САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

На правах рукописи

Гулицкий Николай Михайлович

РЕНОРМГРУППОВОЙ АНАЛИЗ МОДЕЛЕЙ ТУРБУЛЕНТНОГО ПЕРЕНОСА И МАГНИТНОЙ ГИДРОДИНАМИКИ

01.04.02 — теоретическая физика

Диссертация на соискание учёной степени кандидата физико-математических наук

> Научный руководитель доктор физико–математических наук Антонов Н. В.

Санкт–Петербург — 2014

Оглавление

8

Введение

1	Mo	дель Крейчнана и стохастические дифференциальные	
	ypa	внения переноса пассивного поля	18
	1.1	Введение	18
	1.2	Изотропная модель Крейчнана	20
	1.3	Стохастическое уравнение переноса векторного поля	22
	1.4	Анизотропная модель Крейчнана	24
	1.5	Стохастическое уравнение Навье–Стокса	25
2	Ква	антово–полевая формулировка моделей, УФ–	
	pac	ходимости и уравнение Дайсона	27
	2.1	Функционал действия S	27
	2.2	Перенос пассивного векторного поля сильно анизотропным	
		полем скорости (модель №1)	28
		2.2.1 Постановка задачи	28
		2.2.2 Квантово-полевая формулировка	30
		2.2.3 Канонические размерности	33
		2.2.4 Уравнение Дайсона	37
	2.3	МГД модель Крейчнана (модель №2)	41
		2.3.1 Постановка задачи. Функционал, диаграммная техника	41

		2.3.2	Канонические размерности	43
		2.3.3	Уравнение Дайсона	44
	2.4	Перен	юс пассивного векторного поля полем скорости, под-	
		чиняю	ощимся стохастическому уравнению Навье–Стокса (мо-	
		дель Ј	$\mathbb{N} = 3$)	49
		2.4.1	Постановка задачи	49
		2.4.2	Квантово–полевая формулировка	50
		2.4.3	Канонические размерности	53
		2.4.4	Уравнение Дайсона для функции $\langle v'_{lpha}v_{eta} angle_{1-\text{henp}}$	56
		2.4.5	Уравнение Дайсона для функции $\langle \theta'_{lpha} \theta_{eta} angle_{1-\text{henp}}$	59
		2.4.6	Вычисление расходящейся части диаграммы $\langle heta'_lpha heta_\gamma v_eta angle$	61
3	Рен	ормиг	оовка молелей	66
0	3.1	Молел	ть №1	66
	0.1	3.1.1	Уравнение РГ. β – и γ –функции	66
		3.1.2	ИК-притягивающая неполвижная точка	69
		313	Критические размерности	70
		314	Уравнение Лайсона и точные выражения для пропа-	10
		0.1.1	гаторов	72
	39	Молеі	таторов	75
	0.2	мюдел 3 9 1	Vравнение РГ β_{-} и γ_{-} функции	75
		2.9.9	WK_{-n}	77
		J.Z.Z	итспритягивающая неподвижная точка	11 70
		ა.2.პ	притические размерности	18
	0.0	Ъſ	N60	

	3.3.1	3.3.1 Стохастическое уравнение Навье–Стокса. Ренорми-				
		ровка п	араметра ν_0	79		
		3.3.1.1	Уравнение РГ. β – и γ –функции	79		
		3.3.1.2	ИК–притягивающая неподвижная точка	81		
		3.3.1.3	Критические размерности	82		
	3.3.2	Ренорми	ировка параметра \mathcal{A}_0	83		
	3.3.3	Стохаст	чческое уравнение конвекции-диффузии. Ре-			
		нормиро	овка параметра κ_0	84		
		3.3.3.1	Уравнение РГ. β – и γ –функции	84		
		3.3.3.2	ИК–притягивающая неподвижная точка	86		
		3.3.3.3	Критические размерности	88		
Per	юрмир	овка со	ставных операторов. Модель №1	89		
4.1	Крити	ические р	азмерности составных операторов	89		
	4.1.1	Общая	схема	89		
	4.1.2	Однопет	глевая диаграмма	90		
	4.1.3	Многоп	етлевые диаграммы	92		
	4.1.4	Аномал	ьные размерности	93		
	4.1.5	Матриц	а критических размерностей и ее собственные			
		значени	Я	96		
	4.1.6	Асимпт	отика среднего значения оператора $F_{N,p}$	99		
4.2	Асими	ітотика к	корреляционной функции $G=\langle F_1F_2 angle$	102		
4.3	Опера	аторное р	азложение и асимптотика инерционнного ин-			
				100		
	терва.	ла		109		

 $\mathbf{4}$

		4.4.1	Определения и цели	112			
		4.4.2	Основная идея	115			
		4.4.3	Явный вид матрицы U_N	118			
		4.4.4	Доказательство	119			
			4.4.4.1 Столбец №1 ($C = 0$)	120			
			4.4.4.2 Столбец №2 ($C = 1$)	120			
			4.4.4.3 Три нижние диагонали	123			
			4.4.4.4 Все остальные элементы	126			
		4.4.5	Заключение	130			
5	Рен	ормир	оовка составных операторов. Модели №2 и №3	131			
	5.1	Анома	омальный скейлинг для корреляционных функций в инер-				
		ционн	ом интервале, составные операторы и операторное раз-				
		ложен	ие	131			
	5.2	Скаля	иризация диаграмм	133			
	5.3	Модел	ть №2	137			
		5.3.1	Однопетлевая диаграмма	138			
		5.3.2	Двухпетлевые диаграммы	140			
		5.3.3	Аномальная размерность $\gamma^*_{F_{N,l}}$	150			
		5.3.4	Сравнение результатов с точным решением в частном				
			случае парной корреляционной функции	153			
	5.4	Модел	ть №3	154			
		5.4.1	Аномальный скейлинг и аномальные показатели в од-				
			нопетлевом приближении	154			

Основные результаты и выводы

\mathbf{A}	А Приложения к Главе 1						
	A.1	А.1 Галилеева инвариантность и ее следствия					
		A.1.1	Галилеево-ковариантная производная	163			
		A.1.2	Наличие б–функции как следствие требования гали-				
			леевой инвариантности	164			
	A.2	Модел	ь магнитной гидродинамики Казанцева–Крейчнана	165			
	A.3	Согла	сование динамики с условием поперечности	167			
в	При	иложе	ния к Главе 2	169			
	B.1	Доопр	ределение $\Theta(0)$	169			
	B.2	Оне	зозможности существования двух пространственных				
		масшл	габов в модели №1	170			
	B.3	Вычи	сление канонических размерностей в модели №3	172			
С	При	иложе	ния к Главе 3	177			
	C.1	Опера	атор \mathcal{D}_{RG}	177			
	C.1 C.2	Опера Связь	атор \mathcal{D}_{RG}	177 179			
	C.1 C.2	Опера Связь С.2.1	атор \mathcal{D}_{RG}	177 179 179			
	C.1 C.2	Опера Связь С.2.1 С.2.2	атор \mathcal{D}_{RG} констант ренормировки Z, β – и γ –функций Вычисление констант ренормировки Z Вычисление аномальной размерности и β –функции	177 179 179			
	C.1 C.2	Опера Связь С.2.1 С.2.2	атор \mathcal{D}_{RG} констант ренормировки Z, β – и γ –функций Вычисление констант ренормировки Z Вычисление аномальной размерности и β –функции заряда g	177 179 179 180			
	C.1 C.2	Опера Связь С.2.1 С.2.2 С.2.3	атор \mathcal{D}_{RG} констант ренормировки Z , β - и γ -функций Вычисление констант ренормировки Z Вычисление аномальной размерности и β -функции заряда g Вычисление аномальной размерности и β -функции	177 179 179 180			
	C.1 C.2	Опера Связь С.2.1 С.2.2 С.2.3	атор \mathcal{D}_{RG} констант ренормировки Z, β – и γ -функций Вычисление констант ренормировки Z Вычисление аномальной размерности и β -функции заряда g Вычисление аномальной размерности и β -функции заряда u	 177 179 179 180 182 			
	C.1 C.2 C.3	Опера Связь С.2.1 С.2.2 С.2.3	атор \mathcal{D}_{RG} констант ренормировки Z , β - и γ -функций Вычисление констант ренормировки Z Вычисление аномальной размерности и β -функции заряда g Вычисление аномальной размерности и β -функции заряда u	 177 179 179 180 182 			
	C.1 C.2 C.3	Опера Связь С.2.1 С.2.2 С.2.3 ИК-ал непод	атор \mathcal{D}_{RG} констант ренормировки Z , β - и γ -функций Вычисление констант ренормировки Z Вычисление аномальной размерности и β -функции заряда g Вычисление аномальной размерности и β -функции заряда u симптотика функций Грина. Инвариантный заряд, вижная точка	 177 179 179 180 182 183 			
	C.1 C.2 C.3	Опера Связь С.2.1 С.2.2 С.2.3 ИК–а непод С.3.1	атор \mathcal{D}_{RG}	 177 179 179 180 182 183 			

Литература	188
C.3.3	Решение неоднородного дифференциального уравнения 186
	Инвариантный заряд 184
C.3.2	Решение однородного дифференциального уравнения.

Введение

Актуальность темы.

На данный момент теоретическое описание развитой турбулентности и, в частности, аномального скейлинга в ней, в значительной степени остается нерешенной задачей; см. [1–8]. Натурные эксперименты и численное моделирование показывают, что отклонения от предсказаний классической теории Колмогорова — Обухова для переноса пассивного скаляра проявляются даже более сильно, чем для самого переносящего его поля скорости. Кроме того, оказывается, что проблема переноса достаточно просто поддается теоретическому описанию: даже упрощенные модели, описывающие перенос каким–либо «синтетическим» ансамблем скорости с заданной гауссовой статистикой, воспроизводят многие из аномальных свойств реального турбулентного переноса массы или тепла, наблюдаемые в эксперименте. Поэтому проблема турбулентного переноса, сама по себе имеющая важное практическое значение, может рассматриваться как исходная точка при изучении развитой гидродинамической турбулентности в целом [9].

Наиболее значительные успехи на этом пути были достигнуты для модели Крейчнана с нулевым временем корреляции, в которой корреляционная функция поля скорости выбрана в виде $\langle vv \rangle \propto \delta(t-t') \cdot k^{-d-\xi}$, где k является волновым числом, d — размерностью пространства, а ξ — произвольным показателем, являющимся характеристикой вещества. Впервые бесконечный набор аномальных показателей был вычислен на основе микроскопической модели в рамках регулярной теории возмущений; см. [10–23], а также обзоры [24, 25].

Степень разработанности темы исследования. Наибольшие успехи при изучении аномального скейлинга в статистических моделях турбулентного переноса были достигнуты с помощью применения методов ренормализационной группы (PГ) и операторного разложения (OP); см. монографии [26, 27]. При таком подходе аномальный скейлинг является следствием существования составных полей («составных операторов» в терминологии квантовой теории поля) с отрицательными критическими размерностями; см. обзор [25]. В работах [28–33] методы РГ + ОР были применены к различным задачам турбулентного переноса пассивных векторных полей — как непосредственно к модели Крейчнана, так и к различным ее обобщеням — конечному времени корреляции, анизотропии, сжимаемости, нелинейности наиболее общего вида и т. д. Были получены аналитические выражения для членов первого (см. [30, 31]) и второго (см. [32]) порядков *ξ*-разложения. В рамках метода нулевых мод были получены точные ответы для парной корреляционной функции магнитных полей, см. [28, 34, 35].

Целью диссертационной работы является изучение аномального скейлинга в моделях магнитогидродинамической (МГД) турбулентности методами теоретико-полевой ренормгруппы и операторного разложения. Рассматривается приближение, в котором влиянием магнитного поля на динамику жидкости можно пренебречь («кинематическая модель динамо»), тогда проблему можно рассматривать как описание турбулентного переноса пассивного векторного (магнитного) поля в заданном турбулентном течении. Для описания движения проводящей среды привлекаются статистический ансамбль Казанцева–Крейчнана (поле скорости гауссово и имеет нулевое время корреляции), его обобщение на случай сильной анизотропии с одним выделенным направлением (ансамбль Авельянеды–Майда) и стохастическое уравнение Навье–Стокса для несжимаемой вязкой жидкости. Также рассматривается обобщенная модель для динамики пассивного векторного поля, в которой нелинейность имеет наиболее общий вид, совместимый с галилеевой симметрией (т. н. *А*-модель). В качестве частных случаев она содержит кинематическую модель динамо и линеаризованное уравнение Навье–Стокса, а также позволяет обсуждать влияние нелокальных вкладов давления. Для общности две модели из трех рассматриваются в произвольной размерности пространства. Необходимо установить наличие либо отсутствие аномального скейлинга в асимптотике инерционного интервала парной корреляционной функции, а также вычислить соответствующие аномальные показатели.

В соответствии с целью исследования для каждой из трех моделей были поставлены следующие основные задачи:

(1) Построить квантово-полевую формулировку данной модели и установить ее ренормируемость.

(2) Установить наличие ИК-притягивающей неподвижной точки, определяющей асимптотику инерционного интервала.

(3) Используя технику РГ и ОР, вычислить аномальные размерности составных операторов, определяющих асимптотическое поведение парной корреляционно функции.

Научная новизна. Все основные результаты диссертации получены

впервые, что подтверждается их публикацией в ведущих отечественных и международных журналах, и включают следующее:

(1) Для модели МГД в случае, когда поле скорости описывается статистическим ансамблем Казанцева–Крейчнана, установлен аномальный скейлинг парной корреляционной функции в инерционном интервале, проверено сохранение иерархии анизотропных вкладов при включении в рассмотрение второго члена ξ –разложения; вычислены аномальные показатели во втором порядке разложения по константе связи *g*.

(2) Для \mathcal{A} -модели с полем среды, описываемым с помощью уравнения Навье–Стокса, аномальные показатели вычислены в первом порядке разложения по константе связи g; установлено наличие аномального скейлинга для парной корреляционной функции и иерархия анизотропных вкладов.

(3) Для \mathcal{A} -модели в случае, когда поле скорости обладает анизотропией и описывается статистическим ансамблем Авельянеды–Майда, обнаружено нарушение аномального скейлинга. Вместо степенной асимптотики инерционного интервала корреляционные функции обладают логарифмической зависимостью. Показано, что в силу тождественного равенства нулю старших членов асимптотика корреляционных функций полностью определяется первым членом ξ -разложения.

Теоретическая и практическая значимость. Результаты, полученные в диссертации, могут быть использованы при описании различных процессов в солнечной короне, ионосфере и межзвездном газе. Результаты работы должны стимулировать экспериментальные исследования по аккуратному измерению аномальных показателей в МГД турбулентности. Развитые методы могут быть применены к другим подобным стохастическим задачам, таким как турбулентный перенос тензорных полей, описание турбулентного переноса с помощью стохастического уравнения Навье–Стокса при наличии анизотропии и сжимаемости и т. п.

Методология и методы исследования. В работе активно используются метод ренормализационной группы, в частности для вычисления координат ИК–притягивающих неподвижных точек и асимптотического поведения парной корреляционной функции, и операторного разложения, позволяющий связать асимптотическое поведение парной корреляционной функции составных операторов с асимптотическим поведением самих составных операторов; см. [18].

Достоверность результатов обеспечивается использованием мощного и хорошо развитого математического аппарата квантовой теории поля и сравнением с результатами, известными ранее для различных частных случаев.

Основные положения, выносимые на защиту:

(1) Для модели турбулентного переноса пассивного векторного поля при наличии крупномасштабной анизотропии в случае, когда поле скоростей обладает конечным временем корреляции и описывается стохастическим уравнением Навье–Стокса для несжимаемой вязкой жидкости, установлено существование аномального скейлинга в инерционном интервале масштабов, а соответствующие показатели вычислены явно в главном (однопетлевом) приближении ренормгруппы, включая показатели анизотропных вкладов. Как и для случая скалярного поля, они демонстрируют иерархию, связанную со степенью анизотропности вклада: чем она выше, тем больше показатель и тем быстрее вклад убывает в глубине инерционного интервала. Ведущий член асимптотики в инерционном интервале определяется изотропным вкладом, что согласуется с гипотезой Колмогорова о локально изотропной турбулентности.

(2) В кинематической модели турбулентного динамо при наличии крупномасштабной анизотропии для случая, когда поле скоростей описывается статистическим ансамблем Казанцева–Крейчнана, аномальные показатели явно вычислены в двухпетлевом приближении ренормгруппы (второй порядок эпсилон–разложения). Показано, что в отличие от скалярного случая, учет двухпетлевого вклада приводит к усилению аномального скейлинга и иерархии анизотропных вкладов по сравнению с ведущим (однопетлевым) приближением.

(3) Для модели турбулентного переноса пассивного векторного поля в случае, когда поле скоростей описывается сильно анизотропным статистическим ансамблем Авельянеды–Майда с одним выделенным направлением, показано, что соответствующие уравнения ренормализационной группы имеют инфракрасно–притягивающую неподвижную точку в широком интервале параметров, в том числе для частных случаев кинематической модели динамо, линеаризованного уравнение Навье–Стокса и т. н. линейной модели с давлением, то есть в модели реализуется скейлинговое поведение. Найдены точные значения соответствующих критических размерностей полей и основных параметров модели.

(4) Установлено, что в модели турбулентного переноса пассивного векторного поля в случае, когда поле скоростей описывается статистическим ансамблем Авельянеды–Майда, аномальный скейлинг проявляется в логарифмической зависимости корреляционных функций от внешнего (интегрального) масштаба, в отличие от степенной зависимости для ансамбля Казанцева–Крейчнана и большинства его модификаций. Это является результатом специального случая смешивания в семействах составных операторов, при котором матрица смешивания оказывается нильпотентной.

<u>Апробация работы</u>. Результаты и положения работы докладывались и обсуждались на следующих научных конференциях и школах:

- Международная студенческая конференция «Физика и Прогресс 2010» (Санкт-Петербург, Россия, 2010 г.).
 http://www.phys.spbu.ru/grisc/science-and-progress/archive.html
- Международная конференция «Математическое моделирование и вычислительная физика» ММСР — 2011 (Кошице, Словакия, 2011 г.). http://www.informatik.uni-trier.de/ley/db/conf/mmcp/mmcp2011.html
- Международная студенческая конференция «Физика и Прогресс 2013» (Санкт-Петербург, Россия, 2013 г.).
 http://www.phys.spbu.ru/grisc/science-and-progress/archive.html
- 4. XLVIII Зимняя школа Петербургского института ядерной физики (Санкт-Петербург, Россия, 2014 г.).
 http://dbserv.pnpi.spb.ru/WinterSchool/school_program.html
- 5. 52я Международная школа по субатомной физике (Эричи, Италия, 2014 г.).
 http://www.ccsem.infn.it/issp2014/index.html
- 6. XI Международная конференция «Кварки, конфайнмент и спектр адронов» (Санкт-Петербург, Россия, 2014 г.). http://onlinereg.ru/confXI/list.pdf

<u>Публикации</u>. По теме диссертации опубликовано 4 научные работы в изданиях, рекомендованных ВАК РФ и входящих в базы данных РИНЦ, Web of Science и Scopus, а также тезисы докладов 2 международных конференций:

- Н.В. Антонов, Н.М. Гулицкий, тезисы международной студенческой конференции «Физика и Прогресс — 2010».
- N.V. Antonov, N.M. Gulitskiy, Lecture Notes in Comp. Science Vol. 7125, p. 128–135, 2012.
- N.V. Antonov, N.M. Gulitskiy, Phys. Rev. E Vol. 85, 065301(R), 2012;
 Erratum, Phys. Rev. E Vol. 87, 039902, 2013.
- Н.В. Антонов, Н.М. Гулицкий, тезисы международной студенческой конференции «Физика и Прогресс — 2013».
- 5. Н.В. Антонов, Н.М. Гулицкий, ТМФ Т. 176. №1, с. 22–34, 2013.
- Н.В. Антонов, Н.М. Гулицкий, Вестник СПбГУ, Сер. 4 Т. 1 (59) Вып. 3, с. 299–317, 2014.

Личный вклад автора. Все основные результаты получены соискателем лично либо при его прямом участии в неразделимом соавторстве.

Структура и объем работы. Диссертация состоит из введения, 5 глав, заключения, приложений и списка литературы из 80 наименований. Работа изложена на 198 страницах и содержит 24 рисунка и 3 таблицы.

<u>Первая глава</u> содержит введение в проблематику задач данного типа, а также описание ансамблей скорости и постановку задачи с помощью стохастических дифференциальных уравнений. <u>Вторая глава</u> посвящена переформулировке данных задач в виде некоторых квантово–полевых моделей с заданными функционалами действия; для каждой из моделей устанавливается ренормируемость и вычисляется оператор собственной энергии, входящий в уравнение Дайсона.

В <u>третьей главе</u> вычисляются РГ–функции — аномальные размерности γ и β–функции полей и параметров; будет показано, что в некоторых интервалах значений параметров данные модели обладают ИК– притягивающей неподвижной точкой, определяющей ИК–асимптотику корреляционных функций.

<u>Червертая глава</u> посвящена ренормировке составных операторов в модели №1 (ансамбль скорости Авельянеды–Майда). Будет показано, что матрица ренормировки дается своим однопетлевым приближением точно; приведены выражение для матрицы аномальных размерностей и матрицы критических размерностей. В частности будет доказано, что матрица аномальных размерностей является нильпотентной, следствием чего является невозможность диагонализации матрицы критических размерностей. В результате вместо степенной зависимости от внешнего масштаба асимптотика парной корреляционной функции является логарифмической.

В <u>пятой главе</u> методы ренормгруппы и операторного разложения применяются к изучению асимптотики корреляционных функций в моделях №2 (ансамбль скорости Казанцева–Крейчнана) и №3 (скорость среды описывается с помощью стохастического уравнения Навье–Стокса). Будет установлено наличие аномального скейлинга и вычислены соответствующие аномальные показатели в двухпетлевом (для модели №2) и однопетлевом (для модели №3) приближениях.

16

В заключении суммируются основные результаты работы.

В <u>приложениях</u> обсуждаются вопросы, связанные с постановкой задачи (приложения к Главе 1), квантово–полевой формулировкой (приложения к Главе 2) и уравнениями ренормгруппы (приложения к Главе 3).

1. Модель Крейчнана и стохастические дифференциальные уравнения переноса пассивного поля

1.1. Введение

В течение последних десятилетий большое внимание уделяется проблеме перемежаемости и аномального скейлинга в развитой МГД турбулентности, см. обзор [24] и имеющиеся в нем ссылки. Известно, что в т. н. Альфвеновском режиме МГД турбулентность демонстрирует поведение, подобное обычной развитой гидродинамической турбулентности: существует каскад энергии из инфракрасной области к меньшим масштабам, на которых доминирует диссипация, а также автомодельное (скейлинговое) поведение спектра энергии в промежуточном (инерционном) интервале. Более того, перемежающийся характер флуктуаций в МГД турбулентности выражен гораздо ярче, чем в обычной турбулентной жидкости.

Различные модели и подходы к МГД турбулентности можно «тестировать» в процессах, происходящих в солнечной короне — т. н. «аэродинамических трубах», см. [3–7]. В солнечных вспышках высокоэнергичные и сильно анизотропные крупномасштабные движения сосуществуют с мелкомасштабными когерентными структурами, ответственными за диссипацию. Поэтому описание процессов, в которых энергия перераспределяется по спектру и в конечном счете диссипирует, является достаточно сложной задачей. Перемежаемость существенно изменяет поведение корреляционных функций высших порядков и приводит к возникновению аномального скейлинга, характеризуемого бесконечным набором аномальных показателей.

Упрощенное описание ситуации состоит в том, что крупномасштабное поле $B_i^0 = n_i B^0$ выделяет определенное направление **n**, а динамика флуктуаций в перпендикулярной плоскости описывается как независимая и квазидвумерная [8]. Такой подход позволяет осуществлять довольно точное численное моделирование. Однако наблюдения показывают, что скейлинговое поведение в солнечной короне ближе к обычному аномальному скейлингрошникова– крейчнана, свойственному двумерной задаче с обратным потоком энергии [3]. Таким образом, дальнейшее изучение проблемы в рамках более реалистических моделей является актуальной задачей.

В реальной физической задаче поле среды $\mathbf{v}(x)$ удовлетворяет уравнению Навье–Стокса с дополнительными членами, описывающими обратное влияние переносимого поля $\boldsymbol{\theta}(x)$ на поле скорости. При этом при изучении данных (полномасштабных) моделей возможны два упрощения. Вопервых, магнитное поле $\boldsymbol{\theta}(x)$ может быть выбрано *пассивным*, т. е. не имеющим обратного влияния на динамику поля скорости (т. н. *кинематический* режим). Данное приближение верно при не слишком больших градиентах магнитного поля; предполагается, что на начальных стадиях поле $\boldsymbol{\theta}(x)$ является слабым и не влияет на движение проводящей жидкости. В работах [36, 37] показано, что РГ–анализ такого кинематического режима успешно описывает ИК–асимптотику моделей данного типа. Во–вторых, поскольку описание турбулентного движения жидкости само по себе является сложной задачей, а мы ограничиваемся рассмотрением пассивных полей примеси, поле среды может быть задано с помощью некоторого статистического ансамбля. Данное упрощение будет применяться при моделировании поля скорости ансамблями Казанцева–Крейчнана и Авельянеды–Майда; также в диссертации рассматривается модель, в которой поле скорости подчиняется непосредственно стохастическому уравнению Навье–Стокса, при этом на данный момент удалось вычислить только первый порядок ξ –разложения.

В отличии от *скалярного* случая, стохастическое уравнение для *векторных* полей в дополнение к члену, отвечающему за диффузию, содержит еще один — т. н. «растягивающий» член. Благодаря этому асимптотика инерционного интервала таких полей является более интересной, чем у их скалярных аналогов; см. [28–35,38–42]. В частности, аномальный скейлинг может проявляться уже на уровне парной корреляционой функции [34,35]; также имеют место крупномасштабные нестабильности, которые можно рассматривать как эффект турбулентного динамо, см. [34,38,43].

1.2. Изотропная модель Крейчнана

В оригинальной модели Крейчнана пассивное поле $\theta(x) \equiv \theta(t, \mathbf{x})$, где $x = \{t, \mathbf{x}\}$, является скалярным, а уравнение диффузии имеет вид

$$\nabla_t \theta = \nu_0 \Delta \theta + f, \qquad \nabla_t \equiv \partial_t + v_i \partial_i. \tag{1.1}$$

Символами $\partial_t \equiv \partial/\partial t$, $\partial_i \equiv \partial/\partial x_i$ обозначены производные по времени и по координатам, ν_0 является коэффициентом диффузии, Δ — оператор Лапласа, $\mathbf{v}(x) \equiv \{v_i(x)\}$ — поперечное (в силу несжимаемости) поле скорости, $f \equiv f(x)$ — случайная сила, обладающая гауссовым распределением с нулевым среднем и корреляционной функцией вида

$$\langle f(x)f(x')\rangle = \delta(t-t')C(r/L), \qquad r = |\mathbf{x} - \mathbf{x}'|.$$
 (1.2)

Параметр $L \equiv M^{-1}$ является внешним масштабом турбулентности, связанным со сторонней силой, а C(r/L) — некоторая функция, конечная при $L \to \infty$.

Поле скорости $\mathbf{v}(x)$ было выбрано гауссовым, с нулевым временем корреляции, статистически изотропным и несжимаемым, с парной корреляционной функцией вида

$$\langle v_i(x)v_j(x')\rangle = \delta(t-t') \int_{k>m} \frac{d\mathbf{k}}{(2\pi)^d} P_{ij}(\mathbf{k}) D_0 \frac{1}{k^{d+\xi}} e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{x}')}, \qquad (1.3)$$

где $P_{ij}(\mathbf{k}) = \delta_{ij} - k_i k_j / k^2$ — поперечный проектор, $k \equiv |\mathbf{k}|$ — волновое число, d — размерность пространства, $D_0 > 0$ — амплитудный множитель, величина 1/m, являющаяся внешним масштабом турбулентности \widetilde{L} (радиус корреляций поля скорости), обеспечивает ИК-регуляризацию, ξ — произвольный показатель (с наиболее реалистичным «колмогоровским» значением $\xi = 4/3$). Для простоты данный внешний масштаб \widetilde{L} , связанный с полем скорости, отождествляется с внешним масштабом случайной силы L, упоминавшимся ранее в (1.2).

Ансамбль скорости (1.3) содержит δ -функцию по времени как следствие галилеевой инвариантности; подробнее см. приложение A.1.2.

Соотношения

$$D_0/\nu_0 = \hat{g}_0 \equiv \Lambda^{\xi} \tag{1.4}$$

определяют константу взаимодействия \hat{g}_0 , которая с точностью до численного множителя является параметром разложения теории возмущений, и характерный малый масштаб Λ , на котором определяющую роль начинает играть вязкость.

1.3. Стохастическое уравнение переноса векторного поля

Данная постановка задачи, описываемая уравнениями (1.1) - (1.3), позволяет различные обобщения на более сложные физические ситуации. Например, вместо *скалярного* пассивного поля $\theta(x)$ и уравнения диффузии (1.1) можно рассматривать *векторное* поле $\theta(x)$ и линеаризованное уравнение магнитной гидродинамики (см. приложение A.2), описывающее эволюцию флуктуирующей компоненты магнитного поля в присутствии основной компоненты θ^o , меняющейся на очень больших масштабах:

$$\partial_t \theta_i + \partial_k \left(v_k \theta_i - v_i \theta_k \right) = \nu_0 \partial^2 \theta_i + f_i, \qquad (1.5)$$

где как поле **v**, так и поле **\theta** являются поперечными (бездивергентными) векторными полями: $\partial_i v_i = \partial_i \theta_i = 0.$

Также можно рассматривать линеаризацию уравнения Навье–Стокса вблизи фонового быстро меняющегося поля скорости, что дает аналогичное уравнение с точностью до знака:

$$\partial_t \theta_i + \partial_k \left(v_k \theta_i + v_i \theta_k \right) + \partial_i \mathcal{P} = \nu_0 \partial^2 \theta_i + f_i, \qquad (1.6)$$

где \mathcal{P} — давление.

Уравнения (1.5) и (1.6) можно объединить введением нового параметра \mathcal{A}_0 :

$$\partial_t \theta_i + \partial_k \left(v_k \theta_i - \mathcal{A}_0 \ v_i \theta_k \right) + \partial_i \mathcal{P} = \nu_0 \partial^2 \theta_i + f_i. \tag{1.7}$$

При этом предполагается, что \mathcal{A}_0 принимает не только значения ±1, но и все остальные числовые значения. Благодаря этому возникает еще один интересный случай: при $\mathcal{A}_0 = 0$ в уравнении (1.7) отсутствует «растягивающий» член $\partial_k(v_i\theta_k)$, поэтому модель обладает дополнительной симметрией сдвига $\theta_i \to \theta_i$ + const_i. Благодаря этому основной вклад в аномальную размерность дается составными операраторами, построенными не из самих полей, а из их производных. Необходимо отметить, что для ренормировки введенного параметра \mathcal{A}_0 необходима собственная ренормировочная константа $Z_{\mathcal{A}}$, которая может оказаться нетривиальной [41].

Введение члена $\partial \mathcal{P}$ в уравнения (1.6) и (1.7) необходимо для согласования динамики с условиями поперечности $\partial_i \theta_i = 0$, $\partial_i v_i = 0$. Благодаря этому давление может быть выражено как решение уравнения Пуассона (подробнее см. в приложении А.3):

$$\partial^2 \mathcal{P} = (\mathcal{A}_0 - 1) \,\partial_i v_k \partial_k \theta_i. \tag{1.8}$$

При рассмотрении векторных полей, уравнение диффузии для которых представлет собой уравнение вида (1.5) - (1.7), случайная внешняя сила **f** также должна быть векторной. При этом по прежнему предполагается, что она обладает гауссовым распределением с нулевым средним, а вместо корреляционной функции (1.2) необходимо рассматривать коррелятор вида

$$\langle f_i(t, \mathbf{x}) f_k(t', \mathbf{x}') \rangle = \delta(t - t') C_{ik}(\mathbf{r}/L),$$
 (1.9)

где $\mathbf{r} = \mathbf{x} - \mathbf{x}', r = |\mathbf{r}|$, параметр $L \equiv M^{-1}$ является внешним масштабом турбулентности, связанным со сторонней силой, а C_{ik} — безразмерные функции, конечные при $r/L \to 0$ и убывающие при $r/L \to \infty$.

1.4. Анизотропная модель Крейчнана

Поле скорости **v**, описывающее переносящую среду и заданное в модели Крейчнана с помощью парного коррелятора (1.3), также может быть модифицировано в связи с различными физическими ситуациями. Можно рассматривать такие эффекты, как сжимаемость среды, конечное время корреляции, анизотропию.

Для введения анизотропии ансамбль поля скорости может быть модифицирован несколькими способами. В частности, вместо поперечного проектора $P_{ij}(\mathbf{k})$ в коррелятор скорости (1.2) можно ввести оператор $T_{ij}(\mathbf{k})$ вида

$$T_{ij}(\mathbf{k}) = a(\psi)P_{ij}(\mathbf{k}) + b(\psi)n_s n_l P_{is}(\mathbf{k})P_{jl}(\mathbf{k}), \qquad (1.10)$$

где ψ — угол между векторами **n** и **k**, а $a(\psi)$ и $b(\psi)$ — некоторые скейлинговые функции. Этот путь использовался в работах [44–47] и отвечал случаю анизотропии на малых пространственных масштабах. Видно, что данная постановка задачи содержит изотропную модель как частный случай: при $a(\psi) = 1$ и $b(\psi) = 0$ оператор $T_{ij}(\mathbf{k})$ превращается в поперечный проектор $P_{ij}(\mathbf{k})$.

«Сильно анизотропная» модель Крейчнана (ансамбль Авельянеды– Майда) не содержит в себе изотропную модель как частный случай и описывается полем скорости **v**, обладающим выделенным направлением **n**:

$$\mathbf{v}(t, \mathbf{x}) = \mathbf{n} \cdot v(t, \mathbf{x}_{\perp}). \tag{1.11}$$

Статистический ансамбль выбирается гауссовым, с нулевым средним и кор-

реляционной функцией

$$\langle v_i(t, \mathbf{x}) v_k(t', \mathbf{x}') \rangle = n_i n_k \cdot \langle v(t, \mathbf{x}_\perp) v(t', \mathbf{x}'_\perp) \rangle,$$
 (1.12)

где

$$\langle v(t, \mathbf{x}_{\perp}) v(t', \mathbf{x}'_{\perp}) \rangle = \delta(t - t') \int_{k>m} \frac{d\mathbf{k}}{(2\pi)^d} e^{i\mathbf{k}(\mathbf{x} - \mathbf{x}')} D_v(k),$$
 (1.13)

a

$$D_{v}(k) = 2\pi\delta(k_{\parallel}) \ D_{0} \ \frac{1}{k_{\perp}^{d-1+\xi}}.$$
 (1.14)

Все параметры в уравнениях (1.12) — (1.14) идентичны параметрам из ансамбля (1.3), а именно: d — размерность пространства, $k_{\perp} \equiv |\mathbf{k}_{\perp}|$ — волновое число, m — обратный радиус корреляций поля скорости, $D_0 > 0$ амплитудный фактор, ξ — произвольный показатель, являющийся параметром РГ–разложения. Такая формулировка может рассматриваться как d-мерное обобщение анизотропного ансамбля скорости, впервые введенного в [48], а затем рассматривавшегося в работах [49–59]. Как и в разделе 1.2, соотношения

$$D_0/\nu_0 = \hat{g}_0 \equiv \Lambda^{\xi} \tag{1.15}$$

определяют константу взаимодействия \hat{g}_0 и характерный УФ-масштаб Λ .

1.5. Стохастическое уравнение Навье–Стокса

Кроме различных модификаций модели Крейчнана ((1.3), (1.10), (1.12) и т. д.), в которых поле **v** обладает гауссовой статистикой с заданной парной (степенной) корреляционной функцией, поле скорости в (1.7) может быть задано с помощью стохастического уравнения Навье–Стокса:

$$\nabla_t v_i = \nu_0 \partial^2 v_i - \partial_i \wp + \eta_i, \qquad \nabla_t \equiv \partial_t + v_i \partial_i, \qquad (1.16)$$

где \wp и η_i — удельные по массе давление и поперечная случайная сила. Для η предполагается гауссово распределение с нулевым средним и корреляционной функцией

$$\left\langle \eta_i(x)\eta_j(x')\right\rangle = \frac{\delta(t-t')}{(2\pi)^d} \int_{k\geq m} d\mathbf{k} \, P_{ij}(\mathbf{k}) \, d_\eta(k) \, \exp\left[\mathrm{i}\mathbf{k} \left(\mathbf{x}-\mathbf{x'}\right)\right]. \tag{1.17}$$

Все параметры в уравнении (1.16) идентичны параметрам из ансамблей (1.3) и (1.12); $d_{\eta}(k)$ — некоторая функция от $k \equiv |\mathbf{k}|$ и параметров модели. Величина 1/m, являющаяся внешним масштабом турбулентности \widetilde{L} , обеспечивает ИК-регуляризацию.

Задача (1.16), (1.17) допускает решение методами РГ в том случае, если коррелятор случайной силы имеет степенной вид, см. [60–63], а также обзор [64]:

$$d_{\eta}(k) = D_0 \, k^{4-d-\xi},\tag{1.18}$$

где $D_0 > 0$ является положительным амплитудным множителем, а показатель $0 < \xi \leq 4$ играет роль параметра РГ–разложения. Наиболее реалистическим значением для него является $\xi = 4$: при $\xi \to 4$ и соответствующем выборе амплитуды функция (1.18) стремится к дельта–функции, $d_{\eta}(k) \propto \delta(\mathbf{k})$, что отвечает накачке системы энергией через взаимодействие с крупномасштабными турбулентными вихрями; см. [26, 64, 65].

В отличии от (1.4) и (1.15), характерный УФ–масштаб Λ и константа взаимодействия \hat{g}_0 определяются соотношениями

$$D_0/\nu_0^3 = \hat{g}_0 \equiv \Lambda^{\xi}.$$
 (1.19)

Квантово-полевая формулировка моделей, УФ-расходимости и уравнение Дайсона

2.1. Функционал действия S

Известно [26,27], что любая стохастическая задача вида

$$\partial_t \boldsymbol{\theta} = U(x, \boldsymbol{\theta}) + \mathbf{f}(x),$$
 (2.1a)

$$\langle f_i(x)f_k(x')\rangle = D_\theta(x,x'),$$
 (2.1b)

эквивалентна квантовополевой модели с удвоенным числом полей $\Phi = \{ {m heta}, {m heta}' \}$ и функционалом действия

$$S(\Phi) = \boldsymbol{\theta}' D_{\theta} \boldsymbol{\theta}' / 2 + \theta'_i \left[-\partial_t \theta_i + U(\boldsymbol{\theta}) \right].$$
(2.2)

Здесь $U(x, \theta)$ — заданный *t*-локальный функционал, не содержащий производных θ по времени, $\mathbf{f}(x)$ — случайная внешняя сила, обладающая гауссовым распределением с нулевым средним и коррелятором (2.1b).

В общем случае функционал U содержит линейную и нелинейную по $\boldsymbol{\theta}$ части: $U(\boldsymbol{\theta}) = L\boldsymbol{\theta} + n(\boldsymbol{\theta})$. Это означает, что действию (2.2) отвечает стандартная диаграммная техника с вершиной, содержащей одно поле $\boldsymbol{\theta}'$ и несколько (в зависимости от конкретного вида $n(\boldsymbol{\theta})$) полей $\boldsymbol{\theta}$ и двумя пропагаторами: $\langle \theta_i \theta'_k \rangle = (\partial_t - L)^{-1}$ и $\langle \theta_i \theta_k \rangle = \langle \theta_i \theta'_l \rangle \cdot D_{\boldsymbol{\theta}} \cdot \langle \theta_l \theta'_k \rangle^T$, где символ транспонирования означает перестановку аргументов: $M^T(x, x') \equiv$ $M(x', x), \partial_t^T = -\partial_t$. Пропагатор $\langle \theta'_i \theta'_k \rangle$ тождественно равен нулю. Здесь и далее интегрирование по $x = \{t, \mathbf{x}\}$ и суммирование по повторяющимся индексам подразумевается, например

$$\boldsymbol{\theta}'\partial_t\boldsymbol{\theta} = \theta_i'\partial_t\theta_i = \int dt \int d\mathbf{x} \ \theta_i'(x)\partial_t\theta_i(x),$$
$$\mathbf{v}D_v^{-1}\mathbf{v} = \int dt \int d\mathbf{x} \int d\mathbf{x}' \ v_i(t,\mathbf{x})D_{v,\ ij}^{-1}(\mathbf{x}-\mathbf{x}')v_j(t,\mathbf{x}').$$

Такая формулировка означает, что статистическое усреднение в стохастической задаче (2.1) совпадает с функциональныи интегрированием с весом $\exp S(\Phi)$.

Перенос пассивного векторного поля сильно анизотропным полем скорости (модель №1)

2.2.1. Постановка задачи

Рассмотрим стохастическую задачу, определяемую уравнениями (1.7), (1.9) и (1.12) — (1.14), а именно пассивное векторное поле, эволюция которого описывается уравнением конвекции–диффузии

$$\partial_t \theta_i + \partial_k \left(v_k \theta_i - \mathcal{A}_0 \ v_i \theta_k \right) + \partial_i \mathcal{P} = \nu_0 \partial^2 \theta_i + f_i, \qquad (2.3)$$

где f_i — случайная гауссова сила с нулевым средним и заданной парной корреляционной функцией:

$$\langle f_i(t, \mathbf{x}) f_k(t', \mathbf{x}') \rangle = \delta(t - t') C_{ik}(\mathbf{r}/L).$$
 (2.4)

Здесь $\mathbf{r} = \mathbf{x} - \mathbf{x}', r = |\mathbf{r}|$, параметр $L \equiv M^{-1}$ является внешним масштабом турбулентности, связанным со сторонней силой, а C_{ik} — безразмерные функции, конечные при $r/L \to 0$ и убывающие при $r/L \to \infty$. Поле скорости \mathbf{v} выбирается анизотропным,

$$\mathbf{v}(t, \mathbf{x}) = \mathbf{n} \cdot v(t, \mathbf{x}_{\perp}), \tag{2.5}$$

гауссовым, с нулевым средним и заданной парной корреляционной функцией

$$\langle v_i(t, \mathbf{x}) v_k(t', \mathbf{x}') \rangle = n_i n_k \cdot \langle v(t, \mathbf{x}_\perp) v(t', \mathbf{x}'_\perp) \rangle,$$
 (2.6)

где

$$\langle v(t, \mathbf{x}_{\perp}) v(t', \mathbf{x}'_{\perp}) \rangle = \delta(t - t') \int_{k>m} \frac{d\mathbf{k}}{(2\pi)^d} e^{i\mathbf{k}(\mathbf{x}-\mathbf{x}')} D_v(k),$$
 (2.7)

a

$$D_{v}(k) = 2\pi\delta(k_{\parallel}) \ D_{0} \ \frac{1}{k_{\perp}^{d-1+\xi}}.$$
(2.8)

В силу условия (2.5) поле скорости не является O_d -симметричным, а обладает симметрией $O_{d-1} \otimes Z_2$. Поэтому в уравнении конвекции — диффузии (2.3) необходимо нарушить O_d -симметрию оператора Лапласа, введя новый параметр f_0 :

$$\partial_t \theta_i + \partial_k \left(v_k \theta_i - \mathcal{A}_0 \ v_i \theta_k \right) + \partial \mathcal{P} = \nu_0 \left(\partial_\perp^2 + f_0 \partial_\parallel^2 \right) \theta_i + f_i.$$
(2.9)

Введние данного параметра можно рассматривать как чисто технический прием, переводящий O_d -симметрию оператора Лапласа в $O_{d-1} \otimes Z_2$ симметрию и необходимый для осуществления процедуры ренормировки, а можно как следствие необходимости наличия в модели всех ИК-существенных членов, разрешенных симметрией задачи.

Как поле $\boldsymbol{\theta}$, так и поле **v** являются поперечными, $\partial_i \theta_i = \partial_i v_i = 0$, а член $\partial \mathcal{P}$ необходим для согласования условий поперечности с динамикой, подробнее см. приложение А.3.

2.2.2. Квантово-полевая формулировка

В соответствии с разделом 2.1, данная стохастическая задача эквивалентна квантовополевой модели для набора из 3 полей $\Phi = \{ \boldsymbol{\theta}, \boldsymbol{\theta}', \boldsymbol{v} \}$ с функционалом действия

$$S(\Phi) = -\theta'_k \left[-\partial_t \theta_k - (v_i \partial_i) \theta_k + \mathcal{A}_0(\theta_i \partial_i) v_k + \nu_0 (\partial_\perp^2 + f_0 \partial_\parallel^2) \theta_k \right] + \theta'_i D_\theta \theta'_k / 2 + v_i D_v^{-1} v_k / 2, \qquad (2.10)$$

где первые четыре члена представляют собой действие (2.2) для стохастической задачи (2.4), (2.9) при фиксированной **v**, а последний член есть гауссово усреднение по **v**.

Такой модели соответствует тройная вершина

$$V_{c\,ab} = \left(\partial_a \theta'_c\right) \left(v_a \theta_c - \mathcal{A}_0 \cdot v_c \,\theta_a \right), \qquad (2.11)$$

а также три затравочных пропагатора: $\langle \theta_i \theta'_k \rangle_0$, $\langle \theta_i \theta_k \rangle_0$ и $\langle v_i v_k \rangle_0$, диаграммное представление для которых представлено на рисунках (2.1) — (2.4):

Рис. 2.1. Диаграммное представление тройной вершины V_{cab} .

Рис. 2.2. Диаграммное представление пропагатора $\langle \theta_i \theta'_k \rangle_0$.

Рис. 2.3. Диаграммное представление пропагатора $\langle \theta_i \theta_k \rangle_0$.

 $i ~ \cdots ~ k$

Рис. 2.4. Диаграммное представление пропагатора $\langle v_i v_k \rangle_0$.

Здесь и далее перечеркнутый конец соответствует полю $\boldsymbol{\theta}'$, конец без черты — полю $\boldsymbol{\theta}$.

В импульсно–частотном представлении вершине соответствует множитель

$$V_{c\,ab} = i\delta_{bc} \ p_a^{\theta'} - i\mathcal{A}_0 \cdot \delta_{ac} \ p_b^{\theta'}, \qquad (2.12)$$

где $p^{\theta'}$ — импульс поля θ' . Пользуясь поперечностью поля θ , с помощью интегрирования по частям можно перебросить производную в вершинном члене действия (2.10) с поля θ на поле θ' :

$$-\theta_i'[\partial_k(v_k\theta_i - \mathcal{A}_0 \cdot v_i\theta_k)] = (\partial_k\theta_i') \cdot (v_k\theta_i - \mathcal{A}_0 \cdot v_i\theta_k).$$
(2.13)

Для того, чтобы убедиться в верности явного вида вершинного множителя, необходимо рассмотреть свертку $\theta'_c V_{abc} v_a \theta_b$ и воспользоваться фурье– преобразованием $ip_a \to \partial_a$:

$$\theta_c' V_{abc} v_a \theta_b = \theta_c' \cdot i [p_a \delta_{bc} - \mathcal{A}_0 \cdot p_b \delta_{ac}] \cdot v_a \theta_b =$$
$$= i \theta_c' p_a v_a \theta_c - i \mathcal{A}_0 \cdot \theta_c' p_b v_c \theta_b = (\partial_a \theta_c') \cdot (v_a \theta_c - \mathcal{A}_0 \cdot v_c \theta_a).$$
(2.14)

Из действия (2.10) следует, что в импульсно-частотном представлении пропагаторам отвечают выражения

$$\left\langle \theta_i \theta_k' \right\rangle_0 = \frac{P_{ik}(\mathbf{k})}{-i\omega + \nu_0 (\mathbf{k}_\perp^2 + f_0 k_\parallel^2)},\tag{2.15a}$$

$$\langle \theta_i \theta_k \rangle_0 = \frac{C_{ik}(\mathbf{k})}{\omega^2 + \left[\nu_0(\mathbf{k}_\perp^2 + f_0 k_\parallel^2)\right]^2},$$
 (2.15b)

где $C_{ik}(\mathbf{k})$ является фурье-образом функции $C_{ik}(\mathbf{r}/L)$ из (2.4). Пропагатор $\langle v_i v_k \rangle_0$ дается выражением (2.6).

В импульсно–временном представлении пропагаторам (2.15а) и (2.15b) отвечают выражения

$$\langle \theta_i \theta'_k \rangle_0 = P_{ik}(\mathbf{k}) \cdot \Theta(t - t') \exp\left\{-(t - t')\epsilon_{\mathbf{k}}\right\},$$
 (2.16a)

$$\langle \theta_i \theta_k \rangle_0 = \{ C_{ik}(\mathbf{k})/2\epsilon_{\mathbf{k}} \} \cdot \exp\{ -|t - t'|\epsilon_{\mathbf{k}} \},$$
 (2.16b)

где $\epsilon_{\mathbf{k}} = \nu_0(\mathbf{k}_{\perp}^2 + f_0 k_{\parallel}^2)$; в выражении для пропагатора $\langle \theta_i \theta'_k \rangle_0$ символ t является временны́м аргументом поля $\boldsymbol{\theta}$, символ t' — поля $\boldsymbol{\theta}'$. Это означает, что пропагатор $\langle \theta_i \theta'_k \rangle_0$ является запаздывающим. Как мы впоследствии увидим, данное свойство является причиной тождественного равенства нулю всех многопетлевых диаграмм, входящих в уравнение Дайсона.

На самом деле из анализа уравнения Дайсона (см. раздел 3.1.4) следует необходимость введения еще одной структуры в функционал действия $S(\Phi)$, что, в свою очередь, приводит к изменению выражений (2.15a), (2.15b). При этом оказывается, что на самом деле полученная таким образом аддитивная добавка не требуется, т. к. дает нулевой вклад при вычислении расходящихся частей всех необходимых диаграмм.

2.2.3. Канонические размерности

Анализ УФ–расходимостей основан на анализе канонических размерностей 1–неприводимых функций Грина. В отличии от статических, динамические модели имеют 2 независимые канонические размерности — импульсную размерность d_F^k и частотную размерность d_F^{ω} . Таким образом для любой величины F верно

$$[F] \sim [T]^{-d_F^{\omega}} [L]^{-d_F^k}, \qquad (2.17)$$

где T и L являются некоторыми масштабами времени и длины.

Размерности всех величин находятся из нормализационного условия $d_k^k = -d_x^k = 1, d_k^\omega = -d_x^\omega = 0, d_\omega^\omega = -d_t^\omega = 1, d_\omega^k = d_t^k = 0$ и требования, чтобы все члены в функционале действия (2.10) были безразмерными (по отдельности по импульсной и частотной размерностям).

Основываясь на d_F^k и d_F^ω и учитывая, что в функционал действия (2.10) входит комбинация $\partial_t + const \cdot \partial^2$, т. е. $\partial_t \propto \partial^2$, можно ввести каноническую размерность

$$d_F = d_F^k + 2d_F^\omega, \tag{2.18}$$

которая играет в теории перенормировки динамических моделей такую же роль, как и обычная (импульсная) размерность для статических моделей.

Канонические размерности полей и параметров модели (2.10) представлены в таблице 2.1, включая ренормированные аналоги, которые будут введены позже. В работе [59] рассматривалась скалярная вресия данной модели. Оказывается, что в этом случае возможно ввести не один, а два независимых пространственных масштаба, каждый из которых отвечает за

F	$oldsymbol{ heta}'$	θ	v	M, m, μ, Λ	$ u, u_0 $	$\mathcal{A},\mathcal{A}_0$	f, f_0	u, u_0	\hat{g}_0,g_0	\hat{g},g
d_F^ω	1/2	-1/2	1	0	1	0	0	0	0	0
d_F^k	d	0	-1	1	-2	0	0	0	ξ	0
d_F	d+1	-1	1	1	0	0	0	0	ξ	0

Таблица 2.1. Канонические размерности полей и параметров в модели (2.10).

перепеникулярное и параллельное по отношению к вектору **n** направление. Это означает, что

$$[F] \sim [T]^{-d_F^{\omega}} [L_{\perp}]^{-d_F^{\perp}} [L_{\parallel}]^{-d_F^{\parallel}}, \qquad (2.19)$$

где L_{\perp} и L_{\parallel} являются двумя независимыми пространственными масштабами, а d_F^{\perp} и d_F^{\parallel} — двумя независимыми каноническими размерностями. Однако в данной (векторной) задаче существует дополнительное условие условие поперечности полей $\boldsymbol{\theta}$ и $\boldsymbol{\theta}'$: $\partial_i \theta_i = \partial_i \theta'_i = 0$, которое запрещает существование двух независимых пространственных масштабов (подробнее см. приложение B.2). В частности это означает, что введенная в (2.9) константа f_0 является безразмерной.

Из таблицы 2.1 следует, что данная модель является логарифмической (константа взаимодействия $g_0 \sim [L]^{-\xi}$ безразмерная) при $\xi = 0$, т. о. УФ-расходимости функций Грина проявляются в виде полюсов по ξ .

Учитывая (2.18), канонические размерности произвольных 1– неприводимых функций Грина $\Gamma = \langle \Phi \dots \Phi \rangle_{1-\text{непр}}$ даются соотношением

$$d_{\Gamma} = d + 2 - \sum_{\Phi} N_{\Phi} d_{\Phi} = d + 2 - N_{\theta'} d_{\theta'} - N_{\theta} d_{\theta} - N_v d_v.$$
(2.20)

Здесь $N_{\Phi} = \{N_{\theta}, N_{\theta'}, N_v\}$ является числом полей, входящих в данную

функцию Грина; в формуле (2.20) и всех аналогичных суммирование по всем типам полей подразумевается. Поскольку в логарифмической теории константа связи является безразмерной, N_{Φ} в формуле (2.20) и аналогичных можно рассматривать как число *внешних* полей.

Поверхностные УФ–расходимости, для устранения которых необходимо введение контрчленов, присутствуют только в тех функциях Γ , для которых формальный индекс расходимости d_{Γ} является целым неотрицательным числом. При этом необходимо учитывать, что

(1) Для любой динамической модели вида (2.2) 1-неприводимые функции Грина, не содержащие дополнительного поля θ' (т. е. те, для которых $N_{\theta'} = 0$), содержат замкнутые циклы запаздывающих пропагаторов (2.16а) и таким образом обращаются в нуль.

(2) Для любой 1-неприводимой функции Грина $N_{\theta'} - N_{\theta} = 2N_0$, где $N_0 \ge 0$ является числом затравочных пропагаторов $\langle \theta \theta \rangle_0$, входящих в любую из ее диаграмм. Данное соотношение следует из того, что вершина (2.11) содержит по одному полю θ_i и θ'_k , т. е. линии $\langle \theta_i \theta_k \rangle$ и $\langle \theta_i \theta'_k \rangle$ «не ветвятся», и может быть легко проверено для любой заданной функции; к примеру, для функции, изображенной на рисунке 2.7, $N_{\theta'} = N_{\theta} = 1$, $N_0 = 0$.

(3) Используя условия поперечности полей $\boldsymbol{\theta}$ и \boldsymbol{v} , а именно $\partial_i v_i = \partial_i \theta_i = 0$, можно перебросить производную в вершине $-\theta'_k(v_i\partial_i)\theta_k + \mathcal{A}_0 \cdot \theta'_k(\theta_i\partial_i)v_k$ на поле θ'_k . Таким образом в любой 1-неприводимой диаграмме всегда можно перенести производную на «внешнее» поле θ'_k , уменьшив таким образом индекс расходимости: $d'_{\Gamma} = d_{\Gamma} - N_{\theta'}$. Поле θ'_k при этом будет входить в контрчлен только в виде производных $\partial_i \theta'_k$.

Стоит отметить, что при отсутствии второго члена в вершине (как в случае скалярного поля, так и в случае \mathcal{A} -модели при $\mathcal{A} = 0$) под производной могут находиться как поле $\boldsymbol{\theta}$, так и поле $\boldsymbol{\theta}'$, поэтому в этом случае $d'_{\Gamma} = d_{\Gamma} - N_{\theta'} - N_{\theta}.$

Из таблицы 2.2 и (2.20) следует, что формальный индекс расходимости

$$d_{\Gamma} = d + 2 - (d+1)N_{\theta'} + N_{\theta} - N_v, \qquad (2.21)$$

реальный индекс расходимости

$$d'_{\Gamma} = (d+2)(1-N_{\theta'}) + N_{\theta} - N_v.$$
(2.22)

Таким образом, для любой размерности пространства *d* поверхностные расходимости могут присутствовать только в 1–неприводимых функциях 2 типов:

- ⟨θ'θ...θ⟩_{1-непр}, для которых N_{θ'} = 1, а N_θ является произвольным;
 для таких диаграмм d_Γ = 2, d'_Γ = 0. При этом из пункта 2 следует,
 что для любой функции верно неравенство N_{θ'} ≥ N_θ, поэтому существует только одна поверхностно расходящаяся функция, а именно
 ⟨θ'_αθ_β⟩_{1-непр}.
- ⟨θ'θ...θν...ν⟩_{1-непр}, для которых N_{θ'} = 1, N_θ = N_v = A, где A любое произвольное число; для данных диаграмм d_Γ = 1, d'_Γ = 0.
 Учитывая условие N_{θ'} ≥ N_θ, получаем, что существует только одна поверхностно расходящаяся функция, а именно ⟨θ'_αθ_βv_γ⟩_{1-непр}. При этом из (2.7) и (2.16а) следует, что диаграммы, отвечающие данному контрчлену, тождественно равны нулю из–за замкнутого цикла запаздывающих пропагаторов.
2.2.4. Уравнение Дайсона

Введем обозначение $\Gamma_2^{\alpha\beta} \equiv \langle \theta'_{\alpha} \theta_{\beta} \rangle_{1\text{-непр}}$. Данная функция удовлетворяет стандартному уравнению Дайсона, которое в импульсно–частотном представлении имеет вид

$$\Gamma_2^{\alpha\beta} = -i\omega \cdot \delta_{\alpha\beta} + \nu_0 \mathbf{p}_{\perp}^2 \cdot \delta_{\alpha\beta} + \nu_0 f_0 \cdot (\mathbf{pn})^2 \cdot \delta_{\alpha\beta} - \Sigma_{\alpha\beta}, \qquad (2.23)$$

где $\Sigma_{\alpha\beta}$ является оператором собственной энергии, диаграммное представление для которого показано на рисунке (2.5).

Рис. 2.5. Диаграммное представление оператора собственной энергии $\Sigma_{\alpha\beta}$.

Многоточием обозначены 2–, 3–, и прочие N–петлевые диаграммы. При этом, благодаря δ–корреляции по времени (см. (2.7)) и наличию запаздывающего пропагатора (2.16а), все многопетлевые диаграммы содержат замкнутые циклы таких пропагаторов и тождественно равны нулю. Например, для диаграмм, изображенных на рисунках 2.6а и 2.6б, аналитические выражения равны

$$I_{1} \propto \theta(t_{1}-t_{2})\theta(t_{2}-t_{3})\theta(t_{3}-t_{4})\delta(t_{1}-t_{3})\delta(t_{2}-t_{4}) \cong \theta(t_{3}-t_{2})\theta(t_{2}-t_{3}), \quad (2.24)$$
$$I_{2} \propto \theta(t_{1}-t_{2})\theta(t_{2}-t_{3})\theta(t_{3}-t_{4})\delta(t_{1}-t_{4})\delta(t_{2}-t_{3}) \cong \theta(t_{4}-t_{2})\theta(t_{2}-t_{4}). \quad (2.25)$$

Рис. 2.6. Некоторые многопетлевые диаграммы оператора собственной энергии Σ_{αβ}.

Поэтому оператор собственной энергии $\Sigma_{\alpha\beta}$ в (2.23) целиком представим в виде однопетлевого приближения

$$\Sigma_{\alpha\beta}(\omega,\mathbf{p}) = \int \frac{d\omega}{2\pi} \int \frac{d\mathbf{k}}{(2\pi)^d} \frac{D_v(k)}{-i\omega + \nu_0 \left[(\mathbf{p} + \mathbf{k})_{\perp}^2 + f_0 \left(p + k \right)_{\parallel}^2 \right]} \times J_{\alpha\beta}, \quad (2.26)$$

где индексная структура $J_{\alpha\beta}$ равна

$$J_{\alpha\beta} = V_{\alpha\,ab}(\mathbf{p})V_{d\,c\beta}(\mathbf{p}+\mathbf{k})P_{bd}(\mathbf{p}+\mathbf{k})n_an_c.$$
(2.27)

Здесь $V_{cab}(\mathbf{p})$ — вершина (2.12), $D_v(k)$ определено в (2.8); греческие буквы α , β и римские буквы a - d являются векторными индексами пропагаторов (2.6), (2.15a) и (2.15b) (суммирование по повторяющимся индексам подразумевается). Поскольку для процедуры ренормировки необходимо вычислить только расходящуюся часть (а индекс расходимости данной диаграмы $d_{\Gamma} = 2$), необходимо вычислить только член, пропорциональный \mathbf{p}^2 . При вычислениях необходимо учитывать, что

(1) Т. к. множитель D_v в корреляторе скорости (2.8) пропорционален $\delta(k_{\parallel})$, все члены, пропорциональные k_{\parallel} , окажутся равными нулю после интегрирования по импульсу **k**. (2) Как основное поле $\boldsymbol{\theta}$, так и вспомогательное поле $\boldsymbol{\theta}'$ являются поперечными: $\partial_{\beta}\theta_{\beta} = p_{\beta}\theta_{\beta} = 0$; $\partial_{\alpha}\theta'_{\alpha} = p_{\alpha}\theta'_{\alpha} = 0$. Поэтому все члены, пропорциональные p_{α} или p_{β} окажутся равны нулю после свертки с внешними полями $\boldsymbol{\theta}$ или $\boldsymbol{\theta}'$ (см. рисунок 2.5).

Это дает следующее выражение для индексной структуры диаграммы $\Sigma_{\alpha\beta}$:

$$\Sigma_{\alpha\beta} \propto J_{\alpha\beta} = \delta_{\alpha\beta} \cdot (\mathbf{pn})^2 + (\mathcal{A} - 1) \cdot (\mathbf{pn})^2 \cdot \frac{k_{\alpha}^{\perp} k_{\beta}^{\perp}}{k^2} - \mathcal{A}(\mathcal{A} - 1) \cdot (\mathbf{pk}) \cdot \frac{(\mathbf{pn}) k_{\beta} n_{\alpha}}{k^2}.$$
(2.28)

Теперь необходимо проинтегрировать выражение (2.26) по d-мерному импульсу **k** и частоте ω :

$$\Sigma_{\alpha\beta} = i^2 \cdot \int \frac{d\omega}{2\pi} \int \frac{d\mathbf{k}}{(2\pi)^d} \frac{1}{-i\omega + \nu_0 \left[(\mathbf{p} + \mathbf{k})_{\perp}^2 + f_0 \left(p + k \right)_{\parallel}^2 \right]} \times \times 2\pi \delta(k_{\parallel}) D_0 \cdot J_{\alpha\beta} / k_{\perp}^{d-1+\xi}.$$
(2.29)

Интегрирование по частоте является тривиальным: благодаря доопределению Θ -функции при совпадающих аргументах (см. приложение B.1)

$$\int \frac{d\omega}{2\pi} \frac{1}{-i\omega + \nu_0 \left[(\mathbf{p} + \mathbf{k})_{\perp}^2 + f_0 \left(p + k \right)_{\parallel}^2 \right]} = \frac{1}{2}.$$
 (2.30)

Для интегрирования по вектору **k** необходимо усреднить данное выражение по углам, а затем выполнить интегрирование по модулю $k \equiv |\mathbf{k}|$:

$$\int d\mathbf{k} \cdot f(\mathbf{k}) = S_d \cdot \int_m^\infty dk \cdot \langle f(\mathbf{k}) \rangle , \qquad (2.31)$$

где $S_d = 2\pi^{d/2}/\Gamma(d/2)$ является площадью поверхности единичной сферы в d-мерном пространстве; см. [21]. Таким образом необходимо усреднить по направлениям выражения $k_{\alpha}^{\perp}k_{\beta}^{\perp}/k^2$ и $(\mathbf{pk})k_{\beta}/k^2$. Начнем с первого из них. Поскольку k_i и k_j являются независимыми компонентами вектора **k**, их среднее значение

$$\left\langle \frac{k_i k_j}{k^2} \right\rangle \propto \delta_{ij}.$$
 (2.32)

Это означает, что среднее значение $\langle k_i^{\perp}k_j^{\perp}\rangle$ пропорционально той же матрице с единственным отличием – среднее значение отсутствующих элементов $\langle k_{\parallel}k_{\parallel}\rangle$ равно нулю. Поэтому

$$\left\langle \frac{k_i^{\perp} k_j^{\perp}}{k_{\perp}^2} \right\rangle \propto P_{ij}(\mathbf{n}),$$
 (2.33)

где $P_{ij}(\mathbf{n}) = \delta_{ij} - n_i n_j$ — поперечный проектор на единичный вектор **n**.

Для того чтобы найти коэффициент пропорциональности, необходимо рассмотреть поперечный проектор на вектор \mathbf{k}_{\perp} и его среднее значение:

$$\langle P_{ij}(\mathbf{k}_{\perp})\rangle = P_{ii}(\mathbf{k}_{\perp}) = d - 1.$$
 (2.34)

С другой стороны из (2.33) следует, что

$$\langle P_{ij}(\mathbf{k}_{\perp})\rangle = d - \left\langle \frac{k_i^{\perp}k_j^{\perp}}{k_{\perp}^2} \right\rangle = d - C \cdot (d-1).$$
 (2.35)

Таким образом из выражений (2.34) и (2.35) находим констант
уC: C = 1/(d-1),т. е.

$$\left\langle \frac{k_i^{\perp} k_j^{\perp}}{k_{\perp}^2} \right\rangle = \frac{P_{ij}(\mathbf{n})}{d-1}.$$
(2.36)

Записывая выражение (2.36) через индексы α , β , сворачивая правую и левую части с импульсом p_{α} и учитывая поперечность поля θ' (см. пункт 2),

находим, что среднее значение $(\mathbf{pk})k_{\beta}/k^2$ равно

$$\left\langle \frac{(\mathbf{pk})k_{\beta}}{k^2} \right\rangle = \mathbf{p}_{\alpha} \cdot P_{\beta\alpha}(\mathbf{n}) \cdot \frac{1}{d-1} = -\frac{(\mathbf{pn})}{d-1} \cdot n_{\beta}.$$
 (2.37)

Таким образом, воспользовавшись (2.28), (2.31), (2.36) и (2.37), можно выполнить интегрирование выражения (2.29), в результате

$$\Sigma_{\alpha\beta} = -\frac{1}{2} D_0 \frac{S_{d-1}}{(2\pi)^{d-1}} \cdot \int_m^\infty dk_\perp / k_\perp^{1+\xi} \times \\ \times \left[\delta_{\alpha\beta} \cdot (\mathbf{pn})^2 + (\mathcal{A} - 1) \cdot (\mathbf{pn})^2 \cdot \frac{P_{\alpha\beta}(\mathbf{n})}{d-1} + \mathcal{A}(\mathcal{A} - 1) \cdot (\mathbf{pn})^2 \cdot \frac{n_\alpha n_\beta}{d-1} \right] =$$

$$= -\frac{1}{2} \cdot D_0 \cdot C_{d-1} \cdot \left[\frac{d-2+\mathcal{A}}{d-1} \cdot \delta_{\alpha\beta} + \frac{(\mathcal{A}-1)^2}{d-1} \cdot n_\alpha n_\beta \right] \cdot (\mathbf{pn})^2 \cdot \frac{m^{-\xi}}{\xi}, \quad (2.38)$$
где $C_{d-1} \equiv S_{d-1}/(2\pi)^{d-1}, \text{ a } D_0$ определено в (1.15).

2.3. МГД модель Крейчнана (модель №2)

2.3.1. Постановка задачи. Функционал, диаграммная техника

Рассмотрим задачу магнитной гидродинамики, описываемую уравнениями (1.5) и (1.9), а именно

$$\partial_t \theta_i + \partial_k \left(v_k \theta_i - v_i \theta_k \right) = \nu_0 \partial^2 \theta_i + f_i, \qquad (2.39)$$

где ν_0 — коэффициент диффузии, а f_i — поперечная гауссова случайная сила с нулевым средним и заданной парной корреляционной функцией:

$$\langle f_i(t, \mathbf{x}) f_k(t', \mathbf{x}') \rangle = \delta(t - t') C_{ik}(\mathbf{r}/L).$$
 (2.40)

Здесь $\mathbf{r} = \mathbf{x} - \mathbf{x}', r = |\mathbf{r}|$, параметр $L \equiv M^{-1}$ является внешним масштабом турбулентности, связанным со сторонней силой, а C_{ik} — безразмерные функции, конечные при $r/L \to 0$ и убывающие при $r/L \to \infty$. Поле скорости $\mathbf{v}(x)$ выбирается гауссовым, с нулевым временем корреляции, статистически изотропным и несжимаемым, с парной корреляционной функцией (1.3):

$$\langle v_i(x)v_j(x')\rangle = \delta(t-t') \int_{k>m} \frac{d\mathbf{k}}{(2\pi)^d} P_{ij}(\mathbf{k}) D_0 \frac{1}{k^{d+\xi}} e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{x}')}.$$
 (2.41)

В соответствии с разделом 2.1, данная стохастическая задача эквивалентна квантовополевой модели для набора из 3 полей $\Phi = \{ \boldsymbol{\theta}, \boldsymbol{\theta'}, \mathbf{v} \}$ с функционалом действия

$$S(\Phi) = \theta'_i \left[-\partial_t \theta_i + \nu_0 \partial^2 \theta_i - \partial_k (v_k \theta_i - v_i \theta_k) \right] + \\ + \theta'_i D_\theta \theta'_k / 2 + -v_i D_v^{-1} v_k / 2, \qquad (2.42)$$

где первые 4 члена представляют собой действие (2.2) для стохастической задачи (2.39), (2.40) при фиксированной **v**, а последний член есть гауссово усреднение по **v**.

Такой модели соответствует тройная вершина

$$V_{c\,ab} = \left(\partial_a \theta_c'\right) \left(v_a \theta_c - v_c \theta_a\right), \qquad (2.43)$$

а также три затравочных пропагатора: $\langle \theta_i \theta'_k \rangle_0$, $\langle \theta_i \theta_k \rangle_0$ и $\langle v_i v_k \rangle_0$, диаграммное представление для которых совпадает с моделью №1 и представлено на рисунках (2.1) — (2.4).

В импульсно–частотном представлении вершине соответствует множитель

$$V_{c\,ab} = i\delta_{bc} \ p_a^{\theta'} - i\delta_{ac} \ p_b^{\theta'}, \qquad (2.44)$$

где $p^{\theta'}$ — импульс поля θ' .

Из действия (2.42) следует, что в импульсно-частотном представлении пропагаторам отвечают выражения

$$\langle \theta_i \theta_k' \rangle_0 = \frac{P_{ik}(\mathbf{k})}{-i\omega + \nu_0 \mathbf{k}^2},$$
 (2.45a)

$$\langle \theta_i \theta_k \rangle_0 = \frac{C_{ik}(\mathbf{k})}{\omega^2 + \nu_0^2 \mathbf{k}^4},$$
 (2.45b)

$$\langle v_i v_k \rangle_0 = D_0 \cdot \frac{P_{ik}(\mathbf{k})}{k^{d+\xi}},$$
(2.45c)

где $C_{ik}(\mathbf{k})$ является фурье-образом функции $C_{ik}(\mathbf{r}/L)$ из (2.40).

В импульсно-временном представлении пропагаторам (2.45a) и (2.45b) отвечают выражения

$$\langle \theta_i \theta'_k \rangle_0 = P_{ik}(\mathbf{k}) \cdot \Theta(t - t') \exp\left\{-(t - t')\epsilon_{\mathbf{k}}\right\},$$
 (2.46a)

$$\langle \theta_i \theta_k \rangle_0 = \{ C_{ik}(\mathbf{k})/2\epsilon_{\mathbf{k}} \} \cdot \exp\{ -|t - t'|\epsilon_{\mathbf{k}} \},$$
 (2.46b)

где $\epsilon_{\mathbf{k}} = \nu_0 \mathbf{k}^2$. Это означает, что также, как и в модели №1, пропагатор полей $\langle \theta_i \theta'_k \rangle_0$ является запаздывающим.

2.3.2. Канонические размерности

Канонические размерности полей и параметров модели (2.42) представлены в таблице 2.2, включая ренормированные аналоги, которые будут введены позже. Также как и в модели №1, любая величина имеет две независимых размерности — частотную и импульсную, т. е.

$$[F] \sim [T]^{-d_F^{\omega}} [L]^{-d_F^k}, \qquad (2.47)$$

где T и L являются временным и пространственным масштабами.

F	θ'	θ	V	M, m, μ, Λ	$ u, u_0$	\hat{g}_0,g_0	\hat{g},g
d_F^ω	1/2	-1/2	1	0	1	0	0
d_F^k	d	0	-1	1	-2	ξ	0
d_F	d+1	-1	1	1	0	ξ	0

Таблица 2.2. Канонические размерности полей и параметров в модели (2.42).

Из таблицы 2.2 следует, что данная модель является логарифмической (константа взаимодействия $g_0 \sim [L]^{-\xi}$ безразмерная) при $\xi = 0$, т. о. УФ-расходимости функций Грина проявляются в виде полюсов по ξ .

Как и в модели №1, верны три утверждения раздела 2.2.3, а также формулы (2.21) и (2.22).

Таким образом для любой размерности пространства d существует только одна нетривиальная поверхностно расходящаяся функция — $\langle \theta'_{\alpha} \theta_{\beta} \rangle_{1-\text{непр}}.$

2.3.3. Уравнение Дайсона

Как и в разделе 2.2.4, введем обозначение $\Gamma_2^{\alpha\beta} \equiv \langle \theta'_{\alpha}\theta_{\beta} \rangle_{1-\text{непр}}$. Данная функция удовлетворяет стандартному уравнению Дайсона, которое, учитывая поперечность полей $\boldsymbol{\theta}$ и $\boldsymbol{\theta}'$, в импульсно–частотном представлении имеет вид

$$\Gamma_2^{\alpha\beta} P_{\alpha\beta}(\mathbf{p}) = \left[-i\omega + \nu_0 p^2\right] \cdot P_{\alpha\beta}(\mathbf{p}) - \Sigma_{\alpha\beta}, \qquad (2.48)$$

где $\Sigma_{\alpha\beta}$ является оператором собственной энергии, диаграммное представление для которого показано на рисунке (2.7).

Рис. 2.7. Диаграммное представление оператора собственной энергии $\Sigma_{\alpha\beta}$. Как и в разделе 2.2.4, благодаря δ -корреляции по времени и наличию запаздывающего пропагатора (2.46а), все многопетлевые диаграммы тождественно равны нулю. Поэтому оператор собственной энергии дается своим однопетлевым приближением *точно*.

В однопетлевом приближении оператор собственной энергии $\Sigma_{\alpha\beta}$ имеет вид

$$\Sigma_{\alpha\beta}(\omega, \mathbf{p}) = D_0 \int \frac{d\omega}{2\pi} \int \frac{d\mathbf{k}}{(2\pi)^d} \frac{P_{ac}(\mathbf{k})}{k^{d+\xi}} \frac{P_{bd}(\mathbf{p} + \mathbf{k})}{-i\omega + \nu_0(\mathbf{p} + \mathbf{k})^2} \cdot V_{\alpha\,ab}(\mathbf{p}) \cdot V_{d\,c\beta}(\mathbf{p} + \mathbf{k}), \qquad (2.49)$$

где $V_{c\,ab}$ — вершина (2.44); греческие буквы α , β и римские буквы a - dявляются векторными индексами пропагаторов (2.45a) — (2.45c).

Интеграл по частоте

$$\int \frac{d\omega}{2\pi - i\omega + \nu(\mathbf{p} + \mathbf{k})^2} = \frac{1}{2}$$
(2.50)

в силу доопределения Θ–функции при совпадающих аргументах (см. приложение B.1).

Взяв след от (2.48), получаем скалярное уравнение

$$\Gamma_2(\omega, \mathbf{p}) = -i\omega + \nu_0 k^2 - \Sigma(\omega, \mathbf{p}), \qquad (2.51)$$

где

$$\Sigma(\omega, \mathbf{p}) \equiv \Sigma_{\alpha\alpha}(\omega, \mathbf{p})/(d-1)$$
 (2.52)

(след поперечного проектора $P_{ii}(\mathbf{k}) = (d-1)$).

Обозначим за $J_{\alpha\alpha}$ индексную структуру оператора $\Sigma_{\alpha\alpha}$:

$$J_{\alpha\alpha} = V_{\alpha ab}(\mathbf{p}) V_{d c\alpha}(\mathbf{p} + \mathbf{k}) P_{bd}(\mathbf{p} + \mathbf{k}) P_{ac}(\mathbf{k}).$$
(2.53)

Необходимо отметить, что поперечность вершины $V(\Phi)$ сильно упрощает вычисления:

$$p_c V_{c\,ab}(\mathbf{p}) = p_c (p_a \delta_{bc} - p_b \delta_{ac}) = 0.$$

$$(2.54)$$

Учитывая, что

$$P_{bd}(\mathbf{p}+\mathbf{k}) \cdot V_{d\,c\alpha}(\mathbf{p}+\mathbf{k}) = \left(\delta_{bd} - \frac{(p+k)_b(p+k)_d}{(p+k)^2}\right) \cdot V_{dc\,\alpha}(\mathbf{p}+\mathbf{k}), \quad (2.55)$$

получаем, что действие поперечного проектора сводится с δ -символу:

$$P_{bd}(\mathbf{p} + \mathbf{k}) \cdot V_{d\,c\alpha}(\mathbf{p} + \mathbf{k}) = \delta_{bd} \cdot V_{d\,c\alpha}(\mathbf{p} + \mathbf{k}).$$
(2.56)

Таким образом выражение для $J_{\alpha\alpha}$ сильно упрощается:

$$J_{\alpha\alpha} = V_{\alpha \,ab}(\mathbf{p}) V_{b \,c\alpha}(\mathbf{p}) P_{ac}(\mathbf{k}). \tag{2.57}$$

Теперь необходимо проинтегрировать данное выражение по импульсу ${f k}$ с учетом множителей $D_0/(2\pi)^d,\,1/(d-1),\,1/2$ и $1/k^{d+\xi}$:

$$\Sigma = \Sigma_{\alpha\alpha} / (d-1) = \frac{1}{2} \cdot \frac{D_0}{d-1} \int \frac{d\mathbf{k}}{(2\pi)^d} \cdot \frac{1}{k^{d+\xi}} \times J_{\alpha\alpha}.$$
 (2.58)

Для этого необходимо воспользоваться способом, описанным в разделе 2.2.4 (формула (2.31)) — необходимо усреднить подинтегральное выражение по углам, а затем выполнить интегрирование по модулю $k \equiv |\mathbf{k}|$.

Вычислим среднее значение поперечного проектора $P_{ac}(\mathbf{k})$ по направлениям в d-мерном пространстве. Для этого рассмотрим усреднение по направлениям единичного вектора **n**:

$$\langle n_{i_1} \rangle_{\mathbf{n}} = 0, \tag{2.59a}$$

$$\langle n_{i_1} n_{i_2} n_{i_3} \rangle_{\mathbf{n}} = 0,$$
 (2.59b)

аналогично среднее от произведения любого нечетного числа сомножителей равно нулю;

$$\langle n_{i_1} n_{i_2} \rangle_{\mathbf{n}} = C \delta_{i_1 i_2}. \tag{2.60}$$

Взяв след от обеих частей равенства, находим константу С:

$$C = \frac{1}{d},\tag{2.61}$$

т. о.

$$\langle n_{i_1} n_{i_2} \rangle_{\mathbf{n}} = \frac{\delta_{i_1 i_2}}{d}.$$
 (2.62)

Рассмотрим произвольные вектора а и b:

$$\langle a_i b_j \rangle_{\mathbf{n}} = \delta_{ij} \cdot \widetilde{C}. \tag{2.63}$$

Взяв след от обеих частей равенства (2.63), получаем, что

$$\langle a_i b_j \rangle_{\mathbf{n}} = \delta_{ij} \cdot \frac{\langle (\mathbf{ab}) \rangle}{d}.$$
 (2.64)

При a = b из (2.64) следует, что

$$\left\langle (\mathbf{pa})^2 \right\rangle_{\mathbf{n}} = \frac{p^2 a^2}{d}.$$
 (2.65)

С другой стороны,

$$\left\langle (\mathbf{pa})^2 \right\rangle_{\mathbf{n}} = p^2 a^2 \left\langle \cos^2 \theta \right\rangle_{\mathbf{n}},$$
 (2.66)

т. е.

$$\left\langle \cos^2 \theta \right\rangle_{\mathbf{n}} = \frac{1}{d}.$$
 (2.67)

Рассмотрим поперечный проектор $P_{ij}(\mathbf{k})$. Из (2.67) следует, что

$$\langle P_{ij}(\mathbf{k})p_ip_j\rangle_{\mathbf{n}} = \langle p^2 \left(1 - \cos^2\theta\right)\rangle_{\mathbf{n}} = p^2 \cdot \left(1 - \frac{1}{d}\right) = p^2 \cdot \frac{d-1}{d},$$
 (2.68)

т. о.

$$\langle P_{ij}(\mathbf{k})\rangle = \delta_{ij} \cdot \frac{(d-1)}{d}.$$
 (2.69)

Возвращаясь к выражению (2.58), находим, что

$$\Sigma = -\frac{1}{2} \cdot \frac{D_0}{d-1} \frac{S_d}{(2\pi)^d} \cdot \delta_{ac} \cdot \frac{(d-1)}{d} \cdot V_{\alpha \, ab}(\mathbf{p}) V_{b \, c\alpha}(\mathbf{p}) \int_m^\infty \frac{dk}{k^{1+\xi}} =$$

$$= -\frac{D_0}{2d} \cdot \frac{S_d}{(2\pi)^d} \cdot V_{\alpha \, ab}(\mathbf{p}) V_{b \, a\alpha}(\mathbf{p}) \cdot \int_m^\infty \frac{dk}{k^{1+\xi}}.$$
 (2.70)

Из явных вычислений следует, что

$$V_{\alpha \,ab}(\mathbf{p})V_{b\,a\alpha}(\mathbf{p}) = p^2 \cdot (d-1), \qquad (2.71)$$

т. о. в результате получаем следующий ответ:

$$\Sigma = -p^2 \cdot D_0 \frac{(d-1)}{2d} \cdot C_d \cdot \frac{m^{-\xi}}{\xi}, \qquad (2.72)$$

где $C_d \equiv S_d/(2\pi)^d$, а D_0 определено в (1.4).

2.4. Перенос пассивного векторного поля полем скорости, подчиняющимся стохастическому уравнению Навье–Стокса (модель №3)

2.4.1. Постановка задачи

Рассмотрим уравнение конвекции–диффузии, аналогичное модели №1 (см. (1.7) и (2.3)), а именно

$$\partial_t \theta_i + \partial_k \left(v_k \theta_i - \mathcal{A}_0 \ v_i \theta_k \right) + \partial_i \mathcal{P} = \kappa_0 \partial^2 \theta_i + f_i, \qquad (2.73)$$

где κ_0 — коэффициент диффузии, f_i — поперечная гауссова случайная сила с нулевым средним и заданной парной корреляционной функцией:

$$\langle f_i(x) f_k(x') \rangle = \delta(t - t') C_{ik}(\mathbf{r}/L),$$
 (2.74)

а поле скорости **v** подчиняется стохастическому уравнению Навье– Стокса (1.16), а именно

$$\partial_t v_i + (v_k \partial_k) v_i = \nu_0 \partial^2 v_i - \partial_i \wp + \eta_i.$$
(2.75)

Здесь \wp и η_i — удельные по массе давление и поперечная случайная сила. Для η предполагается гауссово распределение с нулевым средним и корреляционной функцией:

$$\left\langle \eta_i(x)\eta_j(x')\right\rangle = \frac{\delta(t-t')}{(2\pi)^d} \int_{k\ge m} d\mathbf{k} \, P_{ij}(\mathbf{k}) \, d_\eta(k) \, \exp\left[\mathrm{i}\mathbf{k} \left(\mathbf{x}-\mathbf{x}'\right)\right], \quad (2.76)$$

где $P_{ij}(\mathbf{k}) = \delta_{ij} - k_i k_j / k^2$ — поперечный проектор, а функция $d_{\eta}(k)$ определена в (1.18). Величина $m = 1/\widetilde{L}$, обратная внешнему масштабу турбулентности \widetilde{L} , обеспечивает ИК-регуляризацию. Для простоты мы будем отождествлять данный внешний масштаб \widetilde{L} , связанный с полем скорости, с внешним масштабом случайной силы L, введенным в (2.74).

Как пассивное поле $\boldsymbol{\theta}$, так и перемешивающее поле \mathbf{v} являются поперечными, $\partial_i \theta_i = \partial_i v_i = 0$, а члены $\partial \mathcal{P}$ и $\partial \wp$ необходимы для согласования данных условий поперечности с динамикой, подробнее см. приложение А.3.

2.4.2. Квантово-полевая формулировка

В соответствии с разделом 2.1, данная стохастическая задача эквивалентна квантовополевой модели для набора из 4 полей $\Phi = \{ \boldsymbol{\theta}, \boldsymbol{\theta}', \mathbf{v}, \mathbf{v}' \}$ с функционалом действия

$$S(\Phi) = S_v(\mathbf{v}, \mathbf{v}') + \theta'_i D_\theta \theta'_k / 2 +$$
$$+ \theta'_k \left[-\partial_t \theta_k - (v_i \partial_i) \theta_k + \mathcal{A}_0(\theta_i \partial_i) v_k + \kappa_0 \partial^2 \theta_k \right], \qquad (2.77)$$

где D_{θ} — корреляционная функция (2.74), а S_v — функционал действия для задачи (2.75) — (2.76):

$$S_{v}(\mathbf{v}',\mathbf{v}) = v_{i}'D_{v}v_{k}'/2 + v_{k}'\left[-\partial_{t}v_{k} - (v_{i}\partial_{i})v_{k} + \nu_{0}\partial^{2}v_{k}\right].$$
(2.78)

В действии (2.78) D_v — корреляционная функция (2.76) случайной силы η_i . Данной модели соответствует 2 тройных вершины:

$$V_{c\,ab}^{\theta} = \left(\partial_a \,\theta_c'\right) \left(v_a \theta_c - \mathcal{A}_0 \,v_c \theta_a\right) \tag{2.79}$$

И

$$V_{c\,ab}^{v} = \left(\partial_a \, v_c'\right) \left(v_a v_c + v_c v_a\right),\tag{2.80}$$

а также четыре затравочных пропагатора: $\langle \theta_i \theta'_k \rangle_0$, $\langle \theta_i \theta_k \rangle_0$, $\langle v_i v'_k \rangle_0$ и $\langle v_i v_k \rangle_0$ (линии $\langle \theta'_i \theta'_k \rangle_0$ и $\langle v'_i v'_k \rangle_0$ тождественно равны нулю), диаграммное представление для которых представлено на рисунках (2.8) — (2.13):

Рис. 2.8. Диаграммное представление тройной вершины V^{θ}_{cab} .

Рис. 2.9. Диаграммное представление тройной вершины $V^v_{c\,ab}$.

Рис. 2.10. Диаграммное представление пропагатора $\langle \theta_i \theta'_k \rangle_0$.

i _____ k

Рис. 2.11. Диаграммное представление пропагатора $\langle \theta_i \theta_k \rangle_0$.

Рис. 2.12. Диаграммное представление пропагатора $\langle v_i v'_k \rangle_0$.

i ~~~~~ k

Рис. 2.13. Диаграммное представление пропагатора $\langle v_i v_k \rangle_0$.

Здесь и далее перечеркнутый конец соответствует полю $\boldsymbol{\theta}',$ конец без черты — полю $\boldsymbol{\theta}.$

В импульсно-частотном представлении вершинам соответствуют множители

$$V_{c\,ab}^{\theta} = i\delta_{bc} \ p_a^{\theta'} - i\mathcal{A}_0 \ \delta_{ac} \ p_b^{\theta'}, \qquad (2.81)$$

$$V_{c\,ab}^{v} = i\delta_{bc} \ p_{a}^{v'} + i\delta_{ac} \ p_{b}^{v'}, \tag{2.82}$$

где $p^{\theta'}$ — импульс поля $\boldsymbol{\theta}'$, а $p^{v'}$ — импульс поля \mathbf{v}' .

Пропагаторам в импульсно-частотном представлении отвечают выражения

$$\langle \theta_i \theta_k' \rangle_0 = \frac{P_{ik}(\mathbf{k})}{-i\omega + \kappa_0 \mathbf{k}^2},$$
(2.83a)

$$\langle \theta_i \theta_k \rangle_0 = \frac{C_{ik}(\mathbf{k})}{\omega^2 + \kappa_0^2 \mathbf{k}^4},$$
 (2.83b)

$$\langle v_i v'_k \rangle_0 = \frac{P_{ik}(\mathbf{k})}{-i\omega + \nu_0 \mathbf{k}^2},$$
 (2.83c)

$$\langle v_i v_k \rangle_0 = \frac{P_{ik}(\mathbf{k}) d_\eta(k)}{\omega^2 + \nu_0^2 \mathbf{k}^4}, \qquad (2.83d)$$

где $C_{ik}(\mathbf{k})$ является фурье-образом функции $C_{ik}(\mathbf{r}/L)$ из (2.74), а $d_{\eta}(k)$ определено в (1.18).

В импульсно–временном представлении пропагаторам (2.83a) и (2.83c) отвечают выражения

$$\langle \theta_i \theta'_k \rangle_0 = P_{ik}(\mathbf{k}) \cdot \Theta(t - t') \exp\left\{-(t - t')\epsilon^{\theta}_{\mathbf{k}}\right\},$$
 (2.84a)

$$\langle v_i v'_k \rangle_0 = P_{ik}(\mathbf{k}) \cdot \Theta(t - t') \exp\left\{-(t - t')\epsilon^v_{\mathbf{k}}\right\},$$
 (2.84b)

где $\epsilon_{\mathbf{k}}^{\theta} = \kappa_0 \mathbf{k}^2$, а $\epsilon_{\mathbf{k}}^{v} = \nu_0 \mathbf{k}^2$. Выражения (2.84) означают, что пропагаторы $\langle \theta_i \theta'_k \rangle_0$ и $\langle v_i v'_k \rangle_0$ являются запаздывающими.

2.4.3. Канонические размерности

Канонические размерности полей и параметров модели (2.77) представлены в таблице 2.3, включая ренормированные аналоги, которые будут введены позже. Вычисления основываются на том, что каждый член функционала действия должен быть безразмерным, и для данной задачи находятся в приложении В.3.

Роль констант связи играют три параметра: $g_0 \equiv D_0/\nu_0^3$, \mathcal{A}_0 и безразмерная величина $u_0 = \kappa_0/\nu_0$, являющаяся аналогом обратного числа Прандтля в скалярном случае. Как и в моделях №1 и №2, любая величина имеет две независимых размерности — частотную и импульсную, т. е.

$$[F] \sim [T]^{-d_F^{\omega}} [L]^{-d_F^k}, \qquad (2.85)$$

где T и L являются временным и пространственным масштабами.

F	θ'	θ	\mathbf{v}'	v	M, m, μ, Λ	$ u, u_0, \kappa, \kappa_0$	$\mathcal{A},\mathcal{A}_0$	u, u_0	\hat{g}_0,g_0	\hat{g},g
d_F^ω	1/2	-1/2	-1	1	0	1	0	0	0	0
d_F^k	d	0	d+1	-1	1	-2	0	0	ξ	0
d_F	d + 1	-1	d-1	1	1	0	0	0	ξ	0

Таблица 2.3. Канонические размерности полей и параметров в модели (2.77).

Из таблицы 2.3 следует, что данная модель является логарифмической (константа взаимодействия $g_0 \sim [L]^{-\xi}$ является безразмерной) при $\xi = 0$; константы взаимодействия \mathcal{A}_0 и u_0 являются безразмерными при любых d и ξ . Таким образом УФ–расходимости функций Грина проявляются в виде полюсов по ξ .

Аналогично разделу 2.2.3, канонические размерности произвольных 1-неприводимых функций Грина Г = $\langle \Phi \dots \Phi \rangle_{1-\text{непр}}$ даются соотношением

$$d_{\Gamma} = d + 2 - \sum_{\Phi} N_{\Phi} d_{\Phi} = d + 2 - N_{\theta'} d_{\theta'} - N_{\theta} d_{\theta} - N_{v} d_{v} - N_{v'} d_{v'}, \quad (2.86)$$

где $N_{\Phi} = \{N_{\theta}, N_{\theta'}, N_{v}, N_{v'}\}$ является числом полей, входящих в данную функцию Грина.

Поверхностные УФ–расходимости, для устранения которых необходимо введение контрчленов, присутствуют только в тех функциях Γ , для которых «формальный индекс расходимости» d_{Γ} является целым неотрицательным числом. Кроме того, как и в разделе 2.2.3, необходимо учитывать следующие замечания:

(1) Для любой динамической модели вида (2.77), 1-неприводимые функции Грина, не содержащие дополнительных полей θ' или \mathbf{v}' (т. е. те,

для которых $N_{\theta'} = N_{v'} = 0$), содержат замкнутые циклы запаздывающих пропагаторов (2.84a) либо (2.84b), и таким образом обращаются в нуль.

(2) Для любой 1-неприводимой функции Грина $N_{\theta'} - N_{\theta} = 2N_0$, где $N_0 \ge 0$ является числом затравочных пропагаторов $\langle \theta \theta \rangle_0$, входящих в любую из ее диаграмм. Поскольку вершина V_{cab}^v (2.80) содержит два поля v, линии $\langle vv' \rangle$ «ветвятся» и для полей v и v' подобное соотношение не верно.

(3) Используя условия поперечности полей $\boldsymbol{\theta}$ и \mathbf{v} , а именно $\partial_i v_i = \partial_i \theta_i = 0$, можно перебросить производную в вершине $-\theta'_k(v_i \partial_i)\theta_k + \mathcal{A}_0 \, \theta'_k(\theta_i \partial_i)v_k$ на поле θ'_k . Таким образом в любой 1-неприводимой диаграмме всегда можно перенести производную на «внешнее» поле θ'_k , уменьшив таким образом индекс расходимости на величину $N_{\theta'}$; в свою очередь в вершине $v'_k(v_i \partial_i)v_k$ можно перебросить производную на поле v', что приводит к уменьшению индекса расходимости на величину $N_{v'}$; поля $\boldsymbol{\theta}$ и \mathbf{v} целиком поместить под производную не удается. Таким образом $d'_{\Gamma} = d_{\Gamma} - N_{\theta'} - N_{v'}$. Поля θ'_k и v'_k при этом будут входить в контрчлен только в виде производных $\partial_i \theta'_k$, $\partial_i v'_k$.

Из таблицы 2.3 и (2.86) следует, что формальный индекс расходимости

$$d_{\Gamma} = d + 2 - (d+1)N_{\theta'} + N_{\theta} - N_v - (d-1)N_{v'}, \qquad (2.87)$$

а реальный индекс расходимости

$$d_{\Gamma}' = (d+2)(1-N_{\theta'}) + N_{\theta} - N_v - dN_{v'}.$$
(2.88)

Таким образом, для любой размерности пространства *d* поверхностные расходимости могут присутствовать в 1–неприводимых функциях 3 типов:

• $\langle \theta' \theta \dots \theta \rangle_{1-\text{непр}}$, для которых $N_{\theta'} = 1, N_{v'} = N_v = 0$, а N_{θ} является про-

извольным; для таких диаграмм $d_{\Gamma} = 2$, $d'_{\Gamma} = 0$. При этом из пункта 2 следует, что для любой функции верно неравенство $N_{\theta'} \ge N_{\theta}$, т. о. существует только одна поверхностно расходящаяся функция, а именно $\langle \theta'_{\alpha} \theta_{\beta} \rangle_{1-\text{непр}}$;

- $\langle v'_{\alpha}v_{\beta}\rangle_{1-\text{непр}}$, для которой $N_{v'} = N_v = 1$, $N_{\theta'} = N_{\theta} = 0$; для данной диаграммы $d_{\Gamma} = 2$, $d'_{\Gamma} = 1$;
- $\langle v'_{\alpha}v_{\beta}v_{\gamma}\rangle_{1\text{-непр}}$, для которой $N_{v'} = 1$, $N_v = 2$, $N_{\theta'} = N_{\theta} = 0$; для данной диаграммы $d_{\Gamma} = 1$, $d'_{\Gamma} = 0$. Покольку индекс расходимости $d_{\Gamma} = 1$, контрчлен должен быть пропорционален $\partial_i v_k$, при этом в силу пункта 3 любой контрчлен должен иметь по одной пространственной производной на каждое вспомогательное поле. Это требование исключает контрчлен $v'\partial_t v$, вследствие чего исключается также и структура $v'(v\partial)v$, поскольку в силу галилеевой симметрии они должны входить в контрчлены только в галилеево–инвариантных комбинациях $v'\nabla_t v$ (подробнее см. приложение A.1.1).
- $\langle \theta'\theta \dots \theta v \dots v \rangle_{1-\text{непр}}$, для которых $N_{\theta'} = 1$, $N_{\theta} = N_v = A$, где A любое произвольное число; для данных диаграмм $d_{\Gamma} = 1$, $d'_{\Gamma} = 0$. При этом в силу условия $N_{\theta'} \geq N_{\theta}$ оказывается, что существует только одна поверхностно расходящаяся функция, а именно $\langle \theta'_{\alpha}\theta_{\beta}v_{\gamma}\rangle_{1-\text{непр}}$.

2.4.4. Уравнение Дайсона для функции $\langle v'_{\alpha}v_{\beta} angle_{1-непр}$

Введем обозначение $\Gamma_{2,v}^{\alpha\beta} \equiv \langle v'_{\alpha}v_{\beta} \rangle_{1-\text{непр}}$. Данная функция удовлетворяет стандартному уравнению Дайсона, которое в импульсно–частотном представлении имеет вид

$$\Gamma_{2,v}^{\alpha\beta}P_{\alpha\beta}(\mathbf{p}) = [-i\omega + \nu_0 p^2]P_{\alpha\beta}(\mathbf{p}) - \Sigma_{\alpha\beta}^v, \qquad (2.89)$$

где $\Sigma_{\alpha\beta}^{v}$ является оператором собственной энергии, диаграммное представления для которого показано на рисунке (2.14).

Рис. 2.14. Диаграммное представление оператора собственной энергии $\Sigma_{\alpha\beta}^{v}$.

Как и в разделах 2.2.4 и 2.3.3, благодаря δ–корреляции по времени и наличию запаздывающего пропагатора (2.84b), все многопетлевые диаграммы тождественно равны нулю. Поэтому оператор собственной энергии дается своим однопетлевым приближением *точно*.

Взяв след от (2.89), получаем скалярное уравнение

$$\Gamma_{2,v}(\omega, \mathbf{p}) = -i\omega + \nu_0 p^2 - \Sigma^v(\omega, \mathbf{p}), \qquad (2.90)$$

где

$$\Sigma^{v}(\omega, \mathbf{p}) \equiv \Sigma^{v}_{\alpha\alpha}(\omega, \mathbf{p})/(d-1).$$
(2.91)

Обозначим за $J^v_{\alpha\alpha}$ индексную структуру оператора $\Sigma^v_{\alpha\alpha}$:

$$J_{\alpha\alpha}^{v} = V_{\alpha \,ab}^{v}(\mathbf{p})V_{d \,c\alpha}^{v}(\mathbf{p}+\mathbf{k})P_{bd}(\mathbf{p}+\mathbf{k})P_{ac}(\mathbf{k}), \qquad (2.92)$$

тогда

$$\Sigma_{\alpha\alpha}^{v} = i^{2} \cdot \int \frac{d\omega}{2\pi} \int \frac{d\mathbf{k}}{(2\pi)^{d}} \cdot \frac{1}{(-i\omega + \nu_{0} \left[\mathbf{p} + \mathbf{k}\right]^{2})} \cdot \frac{d_{\eta}(k)}{(\omega^{2} + \nu_{0}^{2} \mathbf{k}^{4})} \times J_{\alpha\alpha}^{v}, \quad (2.93)$$

где $d_{\eta}(k) = D_0/k^{4-d-\xi}$, а $D_0 = \hat{g}_0 \nu_0^3$ (см. раздел 1.5). В отличии от раздела 2.3.3, вершина (2.80) не является поперечной, что делает вычисления более громоздкими.

Как и в разделах 2.2.4 и 2.3.3, индекс расходимости данной диаграммы $d_{\Gamma} = 2$, поэтому необходимо вычислить только члены, пропорциональные p^2 .

Из явных вычислений следует, что

$$J_{\alpha\alpha}^{v} = -p \cdot \left\{ 2k\cos\phi \cdot \sin^{2}\phi \right\} +$$

$$+p^{2} \cdot \left\{\sin^{2}\phi \cdot (d-2+\cos^{2}\phi)+2\sin^{2}\phi \cdot \cos^{2}\phi-\sin^{4}\phi\right\}+O\left(p^{3}\right), \quad (2.94)$$

где ϕ — угол между векторами **р** и **k**, *p* и *k* — модули векторов **р** и **k**; в силу того, что $d_{\Gamma} = 2$, члены порядка p^3 и выше не требуются.

Интегрируя (2.93) по частоте, получаем

$$\Sigma_{\alpha\alpha}^{v} = \frac{i^{2}}{2\nu_{0}^{2}} \cdot \int \frac{d\mathbf{k}}{(2\pi)^{d}} \cdot \frac{d_{\eta}(k)}{k^{2} \left[k^{2} + \left(\mathbf{p} + \mathbf{k}\right)^{2}\right]} \times J_{\alpha\alpha}^{v}.$$
 (2.95)

Учитывая, что

$$\frac{1}{k^2 + (\mathbf{p} + \mathbf{k})^2} \simeq \frac{1}{2k^2} - \frac{\cos\phi}{2k^3} \cdot p + O\left(p^2\right)$$
(2.96)

получаем, что

$$\Sigma_{\alpha\alpha}^{v} = -\frac{1}{4\nu_0^2} \cdot \int \frac{d\mathbf{k}}{(2\pi)^d} \cdot \frac{d_{\eta}(k)}{k^4} \times \widetilde{J}_{\alpha\alpha}^{v}, \qquad (2.97)$$

где

$$\widetilde{J}_{\alpha\alpha}^{v} = p^{2} \cdot \left\{ \sin^{2} \phi \cdot (d - 2 + \cos^{2} \phi) + 4 \sin^{2} \phi \cdot \cos^{2} \phi - \sin^{4} \phi \right\} + O\left(p^{3}\right).$$
(2.98)

Для усреднения выражения (2.98) по направлениям воспользуемся формулами, аналогичными разделу 2.3.3, а именно

$$\langle n_{i_1} n_{i_2} \rangle_{\mathbf{n}} = \frac{\delta_{i_1 i_2}}{d},$$
 (2.99a)

$$\langle n_{i_1} n_{i_2} n_{i_3} n_{i_4} \rangle_{\mathbf{n}} = \frac{\delta_{i_1 i_2} \delta_{i_3 i_4} + \delta_{i_1 i_3} \delta_{i_2 i_4} + \delta_{i_1 i_4} \delta_{i_2 i_3}}{d(d+2)},$$
 (2.99b)

и их следствиями:

$$\left\langle \cos^2 \phi \right\rangle_{\mathbf{n}} = \frac{1}{d},$$
 (2.100a)

$$\left\langle \cos^4 \phi \right\rangle_{\mathbf{n}} = \frac{3}{d(d+2)}.$$
 (2.100b)

Усредняя по направлениям выражение для $\widetilde{J}_{\alpha\alpha}^v$, выполняя в (2.97) интегрирование по $k = |\mathbf{k}|$ и учитывая, что $\Sigma^v = \Sigma_{\alpha\alpha}^v / (d-1)$ получаем, что

$$\Sigma^{v} = -\frac{1}{4\nu_{0}^{2}} \cdot D_{0} \cdot p^{2} \cdot \frac{1}{d-1} \cdot \int_{m}^{\infty} \frac{dk}{(2\pi)^{d}} \cdot \frac{1}{k^{1+\xi}} \cdot \frac{(d-1)^{2}}{d+2} =$$

$$= -\frac{1}{4} \cdot \hat{g}_0 \nu_0 \cdot p^2 \cdot C_d \cdot \frac{d-1}{d+2} \cdot \frac{m^{-\xi}}{\xi}.$$
 (2.101)

2.4.5. Уравнение Дайсона для функции $\langle \theta'_{lpha} heta_{eta} angle_{1-\text{непр}}$

Введем обозначение $\Gamma_2^{\alpha\beta} \equiv \langle \theta'_{\alpha}\theta_{\beta} \rangle_{1-\text{непр}}$. Как и в разделе 2.4.4, данная функция удовлетворяет стандартному уравнению Дайсона, которое в импульсно–частотном представлении имеет вид

$$\Gamma_2^{\alpha\beta} P_{\alpha\beta}(\mathbf{p}) = [-i\omega + \kappa_0 p^2] P_{\alpha\beta}(\mathbf{p}) - \Sigma_{\alpha\beta}, \qquad (2.102)$$

где $\Sigma_{\alpha\beta}$ является оператором собственной энергии, диаграммное представления для которого показано на рисунке (2.15).

Также как и в разделах 2.2.4, 2.3.3 и 2.4.4, благодаря δ -корреляции по времени и наличию запаздывающего пропагатора (2.84а), все многопетлевые диаграммы тождественно равны нулю. Поэтому оператор собственной энергии дается своим однопетлевым приближением *точно*.

Рис. 2.15. Диаграммное представление оператора собственной энергии $\Sigma_{\alpha\beta}$.

Взяв след от (2.102), получаем скалярное уравнение

$$\Gamma_2(\omega, \mathbf{p}) = -i\omega + \kappa_0 p^2 - \Sigma(\omega, \mathbf{p}), \qquad (2.103)$$

где

$$\Sigma(\omega, \mathbf{p}) \equiv \Sigma_{\alpha\alpha}(\omega, \mathbf{p})/(d-1).$$
(2.104)

Обозначим за $J_{\alpha\alpha}$ индексную структуру оператора $\Sigma_{\alpha\alpha}$:

$$J_{\alpha\alpha} = V^{\theta}_{\alpha\,ab}(\mathbf{p})V^{\theta}_{d\,c\alpha}(\mathbf{p}+\mathbf{k})P_{bd}(\mathbf{p}+\mathbf{k})P_{ac}(\mathbf{k}),\qquad(2.105)$$

тогда

$$\Sigma_{\alpha\alpha} = i^2 \cdot \int \frac{d\omega}{2\pi} \int \frac{d\mathbf{k}}{(2\pi)^d} \cdot \frac{1}{(-i\omega + \kappa_0 [\mathbf{p} + \mathbf{k}]^2)} \cdot \frac{d_\eta(k)}{(\omega^2 + \nu_0^2 \mathbf{k}^4)} \times J_{\alpha\alpha}, \quad (2.106)$$

где $d_{\eta}(k)$ и D_0 определены в разделе 1.5.

Интегрируя (2.106) по частоте, получаем

$$\Sigma_{\alpha\alpha} = \frac{i^2}{2\nu_0^2} \cdot \int \frac{d\mathbf{k}}{(2\pi)^d} \cdot \frac{d_\eta(k)}{k^2 \left[k^2 + u_0(\mathbf{p} + \mathbf{k})^2\right]} \times J_{\alpha\alpha}, \qquad (2.107)$$

где $u_0 = \kappa_0 / \nu_0$. Благодаря наличию множителя \mathcal{A}_0 вершина (2.79) не является поперечной; учитывая, что индекс расходимости данной диаграммы $d_{\Gamma} = 2$, для вычисление расходящейся части необходимо вычислить только члены, пропорциональные p^2 .

Из явных вычислений следует, что

$$J_{\alpha\alpha} = \left\{ p^2 \cdot (d-1) \cdot \sin^2 \phi + (\mathcal{A}-1) \cdot (-pk\cos\phi \cdot \sin^2\phi + p^2\sin\phi^2) + (\mathcal{A}-1) \cdot (-pk\cos\phi \cdot \sin^2\phi + p^2\sin\phi^2) + \right\}$$

+
$$(\mathcal{A} - 1)^2 \cdot (-pk\cos\phi\sin^2\phi + p^2\cos^2\phi\sin^2\phi) \} + O(p^3)$$
, (2.108)

где ϕ — угол между векторами **р** и **k**, *p* и *k* — модули векторов **р** и **k**.

Учитывая, что

$$\frac{1}{k^2 + u_0(\mathbf{p} + \mathbf{k})^2} \simeq \frac{1}{(1 + u_0)k^2} \cdot \left(1 - 2 \cdot \frac{u_0}{1 + u_0} \frac{\cos\phi}{k} \cdot p\right) + O\left(p^2\right) \quad (2.109)$$

получаем

$$\Sigma^{\theta}_{\alpha\alpha} = -\frac{1}{2\nu_0^2} \cdot \int \frac{d\mathbf{k}}{(2\pi)^d} \cdot \frac{d_f(k)}{k^4} \times \widetilde{J}^{\theta}_{\alpha\alpha}, \qquad (2.110)$$

где

$$\widetilde{J}_{\alpha\alpha}^{\theta} = p^{2} \cdot \left\{ (d-1)\sin^{2}\phi + (\mathcal{A}-1) \cdot \left(1 + 2 \cdot \frac{u_{0}}{1+u_{0}}\cos^{2}\phi\right)\sin\phi^{2} + (\mathcal{A}-1)^{2} \cdot \left(1 + 2 \cdot \frac{u_{0}}{1+u_{0}}\right)\cos^{2}\phi \cdot \sin^{2}\phi \right\} + O\left(p^{3}\right).$$
(2.111)

Для усреднения выражения (2.111) по направлениям воспользуемся формулами (2.100a) и (2.100b); выполняя после этого интегрирование выражения (2.110) по $k = |\mathbf{k}|$ и учитывая, что $\Sigma^{\theta} = \Sigma^{\theta}_{\alpha\alpha}/(d-1)$, получаем

$$\Sigma^{\theta} = -\frac{1}{2} \cdot p^{2} \cdot \hat{g}_{0} \nu_{0} \cdot C_{d} \cdot \frac{1}{1+u_{0}} \cdot \left\{ \frac{d-1}{d} + (\mathcal{A}-1) \left(\frac{1}{d} + 2 \cdot \frac{u_{0}}{u_{0}+1} \frac{1}{d(d+2)} \right) + (\mathcal{A}-1)^{2} \left(1 + 2 \cdot \frac{u_{0}}{u_{0}+1} \right) \frac{1}{d(d+2)} \right\} \cdot \frac{m^{-\xi}}{\xi}.$$
(2.112)

2.4.6. Вычисление расходящейся части диаграммы $\langle heta'_lpha heta_lpha v_eta angle$

Однопетлевое разложение для функции $\left< \theta'_{lpha} \theta_{\gamma} v_{\beta} \right>_{1-\text{непр}}$ имеет вид

$$\langle \theta'_{\alpha} \theta_{\gamma} v_{\beta} \rangle_{1-\text{henp}} = V_{\alpha\beta\gamma} + (\Delta_1 + \Delta_2 + \Delta_3),$$
 (2.113)

где $V_{\alpha\beta\gamma}$ — вершина (2.79), а Δ_1 , Δ_2 и Δ_3 изображены на рисунках 2.16а — 2.16в.

Рис. 2.16. Диаграммы Δ_1 , Δ_2 и Δ_3 .

В подробной записи

$$\Delta_1 = \int \frac{d\omega}{2\pi} \int \frac{d\mathbf{k}}{(2\pi)^d} \frac{d\eta(k)}{\omega^2 + \nu_0^2 k^4} \frac{1}{i\omega + \kappa_0 (\mathbf{q} + \mathbf{k})^2} \frac{1}{i\omega + \kappa_0 (\mathbf{k} - \mathbf{p})^2} \times J_1,$$
(2.114)

где

$$J_{1} = P_{bf}(\mathbf{k}) \cdot P_{ac}(\mathbf{q} + \mathbf{k}) \cdot P_{de}(\mathbf{k} - \mathbf{p}) \cdot V^{\theta}_{\alpha \, ba}(\mathbf{q}) \cdot V^{\theta}_{c \, \beta d}(\mathbf{q} + \mathbf{k}) \cdot V^{\theta}_{e \, f\gamma}(\mathbf{k} - \mathbf{p}),$$
(2.115)

а $V^{\theta}_{c\,ab}$ — вершина (2.79).

Поскольку индекс расходимости для данной функции $d_{\Gamma} = 1$, для вычисления расходящейся части необходимо вычислить только члены O(p). Поскольку $J_1 \propto V^{\theta}_{\alpha \, ba}(\mathbf{q}) \propto q$, во всех прочих множителях можем положить p = q = 0. Таким образом

$$\Delta_1 \cong \int \frac{d\omega}{2\pi} \int \frac{d\mathbf{k}}{(2\pi)^d} \frac{d_{\eta}(k)}{\omega^2 + \nu_0^2 k^4} \cdot \frac{1}{(i\omega + \kappa_0 k^2)^2} \times \widetilde{J}_1, \qquad (2.116)$$

где

$$\widetilde{J}_1 = P_{bf}(\mathbf{k}) \cdot P_{ac}(\mathbf{k}) \cdot P_{de}(\mathbf{k}) \cdot V^{\theta}_{\alpha \, ba}(\mathbf{q}) \cdot V^{\theta}_{c \, \beta d}(\mathbf{k}) \cdot V^{\theta}_{e \, f \gamma}(\mathbf{k}).$$
(2.117)

Интегрируя выражение (2.116) по частоте, получаем

$$\int \frac{d\omega}{2\pi} \frac{1}{\omega^2 + \nu_0^2 k^4} \frac{1}{(i\omega + \kappa_0 k^2)^2} = \frac{1}{2\nu_0^3 (1 + u_0)^2 k^6},$$
(2.118)

где, как и раньше, $u_0 = \kappa_0 / \nu_0$.

Из явных вычислений следует, что

$$\widetilde{J}_1 = \mathcal{A}_0 \cdot P_{ab}(\mathbf{k}) \cdot V^{\theta}_{\alpha \, ba}(\mathbf{q}) \cdot k_{\beta} \cdot k_{\gamma}.$$
(2.119)

Воспользовавшись формулами (2.99) для усреднения по углам и выполняя затем свертки с *б*-символами, получаем

$$\Delta_1 = \frac{i}{2} \frac{\hat{g}_0}{(1+u_0)^2} \cdot \mathcal{A} (1-\mathcal{A}) \cdot \frac{(d+1) \cdot q_\alpha \delta_{\beta\gamma} - q_\beta \delta_{\alpha\gamma} - q_\gamma \delta_{\beta\alpha}}{d(d+2)} \cdot C_d \cdot \frac{m^{-\xi}}{\xi}.$$
(2.120)

Рассматривая аналогичным образом Δ_2 , получаем

$$\Delta_2 = \int \frac{d\omega}{2\pi} \int \frac{d\mathbf{k}}{(2\pi)^d} \frac{d_{\mathbf{q}}(q+k)}{\omega^2 + \nu_0^2 (\mathbf{q}+\mathbf{k})^4} \frac{1}{i\omega + \kappa_0 k^2} \frac{1}{-i\omega + \nu_0 (\mathbf{p}-\mathbf{k})^2} \times J_2,$$
(2.121)

где

$$J_2 = P_{bf}(\mathbf{k}) \cdot P_{ac}(\mathbf{q} + \mathbf{k}) \cdot P_{de}(\mathbf{k} - \mathbf{p}) \cdot V_{b\,a\gamma}^{\theta}(\mathbf{k}) \cdot V_{d\,c\beta}^{v}(\mathbf{p} - \mathbf{k}) \cdot V_{\alpha\,ef}^{\theta}(\mathbf{p}), \quad (2.122)$$

 V_{cab}^{θ} — вершина (2.79), а V_{cab}^{v} — вершина (2.80). Поскольку импульс сразу выделяется наружу в виде множителя $V_{\alpha ef}^{\theta}(\mathbf{p})$, то выражение для Δ_2 можно упростить:

$$\Delta_2 \cong \int \frac{d\omega}{2\pi} \int \frac{d\mathbf{k}}{(2\pi)^d} \frac{d\eta(k)}{\omega^2 + \nu_0^2 k^4} \cdot \frac{1}{i\omega + \kappa_0 k^2} \cdot \frac{1}{-i\omega + \nu_0 k^2} \times \widetilde{J}_2, \qquad (2.123)$$

где

$$\widetilde{J}_2 = P_{bf}(\mathbf{k}) \cdot P_{ac}(\mathbf{k}) \cdot P_{de}(\mathbf{k}) \cdot V^{\theta}_{b\,a\gamma}(\mathbf{k}) \cdot V^{v}_{c\,d\beta}(-\mathbf{k}) \cdot V^{\theta}_{\alpha\,ef}(\mathbf{p}).$$
(2.124)

Интеграл по частоте дает

$$\int \frac{d\omega}{2\pi} \frac{1}{\omega^2 + \nu_0^2 k^4} \frac{1}{(i\omega + \kappa_0 k^2)} \frac{1}{(-i\omega + \nu_0 k^2)} = \frac{3 + u_0}{4\nu_0^3 (1 + u_0)^2 k^6}; \quad (2.125)$$

выполняя свертку по значкам в \widetilde{J}_2 и переобозначая вектор **р** как **q**, получаем

$$\widetilde{J}_2 = -\mathcal{A}_0 \cdot P_{ef}(\mathbf{k}) \cdot V^{\theta}_{\alpha \, ef}(\mathbf{q}) \cdot k_{\beta} \cdot k_{\gamma}.$$
(2.126)

Усредняя полученное выражение по углам и интегрируя по $k = |\mathbf{k}|$, аналогично диаграмме Δ_1 имеем

$$\Delta_2 = -\frac{i}{4} \hat{g}_0 \frac{(3+u_0)}{(1+u_0)^2} \cdot \mathcal{A} (1-\mathcal{A}) \cdot \frac{(d+1) \cdot q_\alpha \delta_{\beta\gamma} - q_\beta \delta_{\alpha\gamma} - q_\gamma \delta_{\alpha\beta}}{d(d+2)} \cdot C_d \cdot \frac{m^{-\xi}}{\xi}.$$
(2.127)

Аналогично аналитическое выражение для Δ_3 имеет вид

$$\Delta_3 = \int \frac{d\omega}{2\pi} \int \frac{d\mathbf{k}}{(2\pi)^d} \cdot \frac{d_\eta (q+k)}{\omega^2 + \nu_0^2 (\mathbf{p}-\mathbf{k})^4} \cdot \frac{1}{-i\omega + \kappa_0 k^2} \cdot \frac{1}{-i\omega + \nu_0 (\mathbf{q}+\mathbf{k})^2} \times J_3,$$
(2.128)

где

$$J_3 = P_{bf}(\mathbf{k}) \cdot P_{ac}(\mathbf{q} - \mathbf{k}) \cdot P_{de}(\mathbf{k} + \mathbf{p}) \cdot V_{b\,a\gamma}^{\theta}(-\mathbf{k}) \cdot V_{c\,d\beta}^{v}(\mathbf{p} - \mathbf{k}) \cdot V_{\alpha\,ef}^{\theta}(\mathbf{p}).$$
(2.129)

Как и в случае с предыдущей диаграммой, импульс сразу выделяется наружу в виде множителя $V^{\theta}_{\alpha ef}(\mathbf{p})$, и выражение можно упростить:

$$\Delta_3 \cong \int \frac{d\omega}{2\pi} \int \frac{d\mathbf{k}}{(2\pi)^d} \frac{d_{\eta}(k)}{\omega^2 + \nu_0^2 k^4} \cdot \frac{1}{-i\omega + \kappa_0 k^2} \cdot \frac{1}{-i\omega + \nu_0 k^2} \times \widetilde{J}_3, \quad (2.130)$$

где

$$\widetilde{J}_{3} = P_{bf}(\mathbf{k}) \cdot P_{ac}(\mathbf{k}) \cdot P_{de}(\mathbf{k}) \cdot V^{\theta}_{b\,a\gamma}(-\mathbf{k}) \cdot V^{v}_{c\,d\beta}(-\mathbf{k}) \cdot V^{\theta}_{\alpha\,ef}(\mathbf{p}).$$
(2.131)

Интеграл по частоте дает

$$\int \frac{d\omega}{2\pi} \frac{1}{\omega^2 + \nu_0^2 k^4} \frac{1}{(-i\omega + \kappa_0 k^2)} \frac{1}{(-i\omega + \nu_0 k^2)} = \frac{1}{4\nu_0^3 (1+u_0)k^6}; \quad (2.132)$$

выполняя свертку по значкам в \widetilde{J}_3 и переобозначая ${f p}$ как ${f q}$, получаем

$$\widetilde{J}_3 = \mathcal{A}_0 \cdot P_{ef}(\mathbf{k}) \cdot V^{\theta}_{\alpha \, ef}(\mathbf{q}) \cdot k_{\beta} \cdot k_{\alpha}.$$
(2.133)

Усредняя полученное выражение по углам и интегрируя по $k=|{\bf k}|,$ аналогично диаграммам Δ_1 и Δ_2 получаем

$$\Delta_3 = \frac{i}{4} \frac{\hat{g}_0}{(1+u_0)} \cdot \mathcal{A} (1-\mathcal{A}) \cdot \frac{(d+1) \cdot q_\alpha \delta_{\beta\gamma} - q_\beta \delta_{\alpha\gamma} - q_\gamma \delta_{\alpha\beta}}{d(d+2)} \cdot C_d \cdot \frac{m^{-\xi}}{\xi}.$$
(2.134)

3. Ренормировка моделей

3.1. Модель №1

3.1.1. Уравнение РГ. β - и γ -функции.

Из раздела 2.2.4 следует, что уравнение Дайсона для парной корреляционной функции имеет вид

$$\Gamma_2^{\alpha\beta} = -i\omega \cdot \delta_{\alpha\beta} + \nu_0 \mathbf{p}_{\perp}^2 \cdot \delta_{\alpha\beta} + \nu_0 f_0 \cdot (\mathbf{pn})^2 \cdot \delta_{\alpha\beta} - \Sigma_{\alpha\beta}.$$
(3.1)

Подставляя $\Sigma_{\alpha\beta}$ из (2.38), получаем

$$\Gamma_2^{\alpha\beta} = -i\omega \cdot \delta_{\alpha\beta} + \nu_0 \mathbf{p}_{\perp}^2 \cdot \delta_{\alpha\beta} + \nu_0 f_0 \cdot (\mathbf{pn})^2 \cdot \delta_{\alpha\beta} +$$

$$+D_0 \cdot \left[\frac{d-2+\mathcal{A}}{2(d-1)} \cdot \delta_{\alpha\beta} + \frac{(\mathcal{A}-1)^2}{2(d-1)} \cdot n_\alpha n_\beta\right] \cdot C_{d-1} \cdot (\mathbf{pn})^2 \cdot \frac{m^{-\xi}}{\xi}.$$
 (3.2)

Из уравнения Дайсона (3.2) следует, что

(1) Нет контрчленов, которые отвечали бы ренормировке параметров u_0 и \mathcal{A}_0 , т. е.

$$Z_{\nu} = 1, \quad Z_{\mathcal{A}} = 1.$$
 (3.3)

(2) В результате вычислений оказывается, что структуры $\delta_{\alpha\beta}$ и $n_{\alpha}n_{\beta}$ входят в уравнение (3.2) с различными коэффициентами. Это означает, что невозможно устранить расходимости ренормировкой единственного параметра f_0 , поэтому требуется ввести *новый* безразмерный параметр u_0 . Таким образом *настоящее* уравнение Дайсона имеет вид

$$\Gamma_{2}^{\alpha\beta} = -i\omega + \nu_{0}\mathbf{p}_{\perp}^{2} \cdot \delta_{\alpha\beta} + \nu_{0}f_{0} \cdot (\mathbf{pn})^{2} \cdot \delta_{\alpha\beta} + \nu_{0}f_{0}u_{0} \cdot (\mathbf{pn})^{2} \cdot n_{\alpha}n_{\beta} + D_{0} \cdot \left[\frac{d-2+\mathcal{A}}{2(d-1)} \cdot \delta_{\alpha\beta} + \frac{(\mathcal{A}-1)^{2}}{2(d-1)} \cdot n_{\alpha}n_{\beta}\right] \cdot C_{d-1} \cdot (\mathbf{pn})^{2} \cdot \frac{m^{-\xi}}{\xi}.$$
(3.4)

Учитывая (1.15) и (3.3), а также вводя $g \equiv \hat{g} \cdot C_{d-1}$, для остальных параметров получаем, что

$$f_0 = fZ_f, \qquad u_0 = uZ_u, \qquad g_0 = g\mu^{\xi}Z_g, \qquad Z_g = Z_f^{-1}.$$
 (3.5)

Здесь μ является ренормировочной массой, g, u и f являются ренормированными аналогами затравочных параметров g_0 , u_0 и f_0 , $Z_i = Z_i(g, \xi, d)$ — константы ренормировки. Всюду в дальнейшем будет использоваться схема минимальных вычитаний (MS). Последнее соотношение в (3.5) следует из условия отсутствия ренормировки вклада с D_v^{-1} в действие (2.10), т. о. $D_0 = g_0 \nu_0 f_0 = g \mu^{\xi} \nu f$. «Масса» m и поля Φ в данной модели не ренормировитея, т. е. $Z_{\Phi} = 1$ для всех Φ и $m_0 = m$. Ренормированный функционал действия имеет вид

$$S_R(\Phi) = \theta'_i D_\theta \theta'_k / 2 - v_i D_v^{-1} v_k / 2 +$$

+ $\theta'_k \left[-\partial_t \theta_k - (v_i \partial_i) \theta_k + \mathcal{A}(\theta_i \partial_i) v_k + \nu (\partial_\perp^2 + f Z_f \cdot \partial_\parallel^2) \theta_k \right], \qquad (3.6)$

где функция D_v (1.14) выражена через ренормированные параметры (3.5).

Введем β -функцию и аномальную размерность $\gamma - P\Gamma$ -функции, которые определяют искомое асимптотическое поведение рассматриваемых величин. Базовое уравнение РГ для любой мультипликативно ренормируемой величины (корреляционной функции, составного оператора и т. д.) является следствием действия оператора $\widetilde{\mathcal{D}}_{\mu}$ на правую и левую части уравнения $F = Z_F F_R$, где $\widetilde{\mathcal{D}}_{\mu}$ обозначает оператор $\mu \partial_{\mu}$ при фиксированных затравочных параметрах $e_0 = \{g_0, \nu_0, f_0, u_0, \mathcal{A}_0\}$. Как следствие, уравнение РГ имеет вид

$$\left[\mathcal{D}_{RG} + \gamma_F\right] F_R = 0, \qquad (3.7)$$

где γ_F является аномальной размерностью F, а

$$\mathcal{D}_{RG} = \mathcal{D}_{\mu} + \beta \partial_g - \gamma_f \mathcal{D}_f - \gamma_u \mathcal{D}_u, \qquad (3.8)$$

подробнее см. приложение (С.1). Здесь и далее $\mathcal{D}_x \equiv x \partial_x$ для любой переменной x, а РГ–функции, в конечном итоге определяющие искомую асимптотику, определяются как

$$\beta_g \equiv \widetilde{\mathcal{D}}_{\mu}g = g \cdot [-\xi - \gamma_g(g)], \qquad (3.9a)$$

$$\beta_u \equiv \widetilde{\mathcal{D}}_{\mu} u = -u\gamma_u(g, u), \qquad (3.9b)$$

$$\gamma_F \equiv \widetilde{\mathcal{D}}_\mu \ln Z_F = \beta_g \partial_g \ln Z_F$$
 для всех Z_F . (3.9c)

Соотношение между β и γ в (3.9a) и (3.9b) следует из определений и второго и третьего соотношения (3.5), подробнее см. приложение С.2.

Из уравнения Дайсона (3.4) следует, что константа ренормировки Z_f $(f_0 = f \cdot Z_f)$ и аномальная размерность γ_f для параметра f_0 , нарушающего O_d -симметрию лапласиана, равны

$$Z_f = 1 - \frac{d - 2 + \mathcal{A}}{2(d - 1)} \cdot \frac{g}{\xi} + O(g^2), \qquad (3.10)$$

$$\gamma_f = \frac{d-2+\mathcal{A}}{2(d-1)} \cdot g. \tag{3.11}$$

Для ренормировки *нового* параметра u_0 необходимо потребовать, чтобы выражение

$$f_0 u_0 \cdot \left[1 + g_0 \cdot \frac{(\mathcal{A} - 1)^2}{2(d - 1)} \cdot \frac{1}{u_0} \cdot \frac{m^{-\xi}}{\xi} \right] \cdot n_\alpha n_\beta \cdot (\mathbf{pn})^2$$
(3.12)

было УФ-конечно в первом порядке по g. Таким образом,

$$Z_{u} \cdot Z_{f} = 1 - \frac{(\mathcal{A} - 1)^{2}}{2(d - 1)} \cdot \frac{g}{u} \cdot \frac{1}{\xi} + O\left(g^{2}\right); \qquad (3.13)$$

$$\gamma_u + \gamma_f = \frac{(\mathcal{A} - 1)^2}{2(d - 1)} \cdot \frac{1}{u} \cdot g, \qquad (3.14)$$

где аномальная размерность γ_f известна ранее (см. 3.11).

Из соотношения (3.5) для константы g следует, что

$$Z_g \cdot Z_f = 1, \tag{3.15}$$

поэтому

$$\gamma_g = -\gamma_f = -\frac{d-2+\mathcal{A}}{2(d-1)} \cdot g. \tag{3.16}$$

3.1.2. ИК-притягивающая неподвижная точка

Как известно (см. приложение С.3), главный член ИК–асимптотики дается подстановкой $g = g^*, u = u^*$, где g^* и u^* определяются из условий на β –функцию:

$$\beta_g(g^*, u^*) = 0, \quad \beta_u(g^*, u^*) = 0,$$
(3.17)

при этом тип неподвижной точки определяется матрицей $\Omega_{ik} = \partial \beta_i / \partial g_k |_{g=g_*}$: для ИК-притягивающих неподвижных точек данная матри-

ца положительно определена, т. е. вещественная часть всех ее собственных значений больше нуля.

Учитывая (3.16), для константы взаимодействия g получаем условие

$$\beta_g = g(-\xi + \gamma_f) = 0, \qquad (3.18)$$

т. о. неподвижная точка дается выражением

$$g^* = \frac{2(d-1)}{d-2+\mathcal{A}} \cdot \xi, \quad \partial_g \beta_g(g^*) = \xi > 0.$$
 (3.19)

Для параметра и *β*-функция равна

$$\beta_u = -u\gamma_u = g \cdot \frac{1}{2(d-1)} \left[(d-2+\mathcal{A}) \cdot u - (\mathcal{A}-1)^2 \right], \quad (3.20)$$

поэтому для неподвижной точки получаем

$$u^* = \frac{(\mathcal{A} - 1)^2}{d - 2 + \mathcal{A}}, \quad \partial_u \beta_u(u^*) = \frac{d - 2 + \mathcal{A}}{2(d - 1)} \cdot g^*.$$
(3.21)

Поскольку $\partial \beta_g / \partial u = 0$, собственные значения матрицы Ω равны ее диагональным элементам, поэтому требование положительной определенности матрицы Ω сводится к требованию $\partial \beta_u / \partial u > 0$. Таким образом система обладает ИК-притягивающей неподвижной точкой u^* , g^* только при условии $u^* > 0$, т. е.

$$d - 2 + \mathcal{A} > 0. \tag{3.22}$$

3.1.3. Критические размерности

Ведущий член ИК-асимптотики функций Грина удовлетворяет уравнению РГ (3.7), (3.8) с заменой $g \to g_*, u \to u_*$, т. е.

$$\left[\mathcal{D}_{\mu} - \gamma_f^* \mathcal{D}_f - \gamma_u^* \mathcal{D}_u + \gamma_G^*\right] G^R(e, \mu, \dots) = 0.$$
(3.23)

Каноническая масштабная инвариантность выражается уравнениями

$$\left[\sum_{\alpha} d^k_{\alpha} \mathcal{D}_{\alpha} - d^k_G\right] G^R = 0, \quad \left[\sum_{\alpha} d^{\omega}_{\alpha} \mathcal{D}_{\alpha} - d^{\omega}_G\right] G^R = 0, \quad (3.24)$$

где $\alpha \equiv \{t, \mathbf{x}, \mu, \nu, m, M, u, f, \mathcal{A}, g\}$ является полным набором аргументов функции G^R (t, \mathbf{x} обозначают время и координаты), а d^k и d^{ω} являются каноническими размерностями G^R и α . Подставляя размерности из таблицы 2.1 в (3.24), находим, что

$$\left[\mathcal{D}_{\mu} + \mathcal{D}_{m} + \mathcal{D}_{M} - 2\mathcal{D}_{\nu} - \mathcal{D}_{\mathbf{x}} - d_{G}^{k}\right]G^{R} = 0, \qquad (3.25a)$$

$$\left[\mathcal{D}_{\nu} - \mathcal{D}_{t} - d_{G}^{\omega}\right]G^{R} = 0.$$
(3.25b)

Уравнения вида (3.23) и (3.25) описывают скейлинговое поведение функции G^R при растяжении некоторых ее параметров. Параметр подлежит растяжению, если соответствующая производная входит в уравнение. Нашей задачей является ИК-асимптотика, поэтому необходимо, чтобы все ИК-существенные параметры (координаты **x**, время *t*, масштабы *M* и *m*) были масштабируемы, в то время как ИК-несущественные параметры, связанные с УФ-масштабом — коэффициент диффузии ν и ренормировочная масса μ — оставались фиксированными. Таким образом необходимо исключить из уравнений (3.23) и (3.25) производные по ИК-несущественным параметрам μ и ν , в результате чего получается искомое уравнение критического скейлинга:

$$\left[-\mathcal{D}_{\mathbf{x}} + \Delta_t \mathcal{D}_t + \Delta_m \mathcal{D}_m + \Delta_M \mathcal{D}_M + \Delta_f \mathcal{D}_f + \Delta_u \mathcal{D}_u - \Delta_G\right] G^R = 0, \quad (3.26)$$

где

$$\Delta_t = -\Delta_\omega = -2, \quad \Delta_m = \Delta_M = 1, \quad \Delta_f = \gamma_f^*, \quad \Delta_u = \gamma_u^*. \tag{3.27}$$

Здесь

$$\Delta[G] \equiv \Delta_G = d_G^k + 2d_G^\omega + \gamma_G^* \tag{3.28}$$

является критической размерностью величины G.

В частности, для любой корреляционной функции $G^R = \langle \Phi \dots \Phi \rangle$ полей Φ получаем, что $\Delta_G = N_{\Phi} \Delta_{\Phi}$ с суммированием по всем полям Φ , входящим в G^R , а именно

$$\Delta_G = \sum_{\Phi} N_{\Phi} d_{\Phi} = N_{\theta'} d_{\theta'} + N_{\theta} d_{\theta} + N_v d_v.$$
(3.29)

Т. к. в модели (2.10) поля не ренормируются, т. е. $\gamma_{\Phi} = 0$ для всех Φ (см. раздел 3.1.1), из (3.28) следует, что критические размерности полей $\Phi = \{\mathbf{v}, \boldsymbol{\theta}, \boldsymbol{\theta}'\}$ совпадают с их каноническими размерностями, представленными в таблице 2.1, а именно

$$\Delta_{\mathbf{v}} = 1, \quad \Delta_{\theta} = -1, \quad \Delta_{\theta'} = d+1. \tag{3.30}$$

Данное свойство является специфической чертой конкретной модели, отличающее ее как от изотропной векторной модели Крейчнана (модели №2), в которой $\gamma_{\nu} \neq 0$, так и от скалярной анизотропной модели Крейчнана [59], в которой параметр f, нарушающей O_d -симметрию лапласиана, не является безразмерным.

3.1.4. Уравнение Дайсона и точные выражения для пропагаторов

В разделе 3.1.1 был введен новый параметр u_0 , необходимый для обеспечения мультипликативной ренормировки данной модели. Как следствие, уравнение Дайсона приобретает вид (см. (3.4))
$$\Gamma_{2}^{\alpha\beta} = -i\omega\delta_{\alpha\beta} + \nu_{0}\mathbf{p}_{\perp}^{2}\cdot\delta_{\alpha\beta} + \nu_{0}f_{0}\cdot(\mathbf{pn})^{2}\cdot\delta_{\alpha\beta} + \nu_{0}f_{0}u_{0}\cdot(\mathbf{pn})^{2}\cdot n_{\alpha}n_{\beta} - \Sigma_{\alpha\beta}.$$
(3.31)

Данный факт означает, что *новая* структура $\nu_0 f_0 u_0 \cdot (\mathbf{pn})^2$, которая при таком способе рассмотрения наводится из ренормировки, должна быть включена в функционал действия (2.10). Что, в свою очередь, означает, что пропагаторы (2.15a), (2.15b) изменят свой вид.

Обозначим индексную структуру выражения (3.31) как $M_{\alpha\beta}$, т. е.

$$M_{\alpha\beta} = -i\omega\delta_{\alpha\beta} + \nu_0 \mathbf{p}_{\perp}^2 \cdot \delta_{\alpha\beta} + + \nu_0 f_0 \cdot (\mathbf{pn})^2 \cdot \delta_{\alpha\beta} + \nu_0 f_0 u_0 \cdot (\mathbf{pn})^2 \cdot n_\alpha n_\beta.$$
(3.32)

В соответствии с общими правилами (см. раздел 2.1) для того, чтобы вычислить пропагатор $\langle \theta \theta' \rangle_0$, необходимо вычислить обратную матрицу $M_{\alpha\beta}^{-1}$. При этом необходимо учитывать, что:

(1) Поскольку поля $\boldsymbol{\theta}$ и $\boldsymbol{\theta}'$ являются поперечными, на самом деле вместо матрицы $M_{\alpha\beta}^{-1}(\mathbf{p})$ необходимо найти матрицу $N_{ij}^{-1}(\mathbf{p}) = [P_{i\alpha}(\mathbf{p})M_{\alpha\beta}(\mathbf{p})P_{\beta j}(\mathbf{p})]^{-1}$.

(2) Единичным оператором на поперечном подпространстве является поперечный проектор, поэтому матрица $N_{ij}^{-1}(\mathbf{p})$ ищется из условия

$$N_{ij}(\mathbf{p}) \cdot N_{jk}^{-1}(\mathbf{p}) = P_{ik}(\mathbf{p}).$$
 (3.33)

Вычислим матрицу N_{ij} , т. е. свертку матрицы M_{ij} с поперечными проекторами:

$$N_{ij}(\mathbf{p}) = P_{i\alpha}(\mathbf{p}) M_{\alpha\beta}(\mathbf{p}) P_{\beta j}(\mathbf{p}) =$$

= $-i\omega P_{ij}(\mathbf{p}) + \nu_0 \mathbf{p}_{\perp}^2 P_{ij}(\mathbf{p}) +$
 $+\nu_0 f_0(\mathbf{pn})^2 P_{ij}(\mathbf{p}) + \nu_0 f_0 u_0(\mathbf{pn})^2 \hat{n}_i \hat{n}_j \equiv$
 $\equiv \mathcal{X} \cdot P_{ij}(\mathbf{p}) + \mathcal{Y} \cdot \hat{n}_i \hat{n}_j,$ (3.34)

где \mathcal{X} и \mathcal{Y} являются коэффициентами при индексных структурах $P_{ij}(\mathbf{p})$ и $\hat{n}_1 \hat{n}_2$, а единичный вектор \hat{n}_k равен

$$\hat{n}_k = P_{mk}(\mathbf{p})n_m = n_k - p_{\parallel}p_k/p^2.$$
 (3.35)

Учитывая (3.34), найдем матрицу N_{jk}^{-1} , удовлетворяющую условию (3.33). Она обладает той же индексной структурой, что и N_{jk} , но с другими коэффициентами. Обозначим их как x и y, тогда

$$(\mathcal{X} \cdot P_{ij}(\mathbf{p}) + \mathcal{Y} \cdot \hat{n}_i \hat{n}_j) \cdot (x \cdot P_{jk}(\mathbf{p}) + y \cdot \hat{n}_j \hat{n}_k) = P_{ik}(\mathbf{p}).$$
(3.36)

Из (3.36) следует, что

$$x = 1/\mathcal{X},\tag{3.37a}$$

$$y = -\mathcal{Y}/\mathcal{X}(\mathcal{X} + \mathcal{Y}\sin^2\kappa),$$
 (3.37b)

где κ является углом между векторами **n** и **p**. Таким образом *настоящий* пропагатор $\langle \theta_j \theta_k' \rangle_0$ равен

$$\langle \theta_j \theta'_k \rangle_0 = x \cdot P_{jk}(\mathbf{p}) + y \cdot \hat{n}_j \hat{n}_k,$$
(3.38)

где коэффициенты x и y определены в (3.37).

Для вычисления аномальных размерностей необходимо вычислить расходящиеся части диаграмм, изображенных на рисунках 2.5 и 4.1, т. е. выражения (2.29) и (4.7).

Из (3.34) и (3.37b) следует, что y как функция ω имеет вид

$$y = -\mathcal{Y}/\mathcal{X}(\mathcal{X} + \mathcal{Y}\sin^2\kappa) \propto \frac{(\mathbf{pn})^2}{(-i\omega + \eta_1)(-i\omega + \eta_2)}.$$
 (3.39)

Это означает, что интеграл по частоте от выражения (3.39) сходится и не требует каких–либо доопределений, в отличии, например, от ситуации, описанной в приложении В.1. Учитывая, что выражения (2.29) и (4.7) пропорциональны $\delta(p_{\parallel})$, получаем, что после интегрирования по частоте ω и импульсу **p**, выражение (3.39) не дает вклада в расходящиеся части данных диаграмм.

Это означает, что единственный ненулевой вклад дает чле
н $x\cdot P_{jk}(\mathbf{p}),$ т. е.

$$\left\langle \theta_{j} \theta_{k}^{\prime} \right\rangle_{0} = \frac{P_{jk}(\mathbf{p})}{-i\omega + \nu_{0} \mathbf{p}_{\perp}^{2} + \nu_{0} f_{0} p_{\parallel}^{2}},\tag{3.40}$$

что совпадает с (2.15а). При этом необходимо иметь в виду, что при вычислении *конечных* частей диаграмм (что в данной работе не требуется) член с *у* также будет давать ненулевой вклад.

3.2. Модель №2

3.2.1. Уравнение РГ. β - и γ -функции

Ренормировка модели №2 осуществляется схемой, аналогичной модели №1 и описанной в разделах 3.1.1 — 3.1.3. Уравнение Дайсона для парной корреляционной функции (см. (2.51)) имеет вид

$$\Gamma_2(\omega, \mathbf{k}) = -i\omega + \nu_0 k^2 - \Sigma(\omega, \mathbf{k}).$$
(3.41)

Подставляя Σ из (2.72), получаем

$$\Gamma_2 = -i\omega + \nu_0 k^2 \left(1 + g_0 \frac{d-1}{2d} \frac{S_d}{(2\pi)^d} \frac{m^{-\xi}}{\xi} \right).$$
(3.42)

Из уравнения Дайсона следует, что

$$\nu_0 = \nu Z_{\nu}, \qquad g_0 = g \mu^{\xi} Z_g, \qquad Z_g = Z_{\nu}^{-1}.$$
 (3.43)

Как и в разделе 3.1.1, здесь $g \equiv \hat{g} \cdot C_{d-1}$, μ является ренормировочной массой, ν и g являются ренормированными аналогами затравочных параметров ν_0 и g_0 , $Z_i = Z_i(g, \xi, d)$ — константы ренормировки; всюду в дальнейшем будет использоваться схема минимальных вычитаний (MS). Уравнения (3.43) следуют из условия отсутствия ренормировки вклада с D_v^{-1} в действие (2.42), т. о. $D_0 \equiv g_0 \nu_0 = g \mu^{\xi} \nu$. Как и в случае анизотропной модели (2.10), «масса» m и поля Φ не ренормируются, т. е. $m_0 = m$ и $Z_{\Phi} = 1$ для всех Φ . Ренормированный функционал действия имеет вид

$$S_R(\Phi) = \theta'_i D_\theta \theta'_k / 2 - v_i D_v^{-1} v_k / 2 + \theta'_k \left[-\partial_t \theta_k - (v_i \partial_i) \theta_k + (\theta_i \partial_i) v_k + \nu Z_\nu \partial^2 \theta_k \right],$$
(3.44)

где функция D_v (2.41) выражена через ренормированные параметры (3.43).

Действуя оператором $\widetilde{\mathcal{D}}_{\mu}$ на правую и левую части равенства $F = Z \cdot F^R$, получаем уравнение РГ в виде

$$\left[\mathcal{D}_{RG} + \gamma_F\right] F_R = 0, \qquad (3.45)$$

где γ_F является аномальной размерностью F, а РГ–оператор \mathcal{D}_{RG} равен

$$\mathcal{D}_{RG} = \mathcal{D}_{\mu} + \beta \partial_g - \gamma_{\nu} \mathcal{D}_{\nu}. \tag{3.46}$$

Здесь и дале
е $\mathcal{D}_x\equiv x\partial_x$ для любой переменной x.РГ-функци
и β и γ определяются как

$$\beta_g \equiv \widetilde{\mathcal{D}}_{\mu}g = g \cdot [-\xi - \gamma_g(g)], \qquad (3.47a)$$

$$\gamma_F \equiv \widetilde{\mathcal{D}}_\mu \ln Z_F = \beta_g \partial_g \ln Z_F$$
 для всех Z_F . (3.47b)

(см. приложение С.1).

Из уравнения Дайсона (3.42) следует, что константа ренормировки Z_{ν} и аномальная размерность γ_{ν} равны

$$Z_{\nu} = 1 - \frac{d-1}{2d} \cdot \frac{g}{\xi} + O\left(g^2\right), \qquad (3.48)$$

$$\gamma_{\nu} = \frac{d-1}{2d} \cdot g. \tag{3.49}$$

Из соотношения (3.43) для константы g следует, что

$$Z_g \cdot Z_\nu = 1, \tag{3.50}$$

поэтому

$$\gamma_g = -\gamma_\nu = -\frac{d-1}{2d} \cdot g. \tag{3.51}$$

3.2.2. ИК-притягивающая неподвижная точка

В соответствии с приложением С.3, главный член ИК–асимптотики дается подстановкой $g = g^*$, где g^* определяется из условия на β –функцию:

$$\beta_g = 0, \quad \partial_g \beta_g > 0. \tag{3.52}$$

Учитывая (3.51), для константы взаимодействия g получаем условие

$$\beta_g = g(-\xi + \gamma_\nu) = 0,$$
 (3.53)

откуда следует, что неподвижная точка дается выражением

$$g^* = \frac{2d}{d-1} \cdot \xi, \quad \partial_g \beta_g(g^*) = \xi > 0.$$
 (3.54)

Это означает, что система обладает ИК–притягивающей неподвижной точкой g^* при любом $\xi > 0$; в инерционном интервале $\Lambda r \gg 1, mr \sim 1$ корреляционные функции показывают аномальный скейлинг, а соответствующие критические размерности $\Delta[F] \equiv \Delta_F$ могут быть вычислены как ряд по ξ .

3.2.3. Критические размерности

Для любой мультипликативно ренормируемой величины G^R главный член ИК–асимптотики уравнения РГ (3.45), (3.46) удовлетворяет этому же уравнению в неподвижной точке g^* , т. е.

$$\left[\mathcal{D}_{\mu} - \gamma_{\nu}^{*} \mathcal{D}_{\nu} + \gamma_{G}^{*}\right] G^{R}(e, \mu, \dots) = 0.$$
(3.55)

Каноническая масштабная инвариантность выражается уравнениями

$$\left[\sum_{\alpha} d^k_{\alpha} \mathcal{D}_{\alpha} - d^k_G\right] G^R = 0, \quad \left[\sum_{\alpha} d^{\omega}_{\alpha} \mathcal{D}_{\alpha} - d^{\omega}_G\right] G^R = 0, \quad (3.56)$$

где $\alpha \equiv \{t, \mathbf{x}, \mu, \nu, m, M, g\}$ является полным набором аргументов функции G^R , а d^k и d^{ω} — каноническими размерностями G^R и α . Подставляя размерности из таблицы 2.2 в (3.56), находим, что

$$\left[\mathcal{D}_{\mu} + \mathcal{D}_{m} + \mathcal{D}_{M} - 2\mathcal{D}_{\nu} - \mathcal{D}_{\mathbf{x}} - d_{G}^{k}\right]G^{R} = 0, \qquad (3.57a)$$

$$\left[\mathcal{D}_{\nu} - \mathcal{D}_{t} - d_{G}^{\omega}\right]G^{R} = 0.$$
(3.57b)

Исключая из уравнений (3.55) и (3.57) производные по ИКнесущественным параметрам μ и ν , получаем уравнение критического скейлинга задачи (2.42):

$$\left[-\mathcal{D}_{\mathbf{x}} + \Delta_t \mathcal{D}_t + \Delta_m \mathcal{D}_m + \Delta_M \mathcal{D}_M - \Delta_G\right] G^R = 0, \qquad (3.58)$$

где

$$\Delta_t = -\Delta_\omega = -2 + \gamma_\nu^*, \quad \Delta_m = \Delta_M = 1, \tag{3.59}$$

a

$$\Delta[G] \equiv \Delta_G = d_G^k + \Delta_\omega d_G^\omega + \gamma_G^* \tag{3.60}$$

является соответствующей критической размерностью.

Учитывая точное равенство $\gamma_{\nu}^* = \xi$, а также то, что в данной модели поля не ренормируются, т. е. $\gamma_{\Phi} = 0$ для всех Φ , критические размерности исходных полей равны

$$\Delta_{\mathbf{v}} = 1 - \xi, \quad \Delta_{\theta} = -1 + \xi/2, \quad \Delta_{\theta'} = d + 1 - \xi/2.$$
(3.61)

В силу точного равенства $\gamma_{\nu}^* = \gamma_{\nu}(g_*) = \xi$ вклады порядков ξ^2 и выше в выражения (3.61) отсутствуют.

3.3. Модель №3

3.3.1. Стохастическое уравнение Навье–Стокса. Ренормировка параметра ν_0

3.3.1.1. Уравнение РГ. β - и γ -функции

В случае поля скорости, подчиняющегося стохастическому уравнению Навье–Стокса (2.75), уравнение Дайсона для парной корреляционной функции (см. (2.90)) имеет вид

$$\Gamma_{2,v}(\omega, \mathbf{p}) = -i\omega + \nu_0 p^2 - \Sigma^v(\omega, \mathbf{p}).$$
(3.62)

Подставляя Σ^v из (2.101), получаем

$$\Gamma_{2,v} = -i\omega + \nu_0 p^2 \left(1 + g_0 \frac{d-1}{4(d+2)} \frac{S_d}{(2\pi)^d} \frac{m^{-\xi}}{\xi} \right).$$
(3.63)

Из уравнения Дайсона следует, что

$$\nu_0 = \nu Z_{\nu}, \qquad g_0 = g \mu^{\xi} Z_g, \qquad Z_g = Z_{\nu}^{-3}.$$
 (3.64)

Также как и в разделах 3.1.1 и 3.2.1, $g \equiv \hat{g} \cdot C_{d-1}$, μ является ренормировочной массой, ν и g являются ренормированными аналогами затравочных параметров ν_0 и g_0 , $Z_i = Z_i(g, \xi, d)$ — константы ренормировки. Уравнения (3.64) следуют из условия отсутствия ренормировки вклада с D_v^{-1} в действие (2.78), т. о. $D_0 \equiv g_0 \nu_0^3 = g \mu^{\xi} \nu^3$. Как и в случае моделей (2.10) и (2.42), «масса» m и поля Φ не ренормируются, т. е. $m_0 = m$ и $Z_{\Phi} = 1$ для всех Φ . Ренормированный функционал действия имеет вид

$$S_R^v(\Phi) = v_i' D_v v_k'/2 + v_k' \left[-\partial_t v_k - (v_i \partial_i) v_k + \nu Z_\nu \partial^2 v_k \right], \qquad (3.65)$$

где функция D_v (2.76) выражена через ренормированные параметры (3.64).

В соответствии с приложением С.1, базовое уравнение РГ имеет вид

$$\left[\mathcal{D}_{RG} + \gamma_F\right] F_R = 0, \qquad (3.66)$$

где γ_F является аномальной размерностью F, а РГ–оператор \mathcal{D}_{RG} равен

$$\mathcal{D}_{RG} = \mathcal{D}_{\mu} + \beta \partial_g - \gamma_{\nu} \mathcal{D}_{\nu}; \qquad (3.67)$$

РГ-функции определяются как

$$\beta_g \equiv \widetilde{\mathcal{D}}_{\mu}g = g \cdot [-\xi - \gamma_g(g)], \qquad (3.68a)$$

$$\gamma_F \equiv \widetilde{\mathcal{D}}_\mu \ln Z_F = \beta_g \partial_g \ln Z_F$$
 для всех Z_F . (3.68b)

Из уравнения Дайсона (3.42) следует, что константа ренормировки Z_{ν} и аномальная размерность γ_{ν} равны

$$Z_{\nu} = 1 - \frac{d-1}{4(d+2)} \cdot \frac{g}{\xi} + O\left(g^2\right), \qquad (3.69)$$

$$\gamma_{\nu} = \frac{d-1}{4(d+2)} \cdot g.$$
 (3.70)

Из соотношения (3.64) для константы g следует, что

$$Z_g \cdot Z_{\nu}^3 = 1, \tag{3.71}$$

поэтому

$$\gamma_g = -3\gamma_\nu = -\frac{3(d-1)}{4(d+2)} \cdot g. \tag{3.72}$$

3.3.1.2. ИК-притягивающая неподвижная точка

В соответствии с приложением С.3, главный член ИК–асимптотики дается подстановкой $g \to g^*,$ где g^* определяется из условия на β –функцию:

$$\beta_g = 0, \quad \partial_g \beta_g > 0. \tag{3.73}$$

Учитывая (3.72), для константы взаимодействия g получаем условие

$$\beta_g = g(-\xi + 3\gamma_\nu) = 0, \qquad (3.74)$$

т. о. неподвижная точка дается выражением

$$g^* = \frac{4(d+2)}{3(d-1)} \cdot \xi, \quad \partial_g \beta_g(g^*) = \xi > 0.$$
(3.75)

Это означает, что система обладает ИК–притягивающей неподвижной точкой g^* при любом $\xi > 0$; в инерционном интервале $\Lambda r \gg 1$, $mr \sim 1$ корреляционные функции показывают аномальный скейлинг, а соответствующие критические размерности $\Delta[F] \equiv \Delta_F$ могут быть вычислены как ряд по ξ .

3.3.1.3. Критические размерности

Для любой мультипликативно ренормируемой величины G^R главный член ИК–асимптотики уравнения РГ (3.66), (3.67) удовлетворяет этому же уравнению в неподвижной точке g^* , т. е.

$$\left[\mathcal{D}_{\mu}-\gamma_{\nu}^{*}\mathcal{D}_{\nu}+\gamma_{G}^{*}\right]G^{R}(e,\mu,\dots)=0.$$
(3.76)

Учитывая уравнения масштабной инвариантности (3.56) и размерноти полей и параметров из таблицы 2.3, получаем уравнение критического скейлинга задачи (2.78):

$$\left[-\mathcal{D}_{\mathbf{x}} + \Delta_t \mathcal{D}_t + \Delta_m \mathcal{D}_m - \Delta_G\right] G^R = 0, \qquad (3.77)$$

где

$$\Delta_t = -\Delta_\omega = -2 + \gamma_\nu^*, \quad \Delta_m = 1, \tag{3.78}$$

a

$$\Delta[G] \equiv \Delta_G = d_G^k + \Delta_\omega d_G^\omega + \gamma_G^* \tag{3.79}$$

является соответствующей критической размерностью.

Учитывая точное равенство $\gamma_{\nu}^* = \xi/3$, а также то, что в данной модели поля не ренормируются, получаем, что критические размерности исходных

полей равны

$$\Delta_{\mathbf{v}} = 1 - \xi/3, \quad \Delta_{\mathbf{v}'} = d - 1 + \xi/3.$$
 (3.80)

В силу точного равенства $\gamma_{\nu}(g_*) = \xi/3$ вклады порядков ξ^2 и выше в выражения (3.80) отсутствуют.

3.3.2. Ренормировка параметра A_0

Как следует из раздела 2.4.6, однопетлевое разложение для функции $\langle \theta'_{\alpha} \theta_{\gamma} v_{\beta} \rangle_{1-\text{непр}}$ имеет вид

$$\langle \theta'_{\alpha} \theta_{\gamma} v_{\beta} \rangle_{1-\text{Hemp}} = V_{\alpha\beta\gamma} + (\Delta_1 + \Delta_2 + \Delta_3),$$
 (3.81)

где $V_{\alpha\beta\gamma}$ — вершина (2.79), а Δ_1 , Δ_2 и Δ_3 изображены на рисунках 2.16а — 2.16в.

Данный контрчлен может быть воспроизведен мультипликативной ренормировкой параметра \mathcal{A}_0 :

$$\mathcal{A}_0 = \mathcal{A} \cdot Z_{\mathcal{A}}.\tag{3.82}$$

При этом из (2.120), (2.127) и (2.134) следует, что

$$\Delta_1 + \Delta_2 + \Delta_3 = 0. \tag{3.83}$$

Это означает, что

$$Z_{\mathcal{A}} = 1 + O\left(g^2\right), \quad \beta_{\mathcal{A}} = \widetilde{\mathcal{D}}_{\mu}\mathcal{A} = -\mathcal{A}\gamma_{\mathcal{A}} = 0.$$
(3.84)

В работе [33] рассматривалась \mathcal{A} -модель (2.73), при этом перемешивающее поле скорости описывалось моделью Крейчнана с нулевым временем корреляции. При этом все нетривиальные фейнмановские диаграммы 1-неприводимой функции Грина $\langle \theta' \theta v \rangle$ оказывались равными нулю из-за замкнутых циклов запаздывающих пропагаторов. Как следствие, $Z_{\mathcal{A}} = 1$ и $\gamma_{\mathcal{A}} = 0$. В данной задаче $Z_{\mathcal{A}} = 1 + O(g^2)$ по причине сокращения нетривиальных вкладов трех однопетлевых диаграмм Δ_1 , Δ_2 и Δ_3 . Для контрчлена $\theta'(v\partial)\theta$ такое сокращение гарантировано во всех порядках по g галилеевской симметрией, в то время как для контрчлена $\theta'(\theta\partial)v$ данный факт выглядит случайным и может быть всего лишь следствием простой структуры однопетлевых диаграмм. Нет оснований полагать, что этот механизм будет работать и для многопетлевых диаграмм, поэтому $Z_{\mathcal{A}}$ и $\gamma_{\mathcal{A}}$ могут содержать члены порядка g^2 или выше.

3.3.3. Стохастическое уравнение конвекции–диффузии. Ренормировка параметра κ_0

3.3.3.1. Уравнение РГ. β - и γ -функции

Уравнение Дайсона для парной корреляционной функции пассивных полей **heta**, **heta**' (см. (2.103)) имеет вид

$$\Gamma_{2,\theta}(\omega,\mathbf{p}) = -i\omega + \kappa_0 p^2 - \Sigma^{\theta}(\omega,\mathbf{p}).$$
(3.85)

Подставляя Σ^{θ} из (2.112), получаем

$$\Gamma_{2,\theta} = -i\omega + \nu_0 u_0 p^2 \left[1 + \frac{g_0}{u_0(u_0+1)} \cdot \left\{ \frac{d-1}{2d} + \left(\mathcal{A} - 1 \right) \left(\frac{1}{2d} + \frac{u_0}{u_0+1} \frac{1}{d(d+2)} \right) + \left(\mathcal{A} - 1 \right)^2 \left(\frac{1}{2} + \frac{u_0}{u_0+1} \right) \frac{1}{d(d+2)} \right\} \right] \cdot \frac{S_d}{(2\pi)^d} \cdot \frac{m^{-\xi}}{\xi}.$$
(3.86)

Из уравнения Дайсона следует, что

$$\kappa_0 = \nu_0 u_0 = \nu u Z_\kappa. \tag{3.87}$$

Поскольку поле $\boldsymbol{\theta}$ является *пассивным*, константы ренормировки Z_{ν} и Z_{g} , найденные в разделе 3.3.1.1, не зависят от параметров \mathcal{A} и u, являющихся характеристиками *пассивного* поля. Поэтому, учитывая (3.64) и (3.69), получаем, что в первом порядке по g

$$\Gamma_{2,\theta} = -i\omega + \nu u \cdot Z_2 \cdot p^2 \left(1 - g\mu^{\xi} \cdot C\right) \cdot \frac{m^{-\xi}}{\xi}, \qquad (3.88)$$

где

$$C = -\frac{1}{u(u+1)} \cdot \left\{ \frac{d-1}{2d} + (\mathcal{A}-1) \left(\frac{1}{2d} + \frac{u}{u+1} \cdot \frac{1}{d(d+2)} \right) + (\mathcal{A}-1)^2 \left(\frac{1}{2} + \frac{u}{u+1} \right) \cdot \frac{1}{d(d+2)} \right\} \cdot \frac{S_d}{(2\pi)^d}.$$
 (3.89)

Ренормированный функционал действия имеет вид

$$S_{R}(\Phi) = S_{R}^{v}(\mathbf{v}, \mathbf{v}') + \theta_{i}' D_{\theta} \theta_{k}'/2 +$$
$$+\theta_{k}' \left[-\partial_{t} \theta_{k} - (v_{i} \partial_{i}) \theta_{k} + \mathcal{A} Z_{\mathcal{A}} (\theta_{i} \partial_{i}) v_{k} + \kappa Z_{\kappa} \partial^{2} \theta_{k} \right], \qquad (3.90)$$

где $S_R^v(\mathbf{v}, \mathbf{v}')$ — функционал действия (3.65).

Учитывая явный вид оператора $\mathcal{D}_{RG} = \{\mathcal{D}_{\mu} - \gamma_{\nu}\mathcal{D}_{\nu} + \beta_{g}\partial_{g} + \beta_{u}\partial_{u} + \beta_{\mathcal{A}}\partial_{\mathcal{A}}\},$ находим, что

$$\gamma_{\kappa} = -g \cdot C, \tag{3.91}$$

где C определено в (3.89). Из (3.87) следует, что $Z_{\kappa} = Z_{\nu} \cdot Z_{u}$, поэтому

$$\gamma_{\kappa} = \gamma_{\nu} + \gamma_u. \tag{3.92}$$

Учитывая, что $\beta_u = -u\gamma_u$, из (3.92) получаем, что

$$\beta_u = u(\gamma_\nu - \gamma_\kappa). \tag{3.93}$$

3.3.3.2. ИК-притягивающая неподвижная точка

В соответствии с приложением С.3, главный член ИК–асимптотики дается подстановкой $g \to g^*, u \to u^*$, где g^*, u^* определяются из условий на β -функцию:

$$\beta_g(g^*) = 0, \quad \beta_u(u^*) = 0,$$
(3.94)

при этом тип неподвижной точки определяется матрицей $\Omega_{ik} = \partial \beta_i / \partial g_k |_{g=g_*}.$

Из раздела 3.3.3.1, а также выражений (3.91) и (3.93) следует, что при $\xi > 0$ модель имеет нетривиальную ИК–притягивающую неподвижную точку $\{g^*, u^*\}$, где

$$g^* = \frac{4}{3} \frac{(d+2)}{(d-1)} \cdot \xi, \qquad (3.95)$$

а u^* является корнем кубического уравнения

$$\frac{4}{d-1}\left\{(u+1)\cdot\frac{\mathcal{A}^2 + \mathcal{A}d + d^2 - 3}{2d} + u\cdot\frac{1}{d}\cdot\mathcal{A}(\mathcal{A}-1)\right\} = u(u+1)^2.$$
(3.96)

Третьим уравнением (на точку \mathcal{A}^*) является условие $\beta_{\mathcal{A}} = 0$. Из (3.84) следует, что в первом порядке по g данное условие удовлетворяется автоматически. При этом в однопетлевом приближении невозможно установить, верно ли подобное равенство и в старших порядках тоже.

Если данное равенство верно во всех порядках по g (как, например, в \mathcal{A} -модели с нулевым временем корреляции, см. [33]), то уравнение $\beta_{\mathcal{A}} = 0$ в действительности является тождеством и не налагает дополнительных условий на координаты неподвижных точкек, а уравнение (3.96) определяет точку u_* как функцию свободного параметра $\mathcal{A}_0 = \mathcal{A}$.

Анализ уравнения (3.96) показывает, что в наиболее интересном с физической точки зрения случае d = 3 положительное решение u_* существует и единственно при всех \mathcal{A} . Как функция от \mathcal{A} оно обладает минимумом при $\mathcal{A} \simeq -0.5$, при этом $u_* \simeq 0.94$, и возрастает как $u_* = |\mathcal{A}| + O(1)$ при $\mathcal{A} \to \pm \infty$. В случае магнитной гидродинамики, при $\mathcal{A} = 1$, неподвижная точка $u_* \simeq 1.393$ и согласуется с результатами работы [66, 67]. При $\mathcal{A} = 0$ неподвижная точка $u_* = 1$ и согласуется с [68]; при $\mathcal{A} = -1$ неподвижная точка $u_* = 1$. Кроме того, данная неподвижная точка является ИК-притягивающей: $\partial_u \beta_u > 0$, $\partial_\mathcal{A} \beta_\mathcal{A} = \partial_u \beta_\mathcal{A} = 0$.

Подобное поведение функции $u_*(\mathcal{A})$ наблюдается при всех d > 2. Как функция d, данное решение монотонно убывает и стремится к единице при $d \to \infty$. Для $d \leq 2$ полученные результаты неприменимы, т. к. сама процедура ренормировки действия (2.78) для стохастического уравнения Навье– Стокса должна быть иной (см. [65]).

Если $Z_{\mathcal{A}} = 1 + O(g^2)$ и имеет неисчезающие вклады порядка g^2 либо старших порядков, то уравнения $\beta_u = 0$, $\beta_{\mathcal{A}} = 0$ определяют набор неподвижных точек u_* и \mathcal{A}_* . При этом точки $\mathcal{A}_* = 0$ и $\mathcal{A}_* = 1$ удовлетворяют данным уравнениям во всех порядках по g: в первом случае существует дополнительная симметрия по отношению к сдвигу $\theta_i \rightarrow \theta_i + \text{const}_i$ (в стохастическое уравнение (2.73) входят только производные поля θ), во втором — нелинейный член $V_i = (v_k \partial_k)\theta_i - (\theta_k \partial_k)v_i = \partial_k(v_k \theta_i - \theta_k v_i)$ в (2.73) является поперечным ($\partial_i V_i = 0$), т. о. нелокальный член $\partial_i \mathcal{P}$, отвечающий давлению, исчезает. Оба этих свойства сохраняются процедурой ренормировки.

Существование других неподвижных точек нельзя определить без явного двухпетлевого расчета; при этом такие точки существуют для пассивного векторного поля, переносимого сжимаемым крейчнановым полем скорости, см. [69].

3.3.3.3. Критические размерности

Для любой мультипликативно ренормируемой величины G^R главный член ИК–асимптотики уравнения РГ (3.45), (3.46) удовлетворяет этому же уравнению в неподвижной точке g^* , u^* , т. е.

$$\left[\mathcal{D}_{\mu} - \gamma_{\nu}^{*} \mathcal{D}_{\nu} + \gamma_{G}^{*}\right] G^{R}(e, \mu, \dots) = 0.$$
(3.97)

Учитывая уравнения масштабной инвариантности (3.56) и размерноти полей и параметров из таблицы 2.3, получаем уравнение критического скейлинга задачи (2.77):

$$\left[-\mathcal{D}_{\mathbf{x}} + \Delta_t \mathcal{D}_t + \Delta_m \mathcal{D}_m + \Delta_M \mathcal{D}_M - \Delta_G\right] G^R = 0, \qquad (3.98)$$

где

$$\Delta_t = -\Delta_\omega = -2 + \gamma_\nu^*, \quad \Delta_m = \Delta_M = 1, \tag{3.99}$$

a

$$\Delta[G] \equiv \Delta_G = d_G^k + \Delta_\omega d_G^\omega + \gamma_G^* \tag{3.100}$$

является соответствующей критической размерностью.

Учитывая точное равенство $\gamma_{\nu}^* = \xi/3$, а также то, что в данной модели поля не ренормируются, получаем, что критические размерности исходных полей равны

$$\Delta_{\mathbf{v}} = 1 - \xi/3, \quad \Delta_{\mathbf{v}'} = d - 1 + \xi/3, \quad \Delta_{\theta} = -1 + \xi/6, \quad \Delta_{\theta'} = d + 1 - \xi/6.$$
(3.101)

В силу точного равенства $\gamma_{\nu}(g_*) = \xi/3$ вклады порядков ξ^2 и выше в выражения (3.101) отсутствуют.

4. Ренормировка составных операторов. Модель №1

4.1. Критические размерности составных операторов

4.1.1. Общая схема

При вычислении аномальных показателей ключевую роль играют критические размерности Δ_F неприводимых тензорных полей («локальных составных операторов» в квантово–полевой терминологии), построенных целиком из самих полей θ , взятых в одной и той же точке пространства– времени $x = (t, \mathbf{x})$. Будем рассматривать скалярные операторы

$$F_{N,p,m} = (\theta_i \theta_i)^p \ (n_s \theta_s)^{2m}, \quad N = 2(p+m).$$

$$(4.1)$$

Они ренормируются мультипликативно, $F_{Np} = Z_{Np} F_{Np}^R$, и константы ренормировки $Z_{Np} = Z_{Np}(g,\xi,d)$ находятся из условия конечности 1– неприводимых функций

$$\left\langle F_{Np}^{R}(x)\theta(x_{1})\dots\theta(x_{n})\right\rangle_{1-\text{Henp}} = Z_{Np}^{-1}\left\langle F_{Np}(x)\theta(x_{1})\dots\theta(x_{n})\right\rangle_{1-\text{Henp}} \equiv Z_{Np}^{-1}\Gamma_{Np}(x;x_{1},\dots,x_{n}), \qquad (4.2)$$

т. е. отсутствия в них полюсов по ξ , будучи выраженными через ренормированные параметры (3.5). Данное требование эквивалентно конечности произведения $Z_{Np}^{-1} \cdot \Gamma_{Np}(x; \theta)$, где

$$\Gamma_{Np}(x;\theta) = \frac{1}{n!} \int dx_1 \dots \int dx_n \, \Gamma_{Np}(x;x_1,\dots,x_n) \times \\ \times \theta(x_1) \dots \theta(x_n)$$
(4.3)

является функционалом от поля $\theta(x)$ и определяет Z_{Nl} с точностью до произвольной сходящейся части, выбор которой диктуется выбранной схемой вычитаний. Наиболее удобной для вычислений является схема минимальных вычитаний (MS), в которой константы ренормировки имеют вид 1 + полюса по ξ .

Вклад отдельной диаграммы в функционал Γ_{Np} (4.3) для любого оператора F_{Np} представим в виде

$$\Gamma_{Np} = V_{\alpha\beta\dots} I^{ab\dots}_{\alpha\beta\dots} \theta_a \theta_b \dots, \qquad (4.4)$$

где $V_{\alpha\beta...}$ является вершинным множителем, $I^{ab...}_{\alpha\beta...}$ — «внутренний блок», вычисляемый непосредственно по диаграмме, а произведение $\theta_a \theta_b...$ отвечает внешним полям.

В соответствии с правилами универсальной диаграммной техники (см. [26]), для любого оператора F(x), построенного из полей θ , вершине $V_{\alpha\beta\dots}$ с $k \ge 0$ выходящими линиями отвечает выражение

$$V_{Np}^{k}(x; x_{1}, \dots, x_{k}) \equiv \delta^{k} F_{Np}(x) / \delta\theta(x_{1}) \dots \delta\theta(x_{k}).$$
(4.5)

Аргументы $x_1 \dots x_k$ в выражении (4.5) сворачиваются с аргументами линий $\theta \theta'$, присоединяющихся к вершине.

4.1.2. Однопетлевая диаграмма

Однопетлевая диаграмма со вставкой составного оператора (черная точка в вершине диаграммы), дающая в обозначениях (4.4) ответ для внут-

ренней структуры $I^{ab...}_{\alpha\beta...}$, показана на рисунке (4.1).

Рис. 4.1. Однопетлевой вклад в функционал Γ_{Np} .

Индексная структура диаграммы $Y^{ab}_{\alpha\beta}$ равна

$$Y_{\alpha\beta}^{ab} = V_{xai}(\mathbf{k}) \ V_{zjb}(-\mathbf{k}) \cdot P_{\alpha i}(\mathbf{k}) \ P_{\beta j}(\mathbf{k}) \cdot n_x n_z =$$

$$= -\mathcal{A}^2 \cdot n_x P_{x\alpha}(\mathbf{k}) \cdot n_z P_{z\beta}(\mathbf{k}) \cdot k_a k_b, \qquad (4.6)$$

где буквами i, j, x и z обозначены внутренние индексы диаграммы. Данную структуру $Y^{ab}_{\alpha\beta}$ необходимо проинтегрировать по частоте и по импульсу с учетом множителей вида (2.6) и (2.15а):

$$I_{\alpha\beta}^{ab} = \int \frac{d\mathbf{k}}{(2\pi)^d} \int \frac{d\omega}{(2\pi)} \cdot \frac{1}{-i\omega + \nu \mathbf{k}_{\perp}^2 + \nu f k_{\parallel}^2} \cdot \frac{1}{i\omega + \nu \mathbf{k}_{\perp}^2 + \nu f k_{\parallel}^2} \times \\ \times \frac{\delta(k_{\parallel})}{k_{\perp}^{d-1+\xi}} \cdot D_0 \cdot Y_{\alpha\beta}^{ab}.$$

$$(4.7)$$

Усредняя по углам с помощью (2.36), получаем следующий ответ:

$$I^{ab}_{\alpha\beta} = \frac{\mathcal{A}^2}{2\nu} \cdot D_0 \cdot \int \frac{d\mathbf{k}_\perp}{(2\pi)^d} \, \frac{1}{k_\perp^{d-1+\xi}} \cdot \frac{k_a^\perp k_b^\perp}{k_\perp^2} \cdot n_\alpha n_\beta =$$

$$= \frac{\mathcal{A}^2 \cdot f}{2 \ (d-1)} \cdot P_{ab}(\mathbf{n}) \cdot n_{\alpha} n_{\beta} \cdot g \cdot \frac{m^{-\xi}}{\xi}.$$
(4.8)

4.1.3. Многопетлевые диаграммы

Любая многопетлевая диаграмма содержит как часть структуру, изображеннную на рисунке (4.2).

Рис. 4.2. Фрагмент произвольной многопетлевой диаграммы.

Как следствие интеграл, соответствующий расходящейся части произвольной многопетлевой диаграммы, содержит в качестве множителя следующее выражение:

$$I_0 = \delta(k_{\parallel})\delta(q_{\parallel})n_a V_{bac}(\mathbf{k})n_{\alpha} V_{\beta\alpha\gamma}(\mathbf{k} + \mathbf{q})P_{\gamma b}(\mathbf{k}), \qquad (4.9)$$

где V_{cab} является вершиной (2.12), а δ -функции появляются из коррелятора скорости (2.7). Поскольку I_0 пропорционально сумме k_{\parallel} и q_{\parallel} с некоторыми коэффициентами, после интегрирования с δ -функциями все данные диаграммы оказываются равными нулю.

Единственным исключением являются диаграммы типа «песочные часы», являющиеся произведением более простых диаграмм. Но они содержат только полюса более высоких порядков по ξ и в схеме MS вклада в аномальную размерность не дают (см. раздел 5.3).

Таким образом однопетлевое приближение (4.8) дает точный ответ.

4.1.4. Аномальные размерности

Объектами изучения являются корреляционные функции $G_{F_iF_j} = \langle F_iF_j \rangle$, построенные из операторов F_{Np} вида (4.1). Таким образом для вычисления асимптотики инерционного интервала функции G необходимо знать асимптотическое поведение средних значений самих операторов F_i . Рассмотрим оператор

$$F_{N,p,m} = (\theta_i \theta_i)^p \ (n_s \theta_s)^{2m}, \tag{4.10}$$

где N = 2(p+m) — полное число полей θ , входящих в оператор.

В соответствии с (4.4), (4.5) и точным ответом для диаграмм (4.8), свертка по значкам в функционале Γ равна

$$\Gamma \propto \frac{\delta^2}{\delta \theta_{\alpha} \cdot \delta \theta_{\beta}} \left[F_{N,p,m} \right] \cdot n_{\alpha} n_{\beta} \cdot P_{ab}(\mathbf{n}) \ \theta_a \theta_b =$$

$$= 2m(2m-1) \cdot F_{N,p+1,m-1} + (2p+8pm-2m(2m-1)) \cdot F_{N,p,m} +$$

+
$$(4p(p-1) - 2p - 8pm) \cdot F_{N,p-1,m+1} - 4p(p-1) \cdot F_{N,p-2,m+2}$$
. (4.11)

Выражение (4.11) означает, что составные операторы смешиваются при ренормировке. Таким образом УФ–конечный оператор F^R имеет вид $F^R = F$ + контрчлены, где контрчлены являются линейной комбинацией самого оператора F и прочих операторов с тем же полным числом полей N, примешивающихся к F при ренормировке. Обозначим символом $F \equiv \{F_i\}$ замкнутый набор операторов с одним и тем же числом полей θ , т. е. одним и тем же числом N, смешивающихся при ренормировке только между собой. Тогда матрица констант ренормировки $\hat{Z}_F \equiv \{Z_{ik}\}$ и матрица аномальных размерностей $\hat{\gamma}_F \equiv \{\gamma_{ik}\}$ имеют вид

$$F_i = \sum_k Z_{ik} F_k^R, \qquad \hat{\gamma}_F = \hat{Z}_F^{-1} \mathcal{D}_\mu \hat{Z}_F.$$
(4.12)

Уравнения масштабной инвариантности (3.24) и уравнение РГ (3.7), примененные к оператору $F_{N,p}$, дают матрицу критических размерностей $\Delta_F \equiv \{\Delta_{ik}\}$ в форме, аналогичной выражению (3.28). При этом d_F^k , d_F^ω и d_F понимаются как диагональные матрицы канонических размерностей (диагональные элементы которых являются суммой соответствующих размерностей полей и производных, составляющих оператор F), а $\hat{\gamma}^* = \hat{\gamma}(g^*, u^*)$ является матрицей (4.12) в неподвижной точке.

В схеме MS матрица ренормировки \hat{Z} имеет вид

$$\hat{Z} = \hat{E} + \hat{A},\tag{4.13}$$

где \hat{E} является диагональной матрицей канонических размерностей, а любой элемент матрицы \hat{A} имеет вид

$$A_{ik} = a_{ik} \cdot \frac{g}{\xi}.\tag{4.14}$$

Для решения уравнений РГ необходимо диагонализолвать матрицу $\hat{\gamma}$, т. о. критическими размерностями операторов $F \equiv \{F_i\}$ являются собственные числа матрицы Δ_{ik} . Это означает, что мы переходим от набора операторов $\{F^R\}$ к набору «базисных» операторов $\{\tilde{F}^R\}$, обладающих определенными критическими размерностями и имеющих форму

$$F_l^R = U_{lp} \widetilde{F}_p^R, \tag{4.15}$$

где матрица U_{lp} является диагонализующей для матрицы Δ_{ik} — матрица

$$\widetilde{\Delta}_F = U_F^{-1} \Delta_F U_F \tag{4.16}$$

является диагональной либо жордановой.

Т. к. матрица констант ренормировки \hat{Z} имеет вид (4.13), матрица аномальных размерностей $\hat{\gamma}$ равна

$$\gamma_{ik} = -a_{ik} \cdot g, \tag{4.17}$$

где коэффициенты a_{ik} определены в (4.14). Собирая вместе (4.11) — (4.17) и учитывая скалярный множитель, опущенный в (4.11), но представленный в (4.8), а также то, что симметрийный коэффициент для данной диаграммы равен 1/2, получаем следующий ответ для матричных элементов матрицы аномальных размерностей $\hat{\gamma}$:

$$\gamma_{N, p+1} = -\frac{\mathcal{A}^2 \cdot f}{4(d-1)} \cdot 2m(2m-1) \cdot g;$$
(4.18a)

$$\gamma_{N, p} = -\frac{\mathcal{A}^2 \cdot f}{4(d-1)} \cdot (2p + 8pm - 2m(2m-1)) \cdot g; \qquad (4.18b)$$

$$\gamma_{N, p-1} = -\frac{\mathcal{A}^2 \cdot f}{4(d-1)} \cdot (4p(p-1) - 2p - 8pm) \cdot g; \qquad (4.18c)$$

$$\gamma_{N, p-2} = -\frac{\mathcal{A}^2 \cdot f}{4(d-1)} \cdot (-4p(p-1)) \cdot g.$$
 (4.18d)

Подставляя значение неподвижной точки $g^* = \frac{2(d-1)}{d-2+\mathcal{A}} \cdot \xi$ (см. (3.19)), полу-

чаем

$$\gamma_{N,p+1}^{*} = -\frac{\mathcal{A}^{2} \cdot f}{2(d-2+\mathcal{A})} \cdot 2m(2m-1) \cdot \xi;$$
(4.19a)

$$\gamma_{N,p}^* = -\frac{\mathcal{A}^2 \cdot f}{2(d-2+\mathcal{A})} \cdot (2p + 8pm - 2m(2m-1)) \cdot \xi;$$
(4.19b)

$$\gamma_{N,p-1}^{*} = -\frac{\mathcal{A}^{2} \cdot f}{2(d-2+\mathcal{A})} \cdot (4p(p-1) - 2p - 8pm) \cdot \xi; \qquad (4.19c)$$

$$\gamma_{N,p-2}^{*} = -\frac{\mathcal{A}^{2} \cdot f}{2(d-2+\mathcal{A})} \cdot (-4p(p-1)) \cdot \xi.$$
(4.19d)

Таким образом матрица критических размерностей оператора $F_{N,p}$ имеет вид

$$\Delta_{Np,Np'} = -2(p+m) \cdot \delta_{pp'} + \hat{\gamma}^*_{Np,Np'}, \qquad (4.20)$$

где -2(p+m) является его канонической размерностью, $\delta_{pp'}$ — дельтасимвол Кронеккера, а $\hat{\gamma}^*_{Np,Np'}$ является матрицей аномальных размерностей в критической точке.

4.1.5. Матрица критических размерностей и ее собственные значения

На данном этапе нашей задачей является диагонализация матрицы $\Delta_{Np,Np'}$. В соответствии с (4.18), она является 4–диагональной для любого N; кроме того, поскольку из данных 4 диагоналей одна находится ниже главной диагонали, а две другие — выше, обращение такой матрицы нетривиально.

В соответствии с (4.11), замкнутый набор операторов $F \equiv \{F_i\}$, которые смешиваются при ренормировке только между собой, состоит из операторов, построенных из одного и того же числа полей $\boldsymbol{\theta}$, т. е. обладающих одинаковым числом N. Поэтому для дальнейшего рассмотрения будет

удобно ввести вектор \mathbf{F} :

=

$$\mathbf{F} = \begin{pmatrix} (\theta_i \theta_i)^N \\ (\theta_i \theta_i)^{N-2} \cdot (n_s \theta_s)^2 \\ \vdots \\ (n_s \theta_s)^N \end{pmatrix}.$$
(4.21)

Учитывая (4.21), связь $F_i = Z_{ik} F_k^R$ неренормированных операторов $\{F\}$ с ренормированными операторами $\{F^R\}$ принимает вид

$$\begin{pmatrix} (\theta_{i}\theta_{i})^{N} \\ (\theta_{i}\theta_{i})^{N-2} \cdot (n_{s}\theta_{s})^{2} \\ (\theta_{i}\theta_{i})^{N-4} \cdot (n_{s}\theta_{s})^{4} \\ \vdots \\ (\theta_{i}\theta_{i})^{2} \cdot (n_{s}\theta_{s})^{N-2} \\ (n_{s}\theta_{s})^{N} \end{pmatrix} = \\ \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0 & \dots & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} & \vdots \\ 0 & a_{32} & a_{33} & a_{34} & \ddots & 0 \\ \vdots & 0 & a_{43} & \ddots & \ddots & a_{n-2n} \\ \vdots & & \ddots & \ddots & a_{n-1n} \\ 0 & \dots & 0 & a_{nn-1} & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} \{(\theta_{i}\theta_{i})^{N}\}^{R} \\ \{(\theta_{i}\theta_{i})^{N-2} \cdot (n_{s}\theta_{s})^{2}\}^{R} \\ \{(\theta_{i}\theta_{i})^{N-4} \cdot (n_{s}\theta_{s})^{4}\}^{R} \\ \vdots \\ \{(\theta_{i}\theta_{i})^{2} \cdot (n_{s}\theta_{s})^{N-2}\}^{R} \\ \{(\theta_{i}\theta_{i})^{2} \cdot (n_{s}\theta_{s})^{N-2}\}^{R} \\ \{(\theta_{i}\theta_{i})^{2} \cdot (n_{s}\theta_{s})^{N-2}\}^{R} \end{pmatrix}. \quad (4.22)$$

Необходимо отметить, что при данных определениях исходному неренормированному оператору отвечает строка матрицы \hat{Z} , а степень p оператора $F_{N, p}^{R}$ убывает слева направо.

Обозначим общий множитель в (4.19) как у,

$$y = -\frac{\mathcal{A}^2 \cdot f}{2(d-2+\mathcal{A})} \cdot \xi.$$
(4.23)

Используя (4.19), (4.20) и (4.22), построим матрицу критических размерностей $\Delta_{Np, Np'}$ для некоторых конкретных наборов операторов. Для N = 2имеем:

$$\Delta_{Np,Np'} = \begin{pmatrix} -2+2y & -2y \\ 2y & -2-2y \end{pmatrix};$$
(4.24)

собственные значение данной матрицы равны $\lambda = \{-2; -2\}.$

Для N = 8

$$\Delta_{Np,Np'} = \begin{pmatrix} -8+8y & 40y & -48y & 0 & 0\\ 2y & -8+28y & -6y & -24y & 0\\ 0 & 12y & -8+24y & -28y & -8y\\ 0 & 0 & 30y & -8-4y & -26y\\ 0 & 0 & 0 & 56y & -8-56y \end{pmatrix}; \quad (4.25)$$

собственные значения матрицы (4.25) равны $\lambda = \{-8; -8; -8; -8; -8; -8\}$. Данный факт оказывается справедливым для *любого* набора операторов с *произвольным* N. Доказательство вышеприведенного утверждения находится в разделе 4.4.

Таким образом, для *любого* N матрица аномальных размерностей (4.19) является нильпотентной, а матрица критических размерностей (4.20) вырождена, т. к. все ее собственные значения равны N:

$$\lambda_1 = \ldots = \lambda_{N/2+1} = -2(p+m) = -N.$$
 (4.26)

Из (4.26) следует, что матрица критических размерностей (4.20) не является диагонализуемой, а приводится к жордановой форме, т. е. матрица $\widetilde{\Delta}_F$ в (4.16) имеет вид

$$\widetilde{\Delta}_{F} = \begin{pmatrix} -2(p+m) & 1 & 0 & \dots & 0 \\ 0 & -2(p+m) & 1 & \vdots \\ \vdots & 0 & \ddots & \ddots & 0 \\ \vdots & & \ddots & 1 \\ 0 & \dots & 0 & -2(p+m) \end{pmatrix}.$$
(4.27)

Диагонализующая матрица U_F при этом является верхнетреугольной,

$$U_{F} = \begin{pmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ u_{21} & u_{22} & \dots & \dots & u_{1n-1} & 0 \\ u_{31} & \vdots & & \ddots & & \vdots \\ \vdots & \vdots & \ddots & & & \vdots \\ u_{n-1 \ 1} & u_{n-1 \ 2} & & & & \vdots \\ u_{n1} & 0 & \dots & \dots & & 0 \end{pmatrix},$$
(4.28)

причем все элементы $u_{ik} \neq 0$ для любых i, k (см. раздел 4.4).

4.1.6. Асимптотика среднего значения оператора $F_{N,p}$

Поскольку объектами изучения являются одновременные корреляционные функции $G = \langle F_1 F_2 \rangle$, в результате операторного разложения будут появляться средние значения самих операторов $\langle F^R \rangle$. Из соображений размерности

$$\left\langle \widetilde{\mathbf{F}}^{R} \right\rangle \propto \nu^{d_{F}^{\omega}} \mu^{d_{F}} \cdot \widehat{\Phi}\left(\frac{M}{\mu}, f\right) \cdot \widehat{\mathbf{C}}_{0}.$$
 (4.29)

Т. к. оператор F ренормируется мультипликативно, его ИК– асимптотика удовлетворяет уравнениям (3.26) — (3.27), описывающим ИК– скейлинг. Поскольку среднее значение не зависит от времени t и координат **х**, решение данного уравнения имеет вид

$$\left\langle \widetilde{\mathbf{F}}^{R} \right\rangle \propto M^{\widetilde{\Delta}_{F}} \cdot \Phi\left(\frac{f}{M^{\gamma_{f}^{*}}}\right) \cdot \mathbf{C}_{0}.$$
 (4.30)

Учитывая размерное представление (4.29), получаем

$$\left\langle \widetilde{\mathbf{F}}^{R} \right\rangle \propto \nu^{d_{F}^{\omega}} \mu^{d_{F}} \cdot \left(M/\mu \right)^{\widetilde{\Delta}_{F}} \cdot \Phi \left(\frac{f}{(M/\mu)^{\xi}} \right) \cdot \mathbf{C}_{0},$$
 (4.31)

где Φ является некоторой неизвестной функцией безразмерного аргумента, $\gamma_f^* = \xi$ (см. (3.11) и (3.19)), $\widetilde{\mathbf{F}}^R$ — вектор, построенный из «базисных» операторов (4.15), обладающих определенными размерностями, \mathbf{C}_0 — некоторый постоянный вектор («начальные данные»), μ — ренормировочная масса, а $\widetilde{\Delta}_F$ — матрица критических размерностей (4.27).

Поскольку матрица $\widetilde{\Delta}_F$ в выражении (4.31) является жордановой матрицей с единственным собственным значением $\lambda_0 = -2(p+m)$, значение произвольной скалярной функции \mathcal{F} на матричном аргументе $\widetilde{\Delta}_F$ дается матрицей $\mathcal{F}(\widetilde{\Delta}_F)$:

$$\mathcal{F}\left(\widetilde{\Delta}_{F}\right) = \begin{pmatrix} \mathcal{F}\left(\lambda_{0}\right) & \frac{\mathcal{F}'\left(\lambda_{0}\right)}{1!} & \dots & \frac{\mathcal{F}^{\left(n-1\right)}\left(\lambda_{0}\right)}{\left(n-1\right)!} \\ 0 & \mathcal{F}\left(\lambda_{0}\right) & \vdots \\ \vdots & \ddots & \frac{\mathcal{F}'\left(\lambda_{0}\right)}{1!} \\ 0 & \dots & 0 & \mathcal{F}\left(\lambda_{0}\right) \end{pmatrix}.$$
(4.32)

Благодаря тому, что функция \mathcal{F} является степенной функцией $(M/\mu)^{\widetilde{\Delta}_F}$, в искомой асимптотике появляется логарифмическая зависимость:

$$(M/\mu)^{\widetilde{\Delta}_{F}} = \begin{pmatrix} (M/\mu)^{\lambda} & (M/\mu)^{\lambda} \cdot \ln(M/\mu) & \dots & \frac{(M/\mu)^{\lambda} \cdot (\ln(M/\mu))^{n-1}}{(n-1)!} \\ 0 & (M/\mu)^{\lambda} & \vdots \\ \vdots & & \ddots & (M/\mu)^{\lambda} \cdot \ln(M/\mu) \\ 0 & \dots & 0 & (M/\mu)^{\lambda} \end{pmatrix}.$$
(4.33)

Поэтому после свертки с вектором \mathbf{C}_0 , с точностью до размерного множителя получаем асимптотику операторов \widetilde{F}^R в виде

$$\widetilde{F}_{1}^{R} \propto (M/\mu)^{\lambda} \cdot P_{N/2} \left(\ln M/\mu \right),$$

$$\widetilde{F}_{2}^{R} \propto (M/\mu)^{\lambda} \cdot P_{N/2-1} \left(\ln M/\mu \right),$$

$$\vdots$$
(4.34)

 $\widetilde{F}^R_{N/2+1} \propto (M/\mu)^{\lambda}.$

При этом необходимо иметь в виду, что индексы 1, ..., N/2 + 1 в (4.34) не являются произвольными, а строго связаны с индексами вектора **F**, введенного в (4.21).

4.2. Асимптотика корреляционной функции $G = \langle F_1 F_2 \rangle$

Основной задачей является изучение асимптотики парных корреляционных функций операторов $F_{N,p}$ вида (4.10) с произвольными значениями N и p:

$$G = \langle F_{N_1, p_1} | F_{N_2, p_2} \rangle.$$
(4.35)

Данные корреляционные функции G удовлетворяют уравнению РГ (3.26) - (3.27), описывающему ИК-скейлинг. При этом, благодаря смешиванию операторов $F_{N,p}$ и жордановой форме матрицы (4.27), решение данного уравнения для G является нетривиальным и требует отдельного рассмотрения.

Поскольку коррелятор G является функцией $\mathbf{x} = \mathbf{r_1} - \mathbf{r_2}, \, \mu, \, m, \, M, \, \nu$ и f, размерное представление для него имеет вид

$$G \propto \nu^{d_G^{\omega}} \mu^{d_G} \cdot \widehat{\Phi} \left(\mu r, \, mr, \, Mr, \, f \right), \tag{4.36}$$

где $\widehat{\Phi}(\mu r, mr, Mr, f)$ — некоторая функция безразмерных аргументов, а РГ-оператор \mathcal{D}_{RG} равен

$$\mathcal{D}_{RG} = -\mathcal{D}_{\mathbf{r}} + \mathcal{D}_{m} + \mathcal{D}_{M} + \gamma_{f}^{*} \mathcal{D}_{f}.$$
(4.37)

Применяя данный оператор к коррелятору G и обозначая F_{N_1,p_1} как F_i , а F_{N_2,p_2} как F_k (при этом N_1 и N_2 могут принимать разные значения, т. е. операторы F_i и F_k могут принадлежать разным РГ—семействам), получаем дифференциальное уравнение

$$\mathcal{D}_{RG} \ G_{ik} = \Delta_{is} G_{sk} + \Delta_{ks} G_{is}, \tag{4.38}$$

где $G_{ij} = \langle F_i F_j \rangle$, а Δ_{ij} является критической размерностью оператора G_{ij} ; суммирование по повторяющимся индексам подразумевается. Поскольку числа N_1 и N_2 исходных операторов $F_{N,p}$ в (4.35) могут не совпадать, матрицы Δ_{is} и Δ_{ks} в (4.38) могут иметь разные размерности.

Для решения данного уравнения необходимо перейти от корреляторов G_{ik} к корреляторам \tilde{G}_{ik} , построенным из операторов \tilde{F} (см. (4.15)), обладающих определенными критическими размерностями:

$$\widetilde{G}_{ik} = \left\langle \widetilde{F}_i \ \widetilde{F}_k \right\rangle. \tag{4.39}$$

При этом индексы *i* и *k* в определении (4.39) не являются произвольными, а определяются следующими правилами:

(1) Исходный оператор F определен в (4.10), а именно

$$F_{N,p,m} = (\theta_a \theta_a)^p \ (n_s \theta_s)^{2m}. \tag{4.40}$$

(2) Поскольку при ренормировке смешиваются только операторы, обладающие одним и тем же полным числом полей N (см. (4.11)), для любого фиксированного N можно ввести вектор **F** (4.21), а именно

$$\mathbf{F} = \begin{pmatrix} F_1 \\ F_2 \\ \vdots \\ F_{N/2+1} \end{pmatrix} = \begin{pmatrix} (\theta_a \theta_a)^N \\ (\theta_a \theta_a)^{N-2} \cdot (n_s \theta_s)^2 \\ \vdots \\ (n_s \theta_s)^N \end{pmatrix}.$$
(4.41)

(3) Определим вектор $\widetilde{\mathbf{F}}$ способом, описанным в (4.15), а именно

$$F_l^R = U_{lp} \tilde{F}_p^R, \tag{4.42}$$

где матрица U_{lp} имеет вид (4.28) и приводит матрицу критических размерностей к жордановой форме: $\widetilde{\Delta}_F = U_F^{-1} \Delta_F U_F$ (см. раздел 4.1.5).

Таким образом оператор \tilde{F}_i в определении корреляционной функции (4.39) не является произвольным — он построен с помощью (4.42) как линейная комбинация операторов F_i , чья нумерация строго определена в (4.41).

Корреляционная функция \tilde{G}_{ik} удовлетворяет дифференциальному уравнению (4.38) с тем отличием, что матрицы $\tilde{\Delta}_{ik}$ имеют жорданову форму:

$$\mathcal{D}_{RG} \, \widetilde{G}^R_{ik} = \widetilde{\Delta}_{is} \widetilde{G}^R_{sk} + \widetilde{\Delta}_{ks} \widetilde{G}^R_{is}. \tag{4.43}$$

Поскольку оператор \tilde{F}_i , входящий в коррелятор \tilde{G}_{ik} , принадлежит семейству с индексом N_1 , а оператор \tilde{F}_k принадлежит семейству с индексом N_2 , уравнение (4.43) на самом деле представляет из себя систему $(N_1/2 + 1) \times (N_2/2 + 1)$ «зацепленных» (благодаря невозможности диагонализовать матрицы $\tilde{\Delta}_{ik}$) дифференциальных уравнений.

Матрицы $\widetilde{\Delta}_{is}$ и $\widetilde{\Delta}_{ks}$ в (4.43) имеют вид

$$\widetilde{\Delta}_{F} = \begin{pmatrix} \lambda_{1(2)} & 1 & 0 & \dots & 0 \\ 0 & \lambda_{1(2)} & 1 & & \vdots \\ \vdots & 0 & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \dots & 0 & \lambda_{1(2)} \end{pmatrix},$$
(4.44)

где $\lambda_1 = -N_1$ и $\lambda_2 = -N_2$ (см. раздел 4.4).

Из явного вида матрицы (4.44) следует, что если операторы \widetilde{F}_i и \widetilde{F}_k не являются «последними», т. е. если $i \neq N_1/2 + 1$ и $k \neq N_2/2 + 1$, то каждый из двух членов в (4.43) имеет два вклада — функцию \tilde{G}_{ik}^R с коэффициентом $\lambda_{1(2)}$ и либо функцию $\tilde{G}_{i+1,k}^R$ для первого члена, либо функцию $\tilde{G}_{i,k+1}^R$ для второго члена, оба с коэффициентами 1. Если один из операторов, \tilde{F}_i или \tilde{F}_k , является «последним», т. е. если либо *i*, либо *k* равно $N_{1(2)}/2 + 1$, то вклад такого оператора состоит только из одного члена \tilde{G}_{ik}^R с коэффициентом $\lambda_{1(2)}$.

Как следствие, существует только одно уравнение с одним членом в правой части, а именно при $i = N_1/2 + 1$, а $k = N_2/2 + 1$:

$$\mathcal{D}_{RG} \ \widetilde{G}^{R}_{N_{1}/2+1 \ N_{2}/2+1} = (\lambda_{1} + \lambda_{2}) \cdot \widetilde{G}^{R}_{N_{1}/2+1 \ N_{2}/2+1}.$$
(4.45)

Учитывая (4.36), с точностью до размерного множителя его решение есть функция

$$\widetilde{G}_0^R \equiv \widetilde{G}_{N_1/2+1 \ N_2/2+1}^R \propto (\mu r)^{-\lambda_1 - \lambda_2} \cdot \Phi\left(1, \ mr, \ Mr, \ \bar{f}\right), \tag{4.46}$$

где \bar{f} — инвариантный заряд, см. приложение С.З.З. Из (С.44), (С.49) и (С.51) следует, что при $s \to 0$ инвариантный заряд $\bar{f} \to fr^{\xi}$.

Если $i = N_1/2 + 1$, а $k = N_2/2$, либо если $i = N_1/2$, а $k = N_2/2 + 1$, т. е. если $k + i = (N_1 + N_2)/2 + 1$, то существуют два уравнения вида

$$\mathcal{D}_{RG} \ \widetilde{G}_1^R = (\lambda_1 + \lambda_2) \cdot \widetilde{G}_1^R + \widetilde{G}_0^R, \qquad (4.47)$$

содержащие в правой части уже известную функцию \tilde{G}_0^R . Их решения содержат как степенной множитель, так и полином первой степени от логарифма, т. е. с точностью до размерных констант есть

$$\widetilde{G}_1^R \propto (\mu r)^{-\lambda_1 - \lambda_2} \cdot P_1 \left[\ln \mu r \right] \cdot \Phi \left(1, Mr, mr, fr^{\xi} \right), \qquad (4.48)$$

где $P_1 [\ln \mu r]$ — полином первой степени от $\ln \mu r$. Из (4.46) и (4.48) следует, что асимптотическое поведение суммы $\widetilde{G}_0^R + \widetilde{G}_1^R$ является таким же, как и самой функции \widetilde{G}_1^R :

$$\widetilde{G}_0^R + \widetilde{G}_1^R \cong \widetilde{G}_1^R \propto (\mu r)^{-\lambda_1 - \lambda_2} \cdot P_1 \left[\ln \mu r \right] \cdot \Phi \left(1, Mr, mr, fr^{\xi} \right).$$
(4.49)

Если $k + i = (N_1 + N_2)/2$, то существуют три уравнения, содержащие в правой части уже известную функцию \widetilde{G}_1 (см. (4.48)):

$$\mathcal{D}_{RG} \ \widetilde{G}_2^R = (\lambda_1 + \lambda_2) \cdot \widetilde{G}_2^R + \widetilde{G}_1^R.$$
(4.50)

Их решение содержит полином второй степени от $\ln \mu r$, т. е. с точностью до размерных констант равно

$$\widetilde{G}_2^R \propto (\mu r)^{-\lambda_1 - \lambda_2} \cdot P_2 \left[\ln \mu r \right] \cdot \Phi \left(1, Mr, mr, fr^{\xi} \right), \qquad (4.51)$$

где $P_2 \left[\ln \mu r \right]$ — полином второй степени от $\ln \mu r$.

Для последующих функций процедура является совершенно аналогичной. Число уравнений, содержащих в правой части функции, уже известные на предыдущем шаге, увеличивается при $(N_1 + N_2)/2 + 2 \le i + k \le (N_1 + N_2)/4 + 1$ и уменьшается при $(N_1 + N_2)/4 + 1 \le i + k \le 2$. Как следствие, существует только одна функция (при i + k = 2), чья асимптотика содержит полином максимальной степени от логарифма:

$$\widetilde{G}_{11}^R \propto (\mu r)^{-\lambda_1 - \lambda_2} \cdot P_{(N_1 + N_2)/2} \left[\ln \mu r \right] \cdot \Phi \left(1, Mr, mr, fr^{\xi} \right), \qquad (4.52)$$

где $P_{(N_1+N_2)/2} [\ln \mu r]$ — полином степени $(N_1 + N_2)/2$ от $\ln \mu r$.

Таким образом асимптотическое поведение *любой* из функций \widetilde{G}_{ik}^R находится с помощью вышеописанной процедуры и дается формулами вида (4.46), (4.48), (4.51) и (4.52).

Для того, чтобы получить асимптотическое поведение первоначальных операторов «без тильды», необходимо воспользоваться выражением (4.42). Обратная матрица U^{-1} имеет вид

$$U_{F}^{-1} = \begin{pmatrix} 0 & \dots & \dots & \dots & 0 & \hat{u}_{1n} \\ \vdots & & & \hat{u}_{2 n-1} & \hat{u}_{2n} \\ \vdots & & & \ddots & \vdots & \vdots \\ \vdots & & \ddots & & \vdots & \hat{u}_{n-2 n} \\ 0 & \hat{u}_{n-1 2} & \dots & \hat{u}_{n-1 n-1} & \hat{u}_{n-1 n} \\ \hat{u}_{n1} & \dots & \dots & \hat{u}_{n,n-2} & \hat{u}_{n,n-1} & \hat{u}_{nn} \end{pmatrix}, \quad (4.53)$$

причем все элементы $\hat{u}_{ab} \neq 0$. Необходимо отметить, что два оператора, входящие в коррелятор \widetilde{G}_{ik} (4.39), обладают двумя (возможно разными) матрицами $U_{F_i}^{-1}$ и $U_{F_k}^{-1}$.

Из (4.53) следует, что операторы \tilde{F}^R , принадлежащие некоторому семейству $\{\tilde{\mathbf{F}}^R\}$ определеннной размерности N, могут быть выражены через операторы F^R , принадлежащим другому семейству $\{\mathbf{F}^R\}$ той же размерности N, следующим образом:

$$\widetilde{F}_1^R \cong F_{N/2+1}^R \tag{4.54}$$

(с точностью до числового коэффициента, а именно \hat{u}_{1n});

$$\widetilde{F}_{2}^{R} \cong F_{N/2}^{R} + F_{N/2+1}^{R} \tag{4.55}$$

и т. д. Таким образом, для любого і

$$\widetilde{F}_{i}^{R} \cong \sum_{\alpha} F_{\alpha}^{R} + F_{N/2+1}^{R}, \qquad (4.56)$$

где $\alpha \neq N/2 + 1$ и нумерует все остальные операторы.

Обозначим элементы матрицы $U_{F_i}^{-1}$ оператора F_i , входящего в коррелятор $\widetilde{G}_{ik} = \left\langle \widetilde{F}_i \; \widetilde{F}_k \right\rangle$, как \hat{u}_{ab} , элементы матрицы $U_{F_k}^{-1}$ оператора F_k как \check{u}_{ab} . Тогда

$$\widetilde{G}_{11}^R = \hat{u}_{1,N_1/2+1} \breve{u}_{1,N_2/2+1} \cdot G_{N_1/1+1\ N_2/1+1}^R;$$
(4.57)

$$\widetilde{G}_{12}^{R} = \hat{u}_{1,N_{1}/2+1} \cdot \left(\breve{u}_{2,N_{2}/2} \cdot G_{N_{1}/1+1 \ N_{2}/1}^{R} + \breve{u}_{2,N_{2}/2+1} \cdot G_{N_{1}/1+1 \ N_{2}/1+1}^{R} \right); \quad (4.58)$$

$$\widetilde{G}_{13}^{R} = \hat{u}_{1,N_{1}/2+1} \cdot \left(\breve{u}_{3,N_{2}/2-1} \cdot G_{N_{1}/1+1,N_{2}/1-1}^{R} + \breve{u}_{3,N_{2}/2} \cdot G_{N_{1}/1+1,N_{2}/1}^{R} + \breve{u}_{3,N_{2}/2+1} \cdot G_{N_{1}/1+1,N_{2}/1+1}^{R} \right)$$

$$(4.59)$$

и т. д. Формулы (4.57) — (4.59) показывают, что выражение для любой функции \tilde{G}_{ik}^R содержит в правой части функцию $G_{N_1/1+1\ N_2/1+1}^R$ с разными коэффициентами ($\check{u}_{a,b} \neq \check{u}_{a+1,b}$ и $\hat{u}_{a,b} \neq \hat{u}_{a+1,b}$ для любых a, b), поэтому выражение для любой функции G_{ik}^R содержит в правой части функцию \tilde{G}_{11}^R . Вместе с (4.52) это дает искомую асимптотику парной корреляционной функции первоначальных операторов из семейства {**F**}:

$$G_{ik}^R \cong \widetilde{G}_{11}^R \propto (\mu r)^{-\lambda_1 - \lambda_2} \cdot P_{(N_1 + N_2)/2} \left[\ln \mu r \right] \cdot \Phi \left(1, Mr, mr, fr^{\xi} \right) \quad \forall i, k.$$
(4.60)

Учитывая, что $\lambda_1 = -N_1$, а $\lambda_2 = -N_2$, получаем, что с точностью до размерного множителя искомая асимптотика парного коррелятора (4.35) имеет вид

$$G_{ik}^{R} \cong \widetilde{G}_{11}^{R} \propto (\mu r)^{N_{1}+N_{2}} \cdot P_{(N_{1}+N_{2})/2} \left[\ln \mu r \right] \cdot \Phi \left(1, Mr, mr, fr^{\xi} \right) \quad \forall i, k, \ (4.61)$$

где P_x является полиномом степени x, Φ — неизвестная функкция трех безразмерных аргументов. Ее асимптотическое поведение изучается с помощью операторного разложения.
4.3. Операторное разложение и асимптотика инерционнного интервала

Представление (4.61) с произвольной скейлинговой функцией $\Phi(Mr, mr, fr^{\xi})$ описывает поведение корреляционных функций при $s = 1/\mu r \to 0$, т. е. при $\mu r \gg 1$ и любом фиксированном значении Mr. Инерционный интервал $l \ll r \ll L$ соответствует дополнительному условию $Mr \ll 1$. Вид функции $\Phi(Mr)$ не определяется с помощью уравнения РГ; по аналогии с теорией критического поведения, ее поведение при $Mr \to 0$ изучается с помощью операторного разложения Вильсона; см. [18].

В соотвествии с ОР, одновременно́е произведение $F_1(x')F_2(x'')$ двух ренормированных операторов при $\mathbf{x} \equiv (\mathbf{x}' + \mathbf{x}'')/2 = \text{const}$ и $\mathbf{r} \equiv \mathbf{x}' - \mathbf{x}'' \to 0$ представимо в виде

$$F_1(x')F_2(x'') = \sum_{\widetilde{F}} C_{\widetilde{F}}(\mathbf{r})\widetilde{F}(t,\mathbf{x}), \qquad (4.62)$$

где коэффициентные функции $C_{\tilde{F}}$ регулярны по M^2 , а \tilde{F} — всевозможные ренормированные локальные операторы, разрешенные симметрией задачи. Без потери общности можно считать, что разложение идет по базисным операторам \tilde{F} вида (4.15), т. е. по операторам, обладающим определенными критическими размерностями $\tilde{\Delta}_F$. Ренормированный коррелятор $\langle F_1(x)F_2(x')\rangle$ получается с помощью усреднения (4.62) с весом ехр S_R , где S_R — ренормированное действие (3.6). При этом в правой части будут появляться величины $\langle \tilde{F} \rangle \propto (Mr)^{\tilde{\Delta}_F}$. Их асимптотика при $M \to 0$ находится с помощью уравнений РГ и имеет вид

$$\langle \widetilde{F}_{\alpha} \rangle \propto (Mr)^{\widetilde{\Delta}_{F_{\alpha}}},$$
(4.63)

где $\widetilde{\Delta}_F$ является жордановой матрицей (4.27), а $(Mr)^{\widetilde{\Delta}_{F_{\alpha}}}$ — матрицей вида (4.33). При этом из размерного представления (4.36) следует, что решение уравнения РГ (4.43) подразумевает подстанову $s \equiv 1/\mu r = 1$, см. (4.46), (4.61) и приложение С.3.3. Это означает, что матрица $(M/\mu)^{\widetilde{\Delta}_{F_{\alpha}}}$, представленная в (4.33), переходит в матрицу $(Mr)^{\widetilde{\Delta}_{F_{\alpha}}}$. Кроме того, при решении уравнения РГ для $\langle \widetilde{F} \rangle$ РГ–переменная $s = M/\mu$, поэтому условие $s \to 0$ эквивалентно условию $Mr \ll 1$ и описывает, таким образом, вторую границу инерционного интервала.

Таким образом из операторного разложения (4.62) следует, что функция $\Phi(Mr, mr, fr^{\xi})$ из представления парного коррелятора (4.61) представима в виде суммы

$$\hat{\Phi}(Mr) = \sum_{\alpha} A_{\alpha} (Mr)^{\Delta_{F_{\alpha}}}, \quad Mr \ll 1,$$
(4.64)

в которой коэффициенты $A_{\alpha} = A_{\alpha}(Mr)$, являющиеся коэффициентами Вильсона C_{α} в формуле (4.62), регулярны по $(Mr)^2$. Здесь и далее мы не различаем большие масштабы M и m, введенные в (2.4) и (2.7) (считается, что отношение M/m есть некоторое фиксированное число), и $\hat{\Phi}(Mr) \equiv \Phi(Mr, fr^{\xi})\Big|_{fr^{\xi}=\text{const}}.$

В соответствии с общей теоремой, в ОР входят все операторы, возникающие в разложении Тейлора, а также все те, которые примешиваются к ним в результате ренормировки [26, 27]. Из (4.34) следует, что главный вклад в сумму (4.64) дается оператором \tilde{F}_1^R , обладающим максимальной сингулярностью. Таким образом, подставляя операторное разложение (4.64) в РГ–представление (4.61), получаем искомую асимптотику парной корреляционной функции G (4.35) в инерционном интервале:

$$G = \langle F_{N_1, p_1} \ F_{N_2, p_2} \rangle \propto$$

$$\propto (s_{\rm rg})^{\lambda_1 + \lambda_2} \cdot (s_{\rm ope})^{\lambda_1 + \lambda_2} \cdot P_{(N_1 + N_2)/2} \left[\ln s_{\rm rg}\right] \cdot P_{(N_1 + N_2)/2} \left[\ln s_{\rm ope}\right] \cdot \widetilde{\Phi} \left(fr^{\xi}\right) =$$

$$= (\mu r)^{N_1 + N_2} \cdot (Mr)^{-N_1 - N_2} \cdot P_{(N_1 + N_2)/2} \left[\ln (1/\mu r) \right] \cdot P_{(N_1 + N_2)/2} \left[\ln Mr \right] \cdot \widetilde{\Phi} \left(fr^{\xi} \right),$$

$$(4.65)$$

где $s_{\rm rg} = 1/\mu r$, $s_{\rm ope} = Mr$, $\lambda_{1(2)} = -N_{1(2)}$, а $P_{(N_1+N_2)/2}$ — полином степени $(N_1 + N_2)/2$. Учитывая размерное представление (4.36), а также то, что каноническая размерность $d_G = -N_1 - N_2$, восстанавливая размерные множители в (4.65), получаем

$$G = \langle F_{N_1, p_1} \ F_{N_2, p_2} \rangle \propto \\ \propto \nu^{d_G^{\omega}} \cdot M^{-N_1 - N_2} \cdot P_{(N_1 + N_2)/2} \left[\ln \mu r \right] \cdot P_{(N_1 + N_2)/2} \left[\ln M r \right] \cdot \widetilde{\Phi} \left(f r^{\xi} \right).$$
(4.66)

При этом главный член в выражении (4.66) равен

$$G \propto \nu^{d_G^{\omega}} \cdot M^{-N_1 - N_2} \cdot \left[\ln \mu r\right]^{(N_1 + N_2)/2} \cdot \left[\ln M r\right]^{(N_1 + N_2)/2} \cdot \widetilde{\Phi}\left(fr^{\xi}\right), \qquad (4.67)$$

где $\widetilde{\Phi}(fr^{\xi})$ — неизвестная безразмерная скейлинговая функция, ограниченная в интервале $l \ll r \ll L$.

4.4. Нильпотентность матрицы аномальных размерностей

В данном разделе будет доказана нильпотентность матрицы аномальных размерностей γ_F^* (4.19). Благодаря этому свойству матрица критиче-

ских размерностей $\Delta_{Np,Np'}$ (4.20) не является диагонализуемой, а приводится к жордановой форме.

4.4.1. Определения и цели

Приведем еще раз некоторые определения и утверждения из разделов 4.1.4 и 4.1.5.

Введем вектор **F** (см. (4.21)):

$$\mathbf{F} = \begin{pmatrix} (\theta_i \theta_i)^N \\ (\theta_i \theta_i)^{N-2} \cdot (n_s \theta_s)^2 \\ \vdots \\ (n_s \theta_s)^N \end{pmatrix}; \qquad (4.68)$$

учитывая (4.68), соотношение $F_i = Z_{ik} F_k^R$ между наборами неренормированных операторов $\{F\}$ и ренормированных операторов $\{F^R\}$ имеет вид

$$\begin{pmatrix} (\theta_i \theta_i)^N \\ (\theta_i \theta_i)^{N-2} \cdot (n_s \theta_s)^2 \\ (\theta_i \theta_i)^{N-4} \cdot (n_s \theta_s)^4 \\ \vdots \\ (\theta_i \theta_i)^2 \cdot (n_s \theta_s)^{N-2} \\ (n_s \theta_s)^N \end{pmatrix} =$$

$$= \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0 & \dots & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} & & \vdots \\ 0 & a_{32} & a_{33} & a_{34} & \ddots & 0 \\ \vdots & 0 & a_{43} & \ddots & \ddots & a_{n-2n} \\ \vdots & & \ddots & \ddots & a_{n-1n} \\ 0 & \dots & 0 & a_{nn-1} & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} \{(\theta_i \theta_i)^{N-2} \cdot (n_s \theta_s)^2\}^R \\ \{(\theta_i \theta_i)^{N-4} \cdot (n_s \theta_s)^4\}^R \\ & \vdots \\ \{(\theta_i \theta_i)^2 \cdot (n_s \theta_s)^{N-2}\}^R \\ & \{(n_s \theta_s)^N\}^R \end{pmatrix} .$$
(4.69)

При данных определениях исходному неренормированному оператору отвечает строка матрицы \hat{Z} , а степень p оператора $F^R_{N,p}$ убывает слева направо.

Обозначим общий множитель в (4.19) как y,

$$y = -\frac{\mathcal{A}^2 \cdot f}{2(d-2+\mathcal{A})} \cdot \xi.$$
(4.70)

При данных обозначениях элементы матрицы аномальных размерностей $\hat{\gamma}_F = \hat{Z}_F^{-1} \mathcal{D}_\mu \hat{Z}_F$ в неподвижной точке g^* равны

$$\gamma_{N,\,p+1}^* = 2m(2m-1) \cdot y; \tag{4.71a}$$

$$\gamma_{N,p}^* = (2p + 8pm - 2m(2m - 1)) \cdot y; \tag{4.71b}$$

$$\gamma_{N,p-1}^* = (4p(p-1) - 2p - 8pm) \cdot y; \tag{4.71c}$$

$$\gamma_{N,p-2}^{*} = (-4p(p-1)) \cdot y.$$
(4.71d)

Матрица критических размерностей оператор
а ${\cal F}_{N,\,p}$ имеет вид

$$\Delta_{Np,Np'} = -2(p+m) \cdot \delta_{pp'} + \hat{\gamma}^*_{Np,Np'}, \qquad (4.72)$$

где -2(p+m) — его каноническая размерность, $\delta_{pp'}$ — дельта–символ Кро-

некера, а $\hat{\gamma}^*_{Np,Np'}$ — значение матрицы аномальных размерностей в неподвижной точке.

Целью данного раздела является доказательство нильпотентности матрицы аномальных размерностей $\hat{\gamma}_F^*$ (4.71) и жордановой формы матрицы критических размерностей $\Delta_{Np, Np'}$ (4.72). Будет представлено явное выражение для диагонализующей матрицы U_N , которая с помощью преобразования

$$\Delta_F = U_N \widetilde{\Delta}_F U_N^{-1}. \tag{4.73}$$

приводит матрицу Δ_F к жордановой форме $\widetilde{\Delta}_F$.

Поскольку параметр N в определении вектора **F** (4.68) является произвольным, размерности матриц \hat{Z}_F , $\hat{\gamma}_F$ и U_N , равные $(N/2+1) \times (N/2+1)$, также являются произвольными. Это означает, что выражения (4.71) для матричных элементов матрицы $\hat{\gamma}_F^*$ дают нам алгоритм построения данной матрицы для набора исходных операторов {*F*} с *любым N*. Поэтому сложность данной задачи состоит в том, чтобы найти алгоритм построения диагонализующей матрицы U_N для *произвольного N*, т. е. найти явный вид преобразования, приводящего к жордановой форме матрицы Δ_F *произвольной* размерности.

Необходимо учитывать, что если бы матрица Δ_F была диагонализуемой, диагонализующая матрица U_N была бы единственной для любого конкретного значения N. Поскольку в нашем случае матрица критических размерностей обладает жордановой формой, матрица U_N , приводящая ее к жордановой форме, не является единственной. В результате доказательства будет предъявлен только один из возможных вариантов, который приводит матрицу Δ_F к жордановой форме и таким образом решает поставленную задачу.

Поскольку каждый из элементов матрицы $\hat{\gamma}_F^*$ содержит как множитель коэффициент y, нильпотентность матрицы $\hat{\gamma}_F^*$ означает нильпотентность матрицы $\hat{\epsilon}_F^*$, где $y \cdot \hat{\epsilon}_F^* = \hat{\gamma}_F^*$.

4.4.2. Основная идея

Напишем в явном виде 3×3 (N = 4) матрицу $\hat{\epsilon}_F^*$:

$$\hat{\epsilon}_{F}^{*}\big|_{N=4} = A_{4} = \begin{pmatrix} 4 & 4 & 8 \\ 2 & 8 & -10 \\ 0 & 12 & -12 \end{pmatrix}.$$
(4.74)

Данная матрица является вырожденной, ее собственные значения совпадают и равны

$$\lambda_1 = \lambda_2 = \lambda_3 = 0. \tag{4.75}$$

Матрица U_4 , приводящая матрицу A_4 к жордановой форме, может быть построена из ее собственных векторов

$$V_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}; \quad V_{2} = \begin{pmatrix} 1/6 \\ 1/12 \\ 0 \end{pmatrix}; \quad V_{3} = \begin{pmatrix} 1/24 \\ 0 \\ 0 \end{pmatrix}.$$
(4.76)

При этом каждый из них находится из условия $(A_4 - \lambda I)V_{i+1} = V_i$, решение которого единственно с точностью до произвольной аддитивной постоянной.

Таким образом матрица U_4 имеет вид

$$U_{4} = \begin{pmatrix} 1 & 1/6 & 1/24 \\ 1 & 1/12 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \qquad J_{4} = U_{4}^{-1}A_{4}U_{4} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$
(4.77)

При этом существует интересное свойство: произведение $A_4 \cdot U_4$ является матрицей U_4 , все столбцы которой сдвинуты на одну позицию вправо, т. е.

$$A_4 \cdot U_4 = \begin{pmatrix} 0 & 1 & 1/6 \\ 0 & 1 & 1/12 \\ 0 & 1 & 0 \end{pmatrix}.$$
 (4.78)

Поэтому при умножении матрицы U_4^{-1} на произведение $A_4 \cdot U_4$ в ответе возникает жорданова форма:

$$U_4^{-1} \cdot \begin{pmatrix} 1 & 1/6 & 1/24 \\ 1 & 1/12 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
(4.79)

$$U_4^{-1} \cdot \begin{pmatrix} 0 & 1 & 1/6 \\ 0 & 1 & 1/12 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$
 (4.80)

Данное свойство является не особенностью матриц конкретного вида, а верно для произвольных невырожденных матриц. Если \widehat{M} является $M \times$

М матрицей

$$\widehat{M} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, \qquad \det \widehat{M} \neq 0, \qquad (4.81)$$

а \widetilde{M} является матрицей \widehat{M} , все столбцы которой сдвинуты на одну позицию вправо, а все элементы первого столбца равны нулю, то произведение матриц \widehat{M}^{-1} и \widetilde{M} будет иметь жорданову форму:

$$\widehat{M}^{-1} \cdot \widetilde{M} = \widehat{M}^{-1} \cdot \begin{pmatrix} 0 & a_{11} & \dots & a_{1n-1} \\ 0 & a_{21} & \dots & a_{2n-1} \\ \vdots & \ddots & \vdots \\ 0 & a_{n1} & \dots & a_{nn-1} \end{pmatrix} = \begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & 0 \end{pmatrix}, \quad (4.82)$$

где отсутствующие элементы обозначают нули. Действительно, умножение \widehat{M}^{-1} на первый (пустой) столбец дает пустой столбец в правой части, умножение \widehat{M}^{-1} на остальные столбцы с номерами 2, ..., *n* дает единичную матрицу, но начинающуюся не с элемента с номером 11, а с элемента с номером 12 — т. е. единичную матрицу, элементы которой находятся не на главной диагонали, а на диагонали над ней.

Таким образом идея состоит в том, чтобы найти такую невырожденную матрицу U_N , det $U_N \neq 0$, чтобы произведение $A_N \cdot U_N$ состояло из тех же столбцов, что и сама матрица U_N , но их положение было бы сдвинуто на одну позицию вправо, $i \to i+1$, а все элементы первого столбца равнялись бы нулю. Если такая матрица будет найдена, то

$$U_N^{-1} \cdot [A_N \cdot U_N] = \begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{pmatrix}.$$
 (4.83)

4.4.3. Явный вид матрицы U_N

 U_{18}

Для того чтобы понять, как устроена матрица U_N , напишем в явном виде 10×10 матрицу $\hat{\epsilon}_F^*$, обозначенную как A_{18} , и матрицу U_{18} , приводящую ее к жордановой форме и найденную с помощью прямых вычислений:

$$A_{18} = \begin{pmatrix} 18 & 270 & -288 \\ 2 & 78 & 144 & -224 \\ 12 & 114 & 42 & -168 \\ 30 & 126 & -36 & -120 \\ & 56 & 114 & -90 & -80 \\ & 90 & 78 & -120 & -48 \\ & 132 & 18 & -126 & -24 \\ & 182 & -66 & -108 & -8 \\ & 240 & -174 & -66 \\ & 306 & -306 \end{pmatrix},$$
(4.84)
$$= \begin{pmatrix} 1 & 9/306 & 36/73440 & 84/III \cdot 182 & 126/IV \cdot 132 & 126/V \cdot 90 & 84/VI \cdot 56 & 36/VII \cdot 30 & 9/VIII \cdot 12 & 1/IX \cdot 2 \\ 1 & 8/306 & 28/73440 & 56/III \cdot 182 & 70/ & 56/ & 28/ & 8/ & 1/ \\ 1 & 7/306 & 21/73440 & 35/III \cdot 182 & 35/ & 21/ & 7/ & 1/ \\ 1 & 6/306 & 15/73440 & 20/III \cdot 182 & 15/ & 6/ & 1/ \\ 1 & 5/306 & 10/73440 & 10/III \cdot 182 & 1/ \\ 1 & 3/306 & 3/73440 & 1/III \cdot 182 & 1/ \\ 1 & 3/306 & 3/73440 & 1/III \cdot 182 & 1/ \\ 1 & 3/306 & 1/73440 & 1/III \cdot 182 & 1/ \\ 1 & 1/306 \\ 1 & & & & & & & & & & & \\ \end{pmatrix}$$

В выражении (4.85) римскими цифрами обозначены знаменатели предыдущих столбцов, т. е. III = 73440, IV = 73440 · 182 = 13366080, и т. д. Знаменатели всех элементов, находящихся в одном столбце, одинаковы; символом «/» обозначено деление числителя элемента на его знаменатель, написанный явно только для первого элемента столбца.

Из выражения (4.85) видно, что знаменатели элементов матрицы U_{18} являются произведением элементов нижней диагонали матрицы A_{18} (см. (4.84)), а числители — элементами треугольника Паскаля, т. е. сочетаниями $C_n^k = \binom{n}{k}$, где n является номером строки (нумерация идет снизу вверх), а k — номером столбца (нумерация идет слева направо).

Предположение состоит в том, что данные правила являются универсальными, т. е. позволяют строить искомую матрицу U_N для любой исходной матрицы A_N , т. е. для семейства операторов с произвольным N.

Поскольку в обозначениях (4.69) строка матрицы A соответствует оператору с некоторым фиксированным номером p (см. (4.1)), элемент $\binom{n}{k}$ на самом деле равен $\binom{p}{C}$, где C является номером столбца, а нумерация начинается с нуля.

4.4.4. Доказательство

Доказательство данной гипотезы разделено на несколько этапов. Вначале будет доказана ее справедливость для первых двух столбцов, затем для трех нижних диагоналей, после чего — для всех остальных элементов.

Столбец $N_{2}1$ (C = 0) 4.4.4.1.

В соответствии с (4.71),

$$\sum_{i=-2}^{1} \gamma_{N,p+i}^{*} = 0.$$
(4.86)

Из этого следует, что если первый столбец матрицы U_N равен $\begin{bmatrix} 1 \\ \vdots \end{bmatrix}$, то

первый столбец матрицы $A \cdot U$ равен $\begin{bmatrix} 0\\0\\\vdots\end{bmatrix}$.

Столбец №2 (C = 1) 4.4.4.2.

Последним элементом во втором (первом нетривиальном) столбце, для матрицы U_{18} он равен 1/306 (см. (4.85)), является элемент, определяемый последним элементом нижней диагонали матрицы А (для матрицы A_{18} он равен -306, см. (4.84)). Поскольку данный элемент находится на нижней диагонали, он, в свою очередь, определяется выражением (4.71a); поскольку он является *последним*, он отвечает оператору с p = 0 и 2m = N; т. о. необходимый элемент матрицы A_N равен N(N-1) для любой размерности матрицы A_N .

Из данных утверждений следует, что уравнение, определяющее искомый элемент X матрицы U_N , имеет вид

$$N(N-1) \cdot X = 1. \tag{4.87}$$

Как следствие,

$$X = \frac{1}{N(N-1)},$$
(4.88)

что согласуется с (4.85): при N = 18 правая часть (4.88) равна 1/306.

Уравнение того же типа, что и (4.87), но отвечающее второму элементу в столбце, имеет вид

$$(N-2)(N-3) \cdot X + \frac{2 + (N-2)(7-N)}{N(N-1)} = 1$$
(4.89)

и следует из требования равенства единице суммы двух членов, один из которых отвечает переходу $\gamma_{N,p+1}^*$ (4.71a), а второй переходу $\gamma_{N,p}^*$ (4.71b), а также того факта, что данные элементы отвечают оператору с p = 1. Из уравнения (4.89) следует, что

$$X = \frac{2}{N(N-1)}.$$
(4.90)

Уравнение для третего элемента в столбце имеет тот же вид, что и уравнения (4.87) и (4.89), но содержит три члена. Поскольку мы поднялись еще на одну позицию вверх, параметры оператора $F_{N,p} = (\theta_i \theta_i)^p (n_s \theta_s)^{2m}$ стали равны p = 2 и 2m = N - 4. Таким образом

$$(N-4)(N-5) \cdot X +$$

$$+ [4+8(N-4) - (N-4)(N-5)] \cdot \frac{2}{N(N-1)} +$$

$$+ [8-4-8(N-4)] \cdot \frac{1}{N(N-1)} = 1, \qquad (4.91)$$

следовательно

$$X = \frac{3}{N(N-1)}.$$
 (4.92)

Выражения (4.87), (4.89) и (4.91) состоят из различного числа членов, поэтому их необходимо рассматривать отдельно от общего уравнения (4.93). Другим выделенным с этой точки зрения элементом является первый элемент в столбце, для матрицы (4.85) он равен 9/306. Для этого элемента необходимо поверить тождество; это будет сделано в (4.95). Уравнение для всех остальных элементов второго столбца всегда содержит четыре члена; учитывая (4.88), (4.90) и (4.92), получаем

$$2m(m-1) \cdot X + [2p+8pm-2m(2m-1)] \cdot \frac{k+2}{N(N-1)} + [4p(p-1)-2p-8pm] \cdot \frac{k+1}{N(N-1)} - 4p(p-1) \cdot \frac{k}{N(N-1)} = 1, \quad (4.93)$$

где *k* является номером элемента в столбце и начинается с 1. Из (4.93) следует, что

$$X = \frac{k+3}{N(N-1)}.$$
(4.94)

Таким образом выражения (4.88), (4.90), (4.92) и (4.94) определяют все элементы второго столбца. Теперь необходимо проверить тождество для первого («самого верхнего») элемента. Данный элемент отвечает оператору с m = 0; p = N/2, поэтому из (4.71) следует, что аналог уравнения (4.93) для него имеет вид

$$[4p(p-1)+2p] \cdot \frac{1}{N(N-1)} \bigg|_{p=N/2} = 1.$$
(4.95)

При подстановке p = N/2 правая и левая части (4.95) действительно равны друг другу, т. о. тождество выполняется.

Данное утверждение заканчивает доказательство элементов второго столбца. Из (4.88), (4.90), (4.92) и (4.94) следует, что все элементы данного столбца имеют одинаковые знаменатели, а именно N(N-1), а числитель любого из них равен k, причем k = 1 отвечает второму элементу с конца. Данные выражения найдены из требования, сформулированного в конце раздела 4.4.2: необходимо найти такую невырожденную матрицу U_N , чтобы произведение $A_N \cdot U_N$ состояло из тех же столбцов, что и сама матрица U_N , но их положение было бы сдвинуто на одну позицию вправо. При этом все элементы предыдущего столбца равны 1, см. раздел 4.4.4.1.

Для дальнейшего нам потребуется объединить формулы (4.88), (4.90), (4.92) и (4.94) с помощью сочетаний: поскольку для данного столбца $\mathcal{C} = 1$,

$$X = \frac{1}{N(N-1)} \cdot \binom{p}{1}.$$
(4.96)

4.4.4.3. Три нижние диагонали

Следующим этапом в доказательстве данной гипотезы являются элементы, находящиеся на трех нижних диагоналях. Данные три диагонали необходимо рассматривать отдельно от всех остальных по той же причине, по которой уравнения (4.87), (4.89) и (4.91) необходимо рассматривать отдельно от общего выражения (4.93) — первые три уравнения, отвечающие операторам с p = 0, p = 1 или p = 2, являются «выделенными» и содержат разное число членов.

Начнем рассмотрение с нижней диагонали. Произведение любого ее элемента с соответствующим элементом матрицы A_N должно быть равно элементу матрицы U_N , находящемуся в той же строке, но в предыдущем столбце. Поскольку элементы первых двух столбцов уже известны, рассмотрим последний (нижний) элемент столбца $\mathcal{C} = 1$ и построим последовательность всех остальных элементов данной диагонали.

Все элементы, находящиеся на нижней диагонали, связаны между собой условием

$$X \cdot \gamma_{N,\,p+1}^* = Y,\tag{4.97}$$

где X и Y являются элементами рассматриваемой диагонали, причем Y — уже известный элемент из столбца с номером $C_Y = i$, а X — искомый элемент, находящийся в столбце с номером $C_X = i + 1$.

В соответствии с (4.71а), коэффициент $\gamma_{N,p+1}^*$ равен 2m (2m-1). Рассматривая элементы двух первых столбцов, для которых $C_Y = 0$ (т. е. Y = 1, см. раздел 4.4.1), $C_X = 1$, а 2m = N, имеем:

$$X = \frac{1}{N(N-1)}.$$
 (4.98)

Номер строки для каждого последующего элемента данной диагонали возрастает, поэтому число 2m, входящее в выражение (4.71a) для $\gamma_{N,p+1}^*$, убывает от N (столбец $\mathcal{C} = 1$) до 2 (последний столбец). Таким образом из (4.97) следует, что последовательность элементов данной (нижней) диагонали равна

$$\frac{1}{N(N-1)}; \quad \frac{1}{N(N-1)(N-2)(N-3)}; \quad \dots \\ \frac{1}{N(N-1)(N-2)(N-3)\cdot\ldots\cdot 2\cdot 1}.$$
(4.99)

Уравнение, аналогичное (4.97) и связывающее между собой элементы, находящиеся на второй снизу диагонали, имеет вид

$$X \cdot \gamma_{N,p+1}^* + \frac{1}{N(N-1)...(N-2p+2)(N-2p+1)} \cdot \gamma_{N,p}^* = \frac{p}{N(N-1)...(N-2p+4)(N-2p+3)},$$
(4.100)

где X является искомым элементом, а $\gamma_{N,p+1}^*$ и $\gamma_{N,p}^*$ определены в (4.71а) и (4.71b). Числитель выражения, находящегося в правой части, следует из явного вида данных уравнений: при C = 1 искомый элемент отвечает оператору с p = 2, причем в соответствии с (4.90) его правая часть равна 2/N(N-1). Решение данного уравнения (см. (4.101)) пропорционально p + 1 и является отправной точкой для следующего элемента диагонали, который соответствует оператору с p = 3, и т. д. Необходимо иметь в виду, что в уравнении (4.100) правая часть является не искомой, а *известной* величиной. Из (4.100) следует, что

$$X = \frac{p+1}{N(N-1)\dots(N-2p+1)},$$
(4.101)

что находится в согласии с (4.85). Поскольку данные элементы находятся на второй снизу диагонали, числитель (4.101) может быть записан как

$$p+1 = \binom{p+1}{p}.\tag{4.102}$$

Для элементов, находящихся на третьей снизу диагонали, уравнением вида (4.97) и (4.100) является уравнение

$$X \cdot \gamma_{N,p+1}^{*} + \frac{p}{N(N-1)\dots(N-2p+4)(N-2p+3)} \cdot \gamma_{N,p}^{*} + \frac{1}{N(N-1)\dots(N-2p+4)(N-2p+3)} \cdot \gamma_{N,p-1}^{*} = \frac{\alpha}{N(N-1)\dots(N-2p+6)(N-2p+5)},$$
(4.103)

где X является искомым элементом, а $\gamma^*_{N,p+1}$, $\gamma^*_{N,p}$ и $\gamma^*_{N,p-1}$ определены в (4.71a), (4.71b) и (4.71c). Кроме того,

$$\alpha = 3 + \sum_{n=3}^{p-1} n = \frac{1}{2} p (p-1).$$
(4.104)

Из (4.103) и (4.104) следует, что

$$X = \frac{\frac{1}{2}p(p+1)}{N(N-1)\dots(N-2p+3)},$$
(4.105)

что также может быть записано с помощью сочетаний:

$$X = \frac{1}{N(N-1)\dots(N-2p+3)} \cdot \binom{p+1}{p-1}.$$
 (4.106)

Таким образом, на данном этапе гипотеза, сформулированная в разделе 4.4.2, доказана для элементов, находящихся в двух первых столбцах и трех нижних диагоналях — данные элементы удовлетворяют тому требованию, чтобы произведение матриц $A_N \cdot U_N$ состояло из тех же столбцов, что и сама матрица U_N , но их положение было бы сдвинуто на одну позицию вправо.

4.4.4.4. Все остальные элементы

Для завершения доказательства необходимо ввести некоторые обозначения, которые будут использоваться только в текущем разделе. Обозначим номер столбца символом C, причем первому столбцу сопоставим значение C = 0. Символом $C_{\mathcal{L}}$ обозначим элемент, находящийся в столбце с номером C и строке с номером \mathcal{L} (нумерация строк идет снизу вверх и начинается также со значения $\mathcal{L} = 0$). Гипотеза состоит в том, что для любых C и \mathcal{L} числитель элемента $C_{\mathcal{L}}$ является сочетанием $\binom{\mathcal{L}}{C}$. Для доказательства воспользуемся комбинаторными соотношениями между сочетаниями:

$$\begin{pmatrix} \mathcal{L} \\ \mathcal{C} \end{pmatrix} = \begin{pmatrix} \mathcal{L} \\ \mathcal{C} - 1 \end{pmatrix} \cdot \frac{\mathcal{L} + 1 - \mathcal{C}}{\mathcal{C}}; \qquad (4.107a)$$

$$\begin{pmatrix} \mathcal{L} + \mathcal{C} \\ \mathcal{C} \end{pmatrix} = \begin{pmatrix} \mathcal{L} + \mathcal{C} - 1 \\ \mathcal{C} - 1 \end{pmatrix} \cdot \frac{\mathcal{L} + \mathcal{C}}{1 + \mathcal{C}};$$
(4.107b)

$$\begin{pmatrix} \mathcal{L} \\ \mathcal{C} \end{pmatrix} = \begin{pmatrix} \mathcal{L} - 1 \\ \mathcal{C} \end{pmatrix} \cdot \frac{\mathcal{L}}{\mathcal{L} - \mathcal{C}}.$$
 (4.107c)

Выражения (4.107а) — (4.107с) позволяют передвигаться в горизонтальном, вертикальном и диагональном направлениях матрицы U_N .

В общем случае элементы матрицы U_N связаны между собой уравнением

$$(N-2p)(N-2p-1) \cdot X + \frac{2p+4p(N-2p)-(N-2p)(N-2p-1)}{N(N-1)\dots(N-2\mathcal{C}+1)} \cdot \mathcal{C}_{\mathcal{L}+2} + \frac{2p+4p(N-2p)-(N-2p)(N-2p-1)}{N(N-2p)(N-2\mathcal{C}+1)} \cdot \mathcal{C}_{\mathcal{L}+2} + \frac{2p+4p(N-2p)-(N-2p)(N-2p-1)}{N(N-2\mathcal{C}+1)} \cdot \mathcal{C}_{\mathcal{L}+2} + \frac{2p+4p(N-2p)-(N-2p)(N-2p-1)}{N(N-2\mathcal{C}+1)} \cdot \mathcal{C}_{\mathcal{L}+2} + \frac{2p+4p(N-2p)-(N-2p)(N-2p-1)}{N(N-2\mathcal{C}+1)} \cdot \mathcal{C}_{\mathcal{L}+2} + \frac{2p+4p(N-2p)}{N(N-2\mathcal{C}+1)} \cdot \mathcal{C}_{\mathcal{L}+2} + \frac{2p+4p(N-2p)-(N-2p)(N-2p-1)}{N(N-2\mathcal{C}+1)} \cdot \mathcal{C}_{\mathcal{L}+2} + \frac{2p+4p(N-2p)-(N-2p)(N-2p-1)}{N(N-2p-1)} \cdot \mathcal{C}_{\mathcal{L}+2} + \frac{2p+4p(N-2p)-(N-2p)(N-2p-1)}{N(N-2p-1)} \cdot \mathcal{C}_{\mathcal{L}+2} + \frac{2p+4p(N-2p)-(N-2p)}{N(N-2p-1)} \cdot \mathcal{C}_{\mathcal{L}+2} + \frac{2p+4p(N-2p)-(N-2p)}{N(N-2p)} \cdot \mathcal{C}_{\mathcal{L}+2} + \frac{2p+4p(N-2p)-(N-2p)}{N(N-2p)$$

$$+\frac{4p(p-1)-2p-4p(N-2p)}{N(N-1)\dots(N-2\mathcal{C}+1)}\cdot\mathcal{C}_{\mathcal{L}+1}+\frac{-4p(p-1)}{N(N-1)\dots(N-2\mathcal{C}+1)}\cdot\mathcal{C}_{\mathcal{L}}=$$

$$=\frac{(\mathcal{C}-1)_{\mathcal{L}+3}}{N(N-1)\dots(N-2\mathcal{C}+3)},$$
(4.108)

где X— искомый элемент. Для доказательства гипотезы раздела 4.4.2 необходимо проверить два утверждения:

(1) Знаменатели элементов X равны произведению $N(N-1)\dots(N-2\mathcal{C}+1).$

(2) Числители элементов X, обозначенные как $C_{\mathcal{L}+3}$, являются соответствующими сочетаниями. При этом необходимо иметь в виду, что элементы трех нижних диагоналей уже известны (см. (4.99), (4.101) и (4.105)), и их числители являются сочетаниями.

Таким образом необходимо проверить, выполняется ли уравнение (4.108), если X удовлетворяет требованиям (1) и (2), т. е. если

$$X = \frac{C_{\mathcal{L}+3}}{N(N-1)\dots(N-2\mathcal{C}+1)},$$
(4.109)

а все числители \mathcal{C} в (4.108) являются сочетаниями.

Подставим X из (4.109) в уравнение (4.108):

$$\frac{(N-2p)(N-2p-1)}{(N-2\mathcal{C}+2)(N-2\mathcal{C}+1)} \cdot \mathcal{C}_{\mathcal{L}+3} + \frac{2p+4p(N-2p)-(N-2p)(N-2p-1)}{(N-2\mathcal{C}+2)(N-2\mathcal{C}+1)} \cdot \mathcal{C}_{\mathcal{L}+2} + \frac{4p(p-1)-2p-4p(N-2p)}{(N-2\mathcal{C}+2)(N-2\mathcal{C}+1)} \cdot \mathcal{C}_{\mathcal{L}+1} + \frac{[-4p(p-1)]}{(N-2\mathcal{C}+2)(N-2\mathcal{C}+1)} \cdot \mathcal{C}_{\mathcal{L}} = (\mathcal{C}-1)_{\mathcal{L}+3}.$$
(4.110)

Используя (4.107), выразим $C_{\mathcal{L}+3}$, $C_{\mathcal{L}+2}$, $C_{\mathcal{L}+1}$ и $(\mathcal{C}-1)_{\mathcal{L}+3}$ через $C_{\mathcal{L}}$:

$$C_{\mathcal{L}+3} = \frac{(\mathcal{L}+2+\mathcal{C})(\mathcal{L}+1+\mathcal{C})(\mathcal{L}+\mathcal{C})}{(\mathcal{L}+2)(\mathcal{L}+1)\mathcal{L}} \cdot C_{\mathcal{L}}; \qquad (4.111a)$$

$$C_{\mathcal{L}+2} = \frac{(\mathcal{L}+1+\mathcal{C})(\mathcal{L}+\mathcal{C})}{(\mathcal{L}+1)\mathcal{L}} \cdot C_{\mathcal{L}}; \qquad (4.111b)$$

$$\mathcal{C}_{\mathcal{L}+1} = \frac{(\mathcal{L} + \mathcal{C})}{\mathcal{L}} \cdot \mathcal{C}_{\mathcal{L}}; \qquad (4.111c)$$

$$(\mathcal{C}-1)_{\mathcal{L}+3} = \frac{\mathcal{C}\left(\mathcal{L}+1+\mathcal{C}\right)\left(\mathcal{L}+\mathcal{C}\right)}{(\mathcal{L}+2)(\mathcal{L}+1)\mathcal{L}} \cdot \mathcal{C}_{\mathcal{L}}.$$
(4.111d)

Подставляя (4.111) в (4.110), получаем выражение, не содержащее произвольного параметра $\mathcal{C}_{\mathcal{L}}$:

$$\frac{(N-2p)(N-2p-1)}{(N-2\mathcal{C}+2)(N-2\mathcal{C}+1)} \cdot \frac{(\mathcal{L}+2+\mathcal{C})(\mathcal{L}+1+\mathcal{C})(\mathcal{L}+\mathcal{C})}{(\mathcal{L}+2)(\mathcal{L}+1)\mathcal{L}} +$$

$$+\frac{2p+4p(N-2p)-(N-2p)(N-2p-1)}{(N-2\mathcal{C}+2)(N-2\mathcal{C}+1)}\cdot\frac{(\mathcal{L}+1+\mathcal{C})(\mathcal{L}+\mathcal{C})}{(\mathcal{L}+1)\mathcal{L}}+$$

$$+\frac{4p(p-1)-2p-4p(N-2p)}{(N-2\mathcal{C}+2)(N-2\mathcal{C}+1)} \cdot \frac{(\mathcal{L}+\mathcal{C})}{\mathcal{L}} + \frac{[-4p(p-1)]}{(N-2\mathcal{C}+2)(N-2\mathcal{C}+1)} = \frac{\mathcal{C}(\mathcal{L}+1+\mathcal{C})(\mathcal{L}+\mathcal{C})}{(\mathcal{L}+2)(\mathcal{L}+1)\mathcal{L}}.$$
(4.112)

Кроме того, числа \mathcal{L}, \mathcal{C} и p не являются независимыми:

$$1 + \mathcal{L} + \mathcal{C} = p. \tag{4.113}$$

При подстановке связи (4.113) в уравнение (4.112) правая и левая части действительно равны друг другу. Это означает, что предположение (4.109) является верным!

4.4.5. Заключение

В разделах 4.4.4.1 – 4.4.4 была доказана гипотеза, что для *любой* размерности N существует матрица U_N, приводящая матрицу критических размерностей к жордановой форме.

Как следствие, матрица критических размерностей (4.20) является вырожденной, поэтому решение уравнения РГ, описывающее асимптотическое поведение среднего значения операторов (4.10), содержит не только степенную зависимость, обусловленную канонической размерностью, но и *логарифмические* поправки; см. (4.34).

5. Ренормировка составных операторов. Модели №2 и №3

5.1. Аномальный скейлинг для корреляционных функций в инерционном интервале, составные операторы и операторное разложение

Для моделей №2 и №3 тензорные составные операторы, построенные целиком из полей *θ*, имеют вид

$$F_{N,l} = \theta_{i_1}(x) \cdots \theta_{i_l}(x) \ (\theta_i(x)\theta_i(x))^p + \dots,$$
(5.1)

где $l \leq N$ является числом свободных векторных индексов, а N = l + 2p – полным числом полей, входящих в данный оператор; тензорные индексы и аргумент x величины $F_{N,l}$ подразумеваются. Многоточие отвечает вычитанию тензорных структур с дельта-символами Кронекера, обеспечивающее неприводимость данного тензора, т. е. равенство нулю свертки по любой паре значков (например, оператор $F_{2,2} = \theta_i \theta_j - \delta_{ij} [\theta_k \theta_k/d]$).

Стоит отметить, что в случае скалярного поля (либо в \mathcal{A} -модели при $\mathcal{A} = 0$) вместо члена $\partial_k (v_k \theta_i - v_i \theta_k)$ в функционале действия (2.42) присутствует член $\partial_k (v_k \theta)$, благодаря чему существует симметрия сдвига $\theta_i \to \theta_i + \text{const}_i$. Поэтому вместо операторов (5.1) необходимо рассматривать операторы вида $F_n = (\partial_i \theta \partial_i \theta)^n$, построенные из градиентов поля $(\partial_i \theta)$.

Объектами изучения являются одновременные парные корреляционные функции операторов (5.1). В соответствии с разделом 4.2 и приложением С.3.3, решение уравнения РГ для таких корреляторов имеет вид

$$\langle F_{N,l}(t,\mathbf{x}) F_{K,j}(t,\mathbf{x}') \rangle \simeq (\mu r)^{-\Delta_{N,l}-\Delta_{K,j}} \cdot \zeta_{N,l;K,j}(Mr),$$
 (5.2)

где $r = |\mathbf{x} - \mathbf{x}'|$, а $\zeta(Mr)$ — некоторая неизвестная функция.

Данная асимптотика верна при $\Lambda r \gg 1$ и произвольных значениях Mr; вид скейлинговой функции $\zeta(Mr)$ в инерционном интервале $l \ll r \ll L$ изучается с помощью операторного разложения. Из раздела 4.3 (см. (4.62) — (4.63)) следует, что искомая асимптотика для скейлинговых функций $\zeta(Mr)$ РГ–представления (5.2) в области $Mr \ll 1$ имеет вид

$$\zeta(Mr) \simeq \sum_{F} A_F (Mr)^{\Delta_F}, \qquad (5.3)$$

где коэффициенты $A_F = A_F(Mr)$ регулярны по $(Mr)^2$. Т. к. сущетвует оператор F, обладающий наименьшей размерностью, главный вклад в разложение (5.3) имеет вид

$$\zeta(Mr) \cong const \cdot (Mr)^{\Delta_{min}}.$$
(5.4)

Поскольку для любой мультипликативно ренормируемой величины $F = Z_F \cdot F_R$ критическая размерность $\Delta_F = d_F^k + \Delta_\omega d_F^\omega + \gamma_F^*$ (см. (3.79)), учитывая (3.61) и (3.101), находим, что

$$\Delta_{\min} = \Delta_{F_{N,l}} = N(-1 + O(\xi)) + \gamma^*_{F_{Nl}}.$$
(5.5)

Это означает, что в случае операторов (5.1) — благодаря отрицательным каноническим размерностям — аномальный скейлинг присутствует независимо от знака поравки $\gamma_{F_{Nl}}^*$; в случае операторов $F_n = (\partial_i \theta \partial_i \theta)^n$ наличие или отсутствие аномального скейлинга определяется знаком $\gamma_{F_n}^*$. Поскольку вклады операторов (5.1) в операторное разложение расходятся при $Mr \to 0$, их принято называть «опасными». Таким образом, асимптотическое поведение коррелятора (5.2) имеет вид

$$\langle F_{N,l}(t,\mathbf{x})F_{K,j}(t,\mathbf{x}')\rangle \simeq (\mu r)^{-\Delta_{N,l}-\Delta_{K,j}} \cdot (Mr)^{\Delta_{N+K,x}},$$
 (5.6)

где $\Delta_{N+K,x}$ — критическая размерность оператора $F_{N+K,x}$, обладающего минимальной размерностью.

5.2. Скаляризация диаграмм

Рассмотрим составной тензорный оператор

$$F_{N,l} = \theta_{i_1} \dots \theta_{i_l} \ (\theta_i \theta_i)^p, \quad N = l + 2p.$$
(5.7)

Данный оператор ренормируется мультипликативно, $F_{Nl} = Z_{Nl} \cdot F_{Nl}^R$. Как и в разделе 4.1.1 константы ренормировки $Z_{Nl} = Z_{Nl}(g,\xi,d)$ определяются из требования УФ-конечности 1-неприводимых корреляционных функций

$$\left\langle F_{Nl}^{R}(x)\theta(x_{1})\dots\theta(x_{n})\right\rangle_{1-\text{Hemp}} = Z_{Nl}^{-1}\left\langle F_{Nl}(x)\theta(x_{1})\dots\theta(x_{n})\right\rangle_{1-\text{Hemp}} \equiv Z_{Np}^{-1}\Gamma_{Np}(x;x_{1},\dots,x_{n}).$$
(5.8)

На рисунках 5.1 — 5.5 изображены все необходимые диаграммы для вычисления Γ_{Nl} во втором порядке.

Вклад отдельной диаграммы в функционал Γ_{Nl} имеет вид (4.4). Так как вершина $V_{\alpha\beta...}$ и произведение $\theta_a \theta_b \dots$ симметричны по индексам $\alpha\beta \dots$ и $ab \dots$, то величина $I^{ab...}_{\alpha\beta...}$ автоматически оказывается симметризованной по отношению к любым перестановкам верхних (латинских) и нижних (греческих) индексов.

Обозначим такую симметризацию символом Sym. Тогда для диаграммы с любым фиксированым числом лучей k величина Sym[I] представляет собой свертку

$$Sym[I] = \sum_{i} B_i S_i \tag{5.9}$$

базисных структур $S_i = (S_i)^{ab...}_{\alpha\beta...}$ с некоторыми коэффициентами B_i . Для k = 2 и k = 3 базисные структры имеют вид

$$S_1 = Sym[\delta_{\alpha a}\delta_{\beta b}], \quad S_2 = Sym[\delta_{ab}\delta_{\alpha\beta}]$$
для $k = 2,$ (5.10a)

$$S_1 = Sym[\delta_{a\alpha}\delta_{b\beta}\delta_{c\gamma}], \quad S_2 = Sym[\delta_{ab}\delta_{\alpha\beta}\delta_{c\gamma}]$$
для $k = 3.$ (5.10b)

При этом непосредственно из диаграмм вычисляются не сами величины B_i , а связанные с ними скалярные величины A_i :

$$A_i = tr[(S_i)^{ab...}_{\alpha\beta...}Sym[I^{ab...}_{\alpha\beta...}]] = tr[S_i \cdot SymI], \qquad (5.11)$$

где символ tr означает свертку по всем повторяющимся индексам. Связь величин A_i и B_i чисто комбинаторная и выполнена в работе [21]. В результате

$$B_1 = 2\alpha_2 [dA_1 - A_2], \tag{5.12a}$$

$$B_2 = \alpha_2 [-2A_1 + (d+1)A_2]$$
 (5.12b)

для k = 2,

$$B_1 = 6\alpha_3[(d+2)A_1 - 3A_2], \tag{5.13a}$$

$$B_2 = 9\alpha_3[-2A_1 + (d+1)A_2]$$
 (5.13b)

для k = 3.

В выражениях (5.12) — (5.13)

$$\alpha_2 = [(d-1) d (d+2)]^{-1}$$
 для $k = 2,$ (5.14a)

$$\alpha_3 = [(d-1) d (d+2)(d+4)]^{-1}$$
для $k = 3.$ (5.14b)

Следующим шагом является свертка внутреннего блока $I^{ab...}_{\alpha\beta...}$ с вершиным множителем (составным оператором) $V_{\alpha\beta\dots}$ и произведением полей $\theta_a \theta_b \dots$ В результате ответ имеет вид (комбинаторный вывод см. в работах [21, 70])

$$\Gamma_{Nl} = F_{Nl}\overline{\Gamma},$$
 где $\overline{\Gamma} = \sum_{i} k_i B_i,$ (5.15)

а коэффициенты k_i равны

$$k_1 = N(N-1), \qquad k_2 = l_{Nl}$$
 (5.16a)

для k=2,

$$k_1 = N(N-1)(N-2), \quad k_2 = (N-2)l_{Nl}$$
 (5.16b)

для k = 3, а

$$l_{Nl} = (N - l)(d + N + l - 2).$$
(5.16c)

Окончательно, учитывая (5.12) — (5.13)
и (5.16), получаем, что $\bar{\Gamma}$ рав-

 $_{\rm HO}$

где

 $\overline{\Gamma} = \sum_{i} p_i A_i,$

(5.17)

$$p_1 = 2\alpha_2[N(N-2)(d-1) + \lambda_l], \qquad (5.18a)$$

$$p_2 = \alpha_2 [N(N+d)(d-1) - (d+1)\lambda_l]$$
(5.18b)

для k = 2,

$$p_1 = 6\alpha_3(N-2)[N(N-4)(d-1) + 3\lambda_l], \qquad (5.19a)$$

$$p_2 = 9\alpha_3(N-2)\left[N(N+d)(d-1) - (d+1)\lambda_l\right]$$
(5.19b)

для k = 3, множители $A_{1,2}$ представлены в (5.11), $\alpha_{2,3}$ – в (5.14), а

$$\lambda_l = l \left(l + d - 2 \right). \tag{5.20}$$

В работе [21] показано, что при данном выборе коррелятора (2.41) (а именно при жестком обрезании k > m) и *точном* ответе для оператора собственной энергии Σ (см. рисунок 2.7) вклады диаграмм со вставками оператора собственной энергии автоматически взаимно сокращаются. Это связяно с тем, что для учета таких поправок можно перейти от коэффициента вязкости ν_0 к эффективной вязкости

$$\nu_{\mathrm{b}\Phi\Phi} = \nu_0 + g \cdot \frac{d-1}{2d} \cdot \frac{m^{-\xi}}{\xi}, \qquad (5.21)$$

см. (3.48), и ввести множитель Q:

$$\overline{\Gamma}_1 = \overline{\Gamma}^{(1)}, \quad \overline{\Gamma}_2 = \overline{\Gamma}^{(2)} - Q \cdot \overline{\Gamma}^{(1)},$$
(5.22)

где

$$Q = g \cdot \frac{d-1}{2d} \cdot \frac{1}{\xi} \left[(\mu/m)^{\xi} - 1 \right].$$
 (5.23)

При разложении Q в ряд по ξ возникают члены вида $\ln \mu/m$, при этом благодаря жесткому обрезанию k > m члена O(1) в разложении нет; такие же логарифмические члены возникают и при разложении по ξ выражения $(\mu/m)^{l\xi}$, стоящего множителем перед любой l-петлевой диаграммой. Поскольку в схеме MS константы ренормировки зависят только от заряда и не зависят от массовых параметров m и μ , данные вклады обязаны взаимно сократиться. Это означает, что при вычислениях можно сразу положить Q = 0 (т. е. не учитывать вставки оператора собственной энергии) и $\mu/m = 1$; как следствие,

$$\overline{\Gamma}_2 = \overline{\Gamma}^{(2)}.\tag{5.24}$$

5.3. Модель №2

В данном разделе будет представлен двухпетлевой расчет аномальных размерностей $\gamma_{F_{N,l}}^*$ составных операторов $F_{N,l}$ для модели (2.42). Данные аномальные размерности входят в критические показатели (5.6), определяя таким образом асимптотическое поведение корреляционных функций составных операторов.

По определению аномальная размерность γ_F равна

$$\gamma_F = \beta_g \partial_g \ln Z_F. \tag{5.25}$$

Поскольку γ_F является одним из слагаемых в уравнении РГ (3.45) для конечных (ренормированных) операторов (5.1), она не может иметь полюсов по ξ . Раскладывая выражение (5.25) в ряд и учитывая вид констант Z_F в схеме MS, получаем

$$\ln Z_F = \ln \left[1 + \frac{1}{\xi} \cdot C_1(g) + \frac{1}{\xi^2} \cdot C_2(g) + \frac{1}{\xi^3} \cdot C_3(g) + \dots \right] =$$
$$= \frac{1}{\xi} \cdot C_1(g) + \frac{1}{\xi^2} \cdot B_2(g) + \frac{1}{\xi^3} \cdot B_3(g) + O\left(\frac{1}{\xi^4}\right).$$
(5.26)

Поскольку

$$\beta_g(g) = -g \cdot (\xi + \gamma_g), \qquad (5.27)$$

из (5.26) следует, что

$$\gamma_F = -g(\xi + \gamma_g) \cdot \left[\frac{1}{\xi} \cdot C_1(g) + \frac{1}{\xi^2} \cdot B_2(g) + \frac{1}{\xi^3} \cdot B_3(g) + \dots\right].$$
 (5.28)

В силу требования конечности γ_F при $\xi \to 0$ все члены кроме первого в (5.28) должны взаимно сократиться, в результате чего

$$\gamma_F = -g \cdot C_1(g). \tag{5.29}$$

Таким образом вклад в аномальную размерность дают лишь коэффициенты при полюсе первого порядка по *ξ*.

5.3.1. Однопетлевая диаграмма

Однопетлевая диаграмма \mathcal{D}_1 представлена на рисунке (5.1).

Рис. 5.1. Однопетлевая диаграмма \mathcal{D}_1 .

Аналитическое выражение для данной диаграммы имеет вид

$$I = \int \frac{d\omega}{2\pi} \int \frac{d\mathbf{k}}{(2\pi)^d} \cdot \frac{1}{-i\omega + \nu k^2} \cdot \frac{1}{i\omega + \nu k^2} \cdot \frac{D_0}{k^{d+\xi}} \times J_1, \qquad (5.30)$$

где

$$J_{1} = P_{\alpha i}(\mathbf{k}) \cdot P_{\beta j}(\mathbf{k}) \cdot P_{xz}(\mathbf{k}) \cdot V_{i,xa}(\mathbf{k}) \cdot V_{j,zb}(-\mathbf{k}) =$$
$$= P_{\alpha \beta}(\mathbf{k})k_{a}k_{b}.$$
(5.31)

Здесь $V_{c,ab}(\mathbf{k}) \equiv V_{c\,ab}(\mathbf{k}) = i(k_a \delta_{bc} - k_b \delta_{ac})$ — вершина (2.44). Интеграл по частоте равен

$$\int \frac{d\omega}{2\pi} \frac{1}{-i\omega + \nu k^2} \frac{1}{i\omega + \nu k^2} = \frac{1}{2\nu k^2},$$
(5.32)

симметризующие структуры S_1 и S_2 для двухлучевой диаграммы представлены в (5.10а). Таким образом,

$$A_1' = \frac{1}{2} (\delta_{\alpha a} \delta_{\beta b} + \delta_{\alpha b} \delta_{\beta a}) \cdot J_1 = 0; \qquad (5.33a)$$

$$A'_{2} = \delta_{\alpha\beta}\delta_{ab} \cdot J_{1} = (d-1)k^{2}.$$
 (5.33b)

Учитывая (1.4) получаем, что

$$A_1 = 0;$$
 (5.34a)

$$A_2|_{d=3} = \frac{d-1}{2} \cdot g \cdot \int \frac{d\mathbf{k}}{(2\pi)^d} \frac{1}{k^{d+\xi}} = \frac{d-1}{2} \cdot g \cdot \frac{m^{-\xi}}{\xi} \Big|_{d=3} = g \cdot \frac{m^{-\xi}}{\xi}, \quad (5.34b)$$

где $g \equiv \hat{g} \cdot C_d$. Учитывая, что симметрийный коэффициент для данной диаграммы равен 1/2, окончательно получаем, что

$$A_2|_{d=3} = \frac{1}{2} \cdot g \cdot \frac{m^{-\xi}}{\xi}.$$
(5.35)

Здесь и далее все интегралы для модели №2 вычислены для физически наиболее интересного случая трехмерного пространства (d = 3).

В обозначениях последующих разделов 5.3.2 и 5.3.3 ответ для диаграммы \mathcal{D}_1 имеет вид

$$A_1 = 0;$$
 (5.36a)

$$A_2 = \frac{1}{2}.$$
 (5.36b)

5.3.2. Двухпетлевые диаграммы

Двухпетлевая диаграмма \mathcal{D}_{22} представлена на рисунке (5.2).

Рис. 5.2. Двухпетлевая диаграмма \mathcal{D}_{22} .

Аналитическое выражение для данной диаграммы имеет вид

$$I_{22} = \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} \int_{-\infty}^{+\infty} \frac{d\omega'}{2\pi} \int \frac{d\mathbf{k}}{(2\pi)^d} \int \frac{d\mathbf{q}}{(2\pi)^d} \cdot \frac{1}{-i(\omega+\omega')+\nu(\mathbf{k}+\mathbf{q})^2} \cdot \frac{1}{i(\omega+\omega')+\nu(\mathbf{k}+\mathbf{q})^2} \cdot \frac{1}{-i\omega+\nu k^2} \cdot \frac{1}{i\omega+\nu k^2} \cdot \frac{D_0}{q^{d+\xi}} \cdot \frac{D_0}{k^{d+\xi}} \times J_{22}, \quad (5.37)$$

где индексная структура

$$J_{22} = P_{\beta j}(\mathbf{k} + \mathbf{q}) \cdot P_{\alpha i}(\mathbf{k} + \mathbf{q}) \cdot P_{dm}(\mathbf{k}) \cdot P_{ck}(\mathbf{k}) \cdot P_{xz}(\mathbf{q}) \cdot P_{yt}(\mathbf{k}) \cdot V_{i,xc}(\mathbf{k} + \mathbf{q}) \cdot V_{j,zd}(-\mathbf{k} - \mathbf{q}) \cdot V_{k,ya}(\mathbf{k}) \cdot V_{m,tb}(-\mathbf{k}).$$
(5.38)

Поперечность вершины (2.54) дает следующее упрощение:

$$P_{\beta j}(\mathbf{k} + \mathbf{q}) \cdot V_{j,zd}(\mathbf{k} + \mathbf{q}) \to \delta_{\beta j}, \quad P_{dm}(\mathbf{k}) \cdot V_{m,tb}(\mathbf{k}) \to \delta_{dm},$$
$$P_{\alpha i}(\mathbf{k} + \mathbf{q}) \cdot V_{i,xc}(\mathbf{k} + \mathbf{q}) \to \delta_{\alpha i}, \quad P_{ck}(\mathbf{k}) \cdot V_{k,ya}(\mathbf{k}) \to \delta_{ck}.$$
(5.39)

Таким образом выражение для индексной структуры (5.38) принимает вид

$$J_{22} = P_{xz}(\mathbf{q}) \cdot P_{yt}(\mathbf{k}) \cdot V_{\alpha,xc}(\mathbf{k} + \mathbf{q}) \cdot V_{\beta,zd}(-\mathbf{k} - \mathbf{q}) \cdot V_{c,ya}(\mathbf{k}) \cdot V_{d,tb}(-\mathbf{k}) =$$
$$= P_{xz}(\mathbf{q}) \cdot P_{cd}(\mathbf{k}) \cdot (k_x \delta_{\alpha c} - q_c \delta_{\alpha x}) \cdot (k_z \delta_{\beta d} - q_d \delta_{\beta z}) k_a k_b.$$
(5.40)

Интегралы по частотам равны

$$\int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} \int_{-\infty}^{+\infty} \frac{d\omega'}{2\pi} \frac{1}{-i(\omega+\omega')+\nu(\mathbf{k}+\mathbf{q})^2} \cdot \frac{1}{i(\omega+\omega')+\nu(\mathbf{k}+\mathbf{q})^2} \cdot \frac{1}{i(\omega+\omega')+\nu(\mathbf{k}+\mathbf{q})^2} \cdot \frac{1}{-i\omega+\nu k^2} \cdot \frac{1}{i\omega+\nu k^2} = \frac{1}{4\nu^2} \cdot \frac{1}{k^2(\mathbf{k}+\mathbf{q})^2},$$
(5.41)

соответственно,

$$I_{22} = \frac{1}{4} \cdot g^2 \cdot \int \frac{d\mathbf{k}}{(2\pi)^d} \int \frac{d\mathbf{q}}{(2\pi)^d} \cdot \frac{1}{k^2(\mathbf{k} + \mathbf{q})^2} \cdot \frac{1}{q^{d+\xi}} \cdot \frac{1}{k^{d+\xi}} \times J_{22}.$$
 (5.42)

Теперь необходимо произвести свертку J_{22} с симметризующими структурами S_1 и S_2 . В соответствии с (5.10а),

$$S_2 = Sym[\delta_{ab}\delta_{\alpha\beta}] = \delta_{ab}\delta_{\alpha\beta}, \qquad (5.43)$$

поэтому

$$A_{2}' = k^{2} \cdot P_{xz}(\mathbf{q}) \cdot P_{cd}(\mathbf{k}) \cdot (k_{x}\delta_{\alpha c} - q_{c}\delta_{\alpha x}) \cdot (k_{z}\delta_{\beta d} - q_{d}\delta_{\beta z})\delta_{\alpha\beta} =$$
$$= k^{2} \cdot \{(d-1) \cdot [k_{x}P_{xz}(\mathbf{q})k_{z} + q_{x}P_{xz}(\mathbf{k})q_{z}] - 2k_{x}P_{x\alpha}(\mathbf{q})P_{\alpha d}(\mathbf{k})q_{d}\}.$$
(5.44)

Учитывая, что

$$k_x P_{xz}(\mathbf{q})k_z = k^2 \sin^2 \phi, \qquad (5.45)$$

$$k_x P_{x\alpha}(\mathbf{q}) P_{\alpha d}(\mathbf{k}) q_d = -(\mathbf{k} \cdot \mathbf{q}) \sin^2 \phi, \qquad (5.46)$$

где $\phi-$ угол между векторам
и ${\bf k}$ и ${\bf q},$ получаем, что

$$A'_{2} = k^{2} \cdot \left\{ (d-1)(k^{2}+q^{2})\sin^{2}\phi + 2(\mathbf{kq})\sin^{2}\phi \right\}, \qquad (5.47)$$

$$A_{2} = \frac{1}{4} \int \frac{d\mathbf{k}}{(2\pi)^{d}} \int \frac{d\mathbf{q}}{(2\pi)^{d}} \frac{1}{q^{d+\xi}} \frac{1}{k^{d+\xi}} \frac{(d-1)(k^{2}+q^{2})+2(\mathbf{k}\mathbf{q})}{(\mathbf{k}+\mathbf{q})^{2}} \cdot \sin^{2}\phi, \quad (5.48)$$

где A_2 представляет собой выражение (5.42) после свертки со структурой S_2 .

Интегрирование выражения (5.48) выполняется с помощью усреднения по углам. Поскольку A_2 является скалярной функцией от k^2 , q^2 и **kq**,

$$I^{\phi} = \int \frac{d\mathbf{k}}{(2\pi)^d} \int \frac{d\mathbf{q}}{(2\pi)^d} \frac{1}{q^{d+\xi}} \frac{1}{k^{d+\xi}} = \int_m^\infty \frac{dk}{k} \int_m^\infty \frac{dq}{q} \int d\mathbf{n}, \qquad (5.49)$$

где \mathbf{n} — единичный вектор, направленный вдоль одного из векторов — \mathbf{k} либо \mathbf{q} ; см. [21]. Из (5.49) следует, что при d = 3

$$I^{\phi} = \int_{m}^{\infty} \frac{dk}{k} \int_{m}^{\infty} \frac{dq}{q} \int_{0}^{\pi} d\phi \sin \phi / \int_{0}^{\pi} d\phi \sin^{d-2} \phi =$$
$$= \frac{1}{2} \int_{m}^{\infty} \frac{dk}{k} \int_{m}^{\infty} \frac{dq}{q} \int_{0}^{\pi} d\phi \sin \phi.$$
(5.50)

Вся зависимость интегралов вида (5.48) от «массового» параметра *m* содержится в членах

$$\int_{m}^{\infty} \frac{d\mathbf{k}}{k^{d+\xi}} \propto \int_{m}^{\infty} \frac{dk}{k^{1+\xi}} \propto m^{-\xi},$$
(5.51)

соответственно для *п*-петлевой диаграммы

$$f(m,\xi) = m^{-n\xi} \cdot f(\xi).$$
 (5.52)

Применив операцию $D_m = m\partial/\partial m$ к (5.52), получаем, что

$$f(m) = -\frac{1}{n\,\xi} \cdot D_m f(m),\tag{5.53}$$

таким образом операция D_m позволяет явно выделить полюс по ξ и далее вычислять заведемо сходящиеся интегралы. Кроме того, D_m симметризует несимметричное по k и q выражение, и

$$D_m \left[\int_m^\infty dk \int_m^\infty dq \int d\mathbf{n} \cdot F(k, q) \right] =$$
$$= -\int_m^\infty dq \int d\mathbf{n} \cdot F(m, q) - \int_m^\infty dk \int d\mathbf{n} \cdot F(k, m).$$
(5.54)

Делая замену переменных $k = m \cdot x$ и $q = m \cdot x$, получаем, что

$$D_m \left[\int_m^\infty dk \int_m^\infty dq \int d\mathbf{n} \cdot F(k, q) \right] =$$
$$= -\int_1^\infty dx \int d\mathbf{n} \cdot F(x, 1) - \int_1^\infty dx \int d\mathbf{n} \cdot F(1, x).$$
(5.55)

Выделяя в A_2 (см. (5.48)) полюс первого порядка по ξ и учитывая (5.50), получаем

$$A_2 = \frac{1}{8} \int_m^\infty dk \int_m^\infty dq \int_0^\pi d\phi \cdot \frac{2(k^2 + q^2) + 2(\mathbf{kq})}{(\mathbf{k} + \mathbf{q})^2 k^{1+\xi} q^{1+\xi}} \sin^3 \phi = (5.56)$$

$$= \frac{1}{8} \int_{m}^{\infty} dk \int_{m}^{\infty} dq \int_{0}^{\pi} d\phi \frac{\sin^{3} \phi}{k^{1+\xi} q^{1+\xi}} + \frac{1}{8} \int_{m}^{\infty} dk \int_{m}^{\infty} dq \int_{0}^{\pi} d\phi \frac{k^{2} + q^{2}}{(k^{2} + q^{2} + 2kq\cos\phi) k^{1+\xi} q^{1+\xi}} \sin^{3} \phi = (5.57)$$

$$=A_2^{\xi^2} + A_2^{\xi},\tag{5.58}$$

где $A_2^{\xi^2}$ содержит *только* полюс второго порядка по ξ и поэтому не требуется для вычисления аномальной размерности γ_F^* (см. (5.29)). Применяя к члену A_2^{ξ} операцию D_m и учитывая (5.53) при n = 2 и (5.55), а также вычитая расходимость, соответствующую полюсу второго порядка по ξ , получаем

$$A_2^{\xi} = \frac{1}{8} \int_1^\infty dx \int_0^\pi d\phi \left[\frac{x^2 + 1}{(x^2 + 2x\cos\phi + 1)} - 1 \right] \frac{\sin^3\phi}{x} = \frac{1}{8} \cdot \frac{4}{9}.$$
 (5.59)

Кроме того, симметрийный коэффициент для данной диаграммы равен 1/2, поэтому окончательно

$$A_2 \equiv A_2^{\xi} = \frac{1}{8} \cdot \frac{4}{9} \cdot \frac{1}{2} = \frac{1}{36}.$$
 (5.60)

Рассматривая аналогичным образом свертку J_{22} (5.40) с симметризующей структурой

$$S_1 = Sym[\delta_{\alpha a}\delta_{\beta b}] = (\delta_{\alpha a}\delta_{\beta b} + \delta_{\alpha b}\delta_{\beta a})/2$$
(5.61)

и учитывая (5.45), получаем

$$A_{1}' = P_{xz}(\mathbf{q}) \cdot P_{cd}(\mathbf{k}) \cdot (k_{x}\delta_{\alpha c} - q_{c}\delta_{\alpha x}) \cdot (k_{z}\delta_{\beta d} - q_{d}\delta_{\beta z}) \cdot k_{a}k_{b} \cdot \frac{1}{2}(\delta_{\alpha a}\delta_{\beta b} + \delta_{\alpha b}\delta_{\beta a}) = k^{2}q^{2}\sin^{4}\phi.$$

$$(5.62)$$

Соответственно,

$$A_{1} = \frac{1}{4} \int \frac{d\mathbf{k}}{(2\pi)^{d}} \int \frac{d\mathbf{q}}{(2\pi)^{d}} \cdot \frac{1}{q^{d+\xi}} \cdot \frac{1}{k^{d+\xi}} \cdot \frac{k^{2}q^{2}\sin^{4}\phi}{k^{2}(\mathbf{k}+\mathbf{q})^{2}}.$$
 (5.63)

Учитывая (5.53) при n = 2, (5.55), и то, что выражение (5.63) не является симметричным по k и q, получаем

$$A_{1} = \frac{1}{4} \int_{m}^{\infty} dk \int_{m}^{\infty} dq \int_{0}^{\pi} d\phi \sin \phi \cdot \frac{q^{2}}{(\mathbf{k} + \mathbf{q})^{2}} \cdot \frac{\sin^{4} \phi}{k^{1+\xi} q^{1+\xi}} =$$
$$= \frac{1}{8} \int_{1}^{\infty} dx \int_{0}^{\pi} d\phi \left[\frac{x^{2} + 1}{(x^{2} + 2x\cos\phi + 1)} - 1 \right] \cdot \frac{\sin^{5} \phi}{x} = \frac{1}{8} \cdot \frac{8}{75},$$

где снова рассматривается только полюс первого порядка по ξ . Симметрийный коэффициент для диаграммы \mathcal{D}_{22} равен 1/2, поэтому окончательно

$$A_1 = \frac{1}{8} \cdot \frac{8}{75} \cdot \frac{1}{2} = \frac{1}{150}.$$
 (5.64)

Рис. 5.3. Двухпетлевая диаграмма \mathcal{D}_{23} .

Рассмотрим диаграмму \mathcal{D}_{23} , представленную на рисунке (5.3). Аналитическое выражение для данной диаграммы имеет вид

$$I_{23} = \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} \int_{-\infty}^{+\infty} \frac{d\omega'}{2\pi} \int \frac{d\mathbf{k}}{(2\pi)^d} \int \frac{d\mathbf{q}}{(2\pi)^d} \cdot \frac{1}{-i(\omega+\omega')+\nu(\mathbf{k}+\mathbf{q})^2} \cdot \frac{1}{i\omega+\nu k^2} \cdot \frac{1}{-i\omega'+\nu q^2} \cdot \frac{1}{i\omega'+\nu q^2} \cdot \frac{D_0}{q^{d+\xi}} \cdot \frac{D_0}{k^{d+\xi}} \times J_{23}, \quad (5.65)$$

где индексная структура

$$J_{23} = P_{\beta e}(\mathbf{k} + \mathbf{q}) \cdot P_{\alpha d}(\mathbf{k}) \cdot P_{in}(\mathbf{q}) \cdot P_{\gamma j}(\mathbf{q}) \cdot P_{xz}(\mathbf{k}) \cdot P_{yt}(\mathbf{q}) \cdot V_{d,xa}(\mathbf{k}) \cdot V_{e,zn}(-\mathbf{k} - \mathbf{q}) \cdot V_{j,tc}(\mathbf{q}) \cdot V_{i,yb}(-\mathbf{q}).$$
(5.66)

Поперечность вершины (2.54) приводит к следующим упрощениям:

$$P_{\beta e}(\mathbf{k} + \mathbf{q}) \cdot V_{e,zn}(\mathbf{k} + \mathbf{q}) \to \delta_{\beta e}, \quad P_{in}(\mathbf{q}) \cdot V_{i,yb}(\mathbf{k}) \to \delta_{in},$$
$$P_{\alpha d}(\mathbf{k}) \cdot V_{d,xa}(\mathbf{k}) \to \delta_{\alpha d}, \quad P_{\gamma j}(\mathbf{q}) \cdot V_{j,tc}(\mathbf{q}) \to \delta_{\gamma j}. \tag{5.67}$$

Таким образом выражение для индексной структуры (5.66) упрощается:

$$J_{23} = P_{xz}(\mathbf{k}) \cdot P_{yt}(\mathbf{q}) \cdot V_{\beta,zn}(\mathbf{k} + \mathbf{q}) \cdot V_{n,yb}(\mathbf{q}) \cdot V_{\gamma,tc}(\mathbf{q}) \cdot V_{\alpha,xa}(\mathbf{k}) =$$
$$= -P_{\alpha z}(\mathbf{k}) \cdot P_{n\gamma}(\mathbf{q}) \cdot (q_z \delta_{\beta n} - k_n \delta_{\beta z}) \cdot q_b q_c k_a.$$
(5.68)

Интегралы по частотам равны

$$\int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} \int_{-\infty}^{+\infty} \frac{d\omega'}{2\pi} \frac{1}{i\omega + \nu k^2} \cdot \frac{1}{-i(\omega + \omega') + \nu(\mathbf{k} + \mathbf{q})^2} \cdot \frac{1}{-i\omega' + \nu q^2} \cdot \frac{1}{i\omega' + \nu q^2} = \frac{1}{2\nu^2 q^2(q^2 + k^2 + (\mathbf{k} + \mathbf{q})^2)},$$
(5.69)

соответственно,

$$I_{23} = \frac{1}{2} \cdot g^2 \cdot \int \frac{d\mathbf{k}}{(2\pi)^d} \int \frac{d\mathbf{q}}{(2\pi)^d} \cdot \frac{1}{q^2 \left(q^2 + k^2 + (\mathbf{k} + \mathbf{q})^2\right)} \cdot \frac{1}{q^{d+\xi}} \cdot \frac{1}{k^{d+\xi}} \times J_{23}.$$
 (5.70)

Вычислим свертку J_{23} с симметризующими структурами S_1 и S_2 . В соответствии с (5.10b), для трехлучевой диаграммы

$$S_{1} = Sym[\delta_{a\alpha}\delta_{b\beta}\delta_{c\gamma}] =$$

$$= \frac{1}{6} \cdot \left(\delta_{\alpha a}\delta_{\beta b}\delta_{\gamma c} + \delta_{\alpha b}\delta_{\beta c}\delta_{\gamma a} + \delta_{\alpha c}\delta_{\beta a}\delta_{\gamma b} + \delta_{\alpha b}\delta_{\beta a}\delta_{\gamma c} + \delta_{\alpha c}\delta_{\beta b}\delta_{\gamma a} + \delta_{\alpha a}\delta_{\beta c}\delta_{\gamma b}\right).$$
(5.71)

Поскольку

$$k_a \cdot \delta_{\alpha a} \cdot P_{\alpha z}(\mathbf{k}) = 0, \qquad (5.72a)$$

$$q_c \cdot \delta_{c\gamma} \cdot P_{n\gamma}(\mathbf{q}) = 0, \qquad (5.72b)$$

$$q_b \cdot \delta_{b\gamma} \cdot P_{n\gamma}(\mathbf{q}) = 0, \qquad (5.72c)$$

из шести слагаемых структуры S₁ ненулевыми оказываются только два:

$$S_1 = \frac{1}{6} \cdot \left[\delta_{\alpha b} \delta_{\beta c} \delta_{\gamma a} + \delta_{\alpha c} \delta_{\beta b} \delta_{\gamma a} \right].$$
 (5.73)

Тогда

$$A_1' = -\frac{1}{6} P_{\alpha z}(\mathbf{k}) \cdot P_{n\gamma}(\mathbf{q}) \cdot (q_z \delta_{\beta n} - k_n \delta_{\beta z}) \cdot q_b q_c k_a \cdot [\delta_{\alpha b} \delta_{\beta c} \delta_{\gamma a} + \delta_{\alpha c} \delta_{\beta b} \delta_{\gamma a}] .$$
(5.74)

Учитывая (5.45), получаем выражение для A'_1 :

$$A_1' = \frac{1}{3}k^2 q^2 \sin^4 \phi. \tag{5.75}$$

Подставляя (5.75) в (5.70), используя усреднение по углам (5.50), операцию D_m (5.55) и учитывая, что симметрийный коэффициент для данной диаграммы равен 1, получаем

$$A_1 = \frac{1}{2} g^2 \cdot \int \frac{d\mathbf{k}}{(2\pi)^d} \int \frac{d\mathbf{q}}{(2\pi)^d} \cdot \frac{1}{q^2 (q^2 + k^2 + (\mathbf{k} + \mathbf{q})^2)} \frac{1}{k^{d+\xi}} \cdot \frac{1}{q^{d+\xi}} \cdot \frac{1}{3} k^2 q^2 \sin^4 \phi =$$

$$= \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \int_{m}^{\infty} \frac{dk}{k^{1+\xi}} \int_{m}^{\infty} \frac{dq}{q^{1+\xi}} \int_{0}^{\pi} d\phi \frac{1}{q^{2} (q^{2} + k^{2} + (\mathbf{k} + \mathbf{q})^{2})} \cdot k^{2} q^{2} \sin^{5} \phi =$$

$$= \frac{1}{12} \cdot \frac{1}{2} \cdot \int_{m}^{\infty} dk \int_{m}^{\infty} dq \int_{0}^{\pi} d\phi \frac{k^{2}}{q^{2} + k^{2} + kq \cos \phi} \cdot \frac{\sin^{5} \phi}{k^{1+\xi} q^{1+\xi}} =$$

$$= \frac{1}{24} \cdot \frac{1}{2} \cdot \int_{1}^{\infty} dx \int_{0}^{\pi} d\phi \left[\frac{x^{2} + 1}{(x^{2} + x \cos \phi + 1)} - 1 \right] \frac{\sin^{5} \phi}{x} =$$

$$= \frac{1}{30} \left(-\pi\sqrt{3} + \frac{82}{15} \right).$$
(5.76)

Теперь необходимо рассмотреть свертку J_{23} с симметризующей структурой S_2 :

$$S_{2} = Sym \left[\delta_{ab} \ \delta_{\alpha\beta} \ \delta_{c\gamma}\right] =$$

$$= \frac{1}{9} \cdot \left(\delta_{\alpha\beta} \ \delta_{ab} \ \delta_{\gamma c} + \delta_{\alpha\beta} \ \delta_{ac} \ \delta_{\gamma b} + \delta_{\alpha\beta} \ \delta_{bc} \ \delta_{\gamma a} +$$

$$+ \delta_{\alpha\gamma} \ \delta_{ab} \ \delta_{\beta c} + \delta_{\alpha\gamma} \ \delta_{ac} \ \delta_{\beta b} + \delta_{\alpha\gamma} \ \delta_{bc} \ \delta_{\beta a} +$$

$$+ \delta_{\beta\gamma} \ \delta_{ab} \ \delta_{\alpha c} + \delta_{\beta\gamma} \ \delta_{ac} \ \delta_{\alpha b} + \delta_{\beta\gamma} \ \delta_{bc} \ \delta_{\alpha a} \right).$$
(5.77)

Используя формулы (5.45) и (5.46) получаем, что свертка (5.68) с (5.77) дает следующее:

$$A_{2}' = \left[-P_{\alpha z}(\mathbf{k}) \cdot P_{n\gamma}(\mathbf{q}) \cdot (q_{z}\delta_{\beta n} - k_{n}\delta_{\beta z}) \cdot q_{b}q_{c}k_{a}\right] \cdot S_{2} = \frac{1}{9} \left[2\left(2-d\right)\left(\mathbf{kq}\right)q^{2} \sin^{2}\phi + (d-1)k^{2}q^{2} \sin^{2}\phi - 4\left(\mathbf{kq}\right)^{2} \sin^{2}\phi\right].$$
(5.78)

Учитывая все необходимые коэффициенты, из (5.70) и (5.78) имеем:

$$A_{2} = \frac{1}{9} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \int_{m}^{\infty} dk \int_{m}^{\infty} dq \int_{0}^{\pi} d\phi \left\{ \frac{2(2-d) kq \sin^{3}\phi \cos\phi}{(q^{2}+k^{2}+kq\cos\phi) k^{1+\xi}q^{1+\xi}} + \frac{(d-1) k^{2} \sin^{3}\phi - 4 k^{2} \sin^{3}\phi \cos^{2}\phi}{(q^{2}+k^{2}+kq\cos\phi) k^{1+\xi}q^{1+\xi}} \right\},$$

$$(5.79)$$

что после применения операции D_m переходит в

$$A_{2} = \frac{1}{72} \int_{1}^{\infty} dx \int_{0}^{\pi} d\phi \frac{2(2-d) \sin^{3}\phi \cos\phi}{x^{2} + x\cos\phi + 1} + \frac{1}{72} \cdot \frac{1}{2} \int_{1}^{\infty} dx \int_{0}^{\pi} d\phi \left[\frac{x^{2} + 1}{x^{2} + x\cos\phi + 1} - 1 \right] \cdot \frac{1}{x} \times \left[(d-1)\sin^{3}\phi - 4\sin^{3}\phi\cos^{2}\phi \right].$$
(5.80)

Вычисляя данный интеграл при d=3, получаем

$$A_2 = \frac{1}{72} \left(\frac{3136}{225} - \frac{38\pi\sqrt{3}}{15} \right).$$
 (5.81)

Четырехлучевая диаграмма \mathcal{D}_{24} , изображенная на рисунке 5.4, содержит только полюс второго порядка по ξ , и, как следствие, не дает вклада в аномальную размерность γ_F^* (см. (5.29)).

Рис. 5.4. Двухпетлевая диаграмма D_{24} .

Из (2.41) и (2.46а) следует, что диаграмма \mathcal{D}_5 , изображенная на рисунке 5.5, тождественно равна нулю из–за замкнутого цикла запаздывающих пропагаторов.

Рис. 5.5. Двухпетлевая диаграмма \mathcal{D}_5 .

5.3.3. Аномальная размерность $\gamma^*_{F_{N,l}}$

Вышеприведенный результат вычисления диаграмм представим в ви-

$$a_i = g \cdot \frac{\bar{A}_i}{\xi} + g^2 \cdot \frac{\tilde{A}_i}{\xi}, \qquad (5.82)$$

где \bar{A}_i – результат вычисления однопетлевых диаграмм, \tilde{A}_i – результат вычисления двухпетлевых диаграмм. Учитывая (5.17), получаем, что константа ренормировки Z_F имеет вид

$$Z_F = 1 + \sum_{i} p_i a_i, (5.83)$$

где p_i определены в (5.18) и (5.19).

Используя определение аномальной размерности γ_F и учитывая, что в первом порядке по g β -функция $\beta(g) = -\xi g$, находим

$$\gamma_F = \beta \partial_g \ln Z_F = \beta \partial_g \ln \left(1 + \sum_i p_i a_i \right) = -\sum_i \left(g p_i \bar{A}_i + 2g^2 p_i \tilde{A}_i \right). \quad (5.84)$$

Подставляя значение неподвижной точки (см. (3.54))

$$g^* = \frac{2d}{d-1} \cdot \xi, \tag{5.85}$$

получаем значение аномальной размерности в неподвижной точке:

$$\gamma_F^* = \sum_i (p_i \bar{A}_i c \cdot \xi + 2c^2 p_i \tilde{A}_i \cdot \xi^2), \qquad (5.86)$$

где $c = -\xi \cdot 2d/(d-1).$

В результате из (5.18), (5.19), (5.36), (5.60), (5.64), (5.76), (5.81) и (5.86) получаем значение аномальной размерности оператора $F_{N,l}$ с произвольными N и l при d = 3:

$$\gamma_{F_{N,l}}^* = \Delta_{N,l}^{(1)} \cdot \xi + \Delta_{N,l}^{(2)} \cdot \xi^2, \qquad (5.87)$$

где

$$\Delta_{N,l}^{(1)} = -N(N+3)/10 + l(l+1)/5, \qquad (5.88)$$

$$\Delta_{N,l}^{(2)} = -\frac{2N(N-2)}{125} - \frac{N(N+3)}{30} + \frac{22l(l+1)}{375} - \frac{3(N-2)}{175} \left(-\sqrt{3}\pi + \frac{82}{15}\right) \left[2N(N-4) + 3l(l+1)\right] - \frac{19(N-2)}{350} \left(-\sqrt{3}\pi + \frac{1568}{285}\right) \left[N(N+3) - 2l(l+1)\right].$$
(5.89)

Из выражения (5.88) для $\Delta_{N,l}^{(1)}$ — первого порядка по ξ — следует, что аномальные размерности $\gamma_{F_{N,l}}^*$ (5.87) удовлетворяют условию иерархии $\Delta_{N,l} > \Delta_{N,l'}$ при l > l', которое удобно записать в виде неравенства $\partial \Delta_{N,l}/\partial l > 0.$

Данный факт, впервые установленный в [28] для МГД модели Крейчнана, имеет глубокий физический смысл: в присутствии крупномасштабной анизотропии ведущий вклад в асимптотику корреляционных функций вида (5.2) в инерционном интервале $Mr \rightarrow 0$ дает изотропная «сфера» с l = 0. Поэтому соответствующие аномальные показатели являются такими же, как и в изотропном случае; анизотропия влияет только на поправки, убывающие при $Mr \rightarrow 0$ тем быстрее, чем больше порядок анизотропии l. Данный эффект является подтверждением гипотезы Колмогорова о локальном восстановлении изотропии, что наблюдается как в настоящих экспериментах с турбулентностью в жидкости [71,72], так и в модели пассивного скалярного поля [73].

Из (5.89) следует, что член $O(\xi^2)$ в разложении (5.87) также удовлетворяет этому неравенству:

$$\partial \Delta_{N,l}^{(2)} / \partial l \simeq (2l+1)(0.0053 N + 0.0482) > 0.$$
 (5.90)

Это означает, что при включении в расчет второго члена разложения по ξ иерархия анизотропных вкладов не только сохраняется, но и усиливается.

Для наиболее важного случая скалярных операторов $F_{N,l}$ с l=0 аномальная размерность равна

$$\Delta_{N,0}^{(2)} \simeq -0.0041 \ N^3 - 0.0474 \ N^2 - 0.0553 \ N \tag{5.91}$$

и является отрицательной для всех N. Из этого следует, что при включени в рассмотрение члена порядка $O(\xi^2)$ аномальный скейлинг становится только сильнее. Этим данная магнитная задача отличается от модели Крейчнана для скалярного поля, в которой поправки высших порядков к члену $O(\xi)$ являются положительными, что, в свою очередь, является причиной исчезновения аномального скейлинга при $\xi \to 2$, см. [21].

5.3.4. Сравнение результатов с точным решением в частном случае парной корреляционной функции

В работе [30] получено точное решение для парной корреляционной функции задачи (2.39) — (2.41).

Согласно [30],

$$C_{\alpha\beta}(r) \equiv \langle \theta_{\alpha}(\omega, \mathbf{k}) \, \theta_{\beta}(-\omega, -\mathbf{k}) \rangle \propto r^{\zeta_{j}}.$$
(5.92)

Из замкнутой системы уравнений на $C_{\alpha\beta}(r)$ и разложения по полиномам Лежандра следует, что

$$\begin{aligned} \zeta_{j}^{\pm} &= -\frac{1}{2(d-1)} \left\{ 2\xi + d^{2} - d - \left[-2d^{3}\xi - 2d^{2}\xi^{2} - 6d^{3} + 4\xi^{2}d + 8 + 10d\xi + \right. \\ &+ 20dj - 20d - 8\xi - 8j + 4d^{2}j^{2} + 2\xi^{2} - 4\xi j^{2} + 17d^{2} - 8dj^{2} + 8\xi j + 4d^{3}j + \\ &+ 4d^{2}j\xi + 4dj^{2}\xi + 4j^{2} - 16d^{2}j - 12d\xi j + d^{4} \pm \sqrt{K}(d-1)(2-\xi) \right]^{1/2} \right\}, \end{aligned}$$

$$(5.93)$$

где

$$K = (d-1) \left(d^3 + 4d^2j - 5d^2 + 2d^2\xi + \xi^2d + 4d\xi j - 6d\xi + 8d - 12dj + 4dj^2 - \xi^2 + 4\xi + 8j - 8\xi j - 4 - 4j^2 + 4\xi j^2 \right).$$
(5.94)

Здесь j — номер полинома Лежандра, при этом выполняется неравенство $\zeta_0 < \zeta_1 < \dots$.

Раскладывая (5.93) в ряд по
 ξ при j=2, получаем

$$\zeta_2^- = \frac{2}{(d-1)(d+2)}\xi + \frac{2(d^3 + 3d^2 - 8d - 16)}{d(d-1)^2(d+2)^3}\xi^2 + O\left(\xi^3\right), \quad (5.95)$$

что при d = 3 равно

$$\zeta_2^- = \frac{1}{5}\xi + \frac{7}{375}\xi^2; \tag{5.96}$$

аналогично для j = 0 при d = 3 получаем

$$\zeta_0^+ = -\xi - \frac{1}{3}\xi^2 \tag{5.97}$$

(знак + или - выбирается однозначно в зависимости от номера <math>j).

Для вычисления аномальной размерности $\gamma_{F_{N,l}}^*$ (5.87) парного коррелятора $C_{\alpha\beta}$ (5.92) необходимо учитывать операторы $F_{2,2} = (\theta_i \theta_i)$ и $F_{2,0} = (\theta_i \theta_j)$. Для $C_{\alpha\beta}$ решение уравнения РГ и операторное разложение имеют структуру (5.6), при этом исходные операторы $F_{N,l} = \theta_{\alpha}, F_{K,j} = \theta_{\beta}$.

При подстановке соответствующих значений в (5.87), получаем

$$\gamma_{F_{2,0}}^* = -\xi - \frac{1}{3}\xi^2; \tag{5.98}$$

$$\gamma_{F_{2,2}}^* = \frac{1}{5}\xi + \frac{7}{375}\xi^2, \qquad (5.99)$$

что полностью согласуется с (5.96), (5.97). Данный факт подтверждает взаимную согласованность методов РГ + ОР и метода нулевых мод.

5.4. Модель №3

5.4.1. Аномальный скейлинг и аномальные показатели в однопетлевом приближении

В данном разделе будет представлен однопетлевой расчет аномальных размерностей $\gamma_{F_{N,l}}^*$ составных операторов $F_{N,l}$ (5.1) для модели (2.77), определяющих асимптотическое поведение (5.6) корреляционных функций составных операторов.

Однопетлевая диаграмма \mathcal{D}_1 имеет тот же вид, что и для моделей №1 и №2, и представлена на рисунке (5.6).

Рис. 5.6. Однопетлевая диаграмма \mathcal{D}_1 .

Аналитическое выражение для данной диаграммы имеет вид

$$I = \int \frac{d\omega}{2\pi} \int \frac{d\mathbf{k}}{(2\pi)^d} \cdot \frac{1}{-i\omega + \kappa k^2} \cdot \frac{1}{i\omega + \kappa k^2} \cdot \frac{D_F(k)}{\omega^2 + \nu^2 k^4} \times J_1, \qquad (5.100)$$

где

$$J_{1} = P_{\alpha i}(\mathbf{k}) \cdot P_{\beta j}(\mathbf{k}) \cdot P_{xz}(\mathbf{k}) \cdot V_{i,xa}(\mathbf{k}) \cdot V_{j,zb}(-\mathbf{k}) =$$
$$= \mathcal{A}^{2} \cdot P_{\alpha\beta}(\mathbf{k})k_{a}k_{b}, \qquad (5.101)$$

а $V_{c,ab}(\mathbf{k}) = i(k_a \delta_{bc} - \mathcal{A} k_b \delta_{ac})$ — вершина (2.12). Интеграл по частоте

$$\int \frac{d\omega}{2\pi - i\omega + \kappa k^2} \cdot \frac{1}{i\omega + \kappa k^2} \cdot \frac{1}{\omega^2 + \nu^2 k^4} = \frac{1}{2\nu^3 \cdot u(1+u)k^6}, \qquad (5.102)$$

где $u = \kappa / \nu$. Симметризующие структуры S_1 и S_2 для двухлучевой диаграммы имеют вид (5.10а).

Таким образом,

$$A_1' = \frac{1}{2} (\delta_{\alpha a} \delta_{\beta b} + \delta_{\alpha b} \delta_{\beta a}) \cdot J_1 = 0; \qquad (5.103a)$$

$$A_2' = \delta_{\alpha\beta}\delta_{ab} \cdot J_1 = \mathcal{A}^2 \cdot (d-1)k^2.$$
 (5.103b)

Учитывая (1.18) и (1.19), получаем, что

$$A_1 = 0;$$
 (5.104a)

$$A_{2} = \frac{\mathcal{A}^{2} (d-1)}{2\nu^{3} u(1+u)} \cdot \int \frac{d\mathbf{k}}{(2\pi)^{d}} \frac{k^{2} d_{\eta}(k)}{k^{d+\xi}} = \frac{\mathcal{A}^{2} (d-1)}{2 u(1+u)} \cdot g \cdot \frac{m^{-\xi}}{\xi}, \quad (5.104b)$$

где $g \equiv \hat{g} \cdot C_d$. Учитывая симметрийный коэффициент данной диаграммы, равный 1/2, и обозначения разделов 5.3.2 и 5.3.3, получаем

$$A_1 = 0;$$
 (5.105a)

$$A_2 = \frac{\mathcal{A}^2 \ (d-1)}{4 \ u(1+u)}.$$
 (5.105b)

Пользуясь (5.18) и (5.83) находим, что константа ренормировки

$$Z_{N,l} = 1 - \frac{g}{u(u+1)} \frac{\mathcal{A}^2 Q_{N,l}}{4d(d+2)} \cdot \frac{1}{\xi} + O\left(g^2\right), \qquad (5.106)$$

где

$$Q_{N,l} = 2N(N-1) - (d+1)(N-l)(d+N+l-2) =$$

= $-(d-1)(N-l)(d+N+l) + 2l(l-1),$ (5.107)

Стоит отметить, что такие же полиномы $Q_{N,l}$ возникают и в скалярном случае [73], и в модели Крейчнана для МГД [30,45,74].

Из (5.106) следует, что аномальные размерности $\gamma_{N,l}$ равны

$$\gamma_{N,l} = \frac{g}{u(u+1)} \frac{\mathcal{A}^2 Q_{N,l}}{4d(d+2)} + O(g^2).$$
 (5.108)

Подставляя значение неподвижных точкек $\{g^*, u^*\}$, см. раздел 3.3.3.2, получаем

$$\gamma_{N,l}^* = \frac{\mathcal{A}^2}{u^*(u^*+1)} \frac{Q_{N,l}}{3d(d-1)} \cdot \xi + O\left(\xi^2\right), \qquad (5.109)$$

где u^* — решение уравнения (3.96). Если функция $\beta_{\mathcal{A}}$ тождественно равна нулю, то $u_* = u_*(\mathcal{A})$, и в выражении (5.109) сохраняется зависимость от свободного параметра \mathcal{A} . Если же $\beta_{\mathcal{A}}$ содержит вклады старших порядков по g, то в уравнение (5.108) необходимо подставлять весь набор неподвижных точек $\{g^*, u^*, \mathcal{A}^*\}$.

В частности, для $\mathcal{A}_* = 1$ значение неподвижной точки u_* является положительным решением квадратного уравнения u(u+1) = 2(d+2)/d. В этом случае (5.109) принимает вид

$$\gamma_{N,l} = \frac{Q_{N,l}}{6(d-1)(d+2)} \cdot \xi + O\left(\xi^2\right), \qquad (5.110)$$

что согласуется с результатом, полученным в [75] для МГД. Кроме того, при подстановке $\xi \to \xi/3$ значение аномальной размерности (5.110) совпадает с аналогичным выражением, полученным для модели Крейчнана [30, 45, 74].

При $\mathcal{A} = 0$ операторы $F_{N,l}$ являются УФ-конечными и не требуют ренормировки, поэтому аномальная размерность $\gamma_{N,l}$ тождественно равна нулю во всех порядках по ξ , см. обсуждение в разделе 5.1. В этом случае интересными объектами являются не парные корреляционные функции, а структурные функции $S_{ij}^{n}(\mathbf{r}) = \langle [\theta_i(t, \mathbf{x}) - \theta_j(t, \mathbf{x}')]^n \rangle$; их поведение в инерционном интервале определяется операторами, построенными из производных полей θ ; см. [68, 76, 77].

Во всех остальных случаях амплитуда $\mathcal{A}^2/u(u+1)$ в (5.109) является положительной для любой физической неподвижной точки. Таким образом для наиболее важного случая скалярного оператора с l = 0 аномальная размерность $\gamma_{N,l}$ является отрицательной, и при фиксированном N монотонно возрастает с ростом l.

Из соотношения (5.109) следует, что также как и в модели №2, кри-

тические размерности удовлетворяют условию иерархии $\Delta_{N,l} > \Delta_{N,l'}$ при l > l'. Данный факт означает, что в присутствии крупномасштабной анизотропии ведущий вклад в асимптотику корреляционных функций вида (5.2) в инерционном интервале $Mr \to 0$ дает изотропная «сфера» с l = 0.

Основные результаты и выводы

В даннной работе методы ренормгруппы и операторного разложения были применены к трем моделям переноса пассивного бездивергентного (поперечного) векторного поля: модели турбулентного переноса пассивного векторного поля в случае, когда поле скорости описывается сильно анизотропным ансамблем Авельянеды–Майда с одним выделенным направлением (модель №1), модели магнитной гидродинамики (турбулентного динамо) при наличии крупномасштабной анизотропии в случае, когда поле скорости описывается изотропным ансамблем Казанцева–Крейчнана (модель №2), а также модели турбулентного переноса пассивного векторного поля при наличии крупномасштабной анизотропии в случае, когда поле скорости обладает конечным временем корреляции и подчиняется стохастическому уравнению Навье–Стокса для несжимаемой жидкости (модель №3). Целью работы являлось изучение асимптотики инерционного интервала корреляционных функции пассивного поля θ . Основные результаты сформулированы в 4 пунктах и представлены ниже:

(1) Установлено, что все три модели являются ренормируемыми и обладают неподвижной ИК–притягивающей точкой, определяющей асимптотику корреляционных функций в инерционном интервале.

(2) Показано, что если поле *θ* удовлетворяет стохастическим уравнениям модели №2, то в асимптотике инерционного интервала корреляционные функции таких полей обладают аномальным скейлингом, что связано с наличием в данной модели «опасных» составных операторов, целиком построенных из самих полей и обладающих отрицательными размерностями. Данные аномальные размерности вычислены во втором порядке ξ -разложения (включая анизотропные сектора в присутствии крупномасштабной анизотропии), см. (5.87) — (5.89). Установлено, что при учете поправок порядка ξ^2 как аномальный скейлиг, так и иерархия анизотропных вкладов усиливаются.

Проведено сравнение полученных результатов с точным решением в частном случае парной корреляционной функции.

(3) Для поля θ, удовлетворяющего стохастическим уравнениям модели №3, установлено, что в асимптотике инерционного интервала корреляционные функции также обладают аномальным скейлингом. Данные аномальные размерности вычислены в ведущем порядке ξ-разложения (включая анизотропные сектора в присутствии крупномасштабной анизотропии), см. (5.109).

Как и в случае МГД, где $\mathcal{A} = \mathcal{A}_0 = 1$, аномальные показатели удовлетворяют условию иерархии, связанному с анизотропией: чем меньше ранг тензорного оператора, тем меньше его размерность, и, как следствие, тем бо́льший вклад он дает в асимптотику в инерционном интервале. Таким образом в присутствии крупномасштабной анизотропии ведущие члены асимптотики, как в изотропном, так и в анизотропном случаях, определяются скалярными операторами, что полностью согласуется с гипотезой о локальном восстановлении изотропии.

Открытым остается вопрос, является ли множитель \mathcal{A} перед «растягивающим членом» ($\theta \partial$)v в уравнении диффузии свободным параметром, от которого зависят аномальные показатели, или в действительности он стремится к некоторой неподвижной точке. Этот вопрос находится за рамками однопетлевого приближения.

(4) В отличии от моделей №2 и №3, а также большинства обобщений модели Крейчнана, где корреляционные функции обладают аномальным скейлингом с бесконечным набором показателей, в **модели №1** зависимость от внешнего масштаба L является логарифмической: аномалии проявляются в виде полиномов от логарифмов безразмерного отношения L/r, где r является расстоянием между пространственными аргументами составных операторов, см. (4.66) — (4.67). Степени логарифмов N_1 и N_2 связаны с канонической размерностью скалярных составных операторов (4.10), целиков построенных из самих полей θ , и определяют семейство операторов, смешивающихся при ренормировке только между собой.

Такое поведение является следствием нетривиального смешивания в семействах составных операторов, в результате которого матрица аномальных размерностей $\hat{\gamma}_F$ оказывается нильпотентной. Как следствие, матрица критических размерностей не диагонализуется, а приводится к жордановой форме. Данный факт строго доказан для РГ–семейства произвольной размерности. Кроме того, в силу тождественного равенства нулю всех многопетлевых диаграмм, данный результат является точным.

Благодарности

Автор диссертации благодарит Антонова Николая Викторовича за научное руководство, терпение и неоценимую помощь в ходе выполнения настоящей работы.

Автор выражает благодарность Аджемяну Лорану Цолаковичу, а также благодарит преподавателей и сотрудников кафедры физики высоких энергий и элементарных частиц Санкт–Петербургского Государственного Университета и преподавателей школы №292 г. Санкт–Петербурга, в особенности Дворсона Александра Наумовича, за воспитание любви и интереса к физике в целом и теоретической физике в частности. Кроме того, автор благодарит своих родителей и друзей за участие и моральную поддержку.

А. Приложения к Главе 1

А.1. Галилеева инвариантность и ее следствия

А.1.1. Галилеево-ковариантная производная

Рассмотрим действие (2.78) для стохастической задачи (2.75) - (2.76):

$$S_v(\mathbf{v}', \mathbf{v}) = v_i' D_v v_k' / 2 + v_k' \left[-\partial_t v_k - (v_i \partial_i) v_k + \nu_0 \partial^2 v_k \right].$$
(A.1)

Преобразования Галилея имеют вид

$$x_i \to x_i + u_i t, \tag{A.2a}$$

$$v_i(t, \mathbf{x}) \to v_i(t, \mathbf{x} + \mathbf{u} t) - u_i.$$
 (A.2b)

Взяв полную производную по времени от правой части (A.2b), получаем

$$\frac{d}{dt}v_i(t, \mathbf{x} + \mathbf{u}\,t) = \partial_t v_i(t, \mathbf{x} + \mathbf{u}\,t) + u_k \partial_k v_i(t, \mathbf{x} + \mathbf{u}\,t).$$
(A.3)

Из (А.2) и (А.3) следует, что при преобразованиях Галилея

$$(\partial_t + v_k(t, \mathbf{x}) \,\partial_k) \cdot v_i(t, \mathbf{x}) \rightarrow$$
$$\rightarrow [\partial_t + (v_k(t, \mathbf{x} + \mathbf{u} t) - u_k) \,\partial_k] \cdot [v_i(t, \mathbf{x} + \mathbf{u} t) - u_i] =$$
$$= (\partial_t + v_k(t, \mathbf{x} + \mathbf{u} t) \,\partial_k) \cdot v_i(t, \mathbf{x} + \mathbf{u} t), \qquad (A.4)$$

т. е. производная $\nabla_t = \partial_t + v_k \partial_k$ не меняет вид действия (А.1). Благодаря этому свойству такая производная называется галилеево-ковариантной. Из этого следует, что при присутствии в задаче галилеевой симметрии, член с ∇_t в действии (А.1) ренормируется следующим образом:

$$v'_k(\partial_t + (v_i\partial_i))v_k \to Z \cdot v'_k(\partial_t + (v_i\partial_i))v_k.$$
(A.5)

Если галилеева инвариантность нарушена, то

$$v'_k(\partial_t + (v_i\partial_i))v_k \to Z_1 \cdot v'_k \,\partial_t v_k + Z_2 \cdot v'_k(v_i\partial_i)v_k. \tag{A.6}$$

В частности (А.5) означает, что если реальный индекс расходимости некоторой функции $d'_{\Gamma} \leq 1$, то из требования отсутствия контрчленов с ∂_t (по размерности, поскольку $\partial_t \propto \partial^2$) следует требование отсутствия контрчлена $v'_k(v_i\partial_i)v_k$, т. к. они входят только в галилеево–ковариантной комбинации $\partial_t + (v_i\partial_i)$.

А.1.2. Наличие *б*-функции как следствие требования галилеевой инвариантности

Рассмотрим преобразования Галилея

$$\mathbf{x} \to \mathbf{x} + \mathbf{u} t, \tag{A.7a}$$

$$\mathbf{x}' \to \mathbf{x}' + \mathbf{u} t'.$$
 (A.7b)

Тогда

$$\mathbf{x} - \mathbf{x}' \to \mathbf{x} - \mathbf{x}' + \mathbf{u} \left(t - t' \right).$$
 (A.8)

Рассмотрим член действия $vD_v^{-1}v/2$. Поскольку $D_v = D_v(\mathbf{x} - \mathbf{x}', t - t')$, то при преобразованиях Галилея

$$D_v(\mathbf{x} - \mathbf{x}', t - t') \to D_v(\mathbf{x} - \mathbf{x}' + \mathbf{u}(t - t'), t - t').$$
(A.9)

Из (А.9) следует, что если $D_v(\mathbf{x} - \mathbf{x}', t - t') = \delta(t - t') \cdot D_v(\mathbf{x} - \mathbf{x}')$, то при преобразованиях Галилея

$$D_v(\mathbf{x} - \mathbf{x}') \to D_v(\mathbf{x} - \mathbf{x}'),$$
 (A.10)

т. е. является инвариантным. По этой причине корреляторы скорости (1.3), (1.13) и (1.17) содержат некоторую зависимость от k и δ -функцию по времени.

А.2. Модель магнитной гидродинамики Казанцева-Крейчнана

Уравнения Максвелла для электромагнитного поля имеют вид

$$\operatorname{rot} \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

$$\operatorname{rot} \mathbf{H} = \frac{4\pi}{c} \mathbf{j} + \frac{\partial \mathbf{D}}{\partial t}$$

$$\operatorname{div} \mathbf{B} = 0$$

$$\operatorname{div} \mathbf{E} = 4\pi\rho$$
(A.11)

Здесь \mathbf{E} — напряженность электрического поля, \mathbf{B} — вектор магнитной индукции, \mathbf{H} — напряженность магнитного поля, \mathbf{D} — вектор электрической индукции, \mathbf{j} — плотность электрического тока, ρ — плотность электрического заряда, c — скорость света в вакууме.

Воспользуемся законом Ома для движущейся среды:

$$\mathbf{j} = \sigma \left(\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} \right), \tag{A.12}$$

где σ — удельная проводимость, **v** — скорость среды. Если удельная проводимость среды велика, то можно пренебречь током смещения $\partial \mathbf{D}/\partial t$, тогда

$$\operatorname{rot} \mathbf{H} = \frac{4\pi\sigma}{c} \left(\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} \right).$$
(A.13)

Положим относительную магнитную проницаемость $\mu = 1$, как следствие $\mathbf{B} = \mathbf{H}$. Выражая из (А.13) \mathbf{E} через \mathbf{B} и подставляя в уравнения Максвелла, получаем

$$\frac{\partial \mathbf{B}}{\partial t} - \operatorname{rot}\left[\mathbf{v} \times \mathbf{B}\right] = -\frac{c^2}{4\pi\sigma} \operatorname{rot}\operatorname{rot}\mathbf{B},\tag{A.14}$$

где $c^2/4\pi\sigma = \nu_0$ — коэффициент диффузии. Ипользуя поперечность поля **В**, т. е. условие $\partial_i B_i = 0$, преобразуем полученное уравнение:

$$\begin{bmatrix} \operatorname{rot} \operatorname{rot} \mathbf{B} \end{bmatrix}_{i} = \partial_{i} \left(\partial_{j} \cdot B_{j} \right) - \partial^{2} B = -\partial^{2} B; \quad (A.15a)$$
$$\begin{bmatrix} \operatorname{rot} \{ \mathbf{v} \times \mathbf{B} \} \end{bmatrix}_{i} = \varepsilon_{ijk} \, \partial_{j} \, \varepsilon_{kmn} \, v_{m} B_{n} = \left(\delta_{im} \delta_{jn} - \delta_{in} \delta_{jm} \right) \, \partial_{j} \, v_{m} B_{n} =$$
$$= \partial_{j} \, v_{i} B_{j} - \partial_{j} \, v_{j} B_{i}. \quad (A.15b)$$

Раскладывая магнитное поле **B** в сумму $\mathbf{B}^{\mathbf{0}}$, меняющегося на больших масштабах (порядка L), и $\widetilde{\mathbf{B}}$, испытывающего флуктуации на малых расстояниях, используя условие поперечности поля **v**, получаем уравнение МГД в виде

$$\partial_t \widetilde{B}_i + \partial_j \left(v_j \widetilde{B}_i - v_i \widetilde{B}_j \right) = B_j^0 \cdot \partial_j v_i + \nu_0 \,\partial^2 \widetilde{B}_i, \tag{A.16}$$

где i = 1, ..., d, а $B_j^0 \cdot \partial_j v_i = f_i$ играет роль случайной силы. Предполагается, что она обладает гауссовым распределением, а ее коррелятор равен

$$\langle f_i(x)f_j(x')\rangle = \delta(t-t')C_{ij}(r/L)$$
 (A.17)

(подробнее см. монографии [78-80]).

Поле скорости среды $\mathbf{v}'(x)$ должно удовлетворять уравнению Навье– Стокса с дополнительным лоренцевым членом, пропорциональным ($\partial \times \mathbf{B}$) $\times \mathbf{B}$ и описывающим влияние магнитного поля на поле скорости. Вместо этого в данной постановке задачи рассматривается *пассивное* поле — предполагается, что на начальных стадиях поле **В** мало и не влияет на движение проводящей жидкости, что является естественным предположением при рассмотрении динамики, линейной по силе магнитного поля (см. [79,80]).

Поэтому вместо поля $\mathbf{v}'(x)$, удовлетворяющего уравнению Навье– Стокса, рассматривается поле $\mathbf{v}(x)$ — несжимаемое, изотропное, обладающее гуссовым распределением с нулевым средним и δ -коррелирующее по времени:

$$\langle v_i(x)v_j(x')\rangle = \delta(t-t') \int_{k>m} \frac{d\mathbf{k}}{(2\pi)^d} P_{ij}(\mathbf{k}) D_0 \frac{1}{k^{d+\xi}} e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{x}')}, \qquad (A.18)$$

где $P_{ij}(\mathbf{k}) = \delta_{ij} - k_i k_j / k^2$ — поперечный проектор, $k \equiv |\mathbf{k}|$ — волновое число, d — размерность пространства, $D_0 > 0$ — амплитудный множитель, величина 1/m, являющаяся внешним масштабом турбулентности \widetilde{L} (радиус корреляций поля скорости), обеспечивает ИК-регуляризацию, ξ — произвольный показатель (с наиболее реалистичным «колмогоровским» значением $\xi = 4/3$). Кроме того, данный внешний масштаб \widetilde{L} , связанный с полем скорости, отождествляется с внешним масштабом случайной силы L, упоминавшимся в (А.17).

А.З. Согласование динамики с условием поперечности

Рассмотрим уравнение Навье–Стокса (1.16) без вкладов случайной силы и давления:

$$\partial_t v_i = -(v_k \partial_k) v_i + \nu_0 \partial^2 v_i. \tag{A.19}$$

Поле скорости $\mathbf{v}(t, \mathbf{x})$ является несжимаемым (поперечным), т. е.

$$\partial_k v_k(t, \mathbf{x}) = 0. \tag{A.20}$$

Рассмотрим поле скорости **v** в момент времени $t + \Delta t$,

$$v_i(t + \Delta t) = v_i(t) + \Delta t \cdot \partial_t v_i(t) + \dots, \qquad (A.21)$$

и потребуем, чтобы для него также было выполнено условие (А.20). Поскольку в силу (А.20) $\partial_k v_k(t) = 0$, данное требование означает, что должно выполняться равенство

$$\partial_i \left[\partial_t v_i(t) \right] = 0. \tag{A.22}$$

Выразим $\partial_i [\partial_t v_i(t)]$ из (А.19). Учитывая, что в силу (А.20) $\partial_i [\partial^2 v_i(t)] = 0$, имеем:

$$\partial_i \left[\partial_t v_i(t)\right] = -\partial_i \left[v_k(t)\partial_k\right]v_i(t) = -\partial_i v_k(t)\partial_k v_i(t) = -\partial_i \partial_k v_i v_k.$$
(A.23)

Из (А.21) и (А.23) следует, что в правую часть уравнения Навье– Стокса (А.19) должен входить член $\partial_i \wp$, где $\partial^2 \wp$ является решением уравнения Пуассона

$$\partial^2 \wp = -\partial_i \,\partial_k \, v_i v_k. \tag{A.24}$$

Таким образом уравнение (А.19) принимает вид

$$\partial_t v_i = -(v_k \partial_k) v_i + \nu_0 \partial^2 v_i - \partial_i \wp, \qquad (A.25)$$

где \wp — удельное по массе давление.

169

В. Приложения к Главе 2

В.1. Доопределение $\Theta(0)$

Рассмотрим для простоты скалярное поле. Тогда уравнение на функцию Грина имеет вид

$$[\partial_t - \nu \Delta]G = \delta(x - x'). \tag{B.1}$$

Выполнив преобразование Фурье, получаем

$$[-i\omega + \nu k^2]G = 1, \tag{B.2}$$

$$G = \frac{1}{-i\omega + \nu k^2}.\tag{B.3}$$

Как следствие,

$$G(t) = \int \frac{d\omega}{2\pi} \frac{e^{-i\omega t}}{-i\omega + \nu k^2},$$
(B.4)

т. е.

$$\begin{cases} G(t) = 0, t < 0\\ G(t) = e^{-\nu k^2 t}, t > 0. \end{cases}$$
 (B.5)

Таким образом,

$$G(t) = \theta(t) \cdot e^{-\nu k^2 t}.$$
(B.6)

Учитывая б-корреляцию по времени (см. (1.3)) и (В.6), находим, что

$$\Sigma_{\alpha\beta} \propto G(t) \cdot \langle vv \rangle \propto \theta(t-t') \cdot \delta(t-t') = \theta(0)$$
 (B.7)

Поскольку коррелятор (1.3) симметричен по t и t', G должна быть определена при t = t' как полусумма своих пределов при $t \to t'$ справа и

слева. Это и эквивалентно доопределению

$$\int \frac{d\omega}{2\pi} \frac{1}{-i\omega + \nu k^2} = \frac{1}{2}.$$
(B.8)

В.2. О невозможности существования двух пространственных масштабов в модели №1

Рассмотрим функционал действия (2.10), а именно

$$S(\Phi) = -\theta'_k \left[-\partial_t \theta_k - (v_i \partial_i) \theta_k + \mathcal{A}_0(\theta_i \partial_i) v_k + \nu_0 (\partial_\perp^2 + f_0 \partial_\parallel^2) \theta_k \right] + \theta'_i D_\theta \theta'_k / 2 + v_i D_v^{-1} v_k / 2.$$
(B.9)

Поскольку поля $\boldsymbol{\theta}$ и $\boldsymbol{\theta}'$ являются поперечными,

$$\partial_i \theta_i = \partial_i \theta'_i = 0. \tag{B.10}$$

Условием (В.10) данная модель отличается от модели со скалярным полем, рассматривавшейся в работе [59] — с точностью до вершины функицоналы являются идентичными, но в скалярном случае условие поперечности отсутствует.

Предположим, что также как и в скалярном случае, в данной модели имеется *две* пространственные масштабные шкалы с разными размерностями и одна временная:

$$[F] \sim [T]^{-d_F^{\omega}} [L_{\perp}]^{-d_F^{\perp}} [L_{\parallel}]^{-d_F^{\parallel}}, \qquad (B.11)$$

условия нормировки имеют вид

$$d_{k_{\perp}}^{\perp} = -d_{\mathbf{x}_{\perp}}^{\perp} = 1, \quad d_{k_{\perp}}^{\parallel} = -d_{\mathbf{x}_{\perp}}^{\parallel} = 0,$$
 (B.12a)

$$d_{k_{\parallel}}^{\parallel} = -d_{\mathbf{x}_{\parallel}}^{\parallel} = 1, \quad d_{k_{\parallel}}^{\perp} = -d_{\mathbf{x}_{\parallel}}^{\perp} = 0,$$
 (B.12b)

а полная каноническая размерность дается выражением

$$d_F^k = d^{\perp} + d^{\parallel}, \quad d_F = d^k + 2d^{\omega}.$$
 (B.13)

Пусть поле $\boldsymbol{\theta}$ имеет вид { φ , $\boldsymbol{\theta}_{\perp}$ }. Из (В.12) следует, что ∂_{\perp} и ∂_{\parallel} имеют разные размерности, поэтому условие (В.10) может быть удовлетворено, только если компоненты поля $\boldsymbol{\theta} - \varphi$ и $\boldsymbol{\theta}_{\perp}$ — также будут иметь разные размерности.

Рассмотрим член действия

$$\theta_i'\partial_t\theta_i = \int dt \int d\mathbf{x} \ \theta_i'\partial_t\theta_i. \tag{B.14}$$

Из требования безразмерности выражения (В.14) (по отдельности по двум пространственным размерностям) следует, что

$$-1 + d^{\parallel}\varphi + d^{\parallel}\varphi' = 0, \qquad (B.15a)$$

$$-1 + d^{\parallel}\theta_{\perp} + d^{\parallel}\theta'_{\perp} = 0, \qquad (B.15b)$$

$$1 - d + d^{\perp}\varphi + d^{\perp}\varphi' = 0, \qquad (B.15c)$$

$$1 - d + d^{\perp}\theta_{\perp} + d^{\perp}\theta'_{\perp} = 0.$$
 (B.15d)

Условия поперечности (В.10) означают, что

$$d^{\perp}\varphi = 1 + d^{\perp}\theta_{\perp}, \tag{B.16a}$$

$$1 + d^{\parallel}\varphi = d^{\parallel}\theta_{\perp}, \tag{B.16b}$$

$$d^{\perp}\varphi' = 1 + d^{\perp}\theta'_{\perp}, \qquad (B.16c)$$

$$1 + d^{\parallel}\varphi' = d^{\parallel}\theta'_{\perp}.$$
 (B.16d)

Учитывая (B.15a) — (B.15d), из (B.16a)
и (B.16b) следует, что

$$d^{\perp}\varphi' = -1 + d^{\perp}\theta'_{\perp}, \qquad (B.17a)$$

$$1 + d^{\parallel}\varphi' = 2 + d^{\parallel}\theta'_{\perp}, \tag{B.17b}$$

что является несовместимым с (B.16c) и (B.16d).

Это означает, что поля φ и $\boldsymbol{\theta}_{\perp}$ должные иметь одинаковые размерности, также как и поля φ' и $\boldsymbol{\theta}'_{\perp}$ и производные ∂_{\parallel} и ∂_{\perp} . Как следствие, константа f_0 является безразмерной.

В.3. Вычисление канонических размерностей в модели №3

Рассмотрим действие модели №3 (см. (2.77)), а именно

$$S(\Phi) = S_v(\mathbf{v}, \mathbf{v}') + \theta'_i D_\theta \theta'_k / 2 + \theta'_k \left[-\partial_t \theta_k - (v_i \partial_i) \theta_k + \mathcal{A}_0(\theta_i \partial_i) v_k + \kappa_0 \partial^2 \theta_k \right];$$
(B.18)

$$S_v(\mathbf{v}', \mathbf{v}) = v_i' D_v v_k' / 2 + v_k' \left[-\partial_t v_k - (v_i \partial_i) v_k + \nu_0 \partial^2 v_k \right].$$
(B.19)

Здесь D_{θ} — корреляционная функция случайной силы f_i ,

$$\langle f_i(x) \ f_k(x') \rangle = \delta(t - t') \ C_{ik}(\mathbf{r}/L),$$
 (B.20)

а D_v — корреляционная функция случайной силы η_i ,

$$\left\langle \eta_i(x)\eta_j(x')\right\rangle = \frac{\delta(t-t')}{(2\pi)^d} \int_{k\geq m} d\mathbf{k} \, P_{ij}(\mathbf{k}) \, d_\eta(k) \, \exp\left[\mathrm{i}\mathbf{k} \left(\mathbf{x}-\mathbf{x'}\right)\right]. \tag{B.21}$$

Функция $d_{\eta}(k)$ в корреляторе (В.21) определена в (1.18):

$$d_{\eta}(k) = D_0 k^{4-d-\xi}, \tag{B.22}$$

где $D_0 > 0$ является положительным амплитудным множителем,

$$D_0 = \hat{g}_0 \cdot \nu_0^3. \tag{B.23}$$

Из требования безразмерности члена

$$v_k' \partial_t v_k = \int dt \int d\mathbf{x} \ v_k' \partial_t v_k \tag{B.24}$$

следует, что

$$-d + d_{v'}^k + d_v^k = 0, (B.25a)$$

$$-1 + d_{v'}^{\omega} + d_v^{\omega} = 0.$$
 (B.25b)

Из требования безразмерности члена

$$v'_{k}(v_{i}\partial_{i})v_{k} = \int dt \int d\mathbf{x} \ v'_{k}(v_{i}\partial_{i})v_{k}$$
(B.26)

следует, что

$$-d + d_{v'}^k + d_v^k + 1 + d_v^k = 0, (B.27a)$$

$$-1 + d_{v'}^{\omega} + 2d_v^{\omega} = 0.$$
 (B.27b)

Из (В.25) и (В.27) следует, что

$$d_v^k = -1, \tag{B.28a}$$

$$d_v^{\omega} = 1, \tag{B.28b}$$

$$d_{v'}^k = d + 1,$$
 (B.28c)

$$d_{v'}^{\omega} = -1. \tag{B.28d}$$

Из требования безразмерности члена

$$\nu_0 v_k' \partial^2 v_k = \nu_0 \cdot \int dt \int d\mathbf{x} v_k' \partial^2 v_k \tag{B.29}$$

следует, что

$$-d + d_{\nu'}^k + d_{\nu_0}^k + d_{\nu}^k + 2 = 0,$$
 (B.30a)

$$-1 + d_{v'}^{\omega} + d_v^{\omega} + d_{\nu_0}^{\omega} = 0.$$
 (B.30b)

Таким образом

$$d_{\nu_0}^k = -2, (B.31a)$$

$$d^{\omega}_{\nu_0} = 1.$$
 (B.31b)

Из (В.21) и (В.22) следует, что

$$d^{k}[D_{v}] = 4 - d - \xi + d = 4 - \xi, \qquad (B.32a)$$

$$d^{\omega} \left[D_v \right] = d^{\omega} \left[\,\delta(t - t') \,\right] = 1. \tag{B.32b}$$

Учитывая (В.32), из требования безразмерности члена

$$v' D_v v' = \int dt \int d\mathbf{x} \int d\mathbf{x}' \ v'(t, \, \mathbf{x}') D_v(\mathbf{x} - \mathbf{x}') \ v'(t, \, \mathbf{x})$$
(B.33)

следует, что

$$-2d + 2(d-1) + 4 - \xi + d^k [D_0] = 0, \qquad (B.34a)$$

$$-1 - 2 + d^{\omega} [D_0] = 0.$$
 (B.34b)

Из (В.23) и (В.34) получаем, что

$$d^k \left[\hat{g}_0 \right] = \xi, \tag{B.35a}$$

$$d^{\omega}\left[\hat{g}_{0}\right] = 0. \tag{B.35b}$$

Требования безразмерности члена

$$\theta_k' \partial_t \theta_k = \int dt \int d\mathbf{x} \; \theta_k' \partial_t \theta_k \tag{B.36}$$

и члена

$$\theta'_{k}(v_{i}\partial_{i})\theta_{k} = \int dt \int d\mathbf{x} \; \theta'_{k}(v_{i}\partial_{i})\theta_{k} \tag{B.37}$$

дают одинаковые условия:

$$-d + d_{\theta'}^k + d_{\theta}^k = 0, (B.38a)$$

$$-1 + d^{\omega}_{\theta'} + d^{\omega}_{\theta} = 0. \tag{B.38b}$$

$$d^k \left[D_\theta \right] = 0, \tag{B.39a}$$

$$d^{\omega} \left[D_{\theta} \right] = 1. \tag{B.39b}$$

Учитывая (В.39), из требования безразмерности члена

$$\theta' D_{\theta} \theta' = \int dt \int d\mathbf{x} \int d\mathbf{x}' \ \theta'(t, \, \mathbf{x}') D_{\theta}(\mathbf{x} - \mathbf{x}') \ \theta'(t, \, \mathbf{x})$$
(B.40)

следует, что

$$-2d + 2d_{\theta'}^k = 0, (B.41a)$$

$$-1 + 2d^{\omega}_{\theta'} = 0.$$
 (B.41b)

Учитывая (В.38), это означает, что

$$d_{\theta}^k = 0, \qquad (B.42a)$$

$$d_{\theta}^{\omega} = -1/2, \tag{B.42b}$$

$$d^k_{\theta'} = d, \tag{B.42c}$$

$$d^{\omega}_{\theta'} = 1/2. \tag{B.42d}$$

176

Из требования безразмерности члена

$$\kappa_0 \,\theta'_k \,\partial^2 \theta_k = \kappa_0 \cdot \int dt \int d\mathbf{x} \,\,\theta'_k \,\partial^2 \theta_k \tag{B.43}$$

следует, что

$$-d + d_{\theta'}^k + d_{\theta}^k + d_{\kappa_0}^k + 2 = 0, \qquad (B.44a)$$

$$-1 + d^{\omega}_{\theta'} + d^{\omega}_{\theta} + d^{\omega}_{\kappa_0} = 0.$$
 (B.44b)

Учитывая (В.38), получаем, что

$$d_{\kappa_0}^k = -2, \tag{B.45a}$$

$$d^{\omega}_{\kappa_0} = 1. \tag{B.45b}$$

Из требования безразмерности члена

$$\mathcal{A}_0 \,\theta'_k(\theta_i \partial_i) v_k = \mathcal{A}_0 \int dt \int d\mathbf{x} \,\,\theta'_k(\theta_i \partial_i) v_k \tag{B.46}$$

следует, что

$$-d + d_{\theta'}^k + d_{\theta}^k + d_v^k + d_{\mathcal{A}_0}^k + 1 = 0, \qquad (B.47a)$$

$$-1 + d^{\omega}_{\theta'} + d^{\omega}_{\theta} + d^{\omega}_{v} + d^{\omega}_{\mathcal{A}_{0}} = 0.$$
 (B.47b)

Это означает, что константа \mathcal{A}_0 является безразмерной:

$$d^k_{\mathcal{A}_0} = 0, \tag{B.48a}$$

$$d^{\omega}_{\mathcal{A}_0} = 0. \tag{B.48b}$$

Выражения (В.28), (В.31), (В.35), (В.42), (В.45) и (В.48) дают искомые канонические размерности полей и параметров модели №3.

С. Приложения к Главе 3

C.1. Оператор \mathcal{D}_{RG}

Данный раздел построен на применении РГ–оператора \mathcal{D}_{RG} к конкретному действию *S* — действию модели №1, но все полученные результаты носят общий характер и полностью применимы к моделям №2 и №3.

Устраняющая УФ-расходимоти функций Грина процедура мультипликативной ренормировки состоят в переходе от затравочных параметров $e_0 = \{g_0, \nu_0, f_0, u_0, \mathcal{A}_0\}$ и неренормированного действия (2.10) к ренормированным парамертам $e = e(e_0, \mu, \xi)$ (см. (3.5)) и ренормированному действию (3.6). При этом из связи функционалов *S* и *S*_R вытекает связь

$$G = Z_G \cdot G_R \tag{C.1}$$

между функциями Грина данной модели.

Обозначим символом $\widetilde{\mathcal{D}}_{\mu}$ оператор $\mu \cdot \partial/\partial \mu$ при фиксированных затравочных параметрах e_0 . В силу того, что $e = e(e_0, \mu, \xi)$, левая часть равенства (C.1) не зависит от ренормировочной массы μ , поэтому, действуя оперетором $\widetilde{\mathcal{D}}_{\mu}$ на правую и левую части данного равенства, получаем, что

$$\left[\mathcal{D}_{RG} + \gamma_G\right] G_R = 0, \tag{C.2}$$

где

$$\mathcal{D}_{RG} = \mu \partial_{\mu} + \sum_{e} (\widetilde{\mathcal{D}}_{\mu} e) \partial_{e} \tag{C.3}$$

является оператором $\widetilde{\mathcal{D}}_{\mu}$, выраженным через неренормированные переменные e_0 .

По определению для любой величины F (поля или параметра) аномальная размерность γ_F равна

$$\gamma_F = \widetilde{\mathcal{D}}_\mu \ln Z_F; \tag{C.4}$$

для любого заряда g (в общем случае зарядом является любой безразмерный параметр, от которого зависят константы Z) β -функция равна

$$\beta_g = \widetilde{\mathcal{D}}_{\mu}g. \tag{C.5}$$

Учитывая (С.5), получаем, что для любой величины F

$$\gamma_F = \beta \partial_g \ln Z_F. \tag{C.6}$$

Для того, чтобы найти коэффициенты $\widetilde{\mathcal{D}}_{\mu}e$ в выражении (С.3), необходимо применить операцию $\widetilde{\mathcal{D}}_{\mu}$ к правой и левой частям равенства

$$x_0 = x \ Z_x,\tag{C.7}$$

где x — любая из переменных e. Поскольку $x_0 \neq x_0(\mu)$,

$$\widetilde{\mathcal{D}}_{\mu}x \cdot Z_x = -x \cdot \widetilde{\mathcal{D}}_{\mu}Z_x, \qquad (C.8)$$

вследствие чего

$$\widetilde{\mathcal{D}}_{\mu} x = -x \cdot \frac{1}{Z_x} \cdot \widetilde{\mathcal{D}}_{\mu} Z_x = -x \cdot \widetilde{\mathcal{D}}_{\mu} \ln Z_x = -x \gamma_x.$$
(C.9)

Поэтому для набора параметров $e_0 = \{g_0, \nu_0, f_0, u_0, \mathcal{A}_0\}$ оператор \mathcal{D}_{RG} имеет вид

$$\mathcal{D}_{RG} = \mu \partial_{\mu} + \beta_g - \nu \gamma_{\nu} - f \gamma_f - u \gamma_u - \mathcal{A} \gamma_{\mathcal{A}}.$$
 (C.10)

С.2. Связь констант ренормировки Z, β - и γ -функций

С.2.1. Вычисление констант ренормировки Z

Из уравнения Дайсона (3.4) следует, что для устранения расходимостей необходимо с помощью ренормировки параметров f_0 , u_0 и g_0 обеспечить конечность выражений

$$T_1 = f_0 \cdot \left(1 + g_0 \cdot \frac{d - 2 + \mathcal{A}}{2(d - 1)} \cdot \frac{m^{-\xi}}{\xi} \right) \cdot (\mathbf{pn})^2 \cdot \delta_{\alpha\beta}$$
(C.11)

И

$$T_2 = f_0 \cdot \left(1 + g_0 u_0 \cdot \frac{(\mathcal{A} - 1)^2}{2(d - 1)} \cdot \frac{m^{-\xi}}{\xi} \right) \cdot (\mathbf{pn})^2 \cdot n_\alpha n_\beta;$$
(C.12)

параметры f_0, u_0 и g_0 ренормируются при этом следующим образом:

$$f_0 = fZ_f, \qquad u_0 = uZ_u, \qquad g_0 = g\mu^{\xi}Z_g, \qquad Z_g = Z_f^{-1}.$$
 (C.13)

Рассмотрим структуру T₁. Поскольку в схеме MS константы ренормировки имеют вид

$$Z_x = 1 + \frac{g}{\xi} \cdot C_x + O\left(g^2\right), \qquad (C.14)$$

учитывая (С.11) и (С.13), получаем

$$T_1 = fZ_f \cdot \left(1 + g\mu^{\xi} Z_g \cdot \frac{d-2+\mathcal{A}}{2(d-1)} \cdot \frac{m^{-\xi}}{\xi}\right) =$$

$$= f\left(1 + \frac{g}{\xi}C_f\right)\left(1 + \frac{g\mu^{\xi}}{\left(1 + \frac{g}{\xi}C_f\right)} \cdot \frac{d - 2 + \mathcal{A}}{2(d - 1)} \cdot \frac{m^{-\xi}}{\xi}\right).$$
(C.15)

Данное выражение должно быть УФ–конечно в первом порядке по g, соответственно

$$\frac{g}{\xi} \cdot C_f = -g \cdot \left(\frac{\mu}{m}\right)^{\xi} \cdot \frac{d-2+\mathcal{A}}{2(d-1)} \cdot \frac{1}{\xi}.$$
 (C.16)

Учитывая, что

$$\left(\frac{\mu}{m}\right)^{\xi} = 1 + O\left(\xi\right),\tag{C.17}$$

получаем, что

$$C_f = -\frac{d-2+\mathcal{A}}{2(d-1)}.$$
 (C.18)

В результате из (С.14) и (С.18) следует, что

$$Z_f = 1 - \frac{d - 2 + \mathcal{A}}{2(d - 1)} \cdot \frac{g}{\xi} + O(g^2).$$
 (C.19)

Константа Z_u может найдена аналогичным способом из требования отсутствия полюсов по ξ в структуре T_2 . При этом для нахождения координат неподвижной точки необходимо знать не сами константы Z, а β -функции зарядов g и u. Поэтому непосредственный расчет константы Z_u производить не обязательно — зная β_g , γ_g и γ_f , можно сразу вычислить аномальную размерность и β -функцию заряда u; см. раздел C.2.3.

С.2.2. Вычисление аномальной размерности и β -функции заряда g

По определению

$$\beta_g = \widetilde{\mathcal{D}}_{\mu}g. \tag{C.20}$$

Прологарифмировав равенство $g_0 = g\mu^{\xi} Z_g$ и применив к полученному выражению операцию $\widetilde{\mathcal{D}}_{\mu}$, учитывая определение аномальной размерности γ (C.4), получаем

$$\frac{1}{g} \cdot \beta_g + \xi + \gamma_g = 0, \tag{C.21}$$

т. е.

$$\beta_g = g \cdot (-\xi - \gamma_g). \tag{C.22}$$
$$\gamma_g = -\gamma_f. \tag{C.23}$$

Рассмотрим произвольную функцию F(g). Применяя к ней операцию $\widetilde{\mathcal{D}}_{\mu}$ и учитывая (C.5), получаем

$$\widetilde{\mathcal{D}}_{\mu}F(g) = \left.\mu\frac{\partial g}{\partial\mu}\right|_{g_0,\nu_0} \cdot \frac{\partial F(g)}{\partial g} = \beta(g) \cdot \partial_g F(g), \qquad (C.24)$$

следовательно

$$\gamma_f = \widetilde{\mathcal{D}} \ln Z_f = \beta(g) \cdot \partial_g \ln Z_f = g(-\xi + \gamma_f) \cdot \partial_g \ln Z_f.$$
(C.25)

Из (С.25) следует, что

$$\gamma_f \cdot (1 - g \cdot \partial_g \ln Z_f) = -\xi \, g \cdot \partial_g \ln Z_f, \qquad (C.26)$$

т. о.

$$\gamma_f = -\xi \cdot \frac{D_g \ln Z_f}{1 - D_g \ln Z_f}.$$
(C.27)

Раскладывая в полученном выражении Z_f в ряд, в первом порядке по g получаем

$$\gamma_f = -\xi \cdot \frac{D_g \ln(1 + \frac{g}{\xi} \cdot C_f)}{1 - D_g \ln(1 + \frac{g}{\xi} \cdot C_f)} =$$

$$= -\xi \cdot \frac{\frac{g}{\xi} \cdot C_f}{1 + \frac{g}{\xi} \cdot C_f} \cdot \frac{1 + \frac{g}{\xi} \cdot C_f}{1 + \frac{g}{\xi} \cdot C_f - \frac{g}{\xi} \cdot C_f} = -g \cdot C_f, \qquad (C.28)$$

где C_f определено в (С.18).

Учитывая (С.22), (С.23)
и (С.28), для β -функции заряда g получаем:

$$\beta_g = g \cdot (-\xi + \gamma_f) = g \left(-\xi + g \cdot \frac{d-2+\mathcal{A}}{2(d-1)}\right).$$
(C.29)

С.2.3. Вычисление аномальной размерности и
 β –функции зарядаu

Отсутствие расходимостей в структуре T_2 (С.12) означает, что после замены затравочных параметров u_0 , f_0 и g_0 на их ренормированные аналоги u, f и g (см. (С.13)), в выражении

$$\widetilde{T}_{2} = u_{0}f_{0} \cdot \left(1 + g_{0} \cdot \frac{1}{u_{0}} \cdot \frac{(\mathcal{A} - 1)^{2}}{2(d - 1)} \cdot \frac{m^{-\xi}}{\xi}\right)$$
(C.30)

должны отсутствовать полюса по $\xi.$ В первом порядке поgэто означает, что

$$\widetilde{T}_2 = Z_u Z_f \cdot u f \cdot \left(1 + g \cdot \frac{1}{u} \cdot \frac{(\mathcal{A} - 1)^2}{2(d - 1)} \cdot \frac{m^{-\xi}}{\xi} \right).$$
(C.31)

Учитывая (С.18), из (С.31) следует, что

$$Z_{u} \cdot Z_{f} = 1 - \frac{(\mathcal{A} - 1)^{2}}{2(d - 1)} \cdot \frac{g}{u} + O\left(g^{2}\right).$$
 (C.32)

Таким образом, в первом порядке по g

$$\gamma_u + \gamma_f = \frac{(\mathcal{A} - 1)^2}{2(d - 1)} \cdot \frac{1}{u} \cdot g.$$
 (C.33)

Поскольку из (С.5) и (С.9) следует, что

$$\beta_u = \widetilde{\mathcal{D}}_\mu u = -u\gamma_u, \tag{C.34}$$

учитывая значение аномальной размерности γ_f (C.28), для β -функции параметра u получаем:

$$\beta_u = g \cdot \frac{1}{2(d-1)} \left[(d-2+\mathcal{A}) - (\mathcal{A}-1)^2 \right].$$
 (C.35)

С.3. ИК-асимптотика функций Грина. Инвариантный заряд, неподвижная точка

С.3.1. Уравнение РГ как дифференциальное уравнение в частных производных

Рассмотрим уравнение РГ (3.45), (3.46) для модели №2, обладающей одним зарядом g и одним размерным параметром ν :

$$\left[\mathcal{D}_{RG} + \gamma_F\right] F_R = 0, \qquad (C.36)$$

$$\mathcal{D}_{RG} = \mathcal{D}_{\mu} + \beta \partial_g - \gamma_{\nu} \mathcal{D}_{\nu}, \qquad (C.37)$$

где γ_F является аномальной размерностью F, а F — некоторая корреляционная функция полей Φ ; для определенности будем считать, что F — парный коррелятор двух составных операторов. Тогда размерное представление для F имеет вид

$$F = \nu^{d_F^{\omega}} \mu^{d_F} \cdot R(Mr, mr, \mu r, g, \nu), \qquad (C.38)$$

где d_F^{ω} — частотная размерность F, d_F — каноническая размерность F, а R — функция от безразмерных аргументов.

Введем переменнную $s = k/\mu \equiv 1/\mu r$, где k — волновое число, μ — ренормировочная масса. Тогда оператор \mathcal{D}_{RG} принимает вид

$$\mathcal{D}_{RG} = -\mathcal{D}_s + \beta \partial_g - \gamma_\nu \mathcal{D}_\nu. \tag{C.39}$$

Учитывая (С.39), уравнение РГ (С.36) принимает вид

$$\left[-\mathcal{D}_s + \beta \partial_g - \gamma_{\nu} \mathcal{D}_{\nu} + \gamma_F\right] R = 0.$$
 (C.40)

Сделаем подстановку $R = \exp \Psi$:

$$\left[-\mathcal{D}_s + \beta \partial_g - \gamma_{\nu} \mathcal{D}_{\nu}\right] \Psi = -\gamma_F, \qquad (C.41)$$

С.3.2. Решение однородного дифференциального уравнения. Инвариантный заряд

Рассмотрим однородное дифференциальное уравнение

$$\left[-\mathcal{D}_s + \beta \partial_g - \gamma_{\nu} \mathcal{D}_{\nu}\right] \Psi = 0. \tag{C.42}$$

Набор его первых интегралов будем называть инвариантными переменными $\bar{g}, \bar{\nu}$. Будем искать их в виде $\bar{g} = \bar{g}(s, g), \bar{\nu} = \bar{\nu}(s, g, \nu)$. Тогда

$$\left[-\mathcal{D}_s + \beta \partial_g\right] \bar{g} = 0, \qquad (C.43a)$$

$$\bar{g}(1, g) = g. \tag{C.43b}$$

Решением данного дифференциального уравнения является функция

$$\ln s = \int_{g}^{\bar{g}} \frac{dx}{\beta(x)},\tag{C.44}$$

неявно определяющая \bar{g} через s. Действительно, применяя к (C.43a) операции ∂_g и \mathcal{D}_s , получаем

$$\partial_g \bar{g} \cdot \frac{1}{\beta(\bar{g})} - \frac{1}{\beta(g)} = 0, \qquad (C.45a)$$

$$\mathcal{D}_s \bar{g} \cdot \frac{1}{\beta(\bar{g})} = 1. \tag{C.45b}$$

Комбинируя (C.45a) и (C.45b), нетрудно получить исходное уравнение (C.43).

Из (С.45b) следует, что

$$\mathcal{D}_s \,\bar{g} = \beta(\bar{g}). \tag{C.46}$$

Рассмотрим точку
 $g^*,$ определяемой из требования $\beta(g^*)=0.$ В окрестно-
сти этой точки

$$\beta(\bar{g}) = \beta'(g^*) \cdot (\bar{g} - g^*) + \dots, \qquad (C.47)$$

поэтому в окрестности неподвижной точки g* уравнение (C.46) имеет вид

$$\mathcal{D}_{s}\left[\bar{g}\left(s,\,g^{*}\right)-g^{*}\right] = \beta'(g^{*})\cdot(\bar{g}-g^{*}).$$
(C.48)

Данное уравнение является уравнением Эйлера и решается подстановкой $\bar{g}(s, g^*) = s^{\omega}$, где $\omega = \beta'(g^*)$. Таким образом асимптотика инвариантного заряда вблизи неподвижной точки g^* имеет вид

$$\bar{g}(s, g^*) \cong g^* + const \cdot s^{\omega}. \tag{C.49}$$

Из (С.49) следует, что при $\omega > 0 \quad \bar{g} \to g^*$ при $s \to 0$; такая неподвижная точка является ИК-притягивающей. При $\omega < 0 \quad \bar{g} \to g^*$ при $s \to \infty$ (УФ-притягивающая неподвижная точка).

Уравнение на инвариантный заряд $\bar{\nu}$ имеет вид

$$\left[-\mathcal{D}_s + \beta \partial_g - \gamma_{\nu} \mathcal{D}_{\nu}\right] \bar{\nu} = 0, \qquad (C.50a)$$

$$\bar{\nu}(1,\,\nu) = \nu,\tag{C.50b}$$

где $\bar{\nu} = \bar{\nu}(s, g, \nu), \, \gamma_{\nu} = \gamma_{\nu}(g, \nu).$

Решением данного уравнения является функция

$$\bar{\nu} = \nu \cdot \exp\left[-\int_{g}^{\bar{g}} \frac{\gamma_{\nu}(x)}{\beta_{g}(x)} dx\right].$$
(C.51)

Подставляя (С.51) в левую часть (С.50) и учитывая (С.43а), получаем тождество

$$\left[-\gamma_{\nu}(g) + \gamma_{\nu}(g)\right] \cdot \bar{\nu} = 0, \qquad (C.52)$$

т. о. (С.51) действительно является решением уравнения (С.50).

С.3.3. Решение неоднородного дифференциального уравнения

Учитывая, что $\beta_g = \beta_g(g), \gamma_\nu = \gamma_\nu(g)$, будем искать частное решение неоднородного дифференциального уравнения (С.41) в виде $\Psi_0 = \Psi_0(g)$. Тогда (С.41) принимает вид

$$\beta \partial_g \Psi_0(g) = -\gamma_F; \tag{C.53}$$

решение данного уравнения есть функция

$$\Psi_0(g) = -\int_a^g \frac{\gamma_F(x)}{\beta(x)} dx, \qquad (C.54)$$

где *а* — произвольный нижний предел. Учитывая (С.54), общее решение неоднородного дифференциального уравнения (С.41) имеет вид

$$R(s, g, \nu) = \exp\left[-\int_{a}^{g} \frac{\gamma_F(x)}{\beta(x)} dx\right] \cdot F(\bar{g}, \bar{\nu}), \qquad (C.55)$$

где $F(\bar{g}, \bar{\nu})$ — произвольная функция первых интегралов. Рассмотрим $R(1, q, \nu)$:

$$R(1, g, \nu) = \exp\left[-\int_{a}^{g} \frac{\gamma_F(x)}{\beta(x)} dx\right] \cdot F(g, \nu)$$
(C.56)

в силу нормировки (C.43b), (C.50b). Из (C.56) следует, что

$$F(g, \nu) = \exp\left[\int_{a}^{g} \frac{\gamma_F(x)}{\beta(x)} dx\right] \cdot R(1, g, \nu).$$
(C.57)

Комбинируя (С.55) и (С.57) получаем, что решение уравнения РГ (С.36), (С.37) имеет вид

$$R(s, g, \nu) = \exp\left[\int_{g}^{\bar{g}} \frac{\gamma_F(x)}{\beta(x)} dx\right] \cdot R(1, \bar{g}, \bar{\nu}), \qquad (C.58)$$

при этом асимптотики инвариантных зарядов \bar{g} и $\bar{\nu}$ известны, см. (С.49) и (С.51). Выражение (С.58) является конечным ответом для решения дифференциального уравнения (С.36), (С.37). Проанализируем его: обозначим выражение, стоящее под экспонентой, как Е:

$$E = \int_{g}^{\bar{g}} \frac{\gamma_F(x)}{\beta(x)} dx = \int_{g}^{\bar{g}} dx \left[\frac{\gamma_F(x)}{\beta(x)} - \frac{\gamma_F^*}{\beta(x)} + \frac{\gamma_F^*}{\beta(x)} \right], \quad (C.59)$$

где $\gamma_F^* = \gamma_F(g^*)$. Учитывая (С.44), получаем, что

$$E = \gamma_F^* \cdot \ln s + \int_g^{g^*} dx \left[\frac{\gamma_F(x) - \gamma_F^*}{\beta(x)} \right] + \int_{g^*}^{\bar{g}} dx \left[\frac{\gamma_F(x) - \gamma_F^*}{\beta(x)} \right] =$$
$$= \gamma_F^* \cdot \ln s + f(g, \xi). \tag{C.60}$$

Подставляя (С.60) в (С.58), получаем, что первый член в (С.60) дает поправку $s^{\gamma_F^*}$ в асимптотике функции R (С.38); второй член есть некоторая функция $\exp[f(g, \xi)]$, являющаяся конечным амплитудным множителем, которым мы впредь интересоваться не будем; а третий член является некоторой конечной функцией \bar{g} и, как следствие, конечной при $s \to 0$ функцией s, т. е. некоторой поправкой к лидирующему члену асимптотики $\ln s$.

Таким образом лидирующий член асимптотики $s \to 0$ решения (C.58) уравнения РГ (C.36), (C.37) имеет вид

$$R(s, g, \nu) \cong s^{\gamma_F^*} \cdot R(1, \bar{g}, \bar{\nu}). \tag{C.61}$$

При наличии нескольких зарядов в модели уравнение (C.46) превратится в систему зацепленных уравнений

$$\mathcal{D}_s \, \bar{g}_i = \beta_i \, (\bar{g}_1, \, \bar{g}_2, \, \dots \bar{g}_n), \tag{C.62}$$

а вместо условия $\beta'(g^*) > 0$ для ИК–притягивающих точек будет требование положительной определенности матрицы $\Omega_{ik} = \partial \beta_i / \partial g_k |_{g=g_*}$. При этом общие выводы и вид асимптотического поведения (С.61) сохраняются.

Литература

- Grauer, R. Scaling of high-order structure functions in magnetohydrodynamic turbulence / R. Grauer, J. Krug, C. Marliani // Phys. Lett. A. – 1994. – Vol. 195. – P. 335.
- Mininni, P. D. Finite dissipation and intermittency in magnetohydrodynamics / P. D. Mininni, A. Pouquet // Phys. Rev. E. - 2009. - Vol. 80. - P. 025401.
- Grauer, R. Analytical and numerical approaches to structure functions in magnetohydrodynamic turbulence / R. Grauer, C. Marliani // Physica Scripta T. - 1996. - Vol. 67. - P. 38.
- R. Bruno, V. Carbone, B. Bavassano et al. // Mem. Sos. Astrophys. It. 2003. – Vol. 74. – P. 725.
- R. Bruno, B. Bavassano, R. D'Amicis et al. // Geophys. Research Abstracts.
 2003. Vol. 9. P. 08623.
- Pagel, C. A study of magnetic fluctuations and their anomalous scaling in the solar wind: The Ulysses fast-latitude scan / C. Pagel, A. Balogh // Nonlin. Processes in Geophysics. - 2001. - Vol. 8. - P. 313.
- Solar Wind Magnetohydrodynamics Turbulence: Anomalous Scaling and Role of Intermittency / C. Salem, A. Mangeney, S. D. Bale, P. Veltri // Astrophys. J. - 2009. - Vol. 702. - P. 537.

- Energy Release in a Turbulent Corona / G. Einaudi, M. Velli, H. Politano,
 A. Pouquet // Astrophys. Journ. 1996. Vol. 457. Pp. L113-L116.
- 9. Frisch, U. Turbulence: The Legacy of A N Kolmogorov / U. Frisch. Cambridge University Press, 1955.
- 10. Обухов, А. М. / А. М. Обухов // Изв. АН СССР. Сер. географ, и геофиз.
 1949. Vol. 13. Р. 58.
- Kraichnan, R. H. Small-scale structure of a scalar field convected by turbulence / R. H. Kraichnan // Phys. Fluids. - 1968. - Vol. 11. - P. 945.
- Kraichnan, R. H. Anomalous scaling of a randomly advected passive scalar / R. H. Kraichnan // Phys. Rev. Lett. - 1994. - Vol. 72. - P. 1016.
- Kraichnan, R. H. Passive Scalar: Scaling Exponents and Realizability / R. H. Kraichnan // Phys. Rev. Lett. - 1997. - Vol. 78. - P. 4922.
- Gawędzki, K. Anomalous Scaling of the Passive Scalar / K. Gawędzki,
 A. Kupiainen // Phys. Rev. Lett. 1995. Vol. 75. P. 3834.
- Bernard, D. Anomalous scaling in the N-point functions of a passive scalar / D. Bernard, K. Gawędzki, A. Kupiainen // Phys. Rev. E. 1996.
 Vol. 54. P. 2564.
- 16. Normal and anomalous scaling of the fourth–order correlation function of a randomly advected passive scalar / M. Chertkov, G. Falkovich, I. Kolokolov, V. Lebedev // Phys. Rev. E. 1995. Vol. 52. P. 4924.
- 17. Chertkov, M. Anomalous Scaling Exponents of a White–Advected Passive

Scalar / M. Chertkov, G. Falkovich // *Phys. Rev. Lett.* — 1996. — Vol. 76. — P. 2706.

- Adzhemyan, L. Ts. Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar / L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev // Phys. Rev. E. - 1998. - Vol. 58. - P. 1823.
- Аджемян, Л. Ц. Ренормгруппа, операторное разложение и аномальный скейлинг в простой модели турбулентной диффузии / Л. Ц. Аджемян, Н. В. Антонов, А. Н. Васильев // *Теор. Мат. Физика.* — 1999. — Vol. 120:2. — Pp. 309–314.
- 20. Anomalous exponents to order ε³ in the rapid–change model of passive scalar advection / L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov et al. // *Phys. Rev. E.* 2001. Vol. 63. P. 025303(R).
- Calculation of the anomalous exponents in the rapid-change model of passive scalar advection to order ε³ / L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov et al. // Phys. Rev. E. 2001. Vol. 64. P. 056306.
- 22. Erratum: Anomalous exponents to order ε³ in the rapid-change model of passive scalar advection / L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov et al. // Phys. Rev. E. 2001. Vol. 64. P. 019901.
- Adzhemyan, L. Ts. Renormalization group and anomalous scaling in a simple model of passive scalar advection in compressible flow / L. Ts. Adzhemyan, N. V. Antonov // Phys. Rev. E. 1998. Vol. 58. P. 7381.

- 24. Falkovich, G. Particles and fields in fluid turbulence / G. Falkovich,
 K. Gawędzki, M. Vergassola // Rev. Mod. Phys. 2001. Vol. 73.
 P. 913.
- Antonov, N. V. Renormalization group, operator product expansion and anomalous scaling in models of turbulent advection / N. V. Antonov // J. Phys. A. - 2006. - Vol. 39. - Pp. 7825-7865.
- Васильев, А. Н. Квантовополевая ренормгруппа в теории критического поведения и стохастической динамике / А. Н. Васильев. — СПб.: ПИЯФ, 1998.
- Zinn-Justin, J. Quantum Field Theory and Critical Phenomena / J. Zinn-Justin. — Clarendon, Oxford, 1989.
- Lanotte, A. Anisotropic nonperturbative zero modes for passively advected magnetic fields / A. Lanotte, A. Mazzino // Phys. Rev. E. - 1999. -Vol. 60. - P. R3483.
- 29. Arad, I. Nonperturbative spectrum of anomalous scaling exponents in the anisotropic sectors of passively advected magnetic fields / I. Arad, L. Biferale, I. Procaccia // Phys. Rev. E. 2000. Vol. 61. P. 2654.
- Antonov, N. V. Persistence of small-scale anisotropies and anomalous scaling in a model of magnetohydrodynamics turbulence / N. V. Antonov,
 A. Lanotte, A. Mazzino // Phys. Rev. E. 2000. Vol. 61. P. 6586.
- 31. Manifestation of anisotropy persistence in the hierarchies of magnetohydrodynamical scaling exponents / N. V. Antonov, J. Honkonen, A. Mazz-

ino, P. Muratore-Ginanneschi // Phys. Rev. E. - 2000. - Vol. 62. - P. R5891(R).

- 32. Jurcisinova, E. Anomalous scaling of the magnetic field in the Kazantsev--Kraichnan model / E. Jurcisinova, M. Jurcisin // J. Phys. A. - 2012. -Vol. 45. - P. 485501.
- 33. Anomalous scaling of the magnetic field in the Kazantsev--Kraichnan model / L. Ts. Adzhemyan, N. V. Antonov, A. Mazzino et al. // Europhys. Lett. 2001. Vol. 55. Pp. 801-806.
- 34. Vergassola, M. Anomalous scaling for passively advected magnetic fields /
 M. Vergassola // Phys. Rev. E. 1996. Vol. 53. P. R3021(R).
- 35. Rogachevskii, I. Intermittency and anomalous scaling for magnetic fluctuations / I. Rogachevskii, N. Kleeorin // Phys. Rev. E. 1997. Vol. 56. P. 417.
- 36. Fournier, J. D. Infrared properties of forced magnetohydrodynamic turbulence / J. D. Fournier, P. L. Sulem, A. Pouquet // J. Phys. A. – 1982. – Vol. 15. – P. 1393.
- 37. Аджемян, Л. Ц. Квантово-полевая ренормгруппа в теории турбулентности: магнитная гидродинамика / Л. Ц. Аджемян,
 А. Н. Васильев, М. Гнатич // *Теор. Мат. Физика.* 1985. Vol. 64:2. Рр. 196–207.
- Vincenzi, D. The Kraichnan–Kazantsev dynamo / D. Vincenzi // J. Stat. Phys. - 2002. - Vol. 106. - P. 1073.

- Arponen, H. Dynamo effect in the Kraichnan magnetohydrodynamic turbulence / H. Arponen, P. Horvai // J. Stat. Phys. - 2007. - Vol. 129. -P. 205.
- 40. Arponen, H. Steady-state existence of passive vector fields under the Kraichnan model / H. Arponen // Phys. Rev. E. 2010. Vol. 81. P. 036325.
- 41. Turbulence with pressure: Anomalous scaling of a passive vector field /
 N. V. Antonov, M. Hnatich, J. Honkonen, M. Jurcisin // Phys. Rev. E. –
 2003. Vol. 68. P. 046306.
- 42. Arponen, H. Anomalous scaling and anisotropy in models of passively advected vector fields / H. Arponen // Phys. Rev. E. 2009. Vol. 79. P. 056303.
- 43. Казанцев, А. П. / А. П. Казанцев // ЖЭТФ. 1967. Vol. 53. —
 Р. 1806.
- 44. Anomalous scaling of a passive scalar in the presence of strong anisotropy /
 L. Ts. Adzhemyan, N. V. Antonov, M. Hnatich, S. V. Novikov // Phys. Rev.
 E. 2000. Vol. 63. P. 016309.
- 45. Anomalous scaling of passively advected magnetic field in the presence of strong anisotropy / M. Hnatich, M. Jurcisin, A. Mazzino, S. Sprinc // Phys. Rev. E. - 2005. - Vol. 71. - P. 066312.
- 46. Jurcisinova, E. Anomalous scaling of a passive scalar advected by a turbulent velocity field with finite correlation time and uniaxial small–scale

anisotropy / E. Jurcisinova, M. Jurcisin // *Phys. Rev. E.* - 2008. - Vol. 77. - P. 016306.

- 47. Jurcisinova, E. Influence of anisotropy on anomalous scaling of a passive scalar advected by the Navier–Stokes velocity field / E. Jurcisinova, M. Jurcisin, R. Remecky // Phys. Rev. E. – 2009. – Vol. 80. – P. 046302.
- Avellaneda, M. Mathematical models with exact renormalization for turbulent transport / M. Avellaneda, A. Majda // Commun. Math. Phys. – 1990. – Vol. 131. – Pp. 381–429.
- 49. Avellaneda, M. Mathematical models with exact renormalization for turbulent transport II: Non–Gaussian statistics, fractal interfaces, and the sweeping effect / M. Avellaneda, A. Majda // Commun. Math. Phys. - 1992. -Vol. 146. - Pp. 139–204.
- 50. Majda, A. Vorticity, turbulence, and acoustics in fluid flow / A. Majda // SIAM Rev. - 1991. - Vol. 33. - Pp. 349-388.
- Majda, A. Explicit inertial range renormalization theory in a model for turbulent diffusion / A. Majda // J. Stat. Phys. - 1993. - Vol. 73. -Pp. 515-542.
- Majda, A. Random shearing direction models for isotropic turbulent diffusion / A. Majda // J. Stat. Phys. 1994. Vol. 75. Pp. 1153-1165.
- 53. Avellaneda, M. Simple examples with features of renormalization for turbulent transport / M. Avellaneda, A. Majda // Phil. Trans. Roy. Soc. London A. - 1994. - Vol. 346. - P. 205.

- 54. Avellaneda, M. Approximate and exact renormalization theories for a model of turbulent transport / M. Avellaneda, A. Majda // Phys. Fluids A. – 1992. – Vol. 4. – Pp. 41–57.
- 55. Avellaneda, M. Renormalization theory for eddy diffusivity in turbulent transport / M. Avellaneda, A. Majda // Phys. Rev. Lett. 1992. Vol. 68.
 Pp. 3028-3031.
- 56. Horntrop, D. Subtle statistical behavior in simple models for random advection-diffusion / D. Horntrop, A. Majda // J. Math. Sci. Univ. Tokyo. - 1994. - Vol. 1. - P. 23.
- 57. Zhang, Q. Inertial range scaling of laminar shear flow as a model of turbulent transport / Q. Zhang, J. Glimm // Commun. Math. Phys. 1992. Vol. 146. Pp. 217-229.
- Wallstrom, T. C. Turbulent diffusion phase transition is due to singular energy spectrum / T. C. Wallstrom // Proc. Natl. Acad. Sci. USA. – 1995. – Vol. 92. – Pp. 11005–11008.
- 59. Antonov, N. V. Inertial-range behavior of a passive scalar field in a random shear flow: renormalization group analysis of a simple model / N. V. Antonov, A. V. Malyshev // J. Stat. Phys. - 2012. - Vol. 146. -Pp. 33-55.
- 60. Dominicis, C. De. Energy spectra of certain randomly-stirred fluids /
 C. De Dominicis, P. C. Martin // Phys. Rev. A. 1979. Vol. 19.
 P. 419.

- 61. Sulem, P. L. Fully developed turbulence and renormalization group /
 P. L. Sulem, J.-D. Fournier, U. Frisch // Lecture Notes in Physics. 1979.
 Vol. 104. Pp. 320-335.
- 62. Fournier, J.-D. Remarks on the renormalization group in statistical fluid dynamics / J.-D. Fournier, U. Frisch // Phys. Rev. A. 1983. Vol. 28. P. 1000.
- 63. Аджемян, Л. Ц. Ренормгрупповой подход в теории турбулентности: размерности составных операторов / Л. Ц. Аджемян, А. Н. Васильев, Ю. М. Письмак // *Теор. Мат. Физика.* 1983. Vol. 53:2. Pp. 268—281.
- 64. Аджемян, Л. Ц. Квантово-полевая ренормализационная группа в теории развитой турбулентности / Л. Ц. Аджемян, Н. В. Антонов, А. Н. Васильев // Усп. Физ. Наук. 1996. Vol. 166:12. Рр. 1257–1284.
- 65. Adzhemyan, L. Ts. The Field Theoretic Renormalization Group in Fully Developed Turbulence / L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev. — Gordon and Breach, London, 1999.
- Fournier, J. D. Infrared properties of forced magnetohydrodynamic turbulence / J. D. Fournier, P. L. Sulem, A. Pouquet // J. Phys. A. - 1982. -Vol. 15. - P. 1393.
- 67. Аджемян, Л. Ц. Турбулентное динамо как спонтанное нарушение симметрии / Л. Ц. Аджемян, А. Н. Васильев, М. Гнатич // Теор. Мат. Физика. — 1985. — Vol. 64:2. — Р. 196.

- Anomalous scaling of a passive vector field in d dimensions: higher order structure functions / L. Ts. Adzhemyan, N. V. Antonov, P. B. Gol'din, M. V. Kompaniets // *Teop. Mam. Φυзυκα.* – 2013. – Vol. 46. – P. 135002.
- 69. Turbulence with pressure: Anomalous scaling of a passive vector field /
 N. V. Antonov, M. Hnatich, J. Honkonen, M. Jurcisin // Phys. Rev. E. –
 2003. Vol. 68. P. 046306.
- 70. Anomalous scaling of a passive scalar advected by the Navier–Stokes velocity field: Two–loop approximation / L. Ts. Adzhemyan, N. V. Antonov, J. Honkonen, T. L. Kim // Phys. Rev. E. 2005. Vol. 71. P. 016303.
- 71. Borue, V. Numerical study of three–dimensional Kolmogorov flow at high Reynolds numbers / V. Borue, S. A. Orszag // J. Fluid Mech. — 1994. — Vol. 306. — P. 293.
- 72. Extraction of Anisotropic Contributions in Turbulent Flows / I. Arad,
 B. Dhruva, S. Kurien et al. // Phys. Rev. Lett. 1998. Vol. 81. —
 P. 5330.
- 73. Antonov, N. V. Anomalous scaling regimes of a passive scalar advected by the synthetic velocity field / N. V. Antonov // Phys. Rev. E. - 1999. -Vol. 60. - P. 6691.
- 74. M. Hnatich, M. Jurcisin, A. Mazzino, S. Sprinc // Acta Phys. Slovaca. 2002. – Vol. 52. – P. 559.
- 75. Jurcisinova, E. Anomalous scaling of a passive vector advected by the Navier–Stokes velocity field / E. Jurcisinova, M. Jurcisin, R. Remecky // J. Phys. A. - 2009. - Vol. 42. - P. 275501.

- 76. Adzhemyan, L. Ts. Anomalous scaling, nonlocality, and anisotropy in a model of the passively advected vector field / L. Ts. Adzhemyan, N. V. Antonov, A. V. Runov // Phys. Rev. E. 2001. Vol. 64. P. 046310.
- 77. Аномальный скейлинг в модели турбулентного переноса векторного поля: высшие структурные функции / Л. Ц. Аджемян, Н. В. Антонов, П. Б. Гольдин, М. В. Компаниец // Вестник СПбУ, Сер. 4: Физ. Хим. 2009. Vol. 1. Р. 56.
- 78. Новожилов, Ю. В. Электродинамика / Ю. В. Новожилов, Ю. А. Яппа.
 М.: Наука, 1978.
- Зельдович, Я. Б. Магнитные поля в астрофизике / Я. Б. Зельдович,
 А. А. Рузмайкин, Д. Д. Соколов. РХД, Ижевск, 2006.
- Монин, А. С. Статистическая гидромеханика / А. С. Монин,
 А. М. Яглом. М.: Наука, 1967.