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Introduction

Relevance of thesis topic

Infectious diseases continue to be a major problem in our society, killing millions
of people every year. Over the past thirty years, 35 new infectious diseases [56]
have appeared worldwide, 26 of which are of viral origin: HIV, legionellosis (caused
by the bacterium Legionella), influenza virus H5N1, severe acute respiratory syn-
drome (SARS ), Middle East respiratory Syndrome (MERS ), Ebola virus, and more
recently, humanity has faced pandemic disease COVID-19. There are just some of
them, to name but a few. While some of these diseases make headline news, there
is practically no information on other ones. Such diseases are also a big problem
for society, that scientists, the public health system and medical organizations must
solve.

Mathematical and game-theoretic modeling of malaria offers a tool for determin-
ing the dynamics of the disease development and working out possible measures to
control pathogen transmission by mosquitoes. The models show that it is also nec-
essary to use epidemiological and entomological actions for measuring the ways of
disease transmission. Mathematical modeling allows to create programs to describe,
analyze and predict disease spread in the real world. This approach is especially rel-
evant for studying the disease spread in complex systems. The theory presented in
the paper makes an important contribution to decision-making for the fight against
a modeled disease, which involves a profound change in a complex system of inter-
connected biological objects. The evolutionary potential of parasites and vectors,
increase and decrease in human immunity, behavioral changes in human and vector
populations, and interactions within numerous and heterogeneous subpopulations
of relevant organisms make it difficult to develop universal programs and policy for
disease control.

The paper also proposes a model of economic interaction between companies pro-
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ducing vaccines, which allows obtaining equilibrium prices in the market, assuming
that companies can unite in coalitions of different sizes. The results obtained make it
possible to define equilibrium strategies of market participants, as well as to analyze
vaccine prices under various scenarios of cooperation between companies.

In general, the thesis is devoted to a theoretical and practical study of the dy-
namics of malaria development in society, as well as the study of the behavior of
vaccine manufacturers in the market under various scenarios of cooperation. The
research proposes several mathematical models that can be used in the healthcare
system to analyze the disease in society, as well as to predict its further development
in society.

Overview of the results in this area

When people think of the deadly diseases, they probably bear in mind rapidly
spreading incurable diseases that appear from time to time in magazine and newspa-
per articles. But in fact, many of these diseases are not among the leading causes of
mortality worldwide. Malaria is considered to be a dangerous disease. For decades,
scientists have been developing strategies to stop rapidly spreading diseases. It be-
came possible to find cures for such diseases as dengue fever, yellow fever, rabies,
tuberculosis, etc. Despite these impressive achievements, there are still diseases
against which vaccine effectiveness remains quite low, and malaria belongs to such
diseases. Malaria is an ancient disease that causes great harm to people’s health
and entails great losses for society. The climate in tropical regions such as Africa,
Asia, and America contributes to the rapid spread of this disease [28, 18]. Many
attempts have been made to describe the complex dynamics of human (host) and
insect (vector) populations with malaria infection using mathematical models. Un-
til 1990s, it was one of the most deadly diseases in the world. According to the
latest report of the World Health Organization (WHO), progress in malaria control
is still low, especially in African countries with a high disease incidence[7]. In 2019,
there were 229 million cases of malaria registed worldwide [7]. Over the last four
years, this figure has remained virtually unchanged. The disease took about 411
thousand lives in 2018 and 409 thousand lives in 2019. Until now, many people all
over the world continue suffering from malaria, especially in the tropics, subtropics,
sub-Saharan Africa, in the countries of Asia, Latin America and the Middle East,
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thereby prompting scientists to develop methods of fighting malaria or managing
the disease. The classical population models developed by Ross and McDonald
[58, 72] still form the basis for many new approaches [18, 59, 61]. These models
are based on the SIR (susceptible/infected/recovered) model and aim at making
epidemiological predictions. In addition to the models mentioned above, the study
on malaria forecasting, the results of which are presented in this thesis, also relied
on the development models of the Covid-19 epidemic in Russia and other countries,
as well as malaria in African countries [4, 3, 5, 8, 7, 32, 36, 55, 60, 76, 84, 85]. Many
research groups are working on creating effective models and methods for forecast-
ing the spread of viruses, but malaria is not an attractive topic for most scientists.
The models allowing to understand the dynamics of spreading new viruses such
as Covid-19 have also been presented in well-known periodical scientific journals
[84, 60, 36].

Scientists study diseases to help society overcome problems associated with them.
Several methods have been used for malaria control. For example, in Africa tradi-
tional remedies developed by local experts were used. They study the virus in detail
and offer response methods that can reduce the disease rate, prevent virus spread,
try to invent a vaccine or an effective medicine [31]. The vaccine RTS,S/AS01
(RTS, S) proposed by the World Health Organization has a very low efficiency. The
RTS,S/AS01 (R, S) vaccine that works against a causative agent of tropical malaria
Plasmodium falciparum, a parasite that is a source of the world’s most lethal form
of malaria and mostly spread prevalent in Africa. According to WHO, the vaccine
significantly reduces malaria disease, as well as its severe form with potentially dan-
gerous effects on children’s lives. Over the past ten years, the creation of malaria
vaccines has been in clinical or preclinical development. Several clinical trials are
currently being conducted, but no vaccine has shown a fairly high effectiveness.
However, a certain level of clinical immunity against malaria can be achieved by
vaccination. Vaccines affect the malaria vector at various stages of its life cycle.
According to the effect of exposure and the type of immune response, vaccines can
be divided into the groups:

1. Vaccines against stages of pre-erythrocytes,

2. Vaccines against asexual stages in blood,

3. Vaccines that block virus transmission.
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Vaccine development uses mathematical models, mostly with differential equa-
tions, to have an idea of how the malaria epidemic passes and how effective the
vaccine is. The parameter describing a percentage of the vaccinated population can
change depending on a current situation in the society. The most popular epidemic
model is the SIR model and its modifications [10]. This paper proposes a modified
epidemic model of spreading malaria with vaccination, based on the SEIR model.
In this thesis, the population is considered to be enclosed, in contrast to standard
models, the transition from the population of recovered patients to the population
of susceptible ones is taken into account (as in the case of malaria and as confirmed
by medical research), and the level of vaccination of the population is also taken
into consideration.

Mathematicians create mathematical models that make it possible to better un-
derstand the mechanism of disease spread and describe the epidemic process. De-
terministic and stochastic models of population change are important for describing
[3] processes, as well as for understanding the relationship between vector-borne
diseases and ecological communities. A classic model for the epidemic spread is the
one proposed by Ross (1911) and Macdonald (1957) [58, 77], who are considered
to be the creators of the SIR model and its modifications. We note the work [7],
which compares and calibrates the SIR model of the development of the epidemic
process using real data on the disease COVID-19. The malaria cycle and its trans-
mission between human secondary hosts and primary vectors of the genus Anopheles
(mosquito) are complex. The female mosquito Anopheles transmits the disease to
human body through a bite [54], as a result the individuals of the community are di-
vided into categories according to the density of parasites within them and the type
of infection. The dynamics of these subpopulations is presented using a modified
SASkEkIk model based on the pioneering work of Kermack and McKendrick [51].
The model of the disease onset and a complex process of transmitting infection from
a person to a mosquito are difficult to model mathematically, and many assump-
tions and simplifications have to be done in modeling. Suffice it to say that malaria
infection in humans begins when sporozoites are injected into the bloodstream by
an infected female mosquito. Sporozoites migrate to the liver, and after some time
(weeks or sometimes months later) they enter the bloodstream in the form of game-
tocytes, which the mosquito initially receives when biting by an infected person. As
a result of the development cycle in the mosquito, the injected gametocytes become
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gametes, which first develop into zygotes and then into motile ookinetes piercing
mosquito gut and releasing a large number of sporozoites. The cycle ends.

This paper also proposes a deterministic model of a vector-borne disease. This
model describes the process of disease transmission from mosquitoes to humans and
from humans to mosquitoes, as described in the malaria cycle. Mathematically,
the dynamics of subpopulations, taking into account such disease transmission, is
described by a system of differential equations [7, 44, 86]. In turn, this model
has allowed to create mathematical models of many other vector-borne diseases
[26, 31, 38, 42, 46, 50, 70, 74, 79]. We also note the works [38, 70, 74, 79, 26, 42,
46, 50, 1, 31, 28, 59, 18], in which mathematical modeling of many other vector-
borne diseases is based on similar epidemic models. Many infectious diseases are
transmitted to the human population by vectors, and malaria is such a disease.
The peculiarities of its transmission (blood transfusion, transplantation or exposure
through a contaminated needle) are described in [83]. In this paper, it is assumed
that direct transmission of the malaria virus can be neglected due to its low level
of infection compared with the level of transmission from a mosquito, this greatly
simplifies a mathematical model. This paper presents a mathematical model for the
development of malaria, which sets the dynamics of the development of subpopula-
tions in two interacting populations: humans and mosquitoes [65].

The paper summarizes some existing mathematical models for the development
of malaria by including susceptible, infected, recovered humans, as well as subpop-
ulations of susceptible and infected mosquitoes in the considered population, taking
into account mortality caused by the disease in the population. The paper stud-
ies the stability of the system of differential equations describing the model, the
analysis of which shows that there are equilibria that characterize the state of the
system without a disease, and stable states in the presence of an epidemic. The ba-
sic reproduction number R0, the number of secondary infections that an infectious
individual could transmit during a disease period, is calculated, assuming that the
entire population is susceptible, excluding those already infected. Disease control
is possible only if the basic reproductive number R0 is less than a threshold value.
Thus, it is necessary to define and establish threshold values for a possible control
of developing of infection in the community.

This work partly continues the work of [7], which proposed an epidemic model
of malaria without vaccination. The thesis proposes a generalized model of the dy-
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namics of malaria, taking into account the community of people who are exposed,
infected, recovered, and also bearing in mind mortality that varies in different pop-
ulations. In addition, the model represents the phenomenon of the existence of an
equilibrium without an epidemic, this equilibrium is locally asymptotically stable,
and there is also an endemic equilibrium when there is an epidemic in the society,
and it is locally asymptotically stable when R0 ≤ 1. Using the theory of Lyapunov
functions and the Routh–Hurwitz criteria, we study the problem of asymptotic sta-
bility of equilibria [41, 66]. It is proved that the overall dynamics of the system is
completely determined by the value of R0 [11, 24, 34, 49, 57, 66, 80]. If R0 ≤ 1, the
state of the system when there is no disease is stable. If R0 ≥ 1, there is a unique
endemic equilibrium, and it is globally asymptotically stable.

The paper presents a model of stochastic disease prediction based on the existing
multivalued deterministic models of the type "susceptible — infected — recovered"
(SIR) or "susceptible — exposed — infected — recovered" (SEIR) [32, 67], de-
scribing mechanisms of virus spread from person to person. In addition to various
epidemiological models, various models and methods of time series analysis are used
for forecasting [76]. Besides, the models based on machine learning methods began
to appear. For example, the authors of the research [87] evaluated the effectiveness of
the dynamic Bayesian network in epidemiological monitoring of infectious diseases.
The paper [75] compares a statistical approach, which is often used in practice, and
a case-based method proposed by the authors, which is more based on current data.
They convincingly demonstrated the advantage of their method in predicting the
dynamics of epidemic outbreaks, in which waves are characterized by irregular cycles
and it is difficult to predict them using earlier epidemic statistics. Moreover, the
first methods of mortality analysis were carried out in 1766 by D. Bernoulli [25] in
order to influence the state vaccination policy to stop the spread of smallpox. It
should be noted that the works of R. Ross, W. H. Hamer, W. O. Kermack, and A.
G. Mackendrick [39, 51] made a significant contribution to epidemiological research.
The models proposed by the above authors are deterministic, and it is possible to
calculate the basic reproductive number R0 for them, which determines the thresh-
old between epidemic growth and decline. The proposed models, including the SIR
model, have proven their effectiveness in modeling the spread of tuberculosis, AIDS,
influenza, Ebola and malaria [23]. But the coronavirus pandemic, caused by the
SARS-CoV-2 virus, gave impetus to the development of mathematical modeling of
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epidemics and creation of more complex models [48]. The articles [8, 7] present the
models of malaria development in a population with and without vaccination, based
on the SEIR model. Another model proposed in this thesis is based on the work
[4], which describes a new model for the development of the Covid-19 epidemic and
makes forecasts based on the available statistical data and the principle of dynamic
balance of the epidemiological process formulated by the authors. In this paper, two
models are used to build annual forecasts for the development of malaria epidemic:
the modified SIR model and the CIRD balance model, a comparative analysis is
made to apply them in practice, namely for modeling malaria disease spreading in
Senegal [6].

Studies show that vaccination is an excellent way to control the disease, therefore
our work proposes a model of competition and cooperation between vaccine manu-
facturers. In this part of the thesis, a company interaction model is used, described
by a differential game with infinite duration. Companies can unite in one big coali-
tion or in smaller coalitions, which leads to the formation of a coalition structure
[19]. Companies can choose whether to be members of a coalition or act individually.
Coalition structures are applicable to many vital problems arising in political, eco-
nomic, and social sciences, where most large coalitions cannot be formed for many
reasons [37, 81, 69, 68]. Coalitions are formed on the basis of assumptions and rules
clearly defined by decision makers in the respective companies. There is also a coali-
tion structure in the paper, which is stable in some sense, and its formation can be
considered as a stable state of the economy in this sector [68, 16, 73]. Obviously,
one cooperation scenario may be more preferable for some companies than for others
[69, 16, 73, 30]. Any company will want to participate in a certain coalition if its
profit in this coalition is greater than in any other, or in the case when it deviates
to become an individual player [73, 33, 78]. The study of the stability of coalition
structures is carried out using the concept of Nash equilibrium [69, 78].

Goals of the thesis

In this work, one of the goals is to build generalized mathematical models of malaria
spread, which take into account population mortality among subgroups, the possi-
bility of transition from recovered to susceptible people, the presence or absence of
vaccination of the population. Also, the purpose of the work is to analyze presented
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models, find some equilibria, study their stability, and conduct numerical model-
ing of the results with their subsequent analysis of sensitivity to model parameters.
Another goal of the work is to develop models of malaria spread for their applica-
tion in practice to build forecasts for disease development. In this regard, the work
propose two models, one of which is based on SIR, the other one is a stochastic
model. In terms of forecasting, the best proposed model for making forecasts is
the so-called balance model, which is confirmed by the forecasts made for malaria
disease in Senegal. Another goal of the work is to create a model of competition
and cooperation of vaccine companies to understand what equilibrium will be in the
market, what production volume the companies will choose in equilibrium and with
cooperation, which will undoubtedly affect buyers, and subsequently a course of the
epidemic in society. Summarizing the above, a great goal of the work is to present
mathematical tools for decision makers in the fight against malaria for adequate
planning of social and economic policy, as well as the effective development of a set
of anti-epidemiological measures.

Main tasks

One of the tasks that this research aims to solve is the construction of a mathe-
matical model of malaria epidemic in the human (host) population, in which the
disease is transmitted by a malarial mosquito, and this is taken into account in
the model parameters. A malaria spread model is given by a system of ordinary
differential equations. The host population at any given time is divided into four
subpopulations: susceptible, exposed, infected, and recovered. It is required to ob-
tain sufficient conditions for the stability of equilibrium without disease and endemic
equilibrium using the theory of the Lyapunov functions, as well as to find the basic
reproductive number that characterizes an epidemic course in a population. The
task is also to build a similar model for malaria development, but taking into ac-
count the vaccination of the population, the study of equilibria on stability and the
calculation of the basic reproductive number. It is necessary to conduct numerical
modeling to study the effect of parameters on disease spread and to illustrate the
theoretical results (for models with and without vaccination).

Another task of the work is to build a mathematical model of malaria epidemic
with vaccination in a human population (host), when the disease is transmitted by
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a mosquito (vector), in which both populations would be considered simultaneously,
regardless if human population is vaccinated or not. The host population at any
given time is divided into four subgroups: susceptible, exposed, infected, and recov-
ered. It is required to obtain sufficient conditions for the stability of disease-free and
endemic equilibrium and calculate the basic reproductive number, as well as per-
form numerical simulations to study the influence of model parameters, including
the level of vaccination of the population, on disease spread in two populations.

In the thesis, the task is to build a mathematical model of malaria epidemic to
predict the annual disease in Senegal based on the available data on disease from
2000 to 2021. The SIR and CIRD models can be considered as basic models.
The task is to construct a modified SIR model with constant coefficients and a
CIRD balance model with stochastic parameters. The question of accuracy of
forecasting the annual statistical indicators of the epidemic when using these models
is investigated. Numerical experiments show that the average forecasting error of
the annual number of sick people in relation to the actual statistical data when
using the SIR model is quite big, while the CIRD model generates more accurate
forecasts in a comparative analysis.

The paper also sets the task of creating a model of economic interaction (com-
petition and cooperation) of companies that are manufacturers of vaccines. In the
proposed model, companies should be able to unite in coalitions of any size, and
the coalition will be considered as a separate player maximizing the total profit of
the companies included in the coalition. For each cooperative scenario, it is possible
to calculate the profit and production volumes of its members in equilibrium. The
task is to find a stable coalition structure, in which no company will deviate from
its coalition.

Scientific novelty

In this thesis, several generalized models of malaria spread in human population with
and without vaccination among people are proposed. Models are developed taking
into account the specifics of malaria spread in human population. For the presented
models, the analysis of the stability of some equilibrium points was carried out, and
the basic reproductive number was calculated. The paper also presents a model for
malaria development simultaneously in two populations: humans and mosquitoes.
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This model has been modified to take into account the impact of vaccination on the
dynamics of malaria spread in populations. For these models, the stability of some
equilibrium points of the system was also studied, and the expressions for the basic
reproductive number in each population were obtained.

In the thesis, two epidemiological models were developed for their use in predicting
malaria disease. The models are focused on the use of annual data, which is quite
difficult since most practical models exploit daily or monthly data. The work used
data on malaria disease in Senegal from 2020 to 2021. The first proposed model
is a modification of the SIR model that is applied to discrete data. The second
proposed model is a stochastic, modified CIRD balance model. An undoubted
scientific novelty is the adaptation of this method to forecasting using annual data,
while earlier forecasting was carried out mainly using daily or monthly data. The
paper gives a forecast for the next five years based on two proposed models, and
concludes that the second model has the best predictive ability.

A model of dynamic interaction between companies producing vaccines is pro-
posed. Various scenarios of cooperation are considered, when companies unite in
coalitions of various sizes and composition, the issue of stability of coalition struc-
tures is studied in order to predict a stable state of the market and determine the
market value of the vaccine. Companies that form coalitions are being studied. The
profits of companies in a stable state of the market are determined, and conclusions
are drawn about which structures are more preferable for consumers and companies.

Research methods

This thesis uses methods of mathematical modeling of epidemiological processes
(building a model, finding solutions, numerical analysis), including methods of the
theory of differential equations, studying the stability of system equilibrium points,
calculating the basic reproductive number, optimization methods and game theory.
In game-theoretic modeling, the theory of noncooperative and cooperative games,
the theory of stability of coalition structures, the concept of Nash equilibrium are
used. To solve differential games, Pontryagin’s maximum principle is used in this
work. Numerical modeling uses numerical methods for finding solutions to the sys-
tems of differential equations. Mathematical statistical methods, including descrip-
tive statistics of the available data, are used to build predictive models of malaria
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epidemic.

Theoretical and practical significance

The results presented in the thesis have theoretical significance for modern research
epidemiology of vector-borne diseases. The models proposed in the paper can be
applied in modeling the spread of new and existing infectious diseases in society.
Based on the constructed models, it is possible to create a modern software product
that allows numerical modeling for specific regions and countries. The importance of
this study lies in the development of understanding of disease spread in the society,
as well as in the possibility of applying various strategies necessary for reducing the
rate of its spread.

The models developed by the author are of practical importance in building fore-
casts for the development of the epidemic in society. The specific results of such
application are demonstrated in the third chapter of the thesis on the example of the
state of Senegal. These results are of practical importance and can also be applied
to the available data for other countries and regions.

Despite the fact that the presented models describe the development of malaria
epidemic, they can be applied to other vector-borne diseases, taking into account
the specifics of these diseases. Therefore, the scope of the obtained results can be
quite extensive both in medical biology and in disease prevention.

The model of competition and cooperation of companies producing vaccines on the
market, presented in Chapter 4, is of practical interest for studying the structure of
a real vaccine market, as well as possible scenarios for cooperation of manufacturers.
This undoubtedly affects consumers and the epidemiological situation as a whole.

Brief description of thesis structure

The thesis consists of an introduction, four chapters, a conclusion, a list of references
and appendices. Each chapter begins with a description of a mathematical model,
a list of notations used, and necessary definitions. Further, the obtained theoretical
results for a specific model and the results of numerical simulation are presented to
illustrate theoretical results and their analysis. A brief conclusion is provided at the
end of each chapter.

The first chapter of the thesis is devoted to the epidemic model of malaria with
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and without vaccination, built on the basis of the SEIR model, when a mosquito
population is not considered separately, and its impact on the dynamics of human
population is set by the model parameters. The first part of this chapter is devoted
to building a model of malaria without vaccination, and has the following struc-
ture. Section 1.1.1 provides the formulation of a mathematical model for malaria
epidemic. Section 1.1.2 defines the region of acceptable values. Section 1.1.3 studies
two equilibria of the system. The basic reproductive number R0 for the proposed
model is defined in section 1.1.4. Section 1.1.5 provides a mathematical analysis of
the stability of the equilibrium points of the proposed model. Numerical modeling
is described in Section 1.1.6. The second part of the first chapter deals with a sim-
ilar model of malaria, but with vaccination. This section is structured as follows:
Section 1.2.1 proposes a malaria epidemic model with vaccination. The equilibrium
points for the described model with vaccination are studied in Section 1.2.2. The
study of the stability of equilibrium points is described in Section 1.2.3. Numerical
simulations is described in Section 1.2.4. Numerical modeling and the analysis of
the impact of vaccination on the population is given in Section 1.2.5. The conclusion
to the first chapter is given in Section 1.2.6.

The second chapter of the thesis is devoted to epidemic model of transmissible
malaria, which describes the dynamics of disease spread in two populations: humans
and mosquitoes. This chapter has several sections. The description of the model
and the range of values are described in Section 2.1.1. Section 2.1.2 defines the
equilibrium points of the system of differential equations and finds the basic repro-
ductive number R0, and then studies the stability of the system at the equilibrium
points. The results of numerical modeling are given in Section 2.1.3. The chapter
ends with a brief review of the results.

The third chapter of the thesis is devoted to two more epidemiological models
of malaria and their practical use for making forecasts based on available data.
This chapter is structured as follows. A description of the data sampling is given
in Section 3.1. Section 3.2 builds a modified SIR model based on statistical data
and then builds a forecast of malaria epidemic in Senegal from 2000 to 2016 and
from 2000 to 2021 as described in Sections 3.2.1 and 3.2.2. Section 3.3 proposes
a balance model for malaria which is described in terms of percentage increase in
Section 3.3.1. Section 3.3.2 explores the practical application of the model. Finally,
the model forecasts from 2011 to 2017, from 2018 to 2021, and from 2021 to 2027
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are presented in Sections 3.3.3, 3.3.4 and 3.3.5 respectively. A brief conclusion to
the third chapter is given in Section 3.4.

The fourth chapter of the thesis is devoted to the study of competition and co-
operation of vaccine manufacturing companies described by a differential coalitional
game with infinite duration, where each company tries to maximize its profit by
choosing the production volume. This chapter is divided into sections. Section 4.1
describes a game-theoretic model. Section 4.2 formulates the main theoretical re-
sults on Nash equilibrium in games with various coalition structures. The definition
of the stability of a coalition structure is given in Section 4.3. A numerical example
is presented in Section 4.4. Section 4.5 contains a brief conclusion to the chapter.

Results submitted for defense

Let us formulate the main results obtained in the work:

1. A modified SEIR malaria spread model is proposed without taking into ac-
count the dynamics of mosquito population, but taking into consideration the
fixed exposure of malaria-infected mosquitoes to human population with or
without vaccination in human population. The stability of some equilibrium
points of the system has been studied, the basic reproductive number R0 has
been found, and numerical modeling has been carried out using different val-
ues of parameters and, accordingly, different values of the basic reproductive
number R0.

2. A generalized model of malaria spread SEIRSkEkIk has been built, which de-
scribes the dynamics of two interrelated populations: humans and mosquitoes.
The proposed model has two modifications: with and without vaccination. For
both models, some equilibria of the system are found, the stability of these equi-
libria is investigated, the basic reproductive number is found, and numerical
modeling is carried out using various values of parameters.

3. Models for predicting malaria epidemic based on available annual statistical
data using the SIR model and the CIRD model are proposed. The main fea-
ture of the proposed models, in contrast to classical versions, is their suitability
for modeling over time intervals, the length of which (one year) significantly
exceeds the duration of the disease. The predicted values are compared with
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the actual data presented in an integrated form for various time intervals, the
average approximation errors are obtained, on the basis of which a conclusion
is made about the possibility of using the model to predict the number of active
cases and the total number of recovered. One of the models is based on the
principle of dynamic balance of the epidemiological process and takes into ac-
count when making forecasts the generated dynamic trends of stochastic values
of a percentage increase in the total number of diseased cases and assumptions
about stationary or nonstationary nature of the change in the characteristics
of dynamic balance.

4. A model of competition and cooperation of companies producing vaccines has
been proposed, within which various options for cooperation of companies have
been studied. For each possible coalition, the profits and production volumes
of its participants are determined. An analysis of the stability of possible
coalition structures or scenarios of cooperation of companies was carried out,
and coalition structures were found that are most attractive to consumers.

Verification of results

The main results of the thesis were published in high-ranking scientific journals
(Bulletin of Saint Petersburg State University. Applied Mathematics and Informat-
ics, Mathematical Game Theory and its Applications, Contributions to Games and
Management), and the results were presented at international conferences: "Control
Processes and Sustainability" (2021, 2022), "SCIENCE SPBU — 2022", Interna-
tional conference "Game Theory and Management" (Saint Petersburg, 2023). The
results of the thesis were reported at the seminars of the Department of Mathemat-
ical Game Theory and Statistical Solutions of Saint Petersburg State University.

Publications

The results of the work were published in four articles in international peer-reviewed
scientific journals and in several abstracts at scientific conferences of Saint Peters-
burg State University.
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Chapter 1

Epidemic model of malaria without and
with vaccination

This chapter proposes a mathematical model of the malaria epidemic in the human
(host) population, where the disease is transmitted by the malaria vector mosquito
(vector) [4]. First, we consider a model without no vaccination [3]. The malaria
distribution model is given by a system of ordinary differential equations. The host
population at any given time is divided into four subpopulations: susceptible, ex-
posed, infected, and recovered. Sufficient conditions for the stability of equilibrium
without disease and endemic equilibrium are obtained using the theory of the Lya-
punov function. The basic reproductive number, characterizing the course of the
epidemic in the population, has been found. Numerical simulations are performed to
study the effect of model parameters on the disease spread and the theoretical results
are shown in the illustrations. Besides, in this chapter, we present a modification of
the model, which takes into account the level of vaccination in the population. The
results similar to those described above are obtained. The influence of the level of
vaccination on the disease spread is studied.

1.1 Model of malaria without vaccination

In this section, we investigate the spread of malaria in the human population, where
the mosquito population is represented as a model parameter.

1.1.1 An epidemic model of malaria

A diagram illustrating the spread of malaria in a population based on a modified
SEIR model is shown in Fig. 1.1. Suppose there are two populations: human (host)
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and mosquito (vector) [7, 8, 13, 24, 25]. A healthy host can be infected with the virus
only one way, by the mosquito bite. An infected host can transmit the infection to a
susceptible mosquito that will bite it. The density and development dynamics of the
host and vector populations are very different. The vector population is much larger
than the host population and its lifespan is much shorter. We propose a model of
host population dynamics at the constant number of infected mosquitos.

Figure 1.1: Malaria model SEIR

The host population at any given time t is divided into four subpopulations:
susceptible host S(t), exposed host E(t), infected host I(t), and recovered host
R(t) with the total population N(t) = S(t) + E(t) + I(t) + R(t). The proposed
dynamic model of the malaria spread differs from existing models as follows:

1. In comparison with many existing mathematical models, a subpopulation of
those exposed by a mosquito, denoted by E(t), has been added.

2. Mortality rates in the host population are different for various subpopulations
and denoted by a′, b, c, d for subpopulations S(t), E(t), I(t), R(t) respectively.
We can assume that a′, b, d < c. In many existing models, the coefficients a′, b, d
are assumed to be equal.

3. Transition coefficients from one subpopulation to another are denoted by α, β,
γ and µ respectively (Fig. 1.1).

4. The total size of the host population changes over time and is equal to N(t) =

S(t) + E(t) + I(t) +R(t) at time t.

5. The intensity of transition from the recovered to susceptible subpopulation is
positive, i.e., the immunity acquired after recovery from malaria is not stable.
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In addition, this possible transition is due to the presence of several species of
mosquitoes transmitting malaria in the same region.

The model uses the following parameters:

• N(t) — size of human population;

• S(t) — size of subpopulation of susceptible people;

• E(t) — size of subpopulation of people exposed by mosquito;

• I(t) — size of subpopulation of infected people;

• R(t) — size of subpopulation of recovered people;

• a — birth rate in human population;

• a′ — mortality rate among subpopulation S;

• b — mortality rate among subpopulation E;

• c — mortality rate among infected subpopulation I;

• d — mortality rate among recovered subpopulation R;

• α1 — intensity of bites per person by one mosquito (defined as the number of
bites per unit of time);

• α2 — rate of bites of malaria-infected mosquitoes;

• β — rate of people’s transition from subpopulation E to I, i.e. with the symp-
toms of the onset disease;

• γ — rate of people’s recovery, i.e. the transition from subpopulation I to R;

• µ — rate of people’s return from recovered to susceptible.

The mathematical model of subpopulation dynamics can be represented analyti-
cally by the following nonlinear system of four ordinary differential equations:

dS(t)

dt
= −αS(t)I(t) + aN0 + µR(t)− a′S(t),

dE(t)

dt
= αS(t)I(t)− bE(t)− βE(t),

dI(t)

dt
= βE(t)− cI(t)− γI(t),

dR(t)

dt
= γI(t)− dR(t)− µR(t),

(1.1)
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where α = α1α2

N0
. In this same time, the parameter α2, equal to the rate of bites of

malaria-infected mosquitoes, plays a primary role in the ratio between the propor-
tions of susceptible and exposed subpopulations.

The initial conditions for the system of equations (1.1) are:

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, (1.2)

which provide the initial condition for the total size of the host population: N(0) =

N0 = S(0) + E(0) + I(0) + R(0) ≥ 0. It can also be seen that the equation of
population dynamics has the following form

dN(t)

dt
= N0 + aN(t)− a′S(t)− bE(t)− cI(t)− dR(t).

1.1.2 Study of region of admissible values

Assume that the size of population N(t) must remain positive and bounded 1 for
any t ≥ 0. In the following statement, the set of admissible values being the solution
of system (1.1) with initial conditions (1.2) is presented.

Proposition 1.1. Let (S,E, I, R) be a solution of the system of differential equa-
tions (1.1) with initial conditions (1.2), Ω =

{
(S,E, I, R) ∈ R4

+, V1 ≤ N0, V2 ≤
α1α2

b+ β
N0, V3 ≤ α1α2β

(b+ β)(c+ γ)
N0, V4 ≤ α1α2βγ

(b+ β)(c+ γ)(d+ µ)
N0

}
is a closed set.

Then Ω is positively invariant and absorbing for the system (1.1) with initial con-
ditions (1.2).

Proof. To study stability, we introduce the Lyapunov vector function V (t):

V (t) = (V1(t), V2(t), V3(t), V4(t)).

Suppose that functions V1(t), V2(t), V3(t), V4(t) defined for ∀ t ≥ 0, are differentiable
and continuously differentiable on the set Ω containing the origin.

Let us define the derivative of function V (t):

dV (t)

dt
=



dV1(t)

dt
= N0 − V1(t)− a′S(t),

dV2(t)

dt
= α1α2N0 − (b+ β)V2(t)− bE(t),

dV3(t)

dt
= α1α2βN0 − (b+ β)(c+ γ)V3(t)− cI(t),

dV4(t)

dt
= α1α2βγN0 − (b+ β)(c+ γ)(d+ µ)V4(t)− dR(t).

(1.3)

1For reference, see [14]
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From the system (1.3) it is obvious that

dV1

dt
≤ N0 − V1,

dV2

dt
≤ α1α2N0 − (b+ β)V2,

dV3

dt
≤ α1α2βN0 − (b+ β)(c+ γ)V3,

dV4

dt
≤ α1α2βγN0 − (b+ β)(c+ γ)(d+ µ)V4.

(1.4)

By the properties of the Lyapunov function, we obtain the following conditions:

dV1

dt
≤ N0 − V1 ≤ 0 for V1 ≥ N0,

dV2

dt
≤ α1α2N0 − (b+ β)V2 ≤ 0 for V2 ≥

α1α2

b+ β
N0,

dV3

dt
≤ α1α2βN0 − (b+ β)(c+ γ)V3 ≤ 0 for V3 ≥

α1α2β

(b+ β)(c+ γ)
N0,

dV4

dt
≤ α1α2βγN0 − (b+ β)(c+ γ)(d+ µ)V4 ≤ 0 for

V4 ≥ α1α2βγ

(b+ β)(c+ γ)(d+ µ)
N0.

(1.5)

It follows from the conditions (1.5) that
dV (t)

dt
≤ 0. This means that Ω is a positively

invariant and absorbing set.
From the above equations and inequalities (1.3)–(1.5) and using Maple software,

we derive inequalities for V1, V2, V3 and V4:

0 ≤ V1 (t) ≤ N0 + e−t (V01 −N0) ,

0 ≤ V2 (t) ≤
α1α2N0

b+ β
+ e−(b+β)t

(
V02 −

α1α2N0

b+ β

)
,

0 ≤ V3 (t) ≤
α1α2 β N0

(b+ β)(c+ γ)
+ e−(b+β)(c+γ)t

(
V03 −

α1α2 β N0

(b+ β)(c+ γ)

)
,

0 ≤ V4 (t) ≤
α1α2 β γ N0

(b+ β)(c+ γ)(d+ µ)
+

+e−(b+β)(c+γ)(d+µ)t

(
V04 −

α1α2 β γ N0

(b+ β)(c+ γ)(d+ µ)

)
.
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For t −→ +∞ we find that

0 ≤ V1 (t) ≤ N0,

0 ≤ V2 (t) ≤
α1α2N0

b+ β
,

0 ≤ V3 (t) ≤
α1α2 β N0

(b+ β)(c+ γ)
,

0 ≤ V4 (t) ≤
α1α2 β γ N0

(b+ β)(c+ γ)(d+ µ)
.

Then we can conclude that Ω is an absorbing set.
Indeed, as t −→ +∞ we have inequalities

lim sup
t→+∞

V1 ≤ N0,

lim sup
t→+∞

V2 ≤
α1α2

b+ β
N0,

lim sup
t→+∞

V3 ≤
α1α2β

(b+ β)(c+ γ)
N0,

lim sup
t→+∞

V4 ≤
α1α2βγ

(b+ β)(c+ γ)(d+ µ)
N0.

We get that Ω is a positively invariant and absorbing set for the system (1.1) with
initial conditions (1.2). We will study the dynamics of this epidemic model on set
Ω.

1.1.3 Equilibrium points

Let us describe two equilibrium points (disease-free and endemic) of the dynamic
system represented by equations (1.1) with initial conditions (1.2). To determine
the equilibrium points of system (1.1) we solve the following system:

−α1α2

N0
S(t)I(t) + aN0 + µR(t)− a′S(t) = 0,

α1α2

N0
S(t)I(t)− bE(t)− βE(t) = 0,

βE(t)− cI(t)− γI(t) = 0,

γI(t)− dR(t)− µR(t) = 0.

(1.6)

As a result, we obtain equilibrium points, which will be studied in details as follows:

1. Equilibrium point of disease-free system Es = (N0, 0, 0, 0), i.e., it is a constant
solution of disease-free system;
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2. Endemic equilibrium point of system Ee = (S∗, E∗, I∗, R∗).

To find it, from the second equation of system (1.6) we get S =
(b+ β)E

α1α2I
, And we

obtain E =
c+ γ

β
I from the third equation as well as, R =

γ

d+ µ
I from the fourth

one. According to the results of the second and third equations of (1.6) we find that

S =
(b+ β)(c+ γ)

α1α2β
.

Substituting the above obtained expressions S and R into the first equation of
the system, we obtain that

I =
aN0β(d+ µ)

(b+ β)(c+ γ)(d+ µ)− µγβ

(
1− a′(b+ β)(c+ γ)

aN0α1α2β

)
.

Therefore, the endemic equilibrium of (1.1) is Ee = (S∗, E∗, I∗, R∗) with compo-
nents

S∗ =
(b+ β)(c+ γ)

α1α2β
,

E∗ =
c+ γ

β
I∗,

I∗ =
aN0β(d+ µ)

(b+ β)(c+ γ)(d+ µ)− µγβ

(
1− a′(b+ β)(c+ γ)

aN0α1α2β

)
,

R∗ =
γ

d+ µ
I∗.

Ee represents the endemic equilibrium point of the model, in which a part of the
population is infected, and also another part of the population which is on the way
to recovery. The speed of recovery depends on the severity of the disease and the
strategies adopted to eliminate the disease.

1.1.4 Determining the base reproduction number R0

Let us determine the base reproductive number R0 for a modified SEIR model,
which is taken as the basis for modeling the epidemic process. This number is used
to study the evolution of the epidemic process and equal to the expected number
of secondary cases caused by a primary infection in a fully susceptible population.
It is important to note that R0 is a dimensionless number. Appendix B describes
methods for calculating the basic reproductive number.

To find R0, we construct matrix G of the next generation, in which the (i, j)-th el-
ement gij represents the expected number of secondary infections of type i caused by
one infected individual of type j, provided that the population of type i is completely
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susceptible. In other words, each element of matrix G is a reproductive number, but
data on who infects whom are taken into account. The base reproduction number
depends on a spectral radius of matrix G.

Using the next generation method, we determine matrices F and V by making
the following calculations:

F =


α1α2

N0
S(t)I(t)

0

0

0

 ,V+ =


0

βE(t)

aN0 + µR(t)

γI(t)

 ,V− =


−(b+ β)E(t)

−(c+ γ)I(t)

−α1α2

N0
S(t)I(t)− a′S(t)

−(µ+ d)R(t)

 ,

hence we get that

V = V+ + V− =


−(b+ β)E(t)

βE(t)− (c+ γ)I(t)

aN0 + µR(t)− α1α2

N0
S(t)I(t)− a′S(t)

γI(t)− (µ+ d)R(t)

 .

Find matrices

DF(Es) =


0 α1α2 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , DV(Es) =


−(b+ β) 0 0 0

β −(c+ γ) 0 0

0 −α1α2 −a′ µ

0 γ 0 (µ+ d)

 .

Hence,

F =

[
0 α1α2

0 0

]
, V =

[
−(b+ β) 0

β −(c+ γ)

]
.

Calculate G by formula G = FV −1, where

V −1 =
1

det(V )
t(com(V )), det(V ) = (b+ β)(c+ γ),

t(com(V )) =

[
−(c+ γ) 0

−β −(b+ β)

]
.

Finally, we obtain the equations

G = FV −1 =

[
− α1α2β

(b+β)(c+γ) −α1α2

c+γ

0 0

]
,

R0 = ρ(−G) = ρ(−FV −1) =
α1α2β

(b+ β)(c+ γ)
.
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If R0 ≤ 1 and at least one person is infected and the infection cannot develop, the
system is said to be stable. If R0 ≥ 1, then the number of infected people increases
and the disease can spread to the population. A numerical study will give us a
clearer picture of the disease spread in the population relative to number R0.

Note that an endemic equilibrium point Ee exists if R0 > 1.

1.1.5 Study of stability of equilibrium points

The following statement represents the conditions for local stability of the equilib-
rium point without diseases.

Proposition 1.2. The disease-free equilibrium point Es = (N0, 0, 0, 0) is locally
asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. Jacobi matrix corresponding to the system (1.1), has the form:

J(S,E, I, R) =


−α1α2

N0
I − a′ 0 −α1α2

N0
S µ

α1α2

N0
I −b− β α1α2

N0
S 0

0 β −c− γ 0

0 0 γ −d− µ


and at point Es is equal to

J(Es) =


−a′ 0 −α1α2 µ

0 −b− β α1α2 0

0 β −c− γ 0

0 0 γ −d− µ

 .

Let’s find the eigenvalues of this matrix by equating the following determinant to
zero: ∣∣∣∣∣∣∣∣∣∣

−a′ − λ 0 −α1α2 µ

0 −b− β − λ α1α2 0

0 β −c− γ − λ 0

0 0 γ −d− µ− λ

∣∣∣∣∣∣∣∣∣∣
= 0.

We get the equation

(a′ + λ)(d+ µ+ λ)[(b+ β + λ)(c+ γ + λ)− βα1α2] = 0.

We find two roots: λ1 = −a′ and λ2 = −(d + µ). Let’s determine two more roots
λ3 and λ4 by solving a second-degree equation:

λ2 + (b+ c+ β + γ)λ+ (b+ β)(c+ γ)− βα1α2 = 0,
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which we rewrite in the form:

λ2 + Aλ+B = 0,

where A = b + c + β + γ, B = (b + β)(c + γ) − βα1α2. The determinant is
∆ = A2 − 4B.

Consider all possible cases:
1. If ∆ = 0, we get a negative real eigenvalue, so the disease-free equilibrium Es

is locally stable.
2. If ∆ > 0, we get the roots:

λ3 = −A+
√
∆

2
= −A+

√
A2 − 4B

2
, λ4 =

−A+
√
∆

2
=

−A+
√
A2 − 4B

2
.

Note that signs of λ3 and λ4 depend on sign of B. We discuss such cases:
а) if B > 0, i.e. (b+ β)(c+ γ)− βα1α2 > 0 (R0 < 1), then

λ3 < −A+
√
A2

2
= −A < 0, λ4 <

−A+
√
A2

2
= 0.

Thus, all eigenvalues are negative;
б) if B < 0, i.e. (b+ β)(c+ γ)− βα1α2 < 0 (R0 > 1), then

λ3 = −A+
√
A2 − 4B

2
< 0, λ4 =

−A+
√
A2 − 4B

2
> 0.

There is a positive eigenvalue.
Disease-free equilibrium Es is locally asymptotically stable if R0 < 1 and unstable

if R0 > 1.
3. If ∆ < 0, we get two eigenvalues with negative real parts, so disease-free

equilibrium Es is locally stable.

The following statement represents the local stability conditions for endemic equi-
librium Ee.

Proposition 1.3. A locally asymptotically stable endemic equilibrium point is equal
to Ee = (S∗, E∗, I∗, R∗) if R0 > 1 and

((b+ β)(c+ γ)(d+ µ)− µγβ)(b+ c+ d+ β + γ + µ+ a′) + α1α2aN0(d+ µ)

a′(b+ β)(c+ γ)(d+ µ)
> 1.
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Proof. . The Jacobi matrix corresponding to system (1.1) has the form:

J(S,E, I, R) =


−α1α2

N0
I − a′ 0 −α1α2

N0
S µ

α1α2

N0
I −b− β α1α2

N0
S 0

0 β −c− γ 0

0 0 γ −d− µ


and at point Ee = (S∗, E∗, I∗, R∗) appears as

J(Ee) =


−α1α2

N0
I∗ − a′ 0 −α1α2

N0
S∗ µ

α1α2

N0
I∗ −b− β α1α2

N0
S∗ 0

0 β −c− γ 0

0 0 γ −d− µ

 .

Let us find the eigenvalues of this matrix by equating its determinant to zero. We
get the equation

λ4 + A1λ
3 + A2λ

2 + A3λ+ A4 = 0,

in which

A1 = b+ c+ d+ β + γ + µ+ a′ +
α1α2

N0
I∗,

A2 = (a′ +
α1α2

N0
I∗)(b+ c+ d+ β + γ + µ) + d+ µ− β

α1α2

N0
S∗,

A3 =
α2
1α

2
2

N0
S∗I∗(1− β

N0
)− βα1α2a

′

N0
S∗+

+ (d+ µ)((a′ +
α1α2

N0
I∗)(b+ c+ d+ β + γ + µ)− βα1α2

N0
S∗),

A4 = (
α2
1α

2
2

N0
S∗I∗(1− β

N0
)− βα1α2

N0
S∗a′)(d+ µ) +

µβγα1α2

N0
I∗.

The characteristic equation has four solutions, which are eigenvalues of matrix
J(Ee).

Equilibrium Ee is asymptotically stable if

A1 > 0,

A4 > 0,

A1A2 − A3 > 0,

A3(A1A2 − A3)− A2
1A4 > 0,

where A1, A2, A3, A4 are defined above.
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It is easy to prove by applying the Routh-Hurwitz criterion. We write an auxiliary
matrix ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 A2 A4 0 0

A1 A3 0 0 0
A1A2 − A3

A1
A4 0 0 0

A3(A1A2 − A3)− A2
1A4

A1A2 − A3
0 0 0 0

A4 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Applying the Routh-Hurwitz criterion, we obtain that system (1.1) is asymptotically
stable at the equilibrium point Ee if the following inequalities hold

A1 > 0,

A4 > 0,

A1A2 − A3

A1
> 0,

A3(A1A2 − A3)− A2
1A4

A1A2 − A3
> 0.

From A1A2−A3

A1
> 0 and A1 > 0 it follows that A1A2−A3 > 0. The fourth inequality

is equivalent to A3(A1A2 − A3)− A2
1A4 > 0.

Therefore, we get the system:

A1 > 0,

A4 > 0,

A1A2 − A3 > 0,

A1A2A3 − A2
3 − A2

1A4 > 0.

Eigenvalues have negative real parts if they satisfy the Routh-Hurwitz criteria.
Thus, all eigenvalues of a characteristic equation have negative real parts if and only
if R0 > 1 and A1A2A3 > A2

3 − A2
1A4, i.e.

((b+ β)(c+ γ)(d+ µ)− µγβ)(b+ c+ d+ β + γ + µ+ a′) + α1α2aN0(d+ µ)

a′(b+ β)(c+ γ)(d+ µ)
> 1.

This shows that endemic disease equilibrium Ee is locally asymptotically stable,
implying the validity of the assertion.
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1.1.6 Numerical simulation

With the help of numerical experiments, in recent decades, the development of
epidemics of such diseases as HIV, smallpox (variola), malaria, acute respiratory
viral infections (SARS), new influenza (H1N1) and, more recently, the SARS-COV-
2 virus has been modeled, also using the SARS-COV- 2 based on the method of
precedents [27].

Let us describe the numerical simulation of the malaria epidemic model using
the Matlab program. The values of the model parameters are chosen arbitrarily.
As already noted, a person infected with the malaria virus through an infectious
mosquito bite is contagious only during a period of vulnerability, which lasts for
several days.

Here are the values of parameters used for numerical simulation in Fig.1.2:

Table 1.1: Parameters for the simulation, which results are presented in Fig. 1.2.

α1 α2 β γ µ a a′ b c d tmax R0

In Fig. 1.2, a
0.8 0.9 0.3 0.4 0.01 0.8 0.01 0.2 0.4 0.01 60 0.54

In Fig. 1.2, b
0.8 0.9 0.5 0.15 0.01 0.8 0.01 0.05 0.15 0.01 60 2.18

Figure 1.2: Development of the epidemic process at R0 ≤ 1 (a) and R0 ≥ 1 (b).

In Fig. 1.2 (a) when R0 < 1, a disease is observed in a population with a lower
risk, since the behavior of the curves corresponding to subpopulations is close to
linear, the disease will eventually disappear in the population. In Fig.1.2 (b) for
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R0 > 1, it can be seen that the infected subpopulation I is rapidly increasing in
comparison with the subpopulation bitten by the mosquito, but it is not yet affected
by subpopulation E. In this state, the epidemic develops rapidly, and the entire
population is at risk of becoming infected. Since malaria does not last long, most
of the population tends to recover.

To eliminate this disease, we propose to use vaccination as an effective means of
changing the dynamics of subpopulations. The purpose of vaccination is to immunize
the population. It is worth noting that there is currently no highly effective malaria
vaccine. Existing vaccines are 35 − 50% effective and protect a person for several
months. This should be taken into account when choosing the parameters that
determine vaccination. The epidemic model of malaria in the presence of vaccination
will be discussed in the next paragraph.

1.2 Malaria model with vaccination

In this section, we investigate the spread of malaria in a human population where
mosquito population is introduced as a model parameter and human population has
been vaccinated to get rid of this disease.

1.2.1 An epidemic model of malaria with vaccination

A diagram illustrating the spread of malaria in a population receiving a malaria
vaccine is shown in Fig. 1.3. It is assumed that there are two populations, host
(human population) and vector (mosquito population), but only human population
is considered in the work where mosquito population is taken into account as a model
parameter. In the presented model, vaccination is carried out among susceptible
part of the population. To account for vaccination, the dv parameter equal to a
percentage of vaccinated individuals in the population is introduced into the model.
The population is assumed to be open.

The following notations are used in the model:

• N(t) — size of human population;

• S(t) — size of subpopulation of susceptible individuals;

• E(t) — size of subpopulation of exposed people;

• I(t) — size of subpopulation of infected people;
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Figure 1.3: SEIR model of malaria with vaccination

• R(t) — size of subpopulation of recovered people;

• a — birth rate in human population;

• a′ — mortality rate in subpopulation S;

• b — mortality rate in subpopulation E;

• c — mortality rate in infected subpopulation I;

• δ — mortality rate in recovered subpopulation R;

• α1 — intensity of bites per person by one mosquito (defined as the number of
bites per unit of time);

• α2 — activity coefficient of contagiousness of malaria-infected mosquitoes;

• β — the intensity of people’s transition from subpopulation E to I with the
onset of disease symptoms;

• γ — the intensity of people’s recovery, i.e. their transition from subpopulation
I to R;

• µ — transition rate of people from recovered to susceptible subpopulation;

• dv ∈ (0, 1) — vaccination rate of susceptible part of population.

A mathematical model of dynamics of subpopulations with vaccination can be
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represented analytically by the following system of ordinary differential equations:
dS(t)
dt = −αI(t)S(t) + aN0 + µR(t)− a′S(t)− dvS(t),

dE(t)
dt = αI(t)S(t)− bE(t)− βE(t),

dI(t)
dt = βE(t)− cI(t)− γI(t),

dR(t)
dt = γI(t) + dvS(t)− δR(t)− µR(t),

(1.7)

where α = α1α2

N0
.

Note that vaccination is taken into account through the term dvS(t), which is
present in the right parts of the first and fourth equations with minus and plus
signs, respectively. It is assumed that parameter dv does not change in time. In this
chapter, the impact of this parameter on the epidemic development is demonstrated
using numerical simulations in Section 1.2.4.

The initial conditions for the system of equations (1.7) are:

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0. (1.8)

Therefore, the initial condition for the total population size is N(0) = N0 = S(0)+

E(0) + I(0) +R(0) ≥ 0.

1.2.2 Equilibrium points

In this section, we will study two equilibrium points, namely, a disease-free equilib-
rium and an endemic equilibrium of the dynamical system described by the equations
(1.7) with initial conditions (1.8).

To determine the equilibrium points of system (1.7) we solve the following system:
−αI(t)S(t) + aN0 + µR(t)− a′S(t)− dvS(t) = 0,

αI(t)S(t)− bE(t)− βE(t) = 0,

βE(t)− cI(t)− γI(t) = 0,

γI(t) + dvS(t)− δR(t)− µR(t) = 0.

Consider two solutions to this system (equilibrium points interesting for us):

1. Equilibrium point without disease Es = (N0, 0, 0, 0);
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2. Equilibrium point Ee = (S∗, E∗, I∗, R∗), where

S∗ =
(b+ β)(c+ γ)

α1α2β
,

E∗ =
c+ γ

β
I∗,

I∗ =
(b+ β)(c+ γ)((δ + µ)(aN0 − a′)− δdv)

α1α2((b+ β)(c+ γ)(δ + µ)− µγβ)
,

R∗ =
γ

δ + µ
I∗ +

dv

δ + µ
S∗.

The point Ee is called an endemic equilibrium point, at which there is a nonzero
part of susceptible, exposed, infected and recovered population. The speed of recov-
ery depends on the severity of the disease and the methods used to eliminate the
disease.

Remark 1.1. The way of calculating basic reproductive number R0 is described in
paper [3]. In this work, R0 remains unchanged compared to R0 and this number is
equal to

R0 =
α1α2β

(b+ β)(c+ γ)
. (1.9)

1.2.3 Study of stability of equilibria

Local stability of equilibrium without disease

In this section, conditions for the stability of equilibrium points in the epidemic
model with vaccination are obtained.

Proposition 1.4. If R0 < 1, then disease-free equilibrium Es = (N0, 0, 0, 0) is
locally asymptotically stable.

Proof. The Jacobi matrix corresponding to system (1.7) has the form:

J(S,E, I, R) =


−α1α2

N0
I − a′ − dv 0 −α1α2

N0
S µ

α1α2

N0
I −b− β α1α2

N0
S 0

0 β −c− γ 0

dv 0 γ −δ − µ

 .

The Jacobi matrix at point Es is equal to

J(Es) =


−a′ − dv 0 −α1α2 µ

0 −b− β α1α2 0

0 β −c− γ 0

dv 0 γ −δ − µ

 .
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Let us find the eigenvalues of matrix J(Es), equating its determinant to zero, we
obtain the equation

λ4 +B1λ
3 +B2λ

2 +B3λ+B4 = 0,

where

B1 = a′ + δ + µ+ dv + β + b+ c+ γ,

B2 = (a′ + dv)(δ + µ) + dvµ+ (b+ β)(c+ γ)−

− βα1α2 + (a′ + dv + δ + µ)(b+ β + c+ γ),

B3 = (a′ + dv + δ + µ)[(b+ β)(c+ γ)− βα1α2]+

+ [(a′ + dv)(δ + µ) + dvµ](b+ β + c+ γ),

B4 = [(a′ + dv)(δ + µ) + dvµ][(b+ β)(c+ γ)− βα1α2] + µdv.

The characteristic equation has four solutions, which are eigenvalues of matrix
J(Es). The Routh-Hurwitz criterion is as follows. For dynamic system (1.7) to
be stable, it is necessary and sufficient that all the main diagonal minors of the
Hurwitz determinant should be positive, provided that the coefficient at the highest
degree in a characteristic equation is positive. We use this criterion, for which we
write an auxiliary matrix∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 B2 B4 0 0

B1 B3 0 0 0
B1B2 −B3

B1
B4 0 0 0

B3(B1B2 −B3)−B2
1B4

B1B2 −B3
0 0 0 0

B4 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Applying the Routh-Hurwitz criterion, we obtain that system (1.7) is asymptotically
stable at equilibrium point Es if the following inequalities are true:

B1 > 0,

B1B2 −B3

B1
> 0,

B3(B1B2 −B3)−B2
1B4

B1B2 −B3
> 0,

B4 > 0,
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which is equivalent to the system

B1 > 0,

B1B2 −B3 > 0,

B3(B1B2 −B3)−B2
1B4 > 0,

B4 > 0.

Let us verify the validity of these inequalities under the condition that R0 < 1.
Inequality R0 < 1 is equivalent to inequality (b + β)(c + γ) − α1α2β > 0. It is
obvious that B1 > 0. It follows from condition R0 < 1 that B4 > 0. Substituting
the expressions for B1, B2 and B3 into expression B1B2−B3, after simple algebraic
transformations we get that B1B2 − B3 > 0 for R0 < 1. Similarly, we obtain that
B3(B1B2 − B3) − B2

1B4 > 0 for R0 < 1. Algebraic calculations were made using
the Matlab program. The assertion has been proven.

Local stability of endemic equilibrium Ee

Proposition 1.5. If R0 > 1 and dv < 1
δ (δ+µ)(aN0−a′), then endemic equilibrium

point Ee = (S∗, E∗, I∗, R∗) is locally asymptotically stable.

Proof. The Jacobi matrix corresponding to system (1.7) has the form:

J(S,E, I, R) =


−α1α2

N0
I − a′ − dv 0 −α1α2

N0
S µ

α1α2

N0
I −b− β α1α2

N0
I 0

0 β −c− γ 0

dv 0 γ −δ − µ

 .

The Jacobi matrix at point Ee = (S∗, E∗, I∗, R∗) is equal to

J(Ee) =


−α1α2

I∗

N0
− a′ − dv 0 −α1α2

S∗

N0
µ

α1α2
I∗

N0
−b− β α1α2

S∗

N0
0

0 β −c− γ 0

dv 0 γ −δ − µ

 .

Let us determine the eigenvalues of this matrix J(Ee). Equating its determinant to
zero, we obtain the equation:

λ4 + C1λ
3 + C2λ

2 + C3λ+ C4 = 0,
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where

C1 = b+ c+ δ + β + γ + µ+ a′ +
α1α2

N0
I∗,

C2 = (a′ +
α1α2

N0
I∗)(δ + µ) + b+ β + c+ γ+

+ (a′ + δ + µ+
α1α2

N0
I∗)(b+ c+ β + γ)− α1α2

N0
S∗,

C3 = (a′ +
α1α2

N0
I∗)(δ + µ)(b+ c+ β + γ)+

+ (b+ β)(c+ γ)(a′ + δ + µ+
α1α2

N0
I∗)− βα1α2

N0
S∗,

C4 = (b+ β)(c+ γ)(δ + µ)(a′ +
α1α2

N0
I∗)+

+
βµα1α2

N0
(dvS∗ + γI∗)− α1α2βa

′(δ + µ)

N0
S∗.

The characteristic equation has four solutions, which are eigenvalues of matrix
J(Ee).

We use the Routh-Hurwitz criterion to study stability of the system at point Ee.
To do this, we write an auxiliary matrix (the Routh-Hurwitz matrix):∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 C2 C4 0 0

C1 C3 0 0 0
C1C2 − C3

C1
C4 0 0 0

C3(C1C2 − C3)− C2
1C4

C1C2 − C3
0 0 0 0

C4 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Applying the Routh-Hurwitz criterion, we obtain that system (1.7) is asymptotically
stable at equilibrium point Ee if the following inequalities hold:

C1 > 0,

C1C2 − C3

C1
> 0,

C3(C1C2 − C3)− C2
1C4

C1C2 − C3
> 0,

C4 > 0,



39

which is equivalent to the system

C1 > 0,

C4 > 0,

C1C2 − C3 > 0,

C3(C1C2 − C3)− C2
1C4 > 0.

Let us check the validity of these inequalities under the condition that R0 > 1 and
dv < 1

δ (δ + µ)(aN0 − a′). It is obvious that C1 > 0 if I∗ > 0, the last inequality
holds for dv < 1

δ (δ + µ)(aN0 − a′) . It follows from condition R0 > 1 that S∗ < 1.
Substituting the expressions S∗, I∗, R∗ and E∗ into C1, C2, C3 and C4, after simple
algebraic transformations, we obtain that the last system of inequalities is satisfied.
Algebraic calculations were made using the Matlab program. The assertion has been
proven.

1.2.4 Numerical simulation

This section describes the results of a numerical simulation that takes into account
the vaccination of the population as a way to control malaria. The simulation
was carried out using the Matlab program. The parameters for which numerical
simulations with vaccination were carried out are shown in the following table:

Table 1.2: The parameters for simulation, which results are presented in Fig. 1.4 and Fig. 1.5

α1 α2 β γ µ a a′ b c δ tmax R0

In Fig. 1.4
0.8 0.9 0.3 0.4 0.01 0.8 0.01 0.2 0.4 0.01 60 0.54

In Fig. 1.5
0.8 0.9 0.5 0.15 0.01 0.8 0.01 0.05 0.15 0.01 60 2.18

Particular attention is paid to studying the influence of the values of dv parameter
characterizing a vaccination level of population, on the nature of epidemic develop-
ment. The following values of dv parameter are considered: 0.00, 0.03, 0.08, 0.15,
0.25, 0.50 for two sets of other parameters presented in the above table, with differ-
ent values of R0: 0.54 for the first data set and 2.18 for the second set. The value
of R0 is calculated using formula (1.9) for each data set.

Fig. 1.4 presents the results of numerical simulation of population dynamics
for the first data set, for which R0 < 1. If you look at graph a1, you can see
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Figure 1.4: Epidemic process for R0 < 1 for different values of dv.

that the disease is practically absent, and the behavior of the curves showing the
dynamics of subpopulations is close to linear, which indicates the stability of the
population composition. In Fig. 1.4 (a2, a3), with a low percentage of population
vaccination (3% and 8%), a subpopulation curve R(t) of recovering people has an



41

exponential growth, a curve of subpopulation of susceptible people tends to gradual
decrease, i.e. the susceptible move into the recovered group, and a curve of infected
subpopulation I(t) is almost zero, i.e. the disease completely disappears from the
population. In Fig. 1.4 (a4, a5, a6) with an increase in the percentage of vaccinated
population (15%, 25% and 50%), a subpopulation curve for recovered people rapidly
grows and becomes close to linear at a certain time. A susceptible subpopulation
curve decreases rapidly before becoming linear, and an infected subpopulation curve
I(t) is practically zero, in other words, the disease completely disappears from the
population.

Consider the second data set, for which R0 > 1. From Fig. 1.5 (b1) it can be seen
that the disease is present in population and the curves corresponding to subpopu-
lations are nonmonotonic, S(t) first decreases, then increases, while R(t), E(t) and
I(t) first increase, then decrease. In Fig. 1.5 ( b2 and b3) with a low percentage of
population vaccination (3% and 8% respectively), a recovering subpopulation curve
R(t) grows almost exponentially, susceptible subpopulation S(t) rapidly decreases
and passes into a group of recovered people R(t) due to vaccination, while subpop-
ulation of infected people I(t) at some point in time becomes linear, that is, the
disease gradually disappears from the population due to the population vaccination.
In Fig. 1.5 (b4, b5 and b6) with a high percentage of vaccinated population (15%,
25% and 50% respectively), the subpopulation curve of recovered patients R(t) in-
creases rapidly and at some point becomes close to linear. A curve of susceptible
subpopulation S(t) decreases rapidly and also becomes close to a linear function,
and curve of infected subpopulation I(t) is almost zero over the entire time interval,
which indicates a complete disappearance of the disease in the population.

Numerical modeling clearly demonstrates that vaccination plays an important
part in ensuring population resistance to disease and preventing the epidemic devel-
opment. Although there is no highly effective malaria vaccine, it seems essential to
vaccinate the population with available vaccines, as well as to recommend the use
of other malaria prevention measures (drugs, impregnated mosquito nets, etc.) to
reduce the values of the parameters that characterize the rate of disease transmis-
sion.

Now we study the effect of vaccination on human population at various levels of
virus infection. The level of infection is described using R0, which is the number of
base reproductions, the value of which is obtained using the parameters given in the
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Figure 1.5: Epidemic process for R0 > 1 and for different values of dv.

tables below. For each R0 value, we will apply different vaccination rate values. We
use the following dv values: 0.08, 0.25, 0.75 for different values of R0: 0.72, 2.5, 3
and 5. The value of R0 is calculated using formula (1.9) for each data set found in
the tables below.
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Table 1.3: Parameters for the simulation, which results are presented in Fig. 1.6.

α1 α2 β γ µ a a′ b c δ tmax R0

In Fig. 1.6
0.8 0.9 0.3 0.2 0.01 0.8 0.01 0.2 0.4 0.01 60 0.72

Figure 1.6: Epidemic process with R0 = 0.72 for different values of dv.

When using the data from Table 1.3, for which R0 = 0.72, it can be seen that the
disease is practically absent on the first graph, and the behavior of the curves show-
ing the dynamics of subpopulations is close to linear, which indicates the stability
of the population composition, i.e. the disease will disappear after a while. At a
population vaccination rate of 8%, we find that susceptible population (S(t)) trans-
forms rapidly into the recovered population (R(t)), and the curves clearly show
that susceptible population rapidly decreases while the curve representing recov-
ered population grows exponentially. At a vaccination level of 25%, there is a very
rapid growth of recovered population (R(t)). A recovered population curve grows
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exponentially until reaching a stationary value. On the other hand, susceptible pop-
ulation (S(t)) is a curve that decreases exponentially until reaching a stationary
value. At a vaccination level of 75%, a recovered population curve (R(t)) reaches
a practically constant value in less than 5 days, and a susceptible population curve
(S(t)) has a similar behavior, but it decreases to the minimum values, and then
remains constant. The disease is practically absent as a transmission rate of R0

is low and a person infected and able to transmit the virus can infect on average
less than one person. The representative curves for exposed population (E(t)) and
infected population (I(t)) are close to linear.

Table 1.4: Parameters for the simulation, which results are presented in Fig. 1.7.

α1 α2 β γ µ a a′ b c δ tmax R0

In Fig. 1.7
0.9 0.9 0.66 0.15 0.01 0.8 0.01 0.05 0.15 0.01 60 2.5

Consider the data from Table 1.4 for which R0 = 2.5. We can notice that in
the first graph a curve of infected population (I(t)) rises rapidly until the 20th day,
when the epidemic peak is reached, and without measures of influencing disease, it
can be dangerous for the population. It can be seen that a susceptible population
curve (S(t)) decreases rapidly, and an exposed population curve (E(t)) is below an
infected population curve (I(t)), which explains gradual disappearance of exposed
subpopulation. Since malaria does not last long, after three weeks a representative
curve of infected population (I(t)) begins to decrease. With a population vacci-
nation rate of 8%, we find that susceptible population (S(t)) rapidly transforms
into recovered population (R(t)), and that the plots clearly show that a susceptible
population curve decreases rapidly, while a representative curve of recovered pop-
ulation increases exponentially. Although the disease still exists in population, as
an infected population curve (I(t)) shows, but it is not a big threat as population
tends to quick recovery by vaccinating population. At a vaccination rate of 25%, we
see a very rapid rise of a recovered population curve (R(t)). A recovered population
curve increases exponentially before becoming constant, on the other hand, suscep-
tible subpopulation (S(t)) decreases exponentially before becoming stationary. At a
higher vaccination rate of 75%, a recovered population curve (R(t)) rises and quickly
becomes stationary over a very short period of time, while a susceptible population
curve (S(t)) decreases very rapidly before becoming linear. A transmission rate of
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Figure 1.7: Epidemic process with R0 = 2.5 for different values of dv.

R0 is important because one infected person who can transmit the virus can infect
on average more than two people. Using a vaccine helps reduce damage that the
disease can cause.

Table 1.5: Parameters for the simulation, which results are presented in Fig. 1.8.

α1 α2 β γ µ a a′ b c δ tmax R0

In Fig. 1.8
0.9 0.9 0.6 0.15 0.02 0.8 0.01 0.2 0.05 0.01 60 3.04

Consider the data from Table 1.5 for which R0 = 3.04. It can be seen that in the
first graph, an infected subpopulation curve (I(t)) rises rapidly until the 21st day,
when the epidemic reaches its peak, and it can be life-threatening without measures
to control the disease. A susceptible subpopulation curve (S(t)) decreases, and an
exposed subpopulation curve (E(t)) is below the infected subpopulation curve (I(t))
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Figure 1.8: Epidemic process with R0 = 3.04 for different values of dv.

which becomes close to linear after some time (30th day), which explains gradual
disappearance of the bitten subpopulation. Since malaria does not last long, a rep-
resentative curve of infected subpopulation (I(t)) begins to decrease by the end of
the 25th day. At a vaccination rate of 8%, we find that susceptible subpopulation
(S(t)) gradually transforms into recovered subpopulation (R(t)), and the curves
clearly show that a susceptible population curve gradually begins to decrease while
a representative curve of recovered population increases rapidly. Although the dis-
ease still exists in population, as shown by an infected population curve (I(t)), but
the epidemic peak is reached earlier this time (on the 15th day) due to more active
vaccination. Then population tends to gradual recovery. At a higher vaccination
rate of 25%, we see a very rapid increase of a recovered-population curve (R(t)).
A recovered population curve increases rapidly before becoming stationary at the
end of a certain period, on the other hand, susceptible population (S(t)) gradu-
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ally decreases before becoming stationary, also after a certain time (30th day) an
infected population curve has the appearance of a bell before becoming linear. At
a higher vaccination level of 75%, a recovered population curve (R(t)) rises and
quickly becomes stationary by the end of the 5th day, and a susceptible popula-
tion curve (S(t)) decreases very quickly before becoming linear. The disease exists
and a transmission rate of R0 is significant, but more frequent vaccination reduces
prevalence of the disease in the population.

Table 1.6: Parameters for the simulation, which results are presented in Fig. 1.9.

α1 α2 β γ µ a a′ b c δ tmax R0

In Fig. 1.9
1.2 0.8 0.8 0.1 0.01 0.6 0.01 0.21 0.05 0.01 60 5.07

Figure 1.9: Epidemic process with R0 = 5.07 for different values of dv.

Consider the data from Table 1.6 for which R0 = 5.07. We can notice that in
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the first graph an infected population curve (I(t)) grows exponentially and will take
values greater than the values of all other curves by the 15th day of reaching the
epidemic peak. In this case, one infected person can infect on average more than 5
people. We see that a susceptible population curve (S(t)) decreases exponentially,
and an exposed population curve (E(t)) becomes linear by the end of the 20th day,
which explains almost total disappearance of exposed population and its transfor-
mation into fully infected if the population is not vaccinated. Starting with the
17th day, a representative curve of infected population (I(t)) decreases as malaria
does not last long. It should be noted that the nature of changing dynamics of sub-
populations is similar to the previous results, but it is worth noting that a rate of
transmission of the disease has a significant impact on the duration of the epidemic.
The larger number R0, the higher level of vaccination is required to eliminate the
disease in the population.

1.3 Conclusion to Chapter 1

The first chapter presents two mathematical models: without vaccination and with
vaccination of the malaria epidemic based on the SEIR model and its modifica-
tions. The models take into account a transition factor from the recovered to the
susceptible population (occurs in the case of malaria and it is confirmed by medical
research, but not usually used in the SEIR model). The proposed models of the
malaria epidemic are described by systems of ordinary differential equations with
positive initial conditions. It is shown that the mathematical models defined in this
way are in the region Ω. For each model, the basic reproductive number R0 is found
characterizing the nature of the dynamics of malaria transmission, namely, station-
ary states (equilibrium points) of the epidemic process. Numerical modeling shows
that the higher the level of vaccination of the population, the faster the epidemic
can be “eliminated”. Unfortunately, malaria is a disease for which vaccines have a
low level of effectiveness, but vaccination of a significant part of the population can
successfully cope with the epidemic.
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Chapter 2

Vector epidemic model of malaria without
and with vaccination

This chapter presents dynamic epidemic models of type vector-host with direct trans-
mission between two populations [65]. The malaria distribution model is determined
by a system of ordinary differential equations. The host (human) population is di-
vided into four subpopulations: susceptible, exposed, infected and recovered, and
the vector (mosquito) population is divided into three subpopulations: susceptible,
exposed and infected. Using the theory of Lyapunov functions, sufficient conditions
for the global stability of equilibrium without diseases and endemic equilibrium are
determined. The basic reproductive number characterizing the evolution of the epi-
demic in the population has been found. Numerical modeling was carried out to
study the influence of key parameters on the spread of vector-borne diseases.

A model of direct vector-to-host transmission with vaccination is also presented
in this chapter. The dynamics of malaria spread is given by a system of ordinary
differential equations. Unlike the previous model, it is assumed that the human pop-
ulation can be vaccinated. Numerical modeling was also carried out for this model
to study the influence of key parameters on the spread of vector-borne diseases.

2.1 Model of a vector-borne malaria epidemic

2.1.1 Model SEIRSkEkIk

We start with the description of model SEIRSkEkIk (also see [38]). Disease-
transmitting mosquitoes can be in one of three states: susceptible (Sk),exposed
(Ek), and infected (Ik). The bite of the female Anopheles mosquito carrying the
malaria virus transfers a healthy (susceptible) person (S) into a category called in-
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fected hosts (I). Uninfected population but at a high risk of contracting malaria
is the susceptible population. People who recover from malaria through medical
treatment without a threat to their lives get into a group of people (R) who have re-
covered. Figure 2.1 shows an interaction diagram between human population (host)
and mosquito population (carrier or vector) for malaria transmission.

Figure 2.1: Malaria model

The size of the entire host population is N(t) = S(t) + E(t) + I(t) + R(t), and
the size of the vector population is Nk(t) = Sk(t) + Ek(t) + Ik(t).

The mathematical model of population dynamics (human and mosquito) can be
represented analytically by the following nonlinear system of seven ordinary differ-
ential equations:

dS(t)

dt
= −αS(t)Ik(t) + aN(t)− a′S(t),

dE(t)

dt
= αS(t)Ik(t) + µR(t)− bE(t)− βE(t),

dI(t)

dt
= βE(t)− cI(t)− γI(t),

dR(t)

dt
= γI(t)− dR(t)− µR(t),

dSk(t)

dt
= −αkSk(t)I(t) + akNk(t)− a′kSk(t),

dEk(t)

dt
= αkSk(t)I(t)− bkEk(t)− βkEk(t),

dIk(t)

dt
= βkEk(t)− ckIk(t),

(2.1)
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with initial conditions

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, Sk(0) ≥ 0, Ek(0) ≥ 0, Ik(0) ≥ 0.

(2.2)
The general population dynamics is represented by equation:

dN

dt
= aN0 − a′S − bE − cI − dR.

The given initial conditions (2.2) must satisfy the inequality: N(0) ≥ 0. Thus,
the total population size N(t) remains positive and bounded during the entire time
t > 0. The dynamics of general population of carriers is as follows:

dNk

dt
= akN0k − a′kSk − bkEk − ckIk.

The model uses the following parameters:

• N(t) — size of human population;

• S(t) — size of subpopulation of susceptible individuals;

• E(t) — size of subpopulation of exposed people (bitten by mosquito);

• I(t) — size of subpopulation of infected people;

• R(t) — size of subpopulation of recovered people;

• a — birth rate in human population;

• a′ — mortality rate among subpopulation S;

• b — mortality rate among subpopulation E;

• c — mortality rate among infected subpopulation I;

• d — mortality rate among recovered subpopulation R;

• β — intensity of people’s transition from subpopulation E to I, with the onset
of disease symptoms;

• γ — intensity of people’s recovery, i.e. transition from subpopulation I to R;

• µ — rate of people’s return from recovered to susceptible;

• α — probability of transmitting infection through an infected mosquito bite to
a susceptible person;
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• Nk(t) — total size of mosquito population;

• Sk(t) — number of mosquitoes that can be infected;

• Ek(t) — number of mosquitoes susceptible to the disease;

• Ik(t) — number of infected mosquitoes;

• ak(t) — birth rate in mosquito population;

• a′k(t) — mortality in susceptible mosquito populations;

• bk(t) — mortality in exposed mosquito population;

• ck(t) — mortality in infected mosquito population;

• αk(t) — probability of transition from a group of susceptible mosquitoes to a
group of exposed ones;

• βk(t) — transition rate of mosquitoes from susceptible to exposed subpopula-
tion.

2.1.2 Region of admissible values

A mathematical model represented by a system of differential equations (2.1) de-
scribes changes in human and mosquito populations. Therefore, it is important
to make sure that all solutions with nonnegative initial conditions (2.2) always re-
main nonnegative. All solutions of the proposed system with initial conditions from
domain Ω remain in this domain.

Theorem 2.1. Let (S,E, I, R, Sk, Ek, Ik) be any solution of system (2.1) with non-
negative initial conditions (2.2). For t ≥ 0 there is:

Ω =
{
(S,E, I, R, Sk, Ek, Ik) ∈ R7

+, V1 ≤
aN0

a′ + b+ c+ d
, V2 ≤

akN0k

a′k + bk + ck

}
.

Then Ω is a positively invariant and absorbing set for system (2.1) with initial
conditions (2.2).

Proof. To prove this theorem, we use the Lyapunov functions. Consider the following
Lyapunov vector function V (t) = (V1(t), V2(t)). Suppose that functions V1(t), V2(t)

are defined for ∀ t ≥ 0, and they are differentiable and continuously differentiable
on set Ω containing the origin.
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The time derivative of function V (t) is equal to

dV (t)

dt
=


dV1(t)

dt
= aN0 − (a′ + b+ c+ d)V1 − a′S − bE − cI − dR,

dV2(t)

dt
= akN0k − (a′k + bk + ck)V2 − a′kSk − bkEk − ckIk.

(2.3)

For system (2.3), it is obvious that
dV1(t)

dt
≤ aN0 − (a′ + b+ c+ d)V1,

dV2(t)

dt
≤ akN0k − (a′k + bk + ck)V2.

(2.4)

By the properties of the Lyapunov function, we obtain the following conditions:
dV1

dt
≤ aN0 − (a′ + b+ c+ d)V1 ≤ 0,

dV2

dt
≤ akN0k − (a′k + bk + ck)V2 ≤ 0.

⇒ 
V1 ≥ aN0

a′ + b+ c+ d
,

V2 ≥ akN0k

a′k + bk + ck
.

(2.5)

From conditions (2.5), it follows that
dV (t)

dt
≤ 0, which means that Ω is a positively

invariant and absorbing set.
From the above inequalities and conditions (2.3), we obtain the inequalities for

V1 and V2:

0 ≤ V1 (t) ≤
aN0

a′ + b+ c+ d
+ e−(a′+b+c+d)t

(
V01 −

aN0

a′ + b+ c+ d

)
,

0 ≤ V2 (t) ≤
akN0k

a′k + bk + ck
+ e−(a′k+bk+ck)t

(
V02 −

akN0k

a′k + bk + ck

)
.

Using t −→ +∞ we obtain

0 ≤ V1 (t) ≤
aN0

a′ + b+ c+ d
,

0 ≤ V2 (t) ≤
akN0k

a′k + bk + ck
,

and we can conclude that Ω is an absorbing set. Indeed, the following inequalities
hold for t −→ +∞:

lim sup
t→+∞

V1 ≤
aN0

a′ + b+ c+ d
,

lim sup
t→+∞

V2 ≤
akN0k

a′k + bk + ck
.
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Thus, Ω is positively invariant, and all solutions are bounded by the interval [0,∞).

2.1.3 Equilibrium points

For the presented model, we study two equilibrium points for a system of differential
equations (2.1):

1. Equilibrium without diseases Es;

2. Endemic equilibrium Ee, when the disease is present in the population, and the
size of all subpopulations is nonzero.

Solving the following system of differential equations

−αS(t)Ik(t) + aN(t)− a′S(t) = 0,

αS(t)Ik(t) + µR(t)− bE(t)− βE(t) = 0,

βE(t)− cI(t)− γI(t) = 0,

γI(t)− dR(t)− µR(t) = 0,

−αkSk(t)I(t) + akNk(t)− a′kSk(t) = 0,

αkSk(t)I(t)− bkEk(t)− βkEk(t) = 0,

βkEk(t)− ckIk(t) = 0,

(2.6)

find these two equilibrium points:

1. Equilibrium without diseases Es = ( a
a′N0, 0, 0, 0,

ak
a′k
N0k, 0, 0), i.e. this is a solu-

tion to the system withoutdisease, and only the number of susceptible human
and mosquito subpopulations is nonzero.

2. Endemic equilibrium of system Ee = (S∗, E∗, I∗, R∗, S∗
k, E

∗
k, I

∗
k), in which the

disease is present in the population, and the number of all human and mosquito
subpopulations is nonzero.

To find the second equilibrium, from the first equation of (2.6) we get S =
(aN0)E

αIk + a′
, from the third equation we get E =

c+ γ

β
I or I =

β

c+ γ
E, then from the

fourth equation: R =
γ

d+ µ
I, from the fifth equation: Sk =

akN0k

αkI + a′k
, from the

sixth equation: Ek =
αkSk

bk + βk
I, from the seventh equation : Ik =

βkEk

ck
, from the

second equation: E =
α

b+ β
SIk +

µ

b+ β
R.
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Substituting the first, third, fourth, fifth, sixth and seventh equations of (2.6)
into the second equation of this system, we obtain

E =
aakααkβkN0N0k(d+ µ)(c+ γ)I

((b+ β)(d+ µ)(c+ γ)− µγβ)(αβkαkakNkI + a′ck(bk + βk)(αkI + a′k))
.

Given the third equation in the system (2.6), we get:

I =
aakαβαkβkN0N0k(d+ µ)− a′a′kck(bk + βk)((b+ β)(d+ µ)(c+ γ)− µγβ)

((b+ β)(d+ µ)(c+ γ)− µγβ)(αβkαkakNk + a′ckαk(bk + βk))
.

Therefore, endemic equilibrium of (2.1) is defined by vector
Ee = (S∗, E∗, I∗, R∗, S∗

k, E
∗
k, I

∗
k) with components

I∗ =
aakαβαkβkN0N0k − a′a′kck(bk + βk)((b+ β)(d+ µ)(c+ γ)− µγβ)

((b+ β)(d+ µ)(c+ γ)− µγβ)(αβkαkakNk + a′ckαk(bk + βk))
,

S∗ =
aN0

αI∗k + a′
,

E∗ =
c+ γ

β
I∗,

R∗ =
γ

d+ µ
I∗,

S∗
k =

akN0k

αkI∗ + a′k
,

E∗
k =

αk

bk + βk
S∗
kI

∗,

I∗k =
akαkβkN0k

ck(bk + βk)(αkI∗ + a′k)
I∗.

Equilibrium Ee represents an endemic equilibrium point of the model, in which
all subgroups of the population are represented.

2.1.4 Determining basic reproduction number R0

Basic reproductive number R0 indicates an average number of new cases of malaria
infection caused by one infected person in fully susceptible population. To calcu-
late R0 for a system of equations (2.1), we use a method of next-generation matrix
described in [29− 32]. For a system of equations (2.1) we can write:

dx

dt
= F (x)− V (x),

x = (S,E, I, R, Sk, Ek, Ik)
T .
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Using the next generation method, we will perform the following calculations. First
we define matrices F and V :

F =


αkSk(t)I(t)

0

αS(t)Ik(t)

0

 , V+ =


µR(t)

βE(t)

0

βkEk(t)

 , V− =


−(b+ β)E(t)

−(c+ γ)I(t)

−(bk + βk)Ek(t)

−ckIk(t)

 ,

hence we get

V = V+ + V− =


µR(t)− (b+ β)E(t)

βE(t)− (c+ γ)I(t)

−(bk + βk)Ek(t)

βkEk(t)− ckIk(t)

 .

Find matrices

DF(Es) =


0 αkS

0
k 0 0

0 0 0 0

0 0 0 αS0

0 0 0 0

 ,

DV(Es) =


−(b+ β) 0 0 0

β −(c+ γ) 0 0

0 0 −(bk + βk) 0

0 0 βk −ck

 .

Hence,

F =

[
0 αkS

0
k

0 0

]
, F ′ =

[
0 αS0

0 0

]
,

V =

[
−(b+ β) 0

β −(c+ γ)

]
, V ′ =

[
−(bk + βk) 0

βk −ck

]
.

Calculate R0 using formula R0 = ρ(−FV −1), where

V −1 =
1

det(V )
t(com(V )),

and

det(V ) = (b+ β)(c+ γ), t(com(V )) =

[
−(c+ γ) 0

−β −(b+ β)

]
.
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Substituting det(V ) and t(com(V )) into expression V −1, we get

V −1 =
1

(b+ β)(c+ γ)

[
−(c+ γ) 0

−β −(b+ β)

]
,

(V ′)−1 =
1

(bk + βk)ck

[
−ck 0

−βk −(bk + βk)

]
.

Finally, we get the following expressions:

FV −1 =

[
− αkβS

0
k

(b+β)(c+γ) −αkS
0
k

c+γ

0 0

]
,

FV ′−1 =

[
− αβkS

0)
ck(bk+βk)

−αS0

ck

0 0

]
,

and calculate Rh and Rk:

Rh = ρ(−FV −1) =
αkβS

0
k

(b+ β)(c+ γ)
, Rk = ρ(−FV ′−1) =

αβkS
0)

ck(bk + βk)
,

hence we finally obtain basic reproductive number R0 in the form:

R0 = Rh ×Rk =
αkβS

0
kαβkS

0

ck(bk + βk)(b+ β)(c+ γ)
,

where (S0, S0
k) = ( a

a′N0,
ak
a′k
N0k), and finally write the formula for R0:

R0 =
αβαkβkaakN0N0k

a′a′kck(b+ β)(c+ γ)(bk + βk)
.

If R0 ≤ 1 and at least one person is infected, then the epidemic will not develop,
and system (2.1) is stable. If R0 ≥ 1, i.e. at least one infected person can infect
several people, the number of infected people is growing, and the disease can affect
the entire population. A numerical study will give us a more representative picture
of disease spread among population depending on a value of R0.

Note that endemic equilibrium point Ee exists if R0 > 1.

2.1.5 Examining stability of equilibrium points

First, let us analyze the stability of disease-free equilibrium of a system of equations
(2.1), using basic reproductive number R0, we formulate the result as a theorem.
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Theorem 2.2. Disease-free equilibrium Es is locally asymptotically stable if R0 ≤ 1

and
ck >

αβαkβkN0N0k(d+ µ)

(b+ β)(c+ γ)(d+ µ)(bk + βk) + βγµ(bk + βk)
,

and unstable if R0 > 1.

Proof. The Jacobi matrix of system (2.1) is written as:
J(S,E, I, R, Sk, Ek, Ik) =

−αIk − a′ 0 0 0 0 0 −αS

αIk −b− β 0 µ 0 0 αS

0 β −c− γ 0 0 0 0

0 0 γ −d− µ 0 0 0

0 0 −αkSk 0 αkI − a′k 0 0

0 0 αkSk 0 αkI −(bk + βk) 0

0 0 0 0 0 βk −ck


.

The Jacobi matrix at disease-free equilibrium point Es is equal to

J(Es) =



−a′ 0 0 0 0 0 −αN0

a

0 −b− β 0 µ 0 0 αN0

a

0 β −c− γ 0 0 0 0

0 0 γ −d− µ 0 0 0

0 0 −αk
N0k

ak
0 −a′k 0 0

0 0 αk
N0k

ak
0 0 −(bk + βk) 0

0 0 0 0 0 βk −ck


.

We determine the eigenvalues of this matrix by equating its determinant to zero,∣∣∣∣∣∣∣∣∣∣∣∣∣

−a′ − λ 0 0 0 0 0 −αN0
a

0 −b− β − λ 0 µ 0 0 αN0
a

0 β −c− γ − λ 0 0 0 0

0 0 γ −d− µ− λ 0 0 0

0 0 −αk
N0k
ak

0 −a′k − λ 0 0

0 0 αk
N0k
ak

0 0 −(bk + βk)− λ 0

0 0 0 0 0 βk −ck − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
We get the characteristic equation

(a′ + λ)(a′k + λ)[λ5 + C1λ
4 + C2λ

3 + C3λ
2 + C4λ+ C5] = 0,
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where

C1 = ck + d+ µ+ bk + βk + b+ β + c+ γ,

C2 = (d+ µ)(bk + βk) + (b+ β + c+ γ)(d+ µ+ bk + βk)

+ (b+ β)(c+ γ) + ck(d+ µ+ bk + βk),

C3 = (b+ β + c+ γ)((d+ µ)(bk + βk) + ck(d+ µ+ bk + βk))+

+ (b+ β)(c+ γ)(d+ µ+ bk + βk + ck) + ck(d+ µ)(bk + βk),

C4 = (b+ β)(c+ γ)((d+ µ)(bk + βk) + ck(d+ µ+ bk + βk)

+ βγµ(ck + bk + βk)−
αβαkβkN0N0k

aak
,

C5 = ck(b+ β)(c+ γ)(d+ µ)(bk + βk) + βγµck(bk + βk)− αβαkβkN0N0k(d+ µ).

The characteristic equation has seven eigenvalues, the first two of which λ1 and
λ2 are: λ1 = −a′ and λ2 = −a′k. The remaining five eigenvalues are obtained by
solving the equation:

λ5 + C1λ
4 + C2λ

3 + C3λ
2 + C4λ+ C5 = 0.

The solution to this equation is difficult to write in an explicit form. To determine
the nature of the stability of equilibrium point Es. We use the Routh-Hurwitz
criterion to study stability. To do this, we write an auxiliary matrix:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 C2 C4 0 0 0

C1 C3 C5 0 0 0
C1C2 − C3

C1

C1C4 − C5

C1
0 0 0 0

C3 −
C1C4 − C5

C1C2 − C3
C5 0 0 0 0

C1C4 − C5

C1
− C5(C1C2 − C3)

2

C3(C1C2 − C3)− C1C4 + C5
0 0 0 0 0

C5 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Applying the Routh-Hurwitz criterion, we obtain that system (2.1) is asymptotically
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stable at equilibrium point Es if the inequalities

C1 > 0,

C5 > 0,

C1C2 − C3

C1
> 0,

C3 −
C1C4 − C5

C1C2 − C3
> 0,

C1C4 − C5

C1
− C5(C1C2 − C3)

2

C3(C1C2 − C3)− C1C4 + C5
> 0

are satisfied.
Then from C1C2−C3

C1
> 0 and C1 > 0 it follows that C1C2 − C3 > 0. The fourth

inequality is equivalent to C3(C1C2 − C3) − C1C4 + C5 > 0 or C1C2C3 − C1C4 −
C2

3 + C5 > 0. Then the last inequality can be written as: (C1C4 − C5)(C1C2C3 −
C1C4 − C2

3 + C5)− C1C5(C1C2 − C3)
2 > 0.

Therefore, we get the system:

C1 > 0,

C5 > 0,

C1C2 − C3 > 0,

C1C2C3 − C1C4 − C2
3 + C5 > 0,

(C1C4 − C5)(C1C2C3 − C1C4 − C2
3 + C5)− C1C5(C1C2 − C3)

2 > 0.

The first two eigenvalues λ1 and λ2 have negative real parts. The remaining
five eigenvalues have negative real parts if they satisfy the Routh-Hurwitz criterion.
Thus, all eigenvalues of the characteristic equation have negative real parts if and
only if R0 < 1 and C1C2C3 + C5 > C1C4 + C2

3 , i.e.

ck >
α betaαkβkN0N0k(d+ µ)

(b+ β)(c+ γ)(d+ µ)(bk + βk) + βγµ(bk + βk)
,

then disease-free equilibrium Es is locally asymptotically stable. The theorem is
proved.

Theorem 2.3. Endemic equilibrium Ee is locally asymptotically stable if R0 > 1

and ck >
αββkαkS

∗
k

(αkI∗+a′k)(a′+αI∗k)(bk+βk)
.
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Proof. The Jacobi matrix of system (2.1) is written as:
J(S,E, I, R, Sk, Ek, Ik) =

−αIk − a′ 0 0 0 0 0 −αS

αIk −b− β 0 µ 0 0 αS

0 β −c− γ 0 0 0 0

0 0 γ −d− µ 0 0 0

0 0 −αkSk 0 αkI − a′k 0 0

0 0 αkSk 0 αkI −(bk + βk) 0

0 0 0 0 0 βk −ck


.

The Jacobi matrix at endemic equilibrium Ee = (S∗, E∗, I∗, R∗, S∗
k, E

∗
k, I

∗
k) is

J(Ee) =



−αI∗k − a′ 0 0 0 0 0 −αS∗

αI∗k −b− β 0 µ 0 0 αS∗

0 β −c− γ 0 0 0 0

0 0 γ −d− µ 0 0 0

0 0 −αkS
∗
k 0 αkI

∗ − a′k 0 0

0 0 αkS
∗
k 0 αkI

∗ −(bk + βk) 0

0 0 0 0 0 βk −ck


.

Let us find the eigenvalues of this matrix by equating its determinant to zero, and
we obtain the following characteristic equation:

λ7 + A1λ
6 + A2λ

5 + A3λ
4 + A4λ

3 + A5λ
2 + A6λ+ A7 = 0,
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where

A1 = b+ β + c+ γ + d+ µ+ a′ + αI∗k + bk + βk + αkI
∗ + a′k + ck,

A2 = (d+ µ)(b+ β + c+ γ) + (b+ β)(c+ γ) + (b+ β + c+ γ + d+ µ+ a′

+ αI∗k + bk + βk + αkI
∗ + a′k + ck) + ck(αkI

∗ + a′k) + (αI∗k + a′)(bk + βk)

+ (a′ + αI∗k + bk + βk)(αkI
∗ + a′k + ck),

A3 = (d+ µ)(b+ β)(c+ γ) + (d+ µ)(b+ β + c+ γ) + (b+ β)(c+ γ) + a′

+ αI∗k + bk + βk + αkI
∗ + a′k + ck + ck(αkI

∗ + a′k) + (αI∗k + a′)(bk + βk)

+ (a′ + αI∗k + bk + βk)(αkI
∗ + a′k + ck)(b+ β + c+ γ + d+ µ)

+ ck(αkI
∗ + a′k)(a

′ + αI∗k + bk + βk) + (αI∗k + a′)(bk + βk)(αkI
∗ + a′k + ck),

A4 = (a′ + αI∗k + bk + βk + αkI
∗ + a′k + ck)(d+ µ)(b+ β)(c+ γ)

+ [ck(αkI
∗ + a′k) + (αI∗k + a′)(bk + βk) + (a′ + αI∗k + bk + βk)(αkI

∗ + a′k + ck)]

× [(d+ µ)(b+ β + c+ γ) + (b+ β)(c+ γ)] + (b+ β + c+ γ + d+ µ)

× [ck(αkI
∗ + a′k)(a

′ + αI∗k + bk + βk) + (αI∗k + a′)(bk + βk)(αkI
∗ + a′k + ck)]

+ ck(αkI
∗ + a′k)(a

′ + αI∗k)(bk + βk)− αββkαkS
∗
k,

A5 = [ck(αkI
∗ + a′k)(a

′ + αI∗k)(bk + βk) + (a′ + αI∗k + bk + βk)(αkI
∗ + a′k + ck)]

× (b+ β)(c+ γ)(d+ µ) + [ck(αkI
∗ + a′k)(a

′ + αI∗k + bk + βk) + ck(αkI
∗ + a′k)

× (a′ + αI∗k)(bk + βk)(αkI
∗ + a′k + ck)][(d+ µ)(b+ β + c+ γ) + (b+ β)(c+ γ)]

+ ck(b+ β + c+ γ + d+ µ)(αkI
∗ + a′k)(a

′ + αI∗k)(bk + βk)

− αββkαkS
∗
k(d+ µ+ a′k + αS∗I∗ + αI∗k + a′),

A6 = (d+ µ)(b+ β)(c+ γ)[ck(αkI
∗ + a′k)(a

′ + αI∗k + bk + βk)

+ (αI∗k + a′)(bk + βk)(αkI
∗ + a′k + ck)] + ck(αkI

∗ + a′k)(a
′ + αI∗k)(bk + βk)

× [(d+ µ)(b+ β + c+ γ) + (b+ β)(c+ γ)]

− αββkαkS
∗
k(a

′
k(d+ µ) + (d+ µ+ a′k)(αS

∗I∗ + αI∗k + a′)),

A7 = ck(αkI
∗ + a′k)(a

′ + αI∗k)(bk + βk)(d+ µ)(b+ β)(c+ γ)

− αββkαkS
∗
ka

′
k(d+ µ)(αS∗I∗ + αI∗k + a′).

The eigenvalues of this matrix are solutions of the characteristic equation. The
equation has seven roots. We use the Routh-Hurwitz criterion, which states that
all roots of the characteristic equation have negative real parts if and only if the
conditions of the Routh-Hurwitz criterion are satisfied.
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We write an auxiliary matrix:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 A2 A4 A6 0 0

A1 A3 A5 A7 0 0
A1A2 − A3

A1

A1A4 − A5

A1

A1A6 − A7

A1
0 0 0

A3 −
A1(A1A4 − A5)

A1A2 − A3
A5 −

A1(A1A6 − A7)

A1A2 − A3
A7 0 0 0

A′
1 A′

2 0 0 0 0

A′
3 A7 0 0 0 0

A′
3A

′
2−A′

1A7

A′
3

0 0 0 0 0

A7 0 0 0 0 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where

A′
1 =

A1A4 − A5

A1
− (A1A2 − A3)(A5(A1A2 − A3)− A1(A− 1A6 − A7))

A1(A3(A1A2 − A3)− A1(A1A4 − A5))
,

A′
2 =

A1A6 − A7

A1
− A7(A1A2 − A3)

2

A1(A3(A1A2 − A3)− A1(A1A4 − A5))
,

A′
3 = A5 −

A1(A1A6 − A7)

A1A2 − A3
− A3(A1A2 − A3)− A1(A1A4 − A5)

A1A2 − A3

A′
2

A′
1

.

Applying the Routh-Hurwitz criterion, we obtain that system (2.1) is asymptotically
stable at equilibrium point Ee if the following inequalities hold:

A1 > 0,

A7 > 0,

A1A2 − A3

A1
> 0,

A3 −
A1(A1A4 − A5)

A1A2 − A3
> 0,

A1A4 − A5

A1
− (A1A2 − A3)(A5(A1A2 − A3)− A1(A− 1A6 − A7))

A1(A3(A1A2 − A3)− A1(A1A4 − A5))
> 0,

A1A6 − A7

A1
− A7(A1A2 − A3)

2

A1(A3(A1A2 − A3)− A1(A1A4 − A5))
> 0,

A5 −
A1(A1A6 − A7)

A1A2 − A3
− A3(A1A2 − A3)− A1(A1A4 − A5)

A1A2 − A3

A′
2

A′
1

> 0

A′
3A

′
2 − A′

1A7

A′
3

> 0.

Then from A1A2−A3

A1
> 0 and A1 > 0 it follows that A1A2 − A3 > 0. The fourth

inequality is equivalent to A3(A1A2−A3)−A1(A1A4−A5) > 0, or A1A2−A3 > 0.
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The fifth inequality is equivalent to A1(A1A4 − A5)(A3(A1A2 − A3) − A1(A1A4 −
A5)) − A1(A1A2 − A3)(A5(A1A2 − A3) − A1(A1A2 − A3) − 1A6 − A7)) > 0 or
A2

1(A3(A1A2 − A3) − A1(A1A4 − A5) > 0. The sixth inequality is equivalent to
A1(A1A6 − A7)(A3(A1A2 − A3) − A1(A1A4 − A5)) − A1A7(A1A2 − A3)

2 > 0, or
A′

1 > 0. The seventh inequality is equivalent to A5A
′
1(A1A2 − A3)− A1A

′
1(A1A6 −

A7) − A′
2(A3(A1A2 − A3) − A1(A1A4 − A5)) > 0. Then the last inequality can be

simplified as A′
3A

′
2 − A′

1A7 > 0, or A′
3 > 0.

Therefore, we get the system:

A1 > 0,

A7 > 0,

A1A2 − A3 > 0,

A3(A1A2 − A3)− A1(A1A4 − A5) > 0,

A1(A1A4 − A5)(A3(A1A2 − A3)− A1(A1A4 − A5))−

−A1(A1A2 − A3)(A5(A1A2 − A3)− A1(A− 1A6 − A7)) > 0,

A1(A1A6 − A7)(A3(A1A2 − A3)− A1(A1A4 − A5))− A1A7(A1A2 − A3)
2 > 0,

A5A
′
1(A1A2 − A3)− A1A

′
1(A1A6 − A7)− A′

2(A3(A1A2 − A3)−

−A1(A1A4 − A5)) > 0

A′
3A

′
2 − A′

1A7 > 0,

Seven eigenvalues have negative real parts if they satisfy the Routh-Hurwitz cri-
teria. Thus, all eigenvalues of the characteristic equation have negative real parts
if and only if R0 > 1 and A3A1A2 + A1A5 > A2

3 + A2
1A4,what is done when

ck >
αββkαkS

∗
k

(αkI∗+a′k)(a′+αI∗k)(bk+βk)
, then endemic equilibrium Ee is locally asymptotically

stable.

2.1.6 Numerical simulation

Let’s simulate the malaria dynamics in the time interval [0, 60] with different values
of parameters, as a result, with different values of R0. The curves are plotted using
the Matlab software. The parameters for which numerical simulation is performed
are presented in tables.

Fig. 2.2 presents the results of numerical simulation for two data sets, for which
R0 = 2.44 (the first line of graphs) and R0 = 10.45 (the second line of graphs). The
left graphs depict the dynamic process of human population development, the right
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Table 2.1: Parameters for the simulation, which results are presented in Fig. 2.2.

α αk β βk γ γk µ µk a a′ ak a′k b bk c ck d dk R0

Fig. 2.2 (first set of parameters)
0.9 0.7 1.2 0.5 0.4 0.5 0.15 0.2 0.3 0.2 0.4 0.3 0.3 0.7 0.03 0.4 0.15 0.25 2.44

Fig. 2.2 (second set of parameters)
1.8 0.5 1.5 0.6 0.3 0.5 0.1 0.15 0.6 0.3 0.4 0.2 0.5 0.65 0.01 0.4 0.12 0.17 10.45

Figure 2.2: Epidemic process for different values R0 > 1 (R0 = 2, 44 и R0 = 10, 44).

graphs show the dynamic process of mosquito population development. It can be
seen that the disease exists in populations (hosts and vectors) and the susceptible
subpopulation curves decrease. At the same time, the curves of subpopulations
(exposed, infected and recovered) are gradually stabilizing, and a significant disease
spread in population can be noted. If the epidemic process course is not influenced,
there is a risk that the disease will remain in population, since the basic reproduction
number shows that at least one infected person can infect several people (this is true
for both cases).
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Table 2.2: Parameters for the simulation, which results are presented in Fig. 2.3.

α αk β βk γ γk µ µk a a′ ak a′k b bk c ck d dk R0

Fig. 2.3 (first set of parameters)
0.7 0.8 0.9 0.7 0.5 0.4 0.3 0.4 0.4 0.316 0.6 0.3 0.5 0.8 0.65 0.8 0.2 0.3 0.46

Fig. 2.3 (second set of parameters)
0.8 0.7 0.9 0.6 0.5 0.65 0.2 0.3 0.4 0.35 0.5 0.45 0.4 0.75 0.02 0.5 0.05 0.3 0.84

Figure 2.3: Epidemic process for different values R0 < 1 (R0 = 0.46 and R0 = 0.84).

Fig. 2.3 presents the results of numerical simulation for two data sets, for which
R0 = 0.46 (first line of graphs) and R0 = 0.84 (second line of graphs). The left
graphs of Fig. 2.2 and Fig. 2.3 show the dynamic process of human population de-
velopment. The right graphs of these figures show the dynamic process of mosquito
population. We can observe that the disease is practically absent and all curves of
subpopulations (hosts and vectors) are close to linear, i.e. subpopulation sizes are
almost constant. The disease is not dangerous for the population for these parame-
ter sets, since each infected person infects less than one person, which explains why
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the disease can disappear from the population after some time.

Table 2.3: Parameters for the simulation, which results are presented in Fig. 2.4.

α αk β βk γ γk µ µk a a′ ak a′k b bk c ck d dk R0

Fig. 2.4 (first set of parameters)
0.7 0.8 0.9 0.7 0.5 0.6 0.3 0.4 0.4 0.4 0.6 0.3 0.45 0.55 0.05 0.45 0.2 0.3 23.23

Fig. 2.4 (second set of parameters)
0.7 0.8 0.9 0.7 0.5 0.4 0.3 0.4 0.4 0.4 0.6 0.3 1.5 1.8 1.65 1.8 0.2 0.3 0.04

Figure 2.4: Epidemic process for different values R0 (R0 = 23.23 and R0 = 0.04).

In Fig. 2.4 we present two simulation cycles for which R0 = 23.23 (first line of
graphs) and R0 = 0.04 (second line of graphs). In the first stage of the simulation,
we should notice that the size of infected subpopulations (both host and vector)
increases significantly, as shown by the corresponding curve (the first line of graphs),
which grows exponentially. The entire population is at risk of infection if measures
are not taken to control the disease. In the second stage, we present the case when
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R0 = 0.04, i.e. the basic reproduction number is almost zero, which explains the
absence of the disease. The population remains stable.

We can see that the basic reproductive number R0 plays an important role in
the epidemic process development. Numerical simulations show that measures are
required to reduce the basic reproductive number in order to prevent the epidemic
from developing rapidly in human and mosquito populations.

Malaria is a tropical infection disease. So far, scientists have not been able to
develop an effective vaccine to fight this disease, which can be very dangerous and
lead to many deaths in the population. Mathematical modeling of this disease
plays an important role in understanding transmission dynamics and appreciate
prevention strategies. The next section will present a model with vaccination of the
population, which aims to reduce the number of new infected people, i.e. to decrease
the basic reproductive number.

2.2 Vector-borne malaria epidemic model with vaccination

This section proposes a model for the development of the malaria epidemic process
with direct transmission in vaccination.

2.2.1 Mathematical model

Let there be two populations: a host (human population) and a vector (mosquito
population) that have been vaccinated to reduce disease. Vaccination is expressed
as a percentage. Note that dv is the percentage of vaccination performed in host
population, and σ is a reduction rate of malaria infected mosquitoes by a set of
methods used to eliminate or prevent mosquito development.

The model shown in Fig. 2.5 is based on the following hypotheses:

1. Absence of migration of individuals in the population;

2. Assumption that the sizes of both populations (human and mosquito) are not
constant during a study interval;

3. Relatively short lifespan (an infected mosquito does not have time to recover);

4. Assumption that a susceptible person becomes contagious after an infected
mosquito bite and becomes susceptible again after recovery; and a healthy
mosquito becomes infected after it bites an infected person.
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Figure 2.5: Vector-borne model with vaccination

The total host population can be represented as N(t) = S(t)+E(t)+I(t)+R(t)

and the total vector population can be represented as Nk(t) = Sk(t)+Ek(t)+ Ik(t).
The mathematical model of population dynamics (human and mosquito) can be

represented analytically by the following nonlinear system of seven ordinary differ-
ential equations:

dS(t)

dt
= −αS(t)Ik(t) + aN0(t)− a′S(t)− dvS(t),

dE(t)

dt
= αS(t)Ik(t) + µR(t)− bE(t)− βE(t),

dI(t)

dt
= βE(t)− cI(t)− γI(t),

dR(t)

dt
= γI(t)− δR(t)− µR(t) + dvS(t),

dSk(t)

dt
= −αkSk(t)I(t) + akNk0(t)− a′kSk(t)− σSk(t),

dEk(t)

dt
= αkSk(t)I(t)− bkEk(t)− βkEk(t)− σEk(t),

dIk(t)

dt
= βkEk(t)− ckIk(t)− σIk(t),

(2.7)
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with initial conditions

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, Sk(0) ≥ 0, Ek(0) ≥ 0, Ik(0) ≥ 0.

(2.8)
The general dynamics of human population is represented by the equation:

dN

dt
= aN0 − a′S − bE − cI − δR.

Given initial conditions (2.8) must satisfy inequality: N(0) ≥ 0. Thus, total pop-
ulation size N(t) remains positive and limited during the entire time t > 0. The
dynamics of mosquito population is as follows

dNk

dt
= aN0k − a′Sk − bEk − cIk − σ(Sk + Ek + Ik).

The model uses the following parameters:

• N(t) — size of human population;

• S(t) — size of subpopulation of susceptible individuals;

• E(t) — size of subpopulation of exposed people;

• I(t) — size of subpopulation of infected people;

• R(t) — size of subpopulation of recovered people;

• a — birth rate in human population;

• a′ — mortality rate among subpopulation S;

• b — mortality rate among subpopulation E;

• c — mortality rate among infected subpopulation I;

• δ — mortality rate among recovered subpopulation R;

• β — intensity of people’s transition from subpopulation E to I with the onset
of isease symptoms;

• γ — intensity of people’s recovery, i.e. transition from subpopulation I to R;

• µ — rate of people’s return from recovered to susceptible;

• α — probability of transmitting an infectious mosquito bite to a susceptible
person.
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• Nk(t) — total mosquito population;

• Sk(t) — number of mosquitoes that can be infected;

• Ek(t) — number of mosquitoes susceptible to the disease;

• Ik(t) — number of infected mosquitoes;

• ak(t) — birth rate in mosquito population;

• a′k(t) — mortality in susceptible mosquito population;

• bk(t) — mortality of exposed mosquito population;

• ck(t) — mortality of infected mosquito population;

• αk(t) — probability of mosquito moving from susceptible to exposed group;

• βk(t) — coefficient of mosquitoes that begin to show disease symptoms;

• dv ∈ (0, 1) — level of vaccination of susceptible part of population;

• σ — decrease level of mosquito population as a result of anti-epidemiological
measures.

Region of admissible values

A mathematical model represented by a system of differential equations (2.7) de-
scribes changes in human and mosquito populations. Therefore, it is important to
make sure that all solutions with nonnegative initial conditions (2.8) will remain
nonnegative for any t. All solutions of the proposed system that have initial data
in region Ω.

Theorem 2.4. Let (S,E, I, R, Sk, Ek, Ik) be any solution of system (2.7) with pos-
itive initial conditions (2.8). For any time t ≥ 0 there exists:

Ω =
{
(S,E, I, R, Sk, Ek, Ik) ∈ R7

+, V1 ≤
aN0

a′ + b+ c+ δ
, V2 ≤

akN0k

a′k + bk + ck + σ

}
.

Then Ω is positively invariant and absorbing for system (2.7) with initial conditions
(2.8).



72

Proof. To prove the theorem, we use the Lyapunov functions. Consider the Lya-
punov function V (t) = (V1(t), V2(t)). Suppose that functions V1(t), V2(t) are defined
for ∀ t ≥ 0, they are also differentiable and continuously differentiable on set Ω con-
taining the origin.

The time derivative of function V (t) is equal to

dV (t)

dt
=


dV1(t)

dt
= aN0 − (a′ + b+ c+ δ)V1 − a′S − bE − cI − δR,

dV2(t)

dt
= akN0k − (a′k + bk + ck + σ)V2 − a′kSk − bkEk − ckIk − σNk.

(2.9)
For system (2.9), it is obvious that

dV1(t)

dt
≤ aN0 − (a′ + b+ c+ δ)V1,

dV2(t)

dt
≤ akN0k − (a′k + bk + ck + σ)V2.

(2.10)

By the properties of the Lyapunov function, we obtain the following conditions:
dV1

dt
≤ aN0 − (a′ + b+ c+ δ)V1 ≤ 0 for V1 ≥

aN0

a′ + b+ c+ σ
,

dV2

dt
≤ akN0k − (a′k + bk + ck + σ)V2 ≤ 0 for V2 ≥

akN0k

a′k + bk + ck + σ
.

(2.11)

From the conditions of (2.11), it follows that
dV (t)

dt
≤ 0, which means that Ω is a

positively invariant and absorbing set.
From the above equations and conditions (2.9), we obtain the inequalities for V1

and V2:

0 ≤ V1 (t) ≤
aN0

a′ + b+ c+ δ
+ e−(a′+b+c+δ)t

(
V01 −

aN0

a′ + b+ c+ δ

)
,

0 ≤ V2 (t) ≤
akN0k

a′k + bk + ck + σ
+ e−(a′k+bk+ck+σ)t

(
V02 −

akN0k

a′k + bk + ck + σ

)
.

For t −→ +∞ we get

0 ≤ V1 (t) ≤
aN0

a′ + b+ c+ δ
,

0 ≤ V2 (t) ≤
akN0k

a′k + bk + ck + σ
,

and we can conclude that Ω is an absorbing set. Indeed, the following inequalities
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hold for t −→ +∞:

lim sup
t→+∞

V1 ≤
aN0

a′ + b+ c+ δ
,

lim sup
t→+∞

V2 ≤
akN0k

a′k + bk + ck + σ
.

Thus, Ω is positively invariant, and all solutions are bounded in interval [0,∞).

2.2.2 Equilibrium points

For the model, we study two equilibrium points for a system of differential equations
(2.7):

1. Equilibrium without disease Es;

2. Endemic equilibrium Ee.

Solving the following system of differential equations

−αS(t)Ik(t) + aN(t)− a′S(t)− dvS(t) = 0

αS(t)Ik(t) + µR(t)− bE(t)− βE(t) = 0,

βE(t)− cI(t)− γI(t) = 0,

γI(t)− δR(t)− µR(t) + dvS(t) = 0,

−αkSk(t)I(t) + akNk(t)− a′kSk(t)− σSk(t) = 0,

αkSk(t)I(t)− bkEk(t)− βkEk(t)− σEk(t) = 0,

βkEk(t)− ckIk(t)− σIk(t) = 0,

(2.12)

find two equilibrium points:

1. Equilibrium without disease Es = ( a
a′+dvN0, 0, 0, 0,

ak
a′k+dvN0k, 0, 0), t .e. this is

a solution to a system in which there are no disease cases in both populations;

2. Endemic equilibrium of system Ee = (S∗, E∗, I∗, R∗, S∗
k, E

∗
k, I

∗
k), implying the

presence of a disease and all subpopulations are present in population.

To find equilibrium, from the first equation of system (2.12) we get

S =
aN0

αIk + a′ + dv
, from the third equation we get E =

c+ γ

β
I or I =

β

c+ γ
E,

then from the fourth equation: R =
γ

δ + µ
I +

dv

σ + µ
S, from the fifth equation:

Sk =
akN0k

αkI + a′k + σ
, from the sixth equation: Ek =

αkSk

bk + βk + σ
I, from the seventh

equation: Ik =
βkEk

ck + σ
, from the second equation: E =

α

b+ β
SIk +

µ

b+ β
R.
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Substituting the first, third, fourth, fifth, sixth and seventh equations of system
(2.12) into the second equation of the system, we obtain

E =
aakααkβkN0N0k(γ + c)(δ + µ)I + µaN0(γ + c)K1

K2(akααkβkN0kI + (a′ + dv)K1)
,

where

K1 = (ck + σ)(βk + bk + σ)(αkI + a′k + σ),

K2 = (b+ β)(δ + µ)(c+ γ)− µγβ.

Establishing equality with the third equation obtained in system (2.12), we get an
equation of the second degree, which has two solutions, and the solution that satisfies
the conditions is:

I =
−(βaN0αk(αβkakNk(δ + µ) + µ(ck + σ)(βk + bk + σ)))

2K2(ααkβkakNk0 + αk(a′ + dv)(ck + σ)(βk + bk + σ))
+

+
−(K2(a

′ + dv)(ck + σ)(βk + bk + σ)(a′k + σ)) +
√
∆

2K2(ααkβkakNk0 + αk(a′ + dv)(ck + σ)(βk + bk + σ))
,

where

∆ = [K2(a
′ + dv)(ck + σ)(βk + bk + σ)(a′k + σ)+

+K2(a
′ + dv)(ck + σ)(βk + bk + σ)(a′k + σ)]2−

− 4K2(ααkβkakNk0 + αk(a
′ + dv)(ck + σ)×

× (βk + bk + σ))(βaN0µ(ck + σ)(βk + bk + σ)(a′k + σ)).

Therefore, the endemic equilibrium of model (2.7) is defined as a vector
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Ee = (S∗, E∗, I∗, R∗, S∗
k, E

∗
k, I

∗
k) with components:

I∗ =
−(βaN0αk(αβkakNk(δ + µ) + µ(ck + σ)(βk + bk + σ)))

2K2(ααkβkakNk0 + αk(a′ + dv)(ck + σ)(βk + bk + σ))
+

+
−(K2(a

′ + dv)(ck + σ)(βk + bk + σ)(a′k + σ)) +
√
∆

2K2(ααkβkakNk0 + αk(a′ + dv)(ck + σ)(βk + bk + σ))
,

S∗ =
aN0

αI∗k + a′ + dv
,

E∗ =
c+ γ

β
I∗,

R∗ =
γ

δ + µ
I∗ +

dv

δ + µ
S∗,

S∗
k =

akN0k

αkI∗ + a′k
σ,

E∗
k =

αk

bk + βk − σ
S∗
kI

∗,

I∗k =
βk

ck + σ
E∗

k.

Equilibrium Ee is an endemic point of the model, where all subgroups of two popu-
lations are represented.

2.2.3 Determining basic reproduction number R0

Determine basic reproduction number R0 for modified model SEIRSkEkIk pre-
sented above. This number is used to study the epidemic process evolution and can
be interpreted as an average number of new malaria cases caused by one infected
person in a fully susceptible population. To calculate R0, we use a method of next-
generation matrix described in [29− 32]. For the presented model, the calculation
of R0 can be represented as follows:

dx

dt
= F (x)− V (x),

x = (S,E, I, R, Sk, Ek, Ik)
T .

Using a next generation matrix method, the following calculations are required.
First, we define matrices F and V :

F =


αkSk(t)I(t)

0

αS(t)Ik(t)

0

 , V+ =


µR(t)

βE(t)

0

βkEk(t)

 , V− =


−(b+ β)E(t)

−(c+ γ)I(t)

−(bk + βk)Ek(t)− σEk

−ckIk(t)− σIk(t)

 ,
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hence we get that

V = V+ + V− =


µR(t)− (b+ β)E(t)

βE(t)− (c+ γ)I(t)

−(bk + βk)Ek(t)− σEk

βkEk(t)− ckIk(t)− σIk

 .

Define matrices

DF(Es) =


0 αkS

0
k 0 0

0 0 0 0

0 0 0 αS0

0 0 0 0

 ,

DV(Es) =


−(b+ β) 0 0 0

β −(c+ γ) 0 0

0 0 −(bk + βk + σ) 0

0 0 βk −(ck + σ)

 .

Hence,

F =

[
0 αkS

0
k

0 0

]
, F ′ =

[
0 αS0

0 0

]
,

V =

[
−(b+ β) 0

β −(c+ γ)

]
, V ′ =

[
−(bk + βk + σ) 0

βk −(ck + σ)

]
.

Calculate R0 using formula R0 = ρ(−FV −1), where

V −1 =
1

det(V )
t(com(V )),

and

det(V ) = (b+ β)(c+ γ), t(com(V )) =

[
−(c+ γ) 0

−β −(b+ β)

]
.

Substituting det(V ) and t(com(V )) into expression V −1, we get

V −1 =
1

(b+ β)(c+ γ)

[
−(c+ γ) 0

−β −(b+ β)

]
,

(V ′)−1 =
1

(bk + βk + σ)(ck + σ)

[
−(ck + σ) 0

−βk −(bk + βk + σ)

]
.
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These formulas are valid:

FV −1 =

[
− αkβS

0
k

(b+β)(c+γ) −αkS
0
k

c+γ

0 0

]
,

FV ′−1 =

[
− αβkS

0)
(ck+σ)(bk+βk+σ) − αS0

(ck+σ)

0 0

]
,

calculate Rh and Rk:

Rh = ρ(−FV −1) =
αkβS

0
k

(b+ β)(c+ γ)
, Rk = ρ(−FV ′−1) =

αβkS
0

(ck + σ)(bk + βk + σ)
,

from which we obtain the basic reproduction number R0 in the form:

R0 = Rh ×Rk =
αkβS

0
kαβkS

0

ck + σ)(bk + βk + σ)(b+ β)(c+ γ)
,

where (S0, S0
k) = ( a

a′+dvN0,
ak

a′k+σN0k), and as a result write the final formula for R0:

R0 =
αβαkβkaakN0N0k

(a′k + σ)(ck + σ)(a′ + dv)(b+ β)(c+ γ)(bk + βk + σ)
.

R0 gives information about the disease course. If R0 ≤ 1, the number of infected
people will decrease, and the disease will eventually pass. If R0 ≥ 1, the number of
infected people increases, the disease can spread to the entire population and become
endemic. Numerical analysis will show how the disease proceeds in the population
at different values of R0.

2.2.4 Study of equilibrium stability

First, we analyze the stability of equilibrium without disease using the system of
equations (2.7) using basic reproductive number R0.

Theorem 2.5. Disease-free equilibrium Es is locally asymptotically stable if R0 ≤ 1

and B1B2B3+B1B5

B2
1B4+B2

3
> 1, and unstable if R0 > 1.

Remark 2.1. Expressions for B1, B2, B3, B4 and B5 are given in the proof.

Proof. The Jacobi matrix of system (2.7) is written as
J(S,E, I, R, Sk, Ek, Ik) =

−αIk − a′ − dv 0 0 0 0 0 −αS

αIk −b− β 0 µ 0 0 αS

0 β −c− γ 0 0 0 0

dv 0 γ −δ − µ 0 0 0

0 0 −αkSk 0 −αkI − a′k − σ 0 0

0 0 αkSk 0 αkI −bk − βk − σ 0

0 0 0 0 0 βk −ck − σ


.
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The Jacobi matrix at disease-free equilibrium point Es is equal to

J(Es) =



−a′ − dv 0 0 0 0 0 −α aN0
a′+dv

0 −b− β 0 µ 0 0 α aN0
a′+dv

0 β −c− γ 0 0 0 0

dv 0 γ −δ − µ 0 0 0

0 0 −αk
akN0k
a′k+σ

0 −a′k − σ 0 0

0 0 αk
akN0k
a′k+σ

0 0 −(bk + βk + σ) 0

0 0 0 0 0 βk −ck − σ


.

Let’s find the eigenvalues of this matrix by equating its determinant to zero, that is,∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a′ − dv − λ 0 0 0 0 0 −α aN0
a′+dv

0 −b− β − λ 0 µ 0 0 α aN0
a′+dv

0 β −c− γ − λ 0 0 0 0

dv 0 γ −δ − µ− λ 0 0 0

0 0 −αk
akN0k
a′k−σ

0 −a′k − σ − λ 0 0

0 0 αk
akN0k
a′k+σ

0 0 −(bk + βk + σ)− λ 0

0 0 0 0 0 βk −ck − σ − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
we obtain the following characteristic equation:

λ7 +B1λ
6 +B2λ

5 +B3λ
4 +B4λ

3 +B5λ
2 +B6λ+B7 = 0,
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where

B1 = βk + bk + ck + 3σ + a′k + γ + c+ δ + µ+ a′ + dv + b+ β,

B2 = (βk + bk + σ)(ck + σ) + (bk + βk + ck + 2σ)(a′k + σ) + (γ + c+ δ + µ+

+ a′ + dv + β + b)(βk + bk + ck + 3σ + a′k) + (a′ + dv)(β + b)+

+ (a′ + dv + β + b)(γ + c+ δ + µ) + (γ + c)(δ + µ),

B3 = (a′k + σ)(βk + bk + σ)(ck + σ) + (γ + c+ δ + µ+ a′ + dv + β + b)

((βk + bk + σ)(ck + σ) + (bk + βk + ck + 2σ)(a′k + σ)) + ((a′ + dv)(β + b)+

+ (a′ + dv + β + b)(γ + c+ δ + µ)+

+ (γ + c)(δ + µ))(βk + bk + ck + 3σ + a′k) + ((a′ + dv)(β + b)(γ + c+ δ + µ)+

+ (γ + c)(δ + µ)(a′ + dv + β + b)) + βγµ,

B4 = (γ + c+ δ + µ+ a′ + dv + β + b)(a′k + σ)(βk + bk + σ)(ck + σ)+

+ ((a′ + dv)(β + b) + (a′ + dv + β + b)(γ + c+ δ + µ)+

+ (γ + c)(δ + µ))((βk + bk + σ)(ck + σ) + (bk + βk + ck + 2σ)(a′k + σ))+

+ (a′ + dv)(β + b)(γ + c+ δ + µ) + (γ + c)(δ + µ)(a′ + dv + β + b)+

+ ((a′ + dv)(β + b) + (a′ + dv + β + b)(γ + c+ δ + µ)+

+ (γ + c)(δ + µ))(βk + bk + ck + 3σ + a′k) + (a′ + dv)(β + b)(γ + c)(δ + µ)−

− αβαkβkaakN0N0k

(a′k + σ)(a′ + dv)
+ βγµ(bk + βk + ck + 2σ) + βγµ(a′ + ak + dv + σ),

B5 = (a′k + σ)(βk + bk + σ)(ck + σ)((a′ + dv)(β + b) + (a′ + dv + β + b)

(γ + c+ δ + µ) + (γ + c)(δ + µ)) + ((a′ + dv)(β + b)(γ + c+ δ + µ)+

+ (γ + c)(δ + µ)(a′ + dv + β + b))((βk + bk + σ)(ck + σ)+

+ (a′k + σ)(βk + bk + ck + 2σ)) + (a′ + dv)(b+ β)(c+ γ)(δ + µ)

(bk + βk + ck + 3σ + a′k)−
2αβαkµaakdvN0N0k

(a′k + σ)(a′ + dv)
−

− αβαkβkaakN0N0k

(a′k + σ)(a′ + dv)
(δ + µ) + βγµ(bk + βk + σ)(ck + σ)− (a′ + ak + dv + σ)

(
αβαkβkaakN0N0k

(a′k + σ)(a′ + dv)
+ βγµ(bk + βk + ck + 2σ) + βγµ(a′ + dv)(a′k + σ),

B6 = ((a′ + dv)(b+ β)(c+ γ + δ + µ) + (c+ γ)(δ + µ)(a′ + dv + b+ β))

((a′k + σ)(βk + bk + σ)(ck + σ) + (βk + bk + σ)(ck + σ) + (a′k + σ)

(βk + bk + ck + 2σ))(a′ + dv)(β + b)(γ + c)(δ + µ)−

− αβαkµaakdvN0N0k

(a′k + σ)(a′ + dv)
(2ck + a′k + βk + bk + 4σ)
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.

− αβαkµaakdvN0N0k

(a′k + σ)(a′ + dv)
(2ck + a′k + βk + bk + 4σ)−

− (a′ − ak + dv + σ)
αβαkβkaakN0N0k

(a′k + σ)(a′ + dv)
(δ + µ) + βγµ(bk + βk + σ)(ck + σ)−

− (a′k + σ)(a′ + dv)
αβαkβkaakN0N0k

(a′k + σ)(a′ + dv)
+ βγµ(bk + βk + ck + 2σ),

B7 = (a′ + dv)(b+ β)(c+ γ)(δ + µ)(a′k + σ)(βk + bk + σ)(ck + σ)−

− (a′k + σ)(a′ + dv)
αβαkβkaakN0N0k

(a′k + σ)(a′ + dv)
(δ + µ) + βγµ(bk + βk + σ)(ck + σ)−

− αβαkµaakdvN0N0k

(a′k + σ)(a′ + dv)
(ck + σ)(a′k + βk + bk + 2σ).

The characteristic equation can have seven roots, which can be obtained by solving
the following equation:

λ7 +B1λ
6 +B2λ

5 +B3λ
4 +B4λ

3 +B5λ
2 +B6λ+B7 = 0.

It is impossible to write the solutions explicitly, so to determine the nature of the
stability of equilibrium point Es, we use the Routh-Hurwitz criterion to study the
stability. To do this, we write an auxiliary matrix∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 B2 B4 B6 0 0

B1 B3 B5 B7 0 0
B1B2 −B3

B1

B1B4 −B5

B1

B1B6 −B7

B1
0 0 0

B3 −
B1(B1B4 −B5)

B1B2 −B3
B5 −

B1(B1B6 −B7)

B1B2 −B3
B7 0 0 0

B′
1 B′

2 0 0 0 0

B′
3 B7 0 0 0 0

B′
3B

′
2−B′

1B7

B′
3

0 0 0 0 0

B7 0 0 0 0 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

where

B′
1 =

B1B4 −B5

B1
− (B1B2 −B3)(B5(B1B2 −B3)−B1(B1B6 −B7))

B1(B3(B1B2 −B3)−B1(B1B4 −B5))
,

B′
2 =

B1B6 −B7

B1
− B7(B1B2 −B3)

2

B1(B3(B1B2 −B3)−B1(B1B4 −B5))
,

B′
3 = B5 −

B1(B1B6 −B7)

B1B2 −B3
− B3(B1B2 −B3)−B1(B1B4 −B5)

B1B2 −B3

B′
2

B′
1

.
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Applying the Routh-Hurwitz criterion, we obtain that system (2.7) is asymptotically
stable at equilibrium Es if these inequalities are satisfied:

B1 > 0,

B7 > 0,

B1B2 −B3

B1
> 0,

B3 −
B1(B1B4 −B5)

B1B2 −B3
> 0,

B1B4 −B5

B1
− (B1B2 −B3)(B5(B1B2 −B3)−B1(B1B6 −B7))

B1(B3(B1B2 −B3)−B1(B1B4 −B5))
> 0,

B1B6 −B7

B1
− B7(B1B2 −B3)

2

B1(B3(B1B2 −B3)−B1(B1B4 −B5))
> 0,

B5 −
B1(B1B6 −B7)

B1B2 −B3
− B3(B1B2 −B3)−B1(B1B4 −B5)

B1B2 −B3

B′
2

B′
1

> 0,

B′
3B

′
2 −B′

1B7

B′
3

> 0.

Then from B1B2−B3

B1
> 0 and B1 > 0 it follows that B1B2 − B3 > 0. The fourth

inequality is equivalent to B3(B1B2−B3)−B1(B1B4−B5) > 0, or B1B2−B3 > 0.

The fifth inequality is equivalent to B1(B1B4 − B5)(B3(B1B2 − B3) − B1(B1B4 −
B5)) − B1(B1B2 − B3)(B5(B1B2 − B3) − B1(B1B2 − B3) − B1B6 − B7)) > 0, or
B2

1(B3(B1B2 − B3) − B1(B1B4 − B5) > 0. The sixth inequality is equivalent to
B1(B1B6 − B7)(B3(B1B2 − B3) − B1(B1B4 − B5)) − B1B7(B1B2 − B3)

2 > 0, or
B′

1 > 0. The seventh inequality is equivalent to B5B
′
1(B1B2 −B3)−B1B

′
1(B1B6 −

B7) − B′
2(B3(B1B2 − B3) − B1(B1B4 − B5)) > 0. Then the last inequality can be

simplified as B′
3B

′
2 −B′

1B7 > 0, or B′
3 > 0.
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Therefore, we get the system:

B1 > 0,

B7 > 0,

B1B2 −B3 > 0,

B3(B1B2 −B3)−B1(B1B4 −B5) > 0,

B1(B1B4 −B5)(B3(B1B2 −B3)−B1(B1B4 −B5))−

−B1(B1B2 −B3)(B5(B1B2 −B3)−B1(B − 1B6 −B7)) > 0,

B1(B1B6 −B7)(B3(B1B2 −B3)−B1(B1B4 −B5))−B1B7(B1B2 −B3)
2 > 0,

B5B
′
1(B1B2 −B3)−B1B

′
1(B1B6 −B7)−B′

2(B3(B1B2 −B3)−

−B1(B1B4 −B5)) > 0,

B′
3B

′
2 −B′

1B7 > 0,

then seven eigenvalues have negative real parts, which follows from the Routh-
Hurwitz criterion. Thus, all eigenvalues of the characteristic equation have negative
real parts if and only if R0 < 1 and B1B2B3+B1B5 > B2

1B4+B2
3 , i.e. B1B2B3+B1B5

B2
1B4+B2

3
>

1, then the disease-free equilibrium Es is locally asymptotically stable.

Theorem 2.6. Endemic equilibrium point Ee is locally asymptotically stable if R0 >

1 and D1D2D3+D1D5

D2
1D4+D2

3
> 1.

Remark 2.2. Expressions for D1, D2, D3, D4 and D5 are given in the proof.

Proof. The Jacobi matrix of system (2.7) is written as:
J(S,E, I, R, Sk, Ek, Ik) =

−αIk − a′ − dv 0 0 0 0 0 −αS

αIk −b− β 0 µ 0 0 αS

0 β −c− γ 0 0 0 0

dv 0 γ −δ − µ 0 0 0

0 0 −αkSk 0 αkI − a′k − σ 0 0

0 0 αkSk 0 αkI −(bk + βk + σ) 0

0 0 0 0 0 βk −ck − σ


.

The Jacobi matrix at endemic equilibrium Ee = (S∗, E∗, I∗, R∗, S∗
k, E

∗
k, I

∗
k) can be

written as
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J(Ee) =

−αI∗k − a′ − dv 0 0 0 0 0 −αS∗

αI∗k −b− β 0 µ 0 0 αS∗

0 β −c− γ 0 0 0 0

dv 0 γ −δ − µ 0 0 0

0 0 −αkS
∗
k 0 −αkI

∗ − a′k − σ 0 0

0 0 αkS
∗
k 0 αkI

∗ −(bk + βk + σ) 0

0 0 0 0 0 βk −ck − σ


.

Let us find the eigenvalues of this matrix, equating its determinant to zero, we obtain
the following characteristic equation:

λ7 +D1λ
6 +D2λ

5 +D3λ
4 +D4λ

3 +D5λ
2 +D6λ+D7 = 0,

where

D1 = (β + b+ γ + c+ αkI
∗ + a′k + 2σ + βk + bk + ck + σ + αI∗k + a′ + dv),

D2 = (βk + bk + σ)(β + b+ γ + c+ αkI
∗ + a′k + σ)+

+ (β + b)(γ + c) + (β + b+ γ + c)(δ + µ+ αkI
∗ + a′k + σ)+

+ (δ + µ)(αkI
∗ + a′k + σ) + (βk + bk + σ)(β + b+ γ + c+ αkI

∗ + a′k+

+ 2σ + βk + bk)(ck + σ + αI∗k + a′ + dv) + (ck + σ)(αkI
∗ + a′ + dv),

D3 = (βk + bk + σ)((β + b)(γ + c) + (β + b+ γ + c)(δ + µ+ αkI
∗ + a′k + σ)+

+ (δ + µ)(αkI
∗ + a′k + σ) + βαγ) + (ck + σ + αI∗k + a′ + dv)

((βk + bk + σ)(β + b+ γ + c+ αkI
∗ + a′k + σ) + (β + b)(γ + c)+

+ (β + b+ γ + c)(δ + µ+ αkI
∗ + a′k + σ) + (δ + µ)(αkI

∗ + a′k + σ))+

+ (β + b+ γ + c+ αkI
∗ + a′k + 2σ + βk + bk)((ck + σ)(αkI

∗ + a′ + dv)),

D4 = βαβkαkS
∗2 + βγµβk + βγµbk + 2βγµσ + βγµαkI

∗ + βγµa′k+

+ (βk + bk + σ)((β + b)(γ + c)(δ + µ+ αkI
∗ + a′k + σ)+

+ (β + b+ γ + c)(δ + µ)(αkI
∗ + a′k + σ))+

+ (β + b)(γ + c)(δ + µ)(αkI
∗ + a′k + σ) + (ck + σ + αI∗k + a′ + dv)

((βk + bk + σ)((β + b)(γ + c) + (β + b+ γ + c)(δ + µ+ αkI
∗ + a′k + σ)+

+ (δ + µ) + (αkI
∗ + a′k + σ) + βαγ)) + ((βk + bk + σ)(β + b+ γ + c+
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+ αkI
∗ + a′k + σ)+

+ (β + b)(γ + c) + (β + b+ γ + c)(δ + µ+ αkI
∗ + a′k + σ)+

+ (δ + µ)(αkI
∗ + a′k + σ))((ck + σ)(αkI

∗ + a′ + dv)),

D5 = (βk + bk + σ)(β + b)(γ + c)(δ + µ)(αkI
∗ + a′k + σ)− βαS∗βkα

2
kS

∗
kI

∗+

+ βαS∗2betakαk(αkI
∗ + a′k + σ) + βγµ(βk + bk + σ)(αkI

∗ + a′k + σ)+

+ (ck + σ + αI∗k + a′ + dv)(βαβkαkS
∗2 + βγµβk + βγµbk + 2βγµσ+

+ βγµαkI
∗ + βγµa′k + (βk + bk + σ)((β + b)(γ + c)(δ + µ+ αkI

∗+

+ a′k + σ) + (β + b+ γ + c)(δ + µ)(αkI
∗ + a′k + σ)) + (β + b)(γ + c)

(δ + µ)(αkI
∗ + a′k + σ)) + ((βk + bk + σ)((β + b)(γ + c)+

+ (β + b+ γ + c)(δ + µ+ αkI
∗ + a′k + σ) + (δ + µ)(αkI

∗ + a′k + σ) + βαγ))

((ck + σ)(αkI
∗ + a′ + dv)) + α2βαkβkS

∗
kS

∗I∗k .

D6 = ((βk + bk + σ)(β + b)(γ + c)(δ + µ)(αkI
∗ + a′k + σ)− βαS∗βkα

2
kS

∗
kI

∗+

+ βαS∗2betakαk(αkI
∗ + a′k + σ) + βγµ(βk + bk + σ)(αkI

∗ + a′k + σ))

(ck + σ + αI∗k + a′ + dv) + ((ck + σ)(αkI
∗ + a′ + dv))((βk + bk + σ)(β + b)

(γ + c)(δ + µ)(αkI
∗ + a′k + σ)− βαS∗βkα

2
kS

∗
kI

∗+

+ βαS∗2betakαk(αkI
∗ + a′k + σ) + βγµ(βk + bk + σ)(αkI

∗ + a′k + σ))+

+ αβαkβkS
∗
kS

∗(αkI
∗ + a′k+

+ σ + µdv + αI∗k(α + µ) + αkI
∗αI∗k),

D7 = ((βk + bk + σ)(β + b)(γ + c)(δ + µ)(αkI
∗ + a′k + σ)− βαS∗βkα

2
kS

∗
kI

∗+

+ βαS∗2betakαk(αkI
∗ + a′k + σ) + βγµ(βk + bk + σ)(αkI

∗ + a′k + σ))

((ck + σ)(αkI
∗ + a′ + dv)) + αβα2

kβkµdvI
∗S∗

kS
∗ + α2βα2

kβkI
∗S∗

kS
∗I∗k(α + µ)+

+ αβαkβkS
∗
kS

∗(αkI
∗ + a′k + σ)(µdv + αI∗k(α + µ)).

Matrix eigenvalues are solutions of the characteristic equation. The equation has
seven roots. We use the Routh-Hurwitz criterion.
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We write an auxiliary matrix∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 D2 D4 D6 0 0

D1 D3 D5 D7 0 0
D1D2 −D3

D1

D1D4 −D5

D1

D1D6 −D7

D1
0 0 0

D3 −
D1(D1D4 −D5)

D1D2 −D3
D5 −

D1(D1D6 −D7)

D1D2 −D3
D7 0 0 0

D′
1 D′

2 0 0 0 0

D′
3 D7 0 0 0 0

D′
3D

′
2−D′

1D7

D′
3

0 0 0 0 0

D7 0 0 0 0 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where

D′
1 =

D1D4 −D5

D1
− (D1D2 −D3)(D5(D1D2 −D3)−D1(D1D6 −D7))

D1(D3(D1D2 −D3)−D1(D1D4 −D5))
,

D′
2 =

D1D6 −D7

D1
− D7(D1D2 −D3)

2

D1(D3(D1D2 −D3)−D1(D1D4 −D5))
,

D′
3 = D5 −

D1(D1D6 −D7)

D1D2 −D3
− D3(D1D2 −D3)−D1(D1D4 −D5)

D1D2 −D3

D′
2

D′
1

.

Applying the Routh-Hurwitz criterion, we obtain that system (2.7) is asymptotically
stable at equilibrium point Ee if these inequalities are satisfied:

D1 > 0,

D7 > 0,

D1D2 −D3

D1
> 0,

D3 −
D1(D1D4 −D5)

D1D2 −D3
> 0,

D1D4 −D5

D1
− (D1D2 −D3)(D5(D1D2 −D3)−D1(D1D6 −D7))

D1(D3(D1D2 −D3)−D1(D1D4 −D5))
> 0,

D1D6 −D7

D1
− D7(D1D2 −D3)

2

D1(D3(D1D2 −D3)−D1(D1D4 −D5))
> 0,

D5 −
D1(D1D6 −D7)

D1D2 −D3
− D3(D1D2 −D3)−D1(D1D4 −D5)

D1D2 −D3

D′
2

D′
1

> 0,

D′
3D

′
2 −D′

1D7

D′
3

> 0.

It follows from D1D2−D3

D1
> 0 and D1 > 0 that D1D2 − D3 > 0. The fourth

inequality is equivalent to D3(D1D2 − D3) − D1(D1D4 − D5) > 0, or D1D2 −
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D3 > 0. The fifth inequality is equivalent to (D1D4 − D5)(D3(D1D2 − D3) −
D1(D1D4 − D5)) − (D1D2 − D3)(D5(D1D2 − D3) − D1(D1D6 − D7)) > 0, or
D1(D3(D1D2 − D3) − (D1D4 − D5)) > 0. The sixth inequality is equivalent to
(D1D6 − D7)(D3(D1D2 − D3) − D1(D1D4 − D5)) − D7(D1D2 − D3)

2 > 0, or
D1(D3(D1D2 − D3) − (D1D4 − D5)) > 0. The seventh inequality is equivalent to
D5D

′
1(D1D2−D3)−D1D

′
1(D1D6−D7)−D′

2(D3(D1D2−D3)−D1(D1D4−D5)) > 0,

or D′
1 > 0. Then the last inequality can be simplified as D′

3D
′
2 − D′

1D7 > 0, or
D′

3 > 0.

Therefore, we get the system:

D1 > 0,

D7 > 0,

D1D2 −D3 > 0,

D3(D1D2 −D3)−D1(D1D4 −D5) > 0,

D1(D1D4 −D5)(D3(D1D2 −D3)−D1(D1D4 −D5))−

−D1(D1D2 −D3)(D5(D1D2 −D3)−D1(D1D6 −D7)) > 0,

D1(D1D6 −D7)(D3(D1D2 −D3)−D1(D1D4 −D5))−D1D7(D1D2 −D3)
2 > 0,

D5D
′
1(D1D2 −D3)−D1D

′
1(D1D6 −D7)−D′

2(D3(D1D2 −D3)−

−D1(D1D4 −D5)) > 0

D′
3D

′
2 −D′

1D7 > 0,

Seven eigenvalues have negative real parts if they satisfy the Routh-Hurwitz cri-
terion. Thus, all eigenvalues of a characteristic equation have negative real parts
if and only if R0 > 1 and D3D1D2 + D1D5 > D2

3 + D2
1D4, which is true when

D1D2D3+D1D5

D2
1D4+D2

3
> 1, then endemic equilibrium Ee is locally asymptotically stable.

2.2.5 Numerical simulation

Numerical modeling allows us to better understand the dynamics of the malaria
epidemic. Let us study the dynamics of development of each population subgroup
depending on the disease severity. In this part, we will focus on the simulation
parameters associated with vaccination by presenting several graphical representa-
tions of the disease dynamics with different values of the parameters and different
values of R0. Computer simulation is carried out using the Matlab software. The
parameters used for numerical simulation are presented in Tables 2.4 and 2.5.
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Figure 2.6: Epidemic process for different values of R0 (R0 = 7.26 and R0 = 0.32).
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Table 2.4: Parameters for the simulation, which results are presented in Fig. 2.6.

α αk β βk γ µ a a′ ak a′k b bk c ck d σ dv R0

In Fig. 2.6 (first set of parameters)
0.72 2.0 0.5 0.5 0.5 0.01 0.8 0.01 0.4 0.2 0.2 0.1 0.4 0.25 0.01 0.00 0.00 7.26

In Fig. 2.6 (second set of parameters)
0.72 2.0 0.5 0.5 0.5 0.01 0.8 0.01 0.4 0.2 0.2 0.1 0.4 0.25 0.01 0.75 0.25 0.32

In Fig. 2.6 we present four series of numerical experiments for which R0 =

7.26 (first two lines) and R0 = 0.32 (last two lines). It can be noted that the
disease exists in populations (host and vector). Without vaccination or methods of
reducing mosquito population, susceptible subpopulation is declining. At the same
time, the representative curves of subpopulations (exposed, infected, and recovered)
converge to equilibrium values, and we note a significant presence of the disease in
the population. Vaccination was carried out in human population (second line of
graph and first figure), which shows that the disease has practically disappeared,
and the curves of other subpopulations converge to equilibrium values. The last two
lines of the graph show that with vaccination and a method of preventing mosquito
development, one can observe that the representative curves of the population (host
and vector) quickly stabilize, and the disease disappears from the population.

Table 2.5: Parameters for the simulation, which results are presented in Fig. 2.7.

α αk β βk γ µ a a′ ak a′k b bk c ck d σ dv R0

In Fig. 2.7 (first set of parameters)
0.8 2.5 0.4 0.6 0.45 0.02 0.4 0.25 0.5 0.25 0.15 0.2 0.25 0.3 0.05 0.00 0.00 10.36

In Fig. 2.7 (second set of parameters)
0.8 2.5 0.4 0.6 0.45 0.02 0.4 0.25 0.5 0.25 0.15 0.2 0.25 0.3 0.05 0.25 0.6 2.59

In Fig. 2.7 there are four series of simulations for which R0 = 10.36 (first two
lines of graphs) and R0 = 2.59 (last two lines of graphs). It can be noted that the
disease lasts in host and vector populations relatively long. At the same time, a
representative curve of susceptible subpopulation decreases. At the same time, rep-
resentative curves of the subpopulations (exposed, infected, and recovered) converge
to equilibrium values, and a significant disease presence can be noted in the popu-
lation. If control measures are not taken, there is a risk that the disease will remain
in the population because the calculated basic reproduction number indicates that
at least one infected person can infect several people. If human people has been
vaccinated with a parameter of dv = 0.6 (second line of graph, first figure), then
despite the fact that the disease still exists in the population, an infection rate de-
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Figure 2.7: Epidemic process for different values of R0 (R0 = 10.36 and R0 = 2.59).
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creases due to vaccination of the population. The last two lines show that with the
help of vaccination and a method of preventing mosquito development (parameter
σ = 0.25), representative curves of populations (host and vector) gradually converge
to equilibrium values.

In general, the results of numerical simulations show that a method of eliminating
or preventing mosquito development is very effective in suppressing a rapid epidemic
development, but it is very difficult and expensive for applying it in practice.

2.3 Conclusion to Chapter 2

Mathematical modeling of malaria plays a significant role in understanding the dy-
namics of transmitting infectious diseases and developing appropriate prevention
methods. In this chapter, SEIRSkEkIk model is proposed for predicting malaria
spread. At present, scientists have not succeeded in developing an effective vac-
cine against malaria. In this model, we explore two equilibrium points: disease-free
equilibrium and endemic equilibrium. Using the theory of Lyapunov functions, the
stability of two equilibrium points is studied. The simulation results have largely
shown the disease spread among the population, and the effect of vaccination on
disease spread.
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Chapter 3

Two epidemiological models of malaria and
their application on practice

This chapter uses the SIR model and the CIRD model to predict annual dynamics
of malaria epidemics from 2000 to 2027 based on annual data of malaria disease
in Senegal [6]. A modified model SIR with constant coefficients is constructed, a
description of the CIRD balance model with stochastic parameters is given. The
question about the accuracy of forecasting the annual statistical indicators of the
epidemic when using these models is investigated. Numerical experiments show that
an average error in forecasting the annual number of sick people in relation to actual
statistical data when using the SIR model is quite large, while the CIRD model
gives more accurate forecasts in a comparative analysis.

3.1 Description of sample data

There is a sample of 22 observations of the annual malaria disease in Africa (using
Senegal as an example) from 2020 to 2021. Each observation is a three-dimensional
vector corresponding to a particular year, including the number of people in sus-
ceptible population, the number of infected people who have been tested, and the
number of recovered people in each year. The available data are presented in the
table (see Annex B). Based on the annual values of indicators, a new table is formed,
in which the data are presented on an accrual basis.

3.2 Building modified SIR model based on statistical data

It is assumed that the entire human population is divided into several subpopula-
tions. Any individual belongs to a single subpopulation. Despite the fact that the
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SIR model is one of the simplest epidemic models, it is actively used in practice
and contains some parameters that need to be estimated according to the available
statistical data. Let the population consist of N people, which structure includes
three nonoverlapping subgroups: susceptible S, infected I and recovered R.

The number of people in each of these subgroups is not constant and varies
depending on the year. We will use the following notations:
S(t) — size of susceptible subpopulation at time t;
I(t) — size of infected subpopulation at time t;
R(t) — size of recovered subpopulation (people with immunity) at time t;
α — increase rate of infected people;
β — increase rate of recovered people.

Let us write down a system of differential equations corresponding to the SIR

model [2]: 

dS(t)

dt
= −α

S(t)I(t)

N0
,

dI(t)

dt
= α

S(t)I(t)

N0
− βI(t),

dR(t)

dt
= βI(t),

(3.1)

This system of differential equations is usually studied in the domain of admissible
values:

{
(S, I, R) ∈ R3

+ : S + I +R = N
}
.

The proposed SIR system can be used to simulate a malaria epidemic under the
initial conditions known at time t = 0 on any given time interval. The trajectories
of the system, constructed taking into account the best selection of coefficients α

and β, are usually time-deterministic functions, which, as shown by many examples
in scientific literature, are often quite good approximations to the trajectories of
changes in the population structure in real time. However, it is known that the length
of the time interval with a slight approximation error is usually small. Assuming that
the number of susceptible people at the beginning of the epidemics is proportional
to a size of population N , i.e. S ≈ γN and γ ∈ [0, 1], we obtain a modified system
of differential equations of type SIR:

dS(t)

dt
= −αγI(t),

dI(t)

dt
= αγI(t)− βI(t),

dR(t)

dt
= βI(t),

(3.2)
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The solution of a system of differential equations describing the dynamics of
susceptible (S), infected (I) and recovered (R) populations is as follows:

I(t) = I0e
(αγ−β)t,

R(t) = βI0
αγ−β (e

(αγ−β)t − 1) +R0,

S(t) = αγI0
(αγ−β)(1− e(αγ−β)t) + γ

1−γ (I0 +R0).

(3.3)

Using the available initial data for variables of system (3.3), we construct predic-
tive trajectories for the number of infected and recovered people using a modified
SIR model (see Table 3.1 and Table 3.2).

As a rule, system (3.2) is used to describe epidemic dynamics on intervals which
length does not significantly exceed disease duration. In our case of predicting
annual values of the number of infected and recovered people, it is required that
obtained trajectories of system (3.2) should be interpreted differently. Given the
increasing nature of system solutions, we propose to compare the obtained predictive
trajectories with integral actual data that summarize the corresponding values of
actual annual indicators for all previous years. Thus, we entered exactly integral
actual data into the second and third columns.

The values of parameters α, β, and γ were chosen from according to the condition
of minimizing the approximation errors in constructed trajectories Î(t) and R̂(t)

using a modified model in comparison with the trajectories I(t) and R(t) actually
realized in an interval from 2000 to 2021. The forecasting of these values is of
the greatest interest to epidemiologists compared to forecasting of subpopulation S.
As a result, for comparison the following parameter values are chosen: α = 0.4,
β = 0.06, γ = 0.9 (Table 3.1), and parameters α = 0.4, β = 0.1, and γ = 0.9

(Table 3.2).
Fig. 3.1 and 3.2 are based on the data presented in Table 3.1, and Fig. 3.3 and

3.4 are built on data presented in Table 3.2, where blue represents actual malaria
data defined from hospitals and orange represents predicted values obtained using
the modified SIR model above.

An average approximation error is calculated by the formula:

M =
1

n

n∑
i=1

∣∣∣Ai − Fi

Ai

∣∣∣,
where Ai is an actual value and Fi is a predicted value.
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3.2.1 Forecasting malaria epidemic in Senegal from 2000 to 2016

Table 3.1: Integrated actual malaria data for 2000-2016 and forecast based on modified SIR model

Year I(t) R(t) Î(t) R̂(t)

2000 44959 44083 44959 44083
2001 57879 55861 44959 47229
2002 72304 69320 60688 51475
2003 99169 95138 81921 57207
2004 121403 116132 110581 64945
2005 154563 148030 149269 75390
2006 202633 194948 201492 89488
2007 320965 311845 271986 108520
2008 562891 553845 367143 134209
2009 728824 719853 495591 168887
2010 1059155 1050103 668978 215696
2011 1333274 1324303 903026 278883
2012 1613515 1604469 1218957 364175
2013 1980202 1971082 1645420 479308
2014 2249114 2241429 2221085 634721
2015 2741367 2734834 2998151 844507
2016 3090907 3085636 4047080 1127689

Figure 3.1: Integrated values of infected peo-
ple I(t) (actual data and predicted data ob-
tained using modified SIR model)

Figure 3.2: Integrated values of recovered
R(t) (actual data and predicted data ob-
tained using modified SIR model)

The results of calculations of the SIR model are shown in Fig. 3.2 and Table 3.1.
It can be seen that from 2000 to 2007 the model quite well reflects the dynamics
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of the epidemic spread. The trajectories constructed for the best image coefficients
of such a system are usually time-deterministic functions, which, as shown in many
examples in scientific literature, are often quite good approximations of population
change trajectories in real time. However, many factors influence the estimation
accuracy, such as the quality of available statistics and the variability in the disease
course. Unknown model parameters (α and β) can significantly reduce constructed
forecast quality of the epidemiological situation dynamics. Coefficients α and β are
generally random variables. The distribution functions of these random variables
are not known in advance. The performance of a learning-based model is evaluated
using the prediction error, also known as a mean approximation error. Measuring
this performance is very important because, on the one hand, it allows to conduct
model selection in the family associated with a learning method used, and, on the
other hand, it guides method selection by comparing each of the optimized models
with the previous step. Finally, in making any choice, it provides an indicator of
quality, or even confidence, that can be given to the forecast. The choice depends on
several factors, including a desired goal, a size of the original sample, the complexity
of the model under consideration, error variance, and the complexity of algorithms.
In constructed model from 2007 to 2016, there is a significant discrepancy between
the calculated and actual data. An average approximation error of the calculated
trajectory of the number of active cases for the period from 2000 to 2016 is 17.81%.

In Fig. 3.2 and Table 3.1, the results of calculations by a modified SIR model are
presented. It can be seen that from 2000 to 2006 the model quite well reflects the
dynamics of the epidemic spread. From 2006 to 2016, there is a growing discrepancy
between the calculated and actual data. An average approximation error of the
calculated trajectory of the integrated number of active cases (infected) for the
period from 2000 to 2016 is 56.56%.

3.2.2 Forecasting the malaria epidemic in Senegal from 2000 to 2021

The results of calculations of the SIR model are shown in Fig. 3.3 and Table 3.2.
It can be seen that from 2000 to 2007 the model quite well reflects the dynamics of
the epidemic spread. From 2007 the 2021, there is a significant discrepancy between
the calculated and actual data. An average approximation error of the calculated
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Table 3.2: Actual malaria data for 2000-2021 and forecast based on modified SIR model

Year I(t) R(t) Î(t) R̂(t)

2000 44959 44083 44959 44083
2001 57879 55861 44959 47229
2002 72304 69320 60688 51475
2003 99169 95138 81921 57207
2004 121403 116132 110581 64945
2005 154563 148030 149269 75390
2006 202633 194948 201492 89488
2007 320965 311845 271986 108520
2008 562891 553845 367143 134209
2009 728824 719853 495591 168887
2010 1059155 1050103 668978 215696
2011 1333274 1324303 903026 278883
2012 1613515 1604469 1218957 364175
2013 1980202 1971082 1645420 479308
2014 2249114 2241429 2221085 634721
2015 2741367 2734834 2998151 844507
2016 3090907 3085636 4047080 1127689
2017 3486613 3482582 5462987 1509943
2018 4017557 4014573 7374261 2025933
2019 4372265 4370247 9954211 2722447
2020 4817578 4816702 13436779 3662642
2021 5354428 5354428 18137755 4931773

Figure 3.3: Integrated values of infected peo-
ple I(t) (actual data and data predicted using
modified SIR model)

Figure 3.4: Integrated values of recovered
people R(t) (actual data and data predicted
using modified SIR model)

trajectory of the number of active cases from 2000 to 2021 is 31.40%.
In Fig. 3.4 and Table 3.2, the results of calculations by a modified SIR model
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are presented. It can be seen that from 2000 to 2006 the model quite well reflects
the dynamics of the epidemic spread. From 2006 to 2021, there is a significant
discrepancy between the calculated and actual data. An average approximation
error of the calculated trajectory of the number of active cases from 2000 to 2021

is 49.58%.

3.3 Balance model of malaria

3.3.1 Description of balance model of malaria epidemic based on per-
centage increase

Consider balance malaria model, built on the basis of the CIR model presented in
[1]. Denote the total number of reported malaria cases by C(t) for t = 0, 1, 2, . . .

The number of new cases ∆(t) at time t can be calculated by the formula

∆(t) = C(t)− C(t− 1).

The percentage increase r(t) of C(t) at time t is denoted by r(t) and written as

r(t) = 100
∆(t)

C(t− 1)
.

The discrete equation for variable C(t) can then be written as

C(t) =
(
1 +

r(t)

100

)
C(t− 1).

Denote by R(t) the total number of recovered or died patients by time t. Assuming
that disease duration is generally a finite value, for any given time T > 0, consider
the inequalities:

C(t) ≥ R(T ), 0 < t ≤ T.

Taking into account nondecreasing nature of function C(t) relative to variable t

and limited interval 0 ≤ t ≤ T , integer programming problem

min
0<t≤T

t,

C(t) ≥ R(T )

has a solution, which we denote by τ(T ).
Then, in accordance with the principle of dynamic balance of the epidemiological

process [21], for any time t, 0 < t ≤ T the following inequality is true:

C(τ(t)) ≥ R(t) ≥ C(τ(t)− 1).
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In this case, value R(t) will belong to interval [C(τ(t) − 1), C(τ(t))] and can be
represented as

R(t) = λtC(τ(t)− 1) + (1− λt)C(τ(t)), 0 ≤ λt ≤ 1.

The dynamics of the number of infected people (active cases) I(t), taking into
account balance ratio C(t) = I(t) +R(t), can be set as follows:

I(t) =
(
1 +

r(t)

100

)
C(t− 1)−R(t).

Thus, the system of discrete equations describing malaria epidemic spread in host
population will have the form:

C(t) =
(
1 +

r(t)

100

)
C(t− 1),

I(t) =
(
1 +

r(t)

100

)
C(t− 1)−R(t),

R(t) = λtC(τ(t)− 1) + (1− λt)C(τ(t)).

Quantity θ(t) = t−τ(t) is called the characteristic of dynamic balance of an epidemi-
ological process [1]. A percentage increase and the characteristic of dynamic balance,
as a rule, are nonstationary random variables. To predict the values of percentage
increase r(t), you can use a scenario approach or CBRR approach [1]. Forecasting
the values of dynamic balance characteristic on prediction interval [t, t + θ(t)] can
be carried out under the assumption of stationarity or nonstationarity of dynamic
balance characteristic on this interval.

Let σ(t) be a proportion of people who died during epidemic D(t) out of total
number R(t). The value of σ(t) is a coefficient (indicator) of the current lethality
of an epidemiological process. Then the total number of dead people by time t can
be written as the equation:

D(t) = σ(t)R(t).

Taking into account representation of R(t) in the above equation, we obtain the
following expression:

D(t) = σ(t)(λtC(τ(t)− 1) + (1− λt)C(τ(t))).

Let us write a new system of discrete equations, which we will call the CIRD



99

model:

C(t) =
(
1 +

r(t)

100

)
C(t− 1),

I(t) =
(
1 +

r(t)

100

)
C(t− 1)−R(t),

R(t) = λtC(τ(t)− 1) + (1− λt)C(τ(t)),

D(t) = σ(t)(λtC(τ(t)− 1) + (1− λt)C(τ(t))).

3.3.2 Practical application of stochastic balance model

In this section, we will study stochastic predictions of malaria. The study is based
on the article [20], which examines a balance model of the epidemic of new viruses
based on a percentage increase and characteristic of dynamic balance, which have
stochastic nature. A high accuracy of forecasting future dynamics of main statisti-
cal indicators of the COVID-19 pandemic in Russia has been confirmed by many
numerical experiments. The database used represents an annual malaria evolution
in Senegal (Africa) from 2000 to 2021.

The data in the tables below are structured as follows: column 2 contains actual
data on the total number of reported cases C(t) since 2020, column 3 contains inte-
grated actual data on infected population I(t), column 4 contains integrated actual
data on recovered population R(t), column 5 contains data on deceased population
D(t), column 6 contains values of dynamic balance characteristic θ(t), column 7

contains predicted data for total number of reported cases Ĉ(t), column 8 contains
predicted data for infected population Î(t), column 9 contains predicted data for
recovered population R̂(t), and the 10 column contains predicted data on deceased
population D̂(t).
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3.3.3 Model forecast for 2011-2017

Table 3.3: Actual malaria data for 2011-2017 and forecast based on modified CIRD model

Year C(t) I(t) R(t) D(t) θ(t) Ĉ(t) Î(t) R̂(t) D̂(t)

2000 89042 44959 44083 399
2001 113740 57879 55861 772 1
2002 141624 72304 69320 1032 2
2003 194307 99169 95138 1587 2
2004 237535 121403 116132 1871 2
2005 302593 154563 148030 2196 2
2006 397581 202633 194948 2722 2
2007 632810 320965 311845 3222 1
2008 1116736 562891 553845 4037 1
2009 1448677 728824 719853 4686 1
2010 2109258 1059155 1050103 5158 2
2011 2657577 1333274 1324303 5711 2 2636484 1353778 1282707 5516
2012 3217984 1613515 1604469 6285 2 3191408 1908702 1282707 7650
2013 3951284 1980202 1971082 7026 3 3816514 2037546 1778968 10249
2014 4490543 2249114 2241429 8961 3 4544977 2161560 2383418 12632
2015 5476201 2741367 2734834 10639 3 5389759 2451978 2937781 15414
2016 6176543 3090907 3085636 12226 4 6364612 2779978 3584634 18150
2017 6969195 3486613 3482582 13750 4 7483965 3263051 4220914 21429

Figure 3.5: Actual values of dynamic bal-
ance characteristic for 2000-2017 and pre-
dicted (stationary) values for 2011-2017

Figure 3.6: Actual and predicted dynamics
of total number of cases for 2011-2017

Based on the data available from 2000 to 2021, we will build a forecast for disease
course for 2011-2017. The forecasting is carried out using intelligent algorithms for
constructing piecewise linear trends of stochastic values of a percentage increase and
the characteristic of dynamic balance (under the assumption of its stationarity or
nonstationarity). The graphs of actual and predicted values of the dynamic balance
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Figure 3.7: Dynamics of actual and simulated
trajectories I(t) from 2011 to 2017, in sta-
tionary and nonstationary cases of dynamic
balance characteristic

Figure 3.8: Dynamics of actual and simulated
trajectories R(t) from 2011 to 2017, in sta-
tionary and nonstationary cases of dynamic
balance characteristic

Figure 3.9: Dynamics of actual and calculated trajectories D(t) for years from 2011 to 2017 in
stationary case and in case of updated values of D(t)

characteristic in a stationary case are shown in Fig. 3.5. The graphs of actual and
predicted trajectories of model variables are shown in Fig. 3.6-3.9.

From 2011 to 2017, value θ = 2 is used in forecasts. The plot of estimated data for
infected population almost perfectly reflects actual data for infected population. An
average approximation error is 9.44%. Similarly, the plots of actual and estimated
deaths have an average approximation error of 37.31%.

3.3.4 Model forecast for 2018-2021

From 2018 to 2021, the forecasts use value θ = 4 and an assumption of a slight
decrease r(t). The evolution of dynamic balance characteristic, as well as actual and
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Table 3.4: Actual malaria data for 2018-2021 and prediction using CIRD model and stationary
conditions

Year C(t) I(t) R(t) D(t) θ(t) Ĉ(t) Î(t) R̂(t) D̂(t)

2000 89042 44959 44083 399
2001 113740 57879 55861 772 1
2002 141624 72304 69320 1032 2
2003 194307 99169 95138 1587 2
2004 237535 121403 116132 1871 2
2005 302593 154563 148030 2196 2
2006 397581 202633 194948 2722 2
2007 632810 320965 311845 3222 1
2008 1116736 562891 553845 4037 1
2009 1448677 728824 719853 4686 1
2010 2109258 1059155 1050103 5158 2
2011 2657577 1333274 1324303 5711 2
2012 3217984 1613515 1604469 6285 2
2013 3951284 1980202 1971082 7026 3
2014 4490543 2249114 2241429 8961 3
2015 5476201 2741367 2734834 10639 3
2016 6176543 3090907 3085636 12226 4
2017 6969195 3486613 3482582 13750 4
2018 8032130 4017557 4014573 15352 4 7793878 3572965 4220914 16039
2019 8742512 4372265 4370247 16578 5 8677179 3693807 4983372 18937
2020 9634280 4817578 4816702 18093 5 9617200 3790828 5826372 22140
2021 10708856 5354428 5354428 19368 6 10610971 4038102 6572869 24976

Figure 3.10: Actual and simulated values of
dynamic balance characteristic θ(t) for 2000-
2020

Figure 3.11: Dynamics of actual and simu-
lated trajectories C(t) for 2017-2021

forecast trajectories of main variables are graphically presented in Fig. 3.11-3.14.
The plot of estimated data for infected population almost perfectly reflects actual
data for infected population. An average approximation error is 18.12%. Similarly,
the plots of actual and estimated deaths have an average approximation error of
17.51%.
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Figure 3.12: Dynamics of actual and simu-
lated trajectories I(t) for 2018-2021, in sta-
tionary and nonstationary cases of dynamic
balance characteristic

Figure 3.13: Dynamics of actual and simu-
lated trajectories R(t) for 2018-2021, in sta-
tionary and nonstationary cases of dynamic
balance characteristic

Figure 3.14: Dynamics of actual and calculated trajectories D(t) for 2018-2021 in stationary case
and in case of updated values of D(t)

Model forecast for 2021-2027

This section presents the malaria forecast for the next 5 years. Data for forecasting
are given in the Table 3.5.

Simulations are performed along with the intervals used to predict malaria situa-
tion over the next 5 years (i.e. from 2022 to 2027). The values obtained in forecasts
are given in Table 3.5. The plots of data modeling for the number of recovered cases
R̂(t), active cases Î(t), and the number of deaths D(t) are shown in Fig. 3.15, 3.16
and 3.17. Nonstationary data are also presented on the graphs.
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Table 3.5: Actual malaria data and forecast for 2021-2027 based on modified CIRD model

Year C(t) I(t) R(t) D(t) θ(t) Ĉ(t) Î(t) R̂(t) D̂(t)

2000 89042 44959 44083 399
2001 113740 57879 55861 772 1
2002 141624 72304 69320 1032 2
2003 194307 99169 95138 1587 2
2004 237535 121403 116132 1871 2
2005 302593 154563 148030 2196 2
2006 397581 202633 194948 2722 2
2007 632810 320965 311845 3222 1
2008 1116736 562891 553845 4037 1
2009 1448677 728824 719853 4686 1
2010 2109258 1059155 1050103 5158 2
2011 2657577 1333274 1324303 5711 2
2012 3217984 1613515 1604469 6285 2
2013 3951284 1980202 1971082 7026 3
2014 4490543 2249114 2241429 8961 3
2015 5476201 2741367 2734834 10639 3
2016 6176543 3090907 3085636 12226 4
2017 6969195 3486613 3482582 13750 4
2018 8032130 4017557 4014573 15352 4
2019 8742512 4372265 4370247 16578 5
2020 9634280 4817578 4816702 18093 5
2021 10708856 5354428 5354428 19368 6 10708856 4983372 5725484 17940
2022 11671792 5826372 5845420 20975
2023 12552357 6572869 5979488 23662
2024 13317652 7500663 5816989 27002
2025 13936823 8387321 5549502 30194
2026 14383036 9188396 5194640 33078
2027 14635331 10171568 4463763 36618

Figure 3.15: Dynamics of simulated trajecto-
ries I(t) for 2021-2027, in stationary case and
with updated values of I(t)

Figure 3.16: Dynamics of simulated trajec-
tories R(t) for 2021-2027, in stationary case
and with updated values of R(t)

The results obtained in the field of disease forecasting show that the number of re-
covered people increases significantly, while the number of infected people decreases.
It can be noted that the disease can disappear if preventive measures to combat the
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Figure 3.17: Dynamics of D(t), actual and calculated trajectories in the interval from 2021 to
2027 in the stationary case and in the case of updated values of D(t)

disease are taken.

3.4 Conclusion to Chapter 3

Chapter 3 presents two models of a malaria epidemic process and their application
in practice. The first model is based on the classical SIR model and modified to
describe the development of malaria in Senegal in the form of annual data. The
main feature of the modified SIR model, in contrast to a classical version, is that
it is suitable for modeling on intervals which length (one year) significantly exceeds
disease duration. Predicted values are compared with the actual data presented
in an integrated form, for various time intervals, the average approximation errors
are obtained, on the basis of which a conclusion is made about the possibility of
using the model to predict the number of active cases and the total number of
recovered people. The second model is based on the principle of dynamic balance of
an epidemiological process and takes into account when making forecasts generated
dynamic trends of stochastic values of a percentage increase in the total number
of cases and assumptions about stationary or nonstationary nature of a change in
the dynamic balance characteristic. The estimators obtained for selected forecast
intervals demonstrate a higher accuracy of the balance model forecasts for estimating
future values of active cases and a size of a recovered part of the population.
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Chapter 4

Coalitional Differential Game of Vaccine
Manufacturers

The chapter proposes a game-theoretic model of competition and cooperation, in-
cluding partial cooperation, of vaccine manufacturers. Various versions of players’
cooperation (partial and full) have been studied. The differential game has infinite
duration. For each possible coalition of players, the profits and production of its
members are determined. A stability analysis of possible coalition structures, as
well as the most attractive coalitions for buyers, has been carried out [9].

4.1 Model

We consider a model of a market consisting of firms manufacturing vaccine (or other
production firms) that produce vaccines to fight the same disease, i.e. their vaccines
can substitute each other. Denote by N = {1, 2, . . . , n} a set of firms, each of which
has production of qi(·): [0,+∞) −→ R+ [33]. The total production Qi of firm i

over the entire time interval [0,+∞) is equal to

Qi =

∫ +∞

0

qi(t) dt.

Suppose that the initial vaccine price is given as p(0) = p0, and at any time t the
price satisfies a differential equation:

ṗ(t) = s
(
a− b

n∑
i=1

qi(t)− p(t)
)
, p(0) = p0, (4.1)

where a and b are positive constants, while a > c and a − bQ ≥ 0, s > 0 is the
parameter of price sensitivity to changes. Price dynamics (4.1) takes into account
that a market price does not adapt immediately to market changes. A rate of
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change in a market price is determined by the difference between the current price
and the price formed by a linear demand function, multiplied by the given constant
s. Constant s shows market sensitivity to price changes. Firms are also assumed to
have a quadratic function of production costs:

C(qi) = ciqi +
1

2
qi

2,

where ci is a positive constant for any i ∈ N .
The profit of firm i is determined by the functional

Ji(q1, . . . , qn) =

∫ +∞

0

e−rt

(
p(t)qi(t)− ciqi(t)−

1

2
q2i (t)

)
dt, (4.2)

where r > 0 is a discount rate, the same for all players.
The differential game is defined by a set of players N , the players’ payoff functions

(4.2), and dynamics equation (4.1), while player i ∈ N maximizes function (4.2) by
choosing strategies qi(t). Denote the total output by Q(t) =

∑n
i=1 qi(t) [33].

As a solution, we will consider the Nash equilibrium in program strategies (open-
loop strategies).

Definition 4.1. Nash equilibrium is a set of strategies q∗ = (q∗1, q
∗
2, . . . , q

∗
n) such

that
Ji(q

∗
i , q

∗
−i) ≥ Ji(qi, q

∗
−i),

for any qi ≥ 0 and for any player i ∈ N .

In the next section, we consider a modification of a noncooperative differential
game, assuming that players can cooperate, i.e. form coalitions of any sizes, thereby
creating coalition partitions or structures of a set of players N . We make several
assumptions about players’ behavior in coalition structures:

1. If coalition structure π = {B1, . . . , Bm} is formed, consisting of m nonempty
subsets of a set of players such that Bi∩Bj = ∅ for any i ̸= j , and ∪m

k=1Bk =

N , then players belonging to the same coalition maximize the total profit of
this coalition.

2. Coalitions B1, . . . , Bm compete in the market, i.e. in the noncooperative set-
ting, the optimality principle is the Nash equilibrium in a game of m players.

3. Players’ payoffs are nontransferable, i.e. any player in a coalition receives its
payoff according to the payoff function given by formula (4.2).
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4.2 Case of Three-Person Game with Different Coalition Struc-
tures

In this section, we formulate the necessary conditions of the Nash equilibria for the
differential game described in the previous section and given coalition structures.
The results are shown for a case of a three-person game, but if desired, they can be
generalized to the case of a finite number of players. With a large number of players,
the number of coalition structures determined by the Bell number in a recurrent way,
is so large that it is not possible to provide conditions for the Nash equilibrium in a
general case. For example, for five players the number of coalition structures is 52,
for seven players it is equal to 877, and for ten players it equals 115975.

4.2.1 Noncooperative game

Theorem 4.1. In a three-person differential game defined by the players’ payoff
functions (4.2), dynamics equation (4.1), and coalition structure {{i}, {j}, {k}}, if
the Nash equilibrium in admissible open-loop strategies exists, then it satisfies the
system:

qi(t) =
w1 + w3 + 3sbB1B2

w1 + w3

(p0(b(3r + 4s) + r + s)

b(3r + 4s) + r + s

− ((ci + cj + ck + a)s+ r(ci + cj + ck))b

b(3r + 4s) + r + s

+
a(r + s)

b(3r + 4s) + r + s

)
e−w1t +

sbB2B3

w3

+
((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s
− ci,
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qj(t) =
w1 + w3 + 3sbB1B2

w1 + w3

(p0(b(3r + 4s) + r + s)

b(3r + 4s) + r + s

− ((ci + cj + ck + a)s+ r(ci + cj + ck))b

b(3r + 4s) + r + s

+
a(r + s)

b(3r + 4s) + r + s

)
e−w1t +

sbB2B4

w3

+
((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s
− cj,

qk(t) =
w1 + w3 + 3sbB1B2

w1 + w3

(p0(b(3r + 4s) + r + s)

b(3r + 4s) + r + s

− ((ci + cj + ck + a)s+ r(ci + cj + ck))b

b(3r + 4s) + r + s
+

+
a(r + s)

b(3r + 4s) + r + s

)
e−w1t +

sbB2(B3 −B4)

w3

+
((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s
+

− sb
ci + cj + ck − 3a

b(3r + 4s) + r + s
− ck,

where

w1 =
−2sb+ r −

√
∆

2
,

∆ = (4b2 + 16b+ 4)s2 + (8rb+ 4s)s+ r2,

w3 = bs+ s+ r,

B1 = b(r +
4

3
s) +

r + s

3
,

B2 = − 1

b(3r + 4s) + r + s
,

B3 = ((−3ci + cj + ck + a)s− r(2ci − cj − ck))b+ (r + s)(a− ci),

B4 = ((ci − 3cj + ck + a)s− r(ci − 2cj + ck))b+ (r + s)(a− cj).

The expression of the Nash equilibrium price is given in the theorem proof.

Proof. Under coalition structure {{i}, {j}, {k}}, each firm individually maximizes
its profit by choosing production. To find the Nash equilibrium in open-loop strate-
gies, we use the Pontryagin maximum principle. The Hamiltonian of player i ∈ N

has the form:

Hi(q, p, λi) = pqi − ciqi −
1

2
qi

2 + s(a− bQ− p)λi, (4.3)



110

where λi is an adjoint variable.
Maximizing Hamiltonian Hi by production qi, we obtain the equation:

p− ci − qi − sbλi = 0,

from where we express qi:
qi = p− sbλi − ci. (4.4)

The system of differential equations with respect to λi, i ∈ N , and p is written as
follows:

λ̇i = rλi −
∂Hi

∂p
= −p+ (r + s+ sb)λi + ci, i ∈ N,

ṗ = −(snb+ s)p+ s2b2
∑
i∈N

λi + sb
∑
i∈N

ci + sa.

We write down the system of n+ 1 = 4 differential equations:
ṗ = −(3sb+ s)p+ s2b2(λi + λj + λk) + sb(ci + cj + ck) + sa,

λ̇i = −p+ (sb+ r + s)λi + ci,

λ̇j = −p+ (sb+ r + s)λj + cj,

λ̇k = −p+ (sb+ r + s)λk + ck.

Then rewrite this system of differential equations in a matrix form:
ṗ

λ̇i

λ̇j

λ̇k

 =


−3sb− s s2b2 s2b2 s2b2

−1 r + s+ sb 0 0

−1 0 r + s+ sb 0

−1 0 0 r + s+ sb




p

λi

λj

λk

+

+


sa+ sb(ci + cj + ck)

ci

cj

ck

 .

We find a solution to this system, i.e., λi, λj, λk and p, and to do this, we write
a characteristic equation corresponding to the matrix of the system of differential
equations. Characteristic equation∣∣∣∣∣∣∣∣∣∣

−3sb− s− w s2b2 s2b2 s2b2

−1 r + s+ sb− w 0 0

−1 0 r + s+ sb− w 0

−1 0 0 r + s+ sb− w

∣∣∣∣∣∣∣∣∣∣
= 0
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has three roots w1, w2 and w3, which are written as

w1,2 =
−2sb+ r ±

√
∆

2
,

w3 = bs+ s+ r,

where
∆ = (4b2 + 16b+ 4)s2 + (8rb+ 4s)s+ r2.

Solutions λi, λj, λk and p can be written as follows:

λi(t) = − 3B1B2

w1 + w3
A3e

−w1t − 3B1B2

w3 − w2
A4e

w2t + A2e
w3t − B2B3

w3
,

λj(t) = − 3B1B2

w1 + w3
A3e

−w1t − 3B1B2

w3 − w2
A4e

w2t + A1e
w3t − B2B4

w3
,

λk(t) = B5B6(λi + λj − A1e
w3t + A2e

w3t)

+B5(B7 + (B8 + 4bB9 +B9)s

− (3b+ 1)r2 + (3bB9 −B9)r)A3e
−w1t

+B5(B7 + (B8 − 4bB9 −B9)s− (3b+ 1)r2

− (3bB9 +B9)r)A4e
w2t − ci + cj + ck − 3a

(s(4b+ 1) + r(3b+ 1))
,

p(t) = A4e
w2t + A3e

−w1t

+
((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s
,

where

B1 = b(r +
4

3
s) +

r + s

3
,

B2 = − 1

b(3r + 4s) + r + s
,

B3 = ((−3ci + cj + ck + a)s− r(2ci − cj − ck))b+ (r + s)(a− ci),

B4 = ((ci − 3cj + ck + a)s− r(ci − 2cj + ck))b+ (r + s)(a− cj),

B5 = − 1

2s2b2(s(4b+ 1) + r(3b+ 1))
,

B6 = s3(8b3 + 2b2) + rs2(6b3 + 2b2),

B7 = −s2(16b2 + 12b+ 2),

B8 = −r(12b2 + 14b+ 3),

B9 =
√
4s2b2 + 8brs+ 16bs2 + r2 + 4rs+ 4s2,
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and A1, A2, A3, and A4 are constants determined from the initial and limit condi-
tions: p(0) = p0 and limt→∞ e−rtλi(t) = 0, limt→∞ e−rtλj(t) = 0, and
limt→∞ e−rtλk(t) = 0.

From condition limt→∞ e−rtλi(t) = 0 it follows that A2 = 0 and A4 = 0, and from
condition limt to∞ e−rtλj(t) = 0 it follows that A1 = 0 and A4 = 0, then

λi(t) = − 3B1B2

w1 + w3
A3e

−w1t − B2B3

w3
,

λj(t) = − 3B1B2

w1 + w3
A3e

−w1t − B2B4

w3
,

λk(t) = B10A3e
−w1t − B2B5B6(B3 +B4)

w3
− ci + cj + ck − 3a

(s(4b+ 1) + r(3b+ 1))
,

where

B10 = −6B1B2B5B6

w1 + w3
+B5B7 +B5B8s+B5B9s(4b+ 1)

−B5r
2(3b+ 1) +B5B9r(3b+ 1),

then p can be written as:

p(t) = A3e
−w1t +

((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s
.

Given the initial condition p(0) = p0, we find the constant

A3 =
p0(b(3r + 4s) + r + s)− ((ci + cj + ck + a)s+ r(ci + cj + ck))b

b(3r + 4s) + r + s

+
+a(r + s)

b(3r + 4s) + r + s
.

Thus, after transformations, we get:

p(t) = −((ci + cj + ck + a)s+ r(ci + cj + ck))b

b(3r + 4s) + r + s
e−w1t

+
p0(b(3r + 4s) + r + s) + a(r + s)

b(3r + 4s) + r + s
e−w1t

+
((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s
,

λi(t) = − 3B1B2

w1 + w3

p0(b(3r + 4s) + r + s)

b(3r + 4s) + r + s
e−w1t

+
3B1B2

w1 + w3

((ci + cj + ck + a)s+ r(ci + cj + ck))b

b(3r + 4s) + r + s
e−w1t

+
a(r + s)

b(3r + 4s) + r + s
e−w1t − B2B3

w3
,
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λj(t) = − 3B1B2

w1 + w3

p0(b(3r + 4s) + r + s)

b(3r + 4s) + r + s
e−w1t

+
((ci + cj + ck + a)s+ r(ci + cj + ck))b

b(3r + 4s) + r + s
e−w1t

+
a(r + s)

b(3r + 4s) + r + s
e−w1t − B2B4

w3
,

λk(t) = B10
p0(b(3r + 4s) + r + s)

b(3r + 4s) + r + s
e−w1t

−B10
((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s
e−w1t

− B2B5B6(B3 −B4)

w3
− ci + cj + ck − 3a

(s(4b+ 1) + r(3b+ 1))
.

By replacing λi and p with their expressions in equation (4.4), we get:

qi(t) =
w1 + w3 + 3sbB1B2

w1 + w3

(p0(b(3r + 4s) + r + s)

b(3r + 4s) + r + s
e−w1t

+
a(r + s)

b(3r + 4s) + r + s
e−w1t

− ((ci + cj + ck + a)s+ r(ci + cj + ck))b

b(3r + 4s) + r + s
e−w1t

)
+

((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s

+
sbB2B3

w3
− ci,

qj(t) =
w1 + w3 + 3sbB1B2

w1 + w3

(p0(b(3r + 4s) + r + s)

b(3r + 4s) + r + s
e−w1t

− ((ci + cj + ck + a)s+ r(ci + cj + ck))b

b(3r + 4s) + r + s
e−w1t

+
a(r + s)

b(3r + 4s) + r + s
e−w1t

)
+

((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s

+
sbB2B4

w3
− cj,
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qk(t) = (1− sbB10)
(p0(b(3r + 4s) + r + s)

b(3r + 4s) + r + s
e−w1t

− ((ci + cj + ck + a)s+ r(ci + cj + ck))b

b(3r + 4s) + r + s
e−w1t

+
a(r + s)

b(3r + 4s) + r + s
e−w1t

)
+

sbB2(B3 −B4)

w3

+
((ci + cj + ck + a)s+ r(ci + cj + ck))b+ a(r + s)

b(3r + 4s) + r + s
+

− sb
ci + cj + ck − 3a

b(3r + 4s) + r + s
− ck,

where
1− sbB10 =

w1 + w3 + 3sbB1B2

w1 + w3
.

The proof is completed.

4.2.2 Cooperative game version

In this section, we consider the differential game described above, when all players
from set N are united into one coalition, i.e. in a three-person game, the coalition
structure is {{i, j, k}}. Thus, this version of the game corresponds to full coopera-
tion.

Theorem 4.2. In a differential game with players’ payoff functions (4.2) with given
price dynamics (4.1), when coalition structure {{1, 2, 3}} is formed, if the Nash
equilibrium in open-loop strategies exists, then the player’s equilibrium strategy
i = 1, 2, 3 satisfies the conditions:

qi =
s+ r − w2

3
A1e

w2t

+

(3a−
3∑

j=1

cj)(6bs+ s+ r) + (
3∑

j=1
j ̸=i

cj − 2ci)(3br + 6sb+ r + s)

3(3br + 6bs+ r + s)
,

where

w2 =
r −

√
12brs+ 24bs2 + r2 + 4rs+ 4s2

2
,

A1 =
(3br + 6sb+ r + s)(3p0 − ci − cj − ck)

(3br + 6sb+ r + s)(3bs+ s+ r − w2)

− (3a− ci − cj − ck)(3bs+ s+ r)

(3br + 6sb+ r + s)(3bs+ s+ r − w2)
.
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Proof. We use the Pontryagin maximum principle. The Hamiltonian of coalition
{i, j, k}, acting as a single player and maximizing the sum of players’ profits, has
the form:

Hi,j,k = p(qi + qj + qk)− (ciqi + cjqj + ckqk)−
(1
2
qi

2 +
1

2
qj

2 +
1

2
qj

2
)

+ λi,j,ks(a− b(qi + qj + qk)− p),

where λi,j,k is an adjoint variable defined for coalition {i, j, k}. For simplicity, we
introduce notation: λi,j,k = λ.

Maximizing Hamiltonian Hi,j,k with respect to productions qi, qj, and qk, we
obtain the following system of equations:

p− ci − qi − sbλ = 0,

p− cj − qj − sbλ = 0,

p− ck − qk − sbλ = 0,

from where we find qi, qj, and qk:

qi = p− sbλ− ci, i = 1, 2, 3.

The system of differential equations for λ and p is written as follows:

λ̇ = rλ− ∂Hi,j,k

∂p
= −3p+ (r + s+ 3sb)λ+ ci + cj + ck,

ṗ = −(3sb+ s)p+ 3s2b2λ+ sb(ci + cj + ck) + sa.

We rewrite the last system and get:{
ṗ = −(3sb+ s)p+ 3s2b2λ+ sb(ci + cj + ck) + sa,

λ̇ = −3p+ (r + s+ 3sb)λ+ ci + cj + ck.

We write this system of differential equations in a matrix form as(
ṗ

λ̇

)
=

(
−3sb− s 3s2b2n

−3 r + s+ 3sb

)(
p

λ

)
+

(
sa+ sb(ci + cj + ck)

ci + cj + ck

)
.

We find a solution of this system, i.e., λ and p, and to do this, we write the charac-
teristic equation corresponding to the matrix of the system of differential equations,
which has the form:∣∣∣∣∣−3sb− s− w 3s2b2n

−3 r + s+ 3sb− w

∣∣∣∣∣ = −w2 + rw + (3sb+ s)(s+ r) + 3s2b = 0.
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The characteristic equation has two roots:

w1,2 =
r ±

√
∆

2
,

where
∆ = r2 + 12sbr + 24bs2 + 4s2 + 4sr.

Obviously, w1 > w2, and moreover, w1 > 0, w2 < 0.
We obtain the solution of the system of differential equations:

λ(t) = A2e
w1t + A1e

w2t +
3a− ci − cj − ck
3br + 6bs+ r + s

,

p(t) =
(
bs+

s+ r − w1

3

)
A2e

w1t +
(
bs+

s+ r − w1

3

)
A1e

w2t

+
(3a− ci − cj − ck)(3bs+ s+ r)

9br + 18bs+ 3r + 3s
+

ci + cj + ck
3

,

where A1 and A2 are constants determined from the initial and limit conditions:
p(0) = p0 and limx→∞ e−rtλ(t) = 0. From condition limx→∞ e−rtλ(t) = 0 it follows
that A2 = 0, then the solution can be written as:

λ(t) = A1e
w2t +

3a− ci − cj − ck
3br + 6bs+ r + s

,

p(t) =
3bs+ s+ r − w2

3
A1e

w2t +
(3a− ci − cj − ck)(3bs+ s+ r)

9br + 18bs+ 3r + 3s

+
ci + cj + ck

3
.

Given the initial condition p(0) = p0, we find constant A1:

A1 =
3p0(3br + 6bs+ s+ r)− (3a− ci − cj − ck)(3bs+ s+ r)

(3br + 6bs+ s+ r)(3bs+ s+ r − w2)

− (3br + 6bs+ s+ r)(ci + cj + ck)

(3br + 6bs+ s+ r)(3bs+ s+ r − w2)
.

Substituting A1 into the solution, we get:

p(t) =
3bs+ s+ r − w2

3
A1e

w2t +
(3a− ci − cj − ck)(3bs+ s+ r)

9br + 18bs+ 3r + 3s

+
ci + cj + ck

3
,

λ(t) = A1e
w2t +

3a− ci − cj − ck
3br + 6bs+ r + s

.

Substituting λ into the expressions for equilibrium productions, we obtain

qi =
s+ r − w2

3
A1e

w2t +
(3a−

∑3
ℓ=1 cℓ)(6bs+ s+ r)

3(3br + 6bs+ r + s)

+
(cj + ck − 2ci)(3br + 6sb+ r + s)

3(3br + 6bs+ r + s)
,



117

where i ̸= j, i ̸= k, j ̸= k, i, j, k ∈ {1, 2, 3}. The proof is complete.

4.2.3 Case of partial cooperation

In this section, we consider the case when the formed coalition partition consists
of two coalitions, there exist three such structures: {{i, j}, {k}}, {{i, k}, {j}}, and
{{j, k}, {i}}. Taking into account the complexity of formulating the theorem defin-
ing the Nash equilibrium explicitly in such a game of two coalitions competing
with each other, we present the formulation of the theorem for coalition structure
{{i, j}, {k}} and obtain the Nash equilibrium conditions with this structure.

Theorem 4.3. For coalition structure {{i, j}, {k}}, in a differential game with
players’ payoff functions (4.2) and given price dynamics (4.1), if there exists the
Nash equilibrium in admissible open-loop strategies, then it is defined as follows:

qi = p− ci − sbλij,

qj = p− cj − sbλij,

qk = p− ck − sbλk,

where p, λij, and λk are the solutions to the system of differential equations:

ṗ = −(3bs+ s)p+ 2s2b2λij + s2b2λk + sb(ci + cj + ck) + sa,

λ̇ij = −2p+ (r + s+ 2sb)λij + ci + cj,

λ̇k = −p+ (r + s+ sb)λk + ck

with initial and limit conditions: p(0) = p0, limt→∞ e−rtλij(t) = 0 and
limt→∞ e−rtλk(t) = 0.

Proof. In coalition {i, j}, firms maximize the coalition’s total profit by choosing
productions qi and qj. We use the Pontryagin maximum principle. The Hamiltonians
for coalitions {i, j} and {k} are

Hij(qi, qj, qk, λij, p) = p(qi + qj)− ciqi − cjqj −
1

2
(q2i + q2j )

+ s(a− bQ− p)λij,

Hk(qi, qj, qk, λk, p) = pqk − ckqk −
1

2
q2k + s(a− bQ− p)λk,

where λij and λk are the adjoint variables for coalitions {i, j} and {k} respectively.
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Maximizing Hamiltonian Hij with respect to productions qi and qj, as well as Hk

with respect to production qk, we obtain the following system of equations:

p− ci − qi − sbλij = 0,

p− cj − qj − sbλij = 0,

p− ck − qk − sbλk = 0,

whose solution is

qi = p− ci − sbλij, (4.5)

qj = p− cj − sbλij, (4.6)

qk = p− ck − sbλk. (4.7)

We write down the system of differential equations with respect to λij, λk, and p:

ṗ = −(3bs+ s)p+ 2s2b2λij + s2b2λk + sb(ci + cj + ck) + sa,

λ̇ij = −2p+ (r + s+ 2sb)λij + ci + cj,

λ̇k = −p+ (r + s+ sb)λk + ck.

Let us rewrite this system in a matrix form as ṗ

λ̇ij

λ̇k

 =

−3sb− s 2s2b2 s2b2

−2 r + s+ 2sb 0

−1 0 sb+ r + s


 p

λij

λk



+

sa+ sb(ci + cj + ck)

ci + cj

ck


We find λij, λk, and p, for this we write the characteristic equation, which looks
like: ∣∣∣∣∣∣∣

−3sb− s− w 2s2b2 s2b2

−2 r + s+ 2sb− w 0

−1 0 sb+ r + s− w

∣∣∣∣∣∣∣
= −(3sb+ s+ w)(w2 − (2r + 3sb+ 2s)w + (r + 2sb+ s)(r + sb+ s))

+ s2b2(5r + 6sb+ 5s− 5w) = 0.

It is difficult to write down the solution of this characteristic equation in a general
case in an explicit form. Using, for example, the Matlab software, one can find the
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unique admissible solution of this equation and express the solutions of a system
of differential equations through this and other parameters of the system. When
solving a system of differential equations, we use the initial and limit conditions:
p(0) = p0, limt→∞ e−rtλij(t) = 0 and limt→∞ e−rtλk(t) = 0. After finding solutions,
we substitute λij, λk, and p into expressions (4.5), (4.6), and (4.7), and obtain the
Nash equilibrium strategies.

Remark 4.1. Conditions for Nash equilibrium in the case of coalition structures
{{i, k}, {j}} and {{j, k}, {i}} can be found similar to Theorem 4.3. Solution of
a system of differential equations from the proof of Theorem 4.3 was found using
the Matlab program,that is presented in Section 4.4, which considers a numerical
example.

4.3 Stability of coalition structures

In our model, the coalition structure is given exogenously, i.e., the players do not
participate “actively” in forming a coalition structure. But even if the structure is
given, the problem of its stability arises. By stability, it is natural to understand a
stable structure at which no firm would prefer to leave its coalition in order to join
another one, or become an individual player. Although firms in a coalition choose
strategies that maximize the total coalition’s profits, they can compare their own
profits in these coalitions to decide which coalition is more preferable for them [5].

We give a definition of a stable coalition structure based on the Nash equilibrium
principle, i.e. on the fact that it is nonprofitable for any player to individually
deviate from a stable structure, i.e. to move to other coalitions or become an
individual player.

Definition 4.2. Coalition structure π = {B1, . . . , Bm} is said to be stable in a
game with nontransferable payoffs if the following inequality holds for any player
i ∈ N :

Jπ
i ≥ Jπ′

i for all Bj ∈ π ∪ ∅, Bj ̸= B(i).

Here Jπ
i and Jπ′

i are the payoffs of player i in a game with given coalition structure
π and π′ respectively, where π′ = {B(i)\{i}, Bj∪{i}, π−B(i)∪Bj

}, B(i) is a coalition
from structure π which player i belongs to.
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4.4 Numerical example

To illustrate the theoretical results obtained in the previous sections, we consider
a differential game described above between three firms from set N = {i, j, k}.
It is assumed that firms can form any coalition structure: {{i, j, k}} (cooperative
version), {{i}, {j}, {k}} (noncooperative version), {{i, j}, {k}}, {{i, k}, {j}} and
{{j, k}, {i}} (partially cooperative version).

We use the following parameters for numerical simulations:

p0 ci cj ck b r s a n

0.5 0.4 0.2 0.3 0.2 0.3 0.5 0.7 3

Applying Theorems 4.3.1, 4.3.2, and 4.3.3, we find equilibrium price p(t) and
strategies qi(t), qj(t), and qk(t) for all coalition structures. The result in graph form
is shown in Fig. 4.1.

Figure 4.1: Equilibrium prices and firms’ productions for various coalition structures

The profits of firms i, j, and k are calculated by substituting equilibrium p(t),
qi(t), qj(t), and qk(t) from Theorems 4.3.1, 4.3.2, and 4.3.3 into the firms’ payoff
functions (4.2). The firms’ payoffs are given in Table 4.1.
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Table 4.1: Firms’ payoffs under various coalition structures

Ji Jj Jk

{{i}, {j}, {k}} 0.0346 0.1952 0.0993
{{i, j, k}} 0.0600 0.2593 0.1430

{{i, j}, {k}} 0.0460 0.2273 0.1237
{{i, k}, {j}} 0.0557 0.2473 0.1344
{{j, k}, {i}} 0.0467 0.2178 0.1123

The analysis of the obtained results shows (see Table 4.1) that for all firms coali-
tion structure {{i, j, k}} is preferable, since the payoffs of all firms are greater with
this coalition structure than with any other one. Obviously, this coalition structure
is stable in accordance with Definition 4.2, since it is unprofitable for any player to
deviate from this coalition structure, i.e. to become an individual player.

The analysis of equilibrium prices with various coalition structures shows that
the lowest price is formed under full competition, i.e. with coalition structure
{{i}, {j}, {k}}. It means that this structure is the most preferable for consumers,
followed by structures {{j, k}, {i}}, {{i, j}, {k}}, {{i, k}, {j}}, {{i, j, k}} in order
of increasing price. As expected, {{i, j, k}} coalition structure or full cooperation is
the least preferred scenario for consumers. Table 4.2 shows price limits with differ-
ent coalition structures. Of course, it is more profitable for firms to have coalition
structure {{i, j, k}}, if we talk about firm profits, and consumers prefer competition,
i.e. coalition structure {{i}, {j}, {k}}, when the lowest price is formed for them on
the market.

Table 4.2: Equilibrium price limits p̄ = limt→∞ p(t) for various coalition structures

{{i}, {j}, {k}} {{i, j, k}} {{i, j}, {k}} {{i, k}, {j}} {{j, k}, {i}}
p̄ 0.5609 0.6384 0.6081 0.6222 0.5941

4.5 Conclusion to Chapter 4

This chapter proposes a model of competition in the market of manufacturers of
vaccines or other products, when the product price has the property of the so-called
“memory”, i.e. it is dynamically formed not only by demand, but also by the previ-
ous price value. The model is represented by a differential game of infinite duration,
where the players’ strategies are production volumes. It is assumed that players-
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firms can form any coalitions, i.e., not only a grand coalition, but also coalitions
of smaller sizes. In this chapter, the Nash equilibrium is found in a game with a
given coalition structure. The chapter considers the case of nontransferable utili-
ties, i.e. players cannot redistribute payoffs in cooperation. A numerical example
demonstrates theoretical results and analyzes the stability of coalition structures.
Finally, we draw conclusions about which structures are preferable for consumers
and firms.
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Conclusion

The thesis is devoted to mathematical and game-theoretic modeling of malaria
spread in human population (as well as in mosquito population in Chapter 2),
economic interaction of vaccine companies, and creation of models for predicting
malaria disease based on available statistical data. The paper proposes epidemi-
ological models of the SEIR type of vector-borne disease (malaria). For each of
the presented models (Chapters 1 and 2), the region of acceptable values was in-
vestigated, the basic reproductive number R0 was calculated, some equilibria were
determined (the equilibrium when the disease is absent in the population and the en-
demic equilibrium), the stability of equilibria was analyzed, and numerical modeling
based on the obtained theoretical results was conducted, the impact of vaccination
on malaria spread in human population was studied.

Chapter 3 presents two models of malaria spread for practical application and
disease forecasting. The first model is based on the classical SIR model and mod-
ified to describe the development of malaria in Senegal using annual data. The
second model is based on the principle of dynamic balance of an epidemiological
process and takes into account when making forecasts generated dynamic trends of
stochastic values of a percentage increase in the total number of diseased people and
assumptions about the stationary or nonstationary nature of a change in dynamic
balance characteristics. The latter model is usually used for forecasting when daily,
weekly or monthly data are available, i.e. a time interval between observations is
less than the duration of the disease. But the modified model was applied to annual
data, and the malaria disease forecast based on these data turned out to be quite
accurate, especially compared to the forecast made using the modified SIR model.
The estimates obtained for the selected forecast intervals demonstrate a higher ac-
curacy of balance model forecasts for estimating future values of active cases and a
size of a recovered part of the population.

Chapter 4 proposes a model of competition in the market of vaccine manufacturers
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or other products, when the product price has the so-called "property of memory",
i.e. it is dynamically formed not only by demand, but also by a previous price value.
The model is a differential game of infinite duration, where the players’ strategies
are production volumes. It is assumed that players-firms can form any coalitions,
i.e., not only a grand coalition, but also coalitions of smaller sizes. In this paper,
we find the Nash equilibrium in a game with a given coalition structure. The paper
considers a case of nontransferable utilities, i.e. players cannot redistribute payoffs
received from cooperation. A numerical example demonstrates the theoretical results
obtained, analyzes the stability of coalition structures, and draws conclusions about
which structures are preferable for buyers and firms.
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Appendix A. Background information on
malaria, its treatment and malaria vaccines

Malaria is a parasitic disease carried by mosquitoes. It usually presents with flu-like
symptoms and can lead to serious complications or even death. In tropical areas,
malaria has a mortality rate that is unmatched by any other disease. In this regard,
an important task is the application of effective methods of treatment, as well as the
implementation of existing preventive measures for the population living in areas
endemic for malaria. At the same time, scientific research is aimed at developing new
preventive and therapeutic methods, including vaccines, that will make it possible
to eradicate this disease.

Malaria is caused by a parasite of the genus Plasmodium, which is primarily
transmitted from person to person through the bite of a female Anopheles mosquito.
Plasmodium can also be passed from mother to child during late pregnancy or, in
exceptional cases, through blood transfusion.

There are five different Plasmodium species that can infect humans: Plasmodium
falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae and Plas-
modium knowlesi [43]. They differ in the geographical area they inhabit and in the
nature of the symptoms they cause.

1. P. falciparum is the most common species in the world and the cause of most
malaria-related deaths. However, its impact varies by region: for example, it
was responsible for 99.7% of suspected malaria cases in Africa in 2018, but only
half of the cases were in Southeast Asia.

2. P. vivax is predominant in Central and South America, where it is responsible
for 75% of cases. This species is also present in Asia and, to a lesser extent,
parts of Africa. P. vivax is significantly less virulent than P. falciparum, but
the number of deaths associated with it has been increasing in recent years.
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3. P. ovale is found mainly in West Africa. The symptoms it causes are usually
mild.

4. P. malariae is present worldwide but rare.

5. P. knowlesi is common among monkeys. But for the past few years, it has been
causing malaria in humans in Southeast Asia. Difficult to diagnose, it poses a
potentially serious hazard to the treatment of the disease.

Malaria is said to be as old as the world [44]. A papyrus found in Luxor dating
back 15 centuries mentions an infection that closely resembles an attack of malaria.
analysis ADN of the body of Tutankhamun (born about 1345, died about 1327 our
era) showed that at the time of his death he suffered from malaria. The disease is
believed to have originated in marshy areas and areas with polluted air, hence the
name malaria, derived from the Italian malaria (bad air). The disease has raged
for a long time in Europe, and has caused damage comparable to that which it
causes today in Africa. In the XV I century, the conquest of the New World and
the slave trade began. European slave traders take African slaves suffering from
malaria to America. In 530, the Spanish Jesuit Don Francisco Lopez discovered
the healing properties of cinchona bark from Peru, already used by the Indians
to treat fevers, in the form of a powder brought to Europe. In 1820, two French
pharmacists, Pelletizer and Caventou, isolated quinine from the bark of the cinchona
tree, which became the first effective cure for malaria. In 1880, the French physician
Alphonse Laveran was the first to discover the malaria parasite falciparum in the
erythrocytes of patients under a microscope. In 1897, Briton Ronald Ross also made
an important discovery: malaria is transmitted to humans through the bite of an
Anopheles mosquito. Until the beginning of the 20th century, quinine remained the
only antimalarial drug. Chloroquine and other synthetic antimalarial appeared in
the early 1940s. In parallel with this, in order to destroy anopheles, their habitats
are massively sprayed with insecticides. In 1955, with the first victories against
the disease, the World Health Organization (WHO) launched a global program to
eradicate malaria, but the parasites that cause it became increasingly resistant to
treatment. In 2001, the World Health Organization recommended a new therapy,
ACT, which combines the drug artemisinin, already used by the Chinese in the
fourth century, with one or two other antimalarial drugs. ACT is highly effective,
but resistance to this new therapy emerged early in Asia.
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Malaria, which kills over 500, 000 people every year, is the world’s leading para-
sitic disease [42]. It affected 198 a million in 2013, most of them in poor countries.
Malaria affects about a hundred countries, especially in tropical areas. Africa alone
accounts for 90% of malaria cases, well ahead of Asia and the Middle East with more
than 20 a million cases, with Nigeria and the Democratic Republic of the Congo
suffering the heaviest losses. Fortunately, malaria deaths worldwide, especially in
Africa, have been cut in half over the past ten years. These achievements are due
to several factors: prevention, distribution of mosquito nets, spraying of insecti-
cides, preventive treatment of pregnant women and, above all, treatment with ACT

therapy, based on artemisinin, obtained from Artemisia annua, used in traditional
Chinese medicine. Despite the fact that the number of sick children has also been
halved, children are still the main victims of this disease. Every minute a child
under 5 dies of malaria. In 2013, 79 out of 88 countries where the malaria parasite
is rampant included the latest ACT medicines in their health programs. Access to
health care and screening is a real problem in the fight against this disease in Africa,
70% of patients could be treated with ACT antimalarial drugs distributed in public
health facilities. But since most children with fever never see a doctor, only 26%

of them received ACT in 2013. ACT , the combination of artemisinin with one or
two other drugs, like its predecessors, faces parasite adaptation. Recently, cases of
resistance to ACT drugs have appeared in Cambodia, Laos, Thailand, Myanmar,
the former Burma and Vietnam.

The life cycle of malaria describes the various phases in the development and
spread of this mosquito-borne infectious disease caused by various protists known
as Plasmodium, and five varieties of Plasmodium are capable of infecting humans;
Plasmodium falciparum tends to cause the most severe infections. Malaria infec-
tion in individuals is determined by several factors such as temperature, climate,
environment, etc. Some details are omitted from the description of the malaria
cycle. It is worth saying that malaria infection in the human population begins
when sporozoites enter the bloodstream of an infected female mosquito. The sporo-
zoites migrate to the liver, and after a period (sometimes weeks, sometimes months)
they enter the bloodstream in the form of gametocytes, which the mosquito first
receives upon contact with an infected person. During the developmental cycle of
the mosquito, the introduced gametocytes become gametes, which first develop into
zygotes, then into motile ookinetes, which penetrate the mosquito intestine and re-
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lease a large number of sporozoites. This cycle can be schematized as [30] shown in
Fig. 4.2.

Figure 4.2: Diagram of the main population processes and spread rates involved in the life cycle
of the malaria parasite (figure borrowed from [30]).

Much research has been done in recent years and progress has been made in un-
derstanding host-parasite-vector interactions and their biology. However, it is worth
bearing in mind that the complexity of the parasite life cycle, intense ecological
and social interactions, evolutionary use of drugs and control measures, drug resis-
tance of the parasite, unforeseen effects of climate change, and population migration
between endemic and non-endemic areas contribute to the enormous spread of mor-
bidity and mortality, to caused by this disease, which also poses new challenges for
researchers and public health professionals.

Anopheles, mosquitoes that live in the tropics, are only a carrier of malaria, the
true culprit of which is the parasite it carries, Plasmodium. The female Anophe-
les bites at night as it feeds on human blood. If its prey is already infected, the
mosquito sucks up the blood of many parasites. Once in the mosquito’s stomach,
the parasites multiply by dividing and migrate to the salivary glands. During the
bite, the parasites infect new victims through the blood. In the human body, plas-
modium begins a phase of multiple mutations: sporozoites turn into trophozoites,
then into a schizont, then into merozoites, and finally into gametocytes. All these
metamorphoses allow him to avoid the obstacles created by the immune system of
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these victims. The parasite’s first destination is the liver, which the parasite trav-
els to via the bloodstream. The parasite then infects the liver cells and multiplies
until the liver cells rupture and release the parasites into the bloodstream, causing
the first symptoms of chills. Then the parasites invade the erythrocytes, multiply
rapidly in them, causing them to rupture. A new generation of Plasmodium fills
with blood, which, in turn, can be sucked out by a new mosquito. The cycle is
complete.

Figure 4.3: Life cycle of the malaria parasite [40].

The rupture of red blood cells causes an attack of fever lasting several hours,
characteristic of malaria: chills, fever and sweat follow each other. These outbreaks
of fever recur every two to three days. In the case of plasmodium falciparum, malaria
can affect other organs such as the brain and progress to severe and even fatal forms.
Populations that have had the disease multiple times become partially immune to it.
Young children with developing immune defenses and pregnant women with altered
immune systems during pregnancy are at the greatest risk of severe malaria and
even death.

Anopheles is a mosquito that lives in regions with a warm and temperate cli-
mate. There are about 600 species, 70 of which can transmit malaria. Most male
mosquitoes mainly feed on flower nectar and fruit juices and never bite. The female,
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for her part, needs to take a blood meal before each egg laying. A mosquito usually
lives from two weeks to a month. Its lifespan depends on climatic conditions, and
it mates only once. After mating, the reserve of spermatozoa deposited in the body
of the female ensures the fertilization of all eggs. She lays an average of 90 of eggs
once every two to three days. Usually the female bites at night (from dusk to dawn).
Eggs are laid in stagnant or moving water (maybe a fairly small pool) depending
on the species. These eggs hatch into aquatic larvae that remains horizontally on
the surface of the water. These larvae feed on unicellular algae. Their evolution will
lead to the emergence of adult flying insects. Depending on climatic conditions, the
duration of development from the egg to the adult stage can vary from one to three
weeks.

To test for malaria, just apply a drop of blood taken from the tip of your finger to
the strip, with this quick tester, doctors can act immediately. A more accurate but
more difficult diagnosis under a microscope allows the type and number of parasites
to be determined. If left untreated within 24 hours, malaria can develop into a
severe or even fatal infection. The malaria parasite is usually resistant to single drug
treatment. The most effective treatment is a combination of several drugs based on
the active ingredient artemisinin, known to Chinese medicine for over 2000 years.
The combination of an artemisinin derivative with other drugs allows you to better
resist the parasite. These are therapy drugs ACT . They have been in use since the
early 2000s. In general, ACT drugs are well tolerated, reduce transmission, and
provide a cure within three days. However, a disturbing trend has been observed in
recent years: the emergence of cases of malaria resistant to artemisinin derivatives.
Most of these cases were reported in Cambodia, Thailand and Myanmar. Resistance
to ACT may pose a serious threat in endemic areas, as no other antimalarial drugs
will be available for at least five years. Prevention of malaria mainly involves the use
of insecticides in homes and the use of treated mosquito nets. Since 2011, seasonal
malaria prophylaxis for children aged 3 months to 5 years has also been shown to be
effective in the Sahel. The same type of chemotherapy prophylaxis given to pregnant
women protects mother and baby.

Malaria vaccine research has been marked by the development of a vaccine against
P. falciparum (RTS,S or Mosquirix), which is starting to be implemented and eval-
uated in some African countries. This vaccine targets one of the parasite proteins
present on its surface during the erythrocyte phase (sporozoite). With a vaccine ef-
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ficacy of about 30%, its effect remains limited: in order for vaccines to be effective,
the antibodies they produce must be present in the blood in very high concentra-
tions. However, this only occurs in the first weeks after vaccination. Then their
level gradually decreases and after about a year it becomes insufficiently effective.

Other vaccines are under development at very early stages. While not all the
approaches under consideration lead to the development of a universal vaccine, they
should nonetheless provide new insights into the determinants of malaria immunity,
which in turn will lead to better vaccine designs. Among them are subunit vaccines
aimed at blocking a specific protein of the parasite, such as RTS,S. One of the most
promising vaccines is one that targets the PfRH5 protein, which allows the parasite
to enter and survive in red blood cells. Others, intended for pregnant women, are
aimed at stimulating a response against parasitic proteins that interfere with the
functioning of the placenta [44].

A more classic vaccine, called "live attenuated" is PfSPZ. It is based on an in-
jection containing thousands of parasites rendered inactive to induce the immune
system to produce an intense response, especially a cellular one (mediated by TCD8

lymphocytes). However, this promising approach faces a major problem: the par-
asites used to produce the vaccine must be isolated from infected mosquitoes, and
injection must be done intravenously, making it difficult to carry out on a large scale.
Based on the same principle, a strategy that combines the simultaneous injection of
a live parasite and antimalarial drugs offers an interesting model for understanding
the immune mechanisms implemented by the human body.

Finally, vaccines are being developed from genetically engineered parasites that
have mutated several key proteins to make them unable to enter or replicate in
target cells. They would allow us to consider the possibility of developing an adapted
immune response in the host.
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Appendix B. Determination of the basic
reproductive number

This section describes for reference the most commonly used methods for determin-
ing the basic reproductive number.

Anderson and May Method.
The number R0 is determined by the formula:

R0 = βCD,

where β — the probability of transmission of the disease;
C — the number of contacts between an infected and a healthy person per unit of
time;
D — the average time of the infectious period.

The Bokh Method (1886).
Let F (a) be the probability of an individual surviving to age a, and β(a) be

the birth rate in the population, then
∫ ∞

0

β(a)F (a) da — the number of births

generated by this individual during his lifetime.
This definition given by Bokh for the field of demography can be adapted to

epidemiology [52].

Let F (a) be the probability of infection before age a (i.e. the age of infectivity)
and β(a) − the rate of transmission, then R0 determines the number of newly
infected:

R0 =

∫ ∞

0

F (a)β(a) da.

.
Next generation matrix method.
The system under consideration is:

ẋ = f(x),
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where x = (x1, . . . , xn)
T is the state of the system.

The population is divided into n parts, the number of individuals in the i-th part
is determined by the number xi. Parts of a population referred to its subgroups,
such as susceptible infected, vaccinated, etc.

Figure 4.4: Part of the i population. Equilibrium of entry and exit

Let’s analyze what goes in and out of each part (see fig. 4.4):

1. Denote by Fi(x) the rate at which new infected people appear.

2. V+
i (x) denotes an incoming flow of individuals that come from other parts of

the population for some other reason (movement, restoration, etc.).

3. Denote by V−
i (x) the rate of those who leave the i-th part of the population

(for example, mortality, change in epidemiological status, etc.).

Finally, we get:

ẋ = Fi(x) + Vi(x), Vi(x) = V+
i (x) + V−

i (x).

Let XS denote the disease-free state, i.e. XS = {x ∈ Rn/xi = 0 i = 1, . . . , p},
where parts of the population 1, . . . , p consist of infected or infected individuals.

Let’s make the following assumptions:

1. x ≥ 0, Fi(x) ≥ 0, V+
i (x) ≥ 0, V−

i (x) ≥ 0.

2. If xi = 0, then V−
i (x) = 0. If there are no individuals in a certain part of the

population, nothing comes out of it.

3. If i > p, then Fi(x) = 0. Parts of the population with an index greater than p

are "uninfected".
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4. If x ∈ XS, then Fi(x) = 0 and V+
i (x) = 0 for i = 1, . . . , p. If there are

no carriers of the virus in the population, then only new “infected” ones can
appear.

Calculate the Jacobian at the equilibrium point without illness x∗:

J(x∗) = DF(x∗) +DV(x∗),

where

DF(x∗) =

(
F 0

0 0

)
and

DV(x∗) =

(
V 0

J3 J4

)
.

In this case, F =
[
∂Fi

∂xj

]
1≤i,j≤p

And V =
[
∂Vi

∂xj

]
1≤i,j≤p

.

Here F ≥ 0 is a positive definite matrix with positive diagonal entries.
Then R0 is defined as follows:

R0 = ρ(−FV −1),

where ρ is the spectral radius.
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Appendix C. Senegal malaria database
2000-2021

Year Suspected Cases Tested cases No. of infected No. of deaths No. of recovered
2021 2090743 2001032 536850 399 536451
2020 2100345 2012507 445313 373 444940
2019 2010398 2005860 354708 260 354448
2018 2096124 2090323 530944 555 530389
2017 2035693 2033022 395706 284 395422
2016 1559054 1552322 349540 325 349215
2015 1421221 1411390 492253 526 491727
2014 727918 702601 268912 500 268412
2013 867157 757697 366687 815 365872
2012 666101 555724 280241 649 279592
2011 633380 579223 274119 472 273647
2010 721687 661503 330331 553 329778
2009 584896 497716 165933 574 165359
2008 737694 487398 241926 741 241185
2007 1454660 587160 118332 1935 116397
2006 893682 674094 48070 1678 46392
2005 693651 543987 33160 1587 31573
2004 653098 384908 22234 1524 20710
2003 493087 243201 26865 1602 25263
2002 549027 320903 14425 1226 13199
2001 503486 340582 12920 1515 11405
2000 703491 470984 44959 1275 43684


