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Introduction

Relevance of the research topic and elaboration of the topic. The
achievements of recent years in the field of laser technology have made it possible
to experimentally observe atomic and molecular processes on ultrashort attosecond
time scales [1, 2, 3, 4] and in the region of short wavelengths [1, 5, 6]. It is worth
noting here free-electron lasers, which make it possible to obtain short-wavelength
coherent radiation up to the X-ray range and to study ultrafast molecular dynamics
[7]. Due to the presence of additional degrees of freedom in molecules, their response
to strong radiation is much more complex than that of atoms, and the study of such
processes presents a new challenge for researchers. The term “quasimolecule” in
this work denotes a system of two interacting atoms or ions located at interatomic
distances from each other characteristic of molecules, but not representing a stable
formation. Quasimolecules can appear over a certain time interval when atoms or
ions collide with each other. Even the simplest diatomic molecules in strong laser
fields attract much attention from researchers, both in the theory and experiment [8].
Revolutionary changes in the experimental techniques made it possible to observe
and measure various processes with diatomic molecules in laser fields, including the
effects due to contributions from multiple molecular orbitals [9] and orientation of
the molecular axis [10, 11], as well as electron diffraction [12, 13], molecular orbital
imaging [14, 15] etc. Particularly, can be mentioned the interference phenomena in
the spectra of electrons after above-threshold ionization [16, 17, 18, 19] and in the
high-order harmonic generation (HHG) spectra [20, 21, 22, 23], where important
information about the internal structure of molecules can be encoded. The electron
holography in strong fields, which has attracted great interest in recent years [24,
25, 26, 27]. The possibility of creating quasi-stable molecular systems in which
interatomic bonding forces are induced by a laser is demonstrated [28], the possibility
of a qualitative change in the spectra of emitted high-energy electrons during the
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collision of a Ne10+ ion with a He atom in a weak external field is shown [29], it was
found that infrared fields of moderate intensity can significantly increase the cross-
sections for dissociative recombination in the low-energy region due to the Coulomb
focusing effect [30], the dynamics of the collision of two atoms in an optical microtrap
has been experimentally studied [31], the charge transfer mechanism was analyzed
taking into account the radial and rotational interactions in the collision of B2+ with
Ar and Ne atoms for collision energies E𝑙𝑎𝑏 ≈ (0.02− 1080) keV [32] etc.

The simplest diatomic molecule, the one-electron ion H+
2 , has been repeatedly

used in theoretical studies as a prototype of a diatomic molecule in exploring the
ionization and HHG processes, including the effects of molecular axis orientation
and two-center interference [33, 34, 35, 36, 37, 38, 39]. A strong dependence of the
ionization dynamics on the molecular axis orientation was revealed in [37]. Also,
during ionization by a circularly polarized laser pulse, destructive interference mani-
fests itself in the form of splitting of peaks in the energy spectrum of photoelectrons
when emitted at a certain angle to the axis of the molecule [34]. In [35] the de-
pendence of multiphoton ionization and high-order harmonic generation from the
ground and excited electronic states of H+

2 on the orientation of the molecular axis
with respect to the polarization of laser radiation was investigated. In the works
mentioned above, the time-dependent Schrödinger equation for a two-center quan-
tum system in an external field was solved using various numerical methods: the
split-operator method with a uniform radial grid in spherical coordinates [34] and the
split-operator method in the energy representation combined with pseudospectral
discretization in prolate spheroidal coordinates [35], using polynomial expansions
in spheroidal coordinates [36], combined finite element method and representation
of discrete variables [39], and also using the expansion in terms of the basis of B-
splines and spherical harmonics [40]. One of the research objectives of this work is
the study of H+

2 ionization under the action of strong linearly polarized laser radia-
tion with a wavelength in the far ultraviolet region. The dissertation demonstrates
an anomalous dependence of the ionization probability on the angle between the
molecular axis and the polarization vector of the external field.Usually, the effects of
two-center interference are associated with the destructive nature of such interfer-
ence and appear as minima in the photoionization or harmonic generation spectrum.
The dissertation deals with constructive two-center interference, the maximum of



5

which corresponds to such a geometry, when the molecular axis is not parallel to the
polarization of laser radiation, which leads to an unexpected result, when the maxi-
mum ionization probability is observed when the molecular axis is perpendicular to
the orientation. In the angular distributions of photoelectrons, the effect manifests
itself in the form of a local minimum in the direction of polarization of the external
field for a parallel orientation of the molecular axis.

An external electromagnetic field makes it possible to control the process of elec-
tron capture during collisions. This circumstance attracted attention of researchers
as early as in the 1970s [41]. A number of studies in recent years were devoted to
studying the influence of the phase of the electromagnetic field on this process. This
circumstance is due to the fact that laser sources with stabilized phase [42, 43] are
currently available, and experimental methods for measuring the field phase [44, 45]
have been described. In [46] studied a field with a wavelength of 𝜆 = 780 nm and an
intensity of 3.5× 1012 W/cm2. It was shown that for asymmetric colliding systems,
such as H–He2+, a change in the phase of the electromagnetic field linearly polarized
in the collision plane can significantly increase the probability of charge transfer in
the collision energy range of 0.05–10 keV/u. In another work [47] it was also shown
that in low-energy collisions the value of the phase of the electromagnetic field has
a significant effect on the charge transfer process. In symmetric systems, on the
contrary, a linearly polarized external field with a polarization vector in the collision
plane has small effect on the charge transfer if the ionization is negligible, as it was
reported in [48] for H–H+ collision: the charge transfer probability is almost the
same for different initial phases as well as in the absence of the external field. For
a strong circularly polarized field (intensity 5 × 1013 W/cm2), the results of [49]
demonstrate a significant effect of the field phase on both the ionization probability
and the charge transfer probability. The paper [50] shows a significant increase of the
charge transfer cross-section in the H–He2+ collision for parallel and perpendicular
laser polarization at an intensity of 3.5× 1012 W/cm2 and a wavelength of 800 nm.
In the work [51], the possibility of optimal control of the charge transfer process by
the laser field in slow collisions was studied within a one-dimensional model. One of
the goals of this dissertation is to study the influence of the phase and intensity of
a field linearly polarized in the collision plane on ionization and the probability of
electron capture by an incident particle in a symmetric H–H+ system in low-energy
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collisions for various frequencies.
In addition to the phenomenon of two-center interference and the influence of the

phase of the electromagnetic field on the process of electron capture, it is of great
interest to study heavy one-electron ions and one-electron quasimolecules in exter-
nal strong fields with very high frequencies and intensities. Theoretical treatment
of such systems must be fully relativistic, since the electron moves with very high
speed under the influence of both the coulomb field of a highly charged nucleus and
strong external electromagnetic field. Several relativistic approaches for description
of the laser–ion interaction have been suggested recently. They include numeri-
cal solution of the time-dependent Dirac equation (TDDE) in spherical coordinates
with expansion of the angular part of the wave function in spherical harmonics
[52, 53, 54]. Kinetically balanced B-spline basis sets in both radial and angular
coordinates for the time-dependent Dirac equation with an axial symmetry were
introduced in [55]. Non-Hermitian approaches have been developed, such as com-
plex coordinate rotation[56] and complex coordinate scaling[57]. These approaches
have become effective in studying multiphoton ionization processes. Other theo-
retical and computational approaches include the relativistic tight coupling method
[58, 59], the relativistic generalization of the matrix iteration method [60] and the
classical relativistic phase space averaging method [61] generalized to arbitrary cen-
tral potentials for the nonstationary equation Dirac. The relativistic strong field
approximation corrected for the Coulomb interaction was used to consider above-
threshold ionization [62, 63].

For the external electromagnetic fields in the infrared, visible, and ultraviolet
regions, where the wavelength of the radiation exceeds the atomic size to a great
extent, the dipole approximation is commonly used to describe the interaction of the
atom, molecule or quasimolecule with the field. In this approximation, the spatial
dependence of the external field vector potential is neglected, thus the electric field
of the electromagnetic wave is uniform in space, and the magnetic field vanishes.In
the relativistic domain, a wide range of the laser field parameters, such as the photon
energy and peak intensity, still exists where the dipole approximation is well justi-
fied. Previously, it was successfully used in the time-dependent Dirac equation to
treat highly charged ions exposed to strong laser fields [52, 55, 58]. However, when
the photon energy and peak intensity of the laser pulse increase, the nondipole ef-



7

fects become more and more important, and the dipole approximation eventually
breaks down. Of course, it may happen even for nonrelativistic atomic and molecular
systems described by the time-dependent Schrödinger equation [53, 64, 65, 66, 67].
As to the relativistic systems, several attempts have been made to go beyond the
dipole approximation and include nondipole correction terms into the interaction
with the external field in the time-dependent Dirac equation [52, 57, 54, 68]. It
was shown [57] that the spatial dependence in the pulse envelope, rather than the
carrier, provides a dominant correction beyond the dipole approximation. One of
the goals of this dissertation is to consider the problem of relativistic ionization in
a strong field for important prototypes of one-electron systems, such as homonu-
clear diatomic quasimolecules. Among such systems, only H+

2 can exist as a stable
molecule, quasimolecules with higher nuclear charges can temporarily form during
collisions in ion beams or storage rings. Compared to atomic ions, quasimolecules
have less symmetry and a large number of degrees of freedom, which greatly compli-
cates their response to external fields. On the other hand, as the total nuclear charge
approaches the critical value, highly charged quasimolecules can provide a unique
opportunity for studying laser-stimulated quantum electrodynamics processes in su-
per strong fields.

Atomic units (~ = |𝑒| = 𝑚𝑒=1) are used throughout the paper unless specified
otherwise.

Main goals of the work consist in the development and application of numer-
ically stable algorithms for solving the Schrödinger equation and the Dirac equation
to study the interaction of diatomic molecules and quasimolecules with pulses of
strong coherent radiation. To do this, the following tasks are solved:

1. Development of an algorithm for solving the fully three-dimensional nonsta-
tionary Schrödinger equation and the nonstationary Dirac equation in an elon-
gated spheroidal coordinate system using numerical pseudospectral methods.

2. Study of the influence of two-center interference on the process of ionization of
a molecule H+

2 , prepared in the first excited electronic state 1𝜎𝑢, by a linearly
polarized laser pulse with a carrier wavelength in the far ultraviolet region
within the framework of the non-relativistic approach (Schrödinger equation)

3. Within the framework of the relativistic approach (Dirac equation), the ener-
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gies of bound states were calculated and an assessment of relativistic effects
was made by scaling the system parameters with respect to the nuclear charge
Z for various homonuclear quasimolecules.

4. Calculation of capture electron cross-sections in a collision of a proton with a
hydrogen atom in the ground state in a field linearly polarized in the collision
plane. An analysis of the influence of the frequency and phase of the elec-
tromagnetic field on the process of electron capture by an incident particle is
carried out.

Scientific novelty. Within the framework of the thesis, a fully three-
dimensional algorithm for solving the nonstationary Dirac equation in an external
field for diatomic quasimolecules beyond the dipole approximation was developed. A
similar algorithm has been developed for the Schrödinger equation. The possibility
of choosing the parameters of the laser field in such a way that the maximum ioniza-
tion, as well as the maximum in the angular distributions of emitted photoelectrons,
is observed when the orientation of the quasimolecule axis and the laser field polar-
ization vector is perpendicular to the orientation is demonstrated. An analysis of
the influence of the phase of a linearly polarized electromagnetic field in collisions
of a proton atom with a hydrogen atom in low-energy collisions for wavelengths in
the infrared and far ultraviolet region is presented.

Scientific value and practical significance. The developed algorithms for
describing the interaction of molecules and quasimolecules with a linearly polarized
external field can find their application in the field of preparation of molecules in a
certain quantum mechanical state, in the study of molecular electronic structure and
electron motion for various fixed nuclear configurations. The algorithm developed
for the relativistic Dirac equation makes it possible to evaluate relativistic effects
in quasimolecules, and also creates the necessary theoretical basis for controlling
processes the resonance process, when the carrier frequency of the laser field co-
incides with the difference between two levels in the quasimolecule, as a result of
which ionization can be significantly strengthened. The practical application of the
results obtained is directly related to the possibility of creating compact sources of
intense coherent radiation and attosecond pulses. It is advisable to use the results
of the dissertation in research organizations and centers involved in the interaction
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of strong laser radiation with matter: Institute of General Physics of the Russian
Academy of Sciences, Research Institute of Nuclear Physics of Moscow State Univer-
sity, Russian Research Center Kurchatov Institute, St. Petersburg State University,
National Research Nuclear University “MEPhI”, Moscow Institute of Physics and
Technology, Institute of Applied Physics RAS, Voronezh State University, Institute
of Applied Physics named after A.V. Gaponov-Grekhov RAS.

Thesis statements to be defended:

1. The probability of ionization of the H+
2 molecule in the 1𝜎𝑢 state under the

influence of a linearly polarized electromagnetic field and the angular dis-
tributions of photoelectrics depend on the orientation of the molecule in an
anomalous manner due to two-center interference.

2. Relativistic effects lead to an increase in the ionization potential of a quasi-
molecule and to a shift in the resonant frequency when interacting with an
electromagnetic field. The significant inhomogeneity of the vector potential of
the electromagnetic field in the region of the electron wave packet is the cause
of the occurrence of non-dipole effects, expressed in increased ionization of the
quasimolecule under the influence of the electromagnetic field.

3. During the collision of a proton with a hydrogen atom in an external field,
the phase of the electromagnetic field, in the case of a slowly oscillating field,
has a significant impact on the process of electron capture. The phase of a
rapidly oscillating electromagnetic field does not have a significant effect on
the dynamics of the system.

Reliability of the results obtained. All results were tested for convergence
by increasing the accuracy of the calculation. The calculated values are in good
agreement with the theoretical results of other authors, when it is possible to com-
pare them. The results presented in the thesis have been published in reputable
journals and discussed at several international conferences

Approbation of the research

1. International student conference “Science and progress”, November 12-14,
2018, St. Petersburg, Russia.
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2. All-Russian youth scientific forum “OpenSciens 2021”, November 16-18, 2021,
Gatchina, Russia.

3. All-Russian Conference on Natural Sciences and Humanities with Interna-
tional Participation - “Science of St. Petersburg State University-2021”, De-
cember 28, 2021, online.

4. All-Russian Conference on Natural Sciences and Humanities with Interna-
tional Participation - “Science of St. Petersburg State University-2022”,
November 21, 2022, online.

5. International Summer Conference on Theoretical Physics 2023, July 3-7, 2023,
Moscow, Russia.

In addition, the results were repeatedly presented at seminars at the Department of
Quantum Mechanics, Faculty of Physics, St. Petersburg State University.

Publications of the author on the topic of the dissertation. On the topic
of the dissertation work, 3 articles were published in journals recommended by the
Higher Attestation Commission of the Russian Federation and/or included in the
RSCI, Web of Science and Scopus databases:

1. Multiphoton Ionization of One-Electron Relativistic Diatomic Quasimolecules
in Strong Laser Fields / D. A. Telnov, D. A. Krapivin, J. Heslar, S.-I. Chu
// The Journal of Physical Chemistry A. – 2018. — Vol. 122, no. 11. — Pp.
8026–8036. [69]

2. Krapivin D. A., Telnov D. A. Anomalous dependence of ionization proba-
bility and electron angular distributions on orientation of molecular axis in
photoionization of H+

2 : effect of two-center interference // Journal of Physics
B: Atomic, Molecular and Optical Physics. – 2021. — Vol. 54, no. 20. — P.
205601. [70]

3. Krapivin D. A., Telnov D. A. Influence of the phase of the electromagnetic
field on the processes of charge transfer and ionization in laser-assisted colli-
sions of protons with hydrogen atoms // The European Physical Journal D.
— 2023. — Vol. 77, no. 99. [71]
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Personal contribution of the author All main results were obtained person-
ally by the author or through joint work with other researchers.

Structure of the thesis.
The thesis contains 87 pages, 17 figures and 3 tables. The dissertation consists of

an introduction, three chapters, a conclusion, and a list of references, which includes
99 titles.

∙ In introduction the relevance of the dissertation work is substantiated, the
goal is formulated and the scientific novelty of the research is argued, the
practical significance of the results obtained is indicated, and the scientific
provisions submitted for defense are presented.

∙ In the first chapter, the theoretical approach and the numerical methods
used in solving the Schrödinger equation in an external field in the veloc-
ity gauge for the two-center molecule H+

2 are presented in detail. The wave
functions of the continuous spectrum for the one-electron molecule H+

2 are con-
structed. The dependence of the total probability of ionization of the system
on the orientation of the molecular axis in a linearly polarized laser field from
the initial state 1𝜎𝑢 has been studied. Distributions of emitted photoelectrons
by energy and emission angles have been constructed for wavelengths in the
soft X-ray and XUV ranges in the single-photon mode.

∙ The second chapter of the dissertation is devoted to the study of relativistic
effects in one-electron quasimolecules exposed to an external field and effects
arising from going beyond the dipole approximation.

∙ The third chapter is devoted to the study of the influence of the phase
of a linearly polarized electromagnetic field on the process of charge transfer
in H–H+ collisions. Collisions are considered in the low-energy regime (the
velocity of the incident proton corresponds to an energy of 0.25 keV) within
the framework of the dipole approximation of the electromagnetic field.

∙ The conclusion contains the main results and conclusions obtained within
the framework of the dissertation work.
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Anomalous dependence of ionization probability

and electron angular distributions on orientation of

molecular axis in photoionization of H+
2 : effect of

two-center interference

This chapter describes in detail the theoretical approach and the numerical meth-
ods used to solve the Schrödinger equation in an external field in the velocity gauge
for a two-center molecule H+

2 .
The Schrödinger equation for a two-center molecular system is most conveniently

solved in prolate spheroidal coordinate system. Such a system takes into account
the symmetry of a two-center molecule, and the parameter of the spheroidal coor-
dinate system makes it possible to set the internuclear distance in a simple way.
Initially, the stationary Schrödinger equation is solved to obtain the energies and
wave functions of the bound states. The next step describes the evolution of the
initial state of the system in an external field over time. The antisymmetric wave
function of the 1𝜎𝑢 state was chosen as the initial state, for an internuclear distance
of 2 a.u. To study the spectrum of photoelectrons, wave functions of the continu-
ous spectrum are constructed with the correct asymptotic behavior at infinity. The
calculation of the distributions of the emitted photoelectrons over the angles and
energies of the emission makes it possible to analyze the dependence of the total
ionization probability and photoelectron spectra on the orientation of the molecular
axis. It turns out that in the wavelength range from 6 to 23 nm, an anomalous be-
havior of the ionization probability is detected, where it increases with an increase
in the angle between the polarization vector of the external field and the axis of the
molecule, reaching a maximum at a perpendicular orientation of the molecule. This
anomalous behavior is explained by the two-center interference of contributions to
the wave packet from regions of space near the nuclei of the molecule.
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In Chapter 1, the field is assumed to be linearly polarized and is considered in
the dipole approximation.

1.1 Schrödinger equation in prolate spheroidal coordinates

The time-dependent Schrödinger equation for a one-electron molecular system
or quasimolecular in an external field has the form:

𝑖
𝜕

𝜕𝑡
Ψ(r, 𝑡) = [𝐻0 + 𝑉 ]Ψ(r, 𝑡). (1.1)

Here 𝐻0 is the unperturbed Hamiltonian, which includes the kinetic energy operator
and the interaction potential 𝑈(r) between the electron and the nuclei:

𝐻0 = −1

2
∇2 + 𝑈(r), (1.2)

The operator 𝑉 — describes the interaction of the electron with the external elec-
tromagnetic field. When choosing the velocity gauge in the dipole approximation,
this operator takes the form:

𝑉 = −𝑖(A · ∇) +
1

2
𝐴2, (1.3)

moreover, the vector potential A in this case depends on time, but does not depend
on spatial coordinates. The force acting on an electron from an external electric
field is expressed in terms of a vector potential using the usual relationship:

F =
𝜕A

𝜕𝑡
. (1.4)

For a two-center molecular system, the natural choice of the coordinates to solve
the Schrödinger equation (1.1) is prolate spheroidal coordinates 𝜉, 𝜂, 𝜑, which are
related to the Cartesian coordinates as [72]:

𝑥 = 𝑎
√︀
(𝜉2 − 1)(1− 𝜂2) cos𝜑,

𝑦 = 𝑎
√︀
(𝜉2 − 1)(1− 𝜂2) sin𝜑,

𝑧 = 𝑎𝜉𝜂.

(1.5)

The intervals of change of spheroidal coordinates are given by the following relations:

1 < 𝜉 <∞, −1 < 𝜂 < 1, 0 < 𝜑 < 2𝜋. (1.6)
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In order to write the Schrödinger equation in a spheroidal coordinate system, Lame
multipliers are needed:

𝐻𝜉 = 𝑎

√︃
𝜉2 − 𝜂2

𝜉2 − 1
. 𝐻𝜂 = 𝑎

√︃
𝜉2 − 𝜂2

1− 𝜂2
, 𝐻𝜑 = 𝑎

√︀
(𝜉2 − 1)(1− 𝜂2). (1.7)

The connection of the orts of the Cartesian coordinate system with the orts of the
spheroidal coordinate system is given by the following relations:

�⃗�𝑧 =
𝑓𝜂

𝐻𝜉
�⃗�𝜉 + �⃗�𝜂

𝑓𝜉

𝐻𝜂
, (1.8)

�⃗�𝑥 = �⃗�𝜉 cos𝜑
𝑓𝜉

𝐻𝜂
− �⃗�𝜂 cos𝜑

𝑓𝜂

𝐻𝜉
− sin𝜑�⃗�𝜑, (1.9)

�⃗�𝑦 = �⃗�𝜉 sin𝜑
𝑓𝜉

𝐻𝜂
− �⃗�𝜂 sin𝜑

𝑓𝜂

𝐻𝜉
+ cos𝜑�⃗�𝜑. (1.10)

The nabla differential operator has the following expression:

∇⃗ =
1

𝐻𝜉

𝜕

𝜕𝜉
�⃗�𝜉 +

1

𝐻𝜂

𝜕

𝜕𝜂
�⃗�𝜂 +

1

𝐻𝜑

𝜕

𝜕𝜑
�⃗�𝜑 (1.11)

Written using spheroidal coordinates, the kinetic energy operator and the interaction
potential with nuclei have the form:

−1

2
∇2 = − 1

2𝑎2
1

𝜉2 − 𝜂2

[︂
𝜕

𝜕𝜉
(𝜉2 − 1)

𝜕

𝜕𝜉
+

+
𝜕

𝜕𝜂
(1− 𝜂2)

𝜕

𝜕𝜂
+

𝜉2 − 𝜂2

(𝜉2 − 1)(1− 𝜂2)

𝜕2

𝜕𝜑2

]︂
,

(1.12)

𝑈(𝜉, 𝜂) = −(𝑍1 + 𝑍2)𝜉 + (𝑍2 − 𝑍1)𝜂

𝑎(𝜉2 − 𝜂2)
, (1.13)

𝑍1 and 𝑍2 are nuclear charges, 𝑍1 = 𝑍2 = 1 for the molecular ion H+
2 . The 𝑧 axis

of the Cartesian coordinate system, in this chapter of the dissertation, is directed
along the axis of the molecule. The nuclei of the molecule are placed at the centers
of the spheroidal coordinate system, and the distance between them 𝑅 is given by
the parameter 𝑎: 𝑅 = 2𝑎. The calculations assume 𝑎 = 1 a.u., which corresponds
to the equilibrium internuclear distance 𝑅𝑒 = 2 a.u. ion H+

2 in the ground electronic
state. Before solving the nonstationary equation (1.1), it is necessary to solve the
eigenvalue problem for unperturbed Hamiltonian 𝐻0:

[𝐻0 + 𝑈 ]Ψ𝑖(r) = 𝐸𝑖Ψ𝑖(r), (1.14)
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to obtain the wave function of the initial state as an eigenfunction of the first excited
electronic state of the molecule (1𝜎𝑢). Since the H+

2 molecule is unstable and dissoci-
ates in this electronic state, its preparation may be the result of resonant excitation
from the stable ground state (1𝜎𝑔). The practical feasibility of such a process has
been experimentally confirmed [73]. When solving the problem numerically, the size
of the spatial region is determined by the parameter 𝑅𝑏. For 𝑎𝜉 = 𝑅𝑏, the zero
boundary condition is imposed on the wave function. In the calculations of this
chapter, 𝑅𝑏 = 80 a.u, which for the parameters of the external field used (see below)
makes it possible to correctly describe all processes that are physically significant for
this problem. To numerically solve the eigenvalue problem (1.14), the coordinates
𝜉 and 𝜂 are discretized using the generalized pseudospectral method. The idea of
using such methods is to discretize functions over points, called collocation points.
Define mapping 𝑥→ 𝜉 : 𝑥 ∈ (−1; 1):

𝑎𝜉𝑖 = 𝑎+𝑅𝑙
(1 + 𝑥𝑖)

2

1− 𝑥𝑖 + 4𝑅𝑙

𝑅𝑏

, (1.15)

where 𝑅𝑙 is a parameter, by adjusting which one can change the distribution of
collocation points, as well as improve the accuracy of calculations. 𝑅𝑏 is a boundary
parameter, it must be chosen large enough to correctly describe the dynamics of the
system in the laser field. The size of the spatial domain, beyond which the wave
function is assumed to be equal to 0, for the grid 𝑎𝜉 (pseudo-radial) is equal to
𝑅𝑏 + 𝑎. The map (1.15) is quadratic in the neighborhood of 𝜉 = 1, so the density
of collocation points near the centers of the prolate spheroidal coordinate system
is high. This is important for accurate calculations with the model of a non-point
nucleus, since the size of the nucleus is several orders of magnitude smaller than
the size of the molecular system. To discretize 𝜉 and functions depending on 𝜉, the
Gauss-Legendre-Radau scheme is used. The collocation points for this scheme look
like [74, 75]:

𝑥𝑖 : 𝑃𝑁𝑥
(𝑥𝑖)− 𝑃𝑁𝑥+1(𝑥𝑖) = 0, (1.16)

where 𝑃𝑁𝑥+1(𝑥𝑖), 𝑃𝑁𝑥
(𝑥𝑖) are the Legendre polynomials calculated at the collocation

points (𝑁𝑥 is the number of collocation points for the coordinate 𝜉). Weights for
discretization at collocation points have the form:

𝑤𝑥
𝑖 =

1

(𝑁𝑥 + 1)2
1 + 𝑥𝑖

(𝑃𝑁𝑥
(𝑥𝑖))2

. (1.17)
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Formulas for integrating and differentiating an arbitrary function:

1∫︁
−1

𝑓(𝑥)𝑑𝑥 =

𝑁𝑥+1∑︁
𝑖=1

𝑓(𝑥𝑖)𝑤
𝑥
𝑖 , (1.18)

𝑑𝑓

𝑑𝑥
(𝜉(𝑥𝑖)) =

1

𝜉′𝑖

𝑁𝑥+1∑︁
𝑖′=1

𝐷𝑥
𝑖𝑖′𝑓(𝑥𝑖′), (1.19)

where:
𝐷𝑥

𝑖𝑖′ =
(1 + 𝑥𝑖′)𝑃𝑁𝑥

(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑖′)(1 + 𝑥𝑖)𝑃𝑁𝑥
(𝑥𝑖′)

(𝑖 ̸= 𝑖′), (1.20)

𝐷𝑥
𝑖𝑖 = − (1 + 𝑥𝑖)𝑃𝑁𝑥

(𝑥𝑖)

2(1 + 𝑥𝑖)(1 + 𝑥𝑖)𝑃𝑁𝑥
(𝑥𝑖)

(𝑖 = 𝑖′). (1.21)

For the 𝜂 coordinate, the mapping 𝜂 → 𝑦 : 𝑦 ∈ (−1; 1)

𝜂𝑗 = sin
(︁𝜋
2
𝑦𝑗

)︁
. (1.22)

For this coordinate, the Gauss-Legendre scheme is applied (𝑁𝑦 is the number of
collocation points for the coordinate 𝜂):

𝑦𝑗 : 𝑃𝑁𝑦
(𝑦𝑗) = 0,

1∫︁
−1

𝑔(𝑦) 𝑑𝑦 =

𝑁𝑦∑︁
𝑗=1

𝑔(𝑦𝑗)𝑤
𝑦
𝑗 , (1.23)

𝑤𝑦
𝑗 =

1

(1− 𝑦2𝑗 )[𝑃
′

𝑁𝑦
(𝑦𝑗)]2

, (1.24)

𝑑𝑔

𝑑𝑦
(𝜂(𝑦𝑗)) =

1

𝜂′𝑗

𝑁𝑦∑︁
𝑗′=1

𝐷𝑦
𝑗𝑗′𝑔(𝑦𝑗′), (1.25)

where:

𝐷𝑦
𝑗𝑗′ =

𝑃 ′
𝑁𝑦
(𝑦𝑗)

(𝑦𝑗 − 𝑦𝑗′)𝑃 ′
𝑁𝑦
(𝑦𝑗′)

, (𝑗 ̸= 𝑗′), (1.26)

𝐷𝑦
𝑗𝑗′ =

𝑦𝑗𝑃
′
𝑁𝑦
(𝑦𝑗)

(1− 𝑦2𝑗 )𝑃
′
𝑁𝑦
(𝑦𝑗)

, (𝑗 = 𝑗′). (1.27)

The 𝜑 coordinate is discretized using the Fourier grid method [76]. This method
builds a grid with a uniform step:

𝜑 = 𝑠Δ𝜑, (1.28)
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the unperturbed Hamiltonian (1.2), in spheroidal coordinates, can be written as:

𝐻0 = 𝑇 (𝜉, 𝜂, 𝜑) + 𝑈(𝜉, 𝜂).

Next, the integer 𝑛 is determined by the following relation:

2𝑛 = (𝑁𝜑 − 1),

where 𝑁𝜑 is the number of grid points, which is necessarily odd. Then, the dis-
cretized (by the angle 𝜑) Hamiltonian will be written in the form:

𝐻𝑠𝑠′ =< 𝜓𝑠|𝐻|𝜓𝑠′ >=
1

Δ𝜑

(︃
𝑛∑︁

𝑙=−𝑛

𝑒𝑖𝑙2𝜋(𝑠−𝑠′)/𝑁𝜑

𝑁𝜑
𝑇𝑙 + 𝑈(𝜑𝑠)𝛿𝑠𝑠′,

)︃
(1.29)

where
𝑇𝑙 = 𝑙Δ𝑘, Δ𝑘 =

2𝜋

𝑁𝜑Δ𝜑
= 1. (1.30)

Combining negative and positive values of l in a formula (1.29):

𝐻𝑠𝑠′ =
1

Δ𝜑

(︂ 𝑛∑︁
𝑙=1

2𝑐𝑜𝑠(𝑙2𝜋(𝑠− 𝑠′)/𝑁𝜑)

𝑁𝜑
𝑇𝑙 + 𝑈(𝜑𝑠)𝛿𝑠𝑠′

)︂
. (1.31)

After discretization, the equation (1.1) is a system of linear equations from which,
by diagonalization, the energy values and wave functions of the bound states are
found.

1.2 Solution of the non-stationary Schrödinger equation in an
external field

The external field is assumed to be linearly polarized and directed at the angle
𝛽 to the 𝑧 axis, that is, to the internuclear axis of the molecule. For a homonuclear
molecule, the range of variation of the angle 𝛽 from 0∘ to 90∘. Let’s fix the 𝑥 and 𝑦
axes of the Cartesian coordinate system so that the vector F always lies in the 𝑥−𝑧
plane. Then the vector F is decomposed into components along the 𝑥 and 𝑧 axes:

F(𝑡) = 𝐹 (𝑡)[sin 𝛽 e𝑥 + cos 𝛽 e𝑧], (1.32)

and the time dependence 𝐹 (𝑡) has the following form:

𝐹 (𝑡) = 𝐹0 sin
2

(︂
𝜔𝑡

2𝑁

)︂
sin𝜔𝑡 (0 ≤ 𝜔𝑡 ≤ 2𝜋𝑁), (1.33)
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where 𝑁 — is the number of optical cycles in the pulse and 𝜔 is the carrier frequency
of the electromagnetic wave. In this chapter of the dissertation, the calculations were
made for the values 𝜔 = 3.645 a.u. (wavelength 12.5 nm) and 𝑁 = 8. To describe
the time evolution of the wave function of the equation (1.1), two different methods
are used, applicable to both the Schrödinger equation and the Dirac equation. The
first is the split-operator method in energy representation [77]. The following scheme
is used to describe the evolution of the wave function:

Ψ(𝑡+Δ𝑡) = 𝑒𝑥𝑝(−𝑖1
2
Δ𝑡𝐻0)×

𝑒𝑥𝑝(−𝑖Δ𝑡𝑉 (𝑡+
1

2
Δ𝑡))× 𝑒𝑥𝑝(−𝑖1

2
Δ𝑡𝐻0)Ψ(𝑡)

(1.34)

The expression 𝑒𝑥𝑝(−𝑖12Δ𝑡𝐻0) is a free propagator. The field propagator is time-
dependent and must be calculated at each time step. However, this operation does
not take much time. Another method is based on the application of the Crank-
Nicolson algorithm [78] [︂

1 +
𝑖

2
Δ𝑡𝐻

(︂
𝑡+

1

2
Δ𝑡

)︂]︂
Ψ(𝑡+Δ𝑡)

=

[︂
1− 𝑖

2
Δ𝑡𝐻

(︂
𝑡+

1

2
Δ𝑡

)︂]︂
Ψ(𝑡)

(1.35)

where Δ𝑡 is the time step. To find the wave function at time 𝑡 + Δ𝑡, a system of
linear equations (1.35) is solved at each step. The smaller the Δ𝑡 value, the more
accurate the approximation (1.35) for calculating the wave function, but the larger
the number of steps and the calculation time. Calculating the wave function at
each time step in this method involves not only matrix-vector multiplication, but
also solving a system of linear equations. As has been verified numerically, the time
step can be set to approximately 100 times larger than the split operator method
to achieve the same level of accuracy, significantly reducing the overall number of
time steps. Numerical tests for the electromagnetic field in the dipole approximation
demonstrate that with an increase in the number of collocation points (increasing
the value of the expression 𝑁𝑥 · 𝑁𝑦 · 𝑁𝜑), the time required to execute the Crank-
Nicholson algorithm increases significantly faster than the program execution time
based on the use of the split operator method. For the selected number of collocation
points (see below), the Crank-Nicholson method turns out to be faster than the
split operator method. All calculations presented in this chapter were performed
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using the Crank-Nicholson method. The number of steps is set to 𝑁𝑠 = 512 for
each optical cycle, which provides a reasonable compromise between accuracy and
computational speed. As a result of the influence of an external field, the wave
function propagates to the boundaries of the region within which sampling is carried
out. To prevent nonphysical reflection of the wave function from the boundaries of
this region, the wave function at each step is multiplied by a mask function, which
smoothly decreases to zero towards the boundary of the region:

𝑓(𝜉) = cos

(︂
𝜋

𝑎𝜉 −𝑅𝑎

2(𝑅𝑏 −𝑅𝑎)

)︂1/4

(𝑅𝑎 ≤ 𝑎𝜉 ≤ 𝑅𝑏),

𝑓(𝜉) = 1 (𝑎 ≤ 𝑎𝜉 ≤ 𝑅𝑎),

(1.36)

where 𝑅𝑎 is a parameter that determines the value of 𝜉 at which the mask function
begins to decrease. The peak field strength was 𝐹0 = 1.194 a.u, which corresponds to
the field intensity 𝐼0 = 5×1016 W/cm2. In calculations, the near-boundary layer was
set by the value 𝑅𝑎 = 65 a.u. Note that for an arbitrary orientation of the molecular
axis relative to the polarization vector of the external field, the projection of the
angular momentum on the molecular axis is not preserved, and the problem (1.35)
is essentially three-dimensional. In this chapter, the following numerical parameters
were used calculations: 180 collocation points for the 𝜉 coordinate, 16 collocation
points for the 𝜂 coordinate and 5 for the 𝜑 coordinate. The total linear size of the
equation system matrix (1.35) is equal to 14400.

The duration of the laser pulse, taking into account the above parameters, is
334 as, which is significantly less than the characteristic time of motion of the
nuclei. This justifies the used approximation of stationary nuclei, in which only the
dynamics of electron motion is considered, and the nuclei create a static electric
field.

1.3 Calculation of distributions

For the selected parameters of the laser pulse, ionization occurs mainly in the
single-photon regime. The probability of finding the electron after absorption of
a single photon is much greater than the probability of finding the electron after
absorption of two or more photons. In this case, the electron energy after single-
photon ionization (𝐸 = 𝜔 + 𝐸𝑖, 𝐸𝑖 is the energy of the initial state) is such that
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it does not have time to reach the boundaries of the region with radius 𝑅𝑏 for
the duration of the laser pulse. Then the energy and angular distributions of such
photoelectrons can be obtained by projecting the electron wave function at the end
of the pulse onto the continuum eigenfunctions of the unperturbed Hamiltonian
with the correct behavior at large distances (linear combination of a plane wave and
incoming spherical wave).

Since the time-independent Schrödinger equation for a two-center Coulomb sys-
tem allows separation of variables in prolate spheroidal coordinates, the continuum
wave function (with the energy 𝐸 > 0) can be represented using the following
expansion:

Ψ𝑓(k, r) =
∞∑︁
𝑙=0

∞∑︁
𝑚=−∞

𝐶𝑙𝑚(k)𝑅𝑙𝑚(𝜉)𝑆𝑙𝑚(𝜂) exp(𝑖𝑚𝜑), (1.37)

where 𝐶𝑙𝑚(k) are the expansion coefficients (k is the momentum of an electron
at an infinite distance, 𝑘 =

√
2𝐸). In the expression (1.37), the summation index

𝑚 has the meaning of the projection of the electronic angular momentum onto the
molecular axis (𝑧 axis) while the 𝑙 index enumerates the Coulomb spheroidal func-
tions [𝑆𝑙𝑚(𝜂) и 𝑅𝑙𝑚(𝜉) — pseudoangular functions and pseudoradial functions], but
is not equal to the absolute value of the angular momentum (the latter is not a good
quantum number in the absence of spherical symmetry). The Coulomb spheroidal
functions themselves satisfy the second-order ordinary differential equations:[︂

𝜕

𝜕𝜂
(1− 𝜂2)

𝜕

𝜕𝜂
− 𝑚2

1− 𝜂2
+ 2𝐸𝑎2(1− 𝜂2)

+ 2𝑎(𝑍2 − 𝑍1)𝜂

]︂
𝑆𝑙𝑚(𝜂) = 𝜆𝑙𝑚𝑆𝑙𝑚(𝜂),

(1.38)

[︂
𝜕

𝜕𝜉
(𝜉2 − 1)

𝜕

𝜕𝜉
− 𝑚2

𝜉2 − 1
+ 2𝐸𝑎2(𝜉2 − 1)

+ 2𝑎(𝑍2 + 𝑍1)𝜉

]︂
𝑅𝑙𝑚(𝜉) = −𝜆𝑙𝑚𝑅𝑙𝑚(𝜉).

(1.39)

Equations (1.38) and (1.39) are coupled by the separation constant 𝜆𝑙𝑚. The
equation (1.38) for the pseudoangular function is an eigenvalue problem (taking
into account the requirement that the function 𝑆𝑙𝑚(𝜂) must be finite at the singular
points 𝜂 = ±1 at the ends of the interval of variation of the coordinate 𝜂), and
𝜆𝑙𝑚 plays the role of an eigenvalue. This problem is solved using the generalized
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pseudospectral method, similar to the diagonalization of the unperturbed Hamilto-
nian 𝐻0. For the given energy 𝐸 and projection of the angular momentum 𝑚, the
eigenvalues 𝜆𝑙𝑚 are enumerated by the index 𝑙 (𝑙 = 0.1, 2 . . . ).

The pseudoradial Coulomb spheroidal function 𝑅𝑙𝑚(𝜉) is constructed as a solu-
tion of the Cauchy problem for the equation (1.39) with the given parameters 𝑚,
𝐸 and 𝜆𝑙𝑚 [79]. In the vicinity of the point 𝜉 = 1, the function is represented by
its Taylor series. The coefficients of the Taylor series can be found using simple
recurrence relations. After that, the finite-difference Numerov method is applied to
construct the function on the remaining range of the coordinate 𝜉. From the asymp-
totic form 𝜉 → ∞ of the pseudoradial functions 𝛿𝑙𝑚, one can extract the spheroidal
scattering phases 𝛿𝑙𝑚:

𝑅𝑙𝑚(𝜉) ≈
𝜉→∞

1

𝑘𝑎𝜉
sin

[︂
𝑘𝑎𝜉 +

𝑍1 + 𝑍2

𝑘
ln(2𝑘𝑎𝜉)

−𝑙𝜋
2

+ 𝛿𝑙𝑚

]︂
.

(1.40)

Then the correct asymptotics of the wave functions of the continuous spectrum
(1.37) and their normalization to the delta function in the momentum space,

⟨Ψ𝑓(𝑡𝑒𝑥𝑡𝑏𝑓𝑘
′, r)|Ψ𝑓(k, r)⟩ = 𝛿(3)(k− k′), (1.41)

will be ensured if the expansion coefficients of 𝐶𝑙𝑚(k) in the formula (1.37) have the
following form:

𝐶𝑙𝑚(k) =
2𝑖𝑙

(2𝜋)3/2
exp[−𝑖(𝛿𝑙𝑚 +𝑚𝜑𝑘)]𝑆𝑙𝑚(cos 𝜃𝑘), (1.42)

where 𝜃𝑘 and 𝜑𝑘 are the angles of the photoelectron momentum vector k in the
spherical coordinate system.

The differential ionization probability, which describes the distribution of photo-
electrons over energies and emission angles, is calculated using the following equa-
tion:

𝜕2𝑃

𝜕Ω𝜕𝐸
= 𝑘|𝑇𝑓𝑖|2, (1.43)

𝑇𝑓𝑖 = ⟨Ψ𝑓(k, r)|Ψ(r, 𝜏)⟩, (1.44)

where the time 𝜏 corresponds to the end of the laser pulse: 𝜏 = 2𝜋𝑁/𝜔.



22

1.4 Main results of the first chapter

The initial state of the molecular ion H+
2 is the first excited electronic state,

1𝜎𝑢. In most of our calculations, the internuclear separation is equal to 𝑅 = 2 а.u.,
the equilibrium internuclear distance in the ground 1𝜎𝑔 state. In the 1𝜎𝑢 state, the
wave function is antisymmetric under reflection of the coordinates, and there is a
nodal plane located in the center of the molecule perpendicular to the molecular
axis. With such a geometry of the initial state, it is natural to expect the lowest
ionization probability if the molecular axis is oriented perpendicular to the polariza-
tion vector of the external field: when the electron is ejected perpendicular to the
molecular axis, the contributions to the ionization amplitude from the vicinities of
the two nuclei, where the electron density is concentrated, always interfere destruc-
tively. Since the electrons are driven by the linearly polarized laser field, they have
higher probability to escape along the direction of the external field. If this direc-
tion is perpendicular to the molecular axis, then ionization is suppressed because
of destructive two-center interference. These simple qualitative considerations are
confirmed by the calculations of multiphoton ionization of H+

2 in the laser field with
the wavelength in the near infrared region [35]: the maximum and minimum of the
ionization probability correspond to the parallel and perpendicular orientation of the
molecular axis, respectively. For the wavelengths 6 to 23 nm in the soft X-ray and
XUV regions, however, the calculated ionization probability exhibits an anomalous
orientation dependence with the maximum at the perpendicular orientation.

Figure 1.1 displays the dependence of the total ionization probability of H+
2 on

the angle between the direction of the laser electric field and the molecular axis for
several carrier wavelengths. Before the external field is switched on, the electron
is in the first excited state 1𝜎𝑢, and the internuclear distance 𝑅 is fixed at 2 a.u.
Shown are representative examples of the carrier wavelengths, both inside and out-
side the interval 6 to 23 nm. The peak intensities range from 5 × 1015 W/cm2 at
𝜆 = 34 nm to 5 × 1018 W/cm2 at 𝜆 = 4 nm. The intensities are high enough to
produce appreciable ionization probabilities, so the data obtained by solving the
time-dependent Schrödinger equation are accurate and reliable (very small ioniza-
tion probabilities cannot be extracted accurately from the numerical solution of
time-dependent Schrödinger equation). Based on our convergence tests, the relative
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error of the calculated ionization probabilities can be estimated to be below 1% at
figure 1.1. As one can see, at 𝜆 = 10 nm and 𝜆 = 20 nm the behavior of the ioniza-
tion probability as a function of the orientation angle 𝛽 is directly opposite to what
one would expect from the simple, intuitive considerations outlined above: the ion-
ization probability increases with an increase of the angle 𝛽 and reaches a maximum
at 𝛽 = 90∘, that is when the molecular axis is perpendicular to the polarization
vector of the external field. As revealed by the calculations, such an anomalous
orientation dependence of the ionization probability is observed for the wavelengths
within the range 6 to 23 nm. For the wavelengths 𝜆 = 4 nm and 𝜆 = 34 nm outside
this interval, an expected pattern with the minimum at 𝛽 = 90∘ is restored.

The wavelength range where the anomalous orientation dependence of the ion-
ization probability is observed can be estimated with the help of the time dependent
perturbation theory (TDPT). Generally, TDPT can be applied if the external field
is relatively weak. The first-order TDPT can be used to calculate the one-photon
ionization probability and returns the following semianalytical expression for the
dependence on the orientation angle 𝛽:

𝑃 = 𝑃‖ cos
2 𝛽 + 𝑃⊥ sin2 𝛽, (1.45)

𝑃‖ — probability of electron emission along the molecular axis, 𝑃⊥ —perpendicular to
it. These probabilities are expressed through the bound-free dipole matrix elements:

𝑃‖ =
∞∑︁
𝑙=0

∞∫︁
0

𝑑𝐸 𝐺(𝐸) |⟨Ψ𝐸𝑙0|𝑧|Ψ𝑖⟩|2, (1.46)

𝑃⊥ =
∞∑︁
𝑙=1

∑︁
𝑚=±1

∞∫︁
0

𝑑𝐸 𝐺(𝐸) |⟨Ψ𝐸𝑙𝑚|𝑥|Ψ𝑖⟩|2. (1.47)

The continuum wave functions Ψ𝐸𝑙𝑚 here are described by the energy 𝐸, quantum
number 𝑙, and angular momentum projection 𝑚 onto the molecular axis (see (1.38)
and (1.39)). The orthogonality and normalization relation:

⟨Ψ𝐸′𝑙′𝑚′|Ψ𝐸𝑙𝑚⟩ = 𝛿𝑙𝑙′𝛿𝑚𝑚′𝛿(𝐸 − 𝐸 ′). (1.48)

The function 𝐺(𝐸) is determined by the time dependence of the laser field. For the
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Figure 1.1: The total probability of ionization H+
2 from the 1𝜎𝑢 state depending on the angle 𝛽

between the field polarization vector and the molecular axis: (a), 𝜆 = 4 nm, 𝐼0 = 5×1018 W/cm2;
(b), 𝜆 = 10 nm, 𝐼0 = 5 × 1017 W/cm2; (c), 𝜆 = 20 nm, 𝐼0 = 5 × 1016 W/cm2; (d), 𝜆 = 34 nm,
𝐼0 = 5 × 1015 W/cm2. Internuclear distance 𝑅 = 2 a.u., pulse duration 8 optical cycles. Solid
black line: numerical data obtained from the Schrödinger equation, dotted red line: data obtained
from first order perturbation theory.
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pulse shape (1.33), it is defined as follows:

𝐺(𝐸) =
𝐹 2
0

4

[︂
2𝜔

𝜔2 − (𝐸 − 𝐸𝑖)2
− 𝜔−

𝜔2
− − (𝐸 − 𝐸𝑖)2

− 𝜔+

𝜔2
+ − (𝐸 − 𝐸𝑖)2

]︂2
sin2

[︂
𝜋𝑁(𝐸 − 𝐸𝑖)

𝜔

]︂
. (1.49)

The following notation is used here:

𝜔− = 𝜔

(︂
1− 1

𝑁

)︂
, 𝜔+ = 𝜔

(︂
1 +

1

𝑁

)︂
. (1.50)

As seen in figure 1.1, the TDPT ionization probabilities reproduce the correct de-
pendence on the orientation angle 𝛽 at least qualitatively.

According to (1.45), the ionization probability has a maximum at 𝛽 = 90∘ if
𝑃⊥ > 𝑃‖. Figure 1.2 (left graph) shows the dependence of the ratio 𝑃⊥/𝑃‖ on the
wavelength of the laser field. For the 1𝜎𝑢 initial state, this ratio is less than unity
for the wavelengths between the one-photon ionization threshold at 𝜆 = 23 nm and
𝜆 = 68 nm. In this wavelength interval, the pattern in the orientation dependence
of the ionization probability corresponds to the intuitive picture outlined above,
with the maximum at 𝛽 = 0∘ and minimum at 𝛽 = 90∘. Then between 𝜆 =

23 nm and 𝜆 = 6 nm the ionization probability exhibits an anomalous orientation
dependence, with the maximum at 𝛽 = 90∘ and minimum at 𝛽 = 0∘. For even
shorter wavelengths, one can see alternating intervals 𝑃⊥ < 𝑃‖ and 𝑃⊥ > 𝑃‖ with
the ratio 𝑃⊥/𝑃 | gradually approaching unity. On the same left panel of figure 1.2,
the data for the initial 1𝜎𝑔 state are also shown. One can see that in the latter case
the ratio 𝑃⊥/𝑃‖ oscillates almost with the opposite phase compared to the case of the
1𝜎𝑢 initial state. Considering an effect of two-center interference on ionization, with
the contributions to the ionization amplitude coming from the regions of localization
of the electron density in the vicinities of the nuclei, the difference between the 1𝜎𝑔

and 1𝜎𝑢 states is related to the phase difference of the wave function on the nucleus
1 and nucleus 2. While this difference is zero for the 1𝜎𝑔 state, it is equal to 𝜋 for
the 1𝜎𝑢 state, thus changing the interference pattern.

Besides the phase difference of the initial wave function on the nucleus 1 and
nucleus 2, the outcome of the two-center interference essentially depends on the ki-
netic energy of the emitted electron (which, in turn, is determined by the photon
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Figure 1.2: Ratio 𝑃⊥/𝑃‖ from the first-order perturbation theory versus the carrier wavelength
(left panel, note the logarithmic wavelength scale) and scaled photoelectron momentum 𝑘𝑎 (right
panel). The solid black line in both panels corresponds to initial 1𝜎𝑢 state with internuclear
separation 𝑅 = 2 a.u. Left panel: dashed red line, initial 1𝜎𝑔 state with internuclear separation
𝑅 = 2 a.u. Right panel: dashed blue line, initial 1𝜎𝑢 state with internuclear separation 𝑅 = 2.4

a.u.; dot-dash green line, initial 1𝜎𝑢 state with internuclear separation 𝑅 = 1.6 a.u.; dotted black
line, analytical approximation (1.54) for initial 1𝜎𝑢 state; dash double dot red line, corrected
analytical approximation (1.54), (1.55) for κ2

0 = 5.5 .

energy and ionization potential) and the internuclear distance. When these param-
eters change, the characteristics of the dependence of the ionization probability on
the orientation of the molecular axis can change qualitatively. In figure 1.1, the
data are presented for the same 1𝜎𝑢 initial state and internuclear distance 𝑅 = 2
a.u. but for various photon energies which determine the photoelectron momentum
𝑘 according to the energy conservation relation (apart from the broadening of the
energy distribution due to finite duration of the laser pulse):

𝑘 =
√︀
2(𝐸𝑖 + 𝜔). (1.51)

For comparison, figure 1.3 shows the ionization probability as a function of the angle
𝛽 for the fixed electron momentum 𝑘. Besides the results for the 1𝜎𝑢 state at 𝑅 = 2

a.u. and 𝑅 = 1.6 a.u., data are given for the state 1𝜎𝑔 at 𝑅 = 2 a.u. and for a
model atomic ion initially in the 2𝑝0 state (with the zero projection of the angular
momentum onto the 𝑧 axis). The latter case corresponds to the limit 𝑅 → 0 of
the 1𝜎𝑢 state in H+

2 . Assuming that the charge of the nucleus of an atomic ion is
𝑍 = 2.31 a.u., then the energy of the 2𝑝0 state is equal to the energy of the 1𝜎𝑢

state in the H+
2 molecule at 𝑅 = 2 a.u. As one can see in figure 1.3, the orientation
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Figure 1.3: Ionization probability H+
2 as a function of the angle 𝛽 between the field polarization

vector and the molecular axis: (a), initial 1𝜎𝑢 state, 𝑅 = 2 a.u., 𝜆 = 12.5 nm; (b), initial 1𝜎𝑔
state, 𝑅 = 2 a.u, 𝜆 = 11.2 nm; (c), initial 1𝜎𝑢 state, 𝑅 = 1.6 a.u, 𝜆 = 12.5 nm; (d), model atomic
ion with 𝑍 = 2.31, initial 2𝑝0 state, 𝜆 = 12.5 nm. The pulse duration is 8 optical cycles and the
peak intensity 𝐼0 =5 × 1016 W/cm2.
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dependence for the initial state 1𝜎𝑢 becomes flatter as the internuclear distance
decreases. Eventually, the maximum jumps from 𝛽 = 90∘ to 𝛽 = 0∘.

Fluctuations in the ratio 𝑃⊥/𝑃‖ observed in figure 1.2 and the anomalous orien-
tation dependence of the ionization probability in the wavelength range 6–23 nm for
the initial state 1𝜎𝑢 for 𝑅 = 2 a.u. can be explained by the effect of two-center inter-
ference. A very rough, but useful approximation for the dipole matrix elements can
be made by using a linear combination of displaced spherically symmetric orbitals
to describe the 1𝜎𝑢 state:

Ψ𝑖 ≈ Φ(|r+ 𝑎e𝑧|)− Φ(|r− 𝑎e𝑧|), (1.52)

and replace the continuum states with the plane waves exp(𝑖k · r)). This approxi-
mation can be traced back to the early work of Cohen and Fano [80] who studied
interference effects in total photoionization cross sections of diatomic molecules.
Then the squared matrix elements of the momentum operator (velocity gauge (1.3)
is used for the interaction with the external field) have the following approximate
expressions:

|⟨exp(𝑖k · r)|𝑝𝑧|Ψ𝑖⟩|2 ≈ 4𝑘2𝑧 sin
2(𝑘𝑧𝑎) |Φ̃(𝑘)|2,

|⟨exp(𝑖k · r)|𝑝𝑥|Ψ𝑖⟩|2 ≈ 4𝑘2𝑥 sin
2(𝑘𝑧𝑎) |Φ̃(𝑘)|2,

(1.53)

where 𝑘𝑥 and 𝑘𝑧 are projections of the electron momentum k on the 𝑥 and 𝑧 axes, re-
spectively, and Φ̃(𝑘) is a Fourier transform of the spherically symmetric orbital Φ(𝑟).
After integration (1.53) over the angles of the vector k, an analytical approximation
for the ratio 𝑃⊥/𝑃‖ is obtained:

𝑃⊥

𝑃‖
≈ κ3 + 3κ cosκ − 3 sinκ

κ3 − 3κ2 sinκ − 6κ cosκ + 6 sinκ
, (1.54)

where κ = 2𝑘𝑎. The function on the right-hand side of (1.54) has an oscillatory de-
pendence on the scaled electron momentum 𝑘𝑎 (the electron momentum multiplied
by the half internuclear distance), which originates from the two-center interference
factor in he matrix elements (1.53). Although the oscillatory structure of 𝑃⊥/𝑃‖

is qualitatively reproduced by the function (1.54), quantitative agreement between
the numerical data and analytical approximation is rather poor, particularly at low
scaled electron momenta. The related issues were discussed in the literature with re-
spect to photoionization of H+

2 in the ground electronic state [81] as well as electron
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spectra after above-threshold multiphoton ionization [16] and photon momentum
transfer [82]. A conclusion was made that approximations of the initial and final
states by a linear combination of atomic orbitals and a free-particle wave function,
respectively, are not good enough to reproduce the numerical data accurately [81].
Regarding the plane wave approximation for the final electronic states, it is expected
to be not very good at low electron energies (like the Born approximation of the
scattering theory). While a rigorous approach to improving the quality of the ap-
proximation would be to use more accurate continuum wave functions that include
scattering phases, this thesis proposes a simple empirical correction to the model
(1.54). The plane wave approximation does not take into account the increase in
electron momentum in a potential well near nuclei. This region makes the main con-
tribution to the matrix elements of the momentum operator, calculated by spatial
integration in (1.53). To take this effect into account to some extent, the following
substitution can be made in the (1.54) function:

κ →
√︁

κ2 + κ2
0, (1.55)

where κ2
0 is a fitting parameter, effectively representing the depth of the potential

well. The corrected results for κ2
0 = 5.5 are also shown in figure 1.2. As one can

see, agreement with the numerical data is much better in this case. Regarding fig-
ure 1.2, right panel, the numerical data for various internuclear distances, presented
as functions of the scaled electron momentum 𝑘𝑎, are close to each other, which
confirms the role of this parameter in describing photoionization.

The energy and angular distributions of the outgoing photoelectrons can also
help to understand the two-center interference nature of anomalous orientation de-
pendence of the ionization probability. A simple relation describing the condition
of constructive interference of the waves from two centers can be represented in the
following form (see, for example, [21], where the effects of two-center interference in
high harmonic generation were discussed):

𝑘𝑎 cos 𝜃 =

(︂
𝑛+

1

2

)︂
𝜋 (𝑛 = 0.1, 2 . . . ). (1.56)

Here 𝜃 is the electron emission angle relative to the molecular axis. Accordingly, the
condition of destructive interference can be written as:

𝑘𝑎 cos 𝜃 = 𝑛𝜋 (𝑛 = 0.1, 2 . . . ). (1.57)
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The formulas (1.56) and (1.57) take into account that the initial wave function
1𝜎𝑢 is antisymmetric, giving rise to an additional phase 𝜋 difference 𝜋 between
the contributions to the ionization amplitude from the vicinities of the two nuclei.
As noted above, the destructive interference corresponds to the electron emission
angle 𝜃 = 90∘ irrespective of the internuclear distance and laser wavelength, with
𝑛 = 0 in the formula (1.57). Constructive interference can be achieved if 𝑛 = 0 and
𝑘𝑎 > 𝜋/2 in the formula (1.56). The value 𝑘𝑎 = 𝜋/2 agrees well withthe beginning
of the region of anomalous dependence, shown in figure 1.2 (the right picture). If
𝜆 < 8 nm, the destructive interference condition (1.57) can be satisfied with 𝑛 = 1.
Initially at 𝜆 = 8 nm, the corresponding emission angle is 𝜃 = 0∘, suppressing the
electron emission along the molecular axis and still favoring the anomalous orienta-
tion dependence of the ionization probability. However, at shorter wavelengths, this
destructive interference minimum is shifted to larger emission angles. Eventually,
around 𝜆 = 6 nm, the pattern in the orientation dependence changes as seen in
figure 1.2. At even shorter wavelengths, multiple interference minima and maxima
give rise to alternating wavelength intervals with 𝑃⊥ > 𝑃‖ and 𝑃⊥ < 𝑃‖.

To illustrate the effect of constructive interference on the angular distributions
of photoelectrons, energy and emission angle distributions were plotted for a wave-
length 𝜆 = 12.5 nm. The same wavelength was used in the calculations of the
photoelectron spectra for the circularly polarized laser pulses [37]. In this case,
according to (1.56), the interference maximum should be observed at the emission
angle 𝜃 ≈ 50∘ (and also for the angle 𝜃 = 180∘−50∘ = 130∘ if the angle 𝜃 is measured
from the selected positive direction of the 𝑧 axis). If the electron escapes along the
molecular axis (𝜃 = 0∘ или 𝜃 = 180∘) upon ionization of H+

2 , the phase difference
between the waves coming from the vicinities of the nuclei makes the differential
ionization probability weaker by a factor of 2.4 compared to the largest possible
value at 𝜃 = 50∘(130∘). As a result, in the case of the parallel orientation of the
molecular axis (𝛽 = 0∘), where the photoelectrons should be ejected predominantly
along the molecular axis, the total ionization is also suppressed. These consider-
ations are illustrated by the distributions of photoelectrons with respect to their
energies and emission angles presented in figure 1.4. The distributions are shown
in the 𝑥− 𝑧 plane, where both the molecular axis and the laser electric field vector
lie. Such a plane is not uniquely defined for the parallel orientation of the molecule
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Figure 1.4: Energy and angular distributions of photoelectrons for the H+
2 molecule prepared in

the 1𝜎𝑢 state by a linearly polarized pulse with a wavelength of 12.5 nm and a peak intensity of
5× 1016 W/cm2 for various orientations of the molecular axis.

(𝛽 = 0∘), but in this case the electron distributions are invariant with respect to
rotation about the 𝑧 axis and look the same in any plane which contains this axis.
In figure 1.4 (and also in figures 1.5 and 1.6 below) the right half-planes of all panels
correspond to the positive semiaxis 𝑥, where the azimuthal angle 𝜑 = 0∘. The left
half-planes correspond to the negative semiaxis 𝑥, where 𝜑 = 180∘.

The energy distributions in Figure 1.4 describe the first peak of above-threshold
ionization, with a maximum at the electron kinetic energy 𝐸 = 2.98 a.u. The width
of this peak in the energy region is determined mainly by the width of the frequency
spectrum of the laser pulse. With a parallel orientation of the molecule (𝛽 = 0∘),
the maximum is located not in the direction of the axis of the molecule and the
polarization vector of the laser field [𝜃 = 0∘(180∘)], and for 𝜃 ≈ 45∘(135∘). Such a
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position of the maximum is due to the balance of two factors: on the one hand, the
electric field of the laser is directed along the molecular axis and tends to knock out
the electron in this direction, and on the other hand, the greatest amplification of the
signal due to the constructive interference takes place at 𝜃 = 50∘. Similar angular
distributions of electrons at 𝛽 = 0∘ were obtained and explained by the presence of
a two-center interference maximum in the work of [38], where the two-dimensional
model H+

2 was used. For the orientations 𝛽 = 40∘ and 𝛽 = 60∘, the maximum in
the angular distribution is located in the vicinity of 𝜃 = 50∘, that is, in the direction
of the strongest constructive interference and close to the polarization direction of
the external field. Finally, at 𝛽 = 90∘, the maximum in the angular distribution is
located approximately at 𝜃 = 60∘(120∘). As in the case of 𝛽 = 0∘, this is due to
the balance of two factors: on the one hand, suppression of the electron emission
perpendicular to the molecular axis due to the destructive interference, and on the
other hand, constructive interference at 𝜃 = 50∘. In this case, the total ionization
probability turns out to be higher than for 𝛽 = 0∘. As a result, an anomalous
dependence of the total ionization probability on the orientation of the molecule
emerges, as shown in figure 1.3.

Figure 1.5 displays the distributions of photoelectrons with respect to the energy
and emission angle after ionization of H+

2 initially in the 1𝜎𝑢 state by a pulse with
the wavelength 39 nm and peak intensity of 5 × 1014 W/cm2, figure 1.6 shows
similar distributions for the ionization of an atomic ion with the nuclear charge
𝑍 = 2.31 for the initial state 2𝑝0 by a laser pulse with the wavelength 𝜆 = 12.5 nm
and peak intensity 5 × 1016 W/cm2. In both cases, for the orientation, 𝛽 = 0∘

one can see a prominent maximum in the photoelectron angular distribution at the
emission angle 𝜃 = 0∘(180∘). At the laser wavelength 𝜆 = 39 nm, the two-center
interference pattern in H+

2 does not contain a maximum inside the emission angle
interval [0∘, 90∘], and the differential ionization probability decreases monotonically
as the emission angle changes from 0∘ to 90∘. At 𝜃 = 90∘, the differential ionization
probability is close to zero due to the destructive two-center interference. For the
atomic ion (figure 1.6, 𝛽 = 0∘), there is no two-center interference, and a local
maximum in the angular distribution is observed at the emission angle 𝜃 = 90∘,
although this maximum is less pronounced than the main maximum at 𝜃 = 0∘.
When the orientation angle 𝛽 is changed from 0∘ to 90∘, the main maximum in the
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Figure 1.5: Energy and angular distributions of photoelectrons for the H+
2 molecule prepared in

the 1𝜎𝑢 state by a linearly polarized pulse with a wavelength of 39 nm and a peak intensity of
5× 1014 W/cm2 for various orientations of the molecular axis.
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Figure 1.6: Energy and angular distributions of photoelectrons during ionization of a model
atomic ion with a nuclear charge of 𝑍 = 2.31, initially prepared in the 2𝑝0 state, by a linearly
polarized pulse with a wavelength of 12.5 nm and a peak intensity of 5× 1016 W/cm2 for various
angles between the polarization vector of the laser field and the 𝑧 axis.
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angular distribution is gradually shifted from 𝜃 = 0∘(180∘) to 𝜃 = 45∘(135∘).

1.5 Chapter 1 Summary

This chapter of the dissertation considers the effect of two-center interference on
the process of ionization of the H+

2 molecule prepared in the 1𝜎𝑢 excited electronic
state by a linearly polarized laser pulse with a carrier wavelength in the far ultravi-
olet region . The result of such interference, in the wavelength range of 6−−23 nm,
is an anomalous dependence of the ionization probability on the orientation of the
molecule axis, in which the maximum ionization probability is observed when the
molecule is perpendicular to the polarization of the external field, and ionization is,
on the contrary, suppressed when the orientation is parallel. In this case, the angular
distributions of photoelectrons exhibit a minimum for the emission angle along the
molecular axis. Typically, the effect of two-center interference is associated with the
destructive nature of such interference, which leads to the appearance of a minimum
in the differential ionization probability or harmonic spectrum. In this case, con-
structive interference takes place, which enhances the flow of emitted electrons at a
certain angle in the range from 0∘ to 90∘ relative to the same flow along the axis of
the molecule. As a result, the maximum in the angular distribution of photoelec-
trons shifts from the molecular axis, even if this axis is parallel. As a consequence,
the total ionization probability for parallel orientation also has a minimum. The
position of the interference maximum in the angular distribution of photoelectrons
is well described by a simple formula for the interference of waves from two point
sources, the distance between which is equal to the internuclear distance in the
molecule. Based on this formula, it is possible to estimate the upper limit of laser
wavelengths at which the maximum constructive interference of electrons emitted
from the vicinity of two nuclei at any angle from the interval [0∘, 90∘] is observed.
For the initial state 1𝜎𝑢 and internuclear distance 𝑅 = 2 a.u. this boundary is equal
to 24 nm. For large wavelengths, there is no such constructive interference, and the
maximum of the differential ionization probability for a parallel orientation corre-
sponds to the direction along the axis of the molecule. The anomalous dependence
of the total ionization probability on orientation then disappears, which is confirmed
by calculations for a wavelength of 39 nm.
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Chapter 2. Multiphoton Ionization of one-electron

relativistic Diatomic molecules in strong laser fields

This chapter of the dissertation is devoted to the study of relativistic effects in
single-electron quasimolecules exposed to an external field and effects arising from
going beyond the dipole approximation. To do this, the Dirac equation is solved in
prolate spheroidal coordinates using the numerical methods outlined in the previous
chapter. The Schrödinger equation with Coulomb nucleus-electron interaction allows
scaling with respect to the nuclear charge 𝑍 in the dipole approximation, while the
Dirac equation is not invariant under such a transformation. The difference in results
predicted by the Schrödinger equation and the Dirac equation is identified with
relativistic effects. It is expected that the role of relativistic effects increases with
increasing nuclear charge 𝑍, due to such effects as the deepening of the energy level
of the ground state with increasing 𝑍, relativistic shift of the resonant frequency.

The end of the chapter is devoted to going beyond the dipole approximation and
studying the resulting effects that change the dynamics of ionization.

2.1 Time-dependent Dirac equation for a one-electron quasimolecule in
a linearly polarized electromagnetic field

For the purposes of this chapter of the dissertation, it is necessary to solve the
nonstationary Dirac equation for a one-electron quasimolecule. The time-dependent
Dirac equation for the electron interacting with the atomic core and external elec-
tromagnetic field reads as:

𝑖
𝜕

𝜕𝑡
Ψ(r, 𝑡) = [𝐻0 + 𝑉 (r, 𝑡)]Ψ(r, 𝑡), (2.1)

where Ψ(r, 𝑡) is a four-component wave function and the unperturbed Hamiltonian
𝐻0 takes the form:

𝐻0 = 𝑐(𝛼 · p) +𝑚𝑒𝑐
2𝛽 + 𝑈𝐼4. (2.2)
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where 𝑐 is the speed of light, p is the momentum operator, 𝑚𝑒 is the electron mass,
U is the atomic potential of nuclei, 𝐼4 is the 4x4 diagonal unit matrix, and 𝛼 and 𝛽
Dirac matrices:

𝛽 =

(︃
𝐼 0

0 −𝐼

)︃
, 𝛼 = (𝛼𝑥, 𝛼𝑦, 𝛼𝑧), (2.3)

𝛼𝑥 =

⎛⎜⎜⎜⎜⎝
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎞⎟⎟⎟⎟⎠ , 𝛼𝑦 =

⎛⎜⎜⎜⎜⎝
0 0 0 −𝑖
0 0 𝑖 0

0 −𝑖 0 0

𝑖 0 0 0

⎞⎟⎟⎟⎟⎠ , 𝛼𝑧 =

⎛⎜⎜⎜⎜⎝
0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

⎞⎟⎟⎟⎟⎠ . (2.4)

The interaction with the external field 𝑉 is written as:

𝑉 = (𝛼 ·A). (2.5)

In the formula (2.5) A(r, 𝑡) is the vector potential, which is selected in the Coulomb
gauge (∇·A) = 0. When choosing an electromagnetic field linearly polarized along
the 𝑧 axis, only one term remains in the expression (2.5):

𝑉 = 𝐴(r, 𝑡)

⎛⎜⎜⎜⎜⎝
0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

⎞⎟⎟⎟⎟⎠ (2.6)

It turns out to be convenient to make the following transformation of the wave
function

Ψ ≡

⎛⎜⎜⎜⎜⎝
𝜓1

𝜓2

𝜓3

𝜓4

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
𝜓1

𝜓2𝑒𝑥𝑝(𝑖𝜑)

𝑖𝜓3

𝑖𝜓4𝑒𝑥𝑝(𝑖𝜑)

⎞⎟⎟⎟⎟⎠ . (2.7)
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𝜑-azimuthal angle describing rotation around the 𝑧 axis. With this transformation,
the Unperturbed Hamiltonian takes the following form:

�̃�0 = 𝑚𝑒𝑐
2

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎠+ 𝑐

⃦⃦⃦⃦
⃦ 0 𝐵

𝐵† 0

⃦⃦⃦⃦
⃦

+𝑐

⃦⃦⃦⃦
⃦ 0 𝐷

𝐷† 0

⃦⃦⃦⃦
⃦+ 𝑈

⃦⃦⃦⃦
⃦1 0

0 1

⃦⃦⃦⃦
⃦ .

(2.8)

In the equation (2.8), the notations 𝐵 and 𝐷 correspond to 2x2 matrices, which in
prolate spheroidal coordinates have the form:

𝐵 =

⎛⎝+ 𝜂(𝜉2−1)
𝑎(𝜉2−𝜂2)

𝜕
𝜕𝜉 +

𝜉(1−𝜂2)
𝑎(𝜉2−𝜂2)

𝜕
𝜕𝜂

√
(𝜉2−1)(1−𝜂2)

𝑎(𝜉2−𝜂2) [𝜉 𝜕
𝜕𝜉 − 𝜂 𝜕

𝜕𝜂 ]√
(𝜉2−1)(1−𝜂2)

𝑎(𝜉2−𝜂2) [𝜉 𝜕
𝜕𝜉 − 𝜂 𝜕

𝜕𝜂 ] − 𝜂(𝜉2−1)
𝑎(𝜉2−𝜂2)

𝜕
𝜕𝜉 −

𝜉(1−𝜂2)
𝑎(𝜉2−𝜂2)

𝜕
𝜕𝜂

⎞⎠ , (2.9)

𝐷 =

⎛⎝ 0 − 𝑖

𝑎
√

(𝜉2−1)(1−𝜂2)

𝜕
𝜕𝜑 + 1

𝑎
√

(𝜉2−1)(1−𝜂2)

𝑖

𝑎
√

(𝜉2−1)(1−𝜂2)

𝜕
𝜕𝜑 0

⎞⎠ . (2.10)

The interaction operator 𝑉 , after transforming the wave function, takes the following
form:

𝑉 = 𝐴(r, 𝑡)

⎛⎜⎜⎜⎜⎝
0 0 𝑖 0

0 0 0 −𝑖
𝑖 0 0 0

0 −𝑖 0 0

⎞⎟⎟⎟⎟⎠ . (2.11)

Now for the four-component wave function 𝜓, representable as:

Ψ̃ ≡

⎛⎜⎜⎜⎜⎝
𝜓1

𝜓2

𝜓3

𝜓4

⎞⎟⎟⎟⎟⎠ . (2.12)

The Dirac equation takes the form:

𝑖
𝜕

𝜕𝑡
Ψ̃ = [𝐻0 + 𝑉 ]Ψ̃, (2.13)
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the wave function Ψ̃ can be expanded in a Fourier series as a function of the az-
imuthal angle 𝜑:

Ψ̃ =
∞∑︁

𝑚=−∞
exp(𝑖𝑚𝜑)Ψ̃(𝑚). (2.14)

Each term on the right side corresponds to the projection onto the z axis, 𝑀 =

𝑚+ 1/2 of the total angular momentum. The Hamiltonian �̃�(𝑚)
0 is completely real

and can be represented as:

�̃�
(𝑚)
0 = 𝑚𝑒𝑐

2

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎠+ 𝑐

⃦⃦⃦⃦
⃦ 0 𝐵

𝐵† 0

⃦⃦⃦⃦
⃦

+𝑐

⃦⃦⃦⃦
⃦ 0 𝐷𝑚

𝐷†
𝑚 0

⃦⃦⃦⃦
⃦+ 𝑈

⃦⃦⃦⃦
⃦1 0

0 1

⃦⃦⃦⃦
⃦

. (2.15)

Where the matrix 𝐷𝑚 can be represented as:

𝐷𝑚 =

⎛⎝ 0 𝑚+1

𝑎
√

(𝜉2−1)(1−𝜂2)

− 𝑚

𝑎
√

(𝜉2−1)(1−𝜂2)
0

⎞⎠ (2.16)

If the field is considered in the dipole approximation and the field is linearly polarized
along the molecular axis, the projection of the angular momentum onto the 𝑧 axis
is preserved. For an initial state with a certain angular momentum projection, only
one term with the corresponding value of m needs to be retained in the equation

�̃�
(𝑚)
0 Ψ̃(𝑚)

𝑛 = 𝐸(𝑚)
𝑛 Ψ̃(𝑚)

𝑛 . (2.17)

2.2 Electron interaction potential with nuclei

The finite size of the nuclei may not be taken into account for the molecule H+
2

under the influence of an electromagnetic field and the coulomb interaction operator
can be used:

𝑈(r) = − 𝑍

r+ a
− 𝑍

r− a
, (2.18)

where a is a vector directed along the molecular axis and equal to half the internu-
clear distance:

a =
1

2
𝑅e𝑧, (2.19)
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vector e𝑧 is a unit vector along the molecular axis 𝑧. charge 𝑍 = 1 (for molecule
H+

2 ). For nuclei with large charges, the point nucleus approximation is no longer
applicable, since such an approximation leads to an ever-increasing error in calcula-
tions with increasing nuclear charge 𝑍 due to the singularity of the wave function on
the nuclei of the molecule. The interaction potential is determined by the nuclear
charge distribution 𝜌𝑛(r):

𝑈(r) = −
∫︁
𝑑3𝑟′

𝜌𝑛(r
′ + a)

|r− r′|
−
∫︁
𝑑3𝑟′

𝜌𝑛(r
′ − a)

|r− r′|
. (2.20)

In this work, the spherically symmetric Fermi distribution is used to describe the
nuclear charge density distribution [83]:

𝜌𝑛(𝑟) = 𝜌0
1 + exp[−𝑟0/𝑏]

1 + exp[(𝑟 − 𝑟0)/𝑏]
(2.21)

where the parameter b is set to 2.3/(4𝑙𝑛3) fm [83] and parameters 𝜌0 and 𝑟0 are
calculated given the total nucleus charge 𝑍 and experimental values of the nucleus
root mean square radius [84]. Note that the potential (2.20) with the smooth nuclear
charge distribution (2.21) does not have Coulomb singularities at the nuclei centers
r=±𝑎, hence the Dirac wave function is also regular there.

2.3 Type of vector potential

When studying multiphoton ionization, a linearly polarized laser field is used
and the vector potential A is assumed to be directed along the 𝑧 axis, which is
parallel to the molecular axis. In the dipole approximation, the laser pulse has a
Gaussian form:

𝐴(𝑡) =
𝑐𝐹0

𝜔
exp

(︂
−2 ln 2(

𝑡2

𝜏 2
)

)︂
sin(𝜔𝑡). (2.22)

In the formula (2.22) 𝐹0 is the peak electric field strength, 𝜏 has the meaning of full
width at half maximum (FWHM). For all calculations, 𝜏 was chosen to be equal to:

𝜏 = 7.5
𝜋

𝜔
. (2.23)

Therefore, the FWHM value was equal to 3.75 optical cycles. Outside the dipole
approximation, the vector potential depends on both time and spatial coordinates
and the vector potential (2.22) should be modified using the following substitution:

𝑡→ 𝑡− 𝑥

𝑐
. (2.24)
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With this substitution, the vector potential satisfies the wave equation for electro-
magnetic fields in vacuum and describes a laser pulse linearly polarized in the 𝑧
direction and propagating in the 𝑥 direction. As shown in [57], it is most important
to preserve spatial dependence of the pulse envelope, since non-dipole effects in the
pulse envelope provide the dominant contribution (relative to the contribution of
the pulse carrier) beyond the dipole approximation.

2.4 Numerical solution of the nonstationary Dirac equation

First, the stationary Dirac equation is solved to obtain the energies and wave
functions of the bound states. To numerically solve the stationary Dirac equation,
the methods described in Chapter 1 are used. The evolution of the wave function
in time, after solving the stationary equation, can be described by two different
methods. The first is the split operator method in the energy representation [77],
which is also used to solve the non-stationary Schrödinger equation [85, 86]. The
following scheme is used to describe the evolution of the wave function:

Ψ̃(𝑡+Δ𝑡) = exp

(︂
−𝑖1

2
Δ𝑡�̃�0

)︂
×

exp

(︂
−𝑖Δ𝑡𝑉 (𝑡+

1

2
Δ𝑡)

)︂
exp

(︂
−𝑖1

2
Δ𝑡�̃�0

)︂
Ψ̃(𝑡).

(2.25)

The expression exp
(︁
−𝑖12Δ𝑡�̃�0

)︁
is a free propagator. The free propagator can be

expressed in terms of propagators corresponding to specific angular momentum pro-
jections:

exp

(︂
−𝑖1

2
Δ𝑡�̃�0

)︂
Ψ̃(𝑡) =

∞∑︁
𝑚=−∞

exp(𝑖𝑚𝜑) exp

(︂
−𝑖1

2
Δ𝑡�̃�𝑚

0

)︂
Ψ𝑚(𝑡). (2.26)

The propagator exp
(︁
−𝑖12Δ𝑡�̃�

𝑚
0

)︁
is sought in the form of a spectral decomposition:

exp

(︂
−𝑖1

2
Δ𝑡�̃�𝑚

0

)︂
=
∑︁
𝑛

exp

(︂
−𝑖1

2
Δ𝑡𝐸(𝑚)

𝑛

)︂
|Ψ̃(𝑚)

𝑛 ⟩⟨Ψ̃(𝑚)
𝑛 |, (2.27)

where the wave functions Ψ̃(𝑚)
𝑛 and energies 𝐸(𝑚)

𝑛 are found as a solution to the eigen-
value problem of the equation (2.17). The equation (2.26) is very useful for calcula-
tions beyond the dipole approximation, where the projection of angular momentum
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is not conserved: in the matrix-vector product, this allows the use of several lower-
dimensional matrices (partial propagators) rather than a single higher-dimensional
matrix (full propagator). The external field propagator exp

(︁
−𝑖Δ𝑡𝑉

)︁
can be repre-

sented analytically as:

exp
(︁
−𝑖Δ𝑡𝑉

)︁
=

⃦⃦⃦⃦
⃦ cos(𝐴Δ𝑡) sin(𝐴Δ𝑡)𝜎𝑧

− sin(𝐴Δ𝑡)𝜎𝑧 cos(𝐴Δ𝑡)

⃦⃦⃦⃦
⃦ (2.28)

In coordinate representation, where the angle is discretized on a uniform grid,
the matrix is quasi-diagonal in the sense that it consists of four square blocks, each
of which represents a diagonal matrix. The field propagator is time-dependent and
must be calculated at each time step. However, this operation does not require
much time, since the propagator matrix is quasi-diagonal. Before applying partial
free propagators at each time step, the wave function must be converted from a full
coordinate representation to an angular momentum projection representation. This
is done using the fast Fourier transform along the 𝜑 coordinate. This operation
is performed by hardware-optimized FFT (fast Fourier transform) procedures and
does not take much time.

Another method is based on the application of the Crank-Nicholson algorithm,
which was used in the first chapter of the dissertation to solve the Schrödinger
equation. For the Dirac equation, the evolution of the wave function is described as
follows: [︂

1 +
𝑖

2
Δ𝑡�̃�

(︂
𝑡+

1

2
Δ𝑡

)︂]︂
Ψ̃(𝑡+Δ𝑡)

=

[︂
1− 𝑖

2
Δ𝑡�̃�

(︂
𝑡+

1

2
Δ𝑡

)︂]︂
Ψ̃(𝑡),

(2.29)

where �̃�(𝑡) = �̃�+𝑉 (𝑡)−𝑚𝑒𝑐
2 is the complete time-dependent Hamiltonian without

the rest energy of the electron. Calculating the wave function at each time step in
this method involves not only multiplying a matrix by a vector, but also solving
a system of linear equations, so it requires more time than in the split operator
method. On the other hand, when the large energy 𝑚𝑒𝑐

2 is removed from the
upper half of the diagonal of the Hamiltonian and transitions to the continuum of
negative energies are negligible, the time step can be greatly increased without loss
of calculation accuracy.

As has been verified numerically, the time step can be set to approximately 100
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times larger than the split operator method to achieve the same level of accuracy,
significantly reducing the overall number of time steps. In the dipole approxima-
tion, where the dimension of the full Hamiltonian matrix is reduced to the dimen-
sion of the partial Hamiltonian for a particular value of 𝑚, it turns out that the
Crank–Nicholson propagator works better for medium matrix sizes, while the split
operator propagator is more efficient for large matrices. Beyond the dipole approx-
imation, it turns out to be more advantageous to use the split operator method,
since the Crank-Nicholson method uses a matrix with a full Hamiltonian having a
dimension several times larger than the dimension of the partial Hamiltonians. As
the wave function evolves in time, it propagates to the boundaries of the spatial do-
main. To prevent nonphysical reflection of the wave function from the boundaries of
the spatial domain, the wave function at each step is multiplied by a mask function,
which smoothly decreases to zero towards the boundaries of the spatial domain:

𝐹 (𝜉) = cos

(︂
𝜋(𝜉 −𝑅𝑚

2(𝑅𝑏 −𝑅𝑚)

)︂1/4

(𝑅𝑏 −𝑅𝑚) 6 𝜉

𝐹 (𝜉) = 1 1 6 𝜉 < (𝑅𝑏 −𝑅𝑚),

(2.30)

where 𝑅𝑚 is a parameter that determines the value 𝜉 at which the mask function
begins to decrease.

2.5 Results of the eigenvalue problem for the Dirac equation.

The solution of the non-stationary Dirac equation (2.17) is carried out in a spatial
domain, the linear size of which is limited to 50/𝑍 a.u. for a quasimolecule with
nuclear charge 𝑍. Numerical calculations demonstrate that this size of the spatial
region is sufficient for a correct description of the dynamics of ionization in a laser
field in further non-stationary calculations. The classical electron excursion distance
in a laser field can be estimated by the expression 𝐹0/𝜔

2, this number is significantly
less than 50/𝑍 a.u. for all quasimolecules and laser field parameters used in this
chapter. The calculations use a moderate number of collocation points: 70 points
for the 𝜉 coordinate and 32 points for the 𝜂 coordinate to allow subsequent non-
stationary calculations with partial propagators. The linear dimension of the partial
Hamiltonian matrix for any 𝑚 is equal to 8960. The eigenvalues of the energy of
the first few bound states turn out to be quite accurate. For example, the error in
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calculating the eigenvalues H+
2 with 𝑚 = 0 given in table 2.1 is estimated as 10−10

a.u. To evaluate the convergence of the eigenvalues, another calculation was carried
out with a large number of collocation points (96 points for 𝜉 and 48 points for 𝜂).
The obtained results are compared with results from the literature. All calculations
use the speed of light c = 137.035999139 a.u. (2014 CODATA recommended inverse
fine structure constant).

It is well known that the numerical solution of the stationary Dirac equation us-
ing basis set expansions leads to the appearance of spurious eigenstates among the
true bound states in a discrete region of the spectrum [87]. To eliminate such unde-
sirable states, various methods have been proposed, from imposing special boundary
conditions [88, 89] to using kinetically balanced basis sets. However, spurious states
do not appear when generalized pseudospectral methods in prolate spheroidal coor-
dinates are used to solve the Dirac eigenvalue problem with the numerical parameters
used in the present calculations, at least among the first 35 bound states (due to the
finite size of the spatial domain, highly excited bound states may not be accurate in
any case). The energies listed in table 2.1 are a fragment of the sequential eigenval-
ues returned by the computational program without any steps to remove spurious
states. The same is true for calculations of atomic hydrogen in prolate spheroidal
coordinates, as opposed to calculations in spherical coordinates, where some eigen-
values are duplicated due to the presence of spurious states. Previously, the absence
of spurious states in two-center Coulomb systems treated with kinetically balanced
B-spline basis sets in prolate spheroidal coordinates was reported in [94].
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Table 2.1: Energies of the ground and low-lying excited states H+
2 (in a.u.) for the projection

of the total angular momentum 𝑀 = 1/2 at 𝑅 = 2 a.u. A–calculation with grid 70 × 32; B –
calculation with grid 96 × 48; C – other calculations. All results were obtained for point nuclei.

State A B С
1𝜎𝑔 -1.1026415810753 -1.1026415810315 -1.102641581032 [90]

-1.1026415810336 [91]
1𝜎𝑢 -0.6675527720388 -0.6675527719950 -0.667552771996 [92]

-0.6675527719955 [91]
1𝜋𝑢 -0.4287811602120 -0.4287811602141 -0.428781160 [93]

-0.4287811584 [94]
2𝜎𝑔 -0.3608710705821 -0.3608710705758 -0.3608710705784 [91]

-0.3608710695 [94]
2𝜎𝑢 -0.2554197047559 -0.2554197047496 -0.255419705 [93]

-0.2554197033 [94]
3𝜎𝑔 -0.23578126845559 -0.2357812684555 -0.2357812681 [94]

2.6 Nonrelativistic scaling and relativistic effects in quasimolecules

It is well known that the nonstationary Schrödinger equation satisfies exact scal-
ing relations with respect to the nuclear charge parameter 𝑍 in such a way that the
result of numerical calculations of the interaction of matter with an external field
remains unchanged for any nuclear charge 𝑍 [95]. For quasimolecules, this scal-
ing of the spatial, temporal, and momentum variables in the equation transforms
the equation for a molecule with nuclear charges 𝑍 into an equation for H+

2 (𝑍 =
1). This non-relativistic scaling is performed by the following transformation of the
system parameters:

𝑟 = 𝑟/𝑍, 𝑅 = �̃�/𝑍,

𝑡 = 𝑡/𝑍2, 𝜔 = �̃�𝑍2,

𝐹0 = 𝐹0𝑍
3.

(2.31)

Variables and parameters with a tilde correspond to a quasimolecule with a nuclear
charge of 𝑍=1, i.e. a molecule H+

2 . Exact scaling with the nuclear charge does
not hold for relativistic systems described by the Dirac equation, although some
approximate relations have been suggested [52]. Strictly speaking, the scaling (2.31)
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does not hold exactly even for the time-dependent Schrödinger equation, if the
electron–nucleus interaction is described within the extended nucleus model, and not
by the pure Coulomb potential. However, because of the large difference between
the electronic and nuclear length scales, the effect of the finite nucleus dimension
on the electronic motion is very small. Even for the heaviest nucleus used in our
calculations (𝑍 = 92), the relative shift of the ground electronic state energy level
due to the extended nuclear charge distribution does not exceed 10−4, therefore the
deviation from the nonrelativistic scaling relations caused by the finite nucleus size
is insignificant.

Generally, any difference between the time-dependent Dirac equation predic-
tions and the corresponding time-dependent Schrödinger equation results for the
same system can be attributed to relativistic effects. As discussed in [52], for multi-
photon ionization of hydrogen-like ions, the main effect is the shift of the ionization
potential (the latter becomes larger in the relativistic case). For quasimolecules,
this shift depends also on the internuclear distance. n figure 2.1 shows the scaled
difference between the relativistic and non-relativistic energies of the ground state
1𝜎𝑔 for several quasimolecules used in the calculations. For the quasimolecules with
𝑍 ̸= 1, the nonrelativistic energies are calculated from the H+

2 data with the help
of the scaling relations (2.31), thus not taking into account the finite nucleus size.
The energy difference depicted in figure 2.1 therefore includes both corrections, due
to the relativistic effects and extended nuclear charge distribution. However, as
mentioned earlier, the last correction is small and can be neglected for all quasi-
molecules used in the calculations. For H+

2 the relativistic correction is also small,
and the energy difference is not visible in figure 2.1. For the heavier quasimolecules,
the difference between the relativistic and nonrelativistic ground state energies grad-
ually increases with the nuclear charge 𝑍. As expected, it also becomes larger at
smaller internuclear distances where the relativistic ground state energy level ap-
proaches the negative continuum boundary if the nuclear charge 𝑍 is large enough.
In the united atom limit 𝑅 → 0, the core charge is equal to 2𝑍 and may exceed
the critical value ≈ 170. At this critical charge, the ground state energy level dives
into the negative continuum and spontaneous electron–positron pair creation takes
place [96].



47

Figure 2.1: Scaled difference between relativistic and non-relativistic ground state energies 1𝜎𝑔
for several one-electron homonuclear quasimolecules with nuclear charge 𝑍: (A), 𝑍=1; (B), 𝑍=18;
(C), 𝑍=54; (D), 𝑍=80; (E), 𝑍=92.

2.7 Multiphoton ionization of quasimolecules in the dipole
approximation

For relatively low carrier frequencies (when the wavelength considerably exceeds
the molecular size), the dipole approximation is well justified. This section presents
the results of calculations of multiphoton ionization for several quasimolecules as
a function of internuclear distance (scaled internuclear distances 𝑍𝑅 vary from 2
to 4 a.u.). In all the calculations, the quasimolecules are initially in the ground
1𝜎𝑔 electronic state, and the laser electric field is linearly polarized parallel to the
molecular axis. For H+

2 , the carrier wavelength is set to 248 nm (𝜔 = 0.1837 a.u.),
and the peak intensity is 5 × 1014 W/cm2. For the other quasimolecules, the scaled
field parameters are used, as discussed above. The laser pulse shape is Gaussian, as
described by equation (2.22). The total propagation time is 15 optical cycles (from
-7.5 optical cycle to 7.5 optical cycle). The ionization probability 𝑃𝑖 is calculated
as:

𝑃𝑖 = 1− 𝑃𝑏, (2.32)

where 𝑃𝑏 is the population of bound states at the end of the wave function evolution
process in an external field. This calculation uses a Crank-Nicholson propagator
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with 512 steps per optical cycle. It was found that with the matrix dimension of
8960 used in the calculations, the Crank–Nicholson method is more efficient than
the split operator method, where 65536 time steps per optical cycle are necessary
to obtain a result with the same accuracy.

When the scaled internuclear separation 𝑍𝑅 varies from 2 to 4 a.u., the vertical
ionization potential of the quasimolecule gradually decreases. At 𝑍𝑅 = 4 a.u. to
enter the continuum (𝐸>0), the absorption of 5 photons is sufficient, so the threshold
of 6-photon and 5-photon ionization is passed when the scaled internuclear distance
𝑍𝑅 changes from 2 to 4 a.u. The position of the 6-photon ionization threshold
varies from 𝑍𝑅 = 2.01 a.u. for 𝑍 = 1 to 𝑍𝑅 = 2.25 a.u. for 𝑍 = 92, while the
corresponding 𝑍𝑅 interval for the 5-photon threshold is 2.95 a.u. up to 3.40 a.u. The
position of the 6-photon ionization threshold varies from 𝑍𝑅 = 2.01 a.u. for 𝑍 = 1
to 𝑍𝑅 = 2.25 a.u. for 𝑍 = 92, while the corresponding 𝑍𝑅 interval for the 5-photon
threshold is 2.95 a.u. up to 3.40 a.u. The probability of ionization can be expected to
increase as the ionization potential and the minimum number of photons required for
ionization decreases. The calculations carried out in this chapter of the dissertation,
presented in figure 2.2 generally confirm this assumption: at 𝑍𝑅 = 2 a.u. ionization
probabilities do not exceed 0.02, and at 𝑍𝑅 = 4 a.u. they are 20–35 times larger.
Relativistic effects during multiphoton ionization can be assessed by the deviation
of the ionization probabilities of different quasimolecules from each other at a fixed
value of 𝑍𝑅: in the nonrelativistic case, they would be the same due to precise
scaling. As expected, relativistic effects are less important for lighter nuclei. The
ionization probabilities of H+

2 and Ar35+2 are very close to each other for 𝑍𝑅 in the
range from 2 to 3.25 a.u. The difference becomes somewhat larger for 𝑍𝑅 between
3.5 and 4 a.u. For 𝑍 = 54, the deviation from the ionization probabilities of the H+

2

molecule is more pronounced. It can be seen from Figure 2.3 that the results for 𝑍
= 80 and 𝑍 = 92 are very different from each other and from the results obtained
for H+

2 . For some scaled internuclear distances ZR, the difference can exceed 100%,
so relativistic effects are very important for one-electron quasimolecules with heavy,
highly charged nuclei. One of the obvious effects is a relativistic shift in the energy
level of the ground state towards a decrease in energy, which is greater the higher
𝑍. Due to this effect, the ionization potential increases and quasimolecules with
higher nuclear charge exhibit lower ionization probabilities, as can be seen in figure
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2.2. It is important to note, that the relativistic nature of the electron dynamics in

Figure 2.2: Probabilities of ionization of one-electron homonuclear quasimolecules with nuclear
charge 𝑍 depending on the scaled internuclear distance 𝑍𝑅: (A), 𝑍 = 1; (B), 𝑍 = 18; (C), 𝑍 =
54; (D), 𝑍 = 80; (E), 𝑍 = 92. For H+

2 , the wavelength of the laser pulse is 248 nm, peak intensity
5 × 1014 W/cm2, for other molecules the parameters are scaled according to (2.31).

these scaled quasimolecules is related not only to the interaction with the nuclei but
also to the external field. The peak value of the classical electron momentum in the
laser field can be estimated as 𝐹0/𝜔. For H+

2 , this quantity is approximately equal
to 0.65 a.u., that is very small compared to the speed of light. However, it scales
as 𝑍 (from Eq. (2.31) it follows that the peak value of the speed is proportional
to 𝑍) for higher nuclear charges and reaches the value of 60 a.u. for 𝑍 = 92. This
rough estimate indicates the relativistic nature of electron motion induced by an
external electromagnetic field for quasimolecules with high nuclear charges and field
parameters used in the calculations.

Another effect observed in figure 2.2 is related to the shift of the resonance
frequency in the relativistic case. Homonuclear one-electron quasimolecules are the
quantum systems where the ground 1𝜎𝑔 and first excited 1𝜎𝑢 states may become
nearly degenerate at larger internuclear separations with a strong dipole coupling
between them (charge resonance effect [97]). This effect is observed in the figure. 3
in the vicinity of 𝑍𝑅 = 3.25 a.u. for quasimolecules with 𝑍 = 1, 18 and 54. This
maximum (on the graph) of the ionization probability is due to the single-photon
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resonance between the 1𝜎𝑔 and 1𝜎𝑢 states. This maximum is less pronounced for 𝑍
= 80 and does not exist for 𝑍 = 92. Since in the nonrelativistic case the position
of the resonance must be the same for all scaled systems, the latter observation
indicates that the relativistic effects may be responsible for the disappearance of
the resonance in the heavier quasimolecules. In figure 2.3 shows the scaled energy
difference between the 1𝜎𝑢 and 1𝜎𝑔 states as a function of the scaled internuclear
distance 𝑍𝑅. For H+

2 , the one-photon resonance corresponds to 𝑍𝑅 = 3.18 a.u., in
good agreement with the position of the maximum in figure 2.2. For 𝑍 = 18, the
shift of the resonance frequency is insignificant, so the position of the maximum does
not visibly change. It is somewhat surprising that the maximum of the ionization
probability is still at 𝑍𝑅 = 3.25 a.u. for 𝑍 = 54, although the resonance frequency
corresponds to 𝑍𝑅 = 3.03 a.u. This can be explained as follows. At 𝑍𝑅 = 3.03 a.u.,
ionization still requires absorption of 6 photons for 𝑍 = 54 (the 5-photon threshold
corresponds to 𝑍𝑅 = 3.07 a.u.), therefore the ionization probability for 𝑍 = 54
(see the data at 𝑍𝑅 = 3 a.u. in figure 2.2) does not reach its maximum, although
exceeds the probabilities for 𝑍 = 1 and 𝑍 = 18. The maximum is observed at
𝑍𝑅 = 3.25 a.u. where the resonance is still nearby, but ionization takes place well
above the 5-photon threshold. For 𝑍 = 80, the resonance position is at 𝑍𝑅 = 2.84
a.u. while the 5-photon threshold is located at 𝑍𝑅 = 3.25 a.u. The resonance lies
well below the threshold in the 6-photon ionization region and does not significantly
affect the ionization dynamics. A similar situation takes place for 𝑍 = 92, where
the resonance and 5-photon threshold are located at 𝑍𝑅 = 2.71 a.u. and 𝑍𝑅 = 3.40
a.u. respectively. For this quasimolecule, however, one can see a weak resonance
maximum at 𝑍𝑅 = 2.75 a.u.

2.8 Nonlinear ionization beyond the dipole approximation

This section briefly discusses non-dipole effects in the ionization of quasi-
molecules by strong laser pulses, which can become significant at relatively high
carrier frequencies. The same Gaussian laser pulse shape is used as described in
equations (2.22). Beyond the dipole approximation, the carrier and envelope parts
of the laser pulse contain a time dependence:

𝑡→ (𝑡− 𝑥

𝑐
) = Φ/𝜔, (2.33)
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Figure 2.3: Scaled difference between the relativistic energies of the 1𝜎𝑢 and 1𝜎𝑔 states for several
one-electron homonuclear quasimolecules with nuclear charge 𝑍: (A), 𝑍 = 1; (B), 𝑍 = 18; (C),
𝑍 = 54; (D), 𝑍 = 80; (E), 𝑍= 92. The horizontal line 𝑍−2𝜔 corresponds to the scaled laser
frequency

where Φ is the field phase. Upon the scaling transformation (2.31), the temporal
part of this phase, 𝜔t, remains invariant, while the spatial part 𝜔𝑥

𝑐 is multiplied by 𝑍.
Consequently, interaction with the electromagnetic field beyond the dipole approx-
imation violates invariance with respect to the nonrelativistic scaling (2.31), even if
the dynamics of the system is essentially nonrelativistic (that is, described by the
time-dependent Schrödinger equation, which is exactly invariant under the transfor-
mation (2.31) in the dipole approximation). For the set of the scaled quasimolecules
under consideration, the nondipole effects are more significant for the larger nuclear
charge 𝑍. In previous studies [57, 68] for numerical implementation it was necessary
to separate the spatial and temporal dependence in the vector potential using the
Fourier expansion in Φ or the Taylor series expansion in powers of 𝑥. However, as
the field strength increases, this approach may require the inclusion of more and
more expansion terms to achieve convergence [54]. In the method used in this work,
this is not required for the vector potential, and it can be used without any expan-
sions. The 𝑥 coordinate, expressed in prolate spheroidal coordinates, depends on
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the azimuthal angle 𝜑:

𝑥 = 𝑎
√︀
(𝜉2 − 1)(1− 𝜂2) cos𝜑. (2.34)

This angle is discretized on a uniform grid in the interval [0, 2𝜋]. The number of grid
nodes 𝜑 is equal to the number of angular momentum projections remaining in the
wave function (2.14). Thus, the accuracy of the vector potential representation is
controlled by the number of angular momentum projections used. If the non-dipole
corrections are not very large, a few components of the wave function are usually
sufficient for convergence (2.14).

As an example of non-dipole effects in quasimolecules, calculations were carried
out for H+

2 and for Ar35+2 at a laser field frequency of 𝜔 = 3.5 a.u., recently used
in relativistic calculations hydrogen atom [57, 68] and peak value 𝐹0 = 40 a.u. and
internuclear distance 𝑅 = 2 a.u. For Ar35+2 the parameters were scaled accordingly.
This calculation used a split operator method with 65536 time steps in an optical
cycle with 15 optical cycles (from -7.5 to 7.5 optical cycles). Figure 2.4 demonstrates
the population of bound states 𝑃𝑏(t) in the case of the dipole approximation and
in the case when it goes beyond it. Here it is interesting to see how the difference
between the results of the dipole approximation (DA) and the full interaction with
the included projections |𝑚| ≤ 1 (F1) or |𝑚| ≤ 3 (F3) increases with time. The
results of calculations in the dipole approximation for H+

2 and Ar35+2 differ from
each other much more strongly than in the case of multiphoton ionization, as can
be seen from figure 2.4, and the probability of ionization Ar35+2 is greater than the
ionization probability of H+

2 , in contrast to the trend observed in figure 2.2. The
thing is that, for the chosen field parameters, the relativistic effects caused by the
external field are much stronger for Ar35+2 . For this quasimolecule, the peak velocity
of a classical electron oscillating in a field exceeds the speed of light, indicating an
ultrarelativistic regime. For H+

2 this speed is about 𝑣 = 0.08𝑐.
For H+

2 the non-dipole effects are quite small, as can be seen in figure 2.4. The
difference between the results for the full interaction with the (F1) and (F3) pro-
jections included is not visible even at the magnification shown in the inset. It can
be concluded that calculations with complete interaction in this case converge well
already at the (F1) level. If for the first 3 optical cycles the discrepancy between
(DA) on the one hand and (F1), (F3) on the other is still insignificant, then at
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Figure 2.4: Time-dependent population of bound states for H+
2 and Ar35+2 . A, B, C – (DA),

(F1), and (F3) data for H+
2 ; D, E, F – (DA), (F1) and (F3) data for Ar35+2 respectively (see text

for explanation). The inset shows the H+
2 data zoomed vertically from a population value of 0.60

to 0.66 for the last 3 optical cycles. For H+
2 the carrier frequency is 3.5 a.u. and peak field strength

is 40 a.u.; scaled field parameters are used for Ar35+2 .
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later times it quickly increases, leading to almost complete ionization by the middle
of the laser pulse if the interaction is described outside the dipole approximation.
The difference between (F1) and (F3) is much smaller and increases as the field
becomes even stronger, starting from the fifth optical cycle. In the second half of
the pulse, the picture does not change qualitatively. The probability of ionization
reaches 93.5 % (F1) or 96 % (F3) when using the full interaction, and in the dipole
approximation does not exceed 50 %. Strong non-dipole effects in Ar35+2 contribute
to the ionization of this quasimolecule: the ionization probability calculated outside
the dipole approximation is significantly greater than in the dipole approximation.
On the contrary, for the H+

2 , weak non-dipole effects lead to relative stabilization.
The ionization probabilities (F1) and (F3) are only slightly less than the (DA) result
for the molecule H+

2 . The contrast between the results for scaled H+
2 and Ar35+2 is

easy to explain. In the case of H+
2 , the vector potential of the laser field, due to

its spatial dependence, changes sign at a distance of about 120 a.u., which signifi-
cantly exceeds the size of the molecule estimated from the internuclear distance 𝑅
= 2 a.u. For Ar35+2 , with the same scaled internuclear distance 𝑍𝑅 = 2 a.u., the
vector potential changes sign at a scaled distance of about 7 a.u., comparable to the
size of the electron wave packet. The pulse envelope in space, relative to the scale
coordinate 𝑍𝑥, is also 18 times narrower than in the case of H+

2 . This means that
the external field is significantly inhomogeneous even for an electron in the initial
ground state. Different parts of the electron wave packet then experience opposing
forces and move out of phase, promoting irreversible transitions to higher energy
bound and continuum states.

2.9 Chapter 2 Summary

In this chapter of the dissertation, a method for calculating the interaction of
single-electron homonuclear quasimolecules for the relativistic Dirac equation in a
high-intensity external field is developed. It was found that when solving the eigen-
value problem for the nonstationary Dirac equation (as well as for the Schrödineger
equation) using this method, spurious states do not arise, at least among low-lying
bound states, so no additional effort is required to remove them. An analysis of rel-
ativistic and non-dipole effects is carried out for various quasimolecules and external
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field parameters subject to nuclear charge scaling. The deviation of the results for the
scaled relativistic calculation from the scaled non-relativistic calculation indicates
the role of relativistic dynamics and the importance of describing the interaction
with the external field beyond the dipole approximation. One of the well-known
relativistic effects of multiphoton ionization, common to atomic and molecular ions,
is the decrease in the probability of ionization with increasing nuclear charge due
to the relativistic deepening of the energy level of the ground state. Quasimolecules
have a large number of degrees of freedom compared to atoms and atomic ions,
which opens up new opportunities for research. For example, by changing the in-
ternuclear distance, the transition frequency between two specific electronic states
can be tuned to resonate with the carrier frequency of the laser pulse. At such
internuclear distances, ionization can be significantly enhanced.

Unlike relativistic effects, which can be significant even at low scaled frequencies
and moderate peak intensities, non-dipole effects become more noticeable at high
scaled frequencies. For quasimolecules, an increase in non-dipole corrections to the
probability of ionization is observed with increasing nuclear charge. Calculations
at a carrier frequency of 3.5 a.u. and peak field strength 40 a.u. show that the
difference between the dipole approximation and the results of the full interaction for
H+

2 is still insignificant, while for Ar35+2 , the dipole approximation leads to incorrect
results. The same decay can be expected for other quasimolecules with higher
nuclear charges.
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Chapter 3. Influence of the phase of the

electromagnetic field on the processes of charge

transfer and ionization in laser-assisted collisions of

protons with hydrogen atoms

This chapter of the dissertation examines the influence of the phase and inten-
sity of a laser field, linearly polarized in the plane of collision of a proton with a
hydrogen atom, on charge transfer and ionization for the symmetric H–H+ system.
The collision dynamics are studied using the unsteady Schrödinger equation, which
is initially written in the center of mass frame. Then a transition is made to a non-
inertial rotating reference frame, which leads to the appearance of additional terms
in the Hamiltonian that take rotation into account. The velocity of the incident
proton is chosen to be quite low (𝑣0 = 0.1 a.u., which corresponds to an energy of
0.25 keV). The main goal was to obtain the dependence of the charge transfer prob-
ability 𝑃ct(𝑏) (where 𝑏 is the impact parameter), the ionization probability 𝑃i(𝑏), as
well as electron cross sections capturing 𝜎𝑐𝑡 for various field parameters. Calcula-
tions were carried out at field strengths of 1× 1012 W/cm2 and 1× 1013 W/cm2 for
a frequency of 0.01 a.u. and 5× 1014 W/cm2 for frequency 2 a.u. At an intensity of
1×1012 W/cm2 the probability of ionization is small (does not exceed a few percent),
and at an intensity of 1 × 1013 W/cm2 significant ionization is expected for small
impact parameters at low frequency 0.01 a.u. Regarding the phase of the external
field, one can expect that the dynamics of charge transfer significantly depends on
the phase in the low-frequency case and, conversely, at high frequencies the field
phase does not play a significant role. The results obtained are compared with the
case of a collision in the absence of a field.
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3.1 Taking into account the motion of an incident proton in the
Schrödinger equation during a collision

Let us place the center of the fixed coordinate system in the center of mass of
the two nuclei. In this coordinate system, the time-dependent Schrödinger equation
for the electron interacting with the nuclei and external field has the conventional
form:

𝑖
𝜕

𝜕𝑡
Ψ(r, 𝑡) = [𝐻0 + 𝑉 (r, 𝑡)]Ψ(r, 𝑡), (3.1)

where 𝐻0 is the unperturbed Hamiltonian of the quasimolecule including the kinetic
energy operator and the interaction potential 𝑈(r) between the electron and the
nuclei:

𝐻0 = −1

2
∇2 + 𝑈(r), (3.2)

𝑈(r) = − 𝑍𝐴

|r−R𝐴|
− 𝑍𝐵

|r−R𝐵|
, (3.3)

where 𝑍𝐴, 𝑍𝐵 and R𝐴, R𝐵 are the nuclei charges and radius-vectors, respectively.
Note that 𝑈(r) and 𝐻0 depend on time through the radius-vectors of the moving
nuclei. The operator 𝑉 (r, 𝑡) describes the interaction of the electron with the exter-
nal electromagnetic field. In the charge exchange problem, the electromagnetic field
is considered in the dipole approximation in the velocity gauge, so the interaction
operator takes the form:

𝑉 (r, 𝑡) = −𝑖(A · ∇) +
1

2
𝐴2, (3.4)

where the vector potential A(𝑡) depends on time but does not depend on the coor-
dinates.

The motion of nuclei is described within the framework of classical mechanics.
When considering an electron in the Coulomb field of nuclei, the trajectories of the
incident particle and the target are hyperbolic. However, in the case of a collision
H–H+, the target is initially neutral. In this case, you can use the approximation
when the incident particle and the target move with constant speeds −1

2v0 and 1
2v0

respectively along rectilinear trajectories. The collision plane is perpendicular to
the angular momentum vector of the incident particle and is formed by the 𝑧0 and
𝑥0 axes (figure 3.1). When the nuclei move (target A and incident particle B in
figure 3.1), the molecular axis (denoted as 𝑧) rotates in the 𝑧0 − 𝑥0 plane. In this
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Figure 3.1: Collision of incident particle B (proton) with target A (hydrogen atom) in the center
of mass system. The stationary axes 𝑧0 and 𝑥0 and the rotating molecular axis 𝑧 are shown. Other
notations: 𝑏 is the impact parameter, 𝑅𝐴𝐵 is the internuclear distance, 𝜒 is the angle between 𝑧

and 𝑧0.

chapter, the motion of nuclei was considered on a symmetric time interval [−𝑡0, 𝑡0],
from the initial internuclear distance 𝑅𝐴𝐵(𝑡0) = 40 a.u. until the moment when the
internuclear distance again becomes equal to 40 a.u. Initial internuclear distance
40 a.u. is quite large, so the interaction of an electron localized on the target with
the incident particle is negligible. As was verified in calculations, an increase in the
initial internuclear distance does not lead to a change in the charge transfer pattern,
but only increases the probability of ionization due to an increase in the time of
interaction of the system with an external electromagnetic field.

The position of the incident proton is determined by the internuclear distance
𝑅𝐴𝐵 and the value of the angle 𝜒(𝑡) between the axes 𝑧 and 𝑧0 at each moment of
time. The angular velocity 𝜔(𝑡) = �̇�(𝑡) is calculated as follows:

𝜔(𝑡) =
𝑣0𝑏

𝑏2 + 𝑣20𝑡
2
, (3.5)

where 𝑏 is the impact parameter. The initial value of the internuclear distance
𝑅𝐴𝐵(𝑡0), impact parameter 𝑏, proton velocity 𝑣0, and time 𝑡0 are related to each
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other as follows:
𝑅2

𝐴𝐵(𝑡0) = (𝑣0𝑡0)
2 + 𝑏2, (3.6)

It is convenient to solve the nonstationary Schrödinger equation for a diatomic quasi-
molecule in a molecular reference frame, where the internuclear axis is chosen as the
𝑧 axis, the 𝑥 axis lies in the collision plane, and the 𝑦 axis is perpendicular to the
collision plane. However, the molecular frame of reference rotates around the 𝑦 axis,
so it is non-inertial. This circumstance leads to the appearance of an additional term
in the Hamiltonian for the time-dependent Schrödinger equation (3.1) in the molec-
ular frame of reference [98]. In the molecular coordinate system, the transformed
nonstationary Hamiltonian 𝐻mcs is expressed as follows:

𝐻mcs = 𝐻0 − 𝜔(𝑡)𝐿𝑦 + 𝑉 (r, 𝑡), (3.7)

where 𝐿𝑦 is the operator of the angular momentum projection on the 𝑦 axis (this axis
is fixed in both the molecular and inertial frames). In the molecular system, prolate
spheroidal coordinates are again used, since these coordinates fully take into account
the two-center nature of the diatomic quasimolecular system. The parameter of the
prolate spheroidal coordinate system 𝑎(𝑡) specifies half of the internuclear distance:
𝑅𝐴𝐵(𝑡) = 2𝑎(𝑡). Before the collision, the electron is localized on the target, there-
fore the wave function of the initial state of the electron is constructed as a linear
combination of the two lowest-energy molecular orbitals of the Hamiltonian 𝐻0 at
𝑡 = −𝑡0 , which are 1𝜎𝑔 and 1𝜎𝑢 solutions of the stationary Schrödinger equation:

𝐻0(−𝑡0)Ψ𝑖(r) = 𝐸𝑖Ψ𝑖(r). (3.8)

Since the initial internuclear distance (40 a.u.) is very large for the H–H+ sys-
tem, the lowest 1𝜎𝑔 and 1𝜎𝑢 states are nearly degenerate. A superposition of these
states gives an electron density distribution localized around one of the nuclei, which
corresponds to the initial conditions of our problem. The equations (3.1) and (3.8)
are solved with the help of the generalized pseudospectral (GPS) method. Since the
parameter 𝑎(𝑡) depends on time, it turns out to be possible either to use a moving
grid when discretizing coordinates in the generalized pseudospectral method, or to
perform a scaling transformation of the wave function before solving the equation
(3.1), so the distance between the centers of the spheroidal coordinate system be-
comes fixed. In this work, the second approach is used. The wave function Ψ(r, 𝑡)
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is represented as follows:

Ψ(r, 𝑡) = [𝑎(𝑡)]−3/2Ψ̃(r̃, 𝑡), (3.9)

r = 𝑎(𝑡)r̃. (3.10)

The scale transformation (3.9) preserves the norm of the wave function:∫︁
𝑑3𝑟|Ψ(r, 𝑡)|2 =

∫︁
𝑑3𝑟|Ψ̃(r̃, 𝑡)|2. (3.11)

According to the definition (3.10), the distance between the centers of the spheroidal
coordinate system for the scaled coordinates r̃ is chosen to be 2 a.u. at all times.
Once the wave function in the form (3.9) is substituted in the equation (3.1), an-
other term is added to the Hamiltonian. The new Hamiltonian �̃�mcs and the time-
dependent equation for the wave function Ψ̃(r̃, 𝑡) take the following form:

�̃�mcs = − 1

2𝑎2(𝑡)
∇2

r̃ −
𝑍𝐴

𝑎(𝑡)|r̃+ e𝑧|

− 𝑍𝐵

𝑎(𝑡)|r̃− e𝑧|
− 𝜔(𝑡)𝐿𝑦 + 𝑉 (𝑎(𝑡)r̃, 𝑡)

+ 𝑖
�̇�(𝑡)

𝑎(𝑡)

(︂
3

2
+ r̃ · 𝜕

𝜕r̃

)︂
,

(3.12)

𝑖
𝜕

𝜕𝑡
Ψ̃(r̃, 𝑡) = �̃�mcs(r̃, 𝑡)Ψ̃(r̃, 𝑡). (3.13)

The first three terms on the right side (3.12) represent the kinetic energy operator
and the 𝑈 interaction potential of the electron with nuclei. The last term in (3.12)
arises from scaling by the parameter 𝑎(𝑡), where:

r̃ · 𝜕
𝜕r̃

=
1

𝜉2 − 𝜂2

(︂
𝜉(𝜉2 − 1)

𝜕

𝜕𝜉
+ 𝜂(1− 𝜂2)

𝜕

𝜕𝜂

)︂
. (3.14)

Finally, the angular momentum projection operator 𝐿𝑦 takes the form:

𝐿𝑦 = −𝑖
√︀
(𝜉2 − 1)(1− 𝜂2) cos𝜙

𝜉2 − 𝜂2

(︂
𝜂
𝜕

𝜕𝜉
− 𝜉

𝜕

𝜕𝜂

)︂
+𝑖

𝜉𝜂 sin𝜙√︀
(𝜉2 − 1)(1− 𝜂2)

𝜕

𝜕𝜙
.

(3.15)

The equation is solved inside a spatial domain with linear size 𝑅𝑏. The value of 𝑅𝑏

is chosen large enough so that all physically significant processes occur at distances
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smaller than 𝑅𝑏. Calculations were carried out at 𝑅𝑏 = 80 a.u. for the original
(unscaled) coordinates r, this is acceptable for the external field parameters used.
For scaled coordinates r̃, the values of �̃�𝑏 can be found using the transformation
formula (3.10) for the smallest value of 𝑎(𝑡) at the time of the collision.

In this chapter of the dissertation, it is assumed that the external electromagnetic
field is linearly polarized along a fixed 𝑧0 axis. At an arbitrary moment of time 𝑡,
the polarization vector is directed at an angle 𝜒(𝑡) to the molecular axis 𝑧, as shown
in figure 3.1. The vector potential A(𝑡) is expressed as follows:

A(𝑡) = −𝐹0

𝜔0
cos(𝜔0𝑡+ 𝜑)𝑊 (𝑡)e𝑧0, (3.16)

where 𝐹0 is the peak field strength, 𝜔0 is the carrier frequency of the electromagnetic
wave, 𝜑 is the field phase at 𝑡 = 0, that is, the value at the closest approach between
the nucleus and the target. The multiplier 𝑊 (𝑡) is the field envelope that is used
to smoothly turn the field on at time −𝑡0 and turn it off at time 𝑡0. The function
𝑊 (𝑡) has the form:

𝑊 (𝑡) = cos2[4𝜋(
𝑡

𝑡0
+ 0.875)] (−𝑡0 ≤ 𝑡 < −0.875𝑡0),

𝑊 (𝑡) = 1 (−0.875𝑡0 ≤ 𝑡 ≤ 0.875𝑡0),

𝑊 (𝑡) = cos2[4𝜋(
𝑡

𝑡0
− 0.875)] (0.875𝑡0 < 𝑡 ≤ 𝑡0).

(3.17)

Numerical solution methods (3.13) were presented in Chapter 1 (Here, the Crank-
Nicholson method is used to describe the time evolution of the wave function). In
this chapter, the number of time steps in the Crank-Nicholson method was equal to
𝑁 = 2000 for calculations with an impact parameter 𝑏 > 1.5 a.u. and the number
of time steps 𝑁 = 3000 for calculations with an impact parameter 𝑏 ≤ 1.5 a.u. To
prevent unphysical reflections of the electron wave packet from the boundaries of
the spatial domain, the wave function at each time step is multiplied by the mask
function 𝑓(𝜉), which smoothly tends to zero inside the layer between 𝑅𝑎 and 𝑅𝑏 by
the boundary of the spatial domain:

𝑓(𝜉) = cos

[︂
𝜋(𝑎𝜉 −𝑅𝑎)

2(𝑅𝑏 −𝑅𝑎)

]︂1/4
(𝑅𝑎 ≤ 𝑎𝜉 ≤ 𝑅𝑏),

𝑓(𝜉) = 1 (𝑎 ≤ 𝑎𝜉 ≤ 𝑅𝑎).

(3.18)
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In this chapter, calculations were carried out with the boundary layer parameter
𝑅𝑎=65 a.u. The following grid sizes were used in the calculations: the number of
collocation points along the 𝜉 coordinate is 80, at the 𝜂 coordinate—12, at the 𝜙
coordinate 7 for the impact parameter 𝑏 > 1.5 a.u. For smaller impact parameters,
values of 120 points along 𝜉, 16 along coordinate 𝜂 and 7 along coordinate 𝜙 were
used. Increasing the number of points to 180 points along 𝜉, up to 24 points along
the 𝜂 coordinate and 9 points along the 𝜙 coordinate leads to a deviation of the
result by less than 1%.

3.2 Probability of charge transfer

Following the time evolution of the wave function, the electron at the time 𝑡0,
when the field is turned off, can remain in a bound state on the target, be in a
bound state on the incident particle, and also go into an unbound state with 𝐸 > 0.
In the last case, the parts of the wave packet that reach the boundary layer during
the propagation will be absorbed, leading to a decrease in the norm of the wave
function. The squared norm of the wave function at the time 𝑡0 can be represented
as follows: ∫︁

Ψ*(r̃, 𝑡0)Ψ(r̃, 𝑡0)𝑑
3𝑟 = 𝑃c + 𝑃b, (3.19)

where 𝑃c is the population of unbound states with positive energies whose wave
packet has not yet reached the absorbing layer by the time 𝑡0 and 𝑃b is the population
of bound states. The population 𝑃𝑐 is evaluated by projecting the wave function at
𝑡0 onto the quasimolecular continuum. As the calculations reveal, this quantity is
always negligibly small, that means, almost all free electrons reach the absorber by
the time 𝑡0 because the propagation time is long enough due to slow nuclear motion.
Thus the ionization of the system is determined by the following expression with a
good accuracy:

𝑃i = 1−
∫︁

Ψ*(r̃, 𝑡0)Ψ(r̃, 𝑡0)𝑑
3𝑟. (3.20)

Probability of the electron capture by the incident particle can be represented as
an integral of the squared absolute value of the wave function over the half-space
containing the incident particle nucleus. In prolate spheroidal coordinates, this
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integral is written as follows:

𝑃ct =

∞∫︁
1

𝑑𝜉

1∫︁
0

𝑑𝜂

2𝜋∫︁
0

𝑑𝜙 (𝜉2 − 𝜂2)|Ψ(r̃, 𝑡0)|2. (3.21)

If integration over the coordinate 𝜂 in the formula (3.21) is carried out in the range
from −1 to 0, then the probability of finding an electron on the target will be
obtained. In the case of significant population 𝑃c of unbound states inside the spatial
domain, it is necessary to project the wave function Ψ(r̃, 𝑡0) onto the subspace of
bound states (𝐸 < 0) of the Hamiltonian at time 𝑡0 before calculating the charge
transfer probability.

3.3 Main results of Chapter 3

The charge transfer probability during a collision H–H+ is determined by such
parameters as the speed of the incident particle, the impact parameter, the frequency
and intensity of the laser field, as well as the phase of the field at the moment of
closest approach of the colliding particles. In the calculations of this chapter, the
collision energy is equal to 0.25 keV, that is, the velocity of the incident particle
𝑣0 is equal to 0.1 a.u. The impact parameter 𝑏 ranges from 0.125 a.u. up to
8.5 a.u. with a step Δ𝑏 = 0.125 a.u., the phase 𝜑 takes values of 0∘, 90∘, 180∘

and 270∘ degrees. Calculations were carried out for three different combinations of
laser field frequency and intensity. In the first series of calculations, the influence
of low-intensity (1 × 1012 W/cm2) and low-frequency (𝜔 = 0.01 a.u.) fields on the
probability of charge transfer for various field phases at the moment of the smallest
distance between colliding particles. Since the external field is weak, ionization is
relatively small. In the second series of calculations, the field strength is much
higher (1 × 1013 W/cm2), which makes it possible to study the process of charge
transfer at the same low frequency 𝜔 = 0.01 a.u. under conditions of significant
ionization of the H–H+ system. For frequency 𝜔 = 0.01 a.u. flight time of an
incident particle between the initial and final positions at an internuclear distance
of 40 a.u. comparable to the time of one optical field cycle, so that the phase of the
external field changes slightly when the incident particle and the target are in close
proximity. In the third series of calculations, a high-frequency (𝜔 = 2 a.u.) external
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field is used to study the effect of phase on charge transfer under conditions of a
rapidly oscillating field. The field strength in this series of calculations is also high
(5× 1014 W/cm2), although the ionization turns out to be small.

Figure 3.3 shows the dependence of the charge transfer probability 𝑃ct on the
impact parameter for the laser field with the peak intensity 1 × 1012 W/cm2 and
frequency 𝜔 = 0.01 a.u. Presented are the results for different phases 𝜑 as well as the
probability of the charge transfer without the external field. Evidently, the phase 𝜑
has a significant effect on the probability of electron capture by the incident particle
in the region of small impact parameters 𝑏. As one can see, at large impact parame-
ters (𝑏 > 1.75 a.u.), the charge transfer probability remains almost unchanged if the
field changes the sign (that is, the phase of the field is changed by 𝜋): a difference
between the results for 𝜑 = 0∘ and 𝜑 = 180∘ is less than 1%, the same is true for
the pair of phases 𝜑 = 90∘ and 𝜑 = 270∘. In the range of small impact parameters,
𝑏 ≤ 1.75, a divergence of the charge transfer probabilities within the same pair of
phases becomes noticeable. The results differ substantially between different phase
pairs: the difference can reach up to ≈ 30% (for example, at the impact parameter
𝑏 = 0.5 a.u., the charge transfer probability for the field with the phase 𝜑 = 180∘ is
approximately 90% while for the field with phase 𝜑 = 90∘ it is about 63%).

Figure 3.2, panel a, shows the dependence of the ionization probability 𝑃i on the
impact parameter 𝑏 for different phases 𝜑. The field parameters and incident particle
speed are the same as for the data in figure 3.3. In Figure 3.2 there is no ionization
probability for the case without a field, since in this case for all impact parameters
the ionization probability 𝑃i(𝑏) is much less than 1%. It turns out that for all impact
parameters, the probability of ionization for the 𝜑 = 180∘ phase is the greatest, and
the probability of ionization for the 𝜑 = 270∘ phase is the smallest. As can be seen,
ionization increases significantly in the region of small impact parameters. This can
be explained as follows. In close collisions, excited bound states become significantly
populated. Such states are then easily ionized by a low-frequency external field via
a tunnel or over-barrier mechanism.

Let us proceed with the analysis of the dependence of the charge transfer and
ionization probabilities, 𝑃ct and 𝑃i, on the phase 𝜑. Consider the population of the
half-space containing the incident particle nucleus calculated according to (3.21) but
at an arbitrary time moment. In the case of low ionization, one may think of this
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Figure 3.2: Probability of ionization 𝑃i of the H–H+ system depending on the impact parameter
for different phases 𝜑 at a collision velocity 𝑣0=0.1 a.u. and frequency 𝜔=0.01 a.u. for two peak
field intensities: (a), intensity 1× 1012 W/cm2; (b), intensity 1× 1013 W/cm2.
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Figure 3.3: Probability of charge transfer 𝑃ct depending on the impact parameter when a proton
collides with a hydrogen atom in a linearly polarized external field with a frequency 𝜔0 = 0.01

a.u. and intensity 1×1012 W/cm2, for different field phases: (a), 𝜑 = 0∘ (black line) and 𝜑 = 180∘

(red line); (b), 𝜑 = 90∘ (black line) and 𝜑 = 270∘ (red line). The blue lines in both panels show
𝑃ct without the external field.
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Figure 3.4: The electron population of the incident particle (projectile) in the H–H+ collision as
a function of the internuclear distance 𝑅𝐴𝐵 for the laser peak intensity 1× 1012 W/cm2, collision
velocity 𝑣0=0.1 a.u., field frequency 𝜔0 = 0.01 a.u., and impact parameter 𝑏 = 0.625 a.u.: (a),
for the phases 𝜑 = 0∘, 180∘ and the case without the field; (b), for the phases 𝜑 = 90∘, 270∘ and
the case without the field. When approaching, the internuclear distance decreases from 40 a.u.
to 0.625 a.u. (left-hand side of the internuclear distance axis). As the nuclei move apart from
each other, the internuclear distance increases from 0.625 a.u. to 40 a.u. (right-hand side of the
internuclear distance axis).

quantity as the instantaneous charge transfer probability at a given time (or at a
given internuclear distance). Figure 3.4 shows the dependence of such population
on the internuclear distance 𝑅𝐴𝐵 for the impact parameter 𝑏 = 0.625 a.u., at which
the highest probability of ionization is observed for all values of phase 𝜑 on Figure
3.2. The following figure 3.5 shows the force 𝐹𝑧0 acting on an electron from an
external field at a strength of 1 × 1012 W/cm2. Shown is the dependence of this
force on the internuclear distance, for various phases 𝜑 and the same value of the
impact parameter 𝑏 = 0.625 a.u. As one can see in figure 3.4, rapid oscillations of
the instantaneous charge transfer probability occur when the incident particle and
the target are in close proximity to each other. These oscillations start when the
incident particle approaches the target at the internuclear distance 𝑅𝐴𝐵 ≈ 5 a.u.
and end approximately at the same internuclear distance when the incident particle
flies away. Just before the incident particle enters this region around the target, the
instantaneous charge transfer probability is close to zero, regardless of the presence
of the field and its phase. Therefore, the resulting charge transfer probability is
determined by the influence on the electron from nuclear Coulomb forces and the
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Figure 3.5: The force 𝐹𝑧0 experienced by the electron from the external field in the H–H+

collision with the impact parameter 𝑏 = 0.625 a.u., for the frequency 𝜔0 = 0.01a.u., peak intensity
1 × 1012 W/cm2 and various phases. The left-hand side and right-hand side of the internuclear
distance axis correspond to the incident particle moving toward the target and away from the
target, respectively.

force from the external field, in the region of internuclear distances 𝑅𝐴𝐵 . 5 a.u.
As the incident particle approaches the target, the force from the laser field

experienced by the electron has the same direction as the Coulomb force from the
incident particle nucleus (the positive direction of the 𝑧0 axis), if the field phase is
90∘ or 180∘ (see figure 3.5). In this case, the total force from the incident particle
and external field, tending to detach the electron from the target, is greater than the
force in the absence of the external field. This leads to enhancement of ionization.
For the phases 0∘ and 270∘, on the contrary, the external field weakens the influence
of the incident particle on the electron, leading to suppression of ionization in this
section of the nuclear motion.
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Figure 3.6: Charge transfer probability 𝑃ct as a function of impact parameter in the collision of
a proton with a hydrogen atom in a linearly polarized external field with the frequency 𝜔0 = 0.01

a.u. and intensity 1×1013 W/cm2, for different field phases: (a), 𝜑 = 0∘ (black line) and 𝜑 = 180∘

(red line); (b), 𝜑 = 90∘ (black line) and 𝜑 = 270∘ (red line). Blue lines in both panels show 𝑃ct

without the external field.
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In the section of the nuclear motion when the incident particle flies away from
the target, the picture is different. Here the external field is directed towards the
incident particle, thus favoring the transfer of the electron from the target to the
incident particle, if the field phase is equal to 180∘ or 270∘. Actually, this portion of
the nuclear motion has a dominant effect on the charge transfer and ionization during
the collision. The argument is as follows. In close collisions, the excited electronic
states of the quasimolecule are populated with a high probability. When the incident
particle is still approaching the target, the charge transfer is well described by the
interference of the 1𝜎𝑔 and 1𝜎𝑢 molecular orbitals only. However, when the incident
particle is moving away, the population of the higher excited bound states is already
significant. Our calculations for the field phase 𝜑 = 270∘ show that at the moment
when the instantaneous charge transfer probability reaches its last local minimum
(𝑅𝐴𝐵 ≈ 4.1 a.u.), the probability of finding the electron in the ground state is
44%, in the first excited state - 12%, and 43.5% falls on the higher excited bound
states. Loosely bound electrons are more susceptible to the influence of the external
field, which contributes to the charge transfer between the target and the incident
particle, as well as ionization. These considerations explain why the population of
the incident particle half-space for the field phases 180∘ and 270∘ turns out to be
greater than in the case of no external field (see figure 3.4). If the field phase is equal
to 0∘ or 90∘, then the force from the external field is directed towards the target as
the incident particle moves away, suppressing the charge transfer. In this case, the
population of the half-space of the incident particle turns out to be less than in the
case without the external field, which also explains the result shown in figure 3.4.

Figure 3.6 shows the results for the probability of charge transfer in the case
of an external field with the same frequency 𝜔 = 0.01 a.u. but higher intensity
1 × 1013 W/cm2. These results demonstrate that in a stronger field, the phase
significantly affects the charge transfer probability 𝑃ct. In the region of impact
parameters 𝑏 > 2 a.u., the probabilities 𝑃ct for the phases 0∘ and 180∘ differ from
each other by a value much less than 1%. The same conclusion can be drawn when
comparing the results for the phases 90∘ and 270∘. The charge transfer probabilities
for the pair of phases 0∘ and 180∘, on the one hand, and the pair of phases 90∘ and
270∘, on the other hand, differ significantly from each other, in accordance with the
case of intensity 1×1012 W/cm2. In the field with the intensity 1×1013 W/cm2 this
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difference becomes even more noticeable. For smaller impact parameters, 𝑏 < 2 a.u,
the value of 𝑃ct for the phase 180∘ turns out to be larger than for the phase 0∘ ,
and for the phase 270∘ it is larger than for the phase 90∘. These results also fully
agree with what was observed in the calculations with the external field intensity of
1× 1012 W/cm2.

The ionization probability 𝑃i in the field with the intensity 1 × 1013 W/cm2 is
much larger than in the weaker field with the intensity 1× 1012 W/cm2. figure 3.2b
shows its dependence on the impact parameter 𝑏. It turns out that for the field
phase 180∘ the ionization probability is the largest, and for the phase 270∘ it is
the smallest for all impact parameters 𝑏, this observation agrees with that already
seen at the intensity 1× 1012 W/cm2. In the case of the intensity 1× 1013 W/cm2,
however, ionization caused by the field with the phase 𝜑 = 90∘ is larger compared
to the field with the phase 𝜑 = 0∘. This is in contrast with the case of intensity
1 × 1012 W /cm2 where ionization caused by the field with the phase 𝜑 = 90∘ was
smaller.

The third series of calculations uses an external field with a frequency 𝜔 = 2 a.u.
and peak field intensity 𝐼0 = 5× 1014 W/cm2. The charge transfer probability ver-
sus the impact parameter is shown in figure 3.7. Our results confirm the initial
assumption: the phase of a rapidly oscillating electromagnetic field does not affect
the charge transfer dynamics during slow collisions. At the frequency of the elec-
tromagnetic field 𝜔 = 2 a.u., the time of flight of the incident particle is on the
order of several hundred optical cycles. For example, with the impact parameter
𝑏 = 0.625 a.u., the time of flight of the incident particle is approximately equal to
600 optical cycles of the external field. During one oscillation of the electron density
between the target and the incident particle, approximately 90 oscillations of the
electromagnetic field occur. Then the particular phase value at 𝑡 = 0 does not play
any significant role in the charge transfer process. The ionization probability in the
third series of the calculations is about 11-12% for all the impact parameters and
phases of the electromagnetic field. Very weak dependence on the impact parameter
indicates that the collision of the incident particle with the target does not signif-
icantly affect ionization dynamics in this case, which is mainly due to the external
field. This conclusion is confirmed by calculations of a single hydrogen atom in the
external field with the same parameters. The resulting ionization probability is close
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Figure 3.7: Charge transfer probability 𝑃ct as a function of impact parameter in the collision of
a proton with a hydrogen atom in a linearly polarized external field with the frequency 𝜔0 = 2 a.u.
and intensity 5 × 1014 W/cm2, for the field phases 𝜑 = 0∘, 𝜑 = 90∘, 180∘, and 270∘. Also shown
is the charge transfer probability without the external field. The collision velocity is 𝑣0 = 0.1 a.u.
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Table 3.1: Charge transfer cross sections depending on phase (10−16 cm2) for laser field frequency
𝜔 = 0.01 a.u.

Phase 𝐼0=1× 1012 W/cm2 𝐼0=1× 1013 W/cm2

0∘ 20.62 22.94
90∘ 23.37 24.48
180∘ 20.91 23.24
270∘ 23.69 24.83

to that obtained for laser-assisted collisions. This is in contrast with the case of a
low-frequency laser field, where ionization can be substantially enhanced at small
impact parameters (see figure 3.2). While excited bound states are still populated in
close collisions, the tunneling and above-the-barrier ionization mechanisms do not
work in the high-frequency field.

The phase-dependent capture cross section 𝜎ct(𝜑) is calculated according to the
following equation:

𝜎ct(𝜑) = 2𝜋

∞∫︁
0

𝑑𝑏𝑏𝑃ct(𝑏, 𝜑), (3.22)

where the charge transfer probability 𝑃ct(𝑏, 𝜑) depends on the impact parameter 𝑏
and phase 𝜑. The results are presented in Table 3.1 for the frequency 𝜔 = 0.01 a.u.
where the phase dependence is well pronounced. As one can see, upon integration
of the charge transfer probability over the impact parameter, the result still exhibits
a distinct phase dependence. Similarly, the phase-averaged capture cross section �̄�ct
is obtained from the equation:

�̄�ct = 2𝜋

∞∫︁
0

𝑑𝑏 𝑏 𝑃ct(𝑏), (3.23)

where 𝑃ct(𝑏) is the charge transfer probability averaged over the entire phase range:

𝑃ct(𝑏) =
1

2𝜋

2𝜋∫︁
0

𝑑𝜑𝑃ct(𝑏, 𝜑). (3.24)

The results for the phase-averaged charge transfer cross section are presented in Ta-
ble 3.2. In the absence of the laser field our result agrees well with the experimental
data [99].
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Table 3.2: Charge transfer cross sections depending on phase (10−16 cm2) for laser field frequency
𝜔 = 0.01 a.u.

Frequency Intensity Result of this work Result of work [99]

No field 22.33 21.9

0.01 a.u. 1× 1012 W/cm2 22.15

0.01 a.u. 1× 1013 W/cm2 23.87

2 a.u. 5× 1014 W/cm2 20.19

3.4 Chapter 3 Summary

This chapter of the dissertation examines the processes of charge transfer and
ionization during collisions of a proton with a hydrogen atom in the presence of
a linearly polarized electromagnetic field. Numerical simulations were performed
for two frequencies (in the infrared and extreme ultraviolet ranges), three peak
intensities and four phase values of the electromagnetic field at the moment of the
shortest distance between the incident particle and the target. Results for frequency
𝜔 = 0.01 a.u. demonstrate a significant influence on charge transfer and ionization
from the phase of the electromagnetic field. The dynamics of charge transfer and
ionization are determined by the superposition of Coulomb forces from nuclei and the
force from the electromagnetic field in the region of the incident particle approaching
the target. The force exerted by the electromagnetic field in this region, in turn,
is determined by the phase of the field at the moment of the shortest distance
between the incident particle and the target. If the impact parameter is small enough
(𝑏 < 2 a.u.), the excited states of the quasimolecule H+

2 turn out to be significantly
populated while the incident particle is in close proximity to the target. In this
case, the areas of motion of the nucleus when the incident particle approaches the
target and when it departs differ significantly in their role in the processes of charge
transfer and ionization. When the incident particle is still approaching the target,
the electron dynamics are caused mainly by the interference of the initially occupied
1𝜎𝑔 and 1𝜎𝑢 molecular orbitals. However, by the time the incident particle leaves,
the overlying electronic states are already populated, which affects the dynamics
of charge transfer and ionization in an external field. The probabilities of charge
transfer and ionization are different for different field phases at the same strength.
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The lowest ionization both at an intensity of 1× 1012 W/cm2 and at an intensity of
1× 1013 W/cm2 is observed, if the field phase is 270∘.

At large impact parameters (𝑏 > 2 a.u.), the probability of excitation of a quasi-
molecule into higher-lying electronic states is small, and the dynamics of charge
transfer are mainly determined by the interference of the initially occupied 1𝜎𝑔 and
1𝜎𝑢. Near the point of closest approach between the incident particle and the tar-
get, the axis of the molecule is almost perpendicular to the direction of action of
the external field force. In this situation, the dependence on the sign of the field
disappears. Then the probability of charge transfer is the same for both phases of
the field in pairs 0∘, 180∘ and 90∘, 270∘, but differs from the probability for the
other couples. For the electromagnetic field frequency 𝜔 = 2 a.u. and intensity 𝐼0 =
5× 1014 W/cm2, no influence of the electromagnetic field phase on the probabilities
of charge transfer and ionization is observed. This is well explained by the much
faster oscillations of the electromagnetic field compared to the oscillations of the
electron density between the target and the incident particle.
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Conclusion

In this dissertation, various effects in quasimolecules that arise when irradiated
with a linearly polarized laser field were studied, which was considered both in the
dipole approximation and beyond.

The process of single-photon ionization for the H+
2 molecule in the antisymmetric

initial state 1𝜎𝑢 in the classical case was studied. For this purpose, the energy
and angular distributions of emitted photoelectrons were constructed, as well as
the dependence of the total probability of ionization on the angle 𝛽 between the
polarization vector and the molecular axis. The results obtained demonstrate that
for certain parameters of the laser field: 1) the probability of ionization increases
monotonically with increasing angle 𝛽, which contradicts intuitive expectations; 2)
The maxima in the angular distributions practically do not change their position
as the angle 𝛽 increases. This behavior of the ionization probability and angular
distributions is explained by two-center interference, due to which the most probable
direction of photoelectron emission is determined by two factors: the external field
tends to knock out the electron in the direction of the polarization vector and the
amplification of the signal at a certain angle of photoelectron emission from the
vicinity of two nuclei due to the interference of the wave function.

A relativistic method for calculating one-electron quasimolecules in an exter-
nal field was developed. The assessment of relativistic effects was carried out by
scaling the parameters of the system according to the nuclear charge 𝑍. The re-
sults obtained demonstrate the increasing role, with increasing nuclear charge 𝑍, of
relativistic effects such as a shift in the resonant frequency and an increase in the
ionization potential of the quasimolecule. Having studied the multiphoton ionization
of quasimolecules at several internuclear distances, it was discovered that relativistic
effects can change their electronic structure, shifting the resonance to internuclear
distances of different scales for different quasimolecules. The scope of the dipole
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approximation for the three-dimensional Dirac equation has been achieved. The re-
sults obtained demonstrate that the dipole approximation for molecules with a high
nuclear charge is violated, leading to incorrect calculations of ionization dynamics.

An analysis of the influence of the phase of a linearly polarized electromagnetic
field in collisions of a proton atom with a hydrogen atom in low-energy collisions has
been carried out. The calculation results for H+

2 demonstrate a significant influence
on the probability of electron capture by a incident particle for a slowly oscillating
field, and the stage of approach of the incident particle and its removal have different
effects on the ionization dynamics. At the same time, the rapidly oscillating field
does not affect the process of electron capture by the incident particle.
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