
SAINT-PETERSBURG UNIVERSITY

On the rights of the manuscript

Kostiukov Iurii Olegovich

Automatic Inference of Inductive Invariants of Programs
With Algebraic Data Types

Scientific speciality
2.3.5. Mathematical and software support for computers, complexes and computer

networks

Dissertation for the degree of
Candidate of Physico-Mathematical Sciences

Translation from Russian

Scientific supervisor:
Doctor of Science, Docent

Dmitry Koznov

Saint Petersburg — 2023

2

Contents

Page

Introduction . 5

Chapter 1. Background . 12
1.1 Brief History of Software Verification 12
1.2 History of the Inductive Invariant Expressivity Problem 14
1.3 Constraint Language . 15

1.3.1 Syntax and Semantics of the Constraint Language 15
1.3.2 Algebraic Data Types . 16

1.4 Constrained Horn Clause Systems 16
1.4.1 Syntax . 17
1.4.2 Satisfiability and Safe Inductive Invariants 17
1.4.3 Unsatisfiability and Resolution Refutations 18
1.4.4 From Verification to Solving Horn Clause Systems 19

1.5 Tree Languages . 19
1.5.1 Properties and Operations 20
1.5.2 Tree Automata . 20
1.5.3 Finite Models . 21

1.6 Conclusions . 22

Chapter 2. Regular Invariant Inference 23
2.1 Inference for Horn Clause Systems without Constraints 23
2.2 Inference for Constrained Horn Clause Systems 25
2.3 Regular Invariants . 27
2.4 Specialization for Regular Invariant Inference 28
2.5 Conclusions . 29

Chapter 3. Synchronous Regular Invariant Inference 31
3.1 Synchronous Regular Invariants . 31

3.1.1 Synchronous Tree Automata 31
3.1.2 Closure Under Boolean Operations 33
3.1.3 Decidability of Emptiness and Term Membership 34

3

Page

3.2 Invariant Inference via Declarative Description of the
Invariant-Defining Automaton . 34

3.2.1 Language Semantics for First-Order Logic 35
3.2.2 Algorithm for Building Declarative Descriptions of

Synchronous Regular Invariants 38
3.2.3 Correctness and Completeness 39
3.2.4 Example . 40

3.3 Conclusion . 42

Chapter 4. Collaborative Inference of Combined Invariants 43
4.1 Core Idea of Collaborative Inference 43

4.1.1 CEGAR for Transition Systems 43
4.1.2 Collaborative Inference via CEGAR Modification 46

4.2 Collaborative Invariant Inference . 52
4.2.1 Combined invariants . 52
4.2.2 Horn Clause Systems as Transition Systems 53
4.2.3 Generating Residual System 53
4.2.4 CEGAR(𝒪) for CHCs: Recovering Counterexamples 55
4.2.5 Instantiating Approach within IC3/PDR 56

4.3 Conclusion . 57

Chapter 5. Theoretical Comparison of Inductive Invariant Classes . 58
5.1 Closure under Boolean Operations and Decidability 58
5.2 Invariant Classes Expressivity . 58

5.2.1 Inexpressivity in Synchronous Languages 61
5.2.2 Inexpressivity in Combined Languages 62
5.2.3 Inexpressivity in Elementary Languages 63

5.3 Finite Representations of Term Sets 68
5.4 Conclusion . 69

Chapter 6. Implementation, Related Work and Evaluation 70
6.1 Pilot Implementation . 70
6.2 Related Work . 72
6.3 Evaluation . 75

4

Page

6.3.1 Tool Selection . 75
6.3.2 Benchmark Suite . 76
6.3.3 Setup . 76
6.3.4 Research Questions . 76

6.4 Results . 77
6.4.1 Number of Solutions . 77
6.4.2 Performance . 80
6.4.3 Significance of the Inductive Invariant Class 82

Conclusion . 84

References . 86

Code listing list . 101

Figure list . 102

Table list . 103

5

Introduction

Subject relevance. With software systems becoming increasingly ubiquitous
and integrated into various aspects of human life, the issue of software reliability
grows more critical. The problem of programs quality is traditionally handled by the
field of formal methods. Starting from the 1990s, a new chapter began in this field
with the emergence of binary decision diagrams and symbolic model checking based
on efficient SAT solvers. This advancement enabled the verification of systems with
up to 10120 possible program states [1]. The SAT revolution has led to a decline
in the development of static analyzers from scratch. Instead, they are increasingly
constructed atop a verification stack, consisting of SAT solvers for propositional
logic, SMT solvers built upon them for first-order logic theories, and ultimately,
Horn solvers for inductive invariant inference. New approaches to static analysis
yield many benefits for the industry. For instance, in the development of Windows 7
in 2008, approximately one-third of all identified errors were discovered by SAGE [2],
a tool that relies on symbolic execution and extensively uses an SMT solver to check
the reachability of program execution branches.

Data types are of great importance in formal methods because suitable for
malizations are required to take into account data types in program verification.
However, most of the research is aimed at supporting “classical” data types, such as
integers and arrays. Less researched are the emerging, becoming more popular data
types, such as algebraic data types (ADT)1. They are constructed recursively, by
union and Cartesian product of types. With ADTs one can build linked lists, binary
trees, and other complex data structures. ADTs are actively employed in functional
languages such as Haskell and OCaml, being an alternative structure to enumer
ations and unions from C and C++. Furthermore, ADTs are increasingly adapted
in modern programming languages used in the industry, for example, in Rust and
Scala, as well as in the languages of smart contracts, for example, in Solidity [3].

Thus, verifying the correctness of programs that use ADTs becomes an urgent
task. This task can be formalized, and its solution partially automated within the
framework of deductive verification based on Floyd-Hoare logic [4; 5] or refinement
types [6], as, for example, in Flux system [7] for Rust and Leon system [8] for

1Depending on the context, they are also referred to as abstract data types, inductive data types and
recursive data types.

6

Scala. However, such approaches require the user to provide inductive invari
ants to prove the correctness of the program, and formulating them in practice is
an extremely laborious task. Verification systems based on independent program
ming languages and supporting ADT, such as, Dafny [9], Why3 [10], Viper [11],
F* [12], face the same problem. It should also be noted that algebraic data types
underlie numerous interactive theorem provers (ITPs), such as Coq [13], Idris [14],
Agda [15], Lean [16]. Methods for automating induction in such systems are typ
ically limited to syntactic enumeration, and therefore, during the proof process,
the user is forced to carry out a laborious activity of formulating a sophisticated
induction hypothesis, which is as hard as to infer an inductive invariant.

Thus, these problems are reduced to the problem of automatic inductive in
variant inference of programs with algebraic data types. In general, the problem can
be formulated using constrained Horn clauses (CHCs) — a special type of logical
formulae that allows to simulate program’s operation precisely [17].

Since the problem of automatic inductive invariant inference reduces to the
problem of finding a model for a system of constrained Horn clauses, tools for au
tomatic search of such models (so-called Horn solvers) can be applied in various
contexts of program verification [18; 19]. For instance, RustHorn [20] utilizes
Horn solvers for verifying Rust programs, while SolCMC [21] is employed for
verifying Solidity smart contracts.

There are efficient Horn solvers with ADT support, such as Spacer [22] and
its descendant Racer [23], as well as Eldarica [24], HoIce [25], RCHC [26],
VeriCaT [27]. Annual international competitions CHC-COMP [28] are held among
Horn solvers, where a separate section is devoted to solving Horn clause systems
with algebraic data types.

The solution to a satisfiable system of Horn clauses is typically represented
in the form of a symbolic model [19], which is a model expressed using first-order
logic formulas in the constraint language of the Horn clause system. Therefore, the
class of all inductive invariants definable in the constraint language I will call (clas
sical) symbolic invariants. For example, all Horn solvers which participated in the
CHC-COMP competition over the past two years build classical symbolic invariants.

The problem with symbolic invariants in the context of algebraic data types is
that the constraint language of ADTs does not allow expressing most of the inductive
invariants required to verify practical programs. And if a safe program does not have
any inductive invariant that is definable in the constraint language, no algorithm for

7

inductive invariant inference in this language will be able to construct an inductive
invariant for it. This leads to the fact that Horn solvers that build classical symbolic
invariants do not terminate on most systems with algebraic data types.

Terms of algebraic data types have a recursive structure. For example, a bi
nary tree is either a leaf or a vertex with two descendants, which are also binary
trees. Hence, the primary reason why the ADT constraint language is unable to ex
press inductive invariants for many programs is its limitation in expressing recursive
relations over terms of algebraic types.

Development of the subject. The issue of inexpressiveness of the constraint
language is well-known within the scientific community, and several attempts have
been made to address this problem.

In 2018, P. Ruemmer (Sweden) proposed a method for inductive invariant in
ference in an extension of the constraint language with a size function that counts
the number of constructors in a term. This extension was developed within the
Horn solver Eldarica [24]. However, the problem with this approach is that
any extension of the constraint language requires a substantial reworking of the
entire procedure for inductive invariant inference. In 2022, an extension of the con
straint language with catamorphisms was proposed as part of the Racer Horn
solver (H. Govind, A. Gurfinkel, USA) [23]. Catamorphisms are recursive functions
of a simple form. However, their approach requires the user to specify the cata
morphisms that will be used to build the inductive invariant in advance, so this
approach is not completely automatic.

Since 2018, a separate line of research has been pursued by E. De Angelis,
F. Fioravant, and A. Pettorossi in Italy [29–32]. Their line of work focuses on meth
ods for eliminating algebraic types from Horn systems by reducing them to systems
based on simpler theories, such as linear arithmetic. This approach is implemented
in VeriCaT [27]. A limitation of these methods is the inability to recover the orig
inal system’s inductive invariant from the inductive invariant of a simpler system.

In 2020, it was suggested and implemented in the RCHC Horn solver
(T. Haudebourg, France) [26] to express inductive invariants of programs over
ADTs using tree automata [33]. However, tree automata do not allow representing
synchronous relations, such as equality and disequality of terms, so the proposed
approach is often inapplicable to the simplest programs, where inductive invariants
can be easily found by traditional methods.

8

The goal of this thesis is to propose new classes of inductive invariants for
programs with algebraic data types and to develop automatic inference methods for
them. To achieve this goal, we have posed the following tasks.

1. Create new classes of inductive invariants of programs with algebraic data
types that can express recursive and synchronous relations.

2. Create methods for automatic inductive invariant inference in new classes.
3. Develop a prototype software implementation of the proposed methods.
4. Conduct an experimental comparison of the implemented tool against ex

isting alternatives using a representative benchmark.
Research methodology and methods. The research methodology involves

designing classes of inductive invariants that are applicable in practice and develop
ing corresponding algorithms while leveraging existing results in the field. In the
study, first-order logic is utilized, along with fundamental concepts from automata
theory and formal languages, including tree automata, synchronous automata, au
tomaton languages, and the pumping lemma. The prototype implementation of the
theoretical results was performed in the F# language, as well as partially in C++
within the code base of the Racer Horn solver (included in the Z3 SMT solver).

Main contributions to be defended.
1. We propose an effective method for automatic inductive invariant inference

using tree automata, which can express recursive relations in a larger num
ber of real programs. This method is based on the finite model finding.

2. We present a method for automatic inductive invariant inference through
program transformation and finite model finding within a difficult for au
tomatic invariant inference class. This class, based on synchronous tree
automata, can express recursive and synchronous relations.

3. We propose a class of inductive invariants based on a Boolean combina
tion of classical invariants and tree automata, which can express recursive
relations in real programs and yet has an efficient inference procedure.
Furthermore, we suggest an effective method for collaborative inductive
invariant inference within this class by inferring invariants in subclasses.

4. A theoretical comparison is conducted between the existing and proposed
classes of inductive invariants. This comparison includes formulating and
proving pumping lemmas for both the constraint language and the con
straint language extended by the term size function.

9

5. A pilot software implementation of the proposed methods in the F# lan
guage was conducted within the RInGen tool. This implementation was
then compared to existing methods using the widely accepted “Tons of In
ductive Problems” benchmark of functional program verification tasks. The
best of the proposed methods was able to solve 3.74 times more tasks than
the best performing implementation of the existing tools within the time
limit.

The scientific novelty of the obtained results is as follows.
1. For the first time, a class of inductive invariants based on the Boolean

combination of classes of classical invariants and invariants based on tree
automata has been proposed.

2. For the first time, a finite model finding based algorithm for inductive
invariant inference for programs with algebraic data types is proposed.

3. A new algorithm for collaborative inference of combined inductive invariants
based on off-the-shelf methods for inferring invariants for separate classes
has been proposed.

4. For the first time, pumping lemmas for first-order languages in the signature
of the theory of algebraic data types have been introduced and proven.

Theoretical significance. The thesis offers new approaches for the inductive
invariant inference. Since these approaches are orthogonal to the existing ones, they
can be applied to programs over other theories, such as the theory of arrays, and
can also strengthen already existing approaches for inductive invariant inference.
Another significant theoretical contribution is the adaptation of pumping lemmas
to first-order languages: these lemmas pave the way to a fundamental study of the
undefinability of inductive invariants in first-order languages and the design of new
classes of inductive invariants.

Practical significance. The proposed methods can be applied in the devel
opment of static analyzers for languages with algebraic data types. Since inductive
invariants approximate loops and functions, they allow the analyzer to correctly “cut
off” entire spaces of unreachable program states and avoid getting “stuck” in loops
and recursion. For example, the proposed methods can be useful in the development
of verifiers and test coverage generators for languages such as Rust, Scala, So
lidity, Haskell and OCaml. Since the proposed methods were implemented in
the pilot software, the resulting Horn solver can also be used as the “core” of a static
analyzer, for example, for the Rust language using the RustHorn framework.

10

Reliability of the obtained results is ensured by computer experiments on
publicly accepted benchmark and formal proofs. The results obtained in the thesis
are consistent with the results of other authors in the field of inductive invariant
inference.

Research validation. The main results of the work were reported at the
following scientific conferences and seminars: HCVS 2021 International Workshop
(March 28, 2021, Luxembourg), Huawei Workshop (November 18-19, 2021, St. Pe
tersburg), JetBrains Research Annual Internal Workshop (December 18, 2021, St.
Petersburg), PLDI 2021 conference (June 23-25, 2021, Canada), Internal seminar
of the Vienna Technical University (June 3, 2022, Austria), LPAR 2023 conference
(June 4-9, 2023, Colombia).

In 2021 and 2022, the developed tool took respectively 2nd and 1st place in
the international CHC-COMP competition, in the ADT track.

Publications. The main results of the thesis are presented in 4 publications,
2 of which are published in journals recommended by the HAC, 2 are published in
periodical scientific journals indexed by Web of Science and Scopus, one of which
is published in the PLDI conference proceedings, which has an A* rank, and one is
published in the LPAR conference proceedings, which has an A rank.

The author’s personal contribution in joint publications is distributed as
follows. In the article [34], the author implemented a reduction of inductive invari
ant inference of functions over complex data structures to solving systems of Horn
clauses. Additionally, the author designed experiments with existing Horn solvers.
The co-authors proposed the idea and developed its theoretical aspects. In the
works [35], the author conducted a theoretical comparison of classes of inductive in
variants, proposed and proved pumping lemmas for first-order languages over ADT,
implemented the proposed approach, and conducted experiments. The co-authors
participated in the discussion of the main ideas of the paper and performed a review
of existing solutions. In the article [36], the author’s contribution lies in proposing
and formally justifying a collaborative approach to invariant inference, implement
ing and evaluating it. The co-authors participated in the discussion of the paper
presentation and performed a review of existing solutions. In the article [37], the
author’s contribution lies in the formal description of the theory of computing pre
conditions for programs with complex data structures. The co-authors participated
in the discussion of the main ideas and implemented the approach.

11

Volume and organization of the thesis. The thesis consists of an intro
duction, 6 chapters, and a conclusion.

The full volume of the thesis is 103 pages, including 5 code listings, 6 figures
and 4 tables. The reference list contains 128 items.

12

Chapter 1. Background

This chapter presents the key concepts and theorems for this thesis, and out
lines the state of the research field at the time of writing. Section 1.2 contains a
brief history of the problem of expressivity of inductive invariants — the key prob
lem for this thesis. Section 1.3 defines the constraint language, first-order logic,
and algebraic data types — key objects for the verification methods proposed in
the thesis. Section 1.4 presents constrained Horn clause systems and shows their
connection with the program verification. Formal tree languages, used to represent
sets of algebraic data types terms, are presented in Section 1.5. Finally, Section 1.6
presents the conclusions of the background.

1.1 Brief History of Software Verification

The history of verification is typically started with negative results: Turing’s
halting problem (1936) [38] and Rice’s theorem (1953) [39]. These results state that
there does not exist a verifier, which halts on all inputs and only gives correct results.
The first constructive efforts towards automatic program verification were made by
R. W. Floyd (1967) [4] and C.A. R. Hoare (1969) [5]. These researchers devised
approaches that reduced program verification to checking satisfiability of logical
formulas. The first practical approach to verification, known as model checking,
emerged in 1981 within the context of concurrent program verification [40]. Its
essential limitation was the so-called state explosion problem [41]: the state space
grows exponentially as the state dimension increases.

To solve this problem, K.McMillan proposed symbolic model checking in 1987,
which was implemented in the SMV tool later in 1993 [1].

Since 1996, a shift towards representing sets of program states by SAT (SAT
isfiability) formulas of propositional logic has been made [42]. This led to the
verification of systems containing up to 10120 states [1]. It became possible thanks
to a new generation of SAT solvers like Chaff [43], based on the Conflict Driven
Clause Learning (CDCL) algorithm for satisfiability checking [44]. Based on CDCL,
the CDCL(T) algorithm for testing the satisfiability of first-order logic formulas in
different theories (satisfiability modulo theories, SMT) was proposed in 2002 [45];

13

it was designed specifically for formal methods problems. In 2002, the first SMT
solver CVC [46] was implemented on top of the Chaff SAT solver.

The emergence of efficient SAT and SMT solvers led to separation of logical
conditions checking and the global verification process. In 1999, bounded model
checking (BMC) was proposed [47]. This method builds a logical formula from the
unwinding of the transition relation of the program and passes it to an external
solver. Then, in 1995−2000, thanks to R.P. Kurshan and E. Clarke, the counterex
ample-guided abstraction refinement (CEGAR) method appeared [48; 49]. This
method allowed for the verification of programs by iteratively building inductive
invariants as abstractions and refining them using counterexamples to the inductive
ness of the candidate program invariants. In 2003−2005, K.Macmillan proposed
to build abstractions using interpolants of unsatisfiable formulas extracted from a
logical solver [50; 51]. Interpolants, in fact, are local partial proofs of the correct
ness of the program.

In 2012, it was proposed to add a so-called Horn solver to the “verifier, SMT
solver, SAT solver” stack. Horn solver is responsible for automatic inference of
inductive invariants and counterexamples [18]. Thus, the role of the verifier was
reduced to the syntactic reduction of the program to a Horn clause system, and the
Horn solver became the “core” of the verification process. For example, CEGAR
approach is implemented in the Horn solver Eldarica. In 2014 P. Garg proposed
the ICE approach based on supervised learning [52]. ICE is implemented in the
Horn solvers HoIce and RCHC.

In 2011, A. R. Bradley proposed an approach called IC3/PDR (property-di
rected reachability) [53] for SAT-based hardware verification. By 2014, the approach
was generalized for SMT-based software verification [54; 55]. The IC3/PDR ap
proach enhances CEGAR by creating abstractions through the construction of
inductive strengthenings of the specification, evenly distributing resources between
the search for an inductive invariant and a counterexample. IC3/PDR is imple
mented in the Horn solvers Spacer [22] and Racer [23].

Thanks to efficient algorithms, Horn solvers are more and more applied in
verification of real programs, such as smart contracts.

14

1.2 History of the Inductive Invariant Expressivity Problem

Following the emergence of Floyd-Hoare logic in 1967−1969 [4; 5], the question
of the sufficiency of the proposed calculus for proving the correctness of all possible
programs became substantial. The correctness of the calculus was proven early on,
but for many years, the problem of its completeness, i. e., whether the proposed
calculus is sufficient to prove the safety of all safe programs, remained unresolved.
Dealing with this problem in 1978 S. A. Cook proved [56] the relative completeness of
Hoare logic. The relative completeness limitation in the theorem was that all possible
weakest preconditions of the program must be expressible in the constraint language.
Since that time, examples of simple programs whose invariants are inexpressible in
the constraint language have been accumulated [57]. Therefore, in 1987 A. Blass and
Yu. Gurevich proposed to abandon first-order logic in favor of existential fixed-point
logic [58; 59]. This logic is significantly more expressive than first-order logic, so the
classical completeness theorem without relativeness limitation was proved for it.

Note that negated existential fixed-point logic formulas correspond to con
strained Horn clause systems [19]. The latter thus allows to express all possible
inductive invariants of programs, but they are not an effective representation: the
problem of checking the satisfiability of systems of Horn clauses is generally unde
cidable. Therefore, the problem of the invariant expressivity has not vanished, but
it transformed instead into the main problem of this thesis: how to express and
efficiently build solutions of constrained Horn clause systems?

At the moment, various approaches to solve this problem in practice are pro
posed: from the transformation of clause systems into systems in which the existence
of an expressible invariant is more likely (see the works 2015−2022 E. DeAngelis,
A. Pettorossi [29–32; 60; 61]), syntactic synchronizations of clauses [61; 62], to the
inference of relational invariants (invariants for several predicates) [63; 64].

In fact, research in the field of completeness of abstract interpretation is
devoted to the solution of the same problem. Abstract interpretation is an ap
proach [65] for building correct-by-construction static analyzers. Incompleteness in
abstract interpretation arises from the approximation of undecidable properties in
a decidable abstract domain, e. g., in some fragment of the first-order logic.

In 2000, it was shown that the abstract domain can be automatically refined
by the analyzer [66]. However, as shown by R. Giacobazzi et al. [67] in 2015, this
can lead to an overly precise abstract domain, causing the analyzer to diverge.

15

Therefore, the most important step in the abstract interpreter design is to come up
with an abstract domain which will work well for a specific class of tasks [68]. Recent
works in the field [69; 70] study the accuracy of the analysis and local completeness :
completeness with respect to a given set of traces.

1.3 Constraint Language

For an arbitrary set 𝑋, define the following sets: 𝑋𝑛 ≜ {⟨𝑥1, . . . ,𝑥𝑛⟩ | 𝑥𝑖 ∈ 𝑋}
and 𝑋⩽𝑛 ≜

⋃︀𝑛
𝑖=1𝑋

𝑖.

1.3.1 Syntax and Semantics of the Constraint Language

A multisort first-order signature with equality is a tuple Σ = ⟨Σ𝑆,Σ𝐹 ,Σ𝑃 ⟩,
where Σ𝑆 denotes the set of sorts, Σ𝐹 represents the set of functional symbols,
and Σ𝑃 is the set of predicate symbols, which includes a distinguished equality
symbol =σ for each sort σ. The equality sort index will be omitted in the following
sections. Each functional symbol 𝑓 ∈ Σ𝐹 has arity σ1 × · · · × σ𝑛 → σ, where
σ1, . . . ,σ𝑛,σ ∈ Σ𝑆, and each predicate symbol 𝑝 ∈ Σ𝑃 has arity σ1 × · · · × σ𝑛.
Terms, atoms, formulas, closed formulas, and first-order language (FOL) sentences
are defined as usual. The first-order language defined over the signature Σ will be
called the constraint language, and the formulas in it Σ-formulas.

A multi-sort structure (model) ℳ for signature Σ consists of nonempty do
mains |ℳ|σ for each sort σ ∈ Σ𝑆. For each functional symbol 𝑓 with arity
σ1×· · ·×σ𝑛 → σ we assign the interpretationℳJ𝑓K : |ℳ|σ1×· · ·×|ℳ|σ𝑛 → |ℳ|σ,
and to each predicate symbol 𝑝 with arity σ1×· · ·×σ𝑛 we assign the interpretation
ℳJ𝑝K ⊆ |ℳ|σ1×· · ·×|ℳ|σ𝑛. For every closed term 𝑡 with sort σ, the interpretation
ℳJ𝑡K ∈ |ℳ|σ is defined recursively in a natural manner.

A structure is called finite if all domains of all its sorts are finite, otherwise
it is called infinite.

The satisfiability of a clause φ in a model ℳ is denoted by ℳ |= φ and is
defined as usual. By writing φ(𝑥1, . . . , 𝑥𝑛) instead of φ we will emphasize that all
free variables in φ are among {𝑥1, . . . , 𝑥𝑛}. Next,ℳ |= φ(𝑎1, . . . , 𝑎𝑛) denotes that
ℳ satisfies φ on an evaluation that maps free variables to elements of corresponding
domains 𝑎1, . . . , 𝑎𝑛 (variables are also associated with sorts). The universal closure
of the formula φ(𝑥1, . . . , 𝑥𝑛) is denoted by ∀φ and is defined as ∀𝑥1 . . . ∀𝑥𝑛.φ. If φ

16

has free variables, thenℳ |= φ meansℳ |= ∀φ. A formula is called satisfiable in
a free theory iff it is satisfiable in some model of the same signature.

1.3.2 Algebraic Data Types

An algebraic data type (ADT) is a tuple ⟨𝐶,σ⟩ where σ is the sort of this
ADT, and 𝐶 is a set of functional symbols of constructors. ADTs are also referred
to as abstract data types, inductive data types, and recursive data types. With ADTs
one can define data structures such as lists, binary trees, red-black trees, and others.

Let ⟨𝐶1,σ1⟩ , . . . , ⟨𝐶𝑛,σ𝑛⟩ be an ADT set such that σ𝑖 ̸= σ𝑗 and 𝐶𝑖 ∩𝐶𝑗 = ∅
for 𝑖 ̸= 𝑗. Due to the focus of this work, we will further consider only signatures
of the theory of algebraic data types Σ = ⟨Σ𝑆,Σ𝐹 ,Σ𝑃 ⟩, where Σ𝑆 = {σ1, . . . ,σ𝑛},
Σ𝐹 = 𝐶1 ∪ · · · ∪ 𝐶𝑛 and Σ𝑃 = {=σ1 , . . . , =σ𝑛}. Since Σ has no predicate symbols
other than equality symbols (which have fixed interpretations within each structure),
there is a single Herbrand model ℋ for Σ. The domain of the Herbrand model ℋ is
a tuple

⟨︀
|ℋ|σ1 , . . . , |ℋ|σ𝑛

⟩︀
, where each set |ℋ|σ𝑖 is a set of all closed terms of sort

σ𝑖. The Herbrand model interprets all closed terms as themselves, and therefore
serves as the standard model for the theory of algebraic data types. A formula φ
will be called satisfiable modulo the ADT theory iff ℋ |= φ.

The satisfiability of formulas in free theory, as well as in ADT theory, can be
checked automatically by the so-called SMT solvers, such as Z3 [71], cvc5 [72] and
Princess [73], and by automated theorem provers (ATPs) such as Vampire [74].
These tools allow separating the task of building proofs of program safety from the
task of verifying such proofs, automating the latter task.

1.4 Constrained Horn Clause Systems

By constrained Horn clause (CHC) systems, one can represent programs and
their specifications by means of logic. The task of verifying programs in different
(from functional to object-oriented) programming languages can be reduced to the
problem of checking the satisfiability of constrained Horn clause systems [19]. That
is why we formulate and examine the problem of inductive invariant inference for
programs in terms of CHC systems, which makes CHC systems the central con
cept of this thesis.

17

1.4.1 Syntax

Let ℛ = {𝑃1, . . . , 𝑃𝑛} be a finite set of predicate symbols with sorts from
signature Σ. Such symbols are called uninterpreted. A formula 𝐶 over a signature
Σ ∪ ℛ is called a constrained Horn clause (CHC) if it has the following form:

φ ∧𝑅1(𝑡1) ∧ . . . ∧𝑅𝑚(𝑡𝑚)→ 𝐻.

Here, φ is a constraint (a constraint language formula without quantifiers), 𝑅𝑖 ∈ ℛ,
and 𝑡𝑖 is a tuple of terms. 𝐻 called the head of the clause is either false ⊥ (in which
case the clause is referred to as a query) or an atomic formula 𝑅(𝑡) (in which
case the clause is called a rule for 𝑅). In this case, 𝑅 ∈ ℛ and 𝑡 is a tuple of
terms. The set of all rules for 𝑅 ∈ ℛ is denoted by 𝑟𝑢𝑙𝑒𝑠 (𝑅). The premise of
the implication φ ∧ 𝑅1(𝑡1) ∧ . . . ∧ 𝑅𝑚(𝑡𝑚) is called the body of the formula 𝐶 and
is denoted as 𝑏𝑜𝑑𝑦 (𝐶).

A (constrained) Horn clause (CHC) system 𝒫 is a finite set of constrained
Horn clauses.

1.4.2 Satisfiability and Safe Inductive Invariants

Let 𝑋 = ⟨𝑋1, . . . , 𝑋𝑛⟩ be a tuple of relations such that if predicate 𝑃𝑖 has sort
σ1× . . .×σ𝑚, then 𝑋𝑖 ⊆ |ℋ|σ1× . . .×|ℋ|σ𝑚. To simplify notation, the model exten
sion ℋ{𝑃1 ↦→ 𝑋1, . . . , 𝑃𝑛 ↦→ 𝑋𝑛} will be written as ⟨ℋ, 𝑋1, . . . , 𝑋𝑛⟩ or just

⟨︀
ℋ,𝑋

⟩︀
.

A Horn clause system 𝒫 is said to be satisfiable modulo theory ADT (or safe)
if there exists a tuple of relations 𝑋 such that

⟨︀
ℋ, 𝑋

⟩︀
|= 𝐶 for all 𝐶𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑠 ∈ 𝒫 .

In such a case, the tuple 𝑋 is referred to as a (safe inductive) invariant of the
system 𝒫 . Thus, by definition, a Horn clause system is satisfiable if and only if
it has a safe inductive invariant.

As the inductive invariant 𝑋 is a tuple of sets which are infinite for most CHC
systems, a class of inductive invariants is typically fixed in order to make automatic
inductive invariant inference feasible. Such classes are design in such a way, so that
their elements are finitely expressible. This thesis is focused on classes of inductive
invariants with this property.

Note three important types of Horn clause systems: systems with no induc
tive invariants (unsatisfiable ones), systems with only one inductive invariant, and
systems with multiple (even infinite) inductive invariants. It is also noteworthy
that if a certain algorithm is designed to infer inductive invariants within some

18

fixed class, it may be the case that the system is satisfiable, yet none of its in
ductive invariants lies in that class. This typically leads to nontermination of the
algorithm on such a system.

By notation 𝒫 ∈ 𝒞, where 𝒫 is the name of an example CHC system with
one uninterpreted symbol, and 𝒞 is an inductive invariants class, we mean that the
system 𝒫 is safe and some its safe inductive invariant (the relation interpreting the
only predicate) belongs to the class 𝒞.

Definition 1 (Elem). A relation 𝑋 ⊆ |ℳ|σ1×· · ·× |ℳ|σ𝑛 is called expressible in
first-order ADT language (or elementary) if there exists a Σ-formula φ(𝑥1, . . . , 𝑥𝑛)
such that (𝑎1, . . . , 𝑎𝑛) ∈ 𝑋 if and only if ℋ |= φ(𝑎1, . . . , 𝑎𝑛). The class of all
elementary relations will be denoted by Elem. The invariants in this class are
called elementary, as well as classical symbolic invariants.

Elementary Invariants with Term Size Constraints

A tool Eldarica [24] infers invariants of Horn clause systems over ADT in
extension of the constraint language by term size constraints. Let us define the class
of invariants expressible by the formulas of this language.

Definition 2 (SizeElem). The SizeElem signature can be obtained from the
Elem signature by adding the 𝐼𝑛𝑡 sort, operations from Presburger arithmetic, and
functional symbols 𝑠𝑖𝑧𝑒σ with arity σ → 𝐼𝑛𝑡. For brevity, we will omit the σ sign
in the 𝑠𝑖𝑧𝑒 symbols.

The satisfiability of formulas with term size constraints is checked in the struc
ture ℋ𝑠𝑖𝑧𝑒, obtained by joining the standard model of Presburger arithmetic with
the Herbrand model ℋ and the following natural interpretation of the size function:

ℋ𝑠𝑖𝑧𝑒J𝑠𝑖𝑧𝑒(𝑓(𝑡1, . . . ,𝑡𝑛)K ≜ 1 +ℋ𝑠𝑖𝑧𝑒J𝑡1K + . . .+ℋ𝑠𝑖𝑧𝑒J𝑡𝑛K.

For example, the size of the term 𝑡 ≡ 𝑐𝑜𝑛𝑠
(︀
𝑍, 𝑐𝑜𝑛𝑠(𝑆(𝑍), 𝑛𝑖𝑙)

)︀
in the joint

structure is evaluated as follows: ℋ𝑠𝑖𝑧𝑒J𝑠𝑖𝑧𝑒(𝑡)K = 6.

1.4.3 Unsatisfiability and Resolution Refutations

It is well known that the unsatisfiability of a Horn clause system can be wit
nessed by a resolution refutation.

19

Definition 3. A resolution refutation (refutation tree) of a CHC system 𝒫 is a
finite tree with vertices ⟨𝐶,Φ⟩, where

(1) 𝐶 ∈ 𝒫 and Φ is a Σ ∪ℛ-formula;
(2) the root of the tree contains the query 𝐶 and a satisfiable Σ-formula Φ;
(3) each leaf contains a pair ⟨𝐶, 𝑏𝑜𝑑𝑦 (𝐶)⟩, where 𝑏𝑜𝑑𝑦 (𝐶) is a Σ-formula;
(4) each tree node ⟨𝐶,Φ⟩ has children ⟨𝐶1,Φ1⟩ , . . . , ⟨𝐶𝑛,Φ𝑛⟩ such that:

– 𝑏𝑜𝑑𝑦 (𝐶) ≡ φ ∧ 𝑃1(𝑥1) ∧ . . . ∧ 𝑃𝑛(𝑥𝑛);
– 𝐶𝑖 ∈ 𝑟𝑢𝑙𝑒𝑠 (𝑃𝑖);
– Φ ≡ φ ∧ Φ1(𝑥1) ∧ . . . ∧ Φ𝑛(𝑥𝑛).

Theorem 1. A Horn clause system has a resolution refutation iff it is unsatisfiable.

1.4.4 From Verification to Solving Horn Clause Systems

Tools that automatically check the satisfiability of a Horn clause system are
called Horn solvers (CHC solvers). Typically, a Horn solver either returns an induc
tive invariant or a resolution refutation, although it may also return “unknown”
or diverge.

The problem of program verification can be reduced to the problem of check
ing the satisfiability of a Horn clause system [18; 19]. Among approaches providing
such a reduction, the most significant are the Floyd-Hoare logic for imperative pro
grams [4; 5], as well as dependent types [75] and refinement types [6] for functional
programs. There are many tools within which this reduction can be implemented,
for example, LiquidHaskell [76] for the Haskell language, RCaml [77] for
OCaml, Flux [7] for Rust, Leon [8] and Stainless [78] for the Scala lan
guage. For example, tools like RustHorn [20], a verifier for the Rust language,
and SolCMC [21], a smart contract verifier for the Solidity language, are based
on the above approaches. These tools directly apply Horn solvers with ADT sup
port, such as Spacer and Eldarica.

1.5 Tree Languages

Various types of sets of ADT terms, viewed as tree languages, are studied
within the field of formal languages as generalizations of string languages. In partic
ular, the generalization of (string) automata to tree automata and their extensions,
which typically have the properties of decidability and closure of basic language

20

operations (for example, testing for emptiness of language intersections), are stud
ied [79–84]. For this thesis, various classes of tree languages are of interest because
they can serve as classes of safe inductive invariants for programs that use ADTs.

1.5.1 Properties and Operations

In order to design an efficient invariant inference algorithm, one typically needs
to build the class of invariants with the following properties: closure under Boolean
operations, decidability of the tuple membership problem in the invariant, and de
cidability of the invariant emptiness check problem.

Definition 4 (Boolean closure). Let an operation ◁▷ be either ∩ (set intersection),
or ∪ (set union), or ∖ (set subtraction). A class of sets is said to be closed under
the binary operation ◁▷ if for each pair of sets 𝑋 and 𝑌 from the given class the set
𝑋 ◁▷ 𝑌 also lies in the class.

Definition 5 (Decidability of membership). The problem of determining
whether a tuple of closed terms belongs to a particular set of terms is decidable
within a given class of term sets iff the set of pairs of tuples of closed terms 𝑡

and elements 𝑖 of this class, such that 𝑖 expresses some set 𝐼, and 𝑡 ∈ 𝐼 holds, is
decidable.

Definition 6 (Decidability of emptiness). The problem of determining the
emptiness of a set is decidable in the class of term sets iff the set of class elements
expressing the empty set is decidable.

1.5.2 Tree Automata

Tree automata generalize classical string automata to tree languages (term
languages), preserving the decidability and closure of basic operations. Classical
results for tree automata and their extensions are presented in the book [33].

Definition 7. A (finite) tree 𝑛-automaton over (alphabet) Σ𝐹 is a tuple⟨︀
𝑆,Σ𝐹 , 𝑆𝐹 ,Δ

⟩︀
, where 𝑆 is a (finite) set of states, 𝑆𝐹 ⊆ 𝑆𝑛 is a set of final

states, and Δ is a transition relation with the rules of the following form:

𝑓(𝑠1, . . . , 𝑠𝑚)→ 𝑠.

Here the following notations are used: functional symbols are denoted by 𝑓 ∈ Σ𝐹 ,
their arity is denoted by 𝑎𝑟(𝑓) = 𝑚, and states are denoted by 𝑠, 𝑠1, . . . , 𝑠𝑚 ∈ 𝑆.

21

An automaton is called deterministic if there are no rules in Δ with the same
left-hand side.

Definition 8. A tuple of closed terms ⟨𝑡1, . . . , 𝑡𝑛⟩ is accepted by an 𝑛-automaton
𝐴 =

⟨︀
𝑆,Σ𝐹 , 𝑆𝐹 ,Δ

⟩︀
, if ⟨𝐴[𝑡1], . . . , 𝐴[𝑡𝑛]⟩ ∈ 𝑆𝐹 , where

𝐴
[︀
𝑓(𝑡1, . . . ,𝑡𝑚)

]︀
≜

{︃
𝑠, if

(︀
𝑓(𝐴[𝑡1], . . . , 𝐴[𝑡𝑚])→ 𝑠

)︀
∈ Δ,

not defined, otherwise.

Automaton language of 𝐴, denoted by ℒ (𝐴), is the set of all tuples of terms
accepted by automaton 𝐴.

Example 1. Let Σ = ⟨𝑃𝑟𝑜𝑝, {(_ ∧_), (_→ _),⊤,⊥},∅⟩ be a propositional sig
nature. Consider an automaton 𝐴 =

⟨︀
{𝑞0, 𝑞1},Σ𝐹 , {𝑞1},Δ

⟩︀
with a set of transition

relations Δ presented below.

𝑞1 ∧ 𝑞1 ↦→ 𝑞1

𝑞1 ∧ 𝑞0 ↦→ 𝑞0

𝑞0 ∧ 𝑞1 ↦→ 𝑞0

𝑞0 ∧ 𝑞0 ↦→ 𝑞0

𝑞1 → 𝑞0 ↦→ 𝑞0

𝑞1 → 𝑞1 ↦→ 𝑞1

𝑞0 → 𝑞0 ↦→ 𝑞1

𝑞0 → 𝑞1 ↦→ 𝑞1

⊥ ↦→ 𝑞0

⊤ ↦→ 𝑞1

The automaton 𝐴 accepts only true propositional formulas without variables.

1.5.3 Finite Models

There is a one-to-one correspondence between finite models of free theory
formulas and tree automata [85]. This correspondence gives the following proce
dure for building tree automata from finite models. Using the finite model ℳ,
for each predicate symbol 𝑃 ∈ Σ𝑃 an automaton 𝐴𝑃 =

⟨︀
|ℳ| ,Σ𝐹 ,ℳ(𝑃),Δ

⟩︀
is built; for all automata a common transition relation Δ is defined — for each
𝑓 ∈ Σ𝐹 with arity σ1 × . . . × σ𝑛 ↦→ σ and for each 𝑥𝑖 ∈ |ℳ|σ𝑖 we set
Δ
(︀
𝑓(𝑥1, . . . , 𝑥𝑛)

)︀
= ℳ(𝑓)(𝑥1, . . . , 𝑥𝑛).

Theorem 2. For any automaton 𝐴𝑃 , the following holds:

ℒ (𝐴𝑃) = {⟨𝑡1, . . . ,𝑡𝑛⟩ | ⟨ℳJ𝑡1K, . . . ,ℳJ𝑡𝑛K⟩ ∈ ℳ(𝑃)}).

The practical value of this result is that building a tree automaton for the
formula is equivalent to finding a finite model for it. Therefore, a number of tools

22

such as Mace4 [86], Kodkod [87], Paradox [88], as well as cvc5 [89] and Vam
pire [90] can be used for finding finite models of free theory formulas and, as a
result, to automatically build tree automata.

Most of these tools implement SAT encoding: the finite domain and functions
are encoded into a bit representation via a propositional logic formula, which is then
passed to a SAT solver. Finite-model finders are applied in verification [91], as well
as in first-order infinite model building [92].

1.6 Conclusions

Automatic inductive invariant inference plays a key role in formal methods,
particularly in static analysis. Despite the fact that there are a number of well-de
veloped methods for inferring inductive invariants, and new papers on this topic
appear each year at various A* computer science and programming language con
ferences (such as POPL, PLDI, CAV, etc.), as well as annual competitions between
corresponding tools, the following problem still remains open: how to express the in
ductive invariants of programs. The challenge of designing the best representation of
invariants lies in expressing the invariants of real life programs on the one hand, while
having an efficient invariant inference procedure on the other hand. This problem
is even more critical in the context of algebraic data types, for which the classical
methods of representing invariants are extremely inefficient; and if the invariant is
not representable, then the inference algorithm for this representation will not ter
minate. This makes the research conducted in this thesis in-demand and relevant.

23

Chapter 2. Regular Invariant Inference

The main contribution of this chapter is a new method of automatic inductive
invariant inference for systems over ADT using automated theorem provers. In Sec
tion 2.1, the method is presented and its correctness is proven for simplified Horn
clause systems without constraints, and in Section 2.2, the method is extended to
arbitrary constraint Horn clause systems. Section 2.3 considers the class of regular
invariants that can be inferred using the proposed method. Section 2.4 describes
how the proposed method can be applied to automatically infer regular invariants
using finite model finders. Unlike classical elementary invariants, regular invariants
based on tree automata can express recursive relationships, and in particular, ar
bitrary deep properties of algebraic terms. As stated in Section 2.2, the proposed
method can also be combined with general-purpose automated theorem provers.
The chapter is based on [35].

2.1 Inference for Horn Clause Systems without Constraints

The core idea of the method is as follows. If a Horn clause system over ADTs
without constraints has a model in the free theory, then it is also satisfiable in the
ADT theory, and the model corresponds to some ADT inductive invariant.

Example 2. Consider the following Horn clause system over the algebraic data type
of Peano numbers. The system encodes the parity predicate for Peano numbers 𝑒𝑣𝑒𝑛,
and the property that “no two consecutive natural numbers can be even at the same
time”.

𝑥 = 𝑍 → 𝑒𝑣𝑒𝑛(𝑥) (2.1)

𝑥 = 𝑆(𝑆(𝑦)) ∧ 𝑒𝑣𝑒𝑛(𝑦)→ 𝑒𝑣𝑒𝑛(𝑥) (2.2)

𝑒𝑣𝑒𝑛(𝑥) ∧ 𝑒𝑣𝑒𝑛(𝑦) ∧ 𝑦 = 𝑆(𝑥)→ ⊥ (2.3)

Although this simple system is safe, it does not have a classical symbolic
invariant, as will be shown in Chapter 5.

24

This system can be rewritten into the following equivalent Horn clause system
without constraints.

⊤ → 𝑒𝑣𝑒𝑛(𝑍)

𝑒𝑣𝑒𝑛(𝑥)→ 𝑒𝑣𝑒𝑛(𝑆(𝑆(𝑥)))

𝑒𝑣𝑒𝑛(𝑥) ∧ 𝑒𝑣𝑒𝑛(𝑆(𝑥))→ ⊥

It corresponds to the following formula in the free theory.

∀𝑥.(⊤ → 𝑒𝑣𝑒𝑛(𝑍))∧
∀𝑥.(𝑒𝑣𝑒𝑛(𝑥)→ 𝑒𝑣𝑒𝑛(𝑆(𝑆(𝑥))))∧
∀𝑥.(𝑒𝑣𝑒𝑛(𝑥) ∧ 𝑒𝑣𝑒𝑛(𝑆(𝑥))→ ⊥)

This formula is satisfied by the following finite model ℳ.

|ℳ|𝑁𝑎𝑡 = {0,1}
ℳ(𝑍) = 0

ℳ(𝑆)(𝑥) = 1− 𝑥

ℳ(𝑒𝑣𝑒𝑛) = {0}

Lemma 1 (Soundness). Assume that a Horn clause system without constraints
𝒫 with uninterpreted predicates ℛ = {𝑃1, . . . ,𝑃𝑘} is satisfied in some model ℳ,
i. e.,ℳ |= 𝐶 for all 𝐶 ∈ 𝒫 . Let the following be true:

𝑋𝑖 ≜ {⟨𝑡1, . . . ,𝑡𝑛⟩ | ⟨ℳJ𝑡1K, . . . ,ℳJ𝑡𝑛K⟩ ∈ ℳ(𝑃𝑖)}.

Then ⟨ℋ,𝑋1, . . . ,𝑋𝑘⟩ is an inductive invariant of 𝒫 .

Proof. All clauses have the form

∀𝑥.𝐶 ≡ 𝑃1(𝑡1) ∧ . . . ∧ 𝑃𝑚(𝑡𝑚)→ 𝐻.

Take some tuple of closed terms 𝑥 with appropriate sorts. Then fromℳ |= ∀𝐶, by
the definition of 𝑋𝑖 it follows that

𝑡1 ∈ 𝑋𝑖 ∧ . . . ∧ 𝑡𝑚 ∈ 𝑋𝑚 → 𝐻 ′,

where 𝐻 ′ is the corresponding substitution for 𝐻. By the definition of the satisfia
bility of a Horn clause, it follows that

⟨ℋ,𝑋1, . . . ,𝑋𝑘⟩ |= 𝑃1(𝑡1) ∧ . . . ∧ 𝑃𝑚(𝑡𝑚)→ 𝐻.

25

Thus, from the finite model for the example above, we can build a set 𝑋 ≜

{𝑡 | ℳJ𝑡K = 0} = {𝑆2𝑛(𝑍) | 𝑛 ⩾ 0}, which is a safe inductive invariant of
the original system.

2.2 Inference for Constrained Horn Clause Systems

Given a constrained clause system, an equisatisfiable clause system without
constraints can be built as follows. Without loss of generality, we can assume that
the constraint of each clause contains negations only over atoms. Term equality
literals can be eliminated via unification [93], and each literal of the inequality of
form ¬(𝑡 =σ 𝑢) is replaced by the atomic formula 𝑑𝑖𝑠𝑒𝑞σ(𝑡, 𝑢). For each algebraic
type (𝐶,σ) we also introduce a new uninterpreted symbol 𝑑𝑖𝑠𝑒𝑞σ and add it to the
set of relational symbols ℛ′ ≜ ℛ ∪ {𝑑𝑖𝑠𝑒𝑞σ | σ ∈ Σ𝑆}.

Next, we build a system of clauses 𝒫 ′ over ℛ′ from the system 𝒫 as follows.
For each algebraic type (𝐶,σ) in 𝒫 ′ we add the following clauses for 𝑑𝑖𝑠𝑒𝑞σ:

⊤ → 𝑑𝑖𝑠𝑒𝑞σ(𝑐(𝑥), 𝑐
′(𝑥′)) for all various constructors 𝑐 and 𝑐′ ∈ 𝐶 of sort σ

and

𝑑𝑖𝑠𝑒𝑞σ′(𝑥, 𝑦)→ 𝑑𝑖𝑠𝑒𝑞σ(𝑐(. . . , 𝑥⏟ ⏞
𝑖-th position

, . . .), 𝑐(. . . , 𝑦⏟ ⏞
𝑖-th position

, . . .))

for all constructors 𝑐 of sort σ, all 𝑖 and all 𝑥, 𝑦 of sort σ′.
For each sort σ ∈ Σ𝑆 we denote the diagonal set as 𝒟σ ≜ {(𝑥,𝑦) ∈ |ℋ|2σ |

𝑥 ̸= 𝑦}.
It is well-known that universally quantified Horn clauses have the least model,

which is the denotational semantics of the program modeled by the clause sys
tem [19]. The least model is the least fixed point of the program transition operator.
From these facts, the following lemma is trivially implied.

Lemma 2. The least inductive invariant of the clauses for 𝑑𝑖𝑠𝑒𝑞σ is the tuple of
relations 𝒟σ.

A simple consequence of the previous lemma is the following fact.

Lemma 3. For the Horn clause system 𝒫 ′ obtained by the transformation described
above, if ⟨ℋ, 𝑋1, . . . , 𝑋𝑘, 𝑌1, . . . , 𝑌𝑛⟩ |= 𝒫 ′ then ⟨ℋ, 𝑋1, . . . , 𝑋𝑘,𝒟σ1, . . . ,𝒟σ𝑛⟩ |= 𝒫 ′

(relations 𝑌𝑖 and 𝒟σ𝑖 interpret predicate symbols 𝑑𝑖𝑠𝑒𝑞σ𝑖).

26

Example 3. A CHC system 𝒫 = {𝑍 ̸= 𝑆(𝑍) → ⊥} is transformed into the
following system, 𝒫 ′.

⊤ → 𝑑𝑖𝑠𝑒𝑞𝑁𝑎𝑡(𝑍, 𝑆(𝑥))

⊤ → 𝑑𝑖𝑠𝑒𝑞𝑁𝑎𝑡(𝑆(𝑥), 𝑍)

𝑑𝑖𝑠𝑒𝑞𝑁𝑎𝑡(𝑥, 𝑦)→ 𝑑𝑖𝑠𝑒𝑞𝑁𝑎𝑡(𝑆(𝑥), 𝑆(𝑦))

𝑑𝑖𝑠𝑒𝑞𝑁𝑎𝑡(𝑍, 𝑆(𝑍))→ ⊥

The correctness of the transformation given in this section is proved in the
following theorem.

Theorem 3 (Soundness). Let 𝒫 be a Horn clause system, and 𝒫 ′ be a clause
system obtained by the described transformation. If 𝒫 ′ is satisfiable in the free
theory, then the original system 𝒫 has an inductive invariant.

Proof. Without loss of generality, we can assume that each clause 𝐶 ∈ 𝒫 has the
following form:

𝐶 ≡ 𝑢1 ̸= 𝑡1 ∧ . . . ∧ 𝑢𝑘 ̸= 𝑡𝑘 ∧𝑅1(𝑢1) ∧ . . . ∧𝑅𝑚(𝑢𝑚)→ 𝐻.

In 𝒫 ′ this clause is transformed into the following clause:

𝐶 ′ ≡ 𝑑𝑖𝑠𝑒𝑞(𝑢1, 𝑡1) ∧ . . . ∧ 𝑑𝑖𝑠𝑒𝑞(𝑢𝑘, 𝑡𝑘) ∧𝑅1(𝑢1) ∧ . . . ∧𝑅𝑚(𝑢𝑚)→ 𝐻.

Thus, each sentence in 𝒫 ′ does not contain constraints (because 𝑑𝑖𝑠𝑒𝑞 rules
also do not contain constraints), which means that by previous correctness Lemma 1
𝒫 ′ has some inductive invariant ⟨ℋ, 𝑋1, . . . , 𝑋𝑘, 𝑈1, . . . , 𝑈𝑛⟩. Then by Lemma 3 we
have ⟨ℋ, 𝑋1, . . . , 𝑋𝑘,𝒟σ1, . . . ,𝒟σ𝑛⟩ |= 𝐶 ′ for each 𝐶 ′ ∈ 𝒫 ′. However, it is obvious
that:

⟨ℋ, 𝑋1, . . . , 𝑋𝑘,𝒟σ1, . . . ,𝒟σ𝑛⟩ J𝐶 ′K = ⟨ℋ, 𝑋1, . . . , 𝑋𝑘⟩ J𝐶K.

This means that ⟨ℋ, 𝑋1, . . . , 𝑋𝑘⟩ |= 𝐶 for each 𝐶 ∈ 𝒫 , so ⟨𝑋1, . . . , 𝑋𝑘⟩ is the
desired inductive invariant of the original system.

Using the method for invariant inference. Arbitrary automated theorem
provers, e. g., saturation-based, such as Vampire [94], E [95] and Zipperposi
tion [96], can be used as a backend to check the satisfiability of first-order formulas.

27

However, saturations do not provide an effective class of invariants, since even check
ing whether a tuple of closed terms belongs to the set expressed by a saturation
is undecidable [97]. For this reason, possible saturation-based inductive invariant
classes are not considered in this thesis. However, the study of their subclasses and
automatic invariant inference procedures for them are promising.

The following sections discuss the specialization of the proposed method for
inference of more specific regular invariants.

2.3 Regular Invariants

Definition 9 (Reg). We will say that an 𝑛-automaton 𝐴 over Σ𝐹 expresses the
relation 𝑋 ⊆ |ℋ|σ1 × . . .× |ℋ|σ𝑛 if: 𝑋 = ℒ (𝐴).

If for a relation 𝑋 there exists a tree automaton expressing 𝑋, then the relation
is called regular. The class of regular relations will be denoted as Reg.

Let 𝒫 be a constrained Horn clause system. If 𝑋 = ⟨𝑋1, . . . , 𝑋𝑛⟩ where every
𝑋𝑖 is regular and

⟨︀
ℋ, 𝑋

⟩︀
|= 𝐶 for all 𝐶 ∈ 𝒫 , then an inductive invariant

⟨︀
ℋ, 𝑋

⟩︀
is

called a regular invariant of 𝒫 .

Example 4. The Horn clause system from Example 2 has a regular invariant
⟨ℋ,ℒ (𝐴)⟩, where 𝐴 is a 1-tree automaton

⟨︀
{𝑠0, 𝑠1, 𝑠2},Σ𝐹 , {𝑠0},Δ

⟩︀
, with the fol

lowing transition relation Δ:

𝑠0𝑍 𝑠1

𝑆

𝑆

A set ℒ (𝐴) = {𝑍, 𝑆(𝑆(𝑍)), 𝑆(𝑆(𝑆(𝑆(𝑍)))), . . .} = {𝑆2𝑛(𝑍) | 𝑛 ⩾ 0} trivially
satisfies all clauses of the system.

Example 5. Consider the following clause system with a number of different invari
ants.

𝑥 = 𝑍 ∧ 𝑦 = 𝑆(𝑍)→ 𝑖𝑛𝑐(𝑥, 𝑦)

𝑥 = 𝑆(𝑥′) ∧ 𝑦 = 𝑆(𝑦′) ∧ 𝑖𝑛𝑐(𝑥′, 𝑦′)→ 𝑖𝑛𝑐(𝑥, 𝑦)

𝑥 = 𝑆(𝑍) ∧ 𝑦 = 𝑍 → 𝑑𝑒𝑐(𝑥, 𝑦)

𝑥 = 𝑆(𝑥′) ∧ 𝑦 = 𝑆(𝑦′) ∧ 𝑑𝑒𝑐(𝑥′, 𝑦′)→ 𝑑𝑒𝑐(𝑥, 𝑦)

𝑖𝑛𝑐(𝑥, 𝑦) ∧ 𝑑𝑒𝑐(𝑥, 𝑦)→ ⊥

28

This system has an obvious elementary invariant

𝑖𝑛𝑐(𝑥, 𝑦) ≡ (𝑦 = 𝑆(𝑥)), 𝑑𝑒𝑐(𝑥, 𝑦) ≡ (𝑥 = 𝑆(𝑦)).

This invariant is the strongest possible, since it expresses the denotational semantics
of 𝑖𝑛𝑐 and 𝑑𝑒𝑐. Yet these relations are not regular, i. e., there are no tree automata
representing these relations [33].

However, this CHC system has a less obvious regular invariant based on two
2-tree automata

⟨︀
{𝑠0, 𝑠1, 𝑠2, 𝑠3},Σ𝐹 , 𝑆*,Δ

⟩︀
with two sets of finite states, respec

tively, 𝑆𝑖𝑛𝑐 = {⟨𝑠0, 𝑠1⟩ , ⟨𝑠1, 𝑠2⟩ , ⟨𝑠2, 𝑠0⟩}, 𝑆𝑑𝑒𝑐 = {⟨𝑠1, 𝑠0⟩ , ⟨𝑠2, 𝑠1⟩ , ⟨𝑠0, 𝑠2⟩} and
with transition rules of the following form:

𝑠0Z
𝑠1 𝑠2

𝑆 𝑆

𝑆

The automaton for 𝑖𝑛𝑐 predicate checks that (𝑥mod 3, 𝑦mod 3) ∈
{(0,1), (1, 2), (2,0)}, and the automaton for 𝑑𝑒𝑐 checks that (𝑥mod 3, 𝑦mod 3) ∈
{(1,0),(2,1),(0,2)}. These relations overapproximate the denotational semantics
of 𝑖𝑛𝑐 and 𝑑𝑒𝑐 and prove the unsatisfiability of the formula 𝑖𝑛𝑐(𝑥, 𝑦) ∧ 𝑑𝑒𝑐(𝑥, 𝑦).
Therefore, although many relations might be not regular, programs still may have
non-obvious regular invariants.

The properties of regular invariants are considered in more detail in Chapter 5.

2.4 Specialization for Regular Invariant Inference

First-order formula
over free theoryHorn clauses over ADT

Horn clauses over
ADT without constraints

Final model
Tree automaton
(⇒ Regular invariant)

Sec. 2.2 Sec. 2.1

Finite model finding

Th. 2

Figure 2.1 – Regular invariant inference method for a Horn clause system over ADT

The proposed method can be specialized to regular invariant inference, as
shown in Figure 2.1. By employing the transformations from Sections 2.1 and 2.2,

29

it is possible to transform a constrained Horn clause system over ADTs into an
equisatisfiable first-order formula over the free theory. If a finite model finder comes
up with a finite model of this formula, then by application of a classical theorem 2
on isomorphism between finite models and tree automata it is possible to recover a
tree automaton that expresses a regular invariant of the original Horn clause system.
The correctness of the approach thus is ensured by Theorems 3 and 2.

For instance, from the finite model for the 𝐸𝑣𝑒𝑛 example from Section 2.1
we can obtain the following automaton 𝐴𝐸𝑣𝑒𝑛, which is isomorphic to the one pre
sented in Example 4.

0𝑍 1

𝑆

𝑆

In practice, this means that inductive invariants of constrained Horn clause
systems over ADTs can be inferred automatically using finite model finders, such as
Mace4 [86], Kodkod [87], Paradox [88], and general theorem provers, such as
cvc5 [89] and Vampire [90], with appropriate options.

2.5 Conclusions

The proposed method reduces the problem of finding the inductive invariant
of a constrained Horn clause system over ADTs to the problem of checking the
satisfiability in a universal fragment of the first-order logic. Therefore, arbitrary au
tomated theorem provers such as Vampire [94], E [95] and Zipperposition [96]
can be used in combination with the proposed method for this task. These tools
produce satisfiability proofs in the form of saturations, which can express a broad
class of invariants. However, verifying whether a saturation represents an inductive
invariant for a given CHC system is undecidable. Thus, using saturations to express
inductive invariants is not feasible. Additionally, finite model finders can be utilized
together with the proposed method. Examples of such tools include Mace4 [86],
Kodkod [87], Paradox [88], and even cvc5 [89] and Vampire [90] in appropri
ate modes. The proposed method together with a finite model finder infers regular
invariants based on tree automata that can express recursive relations and represent
invariants for certain systems which do not have classical symbolic invariants. More
over, checking that a given tree automaton expresses a regular invariant of a given
system is decidable. A limitation of regular invariants is that they cannot represent

30

synchronous relations, such as increment of Peano integers or term equality. As a re
sult, there are systems that have a classical symbolic invariant but lack regular ones.
A richer synchronous regular invariant class that solves this problem, as well as a
new method for inferring invariants for this class, are discussed in the next chapter.

31

Chapter 3. Synchronous Regular Invariant Inference

Synchronous tree automata are often used as an extension of tree automata
capable of expressing synchronous relations. The expressive power of synchronous
automata depends on the term convolution scheme on which this class is founded.
Section 3.1 first discusses the class of synchronous regular invariants built upon syn
chronous automata with arbitrary convolution scheme. Then synchronous regular
invariants based on full convolution, which can express a wide class of synchronous
relations, are considered. Section 3.2 proposes a method for synchronous regular
invariant inference, which is based on transforming a CHC system into a declarative
description of a synchronous tree automaton that defines the invariant.

3.1 Synchronous Regular Invariants

Synchronous tree automata with standard [33] and full [26] convolutions are of
ten viewed as a natural extension of classic tree automata for expressing synchronous
relations, such as the equality and inequality of terms. In this section, we define
tree automata with arbitrary convolution and prove their basic properties.

3.1.1 Synchronous Tree Automata

Definition 10. A term convolution is a computable bijective function from
𝒯 (Σ𝐹)

⩽𝑘 to 𝒯 (Σ⩽𝑘
𝐹) for some 𝑘 ⩾ 1.

Definition 11 (cf. [26; 33]). The standard convolution of σ𝑠𝑐-terms is defined as
follows:

σ𝑠𝑐
(︀
𝑓1(𝑎

1), . . . , 𝑓𝑚(𝑎
𝑚)

)︀
≜ ⟨𝑓1, . . . ,𝑓𝑚⟩

(︀
σ𝑠𝑐(𝑎

1
1, . . . ,𝑎

𝑚
1),σ𝑠𝑐(𝑎

1
2, . . . ,𝑎

𝑚
2), . . .

)︀
.

Example 6. Consider the following application of the standard convolution to a
tuple of terms:

σ𝑠𝑐
(︀
𝑛(𝑝, 𝑞), 𝑆(𝑍), 𝑇 (𝑢, 𝑣)

)︀
= ⟨𝑛, 𝑆, 𝑇 ⟩

(︀
σ𝑠𝑐(𝑝, 𝑍, 𝑢),σ𝑠𝑐(𝑞, 𝑣)

)︀
= ⟨𝑛, 𝑆, 𝑇 ⟩

(︀
⟨𝑝, 𝑍, 𝑢⟩ , ⟨𝑞, 𝑣⟩

)︀
.

Definition 12 (cf. [26]). The full convolution of σ𝑓𝑐-terms is defined as follows:

σ𝑓𝑐
(︀
𝑓1(𝑎

1), . . . , 𝑓𝑚(𝑎
𝑚)

)︀
≜ ⟨𝑓1, . . . ,𝑓𝑚⟩

(︀
σ𝑓𝑐(𝑏) | 𝑏 ∈ (𝑎1 × . . .× 𝑎𝑚)

)︀
.

32

Definition 13. A set of term tuples 𝑋 is called a σ-convolutional regular language
if there exists a tree automaton 𝐴 such that ℒ (𝐴) = {σ(𝑡) | 𝑡 ∈ 𝑋} ≜ σ(𝑋).

The class of languages Regσ is the set of all σ-convolutional regular languages.
We denote by Reg+ the class Regσ𝑠𝑐 and by Reg× the class Regσ𝑓𝑐.

Lemma 4. Let 𝐿 be a language of tuples of arity 1. Then it holds that 𝐿 ∈ Reg× ⇔
𝐿 ∈ Reg.

Proof. By definition, we have σ𝑓𝑐
(︀
𝑓(𝑎)

)︀
≜ ⟨𝑓⟩

(︀
σ𝑓𝑐(𝑏) | 𝑏 ∈ (𝑎)

)︀
. In other words,

σ𝑓𝑐
(︀
𝑓(𝑎1, . . . ,𝑎𝑛)

)︀
≜ 𝑓

(︀
σ𝑓𝑐(𝑎1), . . . ,σ𝑓𝑐(𝑎𝑛)

)︀
. Therefore, σ𝑓𝑐(𝑡) = 𝑡 for all terms 𝑡,

and hence σ𝑓𝑐(𝐿) = 𝐿 and 𝐿 ∈ Reg×, 𝐿 = σ𝑓𝑐(𝐿) ∈ Reg.

Example 7. Consider the binary tree signature Σ𝐹 with two constructors
𝑁𝑜𝑑𝑒 and 𝐿𝑒𝑎𝑓 (of arity 2 and 0, respectively), and the automaton 𝐴 =⟨︀
{⊤,⊥},Σ⩽2

𝐹 , {⊥},Δ
⟩︀

with the transition relation Δ:

𝐿𝑒𝑎𝑓 → ⊥ ⟨𝑁𝑜𝑑𝑒,𝑁𝑜𝑑𝑒⟩ (φ,ψ)→ φ ∧ψ
𝑁𝑜𝑑𝑒(φ,ψ)→ ⊥ ⟨𝑁𝑜𝑑𝑒, 𝐿𝑒𝑎𝑓⟩ (φ,ψ)→ ⊥
⟨𝐿𝑒𝑎𝑓, 𝐿𝑒𝑎𝑓⟩ → ⊤ ⟨𝐿𝑒𝑎𝑓,𝑁𝑜𝑑𝑒⟩ (φ,ψ)→ ⊥,

where φ and ψ range over all possible states. This automaton expresses the inequal
ity relation using standard convolution. In other words, ℒ (𝐴) = {σ𝑠𝑐(𝑥, 𝑦) | 𝑥, 𝑦 ∈
𝒯 (Σ𝐹), 𝑥 ̸= 𝑦}.

Example 8 (lt). Consider the signature Σ𝐹 of Peano integers, which has two
constructors 𝑍 and 𝑆 (arity 0 and 1, respectively), and the following set, which
defines an order on numbers:

lt ≜
{︁(︀

𝑆𝑛(𝑍), 𝑆𝑚(𝑍)
)︀
| 𝑛 < 𝑚

}︁
.

Consider automaton 𝐴 =
⟨︀
{⊥,⊤},Σ⩽2

𝐹 , {⊤},Δ
⟩︀

with transition relation Δ:

⟨𝑍,𝑍⟩ → ⊥ ⟨𝑍, 𝑆⟩ (φ)→ ⊤
𝑍 → ⊥ ⟨𝑆,𝑍⟩ (φ)→ ⊥

𝑆(φ)→ ⊥ ⟨𝑆, 𝑆⟩ (φ)→ φ,

where φ ∈ {⊤,⊥} ranges over all possible states. This automaton expresses
the order relation using standard convolution. In other words, ℒ (𝐴) =

{σ𝑠𝑐(𝑆𝑛(𝑍), 𝑆𝑚(𝑍)) | 𝑛 < 𝑚}.

33

3.1.2 Closure Under Boolean Operations

Convolutional regular languages are closed under all Boolean operations re
gardless of the convolution. The proofs and corresponding constructions for classical
tree automata essentially apply to convolutional regular languages. In this section,
we will denote by 𝑘 the tuple dimension of languages from Regσ.

Theorem 4. The class of languages Regσ with arbitrary convolution σ is closed
under complement.

Proof. Let language 𝐿 ∈ Regσ. Then without loss of generality we can say that
there exists a deterministic automaton 𝐴 =

⟨︀
𝑆,Σ⩽𝑘

𝐹 , 𝑆𝐹 ,Δ
⟩︀

such that ℒ (𝐴) =

σ(𝐿). Consider the automaton for the complement language 𝐴𝑐 =
⟨︀
𝑆,Σ⩽𝑘

𝐹 , 𝑆 ∖
𝑆𝐹 ,Δ

⟩︀
. It is true that ℒ (𝐴𝑐) = ℒ (𝐴) = σ(𝐿) = σ(𝐿) (the latter follows from the

fact that σ is a bijective function). Thus, we have 𝐿 ∈ Regσ.

Theorem 5. The class of languages Regσ with arbitrary convolution σ is closed
under intersection.

Proof. Consider 𝐿1, 𝐿2 ∈ Reg×. Then we have deterministic automata 𝐴 =⟨︀
𝑆𝐴,Σ⩽𝑘

𝐹 , 𝑆𝐴
𝐹 ,Δ

𝐴
⟩︀

and 𝐵 =
⟨︀
𝑆𝐵,Σ⩽𝑘

𝐹 , 𝑆𝐵
𝐹 ,Δ

𝐵
⟩︀

such that ℒ (𝐴) = 𝐿1 and ℒ (𝐴) =
𝐿2. Intersection of languages 𝐿1 ∩ 𝐿2 is recognized by an automaton

𝐶 =
⟨︀
𝑆𝐴 × 𝑆𝐵,Σ⩽𝑘

𝐹 , 𝑆𝐴
𝐹 × 𝑆𝐵

𝐹 ,Δ
⟩︀
,

where the transition relation Δ is defined as follows:

Δ
(︀
𝑓, (𝑎1, 𝑏1) . . . (𝑎𝑘, 𝑏𝑘)

)︀
=

(︀
Δ𝐴(𝑓, 𝑎1, . . . , 𝑎𝑘),Δ

𝐵(𝑓, 𝑏1, . . . , 𝑏𝑘)
)︀
.

From the bijectivity of σ it follows that ℒ (𝐶) = ℒ (𝐴) ∩ ℒ (𝐵) = σ(𝐿1) ∩ σ(𝐿2) =

σ(𝐿1 ∩ 𝐿2), which means 𝐿1 ∩ 𝐿2 ∈ Regσ.

Theorem 6. The class of languages Regσ with arbitrary convolution σ is closed
under union.

Proof. This statement directly follows from Theorems 4 and 5 and the De Morgan’s
law applied to the sets 𝐿1 and 𝐿2: 𝐿1 ∪ 𝐿2 = (𝐿𝑐

1 ∩ 𝐿𝑐
2)

𝑐.

34

3.1.3 Decidability of Emptiness and Term Membership

Next, we will transfer the deciding procedures for classical tree automata to
convolutional regular languages.

Theorem 7. Let σ be an arbitrary convolution and 𝑋 ∈ Regσ. Then the problem
of checking the emptiness of 𝑋 is decidable.

Proof. Let 𝐴 be a tree automaton such that ℒ (𝐴) = σ(𝑋), where 𝑋 = ∅ if and
only if ℒ (𝐴) = ∅. The emptiness of the language of a classical tree automaton can
be checked by a procedure described in [33, Theorem 1.7.4], which runs in linear
time with respect to the size of the automaton.

Theorem 8. Let σ be an arbitrary convolution and 𝑋 ∈ Regσ. The problem of
membership of a tuple of closed terms in the set 𝑋 is decidable.

Proof. Consider a tuple of closed terms 𝑡 and a tree automaton 𝐴 such that ℒ (𝐴) =
σ(𝑋). Then the following holds:

𝑡 ∈ 𝑋 ⇔ σ(𝑡) ∈ σ(𝑋) = ℒ (𝐴) .

Therefore, the desired procedure consists of computing σ on the tuple 𝑡 and
checking whether the result belongs to the language of the automaton 𝐴 using the
procedure described in [33, Theorem 1.7.2].

3.2 Invariant Inference via Declarative Description of the
Invariant-Defining Automaton

In this section, a procedure Δ which builds a first-order declarative description
of the synchronous regular invariant of a CHC system is proposed. The formula
Δ(𝒫) has a finite model if and only if the original system 𝒫 has an inductive
invariant in the Reg× class. This gives a following method for inferring synchronous
regular invariants: apply the Δ procedure to the CHC system and then apply any
finite model finder to the result. To define the Δ procedure, we first introduce a
language semantics for FOL, which allows one to talk about the formal languages
of formulas built from formal languages of predicates.

35

3.2.1 Language Semantics for First-Order Logic

The formula Φ = ∀𝑥1 . . . ∀𝑥𝑛.φ(𝑥1, . . . , 𝑥𝑛) is in Skolem normal form (SNF)
if φ is a quantifier-free formula with free variables 𝑥1, . . . , 𝑥𝑛. It is known that any
formula in first-order logic can be transformed to an equisatisfiable SNF formula
using Skolemization procedure.

Definition 14. A tuple of terms ⟨𝑡1, . . . , 𝑡𝑘⟩ is called a (𝑛, 𝑘)-pattern if each of its
elements 𝑡𝑖 depends on no more than 𝑛 variables from the common set of variables
of this tuple.

Definition 15. A pattern is called linear if each variable appears in no more than
one term of the tuple, and any term contains a variable no more than once. Other
wise, the pattern will be referred to as nonlinear.

Definition 16. By substitution of closed terms 𝑢 = ⟨𝑢1, . . . , 𝑢𝑛⟩ into a
(𝑛, 𝑘)-pattern 𝑡 = ⟨𝑡1, . . . , 𝑡𝑘⟩ we call a tuple of closed terms obtained by sub
stituting terms 𝑢𝑖 in place of variables 𝑥𝑖 for 𝑖 = 1, . . . , 𝑛

𝑡[𝑢] = ⟨𝑡1{𝑥1 ← 𝑢1, . . . , 𝑥𝑛 ← 𝑢𝑛}, . . . , 𝑡𝑘{𝑥1 ← 𝑢1, . . . , 𝑥𝑛 ← 𝑢𝑛}⟩.

Definition 17. The downward quotient of a language 𝐿 with respect to a
(𝑛, 𝑘)-pattern 𝑡 is defined as the 𝑛-ary language 𝐿/𝑡 ≜ {𝑢 ∈ 𝒯 (Σ𝐹)

𝑛 | 𝑡[𝑢] ∈ 𝐿}.

Example 9. Consider the Peano integer signature, which includes two functional
symbols, 𝑍 and 𝑆, with arities of 0 and 1, respectively.

The tuple ⟨𝑥1, 𝑆(𝑥2), 𝑍⟩ is a linear (2,3)-pattern.
The tuple ⟨𝑆(𝑥1), 𝑥1⟩ is a nonlinear (1,2)-pattern.
The substitution of a term tuple 𝑢 = ⟨𝑍, 𝑆(𝑍)⟩ into a (2,3)-pattern 𝑡 =

⟨𝑆(𝑥1), 𝑆(𝑆(𝑥2), 𝑍)⟩ is a tuple 𝑡[𝑢] = ⟨𝑆(𝑍), 𝑆(𝑆(𝑆(𝑍))), 𝑍⟩.

Definition 18. Let each uninterpreted predicate symbol 𝑝 correspond to a lan
guage of term tuples, denoted as 𝐿J𝑝K. The language of equality is defined as
𝐿J=K = {(𝑥,𝑥) | 𝑥 ∈ 𝒯 (Σ𝐹)}. The language semantics of a formula in SNF,
∀𝑥1 . . . ∀𝑥𝑛.φ(𝑥1, . . . , 𝑥𝑛) is a language 𝐿JφK defined inductively as follows:

𝐿J𝑝(𝑡)K ≜ 𝐿J𝑝K/𝑡

𝐿J¬ψK ≜ 𝒯 (Σ𝐹)
𝑛 ∖ 𝐿JψK

𝐿Jψ1 ∧ψ2K ≜ 𝐿Jψ1K ∩ 𝐿Jψ2K

𝐿Jψ1 ∨ψ2K ≜ 𝐿Jψ1K ∪ 𝐿Jψ2K

36

Definition 19. The formula in SNF Φ = ∀𝑥1 . . . ∀𝑥𝑛.φ(𝑥1, . . . , 𝑥𝑛) is satisfiable in
language semantics (𝐿 |= Φ) if 𝐿J¬φK = ∅.

Theorem 9. A formula in SNF is satisfiable in language semantics if and only if it
is satisfiable in Tarski’s semantics.

Proof. Set Φ = ∀𝑥1 . . . ∀𝑥𝑛.φ(𝑥1, . . . , 𝑥𝑛). According to Herbrand’s theorem, the
formula Φ is satisfiable in Tarski’s semantics if and only if it has a Herbrand model
ℋ. Let 𝐿J𝑝K = ℋJ𝑝K. A proof is now by induction on the structure of the formula:

ℋ |= 𝑝(𝑡)⇔ for all 𝑢, 𝑡[𝑢] ∈ ℋJ𝑝K ⇔ for all 𝑢, 𝑡[𝑢] ∈ 𝐿J𝑝K

⇔ for all 𝑢, 𝑢 ∈ 𝐿J𝑝K/𝑡 ⇔ for all 𝑢, 𝑢 ∈ 𝐿J𝑝(𝑡)K

⇔ 𝐿J¬𝑝(𝑡)K = ∅ ⇔ 𝐿 |= 𝑝(𝑡)

ℋ |= ¬ψ⇔ for all 𝑢,ℋ ̸|= ψ(𝑢) ⇔ for all 𝑢, 𝐿 ̸|= ψ(𝑢)
⇔ for all 𝑢, 𝐿J¬ψ(𝑢)K ̸= ∅ ⇔ 𝐿J¬ψK = 𝒯 (Σ𝐹)

𝑛

⇔ 𝐿J¬¬ψK = ∅ ⇔ 𝐿 |= ¬ψ

ℋ |= ψ1 ∧ψ2 ⇔ ℋ |= ψ1 and ℋ |= ψ2 ⇔ 𝐿 |= ψ1 and 𝐿 |= ψ2

⇔ 𝐿J¬ψ1K = ∅ and 𝐿J¬ψ2K = ∅
⇔ 𝐿Jψ1K = 𝒯 (Σ𝐹)

𝑛 and 𝐿Jψ2K = 𝒯 (Σ𝐹)
𝑛 ⇔ 𝐿Jψ1 ∧ψ2K = 𝒯 (Σ𝐹)

𝑛

⇔ 𝐿J¬(ψ1 ∧ψ2)K = ∅ ⇔ 𝐿 |= ψ1 ∧ψ2

Lastly, the De Morgan’s law can be applied to prove the induction step for
disjunction.

Theorem 10. Let 𝐿 ∈ Reg× be a language of tuples with dimension
𝑛. Then the downward quotient 𝐿/𝑡 with respect to the linear pattern 𝑡 =

⟨𝑥1, . . . , 𝑥𝑖−1, 𝑓(𝑦1, . . . ,𝑦𝑚), 𝑥𝑖+1, . . . 𝑥𝑛⟩ also belongs to the class Reg×.

Proof. Without loss of generality, consider the pattern 𝑡 = ⟨𝑓(𝑦1, . . . ,𝑦𝑚), 𝑥2, . . . 𝑥𝑛⟩.
Let σ𝑓𝑐(𝐿) = ℒ (𝐴), where 𝐴 =

⟨︀
𝑆,Σ⩽𝑛

𝐹 , 𝑆𝐹 ,Δ
⟩︀
. Consider the automaton 𝐴′ =⟨︀

𝑆 ′,Σ⩽𝑛−1+𝑚
𝐹 , 𝑆 ′𝐹 ,Δ

′⟩︀, it’s every state stores up to 𝑛− 1 functional symbols and up
to 𝑚𝑛 states of automaton 𝐴, that is, 𝑆 ′ = Σ⩽𝑛−1 × 𝑆⩽𝑚𝑛.

37

Next, we will define a tree automaton 𝐴′ in such a way that the following
property holds:

𝐴′[σ𝑓𝑐(𝑢, 𝑔2(𝑠2), . . . , 𝑔𝑛(𝑠𝑛))] = ⟨⟨𝑔2, . . . , 𝑔𝑛⟩ , ⟨𝐴[σ𝑓𝑐(𝑡)] | 𝑡 ∈ 𝑢× 𝑠2 × . . .× 𝑠𝑛⟩⟩ .
(3.1)

The set of final states of the automaton 𝐴′ are:

𝑆 ′𝐹 = {⟨⟨𝑓2, . . . , 𝑓𝑛⟩ , 𝑞⟩ | Δ(⟨𝑓, 𝑓2, . . . , 𝑓𝑛⟩ , 𝑞) ∈ 𝑆𝐹}.

Thus, by property 3.1 we have the following:

𝐴′[σ𝑓𝑐(𝑢, 𝑔2(𝑠2), . . . , 𝑔𝑛(𝑠𝑛))] ∈ 𝑆 ′𝐹 ⇔
Δ(⟨𝑓, 𝑔2, . . . , 𝑔𝑛⟩ , ⟨𝐴[σ𝑓𝑐(𝑡)] | 𝑡 ∈ 𝑢× 𝑠2 × . . .× 𝑠𝑛⟩) ∈ 𝑆𝐹 ⇔

𝐴[σ𝑓𝑐(𝑓(𝑢), 𝑔2(𝑠2), . . . , 𝑔𝑛(𝑠𝑛))] ∈ 𝑆𝐹 .

To define the transition relation Δ′, let us examine the unfolding of the appli
cation of 𝐴′ automaton:

𝐴′
[︀
σ𝑓𝑐

(︀
𝑓1(𝑡1), . . . ,𝑓𝑚(𝑡𝑚),𝑔2(𝑢2), . . . ,𝑔𝑛(𝑢𝑛)

)︀]︀
= Δ′ (⟨𝑓1, . . . ,𝑓𝑚,𝑔2, . . . ,𝑔𝑛⟩ , 𝑎′) ,

(3.2)

where

𝑎′ =
(︀
𝐴′ [︀σ𝑓𝑐 (︀𝑡,ℎ))︀]︀ | (︀𝑡,ℎ)︀ = (︀

𝑡,ℎ2(𝑠2), . . . ,ℎ𝑛(𝑠𝑛)
)︀
∈
(︀
𝑡1 × . . .× 𝑡𝑚

)︀
× (𝑢2 × . . .× 𝑢𝑛)

)︀
=

=
(︀⟨︀
⟨ℎ2, . . . ,ℎ𝑛⟩ ,

(︀
𝐴
[︀
σ𝑓𝑐

(︀
𝑏
)︀]︀
| 𝑏 ∈ 𝑡× 𝑠2 × . . .× 𝑠𝑛

)︀⟩︀
|
(︀
𝑡,ℎ2(𝑠2), . . . ,ℎ𝑛(𝑠𝑛)

)︀
∈
(︀
𝑡1 × . . .× 𝑡𝑚

)︀
× (𝑢2 × . . .× 𝑢𝑛)

)︀
.

In order to make automaton 𝐴′ satisfy the property 3.1, the left-hand side of the
equation 3.2 should also be equal to the following pair:⟨︀
⟨𝑔2, . . . ,𝑔𝑛⟩ ,

(︀
𝐴
[︀
σ𝑓𝑐

(︀
𝑓𝑖(𝑡𝑖),ℎ

)︀]︀
| ℎ = (ℎ2(𝑠2), . . . ,ℎ𝑛(𝑠𝑛)) ∈ 𝑢2 × . . .× 𝑢𝑛

)︀⟩︀
.

By definition, the second element of this pair is equal to the following expression:(︀
Δ
(︀
⟨𝑓𝑖, ℎ2, . . . ,ℎ𝑛⟩ ,

(︀
𝐴
[︀
σ𝑓𝑐

(︀
𝑏
)︀]︀
| 𝑏 ∈ 𝑡𝑖 × 𝑠2 × . . .× 𝑠𝑛

)︀)︀
| (ℎ2(𝑠2), . . . ,ℎ𝑛(𝑠𝑛)) ∈ 𝑢2 × . . .× 𝑢𝑛

)︀
.

In the last expression, each element 𝐴
[︀
σ𝑓𝑐

(︀
𝑏
)︀]︀

is guaranteed to be present
among the arguments of the transition relation Δ′ (denoted as 𝑎′). Therefore, based
on the given equalities, a valid definition for Δ′ can be built by replacing all occur
rences of 𝐴

[︀
σ𝑓𝑐

(︀
𝑏
)︀]︀

in the last expression and 𝑎′ with the free variables with state
sorts.

For the automaton 𝐴′ it holds that ℒ (𝐴) = σ𝑓𝑐(𝐿/𝑡).

38

Theorem 11. Let 𝐿 ∈ Reg×, and tuple 𝑡 be a (𝑘,𝑛)-pattern. Then 𝐿/𝑡 ∈ Reg×
holds.

Proof. The language 𝐿/𝑡 can be linearized, meaning it can be represented as the
intersection of downward quotients of the language 𝐿 with respect to linear patterns
and languages for the equalities over certain variables. The conclusion of the theorem
follows from the Theorem 10, which states the closure of the Reg× under downward
quotients with respect to linear patterns, and Theorem 5, which states the closure
of this class under intersections.

3.2.2 Algorithm for Building Declarative Descriptions of Synchronous
Regular Invariants

This section presents a description of the algorithm Δ, which transforms a
CHC system over ADTs into a first-order logic formula over the free theory; from
a finite model of this formula a synchronous regular invariant of the original CHC
system can be recovered.

The algorithm starts by eliminating constraints from clauses using the algo
rithm presented in Section 2.2.

Next, from the Horn system 𝒫 with predicates ℛ, the algorithm Δ builds a
first-order formula in the signature Σ′ = ⟨Σ′𝑆,Σ′𝐹 ,Σ′𝑃 ⟩, where

Σ′𝑆 ={𝑆,ℱ}
Σ′𝐹 ={𝑑𝑒𝑙𝑡𝑎𝑋 | 𝑋 ∈ ℛ ∪ 𝒫 ∨𝑋is an atom from 𝒫} ∪ Σ𝐹 ∪ {𝑝𝑟𝑜𝑑𝑛 | 𝑛 ⩾ 1}∪
∪{𝑑𝑒𝑙𝑎𝑦𝑛,𝑚 | 𝑛,𝑚 ⩾ 1}

Σ′𝑃 ={𝐹𝑖𝑛𝑎𝑙𝑋 | 𝑋 ∈ ℛ ∪ 𝒫 ∨𝑋is an atom from 𝒫} ∪ {𝑅𝑒𝑎𝑐ℎ𝐶 | 𝐶 ∈ 𝒫} ∪ {=}.

The sort 𝑆 is introduced for automaton states and the sort ℱ for ADT constructors.
The functional symbols 𝑑𝑒𝑙𝑡𝑎 are introduced for the automaton transition relations,
and the predicate symbols 𝑅𝑒𝑎𝑐ℎ and 𝐹𝑖𝑛𝑎𝑙 are introduced for the reachable and
final states, respectively. For each predicate, atom, and clause, corresponding au
tomata are built. The functional symbol 𝑝𝑟𝑜𝑑𝑛 of arity 𝑆𝑛 ↦→ 𝑆 allows one to
build states that are tuples of other states. The functional symbol 𝑑𝑒𝑙𝑎𝑦𝑛,𝑚 of arity
ℱ𝑛 × 𝑆𝑚 ↦→ 𝑆 allows one to build states that are tuples of constructors and states.
The Δ algorithm returns a conjunction of declarative descriptions of synchronous
automata for each clause and for each atom, which are defined below.

39

Let 𝐶 be a clause. By definition of satisfiability in language semantics we
have 𝐿 |= 𝐶 ⇔ 𝐿J¬𝐶K = ∅. Thus, the declarative description for the clause will
be a first-order formula expressing 𝐿J¬𝐶K = ∅. Let ¬𝐶 ⇔ 𝐴1 ∧ . . .∧𝐴𝑛−1 ∧¬𝐴𝑛,
where 𝐴𝑖 are atomic formulas. Let for each 𝐴𝑖 there be a declarative description
of the corresponding atom automaton with symbols ⟨𝑑𝑒𝑙𝑡𝑎𝐴𝑖

, 𝐹 𝑖𝑛𝑎𝑙𝐴𝑖
⟩. For clause

𝐶, we define an automaton with symbols ⟨𝑑𝑒𝑙𝑡𝑎𝐶 , 𝐹 𝑖𝑛𝑎𝑙𝐶⟩ using the construction
from the proof of Theorem 5 on the closure of automata under intersection. The
declarative description for the clause is then a conjunction of universal closures over
all free variables of the following four formulas:

𝐹𝑖𝑛𝑎𝑙𝐶(𝑞)↔ 𝐹𝑖𝑛𝑎𝑙𝐴1
(𝑞1) ∧ . . . 𝐹 𝑖𝑛𝑎𝑙𝐴𝑛−1

(𝑞𝑛−1) ∧ ¬𝐹𝑖𝑛𝑎𝑙𝐴𝑛
(𝑞𝑛)

𝑑𝑒𝑙𝑡𝑎𝐶(𝑥1, . . . , 𝑥𝑘, 𝑝𝑟𝑜𝑑(𝑞
1
1, . . . , 𝑞

𝑛
1), . . . , 𝑝𝑟𝑜𝑑(𝑞

1
𝑙 , . . . , 𝑞

𝑛
𝑙)) =

= 𝑝𝑟𝑜𝑑(𝑑𝑒𝑙𝑡𝑎𝐴1
(𝑥1, . . . , 𝑥𝑘, 𝑞

1
1, . . . , 𝑞

1
𝑙), . . . , 𝑑𝑒𝑙𝑡𝑎𝐴𝑛

(𝑥1, . . . , 𝑥𝑘, 𝑞
𝑛
1 , . . . , 𝑞

𝑛
𝑙))

𝑅𝑒𝑎𝑐ℎ𝐶(𝑞1) ∧ . . . ∧𝑅𝑒𝑎𝑐ℎ𝐶(𝑞𝑙)→ 𝑅𝑒𝑎𝑐ℎ𝐶(𝑑𝑒𝑙𝑡𝑎𝐶(𝑥1, . . . , 𝑥𝑘, 𝑞1, . . . , 𝑞𝑙))

𝐹𝑖𝑛𝑎𝑙𝐶(𝑞) ∧𝑅𝑒𝑎𝑐ℎ𝐶(𝑞)→ ⊥

Here all 𝑥 have the sort ℱ , and all 𝑞 have the sort 𝑆. The upper indices 𝑗 of the
state variables 𝑞𝑗𝑖 correspond to the ordinal number of the automaton of atom 𝐴𝑗,
in which the state variable is used. The first two formulas encode the automata
product construction from Theorem 5. The third formula defines the set of states
reachable by the clause automaton. The last formula encodes the emptiness of the
clause language (“there is no state that is both final and reachable”).

Declarative description of the automaton for the atom is described in the proofs
of Theorems 10 and 11. Tuples of the form ⟨⟨𝑓2, . . . ,𝑓𝑛⟩ , 𝑞⟩, where 𝑓 has the sort
ℱ and 𝑞 has the sort 𝑆, are encoded using 𝑑𝑒𝑙𝑎𝑦 functional symbols.

3.2.3 Correctness and Completeness

Theorem 12. The system Δ(𝒫) has a finite model if and only if the Horn clause
system 𝒫 has a synchronous regular invariant with full convolution.

Proof. The proof follows from the construction of Δ(𝒫), the theorems on closure
under Boolean operations and complement (Theorems 4, 5, 11), Theorem 9 on sat
isfiability of SNF formulas in the language semantics, and the fact that any system
of Horn clauses can be reduced to SNF by variable renaming.

40

3.2.4 Example

Let us trace the proposed transformation Δ on the following example with
an 𝑙𝑡 uninterpreted predicate symbol, which represents the strict ordering relation
on Peano integers:

⊤ → 𝑙𝑡(𝑍, 𝑆(𝑥)), (C1)

𝑙𝑡(𝑥, 𝑦)→ 𝑙𝑡(𝑆(𝑥), 𝑆(𝑦)), (C2)

𝑙𝑡(𝑥, 𝑦) ∧ 𝑙𝑡(𝑦, 𝑥)→ ⊥ (C3)

The clause 𝐶1 is equivalent to the atomic formula 𝐴1 = 𝑙𝑡(𝑍, 𝑆(𝑥)). For the
automaton of the atomic formula 𝐴1 Δ(𝒫) will build the universal closures of the
following formulas, based on the automaton for the predicate symbol 𝑙𝑡:

𝑑𝑒𝑙𝑡𝑎𝐴1
(𝑍) = 𝑑𝑒𝑙𝑡𝑎𝑙𝑡(𝑍)

𝑑𝑒𝑙𝑡𝑎𝐴1
(𝑆, 𝑞) = 𝑑𝑒𝑙𝑡𝑎𝑙𝑡(𝑆, 𝑞)

𝐹𝑖𝑛𝑎𝑙𝐴1
(𝑞)↔ 𝐹𝑖𝑛𝑎𝑙𝑙𝑡(𝑑𝑒𝑙𝑡𝑎𝑙𝑡(𝑍, 𝑆, 𝑞)).

For the clause 𝐶1 Δ(𝒫) will build the automaton (δ𝐶1, 𝐹 𝑖𝑛𝑎𝑙𝐶1) with the
following formulas based on the automaton for the atomic formula 𝐴1:

𝑑𝑒𝑙𝑡𝑎𝐶1(𝑓,𝑞) = 𝑑𝑒𝑙𝑡𝑎𝐴1
(𝑓, 𝑞)

𝐹𝑖𝑛𝑎𝑙𝐶1(𝑞)↔ ¬𝐹𝑖𝑛𝑎𝑙𝐴1
(𝑞).

Moreover, the following conditions describing the emptiness of the automaton
language for the clause 𝐶1 and guaranteeing its satisfaction will be included in Δ(𝒫).

𝑅𝑒𝑎𝑐ℎ𝐶1(𝑞)→ 𝑅𝑒𝑎𝑐ℎ𝐶1(𝑑𝑒𝑙𝑡𝑎𝐶1(𝑓, 𝑞))

𝑅𝑒𝑎𝑐ℎ𝐶1(𝑞) ∧ 𝐹𝑖𝑛𝑎𝑙𝐶1(𝑞))→ ⊥

The clause 𝐶2 consists of two atomic formulas: 𝐴2 = 𝑙𝑡(𝑥, 𝑦) and 𝐴3 =

𝑙𝑡(𝑆(𝑥), 𝑆(𝑦)). The automaton for the atomic formula 𝐴2 coincides with the automa
ton for the predicate symbol 𝑙𝑡. For the atomic formula 𝐴3, we will add to Δ(𝒫) the
automaton (δ𝐴3

, 𝐹 𝑖𝑛𝑎𝑙𝐴3
) built based on the automaton for the predicate symbol 𝑙𝑡:

𝑑𝑒𝑙𝑡𝑎𝐴3
(𝑓,𝑔,𝑞) = 𝑑𝑒𝑙𝑡𝑎𝑙𝑡

𝐹𝑖𝑛𝑎𝑙𝐴3
(𝑞)↔ 𝐹𝑖𝑛𝑎𝑙𝑙𝑡(𝑑𝑒𝑙𝑡𝑎𝑙𝑡(𝑆, 𝑆, 𝑞)).

41

For the clause 𝐶2, we add to Δ(𝒫) the automaton (𝑑𝑒𝑙𝑡𝑎𝐶2, 𝐹 𝑖𝑛𝑎𝑙𝐶2), which
is built based on the automaton for the predicate symbol 𝑙𝑡 and the automaton
for the atomic formula 𝐴3:

𝑑𝑒𝑙𝑡𝑎𝐶2(𝑓,𝑔,𝑞) = 𝑝𝑟𝑜𝑑2(𝑑𝑒𝑙𝑡𝑎𝑙𝑡(𝑓,𝑔, 𝑞), 𝑑𝑒𝑙𝑡𝑎𝐴3
(𝑓, 𝑔, 𝑞))

𝐹𝑖𝑛𝑎𝑙𝐶2(𝑝𝑟𝑜𝑑2(𝑞1, 𝑞2))↔ 𝐹𝑖𝑛𝑎𝑙𝑙𝑡(𝑞1) ∧ ¬𝐹𝑖𝑛𝑎𝑙𝐴3
(𝑞2).

We add to Δ(𝒫) the conditions for the emptiness of the language of the au
tomaton (𝑑𝑒𝑙𝑡𝑎𝐶2, 𝐹 𝑖𝑛𝑎𝑙𝐶2) in order to guarantee the satisfaction of clause 𝐶2.

𝑅𝑒𝑎𝑐ℎ𝐶2(𝑞)→ 𝑅𝑒𝑎𝑐ℎ𝐶2(𝑑𝑒𝑙𝑡𝑎𝐶2(𝑓, 𝑔, 𝑞))

𝑅𝑒𝑎𝑐ℎ𝐶2(𝑞) ∧ 𝐹𝑖𝑛𝑎𝑙𝐶2(𝑞))→ ⊥

The clause 𝐶3 consists of two atomic formulas 𝐴4 = 𝑙𝑡(𝑥,𝑦) and 𝐴5 = 𝑙𝑡(𝑦, 𝑥).
The automaton for the atomic formula 𝐴4 coincides with the automaton for the
predicate symbol 𝑙𝑡. The automaton for the atomic formula 𝐴5 differs from the au
tomaton for the predicate symbol 𝑙𝑡 only in the order of the arguments. After taking
the remainder by such a linear template, an automaton identical to 𝑙𝑡 is obtained.

For 𝐶3, we add to Δ(𝒫) an automaton (𝑑𝑒𝑙𝑡𝑎𝐶3, 𝐹 𝑖𝑛𝑎𝑙𝐶3) built based on the
automaton for the predicate symbol 𝑙𝑡:

𝑑𝑒𝑙𝑡𝑎𝐶3(𝑓,𝑔, 𝑝𝑟𝑜𝑑2(𝑞1, 𝑞2)) = 𝑝𝑟𝑜𝑑2(𝑑𝑒𝑙𝑡𝑎𝑙𝑡(𝑓,𝑔, 𝑞1), 𝑑𝑒𝑙𝑡𝑎𝐴2
(𝑔, 𝑓, 𝑞2))

𝐹𝑖𝑛𝑎𝑙𝐶2(𝑝𝑟𝑜𝑑2(𝑞1, 𝑞2))↔ 𝐹𝑖𝑛𝑎𝑙𝑙𝑡(𝑞1) ∧ 𝐹𝑖𝑛𝑎𝑙𝑙𝑡(𝑞2).

We add to Δ(𝒫) the conditions for the emptiness of the language of
(𝑑𝑒𝑙𝑡𝑎𝐶3, 𝐹 𝑖𝑛𝑎𝑙𝐶3) to ensure the satisfaction of 𝐶3:

𝑅𝑒𝑎𝑐ℎ𝐶3(𝑞)→ 𝑅𝑒𝑎𝑐ℎ𝐶3(𝑑𝑒𝑙𝑡𝑎𝐶3(𝑓, 𝑔, 𝑞))

𝑅𝑒𝑎𝑐ℎ𝐶3(𝑞) ∧ 𝐹𝑖𝑛𝑎𝑙𝐶3(𝑞)→ ⊥

By running a finite-model finder on the formula Δ(𝒫), from interpretations
of 𝑑𝑒𝑙𝑡𝑎𝑙𝑡 and 𝐹𝑖𝑛𝑎𝑙𝑙𝑡 a synchronous regular invariant of the original Horn clause
system can be extracted. The obtained invariant is based on the automaton 𝐴𝑙𝑡 =⟨︀
{0,1,2},Σ𝐹 , {1},Δ

⟩︀
, where for 𝑞 ∈ 1,2:

Δ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑍 ↦→ 0

⟨𝑍, 𝑆⟩ (0) ↦→ 1

⟨𝑆,𝑍⟩ (0) ↦→ 2

⟨𝑆, 𝑆⟩ (𝑞) ↦→ 𝑞

42

The language of this automaton is the set of pairs of Peano integers, where the first
number is strictly less than the second one.

3.3 Conclusion

The considered class of synchronous regular invariants with full convolution
includes regular invariants as well as a large class of classical symbolic invariants.
Since a full convolution is used, any operations with such automata will lead to an
exponential complexity “explosion”. That is, it should be noted that although the
proposed method can theoretically infer such invariants automatically, its effective
ness needs to be tested in practice, which is done in Chapter 6. Thus, as the proposed
extension of regular languages towards elementary ones does not seem to be practical
it might be more fruitful to extend elementary languages towards regular ones, e. g.,
by extending the signature of the constraint language with predicates for term mem
bership in a (non-synchronous) regular language. Such class of inductive invariants
and the method for invariant inference in the class are proposed in the next chapter.

43

Chapter 4. Collaborative Inference of Combined Invariants

This chapter proposes a method for the combined invariant inference. Com
bined invariants (Section 4.2.1) are invariants expressible in the extension of the
constraint language with predicates checking term membership in a set from some
fixed class. The method presented in Section 4.2 is an extension of a counterexam
ple-guided abstraction refinement (CEGAR) [49] algorithm for inference of combined
invariants. The modification involves a collaborative information exchange with the
invariant inference algorithm for the class with which it is combined (the core idea
is described in Section 4.1). The chapter is based on [36].

4.1 Core Idea of Collaborative Inference

For simplicity, the key idea of collaborative inference is presented as a modi
fication of the CEGAR approach for transition systems.

4.1.1 CEGAR for Transition Systems

Let ⟨𝒮,⊆, 0, 1,∩,∪,¬⟩ be a complete Boolean lattice representing sets of con
crete program states.

Definition 20. A transition system (program) is a triple 𝑇𝑆 = ⟨𝒮, 𝐼𝑛𝑖𝑡, 𝑇 ⟩, where
𝐼𝑛𝑖𝑡 ∈ 𝒮 are the initial states, and a transition function 𝑇 : 𝒮 ↦→ 𝒮 is a function,
which has the following properties:

– 𝑇 is monotonous, i. e., 𝑠1 ⊆ 𝑠2 implies 𝑇 (𝑠1) ⊆ 𝑇 (𝑠2);
– 𝑇 is additive, i. e., 𝑇 (𝑠1 ∪ 𝑠2) = 𝑇 (𝑠1) ∪ 𝑇 (𝑠2);
– 𝑇 (0) = 𝐼𝑛𝑖𝑡.

Definition 21. States 𝑠 ∈ 𝒮 are said to be reachable from states 𝑠′ ∈ 𝒮 if there
exists 𝑛 ⩾ 0 such that 𝑠 = 𝑇 𝑛(𝑠′).

Definition 22. A safety problem is a pair of a program 𝑇𝑆 and some property
𝑃𝑟𝑜𝑝 ∈ 𝒮. A program is called safe with respect to this property if 𝑇 𝑛(𝐼𝑛𝑖𝑡) ⊆ 𝑃𝑟𝑜𝑝

is satisfied for all 𝑛, otherwise it is called unsafe.
Safety is witnessed by the (safe) inductive invariant 𝐼 ∈ 𝒮, for which the

following must hold:

𝐼𝑛𝑖𝑡 ⊆ 𝐼, 𝑇 (𝐼) ⊆ 𝐼, 𝐼 ⊆ 𝑃𝑟𝑜𝑝.

44

Since all inductive invariants are fixed points of the transition function 𝑇

by definition, fixed points have the most attention in the context of searching for
an inductive invariant.

Theorem 13 (cf. [4]). A program is safe if and only if it has a safe inductive
invariant.

In order to automatically infer inductive invariants, it is common to fix some
class of invariants ℐ ⊆ 𝒮. A verifier is an algorithm which for a safety problem
returns either a safe inductive invariant in the invariant class ℐ if the program is
safe, or a counterexample otherwise. ℐ is called the domain of the verifier. Note that
in general a verifier may not terminate, for example, in the case when the program
is safe, but there is no inductive invariant in its domain that proves the safety.

Definition 23. Let there be a complete lattice 𝒜 = ⟨𝐴,⊑,⊥𝒜,⊤𝒜,⊓,⊔⟩, which
will be called an abstract domain and its elements will be called abstract states.

A Galois connection [98] or an abstraction is a pair of mappings ⟨α,γ⟩ between
posets ⟨𝒮,⊆⟩ and ⟨𝒜,⊑⟩ such that:

α : 𝒮 ↦→ 𝒜 γ : 𝒜 ↦→ 𝒮
∀𝑥 ∈ 𝒮 ∀𝑦 ∈ 𝒜 α (𝑥) ⊑ 𝑦 ⇔ 𝑥 ⊆ γ (𝑦) .

An abstract domain together with a Galois connection uniquely defines the
class of invariants {γ(𝑎) | 𝑎 ∈ 𝒜}, which will also be denoted as 𝒜. In what follows,
it is assumed that checks of the form γ(𝑎) ⊆ 𝑃𝑟𝑜𝑝 are computable.

Definition 24. An abstract transition function 𝑇 : 𝒜 ↦→ 𝒜 “lifts” a transition
function to the abstract domain, i. e., for all 𝑎 ∈ 𝒜 holds:

α(𝑇 (γ(𝑎))) ⊑ 𝑇 (𝑎) .

The following classical theorem from [65] shows how abstractions can be ap
plied for verification.

Theorem 14. Let 𝑇𝑆 = ⟨𝒮, 𝐼𝑛𝑖𝑡, 𝑇 ⟩ be the program and 𝑃𝑟𝑜𝑝 be the property.
Then γ(𝑎) is an inductive invariant of ⟨𝑇𝑆, 𝑃𝑟𝑜𝑝⟩ if there exists an element 𝑎 ∈ 𝒜
such that:

α(𝐼𝑛𝑖𝑡) ⊑ 𝑎, 𝑇 (𝑎) ⊑ 𝑎, γ(𝑎) ⊆ 𝑃𝑟𝑜𝑝.

45

Input: program 𝑇𝑆 and property 𝑃𝑟𝑜𝑝.
Output: 𝑆𝐴𝐹𝐸 and inductive invariant

or 𝑈𝑁𝑆𝐴𝐹𝐸 and counterexample.

1 ⟨α,γ⟩ ← Initial()
2 while true
3 𝑐𝑒𝑥,𝐴← ModelCheck(𝑇𝑆, 𝑃𝑟𝑜𝑝, ⟨α,γ⟩)
4 if 𝑐𝑒𝑥 is empty the
5 return 𝑆𝐴𝐹𝐸(𝐴)

6 if IsFeasible(cex) the
7 return 𝑈𝑁𝑆𝐴𝐹𝐸(𝑐𝑒𝑥)

8 ⟨α,γ⟩ ← Refine(⟨α,γ⟩ , 𝑐𝑒𝑥)

Listing 4.1 – CEGAR for transition systems

The pseudocode of the CEGAR approach for transition systems is shown
in Listing 4.1. The algorithm starts by building an initial abstraction ⟨α,γ⟩, for
example, using the trivial mappings α(𝑠) = ⊥𝒜 and γ(𝑎) = 1. Then the Mod
elCheck procedure uses the abstraction to build a finite sequence of abstract
states 𝑎 = ⟨𝑎0, . . . ,𝑎𝑛⟩ such that:

𝑎0 = α(𝐼𝑛𝑖𝑡) and 𝑎𝑖+1 = 𝑎𝑖 ⊔ 𝑇 (𝑎𝑖) ∀𝑖 ∈ {0, . . . ,𝑛− 1}. (4.1)

If for some 𝑖 we have γ(𝑎𝑖) ̸⊆ 𝑃𝑟𝑜𝑝, then a so-called abstract counterexample 𝑐𝑒𝑥 is
returned, either paired with 𝐴 = 0 (if 𝑖 = 0), or with 𝐴 = γ(𝑎𝑖−1) which satisfies
γ(𝑎𝑖−1) ⊆ 𝑃𝑟𝑜𝑝. If γ(𝑎𝑖) ⊆ 𝑃𝑟𝑜𝑝 holds for all 𝑖, and 𝑇 (𝑎𝑛) ⊑ 𝑎𝑛 holds at some step,
then γ(𝑎𝑛) is an inductive invariant, and therefore ModelCheck returns an empty
𝑐𝑒𝑥 and 𝐴 = γ(𝑎𝑛). The concept of an abstract counterexample is defined by each
concrete CEGAR implementation. Yet the value returned from the ModelCheck
procedure must satisfy the following property:

𝐴 = 0 or 𝐼𝑛𝑖𝑡 ⊆ 𝐴 ⊆ 𝑃𝑟𝑜𝑝. (4.2)

If ModelCheck returns an empty abstract counterexample, then the pro
gram is safe and CEGAR returns γ(𝑎𝑛) as an inductive invariant. Otherwise, it must
be checked whether the abstract counterexample corresponds to any concrete coun
terexample in the source program (by a IsFeasible procedure). If so, then CEGAR

46

stops and returns this counterexample, otherwise it proceeds by iteratively refining
the ⟨α,γ⟩ abstraction to eliminate the 𝑐𝑒𝑥 counterexample (the Refine procedure).

4.1.2 Collaborative Inference via CEGAR Modification

In this section, we propose an approach to the collaborative inference of com
bined invariants. The approach is based on the collaboration of two invariant
inference algorithms and is asymmetric in the following sense. First, one of the
algorithms is required to be an instance of CEGAR, while the other can be ar
bitrary. Secondly, the main CEGAR loop controls the entire process, repeatedly
calling the second algorithm.

The proposed approach is called CEGAR(𝒪), since the “collaboration” process
can be viewed as the CEGAR algorithm calling some oracle 𝒪. Let the classes 𝒜
and ℬ be the verifier domains of CEGAR and 𝒪, respectively. CEGAR(𝒪) can
infer inductive invariants in the union of these classes.

Definition 25. For the 𝒜 ⊆ 𝒮 and ℬ ⊆ 𝒮 state classes, a combined class is defined
as follows:

𝒜 ⊎ ℬ ≜ {𝐴 ∪𝐵 | 𝐴 ∈ 𝒜, 𝐵 ∈ ℬ}.

A combined (inductive) invariant over 𝒜 and ℬ is the inductive invariant in
the class 𝒜 ⊎ ℬ.

More programs can be verified with combined invariants than with verifiers
for combined abstract domains alone. The collaborative approach combines the
strengths of verifiers for individual classes and can converge on many problems
where individual verifiers would not terminate.

Example 10 (𝐹𝑜𝑟𝑘𝐽𝑜𝑖𝑛). Consider a program that transforms parallel programs
in the following way. At any step, the transformation can non-deterministically
eliminate all thread operations by joining all threads with the main one (𝐽𝑜𝑖𝑛) and
proceed to sequential execution (𝑆𝑒𝑞). If the program ends with sequential code,
then the transformation inserts forking of new threads (𝐹𝑜𝑟𝑘), followed by arbitrary
transformations of the threads. If in some fragment of the given program there is
a union of threads after the generation of new ones, then this fragment does not
change.

This transformation can be represented as a functional program. It does not
require programming language constructs other than those associated with threads,

47

so the following algebraic data type can be used to represent target programs:

𝑃𝑟𝑜𝑔 ::= 𝑆𝑒𝑞 |𝐹𝑜𝑟𝑘(𝑃𝑟𝑜𝑔)| 𝐽𝑜𝑖𝑛(𝑃𝑟𝑜𝑔).

For example, the term Fork(Join(Seq)) represents a program that forks new
threads, then joins them at some point, and then runs sequentially only.

The described transformation has a property that if the source program con
sists of a sequence of consecutive forks and joins of threads, then it can never be
transformed into itself. This property together with the transformation itself can be
represented by the functional program in Listing 4.2.

1 type Prog = Seq | Fork of Prog | Join of Prog
2 fun randomTransform() : Prog
3 fun nondet() : bool
4

5 fun tr(p : Prog) : Prog =
6 match nondet(), p with
7 | false, Seq -> Fork(randomTransform())
8 | false, Fork(Join(p')) -> Fork(Join(tr(p')))
9 | _ -> Join(Seq)

10

11 fun ok(p : Prog) : bool =
12 match p with
13 | Seq -> true
14 | Fork(Join(p')) -> ok(p')
15 | _ -> false
16

17 (* for any program p : Prog *)
18 assert (not ok(p) or tr(p) <> p)

Listing 4.2 – Example of a functional program with algebraic data types

The tr function performs the transformation on the representation of the
program by the 𝑃𝑟𝑜𝑔 algebraic data type, in particular, it introduces arbitrary
thread transformations by calling the randomTransform function. The ok function
checks that the program is a sequence of consecutive forks (Fork) and joins (Join)
of threads. The statement at the end encodes the property to be checked.

48

This program is safe with respect to the property but it has no inductive invari
ants expressible in the Elem or Reg classes. However, it has combined invariants
in Elem ⊎Reg. That is, for any programs 𝑝, 𝑡 : 𝑃𝑟𝑜𝑔 function ok(𝑝) returns true
iff the following holds:

𝑝 ∈ ℰ . (4.3)

If tr(𝑝) = 𝑡 then the following formula is an inductive invariant for tr:

¬(𝑝 = 𝑡) ∨ 𝑡 ̸∈ ℰ , (4.4)

where 𝑡 ̸∈ ℰ means that the ADT term 𝑡 is not contained in the language ℰ of the
following tree automaton.

𝑠0𝑆𝑒𝑞 𝑠1

𝐽𝑜𝑖𝑛

𝐹𝑜𝑟𝑘

Parameters: verifier 𝒪 over domain ℬ
Input: a program 𝑇𝑆 and a property 𝑃𝑟𝑜𝑝

Output: 𝑆𝐴𝐹𝐸 with a combined invariant in 𝒜 ⊎ ℬ
or 𝑈𝑁𝑆𝐴𝐹𝐸 with counterexample 𝑐𝑒𝑥

1 ⟨α,γ⟩ ← Initial()
2 𝐴← 0

3 while true
4 async call Collaborate (𝑇𝑆, 𝑃𝑟𝑜𝑝, ⟨α,γ⟩ , 𝐴)
5 𝑐𝑒𝑥,𝐴← ModelCheck(𝑇𝑆, 𝑃𝑟𝑜𝑝, ⟨α,γ⟩)
6 if 𝑐𝑒𝑥 is empty the
7 return 𝑆𝐴𝐹𝐸(𝐴)

8 if IsFeasible(cex) the
9 return 𝑈𝑁𝑆𝐴𝐹𝐸(𝑐𝑒𝑥)

10 ⟨α,γ⟩ ← Refine(⟨α,γ⟩ , 𝑐𝑒𝑥)

Listing 4.3 – Main loop of the CEGAR(𝒪) algorithm

49

Description of CEGAR(𝒪). The proposed approach is shown in Listing 4.3.
The algorithm works similarly to the classic CEGAR presented in Section 4.1.1,
but it also asynchronously polls the collaborating verifier 𝒪 by calling the Collab
orate procedure (line 4) at the beginning of each iteration. The calls are made
asynchronously to prevent the algorithm from diverging if 𝒪 diverges.

Parameters: Verifier 𝒪 over domain ℬ
Input: Program 𝑇𝑆 = ⟨𝒮, 𝐼𝑛𝑖𝑡, 𝑇 ⟩, property 𝑃𝑟𝑜𝑝, abstraction ⟨α,γ⟩,

state set 𝐴 such that 𝐴 = 0 or 𝐼𝑛𝑖𝑡 ⊆ 𝐴 ⊆ 𝑃𝑟𝑜𝑝

1 𝑇𝑆 ′ ← ⟨𝒮, 𝑇 (𝐴) ∖ 𝐴, λ𝐵. (𝑇 (𝐵) ∖ 𝐴)⟩
2 𝐵, 𝑐𝑒𝑥← 𝒪 (𝑇𝑆 ′, 𝑃 𝑟𝑜𝑝)

3 if 𝑐𝑒𝑥 is empty the
4 halt 𝑆𝐴𝐹𝐸(𝐴 ∪𝐵)

5 ̂︁𝑐𝑒𝑥← RecoverCex (𝑇𝑆, 𝑃𝑟𝑜𝑝, ⟨α,γ⟩ , 𝐴, 𝑐𝑒𝑥)
6 ⟨α,γ⟩ ← Refine(⟨α,γ⟩ , ̂︁𝑐𝑒𝑥)

Listing 4.4 – The Collaborate subroutine.

The Collaborate procedure is shown in Listing 4.4. Given the original
safety problem, the current abstraction, and the set of states 𝐴 = γ(𝑎) for some
𝑎 ∈ 𝒜, it constructs a new residual transition system:

𝑇𝑆 ′ = ⟨𝒮,𝐼𝑛𝑖𝑡′,𝑇 ′⟩ = ⟨𝒮, 𝑇 (𝐴) ∖ 𝐴, λ𝐵. (𝑇 (𝐵) ∖ 𝐴)⟩ .

The safety of the residual system is then verified by the 𝒪. In the Listing, 𝐴 ∖𝐵 is
shorthand for 𝐴 ∩ ¬𝐵. The Collaborate procedure overwrites the abstraction
used in CEGAR (p. 6): the ⟨α,γ⟩ abstraction is global and is shared between
the two procedures.

The residual system is structured as follows. Its states in the original system
are reachable from states that violate the inductiveness of 𝐴. In particular, its
initial states 𝐼𝑛𝑖𝑡′ are 𝑇 (𝐴) ∖𝐴, i. e., the image of non-inductive states. The states
𝑇 ′(𝐼𝑛𝑖𝑡′) = 𝑇 (𝑇 (𝐴) ∖ 𝐴) ∖ 𝐴 are reachable in one step in the residual system is
the 𝑇 -image of non-inductive states.

The main idea of the CEGAR(𝒪) algorithm is to use an additional verifier
𝒪 to weaken the non-inductive state set 𝐴 to some fixed point in the combined
class. If the second verifier finds an inductive invariant of the residual system, i. e.,
some inductive approximation 𝐵 of non-inductive states, then 𝐴 ∪ 𝐵 will be an

50

inductive invariant of the original system. In other words, by building a residual
system, the algorithm takes the safe but non-inductive part of the current invariant
candidate and passes it to a collaborating verifier to complete it to a fixed point,
i. e., inductive invariant.

Modern approaches to the inductive invariant inference, such as IC3/PDR
(which can be thought of as a sophisticated version of CEGAR), monotonously
strengthen an invariant candidate 𝐴 until it becomes inductive. Because of this,
the problem with such approaches is the choice of strengthening strategy [99]: due
to too sharp strengthening, necessary fixed points may be missed, while due to
slow strengthening, the algorithm may converge to a fixed point too slowly or even
diverge.

As the proposed approach is non-monotonic, it can infer inductive invariants
that cannot be inferred by verifiers run alone. In addition, it (heuristically) can
speed up the invariant inference even if one of the verifiers can infer it on its own
(this hypothesis is tested in Section 6.4.2). The probability of missing fixed points
due to over-strengthening is reduced: even if the first verifier over-strengthens an
invariant candidate, the second verifier can still detect a weaker fixed point.

Thus, if the second verifier 𝒪 stops and returns the inductive invariant 𝐵,
then Collaborate returns the combined invariant 𝐴∪𝐵. If 𝒪 returns a concrete
counterexample 𝑐𝑒𝑥 to the residual system, then Collaborate builds an abstract
counterexample ̂︁𝑐𝑒𝑥 to the original system from it and then acts like a classical
CEGAR, refining the domain with ̂︁𝑐𝑒𝑥. Note that the sets of states 𝐴 and 𝐵

themselves are not enough to prove the safety of the original transition system and
only their union is a correct inductive invariant. In other words, collaboration is
done by delegating more simple problems to the 𝒪 verifier, the solution of which
gives only part of the answer to the original problem.

Lemma 5. If the procedure Collaborate (𝑇𝑆, 𝑃𝑟𝑜𝑝, ⟨α,γ⟩ , 𝑎) halts with the
result 𝑆𝐴𝐹𝐸(𝐴∪𝐵) (p. 4), then 𝐴∪𝐵 is a combined invariant of the ⟨𝑇𝑆, 𝑃𝑟𝑜𝑝⟩
problem.

Proof. Let us prove that 𝐴∪𝐵 is an inductive invariant by showing that it satisfies
all three criteria of inductive invariants from Definition 22: this set contains all
initial states, it preserves the transition relation, and it is a subset of the property.

51

Initial states. From the invariant (4.2) of the CEGAR algorithm we have the
following cases. Either 𝐼𝑛𝑖𝑡 ⊆ 𝐴 ⊆ 𝐴 ∪ 𝐵, qed. Either 𝐴 = 0, so by definition
𝑇 (0), 𝐼𝑛𝑖𝑡 = 𝑇 (0) ∖ 0 = 𝑇 (𝐴) ∖ 𝐴 ⊆ 𝐵 ⊆ 𝐴 ∪𝐵.

Preservation of the transition relation. From soundness of the 𝒪 verifier we
know that 𝐵 is an inductive invariant (⟨𝒮, 𝐼𝑛𝑖𝑡′, 𝑇 ′⟩ , 𝑃 𝑟𝑜𝑝), i. e., 𝑇 (𝐴) ∖ 𝐴 ⊆ 𝐵

(𝐼𝑛𝑖𝑡′ definition) and 𝑇 (𝐵)∖𝐴 ⊆ 𝐵 (𝑇 ′ definition). Thus, (𝑇 (𝐴) ∪ 𝑇 (𝐵))∖𝐴 ⊆ 𝐵,
and so 𝑇 (𝐴) ∪ 𝑇 (𝐵) ⊆ 𝐴 ∪ 𝐵, hence, as the function 𝑇 is additive, 𝑇 (𝐴 ∪𝐵) ⊆
𝐴 ∪𝐵.

Property subset We have 𝐴 ⊆ 𝑃𝑟𝑜𝑝, which follows from the invariant (4.2) of
the CEGAR algorithm and 𝐵 ⊆ 𝑃𝑟𝑜𝑝 by the assumption that the 𝒪 algorithm is
correct. Therefore, we have 𝐴 ∪𝐵 ⊆ 𝑃𝑟𝑜𝑝.

Counterexamples to the residual system are traces that violate the inductive
ness of the current candidate invariant 𝐴. A concrete counterexample to the safety
of the residual system (𝑐𝑒𝑥 on line 2 from Listing 4.4) corresponds to some abstract
counterexample of the original system. Therefore, CEGAR(𝒪) is parameterized by
the procedure RecoverCex, which restores an abstract counterexample to the
original system from a counterexample to the residual system (p. 5). The following
Section 4.2 proposes such a procedure for programs represented by CHC systems
and counterexamples represented by refutation trees.

The RecoverCex procedure must satisfy the following restriction.

Restriction 1. Procedure RecoverCex (𝑇𝑆, 𝑃𝑟𝑜𝑝, ⟨α,γ⟩ , 𝑎, 𝑐𝑒𝑥) returns an ab
stract counterexample to the transition system ⟨𝑇𝑆, 𝑃𝑟𝑜𝑝⟩ with respect to the
abstraction ⟨α,γ⟩.

Theorem 15. If verifier 𝒪 is correct, then verifier CEGAR(𝒪) is also correct.

Proof. The validity of this theorem follows directly from the correctness of the orig
inal CEGAR [49], Lemma 5, and the Restriction 1.

Theorem 16. If either CEGAR or the 𝒪 verifier terminates on system ⟨𝑇𝑆,𝑃𝑟𝑜𝑝⟩,
then CEGAR(𝒪) also terminates on the system.

Proof. If the𝒪 verifier terminates, then the first call to Collaborate (𝑇𝑆, 𝑃𝑟𝑜𝑝, ⟨α,γ⟩ , 0)
also terminates, since 𝐼𝑛𝑖𝑡′ = 𝑇 (0) ∖ 0 = 𝐼𝑛𝑖𝑡 and 𝑇 ′ = λ𝐵.(𝑇 (𝐵) ∖ 0) = 𝑇 .
If CEGAR terminates, then CEGAR(𝒪) terminates as well, since the call to
Collaborate is asynchronous.

52

4.2 Collaborative Invariant Inference

In this section, the collaborative inference approach for CHC systems over
ADTs is presented as an instantiation of the CEGAR(𝒪) algorithm from the pre
vious section.

The approach has two following properties. Firstly, it infers inductive invari
ants expressed in the extension of the first-order logic over ADTs with constraints
on term membership in tree languages 𝑥 ∈ 𝐿. Secondly, the approach extends
Horn solvers with queries to first-order logic solvers, e. g., saturation-based [94] and
finite-model finders [88; 89].

First, let us define the representation of the class of combined invariants.

4.2.1 Combined invariants

Definition 26. For each tree language L ⊆ |ℋ|σ1 × · · · × |ℋ|σ𝑚, define a predicate
membership symbol for the language “∈L” with arity σ1 × · · · × σ𝑚. Membership
constraint is an atomic formula with a predicate language membership symbol.
Its semantics is defined by an extension of the Herbrand semantics ℋ as follows:
ℋ(∈ L) = L. The ADT constraint language extended with such predicates is called
first order language with membership constraints. This language defines a class
of invariants denoted by ElemReg and an abstract domain of functions from ℛ
predicates to formulas of the language with element-wise operations.

Example 11. The functional program from Example 10 corresponds to the follow
ing Horn clause system:

𝑝 = 𝑆𝑒𝑞 → 𝑜𝑘(𝑝)

𝑝′ = 𝐹𝑜𝑟𝑘(𝐽𝑜𝑖𝑛(𝑝)) ∧ 𝑜𝑘(𝑝)→ 𝑜𝑘(𝑝′)

𝑝 = 𝑆𝑒𝑞 ∧ 𝑡 = 𝐹𝑜𝑟𝑘(𝑝′)→ 𝑡𝑟(𝑝, 𝑡)

𝑡 = 𝐽𝑜𝑖𝑛(𝑆𝑒𝑞)→ 𝑡𝑟(𝑝, 𝑡)

𝑝′ = 𝐹𝑜𝑟𝑘(𝐽𝑜𝑖𝑛(𝑝)) ∧ 𝑡′ = 𝐹𝑜𝑟𝑘(𝐽𝑜𝑖𝑛(𝑡)) ∧ 𝑡𝑟(𝑝, 𝑡)→ 𝑡𝑟(𝑝′, 𝑡′)

𝑜𝑘(𝑝) ∧ 𝑡𝑟(𝑝, 𝑝)→ ⊥

It is safe, but has neither Reg nor Elem invariants. However, it has a Elem
Reg invariant

𝑜𝑘(𝑝)⇔ 𝑝 ∈ ℰ , 𝑡𝑟(𝑝, 𝑡)⇔ ¬(𝑝 = 𝑡) ∨ 𝑡 ∈ ℰ ,

53

where ℰ is a tree language of the tree automaton from Example 10, and ℰ is its
complement.

4.2.2 Horn Clause Systems as Transition Systems

Define a complete Boolean lattice of concrete states ⟨𝒮,⊆, 0, 1,∩,∪,¬⟩.

𝒮 ≜ a set of all mappings from every 𝑃 ∈ ℛ to a subset of |ℋ|𝑃

𝑠1 ⊆ 𝑠2 ⇔ ∀𝑃 ∈ ℛ 𝑠1(𝑃) ⊆ 𝑠2(𝑃) 𝑠1 ∩ 𝑠2 ≜ {𝑃 ↦→ 𝑠1(𝑃) ∩ 𝑠2(𝑃) | 𝑃 ∈ ℛ}
0 ≜ {𝑃 ↦→ ∅ | 𝑃 ∈ ℛ} 𝑠1 ∪ 𝑠2 ≜ {𝑃 ↦→ 𝑠1(𝑃) ∪ 𝑠2(𝑃) | 𝑃 ∈ ℛ}
1 ≜ {𝑃 ↦→ |ℋ|𝑃 | 𝑃 ∈ ℛ} ¬𝑠 ≜ {𝑃 ↦→ |ℋ|𝑃 ∖ 𝑠(𝑃) | 𝑃 ∈ ℛ}

The Horn clause system 𝒫 defines the transition system ⟨𝒮, 𝐼𝑛𝑖𝑡, 𝑇 ⟩:

𝐼𝑛𝑖𝑡 ≜ 𝑇 (0)

𝑇 (𝑠) (𝑃) ≜
{︀
𝑡 |

(︀
𝐵 → 𝑃 (𝑡)

)︀
is a closed instance of some 𝐶 ∈ 𝒫 , 𝑠 |= 𝐵

}︀
.

Assume without loss of generality that the Horn clause system 𝒫 has a single
query predicate 𝑄, i. e., further, we will consider only systems obtained as follows:

𝒫 ′ ≜ 𝑟𝑢𝑙𝑒𝑠 (𝒫) ∪ {𝑏𝑜𝑑𝑦 (𝐶) (𝑥)→ 𝑄(𝑥) | 𝐶 is a query of 𝒫} ∪ {𝑄(𝑥)→ ⊥}.

The clause system defines a property for the transition system as: 𝑃𝑟𝑜𝑝(𝑄) ≜ ⊥
and for each 𝑃 ∈ ℛ, 𝑃𝑟𝑜𝑝(𝑃) ≜ ⊤.

Proposition 1. A CHC system 𝒫 is satisfiable if the corresponding transition sys
tem ⟨𝒮, 𝐼𝑛𝑖𝑡, 𝑇 ⟩ is safe with respect to 𝑃𝑟𝑜𝑝.

4.2.3 Generating Residual System

The Collaborate procedure starts by building the residual system

⟨𝑇 (𝐴) ∩ ¬𝐴, λ𝐵. (𝑇 (𝐵) ∩ ¬𝐴)⟩ ,

which is passed to the collaborating verifier. The ResidualCHCs procedure from
Listing 4.5 constructs a system equivalent to such a residual system by transforming
the original Horn clause system 𝒫 in two steps. It takes as input the original system
𝒫 and an elementary model 𝑎 as input.

54

Input: Horn clause system 𝒫 , elementary model 𝑎.
Output: Residual Horn system 𝒫 ′.

1 Φ← 𝒫 with atoms 𝑃 (𝑡) replaced by 𝑎(𝑃)(𝑡) ∨ 𝑃 (𝑡)

2 return 𝐶𝑁𝐹 (Φ)

Listing 4.5 – ResidualCHCs algorithm for generation of a residual CHC system.

The procedure replaces each atom 𝑃 (𝑡1, . . . ,𝑡𝑚) in the heads and bodies of the
Horn system with the disjunction 𝑎(𝑃)(𝑡1, . . . ,𝑡𝑚) ∨ 𝑃 (𝑡1, . . . ,𝑡𝑚) (line 1). Then,
it moves the Σ-formula from the head to the body with negation and splits the
clause according to the disjunction in the body, bringing it into CNF. For exam
ple, the clause

𝑃 (𝑥) ∧φ(𝑥, 𝑥′)→ 𝑃 (𝑥′)

will first turn into the formula

(𝑎(𝑃)(𝑥) ∨ 𝑃 (𝑥)) ∧φ(𝑥, 𝑥′)→ (𝑎(𝑃)(𝑥′) ∨ 𝑃 (𝑥′)),

which after transformation into CNF (p. 2) will be divided into the following clauses:

𝑎(𝑃)(𝑥) ∧φ(𝑥, 𝑥′) ∧ ¬𝑎(𝑃)(𝑥′)→ 𝑃 (𝑥′)

𝑃 (𝑥) ∧φ(𝑥, 𝑥′) ∧ ¬𝑎(𝑃)(𝑥′)→ 𝑃 (𝑥′).

Thus, as a result of transformation into CNF, we obtain a system of clauses which
semantically corresponds to the residual system from the previous section.

Example 12. Consider abstract state 𝑎(𝑡𝑟)(𝑝, 𝑡) ≡ ¬(𝑝 = 𝑡) ∨ 𝑡 = 𝐽𝑜𝑖𝑛(𝑆𝑒𝑞),
𝑎(𝑜𝑘)(𝑝) ≡ 𝑝 = 𝑆𝑒𝑞 and the system from Example 11. The procedure Residu
alCHCs will first give the formula

𝑝 = 𝑆𝑒𝑞 →
(︀
𝑝 = 𝑆𝑒𝑞 ∨ 𝑜𝑘(𝑝)

)︀
𝑝′ = 𝐹𝑜𝑟𝑘(𝐽𝑜𝑖𝑛(𝑝)) ∧

(︀
𝑝 = 𝑆𝑒𝑞 ∨ 𝑜𝑘(𝑝)

)︀
→

(︀
𝑝′ = 𝑆𝑒𝑞 ∨ 𝑜𝑘(𝑝′)

)︀
𝑝 = 𝑆𝑒𝑞 ∧ 𝑡 = 𝐹𝑜𝑟𝑘(𝑝′)→

(︀
¬(𝑝 = 𝑡) ∨ 𝑡 = 𝐽𝑜𝑖𝑛(𝑆𝑒𝑞) ∨ 𝑡𝑟(𝑝, 𝑡)

)︀
𝑡 = 𝐽𝑜𝑖𝑛(𝑆𝑒𝑞)→

(︀
¬(𝑝 = 𝑡) ∨ 𝑡 = 𝐽𝑜𝑖𝑛(𝑆𝑒𝑞) ∨ 𝑡𝑟(𝑝, 𝑡)

)︀
𝑝′ = 𝐹𝑜𝑟𝑘(𝐽𝑜𝑖𝑛(𝑝)) ∧ 𝑡′ = 𝐹𝑜𝑟𝑘(𝐽𝑜𝑖𝑛(𝑡))∧
∧
(︀
¬(𝑝 = 𝑡) ∨ 𝑡 = 𝐽𝑜𝑖𝑛(𝑆𝑒𝑞) ∨ 𝑡𝑟(𝑝, 𝑡)

)︀
→

(︀
¬(𝑝′ = 𝑡′) ∨ 𝑡′ = 𝐽𝑜𝑖𝑛(𝑆𝑒𝑞) ∨ 𝑡𝑟(𝑝′, 𝑡′)

)︀(︀
𝑝 = 𝑆𝑒𝑞 ∨ 𝑜𝑘(𝑝)

)︀
∧
(︀
¬(𝑝 = 𝑝) ∨ 𝑝 = 𝐽𝑜𝑖𝑛(𝑆𝑒𝑞) ∨ 𝑡𝑟(𝑝, 𝑝)

)︀
→ ⊥,

55

which can be simplified to

𝑝 = 𝐹𝑜𝑟𝑘(𝐽𝑜𝑖𝑛(𝑆𝑒𝑞))→ 𝑜𝑘(𝑝)

𝑝′ = 𝐹𝑜𝑟𝑘(𝐽𝑜𝑖𝑛(𝑝)) ∧ 𝑜𝑘(𝑝)→ 𝑜𝑘(𝑝′)

𝑡 = 𝐹𝑜𝑟𝑘(𝐽𝑜𝑖𝑛(𝐽𝑜𝑖𝑛(𝑆𝑒𝑞)))→ 𝑡𝑟(𝑝, 𝑡)

𝑝′ = 𝐹𝑜𝑟𝑘(𝐽𝑜𝑖𝑛(𝑝)) ∧ 𝑡′ = 𝐹𝑜𝑟𝑘(𝐽𝑜𝑖𝑛(𝑡)) ∧ 𝑝′ = 𝑡′ ∧ 𝑡𝑟(𝑝, 𝑡)→ 𝑡𝑟(𝑝′, 𝑡′)(︀
𝑝 = 𝑆𝑒𝑞 ∨ 𝑜𝑘(𝑝)

)︀
∧
(︀
𝑝 = 𝐽𝑜𝑖𝑛(𝑆𝑒𝑞) ∨ 𝑡𝑟(𝑝, 𝑝)

)︀
→ ⊥

4.2.4 CEGAR(𝒪) for CHCs: Recovering Counterexamples

This section presents a procedure for building an abstract counterexample of
the original system from a concrete counterexample for the residual system obtained
as 𝒫 ′ = ResidualCHCs(𝒫 , 𝑎). In other words, we present the instantiation of the
RecoverCex procedure from Listing 4.4.

Abstract counterexamples. An abstract counterexample of a Horn clause sys
tem is a refutation tree, some of whose leaves may be abstract states. For a formal
definition, we introduce the transformation of clauses 𝑄 (𝒫 , 𝑎), which for each pred
icate 𝑃 ∈ ℛ adds new clauses 𝑎(𝑃)(𝑥) → 𝑃 (𝑥) to the system 𝒫 .

Definition 27. An abstract counterexample of a Horn system 𝒫 with respect to the
abstract state 𝑎 is the refutation tree of the Horn system 𝑄 (𝒫 , 𝑎).

Let 𝑇 be a refutation tree of 𝒫 ′ = ResidualCHCs(𝒫 , 𝑎). Let us present a re
cursive procedure for building a refutation tree 𝑇 ′ for 𝒫 ′′ = 𝑄 (𝒫 , 𝑎) given the tree 𝑇 .

Recursion base. Let 𝑇 be a leaf ⟨𝐶,Φ⟩, where 𝐶 ∈ 𝒫 ′. Since Φ = 𝑏𝑜𝑑𝑦 (𝐶)

is a predicate-free formula, then 𝐶 is

φ ∧ 𝑎(𝑃1)(𝑥1) ∧ . . . ∧ 𝑎(𝑃𝑛)(𝑥𝑛) ∧ ¬𝑎(𝑃)(𝑥)→ 𝑃 (𝑥),

Let us build 𝑇 ′ as ⟨𝐶 ′,Φ′⟩, where

𝐶 ′ ≡ φ∧𝑃1(𝑥1)∧. . .∧𝑃𝑛(𝑥𝑛)→ 𝑃 (𝑥) and Φ′ ≡ φ∧𝑎(𝑃1)(𝑥1)∧. . .∧𝑎(𝑃𝑛)(𝑥𝑛),

with 𝑛 leaf children ⟨𝐶 ′𝑖, 𝑎(𝑃𝑖)(𝑥𝑖)⟩, where 𝐶 ′𝑖 ≡ 𝑎(𝑃𝑖)(𝑥𝑖)→ 𝑃𝑖(𝑥𝑖). The definition
of the refutation tree is trivially satisfied. Note that ℋ |= Φ → Φ′.

Recursion step. Let 𝑇 be a of node ⟨𝐶,Φ⟩ with children
⟨𝐶1,Φ1⟩ , . . . , ⟨𝐶𝑛,Φ𝑛⟩, all 𝐶𝑖 ∈ 𝑟𝑢𝑙𝑒𝑠 (𝑃𝑖) from 𝒫 ′ and

56

𝐶 ≡ φ ∧ 𝑎(𝑅1)(𝑦1) ∧ . . . ∧ 𝑎(𝑅𝑚)(𝑦𝑚) ∧ ¬𝑎(𝑅)(𝑦) ∧ 𝑃1(𝑥1) ∧ . . . ∧ 𝑃𝑛(𝑥𝑛)→ 𝑅(𝑦)

Φ ≡ φ ∧ 𝑎(𝑅1)(𝑦1) ∧ . . . ∧ 𝑎(𝑅𝑚)(𝑦𝑚) ∧ ¬𝑎(𝑅)(𝑦) ∧ Φ1(𝑥1) ∧ . . . ∧ Φ𝑛(𝑥𝑛).

Due to the iteration of the recursion, we already have the corresponding nodes
⟨𝐶 ′1,Φ′1⟩ , . . . , ⟨𝐶 ′𝑛,Φ′𝑛⟩, so define:

𝐶 ′ ≡ φ ∧𝑅1(𝑦1) ∧ . . . ∧𝑅𝑚(𝑦𝑚) ∧ 𝑃1(𝑥1) ∧ . . . ∧ 𝑃𝑛(𝑥𝑛)→ 𝑅(𝑦)

Φ′ ≡ φ ∧ 𝑎(𝑅1)(𝑦1) ∧ . . . ∧ 𝑎(𝑅𝑚)(𝑦𝑚) ∧ Φ′1(𝑥1) ∧ . . . ∧ Φ′𝑛(𝑥𝑛).

For each predicate 𝑅𝑗, add children:
⟨︀
𝐶 ′𝑛+𝑗, 𝑎(𝑅𝑗)(𝑦𝑗)

⟩︀
, where 𝐶 ′𝑛+𝑗 ≡

𝑎(𝑅𝑖)(𝑦𝑖) → 𝑅𝑗(𝑦𝑗). For each 𝑖, ℋ |= Φ𝑖 → Φ′𝑖 by induction, so for their con
junction we have ℋ |= Φ → Φ′.

Eventually the recursion will come to the root of the tree 𝑇 , which is some
vertex ⟨𝐶,Φ⟩, where 𝐶 is a query from the system 𝒫 ′. A tree 𝑇 ′ with root ⟨𝐶 ′,Φ′⟩ is
recursively built for it. By induction we have ℋ |= Φ→ Φ′. Since Φ is a satisfiable
Σ-formula, so is Φ′. Thus, 𝑇 ′ is the refutation tree of the 𝒫 ′′ system.

Proposition 2. The procedure RecoverCex is linear in the number of nodes of
the input refutation tree.

4.2.5 Instantiating Approach within IC3/PDR

The above algorithm allows inferring combined invariants in the class Elem⊎
Reg, i. e., inductive invariants expressible by formulas of the form φ(𝑥) ∨ 𝑥 ∈
𝐿, where φ is a first-order formula over ADTs and 𝐿 is a tree language. The
implementation of the IC3/PDR approach as a complex instantiation of CEGAR
can be generalized for the automatic invariant inference in the full quantifier-free
fragment ElemReg with formulas of the following form:⋀︁

𝑖

(φ𝑖(𝑥) ∨ 𝑥∈𝐿𝑖). (4.5)

IC3/PDR represents its abstract state as a conjunction of formulas (called lem
mas). In other words, in the procedure ResidualCHCs(𝒫 , 𝑎) (see section 4.2.3),
the function 𝑎 maps each uninterpreted symbol 𝑃 to some conjunction

⋀︀
𝑖φ𝑖. We

generalize the approach by replacing each uninterpreted predicate symbol 𝑃 with
disjunction of conjunctions

⋀︀
𝑖(φ𝑖(𝑡)∨𝐿𝑖(𝑡)) with fresh predicate symbols 𝐿𝑖. Thus,

inductive invariants of the above form 4.5 will be inferred by the modified IC3/PDR.

57

4.3 Conclusion

The proposed class of combined invariants, built on regular invariants, allows
one to express both classical symbolic invariants and complex recursive relations.
Thus, the proposed class of invariants should be expressive enough for practice.
Additionally, an efficient invariant inference method in the class has been proposed.
The method reuses existing efficient invariant inference algorithms for combined
classes by a minor modification of one of them. The next chapter is dedicated to a
theoretical comparison of existing and proposed classes of inductive invariants.

58

Chapter 5. Theoretical Comparison of Inductive Invariant Classes

This chapter provides a theoretical comparison of existing and proposed classes
of inductive invariants for programs with algebraic data types. We consider only
classes for which there are fully automatic invariant inference methods: elementary
invariants (Elem, inferred by Spacer [22] and HoIce [25]), elementary invari
ants with term size constraints (SizeElem, inferred by Eldarica [24]), regular
invariants (Reg, inferred by RCHC [26], as well as the method from Chapter 2),
synchronous regular invariants (Reg+, Reg×, inferred by RCHC [26], as well as by
the method from Chapter 3) and combined invariants (ElemReg, inferred by the
method from Chapter 4). The chapter is partly based on [35].

The comparison is based on the key properties of invariant classes: closure with
respect to Boolean operations, decidability of the term membership problem, decid
ability of checking an invariant for emptiness (Section 5.1), and expressive power
(Section 5.2). The results of the theoretical comparison are shown in Tables 5.1
and 5.2. Section 5.3 presents an overview of representation methods for infinite sets
of terms based on generalizations of tree automata that might serve as classes of
inductive program invariants in the future.

5.1 Closure under Boolean Operations and Decidability

Closure and decidability properties for the investigated classes are summarized
in Table 5.1. A footnote in each cell of the table refers to the theorem stating the
claimed result; the absence of a footnote indicates that the fact asserted in the cell is
obvious. For example, the closure of the classes Elem, SizeElem, and ElemReg
with respect to Boolean operations is clear, as they are syntactically constructed as
first-order languages with the corresponding operations.

5.2 Invariant Classes Expressivity

Comparison of the invariant classes expressiveness is presented in the Table 5.2.
Since some classes are built as syntactic extensions of other classes (for example,

1even ∈ Reg ∖ SizeElem (Theorem 21)
2lr ∈ Elem ∖Reg× (Lemma 7)
3lt ∈ Reg+ ∖Reg (Theorem 17)
4node ∈ Reg× ∖Reg+ (Lemma 6)

59

Table 5.1 – Theoretical comparison of inductive invariant classes

Property
Class Elem SizeElem Reg Reg+ Reg× ElemReg

Closed under ∩ Yes Yes Yes1 Yes2 Yes2 Yes
Closed under ∪ Yes Yes Yes1 Yes2 Yes2 Yes
Closed under ∖ Yes Yes Yes1 Yes2 Yes2 Yes
𝑡 ∈ 𝐼 is decidable Yes3 Yes4 Yes5 Yes7 Yes9 Yes10

𝐼 = ∅ is decidable Yes3 Yes4 Yes6 Yes8 Yes9 Yes10

Recursive relations
are expressible

No Partially Yes Yes Yes Yes

Synchronous
relations are
expressible

Yes Yes No Partially Yes Yes

1 see [33, property 3.2.9]
2 see Section 3.1.2
3 see [93]
4 see [100]
5 see [33, Section 3.2.1 and Th. 1.7.2]

6 see [33, Section 3.2.1 and Th. 1.7.4]
7 see [33, Def. 3.2.1 and Th. 1.7.2]
8 see [33, Def. 3.2.1 and Th. 1.7.4]
9 see Section 3.1.3
10 see [101, Corollary 2]

Table 5.2 – Theoretical comparison of inductive invariant classes expressivity

Class Elem SizeElem Reg Reg+ Reg× ElemReg
Elem ∅ ∅ lr 1,4,5 lr 1,5 lr 1 ∅
SizeElem ∞ ∅ lr 1,4,5 lr 1,5 lr 1 lt3

Reg even2 even2 ∅ ∅4 ∅4,5 ∅
Reg+ even2,7 even2,4 ∞4 ∅ ∅5 lt3

Reg× even2,4,5 even2,4,5 ∞4,5 ∞5 ∅ lt3,5

ElemReg ∞ even2 ∞ lr 1,5 lr 1 ∅

1 lr ∈ Elem ∖Reg× (Lemma 7)
2 even ∈ Reg ∖ SizeElem (Th. 21)
3 see Th. 17

4 Reg ⊆ Reg+ [33, Prop. 3.2.6]
5 Reg+ ⊆ Reg× [26, Th. 11]

60

ElemReg

Elem Reg

SizeElem Reg+

Reg×

lt
even1

lr 2

lt3

node4

Figure 5.1 – Inclusion relations between classes of inductive invariants over ADTs.

Reg+ and Reg× both extend Reg), and some classes are syntactically very different
(for example, Reg and Elem), the relationships between the sets they represent
are not obvious. It is important to distinguish invariant classes for the analysis of
invariant inference algorithms, in particular, for understanding the limits of their
applicability. If the invariants of problems of some kind do not lie in the class of
invariants inferred by the given algorithm, then this algorithm will not terminate on
problems of this kind. Therefore, these relationships are presented in the table 5.2.

For class 𝐴 in the row and class 𝐵 in the column, the corresponding cell
contains a footnote, and either the symbol ∅, or∞, or the name of a certain clause
system from this work. Each cell should be read as an answer to the question:
“What does the class 𝐴 ∖ 𝐵 contain?” If the cell contains ∅, then 𝐴 ∖ 𝐵 = ∅.
If the cell contains ∞, then 𝐵 ⊆ 𝐴. Finally, if the cell contains the name 𝒫 of
some system, then the classes 𝐴 and 𝐵 are incomparable, i. e., 𝒫 ∈ 𝐴 ∖ 𝐵 ̸= ∅
and 𝐵 ∖ 𝐴 ̸= ∅. The footnote refers to the corresponding theorem presented in
this thesis. The absence of a footnote indicates that the stated fact is obvious. For
example, the cell SizeElem ∖ Elem contains ∞ without a footnote, because the
SizeElem class is a syntactic extension of the Elem class, and therefore includes
at least the same invariants.

61

Figure 5.1 presents inclusion relations between invariant classes separately
for convenience. An edge from class 𝐴 to class 𝐵 labeled 𝒫 means that 𝐴 ⊊
𝐵 and 𝒫 ∈ 𝐵 ∖ 𝐴.

5.2.1 Inexpressivity in Synchronous Languages

Example 13 (node). Consider the following set of terms over the binary tree
algebraic type 𝑇𝑟𝑒𝑒 ::= 𝑙𝑒𝑓𝑡 |𝑛𝑜𝑑𝑒(𝑇𝑟𝑒𝑒, 𝑇𝑟𝑒𝑒):

node ≜
{︀
⟨𝑁𝑜𝑑𝑒(𝑦, 𝑧), 𝑦, 𝑧⟩ | 𝑦, 𝑧 ∈ 𝒯 (Σ𝐹)

}︀
.

This example allows us to separate classes of synchronous regular invariants
with full and standard convolution, as the next lemma shows.

Lemma 6. There are synchronous regular invariants with full convolution that are
inexpressible using only standard convolution, i. e., node ∈ Reg× ∖Reg+.

Proof. node ∈ Reg× follows from application of Theorem 11 to a language of
equality of two terms and a linear template ⟨𝑁𝑜𝑑𝑒(𝑦, 𝑧), 𝑦, 𝑧⟩. The validity of
node ̸∈ Reg+ is shown in [33, Ex. 3.2] by applying the pumping lemma for tree
automata languages to node.

Example 14 (lr). Consider the following set of terms over the binary tree algebraic
type 𝑇𝑟𝑒𝑒 ::= 𝑙𝑒𝑓𝑡 |𝑛𝑜𝑑𝑒(𝑇𝑟𝑒𝑒, 𝑇𝑟𝑒𝑒):

lr ≜
{︀
𝑥 | ∃𝑡 . 𝑥 = 𝑛𝑜𝑑𝑒(𝑡, 𝑡)

}︀
.

This set lies in the class of elementary invariants, yet it cannot be expressed
by any synchronous tree automaton even with full convolution, as the next lemma
shows.

Lemma 7. There are elementary invariants which are not expressible regularly with
full synchronization, i. e., lr ̸∈ Reg×.

Proof. In [33, Ex. 1.4], by application of the pumping lemma to lr, it is shown that
lr ̸∈ Reg. By Lemma 4, this implies lr ̸∈ Reg×.

62

5.2.2 Inexpressivity in Combined Languages

Theorem 17. The intersection of classes SizeElem and Reg+ does not belong to
the class ElemReg, i. e., lt ∈ SizeElem, lt ∈ Reg+, lt ̸∈ ElemReg.

Proof. The set lt is expressed by the following SizeElem-formula:

φ(𝑥, 𝑦) ≜ 𝑠𝑖𝑧𝑒(𝑥) < 𝑠𝑖𝑧𝑒(𝑦).

The fact that lt ∈ Reg+ was shown in Example 8.
Let us now show that lt does not belong to ElemReg. Note that the algebraic

type of Peano integers is isomorphic to natural numbers (with zero). Furthermore,
formulas representing ElemReg are isomorphic to formulas in the signature of
extended Presburger arithmetic without addition and order. Consider this signature
Σ = ⟨Σ𝑆,Σ𝐹 ,Σ𝑃 ⟩, which includes a unique sort for natural numbers (Σ𝑆 = {N}),
a constant 0, and a unique successor function symbol 𝑠, where 𝑠(𝑥) is interpreted
as 𝑥 + 1, Σ𝐹 = {0, 𝑠}, as well as predicate symbols of equality and divisibility for
all constants (𝑐 | 𝑥 is interpreted as 𝑥 is divisible by 𝑐, Σ𝑃 = {=} ∪ {𝑐 | _, 𝑐 ∈ N}).
Since the set 𝑙𝑡 represents a strict order relation, in order to prove the original
statement it is necessary to show that the standard order relation on natural numbers
is inexpressible in the theory of the standard model 𝒩 of signature Σ.

Let us prove this proposition by extending the proof from [102, Sec. 2] for an
arithmetic with the same signature but without divisibility predicates. Consider the
modelℳ = (N∪N*, 𝑠, 𝑐 | _), where N* is defined as the set of symbols {𝑛* | 𝑛 ∈ N};
𝑐 | 𝑛 and 𝑐 | 𝑛* are true only when 𝑐 divides 𝑛; and the successor function is defined
as follows:

𝑠(𝑛) ≜ 𝑛+ 1

𝑠(𝑛*) ≜ (𝑛+ 1)*

Model ℳ is an elementary extension of the model 𝒩 , so if some formula
ψ(𝑥, 𝑦) defines a linear order on 𝒩 , then it defines a linear order onℳ. Note that
the following mapping σ is an automorphism of modelℳ:

σ(𝑛) ≜ 𝑛*

σ(𝑛*) ≜ 𝑛

From the fact that σ is an automorphism of the model ℳ, it follows that
for any 𝑥, 𝑦 ∈ N ∪ N*, it is true that ℳ |= ψ(𝑥, 𝑦) ⇔ ℳ |= ψ(σ(𝑥),σ(𝑦)).

63

Since the formula ψ is assumed to express a linear order, without loss of generality,
assume thatℳ |= ψ(0, 0*). However, by applying the automorphism σ, we get that
ℳ |= ψ(0*, 0), which contradicts the axioms of order. Therefore, no formula of a
given signature can represent a linear order. It follows that lt does not lie in the
ElemReg class.

5.2.3 Inexpressivity in Elementary Languages

This section introduces pumping lemmas for first-order languages: the ADT
constraint language and the ADT constraint language extended with term size con
straints.

First pumping lemmas arose in the theory of formal languages [103] applied
to finite automata and context-free grammars. In general, a pumping lemma claims
that for all languages in some class (e. g., regular or context-free languages), any
sufficiently large word can be “pumped”. In other words, some parts of the word can
be indefinitely enlarged, and the pumped word will still be a part of the language.
Pumping lemmas are useful to prove that an invariant is not expressible in some
class: you assume that the invariant belongs to a class, and then you apply a
specialized pumping lemma for this class and get some pumped set. If the set
cannot be an inductive invariant, then a contradiction has been obtained; therefore,
the invariant is inexpressible in the given class.

To formally state pumping lemmas, we first define the following extension
Elem* of the constraint language, which admits quantifier elimination. For every
ADT ⟨σ, 𝐶⟩ and every constructor 𝑓 ∈ 𝐶 of arity σ1 × · · · × σ𝑛 → σ for some
sorts of σ1, . . . ,σ𝑛, introduce selectors 𝑔𝑖 ∈ 𝑆 of arity σ → σ𝑖 for each 𝑖 ⩽ 𝑛 with
standard semantics given as follows: 𝑔𝑖(𝑓(𝑡1, . . . , 𝑡𝑛)) ≜ 𝑡𝑖.

Theorem 18 (see [93]). Any Elem-formula is equivalent to some quantifier-free
Elem*-formula.

Let us give some auxiliary definitions.

Definition 28. We define the height of a closed term inductively as follows:

ℋ𝑒𝑖𝑔ℎ𝑡(𝑐) ≜ 1

ℋ𝑒𝑖𝑔ℎ𝑡(𝑐(𝑡1, . . . , 𝑡𝑛)) ≜ 1 +
𝑛

max
𝑖=1

(︀
ℋ𝑒𝑖𝑔ℎ𝑡(𝑡𝑖)

)︀
.

64

Let us call a path a (possibly empty) sequence of selectors 𝑠 ≜ 𝑆1 . . . 𝑆𝑛,
where for each 𝑖, 𝑆𝑖 has sort σ𝑖 → σ𝑖−1. For each term 𝑡 of sort σ𝑛, let 𝑠 (𝑡) ≜

𝑆1(. . . (𝑆𝑛(𝑡)) . . .). For closed terms 𝑔, we redefine 𝑠 (𝑔) as a computed subterm of
𝑔 in 𝑠. In what follows, paths will be denoted by letters 𝑝, 𝑞, 𝑟, 𝑠.

We say that two paths 𝑝 and 𝑞 overlap if one of them is a suffix of the other. For
pairwise non-overlapping paths 𝑝1, . . . , 𝑝𝑛, by the notation 𝑡[𝑝1 ← 𝑢1, . . . , 𝑝𝑛 ← 𝑢𝑛]

we mean the term obtained by simultaneously replacing subterms 𝑝𝑖 (𝑡) in 𝑡 with
terms 𝑢𝑖. For a finite sequence of pairwise distinct paths 𝑃 = (𝑝1, . . . , 𝑝𝑛) and some
set of terms 𝑈 = (𝑢1, . . . , 𝑢𝑛) we redefine the notation and write 𝑡[𝑃 ← 𝑈] instead
of 𝑡[𝑝1 ← 𝑢1, . . . , 𝑝𝑛 ← 𝑢𝑛], and also 𝑡[𝑃 ← 𝑡] instead of 𝑡[𝑝1 ← 𝑡, . . . , 𝑝𝑛 ← 𝑡].

Now let us define a set of paths that will be pumped.

Definition 29. A term 𝑡 is a leaf term of sort σ, if it is a parameterless constructor,
or 𝑡 = 𝑐(𝑡1, . . . , 𝑡𝑛), where all 𝑡𝑖 are leaf terms and 𝑡 does not contain any proper
sub-terms of sort σ. For a closed term 𝑔 and sort σ we define leavesσ(𝑔) ≜ {𝑝 |
𝑝 (𝑔) is a leaf term of sort σ}.

Lemma 8 (Pumping Lemma for Elem). Let L be an elementary language of
𝑛-tuples. Then, there exists a constant 𝐾 > 0 satisfying:

– for every 𝑛-tuples of ground terms ⟨𝑔1, . . . ,𝑔𝑛⟩ ∈ L,
– for any 𝑖 such that ℋ𝑒𝑖𝑔ℎ𝑡(𝑔𝑖) > 𝐾,
– for all infinite sorts σ ∈ Σ𝑆 and
– for all paths 𝑝 with a length greater than 𝐾,
– there exist finite sets of paths 𝑃𝑗 such that 𝑝 ∈ 𝑃𝑖,
– for all 𝑝1, 𝑝2 ∈

⋃︀
𝑗 𝑃𝑗 it is true that 𝑝1(𝑔) = 𝑝2(𝑔),

– and there is 𝑁 ⩾ 0, such that
– for all 𝑡 of sort σ with ℋ𝑒𝑖𝑔ℎ𝑡(𝑡) > 𝑁 it holds that:

⟨𝑔1[𝑃1 ← 𝑡], . . . ,𝑔𝑖[𝑃𝑖 ← 𝑡], . . . ,𝑔𝑛[𝑃𝑛 ← 𝑡]⟩ ∈ L.

Proof. The proof is given in [35].

In fact, Lemma 8 states that for sufficiently large tuples of terms one can take
any of the deepest subterms, replace them with arbitrary terms 𝑡 and still get a
tuple of terms from the given language. This lemma formalizes the fact that a con
straint language over an ADT theory can only describe equalities and disequalities
between subterms of bounded depth: if you go deep enough and replace leaf terms

65

with arbitrary terms, then the initial and resulting terms are indistinguishable by
the first-order formula.

Theorem 19. There are regular but non-elementary invariants, i. e., Reg∖Elem ̸=
∅.

Proof. Consider the Horn clause system over the algebraic type of Peano integers
𝑁𝑎𝑡 ::= 𝑍 | 𝑆 𝑁𝑎𝑡, which checks the parity of numbers and states that no two
successive numbers can be even:

𝑥 = 𝑍 → 𝑒𝑣(𝑥)

𝑒𝑣(𝑦) ∧ 𝑥 = 𝑆(𝑆(𝑦))→ 𝑒𝑣(𝑥)

𝑒𝑣(𝑥) ∧ 𝑒𝑣(𝑦) ∧ 𝑥 = 𝑆(𝑦)→ ⊥

The system in this example has a single inductive invariant — the set 𝐸 =

{𝑆𝑛(𝑍) | 𝑛 ⩾ 0}. This can be proved by contradiction: if this set is extended by
some odd number 𝐸 ∪ {𝑆2𝑛+1(𝑍)} ⊆ 𝐸 ′, then the query condition will be violated
for 𝑥 = 𝑆2𝑛(𝑍) and 𝑦 = 𝑆2𝑛+1(𝑍). Thus, the set 𝐸 is the only safe inductive
invariant of this system.

It is easy to see that the set 𝐸 is expressible by the following tree automaton
(and hence the system has an inductive invariant in Reg):

𝑠0𝑍 𝑠1

𝑆

𝑆

Let us prove that the set 𝐸 cannot be expressed by a constraint language
formula. Assume that it is. Take the constant 𝐾 > 0 from Lemma 8. Let 𝑔 ≡
𝑆2𝐾(𝑍) ∈ 𝐸,σ = 𝑁𝑎𝑡, 𝑝 = 𝑆2𝐾 . Further,

⋃︀
𝑗 leavesσ(𝑔𝑗) = leavesσ(𝑔) = {𝑝}, so

𝑃 = {𝑝}. Then, by Lemma 8, there exists 𝑁 ⩾ 0 such that if we set 𝑡 ≡ 𝑆2𝑁+1(𝑍),
then 𝑔[𝑃 ← 𝑡] ≡ 𝑆2𝐾(𝑆2𝑁+1(𝑍)) ∈ 𝐸. Therefore, the set 𝐸 contains an odd
number, which contradicts the definition of this set of even numbers.

Next, we introduce a similar lemma for a first-order language with term size
constraints. For this purpose, consider the corresponding extension with selectors
SizeElem*, which admits quantifier elimination.

Theorem 20 (see [104]). Any SizeElem-formula is equivalent to some quanti
fier-free SizeElem*-formula.

66

Definition 30. Borrowing notation from [100], we denote T𝑘
σ = {𝑡 has sort σ |

𝑠𝑖𝑧𝑒(𝑡) = 𝑘}. For each ADT sort σ we define the set of term sizes as Sσ = {𝑠𝑖𝑧𝑒(𝑡) |
𝑡 ∈ |ℋ|σ}. A linear set is a set of the form {v +

∑︀𝑛
𝑖=1 𝑘𝑖vi | 𝑘𝑖 ∈ N0}, where all v

and vi are vectors over N0 = N ∪ {0}.

Definition 31. An ADT sort σ is called expanding if for every natural number 𝑛

there exists a bound 𝑏(σ, 𝑛) ⩾ 0 such that for every 𝑏′ ⩾ 𝑏(σ, 𝑛), if T𝑏′
σ ̸= ∅, then⃒⃒

T𝑏′
σ

⃒⃒
⩾ 𝑛 An ADT signature is expanding if all of its sorts are expanding.

Lemma 9 (Pumping Lemma for SizeElem). Let the ADT signature be ex
panding and let L be an elementary language of 𝑛-tuples with size constraints. Then,
there exists a constant 𝐾 > 0 satisfying:

– for every 𝑛-tuple of ground terms ⟨𝑔1, . . . ,𝑔𝑛⟩ ∈ L,
– for any 𝑖, such that ℋ𝑒𝑖𝑔ℎ𝑡(𝑔𝑖) > 𝐾,
– for all infinite sorts σ ∈ Σ𝑆, and
– for all paths 𝑝 ∈ leavesσ(𝑔𝑖) with length greater than 𝐾,
– there exists an infinite linear set 𝑇 ⊆ Sσ, such that
– for all terms 𝑡 of sort σ with sizes 𝑠𝑖𝑧𝑒(𝑡) ∈ 𝑇 ,
– there exist sequences of paths 𝑃𝑗, with no path in them being a suffix of

path 𝑝,
– and sequences of terms 𝑈𝑗, such that

⟨𝑔1[𝑃1←𝑈1], . . . ,𝑔𝑖[𝑝← 𝑡, 𝑃𝑖←𝑈𝑖], . . . ,𝑔𝑛[𝑃𝑛←𝑈𝑛]⟩ ∈ L.

Proof. The proof is given in [35].

The core idea of Lemma 9 is that having a language from the SizeElem class,
a sufficiently large term 𝑔 from it, and a sufficiently large path 𝑝, one can replace
𝑝 (𝑔) by an arbitrary term 𝑡 (limited only by the size, which must be in some linear
infinite set 𝑇), and again get the term from the same language. This fact, in turn,
means that in each infinite language from the SizeElem class there are subterms
that are indistinguishable by its formulas.

Example 15 (even). Consider the Horn clause system over the binary tree alge
braic type 𝑇𝑟𝑒𝑒 ::= 𝑙𝑒𝑓𝑡 |𝑛𝑜𝑑𝑒(𝑇𝑟𝑒𝑒, 𝑇𝑟𝑒𝑒), which checks whether the number of

67

nodes in the leftmost branch of the tree is even.

𝑥 = 𝑙𝑒𝑎𝑓 → 𝑒𝑣𝑒𝑛(𝑥)

𝑥 = 𝑛𝑜𝑑𝑒(𝑛𝑜𝑑𝑒(𝑥′, 𝑦), 𝑧) ∧ 𝑒𝑣𝑒𝑛(𝑥′)→ 𝑒𝑣𝑒𝑛(𝑥)

𝑒𝑣𝑒𝑛(𝑥) ∧ 𝑒𝑣𝑒𝑛(𝑛𝑜𝑑𝑒(𝑥, 𝑦))→ ⊥

As shown below, this system does not have an invariant that can be expressed
by a first-order formula even with term size constraints.

Theorem 21. There are regular invariants that are not elementary invariants with
term size constraints, i. e., even ∈ Reg ∖ SizeElem.

Proof. The invariant even can be expressed by the automaton
⟨︀
{𝑠0, 𝑠1},Σ𝐹 , {𝑠0},Δ

⟩︀
with the transition rules Δ defined as follows.

𝑙𝑒𝑎𝑓 ↦→ 𝑠0

𝑛𝑜𝑑𝑒(𝑠0, 𝑠0) ↦→ 𝑠1

𝑛𝑜𝑑𝑒(𝑠0, 𝑠1) ↦→ 𝑠1

𝑛𝑜𝑑𝑒(𝑠1, 𝑠0) ↦→ 𝑠0

𝑛𝑜𝑑𝑒(𝑠1, 𝑠1) ↦→ 𝑠0

With the pumping lemma, we can prove that the even invariant does not
belong to the SizeElem class. First, it is obvious that the sort Tree is expanding.
Suppose even is in the class SizeElem and has an invariant L. Take 𝐾 > 0 from
Lemma 9. Let 𝑔 ∈ L be a complete binary tree of height 2𝐾, σ = Tree, 𝑝 = Left2𝐾 .
Take the infinite linear set 𝑇 from the lemma. We can find some 𝑛 ∈ 𝑇, 𝑛 > 2 and
𝑡 = 𝑛𝑜𝑑𝑒(𝑙𝑒𝑎𝑓, 𝑡′) for some 𝑡′ such that 𝑠𝑖𝑧𝑒(𝑡) = 𝑛. By Lemma 9 there is a sequence
of paths 𝑃 and a sequence of terms 𝑈 , and none of the elements in 𝑃 is a suffix of
𝑝; it must also be true that 𝑔[𝑝 ← 𝑡, 𝑃 ← 𝑈] ∈ L, so the leftmost path in the tree
must have an even length. However, the leftmost path 𝑝 = Left2𝐾 contains the term
𝑛𝑜𝑑𝑒(𝑙𝑒𝑎𝑓, 𝑡′), so the path to the leftmost leaf of the tree is 2𝐾 − 1 + 2 = 2𝐾 + 1,
which is an odd number. So, we have a contradiction with the fact that the path to
the leftmost leaf in each term of the set even has an even length, which means that
even does not belong to the SizeElem class.

68

5.3 Finite Representations of Term Sets

So far a number of various classes of invariants for Horn clause systems over
ADTs, such as Elem, Reg, Reg+, Reg×, were examined and proposed. A key
requirement for classes of inductive invariants over ADTs is the ability to represent
infinite sets of term tuples by finite means so that a finite computer can work with
them. Moreover, these representations should provide closure and decidability of
certain operations discussed in detail in this chapter. Such finite representations
of term sets are also studied in other areas of computer science and can be used
for invariant inference.

The problem of finite term set representation can be stated as the task of
Herbrand model representation, which is addressed in the field of automated model
building [105]. The primary objective in this field is to automatically build a model
for a first-order logic formula when its refutation cannot be found. According to
Herbrand’s theorem, a formula is satisfiable if and only if it has a Herbrand model,
thus it is sufficient to build only Herbrand models, which consist of infinite term sets
in general. Various finite representations of such models are thus considered for the
automation of model building process [106–109]. In particular, these works provide
efficient algorithms for working with models represented by tree automata and their
extensions. A comprehensive overview of computational representations of Herbrand
models, their properties, expressiveness, and the efficiency of their procedures is
given in [110; 111]. Although representations proposed in these works can be used to
represent invariants over ADTs, the design of algorithms for inferring such invariants
remains a challenging task that has not been addressed in these studies.

The problem of finite term set representation is also stated in the context of for
mal tree languages as a task of designing extensions of tree automata with closure
and decidability of basic language operations discussed in this chapter. Tree lan
guages are systematically investigated in the context of formal languages [112], and,
in particular, there are numerous works proposing the integration of various types of
synchronization into tree automata [79–84]. However, there are several limitations
with the representations proposed in this area. On the one hand, most investigated
languages are those with efficient (low-degree polynomial) parsing algorithms, which
consequently have low expressiveness due to the computational restrictions. On the
other hand, the proposed classes of tree languages are usually not closed under cer

69

tain Boolean operations, such as negation and intersection, which makes the task of
adapting these classes for inductive invariant inference even more challenging.

Works focusing on extending tree automata with SMT constraints from other
theories to so-called symbolic tree automata deserve separate mention [113; 114]. The
class of invariants built on such automata could enable checking the satisfiability of
Horn clause systems over a combination of ADTs with other SMT theories, as noted
in [115]. The authors of this work initiated the adaptation of symbolic automata
to the task of satisfiability checking for Horn clause systems no top of the ICE
framework, implementing a teacher for this class of invariants. Further exploration
of the class of invariants built on symbolic tree automata in the context of automatic
invariant inference seems particularly promising.

Therefore, finite representations of tuple sets presented in works from these
areas can serve as a foundation for future classes of inductive invariants over ADTs.
Since many of them are constructed as extensions of the classes examined in this
work, the methods of invariant inference proposed in this work can also be adapted
to infer invariants in these new classes.

5.4 Conclusion

Among all classes of program invariants for which effective automatic invari
ant inference procedures exist, the most expressive ones are Reg× and ElemReg.
They allow both complex recursive relationships and synchronous relationships to
be expressed, therefore, they extend the applicability of the automatic invariant
inference in practice. However, due to the high expressive power, the automatic
invariant inference in these classes can be difficult due to the growing complexity of
primitive operations. The next chapter compares the effectiveness of existing and
proposed methods of invariant inference for the considered classes.

70

Chapter 6. Implementation, Related Work and Evaluation

6.1 Pilot Implementation

All the approaches proposed in this work are implemented in a Horn solver
RInGen (Regular Invariant Generator)1. The implementation comprises 5200 lines
of F# code. A Horn solver is developed from scratch as proposed algorithms require
non-trivial manipulations of formulas and the results of other logical solvers.

The overall architecture of the tool is presented in Figure 6.1. RInGen takes
as input a CHC system in the SMTLIB2 format [116]. The CHC system is parsed
and simplified: equalities, selectors, and testers are eliminated. Then, depending on
the options submitted to the solver, one of the algorithms proposed in this work is
started. A “Substitution of ADT with uninterpreted functions module” implements
the algorithm from the Chapter 2, and the “Tree automata first-order declaration
generator” implements the algorithm from the Chapter 3. The output of each of
these algorithms is a formula over uninterpreted functions. It is passed to an external
logical solver — either Vampire automated theorem prover or cvc5 SMT-solver. As
a result, RInGen returns a safe inductive invariant if the CHC system is satisfiable,
otherwise, it returns a resolution refutation.

Figure 6.1 – Architecture of RInGen

RInGen. That is, we implemented the approach presented in Chapter 2
within the RInGen Horn solver. Both the approach itself and its implementation

1https://github.com/Columpio/RInGen

https://github.com/Columpio/RInGen

71

involve the use of an external solver 𝒱 for the theory of uninterpreted functions
with quantifiers, therefore the proposed implementation will be further denoted as
RInGen(𝒱). Specifically, Vampire [74] and the SMT solver cvc5 are used as the
𝒱 in the experiments. Vampire uses a portfolio-based approach [117]: it iterates
through various satisfiability checking techniques, mostly based on saturation of the
system [94] and finite model finding [90]. cvc5 is used in the finite model find
ing mode2 [89]. Both tools can prove the satisfiability of the system and finding
counterexamples.

RInGen-Sync. The approach presented in Chapter 3 is implemented as
an extension of RInGen(𝒱). In the experiments, cvc5 is used as the external
solver 𝒱 , as RInGen-Sync generates symbols with high arity, which are not sup
ported by Vampire3. Thus, the implementation will be hereinafter referred to
as RInGen-Sync4.

RInGen-CICI. The approach presented in Chapter 4 is implemented within
the codebase of the Horn solvers Racer [23] (a successor of the Spacer Horn
solver [22], implemented in the logical solver Z35) and the Horn solver RInGen(𝒱)6.
This implementation will be referred to as RInGen-CICI(𝒱). Both parts of this
implementation in the Horn solvers Racer and RInGen(𝒱) are described below.
These Horn solvers will be referred to as basic with respect to the RInGen-CICI(𝒱)
Horn solver.

The Racer Horn solver is developed by Arie Gurfinkel and Hari Govind
Vediramana Krishnan from the University of Waterloo. It is based on an approach
called Property-Directed Reachability (PDR) [22], which can be viewed as a complex
instance of CEGAR. PDR builds abstract states in the form of conjunctions of
formulas (called lemmas) at various levels by iteratively increasing the level in a
loop. The following properties of lemma sets are maintained: if a set of lemmas
{φ𝑖} is constructed at level 𝑛, then

⋀︀
𝑖φ𝑖 over-approximates all states reachable

in less than 𝑛 transition steps, and under-approximates the safety property. Thus,
PDR lemmas fulfill the requirement of abstraction in the Collaborate procedure
(see Listing 4.4). Racer is modified to asynchronously pass the set of lemmas from
the last level to a new process of RInGen(𝒱) at the end of each iteration.

2with the --finite-model-find option
3https://github.com/vprover/vampire/issues/348#issuecomment-1091782513
4https://github.com/Columpio/RInGen/releases/tag/ringen-tta
5https://github.com/Columpio/z3/tree/racer-solver-interaction
6https://github.com/Columpio/RInGen/releases/tag/chccomp22

https://github.com/vprover/vampire/issues/348#issuecomment-1091782513
https://github.com/Columpio/RInGen/releases/tag/ringen-tta
https://github.com/Columpio/z3/tree/racer-solver-interaction
https://github.com/Columpio/RInGen/releases/tag/chccomp22

72

The Collaborate procedure (see Listing 4.4) is implemented in the
RInGen(𝒱). The following generalization of the ResidualCHCs(𝒫 , 𝑎) proce
dure (see 4.2.3) is implemented. The conjunctive form of lemmas from Racer
is used to infer invariants with a more general shape:

⋀︀
𝑖(φ𝑖(𝑥) ∨ 𝑥∈𝐿𝑖). Hence,

given 𝑎(𝑃) =
⋀︀

𝑖φ𝑖, we replace all atoms 𝑃 (𝑡) with a conjunction of disjunctions⋀︀
𝑖(φ𝑖(𝑡)∨𝐿𝑖(𝑡)) with new predicate symbols 𝐿𝑖. This allows inferring more general

invariants than those from the union of Elem and 𝒜 (see Definition 25), which
consists only of formulas of the form φ(𝑥) ∨ 𝑥 ∈ 𝐿.

After the transformations, the RInGen(𝒱) calls the external solver 𝒱 with a
30 second time limit. Then its results are passed back to Racer, where they are pro
cessed asynchronously. Moreover, the implementation does not perform the costly
CNF transformation from Listing 4.5, as the RInGen(𝒱) takes Horn clauses in arbi
trary form, since it relies on the external solver 𝒱 with full first-order logic support.

6.2 Related Work

This section is dedicated to the comparison of proposed methods for solving
Horn clause systems with algebraic data types and existing methods, implemented
in tools such as Spacer, Racer, Eldarica, VeriCaT, HoIce, and RCHC. We
selected only the tools supporting Horn clause systems over algebraic data types that
verify both the satisfiability and unsatisfiability of these systems. For instance, tools
addressing the related problem of automating induction for theorems with algebraic
data types, such as, for example, cvc5 in induction mode [118], AdtInd [119]
and others are not considered, as they do not accept Horn clause systems as in
put. Also, logic programming tools (such as Prolog [120]) are not considered
because they only check the unsatisfiability of Horn clause systems and cannot
show their satisfiability.

Table 6.1 presents the comparison of Horn solvers: existing ones (upper block)
and those proposed in this work (lower block). The proposed Horn solvers are
described in previous Section 6.1, and the methods they implement are described in
Chapters 2, 3, and 4 of this work. The word “Transf.” indicates that the tool is built
using non-trivial transformations of the system; “FMF” denotes the application of
automatic finite-model finding (e. g., see [89; 90]); a dash in the “Invariant class”
column means the following: although the output of the tool implicitly encodes
its inductive invariant when the system is satisfiable, there is no always halting

73

Table 6.1 – Comparison of Horn solvers with ADT support

Tool Invariant
class

Method Returns the
invariant

Fully
automatic

Spacer Elem IC3/PDR Yes Yes
Racer CatElem IC3/PDR No No
Eldarica SizeElem CEGAR Yes Yes
VeriCaT – Transf. No Yes
HoIce Elem ICE Yes Yes
RCHC Reg+ ICE Yes Yes
RInGen(cvc5) Reg Transf. +

FMF
Yes Yes

RInGen(Vampire) – Transf. +
Saturation

No Yes

RInGen-Sync Reg× Transf. +
FMF

Yes Yes

RInGen-CICI(cvc5) ElemReg CEGAR(𝒪) Yes Yes
RInGen-CICI(Vampire) – CEGAR(𝒪) No Yes

procedure that can check this output. The other designations are explained in the
subsections dedicated to corresponding tools.

Inductive invariant classes of most of the examined tools differ. A comparison
of these invariants classes is given in Chapter 5. It is important for comparing tools
because if a tool infers invariants in a certain class, then the expressiveness problem
of this class (the inability to express certain types of relations) becomes the problem
of non-termination of this tool. In other words, since none of the existing tools
checks whether for a given Horn clause system there is an invariant in its class at
all7, then the tool will not terminate in case of the absence of the invariant.

Further on, we provide a comparative description of the existing tools.

The Spacer tool [22] constructs elementary models (the Elem class). This tool
is based on a classic satisfiability procedure for ADTs, as well as interpolation and
quantifier elimination procedures [123]. At its core, the tool employs a technique
called property-directed reachability (IC3/PDR), which evenly distributes analysis
time between counterexample search and safe inductive invariant inference, propa
gating information about reachability of unsafe properties and partial safety lemmas.

7On the one hand, this task is as complex as the verification task itself; on the other hand, so far
only a few studies have been dedicated to it (see, for example, [121; 122])

74

The tool can infer invariants in a combination of algebraic and other data types,
and returns verifiable certificates. The approach used in the tool is both sound and
complete. A drawback of the tool is that it expresses invariants in the constraint
language, and therefore often does not terminate on problems with ADTs.

The Racer tool [23] is an evolution of the Spacer tool. It can infer invariants
in the constraint language extended with catamorphisms. This constraint language
is denoted in the Table 6.1 as CatElem. Racer inherits all the advantages of
the Spacer approach. A drawback of the approach is that it is not fully auto
matic, as it requires manually specifying catamorphisms, which can be challenging
in practice because it can be hard to guess which catamorphisms will be required
for the invariant of the given problem. A drawback of the tool is that it does not
return any verifiable certificates.

The Eldarica tool [24] constructs models with term size constraints, which
calculate the total number of constructor occurrences (the SizeElem class). This
extension is very limited, as the introduced function counts all constructors at once,
thus it cannot express many properties, such as properties depending on the tree
height. The Eldarica tool employs the CEGAR with predicate abstraction and
an embedded SMT solver Princess [73], which provides a satisfiability and an
interpolation procedures for algebraic data types with term size constraints. These
procedures are based on the reduction of this theory to a combination of theories
of uninterpreted functions and linear arithmetic [100].

The VeriCaT tool [29–32] takes a CHC system over theories of linear arith
metic and ADTs and completely eliminates ADTs from the original system of Horn
clauses by folding, unfolding, introducing new clauses, and other syntactic transfor
mations. It produces a Horn clause system without ADTs, on which any efficient
Horn solver, such as Spacer or Eldarica, can be run. The main advantage of this
approach is that it is designed to work with problems where algebraic data types are
combined with other theories. The main drawbacks of the approach are as follows:
the transformation process itself may not terminate, and due to the transformation,
it is impossible to recover the invariant of the original system, i. e., the tool does
not return a verifiable certificate.

75

The HoIce tool [25] constructs elementary invariants using a machine learning
approach called ICE [52]. Its advantages include the ability to infer invariants for
combinations of ADTs with other theories, as well as correctness and soundness,
and finally, the ability to return verifiable correctness certificates. Its disadvantage
is that it produces invariants in an inexpressive constraint language, and thus often
does not terminate.

The RCHC tool [26; 124] also uses the ICE approach; it expresses inductive
invariants of programs over ADTs using tree automata [33]. However, due to the
complexities of expressing tuples of terms with automata, described in Section 5.2.1,
the approach is often inapplicable even for the simplest examples where classical
symbolic invariants exist.

Conclusions. Compared to the method of RCHC, the approaches proposed in
this thesis provide alternative ways of inferring regular invariants and their super
classes. Therefore, they can be combined with the RCHC approach to converge
faster, if the inductive invariant exists. Compared to the methods of the remaining
tools, the proposed approaches can infer invariants in independent classes of regular
invariants. Therefore, the application of the proposed methods in conjunction with
existing ones can solve a wider set of problems.

6.3 Evaluation

6.3.1 Tool Selection

We have selected the Racer [23] and Eldarica [24] tools for compassion,
as they are Horn solvers with ADT support leading in the CHC-COMP com
petition [28]. We also selected cvc5-Ind (cvc5 in induction mode) [118] and
VeriCaT [29]. Although these tools do not build inductive invariants explicitly,
which makes it impossible to check their correctness, their runs on an equivalent
benchmark is added to the experimental comparison as they solve a related problem.

A HoIce Horn solver [25] is not included in the evaluation since it is not
faster than Racer [23] and it infers invariants in the same class Elem. A RCHC
Horn solver [26] is not included in the evaluation because it is unstable and often
fails and returns incorrect results.

76

6.3.2 Benchmark Suite

The experiments are conducted on the TIP (Tons of Inductive Problems)
benchmark [125], which is the test set from the CHC-COMP 2022 competition ADT
track8. The TIP benchmark consists of 454 CHC systems derived from Haskell pro
grams with ADTs and recursion. The benchmark includes such algebraic data types
as lists, queues, regular expressions, and Peano integers.

6.3.3 Setup

The experiments are conducted on the StarExec platform [126]: a cluster of
machines with Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz and Red Hat Enter
prise Linux 79. A CPU runtime limit for each tool is 600 seconds and a memory
limit is 16 GB.

6.3.4 Research Questions

We have posed the following research questions for the experiments.

Research question 1 (Number of solutions). Since the main goal of this work is
to propose approaches for checking the satisfiability of more systems than analogues
by inductive invariant inference, the following questions are the most important.

– Do the proposed methods show satisfiability of more systems than ap
proaches that infer classical symbolic invariants?

– Do the proposed methods also show satisfiability of systems that have clas
sical invariants?

Research question 2 (Performance).
– What is the performance of RInGen and RInGen-Sync on problems that

they, as well as existing tools, are able to solve?
– Collaborative inference in RInGen-CICI may require parallel running of

multiple oracle instances. What is the impact of parallel running on perfor
mance?

Research question 3 (Significance of the inductive invariant class). Collab
orative inference in RInGen-CICI can theoretically accelerate the convergence of

8https://github.com/chc-comp/ringen-adt-benchmarks
9https://www.starexec.org/starexec/public/machine-specs.txt

https://github.com/chc-comp/ringen-adt-benchmarks
https://www.starexec.org/starexec/public/machine-specs.txt

77

Table 6.2 – Evaluation results. SAT indicates that the system is satisfiable (there is
an inductive invariant), UNSAT indicates that the system is unsatisfiable.

Tool SAT UNSAT

Racer 26 22
Eldarica 46 12
VeriCaT 16 10
cvc5-Ind 0 13
RInGen(cvc5) 25 21
RInGen(Vampire) 135 46
RInGen-Sync 43 21
RInGen-CICI(cvc5) 117 19
RInGen-CICI(Vampire) 189 28

the search for classical symbolic invariants. What is the share of classical symbolic
invariants in all problems, uniquely solved by RInGen-CICI?

6.4 Results

6.4.1 Number of Solutions

The number of problems from the benchmark suite solved by the existing and
proposed tools is presented in Table 6.2. Existing tools are placed above the line,
while proposed tools are placed below it.

RInGen. On all 12 problems where Eldarica returned UNSAT, RInGen
terminated with the same result, and RInGen found more counterexamples. The
RInGen(cvc5), RInGen(Vampire), and Racer found counterexamples for 21,
46, and 22 clause systems, respectively, with each of them finding several unique
counterexamples. RInGen(Vampire) found significantly more UNSAT results
than other tools, as Vampire implements an efficient refutation inference proce
dure. Therefore, even though the proposed algorithms are designed to infer more
inductive invariants, they also can find unique counterexamples. Next, Eldarica
found 46 invariants in contrast to 25 and 135 invariants found by RInGen(cvc5)
and RInGen(Vampire). Out of these, Eldarica solves 25 unique (not solved by
RInGen(cvc5)) benchmarks, each of which is a specification of some property of
order predicates (i. e., <, ⩽, >, ⩾) on Peano integers. These problems are easily
solved by Eldarica, as order predicates are included in the SizeElem invariant

78

class as primitives. However, RInGen(cvc5) solves 13 unique (not solved by El
darica) problems, whose invariants are not expressible in the invariant class of the
Eldarica. The effectiveness of the approach implemented in the RInGen heavily
depends on the external solver, as evidenced by the fact that RInGen(Vampire)
inferred 5 times more invariants than RInGen(cvc5).

RInGen-Sync. This tool terminated with UNSAT on 21 problems, these
results exactly match the 21 results of the RInGen(cvc5), since RInGen-Sync
inherits the counterexample search from the latter.

Among all SAT results obtained by Eldarica, 38 are also obtained by RIn
Gen-Sync. The large overlap with the results of Eldarica is due to the fact
that Eldarica deals well with problems encoding the order on Peano numbers,
which are also well-encoded by the synchronous tree automata with full convolution
used in RInGen-Sync. Racer halted with a SAT result on 26 systems, 15 of
which intersect with the results of RInGen-Sync. Additionally, RInGen-Sync
inferred 4 unique invariants. Despite the theoretical expressive power of the syn
chronous tree automata with full convolution used in RInGen-Sync, which should
yield a larger number of solutions, a finite model finder that RInGen-Sync uses
as a backend does not terminate on problems with a large number of quantifiers,
and therefore RInGen-Sync often does not terminate. The results do not change
if we increase the time limit to 1200 seconds or switch the backend from cvc5 to
other finite model finding tools, like Vampire in appropriate mode. The small
overlap with Racer suggests that although the class of elementary invariants is
theoretically almost fully contained in the class of synchronous regular invariants,
in practice the proposed approach does not effectively infer invariants of systems
that have elementary invariants.

RInGen-CICI. RInGen-CICI solves fewer unsafe problems than the best
of the basic solvers: RInGen-CICI obtained 19 (with cvc5) and 28 (with Vam
pire) UNSAT results against 21 (with cvc5) and 46 (with Vampire) UNSAT
results obtained by RInGen. The main reason is that the proposed approach is
designed to solve the more complex task of inferring inductive invariants and does
not change the operation of the basic counterexample finding algorithms. That is,
our approach can be integrated with orthogonal improvements to counterexample
search, for example, those proposed in [127]. Thus, all counterexamples obtained by
RInGen-CICI are directly obtained from one of the basic solvers. Some counterex

79

amples found by RInGen are not found by RInGen-CICI, as it runs RInGen
with a time limit of 30 seconds.

It is important to note that all 20 SAT and 15 UNSAT answers obtained by
Racer, are also obtained by RInGen-CICI, with the exception of one UNSAT
answer.

On safe problems, RInGen-CICI outperformed basic solvers: RIn
Gen-CICI(cvc5) obtained 117 SAT responses, while Racer obtained 20 SAT
responses, and RInGen(cvc5) 25. RInGen-CICI(Vampire) obtained 189 SAT
responses, with 20 SAT responses from Racer and 135 from RInGen(Vampire).
Thus, RInGen-CICI solves significantly more SAT tasks than the basic tools
working separately: 117 versus 20 + 25 and 189 versus 20 + 135 for the respective
cvc5 and Vampire backends. In particular, RInGen-CICI(cvc5) solves 97
tasks not solved by Racer and 94 tasks not solved by RInGen(cvc5). RIn
Gen-CICI(Vampire) solves 169 tasks not solved by Racer and 60 tasks not
solved by RInGen(Vampire). Therefore, the collaborative invariant inference
method shows the satisfiability of significantly more systems than the parallel
launch of basic tools.

However, there are problems that are solved by the basic solvers but not by the
proposed tool. RInGen-CICI(cvc5) does not solve 7 problems that are successfully
solved by RInGen(cvc5). Two of these problems could be solved by the proposed
tool if the 30-second time limit in RInGen-CICI is increased. Existing verification
time prediction methods, such as [128], can be applied to avoid hard-coding a time
limit. The remaining 5 problems are solved instantly, but their results cannot be
retrieved from the inter-process interaction in the implemented solution. The reason
is that Racer spends too much time solving SMT constraints and therefore does not
read the results of the backend solver. This technical issue can be avoided by reading
the results of the backend solver at more frequent checkpoints, which, however, will
result in overhead increase. The same goes for RInGen-CICI(Vampire), which
failed to solve 24 problems solved by the basic solvers. Only 8 of them are unsolved
due to the low time limit for the backend, while the remaining 16 are due to Racer
divergence in solving SMT constraints.

Finally, RInGen(cvc5) does not outperform the existing solutions, but it
provides many unique solutions compared to them, as it inferred invariants in a
new class. RInGen(Vampire), built on the same approach, solves over 2.5 times
more problems than the best of the existing tools, for the same reason. Despite the

80

101 102 103 104 105 106

101

102

103

104

105

106

Runtime of RInGen(cvc5), ms

R
un

ti
m

e
of

R
ac

er
,E

ld
a
r
ic

a
,

c
vc

5-
In

d
an

d
V

er
iM

A
P
-i
d
d
t
,m

s

Figure 6.2 – Performance comparison. Each point on the plot represents a pair of
runtimes.

fact that the class of invariants of RInGen-Sync is significantly wider, inferring
invariants in it is much harder. Although it infers almost twice as many invariants
as RInGen(cvc5), it does not outperform the best of the existing tools. The best
results are shown by RInGen-CICI(cvc5), which solves 235% more tasks than
the parallel composition of Racer and RInGen(cvc5), and also 39% more tasks
with the Vampire backend, thanks to the balance between the expressiveness of the
invariant class and the efficiency of the invariant inference procedure. The best of
the proposed tools, RInGen-CICI(Vampire), solves a total of 189 + 28 problems,
which is about 3.74 times more than the best of the existing tools, Eldarica,
which solves 46 + 12 problems.

6.4.2 Performance

The plots in Figure 6.2 show that RInGen(cvc5) not only infers more invari
ants but also works faster than the other tools by one order of magnitude on average.
In the figure, some unsafe systems are solved faster by cvc5-Ind, VeriCaT, and
Racer. The reasons for that could be a more efficient quantifier instantiation pro
cedure in cvc5-Ind and a more balanced trade-off between invariant inference and
counterexample search in the core of Racer (which is also called by VeriCaT).

81

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%
0

5

10

15

20

Figure 6.3 – Number of benchmark instances solved by both RInGen-CICI and
Racer (y-axis), and the CPU time overhead (x-axis) of running RInGen-CICI
compared to Racer. Racer outperforms RInGen-CICI on 34 instances. There
are no instances with an overhead larger than 80%, so the x-axis is not shown further.

101 102 103 104 105 106

101

102

103

104

105

106

RInGen-CICI(cvc5), ms

R
ac

er
an

d
R

In
G

en
(c

vc
5)

,m
s

101 102 103 104 105 106

101

102

103

104

105

106

RInGen-CICI(Vampire), msR
ac

er
an

d
R

In
G

en
(V

a
m

pi
r
e)

,m
s

Figure 6.4 – Runtime comparison

On problems that are solved by several tools, the RInGen(cvc5) operates two or
ders of magnitude faster on average. The RInGen(Vampire) runs took even less
time than runs of the RInGen(cvc5).

RInGen-Sync and RInGen-CICI. Figure 6.4 shows the overall perfor
mance plots of RInGen-CICI compared with the basic solvers. Each point on the
plot represents the running time (in milliseconds) of RInGen-CICI (x-axis) and
the competing tool (y-axis): triangles represent RInGen, while circles represent

82

Racer. The outer dashed lines represent when a tool halts with an error. There
are such runs for both Racer and RInGen-CICI, due to the instability of the used
version of Racer10. The inner dashed lines denote cases when the solver reached
the time limit. Since RInGen-CICI solves significantly more instances than the
competing solvers, most of the figures are on the upper dashed lines of both graphs.
Half of the remaining figures are near the diagonal, meaning that the collaborative
operation finished after the first collaborative solver call. The other half of the
figures are near one second (which is marked by a solid line in the bottom left cor
ner) for the same reason why some problems are not solved: the internal engine of
Racer in RInGen-CICI is solving complex SMT constraints and therefore does
not read the result of the backend for some time. Most of the circles that do not hit
the dashed lines are near the diagonal on both plots, meaning that RInGen-CICI
worked comparably with Racer on problems that are solved by both tools.

The chart in Figure 6.3 shows the overhead of collaborative inference in RIn
Gen-CICI. There are only 34 and 35 problems solved simultaneously by Racer and
RInGen-CICI(cvc5) and Racer and RInGen-CICI(Vampire), respectively.
In 35 out of these 69 runs, RInGen-CICI is faster than Racer, but in the remain
ing 34, no backend call is successful, so RInGen-CICI behaved just like Racer,
but with the overhead of process creation. The overhead for these 34 runs is shown
in Figure 6.3. The chart shows how many times slower is RInGen-CICI compared
to Racer. Overhead in most runs is close to 10%: the average overhead across
all runs is 15%, and the median is 8%. Overhead exceeded 20% in only 6 runs.
In three of them, Racer operates from 14 to 70 seconds, and RInGen-CICI is
40-50% slower due to the accumulated number of concurrently running interactive
processes. The other runs with overhead more than 20% are those where Racer
operates no more than 2 seconds, and RInGen-CICI from 2 to 4 seconds. This
results in a high percentage, which thus can be discarded.

Concluding the answer to research question 2, note that the median overhead
of RInGen-CICI is about 8%. High overhead (>50%) is observed only in six runs.

6.4.3 Significance of the Inductive Invariant Class

It is hard to precisely count which of the problems solved only by RIn
Gen-CICI do not belong to the Elem invariant class, as the task of formally

10We used a particular version in the experiments because it gives the same number of solved problems
on the benchmarks compared to the stable version, but sometimes works almost ten times faster.

83

proving inexpressibility in Elem is hard even for a human. However, the num
ber of such problems can be estimated as the number of those problems where the
invoked solver returns either a tree automaton with loops or saturation; all unique
problems with a SAT result obtained by RInGen-CICI fit this criterion. This
implies that all invariants of problems uniquely solved by RInGen-CICI do not
belong to the Elem invariant class. Thus, the main reason for the success of the
RInGen-CICI tool compared to other tools is the expressiveness of the class of
inductive invariants it uses.

84

Conclusion

The core results of the thesis are as follows.
1. We have proposed an efficient method for automatic inductive invariant

inference based on tree automata. With that, these invariants can express
recursive relationships across a broad spectrum of real-world programs. The
method relies on finite model search.

2. We have proposed a method for automatic inductive invariant inference
based on program transformation and finite model search within the in
variant class based on synchronous tree automata. This class of invariants
allows expressing recursive and synchronous relations.

3. We have proposed a class of inductive invariants based on a Boolean com
bination of classical invariants and tree automata, which, on the one hand,
allows to express recursive relations in real programs, and, on the other
hand, allows to effectively infer inductive invariants. We have also pro
posed an efficient method of combined inductive invariant inference in this
class, which infers invariants in the combined subclasses.

4. We have conducted a theoretical comparison of existing and proposed
classes of inductive invariants, including the formulation and proof of pump
ing lemmas for the constraint language and for the constraint language
extended with the term size function, which allow to prove the inexpress
ibility of an invariant in the constraint language.

5. We have completed a pilot software implementation of the proposed meth
ods in the F# language as part of the RInGen tool; we have then
compared this tool with existing methods on a commonly accepted test
set of functional program verification tasks "Tons of Inductive Problems":
the implementation of the best of the proposed methods was able to solve
3.74 times more tasks in the allotted time than the best of the existing
tools.

Concerning the recommendations for applying the thesis results in in
dustry and scientific research, the developed methods are applicable for automating
reasoning about Horn clause systems over the theory of algebraic data types, and
that their implementation is made in a publicly available tool RInGen. The created
tool can be used as a main component for verification in static code analyzers and

85

verifiers for languages with algebraic data types, such as Rust, Scala, Solidity,
Haskell and OCaml. The tool can also be used to prove unreachability of er
rors or specified code fragments, which are important tasks for computer security
and quality assurance.

FInally, we have also defined the prospects for further development of
the topic, the main one of which is the extension of the proposed classes of in
ductive invariants and methods of their inference to combinations of algebraic data
types with other data types common in programming languages, such as integers,
arrays, and strings. This will allow to infer invariants of programs with complex
functional relationships between structures and the data contained therein, which
will significantly expand the practical applicability of the proposed methods.

86

References

1. Symbolic model checking [Text] / E. Clarke [et al.] // Computer Aided Ver
ification / Ed. by R. Alur, T. A. Henzinger. — Berlin, Heidelberg: Springer
Berlin Heidelberg, 1996. — P. 419–422.

2. Godefroid, P. SAGE: Whitebox Fuzzing for Security Testing: SAGE Has Had
a Remarkable Impact at Microsoft. [Text] / P. Godefroid, M. Y. Levin, D. Mol
nar // Queue. — New York, NY, USA, 2012. — Vol. 10, № 1. — P. 20–27. —
URL: https://doi.org/10.1145/2090147.2094081.

3. Wohrer, M. Smart contracts: security patterns in the ethereum ecosystem
and solidity [Text] / M. Wohrer, U. Zdun // 2018 International Workshop on
Blockchain Oriented Software Engineering (IWBOSE). — 2018. — P. 2–8.

4. Floyd, R. W. Assigning meanings to programms [Text] / R. W. Floyd //
Proccedings of the AMS Symposium on Appllied Mathematics. Vol. 19. —
American Mathematical Society, 1967. — P. 19–31.

5. Hoare, C. A. R. An Axiomatic Basis for Computer Programming [Text] /
C. A. R. Hoare // Commun. ACM. — New York, NY, USA, 1969. — Vol. 12,
№ 10. — P. 576–580. — URL: https://doi.org/10.1145/363235.363259.

6. Rushby, J. Subtypes for specifications: predicate subtyping in PVS [Text] /
J. Rushby, S. Owre, N. Shankar // IEEE Transactions on Software Engineer
ing. — 1998. — Vol. 24, № 9. — P. 709–720.

7. Flux: Liquid Types for Rust [Text] / N. Lehmann [et al.]. — 2022. — URL:
https://arxiv.org/abs/2207.04034.

8. Suter, P. Satisfiability Modulo Recursive Programs [Text] / P. Suter,
A. S. Köksal, V. Kuncak // Static Analysis / Ed. by E. Yahav. — Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011. — P. 298–315.

9. Leino, K. R. M. Dafny: An Automatic Program Verifier for Functional
Correctness [Text] / K. R. M. Leino // Logic for Programming, Artificial
Intelligence, and Reasoning / Ed. by E. M. Clarke, A. Voronkov. — Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010. — P. 348–370.

https://doi.org/10.1145/2090147.2094081
https://doi.org/10.1145/363235.363259
https://arxiv.org/abs/2207.04034

87

10. Filliâtre, J.-C. Why3 — Where Programs Meet Provers [Text] / J.-C. Filliâtre,
A. Paskevich // Programming Languages and Systems / Ed. by M. Felleisen,
P. Gardner. — Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. —
P. 125–128.

11. Müller, P. Viper: A Verification Infrastructure for Permission-Based Rea
soning [Text] / P. Müller, M. Schwerhoff, A. J. Summers // Verification,
Model Checking, and Abstract Interpretation / Ed. by B. Jobstmann,
K. R. M. Leino. — Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. —
P. 41–62.

12. Dependent Types and Multi-Monadic Effects in F* [Text] / N. Swamy
[et al.] // SIGPLAN Not. — New York, NY, USA, 2016. — Vol. 51, № 1. —
P. 256–270. — URL: https://doi.org/10.1145/2914770.2837655.

13. The Coq Proof Assistant : Reference Manual : Version 7.2 [Text]: tech. rep. /
B. Barras [et al.]; INRIA. — 2002. — P. 290. — RT–0255. — URL: https :
//inria.hal.science/inria-00069919.

14. Brady, E. Idris, a general-purpose dependently typed programming language:
Design and implementation [Text] / E. Brady // Journal of Functional Pro
gramming. — 2013. — Vol. 23, № 5. — P. 552–593.

15. Vezzosi, A. Cubical Agda: A Dependently Typed Programming Language
with Univalence and Higher Inductive Types [Text] / A. Vezzosi, A. Mörtberg,
A. Abel // Proc. ACM Program. Lang. — New York, NY, USA, 2019. — Vol. 3,
ICFP. — URL: https://doi.org/10.1145/3341691.

16. Moura, L. d. The Lean 4 Theorem Prover and Programming Language [Text] /
L. d. Moura, S. Ullrich // Automated Deduction – CADE 28 / Ed. by
A. Platzer, G. Sutcliffe. — Cham: Springer International Publishing, 2021. —
P. 625–635.

17. Makowsky, J. Why horn formulas matter in computer science: Initial struc
tures and generic examples [Text] / J. Makowsky // Journal of Computer
and System Sciences. — 1987. — Vol. 34, № 2. — P. 266–292. — URL: https:
//www.sciencedirect.com/science/article/pii/0022000087900274.

https://doi.org/10.1145/2914770.2837655
https://inria.hal.science/inria-00069919
https://inria.hal.science/inria-00069919
https://doi.org/10.1145/3341691
https://www.sciencedirect.com/science/article/pii/0022000087900274
https://www.sciencedirect.com/science/article/pii/0022000087900274

88

18. Synthesizing Software Verifiers from Proof Rules [Text] / S. Grebenshchikov
[et al.] // Proceedings of the 33rd ACM SIGPLAN Conference on Program
ming Language Design and Implementation. — Beijing, China: Association
for Computing Machinery, 2012. — P. 405–416. — (PLDI ’12). — URL: https:
//doi.org/10.1145/2254064.2254112.

19. Horn Clause Solvers for Program Verification [Text] / N. Bjørner [et al.] //
Fields of Logic and Computation II: Essays Dedicated to Yuri Gurevich on
the Occasion of His 75th Birthday / Ed. by L. D. Beklemishev [et al.]. —
Cham: Springer International Publishing, 2015. — P. 24–51. — URL: https:
//doi.org/10.1007/978-3-319-23534-9_2.

20. Matsushita, Y. RustHorn: CHC-Based Verification for Rust Programs [Text] /
Y. Matsushita, T. Tsukada, N. Kobayashi // ACM Trans. Program. Lang.
Syst. — New York, NY, USA, 2021. — Vol. 43, № 4. — URL: https://doi.org/
10.1145/3462205.

21. SolCMC: Solidity Compiler’s Model Checker [Text] / L. Alt [et al.] // Com
puter Aided Verification / Ed. by S. Shoham, Y. Vizel. — Cham: Springer
International Publishing, 2022. — P. 325–338.

22. Komuravelli, A. SMT-based model checking for recursive programs [Text] /
A. Komuravelli, A. Gurfinkel, S. Chaki // Formal Methods in System De
sign. — 2016. — Vol. 48, № 3. — P. 175–205.

23. K, H. G. V. Solving Constrained Horn Clauses modulo Algebraic Data Types
and Recursive Functions [Text] / H. G. V. K, S. Shoham, A. Gurfinkel // Proc.
ACM Program. Lang. — New York, NY, USA, 2022. — Vol. 6, POPL. — URL:
https://doi.org/10.1145/3498722.

24. Hojjat, H. The ELDARICA Horn Solver [Text] / H. Hojjat, P. Rümmer //
2018 Formal Methods in Computer Aided Design (FMCAD). — 2018. —
P. 1–7.

25. Champion, A. HoIce: An ICE-Based Non-linear Horn Clause Solver [Text] /
A. Champion, N. Kobayashi, R. Sato // Programming Languages and Sys
tems / Ed. by S. Ryu. — Cham: Springer International Publishing, 2018. —
P. 146–156.

https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1145/3462205
https://doi.org/10.1145/3462205
https://doi.org/10.1145/3498722

89

26. Haudebourg, T. Automatic verification of higher-order functional programs
using regular tree languages [Text]: PhD thesis / Haudebourg Timothée. —
2020. — URL: http : / / www . theses . fr / 2020REN1S060 / document;
2020REN1S060.

27. Verifying Catamorphism-Based Contracts using Constrained Horn Clauses
[Text] / E. de Angelis [et al.] // Theory and Practice of Logic Programming. —
2022. — Vol. 22, № 4. — P. 555–572.

28. Angelis, E. D. CHC-COMP 2022: Competition Report [Text] / E. D. Angelis,
H. G. V. K // Electronic Proceedings in Theoretical Computer Science. —
2022. — Vol. 373. — P. 44–62. — URL: https://doi.org/10.4204%2Feptcs.373.5.

29. Satisfiability of constrained Horn clauses on algebraic data types: A trans
formation-based approach [Text] / E. De Angelis [et al.] // Journal of Logic
and Computation. — 2022. — Vol. 32, № 2. — P. 402–442. — eprint: https://
academic.oup.com/logcom/article-pdf/32/2/402/42618008/exab090.pdf. —
URL: https://doi.org/10.1093/logcom/exab090.

30. Analysis and Transformation of Constrained Horn Clauses for Program Ver
ification [Text] / E. De Angelis [et al.] // Theory and Practice of Logic
Programming. — 2022. — Vol. 22, № 6. — P. 974–1042.

31. Removing Algebraic Data Types from Constrained Horn Clauses Using Dif
ference Predicates [Text] / E. De Angelis [et al.] // Automated Reasoning /
Ed. by N. Peltier, V. Sofronie-Stokkermans. — Cham: Springer International
Publishing, 2020. — P. 83–102.

32. Solving Horn Clauses on Inductive Data Types Without Induction [Text] /
E. De Angelis [et al.] // Theory and Practice of Logic Programming. — 2018. —
Vol. 18, № 3/4. — P. 452–469.

33. Tree Automata Techniques and Applications [Text] / H. Comon [et al.]. —
2008. — P. 262. — URL: https://hal.inria.fr/hal-03367725.

34. Автоматическое доказательство корректности программ с динамической
памятью [Text] / Ю. О. Костюков [и др.] // Труды Института системного
программирования РАН. — 2019. — Т. 31, № 5. — С. 37–62.

http://www.theses.fr/2020REN1S060/document
https://doi.org/10.4204%2Feptcs.373.5
https://academic.oup.com/logcom/article-pdf/32/2/402/42618008/exab090.pdf
https://academic.oup.com/logcom/article-pdf/32/2/402/42618008/exab090.pdf
https://doi.org/10.1093/logcom/exab090
https://hal.inria.fr/hal-03367725

90

35. Kostyukov, Y. Beyond the Elementary Representations of Program Invari
ants over Algebraic Data Types [Text] / Y. Kostyukov, D. Mordvinov,
G. Fedyukovich // Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. — Vir
tual, Canada: Association for Computing Machinery, 2021. — P. 451–465. —
(PLDI 2021). — URL: https://doi.org/10.1145/3453483.3454055.

36. Kostyukov, Y. Collaborative Inference of Combined Invariants [Text] /
Y. Kostyukov, D. Mordvinov, G. Fedyukovich // Proceedings of 24th Inter
national Conference on Logic for Programming, Artificial Intelligence and
Reasoning. Vol. 94 / Ed. by R. Piskac, A. Voronkov. — EasyChair, 2023. —
P. 288–305. — (EPiC Series in Computing). — URL: https://easychair.org/
publications/paper/GRNG.

37. Генерация слабейших предусловий программ с динамической памятью в
символьном исполнении [Text] / А. В. Мисонижник [и др.] // Научно-тех
нический вестник информационных технологий, механики и оптики. —
2022. — Т. 22, № 5. — С. 982–991.

38. On computable numbers, with an application to the Entscheidungsproblem
[Text] / A. M. Turing [et al.] // J. of Math. — 1936. — Vol. 58, № 345–363. —
P. 5.

39. Rice, H. G. Classes of Recursively Enumerable Sets and Their Decision Prob
lems [Text] / H. G. Rice // Transactions of the American Mathematical
Society. — 1953. — Vol. 74, № 2. — P. 358–366. — URL: http://www.jstor.
org/stable/1990888 (visited on 12/03/2022).

40. Clarke, E. M. Design and synthesis of synchronization skeletons using branch
ing time temporal logic [Text] / E. M. Clarke, E. A. Emerson // Logics of
Programs / Ed. by D. Kozen. — Berlin, Heidelberg: Springer Berlin Heidel
berg, 1982. — P. 52–71.

41. Clarke, E. M. The Birth of Model Checking [Text] / E. M. Clarke // 25 Years
of Model Checking: History, Achievements, Perspectives. — Berlin, Heidel
berg: Springer-Verlag, 2008. — P. 1–26. — URL: https://doi.org/10.1007/978-
3-540-69850-0_1.

https://doi.org/10.1145/3453483.3454055
https://easychair.org/publications/paper/GRNG
https://easychair.org/publications/paper/GRNG
http://www.jstor.org/stable/1990888
http://www.jstor.org/stable/1990888
https://doi.org/10.1007/978-3-540-69850-0_1
https://doi.org/10.1007/978-3-540-69850-0_1

91

42. Kautz, H. Pushing the Envelope: Planning, Propositional Logic, and Stochas
tic Search [Text] / H. Kautz, B. Selman // Proceedings of the Thirteenth
National Conference on Artificial Intelligence - Volume 2. — Portland, Ore
gon: AAAI Press, 1996. — P. 1194–1201. — (AAAI’96).

43. Chaff: Engineering an Efficient SAT Solver [Text] / M. W. Moskewicz
[et al.] // Proceedings of the 38th Annual Design Automation Conference. —
Las Vegas, Nevada, USA: Association for Computing Machinery, 2001. —
P. 530–535. — (DAC ’01). — URL: https://doi.org/10.1145/378239.379017.

44. Silva, J. P. M. GRASP-a new search algorithm for satisfiability. [Text] /
J. P. M. Silva, K. A. Sakallah // ICCAD. Vol. 96. — Citeseer. 1996. —
P. 220–227.

45. Tinelli, C. A DPLL-Based Calculus for Ground Satisfiability Modulo Theo
ries [Text] / C. Tinelli // Logics in Artificial Intelligence / Ed. by S. Flesca
[et al.]. — Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. — P. 308–319.

46. Stump, A. CVC: A Cooperating Validity Checker [Text] / A. Stump,
C. W. Barrett, D. L. Dill // Computer Aided Verification / Ed. by
E. Brinksma, K. G. Larsen. — Berlin, Heidelberg: Springer Berlin Heidelberg,
2002. — P. 500–504.

47. Symbolic Model Checking without BDDs [Text] / A. Biere [et al.] // Tools
and Algorithms for the Construction and Analysis of Systems / Ed. by
W. R. Cleaveland. — Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. —
P. 193–207.

48. Kurshan, R. P. The Automata-Theoretic Approach [Text] / R. P. Kurshan. —
Princeton: Princeton University Press, 1995. — URL: https://doi .org/10.
1515/9781400864041.

49. Counterexample-Guided Abstraction Refinement [Text] / E. Clarke [et al.] //
Computer Aided Verification / Ed. by E. A. Emerson, A. P. Sistla. — Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000. — P. 154–169.

50. McMillan, K. L. Interpolation and SAT-Based Model Checking [Text] /
K. L. McMillan // Computer Aided Verification / Ed. by W. A. Hunt,
F. Somenzi. — Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. — P. 1–13.

https://doi.org/10.1145/378239.379017
https://doi.org/10.1515/9781400864041
https://doi.org/10.1515/9781400864041

92

51. McMillan, K. L. Applications of Craig Interpolants in Model Checking
[Text] / K. L. McMillan // Tools and Algorithms for the Construction and
Analysis of Systems / Ed. by N. Halbwachs, L. D. Zuck. — Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005. — P. 1–12.

52. ICE: A Robust Framework for Learning Invariants [Text] / P. Garg [et al.] //
Computer Aided Verification / Ed. by A. Biere, R. Bloem. — Cham: Springer
International Publishing, 2014. — P. 69–87.

53. Bradley, A. R. SAT-Based Model Checking without Unrolling [Text] /
A. R. Bradley // Verification, Model Checking, and Abstract Interpretation /
Ed. by R. Jhala, D. Schmidt. — Berlin, Heidelberg: Springer Berlin Heidel
berg, 2011. — P. 70–87.

54. IC3 Modulo Theories via Implicit Predicate Abstraction [Text] / A. Cimatti
[et al.] // Tools and Algorithms for the Construction and Analysis of Sys
tems / Ed. by E. Ábrahám, K. Havelund. — Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014. — P. 46–61.

55. Hoder, K. Generalized Property Directed Reachability [Text] / K. Hoder,
N. Bjørner // Theory and Applications of Satisfiability Testing – SAT 2012 /
Ed. by A. Cimatti, R. Sebastiani. — Berlin, Heidelberg: Springer Berlin Hei
delberg, 2012. — P. 157–171.

56. Cook, S. A. Soundness and Completeness of an Axiom System for Program
Verification [Text] / S. A. Cook // SIAM Journal on Computing. — 1978. —
Vol. 7, № 1. — P. 70–90. — eprint: https://doi.org/10.1137/0207005. — URL:
https://doi.org/10.1137/0207005.

57. Blass, A. Inadequacy of Computable Loop Invariants [Text] / A. Blass,
Y. Gurevich // ACM Trans. Comput. Logic. — New York, NY, USA, 2001. —
Vol. 2, № 1. — P. 1–11. — URL: https://doi.org/10.1145/371282.371285.

58. Blass, A. Existential fixed-point logic [Text] / A. Blass, Y. Gurevich // Com
putation Theory and Logic / Ed. by E. Börger. — Berlin, Heidelberg: Springer
Berlin Heidelberg, 1987. — P. 20–36. — URL: https://doi.org/10.1007/3-540-
18170-9_151.

https://doi.org/10.1137/0207005
https://doi.org/10.1137/0207005
https://doi.org/10.1145/371282.371285
https://doi.org/10.1007/3-540-18170-9_151
https://doi.org/10.1007/3-540-18170-9_151

93

59. Blass, A. The Underlying Logic of Hoare Logic [Text] / A. Blass, Y. Gure
vich // Bulletin of the European Association for Theoretical Computer
Science. Vol. 70. — 2000. — P. 82–110. — URL: https : //www.microsoft .
com/en-us/research/publication/142-underlying-logic-hoare-logic/.

60. Proving correctness of imperative programs by linearizing constrained Horn
clauses [Text] / E. De Angelis [et al.] // Theory and Practice of Logic Pro
gramming. — 2015. — Vol. 15, № 4/5. — P. 635–650.

61. Relational Verification Through Horn Clause Transformation [Text] /
E. De Angelis [et al.] // Static Analysis / Ed. by X. Rival. — Berlin,
Heidelberg: Springer Berlin Heidelberg, 2016. — P. 147–169.

62. Mordvinov, D. Synchronizing Constrained Horn Clauses [Text] / D. Mordvi
nov, G. Fedyukovich // LPAR-21. 21st International Conference on Logic for
Programming, Artificial Intelligence and Reasoning. Vol. 46 / Ed. by T. Eiter,
D. Sands. — EasyChair, 2017. — P. 338–355. — (EPiC Series in Computing). —
URL: https://easychair.org/publications/paper/LlxW.

63. Мордвинов, Д. А. Автоматический вывод реляционных инвариантов для
нелинейных систем дизъюнктов Хорна с ограничениями [Text]: дис. . . .
канд. / Мордвинов Дмитрий Александрович. — Санкт-Петербургский го
сударственный университет, 2020.

64. Itzhaky, S. Hyperproperty Verification as CHC Satisfiability [Text] /
S. Itzhaky, S. Shoham, Y. Vizel // CoRR. — 2023. — Vol. abs/2304.12588. —
arXiv: 2304.12588. — URL: https://doi.org/10.48550/arXiv.2304.12588.

65. Cousot, P. Abstract Interpretation: A Unified Lattice Model for Static Anal
ysis of Programs by Construction or Approximation of Fixpoints [Text] /
P. Cousot, R. Cousot // Proceedings of the 4th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages. — Los Angeles, Cali
fornia: Association for Computing Machinery, 1977. — P. 238–252. — (POPL
’77). — URL: https://doi.org/10.1145/512950.512973.

66. Giacobazzi, R. Making Abstract Interpretations Complete [Text] / R. Gia
cobazzi, F. Ranzato, F. Scozzari // J. ACM. — New York, NY, USA, 2000. —
Vol. 47, № 2. — P. 361–416. — URL: https://doi.org/10.1145/333979.333989.

https://www.microsoft.com/en-us/research/publication/142-underlying-logic-hoare-logic/
https://www.microsoft.com/en-us/research/publication/142-underlying-logic-hoare-logic/
https://easychair.org/publications/paper/LlxW
https://arxiv.org/abs/2304.12588
https://doi.org/10.48550/arXiv.2304.12588
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/333979.333989

94

67. Giacobazzi, R. Analyzing program analyses [Text] / R. Giacobazzi, F. Lo
gozzo, F. Ranzato // ACM SIGPLAN Notices. — 2015. — Vol. 50, № 1. —
P. 261–273.

68. Cousot, P. Abstract Interpretation Frameworks [Text] / P. Cousot,
R. Cousot // Journal of Logic and Computation. — 1992. — Vol. 2, № 4. —
P. 511–547. — eprint: https://academic.oup.com/logcom/article-pdf/2/4/
511/2740133/2-4-511.pdf. — URL: https://doi.org/10.1093/logcom/2.4.511.

69. Campion, M. Partial (In)Completeness in Abstract Interpretation: Limiting
the Imprecision in Program Analysis [Text] / M. Campion, M. Dalla Preda,
R. Giacobazzi // Proc. ACM Program. Lang. — New York, NY, USA, 2022. —
Vol. 6, POPL. — URL: https://doi.org/10.1145/3498721.

70. A Logic for Locally Complete Abstract Interpretations [Text] / R. Bruni
[et al.] // 2021 36th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS). — 2021. — P. 1–13.

71. Moura, L. de. Z3: An Efficient SMT Solver [Text] / L. de Moura, N. Bjørner //
Tools and Algorithms for the Construction and Analysis of Systems / Ed. by
C. R. Ramakrishnan, J. Rehof. — Berlin, Heidelberg: Springer Berlin Heidel
berg, 2008. — P. 337–340.

72. cvc5: A Versatile and Industrial-Strength SMT Solver [Text] / H. Bar
bosa [et al.] // Tools and Algorithms for the Construction and Analysis of
Systems / Ed. by D. Fisman, G. Rosu. — Cham: Springer International Pub
lishing, 2022. — P. 415–442.

73. Rümmer, P. A Constraint Sequent Calculus for First-Order Logic with Linear
Integer Arithmetic [Text] / P. Rümmer // Logic for Programming, Artificial
Intelligence, and Reasoning / Ed. by I. Cervesato, H. Veith, A. Voronkov. —
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. — P. 274–289.

74. Reger, G. Instantiation and Pretending to be an SMT Solver with Vampire.
[Text] / G. Reger, M. Suda, A. Voronkov // SMT. — 2017. — P. 63–75.

75. Xi, H. Dependent Types in Practical Programming [Text] / H. Xi, F. Pfen
ning // Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. — San Antonio, Texas, USA: Associa
tion for Computing Machinery, 1999. — P. 214–227. — (POPL ’99). — URL:
https://doi.org/10.1145/292540.292560.

https://academic.oup.com/logcom/article-pdf/2/4/511/2740133/2-4-511.pdf
https://academic.oup.com/logcom/article-pdf/2/4/511/2740133/2-4-511.pdf
https://doi.org/10.1093/logcom/2.4.511
https://doi.org/10.1145/3498721
https://doi.org/10.1145/292540.292560

95

76. Refinement Types for Haskell [Text] / N. Vazou [et al.] // SIGPLAN Not. —
New York, NY, USA, 2014. — Vol. 49, № 9. — P. 269–282. — URL: https:
//doi.org/10.1145/2692915.2628161.

77. Unno, H. Automating Induction for Solving Horn Clauses [Text] / H. Unno,
S. Torii, H. Sakamoto // Computer Aided Verification / Ed. by R. Majumdar,
V. Kunčak. — Cham: Springer International Publishing, 2017. — P. 571–591.

78. Hamza, J. System FR: Formalized Foundations for the Stainless Verifier
[Text] / J. Hamza, N. Voirol, V. Kunčak // Proc. ACM Program. Lang. —
New York, NY, USA, 2019. — Vol. 3, OOPSLA. — URL: https://doi.org/10.
1145/3360592.

79. Chabin, J. Visibly pushdown languages and term rewriting [Text] / J. Chabin,
P. Réty // International Symposium on Frontiers of Combining Systems. —
Springer. 2007. — P. 252–266.

80. Gouranton, V. Synchronized tree languages revisited and new applications
[Text] / V. Gouranton, P. Réty, H. Seidl // International Conference on Foun
dations of Software Science and Computation Structures. — Springer. 2001. —
P. 214–229.

81. Limet, S. Weakly regular relations and applications [Text] / S. Limet, P. Réty,
H. Seidl // International Conference on Rewriting Techniques and Applica
tions. — Springer. 2001. — P. 185–200.

82. Chabin, J. Synchronized-context free tree-tuple languages [Text]: tech. rep. /
J. Chabin, J. Chen, P. Réty; Citeseer. — 2006.

83. Jacquemard, F. Rigid tree automata [Text] / F. Jacquemard, F. Klay,
C. Vacher // International Conference on Language and Automata Theory
and Applications. — Springer. 2009. — P. 446–457.

84. Engelfriet, J. Multiple context-free tree grammars and multi-component tree
adjoining grammars [Text] / J. Engelfriet, A. Maletti // International Sym
posium on Fundamentals of Computation Theory. — Springer. 2017. —
P. 217–229.

85. Kozen, D. Automata and Computability [Text] / D. Kozen. — Springer New
York, 2012. — (Undergraduate Texts in Computer Science). — URL: https:
//books.google.ru/books?id=Vo3fBwAAQBAJ.

https://doi.org/10.1145/2692915.2628161
https://doi.org/10.1145/2692915.2628161
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3360592
https://books.google.ru/books?id=Vo3fBwAAQBAJ
https://books.google.ru/books?id=Vo3fBwAAQBAJ

96

86. McCune, W. Mace4 Reference Manual and Guide [Text] / W. McCune. —
2003. — URL: https://arxiv.org/abs/cs/0310055.

87. Torlak, E. Kodkod: A Relational Model Finder [Text] / E. Torlak, D. Jack
son // Tools and Algorithms for the Construction and Analysis of Systems /
Ed. by O. Grumberg, M. Huth. — Berlin, Heidelberg: Springer Berlin Heidel
berg, 2007. — P. 632–647.

88. Claessen, K. New techniques that improve MACE-style finite model finding
[Text] / K. Claessen, N. Sörensson // Proceedings of the CADE-19 Work
shop: Model Computation-Principles, Algorithms, Applications. — Citeseer.
2003. — P. 11–27.

89. Finite Model Finding in SMT [Text] / A. Reynolds [et al.] // Computer Aided
Verification / Ed. by N. Sharygina, H. Veith. — Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013. — P. 640–655.

90. Reger, G. Finding Finite Models in Multi-sorted First-Order Logic [Text] /
G. Reger, M. Suda, A. Voronkov // Theory and Applications of Satisfiability
Testing – SAT 2016 / Ed. by N. Creignou, D. Le Berre. — Cham: Springer
International Publishing, 2016. — P. 323–341.

91. Lisitsa, A. Finite Models vs Tree Automata in Safety Verification [Text] /
A. Lisitsa // 23rd International Conference on Rewriting Techniques and
Applications (RTA’12). Vol. 15 / Ed. by A. Tiwari. — Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2012. — P. 225–239. —
(Leibniz International Proceedings in Informatics (LIPIcs)). — URL: http:
//drops.dagstuhl.de/opus/volltexte/2012/3495.

92. Peltier, N. Constructing infinite models represented by tree automata [Text] /
N. Peltier // Annals of Mathematics and Artificial Intelligence. — 2009. —
Vol. 56, № 1. — P. 65–85.

93. Oppen, D. C. Reasoning about Recursively Defined Data Structures [Text] /
D. C. Oppen // Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages. — Tucson, Arizona: Association for
Computing Machinery, 1978. — P. 151–157. — (POPL ’78). — URL: https:
//doi.org/10.1145/512760.512776.

https://arxiv.org/abs/cs/0310055
http://drops.dagstuhl.de/opus/volltexte/2012/3495
http://drops.dagstuhl.de/opus/volltexte/2012/3495
https://doi.org/10.1145/512760.512776
https://doi.org/10.1145/512760.512776

97

94. Kovács, L. First-Order Theorem Proving and Vampire [Text] / L. Kovács,
A. Voronkov // Computer Aided Verification / Ed. by N. Sharygina,
H. Veith. — Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. — P. 1–35.

95. Schulz, S. E - a Brainiac Theorem Prover [Text] / S. Schulz // AI Commun. —
NLD, 2002. — Vol. 15, № 2, 3. — P. 111–126.

96. Cruanes, S. Superposition with Structural Induction [Text] / S. Cruanes //
Frontiers of Combining Systems / Ed. by C. Dixon, M. Finger. — Cham:
Springer International Publishing, 2017. — P. 172–188.

97. Goubault-Larrecq, J. Towards Producing Formally Checkable Security Proofs,
Automatically [Text] / J. Goubault-Larrecq // 2008 21st IEEE Computer
Security Foundations Symposium. — 2008. — P. 224–238.

98. Property preserving abstractions for the verification of concurrent systems
[Text] / C. Loiseaux [et al.] // Formal methods in system design. — 1995. —
Vol. 6. — P. 11–44.

99. Global Guidance for Local Generalization in Model Checking [Text] /
H. G. Vediramana Krishnan [et al.] // Computer Aided Verification / Ed. by
S. K. Lahiri, C. Wang. — Cham: Springer International Publishing, 2020. —
P. 101–125.

100. Hojjat, H. Deciding and Interpolating Algebraic Data Types by Reduction
[Text] / H. Hojjat, P. Rümmer // 2017 19th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). —
2017. — P. 145–152.

101. Comon, H. Equational Formulas with Membership Constraints [Text] /
H. Comon, C. Delor // Information and Computation. — 1994. — Vol. 112,
№ 2. — P. 167–216. — URL: https://www.sciencedirect.com/science/article/
pii/S089054018471056X.

102. Kossak, R. Undefinability and Absolute Undefinability in Arithmetic [Text] /
R. Kossak. — 2023. — arXiv: 2205.06022 [math.LO].

103. Bar-Hillel, Y. On formal properties of simple phrase structure grammars
[Text] / Y. Bar-Hillel, M. Perles, E. Shamir // STUF - Language Typol
ogy and Universals. — 1961. — Vol. 14, № 1–4. — P. 143–172. — URL: https:
//doi.org/10.1524/stuf.1961.14.14.143.

https://www.sciencedirect.com/science/article/pii/S089054018471056X
https://www.sciencedirect.com/science/article/pii/S089054018471056X
https://arxiv.org/abs/2205.06022
https://doi.org/10.1524/stuf.1961.14.14.143
https://doi.org/10.1524/stuf.1961.14.14.143

98

104. Zhang, T. Decision Procedures for Recursive Data Structures with Integer
Constraints [Text] / T. Zhang, H. B. Sipma, Z. Manna // Automated Rea
soning / Ed. by D. Basin, M. Rusinowitch. — Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004. — P. 152–167.

105. Caferra, R. Automated model building [Text]. Vol. 31 / R. Caferra, A. Leitsch,
N. Peltier. — Springer Science & Business Media, 2013.

106. Fermüller, C. G. Model Representation over Finite and Infinite Signatures
[Text] / C. G. Fermüller, R. Pichler // Journal of Logic and Computation. —
2007. — Vol. 17, № 3. — P. 453–477.

107. Fermüller, C. G. Model Representation via Contexts and Implicit General
izations [Text] / C. G. Fermüller, R. Pichler // Automated Deduction –
CADE-20 / Ed. by R. Nieuwenhuis. — Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005. — P. 409–423.

108. Teucke, A. On the Expressivity and Applicability of Model Representation
Formalisms [Text] / A. Teucke, M. Voigt, C. Weidenbach // Frontiers of
Combining Systems / Ed. by A. Herzig, A. Popescu. — Cham: Springer Inter
national Publishing, 2019. — P. 22–39.

109. Gramlich, B. Algorithmic Aspects of Herbrand Models Represented by
Ground Atoms with Ground Equations [Text] / B. Gramlich, R. Pichler //
Automated Deduction—CADE-18 / Ed. by A. Voronkov. — Berlin, Heidel
berg: Springer Berlin Heidelberg, 2002. — P. 241–259.

110. Matzinger, R. On computational representations of Herbrand models [Text] /
R. Matzinger // Uwe Egly and Hans Tompits, editors. — 1998. — Vol. 13. —
P. 86–95.

111. Matzinger, R. Computational representations of models in first-order logic
[Text]: PhD thesis / Matzinger Robert. — Technische Universität Wien, Aus
tria, 2000.

112. Handbook of Formal Languages, Vol. 3: Beyond Words [Text] / Ed. by
G. Rozenberg, A. Salomaa. — Berlin, Heidelberg: Springer-Verlag, 1997.

113. Veanes, M. Symbolic tree automata [Text] / M. Veanes, N. Bjørner // Infor
mation Processing Letters. — 2015. — Vol. 115, № 3. — P. 418–424. — URL:
https://www.sciencedirect.com/science/article/pii/S0020019014002555.

https://www.sciencedirect.com/science/article/pii/S0020019014002555

99

114. D’Antoni, L. Minimization of Symbolic Tree Automata [Text] / L. D’Antoni,
M. Veanes // Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science. — New York, NY, USA: Association for Comput
ing Machinery, 2016. — P. 873–882. — (LICS ’16). — URL: https://doi.org/
10.1145/2933575.2933578.

115. Faella, M. Reasoning About Data Trees Using CHCs [Text] / M. Faella,
G. Parlato // Computer Aided Verification / Ed. by S. Shoham, Y. Vizel. —
Cham: Springer International Publishing, 2022. — P. 249–271.

116. Barrett, C. The SMT-LIB Standard: Version 2.6 [Text]: tech. rep. / C. Barrett,
P. Fontaine, C. Tinelli; Department of Computer Science, The University of
Iowa. — 2017. — Available at http://smtlib.cs.uiowa.edu/.

117. Reger, G. The Challenges of Evaluating a New Feature in Vampire. [Text] /
G. Reger, M. Suda, A. Voronkov // Vampire Workshop. — 2014. — P. 70–74.

118. Reynolds, A. Induction for SMT Solvers [Text] / A. Reynolds, V. Kun
cak // Verification, Model Checking, and Abstract Interpretation / Ed. by
D. D’Souza, A. Lal, K. G. Larsen. — Berlin, Heidelberg: Springer Berlin Hei
delberg, 2015. — P. 80–98.

119. Yang, W. Lemma Synthesis for Automating Induction over Algebraic Data
Types [Text] / W. Yang, G. Fedyukovich, A. Gupta // Principles and Practice
of Constraint Programming / Ed. by T. Schiex, S. de Givry. — Cham: Springer
International Publishing, 2019. — P. 600–617.

120. Clocksin, W. F. Programming in Prolog [Text] / W. F. Clocksin, C. S. Mel
lish. — 5th ed. — Berlin: Springer, 2003.

121. Property-Directed Inference of Universal Invariants or Proving Their Absence
[Text] / A. Karbyshev [et al.] // J. ACM. — New York, NY, USA, 2017. —
Vol. 64, № 1. — URL: https://doi.org/10.1145/3022187.

122. Decidability of Inferring Inductive Invariants [Text] / O. Padon [et al.] //
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. — St. Petersburg, FL, USA: Associa
tion for Computing Machinery, 2016. — P. 217–231. — (POPL ’16). — URL:
https://doi.org/10.1145/2837614.2837640.

123. Bjørner, N. S. Playing with Quantified Satisfaction. [Text] / N. S. Bjørner,
M. Janota // LPAR (short papers). — 2015. — Vol. 35. — P. 15–27.

https://doi.org/10.1145/2933575.2933578
https://doi.org/10.1145/2933575.2933578
https://doi.org/10.1145/3022187
https://doi.org/10.1145/2837614.2837640

100

124. Losekoot, T. Automata-Based Verification of Relational Properties of Func
tions over Algebraic Data Structures [Text] / T. Losekoot, T. Genet,
T. Jensen // 8th International Conference on Formal Structures for Com
putation and Deduction (FSCD 2023). Vol. 260 / Ed. by M. Gaboardi,
F. van Raamsdonk. — Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zen
trum für Informatik, 2023. — 7:1–7:22. — (Leibniz International Proceedings
in Informatics (LIPIcs)). — URL: https://drops.dagstuhl.de/opus/volltexte/
2023/17991.

125. TIP: Tons of Inductive Problems [Text] / K. Claessen [et al.] // Intelligent
Computer Mathematics / Ed. by M. Kerber [et al.]. — Cham: Springer Inter
national Publishing, 2015. — P. 333–337.

126. Stump, A. StarExec: A Cross-Community Infrastructure for Logic Solving
[Text] / A. Stump, G. Sutcliffe, C. Tinelli // Automated Reasoning / Ed. by
S. Demri, D. Kapur, C. Weidenbach. — Cham: Springer International Pub
lishing, 2014. — P. 367–373.

127. Transition Power Abstractions for Deep Counterexample Detection [Text] /
M. Blicha [et al.] // Tools and Algorithms for the Construction and Analysis
of Systems / Ed. by D. Fisman, G. Rosu. — Cham: Springer International
Publishing, 2022. — P. 524–542.

128. Predicting Rankings of Software Verification Tools [Text] / M. Czech [et al.] //
Proceedings of the 3rd ACM SIGSOFT International Workshop on Software
Analytics. — Paderborn, Germany: Association for Computing Machinery,
2017. — P. 23–26. — (SWAN 2017). — URL: https : / /doi . org / 10 . 1145 /
3121257.3121262.

https://drops.dagstuhl.de/opus/volltexte/2023/17991
https://drops.dagstuhl.de/opus/volltexte/2023/17991
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1145/3121257.3121262

101

Code listing list

4.1 CEGAR for transition systems . 45
4.2 Example of a functional program with algebraic data types 47
4.3 Main loop of the CEGAR(𝒪) algorithm 48
4.4 The Collaborate subroutine. 49
4.5 ResidualCHCs algorithm for generation of a residual CHC system. 54

102

Figure list

2.1 Regular invariant inference method for a Horn clause system over ADT . 28

5.1 Inclusion relations between classes of inductive invariants over ADTs. . . 60

6.1 Architecture of RInGen . 70
6.2 Performance comparison. Each point on the plot represents a pair of

runtimes. 80
6.3 Number of benchmark instances solved by both RInGen-CICI and

Racer (y-axis), and the CPU time overhead (x-axis) of running
RInGen-CICI compared to Racer. Racer outperforms
RInGen-CICI on 34 instances. There are no instances with an
overhead larger than 80%, so the x-axis is not shown further. 81

6.4 Runtime comparison . 81

103

Table list

5.1 Theoretical comparison of inductive invariant classes 59
5.2 Theoretical comparison of inductive invariant classes expressivity 59

6.1 Comparison of Horn solvers with ADT support 73
6.2 Evaluation results. SAT indicates that the system is satisfiable (there is

an inductive invariant), UNSAT indicates that the system is unsatisfiable. 77

	Introduction
	Background
	Brief History of Software Verification
	History of the Inductive Invariant Expressivity Problem
	Constraint Language
	Syntax and Semantics of the Constraint Language
	Algebraic Data Types

	Constrained Horn Clause Systems
	Syntax
	Satisfiability and Safe Inductive Invariants
	Unsatisfiability and Resolution Refutations
	From Verification to Solving Horn Clause Systems

	Tree Languages
	Properties and Operations
	Tree Automata
	Finite Models

	Conclusions

	Regular Invariant Inference
	Inference for Horn Clause Systems without Constraints
	Inference for Constrained Horn Clause Systems
	Regular Invariants
	Specialization for Regular Invariant Inference
	Conclusions

	Synchronous Regular Invariant Inference
	Synchronous Regular Invariants
	Synchronous Tree Automata
	Closure Under Boolean Operations
	Decidability of Emptiness and Term Membership

	Invariant Inference via Declarative Description of the Invariant-Defining Automaton
	Language Semantics for First-Order Logic
	Algorithm for Building Declarative Descriptions of Synchronous Regular Invariants
	Correctness and Completeness
	Example

	Conclusion

	Collaborative Inference of Combined Invariants
	Core Idea of Collaborative Inference
	CEGAR for Transition Systems
	Collaborative Inference via CEGAR Modification

	Collaborative Invariant Inference
	Combined invariants
	Horn Clause Systems as Transition Systems
	Generating Residual System
	CEGAR(O) for CHCs: Recovering Counterexamples
	Instantiating Approach within IC3/PDR

	Conclusion

	Theoretical Comparison of Inductive Invariant Classes
	Closure under Boolean Operations and Decidability
	Invariant Classes Expressivity
	Inexpressivity in Synchronous Languages
	Inexpressivity in Combined Languages
	Inexpressivity in Elementary Languages

	Finite Representations of Term Sets
	Conclusion

	Implementation, Related Work and Evaluation
	Pilot Implementation
	Related Work
	Evaluation
	Tool Selection
	Benchmark Suite
	Setup
	Research Questions

	Results
	Number of Solutions
	Performance
	Significance of the Inductive Invariant Class

	Conclusion
	References
	Code listing list
	Figure list
	Table list

