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Introduction

In this work, we consider a number of quantum mechanical systems that

contain interactions on sets of measure zero. For such systems, we study the

dependence of various spectral characteristics on the parameters of the system, in

particular, the existence of bound states, their energies, and the position of the

continuous spectrum. The study uses both analytical and numerical methods.

The object of the dissertation research are the spectral properties of

a number of quantum mechanical systems with singular interactions in two and

three dimensions. The subject of research is mathematical models describing the

systems.

The purpose of the dissertation research is to conduct a spectral anal-

ysis of Laplace operators with singular interactions for a number of systems with

different geometries, both two-dimensional and three-dimensional.

To achieve this goal, the following tasks were formulated and solved in the

dissertation:

1. Limiting boundary conditions are found for the wave function in a region

with a border corrugated by strips, as well as for a region with a semitrans-

parent barrier of corrugated strips. (Hereinafter, corrugated boundaries are

refer to boundary perturbation in the form of attachment through small

holes of many small Helmholtz resonators.)

2. Numerical confirmation of the results for these systems is obtained and the

character of the convergence is found.

3. For two systems of quantum leaky wires with a variation in the intensity

of the potential, several analytical theorems about the spectrum, including

theorems on the existence of bound states, are obtained.

4. For a system of two conducting layers, the dependence of the system’s own

energies on its parameters, including the hole shape, is numerically studied.

A classification of bound states according to the number and location of

constant-sign domains has been created.
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Theoretical and practical significance of the work. The physical

effects that arise during the transition to the nano-scale are radically different

from the phenomena of the macrocosm and are very interesting from the point of

view of both fundamental physics and applications of microelectronic devices.

In this paper, a number of analytical statements are proved: for systems

with leaky quantum wires (Chapter 2), the existence of bound states and a limi-

tation on their number, and for regions with a corrugated boundary and a barrier,

convergence to a specific limiting boundary condition is proved.

The considered systems should be further used in the development of nano-

systems as models. We confirm the analytical results with numerical calculations

and give the form of the eigenfunctions of the systems, which allows us to build

the intuition necessary for further practical activities.

Methods of research. In this paper, we apply both classical and newer

methods of the theory of linear operators. For numerical calculations, we use the

FreeFEM++ package, as well as the Wolfram Mathematica system.

Relevance. The topic of the work is very relevant, since the systems under

consideration are models for physical systems of the conductive type, such as

nano-waveguides, conductive layers, etc., as well as a model of interacting DNA

molecules. The spectrum of operators that describe the models studied in the

work is the most important characteristic of the system, which determines the set

of possible states of the system and their energy levels.

The results obtained can be useful in solving various physical problems re-

lated to the behavior of charged particles in low-dimensional systems such as

nanotubes, nanowires, and also in conducting layers. Another physical system

that can be modeled using singular potentials is a system of two interacting linear

molecules (such systems are discussed in Chapter 2).

Scientific novelty. The paper considers systems with a new geometry,

such as a region with a boundary and a barrier formed by a system of open res-

onators and non-constant potentials concentrated on lines, for which new results

are obtained. For a system of parallel conducting layers, a new classification of

eigenstates is proposed, related to the Courant nodal theorem.

Degree of reliability of the results of this work is provided with analytical

proof using generally accepted mathematical methods. Many of the proposed
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results are verified numerically.

Approbation of the results of the work. The main results of the dis-

sertation research were presented at 7 scientific conferences, of which 4 are inter-

national and 3 are Russian:

1. XI Congress of Young Scientists (YSC) (04/04/2022 - 04/06/2022)

2. Analytic and Algebraic Methods in Physics XVIII (09/01/2021 - 09/03/2021)

3. XV International Scientific Conference ”Differential Equations and Their

Applications in Mathematical Modeling” (07/15/2021 - 07/18/2021)

4. X Congress of Young Scientists (YSC) (04/14/2021 - 04/17/2021)

5. IX Congress of Young Scientists (YSC) (04/15/2020 - 04/18/2020)

6. 17th International Conference of Numerical Analysis and Applied Mathe-

matics. ICNAAM 2019 (09/23/2019 - 09/28/2019)

7. Mathematical Challenge of Quantum Transport in Nanosystems, ”Pierre

Duclos Workshop” (09/19/2019 - 09/20/2019)

Publications.

On the topic of the dissertation research, 11 papers have been published

in journals, of which 8 publications are indexed in the scientometric databases

Web of Science and Scopus, 3 publications - in the lists of the Higher Attestation

Commission or the RSCI.

Publications included only in the lists of HAC, RSCI:
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ñèñòåì êâàíòîâûõ âîëíîâîäîâ ñ ïðèñîåäèíåííûìè êâàíòîâûìè ðåçîíàòî-

ðàìè // Íàó÷íî-òåõíè÷åñêèé âåñòíèê èíôîðìàöèîííûõ òåõíîëîãèé, ìåõà-

íèêè è îïòèêè [Scienti�c and Technical Journal of Information Technologies,

Mechanics and Optics] - 2016. - Ò. 16. - � 4(104). - Ñ. 725-730.

2. Bagmutov A.S., Popov I.Y. Bound states for two delta potentials supported

on parallel lines on the plane // Physics of Complex Systems - 2022, Vol. 3,

No. 1, P. 37-42.



7

3. Áàãìóòîâ À.Ñ., Ïîïîâ È.Þ. Ñïåêòð ëàïëàñèàíà â îáëàñòè ñ ãðàíèöåé è áà-
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è êîìïüþòåðíîå ìîäåëèðîâàíèå - 2022. - Ò. 25. - � 4. - Ñ. 29-43.

Publications indexed in Web of Science / Scopus scientometric

databases:

1. Vorobiev A.M., Bagmutov A.S., Popov A.I. On formal asymptotic expansion

of resonance for quantum waveguide with perforated semitransparent barrier

// Nanosystems: Physics, Chemistry, Mathematics - 2019, Vol. 10, No. 4,

P. 415-419.

2. Bagmutov A.S., Popov I.Y. Window-coupled nanolayers: window shape in-

fluence on one-particle and two-particle eigenstates // Nanosystems: Physics,

Chemistry, Mathematics - 2020, Vol. 11, No. 6, P. 636-641.

3. Popov I.Y., Bagmutov A.S., Melikhov I.F., Najar H. Numerical analysis of

multi-particle states in coupled nano-layers in electric field // AIP Confer-

ence Proceedings - 2020, Vol. 2293, P. 360006.

4. Smolkina M.O., Popov I.Y., Bagmutov A.S., Blinova I.V. The electron trans-

mission properties in a non-planar system of two chained rings // Journal

of Physics: Conference Series - 2021, Vol. 2086, No. 1, P. 012211.

5. Bagmutov A.S. Bound states for laplacian perturbed by varying potential

supportedby line in R3 // Nanosystems: Physics, Chemistry, Mathematics

- 2021, Vol. 12, No. 5, P. 549-552.

6. Bagmutov A.S., Najar H., Melikhov I.F., Popov I.Y. On the discrete spec-

trum of a quantum waveguide with Neumann windows in presence of exterior

field // Nanosystems: Physics, Chemistry, Mathematics - 2022, Vol. 13, No.

2, P. 156-164.

7. Trifanova E.S., Bagmutov A.S., Katasonov V.G., Popov I.Yu. Asymp-

totic Expansions of Resonances for Waveguides Coupled through Converging

Windows //Chelyabinsk Physical and Mathematical Journal - 2023. - Vol.

8. - � 1. - P. 72-82.
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8. Trifanova E.S., Bagmutov A.S., Popov I.Yu. Resonator with a Corrugated

Boundary: Numerical Results // Physics of Particles and Nuclei Letters -

2023, Vol. 20, No. 2, P. 96-99.

Participation in research projects.

This dissertation research was prepared with the support of the following

research projects:

1. Grant of Committee for Science and Higher Education of St. Petersburg

2020, project: ”Multi-particle problems in quantum waveguides”.

2. Grant ”Postgraduate students” RFBR 2020 project No. 20-31-90050, ”Spec-

tral analysis of systems with interactions concentrated on sets of zero mea-

sure”.

Statements submitted for defense:

1. For a Hamiltonian with Neumann boundary conditions, a geometric pertur-

bation of the domain boundary by connecting N Helmholtz resonators of

fixed length through small holes in the N → ∞ limit leads to an energy-

dependent Robin-type boundary condition.

2. Under a geometric perturbation of the Neumann Hamiltonian by means of a

barrier of N Helmholtz resonators of a fixed length, connected to the regions

to be separated through small holes, in the N → ∞ limit, the boundary con-

dition on the barrier converges to the energy-dependent conditions obtained

in this research, which relate boundary values of functions and their normal

derivatives.

3. For a two-dimensional quantum system with a delta potential concentrated

on two parallel lines and having a constant intensity over the entire length,

except for a finite region on each line, there is at least one point of the

discrete spectrum below the boundary of the continuous spectrum, which is

the solution of the transcendental equations.

4. For a three-dimensional quantum system with constant intensity delta po-

tential concentrated on a straight line and intensity variation on a finite
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segment, there is at least one point of the discrete spectrum and the num-

ber of points of the discrete spectrum is bounded from above by an integral

depending on the parameters of the system.

5. When considering the bound states of a system of two parallel conductive

layers in 3D, connected through windows located in a bounded area, func-

tions with a similar number and location of constant-sign domains in the

cross section along the window plane undergo a continuous change with a

continuous change in the shape of the window, with a stable and predictable

for each type changing of energy levels.

The scope and structure of the work. The dissertation consists of an

introduction, three chapters and a conclusion, contains 34 figures. The list of

references contains 117 titles.

The work is divided into three chapters, each of which considers a separate

class of systems with some geometric features. Quantum mechanics is taken as a

natural context for the differential equations under consideration, and the oper-

ator is interpreted as the Hamiltonian of some quantum system, but most of the

results extend to the general case of wave media.

In the first chapter, a certain geometric perturbation of the region boundary

is considered in the form of several Helmholtz resonators connected through small

holes. Specifically, we are interested in the case when the number of connected

resonators tends to infinity, and the area of each of them tends to zero. This type

of perturbation is called ”corrugated boundary”. As a result of such limit, the

boundary condition of the problem turns into some (generally energy-dependent)

boundary condition resembling a singular delta potential.

For these systems, the main task is to derive the limit problem using the

zero-width slits approximation and carry out a numerical analysis corresponding

to the results. We also propose the use of the concept of corrugated boundaries

in the design of a semitransparent barrier, using the example of a system with a

barrier of resonator strips.

In the second chapter, we turn to the consideration of more classical pertur-
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bations of systems in the form of delta potentials concentrated on one-dimensional

sets in the spaces R2 and R3. Such systems are often referred to in sources as

leaky quantum wires. Here the task is to prove a number of statements about

the spectrum of the operator, in particular, we are interested in the existence and

number of bound states of the system.

The last chapter is focused on numerical studies of a family of systems with

the following geometry: in three-dimensional space there are two parallel un-

bounded conducting layers with a common boundary, in which there is a set of

holes of some shape. In addition, the case with the application of an external

transverse electric field is considered. For such systems, we solve single-particle

and many-particle eigenfunction problems. When solving the many-particle prob-

lem, the approximation of the many-particle Hartree-Fock wave function is used,

in which each particle is represented for other particles as an external field with a

delta potential. Using the numerical finite element method, we construct the op-

erator’s eigenfunctions and analyze the dependence of the characteristics of bound

states on the parameters of the system. Based on the results, a classification of

bound states for such systems is proposed, based on the number and mutual ar-

rangement of constant-sign domains of functions.
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Chapter 1. Corrugated boundary perturbation

This chapter considers the eigenvalue problem for the Laplace operator with

Neumann boundary conditions for some two-dimensional domain, part of whose

boundary undergoes an irregular perturbation, as a result of which the Neumann

boundary condition on this part of the boundary effectively changes to the energy-

dependent Robin condition. The introduction briefly describes the problem to be

solved and methods, then the necessary context from the existing results will be

presented, followed by our results.

Problems related to the influence of geometric perturbations of the domain

boundaries on the spectrum of an operator are widely covered in the literature

[6, 7, 11, 12, 13, 14]. Specifically, perturbations with the help of Helmholtz res-

onators attract interest due to the resonance effects of the cavity, the simplicity of

description, the possibility of physical implementation, and the developed meth-

ods for studying such systems. The results are obtained using variational methods

or direct analysis of the asymptotics [23, 24, 25, 26, 1, 9, 4], as well as the approx-

imate model of zero-width slits [15, 16, 17, 18, 19, 20, 21, 22]. Systems containing

an infinitely increasing number of resonators connected to one of the boundaries

were considered in the works [8, 27, 9, 10]. The boundaries of the area with such

perturbations are called corrugated boundaries. The results presented in this

paper are published in [3, 5].

There are many practical applications of Helmholtz resonator perturbation

theory, such as nanoelectronics using nanometer-scale waveguides, which exhibit

quantum effects, or acoustic devices for problems such as noise reduction [30], etc.

In particular, surfaces of interest to us, filled with large numbers of resonators that

create special boundary conditions, are currently being actively studied in the field

of metamaterials [28, 29].
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1.1 Resonator with corrugated boundary

1.1.1 Description of the general task

Consider a simply connected domain Ω0 on the plane R2, ∂Ω is the boundary

of this domain. Denote a part of the domain boundary Γ ⊆ ∂Ω0 - the perturbation

of the boundary will occur on this part. On the domain Ω0, the Laplace operator

with the Neumann boundary conditions is defined:

−∆0u = −∂
2u

∂x2
− ∂2u

∂y2

Figure 1 – Example of system geometry with corrugated boundary

The perturbed system is described below, an example of which is shown in

Fig.1. Let us introduce a family of domains Ωϵ, where a parametrization by a

small parameter ϵ is introduced. These regions coincide with the original region

everywhere, except for the Γ boundary, where small Helmholtz resonators Ωi are

connected through corridors (holes). The ϵ parameter characterizes the distance

between adjacent holes in the Γ boundary leading to the Helmholtz resonators.

In the domains Ωϵ, Laplace operators with Neumann boundary conditions are

defined.

Also, when describing the existing results, we will use the following notation

for identical system parameters: w and h denote the width and height of the

Helmholtz resonator, in cases where rectangular resonators are considered, δ -
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denotes the width of the hole or the width of the tunnel connecting the resonator

with the main area, in cases where it is constant throughout the tunnel. The

length of the tunnel is denoted by t, the volume (area) of the resonator - |R|, the
area of the tunnel section or the area (width) of the hole - |T |. The eigenvalues

with ordinal number n of the operators −∆ϵ and −∆0 are denoted by λϵn and

λ0n respectively, and their eigenfunctions by ψϵn(x) and ψ
0
n(x) (Here and in what

follows, x denotes a variable vector in the considered space R•). ∂
∂n is the derivative

in the direction of the outward normal to the domain.

Systems of the described type are encountered in a number of works, in

different variations, both with a finite and infinite number of resonators, various

restrictions on the form and relationships between the system parameters, as well

as variations in the operators themselves acting in the region. One of the main

goals is to reveal the influence of such perturbations of the boundary on the

spectrum of the operator, in particular, on the eigenvalues and eigenfunctions of

the original operator.

1.1.2 Results from the variational calculus theory

The effect of boundary perturbations on the spectrum varies greatly, de-

pending on the type of perturbation. For example, in the case of sufficiently

regular perturbations, the eigenvalues λϵn of the operator Ωϵ, at ϵ → 0, contin-

uously transform into the eigenvalues λ0n of the original operator. This section

provides theorems on the influence of boundary perturbations on the continu-

ity of eigenvalues, from the first volume of Methods of Mathematical Physics by

Courant and Hilbert [6], chapter VI, §2. The theorems in this chapter refer to the

following eigenvalue problem λ:

∂

∂x

(
p
∂

∂x
u

)
+

∂

∂y

(
p
∂

∂y
u

)
− qu+ λρu = 0 (1)

Here we introduce a parametric function of the coordinates ρ(x), the mass density,

which will be considered below, as well as the parameters p > 0, q ≥ 0, which

in further considerations are equal to p = 1, q = 0. We introduce the following

definition:

Definition 1.1.1. The boundary Γ′
ϵ is deformed into the boundary Γ strongly
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continuously if the points of the boundary Γ′
ϵ are expressed in terms of the points

of the boundary Γ as follows:

x′ = x+ g(x, y);

y′ = y + h(x, y);

And the functions g(x, y), h(x, y) are continuous functions of two variables, with

a piecewise continuous first derivative and, together with their first derivatives,

not exceeding ϵ in absolute value: ∣∣g(x, y)∣∣ < ϵ∣∣h(x, y)∣∣ < ϵ∣∣g′(x, y)∣∣ < ϵ∣∣h′(x, y)∣∣ < ϵ (2)

Below, without proof, we give Theorem 10 from [6].

Theorem 1.1.1. For any boundary conditions of a mixed type (the Neumann or

Dirichlet conditions on all boundaries), the eigenvalue of the problem (1) with

ordinal number n, changes continuously if the domain boundary changes strongly

continuously.

Thus, under continuous deformation of the boundary, a sufficient (but not

necessary) condition for the continuous change of the Laplacian eigenvalues with

the Neumann boundary conditions, in addition to pointwise convergence, is a

continuous change in the normal to the boundary of the domain. The theorem

can be refined:

Corollary 1.1.1. If the region border is deformed with (2), when executing∣∣∣∣∂g∂x
∣∣∣∣ < ϵ,

∣∣∣∣∂g∂y
∣∣∣∣ < ϵ,∣∣∣∣∂h∂x

∣∣∣∣ < ϵ,

∣∣∣∣∂h∂y
∣∣∣∣ < ϵ,

where ϵ is an arbitrary small positive number, then there exists a number η depend-

ing on ϵ and approaching 0 together with ϵ such that for any n and any boundary

condition of the type

A
∂u

∂n
+Bu = 0,
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the eigenvalues µn, µ
′
n with order number n of the unperturbed and deformed re-

gions, respectively, satisfy the relation:∣∣∣∣µ′nµn − 1

∣∣∣∣ < η

The following is Theorem 11 from [6].

Theorem 1.1.2. If the problem boundary condition (1) is a pure Dirichlet con-

dition

u|∂Ω = 0,

then under deformation (2) of the domain boundary, for the continuity of the

eigenvalue λn with ordinal number n, a sufficient condition is only the continuity

of the functions g(x, y) and h(x, y).

In addition to these theorems, the statement about the mass density is

further used - Theorem 7 from [6]:

Theorem 1.1.3. If in the differential equation (1), the coefficient ρ(x) varies at

each point in the same direction (increases everywhere or decreases everywhere),

then for any boundary condition, each eigenvalue λn of the problem, with ordinal

number n, changes in the opposite direction (decreases or increases accordingly).

If one of the coefficients p, q varies in this equation, then each eigenvalue λn

of the problem, with ordinal number n, changes in the same direction.

Thus, by increasing the ”mass” of the wave function in the region, one can

decrease the energy of the system’s eigenstates.

1.1.3 Survey of existing results

1.1.3.1 System with one resonator

The case with the perturbation of the boundary by a single rectangular

Helmholtz resonator, with a finite length of a rectangular tunnel, occurs in [6]

as an example of discontinuity of eigenvalues under a deformation that has weak

continuity at ϵ→ 0 (i.e., pointwise convergence) .
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Below is a description of the system whose geometry is shown in fig.2. Con-

sider the differential equation ((1), ρ = 1, p = 1, q = 0)

∆u+ λρu = 0

And let Ω be a square with side equal to 1. We attach the resonator R - the

second square Ωϵ, with side ϵ, oriented parallel to the original one. Tunnel T

is a narrow rectangular strip with length ϵ and width δ perpendicular to both

rectangles. The region with deformed boundary Ωϵ is the union of these three

regions: Ωϵ = Ω ∪R ∪ T .

Figure 2 – Geometry of the system with one attached resonator.

Imposing the Neumann boundary condition ∂u
∂n = 0 over the entire boundary,

we obtain the first eigenvalue equal to zero, which corresponds to a constant

eigenfunction:

λϵ1 =0

ψϵ1 =const

Further, if the width of the tunnel δ is chosen sufficiently small, then the second

eigenvalue can be approached indefinitely to zero. Let us prove this using the

following test function: let the function ϕ take two constant values in Ω and R,
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and in the tunnel T go linearly between them, preserving continuity:

ϕ(x) =


c, x ∈ Ω

−1
ϵ (x0 − x1t )/ϵ+ c(x2t − x0)/ϵ, x ∈ T

−1
ϵ , x ∈ R

(3)

where x1t and x2t are the horizontal coordinates of the beginning and end of the

tunnel.

Next, we choose a constant c so that the integral of ϕ over the region Ωϵ

becomes 0. If ϵ is small enough, then c is arbitrarily close to zero.

The spectral integral (∆ϵϕ, ϕ) over the domain Ωϵ will be of order η
ϵ3 . If we

choose η = ϵ4, then this integral is arbitrarily small, while the norm ϕ is arbitrarily

close to unity. Thus, due to the minimizing property of eigenfunctions, the second

eigenvalue of the perturbed operator is arbitrarily small.

As ϵ approaches zero, the second eigenvalue converges to zero if η
ϵ3 → 0.

But the second eigenvalue of the original operator is strictly positive. This means

that it is not the limit of the second eigenvalue of the perturbed operator, despite

the fact that the boundary of the perturbed domain converges pointwise to the

boundary of the original one.

1.1.3.2 System with a finite number of resonators

This section presents results from the article by H. Arrieta, D. Hale, C.

Hahn, Eigenvalue problems for non-smoothly perturbed domains [7]. This paper

considers systems with one attached resonator and extends the results to the case

of a finite number of resonators. Resonators and tunnels have a generalized form

and the number of dimensions of the considered space is RN , n ≥ 2. In essence,

the system parameters used here, when translated into terms of other works, are

equivalent to the system proportions from [6], i.e.

w ≈ h ≈ ϵ

t ≈ ϵ

δ = ϵη, η > 3
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The main result is the demonstration of the behavior of eigenvalues and eigen-

functions of perturbed systems in the limit. The authors emphasize the fact that

when describing the limiting spectrum, it is not the specific features of the shape

of the joined regions that are important, but their relative change in area in the

process of decreasing the parameter ϵ.

Let us describe the considered system with one resonator shown in Fig.3.

Let Ω0 be the original region, Ω1 be the join region that does not intersect with

the original region, such that the following conditions are satisfied:

∃α, β > 0 :

{(x, y) ∈ R2 : |x| < α,|y| < β} ∩ Ω0 = {(x, y) : −α < x < 0,|y| < β}

{(x, y) ∈ R2 : 0 < x < 2α,|y| < β} ∩R1 = {(x, y) : α < x < 2α,|y| < β}

(4)

Ω0 ∩R1 = ∅.

Let also

T1 ⊂ {(x, y) ∈ R2 : 0 ≤ x ≤ α,|y| ≤ β}

- some simply connected set, such that Ω0∪T1∪R1 is a bounded, simply connected

set with a smooth boundary.

Figure 3 – Geometry of a system with one resonator and an arbitrary shape

tunnel.

The above conditions describe regions Ω0, R1 large enough to completely
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contain the tunnel T1 reflected with respect to its left and right boundaries. (dot-

ted line on Fig.3)

Next, the dependence of the attached regions on the ϵ parameter is deter-

mined. This dependence is determined similarly to other works, and is reduced

to multiplication by a scaling factor, which is different for each of the regions Tϵ

and Rϵ. Specifically, the Resonator scales as ϵR1 and the tunnel as ϵηT1, η > 0.

The paper considers various boundary conditions. Here we present the

results that are essential for us for the Neumann boundary conditions. It is

worth noting that it is precisely when considering the Neumann boundary con-

ditions that restrictions are imposed on the parameter η, in particular, for a

two-dimensional space, η > 3. Let λϵk be the k-th eigenvalue for the domain with

parameter ϵ, then the eigenvalues of the original operator are λ0k.

So, for the case with one attached generalized resonator of the described

type in two-dimensional space and Neumann boundary conditions, the following

theorem holds for the second eigenvalue and second eigenfunction:

Theorem 1.1.4. Let η > 3 then:

1.

lim
ϵ→0

λϵ0 = 0

2. Convergence of the second eigenfunction in H1. For ϵ → 0, it converges as

follows:

ψϵ2 → 0 (in H1(Ω0)) (5)

||ψϵ2||H2(T ) → 0, (6)

||ψϵ2||L2(R) → 1. (7)

3. Convergence of the second eigenfunction in HL.

If the initial region is arbitrarily smooth: Ω0 ⊂ C∞, then for any L ≥ 1, for

ϵ→ 0,

ψϵ2 → 0,

in the sense of the space HL(Ω′
0), where Ω′

0, this is the original region, with

the exception of the circle lying in Ω0, with the center at the perturbation

point.
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Thus, the second eigenvalue of the limit problem vanishes, and the second

eigenfunction, with a sufficiently smooth boundary of the initial domain, van-

ishes together with its derivatives everywhere, except for the neighborhood of the

perturbation point.

The following theorem concerns the rest of the eigenvalues and functions:

Theorem 1.1.5. Let η > 3 and m ≥ 3, then:

1.

lim
ϵ→0

λϵm = λ0m−1

2. For any positive sequence {ϵk}∞k=1 that converges to zero, there exists a subse-

quence {δk}∞k=1 and a complete system orthogonal eigenfunctions {ψ0
m}∞m=1,

of the original problem, such that for k → ∞, the following holds:

ψδkm → ψ0
m−1 (in H1(Ω0))

||ψδk2 ||H1(T∪R) → 0,

3. If the initial domain is arbitrarily smooth: Ω0 ⊂ C∞, then for any l ≥ 1,

for k → ∞,

ψδkm → ψ0
m−1,

in the sense of the space H l(Ω′
0), where Ω′

0, this is the original region, with

the exception of the circle lying in Ω0, with the center at the perturbation

point.

Now, the result is extended to the case of a finite number of connected

resonators r ≥ 1. Here, in contrast to what follows, each resonator decreases

without changing the perturbation point on the boundary of the original region.

For the Neumann boundary conditions, we obtain the following statements:

Proposition 1.1.1.

lim
ϵ→0

λϵm = 0, 2 ≤ m ≤ r + 1

lim
ϵ→0

λϵm = λ0m−r, m ≥ r + 2
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That is, each new resonator adds another zero eigenvalue. The eigenfunc-

tions of the limit problem behave in the same way, namely, similarly to the above

theorems 1.1.4, 1.1.5, the eigenfunctions corresponding to these eigenvalues also

converge to zero together with their derivatives , with sufficient smoothness of Ω0.

1.1.3.3 System with an infinite number of resonators

In this section, we move on to a sequence of systems with an indefinitely

increasing number of attached resonators, which is the goal of our study. In

such systems, some subset of Γ is selected on the boundary of the initial region,

which will be filled with periodically located resonators. The dimensions of the

resonators and tunnels tend to zero along with the ϵ parameter. The small param-

eter ϵ itself is chosen as the period. As a result of this process, a certain limiting

set of values (which may include infinity) is obtained, to which the eigenvalues

of the perturbed problems converge. In some cases, this set may coincide with

the discrete spectrum of some differential operator, in which case we will call this

operator the limit operator.

Such systems were first analyzed in the book by E. Sanchez-Palencia, Inho-

mogeneous Media and the Theory of Vibrations [8], in chapter XII, §4. This work

describes the systems depicted in Fig.1, with the Neumann boundary conditions.

Here, the attached resonators are squares with side ϵ, the tunnels are ϵ long and

δ = ϵ4 wide, as in the previous two papers.

The main results are the following two statements:

Proposition 1.1.2. The second eigenvalue of the perturbed problem tends to zero

as ϵ → 0, while the second eigenvalue of the original problem is strictly greater

than zero.

λ02 > 0

λϵ2 ↘ 0; ϵ→ 0

Proposition 1.1.3. Each eigenvalue of the original problem is a limit point for

some sequence of eigenvalues of perturbed problems, i.e.

λ0 ∈ σ(Ω0) ⇒ ∃{δi}∞i=1, {ji}∞i=1 : λ
δi
ji
−−−→
i→∞

λ0
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We will observe the same property of the eigenvalues of the original problem

in the case of the system with missing tunnels that we consider.

A recently published article by D. Cardone and A. Khrabustovsky continues

the study of strongly corrugated boundaries and considers the problem in detail,

generalizing the shapes of resonators, tunnels and the form of the dependence of

system parameters on a small parameter, as well as the number of space dimen-

sions: Rn, n ≤ 2. Here we present only the results for R2, which are necessary

for the present work, but it is worth noting that the results for higher dimensions

differ slightly from them.

Let’s describe the system shown in Fig.4. As before, Ω is a bounded region in

R2, the part of the boundary of this region that undergoes deformation is denoted

by Γ ⊆ Ω. Further, ϵ > 0 is a small parameter, and w, δ, t are positive numbers

tending to zero as ϵ→ 0, with the following restrictions:

w −−→
ϵ→0

0

δ −−→
ϵ→0

0

t −−→
ϵ→0

0

δ ≤ w ≤ ϵ

(8)

which guarantee that the resonators do not intersect geometrically, as well as the

restriction on the rate of decrease in the width of the tunnels with decreasing

ϵ→ 0:

δ ≫ exp

(
−a
ϵ

)
; ∀a > 0

A set of tunnels with resonators are attached to the Γ boundary, periodically,

with a period of ϵ. Each attached area consists of two parts:

� Resonator wB, where B is a fixed region in R2, then |B| denotes its area,

� Tunnel δ ∗ t, rectangle with sides δ, t.

The total number of connected resonators tends to infinity and is equal to

N(ϵ) =
|Γ|
ϵ
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Figure 4 – Geometry of a system with many identical attached arbitrary-shaped

resonators.

Also, the parameters must satisfy a number of natural conditions that ensure the

geometric isolation of the resonators, such as the boundedness of the B region by

a cube with a side equal to one.

The resulting union constitutes the perturbed region Ωϵ. In this area, the

operator is introduced

Aϵ = −1

ρ
∆ϵ.

This operator, in addition to the Laplace operator, additionally includes the factor

ρ, the value of which depends on the coordinates, and which corresponds to the

density of the mass of vibrations in a particular area.

Next, two important limiting parameters are introduced that completely

characterize the behavior of the spectrum as ϵ decreases:

r := lim
ϵ→0

ρw2|B|
ϵ

(9)

q := lim
ϵ→0

δ

tρw2|B|
(10)

The following constraints are assumed: r ∈ [0,∞) and q ∈ [0,∞].

The aim of this paper is to study the behavior of the spectrum of a perturbed

operator as ϵ→ 0 passes to the limit. Depending on the parameters of the system,

the perturbed operator converges to various eigenvalue problems, including, for

some values of the parameters, to the original one. It turns out that the form of

the limit problem depends only on two independent factors: whether the limit q
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is finite and whether the limit r is equal to zero. The four possible combinations

lead to the following four limiting problems:

1. q < ∞, r > 0. The limit spectrum is the union of the point q and the

spectrum of the following problem:
−∆u = λu, x ∈ Ω

∂u
∂n = λqr

q−λu, x ∈ Γ

∂u
∂n = 0, x ∈ ∂Ω \ Γ

(11)

The eigenvalues of this problem form two increasing sequences, one of which

is unbounded and the other converges to the value q.

2. q < ∞, r = 0. In this case, the limit spectrum is the union of the point q

and the spectrum of the original problem for the operator −∆0.

3. q = ∞, r > 0. Here, the spectrum of the following problem is the limiting

one: 
−∆u = λu, x ∈ Ω

∂u
∂n = λru, x ∈ Γ

∂u
∂n = 0, x ∈ ∂Ω \ Γ

(12)

4. q = ∞, r = 0. In the latter case, the spectrum converges to the spectrum

of the original problem.

The following is an example of the values of the system parameters, with the help

of which all values of the limits q, r can be reached.

δ = ϵα(α ≥ 0),

w = t = ϵ,

ρ = ϵβ(β ≥ −1) (13)



25

Using these values and changing α, β we get all the necessary combinations:r > 0; β = −1,

r = 0; β > −1.
q > 0, α = β + 3,

q = 0, α > β + 3,

q = ∞, α < β + 3.

In conclusion, it is important to note that the formulation of the problem

in this work does not provide for an independent change in the width and height

of the resonators, since their form is specified using the form B and the scaling

factor w. In what follows, we will consider systems with long resonators at the

boundary (with a fixed length of resonators), which are not described in this way.

1.1.4 Zero-width slit model: Theoretical Part

This section discusses the application of the approximate Zero-width slit

model to the study of Helmholtz resonators. This method is used in a number of

papers to construct exact solutions to a simplified problem. In the work of the

author [2], this method was used when considering a resonator attached to the

waveguide from the side and in the middle. The results include the construction

of current-voltage characteristics for these systems.

In this paper, we apply it to Ωϵ systems, construct exact eigenfunctions, and

obtain limit functions that correspond to some ”limit problem”. The following is

a brief description of the method.

Zero-width slit model, this is a common method used when there is a hole

in the boundary of an area that is small in diameter relative to the wavelength.

The method makes it possible to significantly simplify the geometry of the system,

which in many cases leads to the possibility of expressing model solutions in an

explicit form. The method is to pass to a system with a geometry in which end

holes are replaced by pin holes, and then, the theory of self-adjoint extensions of

symmetric operators is used to construct a parameterized operator describing the

new system, and the parameter controls the throughput of pin holes and can be
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chosen so that in order to most closely match the situation with the final diameter

of the holes.

The following notation is used below:

� D(A) - domain of definition of operator A,

� R(A) - set of values of operator A,

� Ker(A) - kernel ({u : Au = 0}) of operator A,

� def(A, k) is the set of defective elements of the operator A corresponding

to a point of regular type k.

Let us briefly describe the process of constructing a model operator using the

example of a system with one small hole connecting 2 regions. Let us consider two

simply connected domains Ω1,Ω2 connected through a small hole of diameter δ in

their common boundary. We pass to the geometry in which the hole is replaced by

a point x0 in its center. Now each of the areas can be considered separately. We

denote by Ω their totality. We start with the self-adjoint operator H0 acting as

the Laplace operator on functions from L2(Ω) whose normal derivative vanishes

on the boundary:

H0ψ(x) = −∆ψ(x),
∂ψ

∂n
|∂Ω = 0; ψ ∈ L2(Ω)

Now we restrict the original operator to the set of functions that vanish at the

hole point x0 and construct its closure. The resulting operator will be denoted by

H ′. This operator is not self-adjoint, but only symmetric. Its defective elements

(i.e. the functions f ∈ R(H ′−k2)⊥ orthogonal to the set of values of the operator

H ′ − k2) can be found using the expression from the classical operator theory

Ker(A∗)⊥ = R(A),

we obtain an expression for the set of defective elements H ′:

def(H ′, k) = Ker(H ′∗ − k2) = Ker(∆ + k2).

The desired elements are Green’s functions, with a singularity at the hole point,

and their number is equal to the number of non-intersecting domains in the prob-
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lem:

{fdef} =

G1(x, x0, k)

0

 ,

 0

G2(x, x0, k)

 ,

where Gi(x, x0, k) is the Neumann Laplacian Green’s function in the domain Ωi.

The Green’s functions give equal defect numbers (2, 2), and hence the operator

H ′ can be extended to a self-adjoint one.

Note that the set of points of regular type for the considered operator in-

cludes the negative semiaxis of real numbers. This fact allows us to apply the

Neumann theorem of the theory of Linear operators [32], to express elements from

the domain of definition of the adjoint operator H ′∗, through elements from the

domain of its Friedrichs extension, ∆F , and its defective elements corresponding

to a point of regular type on the real axis:

D(H ′∗) = D(∆F )⊕ def(H ′, k0), k20 < 0.

Thus, in each of the isolated regions, the function from the domain of definition

of the adjoint operator H ′∗ has the following form:

ψ(x) = aiGi(x, x0, k
2
0) + bi + o(|x− x0|), x ∈ Ωi

Further, to construct a self-adjoint extension of the symmetric operator H ′, it

is necessary to restrict the domain of definition of its adjoint H ′∗ so that the

following holds:

J(u, v) = (Hu, v)− (u,Hv) = 0, u, v ∈ D(H). (14)

Taking into account the well-known asymptotic expression for the Laplacian Green’s

function near the singularity,

Gi(x, x0, k) =
1

π
ln

1

|x− x0|
+ βi + o(|x− x0|),

from (14), we get the integral over the boundary of the region, excluding the hole

point:

J(u, v) = lim
r→0

2∑
i=0

∫
Ωi\Br

(−∆uv + u∆v)dV,
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where Br is a circle of radius r centered at the point of the hole, Br = {x :∣∣x− x0
∣∣ < r}.
We apply Green’s formula,

J(u, v) =
∑
j

∫
∂Bδ

j

(
−∂u
∂n
v̄ + u

∂v̄

∂n

)
dS,

whence, using the asymptotic expression of the Green’s functions, we obtain:

(H ′∗u, v)− (u,H ′∗v) =∑
i

auiC
v
i−aviC

u
i + auiC

v
i − aviC

u
i ,

where Ci =
[
u(x)− ai

π ln|x− x0|
]
x→x0

is the function value at the hole point minus

the singularity , and the ”size” of this feature determines the throughput of the

hole.

This equation has several solutions. Of these, we choose the one that best

corresponds to the physical meaning, namely, we keep the flow through the hole,

equating the values of the function without singularity on both sides of the hole.

We obtain an expression for functions from the domain of the desired self-adjoint

operator that describes the system:

Proposition 1.1.4. A Zero-width slit model system with the geometry described

above is represented by the following statement:

Hu = −∆u,

∀u ∈ D(H) :

u(x) = ûi(x)+aiGi(x, x0, k
2
0), x ∈ Ωi (15)

a1 =− a2,

û1(x0) =û2(x0),

In conclusion, we note that the constructed operator is parametrized by a

real number k20 < 0. This parameter determines the throughput of the hole, which

is mathematically expressed as the size of the feature that we cut at the point of
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the hole using the condition a1 = −a2. As shown by [16], this parameter most

closely matches the final diameter of a real hole δ if it is chosen equal to

k0 =
2i

δ
exp−γ, (16)

where the Euler constant γ = 0.577 is involved.

1.1.5 Zero-width slit model: Corrugated Border

This section presents the results for systems with an infinitely increasing

number of resonators, obtained using the method, in the work of I.Yu.Popov,

I.V.Blinova, A.I.Popov, Model of a boundary consisting of Helmholtz resonators

[10]. This work continues the study of such systems without tunnels, using the

zero-width slit method.

In this paper, we consider a two-dimensional system shown in Fig.5, in

which a square with a side of length 1 is taken as the main region Ω0, along all

the boundaries of which, through small holes, small square-shaped resonators are

connected , with side ϵ, with period ϵ. There are no tunnels.

Figure 5 – Example of system geometry with corrugated boundary

The zero-width slit model is applied to this system. The number of con-

nected resonators is 4N , N = ⌊1ϵ⌋. Hence the defect indices of the bounded

operator H ′ are equal to (8N + 2, 8N + 2). Further construction is similar to the

previous section. As a result, we obtain the following expression for functions from
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the domain of the main operator (here and below, i goes over all 4N resonator

numbers): 
u

u1
...

un

 =


ũ

ũ1
...

ũn

+


∑n

i=0 a
ex
i G(x, xi, k0)

ain1 Gi(x, x1, k0)
...

ainn Gi(x, xn, k0)

 (17)

Now let us construct explicitly the eigenfunctions for the model operators

Hϵ. Given the domain of the operator, the general form for a function from the

domain of the model operator corresponding to the eigenvalue k2 is:

un(x) =


∑n

j=1 α
ex
j G(x, xj, k) x ∈ Ω

αini Gi(x, xi, k) x ∈ Ωi

In order to apply restrictions on the coefficients from (15), for each hole point, it

is necessary to highlight the features:

un(x) = (18)
αexl G(x, xi, k0) + αexl g(x, xi, k, k0) +

∑n
j ̸=l α

ex
j G(x, xj, k) x ∈ Ω

αinl Gl(x, xl, k0) + αinl gl(x, xl, k, k0) x ∈ Ωl

αinj Gj(x, xj, k) x ∈ Ωj ̸=l

Here and below, g denotes the Green’s function, with the singularity removed:

g•(x, z, k, k0) = G•(x, z, k)−G•(x, z, k0)

Applying (15) constraints to the general form of the native function, we get:

αi := αexi = −αini

αigi(k, k0) +
N∑
j ̸=i

αjG(xi, xj, k) = −αiĝ(k, k0) (19)

The second expression combines all restrictions and is a system of 4N equations.

This system, in the N → ∞ limit, transforms into an integral equation equivalent

to some eigenvalue problem with an energy-dependent Robin-type boundary con-

dition. Conditions of this type are discussed, for example, in [33]. The derivation
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of the integral equation will be given in more detail in the results section of this

paper. We assume that the hole size δ correlates with the parameter ϵ so that for

some function r(x), the following is true:

(gini (x, xi, k, k0) + gex(x, xi, k, k0)) =
1

r(xi)k2ϵ
(20)

In conclusion, we present the main theorem [10]:

Theorem 1.1.6. For the sequence of operators Hϵ described above, as N → ∞,

the eigenfunctions converge to the functions defined by the following integral equa-

tion,

u(x) = −
∫
Γ

u(xi)G
ex(x, xi, k)[(g

in
i (x, xi, k, k0) + gex(x, xi, k, k0))dx]

−1dx,

which, given (20), is equivalent to the following problem:∆u+ k2u = 0

∂u
∂n|∂Ω= k2ru|∂Ω

1.1.6 Border of strips

We now turn to the main results of this chapter. The first of the systems we

consider, shown in Fig.6, is a square region with side 1 as the initial region Ω0, the

left boundary of the region is perturbed, i.e. ∂Ω0 ⊃ Γ = {(x1, x2) : x1 = 0, x2 ∈
[0, 1]}. We do not use the mass density, i.e. ρ(x) = 1. The main operator is the

Laplacian with the Neumann boundary conditions H0. The perturbation occurs

by Helmholtz resonators Ωi connected to the left boundary through small holes

xi, without tunnels (Here and below, the counter i runs through all N resonator

numbers). The parameter ϵ, as before, corresponds to the period, in this case, to

the distance between adjacent holes. Their number N increases indefinitely, while

their sizes change as w = const, h = ϵ, and the hole size decreases as δ = ϵm, where

different values of m > 1 - will be be considered later. Laplace operators with

Neumann boundary conditions on domains with N resonators will be denoted by

HN or Hϵ, and the limit operator by H lim.

To study the system, we move on to the zero-width slit model, similar to [10].

Our goal is to study the limit ϵ → 0 (N → ∞) by considering the limit problem
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Figure 6 – Example of system geometry with corrugated boundary

whose eigenfunctions converge to the eigenfunctions of perturbed systems. As a

result, we obtain the limit problem for the eigenvalues of the differential operator

in the domain Ω0, with the Neumann boundary condition on the unperturbed

boundaries and the energy-dependent Robin condition on Γ, expressed explicitly.

We also use numerical methods to construct the eigenfunctions of real sys-

tems (with a finite hole diameter), confirming the analytical conclusions and

demonstrating the rate of convergence to the eigenfunctions of the limit prob-

lem as the number N of resonators increases.

We also introduce the following notation: G(x, xi, k), Gi(x, xi, k) - Green’s

functions with the Neumann conditions in the rectangle, for the domains Ω0 and

Ωi, respectively, with a singularity at the point holes xi, as well as g(xi, k, k0), gi(xi, k, k0)

- Green’s functions at the points of the holes, with removed singularities, in the

same areas.

g•(xi, k, k0) =
[
G•(x, xi, k)−G•(x, xi, k0)

]
x→xi

The conditions inside the resonators are the same, so gi(xi, k, k0) actually depends

only on the last two parameters and will be written as ĝ(k, k0).

Here is the main analytical result of the section:
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Theorem 1.1.7. Let ψNn (x), n = 1, 2... be the eigenfunctions of the perturbed

model operator HN from the family described above.

1. The functions ψNn (x) have the following form:

ψNn (x) =


∑N

j=1 αjG(x, xj, k) x ∈ Ω

−αiGi(x, xi, k) x ∈ Ωi

(21)

where the coefficients satisfy the following system of N conditions:

αig(xi, k, k0) +
N∑
j ̸=i

αjG(xi, xj, k) =− αiĝ(k, k0), i = 1, 2, ...N (22)

2. In the N → ∞ limit, the functions ψNn (x) converge to solutions of the fol-

lowing integral equation:

ψ(x) = −
∫
Γ

ψ(y)G(x, y, k)[ĝ(k, k0)dy]
−1dy =

= −
∫
Γ

ψ(y)G(x, y, k)k tan[kw]dy, (23)

which corresponds to the following eigenvalue problem for a differential op-

erator: 
∆u+ k2u = 0

∂u
∂n|Γ= −k tan(kw)u|Γ
∂u
∂n|∂Ω0\Γ= 0

(24)

The rest of the section is devoted to the proof of the theorem.

First, we describe the zero-width slit model operator (the procedure is de-

scribed in more detail in sec.1.1.4).

Let us construct for some fixed N (the result extends to all N). Let H ′

be the closure of the Neumann Laplacian acting in the domain ΩN to functions

that vanish at the points of the holes. According to the Neumann theorem, the

domain of the operator H ′∗ can be represented as:

D(A∗) = D(−∆F )⊕ def(H ′, k0)
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And the defective elements are 2N elements of the form

fdef =


G•(x, xi, k)

0
...


where the Green’s function acts in one of the regions, with respect to one of the

hole points associated with it, and in all other regions the defective element is

equal to zero.

We also denote the functions from the domain of the Friedrichs extension of

the Neumann Laplacian (D(−∆′)) by ũ• (the functions act in the region Ω•).

Thus, functions from the domain of the operator H ′∗ have the following

general form: 
u

u1
...

un

 =


ũ

ũ1
...

ũn

+


∑n

i=0 a
ex
i G(x, xi, k0)

ain1 Gi(x, x1, k0)
...

ainn Gi(x, xn, k0)

 (25)

The extension parameter k0 is chosen according to (16) equal to k0 =
2i
δ exp−γ, where γ = 0.577.

Now, to obtain a self-adjoint operator Ĥ describing the model system, we

restrict D(H ′) so that the boundary form vanishes

J(u, v) = (H ′∗u, v)− (u,H ′∗v), u, v ∈ D(H ′∗).

These functions have singularities at the hole points, so we use the limit transition:

J(u, v) =
∑
j

∫
∂Bδ

j

(
−∂u
∂n
v̄ + u

∂v

∂n

)
dS,

where Br
j is the circle with radius r around hole xj: B

r
j = {x :

∣∣x− xj
∣∣ < r}.

Using Green’s formula, (25), and the Neumann boundary conditions, we

get:

J(u, v) =
∑
j

∫
∂Bδ

j

(
−∂u
∂n
v̄ + u

∂v

∂n

)
dS,

We use the well-known expression for the Green’s function of the Neumann Lapla-

cian near the singularity

G(x, xj, k) =
1

π
ln
∣∣x− xj

∣∣+O
(∣∣x− xj

∣∣) ,
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we obtain an expression for the boundary form:

(H ′∗u, v)− (u,H ′∗v) =∑
i

au,ini Cv,in
i −av,ini Cu,in

i + au,exi Cv,ex
i − av,exi Cu,ex

i

Here C
u,in/ex
i = ũin/ex(xi).

We choose an extension that corresponds to the physical meaning, i.e. main-

tains flow through the hole:

ai := −aini = aexi , (26)

C in
i =Cex

i , i = 1, 2, ...N (27)

It is worth noting that the first expression can be interpreted as mutual compen-

sation by features on different sides of the hole.

We write the conditions in the form of a system of N equations:∑
j ̸=i

ajG(xi, xj, k) + aig(xi, k, k0) = −aiĝ(k, k0), ; i = 1, 2, ...N (28)

The first part of the theorem is proved.

Consider the limit of the constructed functions as N → ∞. In particu-

lar, we derive a limit expression for the system of conditions on the coefficients

(28). To this end, let us consider the limits of the Green’s functions inside the

resonators. Let us write the well-known expression for the Green’s functions of

the Helmholtz equation in a rectangle of dimensions w on h, with the Neumann

boundary conditions:

G(x, z, k) =
∞∑
i=0

∞∑
j=0

ci,j
wh

cos πix1w cos πjx2h cos πiz1w cos πjz2h
k2 − ( i

2π2

w2 + j2π2

h2 )
(29)

ci,j = 22−δi−δj , δi =

0, i ̸= 0

1, i = 0
- Kronecker delta function

Setting h = ϵ and passing to the limit ϵ→ ∞, we obtain the coefficients for

the limiting conditions
(
λϵi,j =

i2π2

w2 + j2π2

ϵ2

)
:

ĝϵ(k, k0) =
1

ϵ

∞∑
i=0

∞∑
j=0

ci,j
w

cos2
πj

2

k20 − k2

(k2 − λϵi,j)(k
2
0 − λϵi,j)
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Noting that k20 = −C
δ2 , we can express the limit ĝw(k)dx = limϵ→0 ϵ hatgϵ(k, k0):

ĝw(k)dx =
1

wk2
+

2

w

∞∑
i=1

1

(k2 − i2π2

w2 )
,

using the following formula for a series:

∞∑
i=1

1

i2 − a2
=

1

2a2
− π cot(aπ)

2a
,

When the distance between the holes is ϵ → 0, the width of the holes is

δ → 0, and given k0 =
2i
δ exp−γ, k

2
0 to−∞, we can explicitly obtain formulas for

the limit:

ĝw(k)dx =
cot kw

k
(30)

Consider the general form for the eigenfunctions of the model operator HN

corresponding to the eigenvalue k2:

un(x) =


∑n

j=1 α
ex
j G(x, xj, k) x ∈ Ω

αini Gi(x, xi, k) x ∈ Ωi

Note the difference between this expression and the general form of the

elements D(H) (25), where there are arbitrary functions with the Neumann con-

ditions ũ and the parameter k0 depends only on the size holes, but not from

energy.

Now, in order to correlate a• and α•, and to express the conditions (28) in

terms of αin,exi , we must extract the singularities of Gi(x, xi, k0). For each hole l,

do the following:

un(x) = (31)
αexl G(x, xi, k0) + αexl g(x, xi, k, k0) +

∑n
j ̸=l α

ex
j G(x, xj, k) x ∈ Ω

αinl Gl(x, xl, k0) + αinl gl(x, xl, k, k0) x ∈ Ωl

αinj Gj(x, xj, k) x ∈ Ωj ̸=l

g•(x, z, k, k0) = G•(x, z, k)−G•(x, z, k0)
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Comparing this with (25) and using (26) we get

αexi = ai, i = 1, ...N

and the (28) conditions take the following form:

αi := αexi =− αini

αigi(k, k0) +
N∑
j ̸=i

αjG(xi, xj, k) =− αiĝ(k, k0) (32)

Let also

ui = u(xi) = αigi(k, k0) +
N∑
j ̸=i

αjG(xi, xj, k)

The (32) condition can be represented as

ui = −αiĝϵ(k, k0)

Multiplying each of these N equations by G(x, xi, k) and summing, we get

N∑
i=1

αiG(x, xi, k) = −
N∑
i=1

uiG(x, xi, k)[ĝϵ(k, k0)ϵ]
−1ϵ

The left side of this expression is the original eigenfunction, and the right

side contains the values of this function at the hole points, multiplied by the

distance between them dx = ϵ, which makes the expression an integral sum.

Finally, considering the limit N → ∞, we obtain an integral equation for some

function u(x) acting in Ω.

ψ(x) = −
∫
Γ

ψ(y)G(x, y, k)[ĝ(k, k0)dy]
−1dy =

= −
∫
Γ

ψ(y)G(x, y, k)k tan[kw]dy, (33)

This integral equation is equivalent to the following eigenvalue problem with

boundary conditions in the region Ω0:
∆u+ k2u = 0

∂u
∂n|Γ= −k tan(kw)u|Γ
∂u
∂n|∂Ω\Γ= 0
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The theorem has been proven.

In conclusion, we note that the area consisting of strips, in fact, approaches

the area in which the Laplace operator is replaced by another operator:

L(1)u =
∂2u

∂x2
,

however, in addition to this, the function can now have discontinuities in the

direction of the Y axis, and continuity must be preserved at the right boundary

of the region. The question of a rigorous description of the operator and function

space in the domain of strips remains open.

1.1.7 Border of strips: Numerical results

This section describes the obtained numerical results for a system with a

border corrugated by strips. The Mathematica system was used.

Eigenfunctions of systems with exact geometry (i.e. without zero-width slit

approximation) were constructed. Examples of three-dimensional graphs of the

obtained eigenfunctions are shown in fig. 7. It shows the results for two systems,

with the number of bands equal to ten and fifty. The numbers of functions were

chosen so as to show the main features of the constructed functions, the energies

increase in each column separately (from top to bottom).

The following are two graphs, 8 and 9, which plot the ratio of the eigenfunc-

tion derivative to its value as a function of the state’s eigenenergy. Each value is

obtained as follows: the ratio is calculated at N points xi+dx, and the arithmetic

mean is taken (with 10% of extreme values discarded). The value of dx is small

compared to the size of the holes, does not change, and is chosen to minimize

the difference between the eigenfunction built from Green’s functions (see the left

side (28)) and the numerical value of the function. All parameters of the system

are unchanged, except for the number of resonators and the hole size.
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Figure 7 – Examples of numerically constructed eigenfunctions of an operator

with a corrugated boundary of strips. Left - N = 10, right - N = 50. The

energy increases from the top line to the bottom, in each column (non-consecutive

eigenfunctions are given). Hole size δ = 0.5ϵ.
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Figure 8 – System with a border corrugated by strips. Graphs of the ratio of

the derivative of a function to its value, taken along the perturbed boundary of

the Ω domain (average value). Each line corresponds to a fixed geometry of the

system, with parameters N and δ (other parameters are unchanged). Two sets of

four lines are shown: for holes equal to half the width of the strips and for holes

equal to the width of the strips (i.e., with the resonator wall completely absent).

Also shown is the dotted line corresponding to the theoretical limit, −k tan kw.

We used the zero-width slit model, so our result applies to the case with a

small hole in the resonator wall. In addition to this case, the graph also shows

the results for the case with a completely absent Ω wall that is perturbed, i.e. the

strips are directly attached to the main resonator. As seen on the scale of Fig.

8, in the case of a missing wall, the convergence to the limit value −k tan kw is

noticeably better. Moreover, this pattern applies to all hole sizes, i.e. convergence

is better the closer δ/ϵ is to unity.
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Figure 9 – System with a border corrugated by strips. Graphs of the ratio of the

derivative of a function to its value, taken along the perturbed boundary of the

Ω domain (average value). The result partially repeats Fig. 8 but on a different

scale. Each point corresponds to a specific eigenfunction, points of the same color

- the same geometry of the system, with the indicated parameters N and δ (other

parameters are unchanged). Three sets of points are shown: the gray points are

the theoretical limit, −k tan kw, the other two are for holes equal to half the width
of the strips and for holes equal to the width of the strips.

The second graph, fig.9, shows the behavior of the ratio at high energy

values, only for the case of N = 25. The last limitation is related to the difficulty

of obtaining values, with a sufficiently large ratio at the boundary, with a larger

number of bands, since this ratio is slowing down. For example, for systems with

N = 200 shown in Fig.8, the ratio ψ′/ψ of the first 120 eigenfunctions does not

exceed 0.3.

1.1.8 Asymptotics for the boundary of square resonators

and numerical calculations

This section presents the results obtained by E.S. Trifanova in the yet unpub-

lished article ”Energy-dependent boundary condition as a limit of very corrugated
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boundary: asymptotic approach”, in which the method of matching asymptotics

near holes is used to study the corrugated boundary. The results of the author

are also presented, where the method of zero-width slits was applied for this sys-

tem and graphs corresponding to the analytical results were constructed using

numerical methods.

The main goal is to get the principal terms of the λ0−λϵ asymptotics, where

λ0 =
2π2

d2 is the first eigenvalue of the main domain.

Let us describe the system studied in the work.

� H0 - Neumann’s Laplacian.

� Ω0 is a square with side d. The upper side is perturbed, i.e. Γ = {(x, y) :
x ∈ [0, d], y = d}. Functions belonging to Ω0 are marked with ’-’.

� Ωi - square resonators with side ϵ arranged ϵ-periodically. There are no

tunnels. Functions belonging to resonators are marked with a ’+’ sign.

� Hole size is obtained from the ratio:

ϵ = |xi − xi−1| = mδθ =
d

N
, θ ∈ (0, 1). (34)

Let us briefly present the calculations and the main result. The Green’s

functions of the Helmholtz equation with the Neumann boundary conditions in

the G(X,Xi, k) rectangles are used in the calculations, the exact values of which

were given in the section 1.1.6.

Here, in addition to the small parameter ϵ, which characterizes the dimen-

sions of resonators and holes, we consider energies close to the first eigenvalue of

the resonator Ω0, i.e. the difference
(
k2 − 2π2

d2

)
is small, which will be used in the

asymptotics.

Similarly to [23], one can represent the principal terms of the asymptotics

with respect to δ of the eigenfunctions of the perturbed problem in the following

form:

ψ(X) =



(
k2 − 2π2

d2

)
αiG

+
i (X, (xi, 0), k), X ∈ Ω+ \ S((xi, 0), r(δ));

vi0(x/δ) + vi1(x/δ) ln
−1 δ + o(ln−1 δ), X ∈ S((x1, 0), 2r(δ));

−
(
k2 − 2π2

d2

)∑N
j=1 αjG

−(X, (xj, 0), k), X ∈ Ω− \ S((xi, 0), r(δ)),
(35)
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where S(X, r) is a sphere with center X and radius r. The radius r(δ) is chosen

so that

δd < r(δ) < 2r(δ) < ϵ/2.

The asymptotic expansion of the energy deviation from the resonator eigen-

value is chosen according to the following formula:

k2 − 2π2

d2
= τ1 ln

−1 δ + o
(
ln−2 δ

)
. (36)

The coefficient τ will be determined below.

Using the asymptotics of the Green’s functions for small resonators

G+
N((x, 0), (xi, 0), k) =

− 1

π
ln δ +

4N 2 cos(Nπxi/d) cos(Nπx/d)

d2
(
k2 − 2N 2π2/d2

) + g+1 (X)− 1

π
ln |ξ| =

= −1

π
ln δ +

4 cos(πxi/ϵ) cos(πx/ϵ)

k2ϵ2 − 2π2
+ g+1 (X)− 1

π
ln |ξ|, (37)

where X = (x, y), ξ = x
δ , g

+
1 (X) is a bounded function. The second term is a

bounded function for small ϵ, so we add it to g+1 (X) and call the resulting bounded

function g+. Next, we obtain the following asymptotic expansion for (35), inside

the resonators:

Lemma 1.1.1. The first terms of the expansion of the (35) solution in the res-

onator i are:

ψ+(x, 0) = αi

(
k2 − 2π2

d2

)[
−1

π
lnδ + g+(X)− 1

π
ln ξ

]
= −1

π
αiτ1 + o(1), (38)

where x→ xi, δ → 0.

Similarly, we obtain the asymptotics of the solution in the main resonator:

Lemma 1.1.2. The asymptotics of the (35) solution in the main resonator, near
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the hole i, has the following form:

ψ−(X) =

− αi

[
−τ1
π

+
4

d2
cos2(πxi/d)

]
−

N∑
j=1,j ̸=i

αj

[
4

d2
cos(πxi/d) cos(πxj/d)−

θτ1
π

+

]
+ o(1). (39)

We are now ready to compare the obtained asymptotics near the holes. We

omit this procedure, which involves solving a system of N equations, to obtain

the coefficients αi of the (35) solution. As a result of the procedure, we obtain

the following expression for the solution inside the main resonator:

ψ−(x) =
d

2
(2− θ)

(
k2 − 2π2

d2

)
N∑
i=1

G−((x, 0), (xi, 0), k)
(
ψ−(xi) + o(1)

)
· d
N

(40)

This expression is an integral sum. Passing to the limit N → ∞, we get:

Lemma 1.1.3. The eigenfunctions of the limit problem satisfy the following in-

tegral equation:

ψ−(X) =
d

2
(2− θ)

(
k2 − 2π2

d2

)∫
Γ

G−(X,X ′, k)ψ−(X ′)dX ′. (41)

This is equivalent to some boundary value problem, which is formulated in

the main theorem:

Theorem 1.1.8. The Laplacian eigenfunctions corresponding to an eigenvalue

close to 2π2

d2 for the systems described above with a corrugated boundary converge

for N → ∞ to the eigenfunctions of the problem with the following condition on

the upper boundary:

∂ψ

∂n

∣∣∣
∂Ω

=
d

2
(2− θ)

(
k2 − 2π2

d2

)
ψ
∣∣∣
∂Ω
. (42)

In this result, the first eigenvalue of the main resonator has been considered

only for simplicity. The result generalizes directly to the case of any eigenvalue.

In conclusion, we present the numerical results corresponding to these ana-

lytical calculations. Numerical solutions were obtained for model problems with
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fixed N . Using the zero-width slit model, we analytically obtain results similar

to sec.1.1.5. Let us present the condition on the coefficients αi in front of the

Green’s functions for the model problem:

αigi(k, k0) +
N∑
j ̸=i

αjG(xi, xj, k) = −αiĝ(k, k0)

In this equation, for comparison with numerical calculations for finite holes,

we assume

αigi(k, k0) +
N∑
j ̸=i

αjG(xi, xj, k) ≈ ψk2(xi),

for the values of functions at points, and for the derivatives of these functions, we

assume:

αi ≈
∂ψk2

∂n
(xi)

Figure 10 – On the left - the ratio of the derivative of the function to the value,

depending on the energy of the state. Different graphs correspond to systems

with different N . On the right is the same plot at a different scale, but the points

are not connected by (horizontal) lines. The dotted line indicates the analytically

obtained functions.

Given these approximations, we can compare the numerically obtained value

of
∂ψk2

∂n /ψk2(xi), with its analytical counterpart gi(k, k0) +
∑N

j ̸=i
αj

αi
G(xi, xj, k).

Figure 10 shows plots of
∂ψk2

∂n /ψk2(xi) on average over the entire bound-

ary with resonators, for model problems with fixed N = 10, 20, ...90, 100, 200 (in
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all cases, the standard deviation is σ ≪ 1), i.e. each point is one of the nu-

merically found bound states with fixed N and k2. The parameter θ = 0.8 is

used. The dotted line on the left graph shows the theoretically obtained function

−C[ĝ(k, k0)]−1, multiplied by the constant C, the value of which is determined by

taking the derivative at the boundary: for the presented graphs, the derivative

is taken at a small distance from the wall, at a point opposite each hole. Thus,

it is shown that for model eigenfunctions,
∂ψk2

∂n (xi + n⃗ξ)/αi, for small ξ does not

depend on i and energy k2. To improve the convergence of G(x, xi, k) in numerical

calculations, you can use the formula from [31]. The dotted line on the right graph

shows the function ϵ
2(2 − θ)[k2 − λ], the points to which the sequences converge

are the eigenvalues of the large resonator. The obtained values, as N increases,

converge to the theoretically obtained function U(k2), see (42). It can also be

seen that the paired values converging to λ < 0.4 turn parallel to U(k2) as N

increases.

1.2 Translucent corrugated barrier

Let’s move on to the next problem - systems with translucent barriers. These

systems are discussed in this section, and further in the next chapter, where the

barrier is modeled using a singular δ potential.

First, consider applying the asymptotic expansion methods of the 1.1.8 sec-

tion to a system with a small hole in a semitransparent barrier, and then apply

the developed methods for working with a corrugated boundary to construct a

corrugated barrier.

1.2.1 Asymptotics for a semitransparent barrier with a

small hole

This section presents the results of our article [1]. We consider a quantum

waveguide with a semitransparent barrier located across it (see Fig.11). It is

assumed that the barrier has a small window. This local perturbation of the

waveguide leads to the appearance of resonant states. localized near the barrier

with a window. The asymptotic behavior (with respect to a small parameter,
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the window width) of resonances (quasi-bound states) is obtained. A procedure

for constructing a complete formal asymptotic expansion is described; the first

two terms are obtained explicitly. These terms describe the displacement of the

resonance from the threshold and the lifetime of the corresponding resonance

state.

A system of two waveguides with a common semitransparent wall was stud-

ied in [34]. We will consider a similar system, but with a semitransparent barrier

located across the waveguide.

Figure 11 – A waveguide with a translucent border with a small hole in the

middle.

Let’s set the introductory formulas. α - transparency parameter. α = 0

means no barrier, α = ∞ - opaque barrier. The boundary conditions on both walls

of the waveguide are the Dirichlet conditions. But there are special conditions for

the barrier:  u+ = u−

u′+ − u′− = αu
. (43)

The second condition characterizes the ”jump” of the derivative on the bar-

rier, α is a real constant. Conditions of this type appear if we consider a singular

potential supported on a hypersurface. Such potentials have been intensively

studied over the past two decades (see, for example, [35, 36, 37, 38, 39]).

The window size is 2ε, the window is located in the center barrier. For

the corresponding unperturbed system (i.e., without a window), a separation of

variables can be carried out. The eigenvalues and orthonormal eigenfunctions for

the Laplacian (i.e. the second derivative), in a waveguide cross section, are as
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follows:

ψn(x2) =

√
2

d
sin

πnx2
d

, λn =

(
πn

d

)2

.

These eigenvalues play the role of thresholds for the corresponding branches of

the continuous spectrum of the waveguide Hamiltonian. Lower the boundary of

the continuous spectrum of the Dirichlet Laplacian is greater zero. We are looking

for the principal terms of the asymptotic expansion of the quasi-eigenvalues near

the first threshold: √(
π

d

)2

− τ 2ε =
∞∑
j=2

[j/2]−1∑
i=0

τjiε
j

(
ln
ε

ε0

)i
. (44)

This is not the only possible extension, but it is handy in this case. The

asymptotic series for the corresponding eigenfunctions have the following form:

ψε(x) =

√(
π

d

)2

− τ 2ε ·
∞∑
j=0

εj Pj+1

(
Dy, ln

ε

ε0

)
G−(x, y, k)

∣∣∣∣∣
y=0

, x ∈ Ω−\Sε0(ε/ε0)1/2,

(45)

ψε(x) =
∞∑
j=1

[(j−1)/2]∑
i=0

vji

(
x

ε

)
εj lni

ε

ε0
, x ∈ S2ε0(ε/ε0)1/2, (46)

ψε(x) = −

√(
π

d

)2

− τ 2ε ·
∞∑
j=0

εj Pj+1

(
Dy, ln

ε

ε0

)
G+(x, y, k)

∣∣∣∣∣
y=0

, x ∈ Ω+\Sε0(ε/ε0)1/2.

(47)

Here ε0 is the natural unit of length, e.g. d, St is a circle of radius t centered in

the middle of the window,

vji ∈ W 1
2,loc(Ω

− ∪ Ω+),

P1

(
Dy, ln

ε

ε0

)
= c

(1)
10

∂

∂ny
,

ny - normal to the barrier at y,

Pm

(
Dy, ln

ε

ε0

)
=

m−1∑
q=1

[(q−1)/2]∑
i=0

c
(m)
qi

(
ln
ε

ε0

)
Dm−q+1
y , m ≥ 2,

D2j+1
y =

∂2j+1

∂n2j+1
y

, D2j
y =

∂2j

∂n2j−1
y ∂ly

.
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The first thing we are going to calculate is the Green’s function for such systems.

The Green’s function for a standard planar quantum waveguide is well known

[40], and is written as:

G(x, y, k) =
∞∑
n=1

ψn(x2) · ψn(y2)
2pn

· e−pn·|x1−y1|

Here x1 and y1 are the coordinates on the waveguide axis, ψ is orthonormal

eigenfunctions for the unperturbed case, pn =
√
λn − k2. For n = 1 this is exactly

the left hand side of the asymptotic extension given earlier.

Consider our case, when the waveguide is located as in the figure, x0 is the

abscissa of the barrier, and the two arguments of the Green’s function are x and

y. One can write the Green’s function with some coefficients, considering three

subdomains:

G(x, y, k) =
∞∑
n=1

ψn(x2) · ψn(y2)
2pn

· ϕ(x1, y1, k),,

where

ϕ(x1, y1, k) =


an · e−pn·(x1−y1), y1 < x1,

bn · e−pn·(x1−y1) + cn · epn·(x1−y1), x0 < x1 < y1,

dn · epn·(x1−y1), x1 < x0.

The coefficients are calculated using the conditions (43):

an · e−pn·(x1−y1)
∣∣∣
x1=y1

= bn · e−pn·(x1−y1)
∣∣∣
x1=y1

+ cn · epn·(x1−y1)
∣∣∣
x1=y1

−pnan · e−pn·(x1−y1)
∣∣∣
x1=y1

+ pnbn · e−pn·(x1−y1)
∣∣∣
x1=y1

− pncn · epn·(x1−y1)
∣∣∣
x1=y1

= 1

bn · e−pn·(x1−y1)
∣∣∣
x1=y1

+ cn · epn·(x1−y1)
∣∣∣
x1=y1

= dn · epn·(x1−y1)
∣∣∣
x1=y1

−pnbn · e−pn·(x1−y1)
∣∣∣
x1=y1

+ pncn · epn·(x1−y1)
∣∣∣
x1=y1

− pn dn · epn·(x1−y1)
∣∣∣
x1=y1

=

= α · dn · epn·(x1−y1)
∣∣∣
x1=y1

⇔


an = bn + cn

pn(bn − an − cn) = 1

bn
1
γ + cnγ = dnγ

2cnpn = dn(α + 2pn)

⇔


an =

αγ2−α−2pn
2pn(α+2pn)

bn =
αγ2

2pn(α+2pn)

cn = − 1
2pn

dn = − 1
α+2pn

,
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where γ = epn·(x0−y1) . notice, that for the case without a barrier, (α = 0), we

obtain coefficients satisfying the usual formulas:

an = cn = dn = − 1

2pn
, bn = 0.

The derivative of the Green’s function is used in (45) and (47), so we need the

following representation:

Dj
yG

±(x, 0, k) =

=
1

d
sin

πx2
d

sin
πy2
d
Dj
y

(
ϕ(x1, y1, k)

)∣∣∣∣
y1=y0

((
π

d

)2

− k2

)−1/2

+

+ Φj(x, k) ln
r

ε0
+ g±j (x, k),

where g±j (x, k) has no singularity at x = 0.

Boundary value problems for the coefficients vji can be obtained as follows.

Consider the asymptotic series τ 2ε based on (44):

τ 2ε =
∑
p

∑
q

Λpqε
p lnq

ε

ε0
, (48)

where the coefficients Λpq are polynomials in τji, which can be easily calculated.

Then, you can substitute (46) and (48) into the Helmholtz equation, change the

variables ξ =
x

ε
and match the terms of the corresponding orders in both series.

Thus, the following equation is obtained:

∆ξvji = −
j−3∑
p=0

[p/2]−1∑
q=0

Λpqvj−p−2,i−q, ξ ∈ R2\Γ1,

vji = 0, ξ ∈ Γ1,

, (49)

Where

Γ1 = {ξ|ξ1 = 0 ∧ ξ2 ∈ (−∞;−1] ∪ [1; +∞)}.

We define the operator Kpq for sums S(x, ε) of type (45) and (47) in the

following way: if S(x, ε) has coefficient µ(ξ) for εp lnq
ε

ε0
in asymptotic expansion,

then Kpq(S) = µ. We also define Kp =
∑
q
Kpq.

Taking into account the representation of the derivative of the Green’s func-

tion, we can use a procedure similar to that described in [41], [42] and get:

lim
k→π

d

√(π
d

)2

− k2P1G
−(x, 0, k)

 = − π

d2
c
(1)
10 sin

πx2
d
,
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lim
k→π

d

√(π
d

)2

− k2P1G
+(x, 0, k)

 = 0,

ε−1K1

(√(
π
d

)2 − τ 2ε · P1G
+(x, 0, τε)

)
=

= ε−1c
(1)
10 K1

((
τ20ε

2 + τ30ε
3 + τ40ε

4 + τ41ε
4 ln ε

ε0
+ . . .

)
· ∂
∂x1

(
1
π ln ρ+ g(x, 0, τε)

))
=

= ε−1c
(1)
10 · τ20 · x1

πρ2 = ξ1 · c(1)10 · τ20 · π−1ρ−2

Lemma 1.2.1. There are harmonic functions Yq(ξ) that have the following dif-

ferentiable asymptotics in ρ→ ∞:

Yq =


−

∞∑
j=1

ρ−j(a+qj cos jθ + b+qj sin jθ), ξ1 > 0

ρq(a0q cos qθ + b0q sin qθ) +
∞∑
j=1

ρ−j(a−qj cos jθ + b−qj sin jθ), ξ1 < 0

To match members from (49) we can select v10 like this:

v10(ξ) = c
(1)
10

∞∑
j=1

ρ−j(a+qj cos jθ + b+qj sin jθ). (50)

Now, we can equate the ρ−1 cos θ coefficients in (49) and (50) to get τ20:

ξ1 · c(1)10 · τ20 · π−1ρ−2 = ρ cos θ · c(1)10 · τ20 · π−1ρ−2 = ρ−1 cos θ · c(1)10 · τ20 · π−1 ⇒

τ20 · π−1 = a+q1 ⇒ τ20 = π · a+q1.

Conclusion The proposed procedure can be extended to obtain terms of the

asymptotic expansion of any order. The results concerning the real part of the

resonance make it possible to estimate the shift of the resonance relative to the

threshold. As for the last formula for τ20, it shows the imaginary part of the

resonance, which corresponds to the decay rate for the resonance state, i.e. the

lifetime of the quasi-bound state.

1.2.2 Barrier made of strips

All the existing results concerned the perturbation of the boundaries of

regions. Our next goal is to extend the developed methods to a wider range of
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Figure 12 – Two square resonators connected through a corrugated boundary of

N (here N = 4) rectangular resonators, each of which has two holes at the points

xi and yi.

system geometries. Consider a perturbation in the form of a barrier of resonators.

The general view of the corrugated barrier system is shown in Fig.12. We

expand the notation used earlier:

� Let ΩL,ΩR be two disjoint domains in R2 with common boundary Γ.

� N resonators Ωi, i = 1, 2, ...N are inserted along the boundary between the

main regions (without changing the shape of the regions, but shifting one

of them by the required distance).

� Each resonator is connected to both regions through two δ holes. The mid-

points of the holes are denoted by xi, for holes from the left region ΩL, and

yi from the right ΩR (each of the points is a 2-vector). (Tunnels for barriers

are not considered in this paper)

� The resonators are rectangular, with sides w, h.

� Operators acting in the areas ΩL,ΩR will be marked with letters: ∆L,∆R.

The boundary corresponding to Γ lying in ΩL after splitting - ΓL is similarly

defined by ΓR.

� The small parameter ϵ = |Γ|
N , corresponds to the distance between adjacent

hole centers along the Γ boundary in each of the main regions.
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� The Laplace operator, with Neumann boundary conditions, acting on two

isolated domains ΩL,ΩR is denoted by H0, and the operators on perturbed

domains with applied zero-width slit approximation are Hϵ or H
N .

In this section, similarly to the previous sections, we apply the zero-width

slit model to derive exact expressions for HN eigenfunctions and consider the

N → ∞ limit. The next section presents the numerical results corresponding to

the analytical ones. The form of resonators in the form of strips with a fixed

length is considered:

w = const, h = ϵ

So, after applying the zero-width slit approximation, we get the following

expression for functions from the domain of the operator HN :

uL

u1
...

un

uR


=



ũL

ũ1
...

ũn

ũR


+



∑n
i=0 a

ex
i G

L(x, xi, k0)

ain1 Gi(x, x1, k0) + bin1 Gi(x, y1, k0)
...

ainn Gi(x, xn, k0) + binn Gi(x, yn, k0)∑n
i=0 b

ex
i G

R(x, yi, k0)


(51)

The parameter k0 is chosen according to (16): k0 = 2i
δ exp−γ, where γ ≈

0.577.

Lemma 1.2.2. The boundary form for u, v ∈ D(HN∗) is:

(H∗u, v)− (u,H∗v) =∑
i

au,ini Cv,in
i −av,ini Cu,in

i + au,exi Cv,ex
i − av,exi Cu,ex

i +∑
i

bu,ini C̃v,in
i −bv,ini C̃u,in

i + bu,exi C̃v,ex
i − bv,exi C̃u,ex

i

Here C
u,in/ex
i = ũ

in/ex
L (xi), and C̃

u,in/ex
i = ũ

in/ex
R (yi).

We reset the boundary form by choosing an extension that corresponds to
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the physical meaning, i.e. maintains flow through the orifice:

ai := −aini = aexi ,

bi := −bini = bexi ,

C in
i =Cex

i , (52)

C̃ in
i =C̃ex

i ,

i = 1, 2,...N

Let us write the conditions as a system of 2N equations for i = 1, 2, ...N :

∑
j ̸=i ajG

L(xi, xj, k) + aig
L
i (k, k0) =

−aigini (k, k0)− biG
in(xi, yi, k)∑

j ̸=i bjG
R(yi, yj, k) + big

R
i (k, k0) =

−bigini (k, k0)− aiG
in(yi, xi, k)

, (53)

where g•i (k, k0) =
[
G•(x, zi, k)−G•(x, zi, k0)

]
x→zi

, zi is either xi or yi, depending

on the side. Note that gini (k, k0) does not depend on the side due to the symmetry

of small resonators, and Gin(yi, xi, k) = Gin(xi, yi, k) due to the general symmetry

property of the Green’s functions. The first part of the theorem is proved.

Next, we consider the limit N → ∞.

Setting h = ϵ and passing to the limit ϵ → ∞, we use the expressions

for the Green’s functions (29) and obtain the coefficients for the limit conditions(
λϵi,j =

i2π2

w2 + j2π2

ϵ2

)
:

Ĝϵ(k) =
1

ϵ

∞∑
i=0

∞∑
j=0

ci,j
w

(−1)i cos2
πj

2

1

k2 − λϵi,j

ĝϵ(k, k0) =
1

ϵ

∞∑
i=0

∞∑
j=0

ci,j
w

cos2
πj

2

k20 − k2

(k2 − λϵi,j)(k
2
0 − λϵi,j)

ci,j = 22−δi−δj , δi =

0, i ̸= 0

1, i = 0
- Kronecker delta function

Let us express the limits Ĝ(k) = limϵ→0 Ĝϵ(k), ĝ(k, k0) = limϵ→0 ĝϵ(k, k0),

for convenience further multiplying them by an infinitesimal value dy = ϵ:

Ĝ(k)dy =
1

wk2
+

2

w

∞∑
i=1

(−1)i

k2 − i2π2

w2
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ĝ(k, k0)dy =
k20 − k2

wk20k
2
+

2

w

∞∑
i=1

k20 − k2

(k2 − i2π2

w2 )(k20 − i2π2

w2 )

We give the following formulas for the series:

∞∑
i=1

1

(i2 − a2)(i2 + b2)
=
a2 + b2 − a2bπ coth(bπ)− ab2π cot(aπ)

2a2b2(a2 + b2)

∞∑
i=1

(−1)i

i2 − a2
=

1− aπ csc(aπ)

2a2
,

We use them to get explicit expressions for the limits:

Ĝ(k)dy =
1

k sin kw

ĝ(k, k0)dy =
coth pw

p
+

cot kw

k

p :=
√

−k20

Consider the general form for the eigenfunctions of the model operator HN

corresponding to the eigenvalue k2:

un(x) =


∑n

j=1 α
ex
j G(x, xj, k) x ∈ ΩL

αini Gi(x, xi, k) + βini Gi(x, yi, k) x ∈ Ωi∑n
j=1 β

ex
j G(x, yj, k) x ∈ ΩR

.

In order to correlate a•, b• and α•, β•, and express the conditions (53) in

terms of αin,exi , we have to isolate singularities of Gi(x, xi, k0). For each hole l, do

the following:

un(x) =



αexl G
L(x, xi, k0) + αexl g

L(x, xi, k, k0) +
∑n

j ̸=l α
ex
j G

L(x, xj, k) x ∈ ΩL

αinl Gl(x, xl, k0) + αinl gl(x, xl, k, k0) + βinl Gl(x, x
′
l, k) x ∈ Ωl

αinj Gj(x, xj, k) + βlnj Gj(x, x
′
j, k) x ∈ Ωj ̸=l∑n

j=1 β
ex
j G

R(x, x′j, k) x ∈ ΩR

(54)

g•(x, z, k, k0) = G•(x, z, k)−G•(x, z, k0)
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Comparing this with (51) and using (52) we getαi := αexi = −αini
βi := βexi = −βini

and the (53) conditions take the following form:αig
L
i (k, k0) +

∑N
j ̸=i αjG

L(xi, xj, k) = −αiĝ(k, k0)− βiĜ(k)

βig
R
i (k, k0) +

∑N
j ̸=i βiG

R(x′i, x
′
j, k) = −βiĝ(k, k0)− αiĜ(k)

(55)

Let also

uLi = u(xi) = αig
L
i (k, k0) +

N∑
j ̸=i

αjG
L(xi, xj, k)

uRi = u(yi) = βig
R
i (k, k0) +

N∑
j ̸=i

βiG
R(yi, yj, k)

The (55) condition can be represented asu
R + uL = −(βi + αi)(Ĝ(k) + ĝ(k, k0))

uR − uL = (βi − αi)(Ĝ(k)− ĝ(k, k0))

Denote rδ+(k) :=
[
ϵĝ(k, k0) + ϵĜ(k)

]−1

, rδ−(k) :=
[
ϵĝ(k, k0)− ϵĜ(k)

]−1

, and

express the coefficientsαi =
[
rδ−(k)(u

R − uL)/2− rδ+(k)(u
R + uL)/2

]
ϵ

βi = −
[
rδ−(k)(u

R − uL)/2 + rδ+(k)(u
R + uL)/2

]
ϵ

Let ǔ = (uR − uL)/2, u = (uR + uL)/2. Multiplying each of these 2N

equations by GL(x, xi, k) or G
R(x, x′i, k) and summing, we get

∑N
i=1 αiG

L(x, xi, k) =
∑N

i=1G
L(x, xi, k)

[
rδ−(k)ǔ− rδ+(k)u

]
ϵ∑N

i=1 βiG
R(x, x′i, k) =

∑N
i=1G

R(x, x′i, k)
[
−rδ−(k)ǔ− rδ+(k)u

]
ϵ

The left side of this expression is the original eigenfunction, and the right

side contains the values of this function at the hole points, multiplied by the
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distance between them dx = ϵ, which makes the expression an integral sum.

Finally, considering the limit N → ∞, we obtain an integral equation for some

functions uL(x), uR(x) acting in the domains ΩL,ΩR respectively .u
L(x) =

∫
ΓG

L(x, y, k)
[
r−(k)ǔ− r+(k)u

]
dy

uR(x) =
∫
ΓG

R(x, y, k)
[
−r−(k)ǔ− r+(k)u

]
dy

r−(k) = lim
δ→0

rδ− =
k sin kw

cos kw − 1
(56)

r+(k) = lim
δ→0

rδ+ =
k sin kw

cos kw + 1

These integral equations are equivalent to the following eigenvalue problem

with boundary conditions:

∆u+ k2u = 0

∂u
∂nL |ΓL= r−(k)ǔ− r+(k)u|ΓL

∂u
∂nR |ΓR= −r−(k)ǔ− r+(k)u|ΓR

∂u
∂n|∂Ω0\Γ= 0

or 

∆u+ k2u = 0

∂u
∂nR |ΓR+ ∂u

∂nL |ΓL= −r+(k)(uR + uL)|Γ
∂u
∂nR |ΓR− ∂u

∂nL |ΓL= −r−(k)(uR − uL)|Γ
∂u
∂n|∂Ω0\Γ= 0

Let us formulate the results of this section in the form of a theorem.

Theorem 1.2.1. Let ψNn (x), n = 1, 2... be the eigenfunctions of the perturbed

model operator HN from the family described above.

1. The functions ψNn (x) have the following form:

un(x) =


∑n

j=1 αjG(x, xj, k) x ∈ ΩL

−αiGi(x, xi, k)− βiGi(x, yi, k) x ∈ Ωi∑n
j=1 βjG(x, yj, k) x ∈ ΩR

.
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where the coefficients satisfy the following system of 2N conditions (i =

1, 2, ...N):αig
L
i (k, k0) +

∑N
j ̸=i αjG

L(xi, xj, k) = −αiĝ(k, k0)− βiĜ(k)

βig
R
i (k, k0) +

∑N
j ̸=i βiG

R(x′i, x
′
j, k) = −βiĝ(k, k0)− αiĜ(k)

(57)

2. In the N → ∞ limit, the ψNn (x) functions converge to ψ(x) =

u
L(x), x ∈ ΩL

uR(x), x ∈ ΩR

- solutions of the following pair of integral equations (functions r+, r− are

defined in (56)):u
L(x) =

∫
ΓG

L(x, y, k)
[
r−(k)ǔ− r+(k)u

]
dy

uR(x) =
∫
ΓG

R(x, y, k)
[
−r−(k)ǔ− r+(k)u

]
dy

which correspond to the following eigenvalue problem for the differential op-

erator: 

∆u+ k2u = 0

∂u
∂nR |ΓR+ ∂u

∂nL |ΓL= −r+(k)(uR + uL)|Γ
∂u
∂nR |ΓR− ∂u

∂nL |ΓL= −r−(k)(uR − uL)|Γ
∂u
∂n|∂Ω0\Γ= 0

1.2.3 Barrier of strips: Numerical calculations

In this section, numerical results are presented for a system with a corru-

gated narrow strip barrier. The Mathematica system was used.

Examples of numerically obtained eigenfunctions are shown in Fig.13. Graphs

are organized similarly to Fig.7 (see the description in the 1.1.7 section).

The graphs in Fig.14 show numerically obtained data for systems with a

barrier of 25 resonators (bands). The marginal function is also shown in gray on

the graph. As can be seen from the figure, the theoretically predicted asymptotes

and zeros are present on the numerical graphs, and also, on each graph, there are

areas where the values strongly deviate from the theoretical ones. At the moment

we do not have a good explanation for this deviation.
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Figure 13 – Examples of numerically constructed eigenfunctions of an operator

with a corrugated barrier of strips. Left - N = 10, right - N = 50. The en-

ergy increases from the top line to the bottom, in each column. (nonconsecutive

eigenfunctions are given). Hole size δ = 0.1ϵ.
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Figure 14 – System with translucent barrier, corrugated strips. Graphs of the

ratio of the sums and differences of the derivatives of the function on different sides

of the barrier to its values. Each point corresponds to a specific eigenfunction,

points of the same color - the same geometry of the system, with the indicated

parameters N and δ (other parameters are unchanged). Three sets of points are

shown: gray points - the theoretical limit, −r−(k) - above and −r+(k) - below,

the remaining two sets are for holes equal to the width of the strips and for holes

equal to half the width of the strips.
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1.2.4 Conclusions

In this chapter, we have considered boundary perturbation with multiple

Helmholtz resonators connected through small holes. In particular, we were in-

terested in the limit as the number of resonators tends to infinity.

In the first part, the theoretical base is given and some existing results are

presented, which show the general direction of development of thought within

the framework of this topic. In the second half of the first part, the results for

the system we developed with a strip boundary are presented, which include an

analytical part with the proof of the theorem on the limit problem and a numerical

part that supports the theory.

In the second part, we propose a new application of the concept of pertur-

bation by means of a corrugated boundary to the case of a barrier between two

resonators. For this case, we present a study of a strip barrier, with results similar

to the first part.

In the future, we plan to continue research on this topic, with the inclusion

of the mass density coefficient in the system under consideration, which will make

it possible to make the barrier infinitely thin.

In the next chapter, we continue the study of systems with semitranspar-

ent barriers on a plane, considering a singular delta potential concentrated on a

straight line.
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Chapter 2. Potentials concentrated on

one-dimensional sets

In this chapter, we consider problems about quantum systems in which the

potential is concentrated on a set of measure zero with respect to the dimension

of the underlying space. In particular, the main results concern a system with

a potential concentrated on a line in the space R3 and a system with a potential

on two parallel lines in the space R2. The spectrum of operators is investigated,

namely, theorems on the boundary of the continuous spectrum are proved and

the number of points of the discrete spectrum, as well as the gap between the

continuous spectrum and the first point of the discrete spectrum are estimated.

A large number of studies in recent years have focused on systems with

potentials concentrated on a one-dimensional set in R2 or R3. In addition to

being interesting from a mathematical point of view, the systems have important

physical interpretations, such as modeling the interactions of long molecules.

There are many works that explore this topic [47, 50, 49, 51, 52, 53, 54, 55,

56, 58, 59, 60, 64, 65]. A common approach to describing such potentials is based

on the theory of self-adjoint extensions of symmetric operators. A similar model

has also been developed for narrow holes in surfaces [63, 62], and for potentials

concentrated on hypersurfaces [48, 46, 57] (surfaces of dimension 1 less than the

main space are called hypersurfaces).

In the first section we provide a brief overview of the existing results needed

for what follows, including:

� A method for describing operators with singular interactions based on the

use of a formula for the resolvent similar to Krein’s formula,

� The Birman-Schwinger method, given, for example, in [78], allows, by con-

structing an operator in a certain way, to find an upper bound for the

number of points in the discrete spectrum,

as well as some of the systems considered in existing works and the corresponding

results.
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Our first main result for this chapter is given in the second section. The

system considered in it consists of two parallel straight lines in a plane, with a

potential of variable intensity concentrated on them. This system is proposed as

a model for the interaction of long molecules, such as DNA, in situations where

the structure of these molecules creates different types of interaction. The particle

whose bound states we are studying is in this case a possible factor participating

in the process of fixing the molecules relative to each other.

The third section is devoted to a system with a simple geometry: a

straight line is located in three-dimensional space, a delta potential with a variable

intensity is concentrated on it. Systems of this type are a representative of a well-

studied class of models. They can be generalized as the Schrödinger operator

in 3D, with a singular delta interaction centered on a subset of measure zero,

with a codimension of two (i.e. a one-dimensional subset), and such systems are

often referred to as leaky quantum wires (leaky quantum wires). These models,

containing a delta potential focused on one-dimensional subsets, are designed

to approximate the behavior of quantum systems such as quantum wires. The

operator can be formally written as

−∆− αδ(x− γ),

where γ corresponds to the wire line. An important property of such models is

the possibility of tunneling between different parts of the wire, which reflects the

property of the systems being modeled. The region outside the wire is classically

a band gap, therefore, for bound states, the probability of finding a particle in

this region tends exponentially to zero and all energies of the bound states are

negative. In the source [72] you can find a complete overview of different types of

model graphs, their comparison and results.

One of the most important characteristics of quantum wires is the existence

and number of bound states, which corresponds to the localized states of parti-

cles. To investigate the spectrum of an operator, we use a well developed method,

using a formula similar to Krein’s formula for the resolvent of a perturbed op-

erator, described in the first section. This approach allows using theorems from

perturbation theory.
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2.1 Overview of existing results

2.1.1 Resolvent of an operator with singular interactions

First, we present a generalized method for describing operators with singular

interactions. This method is used in most of the examples of systems discussed

below. The method has been developed over a number of papers, one of the first

appearances of the method was in Russian papers in 1977 and 1983, [77, 76], where

one-dimensional lines in three-dimensional space were considered and a formula

similar to Krein’s resolvent was used. Later, in the 1994 article [49], this issue was

considered in the most general sense, without limiting the number of dimensions

of the main space. Subsequent articles dealing with such systems rely heavily on

the variant of the method from [49]. Also, a more specific form of the method can

be found in the new 2017 paper [47], which deals with three-dimensional space.

The formula for the resolvent was fully presented in [64]. Here we present the

method in a form similar to these works.

There are many studies using this procedure for various types of lines, [53,

56, 74, 55, 75]. We also consider cases of the two-dimensional space R2, with

subspaces of co-dimension 1 [68, 69, 70], on bending lines and cycles [51, 60], as

well as for lines of finite length and different types of singular interactions on lines

[52, 73, 71]. The model of windows in the form of narrow slots in the boundary,

which can be considered as a generalization of the singular potential, was proposed

in [79, 16, 63, 62].

So, first we present the derivation of the formula for the Kerin-type resolvent

(see [64]). We restrict ourselves to the case of a three-dimensional space, i.e. basic

Hilbert space:

H := L2(R3)

Consider the Laplace operator in H:

−∆ : D(∆) → L2,

defined on functions from Sobolev space (i.e. functions with derivatives up to

order k belonging to L2)

D(−∆) = H2(R3).
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It is known that −∆ is self-adjoint on this space.

For any parameter z belonging to the Laplacian resolvent set ρ(−∆) =

C \ [0,∞), we define the resolvent as a bounded operator:

Rz := (−∆− z)−1 : L2 → H2.

Consider the bounded operator

τ : H2 → X,

acting on the complex Banach space X and its dual on the dual space X ′. (For

a closed linear operator A : X → Y , the adjoint operator is defined through the

expression: (A∗l)x = l(Ax), ∀x ∈ D(A), l ∈ D(A∗) ⊆ Y ′).

Let’s introduce operators:

Rz
τ = τRz : L2 → X,

Řz
τ = Rz

τ : X
′ → L2,

which are bounded.

Let Z be an open subset of ρ(−∆) symmetric about the Real axis, i.e.

Z = {z : z ∈ ρ(−∆)}, z ∈ Z ⇒ z̄ ∈ Z

Assume that, for any z ∈ Z, there exists a closed operator Qz : D ⊆ X ′ → X

satisfying the following conditions:

QzQw = (zw)Rw
τ Ř

w
τ , (58)

∀l1, l2 ∈ D, l1(Q
z̄l2) = l2(Qzl1). (59)

These operators will be used to construct a family of self-adjoint operators

that are the same as −∆ when restricted to the kernel τ . The family can be

parametrized by the symmetric operators Θ : D(Θ) ⊆ X ′ → X. We define this

family:

Qz
Θ = Θ+Qz :D(Θ) ∩D ⊆ X ′ → X, (60)

ZΘ := {z ∈ ρ(−∆) :(Qz
Θ)

−1, (Qz
Θ)

−1 exists and bounded}. (61)

Using these definitions, we can formulate without proof a theorem on the

resolvents of operators with singular interactions:
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Theorem 2.1.1. Let’s assume that the conditions

ZΘ ̸= ø

and

Ran τ ∗ ∩ L2 = {0}

are fulfilled. Then bounded operator

Rz
τ,Θ := Rz − Řz

τ(Q
z
Θ)

−1Rz
τ , z ∈ ZΘ,

is the resolvent of the self-adjoint operator −∆τ,Θ defined as follows:

D(∆τ,Θ) = {f ∈ L2 : f = fz − Řz
τ(Q

z
Θ)

−1τfz, fz ∈ D(∆)}, (62)

(−∆τ,Θ − z)f := (−∆− z)fz, (63)

which coincides with the Laplacian −∆ on the set ker τ .

2.1.2 Singular interactions as generalized boundary

conditions

This section presents a method for describing operators with singular inter-

actions in terms of generalized boundary conditions. This method is extremely

useful in the study of the spectrum and is used when working with the model of

loose quantum wires [53, 54]. We use this method in the last section to describe

the δ interaction on a line in 3D space.

The method of generalized boundary conditions allows one to work with

singular interactions on a line in R3. The line can be either finite or infinite. Let

a smooth continuous function of one variable describe this line:

γ(s) : R → R3,

moreover, it belongs to C2 almost everywhere. Let Γ denote the set of values

of γ, that is, be a one-dimensional line in R3, with the necessary smoothness

restrictions. The s parameter corresponds to the length of the line (signed), from

some origin.
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Next, we impose the following condition, which excludes the possibility of

self-intersection:

∃c = const > 0 :

∀s1, s2 ∈ R,

|γ(s1)− γ(s2)| ≥ c|s1 − s2| (64)

Now we introduce the Frenet frame for Γ, i.e. triplet (t(s), b(s), n(s)), which

corresponds to each point on the curve: t(s) - tangent unit vector co-directed with

the curve, b(s) - unit the binormal vector perpendicular to the normal and the

tangent vector, and n(s) the unit principal normal, which is orthogonal to t(s) and

lies in the point’s acceleration plane, if the curve is considered as a time-dependent

trajectory. Classically, this triplet exists and is uniquely defined, in those regions

where the line has nonzero curvature k(s) = ||γ′′|| : R → [0,∞). We additionally

assume that on any intervals where k(s) = 0 (i.e. when the line coincides with

the straight line), the triplet takes some fixed value (tl(s), bl(s), nl(s)), so that

the first vector is a tangent, and the other two are arbitrary orthogonal vectors

perpendicular to the tangent.

Thus, the triplet (t(s), b(s), n(s)) consists of piecewise continuous functions,

with the help of which we can define a shifted piecewise smooth function:

Γr = {γr(s) = γ(s) + ξb(s) + ηn(s) , r = (ξ2 + η2)1/2 , ξ , η ∈ R} .

proceeding from (64), there exists r0 > 0 such that Γr ∩ Γ = ∅ is executed

For all r ≤ r0.

So How any the function f ∈ H2
loc(R3 \ Γ) is continuous to R3 \ Γ, her the

attachment in Γr uniquely r < r0 is defined . Let’s denote this embedding fΓr
(s).

Next, we construct a self-adjoint operator corresponding to the Schrödinger

operator, with δ-potential centered on Γ. Let’s denote it −∆α,Γ.

Theorem 2.1.2. Let D(−∆α,Γ) : D(−∆α,Γ) → L2(R3) act on the functions as

−∆α,Γf(x) = −∆f(x) , x ∈ R3 \ Γ ,

and contains functions that satisfy the following conditions:
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1. Limits

Ξ(f)(s) = − lim
r→0

1

ln r
fΓr

(s),

Υ(f)(s) = − lim
r→0

(fΓr
(s) + Ξ(f)(s) ln r),

exist, i.e. belong to R, do not depend on the direction of 1
r(ξ, η), and define

functions from L2(R),

2. The following condition is met:

2παΞ(f)(s) = Υ(f)(s). (65)

Then this operator describes a system with a singular δ-interaction on Γ.

2.1.3 Birman-Schwinger method

This section describes a method for ”counting” the eigenvalues of an oper-

ator, which is often used to obtain estimates for the size of a discrete spectrum.

We will follow the theorem presented in [78] (Chapter XIII, Section 3-C). In this

paper, the method is applied in the last section of the chapter to find an up-

per bound on the number of bound states for a system with an inhomogeneous

singular interaction on a straight line in three-dimensional space.

Below we briefly present the essence of the proof of Theorem XIII.10 in [78].

Theorem 2.1.3. Let the Schrödinger operator Hλ : H2(R3) → L2(R3) be a per-

turbation of the operator H0 = −∆, another operator V ∈ R (R - Rolnik class see

[78], Volume 2)

H = H0 + λV.

Then the following constraint on N(V ), the number of bound states of the

system, takes place:

N(V ) ≤ 1

16π2

∫ ∣∣V (X)
∣∣∣∣V (y)

∣∣
|xy|2

d3xd3y

In particular, N(V ) <∞.

Proof. Let E < 0. Let us introduce the notation for the eigenvalues:

µn(λ) = µn(−∆+ λV ).
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Let

NE(V ) = #{n|µn(1) < E},

where #{•} is the cardinal number of the set.

According to Lemma 1 XIII.2.C, [78], µn(λ) is a monotonic and continu-

ous function of the parameter. Using the well-known fact about the Laplacian

spectrum, µn(0) = 0, we obtain

µn(1) < E ⇐⇒ ∃!λ ∈ (0, 1) : µn(λ) = E.

So way ,

NE(V ) = #{n|∃λ ∈ (0, 1) : µn(λ) = E} ≤

≤
∑

{λ|µk(λ)=E;k=1,...NE(V )}

λ−2 ≤

≤
∑

{λ|µk(λ)=E;k=1,2,...}

λ−2

Next , we note What

(H0 + λV E)ψ = 0 ⇐⇒

⇐⇒ λ(|V |1/2 (H0 − E)−1|V |1/2)(|V |1/2 ψ) = (|V |1/2 ψ)

which, in turn, is equivalent to

λ

∫ ∣∣V (x)
∣∣1/2 e−√

−E|xy|
∣∣V (y)

∣∣1/2
4π|xy|

ϕ(y)dy = ϕ(x) (66)

has a non-trivial solution ϕ ∈ L2.

We construct the operator K as follows:

Kϕ =

∫ ∣∣V (x)
∣∣1/2 e−√

−E|xy|
∣∣V (y)

∣∣1/2
4π|xy|

ϕ(y)dy

Due to the fact that V ∈ R, K is a Hilbert-Schmidt operator and self-

adjoint, as a consequence of the fact that the kernel is real and symmetric.

As a result, ∑
{µ|µ - eigenvalue K}

µ2 =Tr(K∗K) =

=
1

16π2

∫
e−2

√
−E|xy|

∣∣V (X)
∣∣∣∣V (y)

∣∣
|xy|2

dxdy
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Further, from the expression (66) it follows:∑
{λ|µk(λ)=E}

λ−2 =
∑

{µ|µ - eigenvalue K}

µ2,

where

NE(V ) ≤ 1

16π2

∫ ∣∣V (X)
∣∣∣∣V (y)

∣∣
|xy|2

d3xd3y

And it remains to direct E ↗ 0 to cover all bound states.

The essence of the method used in the proof is as follows:

� We use the continuity and monotonicity of the eigenvalues as the perturba-

tion increases to obtain

NE(V ) = #{n|∃λ ∈ (0, 1) : µn(λ) = E}

� We construct a context-specific helper operator that is linked to the original

one via the λ parameter, which should have feedback to the new opera-

tor’s own values. Moreover, the new operator must be a Hilbert-Schmidt

operator.

� Now, using the norm of the Hilbert-Schmidt operators, we find a trace

that, thanks to the feedback with the λ parameter and the property of the

0 < λ < 1 parameter, gives an upper bound on the size of the discrete

spectrum of the original operator.

This method will be used in the third section, where the constructed op-

erator has a very different character, but is still associated with the feedback

perturbation parameter.

The rest of the section is devoted to the results for systems with different

geometries obtained using the methods described.

2.1.4 Bound states of a twisted wire in R2

This section contains the results of the article [51]. It considers a system

in R2, with a perturbation in the form of a δ-interaction concentrated on a one-

dimensional line Γ. The smooth line Γ in this case approaches the straight line at
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infinity, but locally it deviates from the straight line. Throughout the entire line

δ-interaction has a constant intensity.

First, the resolvent of the main operator is described, according to a formula

similar to the one given in this section (theorem 2.1.1).

Rk := Rk
0 + αRk

dx,m[I − αRk
m,m]

−1Rk
m,dx

Here L2(R) acts as the space X - functions on the one-dimensional line

space, operators Rk
m,dx, R

k
dx,m - translate and return from this space.

Turning to a more rigorous description of the system, we present the con-

dition imposed on the line. Let Γ be a line in R2, the corresponding function

γ : R → R2 be continuous, piecewise-C1 smooth, with an argument, counting the

length of the line.

There are the following line restrictions:

-1- ∣∣γ(s)− γ(s′)
∣∣ ≤ ∣∣s− s′

∣∣ ,
expression equivalent to continuity.

-2-

∃c ∈ (0, 1) :∣∣γ(s)− γ(s′)
∣∣ ≥ c

∣∣s− s′
∣∣

In particular, this means that the line does not have self-intersections and

too sharp corners, and also that the possible asymptotes of the line cannot

be parallel to each other.

-3- Γ asymptotically approximates a straight line, in the following sense:

∃d, µ, w ∈ (0, 1) :

1−
∣∣γ(s)− γ(s′)

∣∣
|s− s′|

≤ d[1 +
∣∣s+ s′

∣∣2µ]−1/2,

∀(s, s′) ∈ {(s, s′) : w <
s

s′
< w−1}

After defining the line, a family of operators is built

Hϵ(W, γ) := −∆+ Vϵ
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Vϵ(x) :=

0 , x /∈ Σϵ

−1
ϵW (uϵ ) , x ∈ Σϵ

,

where Σϵ - is a ϵ-neighborhood of a line, W ∈ L∞((−1, 1)) - some function.

This family distributes the potential along a thickened line, the measure of

which becomes nonzero. The first theorem concerns the convergence of operators

with a distributed potential to the required operator with a singular potential.

Theorem 2.1.4.

Hϵ(W,Γ) → Hα,γ, for ϵ→ 0,

where α =
∫ 1

−1W (t)dt, convergence of operators is meant in the sense of resolvent

norms convergence.

The continuous spectrum of the operator Hα,γ is equivalent to the operator

with a delta potential on the line:

Proposition 2.1.1. Let α > 0 and assume that γ : R → R2 is a continuous

piecewise function belonging to C1 satisfying conditions -1,2,3-. Then

σess(Hα,γ) = [−α
2

4
,∞).

And the basic bound state theorem:

Theorem 2.1.5. Let the conditions of the previous statement be satisfied. If

inequality -1- is strict for some s, s′ ∈ R then Hα,γ has at least one isolated

eigenvalue below −α2

4 .

2.1.5 Bound states of a twisted wire in R3

This section contains the results of the article [53]. Similarly to the previous

paragraph, the system contains a line asymptotically approaching a straight line.

First, the resolvent of the main operator Hα,γ is constructed according to

the described method (theorem 2.1.1). Here the space X is also the space of

functions on the line L2(R), now having co-dimension equal to two. The operator

τ : H2(R3) → L2(R) acts as

τϕ(s) := ϕ(γ(s)).
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Its adjoint operator τ ∗ : L2(R) → H−2(R3) is defined via

(τ ∗h,w) = (h, τw)l , h ∈ L2(R) , w ∈ H−2(R3),

and can be formally written as

τ ∗h = hδΓ,

where δΓ is the Dirac measure, on the set Γ.

Conditions on γ repeat -1- and -2-, but -3- is replaced with the following:

-3’- ∃µ ≥ 0, w ∈ (0, 1), ϵ,d > 0 :

1−
∣∣γ(s)− γ(s′)

∣∣
|s− s′|

≤ d
|s− s′|

(|ss′|+ 1)(1 + (s2 + s′2)µ)1/2
,

∀(s, s′) ∈

(s, s′) :

w < s
s′ < w−1, |s+ s′| > ξ(w)ϵ

|s− s′| < ϵ, |s+ s′| < ξ(w)ϵ

 , ξ(w) =
1 + w

1− w

The main theorem again points to the existence of one or more bound states,

in the case of sufficient bending.

Theorem 2.1.6. Let Γ and γ satisfy the described conditions, and let µ from con-

dition -3’- : µ > 1
2. Then the operator −∆γ,α has at least one isolated eigenvalue

below the continuous spectrum.

2.2 Potential on parallel lines in 2D

This section includes the results we published in [44]. In this section, we

analyze a two-dimensional strip with boundaries formed by potentials centered on

parallel lines. These potentials resemble semitransparent borders [84, 17, 67]. The

potentials are assumed to be negative (ie, attractive), having a local perturbation

and the same on each side of the strip, but having a shift in the direction of the

straight line relative to each other. We prove the existence of an eigenvalue caused

by a local perturbation of the potentials and follow its behavior with changes in

the shift of the potentials relative to each other.

The result is of a biophysical nature and is a model of the interaction of

long molecules, for example, during the introduction of a virus into a cell or the
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connection of two DNA strands. These processes can be superficially described

as follows: one molecule identifies some character sequence on the second one,

approaches that position and forms a bond. In our simplest model, molecules are

represented by straight lines with potentials on them, and a symbolic sequence

from DNA is represented by local perturbations of potentials. A natural question

arises: what factors influence the preservation of the close position of molecules

during such interactions? If we consider an electron in such a system of two

attractive potentials, due to local perturbations, there is a bound state for the

particle. This state helps to maintain a small distance between molecules. In a

real system, such a state is more stable if there is a sufficient gap between the

continuous spectrum and the eigenvalue. In our model, we demonstrate that an

increase in the shift between potentials leads to a decrease in the gap, that is, the

most stable position is in the case of no shift. This means that the bound state

of the electron is a factor that maintains the molecules in the desired position.

Figure 15 – A system of two parallel lines, on which a constant delta potential is

concentrated, with a local variation in intensity.

Consider the system shown in Fig.15. It consists of two infinite parallel lines,

at distance L, on R2. The attracting delta potential of constant intensity −u1 < 0

is concentrated along the straight lines, except for a finite region of length W , on

each straight line, on which the intensity changes to another constant −u2 < 0,

such that −u2 < −u1. Denote by h < W the shift distance of one region W

relative to another. We use the atomic system of units, where m = 0.5, ℏ = 1.

Hence the Hamiltonian of the system is the Laplacian

Ĥψ = −∆ψ,
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defined on continuous functions ψ ∈ L2(R) that satisfy the following condition on

lines imposed by the delta potential:

∂ψ

∂y
(x, yl + 0)− ∂ψ

∂y
(x, yl − 0) = −αxψ(x, yl) (67)

where yl = 0 or L, and αx = u2 inside the perturbed region W on the line, and

αx = u1 outside it.

2.2.1 Continuous spectrum

Consider the continuous spectrum of the operator Ĥ. Since the entire de-

scribed system can be considered as a local perturbation of another system Ĥ0,

for which the intensity of the potential does not change along both straight lines,

the continuous spectrum coincides with the continuous spectrum of Ĥ0.

σc(Ĥ) = σc(Ĥ0)

Consider the system Ĥ0. In this case, you can apply the method of separa-

tion of variables. We assume that the wave function has the form

ψ(x, y) = χ(x)ξ(y).

Therefore, the lower bound of the continuous spectrum of the operator Ĥ0

is given by the smallest eigenvalue of the transverse problem, i.e. one-dimensional

equation for the function ξ(y). To find it, consider the operator − d2

dy2 on R with

the following conditions at two points:

ξ(+0) =ξ(−0),

ξ(L+ 0) =ξ(L− 0),

∂ξ

∂y
(+0)− ∂ξ

∂y
(−0) =− αξ(−0), (68)

∂ξ

∂y
(L+ 0)− ∂ξ

∂y
(L− 0) =− αξ(L− 0),

Theorem 2.2.1. Continuous range operator Ĥ has kind :

σc(Ĥ) = [−maxjκ2j ,∞),
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where κj are the real roots of the transcendental equation

4

α2
κ(κ+ L) = e2κL − 1 (69)

Proof. The differential equation for the transverse part Ĥ, for the eigenfunction

ξ(y) corresponding to the eigenvalue k2 has the form:

−d
2ξ

dy2
= k2ξ,

with additional conditions (68).

Let’s take the general solutions e±iky, and satisfying the conditions (68), we

get (69), where κ = ik ∈ R−, k ∈ Im(C).

The eigenfunction must be normalized, hence decreasing at infinity is nec-

essary, i.e. κ < 0. Considering that the function on the left side (69) takes the

minimum value −1 at the point κ = −α
2 , we can conclude that there is a root κ1

of the equation (69) such that:

−α < κ1 < −α
2
.

Remark. It is known that in the case of a single line, the lower limit of the

continuous spectrum is equal to −α
2 . In the case of two lines with the conditions

(68), the limit of the boundary defined by the equation (69) tends to −α2, as

L→ 0. This case corresponds to a single line with potential −2α. Therefore, for

the conditions (68), one obtains an eigenvalue between the value for two distant

single lines and the value for one line with twice the intensity.

2.2.2 Test functions

To find the discrete spectrum, we use the variational method. consider the

relation

E =
(Ĥψ, ψ)

(ψ, ψ)
,

whose minimum is the smallest eigenvalue of the operator Ĥ.

If the test function ψ is such that this ratio is less than the lower bound

of the continuous spectrum, then there is at least one eigenvalue of the operator

below the continuous spectrum, and this ratio is its upper bound.
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Figure 16 – Longitudinal component of the test function for ξx(y) of symmetric

type. Parameter values: W = 3, V1 = 0, V2 = 18, V3 = 20. The left part contains

the image of the stepped well potential at h = 1, with the designation of the

energy levels and the corresponding eigenfunctions. The graph on the right shows

the dependence of the energy levels on the shift h.

We will construct a test function that satisfies the (67) condition on the

lines, but is not a continuous function along the X axis. However, it can be ap-

proximated with arbitrary accuracy by functions from the domain of the operator.

Specifically, we assume that

ψ(x, y) = χ(x)ξx(y),

where ξx(y) are five eigenfunctions of the operator −d2ξ
dy2 satisfying the conditions

(68), one for each vertical band (zone) with a unique combination of intensities of

delta potentials on straight lines (these zones are indicated in Fig.15 by Roman

numerals).

First, consider the transverse part ξx(y). There are 5 such functions in

total, three of them are unique up to symmetry: (u1, u1), (u1, u2), (u2, u2). Let the

parameters α1 and α2, α1 ≤ α2, take the values u1 or u2. The problem is sometimes

referred to as a double delta potential system in 1D. For L > L0 = α1+α2

α1α2
, there

are two solutions. If we smoothly change the intensities of the delta potentials

so that they become equal, these two solutions are transformed into symmetric

and asymmetric with respect to the center of symmetry of the problem. We will

call the two solutions functions of symmetric and asymmetric type, depending

on which function they pass into. The restrictions on the transverse part of the
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energy Ẽ = (0.5p)2 take the following form:

e−pL =
(p− a1)(p− a2)

a1a2

Let us now analyze the longitudinal component χ(x) of the test function.

The transverse variants create five regions, each with its own energy Ẽx. These

energy levels can be coupled into a step potential for the longitudinal component

of the function. We will consider two separate cases: in one, all transverse compo-

nents are functions of symmetric type, in the other, they are of asymmetric type.

These two variants produce symmetrical longitudinal step potentials, a variation

on the classical square well potential, in which an additional step is added on each

side. We will call this potential a stepped well (an example of such a potential is

shown in Fig.16). Let V1, V2, V3 denote constant potential levels, from smallest to

largest. Solutions for the cases V1 < E < V2 and V2 < E < V3, which we will call

lower and upper, respectively, satisfy different restrictions on energy levels. Let

k1 =
√
E − V1, k2 =

√
E − V2, k3 =

√
E − V3 and introduce the abbreviation:

Tr(E) = tan(k1r). (70)

The restrictions on the energies of symmetric and asymmetric solutions are

as follows:

for sym .: Tr(E) =
k2
k1

tan

(
arctan

(
k3
k2

)
− k2h

)
,

for asym .: Tr(E) = −k2
k1

cot

(
arctan

(
k3
k2

)
− k2h

)
(71)

These equations cover the case E < V2, for complex values of k2. However,

in the future, it will sometimes be more convenient to use another expression for

the right side of these equations, which avoids the use of complex numbers (here

k̃2 =
√
V2 − E):

Tr(E) =
k̃2
k1

tanh

arctanh

(
k3

k̃2

)
+ k̃2h

 =

=
k̃2
k1

coth

arccoth

(
k3

k̃2

)
+ k̃2h

 (72)
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2.2.3 Existence of bound states

The generated functions can be used to find an upper bound for the discrete

spectrum Ĥ.

Theorem 2.2.2. The stepped well potential (see fig. 16) always has at least one

eigenvalue below the continuous spectrum σc.

Proof. We denote the right-hand side of (70) as T (E), andK(E) denote the right-

hand side of (71) (or (72), which is equivalent). We will prove that there exists an

interval on which T (E) −K(E) is continuous and takes values of different signs

on the boundaries. Note that in the boundary cases V2 = V1, V2 = V3, h = 0 or

h = W , the problem turns into a square potential well, for which the existence of

a bound state is proven.

First note that T (V1) = 0 and K(+0) = +∞. The only discontinuity points

of the functions are the vertical asymptotes. Let us denote these asymptotes AT

and AK for T and K, respectively. Then T (AT − 0) = +∞, K(AK − 0) = −∞,

and hence if min(AT , AK) ≤ V3 then the interval
(
0, min(AT , AK)

)
is the desired

one.

Now consider the case min(AT , AK) > V3. We fix some values of the param-

eter W and V2. Here T (V3) > 0. Let us prove that K(V3) ≤ 0 for all h that are

important to us. The equation for K(E) asymptotes can be represented as

cot(k2h) = −k3
k2
,

which shows that as h increases, AK decreases monotonically, thus K(E) is con-

tinuous on (V1, V3), only for values of h from 0 up to the point where AK = V3.

The function K(V3) = −k2
k1
tan(k2h) is a monotonically decreasing function and

when h = 0, K(V3) = 0. This proves K(V3) ≤ 0, for AK > V3, and hence the

interval (V1, V3) is the desired interval.

Corollary 2.2.1. The main operator Ĥ has at least one bound state.

Proof. Continuous spectrum of the operator σc(Ĥ) = (V3,+∞). The constructed

function satisfies the condition (Ĥψ,ψ)
(ψ,ψ) = E, and can be approximated to an arbi-

trary degree by functions from the domain of the operator . Therefore, the value

E from the 2.2.2 theorem is an upper bound for the discrete spectrum Ĥ.
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2.2.4 Results

Let us now consider the constructed energy levels as functions of the pa-

rameter h. While V2 is changing, note that the edge cases V2 = V1 and V2 = V3,

produce square well-shaped potentials of width W + h and W − h, which, as h

increases, become wider and narrower respectively. If V2 is fixed, increasing h

from 0 to W turns the narrow well (W,V3) into a wide well (2W,V2) while the

energy levels change continuously.

As described above, the constructed functions, for sufficiently large L, allow

us to choose one of two transverse eigenvalues: Ẽ1 < a1 and Ẽ2 > a2 for each

region, and although regions with a1 = a2 generate close values, regions with

different intensities (those corresponding to V2) produce eigenvalues with a large

gap between them. The choice between two values in each region corresponds

to ψ eigenfunctions of symmetric and asymmetric types. Using the results, we

can conclude that their energy levels are converted differently. Considering the

symmetric type, from Fig.16 we can see that the smallest eigenvalue increases

monotonically until it leaves the band under V2 and reaches the smallest value of

the widest square well (2W,V2). Speaking of real systems, a larger gap between

the first eigenvalue and the boundary of the continuous spectrum provides greater

stability of the bound state with respect to external influences. This means that

bound states with this behavior are more stable for small h.

As mentioned in the introduction to the section, the considered system can

be used as the simplest model for the interaction of long molecules (for example,

DNA-like, or protein-like). In particular, it can be useful for better understanding

the first steps in the process of attaching viral DNA to an organism molecule

(identifier recognition from symbols and fixation), see for example [66].

2.3 Potential on a line in 3D

This section includes the results we published in [43]. The system on which

this section is focused consists of a straight line in R3, with an attractive δ-

potential, with varying intensity. The study is mainly guided by the sequence of

steps from [53].
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2.3.1 Hamiltonian for wire in 3D

Let’s describe the system. The attractive potential is concentrated on a

straight line in three-dimensional space. The potential intensity is −(α + β(s)),

where α > 0 is a constant and 0 ≤ β(s) ∈ C(a, b) \ {0} is a localized function of

the variable s - the distance along the straight line from the origin, which is equal

to zero outside some arbitrary finite interval [a, b]. We choose the origin on the

line so that β(0) ̸= 0. Note that the interval at which the function does not reset

to zero can potentially be extended.

First, following [53], we describe the operator −∆α,β, which is a self-adjoint

extension of the symmetric operator −∆ : C∞
0 (R3 \ Γ) → L2(R3), and then we

construct its resolvent.

Consider the straight line Γ defined by the function γ(s) = (0, 0, s) : R →
R3. Let us introduce a shifted line Γr, which corresponds to γr(s) = (ξ, η, s); (ξ2+

η2)1/2 = r. Let f ∈ H2
loc(R3 \ Γ), and fΓr

(s) be its embedding in Γr; r > 0.

Definition 2.3.1. Function f ∈ H2
loc(R3 \Γ)∩L2(R3) belongs to D(−∆α,β) if the

following conditions are met:

1) The following limits exist

Ξ(f)(s) = − lim
r→0

1

ln r
fΓr

(s),

Υ(f)(s) = − lim
r→0

(fΓr
(s) + Ξ(f)(s) ln r),

i.e. they reside in R, do not depend on the direction of 1
r(ξ, η), and define functions

from L2(R),
2) The following conditions apply:

2π(α + β(s))Ξ(f)(s) = Υ(f)(s).

Finally we define operator −∆α,β : D(−∆α,β) → L2(R3) which acts like the

following:

−∆α,βf(x) = −∆f(x) , x ∈ R3 \ Γ .

For σ(−∆α,β) descriptions are useful will following statement from [68]:
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Proposition 2.3.1. A system with a one-point interaction in R2 has the following

spectrum with a single point of the discrete spectrum:

σess = [0,∞)

σdisc = {ξ1,α}

ξ1,α = −4e2(−2πα+ψ(1)) ,

where ψ(x) = Γ
′
(x)/Γ(x), Γ(x) is Euler’s gamma function, ψ(1) ≈ 0.5772 is the

Euler’s constant.

Now we construct the resolvent of the operator −∆α,β. The free resolvent is:

Rz = (−∆− z)−1 : L2(R3) → H2(R3), z belongs to the resolvent set z ∈ ρ(−∆).

We define a bounded direct mapping operator:

(τϕ)(s) = ϕ(s, 0, 0) : H2(R3) → L2(R)

His conjugate τ ∗ : L2(R) → H−2(R3) is defined by the following expression,

⟨τ ∗h, ω⟩ = (h, τω), h ∈ L2(R), ω ∈ H−2( mathbbR3)

where ⟨·, ·⟩ denotes correspondence between H−2(R3) and H2(R3).

We introduce the self-adjoint operator

Tκf(s) =

∫
R
(Ťκ(s− s′) +

1

2π
(ln2 + ψ))f(s′)ds′ =

= F−1

[
1

2π

(
−ln

[
(p2 + κ2)0.5

]
+ (ln2 + ψ)δ(p)

)
f̂(p)

]
Ťκ(s− s′) = − 1

(2π)2

∫
R
ln
[
(p2 + κ2)0.5

]
eip(s−s

′)dp,

With region definitionsD(Tκ) = f ∈ L2(R) :
∫
R Ťκ(s− s′)f(s′)ds′ ∈ L2(R) , where

ψ ≈ 0.577 is an Euler’s constant, and Ff = f̂ - transformation Fourier.

Finally, we define a self-adjoint operator

Qκf(s) = (Tκ − β(s))f(s) : D(Tκ) → L2(R).

Now we can compose the resolvent of the main operator, following the the-

orems from [53]:

Rκ
β,α = Rκ −R∗

κτ
∗(Qκ − α)τRκ (73)
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2.3.2 Existence of bound states

Denote β0 > 0 and βw > 0, any two sufficiently small numbers such that

β(x) > β0;∀|x| < βw/2, and sup β(s) = βs.

First, note that β(s), being a local perturbation, does not change the con-

tinuous spectrum of the main operator:

σess
(
−∆α,β

)
= σess (−∆α) = [ξ1,α,∞) = [−4e2(−2πα+ψ),∞)

Using the representation in the ”momentum” coordinate system of the op-

erator Tκ and the locality of β(s), we can obtain

σess(Tκ) = σess(Q
κ) = (−∞, sκ]

sκ =
1

2π

(
ψ(1)− ln

κ

2

)
Note that sκ = α corresponds to −κ2 = ξ1,α of the main operator.

Lemma 2.3.1. sup σ(Qκ) = sup σ(Tκ − β(s)) > sκ

Proof. The lemma is equivalent to the following statement:

(Qκϕ, ϕ)− sκ(ϕ, ϕ) > 0,

for any ϕ ∈ D(Qκ). Let ϕ ∈ C∞
0 (R), such that ∃C > 0, δ > 0 : ϕ(s) > C, |s| < δ

and we will use ϕλ(s) = λ0.5ϕ(λs);λ > 0, note also ϕ(λs) > C, |s| < δ , and

∥ϕλ∥ = ∥ϕ∥. We get

1

2π

∫
R
ln

(1 + λ2u2

κ

)0.5
∣∣Fϕ(u)∣∣2 du+ λ

∫
R
β(s)

∣∣ϕ(λs)∣∣2 ds > 0,

where the first term can be represented as − 1
4π

(
λ
κ

)2 ∫
R u

2
∣∣Fϕ(u)∣∣2 du + O(λ4),

and the second term: λ
∫
R β(s)

∣∣ϕ(λs)∣∣2 ds > λ
∫ δ
−δ β(s)C

2ds > 2δCβ0βw. Thus, if

λ is small enough, the second term skews the sum in the positive direction.

Lemma 2.3.2. The function κ → Qκ is continuous in the sense of the norm of

operators on (κ0,∞), and

lim
κ→∞

sup σ (Qκ) = −∞ (74)
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Proof. The function κ→ Tκ is continuous in the sense of the operator norm:

∥(Tκ − T ′
κ)f∥ =

1

4(2π)3

∫
R

(
ln
p2 + κ2

p2 + κ′2

)2∣∣Ff(p)∣∣2 dp ≤
1

4(2π)3

(
ln
κ

κ′

)2

∥f∥2 −−−→
κ′→κ

0

and β(s) is independent of κ, so Qκ = Tκ − β(s) is continuous. The (74) limit

follows from:

(Qκf, f) =

1

(2π)3/2

∫
R

(
−ln

√
p2 + κ2 + ln2 + ψ(1)

)∣∣∣f̂(p)∣∣∣2 dp+ (β(s)f, f) ≤

1

(2π)3/2
(−lnκ

2
+ ψ(1))∥f∥2 + βs∥f∥2

Now, similarly to Theorem 5.6 from [53], we are ready to prove the existence

of at least one bound state.

Theorem 2.3.1. The operator −∆α,β has at least one isolated eigenvalue on

(−∞, ξ1,α).

Proof. Adding the localized potential β(s) can only change the discrete part of

the spectrum, i.e. for the main operator, the part lying in (−∞, ξ1,α) and for Qκ,

it belongs to (sκ,∞). Then, according to the lemma 2.3.1, there is at least one

point of the discrete spectrum Qκ, λ(κ). By the lemma 2.3.2, λ(κ) is continuous

and λ → −∞ while κ → ∞. Hence ∃κ′ >
∣∣ξ1,α∣∣0.5 : λ(κ′) = α. The point −κ′2 is

the pole of the resolvent (73), and hence the eigenvalue of the main operator.

2.3.3 Upper bound for the number of linked states

We now use the Birman-Schwinger method (see [78]) to obtain an upper

bound on the number of eigenvalues of the main operator.

We construct the Birman-Schwinger operator, which we will use to calculate
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the eigenvalues.

Qκf − αf = 0

Tκf − αf − β(s)f = 0

Kκf ≡ (Tκ − α)−1 (β(s)f) = f

Here, if f is the eigenvector of the operator Qκ corresponding to the eigenvalue

λQ = α, then it is the eigenvector of the operator Kκ corresponding to the eigen-

value λK = 1. Also, note that the eigenvalues of the operatorQκ are monotonically

decreasing functions of κ, and therefore the eigenvalues of Kκ are also, so if we

fix κ, for each point discrete spectrum of the main operator −∆α,β, there exists

an eigenvalue of the operator Qκ corresponding to it greater than α, and a corre-

sponding eigenvalue of the operator Kκ greater than 1. summing all these eigen-

values of the operatorKκ, we obtain an upper bound on the number of eigenvalues

λ(Qκ) > α and, consequently, the number of points in the discrete spectrum of the

operator −∆α,β less than −κ2. To cover the entire set σdisc(−∆α,β), we approach

the edge of the spectrum σess(−∆α,β) and get the following bound:

Proposition 2.3.2. The number of points in the discrete spectrum σdisc(−∆α,β)

has the following upper bound:

#σdisc(−∆α,β) ≤

lim
−κ2↑ξ1,α

∫
R2

(∫
e2πi(sp)w

−ln
√
w2 + κ2 + (−lnκ2 + ψ(1)− α)δ(w)

dw β(p)

)2

dsdp

2.3.4 Appendix: Transport characteristics of a system of

two one-dimensional rings in R3

This section presents the results from our article [45]. We consider a system

of one-dimensional quantum wires in R3 (in contrast to the previous paragraph,

we are not talking about ”quantum leaky wires”), under the action of an external

magnetic field. The wires form two intersecting rings, and there is an incoming

and outgoing channel.

Structures of this type can be found among macromolecules, for example,

diphenyl molecules. A discrete model of diphenyl molecules was described in [80].
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This molecule contains linked non-coplanar rings, as in our model. We are building

a decidable continuous model in contrast to the discrete model in [80]. Our model

simplifies the choice of system parameters for better control of e-transport.

Using the theory of quantum graphs, the transport properties of such a

system, namely, the dependence of the transmission coefficient on the parameters

of the system, are studied.

Theoretical model The figure 17 shows the proposed model of a quantum

device consisting of two rings. One ring is in the ZOY plane and the other is in

the XOY plane. These two rings are orthogonal to each other and have a point of

intersection. The device also has an input wire that is connected to the first (left)

ring. The second (right) ring is equipped with an output wire. The right ring can

rotate around the Y axis, while the left ring is fixed, and the magnetic field vector

is directed along the Z axis and does not change its direction. For quantum wires,

a one-dimensional approximation is considered, based on the theory of quantum

graphs and the scattering problem.

Figure 17 – Quantum graph with two semi-infinite channels (input and output

quantum wires) and four segments that form two rings. RL(RR) - ring radii,

γL(γR) - angles between input (output) wires and connection point.

The functions in the incoming and outgoing wires are denoted: ψI(xI), ψII(xII),

and can be written as

ψI(xI) = eikxI + C1e
−ikxI , ψII(xII) = C10e

ikxI , (75)

for the top and bottom of two identical rings:



87

ψLup
(γ) = C2e

ikRLγ + C3e
−ikRLγ,

ψLlow
(γ) = C4e

ikRLγ + C5e
−ikRLγ,

ψRup
(γ) = C6e

ikRRγ + C7e
−ikRRγ,

ψRlow
(γ) = C8e

ikRRγ + C9e
−ikRRγ,

(76)

where RL(RR) is the radius of the left (right) ring, γ is the angle between

the joints of the rings and wires, k is the wavenumber.

The Kirchhoff magnetic conditions at the vertices of the graph have the

following form:  e(−1)µiΦe(γe)ψe(γe) = ψe′(γe)e
(−1)µiΦe′(γe)∑

e(−1)[e]∂ψe(γe)e
(−1)µiΦe(γe) = 0,

, (77)

where [e] = 0 for the output edge and [e] = 1 for the input edge, γe is

the angle between the joints of the rings and wires. Since the orientations of the

edges at some points will not match the parameters on the ring, we will take

into account the negative sign in front of Φe, so µ is 0 or 1, depending on the

orientation. Besides,

Φe =

 0,∫
γe
a(τ)dτ,

, (78)

where 0 is at the beginning of the edge,
∫
γe
a(τ)dτ is at the end.

As mentioned before, the magnetic field is assumed to be directed along the

Z axis, so Φ1(γ) =
1
2BR

2
Lγ sin(α),Φ2(γ) =

1
2BR

2
Rγ cos(α),where Φ1(γ) belongs to

the ring in the ZOY plane, Φ2(γ) belongs to the ring in the XOY plane, α is the

rotation angle around the Y axis.

Using Kirchhoff’s magnetic conditions and expressions for channels, edges,

and for Φ1(γ),Φ2(γ), we obtain the following conditions for graph vertices:

ψI(0) = ψLup
(0) = ψLlow

(2π)eiΦ1(2π),

−ψ′
I(0) + ψ′

Lup
(0)− ψ′

Llow
(2π)eiΦ1(2π) = 0,

, (79)

for the first vertex (the intersection point of the incoming wire and the left ring).

For the second vertex (the connection point of two rings), the equations look

like:

ψLup
(π)eiΦ1(π) = psiLlow

(π)eiΦ1(π) = ψRup
(0) = ψRlow

(2π)eiΦ2(2π),

−ψ′
Lup

(π)eiΦ1(π) + ψ′
Llow

(π)eiΦ1(π) + ψ′
Rup

(0)− ψ′
Rlow

(2π)eiΦ2(2π) = 0.
. (80)
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For the third vertex (connection point of the outgoing wire and the right

ring), the equations look like:

ψRup
(π)eiΦ2(π) = psiRlow

(0) = ψII(0),

−ψ′
Rup

(π)eiΦ2(π) + ψ′
Rlow

(0) + ψ′
II(0) = 0.

. (81)

Since the left ring is proposed to be fixed relative to the magnetic field, α

for the left ring is equal to 0. This means that Φ1(γ) = 0 and the following system

of equations takes place:



1 + C1 − C2 − C3 = 0

C2 + C3 − C4e
ikRL2π − C5e

−ikRL2π = 0,

−ik + ikC1 + ikRLC2 − ikRLC3 − ikRLC4e
ikRL2π + ikRLC5e

−ikRL2π = 0

C2e
ikRLπ + C3e

−ikRLπ − C4e
ikRLπ − C5e

−ikRLπ = 0

C4e
ikRLπ + C5e

−ikRLπ − C6 − C7 = 0

C6 + C7 − (C8e
ikRR2π + C9e

−ikRR2π)eiΦ2(2π) = 0

−ikRLC2e
ikRLπ + ikRLC3e

−ikRLπ + ikRLC4e
ikRLπ − ikRLC5e

−ikRLπ+

+(ikRRC6 − ikRRC7)− (ikRRC8e
ikRR2π − ikRRC9e

−ikRR2π)eiΦ2(2π) = 0

(C6e
ikRRπ + C7e

−ikRRπ)eiΦ2(π) − C8 − C9 = 0

C8 + C9 − C10 = 0

−(ikRRC6e
ikRRπ − ikRRC7e

−ikRRπ)eiΦ2(π) + (ikRRC8 − ikRRC9) + ikC10 = 0

(82)

Further, using the Gauss method, we can get all unknown coefficients C1, C2, . . . C10.

Finally, the reflection coefficient can be written as Rref = C1 ·C∗
1 , the transmission

coefficient: T = C10 · C∗
10 .

Numerical results In this section, we present a numerical study to illustrate

some of the important characteristics of electron transport in the proposed device.

The influence on the transmission coefficient of various system parameters, such

as the angle of rotation α, ring radii RL, RR, wave number k, angles between

channels and the attachment point of rings γL = γR and magnetic induction B.

The figure 18 shows the electron transmission coefficient T and reflection

coefficient Rref as functions of the rotation angle α for the selected parameter

values: RL = RR = 1.14, k = 0.18, γL = γR = π in the figure 18 (left) and
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RL = RR = 1.2, k = 0.77, γL = γR = π in 18 (right). It can be seen that the

transmission coefficient T and the reflection coefficient Rref are not equal to zero.

You can also find such values of the angle of rotation when T = 1 and Rref = 0,

which means that there is an ideal transmission (the wave passes completely in

the output wire). In addition, there are ranges of α values when Rref is close to

1 and T is close to 0, i.e. perfect reflection takes place.

Figure 18 – Coefficient passing electrons T and coefficient reflection Rref as

functions corner rotation α, for RL = RR = 1.14, k = 0.18, γL = γR = π( left ),

RL = RR = 1.2, k = 0.77, γL = γR = π( right ), α changes from 0 to 2π.

Figure 19 – Coefficient passing electrons T and coefficient reflection Rref as

functions wave numbers k for α = π, γL = γR = π, RL = RR = 1,( left ),

RL = RR = 1.2( right ).

On figure 19 shows addiction coefficient passing electrons T and coefficient

reflections ofRref from wave numbers k for selected values parameters :RL = RR =
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1, α = π, γL = γR = π on figure 19 (left), RL = RR = 1.2, α = π, γL = γR = π,

on figure 19 (right). The behavior of the coefficients is similar to the picture 18.

There are such values of the wave number at which ideal transmission (reflection)

occurs.

When the rotation angle is α = π, the rings are coplanar and there is a

very high probability of perfect electron transfer. These results are supported by

several [81] papers on spin filtering properties in two coupled Rashba quantum

rings.

But changing the geometry of the model is not the best way to control

electron transfer. The best way is magnetic flux.

Figure 20 – Contour map of electron transmission coefficient T depending on ring

radii for k = 0.77, γL = γR = π, α = 1.8 rad (left), α = π (right).

The figure 21 shows the influence of the magnetic field on the transport

properties. For the values 18 – 20 chosen from the figures 20 of the values of the

rotation angle α, ring radii, wavenumber and transition angles, the electron trans-

mission coefficient T and the reflection coefficient Rref , are presented as functions

of B. In the picture 21 you can see that the perfect transfer occurs when B be-

comes 0.31, 0.66.

In this section, the model of two quantum rings was considered and appro-

priate values of the wavenumber, rotation angle, ring radii, and angles between

the junction points were presented for which the transmission coefficient T is

close to 1, i.e. perfect electron transfer occurs. These results make it possible to
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Figure 21 – Electron transmission coefficient T and reflection coefficient Rref as

functions of B for RL = RR = 1.2, α = 1.8 rad, γL = γR = π, k = 0.44(left),

k = 0.51(right).

design devices that use the variation of system parameters to control transport

characteristics.

2.3.5 Conclusions

In the second chapter, systems with delta potentials on straight lines in

two and three dimensions were considered. A number of theoretical results were

proved for two types of system geometries, in particular, the existence of bound

states was proved. Also, for the case of a two-dimensional system, an approach

is proposed to study the spectrum using a certain test function. In the case of a

three-dimensional system, a method was demonstrated for applying the Birman-

Schwinger method to limit the number of bound states.

In the next chapter, we move on to consider another type of systems in

three-dimensional space. In this case, the singular interaction will be caused by

other particles.
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Chapter 3. Two conducting layers in R3

In this chapter, we explore 3D quantum systems with complex geometries.

More specifically, single-particle and multi-particle problems are considered, in

which particles are enclosed within two conductive layers connected to each other

through holes. In addition, an external electric field is applied. The question that

interests us is the dependence of the spectrum (both discrete and continuous) of

the operator on the parameters of the system. In the first section, we use the

theory of operators to obtain some generalized analytical results, and then, in the

second section, using numerical methods, we study in detail the influence of system

parameters on the eigenvalues and propose some classification of the bound states

of the system, according to the number and location of constant-sign domains.

3.1 A Pair of Conductive Layers: Analytical

Results

In general, waveguides can be modeled by Laplacians with Dirichlet bound-

ary conditions, in infinite flat strips and multidimensional layers. Their spectra

have been the subject of much attention in recent decades. The problem is triv-

ial as long as the strip or layer is straight, because then the method of sepa-

ration of variables can be applied. However, already a local perturbation, such

as bending, deformation, or a change in boundary conditions, can lead to the

appearance of a non-empty discrete spectrum. As examples of possible perturba-

tions, we indicate local deformation of the boundary conditions [85, 86], bending

[87, 88, 89, 90] or twisting [91, 92] of the waveguide. A perturbation by adding

a potential is considered in [87], a magnetic field in [93, 94], or a second-order

differential operator, as in [95]. The type of systems of interest to us is two

adjacent parallel waveguides connected by windows cut out in a common bound-

ary. The two-dimensional case has been studied quite intensively, we refer to

[96, 97, 98, 99, 100, 101, 102, 114, 112] (see also references therein). It has been

shown that the perturbation by the window(s) is negative, i.e. leads to the pres-
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ence of isolated bound states below the essential spectrum; the latter is invariant

with respect to the window(s) presence. In the case of a single window, it was

shown in [96, 98, 100] that expanding the window results in more and more iso-

lated eigenvalues. They appear when the window length passes through certain

critical values. This phenomenon has been studied in detail and asymptotic ex-

pansions for the resulting eigenvalues have been obtained, see [96, 98, 102]. In

the three-dimensional case corresponding to layers with window connection, P.

Exner and S. Vugalter showed that a small window generates one simple isolated

eigenvalue that appears at the threshold of the essential spectrum [101]. They

also obtained two-sided asymptotic estimates for this eigenvalue. An asymptotic

extension for this eigenvalue was formally constructed in [103]. Another example

of 3D waveguide coupling can be found in [113].

In this chapter, we consider a system of two parallel conducting layers in R3

connected through holes in a common boundary. Such a system was studied in

[104], where it is shown that the window generates eigenvalues that go beyond the

threshold of the essential spectrum as the window passes through certain critical

forms. Our system also contains an external electric field.

In the first section, we define the Hamiltonian of the system and present

some analytical results. Further, in the following sections, we present a number

of numerical results obtained using the finite element method. Graphs of the

dependence of the system’s own energies on its main parameters are plotted.

The last section explores the effect of window shape on bound states in more

detail. We continuously change the shape of the window and consider the evo-

lution of bound states for a fixed number and position of constant-sign domains.

Questions about the number and position of constant-sign domains for Dirichlet

Laplacians are the subject of active research. The first step was Courant’s nodal

theorem, and since then various cases have been explored, such as nodal domains

for quantum graphs ([109],[110]) and on a sphere ([111]).

Also, within the framework of this geometry, we consider the case of two par-

ticles with different window shapes. We carry out numerical calculations using

the Hartree-Fock estimation method (for the accuracy of the Hartree approxi-

mation, see [108]). For previous studies of many-particle problems in deformed

waveguides, see, for example, [105, 106, 107]. We are interested in the following
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two questions: how the energy of bound states and the number/position of nodal

domains depend on the shape of the window, and what is the relationship between

the one-particle and two-particle cases.

Figure 22 – Conductive layer, with two different boundary conditions and a family

of windows on one of the boundaries. An orthogonal electric field F is applied.

3.1.1 Model description

The system we are going to study is shown in fig.22. We are considering a

quantum particle enclosed within two parallel layers connected via window system.

The Dirichlet condition is assumed at the layer boundaries. We model windows

as areas on the border where Neumann boundary conditions are imposed. In

this case it suffices to deal with the Hamiltonian H(F ) for one layer between the

planes z = 0 and z = d. We will denote this configuration space via Ω,

Ω = R2 × [0, d].

We assume that the particle has a non-zero charge q. Also, it is under the influence

of homogeneous electric field strength E, denote F := Eq. We assume that the

electric field is directed along the Z axis. Without loss of generality, we put F ≥ 0.

Let (γi)1≤i≤p be a finite family of bounded and open sets lying on the bound-

ary of Ω for z = 0. Since they are open sets, they contain a small disk of radius

a, a > 0. Without loss of generality, we assume that the center of such a disk is

at the point (0, 0, 0).
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Set Γ = ∂Ω \ (∪pi=1γi). We consider the Dirichlet boundary conditions on

Γ and the conditions Neumann on ∪pi=1γi. Black surfaces in figure 22 correspond

to the Neumann boundary condition, while the gray surfaces correspond to the

Dirichlet condition.

3.1.2 Construction of the Hamiltonian

We define a self-adjoint operator on L2(Ω) corresponding to the Hamiltonian

of the particle, H(F ). For this we use quadratic forms. Let q(F ) be quadratic

form

q(F )[u, v] =

∫
Ω

(
∇u∇v + Fzuv

)
dxdydz, u, v ∈ D(q(F )), (83)

where D(q(F )) :=
{
u ∈ H1(Ω), u⌈Γ = 0

}
, H1(Ω) is the standard Sobolev space

and u⌈Γ is the trace of the function u on Γ. This implies that q(F ) is a densely

defined, symmetric, positive and closed quadratic form [78]. We denote the only

self-adjoint operator associated with q(F ) by H(F ) and its domain D. This is the

Hamiltonian describing our system (in appropriately scaled units and with atomic

units 2m = h = q = 1 to simplify the equation). From [78] (vol. 1, p. 276) and

[78] (vol. 4, p. 263), it follows that the domain D has the following form:

D =
{
u ∈ H1(Ω); −∆u ∈ L2(Ω), u⌈Γ = 0,

∂u

∂z
⌈∪pi=1γi = 0

}
, (84)

and

H(F )u = (−∆+ Fz)u, ∀u ∈ D. (85)

3.1.3 Existence of discrete spectrum

In this subsection, we present two theorems without proof.

Using the property of the essential spectrum to be preserved under compact

perturbations, one can prove its stability. Recall that the essential spectrum of

the operator A, which we denote by σess(A), consists of points λ at which the

set of values R(λI − A) is not closed, and eigenvalues of infinite multiplicity. A

discrete spectrum is a set of isolated eigenvalues of finite multiplicity. It is denoted

by σdis(A). Denote by λ10 the first eigenvalue of the transverse part (along the Z

axis) of the main operator.
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Theorem 3.1.1. Let H(F ) be the operator given by (85). Then,

σess
(
H(F )

)
= [λ10,+∞). (86)

Further, based on this result and the principle of min-max [78], we conclude

that if a discrete spectrum exists, then it lies below λ10. The main result of the

section is the following theorem:

Theorem 3.1.2. For any F ≥ 0 the operator H(F ) has at least one isolated

eigenvalue below λ10, i.e.

σdis
(
H(F )

)
̸= ∅.

As noted earlier, the result differs from the result corresponding to two-

dimensional waveguides. Indeed, in [115] the existence of a discrete spectrum

depends on the values of F .

It is important to note that the electric and magnetic fields affect the spec-

trum of our system in different ways. Indeed, in [116] it was proved that in the

case of a magnetic field, the discrete spectrum exists only when the window radius

passes some critical value.

3.2 Pair of conductive layers: Numerical

calculations

As shown in the previous section, the eigenvalue below essential spectrum

appears for any window radius a. As the hole radius increases, more isolated

eigenvalues appear. We use numerical calculations based on the finite element

method to study this issue. In addition, we consider the existence of bound states

for many-particle systems using the Hartree-Fock approach (which is described in

more detail, for example, in [117]). In all calculations we use arbitrary units, with

ℏ = e = 1, m = 0.5 (e,m are the electron charge and mass, respectively).

To build our own functions, we use the finite element method, specifically,

the FreeFem++ package. Some examples of single-particle bound states, in a

cut through the hole plane, are shown in Fig. 23.

Let’s start with a description of the Hartree-Fock method, which we will use

to consider many-particle problems in the following sections, as well as an iterative
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Figure 23 – Examples of one-particle bound states.

procedure created on the basis of the method, the result of which converges to

many-particle eigenstates.

3.2.1 Hartree-Fock method

Let us describe the Hartree-Fock model and the algorithm.

Let’s start with the Hamiltonian

Ĥ =
∑
k

(−∆k + Uk) +
1

2

∑
j, k

j ̸= k

Vjk =
∑
k

Ĥk +
1

2

∑
j, k

j ̸= k

Vjk, (87)

where ∆k =
∂2

∂xk2
are the Laplace operators acting on the coordinates xk particles

with number k, Uk - external field potential, Vj,k - particle interaction potential,

Ĥk = (−∆k + Uk).

We can then use the Slater determinant to approximate the multiparticle

wave function:

Ψ (x1, x2, . . . , xn) =
1√
n!

∣∣∣∣∣∣∣∣
ψ1 (x1) . . . ψn (x1)

. . . . . . . . .

ψ1 (xn) . . . ψn (xn)

∣∣∣∣∣∣∣∣ , (88)

where ψk are single-particle wave functions and xk = (rk, sk), where rk and sk are

spatial and spin coordinates of the kth particle.

Following the Hartree-Fock method, we insert (88) into (87) and use a vari-



98

ation of the energy functional

〈
Ψ
∣∣∣Ĥψ〉 to obtain the Hartree-Fock equations:

Ĥk +
∑

j,j ̸= k

∫
ψ∗
j

(
xj
)
Vjkψj

(
xj
)
dxj

ψk (xk)−
∑

j,j ̸= k

(∫
ψ∗
j

(
xj
)
Vjkψk

(
xj
)
dxj

)
ψj (xk) = Ekψk (xk) .

(89)

Now we must take into account the spin of the particles. We ignore spin-

orbit interaction. Let n↑ be a number particles with spin 0.5 and n↓-particles with

spin −0.5. The wave functions of these particles are equal to ψ↑
k and ψ↓

k. Then,

due to independence of Vjk from the spin variable, we have∫
ψ∗
j (xj)Vjkψk(xj)dxj = δsjsk

∫
ψ
∗sj
j (rj)Vjkψ

sk
k (rj)drj, (90)

where δsjsk is the Kronecker symbol, indices sj, sk take the values ↑, ↓.
We use the delta potential as the interaction potential: Vjk = Uδ(rj − rk),

where U is a constant. Using delta potential and (90), from (89) we get the

following system:

Hkψ
↑
j (rk) + U

∑n↓
j

(∣∣∣ψ↓
j (rk)

∣∣∣2 ψ↑
k(rk)

)
= E↑

kψ
↑
k(rk), (k = 1, ..., n↑),

Hkψ
↓
j (rk) + U

∑n↑
j

(∣∣∣ψ↑
j (rk)

∣∣∣2 ψ↓
k(rk)

)
= E↓

kψ
↓
k(rk), (k = 1, ..., n↓).

(91)

To solve the system, we used the following iterative algorithm:

1. Find one-particle stationary solutions for the case potential Uk = Fzk and

arbitrarily choose N solutions as initial guesses for ψi (xi).

2. For each particle, calculate the potential Pi = U
∑
j

∣∣∣ψj (xj)∣∣∣2, where the sum
includes particles with opposite spins, and then use it to calculate a set of

solutions.

3. For each of theN sets, select the associated state. (Here we can use arbitrary

additional criteria to speed up the process).
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4. Check if the new solutions are close enough to the previous ones. If not,

return to step 2.

A positive result of this algorithm is sufficient (with a given accuracy), but not

a necessary condition for the existence solutions. In step 2, we choose a solution

from the set that minimizes the functional Li (u) = ∫
Ω

∣∣u (x)ψiprev (x)∣∣2 dx, i.e.

closest to the previous one. The sizes of the sets are arbitrary. This method

prone to looping between two sets of features that complement each other. To

avoid this kind of fluctuation, the step 2 formula can be changed: Ui = αUi
prev +

(1− α)U
∑
j

∣∣∣ψj (xj)∣∣∣2, where Uiprev is the value of the potential at the previous

iteration, and α ∼= 0.1.

Figure 24 – Two-particle bound state in a cut through the hole plane

As a result, we can get many-particle bound states. Fig. 24 shows a two-

dimensional cut of the bound state of two particles with different spins. Here

one particle is dark and the other one is light.

3.2.2 Main results

The results of this section are published in [82, 83].

In this section, we begin a numerical study of the dependence of the discrete

spectrum on the main parameters of the system. The geometry of the system is

described at the beginning of the chapter, but it should be noted that the electric
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field F here, in contrast to the analytical part, is not symmetrical with respect to

the common boundary of two layers, but has a more physically correct form: it is

directed downward for both layers. We consider the case of one circular window,

with varying area (and an elliptical window for the last result). In all calculations

we use arbitrary units, with ℏ = e = 1, m = 0.5 (e,m are the charge and mass

of the electron, respectively). Energy level colors are consistent across all charts

in this section. On all plots, the black line (top one on each plot) represents the

lower end of the essential spectrum.

Figure 25 – Energies of bound states as a function of the window radius a. The

electric field strength is fixed F = 5.

First, we examine the dependence of the discrete spectrum on the area

of the window, shown in Fig.25. Here the field strength is fixed, F = 5 (which

corresponds to the maximum value of F on the graph 26). The essential spectrum

does not depend on the window parameters (theorem 3.1.1). Each bound state

decreases monotonically as a function of the window area, while the number of

bound states increases. In accordance with the main theorem, the first boundary

state is below the boundary of the essential spectrum for all positive values of the

radius and merges with the boundary of the essential spectrum when the radius

decreases to zero.

Now let’s examine the dependence of the spectrum on the electric field

strength (Fig. 26). The window radius is fixed, a = 4 (this is the maximum radius
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Figure 26 – Energies of bound states as a function of the electric field strength

F . The window radius is fixed a = 4.

from fig.25). The electric field is not a local perturbation of the system; therefore,

it changes both the essential spectrum and the discrete one. Both spectra are

increasing functions of F , but the edge of the essential spectrum grows faster,

allowing more bound states to occur as the field strength increases.

Note that on the plots 25 and 26, the values of the parameters a and F

coincide on the right border of both plots, that is, the points in the rightmost

column of each of them correspond to one and the same eigenstates of the system

(in particular, their energies are equal).

Naturally, the question arises which window parameters are important. In

particular, how the discrete spectrum depends on the area, perimeter, and shape

of the window. These issues are considered in more detail for a similar system

(the same geometry, but there is no uniform electric field) in the 3.3 section.

Here we consider the influence of the window shape, in particular, we change the

eccentricity of the elliptical window by tracking various related states, see fig.27.

The area is fixed and corresponds to the area of the circle with a = 4. The field

strength is fixed, F = 5. Here we see different dynamics for different types of

bound states (for more information about classification, see the 3.3 section).
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Figure 27 – Bound state energies as a function of the distance between the foci

of an elliptical window. The window area is constant (S = 16π), the electric field

strength is fixed F = 5.

3.2.3 Additional results

In this subsection, the study of conducting layers continues. Unlike the

previous paragraph, in this one, the external electric field is not uniform with

respect to both layers, but is symmetrical relative to the plane, i.e. for both the

upper and lower layers, at a positive intensity, it is directed in different directions,

away from their common border. Just such a field is obtained if the second layer

is modeled using the Neumann conditions on the lower boundary of the first one,

as was done in the first part of the chapter.

First, we plot the shift of the lower bound of the essential spectrum as a function

of the strength of the applied electric field. These calculations are carried out for

the case without a window. This is sufficient due to the well-known theorem that

a local perturbation, such as a window, does not change the essential spectrum.

The results are shown in fig. 28. In the absence of an electric field, F = 0, the

lower limit of the essential spectrum is equal to π2. When a field is applied, the

spectrum shifts almost linearly with F .

Then we perform calculations for various values of the electric field strength F
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Figure 28 – Lower bound of the essential spectrum for a one-particle bound state,

in arbitrary units.

and the window radius a and compare the eigenvalues with the threshold value

for the essential spectrum. Eigenvalues below the threshold value correspond to

the discrete spectrum. The number of possible bound states depends on both

the field intensity and the window radius. In the plot shown (Fig. 29), the

minimum window radius allowing 2, 3, 4, or 5 bound states is shown as a function

of the electric field strength. As F increases, the particle is repelled from the

window interface, and bound states that were stable without an electric field can

be destroyed.

Now we can calculate the minimum radii for which bound states still exist

(fig. 30). In the figure, different graphs correspond to different interaction forces

U , which increases linearly from graph to graph.

Similar graphs can be drawn for particles with the same spin, but, as (91) shows,

with delta interaction they will not contribute to each other’s potentials and sim-

ply occupy different levels of the system of one particle, from Fig.29, for example,

the minimum radii for a three-particle state with the same spin, corresponds to

the N = 3 line in Fig.29.
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Figure 29 – Plots of minimum radii for which there are still N discrete levels below

the essential spectrum, for a single-particle bound state. The graph number, N,

corresponds to the number of levels below the main spectrum: 2, 3, 4 and 5

3.3 Classification of coupled states of

conductive layers

3.3.1 Constructions

This section presents the results of our article [84]. We continue to study a

system of two conductive layers connected through windows in a common bound-

ary. Now, unlike the previous sections, there is no electric field F = 0, and

attention is focused on the shape of the windows.

We consider the dependence between the shape of the window and the en-

ergy levels of the eigenstates of the system, as well as the number of constant-sign

domains of the eigenfunctions. In accordance with the obtained energy levels and

the shape of the numerically obtained bound states, a classification of these func-

tions is proposed according to the number and location of constant-sign domains.

A feature of the selected classes is a stable and unique for each class dependence

of the energy level on specific parameters of the hole shape.

We are looking at two types of windows: elliptical windows and Cassini oval

windows (peanut shaped) that transition into two separate round windows. We

show the dependence of the bound state energy E on the parameter W , which in
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Figure 30 – Boundary radii for which the two-particle (particles have different

spins) bound state still exists as a function of F . Different graphs correspond to

different strength of interaction between particles U, from 1 to 6 in arbitrary units

the case of Cassini ovals is the distance between the foci of the ovals, and for two

holes, the distance between their centers. The ellipses are chosen to match the

width of the Cassini ovals. All windows have the same area.

Figure 31 – Examples of types of bound states, as a two-dimensional slice along

the plane of the window. Tags: 1-one, 2-two, 3-cross two, 4-three, 5-square four,

6-four in a row, 7-ring.
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Figure 32 – Energies of various one-particle types of states as a function of the

distance between the centers of the Cassini ovals. The dim lines following the main

lines represent the energies of states of the same type, but for an elliptical window

(the same width as the corresponding elliptical window). All windows have the

same area. Types are designated according to the classes shown in fig.31. Window

shapes are shown below the W axis.

We first consider the case of a single particle. If we consider a two-dimensional

slice of eigenfunctions through the window plane, we can distinguish several sta-

ble types of solutions classified by the number and position of nodal domains.

Courant’s nodal theorem states that for the Dirichlet Laplacian, the number of

nodal domains cannot exceed the state index in the list of all states sorted by

ascending eigenvalues. In our case, we will stick with the first seven types, which

are shown in fig.31. These types of bound states, with a change in the parameter

W , exhibit stable behavior, and their energies change differently, depending on

the geometry of the type (elliptic or Cassini). The results for the cases of an
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elliptical window and a window in the form of Cassini ovals are shown in fig.32.

As we can see, for most types, the energy levels tend in a positive direction

with increasing deformation of the round window, but for some types, on the

contrary, there is a decrease in the energy level. Let’s note some features. The

first two states for Cassini ovals converge to the same energy, since the first state

turns into a copy of the second, but with both peaks pointing in the same direction.

The transverse pair (3) and triple (4) types are most affected by the change in

the Cassini ovals at the end (the energy of the transverse pair for the latter type

of holes is too high and falls out of the given range), because their constant sign

zone is in the center and is deformed by closing gap. With further closing of the

”bridge”, type (4) will approach type (6), but, in accordance with the Courant

theorem, will not exceed it.

Figure 33 – Energy of the first bound state for the case of two particles. The

dotted plots show the first two single particle types for Cassini windows from

fig.32, for comparison. (They differ slightly from those shown in the other graph

due to the difference in the given calculation accuracy.) The gray lines represent

the energies of each particle in the first two-particle bound states, each line corre-

sponding to a different strength of the delta interaction. Powers used: 30, 50, 85,

140, 250, 500, 1000 from the lowest to the highest line respectively. For the case

of two separate circular holes, all forces naturally have very close energies plotted

on the right side of the graph (the last three points).
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For a two-particle system, we consider the Cassini window, and look at the

lowest bound state energy level, for various delta interaction forces (see fig.33),

and compare it with the first two levels from fig.32. We also extended the window

deformation by adding three states with two round windows at the end. For the

case of two holes, the different forces have levels that are indistinguishable on

our scale. The graph shows that with an increase in the strength of interaction,

the joint states of a pair of particles tend from the first to the second type. The

energy for two holes is almost independent of the distance between them (recall

that the geometry of the system still implies interaction between particles in this

last case - in the upper and lower layers, but not in the plane between them).

Figure 34 – Comparison of the energies of the bound states of a pair of particles

for the elliptical window (solid line) with the corresponding levels for the Cassini

window (dashed line).

In Fig.34 we compare the energies of elliptical bound states with the Cassini

energies for the same interaction strength. Plots for different interaction forces U

between particles, show the same relationships and therefore are omitted.

3.3.2 Conclusions

So, we have considered a quantum system of parallel 3D layers of the same

width, connected through one or more windows in a bounded area, with a sym-

metrical external electric field (Fig.22). For such a system, the stability of the

continuous spectrum and the existence of at least one isolated eigenvalue below

the essential spectrum were proved for any window size.

Then, numerically, we examined in more detail a number of bound states,
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and their specific dependence on the area of the window, various intensities of

the external field, and the shape of the window. The results show a monotonic

increase in the number of bound states with increasing area or field strength, for

a round window. For the case of window shape deformation, bound states form

several different types, with stable and predictable behavior.

Further, the study focused on the shape of the window, and a classification

of the bound states of the system was obtained according to the number and

location of constant-sign domains. The derived classes have a unique response to

changes in the shape of the holes, for example, for the types of states in which

the zone is located at the center of symmetry of the window, the energy increases

sharply when the window is deformed, which reduces the available area around

the center of the hole, while the effect of such a deformation on the energies of

”even ” types is negligible.

The results suggest, as possible directions for further research, the creation

of more formal ways of describing the proposed types of bound states and a

more rigorous analysis of the dependence of the energy levels of different types on

specific window shape parameters.

3.4 Conclusion

In the present work, a number of systems of various geometries with singular

interactions were studied. We start with corrugated 2D systems with delta-like

interactions caused by purely geometric perturbations. Then we pass to the real

two-dimensional delta potential on straight lines, continue with the delta potential

on a straight line in three-dimensional space, and, finally, we present a numerical

study of three-dimensional layers with delta interaction between particles.

The results of the work are interesting from a mathematical point of view,

and contain a set of statements that extend the theory of linear operators. The

considered systems are also used as models of a number of physical systems in

various fields of physics: in acoustics, nanoelectronics, molecular biology, and so

on. We consider the most important characteristic for such models - the spectrum

and eigenstates of the system, and hope that the results will become one of the

steps in the development of scientific thought in these areas.
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