we have∫︂
T 3

w · (I1(w1f) · I2I3(w2w3f))
2 If ≤ λ ≤

2

∫︂
T 3

wI1 ((w1f · I1(w1f))) · (I2I3(w2w3f))
2 · 1I(wf)≤λ =

2

∫︂
T 3

I1 (w1f · I1(wf)) · (I2I3(w2w3f)) · (I2I3(wf)) · 1I(wf)≤λ =

2

∫︂
T 3

w1f · I1(wf) · I∗1
(︁
(I2I3(w2w3f)) · (I2I3(wf)) · 1I(wf)≤λ

)︁
.

(2.9)

By Corollary 2.2.1 we have

I∗1
(︁
(I2I3(w2w3f)) · (I2I3(wf)) · 1I(wf)≤λ

)︁
≤

I∗1
(︁
∆1

(︁
1I(wf)≤λI2I3(w2w3f)

)︁
· I1 (I2I3(wf))

)︁
.

Since {I(wf) ≤ λ} is an up-set and f is superadditive, we have ∆1

(︁
1I(wf)≤λI2I3(w2w3f)

)︁
≥ 0 and

I1 (I2I3(wf)) = I(wf) ≤ λ on the support of the former function. Hence

I∗1
(︁
(I2I3(w2w3f)) · (I2I3(wf)) · 1I(wf)≤λ

)︁
≤

I∗1
(︁
∆1

(︁
1I(wf)≤λI2I3(w2w3f)

)︁
· λ
)︁
=

λ1I(wf)≤λ · I2I3(w2w3f).

This bound implies

(2.9) ≤2λ

∫︂
T 3

w1f · I1(wf) · I2I3(w2w3f) =

2λ

∫︂
T 3

f · I1(wf) · I2I3(wf) = 2λ

∫︂
T 3

wf · I∗1(f · I2I3(wf)).

Similar to (2.7) we see that

I∗1(f · I2I3(wf)) ≤ δf.

We are done.

Next Lemma is the three-dimensional version of Lemma 2.2.7 (observe a slightly worse decay

rate here).

Lemma 2.2.11 (Small energy majorization on T 3.) Let f : T 3 → R+ be a superadditive (in each

variable) function, and w : T 3 → R+ be a product weight. Suppose that supp f ⊆ {I(wf) ≤ δ},
and let λ ≥ 4δ. Then there exists an energy-effective redistribution φ : T 3 → R+ such that

I(wφ)(α) ≥ I(wf)(α), α ∈ {λ ≤ I(wf) ≤ 2λ}, (2.10a)∫︁
T 3 φ

2w ≤ C δ
λ

∫︁
T 3 f

2w, (2.10b)
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where C is some absolute constant.

Proof. Since 2δλ−1 ≤ 1
2
, we have

(I(wf)) · 1λ≤I(wf)≤2λ ≤ 2λ−1I

(︄
2
∑︂

j=1,2,3

Ij(wjf) · I{j}c(w{j}cf)

)︄
· 1λ≤I(wf)≤2λ

2λ−1I

(︄
2
∑︂

j=1,2,3

Ij(wjf) · I{j}c(w{j}cf) · 1λ≤I(wf)≤2λ

)︄
.

We, therefore, get (2.10a), and to obtain (2.10b) just apply Lemma 2.2.10

The exceptional set estimate follows as well, albeit again with a worse decay rate.

Theorem 2.2.2 Let µ be a measure on T 3, w : T 3 → R+ a product weight and Vµ
w ≤ 1 on suppµ.

Let Eλ := {Vµ
w ≥ λ ≥ 10}. Then

Capw Eλ ≤ C

λ3
Ew[µ],

where C is an absolute constant.

Proof. We basically repeat the proof of Theorem 2.2.1, only instead we use small majorization on

tri-tree, Lemma 2.2.11 instead of Lemma 2.2.7.

Remark. Again we do not know how precise the rate λ−3 is. It obviously should be worse

than the one on the bi-tree, but we do not know anything beyond that.

We continue to estimate the mixed energy on T 3.

Lemma 2.2.12 Let µ, ρ be positive measures on T 3 and δ > 0. Let w : T 3 → R+ be a product

weight. Then (︃∫︂
T 3

Vµ
w,δ dρ

)︃3

≤ C · δEw,δ[µ]Ew[ρ]|ρ|. (2.11)

Proof. Without loss of generality Ew,δ[µ] ̸= 0 and ρ ̸≡ 0. Let λ > 0 be chosen later. Let f :=

I∗µ ·1Vµ
w≤δ, this function is clearly superadditive (in each variable). Also, I(wf) = Vµ

w,δ ≤ Vµ
w ≤ δ

on supp f , and Ew,δ[µ] =
∫︁
T 3 f

2w.

For m = 1, 0, . . . let

φm := 4(2mλ)−1

(︄ ∑︂
j=1,2,3

Ij(wjf) · I{j}c(w{j}cf) · 1I(wf)≤2m+1λ

)︄
.

Then by Corollary 2.2.2 with wf in place of f we have

I(wf) · 12mλ<I(wf)<2m+1λ ≤ I(wφm),

and, by Lemma 2.2.10, we have ∫︂
T 3

φ2
mw ≤ C

δ

2mλ

∫︂
T 3

f 2w.
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Hence ∫︂
T 3

Vµ
w,δ dρ =

∫︂
{Vµ

w,δ≤λ}
Vµ

w,δ dρ+
∑︂
m≥0

∫︂
{2mλ<Vµ

w,δ≤2m+1λ}
Vµ

w,δ dρ ≤

λ|ρ|+
∑︂
m≥0

∫︂
T 3

I(wφm) dρ = λ|ρ|+
∑︂
m≥0

wφmI
∗ρ ≤

λ|ρ|+
∑︂
m≥0

(︃∫︂
T 3

φ2
mw

)︃ 1
2

E
1
2
w [ρ] ≤

λ|ρ|+
∑︂
m≥0

c

(︃
δ

2mλ

)︃ 1
2

E
1
2
w,δ[µ]E

1
2
w [ρ] ≤

λ|ρ|+ C

(︃
δ

λ

)︃ 1
2

E
1
2
w,δ[µ]E

1
2
w [ρ].

Substituting λ = (δEw,δ[µ]Ew[ρ])
1
3 |ρ|− 2

3 we obtain (2.11).

Corollary 2.2.3 Let µ, ρ be positive measures on T 3 and δ > 0. Then∫︂
T 3

Vµ
w,δ dρ ≤ C

1
2

(2.11)δ
1
2E

1
6
w [µ]|µ|

1
6E

1
3
w [ρ]|ρ|

1
3 .

Proof. By Lemma 2.2.12 (applied twice) we have

(︃∫︂
T 3

Vµ
w,δ dρ

)︃ 1
3

≤ C(2.11)δEw,δ[µ]Ew[ρ]|rho| ≤

C(2.11)δ
(︁
C(2.11)δEw[µ]|µ|

)︁ 1
2 Ew[ρ]|ρ|,

and we are done.

2.2.4 Estimates on d-trees (conditional)

We say that a weight w on a d-tree T d satisfies the surrogate maximum principle, if for some

κ > 0, C <∞ and every positive measures µ, ρ : T d → [0,∞) and δ > 0 one has∫︂
T d

Vµ
w,δ dρ ≤ C (δ|ρ|)κ (Ew,δ[µ]Ew[ρ])

1−κ
2 . (2.12)

For d = 1, 2, 3 every weight of product form satisfies this principle – as we have shown above, with

κ = 1
d
and C independent of w. This leads us to the following conjecture

Conjecture 2.2.1 (Surrogate maximum principle for d-trees) Let w be of product type. Then w

satisfies the surrogate maximum principle with κ = 1
d
and C = C(d) independent of w.

It is very important that w is of product form here, since if it is not, one can construct a

counterexample even on T 2 and w taking only values 0 and 1 (and monotone as well). While it

seems very believable that the surrogate maximum principle holds for higher dimensions, there
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are some issues here that prohibit just repeating the proof (and, strangely enough, they happen

not in the usual ’d = 1 to d = 2’ transition).

In what follows we can actually work conditionally on the surrogate maximum principle (SMP).

All implicit constants are allowed to depend on κ,C in (2.12) but not on w. As we have already

mentioned, our results hold unconditionally for d = 1, 2, 3.

Taking ρ = µ in (2.12) we obtain the following Lemma.

Lemma 2.2.13 Let w : T d → R+ be such that the SMP holds. Let µ be a positive measure on T d

and δ > 0. Then ∫︂
T d

Vµ
w,δ dµ ≤ C

2
1+κ

(2.12) (δ|µ|)
2κ
1+κ E

1−κ
1+κ
w [µ]. (2.13)

Conjecture 2.2.2 For all positive integers d one has∫︂
T d

Vµ
w,δ dµ ≤ Cn (δ|µ|)

2
d+1 E

d−1
d+1
w [µ].

2.3 Subcapacitary condition

Now that we have done the preliminary work estimating the various mixed energies on d-trees we

are ready to handle our first condition – the subcapacitary one. Namely, we are going to prove

the following proposition.

Proposition 2.3.1 Assume that SMP holds for a weight w, and let µ be a non-negative measure

on T d satisfying

µ(E) ≤ CµCapw(E), ∀E ⊂ T d. (2.14)

Then for any function f : T d → R+ one has∫︂
T d

(Iwf)
2 dµ ≤ C ′

∫︂
T d

f 2w, (2.15)

where C ′ depends only on Cµ and C(2.12). Or, in other words, [w, µ]SC ≳ [w, µ]CE.

We prove this in several steps, following mostly [1, Chapter 7]. First, we modify the left-hand

side of (2.15) by using the subcapacitary condition to arrive to the so-called Strong Capacitary

Inequality, which we then proceed to prove. Next, we separate the ℓ2-norm of f , reducing (2.15) to

estimates of the level sets of Iwf . We then invoke (2.12) to verify that the energy scalar product

of two equilibrium measures can be estimated by the capacities of the respective sets. This is the

key point of the argument. We finish the proof by showing that the mixed energy of the level sets

(energy scalar product of their equilibrium measures) is concentrated on the diagonal.

2.3.1 Proof of Proposition 2.3.1: Strong Capacitary Inequality

Let w, µ be like in the statement of Proposition, and let f be any (non-negative) function in

L2(T d, w). Given k ∈ Z let

Ek := {α ∈ T d : Iwf(α) > 2k}.



64

Writing the distribution of the left-hand side of (2.15) (or using ’spherical’ coordinates of the level

sets of Iwf) and applying the subcapacitary condition (2.14) we obtain∫︂
T d

(Iwf)
2 dµ ≲

∑︂
k∈Z

22kµ(Ek) ≲
∑︂
k∈Z

22k Capw(Ek).

Our job is done then, if we manage to prove the following estimate – Strong Capacitary Inequality

∑︂
k∈Z

22k Capw(Ek) ≲
∫︂
T d

f 2w. (2.16)

The rest of the proof is dedicated to this estimate.

Remark. Observe that the weak capacitary inequality,

22k Capw(Ek) ≤
∫︂
T d

f 2w

is absolutely trivial, holds for all weights and d-trees, and follows immediately from the definition

of capacity.

2.3.2 Getting rid of f

Let µk be the equilibrium measure for Ek. Essentially we need the following properties of

equilibrium measures

Capw(Ek) = |µk| = Ew[µk]

Vµk
w = 1 on suppµk

Vµk
w ≥ 1 on Ek.

(2.17)

The left-hand side of (2.16) is

∑︂
k∈Z

22k Capw(Ek) =
∑︂
k∈Z

2k
∫︂
T d

2k dµk ≤
∑︂
k∈Z

2k
∫︂
T d

Iwf dµk =

∑︂
k∈Z

2k
∫︂
T d

fwI∗µk =

∫︂
T d

fw

(︄∑︂
k∈Z

2kI∗µk

)︄
≤

(︃∫︂
T d

f 2w

)︃ 1
2

⎛⎝∫︂
T d

(︄∑︂
k∈Z

2kI∗µk

)︄2

w

⎞⎠ 1
2

We deduce that (2.16) would follow from

∫︂
T d

(︄∑︂
k∈Z

2kI∗µk

)︄2

w ≲
∑︂
k∈Z

22k Capw(Ek) =

∫︂
T d

∑︂
k∈Z

22k (I∗µk)
2w, (2.18)

or, in other words, that the main term in the left-hand side of (2.18) is the diagonal one.
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2.3.3 The diagonal term estimate

Expanding the left-hand side of (2.18) we get

∑︂
k,j∈Z

2k+j

∫︂
T d

I∗µk · I∗µj · w =
∑︂
k,j∈Z

2k+j

∫︂
T d

Vµk
w dµj ≤ 2

∑︂
j≤k∈Z

2k+j

∫︂
T d

Vµk
w dµj

By the Surrogate Maximum Principle (2.12) with data δ = 1, µ = µj and ρ = µkwe have∫︂
T d

Vµk
w dµj ≲ E

1−κ
2

w [µj]E
1+κ
2

w [µk] = |µk|
1+κ
2 · |µj|

1−κ
2 ,

since both measures are equilibrium ones. Plugging it back into the inequalities above and applying

Hölder inequality twice we get

∑︂
j≤k∈Z

2k+j

∫︂
T d

Vµk
w dµj ≲

∑︂
j≤k∈Z

2k+j|µk|
1+κ
2 · |µj|

1−κ
2 =

∑︂
k∈Z

2k(1+κ)|µk|
1+κ
2 · 2−kκ

∑︂
j≤k

2j|µj|
1−κ
2 ≤

(︄∑︂
k∈Z

22k|µk|

)︄ 1+κ
2

⎛⎝∑︂
k∈Z

2−k 2κ
1−κ

(︄∑︂
j≤k

2j|µj|
1−κ
2

)︄ 2
1−κ

⎞⎠
1−κ
2

=

(︄∑︂
k∈Z

22k|µk|

)︄ 1+κ
2

⎛⎝∑︂
k∈Z

2−k 2κ
1−κ

(︄∑︂
j≤k

2j
κ
2 2j(1−

κ
2
)|µj|

1−κ
2

)︄ 2
1−κ

⎞⎠
1−κ
2

≤

(︄∑︂
k∈Z

22k|µk|

)︄ 1+κ
2

⎛⎝∑︂
k∈Z

2−k 2κ
1−κ

(︄∑︂
j≤k

2j
κ

1+κ

)︄ 1+κ
1−κ ∑︂

j≤k

2j
2−κ
1−κ |µj|

⎞⎠
1−κ
2

≲

(︄∑︂
k∈Z

22k|µk|

)︄ 1+κ
2
(︄∑︂

k∈Z

2−k 2κ
1−κ2k

κ
1−κ

∑︂
j≤k

2j
2−κ
1−κ |µj|

)︄ 1−κ
2

=

(︄∑︂
k∈Z

22k|µk|

)︄ 1+κ
2
(︄∑︂

j∈Z

2j
2−κ
1−κ |µj|

∑︂
k≥j

2−k κ
1−κ

)︄ 1−κ
2

≲

(︄∑︂
k∈Z

22k|µk|

)︄ 1+κ
2
(︄∑︂

j∈Z

2j
2−κ
1−κ |µj| · 2−j κ

1−κ

)︄ 1−κ
2

=

(︄∑︂
k∈Z

22k|µk|

)︄ 1+κ
2
(︄∑︂

j∈Z

22j|µj|

)︄ 1−κ
2

=
∑︂
k∈Z

22k|µk|.

But |µk| is just Ew[µk] =

∫︂
T d

(I∗µk)
2w, hence

∑︂
k,j∈Z

2k+j

∫︂
T d

I∗µk · I∗µj · w ≲
∑︂
k∈Z

22k
∫︂
T d

(I∗µk)
2w,

and we are done.

Remark. The Strong Capacitary Inequality (which essentially goes back to Maz’ya, [67]) usually
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does not hold – along with the Surrogate Maximum Principle – for non-product weights. Actually

the same counterexample for SMP messes up SCI as well.

2.4 From the Carleson condition to the embedding

Here we show two of the converse inequalities in (2.4), namely that

[w, µ]CE ≲ [w, µ]HC ≲ [w, µ]C .

We start with an auxiliary statement. Given E ⊂ T d let

Ew,E[µ] :=

∫︂
E

(I∗µ)2w.

Lemma 2.4.1 Let w : T d → R+ be such that SMP (2.12) holds. Let ν be a measure on T d and

E :=

{︃
Vν

w > (2C(2.13))
− 1

κ ]
Ew[ν]
|ν|

}︃
] ⊂ T d.

Then

Ew,E[ν] =
∑︂
α∈E

(I∗ν)2(α)w(α) ≥ 1

2
Ew[ν].

Proof. Put δ := (2C(2.13))
− 1

κ
Ew[ν]
|ν|

. By Lemma 2.2.13 we have

Ew,E[ν] = Ew[ν]− Ew,δ[ν] ≥ Ew[ν]− C(2.13)(δ|ν|)κE1−κ
w [ν] =

1

2
Ew[ν].

Remark. Essentially this Lemma tells us that if we truncate the energy of ν ’high enough’,

i.e. on a set of small – compared to the average value of Vν
w – potential, then we are left with only

a small portion of the full energy Ew[ν].
We are ready to prove the main estimate. The idea here goes roughly as follows. If [w, µ]HC

is way larger than [w, µ]C (which we may assume to be 1 say), it would mean that there exists a

set E such that µ restricted to this set has extremely large (compared to its mass) energy. But

then, if we go ’up’ from this set (i.e. consider enough of its immediate ancestors), then the energy

of µ1E is mostly supported on this ancestor set F , this is due to Lemma 2.4.1 (and, essentially,

due to the tail energy estimate 2.2.13). On the other hand, this set F is not much larger than E

in capacitary sense, so in order to keep [w, µ]C down, we have to rebalance µ on it, but in doing

this we obtain even worse ratio between [w, µ]HC and [w, µ]C , and we can repeat the argument.

We have the following theorem.

Theorem 2.4.1 Let w : T d → R+ be such that SMP (2.12) holds. Then for every non-negative

measure µ on T d we have

[w, µ]HC ≲ [w, µ]C .
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Proof. Without any loss of generality we may assume that [w, µ]C = 1. Let

A := [w, µ]HC = sup
E⊂T d, µ(E)̸=0

Ew[µ · 1E]

µ(E)
. (2.19)

Since T d is finite, the constant A is finite as well, and the maximizer E for (2.19) does exist. Let

ν := µ1E and

F := {Vν
w > cA}

for some absolute constant c. Then by Lemma 2.4.1, if c is small enough (as in previous Lemma),

we have

Ew,F [ν] ≥
1

2
Ew[ν].

Hence 0 < Ew[ν] ≤ 2Ew,F [ν] ≤ 2Ew,F [µ] ≤ 2µ(F ), in particular µ(F ) ̸= 0. Since Vν
w > cA on F ,

we have

cAµ(F ) ≤
∫︂
F

Vν
w dµ ≤ E

1
2
w [ν]E

1
2
w [µ1F ] ≤ (2µ(F ))

1
2 (Aµ(F ))

1
2 .

It follows immediately that A ≲ 1.

2.4.1 From the Hereditary Carleson condition to the embedding

The next inequality to reverse is the one between [w, µ]HC and the embedding constant [w, µ]CE.

The Hereditary Carleson/Restricted Energy condition is not very useful by itself, since it involves

testing on arbitrary sets, and not in a good way at that. It serves as a step, however, between

more appropriate tests and the boundedness of the original embedding.

Thankfully the inequality [w, µ]CE ≲ [w, µ]HC we can get practically for free, via the results

in Section 2.3.

Proposition 2.4.1 Assume that w : T d → R+ is a weight that satisfies SMP (2.12), and µ is a

non-negative measure on T d. Then for any E ⊂ T d one has

µ(E) ≤ [w, µ]HC Capw(E).

Proof. Fix any set E ⊂ T d, and let f be an admissible function for E, that is Iwf ≥ 1 on E, and

let A = [w, µ]HC . Clearly, the energy is positive, so, expanding, we have

0 ≤
∫︂
T d

(I∗µ|E − Af)2w =
∑︂
α∈T d

(I∗µ|E)2(α)w(α)−

− 2A
∑︂
α∈T d

I∗µ|E(α) · f(α)w(α) + A2
∑︂
α∈T d

f 2(α)w(α).
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which means, in turn,

0 ≤

(︄∑︂
α∈T d

(I∗µ|E)2(α)w(α)− A
∑︂
α∈T d

I∗µ|E(α) · f(α)w(α)

)︄
−

− A

(︄∑︂
α∈T d

I∗µ|E(α) · f(α)w(α)− A
∑︂
α∈T d

f 2(α)w(α)

)︄
=(︄∑︂

α∈T d

(I∗µ|E)2(α)w(α)− A

∫︂
T d

Iwf dµ|E

)︄
−

− A

(︄∫︂
T d

Iwf dµ|E − A
∑︂
α∈T d

f 2(α)w(α)

)︄
.

(2.20)

Now, since f is admissible for E and µ|E is supported on E, we see that

∫︂
T d

Iwf dµ|E ≥ |µ|E|. By

definition of [w, µ]HC = A it follows that

∑︂
α∈T d

(I∗µ|E)2(α)w(α)− A

∫︂
T d

Iwf dµ|E ≤ 0.

However than the second term on the right-hand side (2.20) must be non-negative,

|µ|E| ≤ A
∑︂
α∈T d

f 2(α)w(α).

Minimizing over all admissible functions f we arrive at

|µ|E| ≤ ACapw(E),

and we are done.

It remains to see, that we have already proven in Section 2.3 that subcapacitary measures

realize the embedding, [w, µ]CE ≲ [w, µ]SC , hence it follows immediately that

[w, µ]CE ≲ [w, µ]HC .

2.5 Single box test

We are left with the last of the converse inequalities (2.4), the one that tells it is enough to test the

embedding on the successor sets of singletons. The general idea of the proof is somewhat similar

to the idea behind [w, µ]CE ≲ [w, µ]C , however since we now only have estimates on boxes and

not on arbitrary sets, we must deal with additional complications. Also, we would like to mention

again the unlikely nature of such a single box test which seems to go against the usual course of

events in multi-parametric settings.
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2.5.1 Main estimate

We start with some additional notation. Within this section we always assume that a weight

w on T d is already fixed, so we will drop it from subscripts. Given a non-negative measure ν on

T d define

Vν
τ (ω) :=

∑︁
ω≤β≤τ I

∗ν(β)w(β) (2.21a)

Vε′, good(ω) :=
∑︁

β≥ω: Vν
ω>ε′ I

∗ν(β)w(β). (2.21b)

Next Lemma employs a staircase-like construction inspired by [86] to estimate the size of truncated

’good’ potentials.

Lemma 2.5.1 Let d ≥ 2 and µ be a non-negative measure on T d. Let w : T d → R+ be a weight

that satisfies SMP (2.12). Assume that E [µ] ≤ |µ| and

Vµ ≥ 1

3
on suppµ. (2.22)

Then, if ε′ is small enough, we have ∫︂
T d

Vµ
ε′, good dµ ≳ |µ|.

Proof. It suffices to show that for some ε′ and εd−1 we have

µ
{︁
ω ∈ T d : Vµ

ε′, good(ω) ≥ εd−1

}︁
≥ |µ|

2
.

Let ε > 0 be chosen later, and define

ε1 := ε, ε2 := ε · ε
1
κ
1 , ε3 := ε · ε

1
κ
2 , . . . .

By Lemma 2.2.13 we have ∫︂
Td

Vµ
εj
dµ ≲ εκj |µ|κE1−κ[µ] ≲ εκj

∫︂
T d

dµ

for some κ > 0. We recall that Vµ
εj
(ω) =

∑︂
ω≤α∈T d: Vµ≤εj

I∗µ(α)w(α). By Chebyshev’s inequality it

follows that

Vµ
εj
(ω) ≤ 1

10

(︂εj
ε

)︂κ
(2.23)

on at least (1−Cεκ)-portion (w.r.t. µ) of points ω. With that in mind we now only consider such

points ω that (2.23) holds for every j = 1, 2, . . . , d− 1, and also such that Vµ(ω) ≲ 1. Let

ε′ := ε · ε1 · · · · · εd−1.



70

Given a point ω let

U := {τ ≥ ω : Vµ
τ (ω) > ε′} (2.24)

and

Wj := {τ ≥ ω : Vµ(τ) ≤ εj}, 1 ≤ j ≤ d− 1. (2.25)

We again recall the definitions of successor and predecessor sets, P(α) = {β ∈ T d : β ≥ α} and

S(β) = {α ∈ T d : α ≤ β}.
Now if U ̸⊂ Wd−1, then there exists a point γ ̸∈ Wd−1 such that P(γ) ⊂ U . Hence

Vµ
ε′, good(ω) ≥

∑︂
γ′≥γ

I∗µ(γ′)w(γ′) = Vµ(γ) ≥ εd−1,

and in this case the potential at ω is large enough. Assume next, that U ⊆ Wd−1. We are going

to cover P(ω) \ W1 by boundedly many sets of the form S(β) with β ∈ P(ω) \ U . This will lead
to a contradiction with (2.22), since by (2.23) and (2.24) the integral of f := I∗µ · w is small on

W1 and also on each such a set S(β). Let us elaborate.
For a set of coordinates J ⊂ {1, 2, . . . , d} and a point γ ∈ T d let

PJ(γ) := {β ∈ T d : βj ≥ γj, j ∈ J, βj = γj, j ̸∈ J}.

Given a non-empty J ⊂ {1, 2, . . . , d} and γ ∈ T d we define a set QJ(γ) ⊂ T d as follows. If |J | = 1,

then QJ(γ) consists of the unique maximal element of PJ(γ) \ U , if the latter set is non-empty,

and is defined to be empty otherwise. If |J | ≥ 2, then QJ(γ) is a maximal set of maximal elements

of PJ(γ) \Wd−|J |+1 such the sets PJ(β) \Wd−|J |+2 are pairwise disjoint for β ∈ QJ(γ).

Yet another set we need is RJ which we define recursively, R∅(γ) := {γ}, and

RJ(γ) :=
⋃︂
J ′⊂J

⋃︂
γ′∈QJ (γ)

RJ ′(γ),

where we run over all sets J ′ ⊂ J with cardinality |J ′| = |J | − 1.

We claim that for every γ ∈ P(ω) and every J ⊂ {1, 2, . . . , n} with J ̸= ∅ we have⋃︂
γ′∈RJ (γ)

S(γ′) ⊇ PJ(γ) \Wd−|J |+1, (2.26)

where we set Wd := U to close the notation. We prove (2.26) by induction on size of J . For |J | = 1

the claim is obvious. Now, let J, |J | ≥ 2, be given and suppose we have (2.26) for all proper

subsets of J . Let

F :=
⋃︂

γ′∈RJ

S(γ′), G := PJ(γ) \Wd−|J |+1.

By hypothesis

F ⊇ PJ ′(γ′) \Wd−|J |+2 (2.27)
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for every γ′ ∈ RJ(γ) and every J ′ ⊊ J . Suppose that

F ̸⊇ G. (2.28)

Chose a maximal element β ∈ F \ G. Since F is a down-set (so it contains all successors of its

elements), we see that β is also a maximal element of G. We claim(︂
PJ(β)

⋂︂
PJ(γ)

)︂
\Wd−|J |+2 = ∅ fro all γ′ ∈ Q(γ). (2.29)

Indeed, suppose for a contradiction that there exists β′ ∈
(︂
PJ(β)

⋂︂
PJ(γ)

)︂
\ Wd−|J |+2 and let

β′ be minimal with such a property. Since Wd−|J |+2 is an up-set, β′ is also a minimal element of

PJ(β)
⋂︁

PJ(γ). Also, since β, γ
′ ∈ PJ(γ), we have that β

′ is in fact the coordinate-wise maximum

of β, γ′. Finally, since β and γ′ are two distinct maximal elements de P , we deduce that β′ coincides

with γ′ in at least one coordinate, so β′ ∈ PJ ′γ′ for some J ′ ⊊ H. Now (2.27) implies that β′ ∈ F
which is a down-set, but γ′ ≥ γ, therefore γ ∈ F , and we have a contradiction.

It follows that (2.29) holds true. But this, in turn, contradicts the maximality of QJ(γ). Thus

the assumption (2.28) is false, and we finally get (2.26). Fix a point γ ≥ ω. For 2 ≤ |J | ≤ d we

have

1 ≳ Vµ(ω) ≥ Vµ(γ) ≥
∑︂

β∈QJ (γ)

∫︂
PJ (β)\Wd−|J|+2

fw

≥
∑︂

β∈QJ (γ)

(︂
If(β)− I(f1Wd−|J|+2

)(ω)
)︂

by definition of β ∈ Wd−|J |+1 and by (2.23)

∑︂
β∈QJ (γ)

⎛⎝εd−|J |+1 −
(︁ εd−|J|+2

ε

)︁ 1
2

10

⎞⎠ ≳ |QJ(γ)|εd−|J |+1.

It follows that

ε1 · · · · · εd−1|R1,2,...,d(ω)| ≲ 1.

Hence by (2.26)

Vµ(ω)−Vµ
ε =

∫︂
P(ω)\W1

fw ≤
∑︂

γ′∈R1,2,...,d(ω)

∫︂
S(γ′)

fw =

∑︂
γ′∈R1,2,...,d(ω)

Vµ
γ′(ω) ≤

ε′|R1,2,...,d(ω)| ≲
ε′

ε1 · . . . εd−1

= ε.
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By the power of (2.23)

1

3
≤ Vµ(ω) = (Vµ(ω)−Vµ

ε (ω)) +Vµ
ε (ω) ≤ Cε+

1

10
.

With ε taken to be small enough the inequality above clearly becomes false, and we get the

contradiction to our assumption that U ⊂ Wd−1.

2.5.2 Single box implies Carleson

Before we proceed we need another auxiliary result (of rather general nature).

Lemma 2.5.2 (Balancing Lemma) Let w be a weight (of any kind) and ν be a measure on T d,

such that

E [ν] ≥ A|ν|,

for some A > 0. Then there exists a down-set Ẽ ⊂ T d such that the measure ν̃ := ν · 1Ẽ satisfies

Vν̃ ≥ A

3
on Ẽ,

E [ν̃] ≥ 1

3
E [ν].

Proof. The argument is straightforward – we consecutively throw away parts of ν with small

potential and then check that we are left with enough energy. To elaborate, let us replace ν by
3ν
A
, so that we may assume that A = 3. Let E0 = T d and ν0 := ν1E0 . We proceed by induction

Ek+1 := Ek \ {Vνk ≤ 1} νk+1 := ν · 1Ek+1
.

The sequence {Ek} consists of down-sets and is decreasing, and since T d is finite, it must stabilize

at some point, Em = Em+1, m ≥ M for some number M . Let ν̃ := νM and Ẽ := EM . By

construction we already have the first estimate, since

Vν̃ ≥ 1 =
A

3
on Ẽ.

To estimate what remains of energy we put σk := νk − νk+1 = νk · 1Ek\Ek+1
. Then we have

E [ν] =
∫︂
T d

Vν0 dν0 =

∫︂
T d

Vν1 dν1 +

∫︂
T d

Vν0 dσ0 +

∫︂
T d

Vσ0 dν0 ≤∫︂
T d

Vν1 dν1 + 2

∫︂
T d

Vν0 dσ0 ≤ E [ν1] + 2|σ0| ≤

· · · ≤ E [νM ] + 2|σ0|+ 2|σ1|+ · · ·+ 2|σM | ≤ E [ν̃] + 2|ν|,

since Vνk ≤ 1 on suppσk. But E [ν] ≥ 3|ν| by assumption, so we arrive at

E [ν̃] ≥ 1

3
E [ν],
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and we are done.

We are ready to attack the last remaining inequality from (2.4).

Theorem 2.5.1 Let d ≥ 2 and w : T d → R+ be such that the SMP (2.12) holds. Then for any

non-negative measure ν on T d one has

[w, ν]HC ≲ [w, ν]B.

Proof. By rescaling we may assume that [w, ν]B = 1. Let A := [w, µ]HC , and let E ⊂ T d be a set

such that µ := ν1E ̸= 0 and E [µ] = A|µ| (such a subset does exist, since, say, T d is finite). By

Lemma 2.5.2 there exists a further refinement Ẽ of E such that µ̃ = µ1Ẽ satisfies

Vµ̃ ≥ A

3
on Ẽ,

and µ̃ ̸= 0. Thus, replacing µ by µ̃ we may assume that Vµ ≥ A

3
on suppµ.

By Lemma 2.5.1 applied with µ
A
in place of µ for sufficiently small ε, θ > 0 we have∫︂
T d

Vµ
εA, good dµ ≥ 2θE [µ].

We claim that with these values of ε and θ we actually have

E [µ] ≤ θ

1− θ

∑︂
α: θεAI∗µ(α)≤Eα[µ]

(I∗µ(α))2w(α). (2.30)

Indeed, suppose that α is such that

θεAI∗µ(α) > Eα[µ] =
∑︂
ω≤α

Vµ
α(ω)µ(ω),

where Vµ
α(ω) =

∑︂
β:ω≤β≤α

I∗µ(β) · w(β). Then we have

∑︂
ω≤α:Vµ

α(ω)≤εA

µ(ω) = I∗µ(α)−
∑︂

ω≤α:Vµ
α(ω)>εA

µ(ω) ≥

I∗µ(α)− 1

εA

∑︂
ω≤α

Vµ
α(ω)µ(ω) ≥

(1− θ)I∗µ(α).
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It follows that ∑︂
α: θεAI∗µ(α)>Eα[µ]

(I∗µ(α))2w(α) ≤
∑︂
α

w(α)I∗µ(α)
1

1− θ

∑︂
ω≤α:Vµ

α(ω)≤εA

µ(ω) =

1

1− θ

∑︂
ω

µ(ω)
∑︂

α≥ω:Vµ
α(ω)≤εA

w(α)I∗µ(α) =

1

1− θ

∑︂
ω

µ(ω)
(︁
Vµ(ω)−Vµ

εA, good(ω)
)︁
≤

1− 2θ

1− θ
E [µ].

Now we have the claim (2.30).

Next, by Lemma 2.2.13 and the fact that Vµ ≥ A

4
on suppµ we have

Ec′A[µ] ≲ (c′A)κ|µ|κE1−κ[µ] ≲ (c′)κE [µ]. (2.31)

Taking c′ to be sufficiently small and combining (2.30) with (2.31) we obtain

E [µ] ≲
∑︂
α∈R

(I∗µ(α))2w(α), where

R :=
{︁
α ∈ T d : θεAI∗µ(α) ≤ Eα[µ], Vµ(α) ≥ c′A

}︁
.

For each α ∈ R we have

θεAI∗µ(α) ≤ Eα[µ] ≤ Eα[ν] ≤ [w, ν]BI
∗ν(α) = I∗σ(α),

where σL = ν1F and F := {β ∈ T d : ∃α ∈ R, α ≤ β}. It follows that

A2E [µ] ≲ E [σ]. (2.32)

On the other hand, by definition of A, the fact that Vµ ≳ A on suppσ and Cauchy-Schwartz, we

obtain

E [σ] ≤ A|σ| ≲
∫︂
T d

Vµ dσ ≤ E
1
2 [µ]E

1
2 [σ]. (2.33)

From (2.33) we obtain E [σ] ≲ E [µ], and inserting this into (2.32), we see that A ≲ 1.

We are done.

2.6 Comments, examples and counterexamples

In this Section, which contains results from [106] and [110], we explore a number of results that

shed some light on the behaviour of weighted potentials. First we justify the fact that we were

working with finite trees in this Chapter. Next, we show that if the weight w does not have a

product structure, then none of the statements of Theorem 2.1.1 holds true anymore, even if w

takes only values 0 or 1. We will do this by constructing N -coarse measures µ and weights w



75

on finite bi-trees T 2 of depth N such that the discrepancies between box, Carleson, REC, and

embedding constants grow with N . These counterexamples are intimately related to those in [86],

basically they are their discrete analogues. Also we prove a more general version of small energy

majorization statement on a 1-tree, and show that its 2-tree version is false.

2.6.1 From finite d-tree T d
N to an infinite d-tree T

d

We have proven Theorem 2.1.1 for any finite d-tree T d
N (or, equivalently, for pairs (w, µ) re-

stricted to T d
N), in particular there is no dependence on N in (2.4). We claim that it implies the

embedding Theorem on the full d-tree.

Indeed, we have proven Theorem 2.1.1 for any finite d-tree T d
N and the constants that govern the

relations between [w, µ]CE, [w, µ]HC , [w, µ]C , [w, µ]B and [w, µ]SC do not depend on the depth N .

Now let us fix a measure µ on the full d-tree T
d
and a product weight w on its interior T d. We

claim that the reverse inequalities (2.4) hold true.

In order to show this we fix any N ∈ N and consider truncations of w and µ to T d
N . For

α = (α1, . . . , αd) ∈ T d define |α| := max1≤k≤d |αk| with |αk| := #P(αk) − 1 being the depth

of αk in the respective coordinate tree. The truncation of the weight is straightforward

wN := w · 1T d
N
.

The measure µ has to be moved to the truncated tree a bit more carefully

µN := µ · 1T d
N
+

∑︂
α:|α|=N+1

1α · I∗µ(α).

In other words, we leave the portion of µ that lies on T d
N as it is, but also ’rise up’ the rest of µ to

the lower-most level of T d
N (which consists of points of depth N – exactly those with |α| = N +1)

by taking I∗µ.

It is easily seen that

I∗µN(α) ≤ I∗µ(α), α ∈ T d. (2.34)

Indeed, for any two distinct points α, β ∈ (∂TN)
d (i.e. for |α| = |β| = N + 1) the successor sets of

α and β do not intersect, S(α) ∩ S(β) = ∅. Hence∫︂
S(γ)

1|α|≥Ndµ =
∑︂

α≤γ, |α|=N+1

∫︂
S(α)

dµ,

so for γ ∈ T d
N we have equality in (2.34), and for other γ’s the left-hand side is zero (we do not

care about these points here anyway).

Similarly, for any collection of singleton successors

E :=
⋃︂
j

S(αj), αj ∈ T d, (2.35)
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we have

µN(E) = µ
(︁
E ∩ T d

N

)︁
for the same reason. We deduce that if the pair (w, µ) satisfies any of the test conditions (2.3a)

– (2.3d), be it Heredetary Carleson, Carleson, Box or Subcapacitary on T
d
, then the restricted

pairs (wN , µN) do the same on T d
N with same constants.

Next we observe that for any f ∈ L2(T d, dw) we have by dominated convergence

lim
N→∞

∫︂
T d

f 2(τ) dwN(τ) = lim
N→∞

∫︂
T d

(f · 1T d
N
)2(τ) dw(τ) =

∫︂
T d

f 2(τ) dw(τ).

Finally,

lim
N→∞

∫︂
T d

(IwN
f)2 dµN = lim

N→∞

∫︂
T d

(Iwf)
2 dµN =

∫︂
T

d
(Iwf)

2 dµ,

since Iwf is monotone in the d-tree order and Iw-potentials converge pointwise to boundary values

lim
|α|→∞, α≥ω

Iwf(α) = Iwf(ω), ω ∈ ∂T d.

This finishes the reduction argument.

2.6.2 General setting for counterexamples

Within this Section we assume d = 2 and T 2 = T 2
N be a finite (but very deep) dyadic bi-tree

– since we are constructing counterexamples we are considering the simplest possible situation.

Also, here we will make use of the rectangle interpretation – we identify T 2 with the set of all

dyadic rectangles in the square Q0 = [0, 1]2 with side lengths at least 2−N ordered by inclusion.

We denote the set of minimal elements of this bi-tree, that is, the small squares of size 2−N ×
2−N , by (∂T )2, and elements of this set will be denoted by ω. We denote sets of ω’s by E ⊂ (∂T )2

and identify them with their union, so we will write Q ⊂ E if Q is covered by the elements of E.

In all examples the measure µ will be supported on the square Q0. We identify it with a function

on T 2 by setting µ̃(ω) := µ(ω) for ω ∈ (∂T )2 and µ̃(Q) := 0 for Q ̸∈ (∂T )2. Then I∗µ̃(Q) = µ(Q).

With this convention the box condition (2.3d) for the measure µ and weight w = {wQ} becomes∑︂
Q∈T 2, Q⊂R

µ2(Q)wQ ≤ Cµ(R), for any R ∈ T 2. (2.36)

The Carleson condition (2.3c) becomes∑︂
Q∈T 2, Q⊂E

µ2(Q)wQ ≤ Cµ(E), for any E ⊂ (∂T )2, (2.37)
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the hereditary Carleson (or Restricted Energy) condition (2.3b) becomes∑︂
Q∈T 2

µ2(Q ∩ E)wQ ≤ Cµ(E), for any E ⊂ (∂T )2, (2.38)

and the (dual version of) Carleson embedding (2.2) becomes

∑︂
Q∈T 2

(︃∫︂
Q

φ dµ

)︃2

wQ ≤ C

∫︂
Q0

φ2dµ for any φ ∈ L2(Q0, dµ). (2.39)

2.6.3 Box condition does not imply Carleson condition

In [21] Carleson constructed families R of dyadic sub-rectangles of Q = [0, 1]2 having the following

two properties:

∀R0 ∈ T 2,
∑︂

R⊂R0,R∈R

m2(R) ≤ C0m2(R0) , (2.40)

but ∑︂
R∈R

m2(R) > C1m2(∪R∈RR) , (2.41)

with arbitrarily large ratios C1/C0, where m2 is the planar Lebesgue measure. Choosing µ = m2

and

wR :=

⎧⎨⎩ 1
m2(R)

, R ∈ R,

0, otherwise

we can identify the left-hand sides of (2.40) and (2.41) with the left-hand sides of (2.36) and

(2.37), respectively. Hence the box condition (2.36) holds with constant C0, while the Carleson

condition (2.37) can only hold with constant ≥ C1.

The weight w is rather wild here. But there is also a counterexample with wR ∈ {0, 1} for all

R.

2.6.4 Carleson condition does not imply REC

Our aim here is to show that for general w, µ the Carleson condition (2.37) is no longer sufficient

for the embedding (2.39) or even the Restricted Energy Condition (2.38). Namely we prove the

following statement.

Proposition 2.6.1 For any δ > 0 there exists a number N ∈ N, a weight w : T 2
N → {0, 1}, and a

measure µ on ∂T 2 such that µ satisfies the Carleson condition (2.37) with the constant Cµ = δ:∑︂
Q⊂E

µ2(Q)wQ ≤ δµ(E), for any E ⊂ (∂T )2, (2.42)

but there exists a set F ⊂ Q0 such that∑︂
Q∈D

µ2(Q ∩ F )wQ > µ(F ), (2.43)
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hence the constant in (2.38) is at least 1.

We intend to give two examples of this kind. The first example is quite simple and is inspired

by the counterexample for L2-boundedness of the biparameter maximal function. In this example

the weight w is supported on a very small subset of the bi-tree, which differs greatly from the

original graph. The second example is somewhat more involved, but the weight w is supported

on a much larger portion of the bi-tree; in fact it has the monotonicity property wR ≥ wQ for

R ⊇ Q. Nevertheless there are not enough rectangles in the support of w to have the Carleson-REC

equivalence.

We introduce some additional notation. We denote by ω0 := [0, 2−N ]2 the left lower corner of

the unit square. Given a dyadic rectangle R = [a, b]× [c, d] let

R+◦ := [(a+ b)/2, b]× [c, d],

R◦+ := [a, b]× [(c+ d)/2, d],

R++ := [(a+ b)/2, b]× [(c+ d)/2, d],

be its right half, upper half, and upper right quadrant, respectively. Again we fix the weight w at

the beginning of our arguments, so we will drop it from the subscript in Vµ
w, Iw etc.

A simple example

Let Qi = [0, 2−i+1] × [0, 2−N+i] for j = i, . . . , N . Let measure µ have mass 1 on ω0 and each of

Q++
i , and mass 0 everywhere else. Let

wR :=

⎧⎨⎩1 if R ∈ {ω0, Q1, Q2, . . . , QN},

0 else.

So we have N + 1 weights wR equal to 1. For the set E = ω0 we have

E [µ|E] = µ(ω0)
2 +

N∑︂
i=1

µ(ω0 ∩Qi)
2 = (N + 1) = (N + 1)µ(E).

So the REC constant (2.38) is ≥ N + 1.

Denoting Q0 := ω0, for an arbitrary E ⊆ ∂T 2 we have

EE[µ] =
∑︂

R⊂E,wR ̸=0

µ(R)2 =
∑︂

j:Qj⊂E

µ(Qj)
2.

Then since Q++
i ∩Qj = ∅ unless i ∈ {0, j}, we have

EE[µ] ≤
∑︂

j:Qj⊂E

22 ≤ 4µ(E)

So the Carleson condition (2.37) holds with constant 4.
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The lack of maximal principle matters

Now we construct a more complicated example in which the Carleson condition holds, but the

restricted energy condition fails. The weight w still has values either 0 or 1, but the support R of

w is an up-set, that is, it contains every ancestor of every rectangle in R.

The example is based on the fact that potentials on bi-tree may not satisfy the maximal

principle. So we start with constructing an N -coarse µ such that we have

Vµ ≲ 1 on suppµ, (2.44)

but

maxVµ ≥ Vµ(ω0) ≳ logN. (2.45)

We define a collection of rectangles

Qj := [0, 2−2j ]× [0, 2−2−jN ], j = 1, . . . ,M ≈ logN. (2.46)

Now we put

R := {R : Qj ⊂ R for some j = 1 . . .M}

wQ := 1R(Q)

µ(ω) :=
1

N

M∑︂
j=1

1

|Q++
j |

1Q++
j

(ω).

(2.47)

here |Q| denotes the total amount of points ω ∈ (∂T )2∩Q, i.e. the amount of the smallest possible

rectangles (of size 2−N × 2−N) in Q.

Observe that on Qj the measure is basically a uniform distribution of the mass 1
N

over the

upper right quarter Q++
j of the rectangle Qj (and these quadrants are disjoint).

To prove (2.44) we fix ω ∈ Q++
j and split

Vµ(ω) = Vµ

Q++
j

(ω) + µ(Q◦+
j ) + µ(Q+◦

j ) +Vµ(Qj),

where the first term sums up µ(Q) (recall that in our setting I∗µ(Q) = µ(Q) due to identification

of measures on [0, 1]2 and (∂T )2) for Q between ω and Q++
j . It is easy to see that Vµ

Q++
j

(ω) ≲ 1
N

(the left-hand side is a double geometric sum). Trivially µ(Q◦+
j ) + µ(Q+◦

j ) ≤ 2
N
. The non-trivial

part is the estimate

Vµ(Qj) ≲ 1 . (2.48)

For each dyadic rectangle R ⊇ ω0 and each j′ we have

either Qj′ ⊆ R, or Q++
j′ ∩R = ∅. (2.49)

Moreover, since the sides of rectangles Qj are nested, the set {j′ : Qj′ ⊆ R} is an interval that
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contains j. For an interval of integers [m,m+ k] let

C [m,m+k] := {R ⊇ ω0 : {j′ : Qj′ ⊆ R} = [m,m+ k]}.

Since each rectangle in C [m,m+k] contains [0, 2−2m ]× [0, 2−2−m−kN ], we have

#C [m,m+k] ≤ (2m + 1)(2−m−kN + 1) ≲ 2−kN. (2.50)

It follows that

Vµ(Qj) =
∑︂

[m,m+k]∋j

(#C [m,m+k])(k + 1)
1

N
≲
∑︂
k≥0

(k + 1)22−kN
1

N
≲ 1. (2.51)

This shows (2.48), and hence (2.44) is also proved.

Now we estimate Vµ(ω0) from below. To this end we need a more careful lower bound

on #C [m,m+k]. The set C{j} contains all rectangles R that contain Qj and are contained in

[0, 2−2j−1−1]× [0, 2−2−j−1N−1], so

#C{j} ≥ 2j−1 · 2−j−1N ≳ N. (2.52)

Hence

Vµ(ω0) ≥
M∑︂
j=1

(#C{j})
1

N
≳M. (2.53)

This shows (2.45) as M ≍ logN .

Next we construct the second example of ν and w such that the Carleson condition holds, but

the REC (restricted energy condition) fails. The weight w is chosen as in (2.47), so this time it is

the indicator function of an up-set. With the measure µ that we have just constructed we put

ν := µ+ ν|ω0,

where ν|ω0 is the uniformly distributed over ω0 measure of total mass 1
N
.

REC constant is large

Let us first give a lower bound for the REC constant. Consider F = ω0. Then by (2.52) we have

E [ν|F ] ≥
M∑︂
j=1

(#C{j})ν(ω0)
2 ≳MN · ν(ω0)

2.

This shows that [w, ν]HC ≳ ν(ω0) ·NM =M .
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Carleson constant is small

Next we will verify that the Carleson condition (2.37) holds with a small constant. We may remove

from the sum on the left-hand side of (2.37) all rectangles Q ̸∈ R. Then we can replace E by the

union of remaining Q’s without changing the left-hand side and decreasing the right-hand side.

Hence we may reduce to the case when E is a union of members of R. By (2.49) it follows that

for each j we have either Qj ⊆ E or Q++
j ∩ E = ∅. Let J := {j : Qj ⊆ E}. Then we obtain

LHS(2.37) ≤
∑︂

[m,m+k]⊆J

∑︂
Q∈C[m,m+k]

(︁
(k + 1)/N + 1/N

)︁2
. (2.54)

Using (2.50) this implies

LHS(2.37) ≲
∑︂

[m,m+k]⊆J

2−kN(k + 2)2(1/N)2

≲ (#J )/N

≤ µ(E)

≤ ν(E),

so that [w, ν]C ≲ 1.

2.6.5 REC does not imply embedding

In this section we emulate the previous construction, we start with {Qj} and measure µ but

instead of adding ω0 we will add a more sophisticated piece of measure.

We define Qj, µ,R, w as in the previous section. We continue with denoting

Q0,j := Qj, µ0 := µ from the previous section .

Next we continue with defining a sequence of collections Qk, k = 0, . . . , K ≈ logM of dyadic

rectangles as follows

Qk :=

⎧⎨⎩Qk,j :=

j+2k−1⋂︂
i=j

Q0,i, j = 1, . . . ,M − 2k

⎫⎬⎭ , k = 1, . . . , K. (2.55)

In other words, Qk consists of the intersections of 2k consecutive elements of the basic collection

Q0. The total amount of rectangles in Qk is denoted by Mk =M − 2k + 1.

For k = 1, . . . , K let

µk(ω) :=
2−2k

N

Mk∑︂
j=1

1

|Q++
k,j |

1Q++
k,j

(ω), ω ∈ (∂T )2,
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and define

µ := µ0 +
K∑︂
k=1

µk.

Embedding constant is large

Let us recall the direct version of Carleson embedding for our bi-tree∫︂
(∂T )2

(I(fw))2 dµ ≤ [w, µ]CE

∫︂
T 2

f 2 · w. (2.56)

We test the inequality (2.56) with the function

f(R) := µ0(R) = I∗µ0(R).

Using (2.44) we obtain ∫︂
T 2

f 2 · w =

∫︂
T 2

Vµ0 dµ0 ≲ |µ0| =
M

N
. (2.57)

On the other hand, by definition (2.55) and replacing M by 2k in (2.53) we obtain

Vµ0(Qk,j) ≳ 2kN · 1

N
= 2k. (2.58)

It follows that∫︂
T 2

(I(fw))2 dµ =

∫︂
(∂T )2

(Vµ0)2 dµ =
K∑︂
k=1

∫︂
(∂T )2

(Vµ0)2 dµk ≳
K∑︂
k=1

22k|µk| ∼
M

N
logM. (2.59)

Substituting (2.57) and (2.59) in (2.56) we obtain [w, µ]CE ≳ logM .

REC constant is small

We claim that [w, µ]HC ≲ 1. This means that for any collection A of dyadic rectangles, setting

A := ∪R∈AR, we have

E [µ|A] ≲ µ(A). (2.60)

To show (2.60) let νk := µk|A, k = 0, . . . , K. Then

E [µ|A] =
∑︂
n,k

∫︂
(∂T )2

Vνn dνk ≤ 2
∑︂
n≥k

∫︂
(∂T )2Vνn dνk ≤ 2

∑︂
n≥k

∫︂
(∂T )2Vµn dνk.

Since supp νk ⊆ suppµk it suffices to show∑︂
n≥k

Vµn ≲ 1 on suppµk. (2.61)

The claim (2.61) has the advantage that it does not depend on A any more.
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For every R ∈ R we have

µn(R) = 2−2n#{Qn,j ⊆ R} ≤ 2−2n(#{Q0,j ⊆ R}+ 2n)

≤ 2−n(#{Q0,j ⊆ R}+ 1) ≤ 2 · 2−nµ0(R).

It follows that

Vµn(Qk,j) ≲ 2−nVµ0(Qk,j) ≤ 2−n

j+2k−1∑︂
i=j

Vµ0(Q0,i) ≲ 2k−n,

where the last inequality follows from (2.44). This implies (2.61) and therefore (2.60).

2.6.6 Two-functions small energy lemma

The key element in the proof of Theorem 2.1.1 was the so-called energy majorization technique,

which we stated (and proved) separately on T 2 and T 3, see Lemmas 2.2.7 and 2.2.11 respectively.

There we showed, essentially, that if the measure µ on T 2 is concentrated on a set of ’small’ µ-

potential (say Vµ ≤ 1) then I∗µ is a rather ineffective, in the sense of energy, way to provide the

same potential on the set of ’large’ µ-potential, i.e. where Vµ ≥ λ ≥ 10. In a sense it is another

way to say that these ’small potential’ and ’large potential’ sets are far from each other. It turns

out (and that was how the arguments in [2] and [3] ran) that on a tree there is even a more

powerful statement, where the ’distance’ between these two sets is measured with one measure,

and the actual potential is realized via another measure. In particular the energy majorization on

T 2 follows from this extended version pretty much immediately. A natural suggestion was that in

order to move to higher dimensions one should obtain T d version of this two-measure majorization

for d ≥ 2. However, it turns out that it fails to hold already on T 2, so that our energy majorization

argument on T 3 uses a workaround (which itself stops working on T d with d ≥ 4).

In this Section we first give a proof of two-measure (two-function actually) Lemma on a tree,

and then we show a counterexample that disproves it on T 2.

Lemma 2.6.1 Let f, g : T → R+ be functions on a 1-tree T such that supp f ⊂ {Ig ≤ δ}, and g
is superadditive. Then there exists φ : T → R+ such that

a) Iφ(ω) ≥ If(ω) ∀ω ∈ ∂T : Ig(ω) ∈ [λ, 2λ] (2.62)

b)

∫︂
T

φ2 ≤ C
δ

λ

∫︂
T

f 2. (2.63)

The proof of Lemma 2.6.1

We start with lemma that holds regardless of operator and medium.

Lemma 2.6.2 Let K be an integral operator with a positive kernel and f, g positive functions.

Then ∫︂
(Kf)2g ≤

(︂
sup
supp g

KK∗g
)︂∫︂

f 2.
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Proof. Without loss of generality f is positive. By duality we have∫︂
(Kf)2g =

∫︂
fK∗(Kf · g) ≤ ∥f∥2∥K∗(Kf · g)∥2.

We call the operator and its kernel by the same letterK. By the hypothesisKh(x) =
∫︁
K(x, y)h(y)

with a positive kernel K. Hence

∥K∗(Kf · g)∥22 =
∫︂
K∗(Kf · g)K∗(Kf · g)

=

∫︂
K(x, y)((If)(x)g(x))K(x′, y)((Kf)(x′)g(x′)) d(x, x′, y)

≤
∫︂

1

2
(Kf(x)2 +Kf(x′)2)K(x, y)(g(x))K(x′, y)(g(x′)) d(x, x′, y)

=
1

2

∫︂
K∗((Kf)2 · g)K∗(g) +

∫︂
K∗(g)K∗((Kf)2 · g)

=

∫︂
(KK∗g) · (Kf)2 · g ≤

(︂
sup
supp g

KK∗g
)︂∫︂

(Kf)2 · g.

Substituting the second displayed estimate into the first we obtain∫︂
(Kf)2g ≤ ∥f∥2

(︂
sup
supp g

KK∗g
)︂(︂∫︂

(Kf)2 · g
)︂1/2

.

The conclusion follows.

In the preceding lemma operator K could have been either I on T or I on T d, this did not

matter. But in the next lemma, it matters whether we are on T or T 2.

Lemma 2.6.3 Let T be a finite tree and g, h : T → R+. Assume that g is superadditive and

λ = ∥Ih∥L∞(supp g). Then for every β ∈ T we have

I(gh)(β) =
∑︂
α≤β

g(α)h(α) ≤ λg(β).

Proof. Without loss of generality we may think that β is the unique maximal element of T and

T = supp g. We induct on the depth of the tree. Let T be given and suppose that the claim is

known for all its branches. Then by the inductive hypothesis and superadditivity of g we have∑︂
α≤β

g(α)h(α) = g(β)h(β) +
∑︂

β′∈ch(β)

∑︂
α≤β′

g(α)h(α)

≤ g(β)h(β) +
∑︂

β′∈ch(β)

g(β′) sup
α≤β′

∑︂
α≤α′≤β′

h(α′)

≤ g(β)h(β) +
∑︂

β′∈ch(β)

g(β′) sup
α<β

∑︂
α≤α′<β

h(α′)

≤key g(β)h(β) + g(β) sup
α<β

∑︂
α≤α′<β

h(α′) = g(β) sup
α≤β

∑︂
α≤α′≤β

h(α′).
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Now we present the proof of Lemma 2.6.1 by means of Lemma 2.6.2 and Lemma 2.6.3. Let

φ = 2λ−1If ·g ·1Ig≤4λ. Let ω be such that Ig(ω) ≥ λ. Then f(ω) = 0 and f(γ) = 0 for all ancestors

of ω up to the first γ′ such that Ig(γ′) ≤ δ. Hence, on such ω

∑︂
γ≥ω

If · g · 1Ig≤4λ =
∑︂
γ≥ω

If · g = If(ω)(λ− δ) ≥ λ

2
If(ω).

We checked (2.62) of Lemma 2.6.1.

To check 2.63 we first apply Lemma 2.6.2 with

K := I ◦ 1Ig≤δ,

which a composition of multiplication operator and I. Then∫︂
T

φ2 =
4

λ2

∫︂
T

(If)2(g1Ig≤4λ)
2 ≤ 4

λ2
sup
supp g

KK∗(g21Ig≤4λ)

∫︂
T

f 2 .

To understand supsupp gKK
∗(g21Ig≤4λ) we use Lemma 2.6.3. By this lemma for any node α

K∗(g21Ig≤4λ)(α) ≤ I∗(g21Ig≤4λ)(α) ≤ 4λg(α) .

Now we are left to estimate Kg = I(1Ig≤δg). But just by definition of I we have

I(1Ig≤δg) ≤ δ. (2.64)

So supsupp gKK
∗(g21Ig≤4λ) ≤ 4δλ and we get∫︂

T

φ2 ≤ 16δ

λ

∫︂
f 2 .

How it could have worked

As we will see in a short while, Lemma 2.6.1 fails on the bi-tree. However, imagine just for

a moment, that we do not know it yet and try to see what happens if we make an attempt of

emulating its proof.

A believable choice of φ would be

φ = λ−1(I1f · I23g + I2f · I13g + I3f · I12g+

I1gf · I23f + I2g · I13f + I3g · I12f + gIf).
(2.65)

This function satisfies

I(·1If≤2λ · φ) ≥ If, where Ig ∈ [λ, 2λ], (2.66)

which the analogue of a) of Lemma 2.6.1. However, we cannot (and it is eventually not possible)

prove the analogue of b) of Lemma 2.6.1 for this function. This misfortune happens since we have
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no good estimate of
∫︁
T d(If)

2g2 via
∫︁
T d f

2 for g that is separately superadditive in all variables.

Notice that this hurdle is removed if f = g because then

I(λ−1gIf) = I(λ−1fIf) ≤ δ

λ
If ≤ 1

10
If,

and in place of φ from (2.65), we have another φ for majorization:

φ̃ := cλ−1(2I1f · I23f + 2I2f · I13f + 2I3f · I12f),

where c = 10
9
. In fact from (2.66) it now follows that

I(1If≤2λ · φ̃) ≥ If, where If ∈ [λ, 2λ] . (2.67)

The analogue of inequality b) of Lemma 2.6.1 ≡ (2.63) on tri-tree now follows from Lemma 2.2.10.

But What goes wrong on 4-tree?

So, we do not know how to estimate
∫︁
T 3(If)

2g2 via
∫︁
T 3 f

2, but we know how to remove this

hurdle in the case f = g. May be one can also remove this hurdle for f = g on d-tree, d ≥ 4?

Unfortunately, we can see now that the trick does not work for d ≥ 4. Let us notice that by

the analogy with (2.65) we can construct φ for 4-tree:

φ = λ−1(I1f · I234g + I2f · I134g + I3f · I124g + I4f · I123g+

I1g · I234f + I2g · I134f + I3g · I124f + I4g · I123f+

I12g · I34f + I23g · I14f + I34g · I12f + I12f · I34g + I23f · I14g + I34f · I12g+

gIf).

(2.68)

Here I means summation in all 4 variables, the Hardy operator on T 4. Let us consider what

happens for the case g = f . We again can absorb the last term gIf = fIf ≤ δf into the left hand

side because supp f ⊂ {If ≤ δ}.
But to prove the analogue of b) of Lemma 2.6.1 we would need to know how to estimate e. g.∫︂

T 4

(I12f · I34f)2 ≤ C

∫︂
T 4

f 2 .

We do not know how to achieve such an estimate. In a sense, everything works as long as we have

a 1-dimensional factor Ij present everywhere in the formula. However, when a term with only

2-dimensional factors, like above, appears, our argument does not work any more.

Lemma 2.6.1 does not hold on T 2

Proposition 2.6.2 Lemma 2.6.1 does not hold on T d. Namely, let h be a function on R such

that limt→0 h(t) = 0 and w : T 2 → R+ be a unit weight, w ≡ 1. There exists a pair of numbers

λ ≥ 10δ > 0 and a pair functions f, g : T 2 → R+ such that supp f ⊂ {If ≤ δ} and g is
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superadditive in each variable, and such that for any φ : T 2 → R+ such that

Iφ ≥ If on {2λ ≤ Ig ≤ 4λ}

the estimate ∫︂
T 2

φ2 ≤ h

(︃
δ

λ

)︃∫︂
T 2

f 2 (2.69)

does not hold for the bitree of sufficiently large depth (recall that we work with finite d-trees T d
N

here).

Below f, g have special form, namely

f = I∗µ, g = I∗ν,

with certain positive measures on T 2, where the measure µ is trivial — it is just a unit mass at

the root o of T 2. In particular, f(o) = 1, f(v) = 0, ∀v ̸= o. Clearly If ≡ 1 on T 2.

The choice of ν is more sophisticated. First we choose a large numberM . Consider now another

number n = 22
s
>> M for some natural s, its value is defined in a few lines. In the unit square Q0

consider dyadic sub-squares Q1, . . . , Q2M , which are South-West to North-East diagonal squares

of sidelength 2−M .

In each Qj choose ωj, the South-West corner dyadic square of sidelength 2−n−M . Now let ν be

a sum of identical masses at ωj and let n and these masses satisfy the following relation

ν(ω) :=
1

n2
, j = 1, . . . , 2M

2M =
n

log n
.

(2.70)

We have immediately

g(o) = I∗ν(o) = |ν| = 1

n2
· n

log n
=

1

n log n
=: δ.

Clearly we have chosen f, g satisfying supp f = {o} ⊂ {Ig ≤ δ} with g being sub-additive in both

variables on T 2: it is true for any function of the form I∗ν.

Now what is λ, and what is the set {2λ ≤ Ig ≤ 4λ}? For Q1 and ω1 consider the family F1 of

dyadic rectangles containing ω1 and contained in Q1 of the following sort:

[0, 2−n2−M ]× [0, 2−M ], [0, 2−n/22−M ]× [0, 2−22−M ], . . . , [0, 2−n/2k2−M ]× [0, 2−2k2−M ],

there is logn
log 2

of them, and they are called q10, q11, . . . , q1k, k ≍ log n. We do the same for each

ωj, Qj and we get qj0, qj1, . . . , qjk.

As we have already seen in the ’REC-not Carleson embedding’, one has

Ig(qji) ≍
1

n
∀j, i. (2.71)
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Let

F :=
⋃︂
ik

qik . (2.72)

So we choose λ = c
n
with an appropriate c. Then F ⊂ {2λ ≤ Ig ≤ 4λ} . Since If ≥ 1, then if

majorizing function φ as in 2.69 would exist, we would have Iφ ≥ 1 on F and∫︂
T 2

φ2 ≤ C

log n

∫︂
T 2

f 2 =
C

log n
.

By the definition of capacity this would mean that

Cap(F ) ≤ C

log n
.

Below we show that Cap(F ) ≍ 1. Hence there is no such majorizing function.

Let ρ on F be an equilibrium measure of F , and let µ be a measure charging 1
n
on each qjk

with logn
4

≤ k ≤ 3 logn
4

, and zero otherwise. Clearly |µ| =
∑︁ n

logn

j=1

∑︁ 3 logn
4

k= logn
4

µ(qjk) ≍ 1. We claim that

Vµ ≍ 1 on suppµ. (2.73)

Assuming for a moment that this estimate holds, we write for ε > 0

0 ≤ E [ρ− εµ] =

(︃∫︂
T 2

Vρ dρ− ε

∫︂
T 2

Vρ dµ

)︃
+ ε

(︃
ε

∫︂
T 2

Vµ dµ−
∫︂
T 2

Vρ dµ

)︃
. (2.74)

Since ρ is capacitary for F ⊃ suppµ and T 2 is finite (i.e. every singleton has positive capacity),

we have Vρ ≥ 1 on suppµ, and
∫︁
T 2 V

ρ dµ ≥ |µ|. By (2.73) there is some absolute ε such that

ε
∫︁
T 2 V

µ dµ ≤ |µ|, so that the second term in (2.74) must be negative. But then the first term is

positive, which means

CapF =

∫︂
T 2

Vρ dρ ≥ ε

∫︂
T 2

Vρ dµ ≥ ε|µ| ≍ 1.

It remains to prove (2.73). By symmetry it is enough to estimate the potential at q1k. For that

we split Vµ to V1, this is the contribution of rectangles containing Q1, to V2, the contribution of

rectangles containing q1k and contained in Q1, and V3, the contribution of rectangles containing

q1k that strictly intersect Q1 and that are “vertical”, meaning that there vertical side contains

vertical side of Q1 (there is V4 totally symmetric to V3).

Two of these are easy, V1 ’almost’ consists of ’diagonal squares containing Q1’. Not quite, but

other rectangles are also easy to take care of. Denote

r = |µ|, M = log
n

log n
.
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Then we write the diagonal part first and then the rest:

V1 = r +
r

2
+
r

4
+ . . .

r

2M
+
r

2
+
r

2
+ 2

r

4
+ 2

r

4
+ . . . k

r

2k
+ 2

r

2k
+ · · · ≍ 1

To estimate V2 notice that there are at most cn rectangles containing q1k and contained in Q1

that do not contain any other q, there are cn
2

of rectangles containing q1k and one of its siblings

(and lie in Q1), there are cn
4
of rectangles containing q1k and two of its siblings (and lie in Q1), et

cetera.

Hence,

V2 ≤ Cn
1

n
+
Cn

2

2

n
+
Cn

4

3

n
+ · · · ≲ 1

Now consider V3. The horizontal size of q1k is 2−M · 2−n2−k
. Its vertical size is 2−M · 2−2k . So

the rectangles of the third type that do not contain the siblings: their number is at most (we are

using that k ≥ 1
4
log n)

n2−k(2k +M) ≤ n+ n
3
4 log n .

Regarding those that contain q1k and one sibling, their number is at most

n2−k(2k−1 +M) ≤ n

2
+ n

3
4 log n .

We continue, and arrive at

V3 ≤ n
1

n
+
n

2

2

n
+
n

4

3

n
+ · · ·+ n

3
4 log n

log2 n

n
≲ 1 .

We deal with V4 in exactly the same way, only now we use that k ≤ 3
4
log n. Finally after adding

all Vi we get

V1 + V2 + V3 + V4 ≤ C1 + C2 + C3
log3 n

n
1
4

.

Since the inverse estimate is already given by V1, we obtain (2.73). We are done.

The shape of the graph of function x→ cap(Vν ≥ x) for w ≡ 1

Let E be a subset of T or T 2 and ν be equilibrium measure for E,

Cap(E) = |ν|, Vν = 1 on supp ν, f := I∗ν = {f :

∫︂
f 2 → min for If ≥ 1 on E} .

First consider the case of T . Let x ∈ [|ν|, 1] and we study the set

Dx := {α ∈ T : Vν(α) ≥ x} .

We want to understand a bit the shape of the graph of

C(x) := Cap(Dx) .
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We start with x = |ν| = V(E). Notice that o, the root of T , is obviously such that Vν(o) = |ν|,
so 0 ∈ D|ν|. But cap(o) ≍ cap(T ) = 1. Thus

C(|ν|) = 1 .

Now consider x = 1. On E we have Vν = 1 and maximum principle (we are on T , so it exists)

says that E = {α : Vν ≥ 1}. Therefore,

C(1) = cap(E) = |ν| .

Now let |ν| < x < 1. We know (again this is maximum principle) that∫︂
T

1Ig≤x · g2 =
∫︂
T

Vν
x dν ≤ x|ν| . (2.75)

Notice that if Ig(α) ≤ x and Ig(sonα) > x then Ig(α) ≥ x/2 just because g = I∗ν is

monotonically increasing on T . But this means that

I(1Ig≤x · g) ≥ x/2, on Dx = {Ig = Vν ≥ x} . (2.76)

The definition of capacity and relationships (2.75), (2.76) show the following:

Proposition 2.6.3 On a simple tree T the capacity of the level set Dx = {α ∈ T : Vν(α) ≥ x}
for any equilibrium measure ν of a set E satisfies the following inequality

C(x) = cap({α ∈ T : Vν(α) ≥ x}) ≤ 4 cap(E)

x
=

4|ν|
x
, cap(E) ≤ x ≤ 1 .

This is absolutely not the case for T 2. The capacity of level set of equilibrium potentials on T 2

behave in a much stranger and wild way. We saw it in the proof of Proposition 2.6.2. In fact, our

measure ν there is (after multiplying by a constant) an equilibrium measure,

|ν| = 1

n log n
.

We put

x =
c

n
.

But we saw above that if the absolute constant c is chosen correctly, then

cap((α1, α2) ∈ T 2 : Vν(α1, α2) ≥
c

n
) ≍ 1 >>

|ν|
x
. (2.77)

This means that Proposition 2.6.3 is false for T 2 because if it were true, that we would have

cap((α1, α2) ∈ T 2 : Vν(α1, α2) ≥ c
n
) ≲ 1

logn
.

The main reason behind this is that on T 2 we do not have a proper Maximum Principle, which

is (2.75) above. Instead we have only its surrogate version that makes the estimate of capacity
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much faster blowing up than in Proposition 2.6.3. In fact, SMP means that

cap({Vν ≥ x}) ≤ Cτcap(E)

x1+τ
.

and we saw that τ is indispensable. Of course the capacity of any subset of T 2 is bounded by 1,

so we have

cap({Vν ≥ x}) ≤ max
(︂
1,
Cτcap(E)

x1+τ

)︂
.

This explains a flat piece of graph C(x) ≍ 1, when x is between 1
n logn

and 1
n
.
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Chapter 3 From the d-tree to the polydisc: Carleson

measures

In this Chapter we will make the transition from the discrete medium we worked with in the

previous Chapter to the continuous one – polydisc Dd of dimension d = 1, 2, 3. The space L2(T d, w)

will be considered as a discrete model of the weighted Hardy-Sobolev space Hs of harmonic (and

sometimes analytic!) functions on the polydisc, and the discrete Hardy embedding (2.1) (after a

suitable choice of weight w) will transform into the Carleson embedding for Hs (with respective

changes in the testing conditions – especially subcapacitory). Observe that, strictly speaking, we do

not discretize the spacesHs(D), but rather the polydisc Dd and the Carleson embedding inequality.

This allows us to evade some extra technicalities regarding moving the values of functions from

continuous to discrete setting (though, naturally the arising L2 spaces on T d serve perfectly well

as discrete models of Hs(D)).

3.1 Discretization procedure: polydisc and embedding

3.1.1 Discretizing the polydisc Dd

We start with making a decomposition of the unit disc into dyadic Carleson boxes. For integer

j ≥ 0 and 1 ≤ l ≤ 2j let zjl = (1−2−j)e
2πi(2l−1)

2j+1 , and for z = reit ∈ D let J(z) = {eis : t−(1−r)π ≤
s < t + (1 − r)π}, S(z) = {ρeis : eis ∈ J(z); r ≤ ρ ≤ 1}, and let Q(z) = {ρeis ∈ S(z) : 1−r

2
<

1− ρ ≤ 1− r} be the ’upper half’ of S(z). We write Qjl := Q(zjl). Now we see that there is one-

to-one map between points (vertices) of T and dyadic Carleson half-cubes Qjl; Q00 corresponds

to the root o, Q11 and Q12 to its two children etc. In other words, for every α ∈ T there exists a

unique half-cube Qα, and vice versa, for every half-cube Qjl there is exactly one point αjl ∈ T .

The collection {Qα}α∈T forms a covering of the unit disc. Note also that given a point z ∈ D it is

possible to pick the half-box Qα ∋ z in a unique way.

Next we introduce an auxiliary graph structure on T by setting

PG(τ) :=
⋃︂

β∈P(τ)

{γ ∈ T : clQγ

⋂︂
clQβ ̸= ∅, |Qγ| = |Qβ|}. (3.1)

Essentially, for a point τ ∈ T we define the G-extended predecessor set by taking the usual

predecessor set P(τ) and adding all the ’euclidean-adjacent’ vertices γ, i.e. to each β ∈ P(τ) we

attach two extra vertices γ of the same rank (depth in T ) and such that their respective Carleson

half-boxes intersect with Qβ. This type of construction is often used when dealing with dyadic
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structures – basically it the same as to take a dyadic interval and consider also two adjacent ones

of the same length. The G-extended successor set is defined accordingly,

τ ∈ SG(τ) ⇐⇒ γ ∈ PG(τ). (3.2)

Clearly this definition can be extended to the completed tree T .

Since by definition P(α) ⊂ PG(α) for any α ∈ T , we have the same inclusion for the successor

sets, S(α) ⊂ SG(α), and this inclusion is proper unless the vertex in question is the root o. On the

other hand, the successor sets are ’comparable on average’. To elaborate, for any point α there

exists a set N(α) which consists of exactly three points – α and its two ’euclidean neighbors’ –

such that

SG(α) ⊂
⋃︂

β∈N(α)

S(β), (3.3)

also
⋃︁

α∈T N(α) covers each point at most 3 times.

The correspondence between ∂T and T is a bit more complicated – there is no one-to-one

correspondence anymore, since dyadic-rational points are counted twice. On the other hand, we do

not really need to consider the respective boundaries, and the exceptional points form a countable

hence polar set (for any related capacity).

Given a boundary point ω ∈ ∂T which is also a geodesic {o, ω1, . . . } one can consider its image

S(ω) :=
⋂︂
k≥0

Sωk . This mapping is not injective though, since a point on a circle can be represented

by two different geodesics on the tree.

Now we do the same for the polydisc Dd. The next step is more or less automatic – we consider

the partition

Dd =
⋃︂

α∈T d

Qα,

Qα = Q(α1,...,αd) =
d∏︂

k=1

Qαk
, αk ∈ T.

Similarly

PG(α) =
d∏︂

k=1

P(αk),

SG(α) =
d∏︂

k=1

S(αk), α = (α1, . . . , αd) ∈ T d.

Again, the usual predecessor/successor sets and the G-extended ones on T d are not very different,

in the same sense

SG(α) ⊂
⋃︂

β∈N(α)

S(β), α ∈ T d, (3.4)

with #N(α) = 3d and
⋃︁

α∈T N(α) covering each point in T d at most 3d times. We also consider
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the (non-injective) mapping

Λ : (∂T )d → (∂D)d = (Λ(ω1), . . . ,Λ(ωd)) . (3.5)

Remark. The main reason to introduce this auxiliary graph structure G is that the geometry

of the tree T does not completely agree with the geometry of the unit disc D. For instance, one
can easily find a pair of points z, w ∈ D, very close to each other, while the tree distance between

α and β corresponding to these points (i.e. z ∈ Qα, w ∈ Qβ) is very large. It is a well-known (if

somewhat minor) obstacle, and there are several ways to overcome it. We have chosen what we

think is the simplest one, especially since we do not care about precise values of arising constants.

3.1.2 Carleson embedding on T d is equivalent to the polydisc embedding

Setting and basic definitions

Let us recall the definitions of the objects we are working with.

Given an integer d ≥ 1 and s⃗ = (s1, . . . , sd) ∈ [0, 1]d we consider a Hilbert space Hs⃗(Dd) of analytic

functions on the polydisc Dd with the norm

∥f∥2Hs⃗(Dd) :=
∑︂

n1,...,nd≥0

| ˆ︁f(n1, . . . , nd)|2(n1 + 1)s1 · · · · · (nd + 1)sd ,

where

f(z) =
∑︂

n1,...,nd≥0

ˆ︁f(n1, . . . , nd)z
n1
1 · · · · · znd

d , z = (z1, . . . , zd) ∈ Dd.

Also,

Hs⃗(Dd) =
d⨂︂

j=1

Hsj(D). (3.6)

Recall that (w, µ) is a trace pair for the weighted Hardy inequality on T
d
, if [w, µ]CE < +∞, i.e.

∫︁
T

d(Iwf)
2 dµ ≤ [w, µ]CE

∫︁
T 2 f

2 dw, f ∈ L2(T d, w), (3.7a)∫︁
T d(I

∗
µφ)

2 dw ≤ [w, µ]
∫︁
T

d φ2 dµ, φ ∈ L2(T
d
, µ). (3.7b)

Recall also that a measure ν on Dd
is called a Carleson measure for Hs⃗, if there exists a constant

Cν such that

sup
r<1

∫︂
Dd

|f(rz)|2 dν(z) ≤ Cν∥f∥2Hs(Dd), (3.8)

or, in other words, the embedding Id : Hs(Dd) → L2(Dd
, dν) is bounded. We are going to give a

description of the relation between trace pairs and Carleson measures forHs⃗. We start by assuming

that supp ν ⊂ rDd for some r < 1 (the latter is just a convenience assumption, no estimate below

will depend on r, or on the depth of the graph and later we will se how to deal with boundary

measures).

It is well known that Hsj(D), 1 ≤ j ≤ d, is a reproducing kernel Hilbert space (RKHS) with
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kernel Ksj satisfying (possibly after a suitable change of norm)

|Ksj |(zj, ζj) ≍ |1− zj ζ̄j|sj−1, 0 < sj < 1

|Ksj |(zj, ζj) ≍ log |1− zj ζ̄j|−1, sj = 1.
(3.9)

Moreover it is not hard to verify that

ℜKs ≍ |Ks|, 0 < s ≤ 1 . (3.10)

However, the case s = 0 is a special case as

Poisson kernel is not equivalent to the absolute value of Cauchy kernel . (3.11)

It follows immediately that Hs⃗(Dd) is a reproducing kernel Hilbert space as well, and

Ks⃗(z, ζ) =
d∏︂

j=1

Ksj(zj, ζj), z, ζ ∈ Dd.

Going back to the Carleson embedding we see that Id : Hs⃗(Dd) → L2(Dd, dν) is bounded if

and only if its adjoint Θ is bounded as well. Let us compute its action on a function g ∈ L2(Dd, dν)

(Θg)(z) = ⟨Θg,Ks⃗(z, ·)⟩Hs⃗(D) = ⟨g,Ks⃗(z, ·)⟩L2()Dd,dν =

∫︂
Dd

g(ζ)Ks⃗(z, ζ) dν(ζ).

Hence, for Θ to be bounded it must satisfy

∥g∥2L2(Dd,dν) ≳ ∥Θg∥Hs⃗(Dd) = ⟨g,Θg⟩L2(Dd,dν) =

∫︂
D2d

g(z)g(ζ)Ks⃗(z, ζ) dν(z) dν(ζ). (3.12)

If inequality (3.12) holds then trivially the following holds:

∥g∥2L2(Dd,dν) ≳
∫︂
D2d

g(z)g(ζ)Ks⃗(z, ζ) dν(z) dν(ζ), g ≥ 0 . (3.13)

If we would know that the real part of the coordinate reproducing kernel is comparable to its

absolute value, we deduce that Θ is bounded, if and only if∫︂
D2d

g(z)g(ζ)|Ks⃗(z, ζ)| dν(z) dν(ζ) ≲ ∥g∥2L2(Dd,dν) (3.14)

for any positive g on Dd.

In fact, (3.12) implies (3.13), and we can take the real part of both sides of (3.13), putting real

part on kernel. Now if to know that

ℜKs⃗(z, ζ) = ℜ
d∏︂

j=1

Ksj(zj, ζj) ≍ |
d∏︂

j=1

Ksj(zj, ζj)| = |Ks⃗(z, ζ)|, z, ζ ∈ Dd, (3.15)
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we would deduce (3.12)⇒(3.14). The only thing we need for this implication is the above pointwise

equivalence (3.15). On the other hand, the implication (3.14)⇒(3.12) obviously always holds.

We conclude that in the presence of pointwise equivalence (3.15) we have (3.12)≡(3.14).

However, equivalence (3.15) – ultimately important for us to prove equivalence of dyadic and

analytic embeddings (see below) – has limitations. First of all it is false even for 1D case d = 1

if s = 0, see (3.11). That makes the case s = 0 quite special. It is well known that for 1D case

embedding measures for Poisson and Cauchy kernels on L2(T) are the same. This is rather simple,

but should be consider as “a miracle”. Already in 2D situation it is not known whether the

embedding measures for Poisson Pz1Pz2 and Cauchy K0⃗(z, ζ) = (1 − z1ζ̄1)
−1(1 − z2ζ̄2)

−1 kernels

on L2(T2) are the same, and the attempts to prove it lead to recent developments around [34].

Another interesting distinction of the case s = 0 is again about (3.11). For s > 0 characterize

the embedding can be characterized in terms of simple box (rectangular) test. As it is well known

from the works of Chang, Fefferman and Carleson [24], [31], [21], [93], such characterization is not

possible for Poisson embedding of L2(Td) if d ≥ 2.

Unweighted Dirichlet space

We first consider the case when all sj = 1. For brevity we assume d = 2 – for unweighted Dirichlet

space this is not a restriction of generality.

The reproducing kernel K1⃗(z, ζ) = log(1− z1ζ̄1) log(1− z2ζ̄2) = K1(z1, ζ1)K1(z2, ζ2). The first

idea is to see that our inequality (3.12) (equivalent to embedding):∫︂
D2

g(z)g(ζ)K1⃗(z, ζ) dν(z) dν(ζ) ≤ A∥g∥2L2(D2,dν) (3.16)

implies that for every C ≥ 0 we have∫︂
D2

g(z)g(ζ)(C +K1(z1, ζ1))(C +K1(z2, ζ2)) dν(z) dν(ζ) ≤ B(C)∥g∥2L2(D2,dν) (3.17)

To deduce the latter inequality from (3.16) one should open the brackets and consider 4 terms

in the LHS. The term with K1(z1, ζ1))K1(z2, ζ2) is ≲ ∥g∥2L2(D2,dν) by (3.16). The term with

C2
∫︁
D2 g(z)g(ζ)dν(z) dν(ζ) obviously is ≲ ∥g∥2L2(D2,dν) by Hölder inequality. Consider one of mixed

terms (they are treated symmetrically):

C

∫︂
D2

g(z)g(ζ)K1(z1, ζ1) dν(z) dν(ζ) =: CI,

skip C, and, using disintegration theorem and pushing forward of ν to the first coordinate (we

call that push forward ν1), we write I as follows

I =

∫︂
D
G(z1)G(ζ1)K1(z1, ζ1)) dν1(z1) dν1(ζ1),

where G(w) :=
∫︁
g(w, u)dνw(u) and dνw(u) are slicing measures: ν(E) =

∫︁
νw(E)dν1(w).
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Push forward measure ν1 on D is obviously a Carleson measure for 1D Dirichlet space, if ν is

a Carleson measure for Dirichlet space in 2D. Therefore,∫︂
D
G(z1)G(ζ1)K1(z1, ζ1)) dν1(z1) dν1(ζ1) ≤ B

∫︂
D
|G1(z1)|2 dν1(z1) ≤

B

∫︂
D

(︂∫︂
D
|g(z1, z2)| dνz1(z2)

)︂2
dν1(z1) ≤ B′

∫︂
D2

|g(z1, z2)|2 dνz1(z2)dν1(z1) ≤

B′
∫︂
D2

|g(z1, z2)|2 dν(z) .

We deduced (3.17) from (3.16) by the use of the disintegration theorem and slicing measures.

Notice that the nature of the kernel did not play any role. We could have done this with any

dimension d and any kernel Ks⃗ instead of K1⃗.

The fact that we worked with precisely K1⃗ is crucial. In fact, values of 1− zζ̄, z, ζ ∈ D K1 are

obviously in the right half-plane. Hence, as ℑK1 is the argument of log 1
1−zζ̄

, we have

|ℑK1(z, ζ)| ≤ π/2. (3.18)

Hence, by adding sufficiently large constant C > 0 to K1(z, ζ) we achieve a) |ℜ(C + K1)| >>
|ℑ(C +K1)|, b) |ℜ(Cd +K1⃗(z, ζ))| ≥ cℜ(Πd

j=1(C +K1)(zj, ζj))) for any dimension d, it is enough

to choose C = C(d) large positive number. The latter inequality implies that

ℜΠd
j=1(C +K1(zj, ζj)) ≍ |Πd

j=1(C +K1(zj, ζj))| . (3.19)

Therefore, for s⃗ = 1⃗ by modifying the kernel we can achieve (3.15) without changing the

class of Carleson measures. This is shown by (3.17). This means that without changing the set of

embedding measures we can equivalently replace inequality (3.12) by (3.14). This reasoning works

for s⃗ = 1⃗ and any dimension d.

Weighted Hardy-Sobolev spaces

Now s⃗ = (sj)
d
j=1, 0 < sj ≤ 1, but s⃗ ̸= 1⃗. We are unable to repeat the trick that was successful

in the previous section. In fact, for Ks = (1 − zζ̄)s−1 with 0 < s < 1 (3.18) does not hold, the

imaginary part will not be bounded, and so the previous reasoning with adding a large constant

to each kernel of each variable does not work.

However, to reduce the analytic embedding (3.12) to dyadic embedding on multi-tree we seem

to really need to show that (3.12) implies (3.14) (the converse implication being always trivial).

Here we have only partial results, namely for the case when

1− ϵ(d) ≤ sj ≤ 1 (3.20)

for ϵ(d) sufficiently close to 0.

We just notice that 1 − zζ̄ lies in the right half-plane if z, ζ ∈ D, and so (1 − zζ̄)ϵ lies in the
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cone Cϵ = {u+ iv, u ≥ 0, |v| ≤ u · tanπϵ}. Therefore, for every sj ∈ (1− ϵ, 1),

|ℑKsj(zj, ζj)| ≤ tanπϵ · ℜKsj(zj, ζj) .

This implies that if ϵ is sufficiently small (depending on the dimension d) then (3.15) holds, which,

as we have already explained gives us the equivalence of (3.12) and (3.14).

From (3.14) we will now proceed to conclude that dyadic embedding holds. Then we will

explain why dyadic embedding implies (3.14), thus closing the circular argument.

Remark. The argument of Section 3.1.2 fails for a number of reasons, if even one of the

parameters sj becomes zero. For example, if some sj vanish, we have ’a phase transition’ in the

kernel, and (3.15) stops to be true in general. This explains the special role of Hardy spaces on the

polydisc. For the classical Hardy space on the polydisc one can still make a connection between

Carleson embedding and Hardy inequality, only now the direct embedding (3.7a) should be used

in place of the dual (3.7b), and the roles of µ and w are reversed.

However Chang–Fefferman theory gives the characterization of embedding measures in the d-

harmonic space

h2(Dd) = Hh
0⃗
(Dd). As, obviously, the Hardy space of holomorphic functions in the polydisc is such

that H2(Dd) ⊂ h2(Dd), the Chang–Fefferman theory gives the sufficient condition for measure to

be an embedding measure for the Hardy class, but whether it is a necessary condition (we believe

it is) is not known outside the classical case d = 1. If the influential paper [34] were correct,

then its proof can be modified to give this necessity, but unfortunately the note [95] indicated a

counterexample to the reasoning (but not to the result) of [34].

Transition to the dyadic setting

We define a canonical map Λ∗ :Meas+(Dd) →Meas+(T d) given by

Λ∗ν(α) = ν̃(α) := ν(Qα). (3.21)

For boundary measures we also define the natural push-forward fromMeas+(∂T )d toMeas+(Td),

Λ∗µ(F ) := µ(Λ−1(F )), F ⊂ Td. (3.22)

Similarly, given a function g ∈ L2(Dd, dν) we write

g̃(α) :=
1

µ(Qα)

∫︂
Qα

g(z) dµ(z), α ∈ T d, (3.23)

and we put g̃(α) := 0, if ν(Qα) = 0.
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Define

wsj(αj) := 2(1−sj)(|αj |−1), αj ∈ T,

ws⃗(α) :=
d∏︂

j=1

wsj(αj), α = (α1, . . . , αd) ∈ T d,
(3.24)

where |αj| = #P(αj) is the depth of αj in T (the root is assumed to have depth 1).

In order to proceed we need the following Lemma.

Lemma 3.1.1 For any α, β ∈ T d we have

|Ks⃗(z, ζ)| ≈ k̃s⃗(α, β) :=

ws⃗

(︂
PG(α)

⋂︂
PG(β)

)︂
=

∑︂
γ∈PG(α)

⋂︁
PG(β)

ws⃗(γ), z ∈ Qα, ζ ∈ Qβ.

Same equivalence holds on the boundaries as well

|Ks⃗(z, ζ)| ≈ k̃s⃗(τ, ω) :=
∑︂

γ∈PG(τ)
⋂︁

PG(ω)

ws⃗(γ), z = Λ(τ), ζ = Λ(ω), τ, ω ∈ (∂T )d.

Proof. Since ws⃗ is a product weight, it is enough to consider points on a tree T and unit disc D
respectively. Recall that the G-structure adds two additional elements of each rank to the usual

predecessor set P(τ). Now fix any two points τ, ω ∈ T (boundary or inner, it does not really

matter), we always may assume they are of the same depth in T . Indeed, let, say |ω| > |τ |,
consider then ω′ ∈ P(ω) with |ω| = |ω′|. It is elementary to verify that

PG(τ)
⋂︂

PG(ω) = PG(τ)
⋂︂

PG(ω
′).

Same happens and on the continuous side, where

|Ks(z, ζ)| ≈
⃓⃓⃓⃓
Ks

(︃
z, ζ

|z|
|ζ|

)︃⃓⃓⃓⃓
,

1

2
≤ |z| ≤ |ζ|.

Now, for a point z ∈ T, one has

1 + log
1

|z − 1|
≈

2+log2
1

|z−1|∑︂
j=1

|Ĩj(z)|0,

1 +
1

|z − 1|1−s
≈

2+log2
1

|z−1|∑︂
j=1

|Ĩj(z)|1−s, 0 < s < 1,

where Ĩj(z) = {e2πiθ : θ ∈ [−2−j, 2−j + 1)} is the union of three dyadic subintervals of T rank j

– the one that contains 0 and its two immediate neighbours. Such an interval also contains z as

well, and it does not when j becomes larger than 2 − log2 |z − 1| (we are being a bit imprecise
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here). It follows immediately that

1 + log
1

|z − ζ|
≈

log2
1
|z|∑︂

j=1

|Ĩj(z, ζ)|0,

1 +
1

|z − ζ|1−s
≈

log2
1
|z|∑︂

j=1

|Ĩj(z, ζ)|1−s, 0 < s < 1,

with Ij(z, ζ) being the union of three sequential dyadic intervals of the same rank that contain

both ζ and z. Since ws(α) = 2|α|(1−s), and Jα = 2−|α| (we recall that Jα is the base of the Carleson

square corresponding to α), from this one can deduce that for |τ | = |ω|

w1(PG(τ)
⋂︂

PG(ω)) = |τ | ≈ log
1

|zτ − zω|
,

ws(PG(τ)
⋂︂

PG(ω)) =

|τ |∑︂
j=1

2(1−s)j ≈ 2(1−s)|τ | ≈ 1

|zτ − zω|1−s
, 0 < s < 1,

where zτ is the center of the Carleson box Qτ for τ ∈ T , or its circle image Λ(τ), if τ ∈ ∂T . It

remains to compare it with |Ks(z, ζ)| for z ∈ Qτ and ζ ∈ Qω (or some boundary images thereof)

and we are done.

Applying Lemma 3.1.1 to the left-hand side of (3.14) we get∫︂
D

∫︂
D
g(z)g(ζ)|Ks⃗(z, ζ)| dν(z)dν(ζ) =∑︂

α∈T d

∑︂
β∈T d

∫︂
Qα

∫︂
Qβ

g(z)g(ζ)|Ks⃗(z, ζ)| dν(z) dν(ζ) ≈

∑︂
α∈T d

∑︂
β∈T d

∫︂
Qα

∫︂
Qβ

g(z)g(ζ)ks⃗(α, β) dµ(z) dµ(ζ) =∑︂
α∈T d

∑︂
β∈T d

g̃(α)g̃(β)ks⃗(α, β)ν̃(α)ν̃(β)

We attack the calculation from the end, letting σ(α) = g̃(α)ν̃(α), α ∈ T d (recall that measures

and functions on T d are the same):

∑︂
γ∈T d

ws⃗(γ)

⎛⎝ ∑︂
α∈SG(γ)

σ(α)

⎞⎠2

=
∑︂
γ∈T d

∑︂
α,β∈SG(γ)

σ(α)σ(β)ws⃗(γ) =∑︂
α,β∈T d

σ(α)σ(β)
∑︂

γ∈PG(α)
⋂︁

PG(β)

ws⃗(γ) =

∑︂
α∈T d

∑︂
β∈T d

ws⃗

(︂
PG(α)

⋂︂
PG(β)

)︂
· σ(α)σ(β) =

∑︂
α∈T d

∑︂
β∈T d

g̃(α)g̃(β)k̃s⃗(α, β)ν̃(α)ν̃(β).
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Define

ks⃗(α, β) := w(s⃗)(P(α)
⋂︂

P(β)) =
∑︂
γ≥α,β

w(γ), α, β ∈ T d,

and repeat the calculation above but with P instead of PG. We obtain

∑︂
γ∈T d

ws⃗(γ)

⎛⎝ ∑︂
α∈S(γ)

σ(α)

⎞⎠2

=
∑︂
α∈T d

∑︂
β∈T d

g̃(α)g̃(β)ks⃗(α, β)ν̃(α)ν̃(β).

The successor set formula (3.4)– the one that tells that SG can be covered by boundedly many

sets S and that each point would be used a bounded amount of times – implies that

∑︂
γ∈T d

ws⃗(γ)

⎛⎝ ∑︂
α∈SG(γ)

σ(α)

⎞⎠2

=
∑︂
γ∈T d

σ (SG(γ))
2ws⃗(γ) ≈

∑︂
γ∈T d

σ (S(γ))2ws⃗(γ) =
∑︂
γ∈T d

ws⃗(γ)

⎛⎝ ∑︂
α∈S(γ)

σ(α)

⎞⎠2

.

Combining the estimates above we see that (3.14) is equivalent to

∑︂
α∈T d

∫︂
Qα

g2(z) dν(z) ≳
∑︂
α∈T d

∑︂
β∈T 2

g̃(α)g̃(β)ks⃗(α, β)ν̃(α)ν̃(β),

where g̃ and ν̃ are defined as in (3.21), (3.23). We see that if g is constant on the boxes Qα and ν

is Carleson measure for Hs⃗, then

∥g̃∥2L2(T d,dν̃) ≳
∑︂

α,β∈T d

g̃(α)g̃(β)ks⃗(α, β)µ̃(α)µ̃(β) =
∑︂
γ∈T d

ws⃗(γ)

(︄∑︂
β≤γ

g̃(β)ν̃(β)

)︄2

. (3.25)

On the other hand, by Jensen’s inequality,

∑︂
α∈T d

∫︂
Qα

g2(z) dν(z) ≥
∑︂
α∈T d

g̃2(α)ν̃(α),

so if (3.25) holds for any non-negative g̃ in L2(T 2, dν̃), then ν is Carleson.

But, clearly, what we have above is just (3.7b) with w = ws⃗ and µ = ν̃ and φ = g̃. The only

difference is that (3.7b) has a closed d-tree T
d
in it, but this is not really important, as we will

see in a few lines.

Proposition 3.1.1 Assume that ν is a measure on Dd
– a measure on Cd with supp ν ⊂ Dd

. For

0 < r < 1 let νr be a dilated measure supported on rDd
,

dνr(z) := dν(r−1z), z ∈ Cd.

Then ν is Carleson for Hs⃗ if and only if the measure νr is Carleson and the constant Cνr in (3.8)
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does not depend on r.

Proof. It is almost immediate. Since∫︂
Dd

|f(rζ)|2 dν(ζ) =
∫︂
rDd

|f(z)|2 dνr(z) =
∫︂
Dd

|f(z)|2 dνr(z),

we see that, if ν is Carleson, then, clearly νr is with Cνr independent of r. On the other hand, if

Cνr < C <∞, then Cν = supr<1Cνr < C and also lim
r→1

∫︂
Dd

|f(rζ)|2 dν(ζ) clearly exists as well.

Remark. We stress that all of our Carleson conditions do not depend on r or on the depth

of a d-tree.

We, therefore, obtain the following Theorem (Theorem I.9)

Theorem 3.1.1 Let s⃗ = (s1, . . . , sd), sj ∈ (0, 1], j = 1, . . . , d, d ≥ 1, such that all si are sufficiently

close to 1: 1 − sj ≤ εd, for a certain positive absolute ε = ε(d) and j = 1, . . . , d. Let ν be a non-

negative measure in Dd
. Then embedding operator id : Hs⃗(Dd) → L2(Dd

, ν) is bounded, i.e. ν is

Carleson for Hs⃗(Dd), if and only if (ws⃗, ν̃) is a trace weight-measure pair for T
d
,

∑︂
α∈T d

(I∗ψν̃)2(α)ws⃗(α) ≤ C

∫︂
T d

ψ2dν̃, ∀ψ ∈ L2(T
d
, ν̃) . (3.26)

Here ν̃ = Λ∗ν is the discrete image of ν on T
d
.

3.2 Weighted capacity on T d and Bessel multiparametric capacity on

Dd

To get to the Carleson embedding conditions for Hs⃗(Dd) with d = 1, 2, 3, it remains to use the

discrete Theorem 2.1.1. However it is convenient to consider the continuous reformulation of the

conditions. For this we have chosen the subcapacitary one (2.3a). In this section we will show the

equivalence between T d-subcapacitary and d-parametric Bessel subcapacitary conditions, and we

will finally deduce Theorem I.7.

Recall that for a given measure on Td = (∂D)d and s⃗ ∈ (0, 1]d we can define the multi-

parametric s⃗-Bessel potential

Uµ
s⃗ (z) =

∫︂
Td

Ks⃗(z, ζ) dµ(ζ), z ∈ Td, (3.27)

where

Ks⃗(z, ζ) =
d∏︂

k=1

Ksk(zk, ζk),

Ks(zk, ζk) =
1

|zk − ζk|1−s
, s < 1,

K1(zk, ζk) = log

(︃
1

|zk − ζk|

)︃
.

(3.28)
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We aim to prove that capacities on the polytorus and the boundary of d-tree are comparable.

Theorem 3.2.1 Let w := ws⃗ : T d → R+ be an exponential product weight defined as in (3.24),

and assume that E ⊂ (∂T )d is a compact set. Then the respective capacities of F and its polytorus

image F := Λ(E) are equivalent

Caps⃗(F ) ≈ Capws⃗
(E), (3.29)

and the constant depends only on d and s⃗.

Proof. Our argument runs as follows.

First we show that for any (Radon non-negative) measure µ on (∂T )d its (ws⃗) potential is com-

parable to the (s⃗-Bessel) potential of its continuous image Λ∗µ =: ν. This immediately leads to

the equivalence of their respective energies. Therefore, the equilibrium measure for E is almost

equilibrium for F . On the other hand, if ν is equilibrium for F , then its pull-back Λ∗ν again still

has comparable energy to ν, hence Λ∗ν is almost equilibrium for E. Let us elaborate.

The equivalence of potentials is already given by Lemma 3.1.1. Indeed, for ζ, z ∈ Td the

potential kernel Ks⃗ and the reproducing kernel Ks⃗ are the same. Let µ be a measure supported

on E (equilibrium measures are just like that). Similar to the argument in the previous section

we can write

Ews⃗
[µ] =

∫︂
E

Vµ
ws⃗
dµ =

∑︂
γ∈T d

ws⃗(γ)

(︃∫︂
∂S(γ)

dµ

)︃2

≈
∑︂
γ∈T d

ws⃗(γ)

(︃∫︂
∂SG(γ)

dµ

)︃2

=

∫︂
(∂T )2d

⎛⎝ ∑︂
γ∈PG(τ)∩PG(ω)

ws⃗(γ)

⎞⎠ dµ(τ) dµ(ω) =

∫︂
E2

ks⃗(τ, ω) dµ(τ)dµ(ω).

Hence instead of the usual discrete potential we can look at G-extended ones. Given F ∋ ζ =

Λ(ω), ω ∈ E, we have

{τ ∈ E : ks⃗(τ, ω) ≥ Ct} ⊂ E ∩ Λ−1 ({z ∈ F : Ks⃗(z, ζ) ≥ t}) ⊂
{︃
τ ∈ E : ks⃗(τ, ω) ≥

T

C

}︃
for some absolute constant C, since by Lemma 3.1.1

ks⃗(τ, ω) ≈ Ks⃗(Λ(τ),Λ(ω)).

Hence, due to suppµ ⊂ E,∫︂
E

ks⃗(τ, ω) dµ(τ) =

∫︂ ∞

0

µ (E ∩ {ks⃗(τ, ω) ≥ t}) dt ≈∫︂ ∞

0

ν ({Ks⃗(z, ζ) ≥ t}) dt =
∫︂
F

Ks⃗(z, ζ) dν(z).
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The equivalence of energies of µ and ν = Λ∗ν follows immediately, and we see that

CapWs⃗
(E) ≲ CapS⃗(Λ(E)),

since Λ∗µ is admissible for F after multiplication by a suitable constant.

To get the reverse estimate we need to move measures in the other direction, from Td to (∂T )d.

In order to do so, for ν on Td and Borel Ẽ ⊂ (∂T )d we write

Λ∗ν(Ẽ) :=

∫︂
Td

#{Ẽ ∩ {Λ−1(z)}}
#{Λ−1(z)}

dν(z). (3.30)

This is a well-defined mapping, for details about the correctness, measurability etc. see [2] (or

[6] for 1D argument). Since the integrand in (3.30) is bounded from above and below, we see

that, Λ∗Λ∗µ ≈ µ and Λ∗Λ
∗ν ≈ ν. Actually, it is easy (but rather tedious) to show that these are

equalities for measures with finite energies, which are exactly those that we consider. However

even the two-sided estimate is good enough, since we do not keep track of constants meticulously.

Now repeating the previous argument with ν – equilibrium measure for F , we see that Λ∗ν is

(after multiplication by a constant) admissible for E, and they have comparable energies. This

proves the lemma.

To completely move our discrete subcapacitary condition to the polytorus we have to make

one more observation (see also [104, Section 3]).

Theorem 3.2.2 Let E ⊂ T
d
and w = ws⃗ be the product weight generated by Hs⃗. Then the capacity

of E and its boundary projection are equivalent,

Capw(E) ≈ Capw(∂S(E)),

where ∂S(E) = {ω ∈ (∂T )d : P(ω) ∩ E ̸= ∅}.

Remark. This is a more precise version of Proposition 1.1.3.

Proof. One direction is trivial, since by monotonicity of Iw one has Vµ
w(ω) ≥ Vµ

w(β), where

ω ∈ ∂S(E) is a descendant of β ∈ E for any measure µ. To obtain the reverse estimate we

aim to show that the potentials of a measure µ and its ’boundary projection’ are comparable

everywhere on T
d
. This would imply that admissible measures for E and ∂S(E) are the same,

after multiplication by a constant, and that their energies are comparable. S before, that settles

the equivalence of capacities.

We start with defining a boundary projection of a measure. For this we need to introduce the

Lebesgue measure on (∂T )d – we just put it to be the image of the normalized Lebesgue measure

on the polytorus.

md :=
1

(2π)d
Λ∗(dx1 . . . dxd).

In other words, for ∂S(α) ⊂ (∂T )d we set md(∂S(α)) := 2−|α|, where |α| =
∏︁d

k=1 |αk| and |αk| =
#P(α)− 1. Then we extend it to Borel subsets of (∂T )d in the usual way.
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Now assume that µ = µα is a mass at a singleton suppµα = α ∈ T d. Then its projection (µα)b

is defined as follows

(µα)b(E) = |µα|md

(︂
E
⋂︂

∂S(α)
)︂
.

Essentially we take the mass µα and distribute it in a uniform way over ∂S(α) – the shadow of α

over (∂T d). Next, if µ is a measure on T d (so, sans boundary, just a collection of singleton masses),

we write

µb =
∑︂
α∈T d

(µα)b, µα := µ · 1α.

Finally, if µ is supported on some portion of ∂T d, say on (∂T )k0 × T d−k0 , then we do the same

thing by leaving the (∂T )k0 coordinate variables intact and dumping the rest down to (∂T )d−k0

singleton by singleton.

dµb(ω1, . . . , ωk0 , ωk0+1, . . . , ωd) =
∑︂

α∈T d−k0

(︁
dµ(ω1, . . . , ωk0 , ·, . . . , ·) · 1(∂T )k0×{α}

)︁
b
(ωk0 + 1, . . . , ωd).

If µ is supported on (∂T )d, we leave it as it is, µb = µ.

As a result, since every µ on T
d

can be decomposed into the respective in-

ner/boundary/distinguished boundary parts, we obtain a measure µb supported on (∂T )d with

the following important property

µ(T
d
) = µb((∂T )

d).

Next step is to compare ws⃗ potentials of µ and µb. Due to linearity it is enough to make

estimates only for singleton masses µα = µ · 1α, since µ – and hence its potential – is just a sum

of such terms. A singleton {α}, however is a product set, as is its boundary projection ∂S(α), so
we have

Vµα
ws⃗

=
d∏︂

k=1

V
µαk
wsk

, V(µα)b
ws⃗

=
d∏︂

k=1

V
(µαk

)b
wsk

,

so it is enough to do the estimate on T . So, fix any γ ∈ T and a singleton mass σ at γ, and

0 < s ≤ 1, and also a point τ ∈ T . There are two options, depending on whether τ is a descendant

of γ. If it is not, then the potentials coincide,

Vσ
ws
(τ) =

∑︂
β≥τ

I∗σ(β)ws(β) =
∑︂
β≥τ

I∗σb(β)ws(β) = Vσb
ws
(τ),

since, clearly, I∗σ = I∗σb above γ and both are zero between γ ∧ τ and τ . On the other hand, if

τ ≤ γ, then the uniform distribution of the boundary projection mass implies

Vσb
ws
(τ) =

∑︂
β≥τ

I∗σb(β)ws(β) =
∑︂
β≥γ

I∗σb(β)ws(β) +
∑︂

γ>β≥τ

I∗σb(β)ws(β) =

Vσ
ws
(τ) +

∑︂
γ>β≥τ

I∗σb(γ) · 2|γ|−|β|ws(β) ≤ Vσ
ws
(τ) + CI∗σb(γ)ws(γ) ≤ (C + 1)Vσ

ws
(τ),
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since Vσ
ws
(τ) = Vσ

ws
(γ) and∑︂

β≤γ

2|γ|−|β|ws(β) ≤
∑︂
k≥0

2−k+(1−s)kws(γ) ≤ Cws(γ).

We see that

Vµ
ws⃗

≈ Vµb
ws⃗

and Ews⃗
[µ] ≈ Ews⃗

[µb],

since |µ| = |µb| by construction. Consider now the equilibrium measures of E and ∂S(E), which we

denote by µE and ν respectively, and let µb := (µE)b. Since Vν
ws⃗

≥ 1 on the support of µb, we see

that their mutual energy dominates |µb| which is actually proportional to Ews⃗
[µb] by equivalence

of potentials. Hence for any C one has

0 ≤ Ews⃗
[µb]− 2CEws⃗

[µb, ν] + C2Ews⃗
[ν] ≤

Ews⃗
[µb]− C|µb|+ C(CEws⃗

[ν]− |µb|).

For large enough C the first term above becomes negative, hence the second is positive, which

means that

∩ws⃗
(∂S(E)) = Ews⃗

[ν] ≥ 1

C̃
Ews⃗

[µb] ≈ ∩ws⃗
(E).

We are done.

Now we are ready to finish the proof of Theorem I.7. Let us recall its statement.

Theorem 3.2.3 Let s⃗ = (s1, . . . , sd), sj ∈ (0, 1], j = 1, . . . , d, 1 ≤ d ≤ 3, such that all si are

sufficiently close to 1: 1− sj ≤ εd, for a certain positive absolute ε = ε(d) and j = 1, . . . , d. Let ν

be a non-negative measure in Dd
. Then embedding operator id : Hs⃗(Dd) → L2(Dd

, ν) is bounded,

i.e. ν is Carleson for Hs⃗(Dd), if and only if one of the following conditions holds true

ν(T (E)) ≲ Caps⃗(E), E ⊂ Td (3.31a)∑︁
R⊂E ν

2(T (R))ws⃗(R) ≲ ν(T (Q)), for any E, (3.31b)∑︁
R⊂Q ν

2(T (R))ws⃗(R) ≲ ν(T (Q)), for any Q. (3.31c)

Here Q,R are dyadic rectangles on the (poly) torus Td, and T (Q) is the usual tent area above Q,

while E is any finite union of such rectangles, and T (E) is the union of respective tents.

Proof. By invoking Theorem 3.1.1 we see that ν is Carleson if and only if its discrete image ν̃ :=

Λ∗ν combined with the weight ws⃗ forms a trace weight-measure pair for T d. Theorem 2.1.1 provides

testing conditions for such a pair. In particular, (3.31b) follows from [ws⃗, ν̃]C ≳ [ws⃗, ν̃]CE and

(3.31c) from [ws⃗, ν̃]B ≳ [ws⃗, ν̃]CE. The subcapacitary condition (3.31a) is obtained by [ws⃗, ν̃]SC ≳

[ws⃗, ν̃]CE, Theorems 3.2.1 and 3.2.2. Indeed, writing T (E) as a union of Qα’s and some boundary

fragments, we see that ν(T (E)) ≈ nũ(Ẽ), where Ẽ ⊂ T
d
is the union of those α’s and Λ-preimages

of boundary fragments. Since ν ≈ Λ∗Λ∗ν (again, they are actually equal, but we do not need that),
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we have that due to Theorem 3.2.1 the condition (3.31a) is equivalent to

ν̃(Ẽ) ≲ Capws⃗
∂S(Ẽ), ∀Ẽ = S(∪M

k=1{αk}), αk ∈ T d,

but the right-hand side of the above is equivalent to Capw(s⃗)(Ẽ) by Theorem 3.2.2, and we get the

discrete subcapacitary condition, which is equivalent to the embedding.

If we consider the harmonic spaces Hh
s⃗ (Dd) for d = 1, 2, 3, then we do need s⃗ to be close to 1⃗.

Theorem 3.2.4 Let s⃗ = (s1, . . . , sd), sj ∈ (0, 1], j = 1, . . . , d, 1 ≤ d ≤ 3. Let ν be a non-negative

measure in Dd
. Then embedding operator id : Hh

s⃗ (Dd) → L2(Dd
, ν) is bounded, i.e. ν is Carleson

for Hh
s⃗ (Dd), if and only if one of the following conditions holds true

ν(T (E)) ≲ Caps⃗(E), E ⊂ Td (3.32a)∑︁
R⊂E ν

2(T (R))ws⃗(R) ≲ ν(T (Q)), for any E, (3.32b)∑︁
R⊂Q ν

2(T (R))ws⃗(R) ≲ ν(T (Q)), for any Q. (3.32c)

Proof. It is exactly the same as in the previous Theorem, only now we observe that we do no

need to care about real and imaginary parts of the reproducing kernels. Indeed, the harmonic

reproducing kernel Kh
s⃗ (z, ζ) has the following nice estimate

Kh
s⃗ (z, ζ) ≈ |Ks⃗(z, ζ)|,

since Hh
sj
(D) = Hsj(D)

⨁︁
Hsj(D) and Hh

s⃗ (Dd) =
⨂︁d

j=1H
h
sj
(D). Since the kernel is real now, we do

not need the restrictions on sj, and the rest of the proof runs verbatim.
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Chapter 4 Growth classes of harmonic functions:

wavelet decomposition

4.1 Auxiliary results and facts about MRA

4.1.1 Main lemma

In this subsection we prove some lemmas. The first one is an elementary estimate.

Lemma 4.1.1 Let g ∈ L1(Rd) and |x|2Mg(x) ∈ L1(Rd) for some integer M > d
2
, if ∥ĝ∥1 = C1

and ∥∆M(ĝ)∥1 ≤ C2, then

∥g∥1 ≤ c(d,M)
(︁
C2M−d

1 Cd
2

)︁1/(2M)
.

Proof. Since g, ĝ ∈ L1(Rd) the inversion formula implies that |g(x)| ≤ C1. Similarly,

|x|2Mg(x), ˆ︂|x|2Mg(x) ∈ L1 and |g(x)| ≤ C2|x|−2M . Thus

∥g∥1 ≤ cd

(︃
C1
Rd

d
+ C2

Rd−2M

2M − d

)︃
,

for any R > 0. Choosing R such that R2M = C2C
−1
1 we obtain the required estimate.

Let P (x) = cd(1+|x|2)−(d+1)/2 be the standard Poisson kernel for the upper half-space, P(s)(x) =

s−dP (x
s
) as usual. The constant cd is chosen such that P̂ (τ) = e−2π|τ |. The next lemma (which

is a special case of [98, Theorem 1]) will be used to divide by the Poisson kernel in the Fourier

transforms and is inspired by [15]. We give a separate proof for the convenience of the reader.

Lemma 4.1.2 There exists Φ ∈ L1(Rd) such that Φ̂(τ) = e2π|τ | when |τ | ≤ 1.

Proof. We note that 2 cosh(2π|τ |) is a smooth function in Rd and we can find a smooth function

Θ with compact support such that Θ(τ) = 2 cosh(2π|τ |) when |τ | ≤ 1. Let Ξ be the inverse

Fourier transform of Θ. Clearly, Ξ ∈ L1(Rd). Finally we let Φ = Ξ − P , then Φ ∈ L1(Rd) and

Φ̂(τ) = Θ(τ)− e−2π|τ |. For |τ | ≤ 1 we have Φ̂(τ) = e2π|τ |.

Now we can give a preliminary estimate for a part of u(·, t) ∈ h∞v with bounded frequencies.

The next result is our Main lemma.

Lemma 4.1.3 Let u be a bounded harmonic function in Rd+1
+ , and let σ ∈ L1(Rd) be such that

supp σ̂ ⊂ Bδ−1. Then ⃓⃓⃓⃓∫︂
Rd

u(x, t)σ(x)dx

⃓⃓⃓⃓
≤ Cd∥u∥L∞(Rd+1

δ )∥σ∥1,



109

where Cd is a constant that depends on d only and Rd+1
δ = {(x, t) ∈ Rd+1 : t ≥ δ > 0}.

Proof. First, in the sense of distributions, we have∫︂
Rd

u(x, t)σ(x)dx =

∫︂
Rn

ˆ︂u(·, t)(τ)σ̂(τ)dτ.

Now let Φ be the function in Lemma 4.1.2 and let Φδ(x) = δ−dΦ(δ−1x), then ˆ︂Φδ(τ) = Φ̂(δτ)

and ∥Φδ∥1 = ∥Φ∥1. Since σ̂ vanishes outside the ball B1/δ, we have

σ̂(τ) = ˆ︂Φδ(τ)e
−2π|τ |δσ̂(τ) = ˆ︂Φδ(τ)Pδ̂(τ)σ̂(τ).

Then⃓⃓⃓⃓∫︂
Rd

u(x, t)σ(x)dx

⃓⃓⃓⃓
=

⃓⃓⃓⃓∫︂
Rd

ˆ︂u(·, t+ δ)(τ)ˆ︂σ ∗ Φδ(τ)dτ

⃓⃓⃓⃓
=⃓⃓⃓⃓∫︂

Rd

u(x, t+ δ)(σ ∗ Φδ)(x)dx

⃓⃓⃓⃓
≤ ∥u∥L∞(Rd+1

δ )∥σ∥1∥Φδ∥1

and the required estimate follows.

4.1.2 Basic facts about smooth multiresolution analysis

We consider smooth (of order r) multiresolution approximation (MRA) in Rd. Our main references

here are the classical books by I. Daubechies [28] and by Y. Meyer [69]. We denote by K(x, y) the

kernel of the orthogonal projection onto V0 and assume that

K(x, y) =
∑︂
k∈Zd

ϕ(x− k)ϕ(y − k),

where ϕ(x) and all its derivatives of order up to r decay faster at infinity than any power of x.

We assume further that ∑︂
k∈Zd

ϕ(x− k) = 1,

see [69, ch 2.10].

Let Kj(x, y) = 2jnK(2jx, 2jy). Further, let D(x, y) = K1(x, y)−K(x, y) and

Dj(x, y) = 2jdD(2jx, 2jy) = Kj+1(x, y)−Kj(x, y).

Since we work with r-smooth MRA, we have

D(x, y) =
∑︂
|β|=r

∂βyDβ(x, y), (4.1)

where Dβ are Schwartz functions that satisfy |Dβ(x, y)| ≤ Cm(1 + |x − y|)−m, see [69, ch 2.8].
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Further for any f ∈ L2(Rd) we define

K0f(x) =

∫︂
Rd

K(x, y)f(y)dy and Djf(x) =

∫︂
Rd

Dj(x, y)f(y)dy.

As usual Vj = {f(x) : f(2−jx) ∈ V0}. We will also need L∞-version of these spaces,

V0(∞) = {f(x) =
∑︂
k∈Zd

a(k)ϕ(x− k), {a(k)} ∈ l∞(Zd)},

and Vj(∞) = {f(x) : f(2−jx) ∈ V0(∞)}, Vj ⊂ L∞(Rd).

The following Bernstein’s inequality holds, [69, ch 2.5]. There exists C = C(ϕ) such that

∥∂βf∥∞ ≤ C2|β|j∥f∥∞ (4.2)

for any f ∈ Vj(∞) and any multi-index β such that |β| ≤ r.

4.1.3 Multiresolution approximation of the Poisson kernel

We need two estimates for smooth multiresolution approximation of Poisson kernels.

Lemma 4.1.4 There exists C such that∫︂
Rd

⃓⃓⃓⃓∫︂
Rd

(P(s)(ξ − y)− P(s)(ξ − x))K(x, y)dx

⃓⃓⃓⃓
dy ≤ Cs−r

for any ξ ∈ Rd.

Proof. We denote fξ(x) = P(s)(ξ − x), then∫︂
Rd

(P(s)(ξ − y)− P(s)(ξ − x))K(x, y)dx =

P(s)(ξ − y)−
∫︂
Rd

fξ(x)E(y, x)dx = fξ(y)− (K0fξ)(y).

We have

|fξ(x)−K0fξ(x)| ≤
∞∑︂
j=0

⃓⃓⃓⃓∫︂
Rd

Dj(x, y)fξ(y)dy

⃓⃓⃓⃓
.

Integrating (4.1) we obtain∫︂
Rd

⃓⃓⃓⃓∫︂
Rd

D(x, y)fξ(y)dy

⃓⃓⃓⃓
dx ≤ C

∑︂
|β|=r

∥∂βfξ∥1 ≤ Cs−r.

By rescaling we have also Djf(x) = (D0fj)(2
jx), where fj(y) = f(y2−j). Then

∥Djf∥1 = 2−dj∥Dfj∥1 ≤ C2−rj
∑︂
|β|=r

∥∂βf∥1.
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We apply this estimate for every j = 0, 1, ... and f = fξ and get

∫︂
Rd

|fξ(x)−K0fξ(x)| ≤
∞∑︂
j=0

∥Djfξ∥1 ≤ C

∞∑︂
j=0

2−rj
∑︂
|β|=r

∥∂βfξ∥1 ≤ Cs−r.

Lemma 4.1.5 There exists C such that∫︂
Rd

⃓⃓⃓⃓∫︂
Rd

(KJ(x, y)−K(x, y))P(s)(y − ξ) dy

⃓⃓⃓⃓
dξ ≤ Cs−r

for any x ∈ Rd and any number J ≥ 1.

Proof. In the notation of the last lemma we have

∫︂
Rd

(KJ(x, y)−K(x, y))P(s)(y − ξ) dy =
J−1∑︂
j=0

Djfξ(x)

and by (4.1) ∫︂
Rd

|D0fξ(x)| dξ ≤ C
∑︂
|β|=r

∥∂βP(s)∥1 ≤ Cs−r.

Then similarly for j ≥ 1 ∫︂
Rd

|Djfξ(x)| dξ ≤ C2−rjs−r.

That concludes the proof of the lemma.

4.2 Multiresolution analysis in growth spaces

4.2.1 Decomposition into blocks and direct estimates

Given a weight w that satisfies the doubling condition, we choose A large enough and define a

sequence of integers {nl}l such that n0 = 0, nl > nl−1 and w(2−nl) ∈ [Al, Al+1). There exists m∗

that depends on w only that satisfies

2−m∗nlw(2−nl)

2−m∗nl−1w(2−nl−1)
< 1− ε. (4.3)

For weights w with some regularity we can satisfy the last inequality by choosing m∗ such that

tm
∗−1w(t) is increasing.

We consider sufficiently smooth multiresolution approximation in Rd, more precisely we choose

r such that r > m∗ + d, where m∗ was chosen above. Instead of the usual dyadic partition

L2(Rd) = V0 ∪
⋃︁

j≥1 Vj \ Vj−1 we work with blocks adjusted to the weight v,

L2(Rd) = V0 ∪
⋃︂
l≥1

Vnl
\ Vnl−1

.
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We take wavelet series and combine all terms in generations nl−1+1, ..., nl into one block; we work

with bounded functions that do not belong to L2(Rd) in general. Let {ψp}qp=1 be a collection of

r-smooth rapidly decreasing functions such that {ψp(x−k), 1 ≤ p ≤ q, k ∈ Zd} form an orthogonal

basis for V1 \ V0, see [69, ch 3.1, 3.6] for details. For each j ∈ Z+ and k ∈ Zd we have

ψp,jk = 2dj/2ψp(2
jx− k).

In what follows we write

⟨f(y), g(y)⟩ =
∫︂
Rd

f(y)g(y) dy.

when the integral converges.

Let us recall Theorem I.15.

Theorem 4.2.1 For any u ∈ h∞v (Rd+1
+ ) we define

g0(x, t) =
∑︂
k∈Zd

⟨u(y, t), ϕ(y − k)⟩ϕ(x− k), and

gl(x, t) =

nl∑︂
j=nl−1+1

q∑︂
p=1

∑︂
k∈Zd

⟨u(y, t), ψp,jk(y)⟩ψp,jk(x), l ≥ 1.

Then

u(x, t) =
∞∑︂
l=0

gl(x, t), gl(·, t) ∈ Vnl
(∞) and

∥gl(·, t)∥∞ ≤ C∥u∥v,∞w(2−nl), l ≥ 0, (4.4)

where C depends on ϕ and A only.

Proof. Let as usual Kj(x, y) = 2jdK(2jx, 2jy), then

g0(x, t) =

∫︂
Rd

K(x, y)u(y, t) dt and

gl(x, t) =

∫︂
Rd

(Knl
(x, y)−Knl−1

(x, y))u(y, t) dy.

Clearly, gl(·, t) ∈ Vnl
(∞). Moreover, for each t the function u(·, t) is uniformly continuous, thus

the series
∑︁

l gl(x, t) converges to u(x, t) uniformly on Rd.

We take the Fourier transform of K(x, ·) in second variable and denote it by K̂(x, τ). (We

never use the Fourier transform in the whole R2d.) We note that

|K̂(x, τ)| ≤ C(1 + |τ |)−m∗−d

uniformly in x since r > m∗ + d, the same inequality holds for all derivatives of K̂(x, τ) in τ . Let

further η : R → R be a smooth function with support in [−1, 1] that is equal to 1 on [−1/2, 1/2],

0 ≤ η ≤ 1.
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Then the Fourier transform of KN(x, ·), where N ≤ nl, has the following partition

ˆ︃KN(x, τ) = K̂(2Nx, 2−Nτ) = K̂(2Nx, 2−Nτ)η(2−nl |τ |)+
∞∑︂

i=l+1

K̂(2Nx, 2−Nτ)(η(2−ni |τ |)−η(2−ni−1|τ |)) =:

ζ0N,l(x, τ) +
∞∑︂

i=l+1

ζN,i(x, τ).

First, we have

∥ζ0N,l(x, ·)∥1 ≤ ∥K̂(2Nx, 2−N ·)∥1 ≤ 2dN∥K̂(2Nx, ·)∥1.

And also, since N ≤ nl, we obtain ∥∆M
τ ζ

0
N,l(x, ·)∥1 ≤ C2(d−2M)N . Let further, σ0

N,l = F−1(ζ0N,l).

Then Lemma 4.1.1 implies ∥σ0
N,l(x, ·)∥1 ≤ C.

Next, using the estimates for the decay of K̂(x, τ), we obtain

∥ζN,i(x, ·)∥1 =
∫︂
Rd

|K̂(2Nx, 2−Nτ)(η(2−ni |τ |)− η(2−ni−1|τ |))| dτ ≤

2dN
∫︂
2ni−1−N−1≤|ξ|≤2ni−N

|K̂(2Nx, ξ)| dξ ≤ C2dN+m∗(N−ni−1).

Similarly, since ni > N and the derivatives of K̂(x, τ) satisfy the same decay estimates, we get

∥∆M
τ ζN,i(x, ·)∥1 =

∫︂
Rd

⃓⃓⃓
∆M

τ

(︂
K̂(2nlx, 2−nlτ)(η(2−ni |τ |)− η(2−ni−1 |τ |))

)︂⃓⃓⃓
dτ

≤ C2(d−2M)N+m∗(N−ni−1),

for any M ≥ 1.

Further, we define σN,i(x, y) = F−1(ζN,i(x, ·)), i > l. Then, applying Lemma 4.1.1 once again,

we have ∥σN,i∥1 ≤ C2m
∗(N−ni−1). Finally, applying Lemma 4.1.3 and (4.3), we obtain⃓⃓⃓⃓∫︂

Rd

KN(x, y)u(y, t) dy

⃓⃓⃓⃓
≤

C∥u∥v,∞

(︄
w(2−nl) + 2m

∗N
∞∑︂

i=l+1

2−m∗ni−1w(2−ni)

)︄
≤ C∥u∥v,∞Al,

(4.5)

for any x ∈ Rd and N ≤ nl. Then (4.4) follows by taking N = nl and N = nl−1.

Corollary 4.2.1 Let {ψp,jk} be an orthogonal smooth wavelet basis as above. Then there exist C

such that for any u ∈ h∞v

|cp,jk(u(·, t))| ≤ C2−dj/2∥u∥v,∞w(2−j), (4.6)

when t > 0, j ∈ Z+, k ∈ Zd.

Proof. Clearly,

|⟨u(x, t), ψp,jk(x)⟩| = |⟨gl(x, t), ψp,jk(x)⟩| ≤ ∥gl(x, t)∥∞∥ψp,jk∥1,
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where j ∈ (nl−1, nl]. Then (4.4) implies (4.6).

4.2.2 Converse estimates and coefficient characterization

The converse of Theorem I.15 is also true. We remind its statement as well.

Theorem 4.2.2 Let u be a harmonic function in Rd+1
+ that is bounded on each half-space {(x, t) ∈

Rd+1, t ≥ t0 > 0}. Suppose that for each t > 0

u(x, t) =
∞∑︂
l=0

gl(x, t),

where the series converges uniformly on Rd, g0(·, t) ∈ V0(∞),

gl(x, t) =

nl∑︂
j=nl−1+1

q∑︂
p=1

∑︂
k∈Zd

a(jk)p (t)ψp,jk(x), l ≥ 1

and there exists B such that

∥gl(·, t)∥∞ ≤ Bw(2−nl),

for any t > 0. Then u ∈ h∞v and ∥u∥v,∞ ≤ CB, where C depends on A and ϕ only.

Proof. We fix s ∈ (0, 1] and take L such that s ∈ [2−nL+1 , 2−nL). Then

u(x, t+ s) =
(︁
u(·, t) ∗ P(s)

)︁
(x) =

∞∑︂
l=0

(gl(·, t) ∗ P(s))(x) =

L+1∑︂
l=0

(︁
gl(·, t) ∗ P(s)

)︁
(x) +

∞∑︂
l=L+2

(︁
gl(·, t) ∗ P(s)

)︁
(x).

For each l ≤ L+ 1 we have

|gl(·, t) ∗ P(s)| ≤ ∥gl(·, t)∥∞ ≤ Bw(2−nl).

Since ⟨gl(y, t), Knl−1
(x, y)⟩ = 0, for l > L+ 1 we get

(︁
gl(·, t) ∗ P(s)

)︁
(x) =∫︂

Rd

gl(y, t)P(s)(x− y) dy −
∫︂
Rd

∫︂
Rd

gl(y, t)Knl−1
(ξ, y)P(s)(x− w) dξdy =∫︂

Rd

gl(y, t)

∫︂
Rd

(P(s)(x− y)− P(s)(x− ξ))Knl−1
(ξ, y) dξ dy.

Then by rescaling and applying Lemma 4.1.4, we obtain

|gl(·, t) ∗ P(s)| ≤ CBw(2−nl)(2nl−1s)−r.
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Now we remark that 2nl−1s ≥ 1 and r > m∗, where m∗ is chosen such that (4.3) holds. Then

|gl(·, t) ∗ P(s)| ≤ CBA2s−m∗
w(2−nl−1)2−m∗nl−1 .

Finally we add up the estimates and take into account (4.3) to get

|u(x, t+ s)| ≤ CBw(s),

for any t > 0.

When the weight v grows sufficiently fast we can reformulate the result in terms of the wavelet

coefficients. For general weights such characterization is not possible (see also Example below).

Definition 4.2.1. We say that a weight v is of power-type growth if the doubling condition (I.37)

is fulfilled and there exists κ such that the sequence nj defined in 4.2.1 satisfies nj+1 − nj ≤ κ for

any j ≥ 0.

Typical examples of weights of power-type growth are w(t) = t−a, a > 0. Normal weights in

the terminology of Shields and Williams, [88], are of power-type growth. When v is a weight of

power-type growth, harmonic functions in h∞v can be characterized by their wavelet coefficients if

one combines Corollary 4.2.1 with the one below.

Corollary 4.2.2 Let v be a weight of power-type growth, and let u be harmonic in Rd+1
+ and

bounded on each half-space {(x, t) ∈ Rd+1, t ≥ t0 > 0}. Suppose there exists B such that

|bk(u(·, t))| ≤ B, and |cp,jk(u(·, t))| ≤ 2−dj/2Bw(2−j), (4.7)

for any t > 0, j ∈ Z+, k ∈ Zd. Then u ∈ h∞v and ∥u∥v,∞ ≤ CB, where C does not depend on u.

Proof. Let gl be defined as in Theorem 4.2.1. We want to show that ∥gl(x, t)∥ ≤ Bw(2−nl). Since

we have only finitely many dyadic generations between nl−1 and nl it suffices to estimate∑︂
k∈Zd

⟨u(y, t), ψp,jk(y)⟩ψp,jk(x)

for each j. Applying (4.7) and the inequality from [69, ch 3.1],

max
x

∑︂
k∈Zd

|ψp,jk(x)| ≤ C2dj/2,

we get the required estimate.

4.2.3 Wavelet characterization

Now we prove Theorem I.13, we recall its formulation for reader’s convenience.
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Theorem 4.2.3 Let u(x, t) be a harmonic function on Rd+1
+ bounded on each half-space {(x, t) :

t > t0 > 0}. Then u ∈ h∞v if and only if there exists C such that

MN(u) = sup
t>0

∥SN(u(·, t))∥L∞(Rd) ≤ Cw(2−N).

Similarly, u ∈ h0v if and only if limN→∞MN(u)(w(2
−N))−1 = 0.

While it follows readily from the proofs of Theorem 4.2.1 and 4.2.2, we provide an argument

below just for the sake of completeness. We choose to reformulate the statement using blocks of

wavelet decomposition.

Suppose that u ∈ h∞v and nl−1 ≤ N < nl. We have

SN(u(x, t)) =

∫︂
Rd

KN(x, y)u(y, t) dy,

and w(2−N) ≥ cAl. Then, applying (4.5) for this l, we obtain |SN(u(x, t))| ≤ C∥u∥v,∞w(2−N). If

in addition u ∈ h0v, then similarly we have

MN(u) = sup
t

|SN(u(x, t))| = o(w(2−N)), N → ∞.

To prove the converse, assume that MN(u) ≤ εlw(2
−N) when N ≥ nl−1. Then clearly

|gl(x, t)| = |Snl
(x, t)− Snl−1

(x, t)| ≤ 2εlw(2
−nl).

Theorem 4.2.2 implies that u ∈ h∞v when εl are bounded. When εl → 0 as l → ∞, we get

|gl(·, t) ∗ P(s)| ≤ 2εlw(2
−nl)

for any t > 0. Moreover, as in the proof of Theorem 4.2.2,

|gl(·, t) ∗ P(s)| ≤ Cεlw(2
−nl)(2nl−1s)−r.

Then we choose L such that s ∈ [2−nL+1 , 2−nL) and write

|u(x, t+ s)| ≤
L+1∑︂
l=0

2εlw(2
−nl)+CεL

∞∑︂
l=L+2

w(2−nl)(2nl−1s)−m ≤

L+1∑︂
l=0

2εlw(2
−nl) + C1εL(2

nL+1s)−mw(2−nL+1) ≤ cLw(s),

where cL goes to zero as L goes to infinity. This concludes the proof of Theorem 4.2.3.

We will also reformulate the result in terms of the boundary values of harmonic functions.

Let h−a = h∞t−a for a > 0 and h−∞ = ∪ah
−a. The doubling condition on the weight v implies

that h∞v ⊂ h−a for some a > 0. Harmonic functions in h−∞ admit boundary values in the sense

of distributions of finite order, see for example [92]. Thus when we take sufficiently smooth mul-
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tiresolution approximation and choose compactly supported wavelets, we can define the wavelet

coefficients of the boundary values of u ∈ h∞v . Then we can reformulate the main result in the

following way.

Suppose that u ∈ h−a and let U be the boundary values of u in the sense of distributions. Let

further bk(U) and cp,jk(U) be the wavelet coefficients of U with respect to a sufficiently smooth

compactly supported wavelet basis. We define

SN(U)(x) =

q∑︂
p=1

N∑︂
j=0

∑︂
k∈Zd

cp,jk(U)ψp,jk(x) +
∑︂
k∈Zd

bk(U)ϕ(x− k).

Corollary 4.2.3 Let h∞v ⊂ h−a and let u ∈ h−a. Then u ∈ h∞v if and only if there exists K > 0

such that

∥SN(U)∥∞ ≤ Kw(2−N)

for any N .

Proof. Clearly, cp,jk(U) = limt→0 cp,jk(u(·, t)) and then

SN(U)(x) = lim
t→0

SN(u(·, t))(x), x ∈ Rd.

Thus if u ∈ h∞v the required estimate holds.

We want to prove the converse. Consider the sequence uN(·, y) = SN(U) ∗ P(y) of harmonic

functions in the upper half-space. By repeating the estimates from the proof of Theorem 4.2.2,

we conclude that uN ∈ h∞v and ∥uN∥v,∞ ≤ CK. Thus {uN} form a normal family in the upper

half-space and we can choose a convergent subsequence {uNj
} that converges to u0 ∈ h∞v . Further,

let U0 be the boundary values of u0. We have cp,jk(U0) = cp,jk(U) and bk(U0) = bk(U). This implies

U0 = U and since u0 and u are bounded in {(x, t), t ≥ 1} we conclude that u = u0 ∈ h∞v .
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Chapter 5 Growth classes on Lipschitz domains:

boundary oscillation

5.1 Proof of Theorems I.17 and I.18

5.1.1 Main approximation lemma

Given two functions f and g, we say that f ≲ g if there is a positive constant C =

C(w, d, ∥ϕ′∥∞, ∥u∥w,∞) such that f ≤ Cg. We write f ≈ g if f ≲ g and g ≲ f simultaneously.

Consider a positive decreasing sequence {sk}∞k=0 such that

w(sk) = 2k, k ∈ Z+,

and put

n0 = 0, nk = −
[︃
log sk
log 2

]︃
, k ∈ N

(we do not mind if nk = nk+1 for some k ∈ N, it can happen for fast growing weights).

It follows from the doubling property (I.37) that w(2−nk) ≈ 2k. Consider I(x, δ) defined in (I.43).

The approximation of I(x, δ) by martingales is provided by Lemma I.2 which we recall here.

Lemma 5.1.1 Assume that u ∈ h∞w (Ωϕ). Then for every x0 ∈ Rd there exists a probability measure

µ on Q(x0) and a (super)dyadic martingale S = {Sk,Fnk
, µ}∞k=0 on Q(x0) such that µ is absolutely

continuous with respect to the Lebesgue measure on Q(x0) and for every k ∈ Z+

|Sk(x)− I(x, sk)| ≲ 1, (5.1a)

|Sk(x)− Sk+1(x)| ≲ 1, x ∈ Q(x0). (5.1b)

5.1.2 How to deduce Theorem I.17

Assuming that Lemma 5.1.1 holds, we proceed by the standard argument. Fix any x0 ∈ Rd and

put

E = {x ∈ Q(x0) : lim
m→∞

|⟨S⟩m|(x) <∞}.

The inequality (5.1b) implies that ⟨S⟩2m ≲ m, m ≥ 1. Applying the Law of the Iterated Logarithm

for martingales to S (see, for example, Theorem 3.0.2 in [8]), we get

lim sup
m→∞

|Sm|(x)√
m log logm

≲ 1 µ a.e. x ∈ Q(x0) \ E.
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It is well known that for µ almost every x ∈ E the sequence {Sm(x)} is bounded, so (5.1a) implies

that the sequence {I(x, sm)} is bounded µ a.e. on E as well. It follows that

lim sup
m→∞

|I(x, sm)|√
m log logm

≲ 1 µ a.e. x ∈ Q(x0). (5.2)

Now for sm ≤ δ ≤ sm−1 and x ∈ Q(x0) we have

|I(x, sm)− I(x, δ)| ≤
∫︂ δ

sm

|u(x, ϕ(x) + y)| d
(︃

1

w(y)

)︃
≲ logw(sm)− logw(sm−1) = 1,

also, clearly, w(δ) ≥ w(sm−1) =
1
2
w(sm). Combined with (5.2) and the fact that µ is absolutely

continuous with respect to the Lebesgue measure, it gives us

lim sup
δ→∞

|I(x, δ)|√︁
logw(δ) log log logw(δ)

≲ 1, a.e. x ∈ Q(x0).

The inequality (I.44) follows immediately.

5.1.3 Proof of Lemma 5.1.1: auxiliary function H

The approximation of I(x, θ) by a Bloch function is covered by the following lemma

Lemma 5.1.2 Assume that u ∈ h∞w (Ωϕ). Put

H(x, t) =

∫︂ 1

0

u(x, t+ y) d

(︃
1

w(y)

)︃
, (x, t) ∈ Ωϕ. (5.3)

Then H belongs to B(Ωϕ) and ∥H∥B ≲ 1. Moreover

|H(x, ϕ(x) + θ)− I(x, θ)| ≲ 1, x ∈ Rd, 0 < θ ≤ 1. (5.4)

Proof. First we note that H is harmonic in Ωϕ (it is the average of harmonic functions). We

proceed by proving the following inequality

|∇u|(x, ϕ(x) + θ) ≲
w(θ)

θ
, x ∈ Rd, θ > 0. (5.5)

Fix any positive θ. Since ϕ is a Lipschitz function, we see that

dist((x, θ + ϕ(x)), ∂Ωϕ) ≈ θ for any x ∈ Rn and positive θ. It follows from (I.37) that for y ≥ θ
2

we have

|u(x, ϕ(x) + y)| ≤ w(dist(x, y + ϕ(x)), ∂Ωϕ)) ≲ w

(︃
θ

2

)︃
, (5.6)

so there exists a constant C = C(d, ϕ, w) such that

0 ≤ u(x, y) + Cw

(︃
θ

2

)︃
≤ (C + 1)w

(︃
θ

2

)︃
, (x, y) ∈ Ωϕ+ θ

2
.
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Then the estimate (5.5) follows from (I.37) and the Harnack inequality. For (x, θ) ∈ Ωϕ (5.5)

implies

|∇H| (x, ϕ(x) + θ) ≤
∫︂ 1

0

|∇u|(x, ϕ(x) + θ + y) d

(︃
1

w(y)

)︃
≲
∫︂ 1

0

w(θ + y)

θ + y
d

(︃
1

w(y)

)︃
=

∫︂ θ

0

w(θ + y)

θ + y
d

(︃
1

w(y)

)︃
+

∫︂ 1

θ

w(θ + y)

θ + y
d

(︃
1

w(y)

)︃
.

Since the function w(y)
y

is decreasing, we have

∫︂ θ

0

w(θ + y)

θ + y
d

(︃
1

w(y)

)︃
≤
∫︂ θ

0

w(θ)

θ
d

(︃
1

w(y)

)︃
=

1

θ
.

On the other hand,∫︂ 1

θ

w(θ + y)

θ + y
d

(︃
1

w(y)

)︃
≤
∫︂ 1

θ

w(y)

y
d

(︃
1

w(y)

)︃

≤
[log 1

θ
]∑︂

k=0

∫︂ 2k+1θ

2kθ

1

y
d log

1

w(y)
≤

[log 1
θ
]∑︂

k=0

1

2kθ

∫︂ 2k+1θ

2kθ

d log
1

w(y)

≤ 1

θ

[log 1
θ
]∑︂

k=0

2−k(logw(2kθ)− logw(2k+1θ))

≤ 1

θ

[log 1
θ
]∑︂

k=0

2−k(log
(︁
Dw(2k+1θ)

)︁
− logw(2k+1θ))

≤ logD

θ

[log 1
θ
]∑︂

k=0

2−k ≲
1

θ
.

(5.7)

Gathering the estimates, we arrive at

|∇H| (x, ϕ(x) + θ) ≲
1

θ
≈ 1

dist((x, ϕ(x) + θ), ∂Ωϕ)
,

and we get the first part of the lemma.

To prove (5.4) we write

H(x, ϕ(x) + θ)− I(x, θ)

=

∫︂ 1

0

u(x, ϕ(x) + θ + y) d

(︃
1

w(y)

)︃
−
∫︂ 1

θ

u(x, y) d

(︃
1

w(y)

)︃
=

∫︂ θ

0

u(x, ϕ(x) + θ + y) d

(︃
1

w(y)

)︃
+

∫︂ 1

θ

(u(x, ϕ(x) + θ + y)− u(x, ϕ(x+ y))) d

(︃
1

w(y)

)︃
.
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Following the same reasoning as above, we see that⃓⃓⃓⃓∫︂ θ

0

u(x, ϕ(x) + θ + y) d

(︃
1

w(y)

)︃⃓⃓⃓⃓
≤ w(θ)

∫︂ θ

0

d

(︃
1

w(y)

)︃
= 1.

Again, (5.5) implies that

⃓⃓⃓⃓∫︂ 1

θ

(u(x, ϕ(x) + θ + y)− u(x, ϕ(x+ y))) d

(︃
1

w(y)

)︃⃓⃓⃓⃓
≤
∫︂ 1

θ

∫︂ y+θ

y

|∇u|(x, ϕ(x) + s) ds d

(︃
1

w(y)

)︃
≤
∫︂ 1

θ

∫︂ y+θ

y

w(s)

s
ds d

(︃
1

w(y)

)︃
≤
∫︂ 1

θ

w(y)
θ

y
d

(︃
1

w(y)

)︃
≲ 1,

just like in (5.7). Combining these two inequalities we get (5.4).

5.1.4 Proof of Lemma 5.1.1: dyadic martingale

Once we obtained the intermediate approximation of I by a Bloch function, we can proceed to

martingales. It is well known (see, for example, [66]) that the Bloch functions in the unit disc

can (up to a constant error) be viewed as dyadic martingales. The case of Lipschitz domains was

considered by Llorente, Corollary 2 in [58] is the main instrument in the following argument.

Fix any point x0 ∈ Rd and let

A = ∥ϕ′∥∞
√
d, λ = 8 +

1

A
,

Ω1 = {(x, y) : x ∈ λQ(x0) : ϕ(x) ≤ y ≤ ϕ(x) + λA}.

The following proposition holds

Proposition 5.1.1 (Corollary 2, [58]) If v ∈ B(Ω1) then there exists a dyadic martingale M =

{Mk,Fk(x0), ω} in Q(x0) and a positive constant C = C(ϕ, d) such that ω is absolutely continuous

with respect to the Lebesgue measure on Q(x0), and for every k ∈ N if A2−(k+1) ≤ t ≤ A2−k, then

for every x ∈ Q(x0)

|Mk(x)− v(x, ϕ(x) + t)| ≤ C∥v∥B, (5.8a)

|Mk+1(x)−Mk(x)| ≤ C∥v∥B. (5.8b)

We apply this proposition to H and put

S = {Sk,Fnk
(x0), ω} := {Mnk

,Fnk
(x0), ω}.
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Now we prove (5.1a) and (5.1b). It follows from (5.8a) and (5.4) that

|Sk(x)− I(x, sk)| = |Mnk
(x)− I(x, sk)|

≤ |Mnk
(x)−H(x, ϕ(x) + A2−nk)|+ |H(x, ϕ(x) + A2−nk)−H(x, ϕ(x) + sk)|

+ |H(x, ϕ(x) + sk)− I(x, sk)| ≲ 1 +

∫︂ A2−nk

sk

|∇H(x, ϕ(x) + y)| dy

≲ 1, x ∈ Q(x0),

since ∥H∥B ≲ 1, and we get (5.1a). To obtain (5.1b) we note that

|Sk(x)− Sk+1(x)| = |Mnk
(x)−Mnk+1

(x)| ≤ |Mnk
(x)− I(x, sk)|

+ |I(x, sk)− I(x, sk+1)|+ |I(x, sk+1)−Mnk+1
(x)|

≲ 1 + |I(x, sk)− I(x, sk+1)|.

Clearly,

|I(x, sk)− I(x, sk+1)| ≤ w(sk)

∫︂ sk

sk+1

d

(︃
1

w(y)

)︃
= 2k(2−k − 2−k−1) =

1

2
,

and the inequality (5.1b) follows.

5.1.5 Proof of Theorem I.18

The proof is standard. We apply the usual ice-cream cone construction to Σ, i.e. consider the

domain

Ω =
⋃︂
x∈Σ

Γ(x,M),

where Γ(x,M) is the cone with vertex x and aperture M , Γ(x,M) = {(x̃, y) ∈ Rd+1
+ : |x̃ − x| ≤

My}. Clearly Ω is the area above the graph of some Lipschitz function ϕ with ∥ϕ′∥∞ = 1
M
, so that

Ω = Ωϕ. The condition (I.45) then implies that

|u(x, y)| ≤ Kw(y) ≲ w(dist((x, y), ∂Ω)), (x, y) ∈ Ω,

and we can apply Theorem I.17 to obtain

lim sup
δ→0

I(x, δ)√︁
logw(δ) log log logw(δ)

≤ C, a.e. x ∈ Rd.

Theorem I.18 follows immediately.

5.2 An example

In the proof of Theorem I.17 we introduced the harmonic function H which is shown to be a Bloch

function. In addition, the estimate (5.4) implies that H ∈ h∞logw(Ωϕ), and that the LIL in (I.44)
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holds for H as well,

lim sup
δ→0

H(x, δ)√︁
logw(δ) log log logw(δ)

≲ 1, a.e. x ∈ Rd. (5.9)

To obtain this estimate we used the special nature of H, namely that it was constructed on

u ∈ h∞w (Ωϕ). It is then natural to ask if an arbitrary function v ∈ h∞w0
(Ωϕ)

⋂︁
B(Ωϕ) satisfies the

following LIL

lim sup
δ→0

v(x, ϕ(x) + δ)√︁
w0(δ) log logw0(δ)

≲ 1, a.e. x ∈ Rn. (5.10)

The answer to this question is negative as provided by the following proposition.

Proposition 5.2.1 Let w0(y) = log log e
y
+1, y ∈ (0, 1]. There exists a constant A > 0, a function

v ∈ h∞w0
(R2

+)
⋂︁

B(R2
+), a number k0 ∈ N and a sequence {yk}∞k=k0

→ 0 such that⃓⃓⃓⃓{︃
t ∈ [0, 1] : |v(t, yk)| ≥

w0(yk)

A

}︃⃓⃓⃓⃓
≥ 1

10
. (5.11)

It is known that a function in h∞w (R2
+) can grow as fast as w only on small part of vertical

rays {x + iy}, y ∈ R+, however it can attain the maximal growth on the subsets of those rays

for a.e. x ∈ R (see [65], [14]). Unfortunately, we can not use the example provided there, since it

is constructed as a lacunary trigonometric series, for which, as it can be shown, (5.9) holds if it

belongs to the Bloch class.

Proof. Given two real-valued functions f, g ∈ L2(Rn) we denote the scalar product
∫︁
Rn f(t)g(t)dt

by ⟨f, g⟩. Consider a function φ : R ↦→ R such that suppφ ⊂ [0, 1], φ ∈ C10, ∥φ∥∞ ≤ 1. We

also require that
∫︁
R φ(t) dt = 0 and ⟨φ, ψ⟩ ≠ 0 (where ψ is a Haar wavelet mentioned earlier). For

example we can take the suitable renormalization of the Daubechies wavelet (or any other smooth

wavelet with compact support that satisfies our conditions). By P(y) we denote the Poisson kernel

for the halfplane, P(y)(t) =
y

π(y2+t2)
, y > 0, t ∈ R.

The idea is to obtain a functional series of the form

k∑︂
j=0

∑︂
I∈∆j

cIφI(t) := Φk(t), t ∈ R, (5.12)

that satisfies properties similar to those in the statement, and then prove that the corresponding

Bloch function provides the required example. To elaborate we first construct Φk and an increasing

sequence {bj}∞j=1 ⊂ Z+ in such a way that we have

∥Φk − Φk−1∥∞ ≤ 1, (5.13a)

∥Φk∥∞ ≤ w0(2
−k) + 2, (5.13b)⃓⃓⃓{︂

t ∈ (0, 1] : |Φbk |(t) ≥
w0(2

−bk )
4

}︂⃓⃓⃓
≥ 1

10
, (5.13c)

for any integer k ≥ k0.
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The property (5.13a) is an analogue of the Bloch condition, (5.13b) is the growth restriction,

and (5.13c) corresponds to (5.11) (so that there is no LIL for Φk with w0).

5.2.1 Construction of {bj} and Φk

First we chose a ∈ N such that 2−a+1∥φ′∥∞ ≤ 1
4
|⟨φ, ψ⟩|. Now chose a natural j0 ≥ 4∥φ′∥∞ + 4

and an increasing sequence bj ∈ N in such a way that

b1 = 0,
bj
a

∈ N,

j − 1 ≤ w0(2
−bj) ≤ j,(︃

bj − bj−1

a
− 1

)︃
⟨φ, ψ⟩2 ≥ 4j2, j ≥ j0.

(5.14)

It is not hard to verify that such choice is possible (we remind that w0(y) = log log e
y
+ 1).

The functions Φk are constructed via double induction, first on j, and then on m between bj

and bj+1. Put Φ0(t) = φ(t). Assume now that we obtained Φbj for some j ∈ N. Consider all the
intervals I ∈ ∆bj such that supt∈I |Φbj |(t) > j, we denote the set of these intervals by Ebj

j . Now

suppose that we have constructed Φm−1 and Em−1
j for some m, bj + 1 ≤ m ≤ bj+1. If

m
a
∈ Z, then

for I ∈ ∆m and t ∈ I let

Φm(t) = Φm−1(t), t ∈
⋃︁

J∈Em−1
j

J, (5.15a)

Φm(t) = Φm−1(t) + φI(t), t /∈
⋃︁

J∈Em−1
j

J, (5.15b)

Em
j = Em−1

j

⋃︁
{J ∈ ∆m : supt∈J |Φm(t)| > j}. (5.15c)

Otherwise we put

Φm(t) = Φm−1(t), t ∈ (0, 1], (5.16a)

Em
j = Em−1

j . (5.16b)

Finally, put

Ej =
bj+1−1⋃︂
m=bj

Em
j = Ebj+1−1

j .

What we do here is, essentially, a stopping time procedure applied (instead of martingales as usual)

to the functional series of the form like in (5.12). We see that if I ∈ Ej, then the construction is

stopped at this interval, and Φbj+1
(t) = Φm(t), t ∈ I, m = rank I, where rank of an interval is just

its depth in the respective tree, or rank I = | log2 |I|| . If, on the other hand, t ∈ (0, 1] \
⋃︁

J∈Ej J ,

then the construction happens on every step (divisible by a) up until bj+1. The set (0, 1] \
⋃︁

J∈Ej J

can be decomposed into a disjoint union of intervals from ∆bj+1
, we denote the set of these intervals

by Gj.
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Clearly Φm is of the form like in (5.12), moreover,

Φbj+1
(t) = Φbj(t) +

bj+1∑︂
m=bj+1

∑︂
J∈∆m

cJφJ(t), t ∈ (0, 1],

where cJ = 1 only if rank J
a

∈ Z and there is no interval I ∈ Ej such that I ⊃ J , cJ = 0 otherwise.

We also see that

sup
t∈I

|Φbj+1
|(t) > j, I ∈ Ej;

|Φbj+1
| ≤ j + 1, j ∈ N.

We are left to check (5.13a)-(5.13c). The condition (5.13a) follows straight from (5.15), since

∥φI∥∞ = 1 for any interval I. For any k ∈ N there exists jk ∈ N such that bjk ≤ k ≤ bjk+1 − 1.

We therefore have

∥Φk∥∞ ≤ jk + 1 ≤ w0(2
−bjk ) + 2 ≤ w0(2

−k) + 2,

and we obtain (5.13b).

5.2.2 Proof of (5.13c): martingale decomposition

Pick any j ≥ j0 (we remind that j0 was defined in (5.14)). Since j0 ≥ 4∥φ′∥∞ + 4, we see that
j
2
−∥φ′∥∞ ≥ j

2
− j0

4
≥ j

4
, and, due to (5.14) we have j

2
−∥φ′∥∞ ≥ w0(2

−bj )
4

. It follows that to obtain

(5.13c) it is enough to prove⃓⃓⃓⃓{︃
t ∈ (0, 1] : |Φbj+1

(t)| ≥ j

2
− ∥φ′∥∞

}︃⃓⃓⃓⃓
≥ 1

10
. (5.17)

The first step is to prove that |Φbj+1
| is ”sufficiently large” on the intervals from Ej, namely

that for any I ∈ Ej we have

|Φbj+1
|(t) ≥ j − 2∥φ′∥∞, t ∈ I. (5.18)

Indeed, for m = rank I we have

|Φ′
m|(t) ≤

∑︂
J∈∆: t∈J, rank J≤m

cJ∥φ′
J∥∞ = ∥φ′∥∞

∑︂
J∈∆: t∈J, rank J≤m

cJ
|J |

≤ 2m+1∥φ′∥∞, t ∈ (0, 1],

since |cJ | ≤ 1 for any J ∈ ∆. Again we see that Φβj+1
(t) = Φm(t) on I, therefore

|supt∈I Φm(t)− inft∈I Φm(t)| ≤
∫︁
I
|Φ′

m(t)| dt ≤ 2∥φ′∥∞, and we get (5.18).

Now we show that ⃓⃓⃓⃓
⃓⃓ ⋃︂
J∈Gj

J

⃓⃓⃓⃓
⃓⃓ ≤ 3

4
, (5.19)

combined with (5.18) it implies (5.17). In order to do this consider the Haar decomposition of
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Φbj+1
,

Φbj+1
=

∞∑︂
m=0

∑︂
I∈∆m

bIψI , (5.20)

where bI = 2rank I⟨Φbj+1
, ψI⟩ = 2rank I

∑︁bj+1

k=0

∑︁
J∈∆k

cJ⟨φJ , ψI⟩, and cJ is either 0 or 1. Here we sum

from m = 0, since suppΦk ⊂ [0, 1] and
∫︁ 1

0
Φk(t) dt = 0 for any k ∈ Z+. If we put

S̃k =
k∑︂

m=0

∑︂
I∈∆m

bIψI ,

we see that {S̃k,Fk, | · |} is a dyadic martingale on (0, 1]. Since Φbj+1
∈ C10(R), the sum on the

right-hand side in (5.20) converges to Φbj+1
uniformly on R as k → ∞. It follows immediately that

⟨S̃⟩k converges uniformly to a bounded limit which we denote by ⟨S̃⟩∞.

Our goal here is to prove that the quadratic function of S̃ is ”big” on the intervals from Gj, so

that we can use the standard dyadic martingale methods to estimate the size of
⋃︁

J∈Gj
J . For any

k ∈ Z+, the following equality holds∫︂ 1

0

⟨S̃⟩2k(t) dt =
∫︂ 1

0

S̃
2

k(t) dt. (5.21)

Assume for a moment that we know that

⟨S̃⟩2∞(t) ≥ 4j2, t ∈
⋃︂
J∈Gj

J. (5.22)

Then (5.21) implies that

4j2 ·

⃓⃓⃓⃓
⃓⃓ ⋃︂
J∈Gj

J

⃓⃓⃓⃓
⃓⃓ ≤ ∫︂⋃︁

J∈Gj
J

⟨S̃⟩2∞(t) dt ≤
∫︂ 1

0

⟨S̃⟩2∞(t) dt

=

∫︂ 1

0

S̃
2

∞(t) dt =

∫︂ 1

0

Φ2
bj+1

(t) dt ≤ (j + 1)2,

and (5.19) follows immediately. It remains to prove the estimate (5.22).

5.2.3 Proof of (5.13c): inequality (5.22)

First we show that if cI = 1 for some I ∈ ∆m, bj ≤ m ≤ bj+1 − 1, then

|bI | ≥
1

2
|⟨φ, ψ⟩| . (5.23)
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Fix such an interval I. For any J ∈ ∆k, k ≤ m, the standard calculation gives

|⟨φJ , ψI⟩|

=

⃓⃓⃓⃓∫︂
R
φ(2kt− xJ)ψ(2

mt− xI) dt

⃓⃓⃓⃓
=

⃓⃓⃓⃓∫︂
R
φ(2k(t− 2−mxI)− xJ)ψ(2

mt) dt

⃓⃓⃓⃓
= 2−k

⃓⃓⃓⃓∫︂
R
φ(t− 2k−mxI − xJ)ψ(2

m−kt) dt

⃓⃓⃓⃓
= 2−k

⃓⃓⃓⃓∫︂
R

(︁
φ(t− 2k−mxI − xJ)− φ(−2k−mxI − xJ)

)︁
ψ(2m−kt) dt

⃓⃓⃓⃓
= 2−k

⃓⃓⃓⃓
⃓
∫︂
R

∫︂ t−2k−mxI−xJ

−2k−mxI−xJ

φ′(s) dsψ(2m−kt) dt

⃓⃓⃓⃓
⃓ ≤ 2−k∥φ′∥∞

∫︂
R

⃓⃓
tψ(2m−kt)

⃓⃓
dt

= 2k−2m∥φ′∥∞
∫︂
R
|tψ(t)| dt ≤ 2k−2m∥φ′∥∞.

Now we see that if k > m, then ⟨φJ , ψI⟩ = 0 for any J ∈ ∆k, and if k ≤ m, then there exists at

most one J ∈ ∆k such that ⟨φJ , ψI⟩ ≠ 0. We therefore have

|bI | = 2m

⃓⃓⃓⃓
⃓⃓bj+1∑︂
k=0

∑︂
J∈∆k

cJ⟨φJ , ψI⟩

⃓⃓⃓⃓
⃓⃓ = 2m

⃓⃓⃓⃓
⃓ ∑︂
k≤m,J∈∆k, J⊃I

cJ⟨φJ , ψI⟩

⃓⃓⃓⃓
⃓

≥ 2m |⟨φI , ψI⟩| − 2m
∑︂

k≤m−1, J∈∆k, J⊃I

|cJ ||⟨φJ , ψI⟩|

≥ ⟨φ, ψ⟩ − 2m
∑︂

k≤m−1, J∈∆k, J⊃I

|cJ |∥φ′∥∞2k−2m

≥ ⟨φ, ψ⟩ − ∥φ′∥∞
∑︂

k≤m−1, J∈∆k, J⊃I

2k−m|cJ |.

It follows from (5.15b) that if cJ = 1 then cJ = 0 for J ∈ ∆k,m−a < k ≤ m−1 (the decomposition

of Φbj+1
has very sparse coefficients). Combined with the choice of a, it gives

|⟨φ, ψ⟩| − ∥φ′∥∞
∑︂

k≤m−1, J∈∆k, J⊃I

2k−m|cJ | ≥ ⟨φ, ψ⟩ − ∥φ′∥∞2−a ≥ 1

2
|⟨ψ, φ⟩|,

and we have (5.23).

Fix any I ∈ Gj. Again we note that cJ = 1 for any J ∈ ∆m such that m
a

∈ Z, J ⊃ I and

bj ≤ m ≤ bj+1 − 1. Therefore (5.23) implies that |bJ | ≥ 1
2
|⟨φ, ψ⟩| for such intervals J , and due to

(5.14) we have

⟨S̃⟩2∞(t) ≥
∑︂

bj≤m≤bj+1−1, m
a
∈Z, J∈∆m, t∈J

|bJ |2 ≥
1

4

(︃
bj+1 − bj

a
− 1

)︃
|⟨φ, ψ⟩|2 ≥ 100j2,

for t ∈ I, and we get (5.22).
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5.2.4 How to create a Bloch function from Φj

Let

vk(x, y) =
(︁
Φk ∗ P(y)

)︁
(x), x ∈ R, k ≥ k0.

First we show that vk → v as k → ∞, where v is a harmonic function.

Fix any y > 0. Since cI is either 0 or 1, we have for natural m ≤ n

|vm(x, y)− vn(x, y)|

=

⃓⃓⃓⃓
⃓⃓ n∑︂
j=m+1

∑︂
I∈∆j

cIφI ∗ P(y)

⃓⃓⃓⃓
⃓⃓ (x) ≤ n∑︂

j=m+1

∑︂
I∈∆j

|cI |
⃓⃓⃓⃓∫︂

R
φI(t)P(y)(x− t) dt

⃓⃓⃓⃓

≤
n∑︂

j=m+1

2j−1∑︂
i=0

⃓⃓⃓⃓∫︂
R
φ(2jt)P(y)

(︃
x− t−

(︃
i+

1

2

)︃
2−j

)︃
dt

⃓⃓⃓⃓
.

A standard calculation gives

2j−1∑︂
i=0

⃓⃓⃓⃓∫︂
R
φ(2jt)P(y)

(︃
x− t−

(︃
i+

1

2

)︃
2−j

)︃
dt

⃓⃓⃓⃓

=
2j−1∑︂
i=0

⃓⃓⃓⃓∫︂
R
φ(2jt)

(︃
P(y)

(︃
x− t−

(︃
i+

1

2

)︃
2−j

)︃
− P(y)

(︃
x−

(︃
i+

3

2

)︃
2−j

)︃)︃
dt

⃓⃓⃓⃓

≤
2j−1∑︂
i=0

⃓⃓⃓⃓
⃓
∫︂ 2−j

y

0

φ(2jyt)

(︃
P

(︃
x

y
− t−

i+ 1
2

y
2−j

)︃
− P

(︃
x

y
−
i+ 3

2

y
2−j

)︃)︃
dt

⃓⃓⃓⃓
⃓

≤
2j−1∑︂
i=0

⃓⃓⃓⃓
⃓⃓∫︂ 2−j

y

0

φ(2jyt)

∫︂ x
y
−t− i+1

2
y

2−j

x
y
− i+3

2
y

2−j

|P ′|(s) ds dt

⃓⃓⃓⃓
⃓⃓

≤
∫︂ 2−j

y

0

|φ(2jyt)|
2j−1∑︂
i=0

∫︂ x
y
−t− i+1

2
y

2−j

x
y
− i+3

2
y

2−j

|P ′|(s) ds dt

≤
∫︂ 2−j

y

0

|φ(2jyt)|
∫︂
R
|P ′|(s) ds dt ≤ C

2−j

y
, x ∈ R, y > 0, j ∈ N.

(5.24)

We therefore have

|vm(x, y)− vn(x, y)| ≤ C

n∑︂
j=m+1

2−j

y
, x ∈ R, y > 0, (5.25)

and the uniform convergence follows immediately.

Next we show that v satisfies the h∞w0
growth condition. For y ≥ 2−k (5.25) implies that

|v(x, y)− vk(x, y)| ≤ C, x ∈ R.
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Combined with (5.13b) and definition of w0 this implies that

|v(x, y)| ≤ C + |vk(x, y)| = C +
⃓⃓
Φk ∗ P(y)

⃓⃓
(x)

≤ C + w0(2
−k) ≤ Cw0(y), x ∈ R, 2−k+1 ≥ y ≥ 2−k, k ∈ N,

and, therefore, v ∈ h∞w0
.

Now we prove that v ∈ B(R2
+). Fix any positive y ≤ 1 and m ∈ Z such that 2−m+1 ≥ y ≥ 2−m.

We have

|∇v(x, y)| ≤ |∇v(x, y)−∇vm(x, y)|+ |∇vm(x, y)| , x ∈ R.

Repeating the estimate in (5.24) verbatim we get for any x ∈ R,

|∇v(x, y)−∇vm(x, y)|

≤
⃓⃓⃓⃓
∂

∂y
v(x, y)− ∂

∂y
vm(x, y)

⃓⃓⃓⃓
+

⃓⃓⃓⃓
∂

∂x
v(x, y)− ∂

∂x
vm(x, y)

⃓⃓⃓⃓

=

⃓⃓⃓⃓
⃓⃓ ∞∑︂
j=m+1

∑︂
I∈∆j

cIφI ∗
(︃
∂

∂y
P(y)

)︃⃓⃓⃓⃓⃓⃓ (x) +
⃓⃓⃓⃓
⃓⃓ ∞∑︂
j=m+1

∑︂
I∈∆j

cIφI ∗
(︃
∂

∂x
P(y)

)︃⃓⃓⃓⃓⃓⃓ (x)
≤ C2−m

y2
≤ C

y
. (5.26)

Recall that φ ∈ C10(R) and that for any two different intervals I, J ∈ ∆j the supports of φI and

φJ are disjoint. A simple rescaling gives⃓⃓⃓⃓
⃓⃓∑︂
I∈∆j

cIφI ∗
(︃
∂

∂x
P(y)

)︃⃓⃓⃓⃓⃓⃓ (x) +
⃓⃓⃓⃓
⃓⃓∑︂
I∈∆j

cIφI ∗
(︃
∂

∂y
P(y)

)︃⃓⃓⃓⃓⃓⃓ (x) ≤ C2j, x ∈ R, y > 0, j ∈ N.

It follows that⃓⃓⃓⃓
∂

∂x
vm(x, y)

⃓⃓⃓⃓
+

⃓⃓⃓⃓
∂

∂y
vm(x, y)

⃓⃓⃓⃓
=

⃓⃓⃓⃓
Φm ∗

(︃
∂

∂x
P(y)

)︃⃓⃓⃓⃓
(x) +

⃓⃓⃓⃓
Φm ∗

(︃
∂

∂y
P(y)

)︃⃓⃓⃓⃓
(x)

≤ C

m∑︂
j=0

2j = C2m+1 ≤ C

y
, x ∈ R.

This estimate and (5.26) imply that v ∈ B(R2
+).

It remains to prove (5.11). Fix any k ≥ k0. Since ∥Φ′
bk
∥∞ ≤ 2bk+1∥φ′∥∞, we see that for any

x ∈ (0, 1] such that |Φbk(x)| ≥ k−1
2
, there exists an interval Ix = [x− ρk, x+ ρk], ρk =

2−bk−2

∥φ′∥∞ , such

that |Φbk(t)| ≥ k−3
2
, t ∈ Ix. Clearly then∫︂

R\Ix
Py(x− t) dt ≤ 1

4
,
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for 0 < y ≤ ρk
10
. Now if we fix such an x and put yk =

2−bk−2

10∥φ′∥∞ , we have

|vbk(x, y)| =
⃓⃓
Φbk ∗ P(y)

⃓⃓
(x)

≥
⃓⃓⃓⃓∫︂

Ix

Φbk(t)P(y)(x− t) dt

⃓⃓⃓⃓
−
⃓⃓⃓⃓∫︂

R\Ix
Φbk(t)P(y)(x− t) dt

⃓⃓⃓⃓
≥ k − 3

2
− ∥Φbk∥∞

∫︂
R\Ix

P(y)(x− t) dt ≥ k − 3

2
− k + 2

4

=
k − 4

2
≥ w0(2

−bk)− 4

2
,

so that ⃓⃓⃓⃓{︃
x ∈ (0, 1] : |vbk | (x, y) ≥

w0(2
−bk)− 4

2

}︃⃓⃓⃓⃓
≥ 1

10
, 0 < y ≤ yk.

Again, following (5.24), we obtain

|vβk
(x, yk)− v(x, yk)| ≤ C0∥φ′∥∞. (5.27)

The doubling property of w0 implies

w0(yk) = w0

(︃
2−βk−2

10∥φ′∥∞

)︃
≤ C1

w0(2
−βk)− 4

2
− C0∥φ′∥∞ ≤ C

w0(2
−βk)− 4

2

for k large enough. We therefore have⃓⃓⃓⃓{︃
x ∈ (0, 1] : |v| (x, yk) ≥

w0(yk)

C

}︃⃓⃓⃓⃓
≥ 1

10
, yk =

2−bk−2

10∥φ′∥∞
,

which is (5.11).

The way we did the construction of v is, probably, not the most effective one. Unfortunately

we could not use here the dyadic martingale methods, as described, for example, in [36]. Instead

we decided to employ the wavelet-like series for Bloch functions (see [69] for the description of

B(R2
+) in terms of wavelet representation).

Note that the averaging process u(x, δ) → H(x, δ) =
∫︁ 1

0
u(x, y + δ) d 1

w(y)
can be viewed as an

application of some multiplier M to the boundary values of u,

ˆ︃Mf(τ) = ˆ︁f(τ)∫︂ 1

0

e−2πy|τ |d
1

w(y)
, τ ∈ R,

where f = u(·, 0) (these boundary values exist in some sense, at least as a distribution). The

doubling condition (I.37) implies that∫︂ 1

0

e−2πy|τ |d
1

w(y)
≈ 1

w
(︂

1
|τ |

)︂ , |τ | > 0,

so we basically divide the Fourier transform of u(·, 0) by w. It would be interesting to find out
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the image of M , we see at least that Mu ∈ h∞w (Rn+1
+ )

⋂︁
B(Rn+1

+ ) if u ∈ h∞w (Rn+1
+ ). The example

in Proposition 5.2.1 shows that the image of M can (in the case of slowly growing weights) be a

proper subset of h∞w (Rn+1
+ )

⋂︁
B(Rn+1

+ ). For more information about the multipliers on the growth

spaces see [30].
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Chapter 6 Growth classes: divided differences

6.1 Proof of Theorem 6.1.1

The proof consists of two parts. First we show the dyadic martingale version of Theorem I.19. Let

us recall its statement.

Theorem 6.1.1 Let 0 < a < 1. Then there exists a function f ∈ Hola(R) such that at almost

every x ∈ R one has

lim sup
h→0+

Da(f)(x, h) > 0

and

lim inf
h→0+

Da(f)(x, h) = 0.

Then we approximate the a-divided differences by their discrete versions arriving at the con-

tinuous statement.

Lemma 6.1.1 Let 0 < ε < 1. Then there exists a dyadic martingale {Sn} with supn 2
−nε∥Sn∥∞ <

∞, such that

lim sup
n→∞

2−nεSn(x) > 0,

and

lim inf
n→∞

2−nεSn(x) ≥ 0

for almost every x ∈ R. Actually the following uniform version of the last inequality holds: for any

δ > 0 there exists n0 ∈ N such that

2−nεSn(x) ≥ −δ for any n ≥ n0, x ∈ R.

Proof. It is enough to define {Sn} on the unit interval [0, 1). It will be constructed via a double

induction argument. More precisely, we define a pair of increasing sequences {kjn}1≤n≤nj
and

Mj, n ∈ Z+, of natural numbers satisfying

k00 +M0 ≤ k01 ≤ k01 +M0 ≤ · · · ≤ k0n0 +M0 ≤ k10 ≤ k10 +M1 · · · ≤ k1n1 +M1 ≤ . . .

≤ k20 ≤ · · · ≤ k(j−1)nj−1
+Mj−1 ≤ kj0 ≤ · · · ≤ kjnj

+Mj ≤ . . . ,

and a martingale {Sm} such that: (a) for any n ≥ 0 there exists j ≥ 0 such that 2−mεSm ≥ −2−n

for m ≥ kjnj
+Mj, and (b) 2−mεSm ≥ 1

3
for at least one number m between kj0 and kjnj

+Mj on

a large portion of [0, 1). We start describing the building block of our construction.
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Block construction

Given a dyadic interval J with |J | = 2−K and a number δ > 0 we define a building block W (δ, J)

as follows.

Consider a nested sequence of dyadic subintervals of J that shrinks to its left end-point. In

other words, let J0 := J , and, given Jk−1 define Jk := J−
k−1, k ≥ 1 (where I− is the left half-interval

of I). Let M =M(δ) :=
[︂

log 1
2δ

(1−ε) log 2

]︂
+ 1, so that

1

2
≤ 2M(1−ε) · δ ≤ 1

2ε
.

Now let hI be a (slightly renormalized) Haar function corresponding to a dyadic interval I, hI(x) =

2χI− − χI , and define

sk,J(x) := δ · 2Kε · 2khJk(x), 0 ≤ k ≤M.

Since |Jk| = 2−K−k, then, clearly, sk,J is a martingale difference of rank K + k, and

∥2−(K+k)ε

k∑︂
m=0

sm,J∥∞ ≤ 2δ2k(1−ε) ≤ 21−ε, 0 ≤ k ≤M. (6.1)

On the other hand

2−(K+k)ε

k∑︂
m=0

sm,J ≥ −2−kε · δ ≥ −δ. (6.2)

Define

W (δ, J) :=
M∑︂
k=0

sk,J ,

and observe that

2−(M+K)ε∥W (δ, J)∥∞ ≤ 21−ε, (6.3)

and

2−(M+K)εW (δ, J)(x) ≥ 1

2

(︁
1− 2−M

)︁
, x ∈ JM . (6.4)

In particular, |JM | = 2−M |J |. To summarize, we have constructed a step function W (δ, J) sup-

ported on J whose values are −δ2Kε on J \ JM , and δ2Kε(2M − 1) on JM . Since 2M(1−ε)δ ≈ 1, we

have δ2Kε ≈ |J |−ε2M(ε−1) and therefore δ2Kε(2M − 1) ≈ |JM |−ε.

Arranging the blocks, first step

Let δj := 2−j−2, j ∈ Z+. We define a (very lacunary) sequence kmn of numbers in the following

way. Put k00 := 0, J = [0, 1), and

SM(δ0) := W (δ0, J).

Now let k01 be such that

2−k01ε∥SM(δ0)∥∞ ≤ δ0
2
.
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Then we let

Si := SM(δ0), M(δ0) ≤ i ≤ k01,

Sk01+M(δ0) := SM(δ0) +
∑︂

J∈∆k01

W (δ0, J),

We remind that ∆i is the collection of dyadic intervals of rank i.

We continue iterating the procedure. To elaborate, assume we have defined numbers k0n and the

martingale Si with 0 ≤ i ≤ k0n +M(δ0). Then we pick k0(n+1) in such a way that

2−k0(n+1)ε∥Sk0n+M(δ0)∥∞ ≤ δ0
2
,

and

Si := Sk0n+M(δ0), k0n +M(δ0) ≤ i < k0(n+1),

Sk0(n+1)+M(δ0) := Sk0n+M(δ0) +
∑︂

J∈∆k0(n+1)

W (δ0, J).

We repeat the construction until we have n = n0 :=
[︂
log(1−2−M(δ0))

log δ0

]︂
+ 1.

Arranging the blocks, second step

We continue to iterate, now also with respect to the parameter j. Assume that we have defined

a sequence of numbers {kmn}j−1
m=0 = {{k0n}n0

n=0, . . . , {k(j−1)n}
nj−1

n=0 } and a sequence of partial sums

{Si}, i = 0, . . . , k(j−1)nj−1
+M(δj−1). We apply the procedure from the previous step, now using

δj in place of δ0. In other words, we fix a number kj0 ≥ k(j−1)nj−1
such that

2−kj0ε∥Sk(j−1)nj−1
+M(δj−1)∥ ≤ δj

2
,

and define Si for k(j−1)nj−1
+M(δj−1) ≤ i ≤ kj0 +M(δj) as above. Then we proceed to kj1 and

so on, until we have n = nj =
[︂
log(1−2−M(δj))

log δj

]︂
+ 1 (by our assumptions mj = M(δj) ≈ j, and

nj ≈ j2j).

Behaviour of {Sm}

First we claim that Si satisfies the growth condition, that is

sup
i

2−iε∥Si∥∞ ≤ 21−ε.

Indeed, fix a number i and consider the largest kjn such that kjn ≤ i. We have two options: (a)

kjn +M(δj) < i, and (b) kjn +M(δj) ≥ i. For the option (a) the martingale just stops until we
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hit the next number kj(n+1) or k(j+1)0, in any case, clearly, Si = Skjn+M(δj), and we have

2−iε∥Si∥∞ = 2−iε∥Skjn+M(δj)∥∞ ≤ 2−(kjn+M(δj))ε∥Skjn+M(δj)∥∞ ≤

2−(kjn+M(δj))ε
(︁
∥Sm∥∞ + ∥Skjn+M(δj) − Sm∥∞

)︁
,

where m = m(n, j) is either kj(n−1) +M(δj), if n ≥ 1, or k(j−1)nj−1
+M(δj−1), if n = 0. In both

cases kjn was chosen in such a way that

2−(kjn+M(δj))ε∥Sm∥∞ ≤ 2−kjnε∥Sm∥∞ ≤ δj
2
.

On the other hand, by construction we have

Skjn+M(δj) − Sm =
∑︂

J∈∆kjn

W (δj, J),

hence ∥Skjn+M(δj) − Sm∥∞ = ∥W (δj, J)∥∞ for any J ∈ ∆knj
. By our choice of W (δj, J) (see (6.3))

we have

2−(knj+M(δj))ε∥W (δj, J)∥∞ ≤ 21−ε.

Option (b) is handled in the same way, only now we use estimate (6.1) instead.

Next we aim to show that

lim inf
i→∞

2−iεSi(x) ≥ 0, x ∈ [0, 1).

Again, it follows from our construction, since the martingale Si consists of very sparse and in-

dependent pieces, and by the choice of kjn we can always consider only the tail end of it. In

particular, if i ≥ kjn +M(δj) for some j, n, then by (6.2) we have 2−iεW (δj, J) ≥ −2δj for any

J ∈ ∆kjn , hence using the previous argument we get 2−iεSi ≥ −3δj, which proves the estimate, as

well as the last part of the statement.

Finally we want to estimate the size of the set E of points x ∈ R where lim supi→∞ 2−iεSi(x) ≥
1
5
. Fix a pair of numbers j ∈ Z+ and 0 ≤ n ≤ nj − 1. Since, as before,

2−(kjn+M(δj))ε∥Skjn+M(δj)∥∞ ≥ 2−(kjn+M(δj))ε∥W (δj, J)∥∞ − δj
2

for any J ∈ ∆kjn , we can only consider the respective building block W (δj, J). Now, if |J | =
2−kjn , we have seen in (6.4) that 2−(kjn+M(δj))εW (δj, J) ≥ 1

4
on the interval JM(δj) with |JM(δj)| =

2−M(δj)|J |. On the other hand, if I is the dyadic interval of the next construction step in J , that

is |I| = 2−kj(n+1) , I ⊂ J , again by (6.4) we have 2−(kj(n+1)+M(δj))εW (δj, I) ≥ 1
4
on IM(δj). Denote

by F(J) the set of all such intervals, that is,

F(J) = {IM(δj) ⊂ I : I ∈ ∆kj(n+1)
(J)},

where ∆m(J) is the collection of dyadic intervals of rank m that lie inside J . The intervals in F(J)

are disjoint, and they are uniformly distributed over J (for any I ∈ ∆kj(n+1)
(J) recall that IM(δj)
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is a leftmost dyadic subinterval of I of rank kj(n+1) +M(δj)). It follows that

⃓⃓⃓⃓
⃓⃓
⎛⎝⋃︂

F(J)

IM(δj)

⎞⎠ \ JM(δj)

⃓⃓⃓⃓
⃓⃓ = ∑︂

IM(δj)
∈F(J), IM(δj)

⊂J\JM(δj)

|IM(δj)| =

(2− 2−M(δj))2−M(δj)|J \ JM(δj)|.

(6.5)

An interval I ′ is called δj-special, if there exists a number 0 ≤ n ≤ nj and an interval J ∈ ∆kjn

such that I ′ = JM(δj), that is I
′ is the left-most dyadic subinterval of J of rank kjn +M(δj). The

collection of δj-special intervals is denoted by Fj. As before, |I ′|εW (δj, J) ≥ 1
4
on I ′, and therefore

|I ′|εS(I ′) ≥ 1
5
(where S(I) := Si(x) with x ∈ I and i = log2 |I|−1). It follows from (6.5) that⃓⃓⃓⃓

⃓⃓ ⋃︂
I′∈Fj

I ′

⃓⃓⃓⃓
⃓⃓ ≥ 1− (1− 2−M(δj))nj .

Therefore the set Fj of points x ∈ [0, 1) where

2−(kjn+M(δj))ε
∑︂

J∈∆kjn

W (δj, J)(x) ≤
1

4

for all n = 0, . . . , nj, has small Lebesgue measure, namely

|Fj| ≤ (1− 2−M(δj))nj ≲ δj

by our choice of nj. Hence ⃓⃓⃓⃓{︃
x : 2−iεSi(x) ≤

1

5
, kj0 ≤ i ≤ kjnj

}︃⃓⃓⃓⃓
≲ δj.

Since
∑︁

j δj ≤ 1, we see immediately that⃓⃓⃓⃓{︃
x : lim sup

i→∞
2−iεSi(x) ≤

1

5

}︃⃓⃓⃓⃓
= 0.

We make another observation which will be useful later. Given a δj-special interval I
′ consider

the dyadic interval Ĩ of the same length that lies immediately on the left of I ′, in other words, if

I ′ = [i2−m, (i+1)2−m), then Ĩ := [(i− 1)2−m, i2−m) (if the left end-point of I ′ is 0, we put Ĩ := ∅,
so the intervals that fall out of [0, 1) are discarded). These intervals are called left-δj-special, and

their collection is denoted by F̃ j. Arguing as above we see that⃓⃓⃓⃓
⃓⃓[0, 1) \

⎛⎝ ⋃︂
Ĩ∈F̃j

Ĩ

⎞⎠⃓⃓⃓⃓⃓⃓ ≤ 2(1− 2−M(δj))nj ≲ δj, (6.6)
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so that almost every point x ∈ [0, 1) lies in
⋃︁

Ĩ∈F̃j
Ĩ for infinitely many j ∈ Z+.

Now we are ready to prove Theorem 6.1.1.

Proof of Theorem 6.1.1. Fix ε := 1 − a. Consider the martingale {Sn} constructed in Lemma

6.1.1. We can assume S0 = 0. We will define a function f defined in the real line as follows. Let

f(0) = 0. The relation f(bn) − f(an) := 2−nSn(I) for any I = [an, bn) ∈ ∆n, n ≥ 0, defines f on

the dyadic points of [0, 1] and we extend f to non-dyadic points of [0, 1] by continuity. Observe

that since S0 = 0 we have f(0) = f(1) = 0. Finally we extend f from [0, 1] to the whole real

line by periodicity. Let us prove that f ∈ Holα. Fix a point x ∈ R and a number 0 < h ≤ 1. We

aim to show that |f(x + h) − f(x)| ≤ Cha for some absolute constant C > 0. There exists an

increasing sequence of dyadic-rational points {ak}k∈Z such that [ak−1, ak) ∈ ∆, limk→−∞ ak = x,

limk→+∞ ak = x + h, and for any n ∈ N there exists at most 4 dyadic intervals of rank n of the

form [ak−1, ak). In other words, we consider a Whitney decomposition of the interval [x, x + h)

with {ak} being the endpoints of the corresponding dyadic intervals. Given k ∈ Z denote by rk

the length of the interval [ak−1, ak), that is rk = ak − ak−1. Clearly,

|f(x+ h)− f(x)| =

⃓⃓⃓⃓
⃓∑︂
k∈Z

(f(ak)− f(ak−1))

⃓⃓⃓⃓
⃓ ≤∑︂

k∈Z

|f(ak)− f(ak−1)| =

=
∑︂
k∈Z

rk|S([ak−1, ak))|.

Since by construction supn 2
−n(1−a)∥Sn∥∞ <∞, and the amount of points ak generating the dyadic

intervals of rank n is bounded, there exists a constant C = C(a) > 0 such that

|f(x+ h)− f(x)| ≤ C
∑︂

n≥log2
1
h

2−n2n(1−a) ≤ C

1− 2−a
ha,

so f belongs to the corresponding Hölder class Hola. Next we show that

lim inf
h→0+

f(x+ h)− f(x)

ha
= 0, x ∈ [0, 1). (6.7)

Fix any x ∈ [0, 1) and an arbitrarily small δ > 0. By the last part of Lemma 6.1.1 there exists a

number N such that 2−n(1−a)Sn(t) ≥ −δ for any n ≥ N and t ∈ [0, 1). Now fix any 0 < h ≤ 2−N ,

and consider the Whitney decomposition of [x, x + h) as before. Clearly, rk ≤ 2−N for all k ∈ Z,
therefore we have

f(x+ h)− f(x) =
∑︂
k∈Z

(f(ak)− f(ak−1)) =
∑︂
k∈Z

rk
f(ak)− f(ak−1)

rk
=∑︂

k∈Z

rkS([ak−1, ak)) =
∑︂
k∈Z

2−nkS([ak−1, ak)) ≥ −δ
∑︂
k∈Z

2−nk2nk(1−a),

where 2−nk = rk and supk rk ≤ h. Since the numbers nk do not accumulate (we recall that for any
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n there are at most four numbers nk = n), it follows that∑︂
k∈Z

2−nk2nk(1−a) ≤ Cha

for some absolute constant C > 0, and (6.7) follows immediately.

It remains to show that for almost every x ∈ [0, 1] we have

lim sup
h→0+

f(x+ h)− f(x)

ha
>

1

20
. (6.8)

Fix a point x ∈ [0, 1) and a number N such that 2−n(1−a)Sn(t) ≥ −1−a
40

for any n ≥ N and

t ∈ [0, 1). It follows from (6.6) that almost every x belongs to infinitely many left-δj-special

intervals, in particular there is an increasing sequence {jm(x)}∞m=0 such that x ∈ Ĩm(x) ∈ F̃ jm and

|Ĩm| ≤ 2−N . Now for any jm we define hm in such a way that x+ hm is the right end-point of the

δjm-special interval Im corresponding to Ĩm. In other words, if Ĩm = [(i − 1)|Ĩm|, i|Ĩm|) for some

i ∈ Z+, then hm := (i + 1)|Ĩm| − x. Since Im is δjm-special, we have |Im|1−aS(Im) ≥ 1
5
. Consider

a Whitney-type decomposition of [x, x + hm) generated by {ak}k∈Z as above. In this case, since

x + hm is dyadic-rational, we assume a0 = a1 = · · · = x + hm, also, clearly, [a−1, a0) = Im and

ak − ak−1 = rk ≤ |Im| ≤ 2−N for any k ≤ 0. In particular, rkS([ak−1, ak)) ≥ −rak 1−a
40
, k < 0. We

therefore have

f(x+ hm)− f(x) =
∑︂
k≤0

(f(ak)− f(ak−1)) =

= r0
f(a0)− f(a−1)

r0
+
∑︂
k<0

rk
f(ak)− f(ak−1)

rk
=

= |Im|S(Im) +
∑︂
k<0

rkS([ak−1, ak)) ≥
1

5
|Im|a −

1− a

40

∑︂
k<0

rak.

Since for any given rank there are at most 4 dyadic intervals of this rank of the form [ak−1, ak),

we have ∑︂
k<0

rak ≤ 4
∑︂

n≥log2 |Im|−1

2−na ≤ 4

1− a
|Im|a.

Hence

f(x+ hm)− f(x) ≥ 1

5
|Im|a −

1

10
|Im|a =

1

10
|Im|a ≥

1

20
ham,

because hm ≤ |Im|+ |Ĩm| = 2|Im|. This finishes the proof of Theorem 6.1.1.

6.2 Proof of Theorem 6.2.1

Let us recall the formulation of the Theorem.

Theorem 6.2.1 Let 0 < a < 1. Then there exists a function f ∈ Hola(R) and a constant C > 0

such that for any point x ∈ R there exist two sequences {hk}∞k=1, {h′k}∞k=1 of positive numbers,
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converging to zero, such that

lim sup
k→∞

⃓⃓⃓⃓
f(x+ h′k)− f(x)

h′k

⃓⃓⃓⃓
≤ 1,

lim inf
k→∞

|f(x+ hk)− f(x)|
|hk|α

> C.

(6.9)

We will construct the function f via a rarefied (with respect to space variable) and lacunary

(with respect to frequency scale variable) wavelet series. In fact it will be an analogue of the

classical Weierstrass functions which admits better control over the individual atoms. We start by

defining the base wavelet φ ∈ C∞(R) that satisfies the following conditions

suppφ =

[︃
−1

2
,
1

2

]︃
, φ ≡ 1 on

[︃
− 1

16
,
1

16

]︃
, φ ≡ −1 on

[︃
− 7

16
,−3

8

]︃
∪
[︃
3

8
,
7

16

]︃
,∫︂

R
xnφ(x) dx = 0, 0 ≤ n ≤ 2.

It is easy to verify (see e.g. [42]) that for any sequence {cjk}, j ∈ Z, k ∈ Z+, satisfying |cjk| ≤ 2−ka,

k ∈ N, the function

f :=
∑︂

j∈Z,k∈N

cjkφjk, where φjk(t) := φ(2kt− j),

belongs to Hola.

We consider a superlacunary sequence kn of positive integers that will be defined by induction.

We put k1 := 1. We set kn ≥ kn−1 + 4 to satisfy a certain condition (6.10) that we announce in a

few lines. Next we put cjk := 2−ka, if k = kn for some n ∈ N, and cjk ≡ 0 otherwise, and we let

f :=
∞∑︂
n=1

∑︂
j∈Z

cjknφjkn .

For any m ≥ 2 we define Sm :=
∑︁m−1

n=1

∑︁
j∈Z cjknφjkn and Rm :=

∑︁∞
n=m

∑︁
j∈Z cjknφjkn to be the

main part and the tail of the series representing f .

Assume we have defined kn for n = 1 . . .m − 1 (and therefore Sm) for some m ≥ 2. We pick

km to satisfy the following conditions:

2−km · ∥S ′
m∥∞ ≤ ε̃2−kma

sup
|θ|≤10·2−km

|S ′
m(t0 + θ)| ≤ ε, for every t0 such that S ′

m(t0) = 0
(6.10)

for some very small absolute constant ε̃ > 0 to be chosen later. Observe that for any m the

functions φjkm have disjoint supports, and there are nested sequences {J±
n } of intervals of length

1
8
2−kn such that φj±n kn

≡ ±1 on J±
n for some j±n with n ≤ m.

Fix any point x ∈ R. Given m ∈ N there exist four numbers r±m = r±m(x), ρ
±
m = ρ±m(x), such

that Rm(x + r+m) = sup2−km<t≤2−km+1 Rm(x + t), Rm(x + r−m) = inf2−km<t≤2−km+1 Rm(x + t), and

Rm(x − ρ+m) = sup2−km<t≤2−km+1 Rm(x − t), Rm(x − ρ−m) = inf2−km<t≤2−km+1 Rm(x − t). In other
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words, x+ r±m is the maximum/minimum point of the 2−km-periodic function Rm on the interval

[x + 2−km , x + 2−km+1] (and x − ρ±m on the interval [x − 2−km+1, x − 2−km ] respectively). Clearly

2−km ≤ |r±m|, |ρ±m| ≤ 2−km+1, and

Rm(x− ρ±m) = Rm(x+ r±m) = ±
∞∑︂

n=m

2−kna.

Clearly

f(x+ r±m)− f(x)

r±m
=
Sm(x+ r±m)− Sm(x)

r±m
+
Rm(x+ r±m)−Rm(x)

r±m
:= (I±) + (II±),

and we have (II+) ≥ 0, (II−) ≤ 0 by the definition of r±m. Consider the following possible

situations:

(i) For one of the numbers r±m we have⃓⃓⃓⃓
f(x+ r±m)− f(x)

r±m

⃓⃓⃓⃓
≤ 1. (6.11)

(ii) We have
f(x+ r+m)− f(x)

r+m
> 1,

f(x+ r−m)− f(x)

r−m
< −1,

or
f(x+ r+m)− f(x)

r+m
< −1,

f(x+ r−m)− f(x)

r−m
> 1.

(iii) For both r±m
f(x+ r±m)− f(x)

r±m
> 1 (6.12)

or
f(x+ r±m)− f(x)

r±m
< −1.

Case (i). Assume that the inequality holds, say, for r+m. We claim that in this case

f(x+ r−m)− f(x)

r−m
≤ −1

2
2km(1−a). (6.13)

Indeed, by (6.10) the sequence {kn} is chosen in such a way that for 0 ≤ θ ≤ 2−km+1 we have

|Sm(t+ θ)− Sm(t)| ≤
∫︂ θ

0

|S ′(t+ s)| ds ≤ 2ε̃ · 2−kma, t ∈ R.

On the other hand, clearly,

sup
t∈R

|Rm(t)| =
∞∑︂

n=m

2−kna ≥ 2−kma.
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Take ε̃ ≤ 1
200

. It follows immediately that |Sm(x+ r+m)− Sm(x+ r−m)| ≤ 1
50
2−kma, therefore

f(x+ r−m)− f(x)

r−m
=
r+m
r−m

f(x+ r+m)− f(x)

r+m
+
f(x+ r−m)− f(x+ r+m)

r−m
=

=
r+m
r−m

f(x+ r+m)− f(x)

r+m
+
Sm(x+ r−m)− Sm(x+ r+m)

r−m
+
Rm(x+ r−m)−Rm(x+ r+m)

r−m
.

Since r+m
r−m

≤ 2, we obtain

⃓⃓⃓⃓
r+m
r−m

f(x+ r+m)− f(x)

r+m
+
Sm(x+ r−m)− Sm(x+ r+m)

r−m

⃓⃓⃓⃓
≤ 1

10
2km(1−a)

On the other hand, Rm(x+ r
−
m)−Rm(x+ r

+
m) = −2

∑︁∞
n=m 2−kna ≤ −2−kma+1, therefore we deduce

f(x+ r−m)− f(x)

r−m
≤ Rm(x+ r−m)−Rm(x+ r+m)

r−m
+

1

10
2km(1−a) ≤ −1

2
2km(1−a).

This proves (6.13) and we put hm := r−m and h′m := r+m. If (6.11) is attained at r−m, we repeat the

argument above exchanging r+m and r−m.

Case (ii). Clearly there must exist a point x+ r̃m between x+ r+m and x+ r−m such that

f(x+ r̃m)− f(x) = 0,

we immediately put h′m := r̃m. On the other hand

max
{︁
|Rm(x+ r̃m)−Rm(x+ r+m)|, |Rm(x+ r̃m)−Rm(x+ r−m)|

}︁
≥ sup

t∈R
|Rm(t)| ≥ 2−kma. (6.14)

Assume that the maximum is attained at r+m. Then

f(x+ r+m)−f(x) = f(x+ r+m)−f(x+ r̃m) = Sm(x+ r
+
m)−Sm(x+ r̃m)+Rm(x+ r

+
m)−Rm(x+ r̃m),

and arguing as in the case (i) we have⃓⃓⃓⃓
f(x+ r+m)− f(x)

r+m

⃓⃓⃓⃓
≥ 1

2
2km(1−a).

We then put hm := r+m. If the maximum in (6.14) is attained at r−m, we argue similarly.

Case (iii). Assume we have (6.12) (the other option is dealt with exactly the same way).

Since Rm(x + r−m) − Rm(x) ≤ 0, the arguments above imply that Sm(x + r−m) − Sm(x) ≥ r−m.

We now show that Rm(x) ≤ 0. Indeed, by our choice of {kn} satisfying (6.10) the difference

|Sm(x + r−m) − Sm(x)| is dominated by 2−kma ≤ −Rm(x + r−m). Hence the condition Rm(x) ≥ 0

would immediately imply that f(x+ r−m)− f(x) ≤ 0 which contradicts our assumption.

Now we look at the minimum/maximum on the left of x. First we claim that both Sm(x) −
Sm(x − ρ+m) and Sm(x) − Sm(x − ρ−m) are positive. Assume it is not the case, say, for ρ+m, that is

Sm(x)− Sm(x− ρ+m) ≤ 0. Then S ′
m should vanish at some point x+ θ ∈ [x− ρ+m, x+ r−m]. By our
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choice of kn, see (6.10), it follows immediately that

sup
θ≈2−kn

|S ′
m(x+ θ)| ≤ 1

10
.

Therefore ⃓⃓⃓⃓
Sm(x+ r−m)− Sm(x)

r−m

⃓⃓⃓⃓
≤ 1

10
,

and
f(x+ r−m)− f(x)

r−m
≤ 1

10
+
Rm(x+ r−m)−Rm(x)

r−m
≤ 1

10
,

so we have a contradiction. This proves that Sm(x)− Sm(x− ρ+m) ≥ 0. A similar argument shows

that Sm(x)− Sm(x− ρ−m) ≥ 0.

Since Rm(x) ≥ Rm(x− ρ−m), we obtain

f(x)− f(x− ρ−m)

ρ−m
=
Sm(x)− Sm(x− ρ−m)

ρ−m
+
Rm(x)−Rm(x− ρ−m)

ρ−m
≥ 0.

On the other hand, since Rm(x) ≤ 0 we have Rm(x)−Rm(x− ρ+m) ≤ −Rm(x− ρ+m). Hence, as in

the previous cases,
f(x)− f(x− ρ+m)

ρ+m
≤ −1

2
2km(1−a).

in particular there exists a point x− ρ̃m such that f(x)− f(x− ρ̃m) = 0. We define hm := −ρ+m,
and h′m := −ρ̃m.

Remark. We have constructed a function f ∈ Hola such that for every x ∈ R there exists a

couple of sequences hm, h
′
m that satisfy⃓⃓⃓⃓

f(x+ h′m)− f(x)

h′m

⃓⃓⃓⃓
≤ 1

|f(x+ hm)− f(x)|
|hm|a

≳ 1.

It follows from the construction that these two sequences can be chosen in such a way that they

both lie on the same side of x (right or left, but it depends on the point x), but it is not immediately

clear that we can fix the side beforehands, i.e. that we can pick such a function f that both hm

and h′m are, say, positive numbers. One therefore could ask, if for every function f ∈ Hola there

exists at least one point x such that either

lim inf
θ↓0

f(x+ θ)− f(x)

θ
= +∞,

or there exists a finite right derivative of f at x.
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Chapter 7 Growth classes in the Ball: Cartwright

theorem revisited

7.1 Notation

Given two functions f and g defined in Rd+1, we say that f ≲ g if there is a positive constant

C, depending only on the dimension n, such that f ≤ Cg. We write f ∼ g if f ≲ g and

g ≲ f simultaneously. A point z in the unit ball B in Rd+1 will be denoted by (x, y), where

x ∈ S = ∂B, x = z
|z| and y = 1− |z| > 0. Then y is the distance from z to the unit sphere and x

is the closest point to z on the sphere; this notation turns out to be convenient for our problem.

Despite the inconsistency we will sometimes write u(z) and sometimes u(x, y). By Py(x, ξ) we

denote the Poisson kernel for B,

Py(x, ξ) =
y(2− y)

|(1− y)x− ξ|d+1
=

1− |z|2

|z − ξ|d+1
, x, ξ ∈ S, y ∈ [0, 1], z = (1− y) · x.

Let also ϕ(z, ζ) ∈ [0, π] be the angle between z and ζ where z, ζ ∈ Rd+1 \ {0},

ϕ(z, ζ) = cos−1

(︃
⟨z, ζ⟩
|z||ζ|

)︃
.

Let η be the south pole of B, η = (0, . . . , 0,−1), we fix this notation for the rest of the chapter.

Given 0 ≤ t ≤ π and 0 ≤ y ≤ 1 we denote by A(y, t) the “antarctic” cap

A(y, t) = {z ∈ B : |z| = 1− y, ϕ(z, η) ≤ t},

and we also put S(y, t) = ∂A(y, t). Following [52], we consider the averaged Poisson kernel,

Φ(x, y, t) =
1

σd−1(S(0, t))

∫︂
S(0,t)

Py(x, ξ) dσd−1(ξ), x ∈ S, 0 < y ≤ 1, 0 ≤ t ≤ π, (7.1)

where σd−1 is the (d − 1)-dimensional surface measure on S(0, t), σd−1(S(0, t)) = C(d) sind−1 t.

Note that Φ(x, 1, t) = 1, for x ∈ S, 0 ≤ t ≤ π.

We need the following estimate (Lemma 1 from [52])

Lemma 7.1.1 For any x ∈ S and y ∈ (0, 1], t ≤ ϕ(x, η) we have

Φ(x, y, t) ∼ y

q2(qd−1 + sind−1 ϕ(x, η))
,
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where q2 = 1 + (1− y)2 − 2(1− y) cos(ϕ(x, η)− t) = dist2(S(0, t), S(y, ϕ(x, η))).

This averaged Poisson kernel will be useful later on (section 7.5), when we deal with axially

symmetric harmonic functions. We call the function ũ on the unit ball axially symmetric if u(z)

depends only on |z| and the angle ϕ(z, η) between z and η = (0, . . . , 0,−1). If such a function has

boundary values ũ(x, 0) = φ(t), t = ϕ(x, η), we rewrite the Poisson representation formula in the

following way

ũ(x, y) =

∫︂
S

ũ(ξ, 0)Py(x, ξ) dσd(ξ) =

∫︂ π

0

∫︂
S(0,t)

ũ(ξ, 0)Py(x, ξ) dσd−1(ξ) dt

= C(d)

∫︂ π

0

φ(t)Φ(x, y, t) sind−1 t dt, (7.2)

where σd is normalized surface measure on S and C(d) is the surface measure of the (d − 1)-

dimensional unit sphere.

7.2 Averaging theorem

In this section we show that in order to deduce (I.60) from (I.59) it is sufficient to obtain an

estimate for averages of U over certain spherical caps A(θ, α) for some α = α(θ), where 0 < θ < 1
2
.

We also make some preliminary estimates to deduce inequalities for the averages from (I.59) and

the regularity conditions (I.57) and (I.58).

First we prove the following theorem.

Theorem 7.2.1 Let U be a harmonic function in B, continuous up to the boundary, satisfying

U(0) = 0,

U(x, y) ≤ w(y), x ∈ S, 0 ≤ y ≤ 1,

where w is a strictly decreasing function. Assume that for some positive θ < 1
2
there exists a

positive α = α(θ) ≤ θ
4
such that

w(θ − 2α) ≤ C1w(θ), (7.3a)

1
αd

⃓⃓⃓∫︁
A(θ,α)

U(z) dσd(z)
⃓⃓⃓
≤ C2w(θ), (7.3b)

for some positive constants C1, C2. Then

U(η, θ) ≥ −C3w(θ), (7.4)

where C3 = C3(C1, C2, d).

Proof. Consider the ball B′ with center (η, θ) and radius 2α. The condition (7.3a) implies that for

any z ∈ B′ we have

w(1− |z|) ≤ C1w(θ),
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and therefore

−U(z) + C1w(θ) ≥ 0, z ∈ B′.

Now we can use the Harnack inequality to obtain

−U(η, θ) + C1w(θ) ≤ C(d) (−U(z) + C1w(θ)) , |z| = 1− θ, ϕ(z, η) ≤ α.

All that remains is to take the average over {z : |z| = 1− θ, ϕ(z, η) ≤ α},

−U(η, θ) + C1w(θ) ≤ C̃(d)
1

αd

∫︂
{z:|z|=1−θ, ϕ(z,η)≤α}

(−U(z) + C1w(θ)) dσd(z),

which, combined with (7.3b), implies (7.4).

7.3 Two lemmas

Now we want to show that the regularity conditions (I.57) and (I.58) imply (7.3a) and (7.3b)

for an appropriately chosen α = α(θ). It turns out that a natural way to define α (at least for

somewhat smooth weights) is

α(θ) := − w(θ)

10w′(θ)
, 0 < θ < 1. (7.5)

We refer the reader to Section 7.4 for a further discussion. The validity of our choice is provided

by the following lemma.

Lemma 7.3.1 If the weight w satisfies (I.57) and (I.58), and α(θ) is given by (7.5), then 0 ≤
α(θ) ≤ θ

4
and

w(θ − 2α(θ)) ≤ 2w(θ), 0 < θ ≤ 1

2
.

Now we need to see if the α we have chosen in (7.5) satisfies (7.3b). This is a much more

complicated task than verifying (7.3a), and the first step is the statement below.

Lemma 7.3.2 If the weight w satisfies (I.57) and (I.58) for some δ > 0 and α(θ) is defined by

(7.5), then for 0 < θ ≤ 1
2∫︂ 1

0

(︃
w(y(1− θ) + θ)

y

)︃ 1
d+1

dy ≤
(︃
d+ 1

d
+

40(d+ 1)

δ

)︃
w

1
d+1 (θ)α

d
d+1 (θ). (7.6)

7.3.1 Proof of Lemma 7.3.1

For any 0 < θ < 1
2
there exists θ1 ∈ [θ − 2α(θ), θ] such that

w(θ) = w(θ − 2α(θ)) + 2α(θ)w′(θ1). (7.7)
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The regularity condition (I.58) implies that

α′(θ) ≤ 1− δ

10d
. (7.8)

Hence α(θ1) ≥ α(θ)− θ−θ1
10

, and, on the other hand, θ − θ1 ≤ 2α(θ), so

α(θ1) ≥ α(θ)− α(θ)

5
=

4

5
α(θ).

We see that

−α(θ)w′(θ1) =
α(θ)w(θ1)

10α(θ1)
≤ w(θ1)

8
.

Plugging this inequality into (7.7), we obtain

w(θ) ≥ w(θ − 2α(θ))− w(θ1)

4
≥ w(θ − 2α(θ))

2

and the lemma follows.

7.3.2 Proof of Lemma 7.3.2

We split the integral in (7.6) into two parts

∫︂ 1

0

(︃
w(y + θ − yθ)

y

)︃ 1
d+1

dy

=

∫︂ α(θ)

0

(︃
w(y + θ − yθ)

y

)︃ 1
d+1

dy +

∫︂ 1

α(θ)

(︃
w(y + θ − yθ)

y

)︃ 1
d+1

dy = I1 + I2.

To estimate the first integral we just note that for θ ≤ 1

I1 =

∫︂ α

0

(︃
w(y + θ − yθ)

y

)︃ 1
d+1

dy ≤ w
1

d+1 (θ)

∫︂ α

0

(︃
1

y

)︃ 1
d+1

dy ≤ d+ 1

d
w

1
d+1 (θ)α

d
d+1 (θ).

To deal with the second integral we let κ(y) := w
1

d+1 (y), y > 0. So it suffices to verify that

I2 =

∫︂ 1

α

κ((1− θ)y + θ)y−
1

d+1 dy ≤ C̃κ(θ)α
d

d+1 (θ), (7.9)

where C̃ = 40(d+1)
δ

. It follows from the definitions of α = α(y) and κ = κ(y) that

α · κ
′

κ
= − 1

10(d+ 1)
,
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and, using (I.58), we obtain

(︂
α

d
d+1κ

)︂′
= α− 1

d+1κ

(︃
κ′

κ
α +

d

d+ 1
α′
)︃

= α− 1
d+1κ

(︃
− 1

10(d+ 1)
+

d

d+ 1
α′
)︃

≤ − 1

10
α− 1

d+1κ

(︃
1

(d+ 1)
− 1− δ

d+ 1

)︃
= − δ

10(d+ 1)
α− 1

d+1κ. (7.10)

Let c = δ
10(d+1)

. Then integrating (7.10) over [θ, 1] for θ < 1
2
, we see that

κ(θ)α
d

d+1 (θ) ≥ c

∫︂ 1

θ

κ(y)α− 1
d+1 (y) dy

= c(1− θ)

∫︂ 1

0

κ (y(1− θ) + θ)α− 1
d+1 (y(1− θ) + θ) dy.

Now, for y ≥ α(θ) by (7.8) we have α(θ + (1− θ)y) ≤ α(θ) + (1− θ)y ≤ 2y. Therefore∫︂ 1

0

κ (y(1− θ) + θ)α− 1
d+1 (y(1− θ) + θ) dy ≥ 2−

1
d+1

∫︂ 1

α(θ)

κ ((1− θ)y + θ) y−
1

d+1 dy.

This gives (7.9) with C̃ = 2
1

d+1 10(d+1)
δ(1−θ)

. Combining the estimates for both integrals, we get

∫︂ 1

0

(︃
w(y + θ − yθ)

y

)︃ 1
d+1

dy ≤
(︃
d+ 1

d
+

40(d+ 1)

δ

)︃
w

1
d+1 (θ)α

d
d+1 (θ),

and we are done.

7.4 Intermezzo: some comments about regularity

We have seen that in order to prove the main theorem we need the conditions (7.3a) and (7.3b).

They are rather independent: the proof of the first one is self-contained, and the second one, as

it will be shown later, follows from Lemma 7.3.2, where we do not use any information on the

doubling property of α. Combining them, we see that for every fixed θ we essentially need to find

some α = α(θ) such that

w(θ − α) ≤ 2w(θ), (7.11a)∫︁ 1

α

(︂
w(y+θ−yθ)

y

)︂ 1
d+1

dy ≤ C(w, n)w
1

d+1 (θ)α
d

d+1 (θ). (7.11b)

These two inequalities are actually “fighting” with each other. Indeed, if we put α to be very

small, then the first condition is immediately satisfied, but the second one fails miserably. On the

other hand α cannot be large (compared to θ), because of the first condition: the faster the weight

w grows the smaller must α be. If we try to unify these two inequalities, we (albeit probably with

some loss of information) would arrive at the “regularity” of the weight w as stated in (I.57) and
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(I.58).

It should be noted that this is the only place that we need the regularity conditions, so if

we have a weight w that satisfies (7.11a) and (7.11b) with some α (not necessarily defined as

in (7.5)), then Theorem I.21 still holds. One important example is the weight w of polynomial

growth. Assume that w ∈ C1 and

−N
y

≤ w′(y)

w(y)
≤ −d+ ε

y
, y ∈ (0, 1], (7.12)

for some positive ε and N ≥ d+ ε. Put α(θ) = θ
2N

. Clearly w(θ − α) ≤ 2w(θ), θ ∈ (0, 1], so that

we have (7.11a). Furthermore

(︂
y

d
d+1w

1
d+1 (y)

)︂′
=
y−

1
d+1w

1
d+1 (y)

d+ 1

(︃
w′(y)

w(y)
y + d

)︃
,

so that (︂
α

d
d+1 (y)w

1
d+1 (y)

)︂′
≤ −Cα− 1

d+1 (y)w
1

d+1 (y),

which is basically (7.10). Following the proof of Lemma 7.3.2 closely, we see that (7.11b) also holds.

Note that in this case the weight w can be a little less smooth than required by the regularity

condition (I.58).

Note also that in order to bound U from below we do not need w to be regular on the entire

interval (0, 1]. Assume that w ∈ C2, w is decreasing, and (I.57) and (I.58) hold only for 0 < y ≤ y0

(or w ∈ C1 and (7.12) holds only for 0 < y ≤ y0) for some y0 < 1. We can still prove a version of

Theorem I.21 replacing (I.60) with

|U(z)| ≤ C1 + C2w(1− |z|), z ∈ B. (7.13)

Indeed, it is easy to show that there exists a C2 function w̃ that satisfies (I.57) and (I.58) for

y ∈ (0, 1] and such that

w̃(y) ≥ w(y), y1 ≤ y ≤ 1,

w̃(y) = Aw(y), 0 < y ≤ y1.

For example, one may choose w̃(y) = c(y+b)s for y ≥ y1 and some y1 ≤ y0 such that
(︁

w
w′

)︁′
(y1) < 0.

Since Theorem I.21 holds for w̃, we immediately have (7.13). A similar argument works for w ∈ C1

satisfying (7.12).

7.5 Main technical theorem

7.5.1 Statement

The next theorem allows us to estimate from above the absolute values of some averages of the

harmonic function.
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Theorem 7.5.1 Let k̃ : R+ ↦→ R+ be a strictly decreasing absolutely continuous function such

that

k̃(0) <∞, (7.14a)∫︁ 1

0

(︂
k̃(y)
y

)︂ 1
d+1

dy ≤ D, (7.14b)

for some constant 1 < D <∞. Let ũ be a harmonic function in B, continuous up to the boundary,

satisfying ũ(0) = 0 and ũ(x, y) ≤ k̃(y) for x ∈ S, 0 ≤ y ≤ 1. Then for any x0 ∈ S and β ∈ [0, 1
2
]

the following inequality holds∫︂
{ϕ(x,x0)≤β}

ũ(x, 0) dσd(x) ≥ −C
(︂
Dd+1 + k̃(0)βd

)︂
. (7.15)

where C depends only on the dimension n.

7.5.2 Theorems 7.5.1 and 7.2.1 imply Theorem I.21

Fix any positive θ ≤ 1
2
. Let U and w be as in Theorem I.21, and α be defined as in (7.5). The

weight we are going to use in Theorem 7.5.1 is defined as follows

k̃(y) :=
w(y + θ − yθ)

w(θ)α(θ)d
, 0 ≤ y ≤ 1.

Indeed, if we apply Lemma 7.3.2, we obtain

∫︂ 1

0

(︄
k̃(y)

y

)︄ 1
d+1

dy =

∫︂ 1

0

(︃
w(y + θ − yθ)

w(θ)αd(θ)y

)︃ 1
d+1

dy ≤
(︃
d+ 1

d
+

40(d+ 1)

δ

)︃
,

so we have the condition (7.14b) with D = d+1
d

+ 40(d+1)
δ

. Now put β = α(θ), so 0 ≤ β ≤ 1
2
by

(7.8). Clearly, k̃(0) <∞, and, by (I.59), the function

ũ(z) :=
U(z(1− θ))

w(θ)αd(θ)
, |z| ≤ 1,

can be estimated from above by k̃(y). Theorem 7.5.1 therefore implies that, for any x0 ∈ S,∫︂
{ϕ(x,x0)≤α(θ)}

ũ(x, 0) dx ≥ −C(d)
(︂
Dd+1 + k̃(0)αd(θ)

)︂
≥ −C(d)

(︁
Dd+1 + 1

)︁
.

Since ũ is bounded from above by k̃, the last inequality implies

1

αd(θ)

⃓⃓⃓⃓∫︂
A(θ,α(θ))

U(z) dσd(z)

⃓⃓⃓⃓
≲ Dd+1w(θ),
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and we get (7.3b). The condition (7.3a) will follow from Lemma 7.3.1. We obtain the following

inequality
1

αd(θ)

⃓⃓⃓⃓∫︂
A(θ,α(θ))

U(z) dσd(z)

⃓⃓⃓⃓
≲

(︃
d+ 1

d
+

40(d+ 1)

δ

)︃d+1

w(θ),

which combined with Theorem 7.2.1 proves Theorem I.21.

7.6 The weight lemma

The aim of the rest of this Chapter is to prove Theorem 7.5.1. Before proceeding further we need

to introduce some additional notation. Fix any β ∈ [0, π
2
] and let

A = A(0, β) = {x ∈ S : ϕ(x, η) ≤ β}, A′ = S \ A.

Recall that Φ(x, y, t) is the averaged Poisson kernel, defined in (7.1). The main ingredient in the

proof of Theorem 7.5.1 is the following lemma.

Lemma 7.6.1 Let k : R+ ↦→ R+ be a strictly decreasing absolutely continuous function such that

k(0) ≤ λ
βd , (7.16a)∫︁ 1

0

(︂
k(y)
y

)︂ 1
d+1

dy ≤ λ
1

d+1 , (7.16b)

for some positive λ ≤ 1
π
. There exist a domain Ω ⊂ B and a positive function vA, harmonic in Ω,

such that

A ⊂ ∂Ω, 0 ∈ Ω, (7.17a)

vA(0) ≤ C(d)λ
1

d+1 , (7.17b)

vA(x, y) ≳ k(y) ≳ Φ(x, y, β), (x, y) ∈ ∂Ω \ A, (7.17c)

where the constants depend only on the dimension n.

The proof of this lemma uses a modification of the argument presented in Lemma 4 in [52].

Basically it allows us to estimate the average of the weight k on ∂Ω \ A with respect to the

harmonic measure of Ω at zero. The key point here is the second inequality in (7.17c) which will

be used later (in 7.7) to obtain the lower bound in (7.15).

7.6.1 Proof of Lemma 7.6.1: auxiliary surface ΓA

To obtain Ω we construct its boundary ∂Ω = ΓA

⋃︁
A. The surface ΓA is defined below, in such a

way that the second inequality in (7.17c) holds on ΓA and moreover k(y) ≈ Φ(x, y, β) there.

Formally, consider the function y
k(y)

, which is strictly increasing. Let s = s(β) be the solution

of the following equation
y

k(y)
= βd+1.
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Since k is decreasing, (7.16a) implies

0 < s = k(s)βd+1 ≤ k(0)βd+1 ≤ λβ. (7.18)

Further, (7.16b) and the monotonicity of k imply that

k
1

d+1 (1)

∫︂ 1

0

(︃
1

y

)︃ 1
d+1

dy ≤
∫︂ 1

0

(︃
k(y)

y

)︃ 1
d+1

dy ≤ λ
1

d+1 ,

so k(1) ≤ λ ≤ 1
π
. Now if we let ρ = ρ(β) be the solution of

y

k(y)
= (π − β)d+1,

we see that s < ρ < 1. Further let

γ(y) = β +

(︃
y

k(y)

)︃ 1
d+1

, s ≤ y ≤ ρ,

γ(y) = β +

(︃
y

k(y)βd−1

)︃ 1
2

, 0 ≤ y ≤ s,

(7.19)

and note that γ(0) = β, γ(s) = 2β and γ(ρ) = π. The surface ΓA is defined as follows

ΓA := {(x, y) : ϕ(x, η) = γ(y), x ∈ A′ = S \ A, y ∈ [0, ρ]},

and we define Ω as the domain bounded by A
⋃︁
ΓA, so that Ω satisfies (7.17a).

7.6.2 Proof of Lemma 7.6.1: auxiliary function vA

We define vA on the unit sphere by

vA(x, 0) = k(y), (x, y) ∈ ΓA,

vA(x, 0) = 0, x ∈ A,
(7.20)

and let vA be the harmonic continuation of vA(·, 0) to the ball. Note that the function vA is axially

symmetric. It remains to verify (7.17b) and (7.17c).

In what follows the letter C denotes a constant, depending only on n, whose value can change

from line to line. The proof of the first inequality is straightforward if somewhat cumbersome. We

have γ−1(β) = 0, γ−1(2β) = s and it follows from (7.2) that

vA(0) = C

∫︂ π

β

∫︂
ϕ(x,η)=t

vA(x, 0) dσd−1(x) dt = C

∫︂ π

β

k(y(γ)) sind−1 γ dγ

= C

∫︂ 2β

β

k(y(γ)) sind−1 γ dγ + C

∫︂ π

2β

k(y(γ)) sind−1 γ dγ

= C

∫︂ s

0

k(y) sind−1(γ(y))γ′(y) dy + C

∫︂ ρ

s

k(y) sind−1(γ(y))γ′(y) dy.
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These two integrals are dealt with more or less in the same way. For the first one we have

γ(y) ≤ γ(s) = 2β so that sin γ(y) ≤ 2β. Then∫︂ s

0

k(y) sind−1(γ(y))γ′(y) dy ≤ Cβd−1

∫︂ s

0

k(y)γ′(y) dy

= Cβ
d−1
2

∫︂ s

0

y−
1
2

(︂
k

1
2 (y)− yk′(y)k−

1
2 (y)

)︂
dy

≤ Cβ
d−1
2

(︄∫︂ s

0

√︄
k(y)

y
dy +

∫︂ s

0

y
1
2 dk

1
2 (y)

)︄
≤ Cβ

d−1
2

√︁
k(0)s ≤ Cβ

d−1
2

√︁
λ2 · β1−n ≤ Cλ,

the next to last inequality follows from (7.16a) and (7.18). Analogously, for the second integral we

have y ∈ [s, ρ] and

γ′(y) =
1

d+ 1

(︃
y

k(y)

)︃− d
d+1 k(y)− yk′(y)

k2(y)
,

also

γ(y) ≤ 2

(︃
y

k(y)

)︃ 1
d+1

.

We get∫︂ ρ

s

k(y) sind−1(γ(y))γ′(y) dy ≤
∫︂ ρ

s

k(y)(γ(y))d−1γ′(y) dy

≤ 2d−1

∫︂ 1

0

k(y)
k−

d−1
d+1 (y)y

d−1
d+1

d+ 1

(︂
y−

d
d+1k−

1
d+1 (y)− y

1
d+1k−

1
d+1

−1(y)k′(y)
)︂
dy

≤ 2d−1

d+ 1

(︄∫︂ 1

0

(︃
k(y)

y

)︃ 1
d+1

dy − (d+ 1)

∫︂ 1

0

y
d

d+1 d(k
1

d+1 (y))

)︄

=
2d−1

d+ 1

(︄∫︂ 1

0

(︃
k(y)

y

)︃ 1
d+1

dy + n

∫︂ 1

0

(︃
k(y)

y

)︃ 1
d+1

dy − (d+ 1)k
1

d+1 (1)

)︄

≤ C

∫︂ 1

0

(︃
k(y)

y

)︃ 1
d+1

dy ≤ Cλ
1

d+1 .

Combining these two estimates, we obtain that vA(0) ≤ C(λ+ λ
1

d+1 ) ≲ λ
1

d+1 , since λ ≤ 1.

The second part of (7.17c), i.e. the inequality k(y) ≳ Φ(x, y, β), for (x, y) ∈ ΓA follows directly

from Lemma 7.1.1. Indeed, Lemma 7.1.1 implies that for t ≤ ϕ(x, η) ≤ π
2

Φ(x, y, t) ∼ y

((ϕ(x, η)− t)2 + y2)
(︂
((ϕ(x, η)− t)2 + y2)

d−1
2 + ϕd−1(x, η)

)︂ . (7.21)

If β ≤ ϕ(x, η) ≤ 2β then, clearly, ((ϕ(x, η)− β)2 + y2)
d−1
2 + ϕd−1(x, η) ≥ βd−1. Further (ϕ(x, η)−
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β)2 = y
k(y)βd−1 for (x, y) ∈ ΓA by(7.19). Therefore we get

Φ(x, y, β) ≤ Cy

((ϕ(x, η)− β)2 + y2)βd−1
≤ Cy

(ϕ(x, η)− β)2βd−1

≤ Cyk(y)βd−1

yβd−1
≤ Ck(y), (x, y) ∈ ΓA.

It follows from (7.21) that Φ(x, y, β) ≤ cy
(ϕ(x,η)−β)d+1 . For 2β ≤ ϕ(x, η) ≤ π we have 4(ϕ(x, η)−β)2 ≥

ϕ2(x, η), and therefore, by (7.19),

Φ(x, y, β) ≤ Cy

(ϕ(x, η)− β)d+1
=

Cy

(γ(y)− β)d+1
=
Ck(y)y

y
= Ck(y), (x, y) ∈ ΓA.

To obtain the first part of (7.17c), we first show that

y ≤ ϕ(x, η)− β (7.22)

for (x, y) ∈ ΓA. Indeed, for 2β ≤ ϕ(x, η) it follows from (7.16b) and (7.19) that

y

ϕ(x, η)− β
= k

1
d+1 (y)y1−

1
d+1 ≤

∫︂ y

0

(︃
k(τ)

τ

)︃ 1
d+1

dτ ≤ λ
1

d+1 ,

since k(y)
y

is decreasing. If β ≤ ϕ(x, η) ≤ 2β, then y ≤ s ≤ λβ and (7.19) gives

y

ϕ(x, η)− β
= k

1
2 (y)β

d−1
2 y

1
2 ≤ k

1
2 (0)β

d−1
2 s

1
2 ≤ (λβ−n)

1
2β

d−1
2 (λβ)

1
2 ≤ λ ≤ 1.

Put E(x, y) = {ξ ∈ S : ϕ(ξ, η) ≤ ϕ(x, η), ϕ(x, ξ) ≤ y}. It follows from (7.22) that σd(E(x, y)) ∼ yd

for (x, y) ∈ ΓA and E(x, y) ⊂ a. Since for ξ ∈ E(x, y) we have Py(ξ, x) ≳ 1
yd
, the function vA(x, 0)

is axially symmetric and by definition strictly decreasing with respect to ϕ(x, η) for ϕ(x, η) ≥ β,

we get

vA(x, y) =

∫︂
S

vA(ξ, 0)Py(ξ, x) dσd(ξ)

≥
∫︂
{ξ∈a:ϕ(ξ,η)≤ϕ(x,η)}

vA(ξ, 0)Py(ξ, x) dσd(ξ) ≳
∫︂
E(x,y)

vA(ξ, 0)
1

yd
dσd(ξ)

≥ 1

yd

∫︂
E(x,y)

vA(x, 0) dσd(ξ) ≥
1

yd
vA(x, 0)σd(E(x, y)) ≳ Ck(y).

This completes the proof of Lemma 7.6.1.
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7.7 Proof of Theorem 7.5.1

First we renormalize the weight k̃ and the function ũ as

k(y) =
λ

Dd+1 + k̃(0)βd
k̃(y),

u(z) =
λ

Dd+1 + k̃(0)βd
ũ(z),

(7.23)

where λ = λ(d) ≤ 1
π
is a small positive constant to be chosen later. We may assume that x0 = η

and that ũ(·, 0) (and therefore u(·, 0)) is a axially symmetric function,

u(x, 0) = φ(|ϕ(x, η)|), x ∈ S.

By uA and uA′ we denote the harmonic continuation to B of the functions u(·, 0)·χA and u(·, 0)·χA′

correspondingly.

Clearly 0 = u(0) = uA′(0) + uA(0). Let

K = −uA(0) = −
∫︂
A

u(x, 0) dσd(x),

and assume, as we may, that K ≥ 0 (otherwise (7.15) is trivial). We see that (7.14a) and (7.14b)

imply that the weight k satisfies the conditions (7.16a) and (7.16b). Let ΓA and vA be as in Lemma

7.6.1.

Our first aim is to prove the following inequality

ua(x, y) ≤ C(1 +K)vA(x, y), (x, y) ∈ ΓA. (7.24)

Since ua(·, 0) is just the part of the boundary values of u that lies in a, we have

ua(x, y) = u(x, y)− uA(x, y) ≤ k(y)− uA(x, y), (x, y) ∈ ΓA,

so to get an upper estimate on ua we actually need to bound uA from below on ΓA. Again, (7.2)

provides us with

uA(x, y) = C(d)

∫︂ β

0

φ(t)Φ(x, y, t) sind−1 t dt,

so, in particular, we have

uA(0) = C(d)

∫︂ β

0

φ(t) sind−1 t dt. (7.25)

Clearly φ(t)−k(0) ≤ 0, so using the mean value theorem (the first one, unlike in [52]) we see that
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there exists t0 ∈ [0, β] such that

∫︂ β

0

φ(t)Φ(x, y, t) sind−1 t dt

=

∫︂ β

0

(φ(t)− k(0)) Φ(x, y, t) sind−1 t dt+

∫︂ β

0

k(0)Φ(x, y, t) sind−1 t dt

= Φ(x, y, t0)

∫︂ β

0

(φ(t)− k(0)) sind−1 t dt+ k(0)

∫︂ β

0

Φ(x, y, t) sind−1 t dt

≥ Φ(x, y, t0)

∫︂ β

0

φ(t) sind−1 t dt− Φ(x, y, t0)k(0)

∫︂ β

0

sind−1 t dt

= Φ(x, y, t0)
uA(0)

C(d)
− Φ(x, y, t0)k(0)

∫︂ β

0

sind−1 t dt,

the last equality following from (7.25). Now (7.23) implies that k(0)βd ≤ λ ≤ 1, and we also have∫︁ β

0
sind−1 t dt ≈ βd. We continue the estimate, obtaining

∫︂ β

0

φ(t)Φ(x, y, t) sind−1 t dt ≥ Φ(x, y, t0)

(︃
uA(0)

C(d)
− k(0)

∫︂ β

0

sind−1 t dt

)︃
≥ Φ(x, y, t0)

(︃
− K

C(d)
− C(d, β)λ

)︃
,

where C(d, β) ∼ 1. It follows from (7.21) that sup0≤t≤β Φ(x, y, t) ∼ Φ(x, y, β), when ϕ(x, η) > β.

We therefore have

uA(x, y) ≥ C(d)Φ(x, y, t0)

(︃
− K

C(d)
− C(d, β)λ

)︃
≥ C(d)Φ(x, y, β)

(︃
− K

C(d)
− C(d, β)λ

)︃
≥ −C(d)(K + 1)Φ(x, y, β).

Gathering all the estimates and applying (7.17c), we get

uA′(x, y) ≤ k(y)− uA(x, y) ≤ k(y) + C(d)(K + 1)Φ(x, y, β) ≲ vA(x, y)(K + 1)

for (x, y) ∈ ΓA, and we obtain (7.24).

Once we have this estimate it is quite easy to finish the proof. Indeed, it follows from

(7.24),(7.17b) and the maximum principle that

K = uA′(0) ≤ C(1 +K)vA(0) ≤ C0λ
1

d+1 (1 +K) ≤ 1 +K

3
,

for sufficiently small λ. Therefore we have K ≤ 1
2
, which means that∫︂

A(0,β)

ũ(x, 0) dσd(x) ≥ − 1

2λ

(︂
Dd+1 + k̃(0)βd

)︂
,

and we are done.
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Chapter 8 Normal variation of positive harmonic

functions

In this Chapter we prove Theorem I.25. Let us recall its statement.

Theorem 8.0.1 Assume that u is a positive harmonic function on R2
+ such that its boundary

measure has compact support, so, in particular, lim|(x,t)|→∞ u(x, t) = 0. Then the set of Bourgain

points, i.e. points where the mean variation of u is finite

Mvaru(x) =

∫︂ 1

0

h2tu (x, t) dt <∞,

is ultradense in R, that is its intersection with any interval I ⊂ R has full Hausdorff dimension.

Here h2tu is the least harmonic majorant of the subharmonic function |∇u|(·, · + 2t) which can be

written as follows

h2tu (x, s) :=

∫︂
R
|∇u(ξ, 2t)|P(s)(x− ξ) dξ, x ∈ R, t, s > 0.

The scheme of the proof was briefly outlined in the Introduction. Before we have a closer look

let us introduce some notation and establish some preliminary facts.

8.1 Operators By

8.1.1 Integral operators and their kernels

Since we aim to maintain the idea that our arguments are not restricted to the half-spaces, we

try to abstain from the usual Rd+1
+ type of notation where it is not completely inconvenient. In

particular we write Ω instead of R2
+ and S = ∂Ω instead of R = ∂R2

+. In what follows by a kernel

we call a function defined on S × S. The kernels are denoted by lowercase Latin or Greek letters,

and the corresponding integral operators by respective capital letters. For example, the operator

K is generated by the kernel k,

K[φ](x) :=

∫︂
S

k(x, ξ)φ(ξ) dξ, x ∈ S. (8.1)

The unfortunate exception is the Poisson kernel P(y) which, besides being written with capital P ,

is also defined on Ω× S or on S, depending on what variables we fix. Because of this we will use

it in a slightly different notation. Also we put x[t] := (x, t), x ∈ S, t > 0.
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The composition k1 ◦ k2 of the kernels k1 and k2 is defined as follows

(k1 ◦ k2)(x, ξ) :=
∫︂
S

k1(x, η)k2(η, ξ) dη, x, ξ ∈ S. (8.2)

Here we assume that the integrand in (8.2) is summable with respect to s for any x, ξ ∈ S. We

take special care for the equality K1(K2(φ)) = K(φ) to hold (here K is the integral operator with

the kernel k := k1 ◦ k2). We also need the compositions k1 ◦ · · · ◦ kn that are defined in the same

way for any natural n.

By k∗ we denote the kernel adjoint to k:

k∗(x, ξ) := k(ξ, x), x, ξ ∈ S, (8.3)

and K∗ is the respective integral operator, that also gives the following formula∫︂
S

K∗(φ) · ψ ds =
∫︂
S

φ ·K(ψ) ds.

8.1.2 Kernels py, cy, by

The first of these kernels is just another way to write Poisson kernel for Ω, the other two also

depend on u.

Kernel pt

Put

pt(x, ξ) := P(t)(x− ξ) =
t

π(t2 + (x− ξ)2)
, x, ξ ∈ S, t > 0. (8.4)

Given x ∈ S, t > 0, the measure pt(x, ·) ds on S is the harmonic measure in Ω with the pole at

x[t] := (x, t) ∈ Ω. In particular,
∫︁
S
pt(x, ξ) dξ = 1.

We will need the semigroup property of pt,

pt1+t2 = pt1 ◦ pt2 , t1, t2 > 0. (8.5)

We also need the following property of pt – everywhere on S × S we have

pt2
pt1

≤ c(S)

(︃
t2
t1

)︃
, 0 < t1 ≤ t2 ≤ 1. (8.6)

Kernel ct

Given a⃗ ∈ Rd we put

sgn a⃗ :=

⎧⎨⎩ a⃗
|a⃗| , if a⃗ ̸= 0

0, if a⃗ = 0.
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The scalar product of a⃗ and b⃗ is denoted by ⟨a⃗, b⃗⟩. Let ϕ(ξ) := sgn(∇u)(ξ), ξ ∈ Ω. The vector

field ϕ vanishes on the zero set Z of ∇u, is smooth and unitary outside it.

Let

ct(x, ξ) :=

⟨︃(︃
∂

∂t
,
∂

∂x

)︃
◦ pt(x, ξ), ϕ(x2t)

⟩︃
, x, ξ ∈ S, t > 0, (8.7)

or, in other words, we take the partial derivative of the Poisson kernel w.r.t. ϕ. Both ϕ and ct

depend on u, we drop the index though.

By Harnack’s inequality one has

|ct(x, ξ)| ≤
c(S)pt(x, ξ)

t
, x, ξ ∈ S, t > 0. (8.8)

If we differentiate
∫︁
S
pt(x, ξ)ds(ξ) ≡ 1, (x, t) ∈ Ω over ϕ(x2t), we get

Ct[1] = 0 on S, t > 0. (8.9)

Kernel bt

Now we define the kernel as follows bt := pt◦ct, t > 0, the corresponding integral clearly converges.

Next we observe that for x ∈ S, t > 0 and ϕ = (ϕ1, ϕ2) we have

Ct

[︁
u[t]
]︁
(x) =

∫︂
S

ct(x, ξ)u[t](ξ) dξ =

=

∫︂
S

(︃
∂

∂x
pt(x, ξ) · ϕ1(x, 2t) +

∂

∂t
pt(x, ξ) · ϕ2(x, 2t)

)︃
u(ξ, t) dξ =

ϕ1(x, 2t)

∫︂
S

∂

∂x
pt(x, ξ)u(ξ, t) dξ + ϕ2(x, 2t)

∫︂
S

∂

∂t
pt(x, ξ)u(ξ, t) dξ =

ϕ1(x, 2t)
∂

∂x
u(x, 2t) + ϕ2(x, 2t)

∂

∂t
u(x, 2t) = |∇u|(x, 2t)

(8.10)

The least harmonic majorant h2t for |∇u[2t]| is therefore the Poisson extension of the above,

h2t
(︁
x[t]
)︁
= (h2t)[t](x) = Bt

(︁
u[t]
)︁
(x), x ∈ S, (8.11)

and

Mvaru(x) =

∫︂ 1

0

Bt

(︁
u[t]
)︁
(x) dt, x ∈ S. (8.12)

Note that Bt

[︁
u[t]
]︁
> 0.

We need bt to satisfy the following properties: for any t ∈ (0, 1)

|bt| ≤ c
t
pt, (8.13a)

Bt(1) ≡ 0 on S. (8.13b)
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Indeed, by (8.8) and Harnack’s inequality we have

|bt| ≤ pt ◦ |ct| ≤ c
pt ◦ pt
t

≤ c′(S)
pt
t
,

while (8.13b) follows from (8.9).

In Section 8.7 we show that the function (x, ξ, t) ↦→ bt(x, ξ) is continuous on S × S × (0,+∞).

8.1.3 Outline of the proof of Theorem 8.0.1, measures νε,u

Assume that there exists a Borel measure ν supported on S such that
∫︁
S
Mvaru dν < +∞ and

ν(I) > 0 for any interval I ⊂ S. Then the set B(u) of Bourgain points of u is dense in S. However,

we can not yet say that B(u) is ultradense in S – such a measure ν can still be supported on some

countable subset of S.

To prove the ultradensity of B(u) in S, we construct the family {νε} (with 0 < ε < ε0 for some ε0

that ultimately depends on S) of measures supported on S such that

a.
∫︁
S
V dνε < +∞;

b. there exist some positive constants c1, c2 such that

νε(I) ≤ c1|I|1−c2ε (8.14)

for any interval I ⊂ S;

c. for any interval I ⊂ S there exists such an εI > 0 that νε(I) > 0, if 0 < ε < εI .

Let us verify that the existence of such a family of measures (νε) guarantees the ultradensity

of B(u) in S.
The following argument is classical, see, for instance, [12, Lemma 1.2.8]. Let I ⊂ S be an

arbitrary interval in S. Put Σ := B(u)
⋂︁
B, so that νε(Σ) = νε(I) due to (a). For any covering

{Ij}∞j=1 of the set Σ we have

0 < νε(I) = νε(Σ) ≤
∑︂
j

νε(Ij) ≤ c1
∑︂
j

|Ij|1−c2ε,

if 0 < ε < min
{︂
ε0, ε(I),

1
c2

}︂
. For such an ε we see that (1−c2ε)-Hausdorff measure of Σ is positive,

hence dimΣ = 1.

The plan of the construction of νε is laid down in Section 8.2. The construction itself (and

the proof of (a)-(c)) is done in Sections 8.3 - 8.6. We note that the measures νε are probability

measures (i.e. νε(S) = 1).

We call the measures νε (= νε, u) the Bourgain measures (B-measures) of the function u. The

idea to use these measures to prove the ultradensity of B-points is borrowed from [15], [16]. The
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main difference here lies in the construction of B-measures. Our argument works not only for the

case when Ω is the ball or the upper halfspace, but also when Ω is the star-like domain.

8.2 Construction of measures νε: outline

8.2.1 The plan

It remains to construct a family of B-measures that satisfy conditions (a), (b), (c) (see Section

8.1.3). It is done in Sections 8.3-8.6 according to the plan we introduce below.

ByM+(S) we denote the set of finite (positive) Radon measures on Rd+1 supported on S. Below

we define a family of mappings (Wε,u)0<ε<ε0 of the set M+(S) into itself, such that νε := Wε,u(ν)

satisfies (a), (b), (c), for any nonzero ν ∈M+(S). This proves Theorem 8.0.1.

Remark. The mappings Wε,u are actually restrictions on M+(S) of the linear operators that

map the set M(S) of finite Borel charges on Rd supported on S into itself, and, moreover,

Wε,u(ν)(S) = ν(S) for any ν ∈M(S).

8.2.2 Kernels ψt,u,ε

Let ε ∈ (0, ε0) be sufficiently small, and from now on we stop mentioning ε0. The measure Wε,u[ν]

is obtained via a continuous transformation of the measure ν ∈ M+(S), that depends on the

parameter t. For t ∈ (0, 1) we define a positive kernel ψt(= ψt,ε,u) ∈ C(S̄ × S̄) (and, consequently,

an integral operator Ψt), such that∫︂
S

ψt(x, ξ) dξ = Ψt[1](x) ≡ 1

for any t ∈ (0, 1). Given a probability measure ν ∈M+(S) and a Borel set E ⊂ S let

νt(E) :=

∫︂
S

∫︂
S

1E(x)ψt(ξ, x) dν(ξ) dx

=: Ψ∗
t [ν](E), t ∈ (0, 1).

(8.15)

Clearly νt is a probability measure supported on S. The measure νε := W [ν] (= Wε,u[ν)] is defined

as the weak limit limt↓0 νts (its existence is proven in Section 8.3.4). The operators Ψt tend to

the identity as t ↑ 1 (see Section 8.3.3). More precisely, limt↑1Ψt[φ] = φ uniformly on S for any

φ ∈ C(S̄). From now on Ψ1 is the identity operator on C(S̄), and Ψ∗
1 is the identity mapping of

M(S̄) into itself.

We thus see that for t = 1 we start with a unit mass ν on S, and then we gradually redistribute

it as t tends to zero. Every t ∈ (0, 1) corresponds to the distribution Ψ∗
t [ν] = νt. Passing to the

limit we acquire the desired distribution νε = W [ν], that is ’adjusted’ to u, that is
∫︁
S
Mvaru dνε

is finite. Hence the existence of Bourgain points of u is provided. Their ultradensity is implied

by the fact that the family {νε} satisfies (b) and (c). These conditions are proven in Section 8.5.

Condition (a) is deduced at once from some properties of the kernels ψt.



161

8.2.3 Two key facts about ψt

These facts are shown in Sections 8.3-8.4.

Let φ be a positive harmonic function on Ω that has a finite limit at infinity. As before, we

put φ[t](x) := φ(x, t), x ∈ S, t > 0, so that φ[t] ∈ C(S̄). Let 0 < θ < t ≤ 1. Then

i. Ψθ

[︁
φ[t]

]︁
≤ CΨt

[︁
φ[t]

]︁
;

ii. if lim∞ φ = 0, then for any x ∈ S the function fx : t ↦→ Ψt

[︁
φ[t]

]︁
is continuously differentiable

on (0, 1], and (︃
∂

∂t
fx

)︃
(t) = εΨt

[︁
Bt

[︁
φ[t]

]︁]︁
(x), x ∈ S, t ∈ (0, 1] (8.16)

The statement (i) is proven in Section 8.3.3, statement (ii) and the continuity of Bt

[︁
φ[t]

]︁
is shown

in Section 8.4.

8.2.4 Mean variation is finite

Now we show that (i) and (ii) imply that
∫︁
S
Mvaru dνε is finite, i.e. the property (a) of the measure

νε.

Given t ∈ (0, 1] we let

gt := (h2t)[t] = Bt

[︁
u[t]
]︁
, (8.17)

see (8.10) and (8.11). We note that for any t ∈ (0, 1] the function gt coincides on S with some

positive and harmonic function in Ω, that vanishes at infinity. To prove (a) it is enough to show that∫︂
S

∫︂ 1

δ

gt dt dν
ε is uniformly bounded for δ ∈ (0, 1). For such a δ the function x ↦→

∫︁ 1

δ
gt(x)dt, x ∈ S,

coincides on S with some positive harmonic function on Ω, that vanishes at infinity (see Section

8.7). Therefore, due to (i) we have

lim
θ→0

∫︂
S

(︃∫︂ 1

δ

gt dt

)︃
dνθ = lim

θ→0

∫︂
S

(︃
Ψθ

[︃∫︂ 1

δ

gt dt

]︃)︃
dν

= lim
θ→0

∫︂
S

(︃∫︂ 1

δ

Ψθ[gt] dt

)︃
dν ≤ C(i)

∫︂
S

(︃∫︂ 1

δ

Ψt(gt) dt

)︃
dν.

But it follows from (ii), (8.16) and (8.17), that the last integral is

C(i)

ε

∫︂
S

(︃∫︂ 1

δ

∂

∂t
Ψt [ut] dt

)︃
dν =

C(i)

ε

∫︂
S

(︁
Ψ1

[︁
u[1]
]︁
−Ψδ

[︁
u[δ]
]︁)︁
dν

≤
C(i)

ε

∫︂
S

Ψ1

[︁
u[1]
]︁
dν ≤

C(i)

ε
sup
S
u[1]

(it is precisely in the penultimate inequality that we used the positivity of u). Recall that u

vanishes at infinity so u1 is bounded on S. We are done.



162

8.2.5 Differential equations (8.16)

We have to solve these equations (8.16), and t ↦→ Ψt, is the unknown operator-function variable. In

order to do this we use a (version of) a well known method of solving linear differential equations

in a vector space ([27]). We construct an operator function J ↦→ ΨJ that maps a compact interval

J ⊂ (0, 1] to an integral operator ΨJ with positive kernel ψJ ∈ C(S × S). This function –

’multiplicative integral ’ – satisfies the following condition:

0 < a < b < c⇒ ψ[a,c] = ψ[b,c] ◦ ω[a,b]. (8.18)

The kernels ψt are defined as follows ψt := ψ[t,1], 0 < t < 1. In Sections 8.3-8.6 we make sure that

this choice of kernels provides all the necessary properties of νε.

8.3 Kernels ψJ , weak convergence of νt, condition (i)

Here and in the next few Sections we will make proclamations about this or that properties of ψt,

and prove the properties we desired above modulo these proclamations. All will converge in due

sense in Section 8.6. Also we will assume the value of ε to be fixed and small (essentially we will

choose it at the very end of our chain of arguments), so we do not use it in the notation.

8.3.1 Kernels bJ , ψ̃J , ψJ

By segm+ we denote the set of all non-degenerate compact intervals (segments) in (0,+∞). Given

J = [a, b] ∈ segm+ let

m(J) = a, M(J) = b, |J | = b− a,

bJ(x, ξ) =

∫︂
J

bθ(x, ξ) dθ, x, ξ ∈ S.
(8.19)

It follows from (8.13a) and (8.6) that

|bJ | ≤ c
pm(J)

m(J)
|J |, (8.20)

for M(J) ≤ 1. We call the segment J ∈ segm+ short, if |J | ≤ m(J). Given a short segment

J ⊂ (0, 1] we have

|bJ | ≤ c′p|J |, (8.21)

again, due to (8.6). Note that for any J ∈ segm+

BJ [1] =

∫︂
J

Bθ[1] dθ = 0.

Let

ψ̃J := p|J | − εbJ , J ∈ segm+.
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Clearly, Ψ̃J [1] = 1. The kernel ψ̃J is positive, if J is short and ε is small enough (see (8.21), we

stress again that the choice of maximal ε0 is postponed until the very end). Moreover under these

conditions we have

(1− cε)p|J | ≤ ψ̃J ≤ (1 + cε)p|J | (8.22)

We proceed by accumulating properties of kernels ψJ postponing their construction until later.

For sufficiently small |J | the kernel ψJ can be considered as a small perturbation of ψ̃J . Namely,

if we put rJ := ψJ − ψ̃J , we shall see that

|rJ | ≤ cε2
|J |2

m(J)2
pm(J). (8.23)

Then (8.6) implies

|rJ | ≤ c′ε2p|J |, (8.24)

for short J . The kernel ψJ is therefore positive. Indeed, then we have by (8.22)

ψJ = ψ̃J + rJ ≥ (1− c′′ε) p|J |,

for short J . Since an arbitrary J is a disjoint union
⨆︁N

n=1 Jn, of short intervals Jn, we see that

ψJ = ψJN ◦ · · · ◦ ψJ1 > 0 (see (8.18)).

We also note that RJ [1] = 0, hence

ΨJ [1] = 1.

8.3.2 Behaviour of ψt for small t

Here we estimate kernels ψ[θ,1] for small positive θ. First we observe that [t, 2t] is short, therefore

ψ[t,2t] ≤ ψ̃[t,2t] + cεpt ≤ pt + c′ε

∫︂ 2t

t

py
y
dy + cεpt,

where c and c′ are absolute positive constants (see (8.13), (8.21)). Further, by (8.6)∫︂ 2t

t

py
y
dy ≤

∫︂ 2t

t

c′
pt
t
· y
t
dθ = c′pt.

Hence

ψ[t,2t] ≤ Cpt, C = 1 + εc′ > 0, 0 < t ≤ 1, (8.25)

we assume that ε < 1. The estimate of ψ[θ,1] follows from (8.25): if 0 < θ < 1
2
, then

ψ[θ,1] ≤ c · 1

θcε
· p1−θ. (8.26)
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Indeed, by writing ψ[θ,1] as a composition of ψ[2kθ,2k+1θ] and ψ[2Kθ,1] for some K ≈ log 1
θ
, and

applying (8.25) to each term, we get

ψ[θ,1] ≤ (1 + cε)K+1p1−2Kθ ◦ p2K−1θ ◦ · · · ◦ pθ = (1 + cε)K+1p(1−2Kθ)+(2K−1+···+1)θ

= (1 + cε)K+1p1−θ ≤=
c

θc′ε
p1−θ.

Analogously, under the same conditions we deduce from (8.25) the following estimate

ψ[θ,1] ≥ c′′θc
′′ε · p1−θ, c′′ > 0. (8.27)

Also, the last term p1−θ looks like a constant function for small values of θ, so the estimates

above are uniform in a way.

8.3.3 Focusing property of the operator Ω∆

Given a short segment J the operator ΨJ behaves like the Poisson operator P|J |: for a class

of functions ψ defined on S, the function ΨJ [φ] converges to φ as |J | → 0; whereupon ξ ↦→
ψJ(x, ξ), ξ ∈ S ’is focusing onto x ∈ S’, becoming similar to δx. In what follows we use this

’focusing property’ repeatedly.

Lemma 8.3.1 Let t ∈ (0, 1) and φ be a positive harmonic function on Ω. Then for any J ∈
segm+, J ⊂ (0, t] we have ⃓⃓

ΨJ

[︁
φ[t]

]︁
− φ[t]

⃓⃓
≤ c

|J |
t
φ[t] (8.28)

everywhere on S (and the constants do not depend on ε).

Proof. Let I ∈ segm+, I ⊂ J , and f := φ[t] = φ(·, t). Then

|ΨI [f ]− f | ≤ |P|I|[f ]− f |+ |BI [f ]|+ |RI [f ]| =:

I + II + III.
(8.29)

The first term is very simple, since by Harnack’s inequality

⃓⃓
P|I|[f ]− f(x)

⃓⃓
≤
∫︂ t+|I|

t

|∇φ|(x, θ) dθ ≤ C|I||∇φ|(x, t) ≤ C
|I|
t
φ(x, t).

We deal with II next. Given θ ∈ I, x ∈ S we have

|Cθ[f ](x)| ≤ |∇ (Pθ[f ]) (x)| =
⃓⃓
∇φ[t+θ](x)

⃓⃓
≤ c3

φ(x, t)

t
,

therefore

II ≤
∫︂
I

Pθ [|Cθ[f ]|] dθ ≤
c3
t

∫︂
I

φ(x, t+ θ) dθ ≤ c4|I|
t
φ(x, t).
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Finally (8.23) implies that for x ∈ S

III(x) ≤ c5

∫︂
S

|I|2

m(I)2
pm(I)(x, ξ)f(ξ) dξ

≤ c5
|I||J |

(m(J))2
φ(x, t+m(I)) ≤ c6f(x)

|I||J |
t(m(J))2

.

(8.30)

It follows from (8.29) – (8.30) that

(1− θI)f ≤ ΨI [f ] ≤ (1 + θJ)f, (8.31)

where 0 < θI ≤ c7
|I|
t

(︂
1 + |I||J |

(m(J))2

)︂
.

Now we decompose J into N nonoverlapping segments I1, I2, . . . , IN of the same length. Let

N = N(J, t) be large enough, so that

θIn(:= θn) ≤ 2c7
|J |
Nt

<
1

2
, k = 1, . . . , K.

Then due to (8.31) and (8.17),

ΨJ [f ] =
1∏︂

n=N

ΨIn [f ] ≤
2∏︂

n=N

ΨIn [(1 + θ1)f) ≤ · · · ≤(︃
1 + 2c7

|J |
Nt

)︃N

f ≤
(︃
1 + c8

|J |
t

)︃
f

(8.32)

(we recall that |J |
t
≤ 1, and the kernel of ΨIn is positive). Further

ΨJ [f ] ≥
(︃
1− 2c7

|J |
Nt

)︃N

f ≥
(︃
1− c9

|J |
t

)︃
f. (8.33)

Now (8.32) and (8.33) imply (8.28).

As an immediate corollary of Lemma 8.3.1 we get (i) from Section 8.2.3. To prove this we first

put J := [θ, t].

By Lemma 8.3.1 we have:

ΨJ

[︁
φ[t]

]︁
≤ (1 + c)φ[t].

Since [θ, 1] = J
⋃︁
[t, 1], we get

Ψθ

[︁
φ[t]

]︁
= Ψt(ΨJ

[︁
φ[t]

]︁
≤ (1 + c)Ψt

[︁
φ[t]

]︁
and we are done.
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8.3.4 Weak convergence of measures γys

Here we show that as t ↓ 0 the measures νts converge weakly on S̄ to some measure ν0 (= νε

supported on S, such that ν0(S) = 1.

Proof. Since all measures νt are probability measures, we can find a decreasing sequence {tk} ↓ 0

in (0, 1), such that νtk converge weakly on S̄ to some measure:

lim
k→∞

∫︂
S

fdνtk =

∫︂
S̄

f dν0, (8.34)

for any f ∈ C(S̄). Let us verify that ν0({∞}) = 0, so that ν0(S) = 1, and the mass of ν0 does

not run away to infinity. Consider a large interval I ⊂ S with |I| = L that is centered at zero.

By ωL(x, t) we denote the harmonic measure of I in Ω taken at (x, t). Now choose a large enough

number M in such a way that

ωL(x, t) ≤
1

2
, x ∈ S \M · I, 0 < t ≤ 1,

here M · I is the interval of length M |I| concentric to I. Clearly ωL(x, t) ∈ C(S̄) for a given t.

Further

ν0({∞}) ≤ ν0(S̄ \M · I) ≤ 2

∫︂
S̄

(1− ωL)(x, t) dν0(x) = lim
k→∞

2

∫︂
S

(1− ωL)(x, t) dνtk(x)

= lim
k→∞

∫︂
S

Ψtk

[︁
(1− ωL)[t]

]︁
dν ≤ c(S)

t

∫︂
S

(1− ωL)[t] dν(x),

here we used the focusing property of Ψyk and the harmonicity of 1− ωL. Since ν is a probability

measure on S, and ωL(x, t) → 1 as L→ ∞, we see that the last integral vanishes.

It remains to show that

lim
t↓0

∫︂
S

f dνt =

∫︂
S

f dν0

for any f ∈ C(S̄). Clearly it is enough to consider traces of positive harmonic functions, so we

assume f to be such a trace, f(x) = φ(x, θ), x ∈ S for some positive harmonic φ and t > 0. Using

Lemma 8.3.1, multiplicative property of ψJ and the fact that Ψt[1] = 1, ν(S) = 1, we obtain:⃓⃓⃓⃓∫︂
S

f dνt −
∫︂
S

f dνtk

⃓⃓⃓⃓
=

⃓⃓⃓⃓∫︂
S

Ψtk

[︁
Ψ[t,tk][f ]− f

]︁
dν

⃓⃓⃓⃓
≤ ∥Ψ[tk,t][f ]− f∥∞ ≤ c(S)

tk
θ
∥f∥∞,

and we arrive to the desired conclusion.

8.4 Identity (ii) for operator functions t ↦→ Ψt

In this section we (still taking for granted the existence of ψJ and their properties) demonstrate

the equations (ii) that have already been used in Section 8.2.4.
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Let φ be a positive harmonic function on Ω that vanishes at infinity. Let

fx(t) := Ψt

[︁
φ[t]

]︁
(x), t ∈ (0, 1], x ∈ S,

where, as before, Ψt := Ψ[t,1] and Ψ1 is the identity operator. To compute the derivative of fx

we first prove that it is Lipschitz on any segment [t0, 1], 0 < t0 < 1. Following that (Section

8.4.1) we compute the left derivative (fx)′−. As we show later it exists everywhere on (0, 1] and

is continuous (the right derivative (fx)′+ is trickier to handle since the kernels (8.16) are not

necessarily commutative). The Lipschitz property of f |[t0,1], t0 ∈ (0, 1] implies that

fx(y) = fx(1)−
∫︂ 1

t

(fx)′−(θ) dθ, t ∈ (0, 1].

We therefore have (fx)′−(t) = (fx)′+(t), t ∈ (0, 1], and, consequently, fx ∈ C1((0, 1]).

Now we show that fx|[t0,1] is Lipschitz. Let t ∈ (0, 1], δ > 0, t − δ ≥ t0, J := [t, 1]. Considering

(8.17) we have

fx(t)− fx(t− δ) = (Ψt [I + II]) (x) + III(x), (8.35)

where

I := φ[t] −ΨJ

[︁
φ[t]

]︁
,

II := φ[t] − φ[t−δ],

III := (Ψt−δ −Ψt)[II].

Setting N := supt0≤t≤1 ∥φ[t]∥∞, we see that focusing property of ψJ (Lemma 8.3.1) implies:

∥I∥∞ ≤ c1(S)N
δ

t0
.

By Harnack’s inequality for any x ∈ S there exists θ = θ(x) ∈ (t− δ, t) such that

|II| (x) ≤ |∇φ(x, θ)|δ ≤ c2(S)N
δ

t0
.

Hence

∥Ψt[I + II]∥∞ ≤ ∥I∥∞ + ∥II∥∞ ≤ c3(S)N
δ

t0
.

Finally,

∥III∥∞ ≤ 2∥II∥∞ ≤ 2c3(S)N
δ

t0
,

so that

|fx(t)− fx(t− δ)| ≤ c4(S)N
δ

t0
, x ∈ S, 0 < t0 ≤ t− δ < t ≤ 1.

We are done.
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8.4.1 Computing the derivative (fx)′

It follows from (8.35) that for 0 < δ ≤ t

2

fx(t− δ)− fx(t)

−δ
= Ψt[A1](x) + A2(x), x ∈ S, 0 < t ≤ 1 (8.36)

where A1 :=
I + II

2
, A2 :=

III

δ
(I, II, III are the same as in (8.35)).

Let us verify that limδ↓0A2 = 0 on S. Indeed, |∇φ(x, θ)| is uniformly bounded for t
2
≤ θ ≤ 2t by

Harnack’s inequality, also Ψθ[1] = 1, hence

1

δ
(Ψt−δ −Ψt)

[︃∫︂ t

t−δ

∂

∂θ
φ[θ] dθ

]︃
=

1

δ

∫︂ t

t−δ

(Ψt−δ −Ψt)

[︃
∂

∂θ
φ[θ]

]︃
dθ

and the integrand converges to zero.

It remains to prove that the following equality holds on S

lim
δ↓0

I + II

δ
= εBt

[︁
φ[t]

]︁
, (8.37)

since then

lim
δ↓0

Ψt[A1] = εΨt

[︁
Bt

[︁
φ[t]

]︁]︁
would follow immediately by dominated convergence. We have

lim
δ↓0

I + II

δ
= lim

δ→0

(︃
ε

δ

∫︂ t

t−δ

Bθ

[︁
φ[t]

]︁
dθ +

1

δ
R[t−δ,δ]

[︁
φ[t]

]︁)︃
= εBt

[︁
φ[t]

]︁
+ lim

δ↓0

1

δ
R[t−δ,t]

[︁
φ[t]

]︁
(8.38)

since θ ↦→ Bθ

[︁
φ[t]

]︁
(x) is continuous on [t − δ, t] for any x ∈ S, see 8.7. The second term in the

expression above clearly vanishes due to (8.23).

8.5 Properties (b) and (c) of measures νε

8.5.1 Positivity of νε(I)

Lemma 8.5.1 Given an interval I ⊂ S there exists εI such that for any ε ≤ εI we have ν
ε(I) > c,

where c = c(S, I, ν) > 0.

Proof. Let φ be a harmonic extension of some partition of unity element attached to I, that is the

boundary data φ[0] is a smooth function between 0 and 1, also φ[0] ≡ 1 on 1
2
I, and |∇φ[0]| ≤ 2

|I| .

It is enough to show that for ε small enough∫︂
S

φ[t] dν
ε ≥ c(S, I) > 0. (8.39)
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This, in turn, follows from∫︂
S

φ[t] dΨ
∗
δ(ν) ≥ c(S, I, ν) > 0, where 0 < δ < y < |I|. (8.40)

We always can assume that |I| ≤ 1. The estimate (8.40) is equivalent to∫︂
S

Ψ[δ,t]

[︁
φ[t]

]︁
dΨ∗

t (ν) ≥ c > 0,

that, due to Lemma 8.3.1 follows from∫︂
S

φ[t] dΨ
∗
t (ν)

(︃
=

∫︂
S

Ψt [φt] dν

)︃
≥ c1 > 0 (8.41)

If t ∈ (0, |I|), then

Ψt

[︁
φ[t]

]︁
= Ψ|I|

[︁
φ[|I|]

]︁
−
∫︂ |I|

t

∂

∂θ

(︁
Ψθ

[︁
φ[θ]

]︁)︁
dθ

= Ψ|I|
[︁
φ[|I|]

]︁
− ε

∫︂ |I|

t

Ψθ

[︁
Bθ

[︁
φ[θ]

]︁]︁
dθ

(8.42)

By (8.27)

Ψ|I|
[︁
φ[|I|]

]︁
≥ c2(S)|I|εP1−|I|

[︁
φ[|I|]

]︁
= c2(S)|I|εφ1, (8.43)

hence ∫︂
S

Ψ|I|
[︁
φ[|I|]

]︁
dν ≥ c3|I|ε.

The second term in (8.42) is given by

ε

∫︂ |I|

t

Ψθ

[︁
Bθ

[︁
φ[θ]

]︁]︁
dθ ≤ ε sup

θ∈(0,|I|)
∥Bθ

[︁
φ[θ]

]︁
∥∞ · |I|. (8.44)

On the other hand

∥Bθ

[︁
φ[θ]

]︁
∥∞ ≤ c4(S) sup

Ω
|∇φ| =:

c5
|I|

(8.45)

(see the definition of bt in 8.1.2 and the first of inequalities (8.8)). We arrive at∫︂
S

Ψt

[︁
φ[t]

]︁
dν ≥ c3|I|ε − c5ε ≥

c3
2
,

for small values of ε.
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8.5.2 Mass distribution of νε

We move to (b). Let I ⊂ S be any finite interval, we may assume |I| ≤ 1
2
, and let g(x) be its

harmonic measure in Ω taken at (x, |I|) ∈ Ω. Since, clearly g(x) ≥ 1
10

on I, we have

νε(I) ≤ C

∫︂
S

g dνε = C lim
δ→0

∫︂
S

g dΨ∗
δ [ν].

Taking δ < |I| and J = [|I|, 1] we get∫︂
S

g dΨ∗
δ [ν] =

∫︂
S

Ψ[δ,|I|][g] dΨ
∗
J [ν] ≤ C

∫︂
S

g dΨ∗
J [ν],

due to Lemma 8.3.1 and g being a trace of positive harmonic function on level |I|. Next we use

(8.26) to see that ∫︂
S

g dΨ∗
J [ν] ≤ C · |I|−Cε

∫︂
S

g(x)

∫︂
S

p1−|I|(x, ξ) dν(ξ) dx ≤

C1 · |I|−Cε

∫︂
S

g(x) dx ≤ C2|I|1−Cε,

since
∫︁
S
p1−|I|(x, ξ) dν(ξ) is clearly uniformly bounded, and L1-norm of g is just |I|.

8.6 Kernels ψJ : existence, properties

8.6.1 Some extra notation

Consider J ⊂ (0, 1] and let Λ ⊂ segm+ be a finite set of nonoverlapping intervals such that

J =
⋃︁

I∈Λ I. We call such a set a partition of J ∈ segm+. Sometimes we understand Λ as afamily

(Ik)
N
k=1 of segments with positive (and nondecreasing) left endpoints: 0 < m(J) = m(I1) < · · · <

m(IN) < M(IN) =M(J). The number δΛ := maxI∈Λ |I| is called the mesh of the partition Λ; we

write Λ2 ≻ Λ1 if any element of Λ2 lies in some element of Λ1. Given a partition Λ of J we define

the kernel ψΛ,

ψΛ := ψ̃IN
◦ ψ̃IN−1

◦ . . . ψ̃N1

(see related definitions in Section 8.3.1). The kernel ψJ is defined (in Section 8.6.5) as the limit of

the sequence of kernels (ψΛn)∞n=1, where Λn is some sequence of partitions of J , with δΛn → 0.

8.6.2 Decomposition of ψΛ

ByNq we denote the set of the subsets of {1, 2, . . . , N} of cardinality q. We start with the following

identity

ψΛ = (p|I1| − εbI1) ◦ (p|I2| − εbI2) ◦ · · · ◦ (p|IN | − εbIN ) =

p|J | +
N∑︂
q=1

∑︂
Σ∈Nq

πΣ,
(8.46)
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where πΣ := rΣN ◦ rΣN−1 ◦ · · · ◦ rσ1 , and

rΣj =

⎧⎨⎩−εbIj , if j ∈ Σ,

p|Ij |, if j /∈ Σ.

Consider the sum in (8.46) that corresponds to q = 1,taking into account that bJ =
∑︁N

q=1 bIq ,

while ∑︂
Σ∈N1

πΣ = −ε
N∑︂
j=1

p|I+j | ◦ bIj ◦ p|I−j |,

where I±j is [M(Ij),M(J)] or [m(J),m(Ij)] respectively (if one of them degenerates to a point,

then p|I±q | is understood as the composition identity) . It follows from (8.46) that

ψΛ = ψ̃J + ε

N∑︂
j=1

vj + ρΛ, (8.47)

where vj := bIj − p|I+j | ◦ bIj ◦ p|I−j | and ρΛ :=
∑︁N

q=2

∑︁
Σ∈Nq

πΣ.

8.6.3 Estimating ψΛ − ψ̃J

We need to estimate the remainder terms vj and ρΛ.

Kernels vj

Note that for any θ, λ > 0 we have

|bθ|+ |cθ| ≤ c(S)pθ
θ

(8.48a)

|pθ+λ − pθ| ≤ c(S)λ
θ
pθ, (8.48b)

if θ + λ < 1. Now, (8.48a) follows from (8.8) and (8.13), and the second is fairly obvious, say, by

Harnack’s inequality again.

Let I ∈ segm+, I ⊂ J , and set L(I) :=
|I|
m(I)

. Put vI := bI − p|I+| ◦ bI ◦ p|I−|. We have

|vI | ≤ |bI − p|I+| ◦ bI |+ |p|I+| ◦ bI − p|I+| ◦ bI ◦ p|I−||. (8.49)

Using (8.48b) and (8.8) we obtain

|bI − p|I+| ◦ bI | ≤
∫︂
I

|pθcθ − p|I+|+θ ◦ cθ| dθ ≤ c(S, J)|I+|
∫︂
I

pθ
θ

◦ pθ
θ
dθ

= c(S, J)|I+|
∫︂
I

p2θ
θ2

dθ ≤ c′(S, J)|I+|
∫︂
I

pm(J)

θ2
· 2θ

m(J)
dθ

≤ L(J)
|I|
m(J)

pm(J).

(8.50)
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As we move to deal with the second term in (8.49), let us recall that one can shave one half of

the Poisson kernel off cθ. In other words, if we look at (8.7) and use the semi-group property of

pθ, we get

cθ = c̃θ ◦ p θ
2
, θ > 0,

where c̃θ is derivative of p θ
2
w.r.t. ϕ, and it satisfies the same estimates as cθ itself. Hence

|p|I+| ◦ bI − p|I+| ◦ bI ◦ p|I−|| ≤∫︂
I

|p|I+|+θ ◦ (cθ − cθ ◦ p|I−|)| dθ =
∫︂
I

⃓⃓⃓
p|I+|+θ ◦ c̃θ ◦ (p θ

2
− p θ

2
+|I−|)

⃓⃓⃓
dθ

≤ c(S)

∫︂
I

1

θ

|I−|
θ
p|I+|+ 3

2
θ ◦ p θ

2
dθ ≤ c′′(S)

∫︂
I

|I−|
θ2

|I+|+ 2θ

m(J)
pm(J) dθ

≤ c′′(S, J)L(J)(3L(J) + 2)
|I|
m(J)

pm(J) ≤ 3c′′(S, J)
M(J)

m(J)
L(J)

|I|
m(J)

pm(J)

(8.51)

we recall that L(J) = M(J)
m(J)

− 1. It follows from (8.50), (8.51) and (8.49) that

|vI | ≤ c(S, J)
M(J)

m(J)
L(J)

|I|
m(J)

pm(J),

and c(S, J) increases with J . Returning to the partition Λ of the segment J (see (8.47)) we get

N∑︂
j=1

|vj| ≤ c(S, J)
M(J)

m(J)
L(J)

N∑︂
j=1

|I|k
m(J)

pm(J) = c(S, J)
M(J)

m(J)
(L(J))2pm(J). (8.52)

Estimate of ρΛ

Going back to (8.46) we have

ρΛ =
N∑︂
q=2

∑︂
Σ∈Nq

πΣ,

If j ∈ Σ, then by (8.20)

|rΣj | = ε|bIj | ≤ c(S)εL(Ij)pm(Ij)

Assume that Λ is a regular partition, that is δ(Λ) ≤ 2|J |
N

. Then, putting h := 2c(S)εL(J), we

obtain

|rΣj | ≤
h

N
pm(Ij), j ∈ Σ.

On the other hand if j /∈ Σ, then rΣj = p|Ij |. It means that for Σ ∈ Nq

|πΣ| ≤ hqN−qpa(Σ),

where

a(Σ) :=
∑︂
j∈Σ

m(Ij) +
∑︂
j /∈Σ

|Ij| ≤ qM(J) + |J |
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Taking into account that #Nq = Cq
N ≤ Nq

q!
, we arrive at

|ρΛ| ≤
N∑︂
q=2

N q

q!
hqN−qc(S)

qM(J) + |J |
m(J)

pm(J) ≤ Ch2
∞∑︂
q=2

hq−2

(q − 1)!

M(J) + |J |
m(J)

pm(J)

≤ C(2L(J) + 1)h2ehpm(J).

Now we are ready to work with ψΛ − ψ̃J . Combining the estimate above with (8.47) and (8.52)

we deduce

|ψΛ − ψ̃J | ≤ c(S, L(J))(L(J))2pm(J), (8.53)

where the function s ↦→ c(S, s) is increasing. Here we assume Λ to be a regular partition.

The estimate of the kernel ψΛ follows from (8.53) as well

|ψΛ| ≤ |ψ̃(J)|+ c(S, L(J))(L(J))2pm(J) ≤ p|J |+

+ (c(S)εL(J) + c(S, L(J))(L(J))2pm(J)) = p|J | + A · (L(J))2pm(J),
(8.54)

here A = A(L(J), S), and the function x ↦→ A(x, S) is increasing.

8.6.4 Estimate of ψΛ̃ − ψΛ, Λ ≻ Λ̃

This is the main estimate of this Section, after we obtain it the construction of ψJ is almost done.

Lemma 8.6.1 Let Λ̃ be a partition of J ∈ segm+ and Λ ≻ Λ̃. Then

|ψΛ̃ − ψΛ| ≤ C(S, J)δ(Λ̃)pm(J) (8.55)

where δ(Λ̃) is the mesh of partition (see Section 8.6.1).

Proof. Let Λ̃ = {J1, J2, . . . , JN}, m(J1) < m(J2) · · · < m(JN). Put Λk := {I ∈ Λ : I ⊂ Jk} so that

Λk is the partition of Jk, Λ =
⋃︁N

k=1 Λk. For i = 2, 3, . . . , N by Λ−
i we denote the part of Λ that

lies in J−
i : Λ

−
i =

⋃︁
1≤q<i Λq; Λ

−
1 := ∅. For i = 1, . . . , N by Λ̃

+

i we denote the part of Λ̃ that lies in

J+
i : so Λ̃

+

i =
⋃︁

i<q≤N Jq; Λ̃
+

N+1 := ∅. Finally, let Λ̃i := Λ−
i

⋃︁
{Ji}

⋃︁
Λ̃

+

i , 1 ≤ i ≤ N ; Λ̃N+1 := Λ.

Here the kernel ψΛ̃i is written as ψi, i = 1, . . . , N + 1. In particular, ψ1 = ψΛ̃, ψN+1 = ψΛ,

ψΛ̃ − ψΛ =
K∑︂
i=1

(ψi − ψi+1).

If i ̸= 1, N , then

ψi − ψi+1 = ψΛ̃
+
i ◦ (ψ̃Ji

− ψΛi) ◦ ψΛ−
i . (8.56)

This equality also holds for i = 1, N , if ψ∅ is understood as a identity convolution operator. It

follows from (8.56), (8.53), (8.54), and the inequality |Ji|2 ≤ δ(Λ̃)|Ji| that

|ψi − ψi+1| ≤ (p|J+
i | + Cpm(J+

i )) ◦ δ(Λ̃)|Ji|pm(J) ◦ (p|J−
i | + Cpm(J−

i )), (8.57)
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here C = C(J, S). The right-hand side in (8.57) does not exceed

A(M(J) + |J |)
m(J)

δ(Λ̃)|Ji|pm(J) = A(1 + 2L(J))δ(Λ̃)|Ji|pm(J),

where A = A(∆, S). Therefore

|ψΛ̃ − ψΛ| ≤
N∑︂
i=1

|ψi − ψi+1| ≤ A(1 + 2L(J))|J |δ(Λ̃)pm(J).

8.6.5 Dyadic partitions of ω∆

Let n ∈ Z+, J ∈ segm+. By Λ̃n(J) we denote the partition of J that consists of all intersections

of the form J
⋂︁[︁ j

2n
, j+1

2n

]︁
, j ∈ Z+. We call such a partition dyadic of the rank n. Clearly this is a

regular partition, Λ̃n+1(J) ≻ Λ̃n(J), δ(Λ̃n(J)) ≤ |J |
2n
. Put ψn := ψΛ̃n(J). Lemma 8.6.1 implies that

|ψn − ψn+1| ≤ C(J, S) |J |
2n
pm(J). Therefore the series

ψJ := lim
n→∞

ψn = ψ1 + (ψ2 − ψ1) + (ψ3 − ψ2) + . . . (8.58)

converges uniformly on S × S and defines the kernel ψJ that satisfies

1. ψJ ∈ C(S × S);

2. ψJ > 0, if ε ∈ (0, ε0);

3.
∫︁
S
ψJ(x, ξ) dξ = 1 for any x ∈ S;

4. if 0 < a < b < c, then ψ[a,c] = ψ[b,c] ◦ ψ[a,b];

5. |ψJ − ψ̃J | ≤ C(S)ε2(L(J))2pm(J), if J is short (i.e. if L(J) ≤ 1).

Proof. (1) follows from continuity of bJ (see Section 8.7) and from the fact that series in (8.58)

converges uniformly on S × S.

The statement (2) follows from the positivity of ψ̃J for small values of ε (see (8.21)).

To obtain (3) we note that ψ̃J(x, ξ) dξ is a probability measure on S, therefore
∫︁
S
ψn(x, ξ) dξ ≡ 1,

and we can pass to the limit in the integral since by (8.55)

|ψn − ψJ | ≤ C|J |2−npm(J).
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Now we show (4). Let J := [a, c], J− := [a, b], J+ := [b, c], Λ̃
′
n(J) := Λ̃n(J

−)
⋃︁
Λ̃n(J

+). Clearly,

Λ̃
′
n(J) ≻ Λ̃n(J), hence Lemma 8.6.1 implies

|ψΛ̃
′
n − ψΛ̃n| ≤ c(S, J)

|J |
2n
pm(J).

We thus have limn→∞ ψΛ̃
′
n(J) = ψJ everywhere on S × S. On the other hand we see that

lim
n→∞

ψΛ̃n(J+) ◦ ψΛ̃n(J−) = ψJ+ ◦ ψJ− .

We can pass to the limit on account of the estimates

|ψΛ̃n(J±)| ≤ ψ̃J± + cpm(J)

that follow from (8.53). It remains to note that ψΛ̃
′
n(J) ≡ ψΛ̃n(J+) ◦ ψΛ̃n(J−).

We are left to prove (5). It follows from (8.53) that for Λ := Λ̃n(J) we have

|ψΛ̃n(J) − ψ̃(J)| ≤ c(S, L(J))ε2(L(J))2pm(J), n = 1, 2, . . . ,

where the function x ↦→ c(S, x) is increasing. If J is a short segment (i.e. L(J) ≤ 1), then passing

to the limit we obtain

|ψJ − ψ̃J | ≤ c(S, 1)ε2
(︃

|J |
m(J)

)︃
pm(J).

We are almost done – the only thing left to check is the continuity of bt.

8.7 Kernels bt are continuous

Here we consider the kernels bt defined in 8.1.2, and show that they are continuous in all three

variables. While it takes a bit more work to establish for Lipschitz domains in Rd+1, it is almost

immediate for Ω = R2
+. Indeed, the zero sets of gradients of harmonic functions are discrete, and

the boundary geometry is somewhat easier to deal with.

So, let us consider the kernel bt written in the convolution – here is one of a select few places

where we make our life easier by actually using a simpler structure of Ω = R2
+ and S = R. We

have

bt(x, ξ) = (pt ◦ ct)(x, ξ) =
∫︂
S

pt(x, η)ct(η, ξ) dη =∫︂
S

pt(x, η) ·
(︃
∂

∂η
pt(η, ξ) · ϕ1(η, 2t) +

∂

∂t
pt(η, ξ) · ϕ2(η, 2t)

)︃
dη =

1

π2

∫︂
R

t

t2 + (x− η)2

(︃
2t(η − ξ)

(t2 + (ξ − η)2)2
· ϕ1(η, 2t) +

t2 − (ξ − η)2

(t2 + (ξ − η)2)2
· ϕ2(η, 2t)

)︃
dη,

(8.59)
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where (ϕ1, ϕ2)(η, 2t) = ϕ(η, 2t) =
∇u(η, 2t)
|∇u(η, 2t)|

, if |∇u(η, 2t)| ≠ 0, and 0 otherwise. Since |∇u| is

bounded on any half-plane {(x, θ) : x ∈ R, θ ≥ θ0 > 0} by Harnack’s inequality, we see that the

formula in (8.59) guarantees that bx(x, ξ) is continuous on R× R× (0,+∞), and we are done.
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Conclusion

We wrap up the thesis with a couple of observations. First, the results presented here, especially

those related to Potential Theory on d-trees can be considered as a notable advancement in the

studies of the spaces on the polydisc. Moreover, we believe that it is the methods developed

that constitute the main achievement, the energy majorization and extremal capacity estimates

scan be successfully implemented in other models. A discretization of Bessel capacity seems also

be of use. Second, there are numerous pathways open to continue the investigations. A greater

understanding of the situation in higher dimensions and further analysis of Bourgain measures

seem to be especially interesting.

We finish the thesis with a number of open questions and list of possible problems for the follow-up

research.

Weighted Potential Theory on a graph

Non-linear theory

A natural question considering the weighted Hardy embedding (2.1) concerns its non-linear version.

Namely we ask what are the conditions on w, µ that guarantee the boundedness of the embedding

Iw : Lp(T d, w) → Lq(T
d
, µ),

or, in other words, when the inequality

(︃∫︂
T

d
(Iwf)

p dµ

)︃ 1
p

≤ C(w, µ, p, q)

(︃∫︂
T d

f q dw

)︃ 1
q

(C.1)

holds true for any f ∈ Lq(T d, w)? The one-dimensional case, d = 1, is rather well studied, see for

example [6], [74] or [108]. No results are known so far for d ≥ 2, even for w ≡ 1 and p = q. One of

the (numerous) obstacles is that if one defines the non-linear potential on a 2-tree analogously to

the linear case, it is not p-harmonic any more (it is p-harmonic for d = 1, while the linear version

is still harmonic in each variable). Also it would be interesting to consider the questions raised in

[91] on a bi-tree.
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Higher dimensions

Another question is about what happens for product weights w and d ≥ 4. Before we have shown

that our arguments, strictly speaking, already do not work very well for d = 3, and we have to

use the work-around (see the counterexample to two-function energy majorization, Proposition

2.6.2). The case of T 4 is therefore out of our reach for now. One of the possible approaches would

be to modify the two-function Lemma 2.6.1 so it would work for very specific functions – slices of

3-dimensional measures and potentials.

Two-weight problem

Sawyer’s result for d-trees

A careful reading of [86] provides the statement of Theorem 8.7.1 below. The setting in Sawyer’s

paper [86] can be reduced to the following situation. Assume that the weight w : T 2 → R+ has

a very special structure: it lives on ancestors of one small square. Namely, there exists a point

ω0 ∈ (∂T )2 such that

suppw ⊂ {α : α ≥ ω0}.

If such w is identically 1 on ancestors of one boundary point ω0, then it is a product weight, and

we know the answer: condition (C.2c) below is necessary and sufficient for embedding. But for

general weight sitting on ancestors of ω0, Sawyer proved the following result.

Theorem 8.7.1 Let w live on ancestors of ω0 ∈ (∂T )2.

supβ≥ω0
(I∗µ(β)Iw(β)) ≤ A2 <∞, (C.2a)∑︁

α≥β≥ω0
µ(α)(Iw(α))2 ≤ A2

∑︁
α≥β w(α), (C.2b)∑︁

ω0≤α≤β w(α)(I
∗µ(α))2 ≤ A2

∑︁
α≤β µ(α) (C.2c)

for any β ∈ T 2. All of these three conditions are necessary.

Remark. The last condition (C.2c) is just the single-box test. In other words, if we restrict

the weight to be supported only on the hooked rectangles, but drop the requirement that it has a

product structure, we see that the single box test [w, µ]B < ∞ is getting replaced by three tests:

one has to have three single box tests for the pair (µ,w).

Remark. This particular version of 2-tree has an unusual property – assume that w is also

of a product nature, i.e. w = w1 · w2, where wj is supported on a single tree geodesic. Then, as

it is shown in [96], any of these three conditions would suffice, even (C.2a). But this is just the

sub-capacitary condition for singletons,

µ({α}) ≤ ACapw({α}), ∀α ∈ T 2.

On the other hand, it is well known that on a tree T , even with w ≡ 1 single box subcapacitary

condition is not sufficient, mostly due to lack of additivity of capacity (unless it is Lebesgue
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measure, of course). This difference can be attributed to a more ’connected’ structure of T 2

restricted to P(ω0).

Another way to look at these conditions is to rewrite them in a capacitary language. A bi-tree

T 2 with such a weight w attached actually has a sort of symmetric structure, and the weight w

and a measure µ become interchangeable. To elaborate, for a measure µ that is supported on

ancestors of a single point we define yet another version of capacity (we consider finite graphs for

simplicity) as follows

Ww
µ (α) :=

∑︂
γ≤α

(Iw)(γ)µ(γ),

Pacµ(F ) := inf
w

⎧⎨⎩∑︂
β∈T 2

(Iw)2(β)µ(α) : Ww
µ ≥ 1 on F

⎫⎬⎭ .

Essentially this is a symmetric version of V-potential and w-capacity – we reverse the ordering of

our graph, and replace I∗ with I and w with µ. It turns out that Sawyer’s conditions (C.2) are

also equivalent to

µ(E) ≤ ACapw(E), ∀E ⊂ T 2, (C.3a)

w(F ) ≤ APacµ(F ), ∀F ⊂ T 2. (C.3b)

The 3-dimensional version of Sawyer’s result is still wide open. The construction he employs

depends on the fact that d = 2 in a crucial way. However, we hope that machinery developed in

Section 2.5 combined with capacitary-pacacitary approach would allow to obtain results for higher

dimensions.

General weights on 2-tree

It is very natural then to ask what are the conditions for a proper two-weight (i.e. for non-product

weights w) problem on a d-tree, even in the case d = 2. The obvious candidates are three single-box

tests (C.2) and potential-theoretic tests (C.3). An important thing to note, however, is that this

problem would also include the discrete Carleson embedding for H2(D2) in the sense of Chang-

Fefferman. If it is indeed can be covered by three single boxes, it would be very surprising. This

question is also wide open, again since Sawyer’s construction is quite rigid and can not be properly

modified, at least so far.

Relation between analytic and harmonic embeddings

As we have seen above, the analytic version of the Carleson embedding theorem 3.2.3 even for

2-tree requires the space Hs⃗ to be not far from the unweighted Dirichlet space H1⃗. This is not

the case for harmonic spaces, and it is interesting to know, if this difference is the artefact of the

proof, or if it has some inherent nature. In the latter case one would expect some kind of a critical
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curve in s⃗ to exist, such that below this curve the analytic and harmonic Carleson measures are

different.

Also the question is quite intriguing already for s = 0⃗ (though, technically, we did not consider

such values of parameters). It turned out that the equivalence of harmonic and analytic embeddings

is not known, and establishing (or disproving) such equivalence could shed new light on the multi-

parameter Nehari theorem of [34].

Variation near the boundary

In our opinion the differential equality (I.68b) that defines the family Ψt and the Bourgain mea-

sures νθ generated by it are extremely interesting. In particular, it seems that these measures

somehow contain information about the geometric structure of a zero set of derivatives of positive

harmonic functions near the boundary. Hence the true nature of these measures is not yet properly

illuminated.

A proper (i.e. not immediately trivial) discrete formulation of the radial variation problem for

harmonic functions would also be very useful, by itself and also as a way to better understand the

continuous situation.
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on trees, Potential Analysis, 15 (2001), 199-244.

[19] L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann.

of Math. 76 (1962), no. 3, 547–559

[20] L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand, 1967.

[21] L. Carleson, A counter example for measures bounded on Hp for the bi-disc, Mittag-

Leffler Report No. 7 (1974).

[22] M.L. Cartwright, On analytic functions regular in the unit circle, I, Quart. J. Math.

Oxford 4 (1933), 246–257.

[23] M.L. Cartwright, On analytic functions regular in the unit circle, II, Quart. J. Math.

Oxford 6 (1935), 94–105.

[24] Sun-Yung A. Chang, Carleson measure on the bi-disc, Ann. of Math. 109 (1979), no.

3, 613–620.

[25] Sun-Yung A. Chang, R. Fefferman, A continuous version of duality of H1 with

BMO on the bidisc, Ann. of Math. 112 (1980), no. 1, 179–201.

[26] Sun-Yung A. Chang, R. Fefferman, Some recent developments in Fourier analysis

and Hp-theory on product domains, Bull. Amer. Math. Soc. 12 (1985), no. 1, 1–43.

[27] J.L. Daleckii, M.G. Krein, Stability of solutions of differential equations in Banach

spaces, Translations of Mathematical Monographs, v. 43, AMS, Providence, Rhode-Island,

1974.

[28] I. Daubechies, Ten lectures on wavelets, SIAM, Philadelphia, PA, 1992.

[29] L.E. Dor, On projections in L1, Ann. of Math. 102 (1975), no. 3, 463–474.

[30] K.S. Eikrem, E. Malinnikova, Coefficient multipliers of growth spaces of harmonic

functions, Integr. Equ. Oper. Theory 82 (2015), 555–573.



183

[31] R. Fefferman, Harmonic analysis on product spaces, Ann. of Math. 126 (1987), no. 1,

109–130.

[32] R. Fefferman, Calderón-Zygmund theory for product domains: Hp spaces, Proc. Nat.

Acad. Sci. U.S.A. 83 (1986), no. 4, 840–843.

[33] R. Fefferman, Some recent developments in Fourier analysis and Hp theory on prod-

uct domains. II, Function spaces and applications (Lund, 1986), 44–51, Lecture Notes in

Math., 1302, Springer, Berlin, 1988.

[34] S. Ferguson, M. Lacey, A characterization of product BMO by commutators, Acta

Math. 189 (2002), 143–160.

[35] J. L. Fernández, J. Heinonen, J. G. Llorente, Asymptotic values of subharmonic

functions, Proc. London Math. Soc. 73.2 (1996), no. 3, 404–430.

[36] J.B. Garnett, D.E. Marshall, Harmonic measure, Cambridge University Press,

Cambridge (2005).

[37] L. Grafakos, R. Torres, Multilinear Calderón–Zygmund theory, Adv. Math. 165,

2002, 124–164.
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