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INTRODUCTION

Relevance of the research topic. Nowadays, each of us depends on

a wide range of technical devices in our daily lives. And the demands on

the reliability of these products increase every year, from mobile devices and

household appliances to large production lines. The expectations of today’s

world are that electricity, networks, transport systems must function without

failures or delays. It is also not uncommon for failure of any equipment to

have catastrophic consequences. More common are cases where defects and

malfunctions in products cause consumer dissatisfaction and consequently the

manufacturer’s costs for remedying non-compliance under the warranty. In

addition, due to the influence of competition and external circumstances, for

many suppliers the reliability of their products has become a matter of survival

in the market.

Reliability improvement methods have long evolved as a natural

consequence of failure management. The «check-fix» approach was used

long before formal data collection and analysis procedures were developed,

since failures are an obvious phenomenon leading to design changes. Thus,

for example, the development of systems closely related to safety (the railway

industry as an example) was to some extent driven by innovative technology, but

more so by bad experience. Nevertheless, even with this approach, the designed

systems showed some degree of growth in reliability. In contrast to modern

designs, 19th and early 20th century products were not subject to such stringent

cost and lead times. For these reasons, relatively high levels of reliability

were achieved by over-designing and over-reserving components. Quantitative

assessment, as well as development of methods for its realisation, was not

carried out. At the end of the 20th century the problem of reliability quickly

came to the fore. At that time this task was regarded as the most important

aspect in the creation of systems for military equipment, aviation, astronautics
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and the nuclear industry. Nowadays, reliability encompasses virtually all areas

of industry and the development of technical and information systems.

Methods of reliability analysis based on both qualitative methods and

quantitative approaches have been actively developed over the last 30 years.

Despite the fact that the main discoveries in this field were made in the last

century [1], the scaling of the fields of reliability theory applications necessitates

the adaptation and development of methods with a thorough account of the

characteristics of the application area [2].

This paper provides a reliability analysis for the rail transport sector, the

attention to the components of which has been growing steadily in recent years.

The general statement of the problem is to develop methods and

algorithms for analysis of operational reliability of technical systems in railway

transport on the basis of mathematical statistics, differential calculus, methods

of optimization, and control theory.

The aim and objectives of the work are to analyse and construct

mathematical reliability models for components of rolling stock on the basis of

application and modernisation of various scientific approaches to the specific

topical tasks of modern industry. This main objective is realised on the basis

of the Markov process apparatus in Chapter 2, statistical hypothesis testing

methods in Chapter 3, using time series and survival analysis methods in

Chapter 4 and several optimisation methods in Chapter 5.

In Chapter 2, realising this objective requires the following tasks:

1. Development of a structural diagram that most fully characterises the

process of door operation within a wagon.

2. Construction of state transition diagram for the selected structural

scheme of door car set reliability and subsequent calculation of

reliability indicators by solving a system of Kolmogorov differential

equations.

In Chapter 3, the aim is to find an analytical criterion for the treatment

of reliability statistics:
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1. Analysis of common statistical criteria in reliability theory and

industrial analytics.

2. Finding the most appropriate criterion for application in the current

industrial analytics tasks under consideration.

3. Application of the criteria to real-world problems in the form of the

given examples and justification of the choice of method on the basis

of the results of the criteria.

In Chapter 4, the objective of forecasting is achieved by addressing the

following objectives:

1. Selection of a method for predicting the failure rate parameter.

2. Identification of time series adaptation coefficients based on survival

functions.

3. Calculation and verification of the constructed model.

In Chapter 5, the aim is to build and examine a model for optimising

maintenance costs, which is achieved by:

1. Introduction of technical measures to maintain the human influence

factor in the model.

2. Construction of probabilistic reliability functions for both the system

itself and the reliability due to human intervention.

3. Inclusion of reliability functions in the unit cost of maintenance model.

4. Analytical investigation of the constructed preventive cost functions

and finding the condition for the existence of an optimum maintenance

period.

5. Construction of an operational replacement cost function, taking into

account the developments in the previous chapters of the paper and the

application of dynamic programming to find the optimum replacement

time for the system components.

Main statements to be defended.

1. Method for determining standardised reliability indicators based on

structural and Markov analyses.
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2. Justification of the choice of statistical hypothesis testing criteria

suitable for reliability and industrial analytics tasks.

3. Short-term prediction model based on time series and survival theory.

4. Model for calculating the optimum period for preventive maintenance.

5. Algorithm for finding the replacement period of complex system

components based on a constructed cost function incorporating the

main results of the whole performance.

6. Design of a reliability assurance system for the product life cycle based

on the models and algorithms presented in the paper.

Methodology and methods of the research. Various areas of

mathematical apparatus are used: Markov analysis, application of statistical

criteria for hypothesis testing, time series analysis and optimisation methods.

The theoretical and practical significance of the work consists in

proposed theoretical methods for solving applied urgent problems of modern

enterprises on the basis of existing industrial needs. Approaches not previously

used in the field of reliability analysis of technical systems are presented. A

system for analysing and ensuring reliability at various stages of the technical

product life cycle is introduced. The results obtained are applied for solving

real problems and have high efficiency in rapidly changing conditions of the

production market.

Scientific novelty

1. In Chapter 2, a method of setting standardised reliability indicators

based on integrated application of structural reliability analysis and

Markov approach is proposed. This approach to the definition of

indicators for the coordination of technical documentation at the stage

of system design (system components as part of an aggregated item)

between the manufacturer and the customer will allow to correctly set

standardised indicators, reasonable values of which in further operation

will be used for reasoned control of reliability by the supplier and the

customer.
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2. Chapter 3 analyses common statistical criteria for reliability analysis

and describes real-world problems in the field of industry, which can be

solved by correctly chosen statistical criteria. A criterion not yet widely

used, especially in the field of reliability and industrial analytics, is

proposed, and its advantage over a number of other tests is shown.

3. A method for predicting reliability indicators based on time series is

proposed, the selection of adaptation parameters of which is based on

the apparatus of the survival theory. Short-term forecasting is an under­

reported area of reliability due to the prevalence of a probabilistic

approach. The model developed in the Chapter 4 makes it possible

to obtain accurate predictions of reliability, the application of which

is necessary for planning technical measures for the maintenance of

products in operation.

4. A new method for finding the optimum preventive maintenance period

has been developed. The human operator influence and the internal

reliability of the system are included and the unit cost function

is investigated on this basis. The lemmas and theorems about the

conditions of existence of the optimal solution are proved.

5. A component replacement cost function for a complex system is

constructed, incorporating the results of the entire operation. Based

on the apparatus of dynamic programming, the optimum replacement

period is found, which is the result of a multi-stage approach to the

scheduling of planned component replacements.

The validity and credibility of the results are ensured by the

correctness of problem statements obtained from the literature, as well as

real requests of manufacturing firms and teaching experience for employees

of enterprises in different fields of industry. The results have been presented

in a number of publications in Russian and international journals, have been

presented at conferences and successfully applied to industrial problems on

an ongoing basis.
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Summary of work. The introduction contains the relevance of the issues

dealt with in the paper, the formulation of the research objectives and the

description of the research tasks.

The first chapter reviews the literature sources used for this research

topic, describing the general approaches used in the work to address the

formulated objectives.
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The second chapter describes the problem of supplier-customer

interaction in comparing reliability performance of rolling stock components.

There are a number of reliability structural diagrams which characterise the

operational functioning of doors in a wagon. Based on the chosen structural

scheme, a state transition diagram is constructed and Kolmogorov differential

equation system which corresponds to the given graph is solved. As a result of

applying Markov processes apparatus the calculation of failure rate parameter

for carriage door set is done.

The third chapter analyses existing variants of statistical criteria in

the field of reliability and industrial analytics on the basis of a large body of

literature and practical experience in different industrial sectors. A comparison

is made on applied reliability problems.

In chapter four, the rationale for short-term reliability forecasting is

given, then a prediction is made using the Holt – Winters method on the basis of

operational data. Time series adaptation parameters are selected using survival

functions. Examples of forecasting on real data are given.

The fifth chapter pays much attention to the reliability component due

to the human factor. On this basis, a model for minimising the unit cost of

system maintenance is developed and investigated. The final part of the study

presents a method for constructing and minimising a replacement cost function

for components of a complex system using the main results of the entire study.

The conclusion summarises the work, notes the relevance of the results

for today’s manufacturing sector, and reflects the prospects for the development

of this research.
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CHAPTER 1. Overview of Methods

The fundamental sources on reliability are well-known works [1], [13], [14],

[15], [16]. The books describe the basic apparatus of reliability theory necessary

for any task in engineering practice.

Relevant sources on many areas of reliability theory and its applications

are [17], [18]. Publications presented in these journals allow reliability specialists

in any vector of its application to take into account new trends and in-demand

areas of development in their fields.

A study of complex systems with ageing elements to derive reliability

estimates for cases with limited information as well as optimal redundancy

issues is given in the fundamental work [19]. The authors have also made a major

contribution to the field of optimum preventive maintenance timing; the models

developed in [16] have formed the basis for many upgraded later methodologies.

A wide range of methods for the correct statistical treatment of

experimental data are given in [20]. The options for describing statistical criteria

make it possible to choose a method for any purpose. It is worth noting that this

book describes in detail applied statistical analysis specifically for engineering

fields by means of examples.

Monograph [2] forms a modern multidisciplinary approach to reliability

analysis. This edition discusses important methodologies in systems reliability

research, such as Fault Tree Analysis, Failure Mode and Effects Analysis, Root

Cause Analysis, and many other methods necessary for a full-fledged calculation

of reliability metrics. One of the authors of this paper has also published a book

on Risk Assessment [21], which not only provides an extensive theoretical basis

for application in the field of especially hazardous failure analysis, but also

allows to dive into the subject in terms of considering historical incidents.

In [22] considerable attention is given to the role of modern applied

mathematics in the field of engineering. A large part of the work is devoted to
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logic and probabilistic methods, which are not often and extensively discussed

in the literature. The author emphasises the clarity of the logic and probabilistic

calculus required in the field of security, and outlines the problem of technical

service professionals’ mastery of these methods.

In order to determine reliability performance, manufacturers carry out

reliability tests. This is often long-term and expensive, especially with rapidly

changing technical specification requirements. To reduce the cost and time of

testing, accelerated reliability assessment is used by means of a probabilistic­

physical approach to solving it. These a priori and a posteriori reliability

calculation methods are given in [23]. Also, basic tools for correct interpretation

of test results are proposed in [24].

Details of sensitivity analysis (methods of estimation of influence of

system parameters tolerances on its characteristics), construction of graphs on

various electronic schemes are considered in [25]. The book contains also the

extensive description of Boolean models of reliability, that allows to conduct

popular in modern analysis of risks Fault Tree Analysis with use of method of

the minimum sections and minimum paths.

A variety of practical methods for determining reliability of technical

systems are outlined in [26]. Most importantly, the book pays special attention

to such aspects as determination of reliability parameters at different stages of

the system life cycle: design, construction stage, series production, as well as

verification of reliability requirements during operation.

The full cycle of reliability analysis steps is given in [27]. The author

explains how to correctly approach the stage of collecting data on failures as

well as of design review, types of redundancy, and also describes the stage

of repair and maintenance works evaluation. Of particular value is the detailed

description of the importance of studying the dynamics of changes in the failure

rate parameters and the specifics of their behaviour at different stages of a

technical object’s life cycle.
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Of great practical relevance to the application of theoretical reliability

distribution functions is work [28]. The author details a large variety of

statistical hypotheses with different types of samples, as well as methods for

assessing process suitability and decision-making based on control charts.

The peculiarities of the application of theoretical distribution laws to

estimate the reliability of technical systems with different types of failure

processes are described in [29]. Also in this paper, fundamental deductions

on the transformation of recovery functions are given.

Design methodology with regard to the reliability of mechanical objects

is elaborated in [30]. The author describes the field of failures caused by fatigue

failure due to cyclic loading, breaking down catastrophes and mass failures

that have occurred in the history of global industry. Numerous schematic

illustrations are provided to complement the methodology and identification

of failure mechanisms. A special emphasis is placed on accelerated reliability

testing, which is an effective method of determining the lifetime of products at

the lowest cost, up to the production phase.

The theoretical foundations of technical systems maintenance as well as

aspects of mathematical models implementation for estimation of serviceability

indicators are presented in [31]. The work contains both description of basic

concepts of reliability theory and optimal models of object operation according

to durability indicators.

Human Reliability Assessment (HRA) has gained a significant place in

the field of reliability and safety in recent years. This section describes the

assessment of the human factor impact using quantitative and qualitative

methods. A systematic approach covering many aspects of human factors

influence is presented in [32]. Because of the increased hazards and

environmental impact of the nuclear industry, this topic is dealt with in detail,

both with meaningful examples of nuclear accidents on the International

Nuclear and Radiological Event Scale (INES) and in terms of the basic tools

of the logic and probabilistic approach of reliability theory. The work of the
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same author [33] is of great value for applications in the field of transport

systems. The role of personnel and passenger errors in the operation of various

types of transportation facilities is of great importance, so the methods and

experiences described in this monograph have potential for development in the

field of reliability assessment of rolling-stock components.

1.1 Basic Concepts

Here are the basic concepts and terms of reliability theory used in this

paper of this paper. The list is based on standard [34].

Dependability is a property of an object to retain over time, within

prescribed limits, the values of all parameters that characterise the ability of

the object to perform the required functions in the specified modes, conditions

of use, maintenance strategies, storage and transportation.

Remark. Dependability is a complex property which, depending on

the purpose of the object and its conditions of use, may include reliability,

durability, maintainability and storability, or certain combinations of these

properties.

Reliability is a property of an object to remain in serviceable condition

continuously for a certain time or runtime under specified modes and conditions

of use.

Maintainability is a property of an object which consists in its adaptability

to maintain and restore the serviceability of the object by means of maintenance

and repair.

Recoverability is a property of an object which consists in its ability to

recover from failure without repair.
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Durability is a property of an object to remain in serviceable condition

until a limit state is reached under an established system of maintenance and

repair.

Storability is a property of an object to retain, within specified limits, the

values of parameters that characterise the ability of the object to perform the

required functions during and after storage and/or transportation.

Perfect (flawless) state is a state of an object in which all the parameters

of the object meet all the requirements set out in the documentation for that

object.

Imperfect state (flaw) is a state of an object in which at least one

parameter of the object does not comply with at least one of the requirements

set out in the documentation for that object.

Up state condition is a state of an object in which the values of all the

parameters that characterise its ability to perform a given function meet the

requirements of regulatory and technical documentation.

Remark. Lack of necessary external resources may hinder the operation

of a facility, but this does not affect the facility’s stay in an operable state.

It is also worth noting that a technical object may be defective

but still operational. For instance, the presence of a defect (deformation,

corrosion) indicates non-compliance with certain requirements of the technical

documentation, but does not affect the performance of the given functions.

Down state condition is a state of an object in which the value of at least

one of the parameters that characterise the ability of an object to perform a

given function does not comply with the requirements of the documentation

for that object.

Remarks.

1. For complex objects it is possible to divide their down states. In this

case, partially down states, in which the object is able to partially

perform the required functions, are separated from the set of down

states.
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2. A flawless object is always up state, a flaw object can be either up

state or down state. An up state object may be up state or flaw, an

down state object is always flaw.

Failure is an event consisting in the disturbance of the operable state

of an object.

Remarks.

1. Failure can be complete or partial.

2. Complete failure is characterised by the object moving into an

inoperable state.

3. Partial failure is characterised by an object moving into a partially

inoperable state.

In [1] a failure is formulated as an event, after the occurrence of which,

the output characteristics of the hardware are out of acceptable limits.

Sudden failure is a failure characterised by a sudden transition of an

object from an operable state to an inoperable state.

Degradation failure is a failure due to the natural processes of ageing,

wear and tear, corrosion and fatigue, provided that all established rules and/or

standards of design, manufacture and operation of the object are respected.

Operating time (runtime) is the duration or workload of the facility.

Remark. Runtime can be a continuous value (operating time in hours,

kilometres travelled, etc.) or a discrete value (number of operating cycles,

starts, etc.).

Restoration time is the time spent directly on the operation of the

facility’s recovery.

Restoration is a process and event of moving an object from an inoperable

state to an operable state.

Remarks.

1. Restoration as a process is characterised by the operations and

duration of time from the moment a failure occurs to the moment

the object is restored to an operable condition.
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2. Restoration as an event is characterised by the moment at which an

object is restored to an operable state after a failure.

(Instantaneous) failure intensity is a limit of the ratio of the probability

of failure of a recoverable object in a sufficiently short time interval to the

duration of that interval, tending towards zero.

Restoration rate is the conditional probability density of recovery of an

object’s operable state, determined for the time point in question, assuming

that the recovery has not been completed before that point.

Redundancy is a way of ensuring the reliability of a facility by using

additional means and/or capabilities beyond the minimum required to fulfil

the required functions.

Dependability specification is the establishment of quantitative and

qualitative requirements for the reliability of a facility in the normative and

technical documentation.

Remark. Dependability specification includes selection of a nomenclature

of standardised reliability indicators; establishment and feasibility study of

reliability parameters of an object and its components; setting requirements

for accuracy and reliability of initial data; determination of criteria of failures,

damages and limiting states; setting requirements for reliability control methods

at all stages of the object life cycle.

Specified dependability measure (indicator) is a reliability index, the value

of which is regulated in the normative and technical documentation of a facility.

1.2 Organisation of Reliability Program in Enterprises

Virtually every manufacturer struggles to expand and maintain market

share in its industry. The quality and reliability of a product are competitive

features for this purpose. At the same time, achieving a certain level of reliability
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must be optimally matched to the costs involved. One of the ways of realising

this is competent planning of reliability work at all stages of the technical facility

life cycle [35]. The cumulative approach to the reliability assurance program

at different stages of project creation is both rapidly being implemented at

modern production [36] and mentioned by authors of theoretical works in the

early years of the development of this field [37]. Reliability measures are not

independent of each other: they are integrated into the engineering design in

stages and contribute to the optimal completion of each stage of the life cycle.

The multifaceted approach to enterprise project implementation in an applied

and theoretical form is described in [38]. The following tasks and stages are

not exhaustive, it is one possible way of organising the work on the reliability

of a technical system.

This section presents a system for building and ensuring reliability. It

takes into account all stages of the product life cycle. Its functional structure

is shown in Figure 1.1. Each stage/block has its own meaning, and as a whole

the scheme gives an idea of the general algorithm for ensuring reliability and

optimisation of production processes, taking into account this most important

factor. Detailed description and filling of the stages is given in the following

sections of the thesis.

The reliability building system developed in this study can both be

applied partially at different stages of project creation in the product life

cycle direction (see Fig. 1.1) and be used to model functional relationships

between the fundamental areas of reliability assessment when forming a complex

algorithm.
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Figure 1.1 — Stages in applying the methods of this study to the various stages
of a technical project

Separately, each of the sections can be applied to other reliability tasks

at different stages of the project. All the reliability processes to which the

methods developed in this study apply are shown in Figure 1.1 in the sequence

of project phases.

Schematically, the main blocks of reliability management, which are

described sequentially in the chapters of this study, are shown in Figure 1.2.

The initial stage is Product planning. In Figure 1.1 this stage is marked

as Block №1:
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1. Organising a reliability team: the first step is to review the project

with several units. This will help to build the reliability management

processes of the project, taking into account both reliability analysis

and design factors, manufacturing and maintenance technology,

testing, operation, and market research.

The interrelationship of reliability bureaus with other structural units

of manufacturing companies is discussed in [7].

2. Quality function deployment (QFD). Competition is forcing

manufacturers to produce systems which meet customer requirements

as closely as possible, also in terms of reliability. QFD enables

important customer expectations to be highlighted and transformed

into technical requirements. The design, production and verification

of the project are then based on these expectations.

3. Analysis of historical reliability data: collection and analysis of

reliability data of peer products. This procedure makes it possible to

identify problems in the operation of previous generations of systems,

whether the product to be developed will have similar features and to

find opportunities for improvement.

4. Reliability planning and specification: establishing an equilibrium level

of reliability. The reliability team determines the reliability objective

value by comparing all factors, taking into account economic feasibility

and the developed reliability program.

The next step in terms of reliability performance is Design and

development. This block of tasks allows to take into account potential failures

in the use of the developed object and to ensure its robustness against them.

Let’s review the main options for reliability analysis at this stage.

1. Reliability modelling: representation of the architecture of a technical

object. Most often, the logical relationships are represented in the

form of reliability block diagrams. An application of this approach

is presented in Chapter 2.
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2. Reliability allocation: reliability objective value set in the product

planning phase must be correctly accounted for in the subsystems and

elements. The reliability of a system is expressed as a function of the

reliability of its constituent components, and this relationship must

be correctly established according to several criteria: the individual

technical characteristics of each element and their logical relationship

in terms of functioning as part of a complex system.

The problem of reliability distribution is addressed in the design of any

complex system. In particular, when specifying standardised reliability

parameters for large rolling-stock units (railway vehicles, wagons, etc.),

it is necessary to take into account the inclusion of rolling-stock

components in the overall structure of an enlarged object. An example

of such a task is discussed in Chapter 2. An approach to this step

based on a non-linear programming problem, where the end goal is a

function minimum of some technical and economic indicator, is given

in [39].

3. Reliability prediction: A project design calculation is usually performed

to compare several design variants of a product under development

in terms of reliability performance. This step is often referred to

as «reliability forecasting» because of the fact that the values of

reliability characteristics at the initial stage are carried out with a

certain degree of uncertainty. This process is quite variable in methods.

Some manufacturers use outdated but popular approaches in the form

of manuals on failure rates (data have been collected for different

types of components since the mid-twentieth century). In this case

an exponential distribution of any type of component in a complex

system is usually assumed and total failure rates are constructed by

summing up the failure rates of its constituent components.

At the same time, a large number of works are devoted to theoretical

distribution laws for evaluating empirical failure data. The collection
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of operational data from many technical devices has made it possible

to identify groups of systems that can be aggregated according to the

change in failure behaviour over time [40]. Examples of such grading

are shown in Figures 1.3 and 1.4.

Figure 1.3 — Options for changing the failure rate parameter for wear and tear
failure types

4. Design failure mode and effects analysis (DFMEA): proactive tool to

detect and correct design flaws by analysing possible failure modes,

effects and mechanisms, followed by a recommendation for corrective

actions. This analysis is a cross-functional approach to the reliability of

the designed object at this stage of the project. FMEA was one of the

first systematic methods of systems failure analysis. This method was

developed by reliability analysts in the late 1940s to identify problems

in military systems prematurely.

5. Fault tree analysis (FTA): logic diagram showing the relationship

between a potential failure in a system and its causes. The causes

at the lowest level are called basic (root) events and can be component

failures, environmental conditions, human errors and normal events,
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Figure 1.4 — Options for changing the failure rate parameter for random failure
types

that is, events that are expected to occur during the lifetime

of the system. FTA was introduced in 1962 at Bell Telephone

Laboratories in connection with a safety assessment of the Minuteman

intercontinental ballistic missile launch control system. FTA is one

of the most frequently used methods in risk and reliability research.

As quantitative inputs for this analysis, probabilistic characteristics

for facility elements (failure and recovery rate parameters) and

events that are part of the hierarchical tree structure are used. The

final quantitative assessment of product reliability depends on these

characteristics. The methods and approaches presented in Chapter 3

allow to adequately determine these characteristics on the basis of data

from already operating facilities.

6. Life cycle costs (LCC): calculation of the costs that are expected over

the life cycle of an asset. The term refers to all costs associated with

the development, acquisition and ownership of an asset. A very strong

emphasis in the customer’s analysis of these calculations is placed on
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the costs associated with the reliability of the product: planned and

unplanned costs. Scheduled costs are related to the maintenance of the

asset (inspection, diagnostics, preventive maintenance, lubrication).

Optimisation of costs for this item is presented in Chapter 5.

Unplanned costs arise from failures in operation: they are associated

with both the direct replacement of the defective element, and with

the consequences of failure (fines, reduction in the potential profit from

the operation of products). The algorithm for reducing this type of

cost is made up of the models presented in Chapters 2, 3, 4, 5. First,

the indicators per node are correctly set in the design calculation

based on the statistical criterion (Chapter 3). Then, based on the

predicted time series values for each node, a quantitative estimate

of failure-free performance is generated (Chapter 4). Based on these

values and the optimum preventive maintenance time in Chapter 5,

the replacement periods of the nodes are determined using dynamic

programming apparatus.

7. Accelerated reliability and/or durability testing: in today’s competitive

environment, the time allocated to each of the project phases is sought

to be reduced in a reasonable manner. Testing is one of these processes.

As products become more reliable as technology advances, degradation

failure research is more difficult to carry out because a large number

of hours are required to simulate the ageing stage. Ignoring testing,

although it will reduce costs during the verification phase of the

project, may cause much higher costs in the subsequent use of the

facility [41].

8. Review of the design by reliability characteristics. There should be

several checkpoints in the reliability assurance program at which the

design is reviewed for a number of characteristics. The performance

of these revisions makes it possible to assess whether, and if so why,

the reliability performance objectives are being met. If necessary, the
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cross-functional analysis team should develop measures to improve

reliability.

The next step is to check that the product being developed meets the

target reliability requirements. This step decides how the product will be

manufactured. Let’s look at the main processes involved in this step.

1. Compliance test. The objective of this stage is to test the product

in a minimum amount of time and with a small sample size for

compliance with the specified (standardised) values. For this purpose,

special programs and methods are developed for various types of tests,

calculating the sample size, the supplier’s and the consumer’s risks.

Statistical experiment planning [42], [43] are used to conduct tests

competently.

2. Analytical reliability verification. It can be too expensive and time­

consuming to carry out expensive tests in several phases of a project.

In such cases, if adequate mathematical models are available that

reflect changes in the product during its life cycle, verification can

be performed virtually at this stage. These approaches include: finite

element analysis, computer simulation (creating a digital twin) and

numerical calculations.

3. Process failure mode and effects analysis (PFMEA). Previously there

was a failure mode and effects analysis of potential design failures, but

now the same procedure is performed for the manufacturing process.

This work is implemented to ensure the quality of safe assembly

operations, minimising the risk posed by the component manufacturing

process and product assembly [44].

1. Process control plans and charts. In industrial statistics, there is

often an emphasis on identifying process variability. This is because

manufacturing variability increases the risk of «infant mortality»: a

period of high failure rates early in the life of an object. To minimise

the cost of early failures due to variability in manufacturing, process



28

control plans and maps are developed for critical operations. Also

called Statistical Process Control (SPC), this trend was started by

Walter Schuchart, who in 1924 dealt with the variability of lamp

performance for the AT&T corporation [45].

2. Detection of latent defects. Many technical objects contain internal

defects which can be identified by special methods. If such samples

are sent to the customer, they will fail at an early stage. In order

to immediately identify such items, manufacturers use 5 types of

screening, and the interpretation of the results is also done using

industrial statistics.

3. Acceptance inspection. This stage decides the rejection/acceptance of

a batch of products based on various measurements. If batches that

do not meet the specified specifications are not rejected, defective

products will cause customer dissatisfaction and adversely affect future

performance.

The next step starts the direct operation of the technical system. This

step is usually accompanied by a large information load: fast tracking of failures

during the running-in period, handling of customer complaints, verification of

compliance with reliability requirements for purchased components. However,

this phase is very important for using primary data about the behavior of the

technical object for future reliability management activities. Let’s take a look

at the main components of this phase.

1. Reliability assessment during initial field usage. The information to

be processed for the calculations must be as detailed as possible:

the type of failure, the external conditions, the load level, the exact

start time of the failure, and the repair time must be known. This is

further complicated by the fact that the maintenance personnel are

only getting acquainted with the new object, and the information is

often distorted by the large number of intermediate links before it
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is received by the reliability specialist. This problem has been partly

addressed in [8], [6].

2. Analysis of warranty costs. In order to calculate product life cycle

costs, it is necessary to understand how the actual warranty costs

correspond to those predicted in the LCC design phase. In addition,

a rapid and high-quality generation of corrective actions will help to

optimise this type of cost. Correct processing of failure statistics as

discussed in Chapter 3, constructing an accurate forecast of failure

rates for future periods of use as proposed in Chapter 4, and accounting

for human error in repairs using the algorithm in Chapter 5 can

minimise warranty costs at this stage of the project.

3. Reasoning of reliability calculations and list of corrective measures

for the customer. All activities in the controlled operation phase

are coordinated between several companies. In the rail component

industry, the manufacturer, the customer and the operating

organisation are often the main actors in the dialogue. The models,

methods and approaches used must be adequately justified so that all

parties can agree on various technical solutions.

1.3 Calculation of Failure-Free Parameter of Recoverable Systems

on Markov Models

For a long time in the history of industrial development, the various

components of technical products were manufactured almost individually –

at production sites on a smaller scale than the current ones. The increase

in mass production and the build-up of industrial capacity has led to the

need to standardise components, which has only relatively recently led to the

ability to reliably estimate component failure rates due to the accumulation of
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data on the repeatability of failures of each component type. This process is

accompanied by an ongoing exchange of information between the manufacturer

and the customer, leading to the development of new methodologies for the

evaluation and verification of reliability indicators.

In recent years, there has been a development of interaction between

suppliers and customers of rolling stock components. This makes it necessary

to consider reliability analysis from both the technical system designer and the

operating organisation. As a consequence, the task of calculating a failure rate

for a set of doors has arisen, although it has always been a per-unit calculation.

Chapter 2 looks at a number of structural reliability diagrams that reflect

the way the doors function as part of a wagon. Structural reliability analysis

methods have long been used for complex technical systems. This method

helps to show the logic of interconnection of component parts and product

functioning and to modify the system: to complicate or simplify it in order to

eliminate the effect of excessive redundancy. However, this type of calculation

usually assumes that the failure mechanisms of the components in question

operate independently of each other – the failure of one element does not affect

the functioning time of another. Such an assumption cannot be applied to

the organisation of an electronic component structure because, for example, a

control unit failure could overload the gearmotors. As a consequence of this

fact, a shift from structural diagrams to Markov analysis was made in order to

calculate the reliability of rolling stock components. Structural studies based

on graph theory are discussed in [39]. A detailed application of Markov analysis

for various reliability purposes is given in [46]. The results of this approach are

described in Chapter 2, published in [5].



31

1.4 Analytical Criteria for Comparing Reliability Characteristics

of Two Samples

In reliability theory and industrial statistics, the application of statistical

hypothesis testing criteria plays a major role. This part of the study applies

to all technical system development blocks from scheme 1.1. This is due to a

number of advantages:

1. System reliability assessment. Statistical criteria allow to define

many characteristics necessary for reliability calculation: groups of peer

units, laws of distribution of operating time before failure, operational

characteristics, repair and maintenance conditions, intensity of object

use and many other factors, required to provide the necessary level of

technical system reliability.

2. Decision-making. Often at different stages of the product life cycle

it is necessary to find the optimum maintenance, repair or upgrade

strategy. This requires a comprehensive approach to analysis, including

a good comparison of different statistical data based on statistical

criteria. This is due to the fact that reliability is an interdisciplinary

field, and an expert opinion on an issue may not be sufficient for making

a decision.

3. Quality improvement in production. Statistical criteria for

hypothesis testing can identify bottlenecks at various stages of the

production process, reduce rejection rates and identify key factors

affecting the quality of manufactured products.

4. Economic effect. Hypothesis testing helps to identify suitable

component suppliers, determine appropriate product destinations, and

rule out adverse factors in the operation of technical systems.

Because of these factors, Chapter 3 analyses the recommended statistical

criteria in reliability theory [15], [22], [28], [37], [47], [48], and a wider range of



32

criteria [49], [50], [51] are considered. These hypothesis testing methods belong

to several types of classes and can be applied for different purposes. We present

a new type of nonparametric criterion, not previously prevalent in the reliability

analysis of technical systems of the category «location-scale» – a simultaneous

test for equality of central tendency and variance parameters. It has been tested

on variable reliability problems and its results have shown the priority of the

criterion by several characteristics.

1.5 Predicting Reliability Based on Time Series and Survivability

The most common approach in reliability theory is to refine probabilistic

analysis methods by applying theoretical distribution laws. After identifying

the form of the distribution law, several numerical characteristics of the

corresponding theoretical distribution of the reliability function are calculated.

An important advantage of this approach is the simplicity of calculations and

not very difficult assessment of the reliability of the obtained results. On the

basis of these methods of statistical evaluation of reliability properties one can

find out whether or not the chosen theoretical distribution law of mean time

between failures contradicts the empirical data. Most often the set of statistical

data on failures of components and assemblies of access systems in train

cars is relatively insignificant. Often, even well-studied components of rolling

stock can behave differently from the expected theoretical distribution due to

a number of factors: new operating conditions, installation errors, incorrect

compliance with operating instructions, etc. This imposes restrictions on the

use of theoretical laws of distribution of operating time between failures when

prescribing measures for repair and improvement of reliability of elements and

systems as a whole. In other words, asymptotically during the life cycle of

an object we can approximate its reliability by some theoretical distribution
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law, but in the short term, when some factors affect it during periods of

short duration (months and quarters), their applicability for prediction is very

limited.

The application of theoretical distribution laws is of great importance

in reliability theory. The exponential distribution law is particularly common.

The use of this approach greatly simplifies statistical processing of both bench

and in-service test results. However, an important limitation is its suitability

only for aging-free systems in the period of «normal operation», when random

failures prevail (Fig. 1.5). At the same time, some authors [52] say that this

type of failure distribution is not typical for software reliability, due to the fact

that they are usually caused by design flaws. Accordingly, the period of «normal

operation» in this case cannot be approximated in the same way as in technical

systems, and the exponential distribution law for this type of problems has a

number of limitations.

Figure 1.5 — Options for changing the failure rate parameter for wear and tear
failure types

The exponential distribution is not suitable for describing the runtime

of products in the presence of in-service failures or in the event of a period

of wear and tear [29]. In addition, with the changing component composition

of a complex technical system, the general patterns of behaviour of the

whole product during even normal operation change, so the application of the

exponential distribution is often limited even in a given part of the lifecycle
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of many products [16]. Moreover, there are studies that suggest that the

widespread use of this type of distribution law is a major cause of inadequate

solutions to reliability problems. This is particularly true for predicting the

durability of technical objects [23]. In particular, in [13] an example is given that

works that are devoted to testing hypotheses about the type of distribution law

deserve special attention, because very often errors occur due to the assumption

that an exponential law is applied for the object in question, when in fact the

Weibull distribution law takes place.

There are a number of computer programs for reliability and security

analysis, both domestic and foreign. One of the most common software products

of this type is RAM Commander. In spite of an extensive set of tools for

reliability research (reliability block diagrams, database of reference rates

of failures, graphs of states and transitions, trees of failures and events),

the given software complex excludes possibilities of short-term forecasting of

reliability indicators taking into account various influencing factors (season,

change of maintenance periodicity, changes of fleet, etc.). In this case short­

term forecast of reliability indicators is a necessary auxiliary tool for planning

costs of corrective measures, determining production load, optimal allocation

of resources to components of one system, which behaviour in time significantly

differs. This problem is particularly acute at a time of rapidly changing

conditions of industrial sector development. At the moment the issues of

technical condition prediction and reliability are still little used in applied

engineering practice. Although a large number of theoretical models are

available, few of them are actually applied in practice.

To solve the arising problem of short-term forecasting of failure rates for

automatic door components in Chapter 4, an analysis was carried out to select

a model for predicting the parameter of the failure rate of a given component

of a Moscow commuter train. The Holt – Winters method was selected as the
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forecasting method after a number of validations of other models (Brown,

Holt) [53], [54].

The application of the time-of-life analysis apparatus is described in

great detail in [55] and [56]. This type of study belongs to one of the newer

areas of statistical analysis and is gaining in popularity, expanding the fields

of application. Examples of implementations can be found on its basis such

as predicting the probability of customer departure, estimating the rate of

patient mortality, identifying factors affecting uptime at a certain stage of the

life cycle, and much more. This is because Survival Analysis is a statistical

technique that is used to analyse the time to a particular event, such as the

failure of a technical system. This method is widely used in reliability theory

to determine the reliability of a system and to estimate the probability of its

failure in the future.

The basic idea of survivability theory is that a system can "survive"or

fail at any point in time, and the time to failure can be different for each

system. The purpose of time-to-failure analysis is to determine the reliability

characteristics of a system, such as mean life, mean time between failures, etc.

Survivability theory is well applicable in the field of reliability analysis

because it takes into account the time to failure and not just the fact of failure,

which allows us to estimate the probability of future system failure [40]. In

addition, survivability theory allows us to account for data censoring, which

occurs when the time to failure is unknown for a number of objects in a sample.

Thus, survival theory is a powerful tool for analysing the reliability of

technical systems and estimating the probability of their future failure.

In Chapter 4, elements of survival theory are applied to optimise time

series parameters. As a result, a model for short-term prediction of the failure

rate parameter based on the Holt –Winters method is built, whose adaptation

parameters are derived from Kaplan –Meier estimates.
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As a result, it is possible to determine whether an entire technical system

(wagon doors) will meet the reliability requirements of an enlarged system

(wagon/unit) on the basis of the predicted unit values, using the method for

determining the normalised reliability figures proposed in Chapter 2.

1.6 Optimisation of System Maintenance with Consideration to

Human Factor

Because technical systems are built, assembled, installed and subsequently

operated by humans, it is impossible to exclude the human influence on

reliability. Human error can affect the reliability and safety of a technical system

in different ways. Some of them will manifest themselves quickly, some of them

will appear en masse after some time of operation of the object, and some

of them will appear with a constant frequency. Besides, the consequences of

various types of errors are very different in different industries. For example,

an incorrect tightening torque on a bolted connection can cause misalignment

and noise in one instance and the removal of a vehicle from service in another.

This area is a separate block of reliability analysis – Human Reliability

Analysis (HRA). It was developed around the middle of the 20th century

because of the development of high-risk systems (aviation, rocket science,

military industry).

Work [7] analyses the reliability links with other structural units, as each

category of allied professionals contributes to the reliability of the future system

during the product design and maintenance phase.

Scientists in fields such as biometrics, psychology, medicine and sociology

are mainly involved in research on the «human-machine» relationship. Together

they can be used to create models for evaluation, management and optimisation

of reliability. For example, [27] gives examples of models, which could be used to
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describe the performance and reliability share of human activities. The author

mentions that this component varies according to a number of factors: from

physical and psychological components to the level of adaptability to the work

performed.

A detailed explanation of HRA in the field of transport systems is given

in [33]. The author describes the basic tools of reliability analysis, which is based

on the «human-machine» relationship in the railway and shipbuilding industry.

In addition, the monograph describes a wide range of proactive measures to

reduce human errors in these industries.

People also play a key role in nuclear power generation, and their impact

on reliability has become an important subject for study because human error

can lead to disasters such as those at Three Mile Island (1979) and Chernobyl

(1986). In addition, studies by Licensee Events Reports (LERs) and the Nuclear

Regulatory Commission (NRC) have shown that about 65% of nuclear system

failures are directly or indirectly due to human error. For this reason, a major

contribution to the development of HRA is made by this industry [32].

The challenge of balancing system reliability against the cost of

maintaining it is one of the most popular challenges in today’s industry.

A deliberately high level of reliability can result in enormous and unjustifiable

maintenance costs. Conversely, a low level of reliability may not incur expensive

maintenance costs, but the consequences of such a failure can involve both

human life and health hazards as well as huge economic costs. In high-risk

industries, the optimum level of cost is necessarily also considered with safety

in mind. In [57], for example, the author not only talks about the importance

of the human factor in aircraft fail-safety, but also suggests that a high level of

safety must be factored into the costing of aeronautical engineering projects.

After all, safety depends to a large extent on how humans interact with the

technical system.

Thus, the task of developing a model for finding specific maintenance

costs that takes into account both the characteristics of the technical system
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itself and the influence of the human factor on it arises. Optimisation problems

for determining the maintenance interval have been formulated [16]. The

development of this model is presented in a more recent study [58]. The model

is also partly given in [52] for evaluating control system maintenance problems.

Based on the analysis of existing models for finding the optimal period of

preventive measures and the analysis of the reliability domain due to human

factor, in Chapter 5, a new model is proposed. It is based on the construction

of a specific cost function based on conditional probabilities considering human­

caused failure (based on the Weibull distribution function model [33]) and

technical-caused failure in the inter-preventive period (based on the exponential

distribution [37]).

The second objective in this part of the study is to find the optimal

replacement time for a system component based on the accumulation of

the method already proposed in Chapter 5 with the models and algorithms

developed in Chapters 3, 4:

a Determination of missing node data for the analysis (estimated

operating profile, recovery time, list of peer nodes, key differences in

operation of similar systems, etc.) based on the statistical criterion from

Chapter 3.

b Predicted failure-free value for the near future based on the model

proposed in 4.

c Calculated value of optimum preventive maintenance time using the

algorithm developed in Chapter 5.

Based on these system reliability characteristics, a function is constructed

to determine the optimum replacement time for the component in question. This

will make it possible to determine the timescale for purchasing/producing this

type of component to ensure that the necessary spare parts are available for

the initial operational period in the case of new development, and to determine

the life cycle cost of the product.

The results of this study are as follows:
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1. An algorithm for determining the optimum preventive maintenance

period for a technical system has been developed.

2. The behaviour of the resulting cost function as a function of the

Weibull distribution parameters is investigated.

3. A model for calculating the optimum replacement time is proposed,

taking into account the results of this study described in Chapters 3, 4.

1.7 Chapter Conclusions

This chapter analyses the sources that have been used to select and build

models for reliability analysis and prediction. The topic of reliability analysis

encompasses a wide range of mathematical methods used in different fields –

engineering, as well as economic and social fields, and biomedical statistics. This

made it possible to compare the effectiveness of the methods used, to study the

literature of diametrically opposed fields, and to trace the evolution of these

fields over the last half century. In addition, a general overview of the methods

used in each of the chapters is provided, as well as a review of the specifics of

their applications. The functional relationship of these chapters to each other

is also given, taking into account the stages of development illustrated in the

diagrams 1.1, 1.2.

Work [7] analyses the links of reliability with other structural units.
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CHAPTER 2. Estimation of Door Carriage Set Failure Rate

Parameter Based on Structure Diagram and Markov Process

Analysis

2.1 Initroduction

The current challenge is to ensure a high level of rolling-stock reliability.

Passenger safety is directly related to the assessment of rolling-stock component

failure rates. Suppliers of components for passenger coaches are required to carry

out reliability assessments over a period of time agreed with the customer (the

rail coach manufacturer). Factories, in turn, report to transport companies by

evaluating the reliability performance of their products, i. e. rail coaches. Hence

there is a difference in approaches to the quantitative assessment:

1. Manufacturers estimate values per coach, while their suppliers

calculate figures for individual units and components;

2. The methodology for assessing reliability performance for coaches

differs from the one for rolling-stock components due to the different

levels of operation and design. As a consequence, an exponential law

will always be applicable to a coach when assessing its reliability, while,

for example, for footboards, the exponential, normal, and Weibull

distribution laws may be used, depending on the design.

Passenger coach manufacturers consider the reliability figures for the

entire coach door set (4–6, depending on the model) according to the following

rule: failure rate (or MTBF – Mean Time Between Failures) of the door is

multiplied by its number in the coach, which, in terms of structural reliability,

indicates an elementary sequential structure, where a door failure equates to

a coach failure, which is debatable.
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A structural approach has been considered to correctly determine the

functioning of the doors within a coach, taking into account the hierarchy of

connections. The Reliability Block Diagram (RBD) is a graphical representation

of the functional state of a system. The RBD shows the logical relationship

of the functioning components necessary for the successful operation of the

system [59]. However, RBD based modelling methods are designed for non­

recoverable systems where the order of failure occurrence is irrelevant. For

systems where the order of failure occurrence must be taken into account and for

recoverable systems, other methods such as Markov analysis are more suitable.

In the research process, the structural approach was used to represent the overall

system functioning, with the help of which a transition to the state transition

diagram for the Markov analysis [59] was carried out, taking into account the

recoverability of the system.

2.2 Problem Formulation

The aim of the work is to calculate the failure rate of a coach with a 6-door

set based on the analysis of possible reliability structural diagrams, followed by

transition to state transition diagrams. In general, at the initial stage, in a

step-by-step manner it is presented as follows:

1. On the basis of the data on the algorithm of the doors functioning in the

car set, determine the key criteria affecting the failure-free operation

of the car set of doors.

2. Develop several options for structural reliability schemes.

3. Based on an interdisciplinary analysis, select the scheme that most

adequately reflects the actual conditions of functional inclusion in the

wagon and select the types of redundancy.
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4. Select the method of calculation to move from the reliability index

values for the elements of the scheme to the index for the whole system.

2.3 Reliability Calculation Based on the Logical and Probabilistic

Approach

The exterior doors are designed for the equipment of all types of passenger

coaches with a structural speed of up to 200 km/h (Fig. 2.1). The doors provide

a comfortable and safe environment:

– end doors – transition between coaches, side doors – entrance to the

coach and exit from the coach to the outside;

– no exposure to sudden changes in pressure and temperature;

– preventing dust and moisture from entering the coach;

– ensuring that the coach is soundproofed and thermally insulated in all

operating modes of the train.

Figure 2.2 shows the layout of the different types of doors in relation to

the maximum possible coach door set.

The structural scheme of rail coach door set reliability can be considered

in a variety of ways. The simplest representation is a non-redundant system,

where the failure of any element leads to the failure of the whole system. Then

the probability of failure-free operation is calculated according to the known

formula:

𝑃𝑐1(𝑡) =
𝑁∏︁
𝑖=1

𝑃𝑖(𝑡),

where 𝑃𝑖 – failure-free probability of the 𝑖-th element,

𝑁 – number of elements in the system.

A second possible representation of the structural diagram of the

reliability of a coach door set is a redundant system. Here we will consider

two variants:
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Figure 2.1 — Models of passenger coaches considered in relation to structural
reliability schemes:

A) model 61-4447 (non-compartment); B) model 61-4462 (compartment);
C) model 61-4460 (dining-car); D) model 61-4445 (staff compartment) [60]

Figure 2.2 — Passenger coach door arrangement scheme: 1 – electromechanically
operated side single wing door; 2 – manually operated side single wing door;

3 – electromechanically operated end single wing door

– reserving the manual door with a second manual door (Fig. 2.4a);

– reserving side automatic doors with manual ones (Fig. 2.4b).
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Figure 2.3 — Linear block diagram of coach door set reliability for a passenger
coach, where 𝐸𝑖 is an electromechanically operated door and 𝐵𝑖 is an end door

Figure 2.4 — Redundant block diagrams of coach door set reliability for a
passenger coach, where 𝐸𝑖 is an electromechanically operated side door; 𝐵𝑖 is

an end door, 𝐻𝑖 is a manually operated door

This results in two variants of a mixed system with element-by-element

redundancy of individual units.

The probability of failure-free operation with a redundant manually

operated door (Fig. 2.4a) is calculated:

𝑃𝑐2(𝑡) = 𝑃𝐵1(𝑡)𝑃𝐸1(𝑡)𝑃𝐵2(𝑡)𝑃𝐸2(𝑡)(1− 𝑃𝐻1(𝑡))(1− 𝑃𝐻2(𝑡)).

The probability of failure-free operation with electromechanically

operated side doors redundant with manually operated doors (Fig. 2.4b)

is calculated:

𝑃𝑐3(𝑡) = 𝑃𝐵1(𝑡)𝑃𝐵2(𝑡)(1− 𝑃𝐸1(𝑡))(1− 𝑃𝐻1(𝑡))(1− 𝑃𝐸2(𝑡))(1− 𝑃𝐻2(𝑡)).

Another possible approach to structural evaluation is to consider a coach

set as an «𝑚 of 𝑛» structure. A system of this type can be regarded as a variant

of a system with parallel connection of elements, the failure of which will occur

if less than 𝑚 elements out of 𝑛 elements (𝑚 < 𝑛), connected in parallel,

are operational.
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Figure 2.5 — Block diagrams «𝑚 of 𝑛» to assess reliability of passenger
coach door set, where 𝐸𝑖 – electromechanically operated door, 𝐸𝑖(𝐻) –
electromechanically operated door in manual mode, 𝐵𝑖 – end door, 𝐵𝑖(𝐻) – end
door with electromechanical drive in manual mode, 𝐻𝑖 – door with manual drive

Here are three options to consider:

– system «3 of 4», which is considered functional when doors 𝐻1, 𝐸1 and

𝐸2 are working (Fig. 2.5a);

– system «5 of 6», which takes into account the possible operation of

electromechanically operated doors in manual mode 𝐸𝑖(𝐻) (Fig. 2.5b);

– system «5 of 6», which takes into account the possible operation of

electromechanically operated side and end doors in manual mode

𝐸𝑖(𝐻) and 𝐵𝑖(𝐻) (Fig. 2.5c).

The two structures presented are mixed: sequentially connected or

element-by-element reserved end doors are added to the «𝑚 of 𝑛» structure.

Then, assuming all the elements that make up the «𝑚 of 𝑛» structure are

equally reliable, the probability of failure-free operation of the structure, shown
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in Figure 2.5a, will be equal to:

𝑃𝑐4(𝑡) = 𝑃𝐵1(𝑡)𝑃𝐵2(𝑡)
(︀
4𝑃𝑚(𝑡)

3 − 3𝑃𝑚(𝑡)
4
)︀
,

where 𝑃𝑚(𝑡) is an element of the «𝑚 of 𝑛» structure.

The probability of failure-free operation of the structure shown in

Figure 2.5b, under the same conditions, will be equal to:

𝑃𝑐5(𝑡) = 𝑃𝐵1(𝑡)𝑃𝐵2(𝑡)
(︀
6𝑃𝑚(𝑡)

5 − 5𝑃𝑚(𝑡)
6
)︀
.

Finally, the probability of failure-free operation of the structure shown

in Figure 2.5c, where both manual and automatic operations of the end door

are considered, will be equal to:

𝑃𝑐6(𝑡) = (1− 𝑃𝐵1(𝑡)) (1− 𝑃𝐵1(𝐻)(𝑡)) (1− 𝑃𝐵2(𝑡))×

× (1− 𝑃𝐵2(𝐻)(𝑡))
(︀
6𝑃𝑚(𝑡)

5 − 5𝑃𝑚(𝑡)
6
)︀
.

Let us estimate the failure rate for the structures shown in Figures 2.4b,

2.5a–c. The MTBF of the system can be represented as:

𝑇 =

∞∫︁
0

𝑃 (𝑡) 𝑑𝑡 =

∞∫︁
0

(︁
1−

(︀
1− 𝑒−λ𝑡

)︀𝑛)︁
𝑑𝑡.

Let’s perform a variable substitution:

1− 𝑒−λ𝑡 = 𝑥 =⇒ 𝑡 =
1

λ
ln

1

1− 𝑥
=⇒ 𝑑𝑡 =

1

λ(1− 𝑥)
𝑑𝑥.

Then:

𝑇 =
1

λ

∞∫︁
0

1− 𝑥𝑛

1− 𝑥
𝑑𝑥 =

1

λ

∞∫︁
0

−(𝑥− 1)
(︀
𝑥𝑛−1 + 𝑥𝑥−2 + ...+ 𝑥+ 1

)︀
1− 𝑥

𝑑𝑥 =

=
1

λ

(︂
𝑥𝑛

𝑛

⃒⃒⃒⃒1
0

+
𝑥𝑛−1

𝑛− 1

⃒⃒⃒⃒1
0

+ ...+
𝑥2

2

⃒⃒⃒⃒1
0

+ 𝑥|10

)︃
=

1

λ

(︂
1 +

1

2
+

1

3
+ ...+

1

𝑛

)︂
.

Thus, for the «𝑚 of 𝑛» structure we get:

𝑇 =
1

λ

(︂
1

𝑛
+

1

𝑛− 1
+

1

𝑛− 2
+ ...+

1

𝑚

)︂
. (2.1)
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By substituting numerical values into (2.1), Table 2.1 gives a range of

values for the failure rates depending on which structural reliability scheme

can be adopted for examination. The group of experts, dealing with this

type of doors at different stages of the life cycle, has adopted the «3 of 4»

scheme (Fig. 2.5a) for calculation.

Due to the fact that the logic-probabilistic approach, although quite easy

to calculate, does not take into account the door recovery process, the version

of estimating the failure rate using Markov processes was considered.

2.4 Reliability Calculation Based on Markov Random Processes

We evaluate the reliability parameters of the «3 of 4» structure with

end doors connected sequentially using Markov analysis. After defining the

state of the system, by means of transition probability densities λ and µ

known for the doors, we construct the state transition diagram for the given

structure (Fig. 2.6). The state labels here reflect the following information:

– identification «1» denotes an operable state and «0» denotes a failed

state;

– the six values per row are the identification of the failure/operational

status of each of the six doors in the graph states (the first 4 values

relate to the side doors of the car and the last 2 to the end doors).

The first state «111111»: all six doors are in working order at the initial

moment. The «011111» state indicates that the system has entered the phase

where the first side door has failed and the others (3 side doors and 2 end doors)

are functioning normally. The other states are interpreted similarly.

Next, we compose a system of Kolmogorov differential equations (2.2),

where the number of equations in the system will be equal to the number of
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Table 2.1 — Results of calculation of the failure rate for different rail coach door
set layouts

Scheme type Diagram representation
Failure rate λ,

1/km

Reserving side
automatic doors
with manual ones

λ𝑐 = 5,5566·10−6

System «3 of 4»
with end doors
connected
sequentially

λ𝑐 = 5,5566·10−6

System «5 of 6»
which takes into
account the
possible operation
of electro­
mechanically
operated doors in
manual mode

λ𝑐 = 7,88 · 10−6

System «5 of 6»
which takes into
account the
possible operation
of electro­
mechanically
operated side and
end doors in
manual mode

λ𝑐 = 6,7694·10−6

states. The initial data are single door failure rate λ = 1,667 · 10−6 1/km

and recovery rate µ = 0,041 1/km.
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Figure 2.6 — State transition diagram for structure «3 of 4» with end doors
connected sequentially (λ – failure rate, µ – repair rate)

Using MATLAB, we estimate the probability of failure-free operation of

the system. We obtain 𝑃 = 0.9917. This probability value is calculated for a

period equal to the service life of the doors in question.
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𝑑𝑃111111

𝑑𝑡
= −6λ𝑃111111(𝑡) + µ [𝑃011111(𝑡) + 𝑃101111(𝑡)+

+ 𝑃110111(𝑡) + 𝑃111011(𝑡) + 𝑃111101(𝑡) + 𝑃111110(𝑡)]
𝑑𝑃011111

𝑑𝑡
= − (5λ+ µ)𝑃011111(𝑡) + µ [𝑃011110(𝑡) + 𝑃011101(𝑡)+

+ 𝑃001111(𝑡) + 𝑃010111(𝑡) + 𝑃011011(𝑡)] + λ𝑃111111(𝑡)
𝑑𝑃101111

𝑑𝑡
= − (5λ+ µ)𝑃101111(𝑡) + µ [𝑃001111(𝑡) + 𝑃100111(𝑡)+

+ 𝑃101011(𝑡) + 𝑃101101(𝑡) + 𝑃101110(𝑡)] + λ𝑃111111(𝑡)
𝑑𝑃110111

𝑑𝑡
= − (5λ+ µ)𝑃110111(𝑡) + µ [𝑃010111(𝑡) + 𝑃100111(𝑡)+

+ 𝑃110110(𝑡) + 𝑃110101(𝑡) + 𝑃110011(𝑡)] + λ𝑃111111(𝑡)
𝑑𝑃111011

𝑑𝑡
= − (5λ+ µ)𝑃111011(𝑡) + µ [𝑃011011(𝑡) + 𝑃101011(𝑡)+

+ 𝑃110011(𝑡) + 𝑃111010(𝑡) + 𝑃111001(𝑡)] + λ𝑃111111(𝑡)

𝑑𝑃111101

𝑑𝑡
= −µ𝑃111101(𝑡) + λ𝑃111111(𝑡)

𝑑𝑃111110

𝑑𝑡
= −µ𝑃111110(𝑡) + λ𝑃111111(𝑡)

𝑑𝑃001111

𝑑𝑡
= −2µ𝑃001111(𝑡) + λ [𝑃011111(𝑡) + 𝑃101111(𝑡)]

𝑑𝑃010111

𝑑𝑡
= −2µ𝑃010111(𝑡) + λ [𝑃011111(𝑡) + 𝑃110111(𝑡)]

𝑑𝑃011011

𝑑𝑡
= −2µ𝑃011011(𝑡) + λ [𝑃011111(𝑡) + 𝑃111011(𝑡)]

𝑑𝑃011101

𝑑𝑡
= −µ𝑃011101(𝑡) + λ𝑃011111(𝑡)

𝑑𝑃011110

𝑑𝑡
= −µ𝑃011110(𝑡) + λ𝑃011111(𝑡)

𝑑𝑃100111

𝑑𝑡
= −2µ𝑃100111(𝑡) + λ [𝑃101111(𝑡) + 𝑃110111(𝑡)]

𝑑𝑃101011

𝑑𝑡
= −2µ𝑃101011(𝑡) + λ [𝑃101111(𝑡) + 𝑃111011(𝑡)]

𝑑𝑃101101

𝑑𝑡
= −µ𝑃101101(𝑡) + λ𝑃101111(𝑡)

𝑑𝑃101110

𝑑𝑡
= −µ𝑃101110(𝑡) + λ𝑃101111(𝑡)

𝑑𝑃110011

𝑑𝑡
= −2µ𝑃110011(𝑡) + λ [𝑃110111(𝑡) + 𝑃111011(𝑡)]

𝑑𝑃110101

𝑑𝑡
= −µ𝑃110101(𝑡) + λ𝑃110111(𝑡)

𝑑𝑃110110

𝑑𝑡
= −µ𝑃110110(𝑡) + λ𝑃110111(𝑡)

𝑑𝑃111001

𝑑𝑡
= −µ𝑃111001(𝑡) + λ𝑃111011(𝑡)

𝑑𝑃111010

𝑑𝑡
= −µ𝑃111010(𝑡) + λ𝑃111011(𝑡)

(2.2)
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Let us use the Laplace transform to calculate MTBF. To do this, we write

a system of equations for all operable states of a technical object [61] (2.2).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑃111111

𝑑𝑡
= −6λ𝑃111111(𝑡) + µ [𝑃011111(𝑡)+

+ 𝑃101111(𝑡) + 𝑃110111(𝑡) + 𝑃111011(𝑡)]

𝑑𝑃011111

𝑑𝑡
= − (5λ+ µ)𝑃011111(𝑡) + λ𝑃111111(𝑡)

𝑑𝑃101111

𝑑𝑡
= − (5λ+ µ)𝑃101111(𝑡) + λ𝑃111111(𝑡)

𝑑𝑃110111

𝑑𝑡
= − (5λ+ µ)𝑃110111(𝑡) + λ𝑃111111(𝑡)

𝑑𝑃111011

𝑑𝑡
= − (5λ+ µ)𝑃111011(𝑡) + λ𝑃111111(𝑡)

(2.3)

We apply Laplace transformations to obtain the numerical value of the

failure rate. For 𝑃 (𝑡) we have the following:

𝑃 (𝑧) =

∞∫︁
0

𝑃 (𝑡) 𝑒−𝑧𝑡 𝑑𝑡.

Generally speaking, the MTBF is

𝑇𝑖 =

∞∫︁
0

𝑃 (𝑡) 𝑑𝑡.

Since 𝑇𝑖 = 𝑃 (𝑧) at 𝑧 = 0, we can transform (2.3) given that the probability of

the first state at 𝑡 = 0 is equal to one and the probabilities of other states of

the system at 𝑡 = 0 are zero (the condition that the system is in an operable

state at the initial time), we obtain the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 = 6λ𝑇111111 + µ [𝑇011111 + 𝑇101111 + 𝑇110111 + 𝑇111011]

0 = −(5λ+ µ)𝑇011111 + 𝑇111111

0 = −(5λ+ µ)𝑇101111 + 𝑇111111

0 = −(5λ+ µ)𝑇110111 + 𝑇111111

0 = −(5λ+ µ)𝑇111011 + 𝑇111111

Thus λsyst = 3,331 · 10−6 1

km
when λ = 1,667 · 10−6 1/km and µ = 0,041 1/km.
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Thus, we obtained the value of the normalized uptime index λsyst =

3,331 · 10−6 for the car set of doors in the railcar based on the transition from

the selected structural scheme to the state transition diagram with further

Kolmogorov system solution and Laplace transformation. The calculated value

is three times less than the originally proposed value from the assumption that

the failure of any door equates to the failure of the whole car set of six doors.

Had this proposal been approved as a standardised reliability indicator, the

failure rate of the doors would have accounted for an unacceptable proportion

of potential failures. This could have led to an erroneous customer requirement

to underestimate the standardised indicator per door (instead of constructing

the type of functional interaction, changing the characteristics of the indicators

of the components that make up the system exclusively).

As a result of constructing an adequate structural diagram and calculation

on the basis of Markov analysis, it was possible to determine a correct

value of a standardised reliability index, which adequately reflects the failure­

free rate of the door set as a part of the wagon. The developed approach

with the corresponding calculated values was used for the reconciliation of

reliability indicators according to operational data between the customer and

the manufacturer. The methodology can also be adapted to the structural

diagrams and functioning algorithms for other modifications of products as

part of complex systems.

2.5 Chapter Conclusions

The chapter elaborates various structural schemes for calculating the

failure-free performance parameters of a passenger train door car set. In contrast

to the logic-probabilistic approach in determining the failure rate, the method

using Markov processes is a priority, as it takes into account the repair factor.
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Thus, the last value of the system failure rate is applicable for the considered

structural scheme of reliability «3 of 4» for further monitoring of the car door

set during the operational tests.

The developed method is an effective tool for the important product

planning phase (block №1 in figure 1.1). The definition of normative indicators

and the harmonisation of values has a significant impact on project reliability

for several reasons:

1. Since the exact operating and functioning conditions are not yet known

at the planning stage, a correct structural diagram with a further

calculation will allow the most detailed model version of the system

links to be shown.

2. In the case of a rough calculation of the normative values, an incorrect

reliance on this value will occur later on in the operation of the facility:

the actual values from the door results will be compared with the

normative value, which is knowingly over/underestimated as a result

of the simplified approach.

3. An inadequate value of the standardised safety factor can lead

to disagreements with the customer, resulting in extended project

completion times and possible erroneous changes to the safety values

of a system unit (door) in the technical documentation due to a lack of

correct representation of the structural links and functional algorithms.
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CHAPTER 3. Analytical Criteria for Comparing the Reliability

Characteristics of Two Samples

3.1 Introduction

There are a large number of application problems where empirical

information of various kinds, which is of a random nature, needs to be analysed.

In the field of reliability research a large variation of these problems can be

found. Here are examples of some of them according to the criterion of reliability

performance evaluation:

1. Is the newly delivered unit the same as one that has already been

tested in operation?

2. Has there been a change in the reliability of the control units since the

software upgrade?

3. Can a standardised reliability rating for an improved product be set

at the same value as the predecessor version?

Thus, one of the most important and common assumptions a researcher

must test is whether or not two samples belong to the same population. The

problem is usually solved by means of statistical criteria chosen by the expert

according to a number of determinants, depending on the type of problem

posed.

In the case where there is an understanding of the functional structure

based on available empirical data or expert judgement, the task is reduced to

testing the hypothesis of equality of distribution parameters. Empirical data

are obtained from the actual operation of the facilities or from test results. The

first option is a more reliable option for analysis, however, when developing

completely new technical systems, the second method is necessary for the

purpose of preliminary assessment of reliability. The fact that there is less
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confidence in conclusions based on test data often leads to a more careful choice

of method for statistical processing of the available information. For example,

if researchers know that the law of distribution of operating time before failure

of a technical product is normal, they often use Student’s 𝑡-criterion in case the

condition of equality of dispersions is observed. However, this criterion is not

quite correct when the number of outliers is large. If the variances are unknown,

it is possible to use the modified Student’s test, Welch’s test, Cochran – Cox

test, etc.

When these kinds of questions arise, the reliability analyst needs to make

a decision about the present state of the observed process, but there is no

predetermined right and only one solution. In any statistical study, several

types of errors are considered:

1. Type I error is an error that results in rejecting a true hypothesis 𝐻0,

provided it is in fact true («false alarm»). In reliability – the probability

of rejecting a workable batch.

2. Type II error is an error that results in 𝐻0 not being rejected even

though it is not actually true («missed detection»). The probability of

missing an unreliable batch of technical devices.

3.2 Application of Non-parametric Methods in Reliability

Analysis

One of the most popular trends in statistical hypothesis estimation

is the development and investigation of non-parametric methods. This is

due to the fact that, unlike parametric methods, they are more loyal

in terms of the necessary assumptions about the data, as well as due

to a simpler application algorithm. These factors explain their popularity

in application areas: biometrics, medical statistics, marketing, sociology,
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psychology, reliability, industrial analytics. In addition, the use of various

statistical software tools is increasing, which also facilitates the testing of

various statistical hypotheses.

For a detailed review of the different statistical hypotheses on bias and

scale, see Practical Engineering, Process, and Reliability Statistics [28].

Most methods for calculating reliability indicators are based on

approaches where the distribution law takes on a particular form. Most

often the exponential distribution law is used and less often normal, lognormal,

Weibull, etc. In this approach, parametric methods of hypothesis testing are

used, since it is assumed that the failure data are characterised by one or more

unknown population parameters (mean, median, standard deviation, etc.)

Accordingly, hypotheses are formulated as equations/inequalities with respect

to the unknown parameters related to the problem. The applicability of non­

parametric criteria depending on the type of analysis is presented in Table 3.1.

For example, the hypothesis of position may be formulated as equality

of means, and the hypothesis of scale – equality of variance. Thus, parametric

methods are based on a number of assumptions that sometimes unrealistically

characterise empirical data. This fact entails the following problem: critical

values for statistics are calculated according to an assumed distribution, and

when it is theoretically identified incorrectly (in terms of reflecting a real

process), this also causes inaccuracies in the interpretation of statistical test

results. In such cases, non-parametric methods that do not take into account

the true distribution of the data are used. Their use is appropriate when it is

not possible to observe the assumptions characteristic of parametric tests. For

these reasons, the use of non-parametric criteria is now widely used [62], [49].

When reviewing the reliability literature, the most common hypotheses

that can be observed are about the distribution law of the uptime. The most

common criteria are Kolmogorov – Smirnov, Cramer – von Mises. Information

on their applicability can be found in the basic fundamental reliability theory

literature of the 20th century [63], [15]. In addition, the same criteria are used in
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Table 3.1 — Applicability of non-parametric and parametric criteria depending
on the type of analysis

Analysis Type Non-parametric Criterion Parametric Criterion
Comparison of two
dependent samples

Wilcoxon signed-rank test 𝑡-test for dependent samples

Comparison of two
independent samples

Mann –Whitney 𝑈 -test
and two-sample
Kolmogorov – Smirnov test,
Cramer – von Mises test

𝑡-test for independent samples

Comparison of three
or more related
samples

Friedman test
Repeated measures, analysis of
variance (ANOVA)

Comparison of three
or more unrelated
samples

Kruskal –Wallis 𝐻 test
One-factor ANOVA analysis of
variance

Comparison of
categorical data

Chi-square test and Fisher’s
exact test

–

Comparison of two
ranked variables

Spearman correlation
coefficient

Pearson correlation coefficient

Comparison of two
variables, one of
which is of binary
type (discrete case)

Point-biserial correlation
coefficient

Pearson correlation coefficient

Comparison of two
variables, one of
which is of binary
type (continuous
case)

Biserial correlation coefficient Pearson correlation coefficient

Checking the
randomness of the
sample

Runs test –

more recent editions [48], [64], [47], [65], [66] and government standards [67]. The

importance of research into the development of statistical criteria for hypothesis

testing is also noted in [13]. The authors give the example that errors are very

common due to the assumption that an exponential law is used for the object

in question, when in fact the Weibull law of distribution is in place.

In reliability theory it is quite common to encounter data where it is

difficult to make assumptions about the distribution law due to insufficient
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samples. This happens both because of the short period of observation

of the test objects, and because of unreliable and incomplete data on

equipment failures. The most common non-parametric test is the Wilcoxon

test (Mann - Whitney). The same criterion, judging by a number of facts, is

described in GOST R MEK 60605-6-2007 «Criteria for checking constancy of

failure intensity and failure rate parameter» [68] as applied to large samples.

However, the Wilcoxon – Mann – Whitney criterion has a number of drawbacks,

which are extensively discussed in the statistical literature [69], [70].

The problem of applicability of the Wilcoxon – Mann –Whitney test is

found in many fields. In particular, in the field of mathematical psychology [71]

there have been studies which formulate a number of limitations for Student’s

and Mann – Whitney tests. In particular [48] only the Wilcoxon test for

comparing two samples is given.

In addition to comparing central trends, there is the task of comparing

variability. In particular, a strong emphasis on minimising and controlling

variance is realised in the area of industrial quality control.

However, there are also criteria for testing location and scale changes

together. Most often in the literature they are so called – «location-scale

tests». These methods are relevant because in many technical situations (as

in biomedical research), measures and modifications of designs, changes in

the maintenance and repair process, can lead to an impact on both the

location parameter and the scale parameter. Such verification methods exist, for

example, [72]. However, in terms of transparency and speed of implementation

of the calculation, this procedure is very difficult for practitioners to implement.

In the statistics literature, non-parametric tests for joint determination

of differences in location and scale are based on a combination of two tests:

one for the shift, and one for variability. Most often the combination is realised

by sum of squares of standardised test statistics, and this is the case with

the Lepage algorithm [73]. This rank test is the best known for testing the

«location-scale» hypothesis. It consists of a combination of Wilcoxon and
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Ansari –Bradley statistics. However, a number of recent studies in the last

decade have investigated the Cucconi test [69]. The criterion is rather obscure,

but attracts interest because, unlike other «location-scale» tests, it is not a

combined quadratic form combining a location-based criterion and a scale-based

criterion. While Lepage’s «location-scale» criterion was well known, Cucconi’s

criterion was published a few years earlier in an Italian economic publication.

Paper [50] provides for the first time exact critical values for this criterion,

as well as a detailed study for simulated samples from different families of

distributions. The solution presented by Cucconi differs in that, instead of the

quadratic form combining the shift and scale criteria, it implements the problem

using rank squares and counter-ranks. An important advantage is the fact that

to implement the Cucconi test, one has to compute the ranks of the observations

in the pooled sample, whereas in the Lepage algorithm, one has to compute the

Ansari –Bradley estimates.

One of the biggest problems in reliability assessment is insufficient data.

Often there are tasks to estimate the provisional reliability of a new product

when observations are available for a very short period of time. Objectives may

be formulated in different ways. Here are a few of them:

1. Can supplier A’s sensors be classified at the same level of reliability as

supplier B’s?

2. Are there significant differences in repair times at the repair plant №1

with those at the repair plant №2?

3. Can we say that after three months of using the new type of software,

there has been a change in the uptime of the underground doors?

4. Is there any difference in the daily mileage of locomotive traction cars

for March 2023 as compared to March 2022?

A number of these questions in the field of engineering analytics present

several difficulties: small samples for analysis and computational intensiveness.

In [50], an example of the application of several criteria to estimate

the difference in lung capacity of two small groups of subjects is provided.
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In contrast to the Cucconi and Lepage tests, the Kolmogorov – Smirnov and

Cramer – von Mises criteria do not allow the null hypothesis of no difference

in mean expiratory volume rate between subjects to be disproved at the

significance level of 0,05. This comparison is made because the latter two

criteria are widely used for the common task of the two samples. In addition, as

mentioned above, the latter two are the most popular in the field of reliability

theory.

Goodness of Fit Test

The Kolmogorov – Smirnov and Cramer – von Mises tests allow us to

determine whether there are any differences between the underlying population

distributions of the samples in question. These tests are sensitive to all possible

types of differences between the two distribution functions, including shape

differences (kurtosis and skewness).

Kolmogorov – Smirnov Test

The most common situation considered is when the estimated distribution

functions are continuous. The criterion itself is based on the differences between

the empirical distribution functions 𝐸𝐷𝐹𝑠(𝑥) of two samples. Let 𝐹1(𝑥), 𝐹2(𝑥)

be the distributions corresponding to samples 1 and 2, respectively. Denote

by 𝐸𝐷𝐹1(𝑥) and 𝐸𝐷𝐹2(𝑥) the empirical distribution functions of random

variables 𝑋1 and 𝑋2 underlying the samples:

𝐸𝐷𝐹𝑗(𝑥) =
1

𝑛𝑗

𝑛𝑗∑︁
𝑖=1

I (𝑋1𝑖 ⩽ 𝑥) , 𝑗 = 1,2.

The type of criterion statistics depends on whether the hypothesis is one­

sided or two-sided. For the two-sided version, this is

𝐻0 : {𝐹1(𝑥) = 𝐹2(𝑥) ∀𝑥 ∈ ℛ}

and its alternative is

𝐻1 : {𝐹1(𝑥) ̸= 𝐹2(𝑥) for at least one 𝑥 ∈ ℛ} .
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The test statistics is calculated as follows:

𝐾𝑆 = sup
𝑥∈ℛ

|𝐸𝐷𝐹1(𝑥)− 𝐸𝐷𝐹2(𝑥)| .

Large statistics values indicate a deviation from the main hypothesis

towards the alternative hypothesis.

Although the Kolmogorov – Smirnov criterion is very common, it has

a number of drawbacks. In particular, the author in [22] says that when

using this criterion to approximate an empirical function to a theoretical one,

overestimation of the significance level may occur. This means that there is a

risk of accepting as plausible the hypothesis that is poorly consistent with

the real data.

Cramer – von Mises Test

Another common criterion for the general two-sample problem is the

Cramer – von Mises test. Some researchers prefer it to the Kolmogorov – Smirnov

test, but it is inferior to the latter in terms of computational simplicity. The

Cramer – von Mises criterion is used to test the hypothesis

𝐻0 : {𝐹1(𝑥) = 𝐹2(𝑥) ∀𝑥 ∈ ℛ}

and its alternative

𝐻1 : {𝐹1(𝑥) ̸= 𝐹2(𝑥) for at least one 𝑥 ∈ ℛ} .

Consider a version of the criterion based on the following statistics

𝐶𝑉𝑀 =
(𝑛1𝑛2)

1/2

𝑛3/2

(︃
𝑛1∑︁
𝑖=1

|𝐸𝐷𝐹1 (𝑋1𝑖)− 𝐸𝐷𝐹2 (𝑋1𝑖)| +

+

𝑛2∑︁
𝑖=1

|𝐸𝐷𝐹1 (𝑋2𝑖)− 𝐸𝐷𝐹2 (𝑋2𝑖)|

)︃
.

The essence of the Cramer-von Mises criterion is similar to the

Kolmogorov-Smirnov test: 𝐸𝐷𝐹1(𝑥) and 𝐸𝐷𝐹2(𝑥) are estimates of 𝐹1(𝑥)
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and 𝐹2(𝑥), while statistics 𝐶𝑉𝑀 is a function of distances between 𝐸𝐷𝐹𝑠(𝑥).

According to the alternative hypothesis, the more different 𝐹1(𝑥) and 𝐹2(𝑥)

are, the higher the value of statistics 𝐶𝑉𝑀 .

Location-Scale Test

Typically, non-parametric criteria for joint determination of differences

in location (central tendency) and scale (variability) for two samples are based

on a combination of two tests: for location shift and for scale. Typically, this

combination is achieved using the sum of the squares of the standardised

statistics. Consider just such a case.

Lepage Test

In general, the hypothesis of non-parametric criteria for joint detection of

change in location and scale is formulated as follows:

𝐻0 : {µ1 = µ2 ∩ σ1 = σ2} and its alternative 𝐻1 : {µ1 ̸= µ2 ∪ σ1 ̸= σ2} .

This criterion is based on a combination of two tests. This is achieved on

the basis of the sum of two standardised test statistics squared:

𝐿𝐸𝑃 =
(𝑊 − E0(𝑊 ))2

V0(𝑊 )
+

(𝐴𝐵 − E0(𝐴𝐵))2

V0(𝐴𝐵)
.

E0(𝑊 ) =
𝑛1(𝑛+ 1)

2
, V0(𝑊 ) =

𝑛1𝑛2(𝑛+ 1)

12
,

E0(𝐴𝐵) =
𝑛1(𝑛+ 2)

4
, V0(𝐴𝐵) =

𝑛1𝑛2(𝑛+ 2)(𝑛− 2)

48/(𝑛− 1)

when 𝑛 is an even number,

E0(𝐴𝐵) =
𝑛1(𝑛+ 1)2

4/𝑛
, V0(𝐴𝐵) =

𝑛1𝑛2(𝑛+ 1)
(︀
𝑛2 + 3

)︀
48/𝑛2

when 𝑛 is an odd number.

Cucconi Test

A well-known criterion for the task of determining change in central

tendency and variability is the Lepage test discussed earlier. Many tests have
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been proposed from this area, almost all of which are Lepage-type tests:

a combination of a location test and a variation test. Marozzi [50], [51]

investigated and compared a number of non-parametric criteria between

themselves and with the Cucconi test [69]. This criterion is not as well known,

but is noteworthy for several reasons:

1. Historically, it appeared earlier than the Lepage test.

2. It does not combine the two tests: location and variation, as other

common criteria in this family do.

3. A distinctive positive feature is the power and probability of type I

error.

The hypothesis for the Cucconi and Lepage criteria is often formulated

as in the previous paragraph [49], and also as follows in [50]. Let 𝑋1 and 𝑋2

be continuous random variables belonging to two general populations, and let

𝐹1 and 𝐹2 be their distribution functions. The general procedure for comparing

two samples is as follows:

𝐻0 : 𝑋1
𝑑
= 𝑋2 and its alternative 𝐻1 : 𝑋1

𝑑

̸= 𝑋2,

where 𝑋1
𝑑
= 𝑋2 means that 𝐹1(𝑡) = 𝐹2(𝑡) ∀𝑡 ∈ ℜ, and 𝑋1

𝑑

̸= 𝑋2 means that

∃𝐴 ⊂ ℜ : 𝐹1(𝑡) ̸= 𝐹2(𝑡), 𝑡 ∈ 𝐴 with Pr(𝐴) > 0.

𝐹1(𝑡) = 𝐺

(︂
𝑡− µ1

σ1

)︂
and 𝐹2(𝑡) = 𝐺

(︂
𝑡− µ2

σ2

)︂
,

where 𝐺(·) is the distribution function of a continuous variable with expectation

0 and standard deviation 1, µ1 and µ2 (σ1 and σ2) location (scale) parameters

of populations 1 and 2, respectively. Let observations 𝑋11, . . . , 𝑋1𝑛1
and

𝑋21, . . . , 𝑋2𝑛2
be random samples from the general populations 1 and 2,

respectively. For the task of comparing central tendency and variance together,

Cucconi [69] proposed a rank test based on the statistics

𝐶 =
𝑈 2 + 𝑉 2 − 2ρ𝑈𝑉

2 (1− ρ2)
,
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where

𝑈 =

6
𝑛𝑖∑︀
𝑖=1

𝑊 2
1𝑖 − 𝑛1(𝑛+ 1)(2𝑛+ 1)√︂

𝑛1𝑛2(𝑛+ 1)(2𝑛+ 1)(8𝑛+ 11)

5

,

𝑉 =

6
𝑛𝑖∑︀
𝑖=1

(𝑛+ 1−𝑊1𝑖)
2 − 𝑛1(𝑛+ 1)(2𝑛+ 1)√︂

𝑛1𝑛2(𝑛+ 1)(2𝑛+ 1)(8𝑛+ 11)

5

,

𝑛 = 𝑛1 + 𝑛2, 𝑊𝑗𝑖 denotes rank of 𝑋𝑗𝑖 of pooled sample 𝑋 =

(𝑋11, . . . , 𝑋1𝑛1
, 𝑋21, . . . , 𝑋2𝑛2

) = (𝑋1, . . . , 𝑋𝑛1
, 𝑋𝑛1+1, . . . , 𝑋𝑛) and

ρ =
2
(︀
𝑛2 − 4

)︀
((2𝑛+ 1)(8𝑛+ 11))

− 1,

lim
𝑛→∞

ρ = lim
𝑛→∞

2𝑛2 − 8

16𝑛2 + 30𝑛+ 11
− 1 = −7

8
= ρ0.

In his study, Cucconi observed that for samples not differing greatly in size, with

more than 6 items, the convergence to the norm was very good. In addition to

being superior to the Lepage test in terms of power, probability of type I error,

and ease of implementation, the Cucconi test is also suitable for the case of

related samples. The unbiasedness and robustness of this test is shown in [69],

critical values are given in [50].

3.3 Application of Non-parametric Criteria to Solving Reliability

Problems

It is often a challenge to compare reliability performance before

and after retrofitting. A similar task arises when evaluating changes in

performance in different versions of the same design. In this example, the basic

criteria previously discussed have been calculated: Kolmogorov – Smirnov,

Cramer –Mises, Cucconi.
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3.3.1 Conversion of Standardised Reliability Index for Newly

Developed Product from Cycles to Kilometres

The Moscow Central Diameters (MCDs) operate several types of electric

trains. At the same time, a modified version of the electric train is launched

on each of the diameters when it is opened. As mentioned earlier, reliability

indicators for rolling stock components are specified in several units of

measurement. The most common options are kilometres travelled, cycles

(opening/closing of a functional element) and hours.

For a new model of rolling stock components, it is possible to determine

the failure-free index in cycles on the basis of bench test data. However, in order

to determine an equivalent value in kilometres travelled, data from in-service

testing is often needed, which is not yet available at the time of approval of the

design brief due to the fact that the diameter has just opened and the trains

have not been operated on it to any significant extent.

At the same time, data on the reliability and performance of the rolling

stock components for MCD-1 and MCD-2 are available. In addition, stations

have already been marked on the map, the distances between which can be

determined.

Final description of the task: it is required to determine the value of

standardised mean time between failures for a new product (to be operated

at MCD-3). The normalised value of this indicator in cycles is known, the

conversion factor from cycles to kilometres needs to be reasonably determined

using data from products already in service, but on other paths (MCD-1 and

MCD-2) (Figure 3.1).

Result: based on the collection and comparison of station distance data

at MCD-1, MCD-2, MCD-3 using Cucconi statistical criterion, it was shown

that there are no significant differences between the operational profiles of the

considered facilities. As a consequence, based on the distribution characteristics
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Figure 3.1 — Conversion of a standardised reliability index for a newly developed
product from cycles to kilometres

of the total population, a conversion from cycles to kilometres was made for

the standardised reliability indicators for the newly developed product (see

Table 3.2).

Table 3.2 — Results of the p-value for the task of converting a standardised
reliability index for a newly developed product from cycles to kilometres

p-value (Cucconi)
MCD1/MCD2 0,81

MCD1/MCD3 0,72

MCD2/MCD3 0,45

3.3.2 Setting Recovery Time When Designing

Often, reliability indicators are a tool for detecting differences in the

operating and maintenance conditions of technical facilities. The identification

of these differences is necessary to identify the facilities that are the closest

equivalents. The criteria for analogues can be different: in terms of the nature of

maintenance, key design features, operating procedures, service conditions, etc.
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Here we consider the task of identifying the closest analogue to a lifting

device for the disabled in terms of recovery time. However, the closest analogue

exists (in figure «Device 1») for several factors, but the sample size for the

recovery time of this object is small to determine the central value. However,

there are two other analogues of the lifting device (in Diagram 3.2 «Device 2»

and «Device 3»), they are not as close to the object of interest as the first, but

for them there is more statistical information on recovery times.

Figure 3.2 — Setting the recovery time in the design

Let us formulate the following problem: determine from the statistical

data of the three devices the closest analogues in terms of the recovery time

factor for calculating the standardised value of the average recovery time for

technical conditions.

The following p-values were obtained from a number of criteria (see

Table 3.3).

At a significance level of 0,05, the following conclusions can be drawn:

1. No significant differences in recovery time were found between

Devices 1 and 3 by either criterion;

2. Between Devices 1 and 2 significant differences are revealed only by

the Cucconi and Cramer – von Mises tests (when strictly comparing

the p-values with the significance level value);
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Table 3.3 — Setting the recovery time in the design
Test p-value

№1/№3

Kolmogorov–Smirnov 0,60

Cucconi 0,74

Lepage 0,25

Cramer–von Mises 0,58

№1/№2

Kolmogorov–Smirnov 0,15

Cucconi 0,04

Lepage 0,68

Cramer–von Mises 0,05

№2/№3

Kolmogorov–Smirnov 0,01

Cucconi 0,03

Lepage 0,00

Cramer–von Mises 0,00

3. Significant differences were found between Devices 2 and 3 in the

results of all four criteria considered.

Let’s turn to the comparison and identify how, on a subject level, recovery

time values of lifting devices can be so different. In expert analysis, it was found

that Device 2 differs from 1 and 3 in terms of maintenance. The fact is that

it has the peculiarity of having several sensors as part of its design. In case

of repair or maintenance the time to get access to them increases. Devices 1

and 3 do not have this feature.

As a result of this analysis, the decision was made to use Device 1 and

Device 3 as the basis for determining the standardised average recovery time

for the new hoist design.
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3.3.3 Justification for Choosing MTBF Value for Import

Substitution

The process of replacing technical device suppliers is quite complex and

time-consuming in several respects. The main ones are:

1. Changes in delivery times, hence the timing of the finished product;

2. Changes in the price of the final product;

3. Modification of the technical documentation;

4. Recalculation of reliability indicators;

5. Coordination of all process changes with the customer.

In terms of reliability analysis in the import substitution process, it is

often a question of justifying the choice of a new element in a renewed product

composition in terms of reliability characteristics.

This section deals with the same new product as in 3.3.2 – a lifting device

for the disabled. In reviewing the composition of the product, the design office

suggested replacing one type of sensor with another. When a design element is

replaced, the overall reliability value of the finished product changes. In order

to recalculate the total reliability characteristic for the whole technical object,

it is necessary to know what value of mean time between failures (MTBF) the

newly introduced sensor has.

The sensors proposed in the new design have not previously been used

on these units. However, they have been installed on a similar product, but the

sample of operational data for this product is small. Yet there are operational

statistics for this type of switch in the side door design of long haul trains.

The question arises, is it possible to translate the failure-free value of this type

of door-mounted sensors for an elevating device? These technical objects in

a general sense have different operating conditions, design characteristics, but

the same operating profiles.
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Figure 3.3 — Justification for the choice of mean time between failures for
import substitution

Thus, one could formulate the task as follows: on the basis of the data

on the operating time between failures (in days) of the sensors included in the

lift unit analogue and in the car side door, to determine whether there are

significant differences in these samples. The conclusions obtained are needed in

order to use a known value of the reliability index of a given element in the

door for the design value of the reliability index in the lifting device.

The result of applying the Cucconi criterion was p-value = 0,59, which is

greater than 0,05, meaning that there is no significant difference in the MTBF

of the sensor fitted to the side door and the sensor fitted to the analogue lift

unit. Thus, by constructive analogy, we can extend this value from the lift

counterpart to the new design under development.

Conclusions on the results of projects 3.3.1 – 3.3.3

Three applied problems, which arise in reliability analysis and for which

the use of statistical criteria for hypothesis testing is necessary, are solved as a

result of this research. The results of using Cucconi’s criterion and a number

of criteria frequently used in reliability analysis are presented. The goals of

these problems can be varied: search and verification of peer components,
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determination of equivalent operating conditions, identification of significant

differences in repair times of technical systems. According to the results of

testing several types of statistical criteria, the Cucconi test reveals differences

even in small samples, and is also easy to implement from the point of view

of the calculation procedure.

3.4 Chapter Conclusions

Statistical criteria play an important role in the field of reliability analysis.

By applying them correctly, it is possible both to determine system parameters

unknown at design time and to check already in operation production facilities

for similarity in terms of both design characteristics and operating profile.

Of particular interest in this chapter are the statistical tests for the joint

determination of location and scale by Lepage and Cucconi. These tests

allow the estimation of the central tendency and the scale of the sample

simultaneously using ranking statistics. These criteria have a number of

advantages:

1. Distributional independence: Both criteria do not require the

determination of the type of distribution of the sample in question,

which makes them applicable to different types of data in the field

of reliability analysis. This aspect is particularly important in the

development of new technical systems, as in the early stages of data

collection it is often not possible to determine the distribution law.

2. Resistance to outliers: «location-scale tests» are based on rank

statistics, which makes them robust to anomalous values in samples.

Given that errors in diagnostics due to both hardware and human

error interfere with the accumulation of reliability information, outliers

occur in almost every sample. For this reason, robustness to outliers is
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another important advantage in the application of this type of criterion

in the field of reliability performance.

We will highlight the additional benefits of applying the Cucconi criterion:

– Convenience of calculation: the algorithm for implementing the test

is quite simple. This factor allows it to be used without much difficulty

in most statistical packages, which is important for engineering services,

as the variability of software tools of this type used in industrial

enterprises is rather small.

– Universality of applicability: can be applied to both small and

large sample sizes and is suitable for both independent and dependent

samples.

– Power: the Cucconi test has good power for detecting differences in

both central tendency and variability, especially when sample sizes are

medium to large.

The main advantage of the Cucconi criterion is its great practical

relevance. The three production problems in 3.3 have shown in which data

sections and for which range of purposes this approach can be applied.

A test study was also carried out on data from the operation of two

different types of doors: one class is more obsolete and the other modernised.

As a result of 741 pairwise comparisons, 21 cases were recorded in which only

the Cucconi test revealed differences (when they are objectively present: the

samples in these cases are from different classes), while other tests (Welch,

Student, Wilcoxon – Mann – Whitney, Lepage) did not detect them.

This section of the study refers to varied tasks at different stages of

the product life cycle (see Figure 1.1): hypothesis testing on production data is

needed both in the first three stages during product development (processing

of chronological data, interpretation of test results, selection of components)

and in the last three stages (defect identification in batches, operational data

processing from operation and determination of effectiveness of reliability

improvement measures).
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In general, the Cucconi test is an excellent tool for comparing the central

tendency and variability of two samples, especially when the data do not follow

a normal or other distribution or when outliers are observed.

These advantages make this statistical criterion applicable to the specific

nature of the data used in reliability analysis.
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CHAPTER 4. Reliability Prediction Based on Holt – Winters Model

4.1 Introduction

The prediction of technical condition and reliability is an urgent task,

as the timely detection of faults has become one of the key objectives of any

industrial sector. To solve practical reliability problems, theoretical distribution

laws are most often used, the arsenal of which is not very large [23]. The

most common is the exponential distribution. A frequent cause of inadequate

solutions to reliability problems is its use in cases where it is not actually

applicable.

On the one hand, such popularity of this method of reliability prediction

can be explained by the fact that this approach simplifies solving many

reliability estimation tasks, but on the other hand, it imposes a number of

limitations on the model and makes the calculation roughly approximate. For

example, reliability forecasting by means of exponential distribution does not

take into consideration ageing and wear-out processes. The most convenient

characteristic of the reliability is the parameter of failure rate, because it allows

easy enough to calculate the quantitative characteristics of a complex system

and clearly reflects the object’s behaviour in time. The approach based on

the exponential distribution of operating time is characterised by an erroneous

assumption about constancy of the parameter of failure rate with the fact

that the real value of this parameter changes several tens of times during the

considered operating time intervals. This is due to several factors:

1. In general, the life cycle of a complex system can be visualised in

the form of a bathtub reliability curve (see Fig. 1.5). The assumption

of an exponential law will be appropriate when evaluating on the

sections of the segment characterising the period of «random» failures.
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However, it will not adequately describe the change of reliability during

degradation failures as well, as it does not take into account the ageing

and wear and tear processes.

2. If one divides all technical objects into several classes, it is possible to

imagine variations in the failure rate parameter as in Figures 4.1, 4.2.

Figure 4.1 — Options for changing the failure rate parameter for wear and tear
failure types

However, in times of rapid development of innovative technologies, it

is often difficult to determine whether a product belongs to one group

or the other, and the selection of a theoretical model of reliability from

a number of distribution laws is therefore difficult due to the small

amount of data on the functioning of the elements in the sample.

3. Any stage of the life cycle is accompanied by the influence of many

random factors: external conditions, seasons, upgrades, imported

components, adaptability of personnel to maintenance, features of

technological equipment and many others. This significantly limits the

application of theoretical distribution laws for reliability prediction for

short-term periods.
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Figure 4.2 — Options for changing the failure rate parameter for random failure
types

Although the exponential law is often recommended as a priority for electronic

devices and complex technical systems, sometimes its use in predicting mean

time between failures leads to overestimation of individual elements/units with

small numbers of components and underestimation of predicted reliability of

large systems (over 105 elements) [23].

In the process of technical systems exploitation, there is a necessity

to forecast the values of quantitative reliability parameters in order to plan

the costs for maintenance and repair, to revise the range and volume of

maintenance works in the operational documentation. Also, the nature of

changes in operational reliability parameters is used to design analogous units.

An overview of prediction methods in the field of reliability analysis is

given in [74].

When using the traditional mathematical apparatus based on the

exponential distribution, it is not always possible to make accurate short­

term forecasts. More credible estimates of reliability can be made by using

adaptive forecasting tools. Adaptive methods can be used for forecasting
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both macroeconomic parameters and for describing changes in technical and

economic characteristics of products and variables of chemical processes,

studying the behavior of the equipment failure rate depending on its service life.

In this paper reliability calculation and statistical analysis methods are

applied to model failure rate (FR) of locomotive traction car door unit and to

predict the value of this reliability parameter for several periods. The relevance

of the research clearly stems from the necessity of determining the FR value for

further use in developing analogous products, predicting reliability of rolling

stock component units and subsequently possible optimization of maintenance

and repair schedules [53].

A common reason for inadequate solutions to reliability problems is

the use of a one-parameter exponential distribution. On the one hand, this

approach simplifies the solution of many reliability estimation problems, but

on the other hand, it imposes a number of constraints on the model and

makes the calculation roughly approximate. For example, reliability prediction

using exponential distribution does not take into account the processes related

to aging and wear and tear. It is also worth mentioning that this approach

to calculating reliability parameters is characterized by the assumption of

constancy of the failure rate under the fact that the real value of this parameter

changes by several tens of times during the considered operating time intervals.

Due to these peculiarities, it was decided to try to carry out prediction of

the failure rate with the help of adaptive methods, namely on the basis of the

Holt –Winters model with the use of the survival theory apparatus.

4.2 Problem Formulation

One of the promising directions in the development of short-term

forecasting is related to adaptive methods. This direction makes it possible to
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build self-correcting models that can promptly respond to changing conditions.

Adaptive methods take into account different value of series levels: novelty

and obsolescence of information - which is an important feature for forecasting

reliability parameters. In addition, during the year, the character of failure rate

changes from season to season, as well as depends on the intensity of rolling

stock operation and the implemented corrective measures aimed at improving

the reliability of equipment. Such processes can be difficult to describe and

predict, and adaptive models give the best result for processes with a changing

trend.

The purpose of this study is to describe, model and predict the process of

change in the door control unit failure rate from January 2019 to February 2022

and predict 3 steps ahead.

4.3 Implementation of Prediction Algorithm Based on

Holt – Winters Model and Lifetime Theory

Using experimental data, the failure rate is usually determined by the

formula [63], [24], [75]::

λ(𝑡) =
Δ𝑛(𝑡)

𝑁(𝑡)Δ𝑡
,

where Δ𝑛(𝑡) is the number of failures in operating time interval Δ𝑡, 𝑁(𝑡) is

the number of objects (studied parameters) operable at time Δ𝑡.

The Holt –Winters method is a modification of exponential smoothing for

series with seasonality. It results in equations with three smoothing constants:

1. Smoothed series:

𝐿𝑡 = 𝑘
𝑌𝑡

𝑆𝑡−𝑠
+ (1− 𝑘)(𝐿𝑡−1 + 𝑇𝑡−1);

2. Trend component:

𝑇𝑡 = 𝑏(𝐿𝑡 − 𝐿𝑡−1) + (1− 𝑏)𝑇𝑡−1;
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3. Seasonal component:

𝑆𝑡 = 𝑞
𝑌𝑡

𝐿𝑡
+ (1− 𝑞)𝑆𝑡−𝑠.

The forecast for 𝑝 steps forward is as follows:

̃︀𝑌𝑡+𝑝 = (𝐿𝑡 + 𝑝𝑇𝑡)𝑆𝑡+𝑝−𝑠,

where 𝑠 is the number of phases in a complete seasonal cycle, 𝑘, 𝑏, 𝑞 are

adaptation parameters, 𝑘, 𝑏, 𝑞 ∈ [0, 1].

Assessing the reliability of a technical system from operational data can

be represented as a survival analysis problem. Survival data analysis methods

have continued to evolve vigorously in recent decades [56]. Applications of

these methods are scaling from their use in cancer and reliability research to

business, criminology, epidemiology, and the social and behavioral sciences.

It is the application of the survival function in biomedical tasks that is well

suited to the analysis of survival data because it directly describes the survival

experience of the cohort under study. In the case of this approach in the field

of reliability analysis, the cohort is a sample of running times before/between

a failure/failures.

Generally, survival analysis is a set of statistical procedures for analysing

data in which the outcome variable of interest is the time before an event

occurs. The event usually refers to death, illness, recurrence – for direct survival

analysis in the field of medical statistics. In reliability analysis, events are

failures or certain types of failures. In reliability analysis, lifetimes are runtimes.

Thus, from the time series of operating time to failure, one can construct

Kaplan –Mayer estimates for further prediction.

To optimize the adaptation parameters, we constructed an estimate of

the survival function for the actual series data:

̂︀𝑆(𝑡) =∏︁
𝑡𝑖⩽𝑡

(︂
1− 𝑑𝑖

𝑅𝑖

)︂
,

where 𝑑𝑖 is the sum of the «dropped out» objects for runtime 𝑡𝑖, 𝑅𝑖 is the sum

of «survivors» up to the moment 𝑡𝑖, excluding «dropouts».
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Similarly, survival function ̃︀̂︀𝑆(𝑡) was constructed for the simulated series

of failure rate.

The optimization parameters are set to minimize the mean squared error

(MSE) for the survival function:

𝑀𝑆𝐸 =
1

𝑇

𝑇∑︁
𝑡=1

(︂̂︀𝑆(𝑡)− ̃︀̂︀𝑆(𝑡))︂2

,

where 𝑇 is the total number of running times.

As a result, we get the plots shown in Figures 4.3 and 4.4.

Figure 4.3 — Survival function plot (control unit)

Figure 4.4 — Failure intensity λ plot of the control unit
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Figure 4.5 — Survival function plot (inductive sensor)

Figure 4.6 — Failure intensity λ plot of the inductive sensor

The MSE of the prediction for the time series of the failure rate parameters

was 4.2·10−5 for the door control unit failure rate prediction example. The same

method was used to construct a prediction for another element, the inductive

sensor from 3.3.3, for the case of a longer observation period. The results are

shown in Figures 4.5, 4.6, and the predicted values will be used for the peer

node whose selection was justified in 3.3.3.



82

4.4 Chapter Conclusions

This prediction method involves a combination of several approaches:

– use of survivability analysis, which correctly takes into account the

intricacies of the technical systems’ functioning;

– application of the Holt –Winters model, which allows making accurate

short-term forecasts.

Reliability forecasting for the short term occupies an important place

in many management and reliability processes at different stages of project

development. This is driven by a number of operational needs:

1. During the operation of a technical facility, it is necessary to monitor

the conformity of actual reliability values with those specified in the

technical documentation for the product. Forecasting for nodes for

several time periods in advance allows to determine whether the future

values of reliability assessment will exceed the control values and to

take corrective measures in time, as well as to plan the work of the

necessary staff for this task, depending on the type of failures that

cause non-compliance with the standardized indicators (Block №5 in

the scheme in Fig. 1.1).

2. Forecasted values of component reliability allow to determine optimal

composition of spare parts both for already operated objects, and

for analogous products under development (Block №2 in the scheme

in Fig. 1.1). Production of components just for the demand from

operation will allow to use production capacities in an optimal way

without shortage of elements when used by the customer and without

overproduction at industrial sites (Block №4 in the scheme in Fig. 1.1).

3. Determining failure flow values several months in advance allows the

maintenance and repair procedure on a product to be adjusted, taking

into account changing circumstances and seasonal factors. Prompt
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changes in activities will ensure a reduction in the Life Cycle Cost

(LCC) (Block №2 in the diagram in Fig. 1.1).

The developed methodology for the analysis and prediction of node

reliability data is applicable to the analysis of other rolling stock component

nodes with possible correction of time series parameters (seasonal components,

adaptation coefficients, etc.). The functional relationship of this part of the

study with other chapters is shown in Fig. 1.2 and is an important component

for the algorithms to determine the optimal timing of component replacements

developed in Chapter 5. The results obtained were presented at conference
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CHAPTER 5. Optimisation of System Maintenance with

Consideration of Human Factor

5.1 Introduction

The influence of the human factor can be highlighted at every stage of the

technical system life cycle. In recent years there has been a particular growth

in the popularity of Human Reliability Analysis (HRA) and there are national

standards for this area of reliability [76].

The HRA trend has developed rapidly in the last two decades [77],

however, mentions of it can be found even in 20th century literature. Thus,

in [31], the author focuses on describing the factors that make up the interaction

between the operator and the complex technical system. There is also a listing

of methods by which it was possible to quantify the impact of humans on the

operation of industrial facilities. In the late 1950s, Williams pointed out [78]

that reliability due to the human component had to be included in predicting

the overall reliability of systems. Otherwise, the calculated total value would

not reflect the real picture. Around the same time, Shapero and a group of [79]

researchers drew attention to the fact that 20 to 50% of equipment failures

were due to human error. Here are some historical facts which relate directly or

indirectly to human errors in maintenance, repair or operation [77], [33], [32]:

– A study of 126 significant human error events in 1990 in nuclear power

generation found that 42% of the problems were related to maintenance

and modifications;

– Maintenance and inspection were found to be factors in approximately

12% of major aircraft accidents;

– According to studies by the US Nuclear Regulatory Commission

(NRC), 65% of nuclear system failures were due to human error;
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– A study of more than 4,400 maintenance history records covering the

period from 1992 to 1994 concerning a Boiling Water Reactor (BWR)

nuclear power plant showed that about 7.5% of all failure records could

be classified as human errors related to maintenance activities;

– More than 80% of maritime accidents are due to human and

organisational factors;

– A study showed that more than 20% of all system failures in fossil

fuel-fired power plants are due to human error, and maintenance errors

account for about 60% of the annual loss of electricity due to human

error.

People play a key role in the design, manufacture, operation and

maintenance of equipment. The extent of their role can vary according to a

number of factors, both biometric (vision, hearing) and psychological (stress

levels, uncertainty of action have a significant impact on the likelihood of human

error [80]). Some mistakes have minor consequences, while others can cause

great economic losses or destruction and environmental pollution.

The period between the First and Second World Wars saw the significant

development of disciplines such as industrial engineering and industrial

psychology. By 1945, human factors engineering was recognised as a specialist

discipline. In the 1950s and 1960s, military and space programmes further

increased the importance of human factors in systems design.

In addition to the already explored variations in the causes of human

fail [81], new ones are emerging about which there is not much data yet. With

the proliferation of controls, there are new factors affecting the performance of

human operators, e. g. alert fatigue.

The nuclear industry currently plays an important role in electricity

generation worldwide, accounting for around 16% of the world’s total. At

the same time, this industry is dangerous on a planetary scale [82]. Humans

are a major factor in nuclear power generation and their impact on safety

has become an important subject of study since human error can lead to
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disasters such as Three Mile Island (1979), Kyshtym (1957) and Chernobyl

(1986). In addition, studies by Licensee Events Reports (LERs) and the Nuclear

Regulatory Commission (NRC) have shown that about 65% of nuclear system

failures are directly or indirectly due to human error [32].

Thus, human-dependent reliability assessment will have an active

development in conjunction with the improvement of production and

information systems. The last decade has seen a particular focus on the

field of Reliability Centred Maintenance (RCM) in large-scale manufacturing

plants, which includes maintenance methodologies to balance the cost of over­

maintenance and the cost of the consequences of inadequate maintenance [83].

There are many types of human error, and most commonly they can be

divided into several main groups:

1. Design errors: The most common cause is a design flaw in the

construction of the model of the future product. In the field of rolling

stock components, examples include incorrect strength calculations,

failure to consider aspects of installation, the level of temperature

conditions, vibrations, etc.

2. Maintenance and repair errors: They occur already under

operating conditions of the technical system due to incorrect actions of

the maintenance personnel. This category includes the following types

of actions: wrong frequency of a particular type of actions; tampering

with the mechanism design and incorrect return to operating condition;

violation of correct adjustment of components during intervention;

use of consumables not provided for in the operating regulations,

etc. Moreover, depending on the type of life cycle, the probability of

occurrence of these errors may increase due to increasing frequency of

maintenance (for example, during the ageing of equipment).

3. Assembly errors: This type of error occurs during the production

process, the quality of which is affected by external physical factors
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(lighting, temperature, vibration, noise), as well as by poorly designed

personnel procedures and poor quality drawings.

4. Installation errors: These cases are caused by incorrect installation

instructions, incorrect reading of drawings, missing the correct

markings on parts. For example, when installing doors on train

carriages, it often happens that parts for two symmetrical wings get

mixed up with each other, which results in the door not functioning

correctly afterwards.

5. Operating errors: During the use of the facility, errors often occur

due to the operator’s fault or due to shortcomings in the manuals and

instructions describing the process. For example, a failure in the door

control unit due to improper actions by the operator at the control

panel.

The specifics of the human factor in the repair and maintenance of

machines and mechanisms are also described in [84]. The author attaches

great importance to the adaptability of machines to carry out preventive and

maintenance work, especially the human function to control and maintain

technical systems.

Maintenance occupies an important place in the reliability of production

systems. Depending on the type of system and the criticality of its failures,

different schemes are chosen to organise its maintenance and repair activities.

In this chapter, a model is constructed that takes into account both the human­

driven reliability and the fault tolerance of the technical system.

A schematic representation of the maintenance options for technical items

is shown in Figure 5.1.

In this chapter, great emphasis is placed on maintenance processes for

the following reasons:

a) in-service maintenance and repair costs account for more than 50% of

the lifecycle cost of a technical system [41];
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Figure 5.1 — Types of maintenance and repairs

b) more than 50% of all equipment fails prematurely after maintenance

activities [77];

c) a study of electronic equipment showed that around 30% of failures

were the result of operating and maintenance errors [77].

5.2 Weibull Distribution Law for Describing Reliability Caused by

Human Factors

Authors of fundamental works on reliability theory often refer to the

advantages of the Weibull distribution law. This applies both to describing

the behaviour of technical systems in the general case, and to highlighting the

influence of the human factor, i.e. in the HRA domain. In [85], an analysis of

system behaviour depending on the shape parameter in the law describing it is

given. If the shape and scale parameters are chosen, a better fit of the model

to the empirical data can be obtained as compared to the exponential law. The

characterisation of human-operator errors in the field of functional reliability

of information systems is detailed in source [86].

Famous work [13] gives an example of the fact that studies that focus on

testing hypotheses about the type of distribution law deserve special attention,
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because it is very common to see errors due to the assumption that an

exponential law applies to the object in question, when in fact a Weibull

distribution law is in effect. Also in work [33] this type of distribution is justified

by a US Air Force study. An experiment was conducted in which human errors of

several types were recorded. The results of the experiment were aggregated in a

large-scale database, which led to the conclusion that the Weibull distribution

is one of the most common and correct ones for estimating reliability with

regard to human factors.

The field of human reliability science combines research in several areas:

mathematical statistics, industrial statistics [87], engineering psychology [81],

mathematical psychology [88], biometrics [89], psychology [90], risk theory [91],

sociology [92].

Waloddi Weibull worked in Sweden and investigated the fatigue

characteristics of materials. In 1939 he proposed a mathematical expression

that can represent a large range of failure characteristics through changes

in two parameters.

The reliability theory literature also suggests the use of variants such as

the exponential distribution and the Rayleigh distribution [33], [27] to describe

HRA functions. These distributions also refer to a Weibull distribution with

shape parameters 𝑘 = 1 and 𝑘 = 2 respectively.

In earlier research [9] the problem arose of finding the Weibull distribution

parameters to estimate the mean time to failure.

As with the attempt to calculate the parameters of a normal distribution,

the ratios from [93] recommended to obtain the Weibull distribution parameters

caused difficulties for some reliability experts, so another way of identifying

them was proposed.

For 𝑁 objects, consider a set of MTBFs 𝑡𝑖, arranged in non-decreasing

order:

𝑡1, . . . ,𝑡𝑖, . . . ,𝑡𝑛 < 𝑇,
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where 𝑇 is the test period, 𝑛 is the number of failures in 𝑇 . Then the expression

for the probability with duration constraint of 𝑇 is

𝑃 = 𝑓(𝑡1)× . . .× 𝑓(𝑡𝑖)× . . .× 𝑓(𝑡𝑛)Δ𝑡1× . . .×Δ𝑡𝑖× . . .×Δ𝑡𝑛(1−𝐹 (𝑇 ))𝑁−𝑛,

which is equivalent to

𝑃

Δ𝑡1 × . . .×Δ𝑡𝑖 × . . .×Δ𝑡𝑛
=

𝑛∏︁
𝑖=1

𝑓(𝑡𝑖)(1− 𝐹 (𝑇 ))𝑁−𝑛.

Then the likelihood function will have the following form:

𝐿 = ln
𝑃

Δ𝑡1 × . . .×Δ𝑡𝑖 × . . .×Δ𝑡𝑛
=

𝑛∑︁
𝑖=1

ln 𝑓(𝑡𝑖) + ln(1− 𝐹 (𝑇 ))𝑁−𝑛 ⇔

⇔ 𝐿 =
𝑛∑︁

𝑖=1

ln 𝑓(𝑡𝑖) + (𝑁 − 𝑛) ln(1− 𝐹 (𝑇 )). (5.1)

The likelihood function in general form is (5.1) and we rewrite it using

the expressions for the Weibull distribution density [57]

𝑓(𝑡) =
𝑘

𝑡0
𝑡𝑘−1𝑒

−𝑡𝑘

𝑡0

and the distribution function

𝐹 (𝑡) = 1− 𝑒
−𝑡𝑘

𝑡0 ,

where 𝑡0 characterises the scale of the distribution curve, and 𝑘 characterises

the shape of the density curve.

The parameter estimates 𝑡0 and 𝑘 will be determined from conditions

𝜕𝐿

𝜕𝑡0
= 0,

𝜕𝐿

𝜕𝑘
= 0.

We obtain the following equations for finding the Weibull distribution

parameters

𝜕𝐿

𝜕𝑡0
=

𝑛∑︁
𝑖=1

𝜕

𝜕𝑡0
ln 𝑓(𝑡𝑖) + (𝑁 − 𝑛)

𝜕

𝜕𝑡0
ln(1− 𝐹 (𝑇 )) = 0, (5.2)
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𝜕𝐿

𝜕𝑘
=

𝑛∑︁
𝑖=1

𝜕

𝜕𝑘
ln 𝑓(𝑡𝑖) + (𝑁 − 𝑛)

𝜕

𝜕𝑘
ln(1− 𝐹 (𝑇 )) = 0. (5.3)

Modify expression (5.2):

𝜕𝐿

𝜕𝑡0
=

𝑛∑︁
𝑖=1

𝜕

𝜕𝑡0
ln

(︂
𝑘

𝑡0
𝑡𝑘−1
𝑖 𝑒

−𝑡𝑘𝑖
𝑡0

)︂
+ (𝑁 − 𝑛)

𝜕

𝜕𝑡0
ln

(︂
𝑒

−𝑡𝑘

𝑡0

)︂
⇔

⇔ 𝜕𝐿

𝜕𝑡0
= − 1

𝑡0
+

𝑛∑︁
𝑖=1

𝑡𝑘𝑖
𝑡20

+ (𝑁 − 𝑛)
𝑇 𝑘

𝑡20
= 0. (5.4)

Similarly simplify formula (5.3):

𝜕𝐿

𝜕𝑘
=

𝑛∑︁
𝑖=1

𝜕

𝜕𝑘
ln

(︂
𝑘

𝑡0
𝑡𝑘−1
𝑖 𝑒

−𝑡𝑘𝑖
𝑡0

)︂
+ (𝑁 − 𝑛)

𝜕

𝜕𝑘
ln

(︂
𝑒

−𝑡𝑘

𝑡0

)︂
⇔

⇔ 𝜕𝐿

𝜕𝑘
= −1

𝑘
+

𝑛∑︁
𝑖=1

ln(𝑡𝑖)

(︂
1− 𝑡𝑘𝑖

𝑡0

)︂
+ (𝑁 − 𝑛)

(︂
−𝑇 𝑘

𝑡0
ln(𝑇 )

)︂
= 0. (5.5)

From equations (5.4), (5.5) the required estimates of the Weibull

distribution can be numerically found to calculate the MTBF. The algorithm

is implemented in Appendix B.

Knowing the parameters of the Weibull distribution allows us not only to

approximate the empirical distribution function, but also to determine whether

there is an optimal replacement period for a node.

5.3 Constructing Preventive Maintenance Cost Function with

Consideration of Human Factors

To describe the probability of failure due to human factors, we will use the

Weibull distribution function, the rationale for which was given in the previous

section 5.2. For a similar probability, but due to a technical system, we will use

an exponential distribution. There are several reasons for this:
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– Because preventive inspections are most often carried out on an entire

complex technical system, a complex product is the object of the

inspection;

– The intervals between two regular inspections are usually short. In

this case, the system is not affected by wear and tear failures at these

time intervals, and its operability varies according to an exponential

law [37], [94].

There are a number of models for constructing an optimal strategy for

maintenance and repair of technical facilities. Some of them are developed

without taking into account the mathematical apparatus of optimization theory,

i. e. they include only the technical approach to defining the maintenance and

repair procedure. There are also such approaches, which are based solely on

mathematical models of preventive maintenance.

Of particular interest to the author of the study are models that consider

the costs of preventive measures and the costs of corrective actions when a

failure occurs. One such model was considered by the authors of research [16],

then it has received further modification in more recent work [58]. After

analysing this model, it was decided to include a probabilistic component

describing the human impact on the uptime of the product. Since the technical

measures for repair and maintenance of rolling stock equipment are provided by

humans, ignoring this component of reliability as part of its overall assessment

reduces the adequacy of the cost model.

5.3.1 Optimality Condition in General Case

Let us introduce notations and build a model of maintenance costs, taking

into account several probabilistic characteristics:
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𝐴γ – an event: failure due to human factors;

𝐵γ – an event: failure due to technical reasons;

𝐶γ – an event: no failure;

𝑐𝐴 – the cost of repairing the consequences of failure due to human factors;

𝑐𝐵 – the cost of repairing the consequence of failure due to technical reasons;

𝑐𝐶 – the cost of prevention;

𝑝𝐴(γ) – the probability of 𝐴 until γ;

𝑝𝐵(γ) – the probability of 𝐵 until γ;

𝑝𝐶(γ) – the probability of 𝐶 until γ. Then

𝑝𝐴(γ) + 𝑝𝐵(γ) + 𝑝𝐶(γ) = 1 ∀γ.

Let 𝐶(γ) be the repair/preventive maintenance costs for the preventive

maintenance period by time γ, then

𝐶(γ) = 𝑐𝐴𝑝𝐴(γ) + 𝑐𝐵𝑝𝐵(γ) + 𝑐𝐶𝑝𝐶(γ).

Denote by 𝑀(γ) the mathematical expectation of the end of operation (due to

repair/preventive maintenance). It can be represented as

𝑀(γ) =

γ∫︁
0

𝑡 (𝑝̇𝐴(𝑡) + 𝑝̇𝐵(𝑡)) 𝑑𝑡+ γ𝑝𝐶(γ) =

= −
γ∫︁

0

𝑡𝑝̇𝐶(𝑡) 𝑑𝑡+ γ𝑝𝐶(γ) = −
γ∫︁

0

𝑡 𝑑𝑝𝐶(𝑡) + γ𝑝𝐶(γ) =

= −γ𝑝𝐶(γ) + γ𝑝𝐶(γ) +

γ∫︁
0

𝑝𝐶(𝑡) 𝑑𝑡 =

γ∫︁
0

𝑝𝐶(𝑡) 𝑑𝑡.

Denote by 𝐶𝑢(γ) =
𝐶(γ)

𝑀(γ)
the unit cost, then

𝐶𝑢(γ) =
𝑐𝐴𝑝𝐴(γ) + 𝑐𝐵𝑝𝐵(γ) + 𝑐𝐶𝑝𝐶(γ)

γ∫︀
0

𝑝𝐶(𝑡) 𝑑𝑡

. (5.6)

Introduce the following values:
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𝑃1(γ) = 𝑃
(︀
𝐴γ | 𝐵γ

)︀
– the probability of a failure due to human error

during period [0;γ] when there is no failure due to technical reasons;

𝑃2(γ) = 𝑃
(︀
𝐵γ | 𝐴γ

)︀
– the probability of a failure due to technical reasons

during the period [0;γ] when there is no failure due to human error. According

to the conditional probability formula, we have:

𝑃
(︀
𝐴γ | 𝐵γ

)︀
=

𝑃
(︀
𝐴γ ∩𝐵γ

)︀
𝑃
(︀
𝐵γ

)︀ =
𝑃
(︀
𝐴γ ∪𝐵γ

)︀
𝑃
(︀
𝐵γ

)︀ =
𝑃 (𝐶γ)

1− 𝑃 (𝐵γ)
=

=
1− 𝑝𝐴(γ)− 𝑝𝐵(γ)

1− 𝑝𝐵(γ)
;

𝑃
(︀
𝐵γ | 𝐴γ

)︀
=

1− 𝑝𝐴(γ)− 𝑝𝐵(γ)

1− 𝑝𝐴(γ)
.

(5.7)

Let it be now:

𝑃1(γ) = 1− 𝑒−
γ𝑘

𝑡0 = 1− 𝑟(γ)(corresponds to the Weibull distribution),

𝑃2(γ) = 1− 𝑒−
γ
𝑚 = 1− 𝑞(γ)(corresponds to the exponential distribution).

(5.8)

Denote

𝑥 = 𝑥(γ) = 𝑝𝐴(γ),

𝑦 = 𝑦(γ) = 𝑝𝐵(γ).

Let’s rewrite (5.7) with (5.8) in mind:⎧⎪⎪⎨⎪⎪⎩
1− 𝑥− 𝑦

1− 𝑦
= 𝑟,

1− 𝑥− 𝑦

1− 𝑥
= 𝑞.

=⇒

⎧⎨⎩1− 𝑥− 𝑦 = (1− 𝑦)𝑟,

1− 𝑥− 𝑦 = (1− 𝑥)𝑞.
(5.9)

From where

(1− 𝑥)𝑞 = (1− 𝑦)𝑟,

1− 𝑥 =
(1− 𝑦)𝑟

𝑞
, (5.10)

𝑥 = 1− (1− 𝑦)𝑟

𝑞
. (5.11)
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Substitute (5.10) into (5.9):

(1− 𝑦)𝑟

𝑞
− 𝑦 = (1− 𝑦)𝑟,

(1− 𝑦)𝑟(1− 1

𝑞
) = −𝑦,

1− 1

𝑦
=

1

𝑟

(︂
1− 1

𝑞

)︂ ,
1− 1

𝑦
=

𝑞

𝑟(𝑞 − 1)
,

1

𝑦
=

𝑟(𝑞 − 1)− 𝑞

𝑟(𝑞 − 1)
,

𝑦 =
𝑟(𝑞 − 1)

𝑟(𝑞 − 1)− 𝑞
,

𝑦 =
𝑟(1− 𝑞)

𝑟(1− 𝑞) + 𝑞
. (5.12)

Now substitute (5.12) into (5.11):

𝑥 = 1− 𝑟

𝑞

𝑞

𝑟(1− 𝑞) + 𝑞
= 1− 𝑟

𝑟(1− 𝑞) + 𝑞
=

𝑞(1− 𝑟)

𝑟 + 𝑞 − 𝑟𝑞
. (5.13)

Given (5.13) and (5.12), we get:

1− 𝑥− 𝑦 =
𝑟 + 𝑞 − 𝑟𝑞 − 𝑞 + 𝑟𝑞 − 𝑟 + 𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
=

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
.

Substitute 𝑥 and 𝑦 in (5.6):

𝐶𝑢(γ) =
𝑐𝐴𝑞(1− 𝑟) + 𝑐𝐵𝑟(1− 𝑞) + 𝑐𝐶𝑟𝑞

(𝑟 + 𝑞 − 𝑟𝑞)
γ∫︀
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡

.



96

Here and hereafter, the point denotes the derivative over parameter γ, which

is the time derivative. Find the minimum of 𝐶𝑢(γ):

𝑑𝐶𝑢(γ)

𝑑γ
=

𝑐𝐴 (𝑞(1− 𝑟)− 𝑞𝑟̇) + 𝑐𝐵 (𝑟̇(1− 𝑞)− 𝑟𝑞) + 𝑐𝐶 (𝑟̇𝑞 + 𝑟𝑞)(︂
(𝑟 + 𝑞 − 𝑟𝑞)

γ∫︀
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡

)︂2 ×

×
(𝑟 + 𝑞 − 𝑟𝑞)

γ∫︀
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡(︂

(𝑟 + 𝑞 − 𝑟𝑞)
γ∫︀
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡

)︂2−

− 𝑐𝐴𝑞(1− 𝑟) + 𝑐𝐵𝑟(1− 𝑞) + 𝑐𝐶𝑟𝑞(︂
(𝑟 + 𝑞 − 𝑟𝑞)

γ∫︀
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡

)︂2×

×
(𝑟̇ + 𝑞 − 𝑟̇𝑞 − 𝑟𝑞)

γ∫︀
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡+ 𝑟𝑞(︂

(𝑟 + 𝑞 − 𝑟𝑞)
γ∫︀
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡

)︂2 = 0,

where
𝑟̇ =

𝑑

𝑑γ
𝑒−

γ𝑘

𝑡0 = − 𝑘

𝑡0
γ𝑘−1𝑒−

γ𝑘

𝑡0 ,

𝑞 =
𝑑

𝑑γ
𝑒−

γ
𝑚 = − 1

𝑚
𝑒−

γ
𝑚 .

(5.14)

Consider the conditions under which the numerator is zero:

𝑐𝐴 [(𝑞(1− 𝑟)− 𝑞𝑟̇) (𝑟 + 𝑞 − 𝑟𝑞)− 𝑞(1− 𝑟) (𝑟̇ + 𝑞 − 𝑟̇𝑞 − 𝑟𝑞)] +

+𝑐𝐵 [(𝑟̇(1− 𝑞)− 𝑟𝑞) (𝑟 + 𝑞 − 𝑟𝑞)− 𝑟(1− 𝑞) (𝑟̇ + 𝑞 − 𝑟̇𝑞 − 𝑟𝑞)] +

+𝑐𝐶 [(𝑟̇𝑞 + 𝑟𝑞) (𝑟 + 𝑞 − 𝑟𝑞)− 𝑟𝑞 (𝑟̇ + 𝑞 − 𝑟̇𝑞 − 𝑟𝑞)] =

=
𝑟𝑞 (𝑐𝐴𝑞(1− 𝑟) + 𝑐𝐵𝑟(1− 𝑞) + 𝑐𝐶𝑟𝑞)

γ∫︀
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡

.

(5.15)

Let’s redefine:

𝑧𝐴 = (𝑞(1− 𝑟)− 𝑞𝑟̇) (𝑟 + 𝑞 − 𝑟𝑞)− 𝑞(1− 𝑟) (𝑟̇ + 𝑞 − 𝑟̇𝑞 − 𝑟𝑞) ,

𝑧𝐵 = (𝑟̇(1− 𝑞)− 𝑟𝑞) (𝑟 + 𝑞 − 𝑟𝑞)− 𝑟(1− 𝑞) (𝑟̇ + 𝑞 − 𝑟̇𝑞 − 𝑟𝑞) ,

𝑧𝐶 = (𝑟̇𝑞 + 𝑟𝑞) (𝑟 + 𝑞 − 𝑟𝑞)− 𝑟𝑞 (𝑟̇ + 𝑞 − 𝑟̇𝑞 − 𝑟𝑞) .
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Simplify 𝑧𝐴, 𝑧𝐵, 𝑧𝐶 :

𝑧𝐴 = (𝑞(1− 𝑟)− 𝑞𝑟̇) (𝑟 + 𝑞 − 𝑟𝑞)− 𝑞(1− 𝑟) (𝑟̇ + 𝑞 − 𝑟̇𝑞 − 𝑟𝑞) =

= (𝑞(1− 𝑟)− 𝑞𝑟̇) (𝑞(1− 𝑟) + 𝑟)− 𝑞(1− 𝑟) (𝑟̇(1− 𝑞) + 𝑞(1− 𝑟)) =

= 𝑞(1− 𝑟) (𝑞(1− 𝑟)− 𝑟̇𝑞 − 𝑟̇(1− 𝑞)− 𝑞(1− 𝑟)) + 𝑟 (𝑞(1− 𝑟)− 𝑟̇𝑞) =

= −𝑟̇𝑞(1− 𝑟) + 𝑟𝑞(1− 𝑟)− 𝑟𝑟̇𝑞 =

= 𝑟̇ (𝑞(𝑟 − 1)− 𝑟𝑞) + 𝑟𝑞(1− 𝑟) =

= 𝑟𝑞(1− 𝑟)− 𝑟̇𝑞,

𝑧𝐵 = (𝑟̇(1− 𝑞)− 𝑟𝑞) (𝑟 + 𝑞 − 𝑟𝑞)− 𝑟(1− 𝑞) (𝑟̇ + 𝑞 − 𝑟̇𝑞 − 𝑟𝑞) =

= (𝑟̇(1− 𝑞)− 𝑟𝑞) (𝑟(1− 𝑞) + 𝑞))− 𝑟(1− 𝑞) (𝑟̇(1− 𝑞) + 𝑞(1− 𝑟))) =

= 𝑟(1− 𝑞) (𝑟̇(1− 𝑞)− 𝑟𝑞 − 𝑟̇(1− 𝑞)− 𝑞(1− 𝑟)) + 𝑞 (𝑟̇(1− 𝑞)− 𝑟𝑞) =

= −𝑟𝑞(1− 𝑞) + 𝑟̇𝑞(1− 𝑞)− 𝑟𝑞𝑞 =

= 𝑟̇𝑞(1− 𝑞)− 𝑟𝑞,

𝑧𝐶 = (𝑟̇𝑞 + 𝑟𝑞) (𝑟 + 𝑞 − 𝑟𝑞)− 𝑟𝑞 (𝑟̇ + 𝑞 − 𝑟̇𝑞 − 𝑟𝑞) =

= 𝑟𝑞 (−𝑟̇𝑞 − 𝑟𝑞 − 𝑟̇ − 𝑞 + 𝑟̇𝑞 + 𝑟𝑞) + (𝑟 + 𝑞) (𝑟̇𝑞 + 𝑟𝑞) =

= −𝑟𝑞 (𝑟̇ + 𝑞) + (𝑟 + 𝑞) (𝑟̇𝑞 + 𝑟𝑞) =

= 𝑟̇ (−𝑟𝑞 + 𝑞(𝑟 + 𝑞)) + 𝑞 (−𝑟𝑞 + 𝑟(𝑟 + 𝑞)) =

= 𝑟̇𝑞2 + 𝑞𝑟2.

In fact, it has been proven

Lemma 5.1 (Optimality Condition in General Case). The optimality condition

for period [0,γ] is

𝑐𝐴 (𝑟𝑞(1− 𝑟)− 𝑟̇𝑞) + 𝑐𝐵 (𝑟̇𝑞(1− 𝑞)− 𝑟𝑞) + 𝑐𝐶
(︀
𝑟̇𝑞2 + 𝑞𝑟2

)︀
=

=
𝑟𝑞 (𝑐𝐴𝑞(1− 𝑟) + 𝑐𝐵𝑟(1− 𝑞) + 𝑐𝐶𝑟𝑞)

γ∫︀
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡

.

The statement of Lemma 5.1 follows from (5.15).
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5.3.2 Optimality Condition for Equal Failure Costs

Lemma 5.2 (Optimality Condition for Equal Failure Costs). In the case of

𝑐𝐴 = 𝑐𝐵, the optimality condition is

𝑐𝐴
𝑐𝐴 − 𝑐𝐶

=
𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
− 𝑟̇𝑞2 + 𝑞𝑟2

𝑟𝑞(𝑟 + 𝑞 − 𝑟𝑞)

γ∫︁
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡.

Proof. Consider the case where 𝑐𝐴 = 𝑐𝐵, then

(𝑐𝐶 − 𝑐𝐴)
(︀
𝑟̇𝑞2 + 𝑞𝑟2

)︀
=

𝑟𝑞 (𝑐𝐴(𝑟 + 𝑞 − 2𝑟𝑞) + 𝑐𝐶𝑟𝑞)
γ∫︀
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡

,

(𝑐𝐶 − 𝑐𝐴)
(︀
𝑟̇𝑞2 + 𝑞𝑟2

)︀
=

𝑟𝑞 (𝑐𝐴(𝑟 + 𝑞 − 𝑟𝑞) + (𝑐𝐶 − 𝑐𝐴) 𝑟𝑞)
γ∫︀
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡

,

(𝑐𝐶 − 𝑐𝐴)

⎛⎜⎜⎜⎝𝑟̇𝑞2 + 𝑞𝑟2 − 𝑟2𝑞2

γ∫︀
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡

⎞⎟⎟⎟⎠ = 𝑐𝐴
𝑟𝑞(𝑟 + 𝑞 − 𝑟𝑞)
γ∫︀
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡

,

𝑐𝐴
𝑐𝐶 − 𝑐𝐴

=
𝑟̇𝑞2 + 𝑞𝑟2

𝑟𝑞(𝑟 + 𝑞 − 𝑟𝑞)

γ∫︁
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡− 𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
,

𝑐𝐴
𝑐𝐴 − 𝑐𝐶

=
𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
− 𝑟̇𝑞2 + 𝑞𝑟2

𝑟𝑞(𝑟 + 𝑞 − 𝑟𝑞)

γ∫︁
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡, (5.16)

Lemma 5.2 is proved.
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Corollary. Consider

𝑑

𝑑𝑡

(︂
𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞

)︂
=

(𝑟̇𝑞 + 𝑟𝑞) (𝑟 + 𝑞 − 𝑟𝑞)− 𝑟𝑞 (𝑟̇ + 𝑞 − 𝑟̇𝑞 − 𝑟𝑞)

(𝑟 + 𝑞 − 𝑟𝑞)2
=

=
𝑟𝑞 (−𝑟̇𝑞 − 𝑟𝑞 − 𝑟̇ − 𝑞 + 𝑟̇𝑞 + 𝑟𝑞)

(𝑟 + 𝑞 − 𝑟𝑞)2
+

+
(𝑟 + 𝑞) (𝑟̇𝑞 + 𝑟𝑞)

(𝑟 + 𝑞 − 𝑟𝑞)2
=

=
−𝑟𝑞 (𝑟̇ + 𝑞) + (𝑟 + 𝑞) (𝑟̇𝑞 + 𝑟𝑞)

(𝑟 + 𝑞 − 𝑟𝑞)2
=

=
𝑟̇ (𝑞(𝑟 + 𝑞)− 𝑟𝑞) + 𝑞 (𝑟(𝑟 + 𝑞)− 𝑟𝑞)

(𝑟 + 𝑞 − 𝑟𝑞)2
=

=
𝑟̇𝑞2 + 𝑞𝑟2

(𝑟 + 𝑞 − 𝑟𝑞)2
.

(5.17)

Then:

𝑟̇𝑞2 + 𝑞𝑟2

𝑟𝑞(𝑟 + 𝑞 − 𝑟𝑞)
=

𝑑

𝑑𝑡

(︂
𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞

)︂
𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞

.

Consequently, (5.16) will take the form

𝑐𝐴
𝑐𝐴 − 𝑐𝐶

= 𝑝𝐶(γ)−
𝑑𝑝𝐶(γ)
𝑑γ

𝑝𝐶(γ)

γ∫︁
0

𝑝𝐶(𝑡) 𝑑𝑡 = 𝐹 (γ). (5.18)

For the convenience of further transformations, let us introduce following

notations:

𝑟 = 𝑒−
γ𝑘

𝑡0 , 𝑟̇ = − 𝑘

𝑡0
γ𝑘−1𝑒−

γ𝑘

𝑡0 , 𝑞 = 𝑒−
γ
𝑚 , 𝑞 = − 1

𝑚
𝑒−

γ
𝑚 .

Consider the limit value of γ:

𝑝𝐶(0) =
𝑟(0)𝑞(0)

𝑟(0) + 𝑞(0)− 𝑟(0)𝑞(0)
=

1 · 1
1 + 1− 1 · 1

= 1.

Then in (5.18) 𝐹 (0) = 1.

lim
γ→∞

𝑝𝐶(γ) = lim
γ→∞

𝑒−
γ𝑘

𝑡0 · 𝑒− γ
𝑚

𝑒−
γ𝑘

𝑡0 + 𝑒−
γ
𝑚 − 𝑒−

γ𝑘

𝑡0 · 𝑒− γ
𝑚

=

= lim
γ→∞

1

𝑒
γ
𝑚 + 𝑒

γ𝑘

𝑡0 − 1
= 0.
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Consider the value
𝑑𝑝𝐶(γ)
𝑑γ

𝑝𝐶(γ)
=

𝑟̇𝑞2 + 𝑞𝑟2

𝑟𝑞(𝑟 + 𝑞 − 𝑟𝑞)
=

=
− 𝑘

𝑡0
γ𝑘−1𝑒−

γ𝑘

𝑡0 · 𝑒−2 γ
𝑚 − 1

𝑚𝑒
− γ

𝑚 · 𝑒−2γ𝑘

𝑡0

𝑒−
γ𝑘

𝑡0 · 𝑒− γ
𝑚

(︂
𝑒−

γ𝑘

𝑡0 + 𝑒−
γ
𝑚 − 𝑒−

γ𝑘

𝑡0 · 𝑒− γ
𝑚

)︂ =

=
− 𝑘

𝑡0
γ𝑘−1𝑒

γ𝑘

𝑡0 − 1
𝑚𝑒

γ
𝑚

𝑒
γ
𝑚 + 𝑒

γ𝑘

𝑡0 − 1
=

= − 𝑘

𝑡0
γ𝑘−1 𝑒

γ𝑘

𝑡0

𝑒
γ
𝑚 + 𝑒

γ𝑘

𝑡0 − 1
− 1

𝑚

𝑒
γ
𝑚

𝑒
γ
𝑚 + 𝑒

γ𝑘

𝑡0 − 1
=

= − 𝑘

𝑡0
γ𝑘−1 1

𝑒
γ
𝑚 · 𝑒−

γ𝑘

𝑡0 + 1− 𝑒−
γ𝑘

𝑡0

− 1

𝑚

1

1 + 𝑒
γ𝑘

𝑡0 · 𝑒− γ
𝑚 − 𝑒−

γ
𝑚

(5.19)

γ𝑘

𝑡0
− γ

𝑚
=

𝑚γ𝑘 − 𝑡0γ

𝑡0𝑚
=

γ

𝑡0𝑚

(︀
𝑚γ𝑘−1 − 𝑡0

)︀
.

Next, consider the limit

lim
γ→∞

γ∫︁
0

𝑝𝐶(𝑡) 𝑑𝑡 =

∞∫︁
0

𝑝𝐶(𝑡) 𝑑𝑡 =

∞∫︁
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡 =

=

∞∫︁
0

𝑒−
𝑡𝑘

𝑡0 · 𝑒− 𝑡
𝑚

𝑒−
𝑡𝑘

𝑡0 + 𝑒−
𝑡
𝑚 − 𝑒−

𝑡𝑘

𝑡0 · 𝑒− 𝑡
𝑚

𝑑𝑡 =

=

∞∫︁
0

1

𝑒
𝑡
𝑚 + 𝑒

𝑡𝑘

𝑡0 − 1
𝑑𝑡.

Let’s find a majorant:
1

𝑒
𝑡
𝑚 + 𝑒

𝑡𝑘

𝑡0 − 1
⩽

1

𝑒
𝑡
𝑚

= 𝑒−
𝑡
𝑚 ∀𝑡 ⩾ 0, 𝑘 ⩾ 0. Then:

∞∫︁
0

𝑒−
𝑡
𝑚 𝑑𝑡 = −𝑚

∞∫︁
0

𝑒−
𝑡
𝑚 𝑑

(︂
− 𝑡

𝑚

)︂
= −𝑚 · 𝑒−

𝑡
𝑚

⃒⃒⃒∞
0

= −𝑚 · (0− 1) = 𝑚.

Therefore, lim
γ→∞

γ∫︀
0

𝑝𝐶(𝑡) 𝑑𝑡 ⩽ 𝑚. Moreover, lim
γ→∞

γ∫︀
0

𝑝𝐶(𝑡) 𝑑𝑡 > 0 since

𝑝𝐶(𝑡) ⩾ 0 ∀𝑡 ⩾ 0 and there exists 𝑡* such that 𝑝𝐶 (𝑡*) > 0.

Thus, the limit of the integral is finite positive value 𝑚*, 0 < 𝑚* ⩽ 𝑚.
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Return to
𝑑𝑝𝐶(γ)
𝑑γ

𝑝𝐶(γ)
in (5.19) and denote

𝑓(γ) = − 𝑘

𝑡0
γ𝑘−1 1

𝑒
γ
𝑚 · 𝑒−

γ𝑘

𝑡0 + 1− 𝑒−
γ𝑘

𝑡0

− 1

𝑚

1

1 + 𝑒
γ𝑘

𝑡0 · 𝑒− γ
𝑚 − 𝑒−

γ
𝑚

.

Consider several cases, depending on the range of parameter 𝑘.

Case I: 𝑘 > 1

1. Consider lim
γ→+0

𝑓(γ):

lim
γ→+0

(︂
− 𝑘

𝑡0
γ𝑘−1

)︂
= 0,

lim
γ→+0

𝑒
γ
𝑚−γ𝑘

𝑡0 = 1

lim
γ→+0

(︂
−𝑒−

γ𝑘

𝑡0

)︂
= −1

⎫⎪⎪⎬⎪⎪⎭ =⇒ lim
γ→+0

1

1 + 𝑒
γ
𝑚−γ𝑘

𝑡0 − 𝑒−
γ𝑘

𝑡0

= 1.

lim
γ→+0

𝑒
γ𝑘

𝑡0
− γ

𝑚 = 1

lim
γ→+0

(︁
−𝑒−

γ
𝑚

)︁
= −1

⎫⎪⎬⎪⎭ =⇒ lim
γ→+0

1

1 + 𝑒
γ𝑘

𝑡0
− γ

𝑚 − 𝑒−
γ
𝑚

= 1.

As a result, lim
γ→+0

𝑓(γ) = − 1

𝑚
.

2. Consider lim
γ→+∞

𝑓(γ):

lim
γ→+∞

(︂
− 𝑘

𝑡0
γ𝑘−1

)︂
= −∞,

lim
γ→+∞

𝑒
γ
𝑚−γ𝑘

𝑡0 = 0

lim
γ→+∞

(︂
−𝑒−

γ𝑘

𝑡0

)︂
= 0

⎫⎪⎪⎬⎪⎪⎭ =⇒ lim
γ→+∞

1

1 + 𝑒
γ
𝑚−γ𝑘

𝑡0 − 𝑒−
γ𝑘

𝑡0

= 1.
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lim
γ→+∞

𝑒
γ𝑘

𝑡0
− γ

𝑚 = +∞

lim
γ→+∞

(︁
−𝑒−

γ
𝑚

)︁
= 0

⎫⎪⎬⎪⎭ =⇒ lim
γ→+∞

1

1 + 𝑒
γ𝑘

𝑡0
− γ

𝑚 − 𝑒−
γ
𝑚

= 0.

The result is lim
γ→+∞

𝑓(γ) = −∞.

Conclusively:

lim
γ→+0

⎡⎣𝑝𝐶(γ)− 𝑑𝑝𝐶(γ)
𝑑γ

𝑝𝐶(γ)

γ∫︁
0

𝑝𝐶(𝑡) 𝑑𝑡

⎤⎦ = 1 +
1

𝑚
· 0 = 1,

lim
γ→+∞

⎡⎣𝑝𝐶(γ)− 𝑑𝑝𝐶(γ)
𝑑γ

𝑝𝐶(γ)

γ∫︁
0

𝑝𝐶(𝑡) 𝑑𝑡

⎤⎦ = 0 +∞ ·𝑚* = +∞.

We can formulate a lemma.

Lemma 5.3.
γ∫︀
0

𝑝𝐶(𝑡) 𝑑𝑡 ⩽ 𝑚(1− 𝑞).

Proof. We have

𝑝𝐶(𝑡) =
𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
=

1
1
𝑟 +

1
𝑞 − 1

=
1

𝑒
𝑡𝑘

𝑡0 + 𝑒
𝑡
𝑚 − 1

.

Since 𝑒
𝑡𝑘

𝑡0 − 1 ⩾ 0 ∀𝑡 ⩾ 0, then
1

𝑒
𝑡𝑘

𝑡0 + 𝑒
𝑡
𝑚 − 1

⩽
1

𝑒
𝑡
𝑚

⩽ 𝑞 ∀𝑡 ⩾ 0.

Then
γ∫︀
0

𝑝𝐶(𝑡) 𝑑𝑡 ⩽
γ∫︀
0

𝑞 𝑑𝑡 ∀γ ⩾ 0. From here:

γ∫︁
0

𝑝𝐶(𝑡) 𝑑𝑡 ⩽

γ∫︁
0

𝑒−
𝑡
𝑚 𝑑𝑡 = −𝑚 𝑒−

𝑡
𝑚

⃒⃒⃒γ
0
= 𝑚

(︁
1− 𝑒−

𝑡
𝑚

)︁
= 𝑚(1− 𝑞).

Lemma 5.3 is proved.

Corollary. Since lim
γ→+∞

𝑞(γ) = 0, then lim
γ→+∞

γ∫︀
0

𝑝𝐶(𝑡) 𝑑𝑡 ⩽ 𝑚.

Case II: 𝑘 ⩽ 1

Back to equation (5.18):
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𝑐𝐴
𝑐𝐴 − 𝑐𝐶

= 𝑝𝐶(γ)−
𝑑𝑝𝐶(γ)
𝑑γ

𝑝𝐶(γ)

γ∫︁
0

𝑝𝐶(𝑡) 𝑑𝑡 = 𝐹 (γ).

Let’s add new notations to the existing ones:

𝑝𝐶(γ) =
𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞

𝑟 = 𝑒−
γ𝑘

𝑡0 ,

𝑞 = 𝑒−
γ
𝑚 ,

𝑟̇ = −𝑠𝑟,

𝑞 = − 1

𝑚
𝑞,

where 𝑠 =
𝑘

𝑡0
γ𝑘−1, therefore 𝑠̇ =

𝑘(𝑘 − 1)

𝑡0
γ𝑘−2 =

𝑘 − 1

γ
𝑠.

𝐹 (γ) =
𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
+

𝑠𝑞 + 1
𝑚𝑟

𝑟 + 𝑞 − 𝑟𝑞

γ∫︁
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡.

𝑘 ⩽ 1

1. 𝐹 (γ) is defined and continuous ∀γ > 0. However, the function is

undefined at point γ = 0, because function 𝑠(γ) is undefined at point 0

when 𝑘 < 1. Let us show the existence of a finite limit at this point.

Lemma 5.4. lim
γ→+0

𝐹 (γ) = 1 when 𝑘 ⩽ 1.

Proof. The first term:

𝑝𝐶(0) =
𝑟(0) + 𝑞(0)

𝑟(0) + 𝑞(0)− 𝑟(0)𝑞(0)
= 1.

Consider in detail the second term:

𝑠𝑞 + 1
𝑚𝑟

𝑟 + 𝑞 − 𝑟𝑞

γ∫︁
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡 =

(︃
𝑠 · 1

𝑟
𝑞 − 𝑟 + 1

+
1

𝑚
· 1
𝑞
𝑟 − 𝑞 + 1

)︃
×

×
γ∫︁

0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡.
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At γ = 0 lim
γ→+0

𝑠(γ) = +∞ when 𝑘 < 1 and 𝑠(0) =
1

𝑡0
when 𝑘 = 1.

1
𝑟(0)
𝑞(0) − 𝑟(0) + 1

=
1

1
1 − 1 + 1

= 1,

1
𝑞(0)
𝑟(0) − 𝑞(0) + 1

=
1

1
1 − 1 + 1

= 1,

0∫︁
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡 = 0.

Thus,

lim
γ→+0

𝐹 (γ) = 1 + lim
γ→+0

⎛⎝(𝑠+ 1)

γ∫︁
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡

⎞⎠ =

= 1 + lim
γ→+0

⎛⎝𝑠

γ∫︁
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡

⎞⎠ .

We obtain an uncertainty of type +∞·0. Replacing 𝑠 with
1
1
𝑠

, we move

to uncertainty
0

0
, which can be solved by L’Hopital’s rule:

lim
γ→+0

γ∫︀
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡

1

𝑠

= lim
γ→+0

𝑑

𝑑𝑡

(︂
γ∫︀
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡

)︂
𝑑

𝑑γ

(︂
1

𝑠(γ)

)︂ =

= lim
γ→+0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞

− 𝑠̇

𝑠2

=

= lim
γ→+0

(︃
𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
·

(︃
− 𝑠2

𝑘−1
γ
𝑠

)︃)︃
=

= lim
γ→+0

(︂
𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
·
(︂
− γ

𝑘 − 1
· 𝑘
𝑡0
γ𝑘−1

)︂)︂
=

= lim
γ→+0

(︂
𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
·
(︂
− 𝑘

(𝑘 − 1)𝑡0
γ𝑘

)︂)︂
=

=
1 · 1

1 + 1− 1
·
(︂
− 𝑘

(𝑘 − 1)𝑡0
· 0
)︂

= 0.
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Hence, lim
γ→+0

𝐹 (γ) = 1.

Lemma 5.4 is proven.

2. The next step is to show the presence of an additional majorant for
γ∫︀
0

𝑝𝐶(𝑡) 𝑑𝑡.

Lemma 5.5. It is a fair constraint:
γ∫︁

0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡 ⩽

1

𝑠
(1− 𝑟) ∀γ ⩾ 0, 𝑘 ⩽ 1.

Proof.

a) Estimate an upper bound of 𝑝𝐶(γ):

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
=

1
1
𝑟 +

1
𝑞 − 1

1
𝑞−1⩾0

⩽
1
1
𝑟

= 𝑟 ⇒

⇒
γ∫︁

0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡 ⩽

γ∫︁
0

𝑟 𝑑𝑡.

b) Let’s show that the formula is correct
γ∫︁

0

𝑟(𝑡) 𝑑𝑡 ⩽
1

𝑠(γ)
(1− 𝑟(γ))

when 𝑘 < 1. First, let’s check point γ = 0: on the left-hand

side
0∫︁

0

𝑟(𝑡) 𝑑𝑡 = 0.

The right-hand side:

1

𝑠
(1− 𝑟) =

𝑡0
𝑘
γ1−𝑘

(︂
1− 𝑒−

γ𝑘

𝑡0

)︂
,

at 0 we have
𝑡0
𝑘
· 0 · (1− 1) = 0.

Now differentiate both sides:

𝑑

𝑑γ

⎛⎝ γ∫︁
0

𝑟(𝑡) 𝑑𝑡

⎞⎠ = 𝑟(γ),
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𝑑

𝑑γ

(︂
1

𝑠(γ)
(1− 𝑟(γ))

)︂
=

𝑑

𝑑γ

(︂
1

𝑠(γ)

)︂
(1− 𝑟(γ))−

− 1

𝑠(γ)

𝑑𝑟(γ)

𝑑γ
=

= − 𝑠̇

𝑠2
(1− 𝑟) + 𝑟 =

= −𝑘 − 1

γ
· 1
𝑠
(1− 𝑟) + 𝑟 =

=
1− 𝑘

γ
· 𝑡0
𝑘γ𝑘−1

(1− 𝑟) + 𝑟 =

=
(1− 𝑘)𝑡0

𝑘
· 1

γ𝑘
(1− 𝑟) + 𝑟.

Let’s compare for γ > 0:

𝑟 ⩽
(1− 𝑘)𝑡0

𝑘
· 1

γ𝑘
(1− 𝑟) + 𝑟

(1− 𝑘)𝑡0
𝑘

· 1

γ𝑘
(1− 𝑟) ⩾ 0

– correct.

The result shows that at point 0 both parts are equal, and

when γ grows, the function in the right side increases at least

no slower than the function in the left side (it follows from the

inequality for derivatives). Therefore the tested inequality is

true.

c) Let’s show fairness
γ∫︁

0

𝑟(𝑡) 𝑑𝑡 ⩽
1

𝑠(γ)
(1− 𝑟(γ))

when 𝑘 = 1. Calculate the integral:
γ∫︁

0

𝑒−
𝑡
𝑡0 𝑑𝑡 = −𝑡0 𝑒

− 𝑡
𝑡0

⃒⃒⃒γ
0
= 𝑡0

(︁
1− 𝑒−

γ
𝑡0

)︁
.

And since at 𝑘 = 1: 𝑠(γ) =
𝑘

𝑡0
γ𝑘−1 =

1

𝑡0
and

1

𝑠
= 𝑡0, then

𝑡0

(︁
1− 𝑒

γ
𝑡0

)︁
=

1

𝑠
(1− 𝑟).
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Thus, for 𝑘 ⩽ 1 it has been shown:

γ∫︁
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡 ⩽

γ∫︁
0

𝑟 𝑑𝑡 ⩽
1

𝑠
(1− 𝑟).

Lemma 5.5 is proven.

Corollary. Earlier it was shown that there is another majorant
γ∫︀
0

𝑝𝐶(𝑡) 𝑑𝑡 ⩽ 𝑚(1− 𝑞). Therefore we can conclude that

γ∫︁
0

𝑝𝐶(𝑡) 𝑑𝑡 ⩽ min

{︂
𝑚(1− 𝑞);

1

𝑠
(1− 𝑟)

}︂
.

3. Now show the boundedness of 𝐹 (γ).

Lemma 5.6. 𝐹 (γ) ⩽ 1 when 𝑘 ⩽ 1 ∀γ ⩾ 0.

Proof. For point γ = 0 the boundedness follows from Lemma 5.4, so

we show for γ > 0:

𝐹 (γ) =
𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
+

𝑠𝑞 + 1
𝑚𝑟

𝑟 + 𝑞 − 𝑟𝑞

γ∫︁
0

𝑟𝑞

𝑟 + 𝑞 − 𝑟𝑞
𝑑𝑡 ⩽

⩽
1

1
𝑟 +

1
𝑞 − 1

+
𝑠1𝑟 +

1
𝑚

1
𝑞

1
𝑟 +

1
𝑞 − 1

min

{︂
𝑚(1− 𝑞);

1

𝑠
(1− 𝑟)

}︂
⩽

⩽
1

1
𝑟 +

1
𝑞 − 1

+
𝑠1𝑟 ·

1
𝑠(1− 𝑟)

1
𝑟 +

1
𝑞 − 1

+

1
𝑚

1
𝑞 ·𝑚(1− 𝑞)
1
𝑟 +

1
𝑞 − 1

=

=
1 +

(︀
1
𝑟 − 1

)︀
+
(︁
1
𝑞 − 1

)︁
1
𝑟 +

1
𝑞 − 1

=

=

1
𝑟 +

1
𝑞 − 1

1
𝑟 +

1
𝑞 − 1

= 1.

Lemma 5.6 is proven.

Theorem 5.1 (Key Property of Model). Since
𝑐𝐴

𝑐𝐴 − 𝑐𝐶
> 1 for real problems,

and 𝐹 (γ) ⩽ 1, there is no optimal value of γ at 𝑘 ⩽ 1.
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The proof follows from Lemmas 5.1 – 5.6.

A graphical representation of finding the optimal revision period on real

data is given in Appendix C.

5.3.3 Paragraph Conclusions

This part of the paper focuses on the construction and analysis of a model

in order to find the optimum preventive maintenance period to ensure the

reliability of technical systems. The topic of constructing a maintenance and

repair programme that can strike a balance between the level of uptime and the

cost involved in doing so is becoming increasingly relevant today. Furthermore,

in recent years, a great deal of attention in Reliability-Centered Maintenance

(RCM) methodology has been directed towards reducing the proportion of

faults attributable to human operators. As a rule, this initiative is implemented

on the basis of regulatory procedures mainly in terms of process technology.

Mathematical models of reliability assessment with regard to human factors are

being developed and are usually considered separately from system reliability.

This part of the study presents the construction of a model that takes

into account both ideas proposed in [16], [58] and the actively developing field

of HRA (Human Reliability Analysis) to determine the optimal frequency of

preventive maintenance. A number of new results are obtained:

1. A theoretical unit cost model is constructed which takes into account

the maintenance costs and failure consequences of two sources of

failure: the technical component of the system and the influence of

maintenance personnel.

2. A general condition for an optimum maintenance period is derived.
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3. The proposed model investigates the existence of an optimal solution

depending on the change of shape parameter 𝑘 in the case of equal

failure costs due to both system specifications and human influence.

The results will help to build a strategy for reliability management

using the Weibull distribution parameters found in Paragraph 5.2, and

to determine the optimal period of preventive measures depending on

the values of parameter 𝑘.

5.4 Determining Replacement Period for Technical System

Components Based on Dynamic Programming Method

Solving the problem of determining the optimal preventive maintenance

period reduces the operating costs, i.e. it affects the life cycle cost of the product

(this section of the operating costs is part of Block №5 of Figure 1.1, relating

to the operational phase of the product).

In addition to inspection costs, the cost of replacing components from the

old to the new plays a major role: too frequent replacements can be expensive,

while insufficient replacement can lead to a critical failure [95]. At the same

time, with import substitution, the supply of new components has become

even more important in the maintenance and repair of the technical system.

As shown in Figure 5.1, technical system maintenance and repair activities

can be divided into two main categories: preventive and corrective. There are

several options for accounting for monthly system maintenance costs. Let us

consider the most popular one [96] and adapt this model to costs specific to the

rolling stock production and maintenance area. Preventive maintenance costs

can be described as follows:

𝑃𝑀𝐶 =
𝑂𝐻 ×𝐻𝑅× 𝐶𝐸𝑇𝑃𝑀

𝑆𝑃𝑀𝐼
, (5.20)
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𝑂𝐻 – the equipment operating hours per month;

𝐻𝑅 – the hourly rate worked at the site;

𝑆𝑃𝑀𝐼 – the scheduled preventive maintenance interval (in this case technical

inspections).

Corrective maintenance cost includes the costs associated with rectifying

the failure and its consequences:

𝐶𝑀𝐶 =
𝑂𝐻 ×𝐻𝑅×𝑀𝑇𝑇𝑅

𝑀𝑇𝐵𝐹
, (5.21)

𝑀𝑇𝐵𝐹 – the mean time between failures;

𝐶𝐸𝑇𝑃𝑀 – the customer engineer’s scheduled time for performing preventive

maintenance ;

𝑀𝑇𝑇𝑅 – the mean time to repair.

The scope and timing of the replacement of the various components and

system elements for a product is usually fixed in the operating and maintenance

documentation for the product. In most cases, the frequency of replacements is

determined by expert observation by the operator and commission inspections.

Let’s determine the optimum replacement times of the product

components based on the dynamic programming method and reliability

characteristic values derived from the methods and algorithms developed

in Chapters 3, 4, 5. One of the main methods of dynamic programming is the

recurrence relation method, which is based on the use of the optimality principle

developed by Bellman [97]. The dynamic programming method solves problems

in which the control process is broken down into steps. A continuous control

process can be treated as a discrete process by conditionally breaking it down

into time periods. The length of the step is determined by the requirements

of the particular task. In the case of determining the replacement time of

components of a technical object, we will choose a step of a month, since,
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firstly, in Chapter 4 the step is equal to one month, and, secondly, more often

than this period, usually no scheduled replacements are performed in this area

(except for cases of production defects or out-of-state situations).

In general, the objective of the equipment replacement task is to find a

replacement period for old machines/lines within an industrial facility. The

criterion for optimality is most often the profit from the operation of the

equipment (productivity or value of output). The cost factor is usually the

cost of maintaining and repairing the equipment depending on its age.

Let us upgrade this model to the task of optimal replacement in the rolling

stock component industry: the productivity function will be the monthly profit

per unit of equipment. The cost function will be the maintenance costs of a unit

of rolling stock per month. The costs of maintenance in operation are mainly

made up of the costs of preventive and corrective measures. Let us introduce

into expressions (5.20) and (5.21) the variables derived from Chapters 3, 4, 5

(see Table 5.1). Let’s describe each of them:

1. Replace 𝐶𝐸𝑇𝑃𝑀 by 𝑡𝑝𝑟 in (5.20) and 𝑀𝑇𝑇𝑅 by 𝑡𝑟 in (5.21). The

characteristics introduced instead of 𝐶𝐸𝑇𝑃𝑀 and 𝑀𝑇𝑇𝑅 can be

identified based on statistical hypothesis testing from Chapter 3. By

identifying peer components according to various criteria (operating

profile, duration of inspection, duration of repair depending on product

features, design variations), a number of parameters can be identified

at the stage of technical object development, according to which

characteristics on new products are set. The list of these components

can be compiled by applying the apparatus proposed in Chapter 3 on

the factors that are required for the study. Thus, we will not have

as an initial value the planned time solely by engineering analysis

evaluation, but a verified evaluation by a comprehensive approach:

selection of analogues in terms of maintenance technology and

design characteristics, followed by a verification based on statistical

hypothesis testing.
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2. 𝑀𝑇𝐵𝐹 (which is usually treated as a constant) in (5.21) will be

replaced by a value to be recalculated from month to month through λ𝑡,

computed from actual data in past periods and modelled on the time

series with the apparatus of survival theory applied to the predicted

values proposed in Chapter 4.

3. 𝑆𝑃𝑀𝐼 is one of the most uncertain parameters in the field of uptime,

as it depends on many factors. The most important of these are

the characteristics of the components in question, the human factor

and the economic cost of the maintenance process. Because of the

complex set of influencing characteristics, the scope of determining

the optimality of this parameter was discussed in paragraph 5.3 and

𝑆𝑃𝑀𝐼 is replaced by γ𝑜𝑝𝑡, whose value is obtained by the algorithm

in Chapter 5 based on substitution of real data.

Table 5.1 — Parameter correspondence.
𝑃𝑀𝐶 𝐶𝑀𝐶

Replacement from/to Replacement from/to
𝐶𝐸𝑇𝑃𝑀 𝑡𝑝𝑟 (Chapter 3) 𝑀𝑇𝑇𝑅 𝑡𝑟 (Chapter 3)
𝑆𝑃𝑀𝐼 γ𝑜𝑝𝑡 (Chapter 5) 𝑀𝑇𝐵𝐹 1/λ (Chapter 4)

The classical problem of determining an equipment replacement strategy

is set as follows to describe an 𝑁 -stage process [98], [99]:

𝑓𝑁(𝑡) = max

⎧⎪⎨⎪⎩𝑟(𝑡)− 𝑢(𝑡) + 𝑓𝑁−1(𝑡+ 1),

𝑟(0)− 𝑢(0)− 𝑃 + 𝑓𝑁−1(1);

a one-stage process has the form:

𝑓1(𝑡) = max

⎧⎪⎨⎪⎩𝑟(𝑡)− 𝑢(𝑡),

𝑟(0)− 𝑢(0)− 𝑃,

where 𝑟(𝑡) is the income from the operation of a unit of rolling stock equipment

per month, 𝑢(𝑡) is the monthly maintenance costs, 𝑓𝑁(𝑡) is the maximum
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income from the operation of equipment of 𝑡 months age for the remaining

𝑁 months of the component under the condition of optimal strategy. At each

stage of the 𝑁 -stage process, a decision must be made whether to continue

operating the component or to replace it with a new one. The chosen option

should maximise the profit. The first rows of the above functional equations

define the income from continuing to operate the component (conservation),

while the lower rows are for the income from replacing the component with a

new one (with a replenished failure-free rate). Given the suggestion of using

table replacements 5.1, let’s rewrite the maintenance cost function as follows:

𝑢(𝑡) = 𝑃𝑀𝐶 + 𝐶𝑀𝐶 =
𝑂𝐻 ×𝐻𝑅× 𝑡𝑝𝑟

γ𝑜𝑝𝑡
+

𝑂𝐻 ×𝐻𝑅× 𝑡𝑟
1/λ𝑡

. (5.22)

Based on the implementation of this algorithm, the optimum update

period for the control unit software was determined from the operational data.

This update period was once every six months (see Appendix D).

Chapter Conclusions

This section presents an algorithm for constructing an optimal

maintenance strategy based on the human factor influence on the maintenance

process of engineering facilities in operation. Human Reliability Analysis

(HRA) [76] has rapidly evolved in recent years due to the increasing complexity

of production systems and variations in their operation. Many human activities

are being replaced by robotic functions and various automated systems also

for the purpose of reducing the risk due to human error. In order to assess

this risk, it is necessary to use reliability and maintenance models that take

into account human influence, both for assessing reliability dependent on real

people and for creating high-tech systems based on artificial intelligence.

In this chapter, the Weibull distribution law is proposed as an

approximation model for the reliability due to the human operator, and the
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reasoning for this proposal is given in paragraph 5.2. Relations for identifying

the parameters of the distribution are given. Then a method for determining

the optimal maintenance interval by the criterion of minimizing the cost of

failure and preventive maintenance, taking into account both the product

specifications and the component of system reliability due to the impact of

personnel on the maintenance process (paragraph 5.3) is presented. On the

basis of a number of transformations and consideration of limit relations,

this mathematical model is investigated and conclusions are drawn about the

existence of an optimum, depending on changes of the Weibull distribution

form parameter.

The aim of the last step in the optimisation of the maintenance and repair

process of a facility is to find the optimum replacement period for a component

of a composite product (paragraph 5.4). This search was carried out on the

basis of a complex method, the initial parameters for which are the following

reliability characteristics:

1. Preventive maintenance and repair times. The replacement intervals

are entered into the technical documentation during the product

development phase, at a stage where the component data is not yet

available (stage №2 in diagram 1.1). For this reason, the indicators are

derived by applying the statistical criteria from Chapter 3 (Fig. 1.2)

to select the characteristics from data of similar components and

comparable operating conditions.

2. Predicted failure-free values. In Chapter 4, a time series model with

selected adaptation parameters based on the apparatus of survival

theory is constructed. An accurate prediction will determine the

replacement time for an element already in service, as well as for a

new design. In the first case, this method will determine the period

when replacement is needed in the process of operation, which will

allow planning the supply of spare parts, tools, accessories before

the failure occurs (stage №5 in diagram 1.1). In the second case,
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based on the actual and predicted failure rates of the peer units,

identify the optimum replacement time to reduce the cost of the

designed product by introducing replacement instructions for the

future customer (step №2 in diagram 1.1).

3. Optimum preventive maintenance period. The frequency of inspections

and maintenance takes up a large proportion of the total life-cycle costs

of a product. By finding the optimum value for this indicator, taking

into account the human factor and including this frequency value in

the total cost function (5.22), the model will find the replacement times

with the best ratio of uptime to maintainability in terms of the unit

cost.

The approaches developed in this chapter will allow both building a

maintenance and repair strategy for the designed products, and adjusting

the operational manuals and repair documentation used for the rolling stock

units in operation. The proposed methods ensure the reduction of costs at

different stages of the product life cycle (Figure 1.1), which increases product

competitiveness in the market and flexible process of adaptation in the rapidly

changing conditions of the industrial market.
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CONCLUSION

This paper presents different approaches for assessing and ensuring the

reliability of transport system components. Reliability is a complex property

not only on the technical side of the product, but also includes such an

important property as safety for use, which must adequately correlate with the

economic effect of ensuring a given level of all necessary indicators. Excessive

reliability characteristics may cause negative economic effect in the framework

of competition in the industrial sphere, while its insufficient level may lead to

failures and accidents of different levels of criticality, including nuclear disasters

and major man-caused accidents. For these reasons, a multi-stage and multi­

factor approach to reliability analysis is applicable to every area of production,

regardless of its focus.

The general idea of this study is to select and develop methods that are

most suitable for each of the blocks of the reliability management system in

an enterprise (see Fig. 1.2). This study allows building a reliability-oriented

approach in production systems based on various mathematical models. To

summarise the work done, let us highlight the main results:

1. A combined approach for setting standardised reliability indicators,

based on structural and Markovian analysis and taking into account

the requirements of the customer and the manufacturer, is proposed.

2. On the basis of an extensive analysis of common criteria for statistical

hypothesis testing in reliability theory, their testing on real data and an

investigation of their theoretical properties and differences, suggestions

have been made for applicable statistical criteria and examples of their

implementation on various reliability data are given. This section of

the analysis applies to many reliability problems and can be an end

in itself for a problem, or it can be a step for calculations, methods of

implementation of which are presented in Chapters 4, 5.
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3. A short-term prediction model for various technical systems has been

constructed. The forecast has been built on real operational data

using the Holt – Winters adaptive forecasting method with a selection

of series coefficients based on survivability analysis. The results of

the solution of the described problem are currently used to predict

the reliability of analog nodes of different types of rolling stock

components. The maintenance and repair procedures for different types

of doors have also been reviewed, and corrective actions for a number

of door units have been assessed and revised, taking into account the

application of the above prediction methodology.

4. A method of determining the optimum frequency of preventive

maintenance based on minimisation of the unit cost function and

investigation of its behaviour depending on the distribution parameters

has been developed. An important and distinctive feature of this

approach is the consideration of the human factor, which always has an

impact with any type of technical measures and significantly affects the

reliability of a complex technical system in conjunction with its own

uptime.

By using and modifying the methods and results used in this work, the

lifecycle management of rolling stock components can be significantly improved,

and production and operating costs can be reduced.
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APPENDIX A

Code for Pairwise Comparison of Samples Based on

Statistical Hypothesis Testing

Input data: Tests.xlsx (Excel file whose columns further the samples to

be compared).

Output data results.xlsx (Excel file containing a table with the results

of the tests carried out).

The program is written in the Python 3.7 programming language. First, it

reads the data and converts it to a usable data type for further work. Then the

Lepage test is written, as its realisation is not available in any existing library.

The next step is the implementation of the statistical criteria we are interested

in. The last step is to convert the results and save them.

import pandas as pd

import numpy as np

from s c ipy import s t a t s

from nonparstat import ( Cucconi ,

5 PodgorGastwirth )

from s c ipy . s t a t s import rankdata

from c o l l e c t i o n s import namedtuple

from tqdm import tqdm

from j o b l i b import ( Pa r a l l e l ,

10 delayed )

sheet_name = "All"

df = pd . read_excel (open (’Tests.xlsx’ , ’rb’ ) ,

sheet_name=sheet_name )

15

samples = {}

for i in range (len ( df . columns ) ) : #crea t i n g d i c t from df

index = df . columns . va lue s [ i ] [ 1 : ] #i s a s t r i n g

df . columns . va lue s [ i ] = f "sample{index}"
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20 samples [ df . columns . va lue s [ i ] ]= df . i l o c [ : , i ] . va lue s . t o l i s t ( )

for key , va lue in samples . i tems ( ) : #de l e t i n g "nan" va l u e s

samples [ key ] = [ x for x in value if str ( x ) != ’nan’ ]

25 LepageResult=namedtuple (’LepageResult’ , ( ’statistic’ ,’pvalue’ ) )

def _lepage_te s t_s ta t i s t i c ( a , b , t i e s=’average’ ) :

n1 = len ( a )

n2 = len (b)

30 n = n1 + n2

E_W = n1 ∗ (n + 1) / 2

V_W = n1 ∗ n2 ∗ (n + 1) / 12

if n % 2 == 0 :

35 E_AB = n1 ∗ (n + 2) / 4

V_AB = n1 ∗ n2 ∗ (n + 2) ∗ (n − 2) / 48 / (n − 1)

else :

E_AB = n1 ∗ (n + 1) ∗∗2 / 4 / n

V_AB = n1 ∗ n2 ∗ (n + 1) ∗ (n∗∗2 + 3) / 48 / n∗∗2

40

W = s t a t s . mannwhitneyu (a , b) [ 0 ]

AB = s t a t s . an sa r i ( a , b ) [ 0 ]

L = (W − E_W) ∗∗2 / V_W + (AB − E_AB) ∗∗2 / V_AB

return L

45

def _lepage_dist_permutation (a , b , r e p l i c a t i o n s =1000 ,

t i e s=’average’ , n_jobs=1,

verbose=0) :

n1 = len ( a )

50 h0_data = np . concatenate ( [ a , b ] )

def permuted_test ( r ep l i c a t i on_index ) :

permuted_data = np . random . permutation ( h0_data )

new_a = permuted_data [ : n1 ]

55 new_b = permuted_data [ n1 : ]

return _lepage_te s t_s ta t i s t i c ( a=new_a ,
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b=new_b ,

t i e s=t i e s )

return sorted ( P a r a l l e l ( n_jobs=n_jobs ,

60 verbose=verbose ) ( de layed (

permuted_test ) ( i )

for i in range ( r e p l i c a t i o n s ) ) )

def l epage_tes t ( a , b , r e p l i c a t i o n s =1000 ,

65 t i e s=’average’ , n_jobs=1,

verbose=0) :

a , b = map (np . asarray , ( a , b ) )

t e s t _ s t a t i s t i c s = _lepage_te s t_s ta t i s t i c ( a=a , b=b ,

t i e s=t i e s )

70 h0_di s t r ibut ion = _lepage_dist_permutation ( a=a , b=b ,

r e p l i c a t i o n s=

r e p l i c a t i o n s ,

t i e s=t i e s ,

n_jobs=n_jobs ,

75 verbose=verbose )

p_value = (len (np . array ( h0_di s t r ibut ion ) [

h0_di s t r ibut ion >= t e s t _ s t a t i s t i c s ] ) + 1) /

( r e p l i c a t i o n s + 1)

return LepageResult ( s t a t i s t i c=t e s t_ s t a t i s t i c s ,

80 pvalue=p_value )

test_names = {"Student" : s t a t s . ttest_ind ,

"Mann−Whitney U" : s t a t s . mannwhitneyu ,

"Wilcoxon" : s t a t s . ranksums ,

85 "Kolmogorov−Smirnov" : s t a t s . ks_2samp ,

"Epps−Singleton" : s t a t s . epps_singleton_2samp ,

"Kruskal−Wallis" : s t a t s . kruskal ,

"Brunner−Munzel" : s t a t s . brunnermunzel ,

"Ansari−Bradley" : s t a t s . ansar i ,

90 "Cucconi" : Cucconi . cucconi_test ,

"Lepage" : l epage_test ,

"Podgor−Gastwirth" : PodgorGastwirth .

podgor_gastwirth_test }
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95 t e s t s = {}

for key_i , value_i in tqdm( samples . i tems ( ) ) : #each sample

for key_j , value_j in samples . i tems ( ) : #with each sample

if key_i != key_j and ( key_i + key_j )

not in t e s t s . keys ( ) and ( key_j + key_i )

100 not in t e s t s . keys ( ) :

t e s t s [ key_i + key_j ] = {}

t e s t s [ key_i + key_j ] [ "Welch" ] = {}

( s t a t i s t i c , pval ) = s t a t s . t te s t_ind ( value_i ,

value_j ,

105 equal_var=False )

t e s t s [ key_i + key_j ] [ "Welch" ] [

"statistic" ] = s t a t i s t i c

t e s t s [ key_i + key_j ] [ "Welch" ] [

"p−value" ] = pval

110

for test_name , func t i on in test_names . i tems ( ) :

t e s t s [ key_i + key_j ] [ test_name ] = {}

( s t a t i s t i c , pval ) = func t i on ( value_i , value_j )

t e s t s [ key_i + key_j ] [ test_name ] [

115 "statistic" ] = s t a t i s t i c

t e s t s [ key_i + key_j ] [ test_name ] [

"p−value" ] = pval

t e s t s [ key_i + key_j ] [ "Cramer−von Mises" ] = {}

120 r e s = s t a t s . cramervonmises_2samp ( value_i , value_j )

t e s t s [ key_i + key_j ] [ "Cramer−von Mises" ] [

"statistic" ] = r e s . s t a t i s t i c

t e s t s [ key_i + key_j ] [ "Cramer−von Mises" ] [

"p−value" ] = r e s . pvalue

125

r e s u l t s = pd . DataFrame . from_dict ({ ( samples , test_name ) : t e s t s [

samples ] [ test_name ] #from nes ted d i c t i ona r y to dataframe

for samples in t e s t s . keys ( )

for test_name in t e s t s [

130 samples ] . keys ( ) } ,
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o r i e n t=’index’ )

r e s u l t s . to_excel ("results.xlsx" )
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APPENDIX B

Weibull.m

The program finds the parameters of the Weibull distribution. The input

is a vector of MTBF 𝑡 and test duration 𝑇 .

N = 610 ;

t = [ 1 7 ; 1 9 ; 2 5 ; 4 1 ; 1 3 7 ; 1 3 7 ; 2 3 0 ] ;

5

T = 365 ;

f = @(x ) [−1/x (1)+sum ( ( t .^x (2 ) ) /(x (1 ) .^2) )+(N−length ( t ) ) ∗(T.^x

(2 ) ) /(x (1 ) .^2) ; . . .

1/x (2 )+sum ( l og ( t ) .∗(1 −( t .^x (2 ) ) /x (1 ) ) )+(N−length ( t ) ) ∗(−(T^x

(2) ) /x (1 ) ∗ l og (T) ) ] ;

10

x0 = [420 , 2 . 8 5 8 5 2 6 ] ;

x_solved = f s o l v e ( f , x0 ) ;
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APPENDIX C

Example of Determining Periodicity on Real Data

Based on the data on operating time before failures due to human errors in

supervised operation, an optimum revision period of 13.13 days was determined

on the basis of the identified values of the Weibull distribution parameters

(Fig. C.1).

Figure C.1 — Finding the optimal revision period
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APPENDIX D

Determining Optimum Time to Upgrade Door Control Unit

Software

Figure D.1 shows part of the implementation of the dynamic programming

algorithm from paragraph 5.4. Functions 𝑓𝑁(𝑡) are computed row by row and

include the results of the methods from Chapters 3, 4, 5.

Figure D.1 — Implementation of the dynamic programming algorithm
from Chapter 5
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