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INTRODUCTION

Research Rationale

According to experts from the World Health Organization (WHO), ischemic

stroke is an extremely important health and social problem because it is responsible for

a high proportion of morbidity and mortality in the population, as well as a significant

proportion of temporary work loss and primary disability [62]. According to the Federal

State Statistics Service of the Russian Federation, cerebrovascular diseases occupy the

second place in the list of causes of death from cardiovascular diseases (39%), and the

share of Cerebrovascular Accidents (CVA) is 21.4%. In the acute phase of ischemic

stroke, mortality reaches 35%, and in the first year after occurrence, 50% of patients die.

In the period from 2008 to 2016, stroke mortality in the Russian Federation has

decreased by 45% and amounted to 123 cases per 100 thousand inhabitants, in 2019 this

indicator reached extremely low values – 88.2 cases per 100 thousand inhabitants.

However, in the wake of the new coronavirus epidemic, this indicator for 2020 has

increased to 92.4 cases per 100 thousand inhabitants and continues to grow further [12,

13].

To date, neuroimaging has taken a leading position in the diagnosis of CVA.

According to clinical recommendations adopted in the Russian Federation, all patients

with suspected ischemic stroke are recommended to undergo urgent noncontrast CT or

MRI of the brain. The results of the examination should be available within 40 minutes

of admission to the in-patient facility in order to make a differential diagnosis of the

CVA form and determine treatment tactics [12, 23]. Taking into account a number of

reasons (time of the examination, absence of absolute contraindications, availability),

computed tomography (CT) is the leading method of neuroimaging in the diagnosis of

CVA, which should first answer this main question – is it the ischemic brain injury

and/or intracerebral hemorrhage [12].
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Detecting CT signs of ischemia in the early stages is a complex clinical issue. To

provide a uniform approach to the diagnosis of ischemic stroke, the Alberta stroke

program early CT score (ASPECTS), a semiquantitative scale that assesses the

prevalence of early ischemic changes in the middle cerebral artery (MCA) system

according to a 10-point scale, was developed in 2000. A score of ≤7 points indicate a

more pronounced volume of brain tissue injury in the MCA system and correlates with a

worse functional outcome and a higher risk of hemorrhagic conversion [3, 28].

The ASPECTS has been positively evaluated by many researchers as a reliable

diagnostic method. However, the use of this 10-point scale has a number of limitations,

including the lack of standardization, which leads to high variability in the assessment

of ischemic changes by experts using ASPECTS, which may influence the further

course of the patient's treatment [3, 75].

To partially solve the problem of subjectivity in the application of the ASPECTS,

it is proposed to introduce automated CT analysis systems as a method to support

medical decision making. To date, these systems are being developed for analysis of

noncontrast CT images, CT angiography, and CT perfusion. Their application aims to

automatically determine the score on the ASPECTS, quantify the stroke core, penumbra,

and collateral blood flow status, and localize arterial occlusions [3, 5, 113].

The use of artificial intelligence (AI) algorithms means more effective detection

of ischemic changes and a reduction in variability between experts when evaluating CT

images of patients requiring emergency medical care. Developing the ability to combine

collective thinking and predictions from automated CT analysis systems can have a

profound impact on the organization and management of medical care [49, 113].

Therefore, it is important to validate the developed artificial intelligence

algorithms and apply them in clinical practice to support medical decision making and

standardize the interpretation of data from CT, which could improve patient treatment

tactics and functional outcomes of ischemic stroke.
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Extent of Previous Research

The time-critical nature of stroke care (Time=Brain) requires accurate and rapid

tools for stroke diagnosis [12, 63]. In recent years, one of the trends in the development

of clinical medical practice and the research topic of the international scientific

community is the development and implementation of algorithms for automated CT

evaluation of brain images based on artificial intelligence [31]. Several automated CT

systems have been presented to determine the distribution volume of ischemic changes

in the MCA territory according to the ASPECTS, the size of the penumbra and stroke

core according to CT perfusion, and to detect cerebral thrombosis according to CT

angiography [51, 53]. Several foreign IT companies announce the introduction of

commercially available automated CT and semi-automated CT software for acute stroke

diagnosis into a standard workflow (Aidoc®, Apollo Medical Imaging Technology®),

Brainomix®, inferVISION®, RAPID®, JLK Inspection®, Max-Q AI®, Nico.lab®,

Olea Medical®, Qure.ai®, Viz.ai® and Zebra Medical Vision®).

Currently, in accordance with the approved National Strategy for the

Development of Artificial Intelligence for the Period up to 2030, approved by Decree

No. 490 of 10 October 2019, automated CT analysis systems are being actively

developed in the Russian Federation, including for use in healthcare and, in particular,

in neuroradiology [9, 21]. As an instrument for regulating this activity, the

Subcommittee "Artificial Intelligence in Healthcare" was established in 2019 on the

basis of the Center for Diagnostics and Telemedicine Technologies of the Moscow

Health. Under the activities of this subcommittee, national standards [17, 18] and

clinical recommendations for testing software based on intelligent technologies [15] are

being developed in the Russian Federation. Diagnosis of ischemic stroke is one of the

areas where medical decision support systems are to be introduced in the Russian

healthcare system. The main task for the developers of artificial intelligence algorithms

is to achieve with their systems the thresholds of efficiency defined not only for clinical

recommendations [15], but also for the effectiveness of assessment comparable to that
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performed by young professionals such as radiologists with a short-proven experience

(up to 3 years).

The use of automated CT analysis systems for CT images could reduce the

number of cases of underdiagnosis and overdiagnosis and reduce variability between

experts in the detection of ischemic stroke by balancing the human factor [3, 89, 113].

Despite the good prospects for their practical application, there are no publications

available dealing with the independent evaluation of such systems in the CT diagnosis

of ischemic stroke.

Considering the above issues, there is a need to investigate the diagnostic

capabilities of artificial intelligence systems through analytical and clinical validation

and to study the characteristics of the interaction between a radiologist and automated

CT image analysis systems.

Research Goals

Improving the diagnosis of middle cerebral artery ischemic stroke by X-ray

computed tomography using automated CT image analysis systems.

Research Tasks

To achieve this goal, the following tasks have been defined:

1. Creation of a database of anonymized computed tomography studies of patients

with proven middle cerebral artery stroke and no pathologic brain changes.

2. Evaluation of indicators of diagnostic effectiveness of radiologists with different

experience and expertise in emergency medicine when diagnosing the middle

cerebral artery ischemic stroke, and multidisciplinary concordance of emergency

neuroradiology specialists in the assessment of ischemic changes by ASPECTS.

3. Evaluation of the feasibility of automated CT image analysis systems as a method

for detecting ischemic stroke in the middle cerebral artery system.
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4. Development of an optimal algorithm for the use of automated CT image analysis

systems in a radiologist’s office as a method for detecting ischemic stroke in the

middle cerebral artery system.

5. Justification of recommendations for the choice of a model of interaction between

a radiologist and an automated CT image analysis system.

Scientific Novelty

The thesis work proves the dependence of indicators of diagnostic effectiveness

in the detection of middle cerebral artery ischemic stroke on the years of practice of

radiologists and their experience in emergency medicine.

Low indicators of reproducibility of the ASPECTS were found in specialists of

regional vascular centers, regardless of professional experience.

This thesis work has demonstrated the importance of choosing a model for the

use of automated CT image analysis systems in the joint evaluation of ischemic changes

by radiologists.

It is proven that, despite the low accuracy rates (less than 0.8) according to

clinical recommendations [15], the automated CT image analysis system contributes to

an increase in the diagnostic effectiveness of radiologists in joint evaluation.

In young specialists with up to three years of experience, a positive correlation

was found with the introduction of an automated CT image analysis system to reduce

variability in the assessment of ischemic changes in the middle cerebral artery territory

with the ASPECTS.

Research Theoretical and Practical Relevance

The thesis work confirmed the direct dependence of diagnostic effectiveness in

detecting ischemic middle cerebral artery stroke by computed tomography on the

experience and expertise of radiologists in emergency medicine. We found that there

was little agreement among experts in the assessment of ischemic changes according

to ASPECTS by radiologists with different years of experience who specialized in the
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diagnosis of ischemic stroke. It is advocated that an automated CT image analysis

system should be considered as a second opinion for radiologists with up to three

years of experience. Based on the study, we developed practical recommendations for

the choice of a model of interaction between a radiologist and an automated CT image

analysis system for the joint evaluation of ischemic changes in the middle cerebral

artery territory by computed tomography.

Research Materials and Methods

The thesis research was conducted in several stages. In the first stage, we

performed a detailed analysis of publications on this problem. The analysis of

publications is based on 118 sources, of which 23 are domestic and 95 are foreign.

In the second stage, a database with the results of the CT scans of 150 patients

with the clinical picture of stroke the middle cerebral artery was created and registered

(Certificate of Database Registration RU 2022620850). The database included 100

patients with ischemic middle cerebral artery stroke confirmed by CT angiography

and CT perfusion and 50 patients excluded with ischemic stroke on the basis of

dynamic CT observation and CT angiography. Two collections of native CT images

were formed for further testing of radiologists and automated CT image analysis

systems. In addition, three options of collections were compiled for further research

stages: 1A and 2A for the third stage, 1B, 1C, 2B and 2C for the fifth stage of the

research (Figure 1).
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Figure 1 – Schematic representation of the second stage of the research with

developing collections of images (1A, 2A for the third stage of the research, 1B, 1C,

2B and 2C for the fifth stage of the research)

In the third stage of this research, radiologists with different experience in stroke

diagnosis were tested to determine their strength in determining of middle cerebral

artery stroke by computed tomography and to assess inter-rater reliability with respect

to CT signs of ischemic stroke (hyperdense middle cerebral artery (HAS), loss of gray

matter and white matter differentiation, sulcal effacement, and decrease in CT density

of brain matter). The degree of inter-rater reliability was also evident when

determining the prevalence of ischemic changes according to ASPECTS by specialists

with different professional experience and specialization in emergency neurology

(Figure 2).
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Figure 2 – Schematic representation of the third phase of the research

performed on 23/05-03/06/2022, with images from collections 1A and 2A, with

tests performed by radiologists from regional vascular centers (RVC) and from

general hospitals (GH), who have different years of experience

In the fourth stage, the automated CT image analytical systems were tested with

the analytical validation method and the indicators of their diagnostic accuracy were

determined. After the program was selected for further research, it was tested with a

collections of CT images from patients with confirmed stroke in the middle cerebral

artery system to determine the volume of ischemic changes by ASPECTS (Figure 3).
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Figure 3 – Schematic representation of the fourth stage of the research

with testing of anonymized automated CT image analysis systems (artificial

intelligence software A, B, C)

The fifth stage explored possible options for implementing automated image

analysis systems of computed tomography images as a tool to support medical decision

making by radiologists with less than 3 years of experience by testing the modeling of

two different options of joint evaluation: the first (parallel) review model and the second

review model (Figure 4).
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Figure 4 – Schematic representation of the fifth stage of the research

performed on the images of collections 1B and 2B on 05/03-05/05/2023 and on the

images of collections 1C and 2C on 07/01-07/04/2023

Statistical analysis was performed with the Statistical Package for the Social

Sciences (SPSS) program, version 19.0 (SPSS Inc, Chicago, IL, USA). Strength in

detecting ischemic middle cerebral artery stroke (true-positive, false-positive, false-

negative, true-negative results, sensitivity, specificity, accuracy) and inter-rater

reliability (kappa statistics: Cohen’s kappa and Fleiss’s kappa) were assessed. The

ROC analysis was performed and the area under the ROC curve was calculated.

Provisions to Be Defended

1. The ASPECTS has low reproducibility rates in the assessment of ischemic

changes by radiologists, regardless of their years of work or experience in

emergency medicine.
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2. Automatic analysis of computed tomograms with specialized software allows

for greater diagnostic strength in radiologists with less than 3 years of experience in a

first- reader mode.

3. Automatic analysis of computed tomograms with specialized software allows

higher reliability in radiologists with less than three years of experience, in the

evaluation of ischemic changes in the middle cerebral artery territory with ASPECTS

using a first- reader mode.

Degree of Credibility and Evaluation of Results

The degree of credibility of the research results is determined by a sufficient

number of clinical observations, a representative sample size, the use of modern

examination methods by radiologists with different years of work and professional

experience (detection of signs of stroke in the middle cerebral artery and evaluation of

ischemic changes by ASPECTS), testing of automated analysis systems and joint testing

of radiologists with similar years of work and automated analysis systems, and

processing of the obtained data by appropriate methods of mathematical statistics.

Dissertation Materials Presented at Conferences

The main results obtained as part of the work on the thesis were presented at the

VIII Congress of the National Association of Phthisiatricians (St. Petersburg, 25-27

November 2019), XII International Congress Nevsky Radiological Forum – 2021 (St.

Petersburg, 7-10 April 2021), All-Russian National Congress of Radiation

Diagnosticians and Therapists Radiology – 2021 (Moscow, 25-27 May 2021), European

Congress of Radiology (Vienna, 2-6 March 2022), European Congress of Radiology

(Vienna, 13-17 July 2022), Joint Workshop Machine Learning Methods and Statistical

Models in Medicine St. Petersburg State University (SPSU) – Huazhong University of

Science and Technology (HUST) (St. Petersburg, 29 September 2022), XIV

International Congress Nevsky Radiological Forum – 2021 (St. Petersburg, 7-8 April

2023), XVII All-Russian National Congress of Radiation Diagnosticians and Therapists

Radiology – 2023 (Moscow, 30 May – 1 June 2023), Conference Computational
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Biology and Artificial Intelligence for Personalized Medicine – 2023 (online, 9-11

August 2023), VI Congress of the National Society of Neuroradiologists (Sochi, 29-30

September 2023).

Research Practical Implementation

The research results and developments are implemented in the practical work of

the X-ray Department of the St. Petersburg State Medical Institution Elizavetinskaya

Hospital, the X-ray Department of the Ochapovsky Regional Hospital No. 1, the X-ray

department of the Samara Regional Clinical Hospital named after V.D. Seredavin, in the

comprehensive medical clinic Scandinavia for children and adults, in St. Petersburg.

The theoretical and practical results of the thesis are used in the educational activities of

the N.P. Behtereva Institute of the Human Brain, St. Petersburg Research Institute of

Phthisiopulmonology and Kuban State Medical University.

Publications

Six publications on the thesis topic were published, including three papers in

publications recommended by the Higher Attestation Commission of the Russian

Ministry of Education and Science for publication of the results of thesis works, two

papers in publications associated with Scopus, and one database was registered

(Registration Certificate No. 2022620850). The scientific publications adequately

reflect the content of the thesis work and the author’s abstract.

Author’s Personal Contribution in Results Generation

The topic and plan of the thesis, its main ideas and content were developed

together with the supervisor on the basis of a comprehensive study of the relevant

publications. The author independently worked out and justified the relevance of the

topic of the thesis, the goals, tasks and stages of scientific research. The thesis defender

personally studied the publications and developed a research methodology with the

supervisor. She contributed to the development of a database of radiographic images

used for analytical validation of automated analysis programs and testing of radiologists.
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The author personally performed all studies included in the database, as well as tests of

all selected programs for image analysis with subsequent interpretation of the obtained

results, collected and analyzed complex computed tomography data. The author’s

personal contribution to the study of the publications, collection, generalization,

analysis, statistical processing of the obtained data and writing of the dissertation is

100%. The author personally wrote the text of the thesis work.

Correspondence of Thesis Work with Specialization Certificate

The work corresponds with the specialization certificate 3.1.25 “Diagnostic

Radiology”

i.1 Diagnostics and monitoring of physiological and pathological conditions,

diseases, injuries and malformations (including antenatal) by evaluating the qualitative

and quantitative parameters obtained using the methods of diagnostic radiology.

i.11 The use of digital technologies, artificial intelligence and neural networks for

the diagnostic and monitoring of physiological and pathological conditions, diseases,

injuries and malformations (including antenatal) using the methods of diagnostic

radiology.

Scope and Structure

The thesis works is designed to be 132 pages, Times New Roman, font size 14.

The paper consists of the following parts: Introduction, overview of reference sources,

description of research methods and materials, chapters with own research, conclusions,

practical recommendations, references. The paper contains 28 tables and 18 illustrations

(Figures).
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CHAPTER 1. POSSIBILITIES AND PROSPECTS OF CLINICAL IMAGING

OF ISCHEMIC STROKE (REVIEW OF PUBLICATIONS)

1.1. Computed tomography in the diagnosis of ischemic middle cerebral artery

stroke

According to estimates from the World Health Organization (WHO), stroke is the

second leading cause of death in the world. An estimated 9.6 million strokes are

predicted annually, with incidence increasing as the population ages, with ischemic

stroke accounting for 85% of cases [62].

In the Russian Federation, from 2008 to 2016, mortality from stroke decreased by

45% and amounted to 123 cases per 100 thousand population; in 2019, this figure

reached extremely low results - 88.2 cases per 100 thousand population. However,

against the background of the epidemic of a coronavirus disease (COVID-19), this

figure for 2020 increased to 92.4 cases per 100 thousand population and continues to

grow [12].

Mortality rates in patients with stroke largely depend on the conditions of

treatment in the acute period. The early 30-day mortality rate due to stroke reaches 35%.

At the same time, about 24% of patients die in hospitals, 43% die at home, and 50% of

patients die by the first year from the development of the disease [1, 23].

Along with high mortality, the socially significant consequences of stroke include

disability in surviving patients after a primary stroke, as well as an increased risk of

developing recurrent strokes. According to the National Register, approximately 60% of

patients who have suffered a stroke remain disabled and are able to care for themselves,

19-35% need outside help to care for themselves and become dependent on others, and

only 15-20% remain active. According to the epidemiological study of stroke using the

territorial-population registry method, the ratio of ischemic to hemorrhagic strokes was

5:1. The average age of stroke onset is 66.7 years (63.7 years in men and 69.4 years in
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women). The absolute number of strokes in patients under 67 years of age is higher in

men, and at older ages it is higher in women [23].

It is necessary to note the medical and economic significance of the problem of

stroke. According to WHO, the cost of treatment and rehabilitation of one patient with

stroke is 55,000-73,000 dollars/year, which indicates the enormous economic damage

from this disease [63].

Analysis of the above data shows that the treatment of patients with

cerebrovascular pathology is one of the most pressing and complex problems in

medicine and social care, due to the rapidly growing incidence, as well as extremely

severe consequences leading to high disability.

The most commonly affected intracerebral artery in ischemic stroke is the middle

cerebral artery (MCA). It branches directly from the internal carotid artery and consists

of four main segments: M1, M2, M3 and M4. These vessels supply blood to most of the

frontal, temporal and parietal lobes of the brain, as well as (lenticulostriate arteries)

deeper structures of the hemispheres, including the basal ganglia [14, 85], which causes

a worse functional outcome and a higher risk of mortality if inadequately treated [4, 85].

That is why improving the diagnosis of ischemic stroke in the middle cerebral artery is

of such high importance.

In the diagnosis of stroke, the leading place belongs to such imaging methods as

CT and MRI [22, 60, 86, 117]. CT is a highly informative method with which it is

possible to identify stroke and its nature (ischemic, hemorrhagic, mixed type) [55]. The

method makes it possible to determine the location, size (volume) and nature of the

lesion with high accuracy, which in the study of certain types of cerebral circulatory

disorders reaches 90-100% [36]. Following CT scan makes it possible to trace the

evolution of pathological changes over time.

According to clinical guidelines [12], all patients with signs of stroke are urgently

recommended to undergo a non-contrast CT or MRI of the brain with the results of the

study (conclusion) obtained within 40 minutes from the patient’s admission to the

hospital for differential diagnosis of stroke in order to determine treatment tactics [4, 10,
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56, 103, 104, 110, 118]. Reducing the time interval from the moment of admission to

the hospital to the start of a neuroimaging study of the brain helps to reduce the time

before the start of therapy and, accordingly, a better clinical outcome of the disease.

In accordance with Decrees of the Government of the Russian Federation of

December 27, 2007 No. 1012 and No. 186 of March 2, 2009, the implementation of

measures aimed at improving medical care for patients with vascular diseases has begun

in the Russian Federation. As part of regional vascular centers and primary vascular

departments, units have been created for the treatment of patients with acute stroke,

with round-the-clock radiation diagnostic units (CT and/or MRI rooms), as well as a

department (office) for x-ray surgical diagnostic methods, treatment and an operating

room for x-ray endovascular diagnostic and treatment methods. One of the unforeseen

consequences of this initiative was the hospitalization of almost all patients with

impaired consciousness of various etiologies with a diagnosis of stroke in the vascular

center by emergency medical personnel. The consequence of this approach of

emergency medical care was the massive admission of patients to primary vascular

departments and regional vascular centers with suspected stroke, causing an increase in

the load on specialists involved in the emergency diagnosis of stroke at the inpatient

stage (neurologists and radiologists), as well as an increase in the use of serious material

resources [95]. Also, patients with sudden onset stroke who are in hospitals providing

medical care for the underlying disease undergo a CT scan to exclude other etiologies of

the clinical presentation and to justify transfer to a vascular center.

In the absence of division of radiologists by specialization, following the example

of foreign medical practice, each radiologist specialized on computed tomography in the

Russian Federation must demonstrate high level diagnostic efficiency in detecting

ischemic stroke, which is impossible without certain competencies, experience and

practical skills in working with the specified patient population.

Early CT diagnosis of stroke makes it possible to identify and evaluate ischemic

changes, which, in turn, determines treatment tactics and prognosis of complications [4,

80].
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There are a number of CT signs that indicate the presence of ischemic stroke: a

sign of acute arterial occlusion (hyperdensity of the middle cerebral artery sign), signs

of early ischemic changes (loss gray/white matter differentiation, sulcal effacement on

the affected side) and hypoattenuation [4, 98].

Hyperdensity of the middle cerebral artery, as a highly specific sign (90-100%) of

acute ischemic stroke in the same area, was first described by Gacs G. et al. in 1983 [47].

MCA hyperdensity sign is manifested by an increase in CT density of the proximal

MCA in a fairly wide range from +40 HU to +80 HU, and is associated with thrombosis

of the MCA M1 (and often M2) segment. The same mechanism is detected in the distal

parts of the MCA with the formation of a pattern of pointwise increase in MCA density

(“point sign”) [4, 68, 114].

MCA hyperdensity sign is often the only diagnostic CT sign at the early stage of

ischemic stroke [4].

However, we should not forget that despite its high specificity, MCA

hyperdensity sign can occur with increased hematocrit value (in contrast to this sign, an

increase in CT density will be observed in all intracranial arteries and veins), with viral

lesions [4, 76], There are also known references to MCA hyperdensity sign during

artery dissection [4, 66]. A decrease in the density of the brain parenchyma surrounding

the artery (infectious/neoplastic lesion) can also create a picture of a pseudohyperdense

MCA sign [4, 74].

Koo C.K. et al. [76] established objective criteria for MCA hyperdensity by

measuring the absolute density of affected and unaffected vessels: the absolute density

should be at least +43 HU with a ratio with the density of other arteries <1.2 [4].

Edema is a common response to various forms of brain injury. In ischemic stroke,

there are three types of edema: cytotoxic, ionic and vasogenic. Each of these types has

its own dominant imaging pattern, the identification of which, in combination with

additional imaging data and clinical history, often provides clues to the correct

interpretation of changes and influences further treatment [4, 39].
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Cytotoxic edema results from disruption of the adenosine triphosphate (ATP)-

dependent transmembrane sodium-potassium and calcium pumps, and is usually caused

by cerebral ischemia or excitotoxic (secondary to excessive neurotransmitter stimulation)

brain injury. This leads to intracellular fluid accumulation in neurons and neuroglia. The

gray matter is primarily affected due to its high metabolic activity and higher density of

astrocytes [4, 98]. At this stage of development of the ischemic process, CT is not a

sensitive method for detecting it, and the visualization pattern can only be detected

using MRI [4].

Further, after all compensatory mechanisms have been exhausted, water begins to

flow along the osmotic gradient into the depleted intercellular space, but without

damaging the blood-brain barrier, simulating ionic edema. This process ultimately

involves both gray and white matter with a corresponding loss of their differentiation on

CT [4, 39].

Loss grey -white differentiation, first of all, includes the “insular ribbon sign”

(loss of definition of the gray-white interface in the lateral margin of the insular cortex)

and the disappearance of the boundaries (contrast) of the basal ganglia, and

subsequently, a change in the differentiation of the cerebral cortex [74]. Early

involvement of the basal nuclear region in the pathological process during thrombosis of

the proximal MCA is due to the fact that this anatomical region is supplied by

perforating (lateral lenticulostriate) arteries that branch directly from the M1 segment of

the MCA [4].

Severe or recurrent damage overloads transmembrane ion pumps, causing cell

death with disruption of the blood-brain barrier, resulting in vasogenic edema. Late

complications include neuronal apoptosis, atrophy and gliosis [4].

Vasogenic edema is modeled by disruption of the endothelial tight junctions that

form the blood-brain barrier, secondary to either physical disruption or release of

vasoactive mediators. As a result, intravascular proteins and fluid enter the extracellular

space [4, 39]. An increase in the fluid content in the intercellular space by 1% results in

a CT attenuation decrease of 2.5 HU (Hounsfield Units). Given that vasogenic edema
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leads to disruption of the blood-brain barrier, increased vascular permeability can lead

to hemorrhagic stroke transformation and extravasation of contrast agent after

intravenous thrombolytic therapy and/or endovascular intervention. And the larger the

area of change, the higher this probability. It was for the purpose of assessing the risk of

such complications that the ASPECTS was introduced (is a 10-point quantitative

topographic CT scan score used for middle cerebral artery (MCA) stroke patients), with

the help of which, based on all the above-described signs, it is possible to predict the

functional outcome of a stroke, as well as the results thrombolytic therapy and thrombus

extraction [4, 57].

The sulcal effacement is described as a consequence of mass effect, which may

indicate irreversible damage to the brain parenchyma [4, 36]. However, Haussen D.C. et

al. in their study confirmed that despite the generally accepted interpretation of the

meaning of this sign, isolated sulcal effacement without an associated decrease in the

density of the brain substance, with preservation of the differentiation of the cortex,

cannot be interpreted as a sign of ischemic changes, and also cannot be taken into

account when assessing according to ASPECTS, since it is a potentially reversible

phenomenon, due to increased leptomeningeal collateral blood flow [4, 105]. Taking

into account the lack of a unified approach to defining this sign, according to foreign

literature, it can cause variability in the results of assessing CT signs of ischemic stroke

[4].

In the article by Wardlaw J. M. et al. [116] conducted a systematic review of

publications issued between 1990 and 2003 containing studies assessing inter-rater

agreement in identifying signs of early ischemic changes (including follow-up

ASPECTS scores), and determining the correlation between diagnostic test results,

clinical outcome, as well as treatment (thrombolytic therapy). Across 15 studies, inter-

rater agreement (an average of 30 CT studies and six experts) for the presence of AIC

ranged between 0.14 and 0.78 for any AIC (kappa statistic). The mean sensitivity and

specificity for detecting early ischemic changes were 66% (range 20–87%) and 87%

(range 56–100%), respectively. In studies that included neuroradiologists with more
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experience and expert qualifications, the accuracy of detecting AIC increased. In

articles where they tried to increase diagnostic efficiency due to homogeneous and

general theoretical training of experts, the results did not improve after the experiment.

The authors concluded that further research is needed to determine the most reliable

tools that can help detect AIC, which is likely to influence thrombolysis decisions and

clinical outcome [4, 116].

In a study by Dippel D. W. J. et al. [108] it was suggested that the level of correct

verification of CT signs of ischemic stroke is an important indicator of its outcome and

the effect of thrombolytic therapy. The authors studied these signs prospectively in 260

patients with ischemic stroke in the anterior circulation. The presence of signs of AIC

was confirmed by dynamic observation of patients, in the form of CT examinations 1

and 12 weeks after the patient’s admission. The reviewers were experienced clinicians

specializing in the treatment and diagnosis of stroke (neurologists, neuroradiologists and

endovascular surgeons). The mean time between stroke onset and initial CT

examination was 3.2 hours. In more than half of the patients (52%), a control CT scan

revealed an extensive infarction in the middle cerebral artery territory. The interobserver

odds ratio (chi statistic) for any early sign of stroke was 0.27 (95% confidence interval:

0.15 to 0.39). Agreement regarding the prevalence of ischemic changes in the territory

of the middle cerebral artery was insignificant: 0.37 and 0.35, respectively [4, 108].

In a study by Grotta J.C. et al. [26] found a level of agreement between

neuroradiologists with extensive experience in identifying stroke and other clinicians

regarding the presence of signs of AIC. Seventy initial CT examinations were evaluated

by 16 experts, including neurologists from regional vascular centers (specializing in the

diagnosis and treatment of stroke), neurologists without stroke's diagnosis experience,

other emergency medicine physicians, and emergency medicine neuroradiologists.

Kappa values for interrater agreement (95% confidence interval [CI]) ranged from 0.20

(-0.20 - 0.61) (weak agreement) to 0.41 (0.37 - 0.45) (moderate agreement). The authors

concluded that even among experienced clinicians, there are low levels of agreement

regarding the recognition and quantification of signs of early ischemic changes [4, 26].
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Based on foreign literature data, recognizing signs of thrombosis of the anterior

circulation arteries and acute ischemia is a complex diagnostic task. There are

conflicting data regarding the ability of radiologists, including radiologists with little

experience, to correctly interpret CT signs of ischemic stroke. In the context of the

annual renewal of hospital staff by young specialists, the presence of a period of their

adaptation to the specifics of the work of a neuroradiologist, combined with a shortage

of radiologists for the prompt interpretation of CT studies in the constituent entities of

the Russian Federation, a natural increase in the level of variability in the interpretation

of radiation images is predicted between doctors. And, as a consequence, a decrease in

the quality of medical care [4].

1.2. The Alberta Stroke Program Early CT score: issues of inter-rater reliability in

clinical practice

In order to form a unified approach to the diagnosis of ischemic stroke,

ASPECTS (Alberta stroke program early CT score) was developed in 2000 - a

quantitative topographic CT scan score used for middle cerebral artery (MCA) stroke

patients. ASPECTS involves the assessment of ten areas on CT slices at standard levels

(basal ganglia and rostral structures) (Figure 5): the caudate nucleus, insula, lenticular

nucleus, internal capsule, and six other cortical areas (M1-M6). Areas M1–M3 are

located at the level of the basal ganglia, areas M4–M6 are at the level of the ventricles

directly above the basal ganglia, the border is the head of the caudate nucleus [3, 90].



25

Figure 5 – Schematic representation of ASPECTS (Alberta stroke program early

CT score) [96]

According to the scale, each of the ten regions is sequentially assessed. The

ASPECT score is made by 1 point is deducted from the initial score of 10 for every

region involved. In this case, pathological changes must be visualized on at least two

consecutive sections to exclude the effect of volumetric averaging. Thus, a CT scan

without pathological changes corresponds to an ASPECT score of 10. A score of 0

points indicates diffuse damage to the entire territory of the middle cerebral artery. A

score of ≤7 points correlate with a worse functional outcome and a higher risk of

hemorrhagic transformation of stroke [3, 57].

The ASPECTS scale has been praised by many researchers as a reliable

diagnostic method. For example, Baek J. H. et al. [91] concluded that ASPECTS is a

better method for predicting functional outcome in patients with acute ischemic stroke

receiving thrombolytic therapy compared with other scoring systems [3, 91]. This

conclusion is confirmed by other studies [111].

However, the use of the scale also has limitations [69]:

— the ASPECTS scale is used in the MCA region (although at the moment a

modification of the scale for assessing ischemia in the vertebrobasilar (VB) system is

also known - posterior circulation ASPECTS – pc-ASPECTS). Therefore, its use is
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incorrect for occlusion of the internal carotid artery, including the fetal type of structure

of the posterior cerebral artery [3, 106];

— ASPECTS assessment is difficult at the level of the M2 territory due to

artifacts from the bones of the skull base [3];

— the presence of subcortical and age-related periventricular changes in white

matter can lead to incorrect assessment according to ASPECTS [3];

— low-quality images, for example, with motion artifacts, can also lead to

erroneous ASPECTS scores [3].

Also, a significant limitation in the use of this scale is the level of thrombosis of

the middle cerebral artery. Since the scale covers the entire territory of the MCA, its use

is correct only in case of occlusion of the proximal parts of the artery. If the vessel is

thrombosed more distally, then scoring all 10 ASPECTS areas becomes inaccurate

(Figure 6).

Figure 6 – Variants of localization of middle cerebral artery occlusion associated

with the volume of the affected territory of middle cerebral artery
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It is also important to note that the scale is not completely standardized

ASPECTS areas are indicated schematically. For example, the assessment on a scale at

the “watershed boundaries” causes some difficulties. The location of cortical border

zones may differ due to the development of leptomeningeal collaterals. Also, in the

original ASPECTS study, only two native CT slices were used for evaluation, but

modern medical practice overwhelmingly uses all available scan slices [3, 115].

Another source of intrasubject variability is the characteristics of the AIC that are

used to calculate the scores. Loss of grey-white differentiation, according to some

authors, is associated with edema and irreversible damage. Under experimental

conditions, ischemia in the form of impaired differentiation of the cortex is reversible

only within a few minutes after the onset of stroke [3, 73]. In clinical settings, impaired

cortical differentiation with a focal decrease in cortical density highly specifically

represents irreversibly damaged brain tissue (i.e., infarct core) [3, 54]. Since, against the

background of edema in these areas, a narrowing of the cerebrospinal fluid spaces

occurs, the sulcal effacement is an associated sign of impaired differentiation of the

cortex. However, in connection with recent pathophysiological studies, the possibility of

visualization of isolated effacement of the grooves (without disruption of differentiation)

has been identified, which is not considered a reliable sign of ischemia taken into

account in ASPECTS, since it is a potentially reversible phenomenon [3, 50, 58].

An additional criticism of ASPECTS is that some areas - such as the internal

capsule - are much smaller in volume than other areas, but the structure is equally

weighted in the score distribution; thus, two patients with the same ASPECT scores may

have different degrees of severity and extent of AIC [3, 101]. For example, ASPECTS

was criticized in a study by Phan T. G. et al [107]. The authors noted that in the

ASPECTS scoring system, the striatocapsular region (putamen, dorsolateral parts of the

caudate nucleus, anterior femur of the internal capsule) has a disproportionate “weight.”

Four experienced neuroradiologists assessed individual ASPECTS regions on CT

images of nineteen patients with MCA stroke, comparing the final volume of ischemic

changes on CT studies over time (days 5–10). The extent of ischemic changes was
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determined by manual segmentation on CT images. Linear regression was used to

estimate the regional volume associated with each ASPECTS region. ASPECTS areas

had unequal weight, with the striatocapsular area accounting for 21% of the AIC

volume in the MCA territory with total damage to the blood supply territory [3, 107].

The most common criticism of this scale is that ASPECTS was introduced to

reduce inter-rater variability, but studies have shown fairly heterogeneous results in the

level of agreement between experts [3].

In a study by Farzin B. et al. [52] examined the level of inter- and intra-rater

agreement of fifteen specialists when assessing CT examinations using the ASPECTS in

thirty patients with ischemic stroke. The expert group included: six neurologists

specializing in the diagnosis and treatment of patients with stroke (four with more than

ten years of experience), five x-ray endovascular surgeons (three with more than ten

years of experience) and four neuroradiologists (two with more than ten years of

experience). Each specialist underwent two blind assessments at least three weeks apart.

Additionally, the experts were provided with the following clinical data: gender, age,

presence/absence of aphasia and hemiparesis, as well as the NIHSS (National Institutes

of Health Stroke Scale). Interrater agreement was weak to moderate, with no significant

difference between specialties (neuroradiologist, endovascular surgeon, neurologist) and

experience. Interobserver reliability was determined using the weighted kappa statistic

(Cohen's κ). The agreement coefficient was considered as moderate if moderate (k>0.4–

0.6), significant (k>0.6–0.8) and as complete agreement (k>0.8–1.0). None of the kappa

values reached a moderate level (0.6) among all experts. Even when dichotomized

ASPECTS into two categories (0–5/5–10 points), inter-rater agreement did not reach a

significant level (k>0.561), which means that at least 5 out of 15 experts will give a

different opinion in 15% of cases. Internal (intra-rater) agreement (rater ratings on first

and repeat viewings) ranged from 0.599 to 0.943. Radiologists had the same rate of

agreement on repeat review in 40% of cases [52]. The researchers also reviewed articles

assessing interrater agreement for the use of ASPECTS, published from 2000 to 2015.

The methodologies of the studies reviewed differed on several characteristics, including
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whether clinicians were provided with clinical data when assessing studies, whether

there was a time limit, access to all CT scans, the ability for experts to set their own

window parameters. The authors made a general conclusion that these factors play a

significant role in the identified subjectivity of expert assessment, which reflects the

high degree of variability in inter-rater agreement [3, 52].

In a study by Kobkitsuksakul C. et al. [75] examined the level of inter- and intra-

rater agreement when assessing CT examinations of forty-three patients with ischemic

stroke according to the ASPECTS by two neuroradiologists (with more than ten years of

experience), a fellow in the field of neuroradiology (a foreign version of one of the

stages of postgraduate education) and a resident. Agreement between the two

neuroradiologists and the fellow regarding the dichotomization of ASPECTS scores, as

assessed by Cohen's kappa, was mostly moderate (0.486 - 0.678). Agreement between

two neuroradiologists and a resident on the total ASPECTS score ranged from weak to

moderate (0.198 - 0.491) [3, 75].

Coutts S. B. et al. [72] concluded that ASPECTS varied between prospective and

retrospective CT scans. At higher ASPECTS (>7), the prospective examiner tended to

underscore ischemic changes. With lower ASPECTS (<3), the present tense expert, on

the contrary, showed a tendency to exaggerate the volume of ischemic changes by

almost 2 points [3, 72]. The reasons for this likely reflect a combination of factors,

including the tendency of the human visual system to overestimate the boundaries of

affected areas [3, 41]. It should be noted that Coutts S. B. et al. also pointed out the

influence of the human factor (the desire not to perform thrombolysis in patients with

concomitant pathology and a burdened medical history), when assigning lower scores to

the patient on the ASPECTS scale [3, 72].

In a study by Alexander L. D. et al. [78], which included fifty-five patients

diagnosed with subacute ischemic brain injury, had CT images obtained two days or

more after disease onset retrospectively assessed using ASPECTS by three neurologists.

The authors noted that interrater agreement was almost complete with Cohen's k value

of 0.90 [3, 78].
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Van Seeters T. et al. [97] conducted a prospective study involving one hundred

and five patients with acute neurological deficits and suspected acute ischemic stroke in

an extended (9 hours after symptom onset) “stroke window”. All patients underwent

non-contrast CT examination of the brain, CT perfusion and CT angiography of cerebral

vessels upon admission. All images were assessed twice according to two parameters:

the presence of AIC with their assessment on the ASPECTS, as well as using the “one

third” rule of the middle cerebral artery basin (an assessment scale of the prevalence of

ischemic changes dividing the MCA territory into three parts; if more than ⅓ is affected,

thrombolysis is not was carried out). Four neuroradiologists assessed the CT images of

these patients twice for inter- and intra-rater agreement using the kappa statistic and

intraclass correlation coefficient. As a result, interrater agreement for the 1⁄3 rule of

MCA and ASPECTS ranged from moderate for non-contrast CT scans, low for CT

angiography images, and was complete for all CT perfusion maps. The researchers

concluded that CT perfusion is a more reliable method for detecting ischemic stroke

using computed tomography in terms of interrater agreement [3, 97].

Pexman J. H. et al. [111] surveyed six physicians regarding their interpretation of

ASPECTS. Half of the researchers included isolated swelling of the cortex (without

disruption of its differentiation) in the assessment. Despite this, interrater agreement for

ASPECTS was higher than interrater agreement for the 1/3 MCA rule [3, 111].

In their study, Mc Taggart R. A. et al. [27] compared the level of inter-rater

variability in the assessment of CT and MR ASPECTS in the early stages of stroke.

Seventy-four patients who underwent CT, MRI, and thrombectomy within 12 hours of

stroke onset were prospectively analyzed. Two experts assessed the presence and extent

of early ischemic changes on non-contrast CT images using ASPECTS, as well as on

diffusion-weighted images (DWI). Inter-rater agreement for CT ASPECTS and DWI

ASPECTS was 0.579 and 0.867, respectively. DWI-ASPECTS correlated with

functional outcome (p=0.004), whereas CT-ASPECTS did not (p=0.534). Both DWI

ASPECTS and CT ASPECTS correlated with the amount of ischemia detected on DWI.

Performance analysis showed that DWI-ASPECTS was superior to CT-ASPECTS in
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terms of the time interval between symptom onset and prediction of good functional

outcome. Also, based on the results of this study, it was found that the agreement

between experts when assessing using DWI-ASPECTS was higher than when assessing

using CT-ASPECTS. DWI-ASPECTS assessment of RII was also superior to CT-

ASPECTS in predicting functional outcome (90 days) [3, 27].

In a study by Barber P. A. et al. [115] analyzed two hundred and three CT studies

to establish the relationship between the quantitative assessment of scale scores on CT

images and the prediction of the outcome of stroke during thrombolytic therapy.

Baseline ASPECTS was inversely correlated with NIHSS stroke severity (r=–0.56,

p<0.001). ASPECTS predicted functional outcome and the occurrence of hemorrhagic

transformation of stroke (p < 0.001, p = 0.012, respectively). The sensitivity of

ASPECTS for functional outcome was 0.78 and specificity was 0.96. Inter-rater

agreement for ASPECTS was quite high (kappa 0.71–0.89). The researchers concluded

in their article that the ASPECTS score is a reliable method for predicting functional

outcome after thrombolytic therapy [3, 115]. Actually, the introduction of the scale as

an assessment technique in the diagnosis of ischemic stroke was consistent, according to

the results of this study, with the beginning of the international use of thrombolytic

therapy [3].

Another reason for the variability of assessment between experts on this scale

may be the heterogeneity of the groups of specialists participating in the studies [3].

Wilson A. T. et al. [81] indicate that experience, level of training and medical

specialization may also influence the assessment. Most studies testing reliability and

interrater agreement involved experienced neurologists and/ or neuroradiologists; a

limited number of articles mention residents and junior specialists [3, 21, 45]. However,

even among experienced clinicians, there may be differences in the interpretation of

ASPECTS in different countries [69]. Other important but unresolved reasons for

variability in ASPECTS scores include the following factors: software and hardware,

location of the expert, time of day, time pressure, and personal qualities [3, 69].
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Despite the fact that the ASPECTS is a method that is widely used in modern

clinical practice, its main disadvantage is the possibility of variability in expert

assessments, including among doctors with little experience, since high rates of inter-

rater agreement were achieved mainly in groups with experienced radiologists. The

pronounced diversity of results and the low level of inter-expert agreement do not

currently allow this scale to be considered a truly reliable option for a standardized

assessment and may affect the further treatment process [3, 5].

In this regard, the introduction into clinical practice of methods of semi-automatic

and automatic processing of CT images using artificial intelligence systems, which in

the future can improve the standardization of assessment.

1.3. Potential of automated CT image analysis systems in the diagnosis of the

middle cerebral artery ischemic stroke and the applications of the ASPECTS

Artificial intelligence is a set of technological solutions that imitate human

cognitive functions (including self-learning and searching for solutions without a

predetermined algorithm), allowing, when performing tasks, to achieve results that are

at least comparable to human intellectual activity. This concept includes information

and communication infrastructure and software that use machine, representative and

deep learning methods, as well as data processing and decision-making processes [6, 9].

AI is one of the rapidly growing fields of computer science and has significant

implications for radiology. The most developed and used class of artificial intelligence

methods is machine learning. It is used for partial or complete automation of solving

complex professional problems based on accumulated data. Algorithms develop as the

volume of available databases increases, improve their performance with experience,

and also learn to give specific answers by processing large amounts of information [6,

100]. Before evaluating machine learning models, specification of medical diagnostic

tasks is necessary as the models must be trained accordingly. This is achieved using the

main typical tasks: supervised learning, unsupervised learning and semi-supervised

learning [6]. These types of case-based learning tasks are fundamental strategies applied
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depending on the available data. In supervised learning, artificial intelligence extracts

information from a certain part of trained samples with verified and labeled pathology

in order to predict the results of unknown data [6, 44]. Conversely, unsupervised

learning compares the “norm” with unlabeled pathology databases to implement a

clustering task, which is to group objects into clusters using data on pairwise similarity

of objects. In partial training, a combination of the above two methods takes place and

only a small portion of the labeled training data is required. Unlabeled images are also

used in training [6, 102]. It is necessary that the labeled data be reliable. This is why the

concept of “ground truth” was introduced, which defines the testing of machine learning

results for accuracy and is fundamental to testing the effectiveness of AI programs. The

“ground truth” can be considered data that is reliably verified (confirmed by the “gold

standard”) [6, 43]. Deep learning is a collection of machine learning techniques and the

leading focus of most AI tools for image interpretation. Deep learning is algorithms

represented as several layers of information processing that are interconnected. This

multi-layer system of nonlinear filters is used to extract features with transformations,

which means that each subsequent layer receives the output data of the previous layer as

an input. Such multilayer algorithms form large artificial neural networks [6, 102].

Artificial neural networks must be “trained” using standardized data sets. In diagnostic

imaging, they usually consist (at least initially) of manually labeled images used by

algorithms for training (segmentation). Once the network is trained, it needs to be tested

using another dataset designed to evaluate whether the learning model matches the

required output [6]. At this stage, model overfitting is often observed. Yamashita R. et

al. [42] describe overfitting as a situation “when a model learns statistical patterns

specific to the training set, that is, ends up learning irrelevant noise instead of learning

from the data, and therefore performs worse on a subsequent new data set. The

consequence of overfitting is that the network will not generalize to data it has not

previously encountered and will begin to make more errors [6, 42]. There is a direct

correlation between the volume and quality of primary data and the model’s compliance

with the required result. As network performance gradually improves due to the ability
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to train in multiple stages and test on heterogeneous data sets, its accuracy and

generality are assessed before the algorithm is released for general use. Another solution

is the so-called “data augmentation,” which means modifying the training data by

adding some new information [6, 42]. As a rule, the “deeper” the network (more layers)

and the more training cycles, the higher the network performance. The fundamental area

of application of AI in neuroradiology is the automatic segmentation of brain lesions,

which makes it possible to relieve the radiologist from the labor-intensive function of

performing manual segmentation [6, 29]. In clinical applications, radiologists primarily

perform manual segmentation, which is subjective, time-consuming, and poorly

reproducible with repeated procedures. Automatic segmentation is completely

controlled by the algorithm without human intervention. The segmentation speed is high

and the results are reproducible [6, 25]. Another application of AI in radiology is

radiomics. This is the ability to represent complex objects in the form of a set of

quantitative characteristics [6].

Software products based on radiomics make it possible to extract features from

diagnostic images, the final product of which is the determination of a parameter of a

specific pathology [6]. Radiological analysis can extract a large number of features from

a region of interest in a CT or MRI study and correlate these features with each other

and with other data [61]. Machine learning systems are currently applied to the

diagnosis and classification of brain tumors [70], certain mental disorders [37], epilepsy

[24], neurodegenerative disorders [99] and demyelinating disease [84]. Machine

learning algorithms have also been developed to help diagnose and individualize

treatment for acute ischemic stroke. One of the most important clinical criteria for

successful thrombolysis with tissue plasminogen activator in acute ischemic stroke is its

implementation within the first 4.5 hours from the onset of symptoms, but the onset of

stroke is usually unknown [6]. To solve this problem, But K. S. et al. [39] developed a

deep learning algorithm based on an autoencoder architecture to extract imaging

features from MR perfusion images (PWI) to determine the time elapsed since stroke

onset. Chen L. et al. [38], based on data from seven hundred and forty-one patients and
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a deep learning model that included two neural networks, developed an algorithm for

segmenting brain lesions in stroke using DWI images. Measuring perfusion-diffusion

mismatch and calculating the probability of infarct core zone formation using MRI-

based approaches to assess tissue at risk can be used to guide decisions about the type of

stroke treatment [6]. Bouts M. J. et al. [53] analyzed the ability of five algorithms to

identify potentially viable brain tissue from MR images of rats subjected to right middle

cerebral artery (MCA) occlusion without subsequent reperfusion, spontaneous

reperfusion, or thrombolysis-induced reperfusion. The highest accuracy in identifying

ischemic tissue likely to recover after subsequent reperfusion was observed using the

generalized linear model (Dice similarity coefficient = 0.79 ± 0.14). Similarly, Huang S.

et al. [67] used support vector machine (SVM) to predict infarction in rats on a pixel-by-

pixel basis using cerebral blood flow velocity (CBF) and measured diffusion coefficient

(ADC) images from MRI. Another application of machine learning systems in acute

ischemic stroke is to predict factors that will contribute to the deterioration of

neurological status and increase the likelihood of developing cerebral edema [6]. Chen

Y. et al. [35] proposed definitions and measurements of cerebrospinal fluid volume over

time, as it may represent a sensitive biomarker of the development and progression of

cerebral edema. The initial cohort consisted of one hundred and fifty-five CT scans.

Preprocessing was performed using a generalized estimating equations model to

calculate age-adjusted cerebrospinal fluid volume in the brain. The results of the study

showed that the decrease in cerebrospinal fluid volume over time correlated with the

volume of the infarction, the presence of cerebral edema and the degree of displacement

of the midline structures [6]. For comparison, Dhar R. et al. [30] presented an automated

method for segmenting liquor spaces using a random forest machine learning ensemble

with geometric active contour segmentation. In 38 patients, the cerebrospinal fluid

spaces of the brain were marked within 6 hours from the onset of stroke, and then 24

hours from the onset of the disease. This approach made it possible to accurately track

narrowing of the subarachnoid spaces of the brain as a correlative indicator of CSF

volume. Pearson correlation coefficients between changes in CSF volume and normal
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values were statistically significant. The developed algorithms represent potential for

future research and may serve as a biomarker for the severity of cerebral edema. The

outcome of patients with acute ischemic stroke depends on the quality and timeliness of

treatment, so the risks of complications should be taken into account when deciding on

a specific type of therapy. Yu Y. et al. [92] developed a method for predicting the

location and degree of hemorrhagic transformation in stroke, as the most severe

complication after reperfusion therapy. Perfusion and DWI images of one hundred

sixty-five patients receiving reperfusion therapy were analyzed using five machine

learning approaches, with spectral kernel regression demonstrating an accuracy of 83.7

± 2.6%. In a multicenter retrospective study [6, 82], researchers assessed the predictive

ability of hemorrhagic transformation using MR perfusion data. MR perfusion imaging

data were collected from 263 patients from four medical centers and served as input to

linear and nonlinear predictive models with an average accuracy of >85% in predicting

IS [6]. Nielsen A. et al. [94] conducted a study using a neural network they created with

9 biomarkers as input to calculate lesion volume in patients receiving intravenous

thrombolytic therapy (IVT). The baseline data of 35 patients receiving intravenous IVT

and 29 patients from the control group were compared. This model predicted final

infarct volume with 88% accuracy. Bentley P. et al. [93], based on data from one

hundred and sixteen patients (computed tomography and clinical severity scores)

receiving IVT, developed a system to predict the risk of symptomatic intracerebral

hemorrhage after intravenous thrombolysis therapy [6]. In their study, the SLM-based

system provided better prediction than traditional prediction tools based on expert

judgment data such as intracerebral hemorrhage after thrombolysis, early signs of

infarction, hyperdense cerebral artery sign, age, and NIHSS scores [6].

Machine learning algorithms can also help predict motor disorders in stroke

patients. Forkert N. D. et al. [83] used 12 support vector machine classification models

to process MRI images to calculate the appropriate Modified Rankin scale (mRS) score

for ischemic stroke patients over 30 days, using parameters that included different

lesion involvement. brain regions, stroke laterality, and other additional characteristics
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such as infarct volume, NIHSS at presentation, and patient age. Superior prediction of

neurological disorders by mRS was observed by integrating additional features and

providing localization information, with multi-value mRS prediction accuracy of 56%

and dichotomous mRS prediction accuracy (0–2 vs 3–5) of 85% [6]. In a study by

Rondina J. M. et al. [48] created a model for predicting upper extremity motor deficits

in 50 stroke patients, based on structural MRI data instead of functional MRI. Thus,

there are currently successful attempts to apply all the capabilities of artificial

intelligence systems to evaluate neuroimaging data in stroke: early detection by

diagnostic imaging methods, assessment of the time of onset of the disease, lesion

segmentation, analysis of the presence and possibility of cerebral edema, as well as

prediction of complications and outcomes treatment. However, there are a number of

limitations for the further development of artificial intelligence systems [6]. The first

limitation is the sample size. Deep learning algorithms using medical imaging often

require a significant amount of data, which, due to its specific nature, may not be

available. For example, a machine learning algorithm that demonstrated superior

performance in differentiating between malignant and benign skin lesions when

compared to peer review by 21 dermatologists was trained on a dataset of nearly

130,000 images [6, 49]. A dataset of this size for public use does not currently exist.

Obstacles in sharing data between institutions, as well as the lack of funding to properly

pre-process and curate these images and restrictions on hosting such a dataset, are

responsible for some of the delays in the creation of this repository [6].

Another limitation encountered in neuroimaging-based machine learning methods

is the need to label regions of interest or “gold standard” findings in images. In other

words, in addition to collecting images, their marking, identification and segmentation

are necessary. For example, to train an algorithm that evaluates the presence or absence

of hyperdense SMA, preliminary marking by a “teacher” is required. Taking into

account the fact that the human expert resource is quite limited, there is a request to

reduce the need for its use in training artificial intelligence models. It should be noted

that most of the results of the algorithms presented by the authors have not currently
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been independently evaluated in clinical practice. The medical community will have to

undergo extensive clinical testing of the developed artificial intelligence systems on

independent data sets. Randomized studies are required to evaluate the long-term results

of artificial intelligence systems, which may change the diagnostic accuracy of these

algorithms. Also, based on independent clinical testing, it is possible to recommend

specific software products for medical practice. A separate point is the study of the

interaction between a doctor and machine learning systems, as well as the impact of this

collaboration on the decision-making process, indicators of the quality of medical care,

and the duration and patients' quality of life [6].

To partially solve the problems of subjectivity of assessment on the ASPECTS

scale, a number of authors propose the use of artificial intelligence systems. To date,

automated image analysis programs have focused on the analysis of non-contrast CT,

CT angiography, and CT- or MRI-based perfusion imaging. They are aimed at

identifying and quantifying the stroke core, penumbra, collateral blood flow status and

localization of arterial occlusion in an automatic mode. One of the software options for

diagnosing ischemic changes was presented by Wolff L. et al. [113] compared its

performance with the analytical abilities of medical specialists. Their study obtained

specificity of 89–89%, sensitivity of 41–57%, and accuracy of 0.750–0.795. The authors

concluded that the diagnostic accuracy of this system was comparable to that of

participating physicians and could assist radiologist in detecting early ischemic changes

[6, 113].

Also, a number of studies have focused on improving inter-rater agreement

through the implementation of automatic analysis systems. Thus, Delio P. R. et al.

found that the use of artificial intelligence algorithms increases the agreement between

experts from 72 to 78% [6, 34].

Also, Culbertson C. J. et al. concluded that using automatic segmentation it is

possible to increase inter-rater agreement among experts with little experience in

diagnosing ischemic stroke [6, 109].
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Several clinical software products are currently being tested to assist radiologists

in image interpretation in acute ischemic stroke, capable of automatically assessing CT

data and assigning an ASPECTS score. A limitation of these studies is the small number

of data included in the study. Also, the studies do not analyze the impact of various

reconstruction algorithms on the diagnostic performance indicators of current system

options. But the first results show that the use of these algorithms improves inter-rater

agreement when assessing the ASPECTS scale [6, 34, 40]. At the same time, the

algorithms of automatic analysis systems are not intended for use as stand-alone

diagnostic tools. They can help clinicians obtain more accurate and standardized

interpretation of CT and MRI findings, which can improve patient management and

functional outcome [6, 31].

In this regard, the introduction into clinical practice of methods of semi-automatic

and automatic processing of CT images using artificial intelligence systems, which,

according to the results of the first studies, improve the standardization of assessment.

But for the full adoption of such systems into clinical practice, their clinical testing on

independent sets of different data is necessary [6, 33].

According to Obuchowski N.A. et al. [88], there are four options for using AI

algorithms in medical imaging: (1) a first or parallel reader mode, where the AI

algorithm first provides interpretation of the CT images and then human gives

interpretations incorporating AI results, (2) a second reader mode, where the human

gives initial interpretations without AI results, then AI provides interpretation and

human gives final interpretation incorporating AI results, (3) a triage mode, where the

algorithm sorts cases according to the presence of the suspected pathology and then

human gives interpretation incorporating for a prioritized worklist of cases (4) a pre-

screening mode is applied to a set of images to identify the norm with the generation of

a clinical report, and further assessment of the remaining (classified as “unknown”)

cases by a radiologists (Figure 7).
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Figure 7 – Illustration of four use cases for AI [88]

These modes can only be used if pathological changes are correctly diagnosed by

artificial intelligence algorithms. In this case, the programs must achieve and prove the

following parameters: high accuracy, specificity and sensitivity. However, despite a

certain Obuchowski N. A. et al. [88] the order of interaction between a doctor and

artificial intelligence models, it still remains unclear how these types of complementary

assessment will affect the diagnostic efficiency of doctors, which model is the most

effective, and whether such collaboration will cause negative dynamics in the correct

interpretation of radiation images.
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Also, there are a number of restrictions for the implementation of artificial

intelligence algorithms. These include not only practical considerations such as the

compatibility of these technologies with other systems, including PACS and electronic

health records, but also the need to verify the accuracy of the programs, since most of

the results of the presented algorithms have not currently been independently evaluated

in clinical practice. According to the increasing complexity and variety of artificial

intelligence tools, the technical characteristics of these applications are not always

obvious to the neuroradiologist, especially since developers very rarely provide

complete information about their products. Thus, the doctor is faced with the dilemma

of whether or not to base his decision on the results of artificial intelligence algorithms,

without knowing in detail what is happening inside the “black box” of these systems.

This dilemma is aggravated by the fact that the accuracy of the algorithms directly

depends on the characteristics, quality and structure of the databases (tomograph, slice

thickness, presence of technical and dynamic blur artifacts) used for training, as well as

the qualifications of specialists acting as “teachers” of the software product. Also, often,

when training an automatic analysis system, publicly available databases are used

without proper verification of pathology, which cannot increase the level of confidence

of doctors in artificial intelligence algorithms.

An extremely important factor in the implementation of artificial intelligence

systems is the ergonomics of each individual automatic analysis system. With this

integration, it must be proven that their operation not only takes a small amount of time,

but is also convenient to use. A critical aspect remains the change in the radiologist’s

workflow regulations.

At the same time, the lack of a structured approach to the implementation of

artificial intelligence technologies and significant differences in the ways of using such

systems [32] cannot but affect the quality of medical care, the functional outcome of the

disease, and requires detailed study with the provision of the most effective model of

complementary assessment various pathological changes.
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Thus, only if the competence and effectiveness of the implementation of

automatic analysis systems has been proven in all aspects, improving the working

conditions of the radiologist and increasing the qualifications of his assessment, will

there be further discussion of the successful artificial intelligence implementation in

healthcare.
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CHAPTER 2. GENERAL DATA ON CLINICAL MATERIAL AND RESEARCH

METHODS

2.1. Development of a database for CT examinations of patients with a clinical

presentation of middle cerebral artery stroke

To study the quality of interpretation of CT by radiologists, as well as the

diagnostic effectiveness of automated CT image analysis systems, at the second stage of

the dissertation research, a database was developed [19], consisting of non-contrast CT

of the brain of 150 patients with the clinical presentation of middle cerebral artery

stroke admitted to the regional vascular center of St. Petersburg in the period from

December 1, 2020 to December 30, 2021(according to the Los Angeles Motor

Deficiency Scale - LAMS).

The clinical presentation of all patients included middle cerebral artery syndrome

(contralateral to the lesion hemiplegia or hemiparesis, hemihypesthesia, hemianopsia).

In 43 patients (35%), hemiparesis was more pronounced in the upper extremities. In 15

patients (1%) patients, gaze paresis in the direction of the lesion was detected. 84

patients (56%) were diagnosed with various types of aphasia - efferent and afferent

motor aphasia, sensory aphasia, and their combination [12]. In 10 patients (6%), the

clinical picture included severe focal hemispheric symptoms of the hemitype, including

total aphasia or anosognosia.

All patients underwent a comprehensive clinical and neurological examination,

which included a thorough collection and analysis of complaints, medical history,

taking into account concomitant somatic pathology, and an objective and neurological

examination. The patients were examined according to the standard procedure for

examining a neurological patient. The degree of neurological deficit and severity of

stroke was assessed at admission and over time using the NIHSS scale, activity in daily

life - using the Barthel and Rivermead Mobility Index, intellectual-mnestic disorders -
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using the MMSE (Mini-mental State Examination) scale, functional capacity - using the

Rankin scale on the day of admission and upon discharge from the hospital.

Concomitant somatic pathology was diagnosed in 120 patients (80% of patients):

arterial hypertension in 101 patients (67%), diabetes mellitus in 23 patients (15%), atrial

fibrillation in 20 patients (13%), myocardial infarction in 3 patients (2%).

In 100 patients, middle cerebral artery stroke was confirmed, in 50 patients’

ischemic stroke was excluded. In 79 (79%) patients, the cardioembolic stroke was

diagnosed, in 21 (21%) - atherothrombotic, according to the TOAST classification

(Trial of Org 10172 in Acute Stroke Treatment). For these patients, the diagnosis of

ischemic stroke was established by a neurologist in accordance with the

recommendations of the Ministry of Health of the Russian Federation and verified using

CT angiography and CT perfusion data [12]. Patients with ischemic stroke excluded

also underwent CT angiography, CT perfusion and a following CT (after 24 hours),

which did not reveal pathological changes.

CT were obtained using a GE Revolution EVO 128 (148 CT) and a Toshiba

Aquilion 64 (2 CT) CT scanner. CT were carried out in a standard position - lying on

the back, arms along the body, in a headrest, without holding the breath. Scanning was

carried out from the convex to the level of the atlantoaxial joint. The matrix size was

512x512, slice thickness 5 mm, with the possibility of reconstruction up to 1.3 mm

(reconstruction algorithms - convolution Kernel), pitch factor 0.53, DFOV (display field

of view) along the X/Y axis was 180-324 mm.

To confirm or exclude stroke, patients additionally underwent CT angiography

and CT perfusion. CT angiography was also performed in the standard (described above)

setup, with the introduction of a nonionic contrast agent (Omnipaque 300 mg/ml) in a

volume of 80 ml using an automatic syringe injector. When using it, the injection rate

was 2-3 ml/s with a delay in the start of scanning of 50-60 s. The tomography range is

from the aortic arch to the cerebral convex. The administration of a contrast agent was

performed for health reasons without taking into account general contraindications

(serum creatinine >1.5 mg/dL (>130 μM/L) and hyperthyroidism). The matrix size was
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512x512, slice thickness was 0.6 mm, DFOV (display field of view) along the X/Y axis

was 180–412 mm.

CT perfusion was performed with intravenous contrast with a non-ionic contrast

agent (Omnipaque) with an iodine concentration of 300 mg/ml, a volume of 50 ml,

bolus with an automatic syringe-injector into the cubital vein at a rate of 5-7 ml/second.

Data recording began 4 seconds after the start of contrast agent administration and

continued for 50 seconds at 1 second intervals. Tomography parameters: slice

collimation 4-8 mm, tube voltage – 80 kV, 200 mA, tube rotation time – 1 s. Scanning

was carried out without holding your breath, the slice block (8.5 mm) was positioned to

cover the largest territory of middle cerebral artery. Post-processing of the dynamic

scanning series data was carried out in a specialized software application. The effective

radiation dose for the entire complex of CT studies averaged 20 mSv.

All data was depersonalized using the Launch DicomAnonymize program.

The database, after verification by CT angiography and CT perfusion, included

100 patients with confirmed thrombosis of the middle cerebral artery and signs of

ischemic changes in the most acute and acute stages in this pool, as well as 50 patients

with a diagnosis of MCA stroke was not confirmed (including during the following non-

contrast CT study after 24 hours). Database registration certificate RU 2022620850 [19].

The database combines: data from non- contrast CT of the brain (DICOM

formats), CT angiography of cerebral vessels, brachiocephalic arteries (DICOM format),

CT perfusion (presence of penumbra area and the mismatch of the stroke core, DICOM

and JPEG formats); information about the pathological process - the presence of signs

of acute and acute cerebrovascular accident, the presence of changes in the control CT

study (hemorrhagic transformation of stroke, absence of formed ischemia) (Figure 8).
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Figure 8 – An example of data from a database of CT images of patients with acute

ischemic stroke clinical presentation

The database also includes information such as the gender and age of patients

(Table 1), the period of CT scanning from the onset of the disease (up to/more than 6

hours), the stroke territory (left/right middle cerebral artery), the segment of the middle

cerebral artery in which thrombosis was detected (Table 2), features of the development

of the circle of Willis (posterior/anterior trifurcation of the ICA/closure), the presence of

signs of ischemic stroke (assessment was made based on the consensus of three

neuroradiologists with more than 10 years of experience in emergency medicine, as well

as based on CT perfusion data [46]), scores on the ASPECTS scale (Table 3), CT

perfusion data (presence of penumbra, percentage of nucleus to penumbra ratio), data on

thrombus extraction, presence of a control non-contrast CT study (scores on

ASPECTS/data according to the Heidelberg classification, ECASS criteria), outcome

(Table 4), as well as technical data (tomograph/presence of dynamic artifacts/slice

thickness (non-contrast CT/CTA)/reconstruction algorithms (convolution Kernel)).
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Table 1 – Distribution of data on gender and age of patients included in the

database

Patient group
Number

of
people

Average
age Fe

m
al
e

%

M
al
e

%

Patients with confirmed
diagnosis of AIS 100 72,7 (36

- 95) 52 52

51,3

48 48

48,7

Patients with excluded
diagnosis of AIS 50 66,8 (23-

96) 25 50 25 50

Table 2 – Distribution of data on the period of CT scanning from the onset of the

disease, stroke area, occluded segment of the middle cerebral artery in patients

included in the database

Patient group

N
um

be
ro
fp
eo
pl
e Time to CT scan

imaging
Sides of

hemispheres

Thrombosis
of the MCA
segment

Le
ss
th
an

6
ho
ur
s

M
or
e
th
an

6
ho
ur
s

M
or
e
th
an

24
ho
ur
s

Le
ft
M
C
A

R
ig
ht

M
C
A

М1 М2

Patients with confirmed
diagnosis of AIS 100 69 31 71 52 48 79 21

Patients with excluded
diagnosis of AIS 50 50 0 28 - - - -



48

Table 3 – Distribution of data on signs of ischemic stroke and ASPECTS rating in

patients included in the database

Patient group
Number

of
people

Signs of ischemic stroke ASPECTS

HAS EIC 10 от 9
до 6

от 5
до 0

Patients with confirmed
diagnosis of AIS 100 79 67 19 51 30

Patients with excluded
diagnosis of AIS 50 0 0 50 0 0

Table 4 – Distribution of CT perfusion, thrombus extraction, and outcome data

Pa
tie
nt
gr
ou
p

N
um

be
ro
fp
eo
pl
e

Perfusion
IT
E

Patient Outcome Data

Pe
nu
m
br
a

Stroke core ratio

H
em

or
rh
ag
ic

tra
ns
fo
rm
at
io
n
of

st
ro
ke

N
eg
at
iv
e
af
fe
ct
iv
e

of
A
SP
EC

TS
ra
tin
g
w
ith
in
24

ho
ur
s

D
ea
th

le
ss
th
an

40
%

m
or
e
th
an

40
%

Patients with
confirmed
diagnosis of

AIS

100 100 82 18 73 33 49 20

Patients with
excluded

diagnosis of
AIS

50 0 0 0 0 0 0 0

The base is intended for training radiologists from offices and departments of

computed tomography with different experience and experience in identifying signs of

ischemic changes in the most acute and acute stages in the middle cerebral artery basin,
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testing the qualifications of radiologists, testing automated CT analysis systems of

images obtained by computed tomography.

Based on the database, collections of images 2 of non-contrast CT of the brain

was generated. The first collections of images included non-contrast CT of 50 patients

with confirmed stroke and 50 patients in whom this diagnosis was excluded

(pathology/normal ratio - 1:1), using CT perfusion, CT angiography, and also

conducting a following CT scan every other day. Three options of collections of images

were prepared for the third (1A) and fifth stages (1B and 1C) of the dissertation research

with a changed order of brain CT. The collections of images №2 included non-contrast

CT of 50 patients with confirmed MCA stroke, as well as occlusion of the M1 segment

of the middle cerebral artery (for further more correct assessment on the ASPECTS

scale), according to CT angiography and CT perfusion (Table 5). Three options of

collections of images were prepared for the third (2A) and fifth stages (2B and 2C) of

the dissertation research with a changed order of brain CT scans (Table 6).

Table 5 – Distribution of patients in database-based samples

Patient group Number
of people Collection of images 1 Collection of

images 2

Patients with confirmed
diagnosis of AIS 100 50

100

50

50

Patients with excluded
diagnosis of AIS 50 50 0
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Table 6 – Stages of testing radiologists with correlation with the options of CT

collections of images used

Research scale Collection of
images

Third stage of
the study

Assessment in CT
examinations by radiologists

(n=21) with different
experience and expertise in

emergency medicine

Presence/absence
of MCA stroke,
side of stroke

1А

Side of stroke,
final ASPECTS

rating
2А

Fifth stage of the
study

Assessment in CT
examinations by radiologists
(n=7) with three years of
experience and different
expertise in emergency

medicine

Presence/absence
of MCA stroke,
side of stroke

1В

Side of stroke,
final ASPECTS

rating
2В

Assessment in CT
examinations by radiologists
(n=7) with three years of
experience and different
expertise in emergency

medicine

Presence/absence
of MCA stroke,
side of stroke

1С

Side of stroke,
final ASPECTS

rating
2С

The inclusion criteria in collections of images №1 for patients with confirmed

MCA stroke is the presence of acute ischemic stroke, verified using CT angiography

and CT perfusion [4, 5].

Exclusion criteria for this group of patients:

1) Recurrent middle cerebral artery stroke;

2) Ischemic posterior circulation stroke and anterior cerebral artery stroke;

3) Cerebral venous and sinus thrombosis;

4) Chronic occlusion of arteries of the anterior circulation;

5) No change on CT perfusion maps.
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Criteria for inclusion in the study in collections of images №1 for patients in

whom the diagnosis of stroke was excluded:

1) absence of CT signs of ischemic changes according to non-contrast CT in the middle

cerebral artery territory, with confirmation of the absence of thrombosis of the

brachycephalic and cerebral arteries and veins using CT angiography, as well as CT

perfusion;

2) absence of CT signs of ischemic changes in the middle cerebral artery territory

according to a following non-contrast CT performed after 24 hours.

Exclusion criteria for this group of patients:

1) stroke and other pathological changes detected by CT.

The inclusion criteria in collections of images № 2 was the presence of middle

cerebral artery stroke (with thrombosis of the M1 segment), confirmed by CT

angiography and CT perfusion maps.

Exclusion criteria:

1) Recurrent middle cerebral artery stroke;

2) Ischemic posterior circulation stroke and anterior cerebral artery stroke;

3) Cerebral venous and sinus thrombosis;

4) Chronic occlusion of arteries of the anterior circulation;

5) No change on CT perfusion maps.

2.2. Problems and issues of inter-rater reliability among radiologists with

different experience and expertise in emergency medicine in the diagnosis of

middle cerebral artery ischemic stroke

At the third stage of the thesis work, two types of testing were carried out.

The first testing was attended by 21 radiologists (Table 7), working either in

regional vascular centers (n=12), or in other medical institutions (general hospitals) not

related to urgent medicine (n=9) and without permanent experience in stroke assessment.

Doctors were divided into groups according to their experience: less than three years

(n=7), three years to less eight years (n=7) and more than eight years (n=7).
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Table 7 – Data of radiologists with different experience and expertise in emergency

medicine at the first stages of research

Hospital RVC GH

Years of experience <3 years 3 - 8
years

> 8
years <3 years 3 - 8

years > 8 years

Number 4 4 4 3 3 3

For the evaluation, the collections of images 1A of depersonalized data from the

generated database was used, which included 50 CT of patients with verified ischemic

stroke, and 50 CT studies of patients with an unconfirmed diagnosis of stroke.

CT of patients with confirmed middle cerebral artery stroke from the first

collections of images were consensually assessed by three radiologists with expert

qualifications in urgent neuroradiology and more than 10 years of experience. The

radiologists jointly came to the decision that all CT with confirmed stroke showed signs

of early ischemic changes (with ASPECTS 9 and lower) in the territory of the occluded

middle cerebral artery.

During the first testing, in the process of analyzing non-contrast CT, specialists

filled out a form with answers, interpreting CT images as normal or pathological, as

well as the presence of such signs as the side of the lesion, the presence of a hyperdense

artery sign, a sign of loss white- gray matter differentiation (also including includes the

“insular ribbon sign” and the disappearing basal ganglia sign), as well as sulcal

effacement and a hypoattenuation.

After providing non-contrast CT to radiologists, the CT scans were viewed using

the RadiAntDICOM Viewer program (with the ability to construct MPR image

reformation), as a universal tool installed on any computer. Images were viewed on HP

EliteDisplay S340c monitors with a resolution of 3440x1440 megapixels, Windows 10

operating system.

Window settings included both standard values of window width of 80 HU and

window level of 40 HU, and non-standard values with narrow window width and
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window level components of approximately 35-45 HU for width and 35-45 HU for

window level, respectively, for evaluation according to the ASPECT scale.

The experts independently assessed each study and marked the signs if present as

“1”, if absent as “0”. Next, all assessments were combined by an independent researcher

into a common table for further statistical processing of the results.

Case 1 – Noncontrast brain CT image of the brain with a hyperdense artery sign.

The absolute CT density of the right middle cerebral artery is +63 HU (should be at

least +43 HU), with a left MCA ratio of 1.2 (Figure 9).

Figure 9 – Right middle cerebral artery ischemic stroke. СT examination data,

Case N1



54

Case 2 – Noncontrast brain CT image with loss of basal ganglia (lentiform

nucleus) sign of the right hemisphere (Figure 10).

Figure 10 – Right middle cerebral artery ischemic stroke. СT examination data,

Case N2
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Case 3 – Noncontrast brain CT image with a sign of sulcal effacement of the left

frontal lobe (Figure 11).

Figure 11 – Left middle cerebral artery ischemic stroke. СT examination data,

Case N3

Case 4 – Noncontrast brain CT image (Figure 12), with a hypoattenuating brain

tissue - Insular Ribbon sign (up to +20 HU).
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Figure 12 – Left middle cerebral artery ischemic stroke. СT examination data,

Case N3

The second testing involved 15 radiologists (Table 8), working only in the RVC,

divided into equal groups according to years of experience: less than three years (n=5),

three years to less eight years (n=5), more than eight years (n=5). Taking into account

the specifics of their work and the routine use of the ASPECT scale to assess the

prevalence of ischemic changes in the territory of the middle cerebral artery,

radiologists were asked to rank the ASPECTS score according to their subjective

opinion. For the evaluation, the collections of images 2A of depersonalized data from

the generated database was used, which included 50 CT of patients with verified

ischemic stroke (with identified acute occlusion of the M1 segment of the MCA).
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Table 8 – Data of radiologists with different years of experience of the second stage

of testing

RVC

Years of experience <3 years 3 - 8 years <8 years

Number 5 5 5

Descriptive statistics methods were used to carry out the statistical analysis. The

analysis was performed using SPSS Statistics 19 and the Python programming language.

Based on the results of the evaluation of the first test, calculations were made of

such parameters as sensitivity, specificity, accuracy for assessing the presence/absence

of MCA stroke (ROC analysis was carried out and the area under the ROC curve was

calculated) [4, 77].

When assessing CT signs of ischemic stroke, statistical analysis included

determining the coefficient of inter-rater agreement (Fleiss kappa) regarding CT signs

of ischemic stroke [64]. The coefficient of interrater agreement (Fleiss’s kappa) was

assessed as follows: slight agreement, 0.00 to 0.20; fair agreement, 0.21 to 0.40;

moderate agreement, 0.41 to 0.60; substantial agreement, 0.61 to 0.80; or almost perfect

agreement, 0.81 to 1.00.) [75].

Based on the results of the assessment of the second test, statistical analysis

included the determination of inter-rater agreement coefficients (Cohen's kappa - by

alternately assessing the agreement of experts with each other and Fleiss's kappa) [59].

The results of assessing interrater agreement using Cohen's kappa (k) are presented as a

range of values from minimum to maximum (min k - max k), as well as the mean value

(μ). The use of two coefficients to measure inter-rater agreement is due to different

options for statistical analysis in the literature and is necessary for correct comparison of

the obtained data with the data of other researchers. In addition, statistical analysis was

performed by dichotomizing ASPECTS scores: ≤ 6 and > 6 and ≤ 7 and > 7, as the

literature differs in its discussion of the cutoff ASPECTS score correlated with worse

functional outcome as well as the risk of intracerebral hemorrhage [112]. The
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coefficients of interrater agreement (Cohen’s kappa and Fleiss’s kappa) were assessed

as follows: slight agreement, 0.00 to 0.20; fair agreement, 0.21 to 0.40; moderate

agreement, 0.41 to 0.60; substantial agreement, 0.61 to 0.80; or almost perfect

agreement, 0.81 to 1.00 [75].

2.3. Testing of automated CT image analysis systems

At the fourth stage of the dissertation research, we selected for testing three

software programs based on convolutional neural networks, positioning themselves as a

software device for computer-aided detection, used by a radiologist to interpret the

nature and distribution of pathological changes in brain tissue by assessing the ASPECT

scale based on data CT.

Below are given the testing selection criteria:

1. Availability of a test online access;

2. The description of the software program indicates the function of rating areas with

early ischemic changes in the acute period (ASPECTS);

3. The declared accuracy in diagnosing middle cerebral artery stroke is more than 75%

(taking into account the results of first stage of the thesis work, described in Chapter

3).

According to the inclusion criteria, for software program were selected (two

systems of domestic developers and one foreign system). Since the research was aimed

at the general assessment of diagnostic indicators of currently available systems and not

at the assessment of a particular product, all programs in the research were disguised as

A, B, C, D. The accuracy, sensitivity and specificity of automated CT image analysis

programs declared by the developers are presented in Table 9.
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Table 9 – Stated indicators of diagnostic effectiveness of software products

participating in the study

Automated CT analysis systems Accuracy Sensitivity Specificity

А 97,0 99,0 94,0

B 83,0 82,0 82,0

C 80,0 90,0 70,0

Program A is positioned by the developers as software based on artificial

intelligence (AI) technology designed for processing CT images of the brain in cases of

suspected stroke for the purpose of early detection of urgent pathology (ischemic stroke)

and notification of it. The requirements for CT images of the brain to ensure optimal

performance of program A are presented in Table 10.

Table 10 – Recommended image acquisition parameters for algorithmic processing

purposes

Scan area

In CT examinations recommended the
area from the first and second cervical
vertebrae level to cerebral convexity is

scanned

Image matrix size 512х512

Slice thickness 0,625-5 mm

DFOV 180-324 mm

In accordance with the ASPECTS recommendations, 10 regions of interest are

identified for each cerebral hemisphere, which are outlined in the image with a yellow

outline. Regions of interest identified by the ASPECTS algorithm as having EIC are

outlined in red and appear in the ASPECTS reporting panel to the right of the viewport.

The overall ASPECTS score is displayed on the reporting panel and reflects the number

of areas out of 10 identified as unaffected (shown in green), while the number of areas

out of 10 identified as involved in the disease process are shown in red. Additionally,
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the user can turn image overlay AOIs on or off and manipulate the incoming non-

contrast CT image by prompting for the “ASPECTS: ON/OFF” annotation in the

viewing area (Figure 13).

Figure 13 – Interface and result of non-contrast CT processing - brain research

with Artificial intelligence software A

Similarly, Program A scores 10 (without EIC), all areas in the reporting panel are

shown in gray, and all area overlays in the viewport are shown in yellow.

Program A was trained on a database consisting of CT scans obtained from the

Prove-IT multicenter clinical trial (ClinicalTrials.gov identifier: NCT02184936)

involving patients aged 22 years and older. For analytical validation of Program A, a

data set of 200 patients was used, from two clinical trials and two randomized

controlled trials: Prove-IT (N = 40, ClinicalTrials.gov identifier: NCT02184936),

INTERRSeCT (N = 59, JamaNetwork.com identifier: 2702146), ESCAPE (N = 16,

ClinicalTrials.gov Identifier: NCT01778335), ESCAPE-NA1 (N = 85,

ClinicalTrials.gov Identifier: NCT02930018). Test data was obtained from medical

institutions in various geographical regions (Canada, USA, EU, Asia), performed on
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different computed tomographs (GE, Siemens, Philips, Toshiba). CT images of patients

included in the analytical validation database were representative in nature with a wide

range of clinical severity grades (ASPECT score range 0–10, median ASPECTS score =

8; NIHSS score range 0–30, median NIHSS score = 17) and time from onset of

symptoms to CT < 360 minutes.

Program B ((Registration No.58.29.32-001-14161592-2022) is software designed

to process and maintain the quality of description of medical diagnostic images of

patients with acute cerebrovascular accident. The program determines the presence of

foci of ischemia and segments them, highlighting areas in the form of a mask (red color

corresponds to areas of acute ischemia, blue - chronic ischemia). The system also allows

you to mark the territories of the middle cerebral artery basin, determined on CT when

assessed according to the ASPECTS scale, in the form of a mask (Figure 14).

Figure 14 – An example of identifying area ASPECTS with early ischemic CT

signs in the territory of the left middle cerebral artery using artificial intelligence

software B

Each color corresponds to one region:

• red – caudate nucleus (C),

• pink – lentiform nucleus (L),

• yellow – internal capsule (IC),
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• orange – insular cortex (I),

• green – anterior part of the cortical region of the MCA (M1),

• purple – cortical region of the territory of middle cerebral artery, lateral to the

insular cortex (M2),

• turquoise – posterior part of the MCA cortex (M3),

• blue – anterior area of the territory of middle cerebral artery, located

immediately above and rostral to M1 (M4),

• mint – lateral area of the territory of middle cerebral artery, located immediately

above and rostral to M2 (M5),

• blue – posterior area of the territory of middle cerebral artery, located

immediately above and rostral to M3 (M6).

The program was trained and validated on a data set of 600 brain CT of men and

women over 18 years of age, generated in accordance with GOST R 59921.5-2021 [18].

Program C (Registration No. 2013616688) is intended to support medical

decision-making for the work of radiologists and neurologists in assessing the degree of

brain damage in ischemic stroke using images obtained on computed tomographs (CT).

The program provides:

● registration and visualization of CT images of the patient’s brain in the DICOM

standard;

● automatic segmentation of CT hypodense areas in native CT images of the head;

● marking of focal corresponding to areas of the ASPECT scale with calculation of

the total score characterizing the identified changes;

● forming a conclusion with an assessment of the volume of the hypoattenuating

area and the score on the ASPECTS scale;

● representation of the affected areas ASPECTS in the form of a schematic image.

Recommended slice thickness for CT studies is >1 mm.

Areas of the brain in which pathological changes are suspected are highlighted in

light blue in the form of a mask. If they are located in areas corresponding to ASPECTS

areas, the total score on this scale is assessed. An additional service marks in beige
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hypoattenuating areas that are highly likely to be cystic atrophic changes (Figure 15).

(Figure 15).

Figure 15 – An example of highlighting a zone of interest by Artificial intelligence

software C, with the calculation of affected areas according to ASPECTS in the

territory of middle cerebral artery, as well as cystic-atrophic changes in the left

insula

The developers indicate that the service’s conclusion contains a probabilistic

assessment of the presence of ischemic stroke and a score on the ASPECTS scale.

Limitations of using the service include CT artifacts at the scanning level,

surgical interventions performed on the brain, the presence of concomitant pathology

(oncology), computed tomography slice thickness of more than 3 mm, as well as

technical research artifacts that do not relate to the patient (related to a malfunction of

the tomograph). It is worth noting that software product C did not interpret sixteen CT

scans of the brain from collections of images № 1, due to an unrecoverable technical

error when loading CT images.

Testing of software products was carried out using the method of analytical

validation - assessing the effectiveness of an artificial intelligence system by using

reference data with confirmation of the program’s ability to reproducibly and reliably

generate the intended technical results of calculations from input data [15, 18].
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For testing, collections of images №1 of images was used. The software products

provided the results of CT image analysis in the form of ASPECT score and side of the

lesion. Since all CT studies with confirmed stroke were previously consensually

assessed by three doctors with expert qualifications in urgent neuroradiology (with

experience in diagnosing stroke), as a result of which they jointly came to the decision

that all CT studies with confirmed stroke had signs of early ischemic changes (with

ASPECTS 9 and below), then the answer to the programs “ASPECTS 10” was

interpreted as the absence of MCA stroke, the answer “ASPECTS 9 and below” as the

presence of MCA stroke.

Statistical analysis was performed using SPSS Statistics 19 and Python

programming language. The performance indicators for detecting ischemic stroke in the

middle cerebral artery basin on computed tomograms were assessed (sensitivity,

specificity, positive likelihood ratio, negative likelihood ratio, number of true positive,

false positive, false negative and true negative responses, as well as accuracy). To

compare these indicators with the results of doctors tested at the third stage of the

dissertation research, for RVC radiologists with less than three years of experience and

more than 8 years, as well as their GH colleagues with less than three years of

experience, additional diagnostic efficiency indicators were calculated (positive

likelihood ratio result, the likelihood ratio of a negative result, the number of true

positive, false positive, false negative and true negative responses). In addition, graphs

were constructed to evaluate the quality of binary classification - characteristic curves

(ROC curves) [4, 7]. During the analysis, all metrics were assessed in the range of 0–1:

<0.6 - unsuitable; 0.61–0.8 - requires improvement; > 0.81 - can be accepted for clinical

validation [15].
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2.4. Joint evaluation of CT examinations by an automated CT image analysis

system and radiologists

At the fifth stage of the dissertation research, we studied possible options for

introducing automated CT image analysis systems as a method for diagnosing middle

cerebral artery stroke in the clinical practice of a radiologist [88].

Program A was selected for clinical validation. The program was tested on two

collections of images of CT. Radiologists with less than three years of experience and

different skills in assessing ischemic stroke from the third stage of the dissertation

research (described in Chapter 3) were also involved. Eleven months passed between

the third and fifth stages; during the previous testing, the radiologists were not told the

correct answers. Before starting this testing, radiologists were familiarized with the

diagnostic performance indicators of the automated CT analysis system used. The

distribution of radiologists between groups 1 and 2 is described in Table 11.

Table 11 – Distribution of radiologists by groups

With experience in RVC No experience in RVC

1 group 4 -

2 group - 3

A joint analysis of test collections of images used for testing by radiologists and

an automatic analysis system was carried out with modes of two options (time interval

between tests 2 months):

1. Primary interpretation of non-contrast CT images by a radiologist, followed by

providing him with interpretation data from the automatic analysis system and the

specialist’s possible adjustment of his answer.

2. Primary interpretation of non-contrast CT images by an automated CT analysis

system and subsequent assessment, taking into account the program interpretation data,

by a radiologist.
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In the first option, specialists in the process of analyzing collections of images 1B

filled out a form with answers, interpreting CT images as normal or pathological, as

well as the presence of the affected side. Experts independently assessed each study and

marked them in the presence of stroke as “1”, in the absence as “0”. After providing

interpretation data to the automated CT analysis system, they could adjust their answer.

Similarly, radiologists completed a form when evaluating CT scans from collections of

images 2B to assess side of stroke, areas of early ischemic change, and final ASPECTS

score. The ASPECT score was made by subtracting 1 point from 10 for each significant

sign of early ischemic changes (loss gray/white matter differentiation, sulcal effacement,

and hypoattenuation) in each region. Next, radiologists were informed of the results of

the evaluation of the artificial intelligence algorithm (zones according to ASPECTS,

final score and side of the lesion). Radiologists could accept or rejects AI findings

(ASPECTS area).

In the second version of testing, carried out 2 months later, when assessing CT

from collections of images 1C, radiologists were initially informed of the program

interpretation data on the presence/absence of MCA stroke and the affected side. Next,

the radiologists either agreed with the artificial intelligence, or offered their own version

of interpretation, and also filled out the answer form again, marking studies in the

presence of stroke as “1”, in the absence as “0”. Similarly, in the evaluation of the

collections of images 2C, radiologists were provided with data from the system's

assessment of stroke side, areas of early ischemic change, and final ASPECTS score.

The radiologist could both agree with the interpretation of the software product and

form his final opinion on the side of the lesion, the extent of involvement of the territory

of the blood supply of the middle cerebral artery in the ischemic process according to

ASPECTS (Table 12).
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Table 12 – Stages of testing radiologists with correlation with the options of CT

collections of images used, as well as the time interval of the study

Research stage
Collection

s of
images

Time
interval

Assessment in CT examinations
by radiologists (n=21) with
different experience and
expertise in emergency

medicine

Presence/absence of
MCA stroke, side of

stroke
1А

23.05-
03.06.2022

Side of stroke, final
ASPECTS rating 2А

Assessment in CT examinations
by radiologists (n=7) with three

years of experience and
different expertise in
emergency medicine

Presence/absence of
MCA stroke, side of

stroke
1В

03.05-
05.05.2023

Side of stroke, final
ASPECTS rating 2В

Assessment in CT examinations
by radiologists (n=7) with three

years of experience and
different expertise in
emergency medicine

Presence/absence of
MCA stroke, side of

stroke
1С

01.07-
04.07.2023

Side of stroke, final
ASPECTS rating 2С

The CT images was viewed using the RadiAnt DICOM Viewer program (with

the ability to construct MPR image reformation), as a universal tool installed on any

imaging computer. Images were viewed on HP EliteDisplay S340c monitors with a

resolution of 3440x1440 megapixels, Windows 10 operating system.

Statistical analysis of the obtained data was carried out using IBM SPSS

Statistics 19 and the Python programming language. According to the fact that the

distribution of most quantitative parameters did not obey the law of normal distribution,

nonparametric tests were not used. Given the lack of a significant difference between

the results of the agreement coefficients of Cohen's kappa and Fleiss's kappa at the third

stage of the study, the assessment was carried out only with the determination of Fleiss's

kappa. Statistical analysis to determine agreement regarding ASPECTS ischemic stroke
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scoring included determination of the interrater agreement coefficient (Fleiss's kappa)

[64]. The coefficients of interrater agreement (Cohen’s kappa and Fleiss’s kappa) were

assessed as follows: slight agreement, 0.00 to 0.20; fair agreement, 0.21 to 0.40;

moderate agreement, 0.41 to 0.60; substantial agreement, 0.61 to 0.80; or almost perfect

agreement, 0.81 to 1.00.
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CHAPTER 3. RESULTS OF CT IMAGING OF MIDDLE CEREBRAL ARTERY

STROKE BY RADIOLOGISTS DEPENDING ON THEIR EXPERIENCE AND

EXPERTISE

In order to study the diagnostic performance of radiologists and their interrater

agreement regarding ASPECTS scores, two tests were conducted in the third stage of

the dissertation research.

Twenty-one experts took part in the first test. Radiologists were initially divided

into two groups: radiologists working in region vascular center (RVC), and their

colleagues working in general hospitals (GH), who had little experience in diagnosing

ischemic stroke in the most acute and acute stages. Within the group, experts were

divided depending on experience in clinical practice: more than eight years, three years

to less eight years, and less than three years - the ratio of RSC and SOP doctors was 4/3

in each group, divided by work experience [4].

Experts were asked to assess the presence/absence of stroke of ischemic type

based on non-contrast CT images of the brain. Also, radiologists had to establish the

presence of such signs as a hypoattenuation, sulcal effacement, loss gray/white

differentiation, as well as hyperdense middle cerebral artery sign and "point" symptom

[4].

The results of the first test assessing the diagnostic indicators of radiologists with

different experience in clinical practice and expertise in urgent neuroradiology are

presented in Table 13.
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Table 13 – The effectiveness of identifying ischemic changes depending on

their experience and expertise

Years of
experience Specialization Sensitivity, % Specificity, % Accuracy, %

>8 years
RVC 90.5 97.0 93.8

GH 85.3 79.3 82.3

3-8 years
RVC 92.5 95.0 91.3

GH 83.3 86.7 85.0

<3 years
RVC 84.0 92.5 88.3

GH 57.3 92.7 75.0

According to our study, there is a direct dependence of the degree of diagnostic

strength in the detection of ischemic changes in the middle cerebral artery territory by

computed tomography on the years of practice of radiologists and their experience in

the regional vascular center. For radiologists from the GH, this correlation did not hold.

It is worth noting that there is a jump in the number of correct interpretations of CT

images among experts in each group with more than three years in clinical practice.

Based on these statistical results, we can conclude that the degree of diagnostic strength

of radiologists depends on experience and expertise in emergency medicine [4].

The level of over- and under-diagnosis among RVC radiologists more than three

years of experience is lower than among RVC specialists with less than three years of

experience and GH doctors in general. It is worth noting that all radiologists

participating in the testing were more prone to overdiagnosis; this trend is more

pronounced among GH specialists with less than three years of experience. Also, based

on the results described above, the experience of specialists who do not have skills in

emergency medicine does not affect their diagnostic effectiveness [4]. To assess the

relationship between sensitivity and specificity, ROC curves were constructed to

calculate the area under the curve (AUC) for all analyzed groups (Figure 16).
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Figure 16 – ROC curve to assess the diagnostic efficiency of radiologists at

the regional vascular center (A), and general hospitals (B) with different years of

experience: I - more than 8 years, II - 3-8 years, III - less than three years

To assess the agreement between the study groups of specialists regarding CT

signs of ischemic stroke in the MCA territory, Fleiss's kappa was calculated (Table 14).

Table 14 – Agreement between radiologists with different experience and expertise

in emergency medicine regarding CT signs of ischemic stroke in the middle

cerebral artery territory

Years of experience > 8 years 3- 8 years < 3 years

Specialization RVC GH RVC GH RVC GH

Fleiss's
Kappa

Hyperdense
middle cerebral
artery sign

0,750 0,406 0,697 0,631 0,591 0,095

РСЦ 0,684 СОП 0,318

Loss of grey-
white

differentiation

0,671 0,519 0,626 0,530 0,599 0,114

РСЦ 0,629 СОП 0,378
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Fleiss's
Kappa

Sulcal
effacement

0,689 0,254 0,416 0,454 0,433 -0,020

РСЦ 0,525 СОП 0,244

Hypoattenuation
0,535 0,495 0,493 0,530 0,479 0,077

РСЦ 0,529 СОП 0,449

The overall agreement of the RVC specialists on all criteria ranged from

moderate to substantial, the agreement between the GH doctors was lower - from slight

to moderate.

Interrater agreement regarding the hyperdense middle cerebral artery sign was

substantial among RVC radiologists with more than three years of experience (with

higher results for more than eight years in clinical practice) and moderate among

experts with more than three years of experience. Among GH radiologists, interrater

agreement was greatest among radiologists with three years to less eight years of

experience and was substantial. Among doctors with more than eight years of

experience, agreement was moderate, and among doctors with less than three years of

experience, it was slight [4].

Agreement in groups stratified by experience was significant among experts with

more than three years of experience, both from the RVC and from the GH, and fair

among experts with less than three years of experience.

Interrater agreement regarding the sign of loss gray and white differentiation was

similar to the hyperdense middle cerebral artery sign, except that radiologists without

expertise in emergency medicine and three years to less eight years of experience

showed moderate agreement regarding this sign (compared to a substantial level

regarding the hyperdense middle cerebral artery sign) [4].

Regarding the sign of hypoattenuation, the agreement among all specialists, with

the exception of doctors without expertise in emergency neuroradiology and less than

three years of experience, was moderate. Among GH specialists with less than three

years of experience, consistency was slight. It is worth paying attention to the
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substantial agreement among all RVC specialists on this sign and moderate agreement

among GH doctors, which indicates the influence of only relevant experience on the

correct interpretation of specific signs [4].

The sulcal effacement was the most ambiguous sign when assessing interrater

agreement. Substantial agreement was observed only among RSC specialists with more

than eight years of experience. Moderate agreement was recorded between doctors with

three years to less eight years of experience in both groups and among RVC specialists

with less than three years of experience. Fair agreement was found among GH doctors

with more than eight years in clinical practice; agreement among their colleagues with

less than three years of experience was random (<0) [4].

Based on the results of the first testing, it can be concluded that doctors working

in RVC have higher level of diagnostic efficiency in identifying middle cerebral artery

strokes and greater agreement in assessing early ischemic changes, compared with

colleagues from the GH.

The further course of the thesis work was aimed at determining inter-expert

variability between doctors directly specializing in urgent neuroradiology. In the second

test, 50 anonymized CT were presented to 15 radiologists with one to ten years in

clinical practice in an emergency hospital setting. The study involved five doctors with

more than eight years in clinical practice (Group I), five doctors with three years to less

eight years of experience (Group II) and five doctors with less than three years in

clinical practice (Group III). Radiologists independently assessed each examination and

determined the side of the lesion and the ASPECTS score. The results were

dichotomized ASPECTS (≤ 7 and > 7 and ≤ 6 and > 6) for further statistical analysis

(Table 15).
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Table 15 – Statistical analysis of inter-rater agreement (Cohen's k and Fleiss's k) in

assessed according to dichotomized ASPECTS (≤6 and >6) by RVC radiologists

ASPECTS 6
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Years of
experience

Fleiss's
Kappa

min k –
max k
(Cohen's
kappa)

μ
(Cohe
n's

kappa)

0–
0,2

0,21–
0,4

0,41–
0,6

0,61–
0,8 0,81–1

> 8 years 0,366 0,125–
0,633 0,36 20

% 40 % 30 % 10 % 0

3- 8 years 0,452 0,31–
0,625 0,46 0 30 % 60 % 10 % 0

< 3 years 0,462 0,31–
0,646 0,46 0 30 % 60 % 10 % 0

Overall coefficient of interrater agreement (Cohen's kappa)

0,391 0,011–
0,789 0,389 15,2

% 34 % 40 % 10,5 % 0

The coefficient of inter-rater agreement (Cohen's kappa, k) with dichotomized

ASPECTS (≤ 6 and > 6) in group I ranged between 0.125–0.633 (it was more

heterogeneous than in groups II and III) and to a greater extent (40%) was fair, and also

included the percentage (20%) of Cohen's kappa results corresponding to slight

agreement (such low results were not recorded in groups II and III). In group II, Cohen's

kappa ranged between 0.31–0.625, averaged 0.46, and was more consistent with

moderate agreement. The results of group III (0.31–0.646) were almost identical to the

results of group II [5]. Also, Cohen's kappa between raters ranged from 0.011 (slight

agreement) to 0.789 (substantial agreement). Among all specialists, agreement was

predominantly either moderate or fair [5].
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The coefficient of inter-rater agreement (Cohen's kappa, k) was higher among

groups II and III and on average corresponded to a value of 0.48, which is a moderate

indicator. The worst agreement was observed among groups I and III, Kohn's kappa was

0.26, which is fair agreement (also including a large percentage of weak interrater

agreement) (Table 16) [5].

Table 16 – Interrater agreement (Cohen's kappa) among groups of specialists to

dichotomized ASPECTS (≤6 and >6)

ASPECTS 6
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Radiologists min k – max
k μ 0–0,2 0,21–

0,4
0,41–
0,6 0,61–0,8 0,81–1

Between I and II groups

1 0,107–0,789 0,47 20 % 20 % 20 % 40 % 0

2 0,12–0,559 0,34 20 % 40 % 40 % 0 0

3 0,312–0,545 0,41 0 40 % 60 % 0 0

4 0,011–0,286 0,13 80 % 20 % 0 0 0

5 0,336–0,719 0,47 0 40 % 40 % 20 % 0

0,37

Between II and III groups

6 0,351–0,545 0,46 0 20 % 80 % 0 0

7 0,429–0,694 0,54 0 0 60 % 40 % 0

8 0,483–0,634 0,52 0 0 80 % 20 % 0

9 0,351–0,694 0,47 0 60 % 20 % 20 % 0

10 0,247–0,582 0,4 0 40 % 60 % 0 0

0,48
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Between I and III groups

11 0,043–0,428 0,2 40 % 40 % 20 % 0 0

12 0,093–0,321 0,2 40 % 60 % 0 0 0

13 0,096–0,307 0,19 40 % 60 % 0 0 0

14 0,163–0,662 0,4 20 % 20 % 40 % 20 % 0

15 0,118–0,513 0,32 20 % 60 % 20 % 0 0

0,26

I – radiologists with more than eight years in clinical practice; II – radiologists

with three years to less eight years of experience; III – radiologists with less than three

years of experience

Fleiss' kappa with dichotomized ASPECTS (≤6 and >6) among the three groups

was 0.391. In group I, Fleiss's kappa was fair (0.366), in groups II and III it was

moderate (0.452 and 0.462, respectively) [5].

It should be noted that minimal differences in inter-rater agreement were

identified (Cohen's kappa and Fleiss's kappa), and their results were in the same range,

demonstrating an insignificant level of agreement among themselves when assessed on

the ASPECT score by radiologists with more than eight years of experience in urgent

neuroradiology and moderate level of agreement between doctors with less than eight

years of experience [5].

The coefficient of interrater agreement (Cohen's kappa) with dichotomized

ASPECTS (≤ 7 and > 7) in group I ranged between 0.294–0.588 and to a greater extent

(60%) was moderate, and also included the percentage (40%) of Cohen's kappa results,

corresponding to fair agreement (which is higher than the results for dichotomized

ASPECTS (≤ 6 and > 6). In group II, Cohen's kappa ranged between 0.27–0.518 and

was more consistent with fair agreement. The result of group III (0.271–0.64) was the

highest, amounting to 0.469 and corresponding to moderate agreement (Table 17) [5].
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Table 17 – Statistical analysis of inter-rater agreement (Cohen's k and Fleiss's k) in

assessed according to dichotomized ASPECTS (≤7 and >7) by RVC radiologists

ASPECTS 7
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Years of
experience

Fleiss'
s

Kappa

min k –
max k
(Cohen's
kappa)

μ
(Cohen's
kappa)

0–
0,2

0,21
–0,4

0,41
–0,6

0,61–
0,8

0,81–
1

> 8 years 0,439 0,294–
0,588 0,446 0 40 % 60 % 0 0

3- 8 years 0,384 0,27–
0,518 0,392 0 50 % 50 % 0 0

<3 years 0,466 0,271–
0,64 0,469 0 30 % 50 % 20 % 0

Overall coefficient of interrater agreement (Cohen's kappa)

0,376 0,007–
0,8 0,39 12

% 40 % 46 % 2 % 0

Interrater Cohen's kappa ranged from 0.007 (slight agreement) to 0.8 (substantial

agreement). Among all experts, agreement was either moderate or insignificant almost

equally [5].

The coefficient of interrater agreement (Cohen's kappa) was higher among groups

II and III and corresponded to a value of 0.45, which indicates moderate agreement. The

lowest agreement rates were observed among groups I and III, Cohen's kappa was 0.31,

which is fair agreement (this result did not differ significantly from Cohen's k between

groups I and II - 0.34) (Table 18) [5].
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Table 18 – Interrater agreement (Cohen's kappa) among groups of specialists to

dichotomized ASPECTS (≤7 and >7)

ASPECTS 7
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Radiologist
min k – max
k (Cohen's
kappa)

μ 0–0,2 0,21–0,4 0,41–0,6 0,61–0,8 0,81–1

Between I and II groups

1 0,331–0,504 0,42 0 40 % 60 % 0 0

2 0,154–0,485 0,32 20 % 60 % 20 % 0 0

3 0,331–0,541 0,40 0 60 % 40 % 0 0

4 0,128–0,412 0,20 80 % 0 20 % 0 0

5 0,326–0,469 0,38 0 80 % 20 % 0 0

0,34

Between II and III groups

6 0,451–0,6 0,68 0 0 100 % 0 0

7 0,217–0,8 0,43 0 20 % 80 % 0 0

8 0,313–0,595 0,48 0 20 % 80 % 0 0

9 0,131–0,595 0,32 20 % 40 % 40 % 0 0

10 0,124–0,504 0,37 0 40 % 60 % 0 0

0,45
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Between I and III groups

11 0,007–0,244 0,14 80 % 20 % 0 0 0

12 0,118–0,388 0,29 20 % 80 % 0 0 0

13 0,099–0,374 0,27 20 % 80 % 0 0 0

14 0,231–0,587 0,41 0 40 % 60 % 0 0

15 0,2–0,6 0,44 20 % 0 80 % 0 0

0,31

I – radiologists with more than eight years in clinical practice; II – radiologists

with three years to less eight years of experience; III – radiologists with less than three

years of experience

Fleiss' kappa with dichotomized ASPECTS (≤ 7 and > 7) among the three groups

was 0.376. In groups I and III, Fleiss' kappa was moderate (0.439 and 0.466,

respectively), and in group II it was fair (0.384). There were also no significant

differences in the numerical indicators of inter-rater agreement (Cohen's k and Fleiss's k)

with ASPECTS (≤ 7 and > 7), so in the future we analyzed inter-rater agreement only

using Fleiss's kappa [5]. Cohen's kappa and Fleiss's kappa interrater agreement

coefficients were higher with dichotomized ASPECTS (≤ 6 and > 6) [4].

The coefficient of inter-rater agreement (Cohen's kappa) with ASPECTS (≤ 6

and > 6) prevailed in groups II and III (0.46), with dichotomous division (≤ 7 and > 7) it

was higher in group III of experts, which indicates a trend among specialists with less

than three years of experience, ASPECT scores are overestimated [5].

The agreement coefficient (Cohen's k) was higher when comparing the results of

groups II and III (both dichotomized ASPECTS [≤ 6 and > 6] and [≤ 7 and > 7]), while

the agreement between groups I and III was the smallest for both dichotomized

ASPECTS [5]. These results show that the consistency of expert assessments of

emergency neuroradiology doctors does not depend on the specialist’s experience, and
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in the conditions of this study, radiologists with extensive experience showed quite

heterogeneous results, but definitely lower results than experts with the least length of

service [5]. Thus, the influence of work experience in the RVC of emergency

neuroradiology radiologists on both the diagnostic efficiency in detecting middle

cerebral artery stroke and on the consistency with respect to most CT signs of ischemic

stroke was revealed. However, the experience of specialists with expert qualifications

does not correlate with the level of inter-rater agreement regarding the ASPECTS

assessment, which reflects the low reproducibility of this scale.
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CHAPTER 4. RESULTS OF TESTING AUTOMATED CT IMAGE ANALYSIS

SYSTEMS AND THEIR EFFECT ON THE MEDICAL DECISION MAKING

At the fourth stage of the dissertation research, we selected for testing three

software programs based on convolutional neural networks, positioning themselves as a

software device for computer-aided detection, used by a radiologist to interpret the

nature and distribution of pathological changes in brain tissue by assessing the ASPECT

scale based on data CT images.

Below are given the testing selection criteria:

1. Availability of a test online access;

2. The description of the software program indicates the function of rating areas

with early ischemic changes in the acute period (ASPECTS);

3. The declared accuracy in diagnosing middle cerebral artery stroke is more than

75% (according to the third stage of the dissertation research, as the minimum

accuracy among the tested doctors).

According to the inclusion criteria, for software program were selected (two

systems of domestic developers and one foreign system).

Since the research was aimed at the general assessment of diagnostic indicators of

currently available systems and not at the assessment of a particular product, all

programs in the research were disguised as A, B, C, D.

Using the method of analytical validation, artificial intelligence software was

tested on a reference data set (imaging sampling №1), prepared in accordance with the

scientific task, and also registered in accordance with the regulations [7, 15]. The CT

image data set was similar to that of the third phase of the study, which assessed the

diagnostic performance of radiologists with varying level of experience in detecting

middle cerebral artery territory stroke.

During statistical analysis, all metrics were assessed in the range of 0–1: <0.6 -

unsuitable; 0.61–0.8—needs improvement; >0.81—can be accepted for clinical
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validation [15]. The results of the analysis of data from sample 1 are presented in Table

19.

Table 19 – Comparative characteristics of automated CT image analysis systems

Indicator

Artificial

intelligence

software А

Artificial

intelligence

software В

Artificial

intelligence

software С

Number of TruePositive Results 44 30 22

Number of FalsePositive Results 27 5 9

Number of FalseNegative Results 6 20 18

Number of TrueNegative Results 23 45 35

Not defined 0 0 16

Sensitivity 0,88 0,60 0,55

Specificity 0,46 0,90 0,80

Likelihood Ratio of a Positive Test 1,63 6,00 2,69

Likelihood Ratio of a Negative Test 0,26 0,44 0,57

Accuracy 0,67 0,75 0,68

In the thesis work, all selected automatic analysis systems had an accuracy in the

range from 0.67 to 0.75, which, according to clinical recommendations [15], indicates

the need for their further improvement. The highest accuracy, a parameter that

determines the number of correctly identified judgments, was demonstrated by program

B (0.75). The specificity of program B (0.90) was also higher compared to the results of

other programs (0.46; 0.80) [2].

Program A demonstrated a high rate of identifying true positive results (44),

while the specificity of this program was quite low (0.46); the program identified 27
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false positive results, which is a sign of overdiagnosis and overtraining. The accuracy of

this program is lower than the accuracy of the results of other programs. At the same

time, the program has demonstrated high sensitivity, which reduces the risk of

underdiagnosis [2].

Program B had the highest specificity rates (0.90) with low sensitivity (0.60),

which will allow, once it is refined and the required total parameters of diagnostic

accuracy are achieved, to recommend this algorithm as a method of primary assessment

with rapid triage of patients with suspected stroke [2].

A limitation in assessing the diagnostic effectiveness of one of the algorithms (C)

was its inability to interpret 16 CT of the brain from the presented independent data set

due to an unavoidable technical error when loading radiation images. In turn, the

accuracy of program C was slightly higher than the results of program A; it

demonstrated a large number of false negative results, which indicates its tendency to

underdiagnosis [2].

Low sensitivity of programs is a parameter showing low efficiency in identifying

patients with stroke, since some of the results will be classified as negative. Thus,

algorithms B and C require further refinement (with further training) in order to

improve the efficiency of the analysis [2].

The likelihood ratio of a positive result shows how many times more likely

patients with stroke are likely to get a positive result than healthy patients. Program B

achieved the highest results, which is confirmed by high specificity indicators. In terms

of likelihood of a negative result, program C showed the highest results, which is a

result of the low sensitivity of the program [2].

To assess the relationship between sensitivity and specificity, ROC curves were

constructed to calculate the area under the curve (AUC) for all analyzed groups (Figure

17). Analysis of the indicators revealed that only the results obtained using program B

give values (AUC = 0.75) close to the recommended parameters, according to clinical

guidelines; the predictions of other programs are lower [2].
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Figure 17 – ROC curves to assess the diagnostic effectiveness of all automatic

analysis systems

According to the results of the study, none of the reviewed systems for automatic

detection of stroke based on CT images reached the threshold accuracy values

  required for further clinical validation, which indicates the need for their further

refinement [2].

The accuracy of all automatic analysis systems was significantly lower than the

results of doctors with expert qualifications (0.94), and also lower than the results of the

assessment of doctors with less than 3 years of experience (0.88) from the RVC tested

in the third stage of the dissertation research (Table 20).
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Table 20 – Comparative characteristics of indicators of diagnostic efficiency in

joint testing of radiologists and automatic analysis systems

А В С D* F* Е*

Number of TruePositive Results 44 30 22 45 42 29

Number of FalsePositive
Results

27 5 9 2 4 4

Number of FalseNegative

Results
6 20 18 5 8 21

Number of TrueNegative

Results
23 45 35 48 46 46

Not defined 0 0 16 0 0 0

Sensitivity 0.88 0.60 0.55 0.90 0.84 0.57

Sensitivity, % 88.00 60.00 55.00 90.50 84.00 57.30

Specificity 0.46 0.90 0.80 0.97 0.93 0.93

Specificity, % 46.00 90.00 80.00 97.00 92.50 92.70

Likelihood Ratio of

a Positive Test
1.63 6.00 2.69 30.17 11.20 7.82

Likelihood Ratio of

a Negative Test
0.26 0.44 0.57 0.10 0.17 0.46

Accuracy 0.67 0.75 0.68 0.94 0.88 0.75

Accuracy, % 67.00 75.00 68.00 93.80 88.30 75.00

D - RVC radiologists with more than eight years in clinical practice, F - RVC radiologists with less

than three years of experience, E - GH radiologists with less than three years of experience
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One of the algorithms (B) had comparative accuracy with radiologists with less

than 3 years in clinical practice and no experience in emergency neuroradiology (0.75).

The highest likelihood ratio of a positive result was also found among doctors with

expert qualifications (with 8 years of experience in the RVC), while this indicator was 5

times higher than the best result for the programs (6.00 versus 30.17). The likelihood

values of a positive result for groups of doctors with less than three years of experience,

regardless of experience in the RVC, are also higher (11.20 with experience, 7.82

without experience) than for programs (A-1.63, B-6.00, C-2.69) [2].

To assess the relationship between sensitivity and specificity, ROC curves were

constructed to calculate the area under the curve (AUC) for all analyzed groups.

Analysis of the indicators revealed that only the results obtained using program B give

values (AUC = 0.75) close to those of doctors without experience in emergency

medicine (AUC = 0.75); the accuracy of predictions of other programs is lower (Figure

18).

Figure 18 – ROC curves to assess the diagnostic efficiency in joint testing of

radiologists (RVC radiologists with more than eight years of experience; RVC

radiologists with less than three years of experience; GH radiologists with less than

three years of experience) and automatic analysis systems
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However, it should be noted that despite the high rate of false-positive responses,

program A is practically not inferior to the results of doctors with expert qualifications

regarding true positive and false negative responses, which allows us to judge its low

level of underdiagnosis. For doctors with less than three years of experience and no

experience in the RVC, compared with program A, false negative responses were 3.5

times more, and true positive responses were 1.5 times less. Regarding these indicators,

doctors with more than three years of experience from the RVC were also slightly

inferior to program A. This suggests that potentially, program A may have a positive

effect in reducing missed pathology in young specialists with more than three years of

experience, regardless of experience in assessing stroke [2].

Thus, at present, the results of systems for automatically detecting ischemic

changes on CT images are not comparable with the average data of the results of

radiologists with experience in assessing stroke in terms of diagnostic efficiency.

Most software products show high specificity rates and low sensitivity rates,

which indicates infrequent cases of overdiagnosis and a large number of cases of

underdiagnosis. For a more reliable understanding of the diagnostic capabilities of these

software products, clinical trials should be continued using both the method of

analytical validation on various samples and the method of clinical validation.
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CHAPTER 5. IMPACT OF IMPLEMENTING AUTOMATED CT IMAGE

ANALYSIS SYSTEMS ON THEMEDICAL DECISION MAKING

At the fifth stage of the thesis work, possible options for introducing automated

CT image analysis system were studied as a method of supporting clinical decision-

making in the diagnosis of middle cerebral artery stroke.

According to Obuchowski N.A. et al. [88], there are four options for using AI

algorithms in CT imaging: (1) a first - reader mode, where the AI algorithm first

evaluates the image and then the results of this assessment are reviewed by a human, (2)

a second- reader mode, where the AI algorithm is applied after how a human accepts or

rejects AI findings, (3) a triage mode, where the algorithm prioritized worklist for

reader according to suspiciousness of ischemia on brain CT, (4) a pre-screening mode,

where the prescreening AI writes report for negative brain CT scan. Reader gives

interpretation for remaining cases. In order to study the implementation of the first two

options for using automated CT image analysis systems, we conducted two options for

joint testing of doctors with less than three years of experience and an artificial

intelligence algorithm selected at the fourth stage of the thesis work. The subject of

study was program A, since despite the insufficient level of accuracy, this system

showed results that indicate a low level of underdiagnosis of ischemic changes

(sensitivity 88%, true positive responses - 44 out of 100, false positive responses 27 out

of 100). Analysis of non-contrast CT images by this program was performed with the

function of automatic assessment of areas with ischemia changes in the acute period

(i.e., assessment on the ASPECT score). Seven radiologists with less than 3 years of

experience were also included in the study. Doctors were divided into two groups

according to their experience in CT diagnostics of ischemic stroke: specialists from the

RVC (N=4) and their colleagues from the GH (N=3).

In the first testing option, in the process of studying the implementation of the

second reader mode, collections of images 1B and 2B were used. On the CT collections
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of images 1B, doctors were asked to assess the presence/absence of stroke, then the

doctors were informed of the results of the evaluation of the artificial intelligence

algorithm: presence (ASPECTS 9 and lower)/absence (ASPECTS 10) of stroke, as well

as the side of the lesion. Doctors could either agree with artificial intelligence or not

change their decision. On CT images of collections of images 2B, specialists determined

the side of the stroke and the prevalence of acute ischemic changes according to

ASPECTS. Next, the radiologists were informed of the results of the evaluation of the

artificial intelligence algorithm: the ASPECT score indicating the affected areas, as well

as the side of the lesion. Doctors could accept or reject system’s findings. The results of

the first phase of testing are presented in Tables 21 and 22.

Table 21 – Indicators of diagnostic efficiency of radiologists with different

experience in urgent neuroradiology and less than three years of experience in the

first option of testing by collections of images 1B
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Artificial intelligence
software 44 27 6 23 88.00 46.00 67.00

R
V
C
R
ad
io
lo
gi
st
s

1
Initial 49 9 1 41 98.00 82.00 90.00

First phase 50 9 0 41 100.00 82.00 91.00

2
Initial 49 10 1 40 98.00 80.00 89.00

First phase 49 12 1 38 98.00 76.00 87.00

3
Initial 50 12 0 38 100.00 76.00 88.00

First phase 50 13 0 37 100.00 74.00 87.00

4
Initial 50 6 0 44 100.00 88.00 94.00

First phase 50 7 0 43 100.00 86.00 93.00
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G
H
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5
Initial 47 8 3 42 94.00 84.00 89.00

First phase 49 7 1 43 98.00 86.00 92.00

6
Initial 48 31 2 19 96.00 38.00 67.00

First phase 49 28 1 22 98.00 44.00 71.00

7
Initial 36 17 14 33 72.00 66.00 69.00

First phase 41 17 9 33 82.00 66.00 74.00

Table 22 – Average diagnostic performance indicators of radiologists with

different levels of experience in urgent neuroradiology and less than three years of

experience in the first phase of testing on collections of images 1B
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Artificial
intelligence software 44.00 27.00 6.00 23.00 88.00 46.00 67.00

R
V
C

R
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s Initial 49.50 9.25 0.50 40.75 99.00 81.50 90.25

First phase 49.75 10.25 0.25 39.75 99.50 79.50 89.50

G
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R
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s

Initial 43. (6) 18. (6) 6. (3) 31. (3) 67. (3) 62. (6) 75.00

First phase 46. (3) 17. (3) 3. (6) 32. (6) 92. (6) 65. (3) 79.00

Despite the performance of individual radiologists, the overall values of

diagnostic efficiency (accuracy, specificity) among RVC doctors in the first version of
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testing decreased to a greater extent due to specificity (from 81.5% to 79.5%) and an

increase in the number of false positive answers (from 9. 25 to 10.25), contributing to an

increase in overdiagnosis in this group of experts. However, in the group of specialists

without experience in the RVC, there was an improvement in efficiency indicators

(accuracy, sensitivity and specificity) with the first version of testing, mainly due to an

increase in sensitivity (from 67. (3) % to 92. (6) %) and a reduction in false negatives

answers (from 6. (3) to 3. (6)), that is, with a decrease in the level of underdiagnosis.

These results indicate the positive impact of artificial intelligence on the diagnostic

performance of doctors without experience in emergency neuroradiology when applying

the second reader mode. The results of the first joint testing of radiologists and the

automated CT image analysis program on a sampling of CT images 2B are presented in

Table 23.

Table 23 – Results of the initial assessment and first joint testing of radiologists

with different levels of experience in urgent neuroradiology and less than three

years of experience with an automated CT image analysis system

Second-Reader Mode

Initial assessment First joint testing

≤ 7 и> 7 ≤ 6 и> 6 ≤ 7 и> 7 ≤ 6 и> 6

Interrater
agreement

RVC Radiologists 0.593 0.541 0.598 0.633

GH Radiologists 0.234 0.260 0.365 0.304

General interobserver agreement 0.425 0.409 0.530 0.464

Agreement with
artificial

intelligence
software

RVC Radiologists 0.584 0.501 0.625 0.592

GH Radiologists 0.300 0.324 0.480 0.415

Interobserver
agreement 0.440 0.411 0.556 0.480
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At the initial assessment, both when dichotomized ASPECTS ≤7 and > 7, and ≤ 6

and > 6, the agreement of the RVS specialists within the group was moderate. When

applying the second reader mode, no significant changes in Fleiss's kappa scores were

detected, which indicates that there is no significant influence of the clinical decision

support system on the inter-rater agreement of RVC doctors. A similar trend in

agreement was observed among GH doctors, whose Fleiss kappa scores indicated fair

agreement between specialists at the initial assessment and after the first testing on

collections of images 2B. It is worth noting that agreement with the program of RVC

specialists during the initial assessment and during the first version of testing with

dichotomized ASPECTS ≤ 6 and > 6 was inferior to agreement with each other,

however, the Fleiss kappa indicators for dichotomized ASPECTS ≤ 7 and > 7 were

higher when applying the second reader mode. Also, during the initial assessment, RVC

specialists gave a score of ≤ 7 in 50.5% of cases; during the first testing option, this

figure decreased to 42.5%. Similarly, RVC doctors, before providing interpretation of

the artificial intelligence algorithm, in 64.5% of cases assessed the prevalence of

ischemic changes in the territory of the middle cerebral artery as ≤ 6 points according to

ASPECTS, however, when applying the second reading model, this figure decreased to

57%. These results indicate that there were no significant changes in the agreement

between specialists when implementing the second reader mode, but at the same time,

their tendency to reduce the ASPECTS score after providing interpretation data of the

algorithm.

We also assessed the agreement of radiologists during the initial assessment and

the first testing on collections of images 2B regarding each of the ASPECTS areas. The

results are presented in Table 24.
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Among RVС radiologists, during the first testing on collections of images 2B,

agreement regarding each of the ASPECTS areas did not change significantly, with the

exception of zone M3 (from moderate to substantial agreement). A more dynamic

picture was observed among GH radiologists: agreement increased most noticeably

relative to areas M5 (from slight to substantial), L, M3, M4 (from slight to moderate

agreement).

It is also worth noting the general increase in Fleiss's kappa values relative to the

ASPECTS areas of the basal nuclear region and insula (compared to the “hemispheric”

zones) after the first stage of testing on a collections of images 2B from КМС doctors,

but in the range of moderate agreement. The overall agreement between GH doctors

changed to a greater extent regarding the “hemispheric” areas (M1-M6) from slight to

moderate.

In the second version of testing, carried out 2 months later, the influence of the

first reader mode was assessed on collections of images 1C and 2C. Doctors were

immediately provided with data from the interpretation of CT images by the algorithm,

after which they could either agree with the automated CT image analysis system or

offer their own assessment option.

The results of the second joint testing on sampling of 1C and 2C CT images of

the brain by doctors with less than three years of experience and an artificial intelligence

algorithm are presented in Tables 25 and 26.
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Table 25 – Indicators of diagnostic efficiency of radiologists with different

experience in urgent neuroradiology and less than three years of experience in the

second option of testing by collections of images 1C
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Artificial intelligence
software 44 27 6 23 88.00 46.00 67.00

R
V
C
R
ad
io
lo
gi
st
s

1
Initial 49 9 1 41 98.00 82.00 90.00

Second phase 50 4 0 46 100.00 92.00 96.00

2
Initial 49 10 1 40 98.00 80.00 89.00

Second phase 50 6 0 44 100.00 88.00 94.00

3
Initial 50 12 0 38 100.00 76.00 88.00

Second phase 50 5 0 45 100.00 90.00 95.00

4
Initial 50 6 0 44 100.00 88.00 94.00

Second phase 49 7 1 43 98.00 86.00 92.00

G
H
R
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s

5
Initial 47 8 3 42 94.00 84.00 89.00

Second phase 48 3 2 47 96.00 94.00 95.00

6
Initial 48 31 2 19 96.00 38.00 67.00

Second phase 48 16 2 34 96.00 68.00 82.00

7
Initial 36 17 14 33 72.00 66.00 69.00

Second phase 48 8 2 42 96.00 84.00 90.00



96

Table 26 – Average diagnostic performance indicators of radiologists with

different levels of experience in urgent neuroradiology and less than three years of

experience in the second phase of testing on collections of images 1C
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Artificial
intelligence
software

44.00 27.00 6.00 23.00 88.00 46.00 67.00

R
V
C

R
ad
io
lo
gi
st
s Initial 49.50 9.25 0.50 40.75 99.00 81.50 90.25

Second
phase 49.75 5.50 0.25 44.50 99.50 89.00 94.25

G
H

R
ad
io
lo
gi
st
s Initial 43. (6) 18. (6) 6. (3) 31. (3) 67. (3) 62. (6) 75.00

Second
phase 48.00 9.00 2.00 41.00 96.00 82.00 89.00

Contrary to the first testing on sampling 1B, with the second option (on sampling

1C), the average diagnostic performance indicators (accuracy, sensitivity and specificity)

of RVC doctors increased to a greater extent due to accuracy (from 90.2% to 94.25%)

and specificity (from 81.5% to 89%) with a reduction in the number of false positive

(from 18. (6) to 9) and false negative (from 6. (3) to 2) responses, and a decrease in the

level of under- and overdiagnosis. A similar trend was also observed among specialists

without experience in the RVC. In this group of specialists, there was a pronounced
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positive dynamics of average efficiency values with an increase in sensitivity values

(from 67. (3) % to 96%), specificity (from 62. (6) % to 82%) and accuracy (from 75%

to 89). %), with a reduction in the number of false positives (from 18. (6) to 9) and false

negatives (from 6. (3) to 2). The results of the second testing on the sampling 1C

indicate an improvement in the interpretation of CT images of patients with suspected

stroke, both among doctors with and without experience in the RVC, when using the

first reader mode.

The results of the second testing on collections of images 2C are presented in

Table 27.

Table 27 – Results of initial assessment and second joint testing of radiologists with

different levels of experience in urgent neuroradiology and less than three years of

experience with the automated CT image analysis program

First- Reader Mode

Initial assessment Second joint testing

≤ 7 и> 7 ≤ 6 и> 6 ≤ 7 и> 7 ≤ 6 и> 6

Interrater
agreement

RVC
Radiologists 0.593 0.541 0.734 0.739

GH Radiologists 0.234 0.260 0.573 0.600

General interobserver
agreement 0.425 0.409 0.669 0.657

Agreement
with artificial
intelligence
software

RVC
Radiologists 0.584 0.501 0.734 0.743

GH Radiologists 0.300 0.324 0.658 0.646

Between all
groups 0.440 0.411 0.687 0.673

During the initial assessment (carried out during the first version of testing), the

agreement of the RVC specialists within the group was moderate both when

dichotomized ASPECTS ≤ 7 and > 7, and ≤ 6 and > 6. When using the first reader mode,
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an increase in inter-rater agreement was found to be substantial. A similar trend in

changes in agreement rates was observed among GH radiologists, whose Fleiss's kappa

values indicated fair agreement between specialists during the initial assessment and an

increase in agreement to moderate (almost substantial) during the second testing. It is

worth noting that agreement with the program of RVC specialists during the initial

assessment with dichotomized ASPECTS ≤ 6 and > 6 and ≤ 7 and > 7 was inferior to

agreement with each other, however, the Fleiss's kappa indicators when dichotomized

ASPECTS ≤ 6 and > 6 and ≤ 7 and > 7 became higher when using the first reader mode,

which suggests that experts trusted the program more at this stage than when using the

second reader mode. Also, during the initial assessment, RVC specialists gave a score of

≤ 7 in 50.5% of cases; during the second testing option on sample 2C, this figure

decreased to 39% (compared to the first testing option - 42.5%). Doctors without

experience in assessing stroke (working in GH) during the initial interpretation gave a

score of ≤ 7 in 68% of cases; in the second version of testing on collections of images

2C, this percentage decreased to 53 (at the first stage to 55.5%). Similarly, RVС doctors,

before providing an interpretation of the artificial intelligence algorithm, in 64.5% of

cases assessed the prevalence of ischemic changes in the middle cerebral artery territory

as ≤ 6 points according to ASPECTS; when using the first reader mode, this figure

decreased to 52.5% (to 57% when applying the second reading model). Their colleagues

without experience in urgent neuroradiology scored ≤ 6 points on ASPECTS during the

initial assessment in 78% of cases, and in 63% during the second testing (in 65% of

cases during the first). These results suggest that as interrater agreement increases,

examiners tend to decrease ASPECTS scores more markedly when using the first reader

mode.

We also assessed the agreement of radiologists during the initial assessment and

the second joint testing on collections of images 2C regarding each of the ASPECTS

areas. The results are presented in Table 28.
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Among RVC doctors, during the second testing on collections of images 2C,

agreement regarding each of the ASPECTS areas changed significantly in relation to

areas C, M2, M5, M6 (from moderate to substantial agreement) and IC (from slight to

moderate agreement). A similar picture was observed among GH specialists: agreement

significantly increased relative to areas IC, M2, M4, M5, M6 (from slight to substantial

agreement), and L (from slight to moderate agreement).

There was a uniform overall increase in Fleiss's kappa values relative to

ASPECTS areas (both basal nuclear and insular regions, as well as hemispheric regions)

after the second testing on the collections of images 2C across all radiologists, with

moderate to substantial agreement.

Based on the results of the fifth stage of the thesis work, it can be concluded that

the second reader mode has a negative impact on the performance of doctors with less

than three years of experience and experience in diagnosing stroke on CT images. Also,

the second reader mode is less effective in improving the performance of doctors

without experience in the RVC and with less than three years of experience. At the same

time, the use of a first reader mode when introducing an artificial intelligence algorithm

into the diagnostic process of doctors with less than three years of experience has a

positive effect in increasing the diagnostic efficiency of detecting middle cerebral artery

stroke and their inter-expert agreement when assessed according to ASPECTS. It is

necessary to especially highlight the absence of a summative decrease in diagnostic

efficiency in relation to an increase in overdiagnosis rates with a complementary

assessment by doctors and a program, with an identical positive effect in the form of a

decrease in overdiagnosis rates among radiologists.
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FINAL STATEMENT

To date, neuroimaging occupies a key role in the diagnosis of ischemic stroke.

Taking into account a number of reasons (time of the examination, absence of absolute

contraindications, availability), CT is the leading method of neuroimaging in the

diagnosis of ischemic stroke, which should first solve this main task – the exclusion of

ischemic brain injury and/or intracerebral hemorrhage. Detecting signs of thrombosis of

the main cerebral arteries and ischemia in the early stages is a difficult diagnostic task,

especially for radiologists with little experience. With the annual introduction of young

specialists in hospitals, their adaptation period, and the general shortage of radiologists

for direct interpretation of X-ray examinations (including CT) in the federal subjects of

the Russian Federation, it is likely that variability in the interpretation of radiation

images by medical doctors will naturally increase, leading to a deterioration in the

quality of medical care.

Considering that the middle cerebral artery territory is most commonly affected in

stroke [53], the ASPECTS was developed in 2000 to provide a unified approach to

stroke diagnosis in this area. Many researchers consider this 10-point system to be a

reliable diagnostic method. However, the use of this scale has a number of limitations,

including high variability in the interpretation of the presence of ischemic changes by

different experts, which may influence the further course of the patient's treatment [3,

75]. To partially solve the problems of subjectivity in assessment with the ASPECTS, it

is proposed to introduce an artificial intelligence algorithm as a system to support

medical decision making. To date, the use of such systems has been based on analysis

of noncontrast CT images, CT angiography, and CT perfusion. Their application aims to

automatically determine the score on the ASPECTS, quantify the stroke core, penumbra,

and collateral blood flow status, and localize arterial occlusions [113]. The use of such

algorithms foresees more effective detection of ischemic changes, a reduction in the

number of cases of under- and overdiagnosis, and a reduction in variability between
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experts in the assessment of CT images of patients requiring emergency medical care [3,

49, 113].

A multistage research was performed to investigate the impact of automated CT

image analysis systems on the process of medical decision making in the diagnosis of

ischemic middle cerebral artery stroke using computed tomography.

After studying the domestic and foreign publications on this problem in the first

stage, a database based on the results of CT examinations of 150 patients with the

clinical picture of middle cerebral artery stroke was created and registered in the second

stage [19]. Later, two collections of CT images were created based on this database to

test medical doctors and automated analysis systems. The first collection included 50

CT examinations of patients with confirmed ischemic stroke and 50 CT examinations

without pathological changes after noncontrast CT, CT angiography, and CT perfusion.

The second collection included only CT scans of patients with ischemic stroke, which

was also detected by methods of radiation diagnosis.

In the third stage, we tested 21 radiologists with different experience and

expertise in emergency neuro-radiology as the first part of the study and fifteen RVC

radiologists – as the second part of the study. The first collection of CT images was

used to determine the diagnostic effectiveness of the specialists and their agreement in

detecting early ischemic changes, and the second collection was used to evaluate

agreement in dichotomous classification of points on the ASPECTS (the volume of

early ischemic changes in the middle cerebral artery territory). The influence of

professional experience of specialists in emergency neuroradiology of regional vascular

centers on diagnostic effectiveness and agreement for most CT signs of ischemic stroke

was demonstrated. The accuracy of specialists with expert qualification (experience in

the assessment of ischemic stroke and clinical practice of more than eight years) was

93.8%, while their colleagues from regional vascular centers three years to less eight

years of experience had an accuracy of 91.3% and colleagues with experience of up to

three years – 88.3%. At the same time, years of clinical practice did not affect the

diagnostic efficiency of medical doctors who did not have relevant experience in stroke
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assessment (i.e., who worked in hospitals that were not affiliated with regional vascular

centers): specialists with more than eight years of clinical practice achieved 82.3%

accuracy, specialists with three years to less eight years of experience – 85.0%,

specialists with less than three years of clinical practice – 75%. It also appeared that

specialists tended to overdiagnoses patients when evaluating CT scans, regardless of

their years of clinical practice or experience in emergency pathology. This trend was

more evident among medical doctors from general hospitals with less than three years

of experience. The most specific and reproducible CT evidence of ischemic stroke was

the sign of hyperdense MCA – all experts within their groups showed the highest

response (from 0.095 to 0.75). The most ambiguous sign of ischemic stroke was sulcal

effacement when interpreted by radiologists (-0.020 (random response) to 0.689). Signs

of decreased brain matter density and impaired cortex differentiation had moderate and

substantial reliability among regional vascular center specialists (from 0.493 to 0.671).

In addition, we defined inter-rater reliability between specialists of regional vascular

centers with different experience in determining the extent of ischemic changes on the

ASPECTS. There was high estimated variability with low inter-rater reliability among

specialists, regardless of dichotomous classification – 6 and 7 (indications for

thrombectomy and thrombolysis) – and their experience (mean 0.391 (for ASPECTS 6)

and 0.376 (for ASPECTS 7) – low reliability). Considering the moderate and substantial

reliability between specialists of regional vascular centers regarding the signs of

ischemic stroke and the high variability in the assessment by ASPECTS, this scale

showed low reproducibility values in our research, confirming the subjectivity of the

assessment by ASPECTS [4, 5].

It is worth noting that in foreign publications, studies to determine inter-rater

reliability play an important role, as standardized assessment is the key to successful

diagnosis of ischemic stroke in the acute stage [4]. The work of Farzin B. et al [52]

investigated the degree of inter-rater and intra-rater reliability between 15 experts with

different specializations (neurologists, radiologists, endovascular surgeons, and

neuroradiologists) and professional experience (mostly more than 10 years) when
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performing assessments by ASPECTS. Even with dichotomous classification (0-5/5-10

points), intra-rater reliability did not reach a significant level (0.561 kappa statistic),

meaning that at least 5 of 15 experts reached a different conclusion in 15% of the cases.

Intra-rater reliability (experts’ agreement with their own assessment during the first or

second review) ranged from 0.599 to 0.943 [4, 52]. Also, Farzin B. et al [52] analyzed

articles on the variability of reliability in assessment with the ASPECTS, published

between 2000 and 2015. The methods of the analyzed studies differed from each other

in several characteristics, including whether clinical information about the patient was

provided to the experts, the time allotted for the assessment, access to all areas of the

CT examination, and the ability of the experts to set their own window parameters. The

results of this review of the current state of ASPECTS reproducibility reflect a high

degree of variability in inter-rater agreement. For example, in the studies described, the

coefficients of inter-rater reliability (Fleiss’ kappa) ranged from 0.26 to 0.97 for

ASPECTS without dichotomous classification and from 0.16 to 0.93 for ASPECTS with

dichotomous classification, ([≤ 6 and > 6] and [≤ 7 and > 7]) [4, 52]. Despite this

diversity, substantial inter-rater agreement with dichotomous classification (independent

of [≤ 6 and > 6] or [≤ 7 and > 7]) was reported in the publication related to ASPECTS

[72], although some studies reported moderate reliability [75].

In this thesis we also obtained quite different results, but on average they did not

reach significant inter-rater agreement. We also found an inverse relationship between

the degree of inter-rater reliability and the years of work of a specialist (although this

dependence is directly proportional for foreign publications). This is probably due to the

fact that there are obvious weaknesses in the standardization of the scale despite

multiple reviews: There is no unified approach to describing the features of early

ischemic changes, the ranges of ASPECTS do not have exact boundaries, and when the

scale was introduced into neuroradiological practice in the Russian Federation, a unified

and structural approach to its evaluation was not adopted due to the existing limitations

of its application [4].



105

In the fourth stage, an analytical validation of three programs (A, B, C) for the

analysis of computed tomograms of the brain was performed to investigate the

possibility of using automated systems for the detection of ischemic middle cerebral

artery stroke. First, diagnostic strength was assessed using one collection of images.

According to the clinical recommendations (80%) for testing software based on

artificial intelligence technologies [15], none of the systems involved can be approved

for clinical validation with accuracy values in the range of 67% to 75%. Software

products B and C had high specificity (0.9 and 0.8, respectively) and low sensitivity (0.6

and 0.55, respectively), indicating rare cases of overdiagnosis and frequent cases of

underdiagnosis. To obtain a more reliable understanding of the diagnostic capabilities of

these software products, clinical studies should be continued using both the analytical

validation method with different collections and the clinical validation method.

However, program A showed results that allow us to assess its low underdiagnosis of

pathological changes (sensitivity 88 and true positives – 44 out of 100, false positives –

27 out of 100). Specialists with less than three years of experience and no professional

experience in regional vascular centers had 3.5 times more false-negative and 1.5 times

fewer true-positive results compared with program A. With respect to these indicators,

specialists with up to three years of experience in regional vascular centers were also

slightly inferior to program A. Considering the potential positive impact on young

professionals with up to three years of experience, regardless of stroke assessment

experience, in terms of reducing cases of missing pathology, this artificial intelligence

algorithm was selected for further investigation and tested with two collections of CT

images [2].

It should be noted that the accuracy index (0.80) in this case is controversial

according to the recommendations that allow the program to be approved for clinical

validation. Specialists of regional vascular centers, regardless of the years of their

clinical practice, achieved higher indicators of diagnostic strength than the level of the

indicated parameter in the clinical recommendations [2, 15].
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In the study by P.V. Gavrilov et al [8], which dealt with the detection of round

formations in the lungs on X-rays, the accuracy of specialists without experience was

73.0% and with experience 77.0%, depending on the length of service of the

radiologists and their experience in thoracic radiology. Indicators of sensitivity and

specificity in detecting round lung formations were also slightly higher (81.0%; 75.0%)

than for specialists without experience (75.0%; 72.0%) but did not differ significantly.

With such results from experienced specialists, the indicator that formally clears the

tested program for further clinical validation appears to be important.

However, according to the results of the tests for specialists with different

experience and expertise in the diagnosis of ischemic stroke, this indicator is relevant

only for specialists without experience in emergency medicine and with less than three

years of clinical practice.

It is also worth considering the presence of a pathology that is difficult to

diagnose. For example, in the thesis work of A. A. Meldo [16], which dealt with the

development and implementation of an artificial intelligence system in the X-ray

diagnosis of pulmonary nodules and masses, the CT collections submitted to specialists

for evaluation were divided into difficult-to-interpret cases (typical lung cancer, atypical

lung cancer, and no lung cancer) and cases with predominantly typical visualization

patterns (typical lung cancer, no lung cancer). The accuracy of five specialists with

different experience (more than five years and less than five years) in cancer diagnosis

ranged from 51.0% to 71.1% when interpreting the first collection and when evaluating

the second collection – from 82.0% to 96.0%. Given such a pronounced range of

accuracy values in the study, it is necessary to differentiate the indicator that formally

allows the tested program for further clinical validation in the group of this pathology.

It is probably necessary to consider the current efficiency indicators of specialists

in the diagnosis of various pathological processes to determine the criteria for approval

of algorithms for clinical validation. Otherwise, the introduction of automated analysis

systems may lead to negative dynamics in the accuracy of detection of pathological
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changes due to the interference of specialists without experience or reduce confidence in

the program due to obviously wrong results received [2].

In the fifth stage of the research, possible options for the introduction of

automated analysis systems of computed tomography images into the clinical practice

of a radiologist were investigated by modeling two different situations of interaction

between a specialist and program A. Two models of introduction of an artificial

intelligence algorithm as a medical decision support system were applied: the first

(parallel) reader mode and a second reader mode. The first (parallel) reader mode

assumed that the CT images were first analyzed by an AI algorithm and then a specialist

reviewed the diagnostic results of the automated analysis system. In the second reader

mode, a radiologist reviewed the examinations, further analysis was performed by the

AI algorithm, and final interpretation of the data was performed by a radiologist, with

possible inclusion of additional findings detected by the AI. Tests were performed with

collections 1 and 2 to determine the impact of the program on the diagnostic strength of

specialists with up to three years of experience in urgent neuroradiology or their

reliability in terms of their assessment with ASPECTS. Seven specialists with less than

three years of experience from the second stage of the research participated in the test.

They were divided into two groups: Emergency medicine specialists (regional vascular

centers) and specialists without experience in regional vascular centers. Using the

second reader mode, overall diagnostic strength scores (accuracy, specificity) decreased

to a greater extent among RVC specialists due to specificity (from 81.5% to 79.5%) and

an increase in the number of false-positive results (from 9.25 to 10.25), which

contributed to an increase in overdiagnosis in this expert group despite their individual

results. However, in the group of specialists who had no experience with the regional

vascular centers, there was an improvement in performance indicators (accuracy,

sensitivity, and specificity), mainly because of an increase in sensitivity (from 67, (3) %

to 92, (6)) % and a decrease in false-negative results (from 6, (3) to 3, (6)), i.e., with a

decrease in underdiagnoses. These results suggest a positive effect of artificial
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intelligence on the diagnostic strength of specialists without experience when the

second reader mode is used.

No significant changes in Fleiss’ kappa indicators were found when the second

reader mode was used (moderate response), regardless of the dichotomous classification

of ASPECTS scores (6 and 7), suggesting that the medical decision support system does

not affect inter-rater reliability in assessing the extent of ischemic changes according to

ASPECTS. Reliability of specialists without professional experience in regional

vascular centers changed with increasing values of Fleiss’ kappa, but also in the range

of fair reliability. The second test with the first reader mode was performed after two

months. The average indicators of diagnostic strength (accuracy, sensitivity, and

specificity) increased more for accuracy (from 90.2% to 94.25%) and specificity (from

81.5% to 89%) among RVC specialists, with decreases in the number of false-positive

(from 18, (6) to 9) and false-negative (from 6, (3) to 2) results and in the degree of

under- and overdiagnosis. A similar trend was observed among specialists without

professional experience in regional vascular centers. In this group of specialists, there

was a pronounced positive dynamic of average efficiency scores with an increase in

sensitivity (from 67, (3) % to 96%), specificity (from 62, (6) % to 82%), and accuracy

(from 75% to 89%), with a decrease in the number of false-positive (from 18, (6) to 9)

and false-negative (from 6, (3) to 2) results. The results of using the first reader mode

showed improvement in the interpretation of CT images of patients with suspected of

MCA stroke during assessment with the artificial intelligence algorithm both with and

without specialists experienced in stroke assessment.

Similarly, use of the parallel reader mode among RVC specialists showed an

increase in inter-rater reliability from moderate to substantial when evaluating with

ASPECTS with dichotomous classification of scores ≤ 7 and > 7 and ≤ 6 and > 6. A

similar trend of reliability changes was observed among specialists from general

hospitals, whose Fleiss’ kappa indicators showed fair inter-rater agreement at the first

assessment and an increase in fair to moderate (almost significant) at the second test.
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The results of the fifth stage of this thesis showed a pronounced positive effect of

using the parallel reader mode with an increase in diagnostic strength of specialists with

up to three years of experience, with an increase in inter-rater reliability when using

ASPECTS. The introduction of an automated ischemic stroke detection system into the

diagnostic process of less experienced RVC specialists (with less than three years of

experience) allows them to improve their ability to interpret CT images and to approach

the diagnostic strength of specialists with expert qualifications (with more than eight

years of experience) due to indicators of sensitivity and accuracy.

It is worth noting that all specialists involved in the research who used both the

parallel and second reader modes tended to lower the ASPECTS score after a joint

assessment with the automated stroke detection program. In the initial analysis, RVC

specialists reported a score of ≤ 7 in 50.5% of cases. This indicator decreased to 42.5%

in the first test and to 39% in the second test. Specialists with no experience in stroke

assessment (non-RVC) reported a score of ≤ 7 in 68% of cases; this percentage

decreased to 55.5 in the first test and 53 in the second test. Similarly, before the

evaluation of the artificial intelligence algorithm, RVC specialists estimated the extent

of ischemic changes in the middle cerebral artery territory according to ASPECTS to be

≤ 6 in 64.5% of cases; in the second test, this indicator decreased to 57%, and in the

parallel analysis – to 52.5%. Their colleagues without experience in urgent

neuroradiology reported ≤ 6 points according to ASPECTS at the first examination in

78% of cases, in 65% of cases – at the first test, and in 63% of cases – in the second test.

These results suggest that as inter-rater reliability increases, specialists tend to lower the

ASPECTS score more significantly when using a parallel reader mode.

According to foreign publications, researchers have found positive results when

specialists interact with automated CT image analysis systems. For example, Brinjikji

W. et al. [51] tested the software e-ASPECTS together with twelve radiologists and four

neurologists. The study included native CT examinations of 60 patients with confirmed

middle cerebral artery stroke. First, the specialists evaluated the non-contrast CT

images of the brain and scored them according to ASPECTS. Two months later, the
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specialists evaluated the image data again, but this time together with the software. The

authors found that inter-rater reliability improved significantly with the use of e-

ASPECTS. The study did not examine the characteristics of using modes to implement

medical decision support systems, so we cannot confirm the effectiveness of using the

parallel reader mode.

In the thesis work of U.A. Smolnikova [20], which deals with the possibilities of

automated analysis systems of digital X-rays in the diagnosis of pulmonary nodules and

masses, despite the good results (in some cases better than those of specialists) of

analytical validation of automated analysis systems with joint interpretation (parallel

reader Mode, according to N.A. Obuchowski N. A. et al [88]) of X-rays by a specialist

and automated analytical systems led to a summation of human errors and those of the

programs, which resulted in a deterioration of diagnostic strength (a decrease in

sensitivity from 83% to 56.7%, specificity from 99% to 93.9%). Using the second

reader mode with an initial assessment of X-rays by a specialist followed by the use of

an automated analysis system and repeated decision making, a decrease in sensitivity to

66.7% and an increase in specificity to 95% (by 10.6%) were observed. It is worth

noting that in this study, the use of the second reader mode was more appropriate

because it improved the sensitivity of professional judgments, which is different from

the results of the research of this thesis. When choosing an automated analysis system, it

is probably worthwhile not only to take a personalized approach, but also to evaluate the

characteristics of the interaction between specialists and an artificial intelligence

depending on their area of expertise.

Despite the positive results of the use of automated analysis systems, further

research is needed to develop their ideal interaction with specialists and improve the

indicators of diagnostic strength. However, it is already possible to assess the prospects

for introducing artificial intelligence algorithms into a specialist’s clinical practice.
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СONCLUSIONS

1. The thesis work proves the direct dependence of the degree of diagnostic strength

in the detection of ischemic changes in the middle cerebral artery area by

computed tomography on the years of practice of radiologists and their

experience in the regional vascular center was established.

2. There was substantial inter-rater reliability of regional vascular center specialists

in detecting hyperdense middle cerebral artery sign (0.684) and sign of loss of

gray- white differentiation (0.629), as well as moderate agreement regarding the

sign of sulcal effacement (0.525) and a hypoattenuation of the cortex (0.529).

3. Despite substantial reliability for the individual CT signs of ischemic stroke

(ranging from 0.529 to 0.684) and high diagnostic strength in detecting the

middle cerebral artery stroke (accuracy ranging from 88.3% to 93.8%), we

revealed low reproducibility of the ASPECTS scale (0.391 for the dichotomous

classification of ASPECTS scores with a cutoff of 6 and 0.376 for the

dichotomous classification of ASPECTS scores with a cutoff of 7) by specialists

in regional vascular centers, regardless of the duration of treatment.

4. The diagnostic strength of currently existing automated CT image analysis

systems (accuracy between 67.0% and 75.0%) in detecting ischemic middle

cerebral artery stroke is lower than the results obtained by specialists in regional

vascular centers, regardless of how long they have been working (accuracy

between 88.3% and 93.8%).

5. The optimal option for implementing automated image analysis systems with a

low degree of underdiagnosis and a high risk of overdiagnosis is to use a mode in

which the CT examinations are first evaluated by software, followed by an

assessment by a specialist, and the decision is made taking into account the

results of the interpretation of the artificial intelligence algorithm. This approach

allows an increase in diagnostic strength for specialists with less than three years
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of experience (accuracy of 90.25% to 94.25% for RVC specialists and accuracy

of 75% to 89% for general hospital specialists) and a decrease in variability in the

assessment of ischemic changes according to ASPECTS (from 0.409 to 0.657 for

dichotomous classification according to ASPECTS with a cutoff of 6 and from

0.425 to 0.669 for dichotomous classification according to ASPECTS with a

cutoff of 7).
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PRACTICAL RECOMMENDATIONS

1. The use of automated image analysis systems makes it possible to increase the

diagnostic strength of radiologists with up to three years of experience in

detecting middle cerebral artery ischemic stroke by computed tomography.

2. The use of automated CT image analysis systems makes it possible to increase

the reproducibility of the ASPECTS among radiologists with up to three years of

experience.

3. Currently existing programs for automated assessment of ischemic changes differ

in their diagnostic strength and do not achieve the values required for further

clinical validation.

4. It is recommended to test the implemented algorithm on an independent, verified

collection of CT images.

5. In testing automated CT image analysis systems, the evaluation of parameters of

high sensitivity is of paramount importance, which has an impact on reducing the

risk of underdiagnosis of pathological changes.

6. When introducing automated analysis systems into the diagnostic process, it is

advisable to choose a model in which the CT examinations are first evaluated by

software, followed by an assessment by a specialist and final decision-making

taking into account the results of the interpretation by the artificial intelligence

algorithm.
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PROSPECTS FOR FURTHER DEVELOPMENT OF THE TOPIC

Timely recognition and treatment of acute ischemic stroke is critical for reducing

morbidity and mortality in the Russian population. The use of AI in the diagnosis of

middle cerebral artery ischemic stroke offers numerous opportunities for more accurate

and subsequently faster interpretation of radiation images, which may ultimately

improve the quality of medical care and functional outcomes of the disease.

One of the most promising areas for the use of artificial intelligence systems is

the creation of platforms with software products for computed tomographic detection of

ischemic stroke, acute brachycephalic and cerebral artery occlusion, and automated

assessment of CT perfusion. Further research is also needed to detect ischemic strokes

in the vertebral-basilar region using artificial intelligence and to build prognostic

models for disease development. The most important of these models are predicting the

outcome of thrombolytic therapy and the outcomes of other treatments.

It is not yet clear whether this integration will prove successful in clinical practice.

How will this affect the overall view of diagnostic and therapeutic interventions? How

will this affect the legal agenda and the legal responsibilities of specialists and health

care providers in the event of disputes, even though there are official guidelines and

recommendations for the use of automated analysis systems?

Further research is needed to confirm the effectiveness of artificial intelligence

methods in reducing variability in the interpretation of radiation images and to ensure

wider application under various practical conditions. To obtain a full understanding of

the diagnostic capabilities of these artificial intelligence products, clinical studies should

be continued using both the analytical validation method with different collections and

the clinical validation method.
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LIST OF ABBREVIATIONS

AI – artificial intelligence

AIS – acute ischemic stroke;

ASPECTS (Alberta stroke program early CT score) – a 10-point quantitative

topographic CT scan score used for middle cerebral artery (MCA) stroke patients;

CT – computed tomography;

CVA – cerebrovascular accidents;

DICOM (Digital Imaging and Communications in Medicine) – medical standard for

creation, storage, transfer and visualization of digital medical images and documents of

examined patients;

DWI – diffusion-weighted images;

EIC – early ischemic changes;

GH – general hospitals;

HAS – hyperdense middle cerebral artery;

ITT – intravenous thrombolytic therapy;

JPEG (Joint Photographic Experts Group) – one of the formats used for storing photos

MCA – middle cerebral artery;

MRI – magnetic resonance imaging;

mRS – Modified Rankin scale;

NIHSS – National Institutes of Health Stroke Scale;

PACS (Picture Archiving and Communication System) — is a clinical data

management system consisting of several open-source medical imaging technologies

that can be used to store, access, transfer and manage medical images and digital reports

in DICOM format;

PVC – primary vascular compartments;

RF – Russian Federation;

RVC – regional vascular center.
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GLOSSARY OF TERMS

A neural network is a mathematical model, as well as its software or hardware

implementation, which is built on the principle of organization and functioning of

biological neural networks - networks of nerve cells of a living organism, from the point

of view of machine learning, a neural network is a special case of pattern recognition

methods, discriminant analysis.

Analytical validation is an assessment of the correctness of processing input data

by software providing for the creation of reliable output data; evaluated using reference

labeled data sets.

Artificial intelligence is a set of technological solutions that allows you to

simulate human cognitive functions (including self-learning and the search for solutions

without a predetermined algorithm) and obtain, when performing specific tasks, the

results that are comparable with the results of human intellectual activity.

Automated CT Image Analysis System – a system that allows you to produce

detection, tracking and classification of objects, in particular image processing in

medicine, it contributes to obtaining information from image data for staging medical

diagnosis for patients.

Clinical approbation - evaluation of effectiveness through use within the standard

production process, consists of two components: clinical correlation (assessment the

presence of a significant clinical relationship between the results and the target clinical

condition of the software), and clinical validation (confirmation of achievement of the

intended goal in the target population in the context of clinical work through the use of

accurate and reliable output).

Deep learning is a set of machine learning methods (with a teacher, with partial

teacher-assisted, unsupervised, reinforced) based on representational learning, rather

than specialized algorithms for specific tasks.
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Diagnostic efficiency is a parameter that characterizes the capabilities of a given

test systems at the same time correctly identify positive results as positive, and negative

results as negative.

Hypodiagnosis - an erroneous medical conclusion about the absence of a disease

in the examined person or its complications that are present or more pronounced than

indicated in conclusion.

Machine learning is a class of artificial intelligence methods, a characteristic

feature of which is not a direct solution of the problem but learning through the

application of solutions of many similar tasks. To construct such methods, the data of

the mathematical statistics are used, as well as numerical methods, mathematical 109

analysis, optimization methods, probability theory, graph theory, various techniques for

working with data in digital form.

Overdiagnosis - an erroneous medical conclusion about the presence of a disease

in the patient or its complications, which are absent or less pronounced than indicated in

the conclusion.
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