ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ГЕОЛОГИЧЕСКИ ИНСТИТУТ

ИМ. А.П. КАРПИНСКОГО

На правах рукописи

Брусницына Екатерина Алексеевна

Реконструкция источников сноса рифейских терригенных отложений Среднего Тимана, по данным комплексных аналитических исследований

Научная специальность 1.6.1. Общая и региональная геология. Геотектоника и геодинамика

Диссертация на соискание ученой степени кандидата геолого-минералогических наук

Научный руководитель:

Доктор геолого-минералогических наук

А.К. Худолей

Санкт-Петербург 2023

Оглавление

Введение	4
ГЛАВА 1: Геологическое строение Тимано-Печерского региона	10
1.1 Геологическое строение района исследований	10
1.2. Краткий обзор истории изучения Тиманского регион	12
1.3 Геологическое строение Четласского Камня и Вольско-Вымской гряды	17
Четласский Камень	
Вольско-Вымская гряда	22
1.4. Обоснование возраста рифейских терригенных образований Среднего Т	имана24
1.5. Обзор современных представлений о тектонике региона	28
Глава 2. Методы исследования	
2.1. Петрографические методы исследования.	
2.2. Минералогические методы	
2.3. Изучение химического состава турмалинов	
2.4. U-Th-Pb датирование обломочных цирконов и рутилов и Lu-Hf изо геохимические характеристики обломочных цирконов	отопные- 38
U-Th-Pb (LA-ICPMS) датирование обломочных рутилов	40
Глава 3. Петрографические, геохимические и изотопно-геохронологические исследования терригенных отложений Среднего Тимана	42
3.1. Петрографическая характеристика рифейских толщ Четласского Камня	ни
Вольско-Вымской гряды	42
Четласская серия	43
Быстринская серия	
Кислоручейская серия	51
Вымская серия	
3.2. Степень окатанности обломочных цирконов и турмалинов	55
3.3. Химический состав обломочных турмалинов	
3.4. U-Th-Pb датирование обломочных цирконов	61
Четласский Камень	61
Вольско-Вымская гряда	66
3.5. Lu-Hf-изотопно-геохимические характеристики обломочных цирконов .	67
3.6. U-Th-Pb датирование обломочных рутилов	70
Глава 4. Обсуждение результатов	73
4.1. Определение максимального возраста осадконакопления	73
4.1.1. U-Th-Pb датирование обломочных цирконов	73
4.1.2. U-Th-Pb датирование обломочного рутила	74
4.1.3. Метаморфические события в источнике сноса	75

4.2. Химический состав обломочных турмалинов и реконструкция источников снос	2a 80
4.2.1. Морфология обломочных зерен тяжелой фракции (циркон и турмалин)	82
4.3. Петрография терригенных пород и реконструкция источников сноса обломочного материала	83
4.3.1. Расположение источников обломочного материала рифейских толщ Среднего Тимана: интерпретация U-Th-Ph возрастов обломочных цирконов	85
4.3.2. Палеогеография северо-восточной части Балтики в раннем и среднем рифее	89
Заключение	101
Список литературы	103
Приложение 1	116
Приложение 2	125
Приложение 3	140
Приложение 4	144
Приложение 5	153
Приложение 6	154
Приложение 7	161

Введение

Актуальность работы. Изучением геологического строения Тиманского кряжа, начиная с конца XIX века, занимаются многие геологи. Вопросы генезиса, возраста и источника обломочного материала, в особенности для докембрийских пород, является предметом многочисленных дискуссий. Причинами этого является отсутствие фауны в докембрийских осадочных толщах, а также незначительное количество изотопногеохронологических данных.

В пределах Тиманского кряжа на современную поверхность выходят разрозненные блоки, сложенные в различной степени деформированными докембрийскими породами. Объектом данного исследования являются рифейские породы, выходящие на поверхность в пределах двух блоков – Четласский Камень и Вольско-Вымская гряда. В пределах Тиманского Кряжа наиболее полный разрез докембрийских образований выходит на Четласского современную поверхность В пределах Камня. Для нескольких стратиграфических подразделений рифейского возраста, были проведены комплексные изотопно-геохронологические, петрографические и минералогические исследования. Новые данные позволяют значительно уточнить имеющиеся представления о возрасте исследуемых пород, реконструировать источники сноса обломочного материала и пути его переноса в рифее.

Цель исследования. Реконструкция источников сноса обломочного материала и, уточнение возраста отложений четласской, быстринской и вымской серий Среднего Тимана, традиционно относимых к среднему и позднему рифею.

Задачи исследования:

- Минералого-петрографическое изучение терригенных рифейских пород Среднего Тимана
- 2. Микрозондовое изучение обломочных турмалинов из верхнедокембрийских терригенных отложений Среднего Тимана для определения их химического состава и происхождения.
- 3. U-Th-Pb датирование обломочных цирконов из верхнедокембрийских терригенных отложений Среднего Тимана для ограничения возраста и определения основных источников обломочного материала.
- 4. Lu-Hf изотопные-геохимические характеристики обломочных цирконов для определения источника исходного расплава.

5. U-Th-Pb датирование обломочных рутилов для уточнения возраста метаморфических событий в источнике сноса обломочного материала.

Фактический материал. В основу диссертации положен каменный материал, собранный лично автором при проведении полевых работ, в рамках проекта "Выполнение геолого-съемочных работ в пределах листов Q-39-XXXIII, XXXIV (Вымская площадь)" (ЗАО «Поляргео»; ФГБУ «ВСЕГЕИ»). Изученная коллекция представляет собой 40 проб, в 8 из которых были выделены обломочные цирконы для последующего датирования, в 8 пробах выделены обломочные турмалины для определение химического состава. Обломочный рутил был выделен из 2 проб терригенных докембрийских пород Среднего Тимана. Определение Lu-Hf изотопного состава цирконов было проведено в 6 пробах, для которых предварительно был получен U-Th-Pb возраст цирконов. Петрографическое описание составлено для 40 шлифов, которые охватывают изученные стратиграфические подразделения рифейского возраста.

Личный вклад автора. При подготовке диссертации автор принимала непосредственное участие в проведении полевых работ на Среднем Тимане (2015, 2016 гг). Автор участвовала в геологических маршрутах, проводила документацию и опробование. Проведены петрографические исследования, анализ окатанности обломочных цирконов и турмалинов. Отбор зерен обломочных турмалинов и рутилов, проводился автором. Автор лично (совместно с аналитиками) принимала участие в проведении всех аналитических исследованиях: U-Th-Pb датирование цирконов и рутилов, определение Lu-Hf изотопных характеристик в цирконах, определение химического состава обломочных турмалинов.

Научная новизна. Проведенное комплексное изотопно-геохимическое исследование рифейских терригенных отложений Среднего Тимана позволило значительно уточнить имеющиеся представления об источниках обломочного материала. Были проанлизированы U-Th-Pb возраста обломочных цирконов из 8 проб из разных стратиграфических подразделений рифея Четласского Камня и Вольско-Вымской гряды, проведено сопоставление результатов с подобными исследованиями возрастов цирконов из соседних регионов Тимана, Урала, Ленинградской области, Кольского п-ова.

Для цирконов из 5 проб впервые получены Lu-Hf изотопные характеристики, которые позволили установить происхождение «материнского» субстрата при образовании цирконов. Впервые получены данные по U-Th-Pb датированию обломочных рутилов, что, в совокупности с данными датирования обломочных цирконов, позволило установить возраст последнего термального события, влиявшего на породы в источнике сноса.

Впервые получены данные по химическому составу обломочного турмалина, выделенного из осадочных рифейских толщ Среднего Тимана. Полученные результаты дали информацию о составе исходных пород, служивших источником для осадочных толщ Среднего Тимана.

Практическая значимость. Полученные результаты U-Th-Pb датирования обломочных цирконов и рутилов дают возможность ограничить возраст докембрийских терригенных пород Среднего Тимана. Разработанная палеогеографическая схема дополняет реконструкции для докембрийского времени на территории Тиманского кряжа, а также сопредельных территорий. Полученные результаты могут найти применение как при разработке стратиграфических схем для целей составления Государственной геологической карты различных масштабов, так и при проведении тектонических и металлогенических исследований.

Структура и объем работы. Диссертация состоит из введения, 4 глав, заключения и списка литературы. Содержит 168 страниц, 42 рисунков, 3 таблицы и 7 приложений. Список литературы включает 154 источник.

Апробация. Результаты исследований отражены в 11 публикациях, включая 3 статьи в рецензируемых журналах, входящих в перечень ВАК. Результаты исследований были представлены на российских и международных конференциях и совещаниях.

Статьи по теме исследования:

1) Брусницына Е. А., Ершова В. Б., Худолей А. К., Андерсен Т., Маслов А. В. Возраст и источники сноса пород Четласской серии (рифей) Среднего Тимана по результатам U-Th-Pb (LA-ICP-MS) датирования обломочных цирконов // Стратиграфия. Геологическая корреляция, т. 29, вып. 6, сс. 1–23, 2021.

 Брусницына Е. А., Верещагин О.С., Ершова В. Б. Обломочный турмалин из рифейских терригенных отложений Среднего Тимана: химический состав и генезис // Записки Российского минералогического общества, Ч. СШ, №1, с. 29-43, 2022

Brustnitsyna E., Ershova V., Khudoley A., Maslov A., Andersen T., Stockli
D., Kristoffersen M Age and provenance of the Precambrian Middle Timan clastic

succession: Constraints from detrital zircon and rutile studies // *Precambrian Research*, т. 371, с. 106580, 2022, doi: <u>10.1016/j.precamres.2022.106580</u>.

Тезисы докладов:

1) Брусницына Е.А., Ершова В.Б., Худолей А.К., Андерсен Т. Результаты исследования U-Pb – изотопного возраста обломочных цирконов из средневерхнерифейских отложений Четласского Камня (Тиманской Гряды) // L тектоническое совещание «Проблемы тектоники и геодинамики земной коры и мантии» г. Москва, 2018г, Т.2, с. 384-388.

2) Brusnitsyna E.A., Ershova V.B., Khudoley A.K., Andersen T. Age and provenance of the Mesoproterozoic-Lower Neoproterozoic strata of the Chetlass Stone (Timan Range): Constraints from U-Pb detrital zircon study // The International Conference on Arctic Margins (ICAM) (Стокгольм, 2018г),

3) Брусницына Е.А., Ершова В.Б., Худолей А.К., Андерсен Т. Результаты U-Pb и Hf изотопных данных для обломочных цирконов из средне-верхнерифейских терригенных пород Среднего Тимана // LI тектоническое совещание «Проблемы тектоники континентов и океанов» г. Москва, 2019 г, с. 90-94.

4) Брусницына Е.А., Ершова В.Б., Худолей А.К., Андерсен Т. Новые U-Pb и Hf-изотопные данные для обломочных цирконов из средне- и верхнерифейских терригенных пород Среднего Тимана // XVII Геологический съезд Республики Коми «Геология и минеральные ресурсы Европейского Северо-Востока России», г. Сыктывкар, 2019 г, Т.1, с. 16-18

5) Brusnitsyna E.A., Ershova V.B., Khudoley A.K., Andersen T. Age and provenance of the Mesoproterozoic strata of the Timan Range: Constraints from U-Pb-Hf detrital zircon study // European Geosciences Union (EGU) General Assembly Γ . Вена, 2019 Γ

6) Брусницына Е.А., Ершова В.Б., Худолей А.К., Андерсен Т. Результаты исследования U-Pb изотопного возраста обломочных цирконов из средне – верхнерифейских отложений Четласского Камня (Тиманской Гряды) // 28-я научная конференция «Структура, вещество, история литосферы Тимано-Североуральского сегмента», г. Сыктывкар, 2019 г, с. 7-11.

7) Брусницына Е.А., Ершова В.Б., Худолей А.К. Реконструкция источников сноса рифейских терригенных отложений Среднего Тимана // VII Молодежная конференция «Новое в геологии и геофизике Арктики, Антарктики и Мирового океана» г. Санкт-Петербург, 2021 г, с. 20-22.

8) Брусницына Е.А., Ершова В.Б., Худолей А.К. Реконструкция источников сноса рифейских терригенных отложений Среднего Тимана, по результатам комплексных аналитических исследований // VI международная научная конференция «Геодинамика и минерагения Северной Евразии» г. Улан-Удэ, 2023 г, с. 87-90

Благодарности. Автор выражает благодарность своему научному руководителю А.К. Худолею за всестороннюю помощь в написание диссертации. Автор глубоко благодарен В.Б. Ершовой за огромную поддержку при написании диссертации, помощь, многочисленные консультации, а также организацию аналитических исследований.

Автор признателен за проведение подготовительных и аналитических исследований Т. Андерсону, М. Кристофферсону (Университете г. Осло, кафедра наук о Земле), Д. Стокли и Л. Стокли (лаборатория UTChron департамента наук о Земле (Jackson School of Geoscience) Техасского университета г. Остин, Техас, США), В.В. Шиловских и Н.С. Власенко (ресурсный центр СПбГУ «Геомодель»), А.В. Антонову (ЦИИ ФГБУ «ВСЕГЕИ»).

Автор благодарен А.В. Маслову (Институт геологии и геохимии УрО РАН, ГИН РАН), О.С. Верещагину (СПбГУ) за консультации и помощь в проведении аналитических исследований и интерпретации полученных данных.

Автор признателен за возможность участия в полевых работах коллективу ЗАО «ПОЛЯРГЕО» (в настоящее время отдел региональной геологии полярных и приполярных территории и Сыктывкарский сектор ФГБУ «ВСЕГЕИ») в лице В.Г. Котельникова, А.А. Пархачева, А.Т. Терентьева, Д.В. Зархидзе

Аналитические работы и участие в российских и международных конференциях поддержаны грантом РФФИ 17-05-00858 и грантами РНФ 20-17-00169 и 18-35-00407.

Основные научные результаты:

- 1. Проведенные исследования возраста обломочных цирконов, свидетельствует о более молодом возрасте осадочных пород, чем был принят ранее (RF₁₋₂). Возраст терригенных отложений Среднего Тимана оценивается как завершение среднего рифея начало позднего рифея (Брусницына и др., 2021, стр. 20, 21; Brusnitsyna et. al., 2022, pp. 13).
- Исследование химического состава обломочных турмалинов из терригенных пород Среднего Тимана показало, что источником турмалинов являлись метаморфизованные первично осадочные породы (Брусницына и др., 2022, стр. 6).

8

 Исследования возрастов наиболее молодых обломочных рутилов показывают, что они соответствуют возрастам фаз метаморфизма в источнике сноса обломочного материала (Brusnitsyna et. al., 2022, pp. 13).

На защиту выносятся следующие положения:

- Возраст самых молодых и образованных не менее чем тремя-пятью зернами популяций обломочных рутилов (~900-1050 млн лет) отражает возраст последней фазы метаморфизма в источнике сноса обломочного материала.
- Значительное распространение хорошо окатанных зерен обломочных цирконов, состав песчаников и химический состав обломочных турмалинов указывают на широкое развитие в источнике сноса осадочных (метаосадочных) пород.
- Проведенное комплексное исследование рифейских терригенных толщ Среднего Тимана показывает, что преобладающим источником обломочного материала выступал Свеконорвежско-Гренвильский ороген вместе с входящими в его состав более древними террейнами.

ГЛАВА 1: Геологическое строение Тимано-Печерского региона

1.1 Геологическое строение района исследований

Тиманский кряж располагается на территории Республики Коми и Архангельской области и протягивается в северо-западном направлении на расстояние около 1000 км от места примыкания его к Северному Уралу в Колво-Вишерском крае до берегов Чешской губы Баренцева моря. В данном исследовании, термин «ВЕП» используется, когда речь идет о современной структуре; однако, при обсуждении тектонических реконструкций в части докембрийской эволюции, ВЕП традиционно называют Балтикой (Балтией).

Выходы докембрийских пород, выделяется в рельефе в виде ряда сильно эродированных возвышенностей (Рисунок 1.1). В пределах наиболее значительных из них, известных на Тимане под названием "камней", обнажаются в разной степени метаморфизованные докембрийские комплексы, пронизанные разновозрастными интрузиями (Оловянишников, 1998). С юго-востока на северо-запад, на современную поверхность выходят следующие поднятия, сложенные рифейскими породами: Джеджим-Парма, Очпарма, Вольско-Вымская Гряда, Четласский Камень, Цилемский Камень, Северный Тиман и Канин Камень (Рисунок1.1).

Рисунок 1.1. Схема строения Печорской плиты и ее обрамления, по Оловянишников (1998), с упрощениями.

В субмеридиональном направлении Тиманский кряж разделяется на две крупные зоны – Восточно-Тиманскую и Западно-Тиманскую. Западно-Тиманская зона с юго-запада ограничена Западно-Тиманским надвигом, а с северо-востока Центрально-Тиманским надвигом. Главный структурный элемент Западно-Тиманской зоны является Четласский Камень – поднятый блок (Оловянишников, 1998), сложенный рифейскими терригенными породами. Четласский Камень осложнен многочисленными разрывными нарушения северовосточного направления. Рифейские толщи слабо деформированы, образуют пологие складки, и метаморфизованы до серицит-хлоритовой субфации (Пармузин и др., 2015).

Восточно-Тиманская зона отделена от Западно-Тиманской зоны Центрально-Тиманским надвигом, а с северо-востока ограничена Восточно-Тиманским надвигом. В пределах Восточно-Тиманской зоны на поверхность выходят несколько поднятий, сложенных докембрийскими отложениями, в том числе Вольско-Вымская гряда. Рифейские отложения Вольско-Вымской гряды сложены терригенными толщами среднерифейского и позднерифейского возраста. Песчано-сланцевые породы рифея метаморфизованы преимущественно в зеленостанцевой, локально до эпидот-амфиболитовой фации и смяты в складки при преобладающем падении слоёв на восток под углами до 80° (Пармузин и др., 2015).

1.2. Краткий обзор истории изучения Тиманского регион

История геологического изучения Тиманского кряжа продолжается более 200 лет (Оловянишников, 1998).

Впервые Тиманский кряж описал А.И. Фомин в Книге «Описание Белого моря с его берегами и островами...» (1797 г), назвав его камнем. Первые систематические описания геологии Тимана (1843-1855 гг) с характеристикой орографии и гидрографии региона содержатся в трудах А.А. Кейзерлинга, К.И. Гривинга, А.Н. Шренка и А.Ф. Штукенберга. В 1847 году А.А. Кейзерлинг и П.И. Крузенштерн составили первую карту Тиманского кряжа — одну из первых геологических карт России.

В 1915 г. Ф.Н. Чернышевым составлена геологическая карта Европейской части России (Рисунок 1.2), включившей Тиманский кряж. В этой работе Канино-Тиманская зона деформаций рассматривается как продолжение деформированных пород полуострова Варангер, Рыбачьего и острова Кильдин. Это полностью подтвердилось дальнейшими исследованиями. Деформации исследователь объяснил разрывами земной коры, обращая внимание, что нарастание складчатости происходит к краям горстов и грабенов. Согласно Ф.Н. Чернышеву, деформации Тимана и п-ова Канин, подчинены двум направлениям зон разломов, совпадающим с северо-западными и северо-восточными дизъюнктивными ограничениями Балтийского щита. Изучение состава И осадочноструктуры метаморфических пород впервые проведено финским ученым Вильямом Рамсеем на хр. Канин Камень в 1911 году. Им составлена геологическая карта п-ова Канин и впервые

установлен различный характер деформаций в осадочно-метаморфическом комплексе и осадочных пород палеозоя.

«Рекогносцировочный» этап геологического изучения Тиманского кряжа завершается в 1902-1918 годах работами Н.Н Яковлева, А.П. Павлова, А.А. Чернова и В.А. Варсанофьевой.

Второй этап изучения Тимана ознаменовал широкий интерес к данному региону, где в течение многих лет работали Ф.Н. Чернышев, А.И. Замятин, В.К. Лихарев, Н.Н. Тихонович, А.А. Малахов и др. Кроме того, еще целый ряд геологов, уже на основании литературных данных, многократно касался проблемы Тимана. Среди них особенно важное значение имеют работы А.П. Карпинского, А.Д. Архангельского, Н.С. Шатского, И.М. Губкина, А.Н. Мазаровича, которые рассматривали Тиман как ответвление Уральской складчатости. Надо отметить, что во времена Кайзерлинга-Чернышева геотектоника еще не накопила достаточно большого количества описательного материала и авторы во многом были вынуждены ограничиваться догадками.

А.Д Архангельский (1922 г.), по существу, впервые установил платформенную природу Тимана, который, по его мнению, представляет опустившийся массив, некогда примыкавший с востока к Балтийскому щиту. В дальнейшем А.Д. Архангельский (1933 г.), описывая структуру Восточно-Европейской платформы, в состав выделенного им главного вала платформы включает Тиман. Причем образование этой структуры он связывает с горообразованием Уральской геосинклинали.

Рисунок 1.2. Геологическая карта Европейской части России, составленная Ф.Н. Чернышевым (1915 г.)

Следующий (третий) этап нацелен на проведение целенаправленных геологосъемочных и геолого-поисковых работ на нефть и газ. В 1929 г. на Тимане организована Ухтинская геологоразведочная экспедиция (Оловянишников, 1998). Этот этап (1921-1946 гг) связан с такими исследователями как А.Н. Розанов, Т.Е. Худяев и Б.К. Лихарев, Н.Н. Тихонович, Н.И. Стрижков, К.К. Воллосович, А.А. Молахов, П.Е. Оффман. Поисковые и съемочные работы в 30-х годах XX века вели на Северном Тимане и на п-ове Канин такие исследователи как М.М. Ермолаев, М.Б. Едемский, В.П. Бархатова, А.А. Чернов, К.К. Воллосович, В.И. Шмыгалев. Практически все исследования были приостановлены во время Великой Отечественной войны и только после ее окончания началось планомерное тематическое изучение и геологическая съемка. Что позволило создать к концу 50-х годов кондиционную геологическую карту северо-востока европейской части СССР (Оловянишников, 1998). К этому времени принадлежат важные работы по тектонике Тимана. Это, в первую очередь, статьи и монографии А.А. Малахова, П.Е. Оффмана, Н.Н. Тихоновича, А.А. Чернова. Большая часть геологов разделяют геологический разрез на осадочный чехол и осадочно-метаморфический фундамент и считают докембрийский этап развития Тимана геосинклинальным.

С середины 50-х до начала 90- х годов проходит следующий (четвертый) этап который отличается развитием геофизических исследований и поисковых работ на россыпи, бокситы, нефть и газ с большим объемом бурения. В это же время, проводятся крупномасштабная геологическая съемка, тематические и аэрогеологические исследования. В этот период резко возрастает объем геологической и геофизической информации, появляется ряд новых интерпретаций геологического развития и тектонической эволюции региона. Наиболее крупные региональные обобщения сделали такие исследователи как Ю.П. Ивенсон, В.А. Разницын, Г.А. Чернов, В.С. Журавлев, Р.А. Гафаров, В.Н. Пучков, В.Г. Гецен, В.А. Дедеев, И.В. Запорожцева и др.

Начиная с 1991 года объем геологических и геофизических исследований, а также тематических работ резко сократился. Появился ряд региональных геологических обобщений и геодинамических моделей развития региона (В.Г. Гецен (1991); Л.Т. Белякова, В.И. Степаненко (1991); И.В. Запорожцева, А.М. Пыстин (1994); С.Л. Костюченко, (1994); Н.Г. Берлянд (1993); В.Г. Оловянишников (1996); В.М. Пачуковский, Х.О. Траат, Р.Я. Мищенко, Н.А. Довжиков (1996)).

Начиная с 40-х годов XX века, проводилась систематическая геологическая съемка масштаба 1:200 000 по всей территории России, включая и Тиманский регион. Силами Ухтинского территориального геологического управления составлена первая карта масштаба 1:1 000 000 для территории Среднего Тимана в 1965 году В.И. Горский-Кручининым. Карта для Южного Тимана в масштабе 1:1 000 000 составлена 1960 году К.К. Воллосович, а для Северного Тимана, включая п-ов Канин автором карты в масштабе 1:1 000 000 был Я.Д. Зеккель (1939г). «Полярноуралгеология», «Архангельскгеология» и в Ухтинском управлении геологией проведены первые геолого-съемочные работы на территории Среднего Тимана (Т.Н. Зоренко; М.И. Осадчук, В.П. Пономарев; Х.О. Траат, Р.Я. Мищенко; Г.Ф. Проскурин, В.И. Липанов), Северного Тимана (Л.С. Колосовой) и Южного Тимана (В.Н. Опаренков).

Начина 2000-х годов, такими геологическими организациями как ВСЕГЕИ, ВНИИОкеангеология, ООО «УГРЭ», на территории Тиманского кряжа проводятся работы по актуализации геологической информации, в том числе, составляются новые карты масштаба 1:1 000 000 (С.И. Шкарубо, В.В. Орго, Б.Г. Лопатин, Г.М. Черемхина, А.А. Черепанов; С.И. Шкарубо, В.А. Журавлев; Н.М. Пармузин; К.Э. Якобсон, А.Ю. Вовшина, Н.М. Пармузин) и 1:200 000 (А.А. Черепанов, Н.А. Ерохина; С.И. Кириллин). Исследование геологии Тиманского региона ведется и по настоящее время.

В середине 90-х годов, в связи с открытием месторождений нефти, начинается эпоха активного изучения и освоения арктического шельфа. Крупнейшие российские и зарубежные компании ведут работы по оценке ресурсов нефти в пределах шельфовой зоны Ледовитого океана. В пределах Тимано-Печерской нефтегазоносной провинции с 2013 года ведется добыча нефти в месторождении «Приразломное» (юго-восточная часть Печерского моря). Это первое месторождение нефти, добываемой на шельфе Ледовитого океана России.

За последние 20 лет изучением геологии Тимана занимались многие российские и зарубежные ведущие ученые. Множество исследований посвящено изучению магматических пород северо-восточной части Восточно-Европейской платформа, в том числе Северной части Урала, о. Новой Земли и Тиманского Кряжа (напр., Backholmen et al, 2004; Gee, Pease, 2004; Korago et al., 2004; Larionov et al., 2004). С развитием аналитических методов, становится доступным изучение изотопного состава и возраста цирконов, не только для магматических и метаморфических пород, но и для осадочных отложений.

Исторически изучение терригенных пород включало два этапа: поиск руководящих ископаемых флоры и фауны и минералогический состав пород. Для древних докембрийских толщ набор ископаемой фауны весьма убогий и не дает возможности определить возраст отложений. По мере развития технологий геохимических и изотопных исследований, стали широко применяться и новые подходы к изучению источников сноса и реконструкции тектонических обстановок, основанные, прежде всего, на U-Th-Pb датировании обломочных цирконов. Не стал исключением и Тиманский кряж с прилегающими территориями, начиная с 2006 г., с каждым годом увеличивается количество публикаций, посвященных датированию обломочных цирконов (Андреичев и др. 2017, 2018; Кузнецов и др., 2010; Орлов и др., 2011; Соболева и др. 2019; Удоратина и др., 2017). Новые данные по датированию обломочных цирконов, в совокупности с уже накопленными геофизическими и палеомагнитными позволили составить ряд крупных региональных тектонических реконструкций для Русской платформы (ВЕП) и Тимано-Уральского региона (Кузнецов и др.

2006, 2007; Пыстин и др. 2018; Bogdanova и др. 2008, 2016; Kostyuchenko и др. 2006; Kuznetsov и др. 2010 и др.).

Данные методы позволили впервые получить возраст гранитных интрузий, внедрение которых ознаменовало заключительный этап Тиманской орогении (Андреичев и др., 2017). Помимо того, удалось значительно уточнить стратиграфическую позицию рифейских терригенных отложений Тиманского кряжа.

1.3 Геологическое строение Четласского Камня и Вольско-Вымской гряды

В строении Четласского Камня и Вольско-Вымской гряды принято выделять два структурных этажа: фундамент и платформенный чехол Тимано-Печерской плиты. В пределах поднятий, на современную поверхность выходят докембрийские отложения(Рисунок 1.3). При этом стоит отметить, что рифейские отложения Тимана формировались на пассивной окраине Балтике (Гецен, 1987; Оловянишников, 1998).

Рисунок 1.3. Геологическая карта Четласского Камня и Вольско-Вымской гряды с местами отбора проб (по Кириллин и др., 2020 с упрощениями).

Рисунок 1.4. Сводный стратиграфический разрез отложений рифея Четласского Камня и Вольско-Вымской гряды и положение исследованных образцов.

1 – сланцы; 2 – метапесчаники; 3 – известняки; 4 – мергели; 5 – доломиты; 6 – метаалевролиты; 7 – известняки и доломиты со строматолитами; 8 – конгломераты; 9 – прослои кремней; 10 – стратиграфические границы (а – согласные, б – несогласные); 11 – стратиграфическое положение излучавшихся образцов (а – образцы для U-Th-Pb датирования обломочных цирконов; б – образцы для микрозондового изучения обломочных турмалинов; в – образцы для U-Th-Pb датирования обломочных рутилов; г – образцы для Lu-Hf изотопно-геохимических исследований обломочных цирконов).

Свиты: RF₂sv – светлинская; RF₂nb – новобобровская; RF₂vn – визингская; RF₃an – аньюгская; RF₃vr – ворыквинская; RF₃pv – павьюгская; RF₃pn – паунская; RF₂kl – клеоновская; RF₂pz – пижемская; RF₂pk – покьюская; RF₂lv - лунвожская.

В настоящей работе используется традиционная для российской школы схема расчленения верхнего докембрия на рифей и венд.

Четласский Камень

В пределах Четласского Камня на поверхность выходят терригенные породы рифейского возраста, разделенные на две серии: четласскую и быстринскую. Четласская серия на одноименном Камне объединяет светлинскую, новобобровскую и визингскую свиты (Гецен, 1987; Оловянишников, 1998). Отложения четласской серии с юго-запада перекрываются терригенными породами девонского возраста, а с северо-востока имеют тектонический контакт с породами быстринской серии. Литологически, породы четласской серии представляют собой переслаивающуюся толщу кварцитов, кварцитовидные метапесчаник, алевролитов, кварц-слюдяных и хлорит-слюдистых сланцев (Рисунок1.4).

Светлинская свита (RF2sv) – является наиболее древней свитой, выходящей на современную поверхность, и лежит в основании четласской серии (Кириллин и др., 2020). Свита закартирована в виде нескольких разрозненных фрагментов, площадью до 30 км² в северо-восточной части Четласского Камня вдоль Центрально-Тиманского разлома (Рисунок 1.3), обнажается в бассейнах рек Бобровая, Визинга и в верховьях р. Мезени. Нижний контакт свиты не вскрыт. По данным предшествующих работ (Оловянишников, 1998; Кириллин и др., 2020) и наших полевых наблюдений, подразделяется на две подсвиты. Нижняя подсвита выделена преимущественно по данным бурения. Разрез нижней подсвиты представлен в основном слюдисто-кварцевыми и полевошпат-кварцево-слюдистыми сланцами с подчиненным количеством метапесчаников. Сланцы в составе подсвиты значительно преобладают над метапесчаниками (60% к 40%, соответственно). Вскрытая мощность разреза нижней подсвиты 270 м. Верхняя подсвита согласно перекрывает отложения нижней, границу между ними условно проводят по первой мощной пачке кварцитов (до 50 м) (Кириллин и др., 2020). Верхняя подсвита сложена метапесчаниками, среди которых присутствуют пачки переслаивания слюдисто-кварцевых сланцев и метаалевролитов. Метапесчаники составляют порядка 70% от объема разреза. В верхней части разреза отмечаются (Оловянишников, 1998; Кириллин и др., 2020) линзовидные тела гравелитовых метапесчаников, с характерными обломками гравийного размера голубоватого и дымчатого кварца. Мощность верхней подсвиты оценивается 320 м, а мощность всей светлинской свиты более 590 м.

Новобобровская свита (*RF*₂*nb*) – вделается в центральной, осевой части Четласского Камня, прослежена от верховьев р. Мезень до верховьев р. Светлая и Нижний Паун. На поверхность новобобровская свита выходит в виде полосы шириной прядка 50 км при ширине от 5 до 10 км. Отложения новобобровской свиты залегает с размывом на отложениях светлинской свиты (Оловянишников, 1998). Полный разрез новобобровской свиты, как и светлинской, вскрыт скважинами. Новобобровская свита состоит из кварц-хлоритсерицитовых сланцев и метаалевролитов с прослоями метапесчаников. Для нижней части свиты характерно чередование метаалевролитов и сланцев кварц-слюдистых, кварцевых, глинисто-слюдистых (содержащих углистое вещество). Нижняя часть разреза названа толщей «кровельных» сланцев, которую сменяет толща, представленная чередованием метаалевролитов и сланцев. В верхней части разреза отмечаются кварцитовидные метапесчаники с примесью гравийных зерен. В самой верхней части разреза (порядка 100 м) представлена толща чередующихся метапесчаников, метаалевролитов и сланцев. Мощность свиты до 550 м (Кириллин и др., 2020).

Визингская свита (*RF*₂vn) – слагает большую часть Четласского Камня. Залегает согласно на подстилающих отложениях новобобровской свиты. Некоторые авторы (Кириллин и др., 2020) в составе визингской свиты выделяют три подсвиты. В нижней части разреза чередуются пачки метапесчаников, метаалевролитов и хлорит-серицитовых сланцев. Выше по разрезу начинают преобладать метапесчаники (кварцитовидные)(Оловянишников, 1998; Кириллин и др., 2020). В средней части разреза свиты описаны пестрые пачки чередующихся метаалевролитов и сланцев с редкими прослоями метапесчаников. Верхняя часть разреза сложена мощной толщей кварцитовидных метапесчаников, с редкими линзами и обломками сланцев. В нижней части верхней подсвиты разрез сменяется на чередование кварцитовидных метапесчаников, метаалевролитов и сланцев. Мощность визингской свиты оценивается 1650-1750 м.

Принято считать, что формирование отложений четласской серии происходило в мелководном морском бассейне (Оловянишников, 1998).

Быстринская серия, обнажающаяся вдоль северо-восточной границы Четласского Камня (Рисунок 1.3), преимущественно сложена карбонатными породами. К быстринской серии относятся аньюгская, ворыквинская, павьюгская и паунская свиты (Рисунок 1.4). В целом для пород быстринской серии характерно переслаивание доломитов, мергелей, известковых сланцев, строматолитовых известняков. В верхней части разреза (паунская свита) породы представлены сланцами кварц-серицит-хлоритового состава, метапесчаниками, кварцитовидными метапесчаниками.

Аньюгская свита ($RF_{3}an$) находится в основании быстринской серии, залегает с размывом и угловым несогласием на новобобровской и визингской свитах четласской серии. Наиболее полный разрез вскрыт скважинами, однако несколько разрезов выходят на поверхность в районе pp. Косью, Визинга и Мезени (Оловянишников, 1998; Кириллин и др., 2020). В нижней части разреза описаны крупногалечные конгломераты и кварцитовидные метапесчаники с тонкими (до 2,5 м) прослоями метаалевролитов и сланцев. Выше по разрезу выходит толща тонкопереслаивающихся метаалевролитов, сланцев и метапесчаников. Завершается разрез пачкой ритмично переслаивающихся слюдисто-кварцевых алевролитов, сланцев и кварцитовидных метапесчаников. По всему разрезу наблюдаются прослои известковых разностей. Мощность свиты 200 м.

Ворыквинская свита (RF3vr) выходит узкой полосой (400-600 м) вдоль северовосточного склона Четласского Камня (вдоль Центрального-Тиманского разлома). В природных обнажениях контакт с породами четласской серии тектонический, однако, по данным бурения установлено, что ворыквинская свита залегает на отложениях аньюгской свиты с постепенным переходом (Кириллин и др., 2020). По литологическим признакам, в строение ворыквинской свиты выделяют две подсвиты. Нижняя подсвита представлена переслаивающимися известняками, доломитами, сланцами, алевролитами И кварцитовидными метапесчаниками. Выше залегает толща карбонатных пород алевритистых доломитов, известняков и доломитизированных известняков, содержащих редкие тонкие прослои сланцев. Верхняя подсвита сложена доломитами массивными, полосчатыми, брекчированными и строматолитовыми. В верхней части разреза отмечается пачка полосчатых известняков с прослоями мергелей. Мощность свиты достигает 350-450 м (Кириллин и др., 2020).

Павьюгская свита (*RF*₃*pv*) – выходит в виде тонкой полосы вдоль северо-восточного склона Четласского Камня, обнажается в долинах рек Ворыква, Павьюга, Прав. Бобровая, Бобровая и Паун. Свита согласно залегает на породах ворыквинской свиты. Сложена доломитами слоистыми и тонкослоистыми, брекчированных с пластами строматолитовых разностей. В верхней части разреза отмечаются пачки черных углеродистых известняков и доломитов пиритизированных, окремненных. Мощность павьюгской свиты до 300 м (Кириллин и др., 2020).

Паунская свита (*RF*₃*pn*) выходит вдоль северо-восточной части Четласского Камня, и завершает разрез быстринской серии. Паунская свита выходит тонкой полосой шириной порядка 2.5 км, обрамляя Четласский Камень. Контакт с нижележащей павьюгской свитой тектонический, и только в юго-восточной части наблюдается небольшой фрагмент согласного залегания. На севере и северо-востоке паунская свита перекрывается с размывом породами девонского и каменноугольного возраста (Кириллин и др., 2020). Нижняя часть разреза представлена толщей переслаивающихся сланцев и известняков. Выше залегает толща кварц-серицит-хлоритовых сланцев, содержащих прослои и пачки доломитов, известняков, метапесчаников, кварцитовидных метапесчаников, известковых и углистых сланцев. Средняя часть свиты представлена толщей углистых сланцев, содержащих прослои метапесчаников, кварцитовидных метапесчаников, присутствуют редкие прослои кварцитовидных метапесчаников, известковых и углистых сланцев. Разрез паунской свиты завершает толща метапесчаников, содержащая тонкие прослои сланцев. Мощность свиты достигает 1350-1450 м (Кириллин и др., 2020).

Считается (Гецен, 1987), что накопление отложений четласской серии происходило в мелководном морском бассейне, а породы, перекрывающей ее быстринской серии, слагали крупный рифовый пояс.

Вольско-Вымская гряда

В пределах Вымской гряды рифейские породы объединяются в вымскую и кислоручейскую серии (Рисунок 1.3). В составе кислоручейской серии выделяют клеоновскую и пижемскую свиты (Рисунок 1.4).

Клеоновская свита (RF_2kl) на изучаемой территории породы свиты установлены в северной части, где они выходят на современную поверхность в виде узкой полосы (шириной до 1.2 км, при длине до 9 км). С запада свита имеет тектонический контакт с отложениями карбона, а на востоке с размывом перекрыта девонским осадками (Кириллин и др., 2020). В нижней части свиты залегают кварцитовидные метапесчаники, алевролитовые и глинистые сланцы, с преобладанием алевролитов. По составу сланцы серицит-хлоритовые, серицит-хлорит-кварцевые и биотит-кварцевые (Гецен и др., 1987). Выше залегает толща чередующихся кварц-слюдистых сланцев и метаалевролитов. Мощность свиты 900 м.

Пижемская свита (*RF*₂*pž*) – согласно залегает на отложениях кленовской свиты. Отложения пижемской свиты описаны в юго-западной части Вольско-Вымской гряды, где они слагают одну из тектонических пластин. С юго-запада комплекс пород надвинут на отложения палеозойского возраста, а на северо-востоке погружается под пластину, сложенную вымской серией (Кириллин и др., 2020). Свита сложена преимущественно сланцами первично алевритового и глинисто-алевритового состава, метаморфизованными до биотит-хлоритовой субфации фации зеленых сланцев (Гецен и др., 1987). Встречаются прослои и линзы доломита и сидерита. Характерной чертой пижемской свиты является присутствие маркирующего горизонта, представленного магнетитсодержащими сланцами с крупными лейстами биотита. В нижней части свиты превалируют серицит-хлориткварцевые, слабоизвестковые, хлорит-серицитовые сланцы. В верхней части свиты описана толща углисто-хлорит-кварцевых, углисто-кварц-хлоритовых, углисто-хлорит-серицитовых сланцев, с тонкими прослоями серицит-кварц-хлоритовых сланцев и метапесчаников. Мощность свиты 790 м (Кириллин и др., 2020). На изучаемой территории, образования клеоновской и пижемской свит разобщены и имеют тектонический контакт с вышележащими толщами рифея и девона. Данные о согласном залегании пижемской свиты на клеоновской получены при описании стратотипа на р. Пижма. Существует точка зрения (Оловянишников, 1998), о том, что отложения кислоручейской серии распространены локально в пределах Вольско-Вымской гряды и формировались одновременно с отложениями четласской и вымской серий, а оказались совмещены в результате перемещений по надвигам (Кириллин и др., 2020; Оловянишников, 1998).

Вымская серия включает в себя покьюскую и лунвожскую свиты (Рисунок 1.4). Породы вымской серии слагают большую часть одноименного выступа (Рисунок 1.1).

Покъюская свита (RF2pk) – выходит на современную поверхность в юго-восточной части Вольско-Вымской гряды. Свита слагает западную часть Вольско-Вымской тектонической пластины, надвинутой на породы пижемской свиты (Кириллин и др., 2020). Традиционно, в разрезе покьюской свиты выделяются три толщи (Оловянишников, 1998; Кириллин и др., 2020). Нижняя толща представлена преимущественно кварцитовидными метапесчаниками, в подчиненном количестве присутствуют слои сланцев, чередующихся с метаалевролитами. Средняя толща представлена переслаивающимися углисто-хлоритсерицитовыми и серицит-хлоритовыми сланцами, с прослоями метаалевролитов и известковистых метаалевролитов. Верхняя толша сложена тонким ритмично переслаивающимися сланцами, метаалевролитами и кварцитовидными метапесчаниками, в редких линзах встречаются известковые метаалевролиты, метапесчаники и известняки. Мощность свиты до 1400 м (Оловянишников, 1998; Кириллин и др., 2020).

Лунвожская свита (RF_2lv) – распространена в центральной и северо-восточной части Вольско-Вымской гряды и согласно залегает на отложениях покъюской свиты. В разрезе лунвожской свиты выделяются два крупных мегацикла осадконакопления (Кириллин и др., 2020). Разрез первого мегацикла начинается с толщи кварцитовидных метапесчаников и метапесчаников с прослоями сланцев. Выше залегает толща хлорит-серицитовых сланцев с тонкими прослойками светло-серых серицит-хлорит-кварцевых, иногда известковистых метаалевролитов (Кириллин и др., 2020). Завершает разрез мегацикла толща ритмично переслаивающихся черных сланцев и алевритистых сланцев, реже метапесчаников. Второй мегацикл осадконакопления начинается с кварцевых метапесчаников, кварцитовидных метапесчаников, метаалевролитов и алевритистых сланцев. Выше залегает толща переслаивающихся черных и темно-серых сланцев углисто-серицит-хлоритовых, углистохлорит-серицитовых, серицит-хлорит-углистых. В подчиненном количестве присутствуют

23

прослои темно-серых метаалевролитов, алевритистых сланцев, редко – метапесчаников и кварцитовидных метапесчаников светло-серых (Кириллин и др., 2020). Общая мощность лунвожской свиты около 2040 м.

Кыввожская свита устранена из стратиграфической схемы ввиду идентичности ее разреза и разреза лунвожской свиты. Породы, ранее относимые к кыввожской свите, входят в состав верхней толщи лунвожской свиты (Кириллин и др., 2020).

Согласно В.Г. Оловянишникову (1998), осадконакопление докембрийских пород Вольско-Вымской гряды происходило в обстановке глубоководного бассейна или континентального склона.

1.4. Обоснование возраста рифейских терригенных образований Среднего

Тимана

Представления о возрасте исследованных докембрийских пород Среднего Тимана, преимущественно основывается на геологической позиции образований, определениях акритархов, строматолитов и единичных определениях К-Ar методом. Неоднозначность результатов, получаемых этими методами, привела к появлению многочисленных местных стратиграфических схем, приведенных на Рисунках 1.5 и 1.6. Возраст четласской серии принят на основании геологической позиции в разрезе и определению акритархов (отобранных в сланцах визингской свиты). В новобобровской свите также был описан бедный комплекс микрофоссилий, которые, по мнению авторов, указывают на среднепозднерифейский возраст свиты (Кириллин и др., 2020). В.Г. Гецен (1987) К-Аг методом определил возраст серицита из сланцев визингской свиты - 725±25 млн. лет, что, по мнению автора, является верхним возрастным пределом накопления пород свиты. Позднерифейский возраст аньюгской свиты определен по микрофоссилиям (акритархам), а также по наличию в основании свиты конгломератов с обломками подстилающих пород четласской серии (Кириллин и др., 2020). Быстринская серия практически всеми исследователями Тимана отнесена к позднерифейскому возрастному уровню (Гецен, 1987; Опаренкова и др., 1999; Якобсон и др., 2002; Оловянишников, 2004; Пармузин и др., 2015; Кириллин и др., 2020). Предположительно позднерифейский возраст павьюгской и паунской свит основан на противоречивых определениях строматолитов и акритархов, а также на их позиции в разрезе.

Возраст вымской серии наиболее противоречиво интерпретируется разными авторами – от среднего рифея до венда (Рисунок 1.6). Покьюская свита, залегающая в основании вымской серии, охарактеризована комплексом среднерифейских акритархов (Кириллин и др., 2020). Возраст лунвожской свиты при составлении карты масштаба 1:1 000 000 принят среднерифейским (Пармузин и др., 2015; Кириллин и др., 2020), но ряд авторов (Гецен, 1987; Опаренкова и др. 1999) поднимают его до позднего рифея и венда.

Стратиграфическое значение строматолитов в настоящее время поставлено под сомнение. Строматолитовые постройки могут быть индикатором обстановки осадконакопления в бассейнах – опреснённые или засолонённые зоны, или в зоны с периодической сменой пресной и солёной воды, но никак не возраста осадков (напр., Дольник, 2000). Однако, строматолитовые постройки могу служить маркирующим горизонтом для корреляции карбонатных образований в соседних областях (Михайленко, 2016).

При использовании датировок, полученных К-Аг изотопным методом, стоит учитывать некоторые его ограничения. В случае отсутствия вторичных изменений пород, К-Аг метод, вероятно, покажет возраст раннего диагенеза, т.е. может оказаться близким к возрасту седиментации и тогда будет иметь геологический смысл. Воздействие же постдиагенетических изменений пород вследствие геологической эволюции региона, может привести к изменению химического состава и преобразованию пород и минералов, следствием чего окажется потеря накопленного радиогенного ⁴⁰Ar и «омоложение» пород (Фор, 1989). Достоверно известно, что докембрийские толщи Среднего Тимана подверглись метаморфизму и изменению пород в зеленосланцевой фации. Из чего следует, что доверять К-Аr изотопным данным не следует, потому что метаморфизм, безусловно, повлек «омоложение» К-Ar возрастов пород.

За последнее десятилетие, были получены современные данные по U-Th-Pb датированию обломочных цирконов из терригенных отложений рифейского возраста Среднего Тимана. Определены возраста обломочных цирконов из светлинской, визингской (Удоратина и др., 2017) и лунвожской (Соболева и др., 2019) свит. Распределения возрастов обломочных цирконов из образцов по всем трем свитам Среднего Тимана сходные, что указывает на единый бассейн осадконакопления и источник обломочного материала. Возраст наиболее молодых цирконов приходятся на популяцию от 1022-1122 млн лет, что дает возможность ограничить нижний возраст образований концом среднего рифея- началом позднего

25

тектонический контакт

Рисунок 1.5. Сравнение стратиграфических схем рифейских отложений Среднего Тимана Четласского Камня по различным авторам

Рисунок 1.6. Сравнение стратиграфических схем рифейских отложений Среднего Тимана Вольско-Вымской гряды по разным авторам

27

1.5. Обзор современных представлений о тектонике региона

Проблемы происхождения Тимана и геологической истории северо-востока ВЕП продолжают оставаться дискуссионными (Оловянишников, 1998). В фундаменте ВЕП известны архей-раннепротерозойские метаморфические породы, тогда как позднепротерозойско-кайнозойские образования слагают платформенный чехол.

На современную поверхность Тиманского кряжа докембрийские породы выходят в разрозненных блоках в пределах тектонических поднятий (горстов) – Очпарма, Джеджимпарма, Четласский Камень, Вольско-Вымская гряда, Цилемский Камень, Северный Тиман и Канин п-ов. Накопление терригенного материала, при формировании докембрийских осадочных толщ Тимана, происходило в условиях пассивной окраины палеоконтинента Балтика. Об этом свидетельствует формационная принадлежность толщ, где с юго-запада на северо-восток мелководные осадки (четласская серия) сменяется отложениями барьерного рифа (быстринская серия). Далее в пределах Вольско-Вымской гряды, выходят отложения темносланцевых песчано-глинистых и флишоидных образований континентального склона или глубоководного бассейна (вымская серия) (Рисунки 1.7, 1.8)(Оловянишиков 1998, 2004; Пучков, 2010; Roberts et.al., 2004). Все рифейские толщи были метаморфизованы в зеленосланцевой фации, а на полуострове Канин до амфиболитовой (Зоненшайн, 1990). Их часто сопоставляют с рифейскими отложениями Башкирского антиклинория (Кириллин и др., 2020).

Рисунок 1.7. Основные структурные зоны допалеозойского фундамента Тимано-Печорской области (по Roberts et.al., 2004). Основные разломы: ЗТР, Западно-Тиманский разлом; ЦКР, Центрально-Тиманский разлом; ВТР, Восточно-Тиманский разлом; ПКР, Печоро-Кожвинский разлом. Желтыми звездами отмечены места отбора проб для данного исследования.

Рисунок 1.8. Схематическая палеогеографическая/палеотектоническая карта, показывающая предполагаемое распределение осадочных и вулканогенных поясов и блоки фундамента вдоль северо-восточной окраины Восточно-Европейского кратона в позднем рифее (по Roberts et.al., 2004). ЦКР - Центрально-Тиманский разлом; ПКР - Печоро-Кожвинский разлом; Kol. T., Колгуевский террейн; Khor. T. — Хорейверский террейн; Nov. T. – Новоземельский террейн.

Условные обозначения: 1 – шельфовые осадки; 2 – осадки континентального склона; 3 – островодужные вулканические породы и карбонатные рифовые породы; 4 – мелководные осадки на микроконтиненте; 5 – речные, лагунные, формации; 6 – строматолитовые формации; 7 – морские вулканогенно-осадочные породы; 8 – зоны с интенсивным подводным вулканизмом; 9 – дорифейские блоки или террейны в фундаменте ТПП; 10 – архейские и нижнепротерозойские породы фундамента ВЕП. Желтыми звездами отмечены места отбора проб для данного исследования.

Считается, что формирование пассивной окраины ВЕП началось в начале среднего рифея, когда, в обстановке слабого растяжения, формировались разобщенные и незначительные по размерам грабены. О возрасте заложения пассивной окраины ВЕП свидетельствуют Rb-Sr изотопные данные (1050±26 млн. лет) и Sm-Nd (1040±80 млн. лет) изохронные возраста по дайкам и силлам основного состава Северного Тимана. Что указывает на среднерифейский возраст прорываемых ими терригенных пород барминской серии (Андреичев, 2010). В.Г. Гецен (1991) высказал мнение, что в начале средне рифея на месте современного Канино-Тиманского кряжа в это время уже существовали рифтогенные троги и происходило накопление континентальных и мелководных формаций.

Согласно представлениям Н.А. Малышева (2002), к концу раннего – началу среднего рифея, окраинно-континентальные рифты трансформировались в перикратонное опускание, переходящее по латерали в направлении современного восточного склона Тимана и Ижемской впадины в пассивную окраину континента. Сформировавшиеся рифтовые зоны перекрыли и переработали сравнительно небольшие более ранние грабены, а также достигли края перикратонного прогиба. К концу рифея рифтовые зоны приобрели структурный облик, свойственный основным структурным элементам, которые прослеживаются и в современной структуре фундамента Мезенского бассейна. В целом, средне- и позднерифейские бассейны формировались в пределах рифтовых впадин и вдоль северо-восточной части современного Мезенского бассейна – на перикратонном опускании, являвшейся частью пассивной окраины кратона (Малышев,2002). Формирование осадков происходило в прибрежно-морских и лагунных обстановках.

В Тимано-Канинско-Печорском регионе основные разломы северо-западного – юговосточного простирания (Рисунок 1.7) могут отражать реактивацию раннепротерозойских и более древних структур, в средне-позднерифейское растяжение на этой окраине Прото-Балтики (Roberts et.al., 2004). На Тимане основной разломной зоной является Центрально-Тиманский разлом (ЦТР). Вдоль этого разлома происходит разделение на шельфовые и склоновые типы разреза рифея (Рисунок 1.7). Далее на северо-запад вдоль северного побережья Кольского полуострова та же зона, известна как Средне-Рыбачинская разломная зона. Она простирается до полуострова Варангер в Норвегии, где называется зоной разлома Тролль-фьорд-Комагельва (Roberts et.al., 2004). Ведущая роль деформаций, принадлежит надвигам, в том числе пологим, по которым произошло тектоническое совмещение карбонатного и терригенного типов рифейских разрезов, а совместно они надвинуты на край ВЕП.

Складчатый фундамент, сложенный рифейскими толщами, продолжается под всей Печорской низменностью, он вскрыт скважинами до глубины 4-5 км на всем сечении низменности до Большеземельской тундры (Зоненшайн, 1990; Кузнецов, 2006, 2007). До границы Ижемской впадины и Печоро-Колвинского вала вскрыты метаморфические сланцы, схожие с Тиманскими, а далее на северо-восток вскрыты известково-щелочные вулканиты кислого и среднего состава. В пределах Тимано-Печорской плиты фундамент имеет байкальский возраст (~650-550 млн. лет) и возможно включает ряд блоков добайкальской консолидации (Малышев, 2002 и ссылки в нем; Kuznetsov et al., 2010). Метаморфизованные толщи рифея прорывают граниты, пегматиты, габбро, сиениты и нефелиновые сиениты, определения изотопного возраста которых находятся в интервале 614 до 550 млн. лет, а

иногда достигает 500 млн лет (Андреичев 1998; Андреичев и др. 2018; Макеев и др. 2009; Andreichev и др. 2020; Gee et.al., 2000; Kuznetsov и др. 2010; Pease et.al., 2004 и др.). Эти магматические образования большей своей частью являются свидетельствами Тиманской орогении, приведшей к формированию структурного стиля региона.

По мнению Робертса и Оловянишникова (Roberts et.al, 2004), пассивная окраина среднего и раннего позднего рифея в конечном итоге превратилась в активную в конце позднего рифея. Это изменение тектонического режима с растяжения на сжатие ознаменовало начало тиманского орогенного цикла, который достиг своего пика в период середины до конца венда (Roberts et.al, 2004). Считается, что в конце венда – начале кембрия произошло аккреционно-коллизионное событие, послужившее причиной формирования Тиманского орогена (Орлов и др., 2011; Кузнецов и др., 2006, 2007; Пучков, 2010 и др.).

Магматические породы, выходящие на современную поверхность в пределах Северного Тимана, в других частях кряжа скрыты под мощной толщей осадочного чехла ТПП. Сиениты, габбро и граниты Северного Тимана имеют возраст 613-600 млн лет (Андреичев и др. 2020; Larionov et.al., 2004). Данные по датированию гранитоидов из скважин в пределах Большеземельской зоны, имеют возраст 558±6 и 607±6 млн лет (Andreichev и др. 2022). Приведенные данные, подтверждают, что в позднем рифее-венде происходило тектоническое событие, вследствие которого образовался Тиманский ороген. Продукты разрушения магматических пород «Тиманского» возраста широко распространены в венд-кембрийских образованиях ВЕП, ТПП, Пай-Хоя и даже Таймыра (Ивлева и др. 2018; Kuznetsov et. al., 2010; Канева и др., 2015 и др.).

В настоящее время, существуют две главные гипотезы формирования наблюдаемых структур Тиманского кряжа. Традиционно, исследователями Тимана и Западного Урала считалось, что формирование Тиманской складчатой зоны происходило за счет аккреции к северо-восточной части Балтики различных блоков (террейнов?), которые теперь расположены в фундаменте ТПП (Оловянишников, 1998, 2004; Гецен, 1987; Пуков, 2010 и др.). Считается, что при этом, важную роль играл Центральный-Тиманский разлом, который в это время функционировал как крупный надвиг, по которому слабометаморфизованные глубоководные толщи восточной зоны надвинуты на мелководные осадки западной (Оловянишников, 2004). «В северо-восточной части ТПП, в фундаменте Печоро-Колвинского мегавала, распространены более метаморфизованные и деформированные вулканогенно-осадочные образования, осадочные И включающие коллизионные магматические породы. Внутренняя область «тиманид» представляет собой систему микроконтинентов (Хорвейский, Колгуевский, Новоземельский и другие) и островных дуг, разделенных рифтовыми (спрединговыми?) зонами, нарастившими северо-восток Балтики в конце венда – начале кембрия в процессе латеральной аккреции» (Оловянишников, 2004) (Рисунок 1.9).

Вторая гипотеза состоит в том, что юго-западная часть «тиманид» (доордовикские образования Тимана и Тиманского блока фундамента ТПП) и доордовикские образования южного Урала (Кваркушинское и Башкирское поднятие), сложены преимущественно осадочными комплексами пород и их формирование происходило в режиме пассивной окраины Балтики (Кузнецов и др., 2006, 2007). Породы фундамента северо-восточной части ТПП (Большеземельский блок) и древние комплексы северного Урала (Ляпинский антиклинорий) формировались, по мнению Кузнецова и др. (2006, 2007), в обстановке (палеоконтинент, включающий активной окраины континента Арктида блоки с Шпицберген, континентальной корой В фундаменте такие как Карский блок. Баренцевоморский блок, Блок хребта Ломоносова, Новосибирский и Чукотский блоки) и зоне коллизии Арктиды и Балтики (Кузнецов и др., 2006, 2007). Главное событие, по мнению авторов второй гипотезы, является коллизия северо-восточной части палеоконтента Балтики (Тиманская пассивная окраина) и палеоконтинента Арктида (большеземельская активная окраина), которая произошла на границе венда и кембрия (Кузнецов и др., 2006, 2007) (Рисунок 1.10).

Рисунок 1.9. Геодинамическая карта фундамента северо-востока ВЕП (по данным Оловянишникова, 2004)

1 – нижнедокембрийские образования; 2 – нижнедокембрийский фундамент с платформенным верхнедокембрийским чехлом; 3 – Притиманский перикратон (зона мелкого шельфа в позднем рифее); 4 – зона глубокого шельфа и континентального склона в позднем рифее; 5 – дораннерифейские террейны; 6 – внутренняя область тиманид; 7 – участки выходов на поверхность верхнедокембрийских пород; 8 – каледониды; 9а – доордовикские граниты; 9б – офиолиты и глубоководные комплексы; 10 – венд-кембрийский (?) вулкано-терригенный комплекс; 11 – строматолитовые рифы; 12 – 13 – границы: 12 – Ижемской микроплиты; 13 – Притиманского перикратона (внутренняя); 14 – разломы: ЦТР – Центрально-Тиманский, Пр – Припечорский, Кр – Колвинский; 15 – границы: а) вулкано-терригенного комплекса; б) террейнов

Рисунок 1.10. Палеотектоническая реконструкция для начала кембрия (по данным Кузнецов и др., 2007 и ссылке в ней). 1 – океанические бассейны; 2 – палеоконтиненты; 3 – границы блоков континентальной коры палеоконтинента Арктида; 4 – границы блоков континентальной коры Восточно-Европейского палеоконтинента (Балтики); 5 – зона столкновения (Припечорская сутура) Восточно-Европейского палеоконтинента (Балтики) и Арктиды; 6 – узлы современной координатной сети (пересечение современных широт и долгот); 7 – современная координатная сетка; 8 – древняя координатная сетка.

Глава 2. Методы исследования

В основу настоящей работы положено исследование акцессорных минералов цирконов, рутила и турмалина, выделенных из образцов докембрийских осадочных пород Среднего Тимана (Четласского Камня и Вольско-Вымской гряды), собранных автором при полевых работах в 2015 и 2016 годах.

Всего в данной работе изучено 40 проб, для 8 образцов получен возраст обломочных цирконов, в 8 пробах изучен состав обломочного турмалина, рутил датирован в 2 пробах, а Lu-Hf характеристики получены для 5 проб. Петрографическое описание составлено для 40 шлифов, которые охватывают изученные стратиграфические подразделения рифейского возраста. Их положение в разрезе приведены в предыдущем разделе (Рисунок 1.4). Петрографическое описание терригенных пород, изученных в данной работе, сделано для 40 шлифов.

2.1. Петрографические методы исследования.

Ha первом данного исследования, были изготовлены этапе И изучены петрографические шлифы для большинства рифейских стратиграфических толщ Среднего Детальное петрографических описание приведено в следующей Тимана. главе. Петрографические исследования проводились автором на оптическом микроскопе Leica DM EP.

При изучении петрографического состава песчаников и построении диаграмм Q-F-L¹ использован метод Гацци-Дикинсона (Dickinson, 1970; Ingersoll et al., 1984), основанный на подсчете не менее 300 обломочных зерен, исключая матрикс и/или цемент (шлиф при подсчете передвигается с помощью препаратоводителя на равные расстояния, и подсчитываются зерна, находящиеся на перекрестии окулярных нитей). Подсчет в рамках указанного метода зерен лититового состава имеет свою специфику: так, если в обломочной фракции песчаников присутствуют обломки гранита, сложенные кварцем и полевым шпатом, размеры которых больше алевритовых, то они учитываются как кварц и полевой шпат, а не как обломок породы (гранита) (Dickinson, 1970; Ingersoll et al., 1984). В то же время, в изученных нами образцах такие зерна составляют незначительное количество, и для интерпретации состава метапесчаников использовали как классическую ΜЫ

¹ Здесь Q – кварц, F – полевые шпаты, L – обломки пород.
классификационную диаграмму Q–F–L Ф.Дж. Петтиджона (Pettijohn, 1975), так и диаграмму Q–F–L В. Дикинсона с соавторами (Dickinson et al., 1983).

2.2. Минералогические методы

Предварительная пробоподготовка, включающая дробление образцов, выделение тяжелой фракции в тяжелой жидкости, магнитная сепарация (с разделением тяжелой фракции на магнитную, электромагнитную и немагнитную), выделение цирконов, проведено в ИГДД РАН по стандартной методике. Пробы весом около 1.5 – 2.0 кг измельчали до размерности 0.25 мм, промывали и высушивали. После этого, была проведена магнитная сепарация, и удалены высокомагнитные минералы. Далее использовали бромоформ для извлечения концентрата тяжелых минералов, который затем промывали в дистиллированной воде и сушили. После того, тяжелая фракция обрабатывалась разбавленным йодистым метиленом; полученный концентрат промывали в спирте и высушивали. Дальше проводилась электромагнитная сепарация, разделяя на электромагнитную и немагнитную фракции в соответствии с парамагнитными свойствами минералов.

Выделение рутила и турмалина, проводилось после того, как из тяжелых фракций были извлечены цирконы. Зерна турмалина выкладывали рядами, заливали эпоксидной смолой и полировали. Отобранные вручную под бинокуляром, зерна рутила, были смонтированы в эпоксидной смоле в стандартных шайбах и отполированы для дальнейшего определение U-Th-Pb возраста рутила методом LA-ICP-MS.

Цирконы из шести проб (9016/2, 9020/3, 9048/5, 9034/2, 9007/1, 9007/4) после пробоподготовки были смонтированы в эпоксидной смоле в стандартных шайбах.

Две пробы (9045/1 и 9017/4) были датированы в лаборатории университета г. Остин (Техас, США). Зерна цирконов крепились (без полировки) на круглые стандартные шайбы (2.5 см в диаметре) с помощью двухстороннего скотча.

Для определения степени окатанности обломочного турмалина и циркона (Брусницына и др., 2021) была использована шкала Ф.Дж. Петтиджона (Pettijohn, 1975), позволяющая отнести зерна к одной из следующих групп: окатанные, среднеокатанные, угловатые и неокатанные (Рисунок 2.1).

окатанность:

Рисунок 2.1. Классы окатанности минералов по Петиджону (Pettijohn 1975)

2.3. Изучение химического состава турмалинов

Для определения химического состава турмалинов были выделены зерна из 8 проб. Пробы отобраны из 6 свит рифейского возраста Среднего Тимана – паунской (9034/12; 9034/2), визингской (9048/5), новобобровской (9020/3), светлинской (9016/2), лунвожской (9007/5; 9007/4) и пижемской (9064/2). Положение проб в разрезе приведено на рисунке 1.4.

Определение химического состава турмалинов проводилось на сканирующем электронном микроскопе Hitachi S-3400N с энергодисперсионым спектрометром AzTec Energy X-Max 20 (параметры: ускоряющее напряжение 20 кВ, ток пучка 1 нА, время сбора данных 30 с (без учета мертвого времени)). Природные и синтетические соединения были использованы в качестве стандартов. Точность для основных элементов находится в пределах ~ 3% от фактического количества; для элементов примесей находится в пределах ~ 10%. Химические формулы турмалинов были рассчитаны на основе 15 (Y + Z + T) атомов на формульную единицу с учетом того, что: (1) содержание бора принято равным 3, а количество О и OH, рассчитано по балансу зарядов, (2) в позиции X могут возникать вакансии; (3) при расчетах формул турмалинов принято, что все железо двухвалентное.

2.4. U-Th-Pb датирование обломочных цирконов и рутилов и Lu-Hf

изотопные-геохимические характеристики обломочных цирконов

U–Th–Pb LA-ICP-MS датирование цирконов в шести пробах (9016/2, 9020/3, 9048/5, 9034/2, 9007/1, 9007/4) и определение Lu-Hf- изотопно-геохимических характеристик проведено в Университете г. Осло на масс-спектрометре Nu Plasma HR с лазером CETAC Nd-YAG 213. Величины изотопных отношений и возрастов приведены с погрешностью на уровне 1 σ . Диаметр кратера не превышал 40 мкм. Калибровка выполнена по стандартам GJ1 (²⁰⁶Pb/²³⁸U = 601.7 ± 1.3 млн лет, ²⁰⁷Pb/²⁰⁶Pb = 607 ± 4 млн лет; Jackson et al., 2004), 91500

(1065 ± 1 млн лет; Wiedenbeck et al., 1995) и А382 (1877 ± 2 млн лет; Huhma et al., 2012). Детальная процедура проведения анализов описана в публикациях (Andersen et al., 2009, 2019; Rosa et al., 2009). Определение Lu-Hf- изотопно-геохимических характеристик проведено в Университете г. Осло на том же масс-спектрометре Nu Plasma HR, что и датирование цирконов. Исследование проводилось только на тех цирконах у которых дискордантность не превышает $\pm 10\%$. Диаметр кратера составлял 55-60 мкм. Каждой съемке предшествовало 30-секундное измерение фона. Время съемки было порядка 120-150 секунд для получения точности в пределах погрешности на уровне 1 о. Соотношение изотопов рассчитывали с использованием программного обеспечения Nu Plasma. Калибровка выполнена по стандарту LV-11, который представляет собой идиоморфный кристаллы из нефелинового сиенита с острова Лавен в рифте Осло (290 млн лет, из минералогической коллекции Музея Естественной истории, Университет г. Осло). Часть полученных Lu-Hf изотопно-геохимических данных была отбракована, когда изотопные соотношения ¹⁷⁸Нf/¹⁷⁷Нf превышали 1,46741 или были ниже 1,4671. Количество данных исключенных из расчетов, составляет от 2 ЛО 12%. Процедура проведения Lu-Hf изотопногеохронологических исследований детально изложена Elburg et al. (2013). Результаты определения Lu-Hf изотопно-геохимических характеристик приведены в Приложении 4.

Датирование цирконов из проб 9017/4 и 9045/1 проводилось в геохронологической лаборатории UTChron департамента наук о Земле (Jackson school of geoscience) Техасского университета г. Остин, Техас, США. Все зерна анализировались на масс-спектрометре Thermo Element 2 с лазером 193 nm Excimer Laser. Для геохронологического U-Th-Pb анализа обломочных цирконов было измерено количество ²⁰²Hg, ²⁰⁴Pb/Hg, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th, ²³⁵U и ²³⁸U. Данные U-Th-Pb циркона (LA-ICP-MS) были обработаны с использованием модуля Iolite ^{тм} (Paton et al., 2011) на платформе Wavemetrics Igor Pro ^{тм} и схемы обработки данных VizualAge ^{тм} (Petrus end Kamber 2012). GJ1 (²⁰⁶Pb / ²³⁸U 601.7 ± 1.3 млн лет, ²⁰⁷Pb / 206 Pb 607 ± 4 млн лет; Jackson et al., 2004) использовался в качестве первичного стандартного материала, a Plesovice (внутренний стандарт - PL-1, 337.1 ± 0.4 млн лет; Sláma et al., 2008) использовался в качестве вторичного стандарта. Поправка на обыкновенный Pb не применялась. Все возраста цирконов приведены с ошибкой 2 σ , за исключением стандартных образцов. Во время обработки были отбракованы данные с явными ошибками или если анализировался минерал, отличный от циркона. Графики с конкордией, созданные с помощью функции живой конкордии VizualAge ^{тм} (Petrus and Kamber, 2012), корректировались непосредственно во время съемки.

Все изученные обломочные цирконы древнее 1 млрд лет, и в дальнейших обсуждениях нами принимается возраст, рассчитанный по отношению ²⁰⁷Pb/²⁰⁶Pb.

Построение KDE (kernel density estimation) графиков распределения U-Th-Pb возрастов произведено с помощью программы DensityPlotter (Vermeesch, 2012). При построении графиков и дальнейшей интерпретации данных учитывались только те определения возраста, дискордантность которых находилась в пределах $\pm 10\%$. Дискордантность рассчитывалась по формуле: $100*(1-(^{207}\text{Pb}/^{206}\text{Pb})/(^{206}\text{Pb}/^{238}\text{U})$. Результаты датирования цирконов приведены в Приложении 1, 2.

Было проведено статистическое сравнение распределения возрастов обломочных цирконов из исследуемых отложений на основе «Теста на сходство» (Likeness test (Satkoski et al. 2013)). Тест предполагает попарное сравнение сходства или различия образцов, в которых были продатированы обломочные цирконы. После построения кумулятивных кривых, были рассчитана величина доверительных полос (доверительных интервалов) для каждой кривой. Далее были рассчитаны степени перекрытия одновременных доверительных полос (Andersen et al., 2016, 2018). В том случае, когда доверительные интервалы двух кумулятивных кривых перекрываются во всей вероятностной области, такие выборки неразличимы в пределах погрешности, связанной со случайным отбором зерен циркона для датирования. Если перекрытие частично, то доля той области вероятности, в которой перекрываются доверительные интервалы (0), является мерой сходства между двумя кривыми и 1-0 различия между ними (Приложение 5).

U-Th-Pb (LA-ICPMS) датирование обломочных рутилов

Обломочные рутилы были выделены вручную из тяжёлой фракции в двух пробах 9045/1 и 9007/3.

Готовые шайбы загружались в кювету для образцов Helix большого объема и анализировались с помощью магнитного сепаратора Element2 ICP-MS с одним коллектором, с помощью Photon Machines Analyte G.2 Excimer Laser (изотопная лаборатория университета штата Техас в г. Остин). Анализ U-Th-Pb рутила проводились с использованием тех же параметров абляции, с диаметром кратера не более 40 мкм и теми же параметрами сбора данных ICP-MS, которые использовались для U-Th-Pb анализа циркона. Рутил R10 (1090 \pm 0.9 млн лет; Luvizotto et al., 2009) использовался в качестве первичного эталона, а рутил R19 (489.5 \pm 0.9 млн лет; Zack et al., 2011) - в качестве вторичного эталона. Первичный стандартный рутил ²³⁸U/²⁰⁶Pb R10 (Luvizotto et al., 2009) использовался для расчета возраста и контроля фракционирования, тогда как вторичный стандартный рутил R19 (Zack et al., 2011) обеспечил независимую проверку возраста. Данные были обработаны с помощью VizualAgeDRS в Iolite (Ludwig, 2003; Paton et al., 2011; Petrus and Kamber, 2012). Поправка на свинец была основана на моделировании состава свинца по Стейси и Крамерсу (Stacey and

Kramers 1975). Аналитические результаты представлены в Приложении 3 и показаны, как и для обломочных цирконов, в виде графиков KDE. При построении графиков KDE были использованы возраста рассчитанные по изотопным соотношениями ²⁰⁶Pb/²³⁸U, дискордантность не рассчитывалась (Zack et al., 2011).

Глава 3. Петрографические, геохимические и изотопно-

геохронологические исследования терригенных отложений Среднего

Тимана

3.1. Петрографическая характеристика рифейских толщ Четласского Камня и

Вольско-Вымской гряды

Координатные привязки всех исследованных проб приведены в Приложении 1 и 2, а положение в разрезе отмечено на сводном стратиграфическом разрезе в главе 1 на Рисунке 1.4.

Петрографическое исследование метаосадочных пород четласской серии (Рисунок 3.1.) показало, что песчаники светлинской свиты по своему составу отвечают субаркозам, сублитаренитам и литаренитам, тогда как в песчаниках новобобровской и визингской свит обломки полевых шпатов преобладают над обломками пород и состав песчаников варьирует от аркозов до кварцевых аренитов. Две пробы лунвожской свиты по своему составу отвечают субаркозам и кварцевым аренитам.

Рисунок 3.1. Классификационная диаграмма Ф.Дж. Петтиджона (Pettijohn, 1975)

Четласская серия

Светлинская свита (Рисунок 3.2.)

Петрографическое описание шлифов пород светлинской свиты, сделано для шести проб. Пробы отобраны из центральной части Четласского Камня, в верховьях р. Мезень. Все шесть проб определены как литарениты, сублитарениты и субаркозы. Породы имеют псаммитовую структуру с поровым и базальным цементом хлорит-серицитового состава. Обломочная часть метатерригенных пород представлена разноокатанными обломками кварца и полевого шпата. Кварцевые зерна имеют различную степень окатанности, от слабодо хорошо окатанных. Размерность зерен варьирует в широких пределах от 0.1 мм до 0.5 мм. В одной пробе 9016/1 встречаются хорошо окатанные зерна кварца гравийной размерности (4-5мм). Содержание кварца в общем объеме пород варьирует в пределах 73-85%. В подчиненном количестве встречается полевой шпат, количество которого не превышает 10% от общего объема породы. По зернам полевого шпата во всех образцах наблюдается тонкозернистый агрегат соссюрита (?), который выглядит в шлифе, как тонкая серая пленка. Обломки различных пород (песчаников и алевролитов?) присутствуют в метапесчаниках светлинской свиты. Их количество варьирует от 4 до 19%. Вторичные минералы также представлены тонкочешуйчатыми агрегатами хлорита и серицита (мелкозернистый мусковит) в интерстициях между зернами кварца и полевого шпата. В пробе 9016/2 количество вторичного хлорита достигает 7-10% от общего объема породы. Серицитовые и хлоритовые чешуйки, ориентированы параллельно друг другу. В пробе 9017/1 в пространстве между кварцевыми зернами наблюдается биотит, с характерным плеохроизмом в бурых тонах. А в пробе 9017/2 вторичные минералы помимо серицита и хлорита, представлены вторичным полевым шпатом, который заполняет трещины в породе. Акцессорные минералы, во всех изученных метапесчаниках представлены цирконом, турмалином, мусковитом и рудным минералом (гематит, пирит?).

(д)

0.5 MM

(e)

Рисунок 3.2. Микрофотография шлифов метапесчаников светлинской свиты при скрещенных николях. (a- 9016/1; б – 9016/2; в – 9019/1; г – 9017/1; д – 9020/2; е – 9017/2) Bt – биотит; Q – кварц; Ser – серицит; Pl – плагиоклаз Новобобровская свита (Рисунок 3.3)

Для четырех проб из метаосадочных пород было проведено петрографическое описание. Все четыре пробы были отобраны в пределах выступа - Четласский Камень, две отобраны из отложений в верховье р. Мезень, а две из разреза в верховье реки Бобровой

(приток р. Светлой, которая является притоком р. Печорской Пижмы). В составе новобобровской свиты, описаны аркозы, субаркозы и сублитарениты. Метаосадочные породы новобобровской свиты имеют псаммитовую, разнозернистую, реже алевролитовую структуру, с базальным поровым цементом хлорит-серицитового состава. И Преимущественно обломочная фракция состоит из кварцевых зерен (34 - 81%), в основном, слабо- и среднеокатанных. В одной пробе (9062/3) встречаются хорошо окатанные зерна, а также единичные зерна гравийной размерности (2-3 мм). В двух пробах (9062/1 и 9020/3) размерность частиц от 0.1 до 0.3 мм. В пробе 9028/1 размерность зерен кварца от 0.02 до 0.05 мм, а величина зерен серицита и гематита значительно меньше, до алевритовой. Полевой шпат встречается во всех описанных породах, количество его редко превышает 9-16%. По наблюдается тонкозернистый зернам полевых шпатов часто (практически скрытокристаллический) агрегат сероватого соссюрита (?), нередко полевые шпаты частично замещены хлоритом. Вторичный серицит, так же встречается во всех порода новобобровской свиты. Он образует тонкочешуйчатые, таблитчатые, игольчатые зерна, размерность которых редко превышает 0.05 мм. В пробе 9028/1 количество серицита достигает 15-20% от общего объема породы. В основном, серицит располагается в интерстициях между зернами кварца. Кроме того, в этой же пробе (9028/1) обнаружено ожелезнение, которое выражено в наличии тонких изогнутых слойков, обогащенных гематитом (?). С зонами гематитизации связано присутствие столбчатых кристаллов (по-видимому, замещенный гематитом турмалин). Размерность кристаллов значительно крупнее основной массы породы, они достигают 0.25 мм. В пробе 9062/1 среди вторичных образований так же установлен карбонат (кальцит?). Он образует агрегаты неправильной формы, заполняя интерстиции между зернами кварца и пустоты. Акцессорные минералы в изученных породах – циркон, турмалин и рудный минерал (пирит?).

Рисунок 3.3. Микрофотография шлифов метаосадочных пород новобобровской свиты при скрещенных николях. (a- 9020/3; б – 9062/1; в – 9062/3; г – 9028/1) Bt – биотит; Q – кварц; Ser – серицит; Kfs – калиевый полевой шпат Визингская свита (Рисунок 3.4)

Петрографическое описание шлифов пород визингской свиты сделано для семи проб. Все пробы отобраны из центральной части Четласского Камня, из двух разрезов на р. Косью (правый приток р. Мезень). По составу породы – аркозы, субаркозы и кварцевые арениты. *Метапесчаники (аркозы, субаркозы и кварцевые арениты)* сложены преимущественно кварцем (60-90%), полевым шпатом (до 30%), а также вторичным серицитом (3-10%). Структура пород псаммитовая, с поровым цементом хлорит-серицитового состава. Зерна кварца слабо- и среднеокатанные. Размер зерен не превышает 0.25 мм, как правило, 0.1 мм. Полевой шпат образует таблитчатые зерна, размером 0.1-0.05 мм. Серицит образует тонкочешуйчатые кристаллы, заполняя пространство между зернами кварца и полевого шпата. *Серицит-кварцевые сланцы*, характеризуются мелкозернистой, алевролитовой, реже псаммитовой структурой, сланцеватой текстурой, которая обусловлена ориентировкой слюдистых минералов в цементе порового и базального типов. Обломочная часть состоит из кварца (1-3%), полевого шпата (до 3%) и единичного мусковита. Также в сланцах часто встречается вторичный хлорит, который образует тонкочешуйчатые агрегаты, замещая, по всей видимости, полевой шпат (?). Хлорит в ассоциации с серицитом слагает основную массу породы. В среднем течении р. Косью, была опробована небольшая зона (мощностью - первые метры) метасоматически измененных песчаников. Песчаники состоят из кварца и полевого шпата. Метасоматические изменения выражены в образовании хлорита и амфибола. Они заполняют трещины и пустоты в породе, образуя игольчатые, столбчатые, радиально-лучистые кристаллы. Размер кристаллов амфибола достигает 1.5-2 мм. Окраска амфибола зеленовато-голубая, с ярким плеохроизмом и высокими цветами интерференции. Для хлорита характерно зеленовато-бурый цвет и низкие цвета интерференции (иногда аномальные – индиго-синие).

(a) (b)

(B)

(г)

Рисунок 3.4. Микрофотография шлифов метаосадочных пород визингской свиты при скрещенных николях. (a- 9048/5; б – 9030/1; в – 9044/4; г – 9048/4) Pl – плагиоклаз; Q – кварц; Ser – серицит; Ат - амфибол

Быстринская серия

Быстринская серия выходит на поверхность вдоль северо-восточной кромки Четласского Камня и включает в свой состав: ворыквинскую, павьюгскую и паунскую свиты. Из ворыквинской свиты образцы не отбирались, поэтому петрографическое описание быстринской серии начинается с павьюгской свиты.

Павьюгская свита (Рисунок 3.5)

В составе павьюгской свиты выделяются известковые породы – доломиты, разной структуры и окраски, на отдельных интервалах разреза со строматолитами. Пробы были отобраны из забоя шурфа в правобережье р. Ворыква. Доломиты преимущественно тонкозернистые, местами сланцеватые. Состоят породы из доломита (90-95%), кварца (3-5%), серицита (1%), кальцита (<1%). Проба 907/2 состоит из плотно прилегающих друг к другу ромбоэдрических зерен доломита с ровными краями, размер их достигает 0.2 – 0.05 мм. В единичных зернах встречается кварц, зерна до 0,1 мм, форма зерен хорошоокатанная. Структура среднекристаллическая, мозаичная. В пробе 905/2 слоистая микротекстура, которая обусловлена чередованием слойков, состоящих из зерен доломита разной размерности. Породу пересекают изогнутые, тонки (0.5-1 мм) слойки, заполненные кварцем и серицитом, которые пропитаны тонкозернистым агрегатом гидроксидов железа.

Рисунок 3.5. Микрофотография шлифов карбонатных пород повьюгской свиты при скрещенных николях. (*a*- 905/2; 6 – 907/2)

Сb – карбонат (доломит)

Паунская свита (Рисунок 3.6)

В составе паунской свиты выделяются карбонатные и терригенные породы. В нижней части разреза описаны глинистые известняки, доломиты, известняки, а в верхней части разреза свиты – метапесчаники, серицит-кварцевых и углистые сланцы. Из паунской свиты

петрографическое описание сделано для 10 проб, 7 из которых отобраны из разреза на правобережье р. Нижний Паун (приток р. Светлая), а две из забоя шурфов, в правобережье р. Ворыква. *Серицит-кварцевые сланцы* (метасубаркозы?) характеризуются алевритовой структурой с поровым цементом хлорит-серицитового состава. Обломочная часть сложена преимущественно кварцем (1-5%), вторичными минералами: серицитом (85-90%), хлоритом (1-3%), гематитом (1-3%). Редкие зерна кварца имеют угловатую, слабоокатанную форму, размером до 0.1 мм. Текстура пород сланцеватая, что обусловлено взаимопараллельной ориентировкой чешуек серицита и хлорита в цементе пород. Вторичный хлорит встречается как в матриксе породы, так и замещает обломки (вероятно, первично полевого шпата). Гематит был описан в двух пробах (обр. 904/1 и 902/2), он образует тонкозернистый агрегат, который распределен не равномерно, а по отдельным слойкам, мощность которых варьирует от 0.1 до 1 мм.

Карбонатные породы в составе паунской свиты имеют весьма разнообразный состав и структуры. К общим чертам всех образцов, можно отнести полосчатость, слоистую текстуру. Все изученные пробы на 65-80% состоят из карбонатов (доломита и кальцита?), кварца (1-5%), серицита (1-3%). Вторичные минералы представлены тонкозернистыми агрегатами гидроксидов железа и биотитом (обр. P9034/5). Полосчатость пород обусловлена чередованием слойков карбонатного и серицит-кварцевого состава. Для проб К901/2, 901/5, К901/3 и P9034/4 характерно присутствие отдельных зон, слойков или линз, обогащенных минералами гидроксидов железа. В пробе P9034/5 описаны тонкие (до 0.5мм) слойки, состоящие из тонкостолбчатых, бурых кристаллов биотита. В пробах К901/2 и К901/3 формы карбонатных зерен похожи на оолиты, с темно-бурым агрегатом (возможно анкерита?) в центральной части и более светлым карбонатом по краевым частям.

Рисунок 3.6. Микрофотография шлифов терригенных (а, б, д, е) и карбонатных (в, г) пород паунской свиты при скрещенных николях. (*a*- 9034/1; б – 904/1; в – K901/2; г – K901/3; д – 9034/2; е – P9034/8)

Q – кварц; Pl – плагиоклаз; Ser – серицит; Chl – хлорит; Cb – карбонат (доломит) В пределах Вольско-Вымской гряды выделяют вымскую и кислоручейскую серии.

Кислоручейская серия

В состав кислоручейской серии входят клеоновская и пижемская свиты. Было составлено петрографическое описание пород, слагающих пижемскую свиту.

Пижемская свита (Рисунок 3.7)

Описание петрографических шлифов составлено для двух проб, отобранных из разреза в верховьях р. Нижняя Видзью. Обе пробы с точки зрения литологии имеют схожий состав и определены как метасублитарениты и метааркозы. В обломочной части пород преобладают кварцевые зерна (средне- и хорошо окатанной формы), поровый цемент серицитового состава. Характерной чертой описываемых пород, является наличие биотита в обломочной части пород. Биотит образует таблитчато-чешуйчатые кристаллы, а также агрегаты неправильной формы. Окраска биотита буро-зеленая, с ярким плеохроизмом, и высокими цветами интерференции. Акцессорные минералы представлены магнетитом (до 3%) и турмалином (до 1%). Турмалин проявлен только в пробе 9064/1, он образует столбчатые кристаллы с отчетливым плеохроизмом от бледно-розового до темно-синего. Для пробы 9062/2 характерно присутствие вторичного карбоната.

(г)

MM

Рисунок 3.7. Микрофотография шлифов терригенных пород пижемской свиты при скрещенных николях. (а, б – 9064/2; в, г – 9064/1) Q – кварц;Plag – плагиоклаз; Chl – хлорит; Bt – биотит <u>Вымская серия</u>

Вымскую серию слагают покъюская, лунвожская и кыввожская свиты. Петрографическое описание пород было сделано для пород лунвожской свиты.

Лунвожская свита (Рисунок 3.8)

Петрографический состав терригенных пород лунвожской свиты изучен в 8 пробах. Все пробы были отобраны в северной части Вольско-Вымской гряды, на западном склоне. Одна проба (обр. 9000/1) отобрана из тонкозернистых осадочных пород, вмещающих кимберлитовые трубки в северной части Вольско-Вымской гряды. Пять проб, отобрано из одного разреза в верховьях второго правого притока р. Средней. И еще 2 пробы отобраны в верховьях р. Средняя (приток р. Умбы). Литологически, описанные породы относятся к метасублитаренитам, литаренитам, субаркозам и кварцевым аренитам. *Хлорит-серицитовый сланец (метасублитаренит)* (обр. 9000/1) имеет алевритовую с фрагментами псаммитовой структуры с параллельной ориентировкой тонких чешуек хлорита и серицита. За счет большого количества хлорита в породе, она имеет зеленоватый цвет. Кварц встречается в породе в виде отдельных вкрапленников, которые тоже вытянуты вдоль сланцеватости породы. Зерна кварца имеют волнистое погасание, что указывает на катаклаз породы (вероятно, связанный с внедрением кимберлитовых трубок). Также встречаются единичные обломки полевого шпата, которые практически полностью замещены вторичным хлоритом. В породе присутствуют линзы, в которых количество обломков кварца значительно больше основной массы, обломки в таких образованиях имеют угловатую, слабоокатанную форму. Акцессорные минералы представлены биотитом, рудным минералом. *Серицит-хлоритовые сланцы (метасубаркозы)* характеризуются алевритовой структурой, с поровым, чаще базальным цементом серицит-хлоритового состава. Обломочная часть таких пород состоит из мелких

зерен кварца (до 15%). Сланцеватая текстура пород обусловлена ориентировкой чешуек серицита и хлорита. Зерна кварца и полевого шпат (до 1%) угловатые, слабоокатанной формы. Вторичный хлорит, нередко образует тонкокристаллический агрегат, заполняя (замещая?) пустоты, которые вытянуты параллельно общей сланцеватости породы. Параллельно сланцеватости породы наблюдаются тонкие трещинки, заполненные минералами гидроксидов железа. Метапесчаники (субаркозы и кварцевые арениты) обладают псаммитовой структурой, с поровым цементом серицит-хлоритового состава. Обломочная часть пород состоит главным образом, из кварца (75-80%) и полевого шпата (1-3%). Размерность зерен варьирует от 0.01 мм до 0.3 мм, форма зерен угловатая, иногда вытянутая. Окатанность зерен слабая, до средней. В интерстициях между обломками кварца и полевого шпата образуется тонокочешуйчатый, игольчатый серицит. Размерность зерен серицита достигает 0.1 мм. Часто в основной массе породы, образуется вторичный хлорит, который замещает полевой шпат. Хлорит образует мелкочешуйчатый агрегат зеленого цвета, с низким двупреломлением. Акцессорные минералы в метапесчаниках представлены рудным минералом, турмалином и цирконом.

Рисунок 3.8. Микрофотография шлифов терригенных пород лунвожской свиты при скрещенных николях. (а, б – 9000/1; в – 9007/4; г – 9007/2; д – 9007/1; е – 9011/1) Q – кварц; Ser – серицит; Chl – хлорит; Тигт – турмалин

MM

(e)

0.5 MM

(д)

3.2. Степень окатанности обломочных цирконов и турмалинов

Большинство обломочных зерен циркона из метатерригенных пород Среднего Тимана имеют удлиненную форму, их размеры варьируют от 70 до 200 мкм. Некоторые зерна сохранили фрагменты первичных граней, однако большинство имеют угловатую и среднеокатанную форму. В режиме катодолюминесценции значительная часть зерен характеризуется наличием отчетливой осцилляторной зональности, у некоторых зерен наблюдаются ядра и каймы обрастания (Рисунок 3.9).

Для определения степени окатанности датированных кристаллов циркона использована шкала Ф.Дж. Петтиджона (Pettijohn, 1975), которая позволяет отнести зерна к одной из следующих групп: окатанные, слабоокатанные, угловатые и неокатанные. Примеры зерен с характерной морфологией приведены на рисунке 3.9.

Оценка степени окатанности исследованных зерен циркона показала, что в метапесчаниках светлинской и метаалевропесчаниках новобобровской свит преобладают среднеокатанные и угловатые зерна (Рисунок 3.10). Для метапесчаников визингской свиты характерно преобладание слабоокатанных и хорошо окатанных зерен циркона. В новобобровской свите ~15% от всей популяции цирконов имеют неокатанную форму с близкой к идиоморфной формой зерен. Для светлинской и визингской свит количество неокатанных зерен циркона меньше, около 4–6% от общей популяции цирконов. В породах паунской свиты, подавляющее большинство цирконов (~60%) имеют слабоокатанных цирконов (45-50%), а также значительное количество окатанных цирконов, порядка 15-30%.

Рисунок 3.9. Морфология и внутреннее строение кристаллов обломочных цирконов из метатерригенных пород светлинской, новобобровской, визингской, паунской и лунвожской свит с указанием класса окатанности и возраста (млн лет).

Рисунок 3.10. Гистограмма степени окатанности цирконов (в %) для исследованных образцов метатерригенных пород Среднего Тимана.

Для обломочных турмалинов так же определялась степень окатанности (Рисунок 3.11). Оценка окатанности исследованных обломочных турмалинов, показала, что преобладают неокатанные (46%) и угловатые (49%) зерна (Рисунок 3.12). Количество среднеокатанных зерен не превышает 5%, а окатанных турмалинов не установлено.

Рисунок 3.11. Морфология кристаллов обломочных турмалинов из метатерригенных рифейских пород Среднего Тимана.

Рисунок 3.12. Круговая диаграмма окатанности обломочных турмалинов (a), и обломочных цирконов (б) из исследованных образцов метаосадочных пород Среднего Тимана

Классы окатанности (1–4) приведены по Ф.Дж. Петтиджону (Pettijohn, 1975)

3.3. Химический состав обломочных турмалинов

Кристаллизация минералов надгруппы турмалина происходит В широких термобарохимических условиях (Ertl et. al. 2010; Berryman et.al. 2019; Biernacka, 2019). Наиболее распространённые минералы надгруппы турмалина – шерл, эльбаит и дравит (Ertl et. al. 2010; Biernacka, 2019 и др.). Шерл и Li-содержащие турмалин преимущественно формируется при кристаллизации гранитных массивов и гранитных пегматитов, а дравит часто образуется в метаморфических породах, с Р-Т условиями – давления 3-5 ГПа и температуры> 950 °C (Baksheev and Kudryavtseva, 2004; Trumbull et.al. 2008; Arif et. al. 2010; Ertl et.al. 2010; Biernacka, 2019). Химический состав турмалина свидетельствует о физикохимических условиях его образования (van Hinsberg et. al., 2011) и зависит от состава вмещающих пород (Henry and Gudotti, 1985). Большая изменчивость составов минералов надгруппы турмалина позволяет использовать их для реконструкции источников сноса и путей транспортировки обломочного материала (Biernacka, 2012; Kowal-Linka and Stawikowski, 2013; Vereshchagin et. al., 2018).

Минералы надгруппы турмалина являются сложными боросиликатами с общей формулой: $X Y_3 Z_6(T_6 O_{18})$ (BO₃)₃ $V_3 W$ (Henry et al., 2011), где в позицию X могут входить: Na^{+,} Ca²⁺, или быть вакантной (\Box). Позиция Y, представляет собой октаэдр, который может быть занят широким спектром многовалентных катионов: Fe²⁺, Mg²⁺, Mn²⁺, Al³⁺, Li⁺, Fe³⁺ и Cr³⁺.

58

Позицию Z, занимают трехвалентные катионы, такие как, Al³⁺, Fe³⁺, V³⁺ и Cr³⁺, а также может содержать небольшое количество Mg²⁺. Тетраэдрическая позиция – T, занята в основном, Si⁴⁺ и обычно, заполнена избыточным Al³⁺. Треугольник BO₃ входит только в B – позицию. V – позиция, в основном, содержит группу OH⁻, а также может содержать значительное количество O²⁻. Позиция – W, содержит исключительно F¹⁻и избыток OH¹⁻и O²⁻. Группы турмалина выделяются на основе элементов, входящих в позицию X: выделены щелочные (Na^{+,} K⁺), кальцевые (Ca²⁺) и с вакантной позицией X-позицией (\Box). В зависимости от того, какие анионы входят в позицию W, турмалины делят на три подгруппы – окси- (O²⁻), фтор- (F¹⁻) и гидрокси- (OH¹⁻).

Был проанализирован химический состав 63 турмалинов различной формы (Приложение 6). Ни одно из зерен не содержат включений, окраска буровато-зеленая.

В пределах *Четласского Камня* было исследовано пять проб, в которых были выделены обломочные турмалины и определен их химический состав. Проба из светлинской свиты отобрана из отложений в верховьях р. Мезень. По литологическому составу образец из светлинской свиты - метапесчаник субаркозового состава (обр. 9016/2).

Из отложений новобобровской анализировался образец метаалевропесчаника аркозового состава (обр. 9020/3), отобранный из разреза в верховьях р. Мезень. Проба метапесчаника (по составу относящегося к кварцевым аренитам (обр. 9048/5)), из визингской свиты отобрана из разреза в верхнем течении р. Косью (правый приток р. Мезень). Из отложений паунской свиты были выбраны обломочные турмалины в двух пробах, отобранные из разреза в среднем течении р. Нижней Паун (приток р. Светлая, приток р. Пижма). Состав пород соответствует мусковит-кварцевым сланцам (обр. 9034/2 и 9034/12).

Для трех образцов, отобранных в пределах *Вольско-Вымской гряды*, был определен химический состав обломочных турмалинов. Проба из пижемской свиты была отобрана из разреза в верховьях р. Нижняя Видзью (приток р. Вымь). По литологическому составу, образец пижемской свиты – это биотит – мусковитовый магнетитсодержащий сланец (обр. 9064/2). Из двух образцов из лунвожской свиты, выбраны обломочные турмалины для определения их химического состава. Отбор обеих проб проводился из отложений в среднем течении р. Средней. По литологическому составу породы – метаалевролиты, относящиеся к кварцевым аренитам и аркозам (обр.9007/4 и обр.9007/5, соответственно).

Зондовый микроанализ показал, что зерна химически незональные. Согласно полученным данным (Приложение 6), все изученные турмалины относятся к группе щелочных турмалинов (Рисунок 3.13а), в которых Na (0.52-0.95 коэффициентов в формуле (кф)) значительно преобладает над К (<0.03 кф) и Ca (<0.26 кф). Для всех изученных турмалинов характерно наличие вакансии в позиции *X* (^{*X*} or 0.05 до 0.50 кф). В турмалинах

из паунской свиты заметно больше Na (0.68-0.97 кф), в то время как для турмалинов из остальных свит, его количество в среднем составляет 0.60 кф.

В образце из паунской свиты не обнаружено турмалинов с Mg/(Mg+Fe) <0.5 и вакансии в позиции-X> 0.3 кф, в образцах же из других свит Mg/(Mg+Fe) достигает 1.0, а вакансии в позиции-X- до 0.5 кф.

По составу *W* позиции, все исследованные турмалины разделяются на две подгруппы. Большинство зерен (56) относится к группе щелочных турмалинов, гидрокси-подгруппе (дравит и шерл, Рисунок 3.136). 7 зерен относятся к группе щелочных турмалинов из оксиподгруппы и (оксидравит).

Все исследованные турмалины содержат более 6 кф Al^{3+} (Приложение 6), что означает, что Al находится как в Y-, так и в Z-позиции. Основными октаэдрическими катионами (помимо алюминия) являются магний и железо. При этом, отношение Mg / (Mg + Fe) варьирует от 0.45 до 1.00 (Рисунок 3.13в). Существенных вариаций содержания Ti в исследованных образцах нет. Корректное распределение ионов Mg, Fe, Mn и Ti по двум неэквивалентным октаэдрическим позициям (YO₆ и ZO₆) не может быть установлено достоверно без привлечения данных монокристального рентгеноструктурного анализа (Vereshchagin et al., 2018). Однако, на основании химического составы мы можем предположить, что большинство (53 зерен) изученных турмалинов по составу соответствуют дравиту, и лишь несколько (5 зерен) отвечают шерлу (Рисунок 3.13в). 5 турмалинов имеют состав, отвечающий оксидравиту (Брусницына и др., 2022).

Рисунок 3.13. Химический состав обломочных турмалинов: (a) на тройной диаграмме Ca-Na+K- вакансия (Henry et al. 2011), (б) на тройной диаграмме O-OH-F (Henry et al. 2011), (в) на диаграмме значений $^{X}\Box / (^{X}\Box + Na + K)$ и Mg / (Mg + Fe) (Henry and Dutrow, 1996)

3.4. U-Th-Pb датирование обломочных цирконов

Для исследования возраста и происхождения терригенных докембрийских отложений Среднего Тимана, проведено датирование обломочных цирконов. 6 проб было отобрано в пределах Четласского камня, а 2 из отложений Вольско-Вымской гряды.

Четласский Камень

Разрез рифейского возраста в пределах Четласского Камня включает отложения четласской и быстринской серии. Четласская серия включает светлинскую, быстринскую и

61

визингскую свиты. В состав быстринской свиты входит ворыквинская, павьюгская и паунская свиты.

В светлинской свите U-Th-Pb возраст обломочных цирконов определялся в двух образцах – 9016/2 и 9017/4. В пробе метапесчаника субаркозового состава (обр. 9016/2), в 88 из 110 зернах циркона были получены определения возраста с дискордантностью менее 10% (Приложение 1). Среди них ~42% цирконов имеют раннепротерозойский возраст, 34% – раннерифейский и 20% – среднерифейский. На графике KDE отмечаются отчетливые максимумы в области раннепротерозойских возрастов (1791 и 1727 млн лет) и четыре максимума с рифейскими возрастами (1221, 1338, 1478 и 1552 млн лет) (Рисунок 3.14). Самый молодой циркон имеет возраст 1150±16 млн лет (Брусницына и др., 2021).

Проба 9017/4 представляет собой светло-серый метапесчаник. В 75 из 130 датированных цирконов были получены возраста с дискордантностью в пределах от +10% до - 10% (Приложение 2). Цирконы имеют возраст в пределах от 1084 до 2635 млн лет. Порядка 43% зерен имеют архей-раннепротерозойский возраст, 41% - раннерифейский и 16% среднерифейский. На графиках КDE (Рисунок 3.14) цирконы с архей-раннепротерозойскими возрастами образуют максимумы – 1755, 1841, 2493 и 2631 млн лет, раннерифейская группа цирконов образуют пики – 1363, 1495, 1547 млн лет, а среднерифейские – 1153 и 1197 млн лет. Самое молодое зерно циркона имеет возраст 1084±27 млн лет (Brusnitsyna et.al., 2022).

В новобобровской свите U-Th-Pb возраст обломочных цирконов определялся в 9020/3). образце метаалевропесчаников аркозового состава (обр. Возрасты с дискордантностью менее 10% получены для 91 зерна из 118 (Приложение 1). Зерна циркона с архей-раннепротерозойскими возрастами составляют порядка 60%, раннерифейские 27%, а 14%. Ha графике KDE среднерифейские отмечаются три максимума с раннепротерозойскими возрастами (1787, 1860 и 2073 млн лет) и четыре максимума с рифейскими возрастами (1219, 1343, 1467 и 1602 млн лет) (Рисунок 3.14). Архейские цирконы образуют максимумы с возрастом 2753 и 2929 млн лет. Самый молодой циркон имеет возраст 1140±6 млн лет (Брусницына и др., 2021).

В визингской свите U–Th–Pb возраст обломочных цирконов определялся в двух образцах. Образец 9048/5 относится к мелкозернистому метапесчанику, по составу, относящемуся к кварцевым аренитам. Определения возраста с дискордантностью менее 10% получены для 94 зерна из 111 (Приложение 1). Около 57% обломочных цирконов имеют раннепротерозойские возрасты, примерно 30% зерен – раннерифейские возраста и не более 10% зерен – среднерифейские возрасты. Только 3% датированных цирконов имеет архейский возраст. На графике КDE отмечаются максимумы с архей-раннепротерозойскими (1677,

1721, 1837, 1962, 2094, 2802 и 2952 млн лет) возрастами и четыре максимума с рифейскими (1212, 1382, 1434 и 1511 млн лет) возрастами (Рисунок 3.14) (Брусницына и др., 2021).

Из пробы 9045/1 метапесчаника визингской свиты, 113 датированных цирконов из 141, имеют дискордантность в пределах от +10 до -10% (Приложение 2). Порядка 33% датированных зерен имеют архей-раннепротерозойский возраст, 51% раннерифейский и 16% среднерифейский. На графиках распределения плотности вероятности отмечаются четыре максимума с раннепротерозойскими и архейскими возрастами (1705, 1754, 1812 и 2830 млн лет), и четыре максимума с рифейскими возрастами (1125, 1474, 1507 и 1561 млн лет). Возраст самого молодого циркона - 1111±31 млн лет (Brusnitsyna et.al., 2022).

Рисунок 3.14. Графики КDE распределения U-Th-Pb изотопных возрастов обломочных цирконов из метатерригенных пород четласской и быстринской серий Среднего Тимана (возраст рассчитан по ²⁰⁷Pb/²⁰⁶Pb, n – количество измерений).

Из отложений быстринской серии, были датированы цирконы из паунской свиты (9034/2). Из образца паунской свиты было продатировано 132 циркона, и только 33 зерна показали возраст с дикордантностью не более 10% (Приложение 1). Цирконы имеют возраст в пределах от 1225 до 2734 млн лет. 60% цирконов имеют архей-раннепротерозойский возраст, порядка 28% раннерифейский и 12% среднерифейский. На диаграмме KDE архей-раннепротерозойские цирконы образуют максимумы с возрастом – 1817, 1880, 2005, 2378 и 2687 млн лет, а цирконы с рифейскими возрастами образуют максимумы 1228 и 1488 млн лет. Самый молодой циркон имеет возраст 1225±11 млн лет (Brusnitsyna et.al., 2022).

В то же время, распределение всех зерен на диаграмме с конкордией (Приложение 7), свидетельствует, что многие из них могут располагаться вдоль одной или нескольких дискордий. Это позволяет вовлечь в рассмотрение и значительное число зерен с высокой дискордантностью. Расчет по методу, изложенному в работе Reimink et al. (2016), показывает, что популяция цирконов из этого образца определяет наличие двух дискордий (Рисунок 3.15), из которых одна характеризуется возрастом верхнего пересечения дискордии и конкордии около 2900 млн лет, а нижнего – около 1150 млн лет, тогда как вторая дискордия характеризуется возрастом верхнего пересечения около 1900 млн лет, а нижнего – около 300 млн лет. Возраст верхнего пересечения фиксирует время кристаллизации цирконов, и цирконы с возрастом, близким к 1900 млн лет, образуют пик на диаграмме KDE (пик с возрастом 1880 млн лет). Цирконы с возрастом, близким к 2900 млн лет, отсутствуют на диаграмме KDE для данного образца, но присутствуют в образцах из визигинской и новобобровской свит. Возраст нижнего пересечения дискордии фиксирует время нарушения U-Th-Pb системы и его интерпретация неоднозначна.

Рисунок 3.15. Расчет параметров дискордий для зерен цирконов из образца 9034/2 по методу Reimink et al. (2016).

Вольско-Вымская гряда

В составе докембрийского разреза в пределах Вольско-Вымской гряды, выделяют вымскую и кислоручейскую серии. В состав вымской серии входят покьюская и лунвожская свиты. К кислоручейской серии относят пижемскую и кленовскую свиты. В настоящем исследовании были получены данные по датированию обломочных цирконов из терригенных отложений только лунвожской свиты.

Из двух проб (9007/1 и 9007/4) был определен возраст обломочных цирконов. Из образца 9007/1 было продатировано 110 цирконов, и в 76 зернах возраст с дикордантностью не более 10% (Приложение 1). Цирконы имеют возраст в пределах от 1042 до 2493 млн лет. Около 26% всех датированных цирконов имеют раннепртерозойский возраст, 42% - раннерифейский и 32% - среднерифейский. На диаграмме KDE (Рисунок 3.16) раннепротерозойские цирконы образуют максимумы 1885, 1974 и 2490 млн лет, а цирконы с рифейским возрастом образуют максимумы 1172, 1226, 1356, 1531, 1564 и 1611 млн лет. Самый молодой циркон имеет возраст 1042±29 млн лет (Brusnitsyna et.al., 2022).

Из пробы 9007/4 было продатировано 114 обломочных цирконов, для 77 из которых получен возраст с дикродантностью в пределах не более 10% (Приложение 2). Все цирконы имеют возраст от 1012 до 2142 млн лет. Здесь 33% датированных цирконов имеют раннепротерозойский возраст, 17% раннерифейский и 49% среднерифейский. На диаграмме КDE (Рисунок 3.16) обломочные цирконы с раннерифейским возрастом образуют

максимумы 1676, 1772 и 1948 млн лет, а цирконы с рифейским возрастом образуют максимумы – 1167, 1216 и 1505 млн лет. Самый молодой циркон из пробы 9007/4 имеет возраст 1012±11 млн лет (Brusnitsyna et.al., 2022).

Рисунок 3.16. Графики КDE распределения U-Th-Pb изотопных возрастов обломочных цирконов из метатерригенных пород вымской серий Среднего Тимана (возраст рассчитан по ²⁰⁷Pb/²⁰⁶Pb, n – количество измерений).

3.5. Lu-Hf-изотопно-геохимические характеристики обломочных цирконов

Для пяти образцов (9016/2, 9020/3, 9048/5, 9007/1 и 9007/4) были получены аналитические данные, отражающие Lu-Hf – изотопно-геохимические характеристики (Приложение 4). Предварительно для каждой пробы было проведено U-Th-Pb датирование

цирконов, для определения Lu-Hf состава были отобраны цирконы, у которых дискордантность не более 10%, а размер кристаллов более 40 µm.

Из пробы 9016/2 светлинской свиты был получен Lu-Hf изотопный состав для 50 зерен циркона, 39 из которых были учтены при построении графика (Рисунок 3.17) и в дальнейшей интерпретации данных. Большинство (85%) значений ϵ Hf (t) в цирконах светлинской свиты лежит выше линии хондритового однородного резервуара (CHUR) и имеют величину от 0 до +15. 15% всех цирконов имеют отрицательные значения ϵ Hf (t) от -1 до -4.9.

Рисунок 3.17. Lu-Hf- изотопно-геохимические характеристики пробы светлинской свиты (9016/2).

Для обломочных цирконов новобобровской свиты (проба 9020/3) Lu-Hf изотопный состав 46 из 50 зерен был учтен при построении графика (Рисунок 3.18) и в дальнейшей интерпретации данных. 80% от общей популяции цирконов располагаются между линиями хондритового однородного резервуара (CHUR) и деплетированной мантии. Значения ϵ Hf (t) варьирует от +1 до +15. Порядка 20% обломочных цирконов имеют отрицательные значения ϵ Hf (t) от +1 до -5.2.

Рисунок 3.18. Lu-Hf- изотопно-геохимические характеристики пробы новобобровской свиты (9020/3)

В пробе 9048/5 из визингской свиты проведено определение Lu-Hf изотопного состава для 50 цирконов, в 30 из них результаты были учтены при построении графика (Рисунок 3.19) и в дальнейшей интерпретации данных. Порядка 87% от общей популяции имеют положительные значения ϵ Hf (t) от +1 до +16.2. Всего 4 зерна (13%) имеют отрицательные величины ϵ Hf (t) от -1.7 до -6 и располагаются ниже линии хондритового однородного резервуара (CHUR) (Brusnitsyna et.al., 2022).

Рисунок 3.19. Lu-Hf- изотопно-геохимические характеристики пробы визингской свиты (9048/5)

Для двух проб из лунвожской свиты был получен Lu-Hf изотопный состав обломочных цирконов. В пробе 9007/1 построение графика (Рисунок 3.20) осуществлялось по 46 из 52 зерен. 5 цирконов (11%) имеют отрицательные значения єHf (t) (от -0.1 до -12) и соответственно, лежат ниже линии однородного хондритового резервуара (CHUR). Большая часть (89%) фигуративных точек располагается между линиями однородного хондритового резервуара и деплетированной мантии, и имеют положительные величины єHf (t) от 1.5 до 15.5 (Brusnitsyna et.al., 2022).

В пробе 9007/4 было проанализировано 48 обломочных цирконов, 45 из них были учтены при построении графика (Рисунок 3.20) и в дальнейшей интерпретации данных. 24% от общей популяции зерен имеют отрицательные величины єНf (t), которые варьируют от - 1.1 до -16.2. 75% изученных зерен обломочных цирконов имеют положительные значения єНf (t) (от 0.2 до 9.1) и располагаются между линиями однородного хондритового резервуара (CHUR) и деплетированной мантии (Brusnitsyna et.al., 2022).

Рисунок 3.20. Lu-Hf- изотопно-геохимические характеристики проб лунвожской свиты (9007/1, 9007/4)

3.6. U-Th-Pb датирование обломочных рутилов

Датирование обломочных рутилов было проведено для зерен, выделенных из двух проб метапесчаников из лунвожской свиты (9007/3) и из визингской свиты (9045/1). В изученных в данном исследовании образцах для зерен рутила характерно большое разнообразие форм, размеров и окраски. В основном, рутил образует хорошо ограненные кристаллы (чаще обломки кристаллов) с ростовой штриховкой на гранях, но присутствуют и окатанные зерна. Возможно, такое разнообразие зерен свидетельствует о разных источниках обломочного материала, или о том, что эти зерна образовались вследствие разных метаморфических событий. Степень метаморфизма изученных терригенных пород не превышает зеленосланцевую фацию. Температурные условия зеленосланцевой фации оцениваются 350-550°С (напр., Добрецов, 1972). Температура закрытия U-Th-Pb в рутиле около 500–600°С (Cherniak, 2000; Triebold et.al., 2012; Vry, Baker, 2006). Соответственно, при такой степени метаморфизма изученных пород метаморфический рутил образоваться не мог. Полученные данные характеризуют возраст кристаллизации и/или преобразования зерен рутила в источнике сноса обломочного материала.

В лунвожской свите U-Th-Pb возраст обломочных рутилов определялся в образце 9007/3. Всего в пробе и метапесчаника было датировано 52 зерна, 45 из которых имеют конкордатный возраст(Приложение 3). Возраст рутилов от 747 до 3612 млн лет. Из всей популяции рутилов только 4% зерен имеют архейский возраст, 11% - раннепротерозойский, 13% -раннерифейский. Практически половина датированных рутилов (49%) имеет среднерифейский возраст, и 22% имеют позднерифейский возраст. На графиках КDE (Рисунок 3.21) самая молодая группа рутилов образуют статистически значимых пиков, а 1004 млн лет. Архейские зерна не образуют статистически значимых пиков, а раннепротерозойские рутилы образуют максимум с возрастом 1986 млн лет. Раннерифейская группа рутилов образует максимумы с возрастом 1341 и 1521 млн лет. Самая многочисленная возрастая группа – среднерифейская, на графиках образует максимумы с возрастом – 1211, 1164, 1112 и 1054 млн лет. Возраст самого молодого рутила 747±12 млн лет, а самый молодой пик на графиках KDE – 864 млн лет (Brusnitsyna et.al., 2022).

В пробе 9045/1, отобранной из метапесчаника визингской свиты, было проанализировано 49 зерен рутила, и 46 из них имеют конкордатный возраст (Приложение 3). Возраст рутилов в пробе распределяется в широком интервале от 858 до 2164 млн лет. Около 48% зерен из популяции рутилов имеют раннепротерозойский возраст, 15% раннерифейский, 22% - среднерифейский и 15% приходится на долю позднерифейских возрастов. Рутилов с архейскими возрастами в пробе 9045/1 не обнаружено. Рутилы с раннепртерозойскими возрастами на графиках KDE образуют максимумы – 2115, 2064, 1888, 1800 и 1685 млн лет. Рифейская группа рутилов характеризуется максимумами с возрастами – 1590, 1519, 1395, 1215 млн лет. Наиболее молодая группа с позднерифейским возрастом образует максимумы – 1001 и 867 млн лет. Возраст самого молодого рутила - 858±12 млн лет (Brusnitsyna et.al., 2022).

Рисунок 3.21. Графики КDE распределения U-Th-Pb изотопных возрастов обломочных рутилов из метатерригенных пород лунвожской и визингской свиты Среднего Тимана (возраст рассчитан по ²⁰⁷Pb/²⁰⁶Pb, n – количество измерений).
Глава 4. Обсуждение результатов

Проведенное комплексное исследование позволило уточнить источники сноса обломочного материала, палеогеографию Балтики среднем-позднем рифее В И стратиграфическую позицию изученных отложений. Рассмотрим интерпретацию полученных данных.

4.1. Определение максимального возраста осадконакопления

<u>4.1.1. U-Th-Pb датирование обломочных цирконов</u>

Одной из задач, решавшихся в настоящем исследовании, являлось определение нижнего предела/максимального возраста накопления терригенных пород Среднего Тимана. В настоящее время не существует общепринятого подхода к определению максимального возраста осадконакопления (maximum depositional age или MDA) на основе данных датирования обломочных цирконов (Dickinson, Gehrels, 2009; Coutts et al., 2019; Copeland, 2020; Johnstone et al., 2019; Malone et.al., 2016; Vermeesch, 2021). Наиболее часто используются следующие алгоритмы определения такого возраста, предложенные В. Дикинсоном и Дж. Герелсом (Dickinson, Gehrels, 2009):

1) по возрасту самого молодого максимума на графиках распределения возрастов обломочных цирконов (Youngest Graphical Peak, YPP), при этом такой максимум должен быть образован определениями возрастов в не менее чем трех зернах;

2) по возрасту самого молодого кластера обломочных цирконов (Youngest Grain Cluster at 1σ , YGC 1σ), определяемому с помощью расчета средневзвешенного значения по двум и более зернам, чьи возрасты перекрываются в пределах ошибки измерения. Эти зерна могут не образовывать максимум на графиках распределения возрастов.

При оценке максимально возраста осадконакопления терригенных образований, известно, что цирконы с возрастом, близким к возрасту осадконакопления, содержатся в обстановках, таких как задуговый и преддуговый бассейны, краевой прогиб, на конвергентных границах плит. А древние цирконы (в сравнении с возрастом седиментации) характерны для обстановок пассивной окраины или рифтов (Cawood et al., 2012).

Нами рассчитаны нижние пределы возраста осадконакопления для метаосадочных пород с использованием двух методов (таблица 1).

Номер	Свита	Возраст самого	Возраст самого		
пробы		молодого максимума на	молодого кластера		
		графиках	обломочных		
		распределения	цирконов (YGC		
		возрастов обломочных	1σ), млн лет		
		цирконов			
		(ҮРР), млн лет			
9016/2	Светлинская	1225	1198 ± 36		
9017/4	Светлинская	1153	1096 ± 23		
9020/3	Новобобровская	1209	1200±12		
9048/5	Визингская	1213	1223 ± 10		
9045/1	Визингская	1115	1125±19		
9034/2	Паунская	1228	1234 ± 11		
9007/1	Лунвожская	1140	1107 ± 29		
9007/4	Лунвожская	1122	1015 ± 10		

Таблица 1. Данные расчета максимального возраст осадконакопления для метаосадочных пород Среднего Тимана по данным датирования обломочных цирконов

Возрасты, рассчитанные на основе возраста самого молодого максимума на графиках распределения (YPP), варьируют от 1115 до 1228 млн лет, средневзвешенные возрасты молодых кластеров обломочных цирконов (YGC 1σ) – от 1015 до 1234 млн лет. MDA, рассчитанные с использованием алгоритма YPP (самый молодой максимум на графиках KDE), обычно на 30–80 миллионов лет старше, чем возраст самого молодого кластера обломочных цирконов (YGC).

4.1.2. U-Th-Pb датирование обломочного рутила

Датирование обломочных рутилов было проведено для зерен, выделенных из двух проб метапесчаников из лунвожской свиты (9007/3) и из визингской свиты (9045/1).

Методика расчета MDA по данным U-Th-Pb датирования рутила еще не разработана, поэтому мы применили тот же подход, как для обломочных цирконов. Максимальный возраст отложений, основанный на наших данных по обломочному рутилу, значительно моложе, чем тот, который был получен по данным обломочного циркона.

Возрасты, рассчитанные на основе возраста самого молодого максимума на графиках распределения (YPP), для рутилов из лунвожской свиты 864 млн лет, а для рутилов из визингской свиты 867 млн лет. Средневзвешенные возрасты молодых кластеров обломочных цирконов (YGC 1₀) – 885±21 и 867±11 млн лет.

Для рутилов из визингской свиты (9045/1) все возрасты, рассчитанные по двум методам, перекрываются в пределах ошибки измерения 1 о. Для рутилов из лунвожской свиты, возрасты, рассчитанные по YPP и YGC алгоритмам сопоставимы, и находятся в пределах ошибки 1 о (таблица 2).

Таблица 2. Данные расчета максимального возраст осадконакопления для метаосадочных пород Среднего Тимана по данным датирования обломочных рутилов

Номер	Свита	Возраст самого молодого	Возраст самого
пробы		максимума на графиках	молодого кластера
		распределения возрастов	обломочных
		обломочных рутилов	рутилов (YGC 1о),
		(ҮРР), млн лет	млн лет
9007/3	Лунвожская	864	885±21
9045/1	Визингская	867	867±11

Максимальный возраст отложений по данным датирования обломочных рутилов, значительно моложе (таблица 2), чем тот, который был получен по данным датирования обломочных цирконов (таблица 1). Возраст рутилов, рассчитанный по методам YPP и YGC дают возрасты от 864 до 885 млн лет, что на 150-360 млн лет моложе, чем возраст, рассчитанный для обломочных цирконов теми же методами.

На данной, во многом рекогносцировочной, стадии исследования при использовании рутилов для определения стратиграфической позиции датированных комплексов, вероятно, стоит применять наиболее консервативный подход и с некоторой долей условности использовать возраст, подтверждённый не менее чем 3-5 замерами. В нашем случаи для пробы из лунвожской свиты (9007/3) – 885-904 млн лет и для пробы из визингской свиты (9045/1) – 878-926 млн лет. Полученные нами данные во многом показывают неоднозначность определения MDA с использованием только цирконов, особенно для пород, чья геодинамическая позиция не является достоверно установленной. Так для отложений, сформировавшихся с синхронным магматизмом (активная окраина, островные дуги) расчет MDA по цирконам является довольно надежным способом определения стратиграфической позиции, для отложений других геодинамических обстановок, нужно, вероятно, привлекать комплексный подход для определения возраста седиментации.

4.1.3. Метаморфические события в источнике сноса

U-Th-Pb возраста обломочных цирконов и рутилов из образцов лунвожской (9007/3) и визингской (9045/1) свит с некоторой условностью разделяются на 2 группы – средне-

позднерифейские (моложе примерно 1300 млн лет) и раннерифейские и более древние (Рисунок 4.1). В первой из этих групп распределение возрастов цирконов и рутилов значительно различается. Для образца из визингской свиты (9045/1), возраст самого молодого кластера рутилов (YGC 1 σ) - 867±11млн лет, что значительно моложе группы цирконов из той же пробы (1127 ± 18 млн лет). Из этого следует, что возраст молодых популяций рутилов моложе цирконов примерно на 250 млн лет.

Вторая проба из лунвожской свиты (9007/3) показала несколько отличное распределение возрастов обломочных рутилов. На графиках КDE рутилы характеризуется максимумами с возрастом 925-1004 и 1054-1170 млн лет, а самый молодой рутил имеет возраст 747±12 млн лет (Рисунок 3.20). Возрасты же самых молодых цирконов из двух проб лунвожской свиты, значительно более древние (на ~290 млн лет.) - 1012±11 и 1042±29 млн лет. В целом, среди обломочных цирконов присутствуют только среднерифейские возрасты, тогда как значительное количество обломочных рутилов имеет позднерифейский возраст порядка 900–1050 млн лет (Рисунок 4.1).

Графики распределения возрастов раннерифейских и более древних обломочных рутилов и цирконов из одних и тех же образцов хорошо коррелируются для интервала 1560–2000 млн лет, и соответствуют известным магматическим и метаморфическим событиям в фундаменте Балтики и ее обрамлении (Петров, 1999; Балтыбаев и др., 2004; Балтыбаев, Левченков, 2005; Балтыбаев, 2005; Korja et al., 2006; Балаганский и др., 2016; Amelin et al., 1997; Баянова и др., 2002; Bogdanova et al., 2008; Ларин, 2009; Rämö et al., 2014 и др.).

Рисунок 4.1. Объединенные графики ядерной оценки плотности (KDE) для обломочных цирконов и обломочных рутилов, выделенных их терригенных образований визингской (а) и лунвожской (б) свит.

U-Th-Pb изотопная система цирконов фиксирует либо возраст кристаллизации магматических пород, либо возраст высокотемпературных метаморфических процессов (например, Rubatto et al., 2017), в то время как рутил характеризуется значительно более

низкой температурой закрытия U-Th-Pb изотопной системы, составляющей около 500–600°С (Cherniak, 2000; Vry, Baker, 2006). Таким образом, U-Th-Pb возраст рутила, отражает остывание после последнего средне- до высокотемпературного метаморфического события, в то время как U-Th-Pb-возраст циркона показывает возраст кристаллизации или высокотемпературного метаморфического события. Кроме того, рутил редко подвергается переработке под действием осадочных процессов, поэтому их можно использовать для достаточно надежного ограничения возраста метаморфических событий в пределах области первичного источника обломочного материала.

Таким образом, циркон и рутил обычно фиксируют разные стадии магматических и/или метаморфических процессов. Более того, рутилы из метаморфических террейнов с низкой скоростью охлаждения обычно показывают более молодой U-Th-Pb возраст, чем цирконы из того же террейна (Mezger et al., 1989; Möller et al., 2000; Vry and Baker, 2006) (Рисунок 4.2). В нашем случае значительное различие в возрасте обломочных рутилов и цирконов свидетельствует против их происхождения в едином магматическом процессе. Следовательно, возраст обломочных рутилов отражает наиболее молодые метаморфические события, но достигнутая в ходе их развития температура, однако, была недостаточной для перезапуска U-Th-Pb изотопной системы в цирконах.

Рисунок 4.2. Круговые диаграммы распределения возрастов обломочных рутилов (а, б) и обломочных цирконов (в, г)

Таким образом, детальное изотопно-геохронологическое исследование минералов тяжелой фракции – рутила и циркона, позволяет сформулировать первое защищаемое <u>положение</u> – Возраст самых молодых и образованных не менее чем тремя-пятью зернами популяций обломочных рутилов (~900-1050 млн лет) отражает возраст последней фазы метаморфизма в источнике сноса обломочного материала.

4.2. Химический состав обломочных турмалинов и реконструкция источников

сноса

В результате проведенных работ установлено, что турмалины из разных стратиграфических подразделений имеют сходный химический состав, что указывает на единый источник сноса.

На петрогенетической диаграмме Al–Fe₅₀Al₅₀–Mg₅₀Al₅₀ (Henry and Guidotti, 1985), фигуративные точки составов турмалина в основном локализованы в полях 4 и 5 (Рисунок 4.3), то есть источником турмалинов являлись метаморфизованные первично осадочные породы.

Полученные нами данные по химическому составу обломочных турмалинов из докембрийских отложений Среднего Тимана, указывают на метаосадочное происхождение материнских пород в источнике сноса. Фигуративные точки составов попадают преимущественно в два поля на диаграмме Al-Fe₅₀Al₅₀-Mg₅₀Al₅₀ (Henry and Guidotti, 1985) (Рисунок 4.3), отвечающих метапелитам и метапсаммитам бедным и богатым глиноземом (31 и 24 зерна, соответственно). Два зерна (визингская и лунвожская свиты) попадают в поле ультрамафитов, низкокальциевых и богатых Cr и V метаосадков, а одно зерно (новобобровская свита) попало в поле распространения богатых Fe кварц-турмалиновых пород, метапелитов и известково-силикатных роговиков. Химический состав изученных турмалинов, указывает на то, что продукты разрушения гранитов (если они были) не являлись источником зерен турмалинов. Так же не было обнаружено турмалинов, которых являлись бы метакарбонаты метапироксениты. источником или

Рисунок 4.3. Химический состав обломочных турмалинов на петрогенетической диаграмме Al–Fe₅₀Al₅₀–Mg₅₀Al₅₀ (Henry and Guidotti, 1985). *1 – богатые Li гранитоиды в ассоциации с аплитами и пегматитами; 2 – бедные Li гранитоиды в ассоциации с аплитами и пегматитами; 3 – богатые Fe кварц-турмалиновые породы и гидротермально измененные граниты; 4 – метапелиты и метапсаммиты, насыщенные глиноземом; 5 – метапелиты и метапсаммиты, насыщенные Fe кварц-турмалиновые породы, бедные глиноземом; 6 – богатые Fe кварц-турмалиновые fe кварц-турмалиновые породы, метапелиты и известково-силикатный роговик; 7 – ультрамафиты, низкокальциевые и богатые Cr и V метаосадки; 8 – метакарбонаты, метапироксениты.*

Отношение дравит/шерл (Рисунок 3.13*в*) указывает на то, что большинство зерен возможно имели метаморфическое происхождение (Kowal-Linka and Stawikowski 2013). Изученные турмалины, вероятно, кристаллизовались при метаморфизме обогащенных бором осадочных пород. Можно предположить, что основным источником изученных турмалинов являлись парагнейсы и слюдяные сланцы, преобразованные в условиях до амфиболитовой фации метаморфизма.

Турмалин, в сравнении с цирконом, является менее стабильным минералом при транспортировке обломочных зерен (Morton and Hallsworth, 1999). Преобладание неокатанных и угловатых турмалинов, вероятно, свидетельствует о том, что зерна не претерпевали значительного переотложения и не являются перемытыми из более древних осадочных комплексов. В то время как цирконы имеют более высокую степень окатанности, что может указывать на то, что они могли подвергаться неоднократному переотложению в процессе переноса обломочных цирконов (Брусницына и др., 2021).

81

Небольшое количество обломочных турмалинов из рифейских терригенных отложений, проанализированных в данном исследовании, вероятнее всего связано с малым количеством их в материнских породах в сравнении с цирконом. Наши данные по химическому составу турмалинов и свидетельствуют, что метаморфические комплексы являлись значимым источником обломочного материала в среднем и позднем рифее Тимана. Более того, среди метаморфических пород, вероятно, преобладали парагнейсы и сланцы, имевшие первичную осадочную природу. Это хорошо согласуется с широким разбросом возрастов обломочных цирконов в изученных толщах и может свидетельствовать об их переотложении из более древних осадочных и метаосадочных комплексов (Брусницына и др., 2021).

4.2.1. Морфология обломочных зерен тяжелой фракции (циркон и турмалин)

Работы последних десятилетий свидетельствуют, что значимость исследований тяжелой фракции песчаников для реконструкции источников сноса была в некоторой степени переоценена. Комплексное исследование зависимости минерального разнообразия и влияния процессов выветривания (Morton and Hallsworth, 1999) показало, что процессы выветривания в районе источника не оказывает существенного влияния на разнообразие комплексов тяжелых минералов до включения отложений в транспортную систему. В этой же работе (Morton and Hallsworth, 1999), приведены данные и о незначительном влиянии на минеральное разнообразие тяжелых минералов процесса транспортировки, даже при их перемещении на значительные расстояния. Разные факторы окружающей среды влияют на форму и окатанность минералов. В процессе переноса обломочных минералов на их форму могут влиять разные процессы: химическое выветривание в районе источника обломочного материала, гидравлическая сортировка при транспортировке, диагенетические эффекты, связанные с глубиной залегания и циркуляцией поровых флюидов и/или многократной переработкой и рециклингом обломочного материала (Morton and Hallsworth, 1999, Garzanti et al., 2009, Garzanti и др., 2008 г. и др.). В то же время, исследования окатанности цирконов (например, Zoleikhaei et al., 2016) показали, что зерна могу сохранять близкую к идиоморфной форму даже после нескольких циклов переноса и осаждения минерала. В наших образцах датированные цирконы преимущественно обладают угловатыми и слабоокатанными формами (Рисунки 3.9, 3.10, 3.11). Количество неокатанных зерен варьирует от 2% до 6%, в новобобровской свите количество неокатанных цирконов достигает 14%. Угловатые цирконы составляют от 21% до 47% от популяции, а слабоокатанные зерна от 35% до 59%. Зерна циркона, имеющие окатанную форму, составляют от 13% до 27% от общей популяции. В новобобровской свите только 3% цирконов имеют окатанную форму.

Турмалин, в сравнении с цирконом, является менее стабильным минералом при транспортировке обломочных зерен (Morton and Hallsworth, 1999). Для обломочных

турмалинов также была проведена оценка степени окатанности. Среди турмалинов преобладают неокатанные (49%) и угловатые (46%) зерна, среднеокатанные кристаллы составляют около 5% от общей популяции (Рисунок 3.12). Окатанных турмалинов не установлено.

Таким образом, окатанная форма зерен циркона, может указывать на то, что значительная их часть испытала многократное переотложение, например, в волноприбойной зоне осадочного бассейна. При этом, форма циркона мало что может сказать о дальности переноса обломочного материала. В тоже время, преобладание неокатанных и угловатых турмалинов, вероятно, свидетельствует о том, что зерна не претерпевали значительного переноса и не являются перемытыми из более древних осадочных комплексов. Источник обломочных турмалинов находился, по-видимому, недалеко от бассейна осадконакопления.

4.3. Петрография терригенных пород и реконструкция источников сноса

обломочного материала

Петрографические характеристики и структурно-текстурные особенности всех показывают исследованных терригенных пород значительное сходство ДЛЯ всех стратиграфических подразделений. Большинство проб имеют псаммитовую или алевролитовую структуру, массивную текстуру, реже слоистую, поровый или базальный цемент, преимущественно хлорит-серицитового состава (вероятно, первично глинистый?). Состав обломочной части в значительной степени представлен кварцем, полевым шпатом, в некоторых породах количество обломков пород (алевролитов, кварцитов и др.) достигает 40% от общего объема породы.

Как показывает классификационная диаграмма (Рисунок 3.1.), исследованные терригенные породы по составу, относятся к аркозам, субаркозам, кварцевым аренитам, литаренитам и сублитаренитам. На диаграмме Q–F–L Дикинсона (Dickinson et al., 1983) точки составов метапесчаников светлинской и метаалевропесчаников новобобровской свит сосредоточены преимущественно в области продуктов размыва орогенных комплексов, но единичные образцы отмечаются и в области размыва поднятий фундамента (Рисунок 4.4.). Фигуративные точки метапесчаников визингской свиты присутствуют как в области продуктов размыва поднятий фундамента, так и, в меньшей степени, в области продуктов размыва орогенных комплексов. Метаосадочные породы лунвожской свиты, на диаграмме Дикинсона, лежат в области перемытых поднятий фундамента (Рисунок 4.4.). Таким образом, все фигуративные точки сконцентрированы в двух областях, а именно в областях продуктов размыва орогенных комплексов и поднятия фундамента. Расположение орогенных комплексов и поднятия фундамента.

размыв которых привел к накоплению толщ, из которых отобраны более половины образцов, неочевидно и требует уточнения с использованием других аналитических методов. Происхождение поднятий фундамента, казалось бы, не вызывает сомнений – это поднятия кристаллического фундамента ВЕП архей-раннепротерозойского возраста. Однако, комплексы фундамента могут обнажаться и в террейнах/микроконтинентах в соседних складчато-надвиговых системах. В пользу такой интерпретации, указывающей на происхождение терригенного материала из единого источника сноса, свидетельствует то, что образцы из всех свит, кроме лунвожской, попадают в обе области – как продуктов размыва орогенов, так и поднятий фундамента.

Рисунок 4.4. Диаграмма состава песчаников и тектонических обстановок в их источнике сноса (Dickinson et al., 1983)

Обобщение данных по химическому составу турмалинов, морфологии зерен обломочных турмалинов и цирконов, и петрографическому составу песчаников позволяет сформулировать второе защищаемое положение - Значительное распространение хорошо окатанных зерен обломочных цирконов, состав песчаников и химический состав обломочных турмалинов указывают на широкое развитие в источнике сноса осадочных (метаосадочных) пород. 4.3.1. Расположение источников обломочного материала рифейских толщ Среднего Тимана: интерпретация U-Th-Ph возрастов обломочных цирконов

Основные результаты изучения распределению возрастов обломочных цирконов выглядит следующим образом.

В образцах из четласской серии преобладающими являются цирконы с раннепротерозойскими возрастами, составляющие 45% от всей изученной популяции. Обломочные цирконы с раннерифейскими возрастами составляют примерно 36% (от 26% до 50%), а со среднерифейским – около 15% от общего числа датированных зерен. Количество цирконов с архейским возрастом составляет около 5% от общей популяции. В образце из паунской свиты (быстринская серия) самые большее количество цирконов имеют раннепротерозойский возраст, они составляют 51% от общего количества датированных зерен. 9% цирконов имеют архейский возраст. Раннерифейские обломочные цирконы составляют 27%, а среднерифейские – 12% от общей популяции.

В образцах из вымской серии преобладают обломочные цирконы со среднерифейским возрастом, составляющие около 40% от всей изученной популяции, обломочные цирконы с раннерифейскими возрастами составляют примерно 29%. Цирконы с раннепротерозойским возрастом составляют 30% от общей популяции. Зерен циркона с архейским возрастом в образцах из вымской серии не установлено.

Сравнение данных датирования обломочных цирконов из рифейских отложений Тимана нашего исследования и более ранних работах (Удоратина и др., 2017; Соболева и др. 2019; Кузнецов и др. 2010; Андреичев и др. 2013), показало сходство распределения возрастов обломочных цирконов (Таблица 3). Проведенный статистический анализ свидетельствует о принадлежности цирконов из всех рассматриваемых образцов к единой выборке, что, в свою очередь, позволяет предполагать, что изученные метаосадочные породы Среднего Тимана имели единый источник обломочного материала. Более того, есть сходимость в распределении возрастов обломочных цирконов из докембрийских пород Среднего Тимана (данное исследование и Удоратина и др. 2017; Соболева и др., 2019) и Северного Тимана (Андреичев и др., 2013, 2014). Однако, с данными датирования обломочных цирконов из докембрийских осадочных пород Южного Тимана (джейджимская свита) (Кузнецов и др. 2010) наши данные не коррелируются, и вероятно свидетельствуют о другом источнике сноса Таблица 3. Степень перекрытия доверительных интервалов кумулятивных кривых распределения U-Th-Pb возрастов обломочных цирконов в докембрийских осадочных породах Тиманского региона. Расчет основан на подходе, изложенном в Andersen et al. (2016, 2018).

	Светлин	Новобобр	Визин	Паунс	Лунвож	Малочер	Джейджи	Ямбозер
	ская	овская	гская	кая	ская	норецкая	мская	ская
	свита	свита	свита	свита	свита	свита	свита	свита
Светлинская								
свита		0	0	0	0.05	0	0.11	0.07
Новобобровс								
кая свита	0		0	0	0.11	0.05	0.05	0.11
Визингская								
свита	0	0		0	0.1	0.03	0.11	0.11
Паунская								
свита	0	0	0		0.01	0	0.01	0.05
Лунвожская								
свита	0.05	0.11	0.1	0.01		0	0.17	0
Малочернор								
ецкая свита	0	0.05	0.03	0	0		0.14	0
Джейджимск								
ая свита	0.11	0.05	0.11	0.01	0.17	0.14		0.16
Ямбозерская								
свита	0.07	0.11	0.11	0.05	0	0	0.16	

зеленый цвет показывает полное перекрытие, желтый — разницу <5%, а красный — разницу >5%. Данные настоящего исследования и (Андреичев и др., 2013, 2017, Кузнецов и др., 2010а, Соболева и др., 2019, Удоратина и др., 2017).

Распределения U–Th–Pb возрастов обломочных цирконов, выделенных из метаосадочных пород Четласского Камня и Вольско-Вымской гряды, в значительной степени сходны, что подтверждается статистическим тестом, и, вероятно, указывает на единый источник обломочного материала для всех докембрийских отложений Среднего Тимана.

Зерна цирконов архейского возраста имеют второстепенное значение среди всей популяции датированных цирконов. Источниками цирконов с архейскими возрастами могли являться магматические и метаморфические породы того же возраста, обнажающиеся в северо-западной части Балтики (Рисунок. 4.5) (Балаганский и др., 2016; Балтыбаев и др., 2004; Балтыбаев, Левченков, 2005; Бибикова и др., 2009; Егорова, 2014; Bogdanova et al., 2008, 2016; Когја et al., 2006; Ларин, 2009; Петров, 1999; Сергеев и др., 2007; Зозуля и др.,

2007). Эти породы фундамента Балтики образовались в ходе аккреционного события, которое завершило формирование Фено-Карельского протоконтинента около 2500-2600 млн лет (Bogdanova et al., 2008, 2016).

Обломочные цирконы с возрастом 1.9-1.7 млрд лет обнаружены во всех образцах и соответствуют возрасту нескольких аккреционных эпизодов в юго-западной части Феноскандии, называемых свекофенским орогенезом (Bogdanova et. al., 2008; Korja et al., 2005, 2012; Nironen, 1997). 2006; Lahtinen et al., Обломочные цирконы с раннепротерозойскими (1.9 - 1.7)млрд лет) возрастами могли поступать ИЗ раннепротерозойских комплексов фундамента Восточно-Европейской платформы (Петров, 1999; Балтыбаев и др., 2004; Балтыбаев, Левченков, 2005; Балтыбаев, 2005; Korja et al., 2006; Балаганский и др., 2016 и др.). В то же время, учитывая наличие значительного числа окатанных и среднеокатанных зерен этого возраста (Рисунки 3.9, 3.10), что предполагает их неоднократное переотложение (Pettijohn, 1975), их источником могли служить более древние осадочные породы, в частности обнажающиеся в пределах Свеконорвежско-Гренвильского орогена, располагающегося на севере и северо-западе (в современных координатах) Балтики (Bingen et al., 2008; Mints, 2017 и др.).

Цирконы с раннерифейским возрастом составляют 50% всех датированных зерен и образуют максимумы с возрастным интервалом 1470-1550 и 1170-1370 млн лет.

Источником цирконов с раннерифейскими возрастами кристаллизации (1500–1570 млн лет) являлись, вероятно, граниты рапакиви, широко развитые на Балтийском щите (Рисунок 4.5) (Amelin et al., 1997; Баянова и др., 2002; Bogdanova et al., 2008; Ларин, 2009; Rämö et al., 2014 и др.). Граниты рапакиви служили основным источником обломочного материала и при накоплении нижнерифейских отложений Паша-Ладожского грабена (Купцова и др., 2011; Ивлева и др., 2016; Ershova et al., 2019). Кроме того, магматические и метаморфические события, совпадающие по возрасту с гранитами рапакиви, были обнаружены на юго-западной части Свеконорвежского орогена. Здесь они известны как готская орогения 1520-1660 млн лет (Bingen et al., 2008a, 2008b; Roberts et al., 2013; Slagstad et al., 2020; Wang et.al., 2021).

Рисунок 4.5. Тектоническая схема северной части Восточно-Европейской платформы (а), по (Bogdanova et al., 2008; Ларин, 2009), с упрощениями

1–4 – архей-протерозойские блоки фундамента Балтики; 5 – авлакогены и бассейны осадконакопления внутренней части пассивной окраины Балтики; 6 – Тиманский кряж; 7 – Баренцевоморская плита; 8 – Пайхой-Новоземельская складчатая область; 9 – Тимано-Печорская плита; 10 – область распространения гранитов рапакиви с возрастом 1500–1600 млн лет; 11 – фронт каледонской складчатой области; 12 – места отбора образцов для U– Pb датирования обломочных цирконов.

Циркон является очень стабильным минералом и может многократно переотлагаться в разных осадочных бассейнах разного возраста. Этот факт накладывает ряд ограничений на источников происхождения обломочного реконструкцию материала, основанную исключительно на обломочных цирконах. Так, наиболее древние цирконы, имеющие архейский и раннепротерозойский возраст, могли быть переотложены из более древних осадочных пород. Это предположение подтверждается нашими данными по датированию обломочных значительное преобладание рутилов. Для них характерно позднесреднерифейских и ранне-позднерифейских возрастов над раннепротерозойскими и архейскими значениями.

Наиболее молодые цирконы среди датированных популяций хорошо сопоставляются с магматическими и тектоническими событиями в интервале 1135–1170 млн лет, которые интерпретируются (Bingen, Solli, 2009) как свидетельство формирования активной окраины и задуговых бассейнов на ранних стадиях развития Свеконорвежско-Гренвильского орогена. На нарушение U-Th-Pb изотопной системы и наличие тектонического и/или

метаморфического события с возрастом около 1150 млн лет в источнике сноса указывает и совместная статистическая обработка конкордантных и дискордантных зерен образца из паунской свиты (9034/2) (Рисунок 3.15) В то же время, интенсивные тектонические события, сопровождавшиеся синколлизионным гранитным магматизмом, происходившие в Свеконорвежско-Гренвильском орогене около 1020–1050 млн лет назад (Bingen et al., 2008b; Rivers et al., 2012; Spencer et al., 2015), не нашли своего отражения в обломочных цирконах из рифейских отложений Среднего Тимана.

4.3.2. Палеогеография северо-восточной части Балтики в раннем и среднем рифее

Предположение о Свеконорвежско-Гренвильском орогене как главном источнике сноса для рассматриваемых рифейских отложений Среднего Тимана требует более детального рассмотрения палеогеографии северной части ВЕП и соседних регионов. Так, магматические и метаморфические события в интервале 1.0–1.4 млрд лет широко проявлены в пределах Свеконорвежско-Гренвильского орогена (включая участвующие в его строении террейны), расположенного на северо-западе (в современных координатах) Балтики (Bingen et al., 2008b; Mints, 2017 и др.). Магматическая активность во временном интервале, охватывающем 1280–1480 млн лет назад, была сравнительно низкой, но бимодальный магматизм был установлен в самой юго-западной части Свеконорвежского террейна (Pedersen et al., 2009; Spencer et al., 2014; Roberts and Slagstad, 2015; Slagstad и др., 2020). Обильный бимодальном магматизм в интервале 1080-1280 млн лет был установлен в террейне Телемаркия на юге Норвегии (Bingen et al. 2021). Считается, что бимодальный магматизм имел место на всей территории Свеконорвежско-Гренвильского орогена на северо-западной окраине Балтики между 1130 и 1280 млн лет назад (Slagstad et al., 2020).

Лоренц и соавторы (Lorenz et al., 2012) предположили, что Свеконорвежско-Гренвильский ороген протягивается вдоль северной окраины Балтики и продолжается далее на север (в современных координатах), приближаясь к рассматриваемым в этой работе объектам на Среднем Тимане. В пользу точки зрения Х. Лоренца с соавторами (Lorenz et al., 2012) свидетельствует широкое распространение обломочных цирконов co среднерифейскими возрастами на северной и северо-восточной окраинах Балтики. Присутствие обломочных цирконов со среднерифейскими возрастами отмечено в песчаниках среднерифейской ишеримской свиты Северного Урала (Петров и др., 2015; Маслов и др., 2018б), породах базальных уровней каратавия Южного Урала (Маслов и др., 2018а), верхнерифейских отложениях Южного (Kuznetsov et al., 2010) и Северного Тимана (Андреичев и др., 2013, 2014), п-овов Рыбачий и Средний (Михайленко и др., 2016), метаосадочных породах Северной Норвегии (Zhang et al., 2015, 2016). Сравнение распределения U-Th-Pb возрастов обломочных цирконов из средне- и верхнерифейских толщ Балтики и ее периферии (Тиманская гряда, докаледонские комплексы Скандинавии, Южный и Средний Урал) (Рисунок 4.6; таблица 3) показывает значительное их сходство, что указывает, по всей видимости, на единый источник сноса обломочного материала. Следовательно, наиболее вероятно, что одним из основных источников сноса для верхнедокембрийских терригенных пород Тимана, Южного и Среднего Урала и докаледонских комплексов Скандинавии выступал Свеконорвежско-Гренвильский ороген, что подтверждает предположение о существенно более широком его распространении на севере Балтики (в современных координатах) (Lorenz et al., 2012).

Рисунок 4.6. Кумулятивные кривые изотопных возрастов обломочных цирконов четласской серии и рифейских толщ Балтики и ее периферии.

1 – рифейские осадочные породы Паша-Ладожского грабена (Купцова и др., 2011; Ивлева и др., 2016); 2 – четласская серия, Средний Тиман (настоящая работа; Удоратина и др., 2017); 3 – рифейские осадочные породы Кольского п-ова (Михайленко и др., 2016); 4 – неопротерозойские осадочные породы Северной Норвегии (Zhang et al., 2015); 5 – рифейские осадочные породы Северной Норвегии (Zhang et al., 2015); 5 – рифейские осадочные породы Северной Норвегии (Zhang et al., 2015); 5 – рифейские осадочные породы Кольского et al., 2010); 6 - аркозовые песчаники бирьянской подсвиты зильмердакской свиты верхнего рифея Южного Урала (Маслов и др., 2018а); 7 – рифейские толци Северного Тимана (Андреичев и др., 2013, 2014); 8 – терригенные породы среднего рифея Среднего Урала (Петров и др., 2015; Маслов и др., 2018б); 9 - титановые руды из малоручейской свиты (рудопроявление Пижемское) (Макеев и др., 2016); 10 - когломератобрекчие пижемской свита среднего девона (рудопроявление Пижемское) (Красоткина, 2018)

Lu-Hf изотопные данные по обломочным цирконам из рассматриваемых рифейских отложений Среднего Тимана отражены на рисунке 4.7а и показывают, что цирконы с 1.0–1.4 млрд лет попадают между линиями эволюции деплетированной мантии (DM) и хондритового однородного резервуара (CHUR). Несколько точек данных расположены близко к изотопной сигнатуре DM, что позволяет предположить, что эти цирконы кристаллизовались из ювенильной магмы. Некоторые точки данных располагаются ниже линии изотопной эволюции CHUR, предполагая, что эти зерна кристаллизовались из магм, происходящих из истощенного мантийного источника (ювенильные магмы), смешанного с различным количеством ассимилированного более древнего корового материала, что соответствует геодинамической обстановке континентальной магматической дуги (Griffin et. al., 2002).

Рисунок 4.7. Диаграммы изотопного (Lu-Hf) состава обломочных цирконов из (а) терригенно-осадочных пород Среднего Тимана (б) других территорий с синхронным возрастом цирконов с Гренвильской орогенией

((a) Рифейские отложения Среднего Тимана. Свиты: lv – лунвожская; sv – светлинская; nb – новобобровская; vn – визингская

(б) 1 - Осадочные породы, пред- и синколлизонные с Гренвильской орогенией (Шотландия) [Spencer, 2015]; 2 - Осадочные породы, пред- и синколлизонные с Гренвильской орогенией (Лабродор) [Spencer, 2015]; 3 - Феноскандийские гранитоиды [Kristoffersen, 2014]; 4 - Осадочные породы северной Норвегии [Kristoffersen, 2014]) Сравнение наших данных с данными из Скандинавии (Kristoffersen et al., 2014), Шотландии и Лабрадора (Spencer et al., 2015) показывает сходство в характеристиках Lu-Hf цирконов моложе 2 млрд лет из одновозрастных пород в этих регионах (Рисунок 4.5). Для них большинство точек на диаграммах имеют положительные значения єHf(t) и располагаются между линиями деплетированной мантии и CHUR. Несколько цирконов с возрастом порядка 1.9 и 1.6 млрд лет, имеют отрицательные значения єHf(t) до -20. Популяция цирконов архейского возраста на графике на рисунке 4.5б значительно более многочисленна, чем на рисунке 4.5а, но их изотопные характеристики сходны и цирконы с возрастом порядка 2.7 – 2.8 млрд лет показывают слабо отрицательные и нулевые значения єHf(t). Это дает право полагать, что область происхождения обломочных цирконов для терригенных отложений Среднего Тимана и осадочных пород Норвегии, Лабрадора и Шотландии, испытала близкую тектоническую эволюцию и, вероятно, была единой.

Наши петрографические исследования также показали, что возможным источником сноса изучаемых отложений выступали орогенные области (Рисунок 4.4.). Выполненное ранее (Kuznetsov et al., 2010) U–Th–Pb датирование обломочных цирконов из песчаников верхнерифейской джежимской свиты Южного Тимана показало преобладание зерен с раннепротерозойскими и позднеархейскими возрастами; в то же время в составе исследованной популяции присутствовало ~7% зерен с возрастом от 1350 до 1200 млн лет. Авторы указанной работы высказали предположение, что породы джежимской свиты сформировались в основном за счет размыва кристаллических комплексов северных и центральных частей Балтики. Однако, согласно исследованиям, основанным на оценке возраста обломочных цирконов из рифейских пород Среднего и Северного Тимана, в том числе и четласской серии (Андреичев и др., 2013, 2014; Удоратина и др., 2017; Соболева и др., 2019), источниками обломочного материала для них выступали и кристаллические комплексы фундамента Балтики, и породы расположенного на ее северо-западной периферии Свеконорвежско-Гренвильского орогена.

Этапы и геологические признаки Свеконорвежско-Гренвильской орогении гораздо лучше представлены и изучены на Лаврентийской части орогена по сравнению с Балтикой. Отчасти, это связано с тем, что для гренвилид Лаврентийской части орогена хорошо сохранились как породы самого орогена, так и осадочные отложения, образовавшиеся за счет его разрушения. Таким образом, Спенсер (Spencer et al. 2015) выделил доорогенные, синорогенные и посторогенные отложения Гренвильской орогении (Рисунок 4.8) со значительными различиями в распределении обломочных цирконов между этими группами. Чтобы применить эту концепцию к докембрийским отложениям центральной и северо-

восточной части Балтики, необходимо найти соответствующий материал доорогенных отложений. Наиболее подходящими для этого являются рифейские породы в пределах Паша-Ладожского грабена (расположенного на южной окраине Балтийского щита). Возраст отложений хорошо ограничен по MDA 1470-1480 млн лет по обломочным цирконам и тем, что они прорываются силлом основного состава, имеющим возраст кристаллизации ~ 1459 млн лет (Купцова и др. 2011). Данные U-Th-Pb датирования обломочных цирконов из этих осадочных толщ показывают, что большинство датированных цирконов имеют возраст в диапазонах 1550-1600 млн лет и 1900-2000 млн лет, что, в сочетании с незрелым составом осадочных образований, свидетельствует о том, что они образовались за счет разрушения близкорасположенных пород фундамента Балтики (Ershova et al., 2019; Купцова и др., 2011; Ивлева и др., 2016). Следовательно, данные доорогенные отложения отражают состав и возраст выходящей на поверхность континентальной коры до орогенеза. Спенсер с соавторами (Spencer et al., 2015) показывают, что толщи, отложившиеся во время Свенорвежско-Гренвильского орогенеза, имеют такое же распределение возрастов обломочных цирконов как в фундаменте Лаврентии, а также демонстрируют максимумы на графиках KDE, отвечающие возрасту 1100 и 1500 млн лет (Рисунок 4.8). Результаты U-Th-Pb датирования обломочных цирконов из рифейских осадочных и метаосадочных пород северовостока ВЕП (в современных координатах), показывают распределения возрастов, аналогичное наблюдаемому в одновозрастных осадках на Лаврентийской части орогена. Кроме того, Спенсер с соавторами (Spencer et al. 2015) показывают, что обломочные цирконы с возрастом 0.95-1 млрд лет, отсутствующие в изучаемых образцах и отражающие основную стадию коллизионного процесса, присутствуют только в пост-орогенных отложениях.

Таким образом, данные по Среднему Тиману позволяют предполагать, что все изученные отложения могут интерпретироваться как синорогенные. Более того, сходные распределения возрастов обломочных цирконов из докембрийских осадочных пород показали и другие отложения северной и восточной части Балтики (в современных координатах) от Скандинавии до Северного Урала. Это говорит о том, что крупная орогенная система была основным источником для докембрийских осадочных пород. Из этого следует, что возраст изученных обломочных пород может быть более молодым, чем рассчитанные по MDA цирконов, и соответствовать концу среднего рифея – началу позднего рифея, что соответствует оценке MDA по обломочным рутилам и отражает возраст основного этапа орогении.

Рисунок 4.8. Сравнение распределение возрастов обломочных цирконов из рифейских терригенных отложений Северной Балтики и Лаврентии. (данные нашего исследования и Андреичев и др., 2013, 2014; Ивлева и др., 2016, 2018; Купцова и др., 2011; Кузнецов и др., 2010; Lorenz et al., 2012; Маслов и др., 2018а, 2018b; Михайленко и др., 2016; Slagstad et al., 2020; Spencer et al., 2014, 2015; Удоратина и др., 2017; Zhang et al., 2015, 2016)

В настоящее время существуют две модели тектонической обстановки образования

Свеконорвежско-Гренвильского орогена. Первая модель предполагает бесколлизионный (аккреционный или андский тип) орогенеза (Granseth et al., 2020; Slagstad et al., 2013, 2017, 2018, 2019, 2020), а вторая обосновывает коллизионный характер орогенеза (Bingen et al., 2021; Gower et al., 2008; Rivers, 2008, 2012). Бингин с соавторами (Bingen et al., 2021) доработали вторую модель и предположили, что орогенное плато, образовавшееся во время Свенорвежской оргении, подверглось пост-орогенному коллапсу около 930 млн лет назад. Более того, они же (Bingen et al., 2021) пришли к выводу, что для син- до позднесвекорвежских плутонов (920-1066 млн лет) характерно формирование на примерно одинаковой глубине около 16 км. В дальнейшем они были выведены на поверхность во время разрушения перекрывающих пород вследствие эрозии и тектонического растяжения. Этот эпизод растяжения произошел, по данным ⁴⁰Ar/³⁹Ar датирования по мусковиту и биотиту, около 860-930 млн лет назад. Близкие возраст фиксируют и самые молодые зерна обломочных рутилов из лунвожской и визингской свит. Такими образом, отсутствие син- и позднесвеконорвежских цирконов в исследованных породах Тимана, может быть объяснено тем, что основным источником обломочного материала являлось орогенное плато (Рисунок 4.9), сложенное многочисленными террейнами различного происхождения со сложной магматической и метаморфической историей Свеконорвежско-Гренвильской орогена (Bingen et al., 2021). При этом син- постсвеконорежские плутоны были подвержены эрозии и выводу на поверхность уже после окончания осадконакопления докембрийских пород Тимана и по этой причине не могли найти отражения в осадочной летописи. Отсутствие или незначительное количество архейских цирконов в датированных популяциях хорошо коррелируется с происхождением Свеконорвежско-Гренвильского орогена, поскольку материал архейского возраста не обнажен в пределах орогена (Cawood et al., 2007).

Рисунок 4.9. Схематический разрез образования и коллапса орогенного плато при Свеконорвежско-Гренвильской орогении (по Rivers, 2012, 2015 с упрощениями).

Фрагменты Свеконорвежско-Гренвильского орогена в настоящее время расположены в

юго-западной части Балтийского щита в нескольких тысячах километров к западу от исследованной территории и простираются на восток под каледонскими орогенными покровами (Kirkland et al., 2006; Roffeis and Corfu, 2014). Однако, присутствие крупнозернистых обломков и неустойчивых к многократному (или длительному) переносу минералов в терригенных породах северо-востока ВЕП, указывает на то, что область происхождения обломочного материала располагалась недалеко от исследуемой территории. Таким образом, наши данные подтверждают тектоническую модель, предложенную Лоренцом (Lorentz et. al., 2012), который предполагает, что Свенорвежско-Гренвильский ороген простирался дальше на северо-восток через Баренцево море от его ближайшего обнажения, выходящего на современную поверхность на юге Швеции (Рисунок 4.10). В то же время, имеющиеся данные по MDA, рассчитанные по U-Th-Pb возрастам обломочных рутилов, свидетельствуют, что осадконакопление могло продолжаться примерно до 900 млн лет. В этом случае отсутствие обломочных цирконов – продуктов разрушения синколлизионных орогенов, можно объяснить лишь тем, что коллапс орогена в источнике сноса должен был произойти несколько позднее, чем в модели Риверса (Rivers, 2012, 2015) (Рисунок 4.9), вероятно, также около 900 млн лет.

Рисунок 4.10. Упрощенная палеогеографическая карта северо-восточной части Балтики (в современных координатах), показывающая возможное направление переноса обломочного материала.

Приведенные выше данные позволяют сформулировать <u>третье защищаемое</u> <u>положение</u> – Проведенное комплексное исследование рифейских терригенных толщ Среднего Тимана показывает, что преобладающим источником обломочного материала выступал Свеконорвежско-Гренвильский ороген вместе с входящими в его состав более древними террейнами.

Заключение

По результатам проведенного исследования можно сделать следующие основные выводы:

- 4. Проведено детальное петрографическое описание докембрийских терригенных пород Среднего Тимана, которое показало, что изученные породы относятся к достаточно «зрелым» осадкам, отвечающим по составу аркозам, субаркозам, кварцевым аренитам, сублитаренитам и литаренитам. А интерпретация петрографических данных с помощью диаграммы тектонических обстановок, указывает на континентальный фундамент и орогенные комплексы в качестве питающих провинций.
- 5. Исследована степень окатанности обломочных цирконов и турмалинов. Установлено, что среди цирконов преобладают угловатые и слабоокатанные зерна, а турмалины имеют неокатанную и угловатую форму. Преимущественно окатанная форма цирконов может свидетельствовать о нескольких этапах рециклинга тяжелых минералов.
- Изучение химического состава обломочных турмалинов из терригенных пород Среднего Тимана показало, что источником турмалинов являлись метаморфизованные первично осадочные породы.
- Проведено изотопно-геохронологическое исследование минералов тяжелой фракции: U-Th-Pb (LA-ICPMS) датирование цирконов, U-Th-Pb (LA-ICPMS) датирование рутилов, определены Lu-Hf изотопно-геохимические характеристики цирконов.
- Датирование обломочных цирконов показало, что источником/источниками обломочного материала могли служить архейские, протерозойские, ранне- и среднерифейские комплексы.
- 9. Полученные данные по возрастам наиболее молодых обломочных рутилов отражают возрасты фаз метаморфизма в источнике сноса обломочного материала.
- 10. Полученные данные по возрасту обломочных цирконов, указывает на более молодой возраст осадочных пород, чем был принят ранее (RF₁₋₂). Возраст терригенных отложений Среднего Тимана оценен от конца среднего рифея до начала позднего рифея. Стратиграфия рифея Тимана требует ревизии или, как минимум, уточнения изза пересмотра возрастов свит.

Тем не менее, некоторые вопросы требуют дальнейшего, более детального изучения. Так, требуются более массовые исследования различных минералов тяжелой фракции

осадочных пород, таких как рутил, турмалин, монацит и др. Данное исследование показало, что помимо U-Th-Pb датирования цирконов, хорошо себя показал метод U-Th-Pb датирования обломочных рутилов, который не только фиксирует возраст последнего метаморфического события в источнике обломочного материала, но и позволяет еще более ограничить максимальный возраст осадконакопления – примерно 885-904 млн лет для лунвожской свиты и 878-926 млн лет для визигинской свиты. Изучение химического состава минералов тяжелой фракции, также является важным инструментом для исследования источников сноса терригенных пород, что существенно дополняет данные изотопного датирования минералов.

Список литературы

1. Андреичев В.Л. Изотопная геохронология интрузивного магматизма Северного Тимана. Екатеринбург: Институт геологии; 1998.

2. Андреичев В.Л. Эволюция фундамента Печорской плиты по изотопногеохронологическим данным. Сыктывкар; 2010.

3. Андреичев В.Л, Соболева А.А, Герелс Дж. U–Pb-возраст детритовых цирконов из верхнедокембрийских терригенных отложений Северного Тимана // Докл РАН. 2013. №5(450). С. 562–566.

4. Андреичев В.Л., Соболева А.А., Герелс Дж. U-Pb возраст и источники сноса обломочных цирконов из верхнедокембрийских отложений Северного Тимана // Стратиграфия. Геологическая корреляция. 2014. № 2 (22). С. 32–45.

5. Андреичев В.Л., Соболева А.А., Сергеев С.А., Пресняков С.Л. Цирконовая хронология интрузивного магматизма полуострова Канин // Известия высших учебных заведений Геология и разведка. 2018. № 4. С. 30–38.

6. Андреичев В.Л., Соболева А.А., Хоуриган Дж.К. Результаты U-Pb (LA-ICP-MS) датирования детритовых цирконов из терригенных отложений верхней части докембрийского разреза Северного Тимана // Бюллетень московского общества испытателей природы, отдел геологический. 2017. № 92. С. 10–20.

7. Андреичев В.Л., Соболева А.А., Хубанов В.Б., Соболев И.Д. U-Pb (LA-ICP-MS) возраст детритовых цирконов из метаосадочных пород основания верхнедокембрийского разреза Среднего Тимана // Бюллетень московского общества испытателей природы, отдел геологический. 2018. № 2(93). С. 14–26.

8. Андреичев В.Л., Соболева А.А., Удоратина О.В., Ронкин Ю.Л., Кобл М.А., Миллер Е.Р. Граниты Северного Тимана - вероятный индикатор неопротерозойских этапов распада Родинии // Геодинамика и тектонофизика. 2020. № 2(11). С. 201–218.

9. Балаганский В.В., Горбунов И.А., Мудрук С.В. Палеопротерозойские Лапландско-Кольский и Свекофеннский орогены (Балтийский щит) // Вестник Кольского научного центра РАН. 2016. № 3(26). С. 5–11.

10. Балтыбаев Ш.К. Свекофенниды Фенноскандии: пространственно-временная корреляция эндогенных процессов. ИГДД РАН. 2005

11. Балтыбаев Ш.К., Левченко О.А. Вулканиты в свекофеннидах Приладожья и результаты U-Pb, Pb-Pb датирования пород разного генезиса как основа для корреляции свекофеннских событий // Стратиграфия. Геологическая корреляция. 2005. №2 (13). С. 3–18.

12. Балтыбаев Ш.К., Левченко О.А., Бережная Н.Г., Левский Л.К., Макеев А.Ф., Яковлева С.З. Время и длительность свекофеннской плутонометаморфической активности на юго-востоке Балтийского щита, Приладожье // Петрология. 2004. №4(12). С. 374–393.

13. Баянова Т.Б., Пожиленко В.И., Смолькин В.Ф., Кудряшов Н.М., Каулина Т.В., Ветрин В.Р. Каталог геохронологических данных по северо-восточной части Балтийского щита. Кольский научный центра РАН. Апатиты. 2002. 53 с.

14. Бибикова Е.В., Богданова С.В., Постников А.В., Попова Л.П., Кирнозова Т.И., Фугзан М.М., Глущенко В.В. Зона сочленения Сарматии и Волго-Уралии: изотопногеохронологическая характеристика супракрустальных пород и гранитоидов // Стратиграфия Геологическая корреляция. 2009. № 6(17). С. 3–16.

15. Брусницына Е.А., Верещагин О.С., Ершова В.Б. Обломочный турмалин из рифейских терригенных отложений Среднего Тимана: химический состав и генезис // Записки минералогического общества. 2022. №1 (151). С. 29–43.

16. Брусницына Е.А., Ершова В.Б., Худолей А.К., Андерсен Т., Маслов А.В. Возраст и источники сноса пород Четласской серии (рифей) Среднего Тимана по результатам U-Th-Pb (LA-ICP-MS) датирования обломочных цирконов // Стратиграфия. Геологическая корреляция. 2021. №6(29). С. 1–23.

17. Гецен В.Г. Тектоника Тимана. Наука. Ленинград; 1987. 171 с.

18. Дольник Т.А. Строматолиты и микрофитолиты в стратиграфии рифея и венда складчатого обрамления юга Сибирской платформы. СО РАН, филиал гео. 2000.

19. Добрецов Н.Л., Соболев В.С., Хлестов В.В. Фации регионального метаморфизма умеренных давлений. Москва: Недра. 1972. 287 с.

20. Егорова Ю.С. Санукитоиды Фенно-Карельской провинции Балтийского щита: геология, состава, источники. Санкт-Петербург. ИГДД РАН. 2014. 20 с.

21. Зозуля Д.Р., Баянова Т.Б., Серов П.Н. Возраст и изотопно-геохимические характеристики архейских карбонатитов и щелочных пород Балтийского щита. // Доклады Академии наук. 2007. № 3(415). С. 383–388.

22. Зоненшайн Л.П., Кузьмин М.И., Натапов Л.М. Тектоника литосферных плит. Т. 1. Москва: Недра. 1990. 328 с.

23. Ивлева А.С., Подковыров В.Н., Ершова В.Б., Анфисон О., Худолей А.К., Федоров П.В., Маслов А.В., Здобин Д.Ю. Результаты U–Pb (LA ICP MS) датирования обломочных цирконов из верхневендско-нижнекембрийских отложений востока Балтийской моноклизы // Доклады Академии наук. 2016. №4(468). С. 441-446.

24. Ивлева А.С., Подковыров В.Н., Ершова В.Б., Хубанов В.Б., Худолей А.К., Сычев С.Н., Вдовина Н.И., Маслов А.В. U-Pb LA-ICP-MS-возраст обломочных цирконов из

отложений нижнего рифея и верхнего венда Лужско-Ладожской моноклинали // Доклады Академии Наук. 2018. № 4(480):439–43.

25. Канева Т.А., Удоратина О.В., Старикова Е.В., Хубанов В.Б. Оценка нижнего возрастного предела неопротерозойской сокольнинской свиты Северо-Западного Пай-Хоя на основе U-Pb датирования детритных цирконов // Бюллетень московского общества испытателей природы, отдел геологический. 2015. №6(90). С. 3-10.

26. Красоткина А.О. Изотопно-геохимические особенности и возраст акцессорных минералов рудопроявления Ичетью и Пижемского местрождения (Средний Тиман). 2018. 216 с.

27. Кириллин С.И., Иванов В.Н., Котельников В.Г., и др. Государственная геологическая карта Российской Федерации. Масштаб 1: 200 000 (новая серия), Серия Тиманская. Лист Q-39-XXXIII,XXXIV (Тиман). Объяснительная записка. ВСЕГЕИ. Санкт-Петербург: Картографическая фабрика ВСЕГЕИ. 2020.

28. Кузнецов Н.Б., Натапов Л.М., Белоусова Е.А., Гриффин У.Л., О'Рейлли С.О., Куликова К.В., Соболева А.А., Удоратина О.В. Первые результаты U-Pb датирования и изотопно-геохимического изучения детритных цирконов из позднекембрийских песчаников Южного Тимана (Увал Джежим-Парма) // Доклады Академии наук. 2010. № 6(435). С. 798–805.

29. Кузнецов Н.Б., Соболева А.А., Удоратина О.В., Герцева М.В., Андреичев В.Л., Дорохов Н.С. Доуральская тектоническая эволюция северо-восточного и восточного обрамления Восточно-Европейской платформы. Часть 1. Протоуралиды, тиманиды и доордовикские гранитоидные вулкано-плутонические ассоциации севера Урала и Тимано-Печорского региона // Литосфера. 2006. №4. С. 3–22.

30. Кузнецов Н.Б., Соболева А.А., Удоратина О.В., Герцева М.В., Андреичев В.Л., Дорохов Н.С. Доуральская тектоническая эволюция северо-восточного и восточного обрамления Восточно-Европейской платформы. Часть 2. Позднедокембрийско-кембрийская коллизия Балтики и Арктиды // Литосфера. 2007. №1. С. 32–45.

31. Купцова А.В., Худолей А.К., Дэвис В., Рейнбирг Р.Х., Ковач В.П., Загорная Н.Ю. Возраст и источники сноса песчаников приозерской и салминской свит рифея в восточном борту Пашско-Ладожского бассейна (южная окраина Балтийского щита) // Стратиграфия Геологическая корреляция. 2011. №2(19). С. 3–19.

32. Ларин А.М. Граниты рапакиви в геологической истории Земли. Статья 1. Рапакивигранитсодержащие магматические ассоциации: возраст, геохимия, тектоническое положение // Стратиграфия Геологическая корреляция. 2009. № 3(17). С. 3–28.

33. Макеев А.Б., Андреичев В.Л., Брянчанинова Н.И. Возраст лампрофиров Среднего Тимана: первые Rb-Sr-данные // Доклады Академии Наук. 2009. №1(426). С. 94–97.

34. Макеев А.Б., Красоткина А.О., Скублов С.Г. Геохимия и U-Pb возраст циркона Пижемского титанового месторождения (Средний Тиман) // Вестник института геологии Коми научного центра УрОРАН. 2016.№ 5. С. 38–52.

35. Малышев Н.А. Тектоника, эволюция и нефтегазоностность осадочных бассейнов европейского севера России. УрО РАН. Екатеринбург. 2002. 268 с.

36. Маслов А.В., Ерохин Ю.В., Гердес А., Ронкин Ю.Л., Иванов К.С. Первые результаты U-Pb (LA-ICP-MS) изотопного датирования обломочных цирконов из аркозовых песчаников бирьянской подсвиты зильмердакской свиты верхнего рифея (Южный Урал) // Доклады Академии Наук. 2018а. № 5(482). С. 558–561.

37. Маслов А.В., Петров Г.А., Ронкин Ю.Л. К реконструкции состава пород источников сноса для средне-верхнерифейских отложений Ишеримского и Башкирского антиклинориев (Урал) // Геохимия. 2018б. № 5. С. 410–426.

38. Михайленко Ю.В., Соболева А.А., Хоуриган Дж.К. U-Pb возраст детритовых цирконов из верхнедокембрийских отложений полуостровов Средний и Рыбачий (северное обрамление Кольского полуострова) // Стратиграфия. 2016. №5(24). С. 3–27.

39. Михайленко Ю.В. Особенности строения и состав каруярвинской свиты кильдинской серии рифеид полуострова Средний: северное обрамление Кольского полуострова. Ухта. 2016. 204 с.

40. Оловянишников В.Г. Верхний докембрий Тимана и полуострова Канин. Уральское отделение РАН. Екатеринбург. 1998. 163 с.

41. Оловянишников В.Г. Геологическое развитие полуострова Канин и Северного Тимана. геопринт. Сыктывкар. 2004. 79 с.

42. Опаренкова Л.И., Иванов Н.Ф., Колокольцев В.Г. Легенда Тиманской серии листов Государственной геологической карты Российской Федерации масштаба 1:200000 (издание второе). Ухта; 1999. 103 с.

43. Орлов С.Ю., Кузнецов Н.Б., Миллер Е.Р., Соболева А.А., Удоратина О.В. Возрастные ограничения протоуральско-тиманской орогении по детритным цирконам // Доклады Академии Наук. 2011. № 1(440). С. 87–92.

44. Пармузин Н.М., Мазуркевич К.Н., Семенова Л.Р., Коссовая О.Л., Алексеев М.А., Вукс В.Я., Гаврилов В.А., Горбацевич Н.Р., Евдокимова И.О., Котляр Г.В., Петров Б.В., Степунин А.В., Толмачева Т.Ю., Шаметько В.Г., Шарпенок Л.Н., Якобсон К.Э. Государственная геологическая карта Российской Федерации. Масштаб 1 : 1 000 000 (третье поколение). Серия Мезенская. Лист Q-39 –Нарьян-Мар. Объяснительная записка. Санкт-Петербург: Картографическая фабрика ВСЕГЕИ. 2015. 393 с. +32 вкл.

45. Петров В.П. Метаморфизм раннего протерозоя Балтийского щита. КНЦРАН. Апатиты; 1999. 325 с. 46. Петров Г.А., Ронкин Ю.Л., Гердес А., Маслов А.В. Первые результаты U–Pb (LA-ICP-MS)-датирования обломочных цирконов из метапесчаников Ишеримского антиклинория (Северный Урал) // Доклады Академии наук. 2015. № 5(464). С. 589–593.

47. Пучков В.Н. Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). Уфа: ДизайнПолиграфСервис; 2010. 280 с.

48. Пыстин А.М., Андреичев В.Л., Конанова Н.В., Пыстина Ю.И., Соболева А.А., Удоратин В.В., Удоратина О.В. Тимано-Североуральский регион: глубинное строение, вещественно-структурная эволюция, возрастные рубежи // Известия Коми научного центра УрО РАН. 2018. №4. С. 59–67.

49. Сергеев С.А., Бибикова Е.В., Матуков Д.И., Лобач-Жученко С.Б. Возраст пород и метаморфических процессов Водлзерского комплекса Балтийского щита (по результатам анализа цирконов U-Th-Pb изотопным методом на ионном микрозонде SHRIMP II) // Геохимия. 2007. № 2. С. 229–236.

50. Соболева А.А., Андреичев В.Л., Бурцев И.Н., Никулова Н.Ю., Хубанов В.Б., Соболев И.Д. Детритовые цирконы из верхнедокембрийских пород вымской серии Среднего Тимана: U-Pb возраст и источники сноса // Бюллетень московского общества испытателей природы, отдел геологический. 2019. № 1(94). С. 3–16.

51. Удоратина О.В., Бурцев И.Н., Никулова Н.Ю., Хубанов В.Б. Возраст метапесчаников верхнедокембрийской четласской серии Среднего Тимана на основании U-Pb датирования детритных цирконов // Бюллетень московского общества испытателей природы, отдел геологический. 2017. № 5(92). С.15–32.

52. Фор Г. Основы изотопной геологии. Москва: МИР. 1989. 590 с.

53. Якобсон К.Э., Вовшина А.Ю., Серегина Н.Д. Мезенская серийная легенда. Санкт-Петербург; 2002.

54. Amelin Y.V., Larin A.M., Tucker R.D. Chronology of multiphase emplacement of the Salmi rapakivi granite-anorthosite complex, Baltic Shield: implications for magmatic evolution // Contributions to Mineralogy and Petrology.1997. № 4(127). P. 353–368.

55. Andersen T., Andersson U.B., Graham S., Åberg G., Simonsen S.L. Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon // Journal of the Geological Society. 2009. № 2(166). P. 233–247.

56. Andersen T., Elburg M.A., Magwaza B.N. Sources of bias in detrital zircon geochronology: Discordance, concealed lead loss and common lead correction // Earth-Science Reviews. 2019. № 197. P. 1-15.

57. Andersen T., Kristoffersen M., Elburg M.A. How far can we trust provenance and crustal evolution information from detrital zircons? A South African case study // Gondwana Research. 2016. № 34. P. 129–148.

58. Andersen T., Kristoffersen M., Elburg M.A. Visualizing, interpreting and comparing detrital zircon age and Hf isotope data in basin analysis - a graphical approach // Basin Res. 2018. № 1(30). P. 132–147.

59. Andreichev V.L., Soboleva A.A., Dovzhikova E.G., Ronkin Yu.L., Miller E.L., Coble M.A. Granitoids in the Bolshezemel Zone of the Pechora Basin Basement: Composition and U–Pb Age // Russian Geology and Geophysics. 2022. №2(64). P. 1-10.

60. Arif M., Henry D.J., Moon C.J. Cr-bearing tourmaline associated with emerald deposits from Swat, NW Pakistan: Genesis and its exploration significance // American Mineralogist. 2010. № 5-6 (95). P. 799–809.

61. Baksheev I.A., Kudryavtseva O.E. Nickeloan tourmaline from the Berezovskoe gold deposit, Middle Urals, Russia // The Canadian Mineralogist. 2004. № 4(42). P. 1065–1078.

62. Beckholmen M., Glodny J. Timanian blueschist-facies metamorphism in the Kvarkush metamorphic basement, Northern Urals, Russia // Memoirs. 2004. № 1(30). P. 125–134.

63. Berryman E.J., Zhang D., Wunder B., Duffy T.S. Compressibility of synthetic Mg-Al tourmalines to 60 GPa // American Mineralogist. 2019. № 7(104). P. 1005–1015.

64. Biernacka J. Insight into diagenetic processes from authigenic tourmaline: An example from Carboniferous and Permian siliciclastic rocks of western Poland // Sedimentary Geology. 2019. № 389. P. 73–90.

65. Biernacka J. Provenance of Upper Cretaceous quartz-rich sandstones from the North Sudetic Synclinorium, SW Poland: constraints from detrital tournaline // Geological Quarterly. 2012. № 2(56). P. 315–332.

66. Bingen B., Andersson J., Söderlund U., Möller Ch. The Mesoproterozoic in the Nordic countries // Episodes. 2008a. № 1(31). P. 29–34.

67. Bingen B., Nordgulen Ø., Viola G. A four-phase model for the sveconorwegian orogeny, SW Scandinavia // Norwegian journal of geology. 2008b. № 88. P. 43–72.

68. Bingen B., Solli A. Geochronology of magmatism in the Caledonian and Sveconorwegian belts of Baltica: synopsis for detrital zircon provenance studies // Norwegian J Geol. 2009. № 89. P. 267–290.

69. Bingen B., Viola G., Möller C., Vander Auwera J., Laurent A., Yi K. The Sveconorwegian orogeny // Gondwana Research. 2021. № 90. P. 273–313.

70. Bogdanova S.V., Bingen B., Gorbatschev R., Kheraskova T.N., Kozlov V.I., Puchkov V.N., Volozh Yu.A. The East European Craton (Baltica) before and during the assembly of Rodinia // Precambrian Research. 2008. № 1(160). P. 23–45.
71. Bogdanova S.V., Gorbatschev R., Garetsky R.G. EUROPE\East European Craton☆.
B: Reference Module in Earth Systems and Environmental Sciences. Elsevier; 2016. P. 1-18.

72. Brustnitsyna E., Ershova V., Khudoley A., Maslov A., Andersen T., Stockli D., Kristoffersen M. Age and provenance of the Precambrian Middle Timan clastic succession: Constraints from detrital zircon and rutile studies // Precambrian Research. 2022. № 371. P. 1-18.

73. Cawood P.A., Hawkesworth C.J., Dhuime B. Detrital zircon record and tectonic setting // Geology. 2012. №10(40). P. 875–878.

74. Cawood P.A., Nemchin A.A., Strachan R., Prave T., Krabbendam M. Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia // JGS. 2007. №2(164). P. 257–275.

75. Cherniak D.J. Pb diffusion in rutile // Contrib Mineral Petrol. 2000. № 139. P. 198–207.

76. Copeland P. On the use of geochronology of detrital grains in determining the time of deposition of clastic sedimentary strata // Basin Research. 2020. № 6(32). P. 1532–1546.

77. Coutts D.S., Matthews W.A., Hubbard S.M. Assessment of widely used methods to derive depositional ages from detrital zircon populations // Geoscience Frontiers. 2019. № 4(10). P. 1421–1435.

78. Dickinson W.R. Interpreting detrital modes of graywacke and arkose // Journal of sadimentary petrology. 1970. № 2(40). P. 695–707.

79. Dickinson W.R., Beard L.S., Brakenridge G.R., Erjavec J.L., Ferguson R.C., Inman K.F., Knepp R.A., Lindberg F.A., Ryberg P.T. Provenance of North American sandstones in relation to tectonic setting // Bull Geol Soc Am. 1983. № 94. P. 222–235.

80. Dickinson W.R., Gehrels G.E. Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database // Earth and Planetary Science Letters. 2009. № 1(288). P. 115–125.

81. Elburg M.A., Andersen T., Bons P.D., Simonsen S.L., Weisheit A. New constraints on Phanerozoic magmatic and hydrothermal events in the Mt Painter Province, South Australia // Gondwana Research. 2013. № 2(24). P. 700–712.

82. Ershova V.B., Ivleva A.S., Podkovyrov V.N., Khudoley A.K., Fedorov P.V., Stockli D., Anfinson O., Maslov A.V., Khubanov V. Detrital zircon record of the Mesoproterozoic to Lower Cambrian sequences of NW Russia: implications for the paleogeography of the Baltic interior // GFF. 2019. № 4(141). P. 279–288.

83. Ertl A., Marschall H.R., Giester G., Henry D.J., Schertl H.P., Ntaflos T., Luvizotto G.L., Nasdala L., Tillmanns E. Metamorphic ultrahigh-pressure tourmaline: Structure, chemistry, and correlations to P-T conditions // American Mineralogist. 2010. № 1(95). P. 1–10.

84. Garzanti E., Andò S., Vezzoli G. Settling equivalence of detrital minerals and grain-size dependence of sediment composition // Earth and Planetary Science Letters. 2008. № 1-2(273).
P. 138–151.

85. Garzanti E, Andò S, Vezzoli G. Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth and Planetary Science Letters. январь 2009 г.;277(3–4):422–32.

86. Gee D.G., Pease V. The Neoproterozoic Timanide Orogen of eastern Baltica: introduction // Geological Society, London, Memoirs. 2004. № 1(30). P. 1–3.

87. Gee D.G., Beliakova L., Pease V., Larionov A., Dovshikova L. New, Single Zircon (Pb-Evaporation) Ages from Vendian Intrusions in the Basement beneath the Pechora Basin, Northeastern Baltica // Polarforschung. 2000. № 1(68). P. 161–170.

88. Gower C., Kamo S., Krogh T. Indentor tectonism in the eastern Grenville Province // Precambrian Research. 2008. № 12(167). P. 201–212.

89. Granseth A., Slagstad T., Roberts N.M.W., Hagen-Peter G., Kirkland C.L., Møkkelgjerd S.H.H., Røhr T.S., Coint N., Sørensen B.E. Multi-isotope tracing of the 1.3–0.9 Ga evolution of Fennoscandia; crustal growth during the Sveconorwegian orogeny // Gondwana Research. 2020. № 91. P. 31–39.

90. Griffin W.L., Wang X., Jackson S.E., Pearson N.J., O'Reilly S.Y., Xu X., Zhou X. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes // Lithos. 2002. № 3-4(61). P. 237–269.

91. Henry D.J., Dutrow B.L. Metamorphic tourmaline and its petrologic applications // Reviews in Mineralogy. 1996. № 33. P. 503–558.

92. Henry D.J., Guidotti C.V. Tourmaline as a petrogenetic indicator mineral - An example from the staurolite-grade metapelites of NW Maine // American Mineralogist. 1985. № 70. P. 1-15.

93. Henry D.J., Novak M., Hawthorne F.C., Ertl A., Dutrow B.L., Uher P., Pezzotta F. Nomenclature of the tourmaline-supergroup minerals // American Mineralogist. 2011. № 96. P. 895-913

94. Huhma H., Mänttäri I., Peltonen P., Kontinen A., Halkoaho T., Hanski E., Hokkanen T., Hölttä P., Juopperi H., Konnunaho J., Layahe Y., Luukkonen E., Pietikäinen K., Pulkkinen A., Sorjonen-Ward P., Vaasjoki M., Whitehouse M. The age of the Archaean greenstone belts in Finland // Geological Survey of Finland, Special Paper. 2012. № 54. P. 74–175.

95. Ingersoll R.V., Bullard T.F., Ford R.L., Grimm J.P., Pickle J.D., Sares S.W. The effect of grain size on detrital modes: a test of the Gazzi-Dickinson pointcounting method // Journal of Sedimentary Research. 1984. № 1(54). P. 103–116.

96. Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology // Chemical Geology. 2004. № 1(211). P. 47–69.

97. Johnstone S.A., Schwartz T.M., Holm-Denoma C.S. A Stratigraphic Approach to Inferring Depositional Ages From Detrital Geochronology Data // Journal of Sedimentary Research. 2019. №7. P. 1-19.

98. Kirkland C.L., Daly J.S., Whitehouse M.J. Granitic magmatism of Grenvillian and late Neoproterozoic age in Finnmark, Arctic Norway—Constraining pre-Scandian deformation in the Kalak Nappe Complex // Precambrian Research. 2006. №1-2(145). P. 24–52.

99. Korago E.A., Kovaleva G.N., Lopatin B.G., Orgo V.V. The Precambrian rocks of Novaya Zemlya // Geological Society, London, Memoirs. 2004. №1(30). P. 135–143.

100. Korja A., Lahtinen R., Nironen M. The Svecofennian orogen: a collage of microcontinents and island arcs // Geological Society, London, Memoirs. 2006. № 1(32). P. 561–578.

101. Kostyuchenko S., Sapozhnikov R., Egorkin A., Gee D.G., Berzin R., Solodilov L. Crustal structure and tectonic model of northeastern Baltica, based on deep seismic and potential field data // Geological Society, London, Memoirs. 2006. № 1(32). P. 521–539.

102. Kowal-Linka M., Stawikowski W. Garnet and tourmaline as provenance indicators of terrigenous material in epicontinental carbonates (Middle Triassic, S Poland) // Sedimentary Geology.2013. № 291. P. 27–47.

103. Kristoffersen M., Andersen T., Andresen A. U–Pb age and Lu–Hf signatures of detrital zircon from Palaeozoic sandstones in the Oslo Rift, Norway // Geological Magazine. 2014. № 5(151). P. 816–829.

104. Kuznetsov N.B., Natapov L.M., Belousova E.A., O'Reilly S.Y., Griffin W.L. Geochronological, geochemical and isotopic study of detrital zircon suites from late Neoproterozoic clastic strata along the NE margin of the East European Craton: Implications for plate tectonic models // Gondwana Research. 2010. № 2(17). P. 583–601.

105. Lahtinen R. Main geological features of Fennoscandia // Geological Survey of Finland, Special Paper. 2012. № 53. P. 13–18.

106. Lahtinen R., Korja A., Nironen M. Chapter 11 Paleoproterozoic tectonic evolution. Developments in Precambrian Geology. Elsevier. 2005. P. 481–531.

107. Larionov A. N., Andreichev V. L., Gee D. G. The Vendian alkaline igneous suite of northern Timan: ion microprobe U-Pb zircon ages of gabbros and syenite // The Neoproterozoic Timanide Orogen of Eastern Baltica, 2004. № 30. P. 69–74.

108. Lorenz H., Gee D.G., Larionov A.N., Majka J. The Grenville–Sveconorwegian orogen in the high Arctic // Geological Magazine. 2012. № 5(149). P. 875–891.

109. Ludwig T. Isoplot 3.00: A geochronological toolkit for Microsoft Excel // Berkeley Geochronology Center. 2003. P. 70.

110. Luvizotto G.L., Zack T., Meyer H.P., Ludwig T., Triebold S., Kronz A., Münker C., Stockli D.F., Prowatke S., Klemme S., Jacob D.E., von Eynatten H. Rutile crystals as potential trace element and isotope mineral standards for microanalysis // Chemical Geology. 2009. № 3(261). P. 346–369.

111. Malone D.H., Stein C.A., Craddock J.P., Kley J., Stein S., Malone J.E. Maximum depositional age of the Neoproterozoic Jacobsville Sandstone, Michigan: Implications for the evolution of the Midcontinent Rift // Geosphere. 2016. № 4(12). P. 1271–1282.

112. Mezger K., Hanson G.N., Bohlen S.R. High-precision U-Pb ages of metamorphic rutile: application to the cooling history of high-grade terranes // Earth and Planetary Science Letters. 1989. № 1(96). P. 106–118.

113. Mints M.V. Meso-Neoproterozoic Grenville-Sveconorwegian intracontinental orogen: history, tectonics, geodynamics // Geodynamics & Tectonophysics. 2017. № 3(8). P. 619–642.

114. Möller A., Mezger K., Schenk V. U–Pb dating of metamorphic minerals: Pan-African metamorphism and prolonged slow cooling of high pressure granulites in Tanzania, East Africa // Precambrian Research. 2000. № 3(104). P. 123–146.

115. Morton A., Hallsworth C.R. Processes controlling the composition of heavy mineral assemblages in sandstones // Sedimentary Geology. 1999. № 124. P. 3–29.

116. Nironen M. The Svecofennian Orogen: a tectonic model // Precambrian Research.
1997. № 1(86). P. 21–44.

117. Paton C., Hellstrom J., Paul B., Woodhead J., Hergt J. Iolite: Freeware for the visualisation and processing of mass spectrometric data // Journal of Analytical Atomic Spectrometry. 2011. № 12(26). P. 2508-2518.

118. Pease V., Dovshikova E., Beliakova L., Gee D.G. Late Neoproterozoic granitoid magmatism in the basement to the Pechora Basin, NW Russia: geochemical constraints indicate westward subduction beneath NE Baltica // Geological Society, London, Memoirs. 2004. № 30. P. 75–85.

119. Pedersen S., Andersen T., Konnerup-Madsen J., Griffin W.L. Recurrent mesoproterozoic continental magmatism in South-Central Norway // International Journal of Earth Sciences (Geol Rundsch). 2009. № 5(98). P. 1151–1171.

120. Petrus J.A., Kamber B.S. VizualAge: A Novel Approach to Laser Ablation ICP-MS
U-Pb Geochronology Data Reduction // Geostandards and Geoanalytical Research. 2012. № 3(36).
P. 247–270.

121. Pettijohn F.J. Sedimentary Rocks. 3rd Edition. Harper and Row, New York; 1975. 628 p.

122. Rämö O.T., Turkki V., Mänttäri I., Heinonen A., Larjamo K., Lahaye Y. Age and isotopic fingerprints of some plutonic rocks in the Wiborg rapakivi granite batholith with special reference to the dark wiborgite of the Ristisaari Island Bulletin of the Geological Society of Finland. 2014. № 86. P. 77–91.

123. Reimink J.R., Davies J.H.F.L., Waldron J.W.F., Rojas X. Dealing with discordance:
a novel approach for analysing U–Pb detrital zircon datasets // Journal of the Geological Society.
2016. № 4(173). P. 577–585.

124. Rivers T. Assembly and preservation of lower, mid, and upper orogenic crust in the Grenville Province—Implications for the evolution of large hot long-duration orogens // Precambrian Research. 2008. № 3-4(167). P. 237–259.

125. Rivers T. Upper-crustal orogenic lid and mid-crustal core complexes: Signature of a collapsed orogenic plateau in the hinterland of the Grenville Province // Canadian Journal of Earth Sciences. 2012. № 1(49). P. 1–42.

126. Rivers T. Tectonic Setting and Evolution of the Grenville Orogen: An Assessment of Progress Over the Last 40 Years // Geoscience Canada. 2015. № 1(42). P. 77–124.

127. Roberts D., Siedlecka A., Olovyanishnikov V.G. Neoproterozoic, passive-margin, sedimentary systems of the Kanin Peninsula, and northern and central Timan, NW Russia // Geological Society, London, Memoirs. 2004. № 1(30). P. 5–17.

128. Roberts N.M.W. The boring billion? – Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent // Geoscience Frontiers. 2013. N_{2} 6(4). P. 681–691.

129. Roberts N.M.W, Slagstad T. Continental growth and reworking on the edge of the Columbia and Rodinia supercontinents; 1.86–0.9 Ga accretionary orogeny in southwest Fennoscandia // International Geology Review. 2015. № 11-12(57). P. 1582–1606.

130. Roffeis C., Corfu F. Caledonian nappes of southern Norway and their correlation with Sveconorwegian basement domains // Geological Society, London, Special Publications. 2014. № 1(390). P. 193–221.

131. Rosa D.R.N, Finch A.A., Andersen T., Inverno C.M.C. U–Pb geochronology and Hf isotope ratios of magmatic zircons from the Iberian Pyrite Belt // Mineralogy and Petrology. 2009. № 1(95). P. 47–69.

132. Rubatto D. Zircon: The Metamorphic mineral // Reviews in mineralogy and Geochemistry. 2017. № 83. P. 261–295.

133. Satkoski A.M., Wilkinson B.H., Hietpas J., Samson S.D. Likeness among detrital zircon populations--An approach to the comparison of age frequency data in time and space // Geological Society of America Bulletin. 2013. № 11-12(125). P. 1783–1799.

134. Slagstad T., Kulakov E., Kirkland C.L., Roberts N.M.W., Ganerød M. Breaking the Grenville–Sveconorwegian link in Rodinia reconstructions // Terra Nova. 2019. № 5(31). P. 430–437.

135. Slagstad T., Marker M., Roberts N.M.W., Saalmann K., Kirkland C.L., Kulakov E., Ganerød M., Røhr T.S., Møkkelgjerd S.H.H., Granseth A., Sørensen B.E. The Sveconorwegian orogeny – Reamalgamation of the fragmented southwestern margin of Fennoscandia // Precambrian Research. 2020. № 350. P. 1-25.

136. Slagstad T., Roberts N.M.W., Marker M., Røhr T.S., Schiellerup H. A noncollisional, accretionary Sveconorwegian orogen: A non-collisional, accretionary Sveconorwegian orogen // Terra Nova. 2013. № 1(25). P. 30–37.

137. Slagstad T., Roberts N.M.W., Coint N., Høy I., Sauer S., Kirkland C.L., Marker M., Røhr T.S., Henderson I.H.S., Stormoen M.A., Skår Ø., Sørensen B.E., Bybee G. Magma-driven, high-grade metamorphism in the Sveconorwegian Province, southwest Norway, during the terminal stages of Fennoscandian Shield evolution // Geosphere. 2018. № 2(14). P. 861–882.

138. Slagstad T., Roberts N.M.W., Kulakov E. Linking orogenesis across a supercontinent; the Grenvillian and Sveconorwegian margins on Rodinia // Gondwana Research. 2017. № 44. P. 109–115.

139. Sláma J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M.N., Whitehouse M.J. Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis // Chemical Geology. 2008. № 1(249). P. 1–35.

140. Spencer C.J., Cawood P.A., Hawkesworth C.J., Prave A.R., Roberts N.M.W., Horstwood M.S.A., Whitehouse M.J. Generation and preservation of continental crust in the Grenville Orogeny // Geoscience Frontiers. 2015. № 3(6). P. 357–372.

141. Spencer C.J., Roberts N.M.W., Cawood P.A., Hawkesworth C.J., Prave A.R., Antonini A.S.M., Horstwood M. S.A. Intermontane basins and bimodal volcanism at the onset of the Sveconorwegian Orogeny, southern Norway // Precambrian Research. 2014. №252. P. 107–118.

142. Stacey J.S., Kramers J.D. Approximation of terrestrial lead isotope evolution by a two-stage model // Earth and Planetary Science Letters. 1975. №2(26). P. 207–221.

143. Triebold S., von Eynatten H., Zack T. A recipe for the use of rutile in sedimentary provenance analysis // Sedimentary Geology. 2012. №282. P. 268–275.

144. Trumbull R.B., Krienitz M.S., Gottesmann B., Wiedenbeck M. Chemical and boronisotope variations in tourmalines from an S-type granite and its source rocks: the Erongo granite and tourmalinites in the Damara Belt, Namibia // Contributions to Mineralogy and Petrology. 2007. № 1(155). P. 1–18.

145. Van Hinsberg V.J., Henry D.J., Dutrow B.L. Tourmaline as a Petrologic Forensic Mineral: A Unique Recorder of Its Geologic Past // Elements. 2011. № 5(7). P. 327–332.

146. Vereshchagin O.S., Khudoley A.K., Ershova V.B., Prokopiev A.V., Schneider G.V. Provenance of Jurassic-Cretaceous siliciclastic rocks from the northern Siberian Craton: an integrated heavy mineral study // Journal of Geosciences. 2018. № 2(63). P. 199–213.

147. Vermeesch P. On the visualisation of detrital age distributions // Chemical Geology.
2012. № 312–313. P. 190–194.

148. Vry J.K., Baker J.A. LA-MC-ICPMS Pb–Pb dating of rutile from slowly cooled granulites: Confirmation of the high closure temperature for Pb diffusion in rutile // Geochimica et Cosmochimica Acta. 2006. № 7(70). P. 1807–1820.

149. Wang C.C., Wiest J.D., Jacobs J., Bingen B., Whitehouse M.J., Elburg M.A., Sørstrand T.S., Mikkelsen L., Hestnes Å. Tracing the Sveconorwegian orogen into the Caledonides of West Norway: Geochronological and isotopic studies on magmatism and migmatization // Precambrian Research. 2021. №362. P. 1-23.

150. Wiedenbeck M., Allé P., Corfu F., Griffin W.L., Meier M., Oberli F., Von Quadt A., Roddick J.C., Spiegel W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analysis // Geostandards Newsletter. 1995. № 19. P. 1–23.

151. Zack T., Stockli D.F., Luvizotto G.L., Barth M.G., Belousova E., Wolfe M.R., Hinton R.W. In situ U–Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications // Contributions to Mineralogy and Petrology. 2011. № 3(162). P. 515–530.

152. Zhang W., Roberts D., Pease V. Provenance characteristics and regional implications of Neoproterozoic, Timanian-margin successions and a basal Caledonian nappe in northern Norway // Precambrian Research. 2015. № 268. P. 153–167.

153. Zhang W., Roberts D., Pease V. Provenance of sandstones from Caledonian nappes in Finnmark, Norway: Implications for Neoproterozoic–Cambrian palaeogeography // Tectonophysics. 2016. № 691. P. 198–205.

154. Zoleikhaei Y., Frei D., Morton A., Zamanzadeh S.M. Roundness of heavy minerals

(zircon and apatite) as a provenance tool for unraveling recycling: A case study from the Sefidrud

and Sarbaz rivers in N and SE Iran // Sedimentary Geology. 2016. № 342. P. 106-117

Результаты	U-Th-Pb датирования	обломочных цирконо	в (университет г.	Осло)
1.05/01010101	e in regampebanns	i conome mibin duptione		e e n e f

№ Пробы	р	рт		Coo	тношение			207	/206	207/	/235	206	/238	Best A	ge	
№ зерна	U	²⁰⁶ Pb	²⁰⁷ Pb/	1σ	²⁰⁶ Pb/	1σ	RH	Возра	1 σ	Возра	1σ	Возра	1 σ	млн	±1	D,
_			²³⁵ U	error	²³⁸ U*	error	0	ст,	error	ст,	error	ст,	error	лет	σ	%
								млн		млн		млн				
								лет		лет		лет				
Проба 9034/2	2															
64°34'31,3''																
50°36'39.3''																
9034_2-80	133	29,8	2,26190	0,05188	0,19984	0,00443	0,97	1248	11	1200	16	1174	24	1248	11	-6
9034_2_14	183	40,9	2,71878	0,03879	0,23211	0,00226	0,68	1314	20	1334	11	1346	12	1314	20	2
9034_2-73	386	104,9	2,95547	0,04214	0,24311	0,00323	0,93	1386	9	1396	11	1403	17	1386	9	1
9034_2_07	178	47,6	2,95156	0,05291	0,23282	0,00386	0,93	1466	12	1395	14	1349	20	1466	12	-9
9034_2-76	196	57,3	3,29559	0,05391	0,25933	0,00402	0,95	1471	10	1480	13	1486	21	1471	10	1
9034_2_20	305	76,9	3,30662	0,04524	0,25811	0,00209	0,59	1486	21	1483	11	1480	11	1486	21	0
9034_2_26	155	33,5	3,02377	0,06279	0,23543	0,00273	0,56	1491	32	1414	16	1363	14	1491	32	-9
9034_2_12	222	60,1	3,60828	0,05005	0,28048	0,00266	0,68	1494	18	1551	11	1594	13	1494	18	6
9034_2-95	416	119,1	3,31686	0,05616	0,25368	0,00406	0,95	1525	10	1485	13	1457	21	1525	10	-5
9034_2_04	60	19,7	3,89666	0,07641	0,28634	0,00546	0,97	1600	8	1613	16	1623	27	1600	8	1
9034_2-97	184	56,7	3,86559	0,06112	0,27579	0,00409	0,94	1655	10	1607	13	1570	21	1655	10	-5
9034_2-94	216	73,1	4,46912	0,07575	0,30041	0,00469	0,92	1764	12	1725	14	1693	23	1764	12	-4
9034_2-109	301	98,8	4,38117	0,07710	0,29235	0,00486	0,94	1778	11	1709	15	1653	24	1778	11	-8
9034_2-75	359	118,4	4,45350	0,07323	0,29272	0,00453	0,94	1805	10	1722	14	1655	23	1805	10	-9
9034_2_29	188	57,5	4,76280	0,07779	0,31018	0,00257	0,51	1822	25	1778	14	1742	13	1822	25	-5
9034_2_31	160	47,1	4,58187	0,08165	0,29843	0,00269	0,51	1822	27	1746	15	1683	13	1822	27	-8
9034_2_15	210	54,9	4,69754	0,07957	0,30510	0,00402	0,78	1827	19	1767	14	1717	20	1827	19	-6
9034_2-69	260	96,9	5,01657	0,08378	0,32429	0,00508	0,94	1835	10	1822	14	1811	25	1835	10	-1
9034_2-74	232	78,7	4,74131	0,07511	0,30099	0,00445	0,93	1868	10	1775	13	1696	22	1868	10	-10
9034_2-62	117	44,6	5,30730	0,08926	0,33545	0,00530	0,94	1876	10	1870	14	1865	26	1876	10	-1
9034_2_01	139	49,2	4,88008	0,07551	0,30719	0,00468	0,99	1883	4	1799	13	1727	23	1883	4	-9

№ Пробы	p	рт		<u>Coom</u> ⁷ Pb/ 1 σ ²				207	/206	207	/235	206/	/238	Best A	ge	
№ зерна	U	²⁰⁶ Pb	²⁰⁷ Pb/	1 σ	²⁰⁶ Pb/	1 σ	RH	Возра	1 σ	Возра	1σ	Возра	1 σ	млн	±1	D,
			²³⁵ U	error	²³⁸ U*	error	0	ст,	error	ст,	error	ст,	error	лет	σ	%
								млн		млн		млн				
								лет		лет		лет				
9034_2-105	64	25,2	5,81086	0,12245	0,34801	0,00699	0,95	1973	11	1948	18	1925	33	1973	11	-2
9034_2_10	151	61,4	6,42523	0,12666	0,37773	0,00735	0,99	2005	5	2036	17	2066	34	2005	5	3
9034_2-77	221	116	9,57690	0,18891	0,45361	0,00839	0,94	2381	11	2395	18	2411	37	2381	11	1
9034_2-59	207	111,2	11,5804 1	0,24141	0,46338	0,00895	0,93	2664	12	2571	19	2454	39	2664	12	-9
9034_2-82	177	114,7	13,8648 1	0,33443	0,54556	0,01249	0,95	2692	12	2741	23	2807	52	2692	12	4
9034_2-98	95	54,2	12,9747 6	0,28184	0,49763	0,01009	0,93	2734	12	2678	20	2604	43	2734	12	-5
9034_2-113	155	85,7	12,2442 5	0,29234	0,46444	0,01003	0,91	2753	16	2623	22	2459	44	2753	16	-12
9034-2-121	417	202,8	10,7222 0	0,35447	0,42866	0,01363	0,96	2666	15	2499	31	2300	61	2666	15	-16
9034-2-115	462	117,1	2,82396	0,06162	0,21946	0,00461	0,96	1495	11	1362	16	1279	24	1495	11	-17
9034-2-116	162	46,8	3,43854	0,08284	0,25178	0,00587	0,97	1606	11	1513	19	1448	30	1606	11	-11
9034-2-117	322	73,8	2,23043	0,04566	0,19937	0,00392	0,96	1225	11	1191	14	1172	21	1225	11	-5
9034-2-119	420	99	2,60169	0,05802	0,20576	0,00442	0,96	1461	11	1301	16	1206	24	1461	11	-21
9034_2-123	39	18,3	8,51707	0,19610	0,41296	0,00884	0,93	2341	14	2288	21	2228	40	2341	14	-5
9034-2-125	144	73	12,1717 0	0,28979	0,44557	0,00965	0,91	2811	16	2618	22	2376	43	2811	16	-18
9034 2-128	281	99,2	5,01665	0,10020	0,31172	0,00585	0,94	1907	12	1822	17	1749	29	1907	12	-9
9034 2-129	389	86,5	2,19911	0,03772	0,19604	0,00316	0,94	1230	11	1181	12	1154	17	1230	11	-7
9034_2-130	354	98,4	3,60000	0,07637	0,24532	0,00494	0,95	1742	11	1551	17	1414	26	1742	11	-23
9034_2-131	157	42,2	3,05325	0,05180	0,23798	0,00373	0,92	1489	12	1421	13	1376	19	1489	12	-8
9034_2-132	408	106,1	2,93308	0,04975	0,22966	0,00364	0,93	1480	11	1390	13	1333	19	1480	11	-11
9034_2-133	244	57,4	2,69203	0,05346	0,20938	0,00394	0,95	1493	11	1326	15	1226	21	1493	11	-22
9034_2-134	193	66,9	4,95069	0,11069	0,30854	0,00626	0,91	1901	16	1811	19	1734	31	1901	16	-10
Проба 9007/1																

№ Пробы	p	рт		<u>Coom</u> Ph/ 1 σ 20		1		207	/206	207	/235	206/	/238	Best A	ge	
№ зерна	U	²⁰⁶ Pb	²⁰⁷ Pb/	1 σ	²⁰⁶ Pb/	1σ	RH	Возра	1σ	Возра	1σ	Возра	1σ	млн	±1	D,
			²³⁵ U	error	²³⁸ U*	error	0	ст,	error	ст,	error	ст,	error	лет	σ	%
								млн		млн		млн				
								лет		лет		лет				
64°37'35,4''																
51°43'43.2''																
9007-1-1	238	40,2	2,55190	0,10973	0,21593	0,00913	0,98	1332	15	1287	31	1260	48	1332	15	-6
9007-1-2	46	6,5	1,93036	0,08303	0,17942	0,00755	0,98	1148	18	1092	29	1064	41	1148	18	-8
9007-1-8	159	34,4	4,26085	0,19359	0,28408	0,01267	0,98	1779	15	1686	37	1612	64	1779	15	-10
9007-1-12	110	20,4	3,36272	0,14446	0,25106	0,01057	0,98	1570	17	1496	34	1444	54	1570	17	-9
9007-1-13	160	35,2	4,70998	0,21112	0,30044	0,01320	0,98	1859	17	1769	38	1693	65	1859	17	-10
9007-1-16	304	50,3	2,71396	0,11152	0,22652	0,00914	0,98	1358	15	1332	30	1316	48	1358	15	-3
9007-1-17	263	35,2	2,01552	0,07906	0,18390	0,00707	0,98	1184	15	1121	27	1088	38	1184	15	-9
9007-1-18	266	49	3,33866	0,13958	0,25529	0,01047	0,98	1525	15	1490	33	1466	54	1525	15	-4
9007-1-19	166	40,1	5,64208	0,25792	0,33766	0,01512	0,98	1974	16	1923	39	1875	73	1974	16	-5
9007-1-22	122	177	2,26482	0,09444	0,19977	0,00820	0,98	1251	14	1201	29	1174	44	1251	14	-7
	8															
9007-1-29	108	143,3	2,03054	0,08090	0,18668	0,00730	0,98	1169	15	1126	27	1103	40	1169	15	-6
	7															
9007-1-30	367	94,8	6,25239	0,28827	0,37477	0,01693	0,98	1971	16	2012	40	2052	79	1971	16	4
9007-1-31	194	35,4	3,53703	0,14245	0,27117	0,01068	0,98	1520	16	1536	32	1547	54	1520	16	2
9007-1-32	209	38,5	3,87491	0,15941	0,27635	0,01110	0,98	1655	16	1608	33	1573	56	1655	16	-5
9007-1-34	147	26,4	3,58142	0,14436	0,26855	0,01057	0,98	1562	16	1545	32	1533	54	1562	16	-2
9007-1-35	193	44,9	5,31452	0,22979	0,35093	0,01485	0,98	1797	16	1871	37	1939	71	1797	16	7
9007-1-36	129	26,5	4,22650	0,18976	0,30928	0,01362	0,98	1608	16	1679	37	1737	67	1608	16	7
9007-1-37	130	18	2,41744	0,10235	0,21081	0,00871	0,98	1273	18	1248	30	1233	46	1273	18	-3
9007-1-38	387	75,9	3,88518	0,17096	0,29565	0,01280	0,98	1534	15	1611	36	1670	64	1534	15	8
9007-1-39	240	43,1	3,56833	0,14169	0,27332	0,01064	0,98	1522	15	1543	31	1558	54	1522	15	2
9007-1-40	348	61,3	3,51086	0,14301	0,26723	0,01068	0,98	1534	15	1530	32	1527	54	1534	15	0
9007-1-41	271	63,1	3,53000	0,11833	0,26754	0,00791	0,88	1542	28	1534	27	1528	40	1542	28	-1
9007-1-42	549	148,5	3,87704	0,13487	0,31341	0,00950	0,87	1420	31	1609	28	1757	47	1420	31	19
9007-1-43	131	30,4	3,60475	0,12080	0,27003	0,00767	0,85	1564	32	1551	27	1541	39	1564	32	-1

№ Пробы	p	рт		<u><i>Coomho</i></u> 'Ph/ 1 σ ²⁰⁶				207	/206	207	/235	206/	/238	Best A	ge	
№ зерна	U	²⁰⁶ Pb	²⁰⁷ Pb/	1 σ	²⁰⁶ Pb/	1 σ	RH	Возра	1σ	Возра	1σ	Возра	1σ	млн	±1	D,
			²³⁵ U	error	²³⁸ U*	error	0	ст,	error	ст,	error	ст,	error	лет	σ	%
								млн		млн		млн				
								лет		лет		лет				
9007-1-44	158	27	2,53830	0,07103	0,19669	0,00530	0,96	1500	13	1283	20	1157	29	1500	13	-30
9007-1-45	316	69,2	3,26986	0,10639	0,24882	0,00790	0,98	1534	13	1474	25	1432	41	1534	13	-7
9007-1-46	350	116,5	6,59492	0,22428	0,38494	0,01281	0,98	2018	12	2059	30	2099	60	2018	12	4
9007-1-47	318	72,5	3,49395	0,09821	0,26171	0,00719	0,98	1564	11	1526	22	1499	37	1564	11	-4
9007-1-48	290	53,2	2,35900	0,06207	0,21059	0,00541	0,98	1227	11	1230	19	1232	29	1227	11	0
9007-1-49	208	35,7	2,15235	0,05557	0,19722	0,00497	0,98	1176	11	1166	18	1160	27	1176	11	-1
9007-1-50	421	106,6	3,87628	0,11691	0,29024	0,00858	0,98	1565	11	1609	24	1643	43	1565	11	5
9007-1-51	319	59,7	2,44408	0,06555	0,21510	0,00531	0,92	1255	20	1256	19	1256	28	1255	20	0
9007-1-52	211	48,5	4,18966	0,13476	0,26766	0,00764	0,89	1857	27	1672	26	1529	39	1857	27	-21
9007-1-53	564	101,5	2,26942	0,06295	0,20299	0,00539	0,96	1224	16	1203	20	1191	29	1224	16	-3
9007-1-54	235	75,7	6,24487	0,20632	0,37168	0,01191	0,97	1984	14	2011	29	2037	56	1984	14	3
9007-1-55	101	16,5	2,06642	0,06598	0,18756	0,00514	0,86	1195	32	1138	22	1108	28	1195	32	-8
9007-1-56	95	26,6	5,26871	0,17727	0,32152	0,01030	0,95	1939	18	1864	29	1797	50	1939	18	-8
9007-1-57	250	57	3,29275	0,09453	0,26091	0,00728	0,97	1458	12	1479	22	1494	37	1458	12	2
9007-1-58	87	19,3	3,32084	0,10183	0,25829	0,00704	0,89	1493	26	1486	24	1481	36	1493	26	-1
9007-1-59	65	13,1	3,30878	0,16481	0,24177	0,00755	0,63	1610	71	1483	39	1396	39	1610	71	-15
9007-1-60	249	41,9	2,11504	0,07701	0,19730	0,00522	0,73	1140	47	1154	25	1161	28	1140	47	2
9007-1-61	200	30,6	2,07057	0,06475	0,18081	0,00441	0,78	1271	37	1139	21	1071	24	1271	37	-19
9007-1-63	169	48	4,31937	0,13576	0,32622	0,00996	0,97	1548	13	1697	26	1820	48	1548	13	15
9007-1-64	389	106,1	4,48826	0,14154	0,31114	0,00955	0,97	1708	13	1729	26	1746	47	1708	13	2
9007-1-66	100	14,7	1,72646	0,04929	0,16919	0,00410	0,85	1042	29	1018	18	1008	23	1042	29	-3
9007-1-67	91	23,3	4,12061	0,12559	0,29455	0,00854	0,95	1651	17	1658	25	1664	43	1651	17	1
9007-1-68	211	41,8	2,71019	0,07729	0,22582	0,00620	0,96	1361	15	1331	21	1313	33	1361	15	-4
9007-1-69	853	220,3	4,27893	0,13315	0,29827	0,00903	0,97	1698	13	1689	26	1683	45	1698	13	-1
9007-1-70	133	26,2	2,63187	0,07177	0,22751	0,00599	0,97	1290	14	1310	20	1321	31	1290	14	2
9007-1-71	63	11,5	2,71667	0,07945	0,20465	0,00568	0,95	1553	17	1333	22	1200	30	1553	17	-29
9007-1-72	168	34,7	2,90336	0,09241	0,23995	0,00643	0,84	1377	32	1383	24	1386	33	1377	32	1
9007-1-73	135	22,2	2,17451	0,07263	0,19047	0,00528	0,83	1265	35	1173	23	1124	29	1265	35	-13
9007-1-74	280	66,4	3,72524	0,12501	0,27571	0,00784	0,85	1586	32	1577	27	1570	40	1586	32	-1

№ Пробы	p	рт		<u>Coom</u> 'Ph/ 1 σ 20				207	/206	207	/235	206/	/238	Best A	ge	
№ зерна	U	²⁰⁶ Pb	²⁰⁷ Pb/	1 σ	²⁰⁶ Pb/	1 σ	RH	Возра	1σ	Возра	1σ	Возра	1σ	млн	±1	D,
			²³⁵ U	error	²³⁸ U*	error	0	ст,	error	ст,	error	ст,	error	лет	σ	%
								млн		млн		млн				
								лет		лет		лет				
9007-1-75	269	46,8	2,27660	0,07050	0,20164	0,00524	0,84	1243	32	1205	22	1184	28	1243	32	-5
9007-1-76	191	53,4	5,01846	0,18121	0,32651	0,01001	0,85	1824	35	1822	31	1821	49	1824	35	0
9007-1-77	118	20,2	2,15875	0,06589	0,19797	0,00510	0,84	1174	33	1168	21	1164	27	1174	33	-1
9007-1-78	130	31	3,79883	0,12946	0,27714	0,00792	0,84	1613	34	1592	27	1577	40	1613	34	-2
9007-1-79	197	23,6	1,54870	0,06437	0,13913	0,00355	0,61	1215	63	950	26	840	20	1215	63	-45
9007-1-80	451	104,5	3,63618	0,13013	0,26868	0,00801	0,83	1589	35	1557	28	1534	41	1589	35	-4
9007-1-81	178	41,6	3,79197	0,13432	0,27403	0,00801	0,83	1631	35	1591	28	1561	41	1631	35	-4
9007-1-82	235	42,3	2,34526	0,07697	0,21084	0,00575	0,83	1214	35	1226	23	1233	31	1214	35	2
9007-1-83	62	18,2	5,82488	0,23055	0,34548	0,01129	0,83	1990	39	1950	34	1913	54	1990	39	-4
9007-1-84	188	45,2	3,83526	0,14083	0,27941	0,00818	0,80	1616	42	1600	30	1588	41	1616	42	-2
9007-1-85	145	24,6	2,17684	0,07362	0,19823	0,00529	0,79	1188	39	1174	24	1166	28	1188	39	-2
9007-1-86	93	22	3,80300	0,13357	0,27661	0,00807	0,83	1619	35	1593	28	1574	41	1619	35	-3
9007-1-87	76	17,4	3,55619	0,12235	0,26955	0,00789	0,85	1542	33	1540	27	1538	40	1542	33	0
9007-1-88	389	93,8	3,70655	0,13125	0,27642	0,00841	0,86	1572	32	1573	28	1573	42	1572	32	0
9007-1-89	88	26,4	5,66503	0,22142	0,35078	0,01150	0,84	1913	38	1926	34	1938	55	1913	38	1
9007-1-90	241	42,8	2,57778	0,11065	0,20870	0,00577	0,65	1417	62	1294	31	1222	31	1417	62	-16
9007-1-91	123	24,1	2,71789	0,09253	0,22825	0,00641	0,83	1346	35	1333	25	1325	34	1346	35	-2
9007-1-92	70	11	2,26294	0,18144	0,19219	0,00732	0,48	1325	129	1201	56	1133	40	1325	12	-17
															9	
9007-1-93	187	45,3	3,82070	0,12035	0,28450	0,00855	0,95	1575	17	1597	25	1614	43	1575	17	2
9007-1-94	164	38,9	3,69876	0,11419	0,27847	0,00835	0,97	1554	13	1571	25	1584	42	1554	13	2
9007-1-95	72	19,6	5,01136	0,17411	0,32137	0,01034	0,93	1850	23	1821	29	1796	50	1850	23	-3
9007-1-96	58	19,1	6,49451	0,23471	0,38922	0,01365	0,97	1971	15	2045	32	2119	63	1971	15	7
9007-1-97	155	26,7	2,15860	0,06267	0,20225	0,00571	0,97	1132	13	1168	20	1187	31	1132	13	5
9007-1-98	39	7,1	2,38400	0,07825	0,21419	0,00607	0,86	1215	33	1238	23	1251	32	1215	33	3
9007-1-99	191	35,9	2,48962	0,07378	0,21889	0,00623	0,96	1257	16	1269	21	1276	33	1257	16	1
9007-1-100	133	40,1	5,64471	0,19532	0,35493	0,01190	0,97	1885	16	1923	30	1958	57	1885	16	4
9007-1-101	209	51,3	3,91654	0,12441	0,28858	0,00897	0,98	1595	11	1617	26	1634	45	1595	11	2
9007-1-102	153	46,6	5,76416	0,20077	0,36115	0,01232	0,98	1892	12	1941	30	1988	58	1892	12	5

№ Пробы	p	рт		Coo	тношение			207	/206	207/	/235	206/	238	Best A	ge	
№ зерна	U	²⁰⁶ Pb	²⁰⁷ Pb [/]	1 σ	²⁰⁶ Pb [/]	1 σ	RH	Возра	1σ	Возра	1σ	Возра	1σ	млн	±1	D,
			²³⁵ U	error	²³⁸ U*	error	0	ст,	error	ст,	error	ст,	error	лет	σ	%
								млн		млн		млн				
								лет		лет		лет				
9007-1-103	184	43,4	3,65049	0,11406	0,27788	0,00849	0,98	1534	12	1561	25	1581	43	1534	12	3
9007-1-104	245	44,6	2,39242	0,06989	0,21354	0,00609	0,98	1228	12	1240	21	1248	32	1228	12	2
9007-1-105	393	74,4	2,69241	0,08241	0,22063	0,00660	0,98	1393	12	1326	23	1285	35	1393	12	-8
9007-1-106	363	86,9	3,73199	0,11954	0,28017	0,00875	0,98	1560	13	1578	26	1592	44	1560	13	2
9007-1-107	314	122,3	10,3920 5	0,41129	0,46089	0,01778	0,98	2493	14	2470	37	2443	78	2493	14	-2
9007-1-108	199	32,8	2,32451	0,07380	0,19062	0,00560	0,93	1392	22	1220	23	1125	30	1392	22	-24
9007-1-109	78	11,9	2,12292	0,07854	0,17684	0,00551	0,84	1362	37	1156	26	1050	30	1362	37	-30
9007-1-110	398	73,3	2,40346	0,07315	0,21533	0,00620	0,95	1220	18	1244	22	1257	33	1220	18	3
Проба 9007/4																
64°37'35,4''																
51°43'43.2''																
9007-4-27	272	62,6	0,09739	0,00036	0,26728	0,00489	0,98	1575	7	1547	15	1527	25	1575	7	-3
9007-4-45	432	104,9	0,10308	0,00040	0,28727	0,00509	0,98	1680	7	1651	15	1628	25	1680	7	-3
9007-4-1	218	44,3	0,08716	0,00030	0,23676	0,00376	0,98	1364	7	1368	12	1370	20	1364	7	0
9007-4-3	342	57,6	0,07791	0,00026	0,19717	0,00291	0,98	1145	6	1155	10	1160	16	1145	6	1
9007-4-5	232	51,4	0,09398	0,00033	0,25782	0,00412	0,98	1508	7	1491	13	1479	21	1508	7	-2
9007-4-6	336	59,8	0,08532	0,00035	0,20688	0,00324	0,97	1323	8	1253	12	1212	17	1323	8	-9
9007-4-7	251	65,4	0,10856	0,00039	0,30237	0,00518	0,98	1775	6	1736	15	1703	26	1775	6	-4
9007-4-9	203	55	0,11099	0,00042	0,31460	0,00536	0,98	1816	7	1787	15	1763	26	1816	7	-3
9007-4-10	172	43,4	0,10296	0,00038	0,29306	0,00491	0,98	1678	7	1666	14	1657	24	1678	7	-1
9007-4-12	142	24,6	0,08110	0,00034	0,20446	0,00313	0,96	1224	8	1208	11	1199	17	1224	8	-2
9007-4-14	430	96,9	0,09403	0,00030	0,26334	0,00424	0,98	1509	6	1508	13	1507	22	1509	6	0
9007-4-15	184	49,7	0,11030	0,00040	0,31604	0,00568	0,98	1804	7	1786	15	1770	28	1804	7	-2
9007-4-17	255	46,7	0,08359	0,00028	0,21498	0,00334	0,98	1283	7	1266	12	1255	18	1283	7	-2
9007-4-19	78	14,7	0,08554	0,00035	0,22134	0,00345	0,97	1328	8	1304	12	1289	18	1328	8	-3
9007-4-20	323	58,3	0,08176	0,00027	0,21125	0,00340	0,98	1240	6	1237	12	1235	18	1240	6	0
9007-4-22	181	30,1	0,07872	0,00028	0,19657	0,00308	0,98	1165	7	1160	11	1157	17	1165	7	-1

№ Пробы	p	рт		Coo	тношение			207	/206	207	/235	206/	/238	Best A	ge	
№ зерна	U	²⁰⁶ Pb	²⁰⁷ Pb/	1σ	²⁰⁶ Pb/	1 σ	RH	Возра	1σ	Возра	1 σ	Возра	1 σ	млн	±1	D,
			²³⁵ U	error	²³⁸ U*	error	0	ст,	error	ст,	error	ст,	error	лет	σ	%
								млн		млн		млн				
	100							лет	_	лет		лет			<u> </u>	
9007-4-24	182	35,5	0,08622	0,00031	0,22960	0,00356	0,98	1343	7	1337	12	1332	19	1343	7	-1
9007-4-28	738	169,5	0,10404	0,00046	0,26992	0,00479	0,97	1697	8	1608	15	1540	24	1697	8	-10
9007-4-29	223	48,2	0,09296	0,00033	0,25550	0,00427	0,98	1487	6	1475	13	1467	22	1487	6	-1
9007-4-30	400	75,2	0,08235	0,00026	0,22242	0,00346	0,98	1254	6	1279	12	1295	18	1254	6	3
9007-4-31	128	35	0,11251	0,00045	0,32265	0,00586	0,98	1840	7	1820	16	1803	29	1840	7	-2
9007-4-33	157	27,1	0,08066	0,00032	0,20423	0,00314	0,97	1213	8	1203	11	1198	17	1213	8	-1
9007-4-34	260	61,2	0,09881	0,00034	0,27829	0,00469	0,98	1602	6	1591	14	1583	24	1602	6	-1
9007-4-35	270	49,9	0,08391	0,00028	0,21967	0,00356	0,98	1290	7	1284	12	1280	19	1290	7	-1
9007-4-36	201	31,4	0,07690	0,00030	0,18666	0,00283	0,97	1119	8	1108	11	1103	15	1119	8	-1
9007-4-37	235	38	0,07892	0,00030	0,19306	0,00300	0,97	1170	8	1149	11	1138	16	1170	8	-3
9007-4-39	463	114,1	0,10473	0,00038	0,29106	0,00493	0,98	1710	7	1675	14	1647	25	1710	7	-4
9007-4-40	357	104,9	0,11719	0,00045	0,34610	0,00631	0,98	1914	7	1915	16	1916	30	1914	7	0
9007-4-41	262	77,2	0,12391	0,00047	0,34767	0,00661	0,98	2013	7	1967	17	1923	32	2013	7	-5
9007-4-43	244	74,9	0,13031	0,00055	0,36164	0,00678	0,98	2102	7	2046	17	1990	32	2102	7	-6
9007-4-46	191	55,1	0,10786	0,00048	0,30401	0,00596	0,98	1764	8	1735	17	1711	29	1764	8	-3
9007-4-47	132	40,6	0,11519	0,00055	0,32569	0,00659	0,97	1883	8	1848	18	1817	32	1883	8	-4
9007-4-48	235	37,4	0,07321	0,00030	0,16754	0,00270	0,97	1020	8	1005	11	999	15	1020	8	-2
9007-4-49	176	33,3	0,08383	0,00045	0,20012	0,00354	0,96	1289	10	1216	13	1176	19	1289	10	-10
9007-4-51	132	28,4	0,08220	0,00037	0,22775	0,00399	0,97	1250	9	1295	13	1323	21	1250	9	6
9007-4-52	250	48,6	0,08158	0,00037	0,20615	0,00351	0,97	1236	9	1218	12	1208	19	1236	9	-2
9007-4-53	130	24,4	0,08093	0,00042	0,19979	0,00343	0,96	1220	10	1190	13	1174	18	1220	10	-4
9007-4-55	104	31,4	0,11462	0,00066	0,32467	0,00672	0,96	1874	10	1841	18	1813	33	1874	10	-3
9007-4-56	238	58,1	0,10169	0,00052	0,26672	0,00519	0,97	1655	9	1580	16	1524	26	1655	9	-9
9007-4-58	332	84,2	0,10178	0,00057	0,27147	0,00500	0,96	1657	10	1595	15	1548	25	1657	10	-7
9007-4-60	67	10,1	0,07294	0,00043	0,16076	0,00255	0,94	1012	11	977	11	961	14	1012	11	-5
9007-4-61	255	46,2	0,08225	0,00048	0,19421	0,00328	0,95	1251	11	1182	12	1144	18	1251	11	-9
9007-4-62	78	21,3	0,10836	0,00080	0,29433	0,00560	0,93	1772	13	1712	17	1663	28	1772	13	-7
9007-4-63	127	24,5	0,08121	0,00046	0,20847	0,00365	0,95	1227	10	1223	13	1221	19	1227	10	0

№ Пробы	p	рт		Coom Pb/ 1 σ 2				207	/206	207	/235	206/	/238	Best A	ge	
№ зерна	U	²⁰⁶ Pb	²⁰⁷ Pb/	1σ	²⁰⁶ Pb/	1 σ	RH	Возра	1σ	Возра	1 σ	Возра	1 σ	млн	±1	D,
			²³⁵ U	error	²³⁸ U*	error	0	ст,	error	ст,	error	ст,	error	лет	σ	%
								млн		млн		млн				
								лет		лет		лет				
9007-4-64	123	39,2	0,11971	0,00074	0,34612	0,00706	0,96	1952	10	1933	18	1916	34	1952	10	-2
9007-4-65	160	28,7	0,07903	0,00042	0,19454	0,00323	0,95	1173	10	1155	12	1146	17	1173	10	-2
9007-4-66	523	172,4	0,12175	0,00076	0,35922	0,00762	0,96	1982	11	1980	19	1978	36	1982	11	0
9007-4-67	132	24,5	0,08241	0,00045	0,20210	0,00338	0,95	1255	10	1211	12	1187	18	1255	10	-6
9007-4-68	176	40,6	0,09253	0,00042	0,25442	0,00466	0,97	1478	9	1468	15	1461	24	1478	9	-1
9007-4-69	200	37,6	0,08043	0,00044	0,20534	0,00346	0,95	1207	11	1205	12	1204	18	1207	11	0
9007-4-70	399	90,6	0,09441	0,00067	0,24683	0,00442	0,93	1516	13	1460	15	1422	23	1516	13	-7
9007-4-71	398	118,7	0,11149	0,00057	0,32611	0,00627	0,97	1824	9	1822	17	1820	30	1824	9	0
9007-4-72	112	25,4	0,09311	0,00048	0,24806	0,00426	0,96	1490	10	1453	14	1428	22	1490	10	-4
9007-4-74	118	33,9	0,11203	0,00064	0,31656	0,00609	0,96	1833	10	1800	17	1773	30	1833	10	-3
9007-4-75	250	44,4	0,07956	0,00038	0,19475	0,00315	0,96	1186	9	1161	12	1147	17	1186	9	-3
9007-4-77	74	12,9	0,07981	0,00043	0,19457	0,00325	0,95	1192	10	1162	12	1146	18	1192	10	-4
9007-4-78	194	32,5	0,07720	0,00042	0,18582	0,00304	0,95	1126	10	1108	12	1099	16	1126	10	-2
9007-4-80	633	109,4	0,07701	0,00034	0,19074	0,00316	0,97	1121	9	1124	12	1125	17	1121	9	0
9007-4-82	488	104,4	0,08815	0,00047	0,24032	0,00418	0,96	1386	10	1387	14	1388	22	1386	10	0
9007-4-83	166	28,3	0,07848	0,00043	0,19247	0,00316	0,95	1159	11	1143	12	1135	17	1159	11	-2
9007-4-84	427	79,7	0,08095	0,00042	0,21052	0,00353	0,95	1220	10	1227	13	1232	19	1220	10	1
9007-4-88	356	111,8	0,12045	0,00075	0,35669	0,00720	0,96	1963	11	1965	18	1966	34	1963	11	0
9007-4-89	242	44	0,08220	0,00049	0,20630	0,00349	0,94	1250	12	1224	13	1209	19	1250	12	-3
9007-4-90	252	39,9	0,07511	0,00041	0,17883	0,00296	0,95	1072	11	1064	11	1061	16	1072	11	-1
9007-4-91	175	57,1	0,13198	0,00085	0,37277	0,00761	0,95	2124	11	2084	19	2042	36	2124	11	-4
9007-4-95	190	38,7	0,08096	0,00026	0,20289	0,00209	0,96	1220	6	1201	8	1191	11	1220	6	-2
9007-4-96	107	39,8	0,12688	0,00048	0,36581	0,00493	0,96	2055	6	2032	12	2010	23	2055	6	-2
9007-4-98	86	17,3	0,08125	0,00034	0,19885	0,00199	0,92	1228	8	1190	8	1169	11	1228	8	-5
9007-4-99	284	83,8	0,10322	0,00032	0,29052	0,00335	0,97	1683	6	1661	10	1644	17	1683	6	-2
9007-4-101	76	19,4	0,09404	0,00035	0,25226	0,00292	0,95	1509	7	1474	9	1450	15	1509	7	-4
9007-4-105	526	130,3	0,09449	0,00034	0,24621	0,00276	0,95	1518	7	1459	9	1419	14	1518	7	-7
9007-4-106	113	29,3	0,09381	0,00029	0,25871	0,00317	0,97	1504	6	1492	10	1483	16	1504	6	-1

№ Пробы	p	рт		Coo	тношение	1		207	/206	207	/235	206	/238	Best A	ge	
№ зерна	U	²⁰⁶ Pb	²⁰⁷ Pb [/]	1 σ	²⁰⁶ Pb/	1 σ	RH	Возра	1σ	Возра	1σ	Возра	1σ	млн	±1	D,
			²³⁵ U	error	²³⁸ U*	error	0	ст,	error	ст,	error	ст,	error	лет	σ	%
								млн		млн		млн				
								лет		лет		лет				
9007-4-108	127	26	0,08083	0,00025	0,20249	0,00205	0,96	1217	6	1199	7	1189	11	1217	6	-2
9007-4-109	178	62,7	0,11954	0,00040	0,34492	0,00433	0,97	1949	6	1929	11	1910	21	1949	6	-2
9007-4-110	350	73,5	0,08072	0,00023	0,20830	0,00218	0,97	1215	5	1218	8	1220	12	1215	5	0
9007-4-111	207	42	0,08068	0,00025	0,20188	0,00206	0,96	1214	6	1195	8	1185	11	1214	6	-2
9007-4-113	613	130,5	0,08156	0,00038	0,21087	0,00233	0,92	1235	8	1234	9	1233	12	1235	8	0

Результаты U-Th-Pb датирования обломочных цирконов (лаборатория университета г. Остин)

№ пробы	p	om	<u>Соотношени</u> 207/ 2g 206/		ie		207/	235	206	/238	207	/206	Bes	st age		
№ зерна	U	U/	207/	2σ	206/	2σ	RH	Возра	2σ	Возра	2σ	Возра	2σ	млн	2σ	D,
-		Th	235	error	238	error	0	ст,	error	ст,	error	ст,	error	лет	error	%
								млн		млн		млн				l
								лет		лет		лет				
Sample 9017	/4															
64°37'35,4''																l
51°43'43.2''																
9017_4_3	412	1,24	3,8700	0,0610	0,2902	0,0040	0,54	1605	13	1645	20	1554	27	1554	27	6
			0	0	0	0										
9017_4_5	152	0,94	4,5640	0,0910	0,3040	0,0040	0,47	1739	17	1711	20	1771	33	1771	33	3
			0	0	0	0										
9017_4_6	117	0,39	3,5660	0,0820	0,2786	0,0048	0,50	1540	19	1586	23	1491	38	1491	38	6
			0	0	0	0										
9017_4_7	390	1,20	3,5470	0,0800	0,2683	0,0058	0,52	1534	18	1530	30	1533	35	1533	35	0
			0	0	0	0										
9017_4_8	326	1,37	4,5000	0,1300	0,3142	0,0086	0,93	1724	23	1758	42	1698	20	1698	20	4
			0	0	0	0										
9017_4_9	266	1,23	2,2220	0,0520	0,2018	0,0037	0,54	1187	17	1184	20	1193	42	1193	42	1
			0	0	0	0										
9017_4_10	153	0,55	3,4000	0,0540	0,2610	0,0036	0,57	1502	12	1494	19	1514	27	1514	27	1
			0	0	0	0										
9017_4_12	31	1,09	11,970	0,4200	0,4790	0,0120	0,75	2594	33	2520	54	2635	39	2635	39	4
			00	0	0	0										
9017_4_13	206	0,33	5,7400	0,3400	0,3530	0,0190	0,98	1891	62	1928	93	1899	29	1899	29	2
			0	0	0	0										
9017_4_14	148	0,30	4,4680	0,0820	0,3323	0,0055	0,42	1723	15	1853	28	1576	36	1576	36	18
			0	0	0	0										

№ пробы	p	om		Cool	тношени	ie		207/	235	206/	238	207	/206	Bes	t age	
№ зерна	U	U/	207/	2σ	206/	2σ	RH	Возра	2σ	Возра	2σ	Возра	2σ	млн	2σ	D,
		Th	235	error	238	error	0	ст,	error	ст,	error	ст,	error	лет	error	%
								млн		млн		млн				
								лет		лет		лет				
9017_4_15	162	0,23	4,2700	0,1100	0,2978	0,0095	0,30	1680	21	1675	48	1656	55	1656	55	1
			0	0	0	0										
9017 4 16	115	0,75	3,6860	0,0650	0,2864	0,0040	0,58	1565	14	1623	20	1490	28	1490	28	9
			0	0	0	0										
9017 4 17	99	0,37	3,4570	0,0830	0,2632	0,0043	0,39	1518	20	1506	22	1520	47	1520	47	1
			0	0	0	0										
9017_4_18	180	0,63	5,1410	0,0850	0,3417	0,0049	0,58	1843	14	1894	23	1789	26	1789	26	6
			0	0	0	0										
9017_4_19	290	0,74	3,7690	0,0930	0,2736	0,0060	0,71	1583	20	1564	29	1624	33	1624	33	4
			0	0	0	0										
9017_4_20	116	0,49	4,9490	0,0890	0,3251	0,0041	0,48	1806	15	1814	20	1799	29	1799	29	1
			0	0	0	0										
9017_4_21	401	1,02	4,2440	0,0910	0,3192	0,0077	0,89	1678	18	1782	38	1556	22	1556	22	15
			0	0	0	0										
9017_4_22	130	0,11	3,5100	0,1500	0,2434	0,0075	0,59	1518	32	1402	39	1661	56	1661	56	16
			0	0	0	0										
9017_4_25	144	0,52	3,2810	0,0800	0,2443	0,0046	0,60	1474	19	1408	24	1568	38	1568	38	10
			0	0	0	0										
9017_4_26	149	0,27	2,8530	0,0910	0,2223	0,0061	0,64	1364	24	1292	32	1488	47	1488	47	13
			0	0	0	0										
9017_4_27	115	0,96	3,2200	0,1100	0,2532	0,0054	0,67	1455	26	1454	28	1459	49	1459	49	0
			0	0	0	0										
9017_4_29	41	0,52	2,1520	0,0890	0,1956	0,0052	0,49	1155	29	1150	28	1162	76	1162	76	1
			0	0	0	0										
9017_4_30	449	0,51	2,6240	0,0500	0,2179	0,0045	0,69	1305	14	1270	24	1371	31	1371	31	7
			0	0	0	0										
9017_4_31	231	0,78	3,3540	0,0500	0,2591	0,0030	0,66	1493	12	1486	16	1503	24	1503	24	1
			0	0	0	0										
9017_4_33	255	1,50	5,4400	0,1100	0,3483	0,0061	0,91	1888	18	1928	29	1842	19	1842	19	5
			0	0	0	0										

№ пробы	p	om		Cool	тношені	ue		207/	235	206/	238	207	/206	Bes	st age	
№ зерна	U	U/	207/	2σ	206/	2σ	RH	Возра	2σ	Возра	2σ	Возра	2σ	млн	2σ	D,
		Th	235	error	238	error	0	ст,	error	ст,	error	ст,	error	лет	error	%
								млн		млн		млн				
								лет		лет		лет				
9017_4_35	67	1,92	4,1800	0,1300	0,2797	0,0066	0,56	1663	26	1588	33	1754	51	1754	51	9
			0	0	0	0										
9017_4_36	245	1,29	2,7260	0,0590	0,2294	0,0033	0,60	1333	16	1331	17	1342	32	1342	32	1
			0	0	0	0										
9017_4_38	170	0,85	3,6980	0,0640	0,2847	0,0037	0,47	1568	14	1614	18	1508	31	1508	31	7
			0	0	0	0										
9017_4_39	274	2,14	4,4200	0,1300	0,3033	0,0084	0,89	1705	25	1703	41	1721	25	1721	25	1
			0	0	0	0										
9017_4_40	109	1,14	4,8800	0,1100	0,3141	0,0055	0,58	1794	18	1759	27	1830	31	1830	31	4
			0	0	0	0										
9017_4_41	303	2,12	2,0010	0,0740	0,1904	0,0051	0,68	1110	25	1122	28	1084	54	1084	54	4
			0	0	0	0										
9017_4_42	615	1,97	2,7590	0,0610	0,2345	0,0058	0,70	1341	17	1356	30	1326	35	1326	35	2
			0	0	0	0										
9017_4_45	255	1,26	3,6720	0,0680	0,2729	0,0039	0,64	1562	15	1554	20	1583	28	1583	28	2
			0	0	0	0										
9017_4_47	133	0,61	4,6350	0,0980	0,3125	0,0049	0,68	1752	18	1751	24	1749	29	1749	29	0
			0	0	0	0										
9017_4_48	404	0,30	3,2600	0,1300	0,2519	0,0095	0,93	1465	30	1455	51	1441	30	1441	30	1
			0	0	0	0										
9017_4_49	85	0,35	6,3700	0,5000	0,3600	0,0250	0,87	2004	71	1970	120	2036	54	2036	54	3
			0	0	0	0										
9017_4_50	526	0,79	2,3710	0,0870	0,2022	0,0066	0,87	1225	26	1184	35	1252	31	1252	31	5
			0	0	0	0										
9017_4_52	241	0,68	2,3390	0,0600	0,2075	0,0048	0,64	1220	19	1214	26	1223	39	1223	39	1
			0	0	0	0										
9017_4_53	978	3,08	3,7870	0,0650	0,2809	0,0050	0,85	1586	14	1594	25	1583	17	1583	17	1
			0	0	0	0										
9017_4_54	94	0,65	2,7400	0,1400	0,2270	0,0084	0,85	1327	36	1316	44	1369	46	1369	46	4
			0	0	0	0										

№ пробы	p	om		Cool	тношени	ie		207/	235	206/	/238	207	/206	Bes	st age	
№ зерна	U	U/	207/	2σ	206/	2σ	RH	Возра	2σ	Возра	2σ	Возра	2σ	млн	2σ	D,
		Th	235	error	238	error	0	ст,	error	ст,	error	ст,	error	лет	error	%
								млн		млн		млн				
								лет		лет		лет				
9017_4_55	204	1,23	9,8400	0,2900	0,4360	0,0110	0,86	2415	27	2335	49	2493	26	2493	26	6
			0	0	0	0										
9017_4_57	191	2,64	4,5000	0,1400	0,2883	0,0078	0,81	1723	27	1630	39	1839	30	1839	30	11
			0	0	0	0										
9017_4_58	253	1,04	3,9300	0,1900	0,2687	0,0097	0,94	1598	43	1529	50	1702	42	1702	42	10
			0	0	0	0										
9017_4_60	141	0,59	4,7300	0,1100	0,3171	0,0070	0,77	1768	20	1772	35	1795	37	1795	37	1
			0	0	0	0										
9017_4_63	10	0,01	5,4800	0,6400	0,3300	0,0550	0,57	1833	91	1810	270	2160	290	2160	290	16
			0	0	0	0										
9017_4_64	415	0,61	3,6700	0,1300	0,2560	0,0098	0,64	1556	28	1464	50	1701	60	1701	60	14
			0	0	0	0										
9017_4_66	487	0,97	3,5640	0,0960	0,2685	0,0059	0,75	1536	21	1534	30	1542	31	1542	31	1
			0	0	0	0										
9017_4_68	26	0,02	6,3000	0,3800	0,3430	0,0210	0,58	1999	52	1890	100	2134	99	2134	99	11
			0	0	0	0										
9017_4_69	536	1,31	3,5770	0,0530	0,2781	0,0038	0,82	1544	12	1581	19	1494	17	1494	17	6
			0	0	0	0										
9017_4_70	102	0,24	3,4600	0,1100	0,2568	0,0059	0,70	1510	24	1471	30	1564	44	1564	44	6
			0	0	0	0										
9017_4_71	389	18,6	6,4500	0,1000	0,3781	0,0049	0,84	2036	14	2070	24	2007	18	2007	18	3
		0	0	0	0	0										
9017_4_72	232	0,95	3,3780	0,0620	0,2547	0,0042	0,56	1496	14	1462	21	1551	31	1551	31	6
			0	0	0	0										
9017_4_74	122	1,03	4,6400	0,1300	0,3123	0,0083	0,82	1750	24	1749	40	1754	31	1754	31	0
			0	0	0	0										
9017_4_75	165	2,05	2,5160	0,0800	0,2183	0,0057	0,79	1269	23	1271	30	1275	38	1275	38	0
			0	0	0	0										
9017_4_76	142	0,96	4,1700	0,1300	0,2841	0,0080	0,80	1662	25	1609	40	1740	35	1740	35	8
			0	0	0	0										

№ пробы	p	om		Cool	тношени	ie		207/	235	206/	238	207	/206	Bes	st age	
№ зерна	U	U/	207/	2σ	206/	2σ	RH	Возра	2σ	Возра	2σ	Возра	2σ	млн	2σ	D,
		Th	235	error	238	error	0	ст,	error	ст,	error	ст,	error	лет	error	%
								млн		млн		млн				
								лет		лет		лет				
9017_4_77	184	0,84	4,6180	0,0720	0,3119	0,0041	0,54	1751	13	1749	20	1756	27	1756	27	0
			0	0	0	0										
9017_4_78	221	1,76	5,3000	0,1300	0,3361	0,0090	0,82	1862	22	1864	44	1856	30	1856	30	0
			0	0	0	0										
9017_4_79	158	0,60	4,4170	0,0920	0,2979	0,0063	0,65	1712	17	1679	31	1760	31	1760	31	5
			0	0	0	0										
9017_4_83	307	0,52	3,6370	0,0920	0,2538	0,0049	0,70	1552	20	1457	25	1697	32	1697	32	14
			0	0	0	0										
9017_4_84	290	0,71	2,9000	0,0630	0,2309	0,0044	0,55	1381	17	1338	23	1453	38	1453	38	8
			0	0	0	0										
9017_4_85	229	2,10	1,9890	0,0400	0,1882	0,0028	0,48	1110	14	1111	15	1114	36	1114	36	0
			0	0	0	0										
9017_4_86	89	0,10	3,2000	0,1100	0,2400	0,0069	0,64	1449	26	1385	36	1541	51	1541	51	10
			0	0	0	0										
9017_4_87	190	0,59	2,7000	0,0600	0,2163	0,0039	0,58	1330	16	1262	21	1387	37	1387	37	9
			0	0	0	0										
9017_4_88	326	0,54	4,4200	0,1300	0,2854	0,0074	0,84	1711	24	1616	37	1781	29	1781	29	9
			0	0	0	0										
9017_4_89	157	1,03	3,2330	0,0810	0,2584	0,0048	0,72	1461	19	1481	24	1430	34	1430	34	4
			0	0	0	0										
9017_4_90	334	2,38	4,6460	0,0830	0,3106	0,0046	0,64	1756	14	1742	23	1774	26	1774	26	2
			0	0	0	0										
9017_4_91	293	2,17	6,7400	0,1300	0,3754	0,0069	0,77	2076	17	2058	31	2058	25	2058	25	0
			0	0	0	0										
9017_4_94	282	1,17	5,1350	0,0670	0,3309	0,0047	0,62	1841	11	1841	23	1845	22	1845	22	0
			0	0	0	0										
9017_4_95	220	3,76	4,5000	0,1000	0,2965	0,0065	0,74	1726	19	1672	32	1797	28	1797	28	7
			0	0	0	0										
9017_4_96	432	1,36	3,7020	0,0660	0,2795	0,0044	0,76	1571	14	1588	22	1547	22	1547	22	3
			0	0	0	0										

№ пробы	<i>p</i>	0 m		Coor	тношени	ue		207/	235	206/	/238	207	/206	Bes	t age	
№ зерна	U	U/	207/	2σ	206/	2σ	RH	Возра	2σ	Возра	2σ	Возра	2σ	млн	2σ	D,
		Th	235	error	238	error	0	ст,	error	ст,	error	ст,	error	лет	error	%
								млн		млн		млн				
								лет		лет		лет				
9017_4_97	204	0,77	4,0020	0,0980	0,2885	0,0060	0,52	1632	20	1633	30	1617	42	1617	42	1
			0	0	0	0										
9017_4_98	211	1,30	3,6710	0,0820	0,2624	0,0043	0,71	1561	18	1501	22	1638	27	1638	27	8
			0	0	0	0										
9017_4_99	73	0,55	2,1880	0,0800	0,1996	0,0053	0,87	1168	25	1171	28	1160	61	1160	61	1
			0	0	0	0										
9017_4_10	461	0,82	2,8690	0,0570	0,2372	0,0047	0,80	1372	15	1374	25	1365	23	1365	23	1
0			0	0	0	0										
9017_4_10	335	0,53	2,4000	0,0700	0,1993	0,0054	0,77	1237	21	1170	29	1361	36	1361	36	14
1			0	0	0	0										
9017_4_10	98	0,23	4,8200	0,1500	0,3170	0,0130	0,84	1778	26	1762	68	1825	50	1825	50	3
2			0	0	0	0										
9017_4_10	107	0,10	3,9000	0,1800	0,2670	0,0100	0,81	1602	38	1520	51	1717	49	1717	49	11
3			0	0	0	0										
9017_4_10	181	0,99	2,7960	0,0590	0,2312	0,0039	0,28	1350	16	1340	21	1358	35	1358	35	1
4			0	0	0	0										
9017_4_10	95	0,10	3,6800	0,1800	0,2740	0,0160	0,54	1558	40	1553	82	1590	110	1590	110	2
5			0	0	0	0										
9017_4_10	102	1,23	5,1900	0,1200	0,3313	0,0065	0,59	1848	20	1842	32	1847	36	1847	36	0
7			0	0	0	0										
9017_4_10	398	1,13	2,3860	0,0650	0,1923	0,0040	0,74	1234	20	1133	22	1359	37	1359	37	17
8			0	0	0	0										
9017_4_10	42	0,04	3,7200	0,1900	0,2530	0,0130	0,42	1565	41	1448	69	1740	110	1740	110	17
9			0	0	0	0										
9017_4_11	192	1,85	2,2070	0,0980	0,1992	0,0080	0,85	1171	31	1168	43	1197	50	1197	50	2
0	3	0.50	0	0	0	0	0.55									
9017_4_11	128	0,59	3,3000	0,0680	0,2461	0,0046	0,62	1477	16	1417	24	1562	32	1562	32	9
			0	0	0	0										
9017_4_11	484	1,38	5,5200	0,1700	0,3476	0,0081	0,88	1905	25	1919	39	1904	29	1904	29	1
4			0	0	0	0										

№ пробы	p	om 🛛		Coor	тношени	ie		207/	235	206/	238	207	/206	Bes	t age	
№ зерна	U	U/	207/	2σ	206/	2σ	RH	Возра	2σ	Возра	2σ	Возра	2σ	млн	2σ	D,
		Th	235	error	238	error	0	ст,	error	ст,	error	ст,	error	лет	error	%
								млн		млн		млн				
								лет		лет		лет				
9017_4_11	802	2,19	2,3160	0,0890	0,1882	0,0069	0,89	1205	27	1108	37	1387	36	1387	36	20
5			0	0	0	0										
9017_4_11	103	0,12	2,5200	0,1100	0,2025	0,0072	0,75	1269	31	1186	39	1424	54	1424	54	17
6			0	0	0	0										
9017_4_11	112	0,80	4,1900	0,2000	0,2970	0,0140	0,74	1651	39	1651	62	1683	40	1683	40	2
8			0	0	0	0										
9017_4_11	770	1,55	2,8130	0,0440	0,2351	0,0043	0,55	1356	12	1360	23	1375	36	1375	36	1
9			0	0	0	0										
9017_4_12	159	0,86	4,9620	0,0970	0,3221	0,0056	0,59	1808	17	1798	28	1823	31	1823	31	1
1			0	0	0	0										
9017_4_12	8	0,01	8,9300	0,9400	0,3900	0,0350	0,84	2274	89	2100	160	2440	120	2440	120	14
5			0	0	0	0										
9017_4_12	333	1,66	2,0720	0,0400	0,1934	0,0032	0,49	1137	13	1139	17	1135	36	1135	36	0
6			0	0	0	0										
9017_4_12	221	0,33	4,4100	0,1400	0,2833	0,0071	0,76	1708	26	1606	36	1835	37	1835	37	12
7			0	0	0	0										
9017_4_12	213	0,85	4,4900	0,1200	0,2976	0,0069	0,80	1720	23	1676	34	1781	31	1781	31	6
8			0	0	0	0										
9017_4_12	275	0,78	3,5770	0,0990	0,2683	0,0078	0,67	1545	23	1530	40	1587	49	1587	49	4
9			0	0	0	0										
9017_4_13	110	0,45	2,7390	0,0890	0,2093	0,0060	0,64	1336	25	1229	33	1463	52	1463	52	16
0			0	0	0	0										
Sample 9045	/1															
64°17'23,5''																
50°34'52,9''																
9045-1_1	89	0,84	12,190	0,1700	0,4850	0,0057	0,56	2620	13	2554	26	2647	20	2647	20	4
			00	0	0	0										
9045-1_2	255	2,27	4,2190	0,0670	0,2904	0,0052	0,62	1675	13	1642	26	1700	28	1700	28	3
			0	0	0	0										
9045-1_4	439	1,69	2,7840	0,0420	0,2220	0,0028	0,16	1349	11	1292	15	1420	29	1420	29	9

№ пробы	<i>p</i>	om		Coor	тношени	ue		207/	235	206/	238	207	/206	Bes	t age	
№ зерна	U	U/	207/	2σ	206/	2σ	RH	Возра	2σ	Возра	2σ	Возра	2σ	млн	2σ	D,
		Th	235	error	238	error	0	ст,	error	ст,	error	ст,	error	лет	error	%
								млн		млн		млн				
								лет		лет		лет				
			0	0	0	0										
9045-1_5	413	4,42	3,4860	0,0570	0,2632	0,0033	0,62	1522	13	1509	17	1527	24	1527	24	1
			0	0	0	0										
9045-1_6	109	1,06	3,3590	0,0980	0,2576	0,0047	0,28	1488	23	1480	23	1478	59	1478	59	0
			0	0	0	0										
9045-1_7	220	1,97	4,6190	0,0760	0,3111	0,0039	0,40	1750	14	1746	19	1748	27	1748	27	0
			0	0	0	0										
9045-1_8	225	1,20	6,7360	0,0780	0,3795	0,0039	0,38	2076	10	2073	18	2063	22	2063	22	0
			0	0	0	0										
9045-1_9	92	1,55	3,4510	0,0910	0,2520	0,0048	0,54	1512	21	1448	25	1591	53	1591	53	9
			0	0	0	0										
9045-1_10	169	3,16	5,1100	0,0810	0,3270	0,0047	0,44	1835	13	1822	23	1838	24	1838	24	1
			0	0	0	0										
9045-1_11	446	3,25	3,5270	0,0580	0,2675	0,0040	0,74	1531	13	1527	20	1527	20	1527	20	0
			0	0	0	0										
9045-1_12	239	2,24	3,8120	0,0550	0,2830	0,0030	0,44	1593	12	1606	15	1562	26	1562	26	3
			0	0	0	0										
9045-1_13	156	2,02	2,2530	0,0530	0,2036	0,0036	0,51	1193	17	1193	19	1184	42	1184	42	1
			0	0	0	0										
9045-1_14	218	2,26	2,0560	0,0320	0,1931	0,0020	0,26	1135	11	1138	11	1120	32	1120	32	2
			0	0	0	0										
9045-1_15	170	0,97	3,1510	0,0930	0,2489	0,0051	0,47	1448	21	1432	26	1469	55	1469	55	3
			0	0	0	0										
9045-1_16	664	11,9	3,8140	0,0620	0,2810	0,0035	0,72	1593	13	1596	17	1594	22	1594	22	0
		0	0	0	0	0										
9045-1_18	296	2,61	2,1250	0,0320	0,1979	0,0020	0,08	1155	10	1164	11	1128	28	1128	28	3
			0	0	0	0										
9045-1_19	130	1,40	3,2450	0,0630	0,2544	0,0038	0,54	1464	16	1460	19	1476	33	1476	33	1
			0	0	0	0										
9045-1_20	110	1,69	12,130	0,2100	0,4825	0,0080	0,73	2612	16	2536	35	2676	21	2676	21	5

№ пробы	pp	om		Coor	тношені	ie		207/	235	206/	238	207	/206	Bes	st age	
№ зерна	U	U/	207/	2σ	206/	2σ	RH	Возра	2σ	Возра	2σ	Возра	2σ	млн	2σ	D,
		Th	235	error	238	error	0	ст,	error	ст,	error	ст,	error	лет	error	%
								млн		млн		млн				
								лет		лет		лет				
			00	0	0	0										
9045-1 21	119	1,57	5,0030	0,0810	0,3355	0,0048	0,51	1817	14	1867	24	1765	28	1765	28	6
_			0	0	0	0										
9045-1 22	267	1,98	4,4860	0,0530	0,3053	0,0025	0,26	1727,1	9,9	1717	12	1745	23	1745	23	2
_		-	0	0	0	0	-		-							
9045-1 23	65	0,65	14,100	0,2400	0,5085	0,0080	0,64	2753	16	2648	34	2841	22	2841	22	7
_		-	00	0	0	0	-									
9045-1 24	41	0,47	3,3000	0,1300	0,2637	0,0067	0,45	1466	31	1506	34	1418	68	1418	68	6
_		,	0	0	0	0										
9045-1 25	457	6,19	3,5170	0,0760	0,2558	0,0053	0.83	1530	18	1467	27	1624	22	1624	22	10
_		,	0	0	0	0	,									
9045-1 28	68	0.79	14,970	0.2000	0.5433	0.0069	0.50	2811	13	2795	29	2824	20	2824	20	1
		-)	00	0	0	0	-)	-	_		-				-	
9045-1 29	617	3.26	3.6290	0.0460	0.2743	0.0034	0.68	1554	10	1562	17	1551	19	1551	19	1
		-) -	0	0	0	0	-)		-		-		-		-	
9045-1 30	452	2.03	3.3920	0.0450	0.2640	0.0035	0.74	1501	10	1510	18	1495	18	1495	18	1
		_,	0	0	0	0	-,, -									
9045-1 31	373	4.83	3.4570	0.0380	0.2722	0.0029	0.53	1516.4	8.6	1551	15	1473	21	1473	21	5
)	0	0	0	0	-))	-) -							
9045-1 32	146	2.22	3.1390	0.0500	0.2499	0.0031	0.34	1441	12	1437	16	1450	32	1450	32	1
	-	,	0	0	0	0	-)-				_		-		-	
9045-1 33	34	1.00	4,7200	0.1300	0.3148	0.0061	0.52	1762	22	1765	31	1763	42	1763	42	0
_		,	0	0	0	0	,									
9045-1 34	104	2,35	2,8750	0,0780	0.2339	0,0032	0.31	1370	20	1354	17	1393	50	1393	50	3
_		,	0	0	0	0	,									
9045-1 35	294	6.88	4,2800	0.1400	0.2836	0.0053	0.42	1685	26	1608	26	1781	40	1781	40	10
		-)	0	0	0	0	-)		_		_				-	-
9045-1 36	293	2.52	3.5150	0.0510	0.2749	0.0033	0.63	1528	11	1565	17	1486	20	1486	20	5
		,	0	0	0	0	- ,						-		-	-
9045-1 37	384	2,88	3,3750	0,0450	0,2605	0,0024	0,56	1497	10	1494	13	1501	21	1501	21	0

№ пробы	<i>p</i>	om		Coor	тношені	ıe		207/	235	206/	238	207	/206	Bes	t age	
№ зерна	U	U/	207/	2σ	206/	2σ	RH	Возра	2σ	Возра	2σ	Возра	2σ	млн	2σ	D,
		Th	235	error	238	error	0	ст,	error	ст,	error	ст,	error	лет	error	%
								млн		млн		млн				
								лет		лет		лет				
			0	0	0	0										
9045-1_38	142	2,09	6,8600	0,1200	0,3802	0,0065	0,58	2093	15	2075	30	2113	27	2113	27	2
			0	0	0	0										
9045-1 39	149	1,61	4,3700	0,0710	0,3014	0,0041	0,56	1706	13	1697	20	1716	26	1716	26	1
_			0	0	0	0										
9045-1 40	134	0,84	3,2690	0,0690	0,2598	0,0032	0,37	1471	17	1488	16	1439	40	1439	40	3
_			0	0	0	0										
9045-1 41	81	1,10	3,1800	0,1300	0,2539	0,0073	0,83	1460	31	1460	37	1417	50	1417	50	3
_			0	0	0	0	-									
9045-1 42	326	2,33	3,5630	0,0630	0,2614	0,0040	0,72	1542	14	1496	21	1602	24	1602	24	7
_		,	0	0	0	0										
9045-1 44	226	2,84	2,4220	0,0520	0,2125	0,0034	0,45	1246	15	1242	18	1252	40	1252	40	1
_		,	0	0	0	0	,									
9045-1 45	110	0,86	3,2100	0,0600	0,2493	0,0028	0.38	1458	14	1434	15	1490	36	1490	36	4
_		,	0	0	0	0	,									
9045-1 46	63	1.05	2.0310	0.0590	0.1898	0.0031	0.27	1119	20	1120	17	1111	61	1111	61	1
_		,	0	0	0	0	,									
9045-1 47	113	3.46	5.6500	0.0980	0.3451	0.0042	0.52	1921	15	1910	20	1940	28	1940	28	2
	_	-) -	0	0	0	0	-)-	-	-		-				-	
9045-1 49	166	2.69	2.2410	0.0450	0.2029	0.0024	0.21	1195	14	1190	13	1192	44	1192	44	0
_		,	0	0	0	0	,									
9045-1 50	707	2,32	4,2030	0,0620	0,2892	0.0037	0.75	1672	12	1637	19	1720	18	1720	18	5
_		,	0	0	0	0	,									
9045-1 51	520	4.55	4.8390	0.0480	0.3172	0.0028	0.48	1790.7	8.4	1775	14	1815	18	1815	18	2
)	0	0	0	0	-) -		-)						-	
9045-1 52	165	5,04	2,2330	0.0350	0,2066	0.0031	0.87	1190	11	1210	16	1155	15	1155	15	5
	4		0	0	0	0				-	-		-		-	
9045-1 53	440	3.23	3,3320	0,0590	0,2584	0,0043	0.79	1487	14	1480	22	1500	20	1500	20	1
	-	- , -	0	0	0	0							-		-	
9045-1 55	99	2,27	4,3900	0,1300	0,2999	0,0060	0,42	1705	25	1690	29	1722	52	1722	52	2

№ пробы	<i>p</i>	om		Coor	тношени	ue		207/	235	206/	238	207	/206	Bes	st age	
№ зерна	U	U/	207/	2σ	206/	2σ	RH	Возра	2σ	Возра	2σ	Возра	2σ	млн	2σ	D,
		Th	235	error	238	error	0	ст,	error	ст,	error	ст,	error	лет	error	%
								млн		млн		млн				
								лет		лет		лет				
			0	0	0	0										
9045-1_56	384	2,49	1,9440	0,0500	0,1781	0,0038	0,49	1095	17	1056	21	1171	47	1171	47	10
			0	0	0	0										
9045-1 57	53	0,77	3,4510	0,0880	0,2666	0,0052	0,34	1512	20	1522	27	1490	50	1490	50	2
_			0	0	0	0										
9045-1 58	167	2,05	4,5730	0,0600	0,3079	0,0031	0,45	1742	11	1730	15	1759	22	1759	22	2
_			0	0	0	0										
9045-1 59	268	3,20	3,2000	0,0600	0,2482	0,0035	0,46	1455	15	1429	18	1501	34	1501	34	5
_			0	0	0	0	-									
9045-1 61	361	2,51	4,8200	0,0710	0,3208	0,0044	0,73	1787	12	1792	22	1785	21	1785	21	0
_		,	0	0	0	0										
9045-1 62	202	4,47	2,1060	0,0350	0,1971	0,0022	0.38	1148	11	1161	12	1123	33	1123	33	3
_		,	0	0	0	0	,									
9045-1 63	385	3.13	3,7590	0,0480	0,2775	0,0028	0,60	1582	10	1578	14	1581	21	1581	21	0
_		,	0	0	0	0	,									
9045-1 64	86	2.58	3.0970	0.0770	0.2472	0.0050	0.51	1427	19	1423	26	1418	44	1418	44	0
_		,	0	0	0	0	,									
9045-1 65	204	6.06	7.6500	0.1100	0,4048	0.0051	0.75	2188	13	2190	23	2178	18	2178	18	1
		-)	0	0	0	0	-)		-				-		-	
9045-1 66	362	2.23	4,7930	0.0540	0.3199	0.0032	0.50	1781.9	9.6	1789	16	1763	20	1763	20	1
		· · ·	0	0	0	0	-))-	-)-		_				-	
9045-1 67	55	3,47	2,2480	0,0860	0,2016	0,0050	0.13	1190	27	1183	27	1190	92	1190	92	1
_		,	0	0	0	0	,									
9045-1 68	67	1.00	3,3860	0,0800	0,2635	0,0048	0.58	1500	19	1506	24	1472	40	1472	40	2
_		,	0	0	0	0	,									
9045-1 69	207	3,54	3,6830	0,0600	0,2688	0.0033	0,40	1568	13	1534	17	1593	31	1593	31	4
_		,	0	0	0	0										
9045-1 70	206	3,45	3,2050	0,0510	0,2511	0,0028	0,44	1456	12	1444	14	1456	28	1456	28	1
		, -	0	0	0	0	Í	-				-				
9045-1 71	479	4,29	3,1730	0,0490	0,2456	0,0027	0,43	1449	12	1415	14	1482	27	1482	27	5

№ пробы	<i>p</i>	om		Coor	тношени	ue		207/	235	206/	238	207	/206	Bes	st age	
№ зерна	U	U/	207/	2σ	206/	2σ	RH	Возра	2σ	Возра	2σ	Возра	2σ	млн	2σ	D,
		Th	235	error	238	error	0	ст,	error	ст,	error	ст,	error	лет	error	%
								млн		млн		млн				
								лет		лет		лет				
			0	0	0	0										
9045-1 72	127	4,54	3,4840	0,0840	0,2558	0,0030	0,35	1519	19	1468	15	1570	42	1570	42	6
_			0	0	0	0										
9045-1 73	205	5,18	5,2780	0,0650	0,3381	0,0036	0,48	1863	11	1877	17	1834	21	1834	21	2
_		-	0	0	0	0	-									
9045-1 74	123	2,90	3,4410	0,0680	0,2633	0,0038	0,69	1510	16	1506	20	1508	30	1508	30	0
_		-	0	0	0	0	-									
9045-1 75	288	5,02	2,0190	0,0370	0,1815	0,0027	0,40	1120	12	1075	14	1188	37	1188	37	10
_		-	0	0	0	0	-									
9045-1 77	156	4,54	4,3630	0,0800	0,3015	0,0045	0,65	1701	15	1698	22	1694	27	1694	27	0
_		,	0	0	0	0										
9045-1 78	92	2,64	6,5600	0,1100	0,3821	0,0048	0,43	2053	14	2085	22	2003	28	2003	28	4
_		,	0	0	0	0										
9045-1 79	204	2,84	3,2320	0,0470	0,2517	0,0032	0,55	1463	11	1447	16	1477	24	1477	24	2
_		,	0	0	0	0	,									
9045-1 82	163	3,17	2,9670	0,0510	0,2435	0,0030	0,32	1399	14	1404	15	1379	34	1379	34	2
_		,	0	0	0	0	,									
9045-1 84	166	2,40	3,2980	0,0580	0,2587	0,0040	0.56	1479	14	1482	20	1469	31	1469	31	1
_		,	0	0	0	0	,									
9045-1 85	392	7,17	3,4140	0,0430	0,2628	0,0026	0,51	1505,7	9,9	1503	13	1512	22	1512	22	1
_		,	0	0	0	0		,	,							
9045-1 86	203	3,00	2,0770	0,0310	0,1959	0,0020	0,26	1141	10	1153	11	1118	32	1118	32	3
_		-	0	0	0	0	-									
9045-1 87	112	2,02	3,3300	0,0860	0,2534	0,0055	0,53	1485	20	1455	28	1531	43	1531	43	5
_		-	0	0	0	0	-									
9045-1 88	119	0,90	3,3510	0,0600	0,2593	0,0026	0,33	1491	14	1488	13	1496	34	1496	34	1
_		,	0	0	0	0										
9045-1 89	95	1,66	4,8610	0,0820	0,3211	0,0036	0,37	1792	14	1794	17	1793	29	1793	29	0
_		,	0	0	0	0										
9045-1 90	134	4,64	4,9400	0,0760	0,3230	0,0034	0,37	1808	13	1804	17	1816	27	1816	27	1

№ пробы	p	om		Coor	тношені	ıe		207/	235	206/	238	207	/206	Bes	t age	
№ зерна	U	U/	207/	2σ	206/	2σ	RH	Возра	2σ	Возра	2σ	Возра	2σ	млн	2σ	D,
		Th	235	error	238	error	0	ст,	error	ст,	error	ст,	error	лет	error	%
								млн		млн		млн				
								лет		лет		лет				
			0	0	0	0										
9045-1 91	358	5,35	3,4790	0,0450	0,2660	0,0022	0,45	1521	10	1520	11	1526	22	1526	22	0
_			0	0	0	0										
9045-1 92	75	1,11	3,3690	0,0740	0,2593	0,0037	0,28	1492	17	1486	19	1511	41	1511	41	2
_			0	0	0	0										
9045-1 93	156	4,93	2,3040	0,0440	0,2000	0,0043	0,91	1210	14	1174	23	1291	18	1291	18	9
_	0		0	0	0	0										
9045-1 94	27	1,46	4,4300	0,1800	0,3014	0,0078	0,48	1702	34	1695	39	1703	69	1703	69	0
_		-	0	0	0	0	-									
9045-1 95	398	3,86	2,9140	0,0470	0,2448	0,0031	0,51	1383	12	1411	16	1346	27	1346	27	5
_		-	0	0	0	0	-									
9045-1 96	99	2,72	4,1750	0,0840	0,2956	0,0040	0,37	1664	16	1668	20	1663	36	1663	36	0
_		-	0	0	0	0	-									
9045-1 97	95	3,69	2,0810	0,0460	0,1930	0,0028	0,31	1141	15	1137	15	1151	44	1151	44	1
_		-	0	0	0	0	-									
9045-1 98	100	1,73	4,8810	0,0960	0,3219	0,0045	0,46	1794	17	1798	22	1808	33	1808	33	1
_		-	0	0	0	0	-									
9045-1 99	262	2,60	4,9630	0,0590	0,3273	0,0036	0,56	1811	10	1824	18	1800	20	1800	20	1
_			0	0	0	0										
9045-1 100	281	4,32	3,4350	0,0590	0,2624	0,0034	0,54	1509	13	1501	17	1522	28	1522	28	1
_			0	0	0	0										
9045-1 101	67	2,04	13,670	0,2200	0,4934	0,0084	0,59	2725	15	2582	36	2834	25	2834	25	9
_			00	0	0	0										
9045-1 104	239	2,13	3,8280	0,0650	0,2797	0,0035	0,58	1595	14	1589	17	1602	26	1602	26	1
_			0	0	0	0										
9045-1_105	119	2,37	3,4440	0,0690	0,2591	0,0029	0,25	1510	16	1484	15	1549	39	1549	39	4
			0	0	0	0										
9045-1 106	928	11,2	2,9800	0,1100	0,2373	0,0068	0,95	1393	27	1370	36	1435	23	1435	23	5
		9	0	0	0	0										
9045-1_107	180	3,27	6,1170	0,0680	0,3629	0,0034	0,44	1990,9	9,7	1995	16	1985	20	1985	20	1

№ пробы	p)m		Coor	тношені	ie		207/	235	206/	238	207	/206	Bes	t age	
№ зерна	U	U/	207/	2σ	206/	2σ	RH	Возра	2σ	Возра	2σ	Возра	2σ	млн	2σ	D,
		Th	235	error	238	error	0	ст,	error	ст,	error	ст,	error	лет	error	%
								млн		млн		млн				
								лет		лет		лет				
			0	0	0	0										
9045-1 108	91	1,57	3,6320	0,0720	0,2709	0,0030	0,35	1555	16	1545	15	1568	36	1568	36	1
_			0	0	0	0										
9045-1 109	128	2,53	3,3170	0,0680	0,2540	0,0040	0,41	1483	16	1458	21	1506	36	1506	36	3
_		-	0	0	0	0										
9045-1 110	53	4,81	2,1490	0,0700	0,1954	0,0037	0,19	1156	22	1152	19	1155	64	1155	64	0
_		-	0	0	0	0										
9045-1 112	217	2,21	5,0540	0,0680	0,3242	0,0039	0,44	1826	11	1809	19	1850	24	1850	24	2
_		-	0	0	0	0										
9045-1 113	62	4,05	4,6700	0,1600	0,3002	0,0085	0,26	1758	28	1691	42	1835	71	1835	71	8
_		-	0	0	0	0										
9045-1 114	351	3,32	3,4780	0,0500	0,2635	0,0027	0,55	1522	11	1507	14	1529	24	1529	24	1
_			0	0	0	0	-									
9045-1 115	280	1,18	3,3630	0,0580	0,2547	0,0036	0,69	1495	14	1462	18	1546	23	1546	23	5
_		-	0	0	0	0										
9045-1 117	302	3,43	3,6780	0,0380	0,2753	0,0026	0,58	1565,2	8,3	1567	13	1563	18	1563	18	0
_		-	0	0	0	0										
9045-1 118	67	2,79	5,5000	0,1600	0,3301	0,0077	0,36	1896	26	1837	37	1951	45	1951	45	6
_		-	0	0	0	0										
9045-1 120	48	1,74	4,8700	0,1800	0,3147	0,0073	0,54	1790	31	1762	36	1813	57	1813	57	3
_			0	0	0	0										
9045-1_122	287	3,60	2,4270	0,0410	0,2064	0,0025	0,40	1248	12	1209	14	1309	33	1309	33	8
			0	0	0	0										
9045-1_123	169	6,16	2,1270	0,0470	0,1887	0,0027	0,37	1157	16	1114	15	1217	46	1217	46	8
			0	0	0	0										
9045-1_124	664	13,8	4,0130	0,0690	0,2737	0,0044	0,68	1634	14	1558	22	1724	24	1724	24	10
		4	0	0	0	0										
9045-1_125	209	2,89	3,4550	0,0500	0,2565	0,0030	0,53	1515	11	1471	15	1566	24	1566	24	6
			0	0	0	0										
9045-1_126	140	2,97	3,5040	0,0540	0,2669	0,0031	0,54	1526	12	1524	16	1518	30	1518	30	0

№ пробы	ррт		Соотношение					207/235		206/238		207/206		Best age		
№ зерна	U	U/	207/	2σ	206/	2σ	RH	Возра	2σ	Возра	2σ	Возра	2σ	млн	2σ	D,
		Th	235	error	238	error	0	ст,	error	ст,	error	ст,	error	лет	error	%
								млн		млн		млн				
								лет		лет		лет				
			0	0	0	0										
9045-1_128	630	9,85	2,8320	0,0480	0,2248	0,0033	0,52	1363	13	1307	17	1442	29	1442	29	9
			0	0	0	0										
9045-1_129	454	2,21	4,8580	0,0710	0,3209	0,0039	0,78	1792	12	1793	19	1780	16	1780	16	1
			0	0	0	0										
9045-1_131	57	1,49	4,0200	0,1100	0,2869	0,0045	0,47	1633	21	1625	22	1624	45	1624	45	0
			0	0	0	0										
9045-1_132	86	4,30	2,1760	0,0530	0,1917	0,0031	0,39	1171	17	1130	17	1235	44	1235	44	9
			0	0	0	0										
9045-1_133	640	13,6	2,6490	0,0380	0,2228	0,0025	0,71	1312	11	1296	13	1332	20	1332	20	3
		0	0	0	0	0										
9045-1_134	221	3,91	4,6440	0,0650	0,3123	0,0038	0,62	1755	12	1751	19	1750	23	1750	23	0
			0	0	0	0										
9045-1_135	403	3,09	3,4140	0,0390	0,2615	0,0024	0,31	1507,2	8,7	1497	12	1514	23	1514	23	1
			0	0	0	0										
9045-1_136	217	3,02	3,3280	0,0570	0,2548	0,0035	0,46	1487	14	1462	18	1516	31	1516	31	4
			0	0	0	0										
9045-1_137	79	3,69	3,9120	0,0790	0,2837	0,0039	0,41	1611	16	1609	20	1604	37	1604	37	0
			0	0	0	0										
9045-1_139	218	2,87	3,4310	0,0500	0,2629	0,0029	0,52	1509	12	1504	15	1515	24	1515	24	1
			0	0	0	0										
9045-1_140	306	3,90	3,3910	0,0560	0,2529	0,0032	0,45	1501	13	1453	16	1564	30	1564	30	7
			0	0	0	0										

Проба	U/Th	206 cps	207	208	208c/206c	206/238	age 206-	2σ error
			cps	cps		mes	238	
Проба 9007/	3						1	
64°37'35,4''								
<i>51°43'43.2''</i>								
9007-3_14	0,863000	22880	14900	38200	2,10	0,50	747	24
9007-3_34	1,147000	10580	4860	13900	2,10	0,34	875	65
9007-3_35	1,290000	20710	14210	35300	2,10	0,69	878	33
9007-3_26	-42120,000000	7160	510	7	2,10	0,15	917	29
9007-3_6	790,000000	174200	12900	1000	2,10	0,16	928	14
9007-3_14	1,490000	5360	1700	4510	2,10	0,23	939	60
9007-3_27	4,180000	14820	5920	13900	2,10	0,28	966	38
9007-3_41	3,900000	54700	8250	17100	2,10	0,19	1001	39
9007-3_29	2,170000	57800	25800	60100	2,10	0,31	1004	23
9007-3_21	1,234000	29000	11350	31200	2,10	0,31	1018	36
9007-3_17	-332700,00000	68300	5260	68	2,10	0,18	1054	12
9007-3_36	2,449000	570000	52910	88400	2,10	0,18	1055	11
9007-3_15	-99590,000000	22490	2007	1070	2,10	0,18	1059	30
9007-3_34	0,555000	23550	17550	43900	2,10	1,21	1064	87
9007-3_33	14,720000	24590	1930	910	2,10	0,18	1080	26
9007-3_10	5,660000	47600	15480	33800	2,10	0,27	1084	27
9007-3_33	2,650000	28600	11170	27100	2,10	0,32	1107	32
9007-3_42	55,300000	77100	5890	1550	2,10	0,19	1107	19
9007-3_16	1,167000	412900	47800	121300	2,10	0,19	1114	8
9007-3_18	1,720000	11640	1450	4230	2,10	0,21	1115	46
9007-3_12	6,280000	2210000	300000	324000	2,10	0,20	1124	11
9007-3_29	13,200000	71300	8800	9900	2,10	0,20	1126	53
9007-3_15	1,820000	54400	35400	87500	2,10	0,77	1148	50

Результаты U-Th-Pb датирования обломочных рутилов

Проба	U/Th	206 cps	207	208	208c/206c	206/238	age 206-	2σ error
			cps	cps		mes	238	
9007-3_24	270,000000	91300	9340	6800	2,10	0,20	1160	24
9007-3_8	4,600000	59500	16700	36100	2,10	0,27	1163	34
9007-3_13	5,710000	2090000	289000	378000	2,10	0,21	1174	13
9007-3_21	1,625000	32800	15150	38700	2,10	0,42	1181	31
9007-3_20	74,000000	32000	6410	10400	2,10	0,24	1213	49
9007-3_23	3,350000	17460	5460	11900	2,10	0,29	1216	62
9007-3_28	62,500000	89900	13470	17100	2,10	0,23	1229	29
9007-3_19	15,290000	2076000	170000	60700	2,10	0,22	1251	21
9007-3_22	0,752000	23500	13900	34500	2,10	0,62	1343	67
9007-3_25	1,810000	24100	13500	31400	2,10	0,57	1353	105
9007-3_22	2,420000	42800	6780	12200	2,10	0,26	1393	41
9007-3_38	24,900000	36500	3790	2170	2,10	0,26	1450	73
9007-3_7	3,322000	1348000	133000	139900	2,10	0,27	1516	23
9007-3_9	2,190000	1092000	121000	168200	2,10	0,27	1529	24
9007-3_5	0,712000	642000	178200	418000	2,10	0,31	1552	240
9007-3_38	1,580000	30900	18100	42000	2,10	0,82	1770	154
9007-3_40	-95200,000000	35460	4150	33	2,10	0,34	1866	37
9007-3_2	25,600000	292000	39100	13100	2,10	0,37	1988	52
9007-3_37	0,351000	41300	31700	76400	2,10	2,04	1989	283
9007-3_37	0,762000	9840	4340	9200	2,10	0,56	2095	201
9007-3_11	7,390000	2548000	608000	98400	2,10	0,53	2761	103
9007-3_3	1,870000	886000	78700	61000	2,10	0,72	3612	502
Проба 9045/	1							
64°17'23,5''								
50°34'52,9''								
9045-1_1	3,600000	34400	7500	16020	2,10	0,17	858	24
9045-1_2	3,950000	28190	6160	13190	2,10	0,18	876	22
9045-1_3	1,033000	19880	7510	20200	2,10	0,27	975	28
9045-1_4	5,180000	15240	1930	1540	2,10	0,33	1819	47
9045-1_5	1,146000	16500	2640	5040	2,10	0,33	1796	44
9045-1_6	1,118000	93300	30600	80500	2,10	0,25	1002	25
9045-1_7	26,100000	31420	3250	2290	2,10	0,20	1150	28

Проба	U/Th	206 cps	207	208	208c/206c	206/238	age 206-	2σ error
			cps	cps		mes	238	
9045-1_8	-132800,00000	28410	2480	138	2,10	0,18	1087	27
9045-1_9	1,226000	27670	11080	29020	2,10	0,26	902	21
9045-1_10	0,710000	36600	16650	46600	2,10	0,35	1047	45
9045-1_10	0,567000	35480	19560	51600	2,10	0,53	1273	36
9045-1_11	1,713000	26500	7840	17700	2,10	0,31	1350	56
9045-1_14	-66900,000000	23730	1960	355	2,10	0,21	1210	34
9045-1_15	1,819000	42200	11710	29800	2,10	0,24	1017	36
9045-1_16	1,667000	46100	13930	36300	2,10	0,26	1060	31
9045-1_17	-109000,00000	358000	34000	1660	2,10	0,27	1523	22
9045-1_18	236,000000	338000	33650	4790	2,10	0,28	1595	20
9045-1_19	1,099000	53500	22760	55500	2,10	0,32	1116	27
9045-1_20	109,000000	107000	12450	710	2,10	0,34	1889	55
9045-1_21	-252000,00000	78300	8690	59	2,10	0,30	1681	37
9045-1_22	-246000,00000	87600	9880	26	2,10	0,33	1846	35
9045-1_23	-29000,000000	242100	23800	439	2,10	0,28	1590	32
9045-1_24	-841000,00000	236200	23580	26	2,10	0,28	1577	34
9045-1_25	-12000,000000	70700	6870	2110	2,10	0,24	1388	34
9045-1_26	-16300,000000	64400	5920	452	2,10	0,24	1400	24
9045-1_27	2,610000	12270	1764	2100	2,10	0,39	2062	59
9045-1_28	5,880000	129000	15910	17490	2,10	0,28	1516	37
9045-1_29	-175000,00000	88800	10090	107	2,10	0,34	1892	39
9045-1_30	-70000,000000	72400	10070	4430	2,10	0,41	2138	53
9045-1_31	-18800,000000	8180	706	94	2,10	0,21	1216	36
9045-1_32	-152000,00000	59800	6830	128	2,10	0,32	1809	32
9045-1_33	-104000,00000	56100	6610	630	2,10	0,30	1690	32
9045-1_34	-337000,00000	183000	21040	1070	2,10	0,38	2070	47
9045-1_35	-308000,00000	146200	16370	284	2,10	0,34	1877	52
9045-1_36	123,400000	735000	82600	6150	2,10	0,33	1833	27
9045-1_37	-83400,000000	36070	3870	58	2,10	0,30	1686	37
9045-1_38	-89300,000000	33700	3690	18	2,10	0,36	1980	55
9045-1_39	-105400,00000	36200	4160	9	2,10	0,34	1901	61
9045-1_40	-22400,000000	29100	3150	87	2,10	0,35	1927	61

Проба	U/Th	206 cps	207	208	208c/206c	206/238	age 206-	2σ error
			cps	cps		mes	238	
9045-1_41	20,800000	19520	2370	730	2,10	0,33	1802	72
9045-1_42	-26500,000000	18800	2140	134	2,10	0,34	1862	61
9045-1_43	6,330000	54800	10170	13200	2,10	0,44	2164	54
9045-1_44	15,000000	72700	9440	4250	2,10	0,39	2112	41
9045-1_45	-158000,00000	71900	8240	449	2,10	0,39	2117	44
9045-1_47	1,643000	59400	27040	65000	2,10	0,40	1223	31
9045-1_49	0,944000	51900	19400	53900	2,10	0,28	1011	40

Lu-Hf изотопные характеристики обломочных цирконов

№ зерна	¹⁷⁶ Hf/	± 1 s.e.	¹⁷⁸ Hf/	± 1 s.e.	¹⁷⁶ Yb/	± 1 s.e.	¹⁷⁶ Lu/	± 1 s.e.	Total	Возраст	¹⁷⁶ Hf/	e Hf (t)2	± 2
	¹⁷⁷ Hf		¹⁷⁷ Hf		¹⁷⁷ Hf		¹⁷⁷ Hf		Hf (V)	(млн	¹⁷⁷ Hf		s.e.
										лет)	(t)1		
Проба 9007/	Проба 9007/4												
9007-4-3	0,282214	0,000025	1,467250	0,000044	0,062518	0,001100	0,001070	0,000028	3,7	1145	0,282191	4,7	1,8
9007-4-5	0,281928	0,000038	1,467280	0,000074	0,077319	0,001300	0,001415	0,000031	3,8	1508	0,281888	2,2	2,7
9007-4-6	0,282166	0,000025	1,467280	0,000063	0,120975	0,002500	0,002513	0,000048	2,5	1323	0,282103	5,6	1,8
9007-4-15	0,281767	0,000031	1,467290	0,000050	0,096723	0,005500	0,001868	0,000100	2,4	1804	0,281703	2,4	2,2
9007-4-17	0,282174	0,000027	1,467360	0,000033	0,075912	0,003400	0,001514	0,000097	3,7	1283	0,282137	5,9	1,9
9007-4-19	0,282079	0,000013	1,467360	0,000035	0,056185	0,000400	0,001009	0,000002	2,9	1328	0,282054	4,0	0,9
9007-4-22	0,282249	0,000014	1,467280	0,000037	0,057327	0,000300	0,001014	0,000002	3,3	1165	0,282227	6,4	1,0
9007-4-24	0,281923	0,000018	1,467250	0,000038	0,046601	0,000410	0,000844	0,000012	3,0	1343	0,281902	-1,1	1,3
9007-4-29	0,282152	0,000018	1,467280	0,000037	0,109585	0,005400	0,001962	0,000110	3,8	1487	0,282097	9,1	1,3
9007-4-31	0,281778	0,000020	1,467230	0,000037	0,144353	0,003300	0,002550	0,000046	2,9	1840	0,281689	2,8	1,4
9007-4-33	0,282123	0,000022	1,467330	0,000057	0,057425	0,000370	0,000992	0,000010	3,6	1213	0,282100	3,0	1,6
9007-4-36	0,282102	0,000015	1,467350	0,000037	0,057333	0,002300	0,001038	0,000019	3,2	1119	0,282080	0,2	1,1
9007-4-37	0,281969	0,000015	1,467240	0,000042	0,050308	0,004700	0,000916	0,000094	3,4	1170	0,281949	-3,3	1,1
9007-4-39	0,281895	0,000016	1,467290	0,000041	0,066743	0,000410	0,001225	0,000006	3,7	1710	0,281855	5,7	1,1
9007-4-40	0,281143	0,000020	1,467240	0,000055	0,058158	0,003700	0,001006	0,000073	3,7	1914	0,281106	-16,2	1,4
9007-4-43	0,281542	0,000024	1,467300	0,000036	0,064872	0,001500	0,001131	0,000027	4,1	2102	0,281497	2,0	1,7
9007-4-48	0,281934	0,000024	1,467190	0,000041	0,090789	0,009000	0,001820	0,000180	3,0	1020	0,281899	-8,5	1,7
9007-4-53	0,281984	0,000018	1,467360	0,000032	0,032568	0,000860	0,000587	0,000016	3,4	1220	0,281970	-1,4	1,3
9007-4-55	0,281707	0,000020	1,467350	0,000034	0,066203	0,001500	0,001387	0,000032	3,6	1874	0,281658	2,5	1,4
9007-4-58	0,281948	0,000022	1,467290	0,000048	0,061890	0,001300	0,001119	0,000017	4,0	1657	0,281913	6,5	1,6
9007-4-60	0,282058	0,000016	1,467200	0,000035	0,039045	0,000200	0,000732	0,000008	2,8	1012	0,282044	-3,5	1,1
9007-4-65	0,282177	0,000034	1,467280	0,000051	0,106223	0,001300	0,001848	0,000049	3,2	1173	0,282136	3,4	2,4
9007-4-67	0,282194	0,000023	1,467330	0,000044	0,069105	0,002100	0,001123	0,000044	3,6	1255	0,282167	6,3	1,6
9007-4-68	0,282061	0,000020	1,467330	0,000039	0,072598	0,001400	0,001348	0,000033	3,7	1478	0,282023	6,3	1,4
№ зерна	¹⁷⁶ Hf/	±1 s.e.	¹⁷⁸ Hf/	±1 s.e.	¹⁷⁶ Yb/	±1 s.e.	¹⁷⁶ Lu/	± 1 s.e.	Total	Возраст	¹⁷⁶ Hf/	e Hf (t)2	± 2
-------------	--------------------	----------	--------------------	----------	--------------------	----------	--------------------	----------	--------	---------	--------------------	------------------	------
	¹⁷⁷ Hf		¹⁷⁷ Hf		¹⁷⁷ Hf		¹⁷⁷ Hf		Hf (V)	(млн	¹⁷⁷ Hf		s.e.
										лет)	(t)1		
9007-4-69	0,282138	0,000022	1,467340	0,000044	0,052957	0,001900	0,000889	0,000035	3,8	1207	0,282118	3,5	1,6
9007-4-71	0,281631	0,000021	1,467310	0,000043	0,106827	0,000550	0,001912	0,000008	4,3	1824	0,281565	-2,0	1,5
9007-4-72	0,282024	0,000016	1,467340	0,000029	0,060986	0,001500	0,001093	0,000027	3,1	1490	0,281993	5,5	1,1
9007-4-75	0,282212	0,000048	1,467250	0,000110	0,099305	0,018000	0,001547	0,000290	3,3	1186	0,282177	5,1	3,4
9007-4-77	0,282162	0,000029	1,467310	0,000075	0,106801	0,012000	0,001916	0,000220	3,0	1192	0,282119	3,2	2,1
9007-4-82	0,281534	0,000035	1,467320	0,000098	0,069768	0,000720	0,001165	0,000009	3,9	1386	0,281503	-14,2	2,5
9007-4-84	0,282143	0,000030	1,467360	0,000055	0,119530	0,001200	0,002254	0,000023	1,9	1220	0,282091	2,8	2,1
9007-4-89	0,282216	0,000016	1,467370	0,000051	0,046065	0,000520	0,000804	0,000006	3,7	1250	0,282197	7,3	1,1
9007-4-91	0,281413	0,000016	1,467320	0,000039	0,033686	0,002000	0,000635	0,000041	4,4	2124	0,281387	-1,4	1,1
9007-4-95	0,282076	0,000020	1,467370	0,000041	0,053307	0,000620	0,000932	0,000003	4,3	1220	0,282055	1,5	1,4
9007-4-96	0,281438	0,000021	1,467320	0,000038	0,043153	0,000560	0,000790	0,000009	3,4	2055	0,281407	-2,3	1,5
9007-4-98	0,282157	0,000042	1,467150	0,000097	0,135439	0,006600	0,002641	0,000086	2,0	1228	0,282096	3,2	3,0
9007-4-99	0,281831	0,000027	1,467310	0,000053	0,054496	0,000620	0,000990	0,000011	4,0	1683	0,281799	3,1	1,9
9007-4-101	0,281889	0,000022	1,467240	0,000038	0,065675	0,001900	0,001155	0,000050	2,8	1509	0,281856	1,1	1,6
9007-4-105	0,282211	0,000036	1,467150	0,000054	0,342969	0,012000	0,005698	0,000180	3,7	1518	0,282047	8,1	2,6
9007-4-108	0,282189	0,000029	1,467320	0,000078	0,089089	0,002500	0,001593	0,000068	3,9	1217	0,282152	4,9	2,1
9007-4-110	0,282127	0,000016	1,467370	0,000041	0,038238	0,000880	0,000659	0,000011	4,5	1215	0,282112	3,5	1,1
9007-4-111	0,282211	0,000047	1,467320	0,000100	0,060859	0,000950	0,001183	0,000013	3,7	1214	0,282184	6,0	3,3
9007-4-90	0,281983	0,000023	1,467210	0,000059	0,094705	0,003400	0,001622	0,000072	4,5	1072	0,281950	-5,5	1,6
Проба 9020/	3												
9020-3-2	0,282010	0,000056	1,467290	0,000068	0,108249	0,014000	0,001653	0,000210	2,9	1631	0,281959	7,6	4,0
9020-3-5	0,281709	0,000023	1,467220	0,000050	0,074407	0,005200	0,001471	0,000110	3,8	1839	0,281658	1,6	1,6
9020-3-6	0,282135	0,000016	1,467260	0,000037	0,084222	0,001700	0,001426	0,000021	3,8	1352	0,282099	6,1	1,1
9020-3-7	0,281742	0,000022	1,467260	0,000056	0,041340	0,002600	0,000795	0,000063	4,1	1493	0,281720	-4,1	1,6
9020-3-8	0,282053	0,000040	1,467270	0,000080	0,072419	0,007200	0,001369	0,000140	3,2	1500	0,282014	6,5	2,8
9020-3-9	0,281919	0,000033	1,467220	0,000028	0,118616	0,008600	0,002120	0,000160	3,0	1471	0,281860	0,4	2,3
9020-3-13	0,281737	0,000170	1,467340	0,000500	0,125215	0,011000	0,002670	0,000240	1,6	1843	0,281644	1,2	12,1
9020-3-15	0,281774	0,000037	1,467410	0,000030	0,066303	0,001200	0,001185	0,000017	4,1	1761	0,281734	2,6	2,6
9020-3-19	0,281357	0,000024	1,467360	0,000049	0,066591	0,001000	0,001079	0,000012	3,3	2070	0,281314	-5,2	1,7
9020-3-21	0,282414	0,000044	1,467360	0,000048	0,154332	0,005900	0,002422	0,000094	4,4	1368	0,282351	15,5	3,1
9020-3-24	0,281718	0,000025	1,467390	0,000034	0,046655	0,000600	0,000864	0,000010	3,8	1856	0,281688	3,1	1,8

№ зерна	¹⁷⁶ Hf/	±1 s.e.	¹⁷⁸ Hf/	±1 s.e.	¹⁷⁶ Yb/	±1 s.e.	¹⁷⁶ Lu/	± 1 s.e.	Total	Возраст	¹⁷⁶ Hf/	e Hf (t)2	± 2
	¹⁷⁷ Hf		¹⁷⁷ Hf		¹⁷⁷ Hf		¹⁷⁷ Hf		Hf (V)	(млн	¹⁷⁷ Hf		s.e.
										лет)	(t)1		
9020-3-27	0,281615	0,000021	1,467370	0,000060	0,041344	0,000085	0,000749	0,000002	3,7	1805	0,281589	-1,6	1,5
9020-3-31	0,282165	0,000028	1,467360	0,000060	0,084454	0,001500	0,001423	0,000015	3,5	1190	0,282133	3,6	2,0
9020-3-32	0,282057	0,000017	1,467270	0,000038	0,073286	0,001600	0,001273	0,000023	3,7	1359	0,282024	3,6	1,2
9020-3-36	0,282177	0,000014	1,467310	0,000041	0,041201	0,000160	0,000746	0,000002	3,5	1140	0,282161	3,5	1,0
9020-3-42	0,281696	0,000020	1,467300	0,000028	0,069774	0,000540	0,001364	0,000011	3,6	1803	0,281649	0,5	1,4
9020-3-43	0,281669	0,000017	1,467200	0,000050	0,066156	0,008400	0,001043	0,000110	3,5	1879	0,281632	1,6	1,2
9020-3-73	0,281823	0,000022	1,467300	0,000046	0,066738	0,007800	0,001250	0,000150	3,3	1505	0,281787	-1,4	1,6
9020-3-74	0,282019	0,000018	1,467340	0,000036	0,042583	0,000400	0,000696	0,000003	3,7	1324	0,282002	2,0	1,3
9020-3-76	0,282728	0,000070	1,467250	0,000040	0,378006	0,019000	0,006206	0,000370	4,3	1613	0,282538	27,7	5,0
9020-3-78	0,281536	0,000023	1,467300	0,000036	0,070520	0,001800	0,001474	0,000031	3,1	1973	0,281481	-1,5	1,6
9020-3-79	0,281654	0,000023	1,467330	0,000035	0,060357	0,000670	0,001138	0,000010	3,2	1749	0,281616	-1,9	1,6
9020-3-82	0,281673	0,000025	1,467400	0,000051	0,024253	0,000320	0,000402	0,000007	3,5	1784	0,281659	0,4	1,8
9020-3-84	0,281532	0,000043	1,467310	0,000057	0,082388	0,003300	0,001257	0,000044	4,2	2058	0,281483	0,5	3,1
9020-3-86	0,281743	0,000023	1,467280	0,000028	0,091105	0,006800	0,001774	0,000140	3,0	2022	0,281675	6,5	1,6
9020-3-88	0,281837	0,000025	1,467260	0,000050	0,110648	0,007000	0,001882	0,000140	3,8	1706	0,281776	2,8	1,8
9020-3-90	0,282146	0,000074	1,467290	0,000073	0,160247	0,024000	0,002992	0,000430	2,4	1564	0,282057	9,5	5,3
9020-3-91	0,282023	0,000062	1,467270	0,000089	0,141417	0,013000	0,002428	0,000220	3,0	1341	0,281961	1,0	4,4
9020-3-93	0,281682	0,000017	1,467310	0,000050	0,054662	0,000470	0,001008	0,000005	3,4	1827	0,281647	1,0	1,2
9020-3-95	0,281844	0,000023	1,467270	0,000043	0,154179	0,004100	0,002951	0,000079	2,9	1766	0,281745	3,1	1,6
9020-3-96	0,282090	0,000085	1,467190	0,000050	0,143228	0,021000	0,002657	0,000330	2,1	1747	0,282002	11,7	6,0
9020-3-100	0,282286	0,000170	1,467180	0,000056	0,277228	0,040000	0,004367	0,000550	2,7	1778	0,282139	17,3	12,1
9020-3-101	0,281481	0,000024	1,467330	0,000059	0,056006	0,001000	0,001131	0,000031	4,7	2140	0,281435	0,7	1,7
9020-3-104	0,281789	0,000033	1,467290	0,000042	0,073819	0,000990	0,001244	0,000017	3,5	1793	0,281747	3,7	2,3
9020-3-105	0,281876	0,000022	1,467240	0,000044	0,038228	0,000870	0,000665	0,000012	3,2	1285	0,281860	-3,9	1,6
9020-3-111	0,282138	0,000015	1,467310	0,000035	0,035059	0,000530	0,000637	0,000003	3,1	1164	0,282124	2,7	1,1
9020-3-115	0,281854	0,000028	1,467370	0,000047	0,049796	0,000240	0,000906	0,000006	4,1	1556	0,281827	1,2	2,0
9020-3-119	0,282029	0,000029	1,467320	0,000053	0,162313	0,001200	0,002885	0,000021	4,2	1527	0,281946	4,7	2,1
9020-3-123	0,281694	0,000018	1,467200	0,000046	0,152518	0,007100	0,002888	0,000130	3,3	1834	0,281593	-0,8	1,3
9020-3-124	0,281638	0,000024	1,467320	0,000059	0,083148	0,003000	0,001528	0,000064	3,7	2042	0,281579	3,5	1,7
9020-3-125	0,281673	0,000033	1,467270	0,000053	0,096245	0,009700	0,001742	0,000200	4,4	1881	0,281611	0,9	2,3
9020-3-130	0,281868	0,000035	1,467240	0,000065	0,076956	0,006100	0,001324	0,000130	3,1	1468	0,281831	-0,7	2,5

№ зерна	¹⁷⁶ Hf/	± 1 s.e.	¹⁷⁸ Hf/	± 1 s.e.	¹⁷⁶ Yb/	± 1 s.e.	¹⁷⁶ Lu/	± 1 s.e.	Total	Возраст	¹⁷⁶ Hf/	e _{Hf} (t)2	± 2
	¹⁷⁷ Hf		¹⁷⁷ Hf		¹⁷⁷ Hf		¹⁷⁷ Hf		Hf (V)	(млн	¹⁷⁷ Hf		s.e.
										лет)	(t)1		
9020-3-132	0,282239	0,000047	1,467240	0,000051	0,187828	0,006300	0,003497	0,000067	2,7	1218	0,282159	5,2	3,3
9020-3-133	0,281903	0,000064	1,467240	0,000049	0,146238	0,015000	0,002508	0,000260	2,9	1783	0,281818	6,1	4,5
9020-3-134	0,281706	0,000025	1,467340	0,000038	0,161758	0,004800	0,003072	0,000130	2,5	1950	0,281592	1,9	1,8
9020-3-135	0,281830	0,000040	1,467280	0,000039	0,080009	0,003400	0,001209	0,000027	4,0	1783	0,281789	5,0	2,8
9020-3-136	0,282022	0,000023	1,467280	0,000040	0,032094	0,000610	0,001013	0,000200	3,5	1351	0,281996	2,5	1,6
9020-3-139	0,282174	0,000026	1,467280	0,000061	0,084508	0,000650	0,001562	0,000021	3,7	1222	0,282138	4,6	1,8
9020-3-140	0,281890	0,000014	1,467310	0,000045	0,082139	0,003900	0,001249	0,000050	4,4	1595	0,281852	2,9	1,0
Проба 9016/	2												
9016-2-6	0,282139	0,000016	1,467290	0,000032	0,040512	0,001300	0,000739	0,000027	3,5	1722	0,282115	15,2	1,1
9016-2-7	0,281725	0,000013	1,467240	0,000028	0,050008	0,001000	0,000947	0,000015	3,4	1874	0,281691	3,6	0,9
9016-2-8	0,281992	0,000042	1,467240	0,000042	0,208731	0,011000	0,002966	0,000130	3,5	1967	0,281881	12,5	3,0
9016-2-9	0,281924	0,000019	1,467350	0,000047	0,056919	0,001300	0,001041	0,000020	3,6	1628	0,281892	5,1	1,3
9016-2-11	0,281941	0,000033	1,467220	0,000038	0,169466	0,004000	0,002725	0,000057	2,9	1962	0,281839	10,9	2,3
9016-2-14	0,282130	0,000019	1,467310	0,000035	0,030094	0,000190	0,000532	0,000001	2,7	1396	0,282116	7,7	1,3
9016-2-16	0,282158	0,000019	1,467230	0,000045	0,046734	0,000270	0,000841	0,000003	2,7	1216	0,282139	4,4	1,3
9016-2-17	0,282230	0,000030	1,467280	0,000046	0,081370	0,000850	0,001365	0,000011	2,9	1278	0,282197	7,9	2,1
9016-2-20	0,281804	0,000021	1,467340	0,000043	0,034515	0,003200	0,000679	0,000070	2,7	1606	0,281783	0,7	1,5
9016-2-26	0,282063	0,000020	1,467320	0,000031	0,047692	0,001300	0,000865	0,000025	2,4	1337	0,282041	3,7	1,4
9016-2-28	0,281711	0,000016	1,467300	0,000032	0,024531	0,000580	0,000512	0,000005	2,5	1494	0,281697	-4,9	1,1
9016-2-30	0,282013	0,000036	1,467290	0,000060	0,128984	0,001500	0,002279	0,000017	2,0	1742	0,281938	9,4	2,6
9016-2-32	0,281613	0,000029	1,467290	0,000042	0,093390	0,011000	0,001732	0,000220	1,9	1874	0,281551	-1,3	2,1
9016-2-33	0,281789	0,000055	1,467230	0,000057	0,071783	0,013000	0,001253	0,000200	2,2	1779	0,281747	3,4	3,9
9016-2-34	0,282120	0,000016	1,467310	0,000049	0,038415	0,001100	0,000689	0,000016	2,3	1150	0,282105	1,7	1,1
9016-2-39	0,281967	0,000022	1,467350	0,000033	0,078074	0,000400	0,001400	0,000010	2,8	1441	0,281929	2,1	1,6
9016-2-42	0,281864	0,000024	1,467400	0,000054	0,045114	0,000680	0,000852	0,000010	2,1	1464	0,281840	-0,5	1,7
9016-2-43	0,282328	0,000240	1,467270	0,000053	0,154612	0,025000	0,002378	0,000320	1,9	1712	0,282251	19,8	17,0
9016-2-44	0,281512	0,000026	1,467200	0,000055	0,062325	0,001400	0,001243	0,000025	2,1	2066	0,281463	0,0	1,8
9016-2-47	0,282379	0,000092	1,467210	0,000056	0,196141	0,014000	0,003266	0,000160	1,9	1474	0,282288	15,6	6,5
9016-2-49	0,281658	0,000031	1,467380	0,000056	0,051025	0,000940	0,001060	0,000013	2,3	1893	0,281620	1,5	2,2
9016-2-50	0,281034	0,000031	1,467330	0,000039	0,050289	0,000760	0,000867	0,000010	2,2	2700	0,280989	-2,1	2,2
9016-2-52	0,281745	0,000032	1,467270	0,000063	0,050510	0,000740	0,000944	0,000009	2,2	1750	0,281714	1,6	2,3

№ зерна	¹⁷⁶ Hf/	±1 s.e.	¹⁷⁸ Hf/	±1 s.e.	¹⁷⁶ Yb/	±1 s.e.	¹⁷⁶ Lu/	± 1 s.e.	Total	Возраст	¹⁷⁶ Hf/	eHf (t)2	± 2
	¹⁷⁷ Hf		¹⁷⁷ Hf		¹⁷⁷ Hf		¹⁷⁷ Hf		Hf (V)	(млн	¹⁷⁷ Hf		s.e.
										лет)	(t)1		
9016-2-53	0,281802	0,000026	1,467330	0,000072	0,020355	0,000140	0,000366	0,000002	2,2	1467	0,281792	-2,1	1,8
9016-2-54	0,282101	0,000036	1,467220	0,000054	0,200347	0,008500	0,003778	0,000170	2,1	1393	0,282001	3,6	2,6
9016-2-56	0,281909	0,000020	1,467320	0,000048	0,052162	0,004300	0,000934	0,000033	2,3	1481	0,281883	1,4	1,4
9016-2-61	0,282244	0,000091	1,467250	0,000043	0,145481	0,015000	0,002218	0,000180	1,7	1486	0,282182	12,1	6,5
9016-2-62	0,283005	0,000230	1,467180	0,000069	0,339643	0,059000	0,005047	0,000830	1,8	1593	0,282853	38,4	16,3
9016-2-64	0,281710	0,000031	1,467360	0,000060	0,068381	0,007900	0,001281	0,000160	2,5	1782	0,281667	0,7	2,2
9016-2-67	0,281797	0,000026	1,467320	0,000039	0,049333	0,000540	0,000937	0,000007	2,6	1716	0,281766	2,7	1,8
9016-2-68	0,281647	0,000024	1,467320	0,000050	0,076166	0,000830	0,001402	0,000011	1,8	1912	0,281596	1,1	1,7
9016-2-70	0,281739	0,000028	1,467310	0,000047	0,039293	0,002300	0,000669	0,000031	2,3	2058	0,281713	8,7	2,0
9016-2-72	0,281647	0,000026	1,467230	0,000039	0,095203	0,001000	0,001809	0,000012	2,3	1828	0,281584	-1,2	1,8
9016-2-73	0,280961	0,000020	1,467230	0,000049	0,042450	0,000240	0,000761	0,000003	2,1	2695	0,280922	-4,6	1,4
9016-2-74	0,282024	0,000031	1,467240	0,000042	0,160406	0,008500	0,002733	0,000130	2,4	1516	0,281946	4,4	2,2
9016-2-76	0,281926	0,000039	1,467310	0,000054	0,056816	0,003200	0,000951	0,000040	2,3	1503	0,281899	2,5	2,8
9016-2-78	0,281980	0,000061	1,467330	0,000064	0,137636	0,009400	0,002599	0,000180	1,2	1762	0,281893	8,2	4,3
9016-2-79	0,281751	0,000025	1,467250	0,000034	0,082911	0,001500	0,001439	0,000019	2,2	1800	0,281702	2,3	1,8
9016-2-80	0,281025	0,000023	1,467340	0,000044	0,019133	0,000450	0,000347	0,000007	1,7	2776	0,281007	0,3	1,6
9016-2-84	0,282054	0,000025	1,467250	0,000048	0,060055	0,002400	0,000948	0,000035	2,5	1539	0,282026	7,8	1,8
9016-2-86	0,282075	0,000036	1,467250	0,000074	0,092970	0,004100	0,001887	0,000130	2,1	1465	0,282023	6,0	2,6
9016-2-88	0,281886	0,000032	1,467360	0,000065	0,079260	0,001700	0,001381	0,000021	1,9	1385	0,281850	-2,0	2,3
9016-2-89	0,282098	0,000025	1,467320	0,000058	0,052136	0,000280	0,000954	0,000008	2,2	1349	0,282074	5,2	1,8
9016-2-91	0,281984	0,000039	1,467280	0,000070	0,113584	0,006600	0,001733	0,000099	2,5	1816	0,281924	10,6	2,8
9016-2-92	0,283031	0,000078	1,467400	0,000052	0,422165	0,007000	0,006355	0,000049	1,3	1819	0,282811	42,2	5,5
9016-2-94	0,281998	0,000038	1,467260	0,000060	0,029956	0,000860	0,000564	0,000013	2,1	1401	0,281983	3,1	2,7
9016-2-97	0,281839	0,000037	1,467410	0,000054	0,093764	0,006600	0,001735	0,000100	2,5	1823	0,281779	5,6	2,6
9016-2-99	0,281620	0,000031	1,467260	0,000044	0,039004	0,000210	0,000780	0,000008	2,2	1857	0,281592	-0,3	2,2
9016-2-103	0,282113	0,000130	1,467250	0,000072	0,248120	0,042000	0,003772	0,000550	1,7	1923	0,281975	14,9	9,2
Проба 9048/	5												
9048-5-1	0,282050	0,000057	1,467410	0,000086	0,144802	0,004900	0,002611	0,000085	1,9	1817	0,281960	11,9	4,0
9048-5-3	0,282194	0,000023	1,467200	0,000068	0,102473	0,002800	0,001945	0,000035	2,1	1215	0,282149	4,8	1,6
9048-5-4	0,282717	0,000069	1,467220	0,000071	0,296531	0,015000	0,004336	0,000220	2,5	1845	0,282565	34,0	4,9
9048-5-5	0,282144	0,000033	1,467230	0,000047	0,080047	0,006600	0,001268	0,000091	2,0	1562	0,282106	11,2	2,3

№ зерна	¹⁷⁶ Hf/	±1 s.e.	¹⁷⁸ Hf/	±1 s.e.	¹⁷⁶ Yb/	±1 s.e.	¹⁷⁶ Lu/	± 1 s.e.	Total	Возраст	¹⁷⁶ Hf/	e Hf (t)2	± 2
	¹⁷⁷ Hf		¹⁷⁷ Hf		¹⁷⁷ Hf		¹⁷⁷ Hf		Hf (V)	(млн	¹⁷⁷ Hf		s.e.
										лет)	(t)1		
9048-5-7	0,281042	0,000036	1,467240	0,000036	0,065591	0,010000	0,001219	0,000190	2,1	2956	0,280973	3,4	2,6
9048-5-8	0,282048	0,000038	1,467300	0,000071	0,096955	0,002000	0,001933	0,000082	2,0	1506	0,281993	5,9	2,7
9048-5-9	0,281999	0,000038	1,467360	0,000066	0,189848	0,006600	0,003748	0,000200	2,2	1606	0,281885	4,4	2,7
9048-5-10	0,281796	0,000035	1,467180	0,000057	0,112836	0,002700	0,002096	0,000043	1,9	1954	0,281718	6,4	2,5
9048-5-12	0,281780	0,000033	1,467340	0,000050	0,051875	0,002600	0,000808	0,000010	2,2	2096	0,281748	10,8	2,3
9048-5-16	0,282121	0,000046	1,467220	0,000051	0,117533	0,006100	0,001737	0,000075	1,9	1505	0,282072	8,7	3,3
9048-5-20	0,282471	0,000100	1,467210	0,000058	0,301946	0,028000	0,005019	0,000370	1,8	1805	0,282299	23,6	7,1
9048-5-21	0,281897	0,000049	1,467330	0,000059	0,064157	0,002400	0,001124	0,000033	2,1	1522	0,281865	1,7	3,5
9048-5-25	0,281653	0,000043	1,467250	0,000065	0,095487	0,001100	0,001706	0,000018	2,2	1980	0,281589	2,5	3,1
9048-5-26	0,282290	0,000021	1,467320	0,000030	0,117073	0,003800	0,001912	0,000054	3,8	1196	0,282247	7,8	1,5
9048-5-27	0,281955	0,000036	1,467340	0,000032	0,111730	0,005200	0,001828	0,000078	3,2	1809	0,281892	9,3	2,6
9048-5-28	0,281959	0,000018	1,467330	0,000030	0,089398	0,006900	0,001671	0,000120	3,6	1674	0,281906	6,7	1,3
9048-5-29	0,282017	0,000049	1,467270	0,000027	0,131322	0,008900	0,002066	0,000130	4,1	1892	0,281943	13,0	3,5
9048-5-30	0,281901	0,000034	1,467360	0,000050	0,063447	0,008000	0,001012	0,000110	4,3	1522	0,281872	2,0	2,4
9048-5-34	0,281916	0,000071	1,467180	0,000056	0,192193	0,036000	0,002880	0,000460	3,0	1708	0,281823	4,5	5,0
9048-5-35	0,282075	0,000068	1,467350	0,000042	0,106884	0,033000	0,000767	0,000003	3,1	1426	0,282054	6,2	4,8
9048-5-42	0,282069	0,000093	1,467270	0,000048	0,162421	0,017000	0,002807	0,000330	2,2	1447	0,281992	4,5	6,6
9048-5-47	0,281628	0,000034	1,467170	0,000079	0,103707	0,003800	0,001864	0,000078	3,4	1839	0,281563	-1,7	2,4
9048-5-48	0,282618	0,000100	1,467170	0,000066	0,257739	0,023000	0,003647	0,000310	3,5	1460	0,282517	23,4	7,1
9048-5-51	0,281995	0,000022	1,467200	0,000038	0,121052	0,015000	0,002408	0,000290	3,4	1431	0,281930	1,9	1,6
9048-5-56	0,282076	0,000034	1,467300	0,000030	0,141896	0,006800	0,002397	0,000120	4,3	1442	0,282011	5,1	2,4
9048-5-57	0,282395	0,000120	1,467320	0,000048	0,138506	0,025000	0,002052	0,000340	3,5	1276	0,282346	13,1	8,5
9048-5-59	0,281760	0,000013	1,467270	0,000034	0,052948	0,002600	0,000986	0,000072	3,3	1387	0,281734	-6,0	0,9
9048-5-63	0,282013	0,000035	1,467290	0,000035	0,171690	0,006100	0,002589	0,000084	3,2	1695	0,281930	8,0	2,5
9048-5-64	0,282132	0,000019	1,467410	0,000035	0,051552	0,000460	0,000864	0,000005	4,4	1151	0,282113	2,1	1,3
9048-5-66	0,281878	0,000020	1,467220	0,000038	0,102140	0,006400	0,001729	0,000110	3,4	1598	0,281826	2,1	1,4
9048-5-67	0,282530	0,000054	1,467270	0,000041	0,323954	0,014000	0,005041	0,000220	2,9	1473	0,282389	19,2	3,8
9048-5-68	0,282184	0,000037	1,467290	0,000050	0,188502	0,001500	0,002922	0,000021	4,4	1432	0,282105	8,2	2,6
9048-5-69	0,282428	0,000160	1,467290	0,000045	0,284781	0,032000	0,004238	0,000500	3,4	1815	0,282282	23,3	11,4
9048-5-70	0,282028	0,000100	1,467170	0,000062	0,350592	0,053000	0,004699	0,000750	4,1	1205	0,281921	-3,5	7,1
9048-5-72	0,281840	0,000036	1,467260	0,000051	0,113181	0,004000	0,001902	0,000060	3,0	1606	0,281782	0,7	2,6

№ зерна	¹⁷⁶ Hf/	± 1 s.e.	¹⁷⁸ Hf/	± 1 s.e.	¹⁷⁶ Yb/	± 1 s.e.	¹⁷⁶ Lu/	± 1 s.e.	Total	Возраст	¹⁷⁶ Hf/	eHf (t)2	± 2
	¹⁷⁷ Hf		¹⁷⁷ Hf		¹⁷⁷ Hf		¹⁷⁷ Hf		Hf (V)	(млн	¹⁷⁷ Hf		s.e.
										лет)	(t)1		
9048-5-74	0,282280	0,000110	1,467270	0,000140	0,255265	0,022000	0,004729	0,000380	1,3	1686	0,282129	14,8	7,8
9048-5-75	0,281240	0,000120	1,467340	0,000069	0,223565	0,028000	0,003522	0,000370	2,8	3449	0,281006	16,2	8,6
9048-5-76	0,282274	0,000076	1,467200	0,000090	0,125023	0,022000	0,001937	0,000300	4,3	1226	0,282229	7,9	5,4
9048-5-79	0,281592	0,000018	1,467220	0,000054	0,065665	0,002000	0,002271	0,000630	3,9	1910	0,281510	-2,0	1,3
9048-5-82	0,282135	0,000089	1,467290	0,000036	0,137959	0,022000	0,002103	0,000330	3,8	1726	0,282066	13,5	6,3
9048-5-83	0,282169	0,000140	1,467210	0,000074	0,302011	0,040000	0,005219	0,000640	3,5	1953	0,281975	15,6	9,9
9048-5-84	0,281229	0,000022	1,467300	0,000032	0,059597	0,002700	0,001135	0,000120	3,7	2806	0,281168	6,8	1,6
9048-5-90	0,281772	0,000037	1,467240	0,000041	0,081117	0,010000	0,001279	0,000170	3,6	2014	0,281723	8,0	2,6
9048-5-98	0,282236	0,000120	1,467230	0,000060	0,122904	0,024000	0,001967	0,000380	3,1	1520	0,282179	12,8	8,5
9048-5-100	0,281939	0,000036	1,467220	0,000049	0,181682	0,008800	0,003184	0,000160	3,1	1768	0,281832	6,2	2,6
9048-5-103	0,282048	0,000056	1,467180	0,000078	0,146089	0,013000	0,002537	0,000230	3,1	1966	0,281953	15,1	4,0
9048-5-104	0,281883	0,000026	1,467330	0,000048	0,084282	0,003800	0,001305	0,000047	5,5	1518	0,281845	0,9	1,8
9048-5-105	0,282190	0,000044	1,467260	0,000058	0,150595	0,009600	0,002422	0,000160	3,8	1462	0,282123	9,5	3,1
Проба 9007-	1												
9007-1-1	0,282337	0,000040	1,467250	0,000043	0,184222	0,018000	0,003521	0,000340	3,2	1332	0,282248	11,0	2,8
9007-1-2	0,281940	0,000042	1,467310	0,000052	0,039914	0,001100	0,000713	0,000024	3,6	1148	0,281925	-4,7	3,0
9007-1-12	0,282038	0,000017	1,467330	0,000041	0,059430	0,002400	0,001213	0,000067	3,4	1570	0,282002	7,7	1,2
9007-1-16	0,282240	0,000024	1,467260	0,000041	0,114629	0,002900	0,002172	0,000093	2,9	1358	0,282184	9,3	1,7
9007-1-19	0,281521	0,000017	1,467320	0,000037	0,058399	0,003200	0,001042	0,000058	3,8	1974	0,281482	-1,5	1,2
9007-1-22	0,282236	0,000021	1,467230	0,000062	0,126737	0,009600	0,002257	0,000160	3,8	1251	0,282183	6,8	1,5
9007-1-25	0,282257	0,000031	1,467370	0,000073	0,139004	0,006200	0,002510	0,000110	3,3	1385	0,282191	10,2	2,2
9007-1-27	0,282091	0,000037	1,467200	0,000059	0,104700	0,004900	0,002126	0,000085	2,8	1602	0,282026	9,3	2,6
9007-1-30	0,281902	0,000087	1,467140	0,000084	0,407691	0,010000	0,006815	0,000150	1,9	1971	0,281647	4,3	6,2
9007-1-32	0,281993	0,000033	1,467280	0,000066	0,075499	0,002600	0,001397	0,000051	3,6	1655	0,281949	7,8	2,3
9007-1-35	0,281793	0,000041	1,467220	0,000086	0,081056	0,003900	0,001663	0,000072	1,9	1797	0,281736	3,5	2,9
9007-1-40	0,282200	0,000027	1,467330	0,000054	0,121069	0,006800	0,002270	0,000120	3,0	1534	0,282134	11,5	1,9
9007-1-43	0,282076	0,000026	1,467270	0,000076	0,063512	0,005400	0,001137	0,000096	3,2	1564	0,282042	9,0	1,8
9007-1-46	0,281926	0,000021	1,467210	0,000042	0,238263	0,004800	0,004329	0,000075	2,7	2018	0,281760	9,4	1,5
9007-1-49	0,282227	0,000019	1,467370	0,000046	0,084596	0,003000	0,001328	0,000051	4,1	1176	0,282198	5,6	1,3
9007-1-50	0,282285	0,000110	1,467190	0,000072	0,248540	0,036000	0,004337	0,000540	3,8	1565	0,282156	13,0	7,8
9007-1-51	0,282193	0,000042	1,467240	0,000053	0,073364	0,011000	0,001223	0,000140	3,3	1255	0,282164	6,2	3,0

№ зерна	¹⁷⁶ Hf/	±1 s.e.	¹⁷⁸ Hf/	±1 s.e.	¹⁷⁶ Yb/	±1 s.e.	¹⁷⁶ Lu/	±1 s.e.	Total	Возраст	¹⁷⁶ Hf/	e _{Hf} (t)2	± 2
	¹⁷⁷ Hf		¹⁷⁷ Hf		¹⁷⁷ Hf		¹⁷⁷ Hf		Hf (V)	(млн	¹⁷⁷ Hf		s.e.
										лет)	(t)1		
9007-1-53	0,282211	0,000019	1,467310	0,000047	0,059876	0,000320	0,000983	0,000011	4,0	1224	0,282188	6,4	1,3
9007-1-54	0,281635	0,000024	1,467370	0,000032	0,067514	0,000610	0,001348	0,000008	3,5	1984	0,281584	2,4	1,7
9007-1-55	0,282276	0,000057	1,467220	0,000094	0,160631	0,004300	0,003022	0,000082	1,5	1195	0,282208	6,4	4,0
9007-1-56	0,281652	0,000045	1,467330	0,000120	0,140298	0,005000	0,002945	0,000120	1,5	1939	0,281543	-0,1	3,2
9007-1-58	0,282079	0,000025	1,467230	0,000074	0,114449	0,006300	0,002194	0,000120	2,5	1493	0,282017	6,4	1,8
9007-1-60	0,282146	0,000017	1,467330	0,000036	0,072464	0,004300	0,001365	0,000100	3,4	1140	0,282117	1,9	1,2
9007-1-64	0,282235	0,000087	1,467240	0,000061	0,343633	0,032000	0,005514	0,000460	3,0	1708	0,282056	12,8	6,2
9007-1-66	0,282278	0,000029	1,467180	0,000064	0,086252	0,008800	0,001544	0,000170	2,4	1042	0,282248	4,3	2,1
9007-1-68	0,281890	0,000018	1,467360	0,000034	0,095653	0,002900	0,001660	0,000036	4,2	1361	0,281847	-2,6	1,3
9007-1-69	0,281927	0,000020	1,467260	0,000054	0,123857	0,007100	0,002583	0,000160	3,4	1698	0,281844	5,0	1,4
9007-1-70	0,282216	0,000023	1,467280	0,000041	0,128226	0,008200	0,002399	0,000180	3,4	1290	0,282158	6,8	1,6
9007-1-72	0,282010	0,000037	1,467240	0,000058	0,105283	0,003500	0,001968	0,000089	2,9	1377	0,281959	1,7	2,6
9007-1-74	0,282045	0,000020	1,467320	0,000061	0,142999	0,011000	0,003124	0,000240	3,9	1586	0,281951	6,2	1,4
9007-1-75	0,282137	0,000017	1,467300	0,000026	0,049430	0,003100	0,000848	0,000044	3,8	1243	0,282117	4,3	1,2
9007-1-77	0,282156	0,000031	1,467280	0,000061	0,136532	0,003500	0,002536	0,000086	2,6	1174	0,282100	2,1	2,2
9007-1-78	0,281988	0,000023	1,467300	0,000027	0,069117	0,003800	0,001159	0,000046	3,6	1613	0,281953	6,9	1,6
9007-1-80	0,281857	0,000022	1,467300	0,000046	0,038435	0,002000	0,000628	0,000036	5,2	1589	0,281838	2,3	1,6
9007-1-81	0,282246	0,000090	1,467190	0,000082	0,188129	0,022000	0,003272	0,000360	3,2	1631	0,282145	14,2	6,4
9007-1-82	0,282177	0,000015	1,467260	0,000046	0,103091	0,006600	0,001849	0,000150	3,6	1214	0,282135	4,3	1,1
9007-1-83	0,281196	0,000012	1,467250	0,000033	0,043672	0,000610	0,000784	0,000009	3,1	1990	0,281166	-12,3	0,9
9007-1-84	0,282129	0,000041	1,467370	0,000045	0,140284	0,012000	0,002560	0,000190	2,7	1616	0,282051	10,5	2,9
9007-1-85	0,282147	0,000026	1,467250	0,000032	0,044817	0,001700	0,000795	0,000050	4,0	1188	0,282129	3,5	1,8
9007-1-86	0,282048	0,000051	1,467280	0,000067	0,069283	0,002800	0,001554	0,000070	1,7	1619	0,282000	8,7	3,6
9007-1-88	0,281954	0,000026	1,467220	0,000034	0,101455	0,003000	0,001651	0,000050	4,0	1572	0,281905	4,3	1,8
9007-1-89	0,281673	0,000028	1,467250	0,000030	0,097954	0,009900	0,001850	0,000190	3,0	1913	0,281606	1,5	2,0
9007-1-93	0,282131	0,000026	1,467370	0,000031	0,151563	0,017000	0,002766	0,000340	3,5	1575	0,282048	9,4	1,8
9007-1-94	0,281906	0,000016	1,467290	0,000036	0,055888	0,001700	0,001081	0,000072	3,5	1554	0,281874	2,8	1,1
9007-1-95	0,281650	0,000028	1,467160	0,000075	0,138491	0,011000	0,002756	0,000220	2,7	1850	0,281553	-1,8	2,0
9007-1-96	0,281864	0,000042	1,467330	0,000048	0,206001	0,008400	0,003285	0,000150	2,2	1971	0,281741	7,6	3,0
9007-1-100	0,282186	0,000100	1,467180	0,000078	0,274515	0,022000	0,004730	0,000350	2,0	1885	0,282017	15,5	7,1
9007-1-97	0,282238	0,000025	1,467270	0,000086	0,096225	0,012000	0,001526	0,000190	3,2	1132	0,282205	4,9	1,8

№ зерна	¹⁷⁶ Hf/	± 1 s.e.	¹⁷⁸ Hf/	± 1 s.e.	¹⁷⁶ Yb/	± 1 s.e.	¹⁷⁶ Lu/	± 1 s.e.	Total	Возраст	¹⁷⁶ Hf/	e _{Hf} (t)2	± 2
	¹⁷⁷ Hf		¹⁷⁷ Hf		¹⁷⁷ Hf		¹⁷⁷ Hf		Hf (V)	(млн	¹⁷⁷ Hf		s.e.
										лет)	(t)1		
9007-1-98	0,282573	0,000082	1,467200	0,000060	0,262508	0,031000	0,004487	0,000480	1,8	1215	0,282470	16,2	5,8
9007-1-99	0,282155	0,000024	1,467240	0,000038	0,089643	0,008500	0,001587	0,000160	3,2	1257	0,282117	4,6	1,7

Приложение 5

	Светлин ская свита	Новобоб ровская свита	Визинг ская свита	Паунс кая свита	Лунвож ская свита	Малочер норецкая свита	Джейджим пармская свита	Ямбозерс кая свита
Светлинская свита		0,76	0,89	0,67	0,73	0,76	0,43	0,66
Новобобровс кая свита	0,76		0,76	0,69	0,64	0,64	0,48	0,54
Визингская свита	0,89	0,76		0,7	0,69	0,72	0,47	0,59
Паунская свита	0,67	0,69	0,7		0,55	0,57	0,5	0,52
Лунвожская свита	0,73	0,64	0,69	0,55		0,77	0,4	0,76
Малочерноре цкая свита	0,76	0,64	0,72	0,57	0,77		0,37	0,73
Джейджимпа рмская свита	0,43	0,48	0,47	0,5	0,4	0,37		0,33
Ямбозерская свита	0,66	0,54	0,59	0,52	0,76	0,73	0,33	

Тест на сходство кумулятивных кривых для обломочных цирконов

Satkoski, A.M., Wilkinson, B.H., Hietpas, J., Samson, S.D. Likeness among detrital zircon populations-An approach to the comparison of age frequency data in time and space (2013). Bulletin of the Geological Society of America, 125 (11-12), pp. 1783-1799

Приложение 6

					Пау	/нская св	ита			
Оксиды/										
N⁰		1	2	3	4	5	6	7	8	9
Na ₂ O		2,45	2,48	2,59	2,45	2,39	2,52	2,82	2,48	2,46
CaO		0,32	0,34	0,40	0,42	0,47	0,57	0,48	0,35	0,49
K ₂ O		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SiO_2		37,25	37,70	37,85	37,03	37,22	37,65	39,10	35,66	37,90
Al_2O_3		31,90	31,61	31,44	31,10	30,45	31,30	32,18	28,35	31,60
MgO		7,56	8,28	8,55	8,28	8,82	8,48	9,30	7,72	8,80
TiO ₂		0,74	0,81	0,81	0,56	1,18	1,14	1,18	1,87	0,84
MnO		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO		6,13	5,90	5,97	5,73	5,52	5,68	5,53	6,91	5,46
ZnO		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
F		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
H_2O		3,67	3,71	3,72	3,64	3,67	3,71	3,85	3,51	3,73
B_2O_3		10,64	10,76	10,80	10,57	10,63	10,75	11,17	10,17	10,83
Сумма		100,65	101,58	102,14	99,78	100,35	101,80	105,61	97,01	102,11
Коэффици	иенты в	формуле	е рассчит	аны на 1;	5 катион	нов (<i>Y</i> + <i>Z</i> -	+ <i>T</i>)			
	Ca	0,06	0,06	0,07	0,07	0,08	0,10	0,08	0,06	0,08
Y	Na	0,78	0,78	0,81	0,78	0,76	0,79	0,85	0,82	0,77
Λ	Κ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	вак	0,17	0,16	0,12	0,15	0,16	0,11	0,07	0,11	0,15
	Al	6,23	6,11	6,05	6,11	5,95	6,05	5,99	5,81	6,06
	Ti	0,09	0,10	0,10	0,07	0,15	0,14	0,14	0,24	0,10
$V \perp 7$	Mg	1,84	1,99	2,05	2,03	2,15	2,04	2,16	1,97	2,11
I + Z	Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	Fe	0,84	0,80	0,80	0,79	0,75	0,77	0,72	0,99	0,73
	Zn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
T	Si	6,09	6,09	6,09	6,09	6,08	6,09	6,08	6,09	6,08
1	Al	-0,09	-0,09	-0,09	-0,09	-0,08	-0,09	-0,08	-0,09	-0,08
	F	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
U + W	Ο									
V + VV	Η	3,60	3,69	3,71	3,73	3,75	3,60	3,64	3,67	3,72
	Ο	0,40	0,31	0,29	0,27	0,25	0,40	0,36	0,33	0,28
В	В	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00
Mg/(Mg-	+Fe)	0,69	0,71	0,72	0,72	0,74	0,73	0,75	0,67	0,74
$X_{\square/(X\square+N)}$	a+K)	0,18	0,17	0,13	0,16	0,17	0,12	0,08	0,12	0,16

Химический состав обломочных турмалинов

					Паунс	кая свита				
Оксиды/№		10	11	12	13	14	15	16	17	18
Na ₂ O		2,38	2,34	2,65	2,65	2,62	2,30	2,37	2,29	2,99
CaO		0,61	0,62	0,33	0,33	0,51	0,27	0,31	0,53	0,62
K ₂ O		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SiO ₂		37,70	36,60	37,90	38,01	38,45	36,07	36,34	36,46	36,44
Al_2O_3		31,20	30,01	31,55	31,52	31,52	30,02	30,46	30,42	30,07
MgO		8,57	8,51	8,60	8,60	8,94	7,93	8,33	8,47	8,18
TiO ₂		1,02	1,37	0,92	0,92	1,23	1,00	0,64	0,99	1,06
MnO		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO		5,74	5,82	6,00	6,00	5,97	6,31	5,38	5,33	6,18
ZnO		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
F		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
H_2O		3,71	3,62	3,74	3,74	3,79	3,57	3,58	3,60	3,60
B_2O_3		10,75	10,49	10,85	10,85	10,99	10,35	10,38	10,44	10,43
Сумма		101,68	99,38	102,53	102,63	104,02	97,81	97,80	98,53	99,57
Коэффици	енты в	формуле	рассчита	ны на 15 г	катионов	(Y+Z+T)				
	Ca	0,11	0,11	0,06	0,06	0,09	0,05	0,06	0,09	0,11
V	Na	0,75	0,75	0,82	0,82	0,80	0,75	0,77	0,74	0,97
X	Κ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	вак	0.15	0.14	0.12	0.12	0.11	0.20	0.18	0.17	-0.08
	Al	6.04	5.92	6.03	6.03	5.96	6.00	6.09	6.03	5.97
	Ti	0.12	0.17	0.11	0.11	0.15	0.13	0.08	0.12	0.13
	Mg	2.06	2.10	2.05	2.05	2.11	1.99	2.08	2.10	2.03
Y+Z	Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Fe	0.78	0.81	0.80	0.80	0.79	0.89	0.75	0.74	0.86
	Zn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Si	6.09	6.06	6.07	6.09	6.08	6.06	6.08	6.07	6.07
Т	Al	-0.09	-0.06	-0.07	-0.09	-0.08	-0.06	-0.08	-0.07	-0.07
	F	0,00	0,00	0,07	0,00	0,00	0,00	0,00	0,07	0,07
V + W	л ОН	3.67	3,70	0,00 3 74	3 72	3 60	3.84	3 70	3 72	3 50
V 1 VV	0	0.22	0.20	0.26	0.28	0.21	0.16	0.21	0.28	0,50
P	D	2 00	2.00	2.00	2.00	2 00	2 00	2 00	2 00	2.00
		3,00	5,00	3,00	3,00	3,00	3,00	3,00	5,00	3,00
wig/(wig+	геј	0,73	0,12	0, 12	0, 12	0,73	0,09	0,73	0,74	0,70
$\Lambda_{\Box}/(X_{\Box}+Na)$	a+K)	0,1/	0,16	0,13	0,13	0,12	0,21	0,19	0,18	-0,09

					Пау	нская св	ита			
Оксиды/										
N⁰		19	20	21	22	23	24	25	26	27
Na ₂ O		2,41	2,45	2,56	2,53	2,46	2,49	2,43	2,31	2,86
CaO		0,34	0,67	0,32	0,44	0,30	0,49	0,65	0,56	0,51
K ₂ O		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SiO ₂		37,61	37,85	38,09	38,03	37,22	37,11	37,06	37,15	39,16
Al_2O_3		31,65	30,63	31,91	31,10	30,68	30,68	30,75	30,42	32,99
MgO		8,29	8,84	8,83	9,01	8,60	8,66	8,66	8,70	9,13
TiO ₂		0,82	1,50	0,94	1,07	0,90	0,96	0,95	1,08	1,04
MnO		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO		5,85	6,13	5,42	5,74	5,91	5,51	5,32	5,63	5,44
ZnO		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
F		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
H_2O		3,71	3,73	3,76	3,74	3,67	3,66	3,65	3,65	3,87
B_2O_3		10,75	10,82	10,90	10,86	10,64	10,60	10,59	10,60	11,24
Сумма		101,42	102,62	102,73	102,52	100,38	100,16	100,06	100,10	106,24
Коэффици	енты в	формул	е рассчит	ганы на 🛛	15 катион	юв (<i>Y</i> + <i>Z</i> -	+T)			
	Ca	0,06	0,12	0,05	0,08	0,05	0,09	0,11	0,10	0,08
V	Na	0,76	0,76	0,79	0,79	0,78	0,79	0,77	0,73	0,86
Λ	Κ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	вак	0,19	0,12	0,15	0,14	0,17	0,12	0,11	0,17	0,06
	Al	6,11	5,88	6,07	5,95	5,99	6,01	6,03	5,97	6,07
	Ti	0,10	0,18	0,11	0,13	0,11	0,12	0,12	0,13	0,12
V . 7	Mg	2,00	2,12	2,10	2,15	2,09	2,12	2,12	2,13	2,11
I + Z	Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	Fe	0,79	0,82	0,72	0,77	0,81	0,76	0,73	0,77	0,70
	Zn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	Si	6,08	6,08	6,07	6,09	6,08	6,08	6,08	6,09	6,06
Ι	Al	-0,08	-0,08	-0,07	-0,09	-0,08	-0,08	-0,08	-0,09	-0,06
	F	0.00	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00
17. 117	Ο				,		,		,	,
V + VV	Н	3,74	3,69	3,74	3,77	3,83	3,71	3,65	3,74	3,60
	0	0,26	0,31	0,26	0,23	0,17	0,29	0,35	0,26	0,40
В	В	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00
Mg/(Mg+	-Fe)	0,72	0,72	0,74	0,74	0,72	0,74	0,74	0,73	0,75
$X_{\square/(X\square+Na)}$	a+K)	0,20	0,14	0,16	0,15	0,18	0,13	0,13	0,19	0,06

									Новобобровская	
	Паунская свита								свита	
Оксиды/№	28 29 30 31 32 33 34						35	36		
Na ₂ O		2,14	2,52	2,01	2,32	2,54	2,29	2,34	1,99	2,05
CaO		0,57	0,22	0,21	0,42	0,49	0,73	0,54	0,52	0,17
K ₂ O		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SiO_2		36,04	37,24	27,33	37,12	37,22	37,33	37,54	39,76	35,68
Al ₂ O ₃		30,66	31,58	24,07	30,88	31,34	30,73	30,70	35,83	31,16
MgO		7,21	8,18	6,68	8,61	8,35	8,75	9,19	5,49	4,99
TiO ₂		0,81	0,62	21,83	0,76	0,88	1,37	0,96	0,33	0,82
MnO		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO		7,16	5,84	4,59	5,44	5,61	6,16	5,14	8,97	9,67
ZnO		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
F		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
H ₂ O		3,58	3,67	2,73	3,65	3,67	3,73	3,75	3,91	3,56
B_2O_3		10,37	10,66	7,92	10,60	10,65	10,81	10,87	11,34	10,33
Сумма		98,54	100,53	97,36	99,80	100,76	101,90	101,03	108,15	98,44
Коэффицие	нты в	формуле	е рассчит	аны на 1	15 катио	нов (Ү+Х-	+T)			
V	Ca	0,10	0,04	0,04	0,07	0,09	0,13	0,09	0,09	0,03
	Na	0,70	0,80	0,68	0,74	0,80	0,72	0,74	0,59	0,67
Ă	Κ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	вак	0,20	0,16	0,28	0,19	0,11	0,16	0,17	0,32	0,30
	Al	6,09	6,14	3,72	6,06	6,10	5,89	5,96	6,56	6,27
	Ti	0,10	0,08	2,87	0,09	0,11	0,17	0,12	0,04	0,10
V. 7	Mg	1,80	1,99	1,74	2,10	2,03	2,11	2,22	1,25	1,26
Y+Z	Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	Fe	1.00	0,80	0,67	0.75	0,77	0.83	0.70	1,15	1.37
	Zn	0.00	0.00	0.00	0.00	0,00	0,00	0,00	0,00	0.00
	Si	6.04	6.07	4,77	6.09	6.07	6.04	6.09	6.09	6.04
T	Al	-0.04	-0.07	1.23	-0.09	-0,07	-0.04	-0.09	-0.09	-0.04
	F	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
V+W	OH	3.76	3.76	5.99	3.78	3.64	3.77	3.79	3.51	3.75
, . ,,	0	0.24	0.24	-1.99	0.22	0.36	0.23	0.21	0.49	0.25
В	B	3,00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
$\frac{-}{Mg/(Mg+)}$	Fe)	0.64	0.71	0.72	0.74	0.73	0.72	0.76	0.52	0.48
$X_{\Box/(X_{\Box}+N_{a}+K)}$		0.23	0,17	0.29	0.20	0,12	0,18	0,19	0.35	0.31

							Светлинская			
		Новобобровская свита			1	Зизинсгк	свита			
Оксиды/ Ма		27	20	20	40	41	40	12	1.1	15
		3/	38	39	40	41	42	43	44	45
Na_2O		1,86	2,20	2,03	2,00	2,35	2,33	1,63	2,02	1,80
CaO		0,52	0,39	0,54	0,24	0,46	0,52	1,27	0,00	0,81
K_2O		0,00	0,00	0,00	0,00	0,11	0,12	0,10	0,00	0,00
S_1O_2		36,48	36,33	37,51	33,97	36,20	36,54	35,66	36,78	34,85
Al_2O_3		51,15	29,00	33,/9	29,37	31,/2	32,12	32,76	5 20	30,69
MgO		5,85	6,20	0,01	5,28	8,23	8,10	9,38	5,29	0,21
110_2		1,10	0,96	1,00	0,84	0,73	0,74	0,58	1,08	0,95
MnO		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO		8,38	11,99	7,05	8,55	3,28	3,70	0,00	9,49	5,72
ZnO		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
F		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
H_2O		3,64	3,65	3,75	3,39	3,56	3,65	3,56	3,62	3,43
B_2O_3		10,57	10,59	10,86	9,84	10,33	10,58	10,33	10,51	9,94
Сумма		99,61	101,53	102,54	93,48	96,97	98,46	95,27	100,43	94,39
Коэффициенты в формуле рассчитаны на 1				5 катион	юв (Y+Z+	-7)				
X	Ca	0,09	0,07	0,09	0,05	0,08	0,09	0,23	0,00	0,15
	Na	0,60	0,71	0,64	0,69	0,77	0,75	0,53	0,65	0,61
	Κ	0,00	0,00	0,00	0,00	0,02	0,03	0,02	0,00	0,00
	вак	0,30	0,23	0,27	0,26	0,13	0,13	0,21	0,35	0,24
	Al	6,23	5,69	6,48	6,21	6,38	6,37	6,56	6,25	6,42
	Ti	0,15	0,12	0,12	0,11	0,09	0,09	0,07	0,13	0,12
V + Z	Mg	1,46	1,53	1,45	1,40	2,06	2,02	2,37	1,30	1,62
I + Z	Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	Fe	1,17	1,66	0,95	1,27	0,46	0,51	0,00	1,31	0,84
	Zn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
T	Si	6,09	6,04	6,05	6,05	6,09	6,08	6,03	6,08	6,09
1	Al	-0.09	-0,04	-0,05	-0.05	-0,09	-0.08	-0.03	-0,08	-0.09
	F	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
17. 117	Ο	,	,	,	,	,	,	,	,	,
V + W	Н	3,60	4,00	3,40	3,73	3,39	3,41	3,24	3,75	3,32
	0	0,40	-	0,60	0,27	0,61	0,59	0,76	0,25	0,68
В	В	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Mg/(Mg-	+Fe)	0.55	0.48	0.60	0.52	0.82	0.80	1.00	0.50	0.66
$X_{\Box/(X_{\Box}+Na+K)}$		0,34	0,24	0,30	0,28	0,14	0,14	0,28	0,35	0,28

	-	Светлинская свита			Лунвожская свита					
Оксиды/										
N⁰		46	47	48	49	50	51	52	53	54
Na ₂ O		2,54	2,06	2,04	1,71	1,49	1,68	1,83	2,14	2,00
CaO		0,00	0,16	0,54	0,62	1,89	0,47	0,57	0,29	0,88
K_2O		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SiO ₂		35,94	34,98	37,13	35,42	36,30	34,23	35,18	38,14	37,04
Al_2O_3		29,79	30,48	32,05	30,90	31,55	31,73	30,62	32,52	31,57
MgO		9,04	4,62	6,19	5,83	10,74	6,09	5,72	5,85	8,58
TiO ₂		0,00	1,05	1,07	1,08	0,39	0,73	0,99	1,18	0,89
MnO		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO		4,89	10,03	8,61	8,46	0,18	5,97	8,41	9,49	4,23
ZnO		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
F		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
H_2O		3,59	3,49	3,71	3,54	3,62	3,42	3,51	3,76	3,64
B_2O_3		10,41	10,13	10,75	10,26	10,51	9,91	10,19	10,89	10,57
Сумма		96,20	97,00	102,09	97,82	96,68	94,23	97,02	104,26	99,41
Коэффициенты в формуле расс				таны на 1	5 катион	юв (Y+Z-	+T)			
	Ca	0,00	0,03	0,09	0,11	0,34	0,09	0,10	0,05	0,15
X	Na	0,83	0,69	0,64	0,56	0,48	0,57	0,61	0,66	0,64
	Κ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	вак	0,17	0,28	0,26	0,32	0,18	0,35	0,29	0,29	0,21
	Al	6,03	6,23	6,19	6,19	6,26	6,46	6,21	6,20	6,21
	Ti	0,00	0,14	0,13	0,14	0,05	0,10	0,13	0,14	0,11
N A	Mg	2,28	1,19	1,50	1,47	2,67	1.58	1,46	1.39	2,10
Y+Z	Mn	0,00	0.00	0,00	0.00	0,00	0,00	0.00	0,00	0.00
	Fe	0,69	1,45	1,17	1.20	0.03	0.87	1,20	1,27	0,58
	Zn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Si	6.08	6.03	6.04	6.01	6.05	5.95	6.03	6.09	6.09
T	Al	-0.08	-0.03	-0.04	-0.01	-0.05	0.05	-0.03	-0.09	-0.09
	F	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
V+W	Н	4.00	3.72	3.67	3.74	3.44	3.66	3.69	3.67	3.54
	0)	0.28	0.33	0.26	0.56	0.34	0.31	0.33	0.46
В	B	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Mg/(Mg-	-Fe)	0.77	0.45	0.56	0.55	0.99	0.65	0.55	0.52	0.78
$X_{\Box/(X\Box+Na+K)}$		0,17	0,29	0,29	0,37	0,27	0,38	0,32	0,30	0,25

	-	Паунская свита					Пижемская свита			
Оксиды/										
N⁰		55	56	57	58	59	60	61	62	63
Na ₂ O		1,59	1,86	1,88	1,78	1,69	1,66	1,91	1,53	2,06
CaO		0,77	0,43	0,60	1,42	1,25	0,45	0,66	0,33	0,11
K ₂ O		0,00	0,00	0,00	0,00	0,20	0,00	0,09	0,00	0,00
SiO ₂		35,86	35,01	35,39	35,20	30,51	32,95	36,34	34,40	37,09
Al_2O_3		33,55	31,03	32,05	28,70	25,30	28,83	32,72	30,49	31,66
MgO		6,52	6,26	6,53	7,77	6,17	4,69	6,60	5,10	5,10
TiO ₂		0,47	0,72	0,86	0,88	0,65	1,00	0,93	0,54	1,49
MnO		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO		4,91	6,62	6,41	7,50	7,87	9,32	6,35	8,59	10,00
ZnO		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
F		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
H_2O		3,58	3,50	3,53	3,52	3,05	3,29	3,63	3,44	3,70
B_2O_3		10,39	10,14	10,25	10,20	8,84	9,54	10,53	9,96	10,74
Сумма		97,64	95,57	97,50	96,96	85,52	91,73	99,75	94,38	101,96
Коэффициенты в формуле рассчитаны на 15 катионов (Y+Z+T)										
	Ca	0,14	0,08	0,11	0,26	0,26	0,09	0,12	0,06	0,02
X	Na	0,52	0,62	0,61	0,59	0,64	0,59	0,61	0,52	0,65
	Κ	0,00	0,00	0,00	0,00	0,05	0,00	0,02	0,00	0,00
	вак	0,35	0,30	0,28	0,15	0,05	0,33	0,25	0,42	0,33
	Al	6,63	6,34	6,34	5,83	5,81	6,17	6,38	6,34	6,20
	Ti	0,06	0,09	0,11	0,11	0,10	0,14	0,12	0,07	0,18
V . 7	Mg	1,63	1,61	1,64	1,98	1,80	1,27	1,63	1,33	1,25
Y+Z	Mn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	Fe	0,69	0,95	0,90	1.07	1,29	1,42	0.88	1,26	1.37
	Zn	0,00	0,00	0.00	0.00	0.00	0,00	0.00	0,00	0.00
	Si	6.00	6,04	5,97	6.03	5.97	5,99	6.01	6.03	6.08
T	Al	0.00	-0.04	0.03	-0.03	0.03	0.01	-0.01	-0.03	-0.08
	F	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
V+W	Н	3,46	3.65	3.63	3.80	3.80	3.80	3,52	3,84	3,66
	0	0.54	0.35	0.37	0.20	0.20	0.20	0.48	0.16	0.34
В	В	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Mg/(Mg+	-Fe)	0.70	0.63	0.64	0.65	0.58	0.47	0.65	0.51	0.48
$X_{\Box/(X_{\Box}+Na+K)}$		0,40	0,32	0,31	0,20	0,06	0,36	0,29	0,45	0,33

Приложение 7

Графики конкордий по результатам датирования обломочных цирконов

Проба 9016/2

а – все 130 датированных зерен обломочных цирконов

 $\boldsymbol{\delta}$ – 75 зерен с дискордантностью ±10%

а – все 147 датированных зерен обломочных цирконов

 $\boldsymbol{\delta}-91$ зерно с дискордантностью ±10%

а – все 111 датированных зерен обломочных цирконов

 $\boldsymbol{\delta}-94$ зерна с дискордантностью $\pm 10\%$

а – все 132 датированных зерна обломочных цирконов

 $\boldsymbol{\delta}$ – 33 зерна с дискордантностью ±10%

а – все 110 датированных зерен обломочных цирконов

 $\boldsymbol{\delta}$ – 76 зерен с дискордантностью ±10%

