# САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

На правах рукописи

ВИКУЛИНА Юлия Игоревна

## ЭФФЕКТ ПОВЕРХНОСТНЫХ И МЕЖФАЗНЫХ НАПРЯЖЕНИЙ В ДЕФОРМИРУЕМОМ ТЕЛЕ С ПЛОСКОЙ И РЕЛЬЕФНОЙ ПОВЕРХНОСТЬЮ

01.02.04 – механика деформируемого твёрдого тела

АВТОРЕФЕРАТ Диссертации на соискание учёной степени кандидата физико-математических наук

> Санкт-Петербург 2014

Работа выполнена в Санкт-Петербургском государственном университете.

| Научный руководитель:  | доктор физико-математических наук,<br>профессор ГРЕКОВ Михаил Александрович                                                                                                                      |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Официальные оппоненты: | доктор физико-математических наук,<br>профессор КРИВЦОВ Антон Мирославович,<br>Санкт-Петербургский государственный<br>политехнический университет,<br>заведующий кафедрой теоретической механики |
|                        | доктор физико-математических наук,<br>профессор РОМАНОВ Алексей Евгеньевич,<br>Физико-технический институт им. А.Ф. Иоффе<br>Российской академии наук,<br>ведущий научный сотрудник              |
| Ведущая организация:   | Федеральное Государственное Бюджетное<br>Учреждение Науки «Институт Проблем                                                                                                                      |

Защита состоится "\_\_\_\_" 201\_г. в \_\_\_\_\_часов на заседании диссертационного совета Д212.232.30 на базе Санкт-Петербургского государственного университета по адресу: 198504, Санкт-Петербург, Старый Петергоф, Университетский пр., 28, математико-механический факультет, ауд. 405.

Машиноведения РАН» (ИПМаш РАН)

С диссертацией можно ознакомиться в Научной библиотеке им. М. Горького Санкт-Петербургского государственного университета по адресу: 199034, Санкт-Петербург, Университетская наб., 7/9 и на сайте http://spbu.ru/disser2/disser/Vikulina.\_Dissert.pdf.

Автореферат разослан "\_\_\_\_" \_\_\_\_ 201\_ г.

# ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Развитие нанотехнологий и применение наноматериалов (наноплёнок, нанопроволок, нанотрубок, наночастиц и др.) привели к всесторонним исследованиям свойств этих материалов, а также свойств поверхностных и межфазных наноструктур. Поверхностные напряжения — одна из главных причин экстраординарных механических свойств наноструктур и наноматериалов. В классической теории упругости влияние поверхностных напряжений на состояние идеально упругого тела не учитывается на макроуровне, поскольку это влияние распространяется только на несколько приповерхностных слоёв атомов и на макромасштабах становится практически незначительным по сравнению с влиянием других нагрузок. Однако на субмикронных уровнях даже в твёрдых телах доминирующими становятся квантовые и поверхностные эффекты, которые оказывают значительное влияние на механические и электрические свойства наноматериалов. Многочисленные теоретические исследования в рамках континуальной механики, основанные на использовании обобщённой теории упругости, которая включает классическую теорию для основного объёма материала и поверхностную теорию упругости для поверхностей и границ раздела, показали, что именно учёт поверхностных напряжений позволяет адекватно описать, например, размерный эффект, наблюдаемый в экспериментах над различными нанообъектами. Состояние поверхности во многих микроэлектронных и оптических устройствах имеет первостепенное значение, особенно на наноструктурном уровне. Не меньшее значение имеет состояние межзёренной границы в кристаллических материалах. В связи с этим, разработка и развитие методов решения соответствующих краевых задач на наномасштабном уровне и анализ наноэффектов являются актуальными.

Цель данной работы состоит в исследовании на наномасштабном уровне эффекта поверхностных напряжений в упругом теле с плоской и рельефной поверхностью, а также межфазных напряжений в двухкомпонентном теле с рельефной поверхностью.

#### Результаты, выносимые на защиту:

- решение задачи определения напряжённо-деформированного состояния упругого полупространства с плоской поверхностью в условиях плоской деформации при действии поверхностных напряжений, возникших в результате изменения поверхностной нагрузки в нанометровом диапазоне, и напряжений на бесконечности;
- решение задачи определения напряжённо-деформированного состояния упругого полупространства с нанометровым рельефом поверхности в условиях плоской деформации при действии поверхностных напряжений, внешней нагрузки и напряжений на бесконечности;
- решение задачи определения напряжённо-деформированного состояния двухкомпонентного упругого пространства с нанометровым рельефом поверхности раздела в условиях плоской деформации при наличии межфазных напряжений и действии напряжений на бесконечности;
- исследование влияния поверхностных и межфазных напряжений на напряжённое состояние внешней границы и границы раздела двух упругих сред в зависимости от геометрических и физических параметров задачи.

Методы исследования. При выполнении диссертационной работы использовались различные аналитические методы: методы теории аналитических

функций, методы математической физики, метод возмущений границы раздела. Численные результаты и графические построения получены при помощи системы компьютерной алгебры MAPLE.

Достоверность результатов обеспечивается корректностью постановки задач и математических методов, использованных в решении рассмотренных задач. Полученные в работе результаты качественно согласуются с результатами решений аналогичных задач наномеханики, рассмотренных разными авторами при исследовании эффекта поверхностных напряжений. Существование выявленного размерного эффекта было установлено в ряде экспериментальных и теоретических работ.

#### Научная новизна:

- разработан новый подход к решению ряда краевых двумерных задач, постановка которых основана на определяющих соотношениях объёмной и поверхностной теорий упругости. Метод аналитического решения рассмотренных задач состоит в построении однотипных гиперсингулярных интегральных уравнений;
- впервые получено точное решение задачи о деформации упругой полуплоскости при действии произвольной периодической внешней нагрузки и поверхностного напряжения;
- разработан метод возмущений при решении двумерных задач для упругих областей с наноразмерным рельефом внешней или межфазной поверхности. Построен алгоритм нахождения любого приближения и метод точного решения полученного для каждого приближения однотипного гиперсингулярного интегрального уравнения в случае периодического искривления поверхности;
- проанализирован размерный эффект, который связан с наличием поверхностных напряжений и проявляется в зависимости напряжённого состояния от периода изменения нагрузки, а также от периода искривления поверхности и интерфейса.

Теоретическая и практическая ценность. Предложенный в работе метод решения задач с поверхностными и межфазными напряжениями, приводящий к решению гиперсингулярного интегрального уравнения, может быть распространён на многие аналогичные двумерные задачи, например, задачи для плёночного упругого покрытия при учёте поверхностных напряжений на внешней поверхности и межфазных — на интерфейсе. Результаты данной работы позволяют дать теоретическое объяснение уникальных механических свойств наноматериалов и наноструктур. Эти результаты могут быть использованы для оценки работоспособности оптических и электронных устройств, поверхности которых имеют дефекты нанометрового размера. Обнаруженные эффекты, связанные с учётом поверхностных напряжений, представляются существенными для дальнейшего развития физической мезомеханики, одним из направлений которой является описание процессов, происходящих при переходе от мезомасштабных уровней к нанометровым. Найденные решения можно также использовать для оценки точности и достоверности результатов, полученных численными методами и с помощью компьютерного моделирования.

Апробация результатов исследования. Результаты работы докладывались и обсуждались на научных семинарах кафедры вычислительных методов механики деформируемого твёрдого тела, на научном семинаре кафедры математики Санкт-Петербургского государственного университета технологии и дизайна, а также на 8 научных конференциях: XLI, XLII, XLII, XLIV международная научная конференция аспирантов и студентов «Процессы управления и устойчивость» (Санкт-Петербург, 2010, 2011, 2012, 2013); международная конференция по механике «Шестые Поляховские чтения» (Санкт-Петербург, 2012); международная конференция по механике «The 8th European Solid Mechanics Conference» (Грац, Австрия, 2012); междунароная научная конференция «Современные проблемы механики деформируемого твёрдого тела, дифференциальных и интегральных уравнений» (Одесса, Украина, 2013); XXI Петербургские чтения по проблемам прочности (Санкт-Петербург, 2014).

Результаты работы получены при проведении исследований по проектам РФФИ (гранты № 11-01-00230, № 12-08-31392, № 14-01-00260) и НИР СПбГУ № 9.37.129.2011

Публикации. По материалам диссертации опубликовано 10 работ, в том числе 2 статьи в рецензируемых журналах, рекомендованных ВАК. Список публикаций приведён в конце автореферата.

В совместных исследованиях Грекову М. А. принадлежит постановка задачи, общая схема решений и консультации по различным вопросам, связанным с решением задач. Костырко С. А. принадлежит постановка соответствующих задач и обсуждение путей реализации решений. Викулиной Ю. И. принадлежит реализация предложенного научным руководителем метода, получение решения для рассмотренных задач в явном виде, составление компьютерных программ, графические представления полученных результатов и их анализ.

Структура и объем работы. Работа состоит из введения, трёх глав и заключения, содержит 85 страниц, 18 рисунков, 1 таблицу, список литературы содержит 50 наименований.

## СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, приведён краткий исторический обзор по исследуемой тематике, сформулированы цели и задачи работы, изложена методика исследования, перечислены полученные в работе новые результаты, их практическая ценность и основные положения, выносимые на защиту. В конце введения приводится краткое содержание диссертации.

**Глава 1** посвящена определению напряжённо-деформированного состояния упругого полупространства с плоской поверхностью в условиях плоской деформации при действии напряжений на бесконечности, поверхностных напряжений и внешней нагрузки в нанометровом диапазоне изменения.

В начале главы излагаются основные положения поверхностной теории упругости Гёртина — Мёрдока, приводится формулировка обобщенного закона Лапласа — Юнга и рассматривается возможность их применения для решения краевых задач.

Рассматривается изотропное и однородное полупространство, плоская поверхность которого находится под действием внешней нагрузки  $\mathbf{p} = (p_1, p_2)$  в условиях плоской деформации, и принимается в расчёт действие поверхностных напряжений  $\sigma_{11}^s$  на границе. Задача сводится к соответствующей двумерной задаче о деформации упругой полуплоскости  $\Omega$  с прямолинейной границей  $\Gamma$  (рис. 1). Считается, что упругие свойства границы  $\Gamma$  отличаются от упругих свойств полуплоскости. Согласно обобщённому закона Лапласа — Юнга [1] граничные условия в случае плоской задачи и записываются в виде [2]:

$$\sigma_{22}(z) - i\sigma_{12}(z) + i\frac{\partial\sigma_{11}^s}{\partial x_1} = -i(p_1 + ip_2), \quad z = x_1 + ix_2, \quad z \in \Gamma,$$
(1)



Рис. 1. Модель полуплоскости под нагрузкой

где  $\sigma_{11}^s$  — поверхностное напряжение. На бесконечности

$$\lim_{x_2 \to -\infty} (\sigma_{22} - i\sigma_{12}) = -\frac{iP}{a}, \quad \lim_{x_2 \to -\infty} \sigma_{11} = \sigma_1, \quad \lim_{x_2 \to -\infty} \omega = \omega^{\infty}, \quad z \in \Omega, \quad (2)$$

где  $\sigma_{ij}$  — компоненты напряжений в системе координат  $x_1, x_2; \omega$  — угол поворота материальной частицы. Кроме того, выполняется условие идеального контакта поверхности и объёма (непрерывность перемещений), которое в деформационной форме имеет вид

$$\varepsilon_{11}(x_1) = \varepsilon_{11}^s(x_1), \quad x_2 = 0.$$
 (3)

Здесь  $\varepsilon_{11}(x_1)$  и  $\varepsilon_{11}^s(x_1)$  – деформации объёма и поверхности соответственно.

Из определяющих соотношений поверхностной теории упругости Гёртина — Мёрдока, объемной теории упругости и условия (3) выводится уравнение, связывающее неизвестное поверхностное напряжение и соответствующую компоненту деформации  $\varepsilon_{11}$  основного материала на границе:

$$\sigma_{11}^s(x_1) = \gamma_0 + (2\mu_s + \lambda_s)\varepsilon_{11}(x_1), \qquad (4)$$

где  $\gamma_0$  — остаточное поверхностное напряжение в недеформированном состоянии;  $\lambda_s, \mu_s$  — модули упругости поверхности.

Связь вектора напряжений  $\sigma_n = \sigma_{nn} + i\sigma_{nt}$  в локальной системе координат n, t и вектора перемещений  $u = u_1 + iu_2$  в системе координат  $x_1, x_2$  с комплексными потенциалами Гурса — Колосова Ф и  $\Upsilon$ , согласно [3], выражается соотношениями:

$$\sigma_n = \Phi(z) + \overline{\Phi(z)} - \left(\Upsilon(\overline{z}) + \overline{\Phi(z)} - (z - \overline{z})\,\overline{\Phi'(z)}\right)e^{-2i\alpha}, \quad z \in \Omega, \quad (5)$$

$$-2\mu \frac{du}{dz} = -\varkappa \Phi(z) + \overline{\Phi(z)} - \left(\Upsilon(\overline{z}) + \overline{\Phi(z)} - (z - \overline{z}) \overline{\Phi'(z)}\right) e^{-2i\alpha},\tag{6}$$

где  $\mu$  — модуль сдвига,  $\varkappa = 3 - 4\nu$ ,  $\nu$  — коэффициент Пуассона,  $\alpha$  — угол наклона площадки с нормалью n к оси  $x_1$ .

Переходя в (5) к пределу при  $z \to \Gamma$ ,  $\alpha = 0$ , с учётом граничного условия (1) приходим к задаче Римана — Гильберта о скачке функции  $\Theta$ , голоморфной вне  $\Gamma$ :

$$\Theta^{+}(x_{1}) - \Theta^{-}(x_{1}) = i\sigma_{11}^{s}(x_{1}) + ip(x_{1}), \quad \Theta = \begin{cases} \Upsilon, & \operatorname{Im} z > 0, \\ \Phi, & \operatorname{Im} z < 0, \end{cases}$$
(7)

где  $\Theta^{\pm}(x_1) = \lim_{\mathrm{Im}\, z \to \pm 0} \Theta(z).$ 

Решение задачи (7) имеет вид [4]:

$$\Theta(z) = \Theta_k(z) + \Theta_u(z) + C, \quad z \notin \Gamma,$$
(8)

$$\Theta_k(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{ip(t)}{t-z} dt, \quad \Theta_u(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{i\sigma_{11}^{s'}(t)}{t-z} dt.$$
(9)

На основании полученных соотношений выводится уравнение, связывающее неизвестное поверхностное напряжение  $\sigma_{11}^s$  с комплексными потенциалами

$$\sigma_{11}^{s} = \gamma_0 + (2\mu_s + \lambda_s) \frac{du_1}{dx_1} = \gamma_0 + M \text{Re} \left\{ \varkappa \Phi^- + \Upsilon^+ \right\}, \quad M = \frac{2\mu_s + \lambda_s}{2\mu}.$$
(10)

Используя формулы Сохоцкого-Племеля, получаем гиперсингулярное интегральное уравнение

$$\sigma_{11}^{s'}(x_1) - \frac{M(\varkappa + 1)}{2\pi} \int_{-\infty}^{+\infty} \frac{\sigma_{11}^{s'}(t)}{(t - x_1)^2} dt = = \frac{M(\varkappa - 1)}{2} p'_2(x_1) + \frac{M(\varkappa + 1)}{2\pi} \int_{-\infty}^{+\infty} \frac{p_1(t)}{(t - x_1)^2} dt.$$
(11)

Для решения уравнения (11) и получения численных результатов, некоторые из которых приведенны на рис. 2 и рис. 3, нагрузка, действующая на границе, полагается периодической, нормальная составляющая описывается чётной непрерывной функцией, а касательная — нечётной, то есть p(x) представима в виде ряда Фурье:

$$p(x) = p_1(x) + ip_2(x) = \sum_{k=0}^{n} C_k \sin b_k x + i \sum_{k=0}^{n} D_k \cos b_k x, \qquad (12)$$

где  $b_k = 2\pi k/a$ , a — период, здесь и далее  $x \equiv x_1$ .

Тогда неизвестное поверхностное напряжение находим в виде тригонометрического ряда:

$$\sigma_{11}^{s}(x) = \sum_{k=0}^{\infty} \left( A_k \cos b_k x + B_k \sin b_k x \right).$$
(13)

С использованием свойств интегралов типа Коши получены аналитические выражения для неизвестных коэффициентов ряда Фурье (13)

$$A_{0} = \gamma_{0} + M(\varkappa + 1)\frac{\sigma_{1}}{4}, \quad A_{k} = \frac{M\left(C_{k}(\varkappa + 1) + D_{k}(\varkappa - 1)\right)}{2 + Mb_{k}(\varkappa + 1)}, \quad k \ge 1; \quad (14)$$
$$B_{k} = 0, \quad k \ge 0,$$

и найдено точное решение интегрального уравнения (11) в виде:

$$\sigma_{11}^s(x) = \gamma_0 + M(\varkappa + 1)\frac{\sigma_1}{4} + \sum_{k=1}^{\infty} A_k \cos b_k x.$$
 (15)



**Рис. 2.** Распределение продольных напряжений в диапазоне одного периода при действии касательной нагрузки (а) и касательных напряжений при действии нормальной нагрузки (б)



**Рис. 3.** Зависимость максимумов модулей продольных напряжений от периода действия касательной (а) и нормальной (б) нагрузки

В результате получены явные выражения для компонент тензора напряжений на границе Г.

Для численных расчётов и анализа эффекта поверхностных напряжений рассматривается нагрузка, определяемая одним из равенств

$$p_1(x,y) = q_1 \frac{\operatorname{Im} f(x,y)}{\max |\operatorname{Im} f(x,y)|}, \quad p_2(x,y) = q_2 \frac{\operatorname{Re} f(x,y)}{\max |\operatorname{Re} f(x,y)|}, \tag{16}$$

где

$$f(x,y) = -\operatorname{sh}^{-2}\left(y + \frac{i\pi x}{a}\right),\tag{17}$$

 $q_1, q_2$  — постоянные величины, равные максимумам абсолютных значений соответствующих усилий; параметр y определяет форму кривых. При y > 2 кривые, описывающие действие нагрузки, становятся близкими к синусоидальным. При уменьшении параметра y можно с помощью данных функций моделировать действие периодической нагрузки, распределённой на участках границы, малых по сравнению с периодом.

Вычислительные эксперименты были проведены для алюминия с характеристиками, взятыми из работы [5],  $\lambda_s = 6,8511 \text{ H/m}$ ;  $\mu_s = -0,376 \text{ H/m}$ . В этом случае при  $\mu = 27 \text{ GPa}$  находим, что коэффициент M = 0,113 нм.

Получены распределения некоторых напряжений в диапазоне одного периода (рис. 2), а также зависимости этих напряжений от периода изменения нагрузки (рис. 3). Проиллюстрирован размерный эффект, который проявляется в зависимости напряжений от размерного параметра — периода изменения нагрузки.

В результате обнаружено, что при фиксированном максимальном значении нагрузки влияние поверхностных напряжений на напряжённое состояние границы становится более значительным с уменьшением участка периода, на котором сосредоточена основная часть нагрузки.

Из рис. 3 видно, что наиболее заметное влияние периода нагрузки на напряжения находится в пределах изменения *a* примерно от 1 до 30 нм. При *a* > 100 нм размерный эффект практически исчезает, и напряжённодеформированное состояние тела не зависит от поверхностных напряжений.

Во второй главе 2 приводится решение задачи определения напряжённодеформированного состояния полупространства со слабо искривлённой границей в условиях плоской деформации при действии поверхностных напряжений, внешней нагрузки и напряжений на бесконечности. Форма поверхности, рассматриваемая в данной задаче, часто встречается на практике. Так, например, согласно работе [6], выход дислокаций на поверхность материала может привести к формированию наноразмерного периодического рельефа.

Рассматривается упругая среда, занимающая полупространство, поверхность которого близка к плоской форме и обладает упругими свойствами, отличными от аналогичных свойств объёма. Предполагаем, что среда находится в условиях плоской деформации под действием внешних сил и дополнительных поверхностных напряжений  $\sigma^s$ . Это позволяет перейти к формулировке соответствующей двумерной задачи теории упругости для полубесконечной области [7]  $\Omega = \{z : \text{Im } z < \varepsilon f(x_1), \text{Re } z \in \mathbb{R}^1\}$  в плоскости комплексного переменного  $z = x_1 + ix_2, 0 < \varepsilon \ll 1$ . Граница Г области  $\Omega$  определяется равенством  $\zeta = x_1 + i\varepsilon f(x_1)$  (рис. 4). Здесь  $f(x_1)$  — непрерывно дифференцируемая периодическая функция с периодом a, удовлетворяющая условиям max  $|f(x_1)| = a$ ,  $|f'(x_1)| < 1/\varepsilon$ .

В случае криволинейной поверхности закон Лапласа — Юнга для плоской задачи принимает вид

$$\sigma_n(\zeta) = \frac{\sigma_{tt}^s}{r} - i\frac{1}{h}\frac{d\sigma_{tt}^s}{dx_1} + p(\zeta) \equiv t^s(\zeta) + p(\zeta), \quad \zeta \in \Gamma,$$
(18)

где  $\sigma_n = \sigma_{nn} + i\sigma_{nt}$ ;  $p(\zeta) = p_n(\zeta) + ip_t(\zeta)$ ;  $\sigma_{nn}, \sigma_{nt}$  — нормальное и касательное напряжения в локальной декартовой прямоугольной системе координат n, t (в уравнении (18) ось n перпендикулярна  $\Gamma$ );  $p_n, p_t$  — проекции вектора внешней нагрузки на соответствующие оси n, t;  $\sigma_{tt}^s$  — поверхностное напряжение; радиус кривизны r кривой  $\Gamma$  и метрический коэффициент h (коэффициент Ламе) определяются формулами [8]

$$\frac{1}{h} = \frac{1}{\sqrt{1 + (\varepsilon f'(x_1))^2}}, \quad \frac{1}{r} = \frac{\varepsilon f''(x_1)}{\left(1 + (\varepsilon f'(x_1))^2\right)^{3/2}}.$$
(19)



Рис. 4. Двумерная модель упругого тела со слабо искривлённой границей

Считаем, что функция р удовлетворяет условию Гёльдера всюду на Г и

$$p(\zeta) = p(\zeta + a), \quad \int_{\zeta - a/2}^{\zeta + a/2} p(\tau) d\tau = -iP, \quad P = P_1 + iP_2.$$
 (20)

Условия на бесконечности аналогичны условиям (2) главы 1.

Для нахождения напряжённо-деформированного состояния тела используются те же соотношения (5) - (6), записанные в виде одной формулы [3]. Следуя методу возмущений [9], комплексные потенциалы и поверхностное напряжение представляем в виде степенных рядов по малому параметру  $\varepsilon$ :

$$\Phi(z) = \sum_{n=0}^{\infty} \frac{\varepsilon^n}{n!} \Phi_n(z), \quad \Upsilon(z) = \sum_{n=0}^{\infty} \frac{\varepsilon^n}{n!} \Upsilon_n(z), \quad \sigma_{tt}^s(\zeta) = \sum_{n=0}^{\infty} \frac{\varepsilon^n}{n!} \sigma_n^s(\zeta).$$
(21)

Затем предельные значения  $\Phi_n^-, \Upsilon_n^+$  функций  $\Phi_n, \Upsilon_n$  и функции  $p, \sigma_n^s$  на  $\Gamma$  раскладываются в соответствующие ряды Тейлора в окрестности прямой  $\operatorname{Im} \zeta = 0$ :

$$\Phi_n^{-}(\zeta) = \sum_{m=0}^{\infty} \frac{(i\varepsilon f(x_1))^m}{m!} \Phi_n^{-(m)}(x_1), \qquad p(\zeta) = \sum_{m=0}^{\infty} \frac{(i\varepsilon f(x_1))^m}{m!} p^{(m)}(x_1), \qquad (22)$$

$$\Upsilon_{n}^{+}(\overline{\zeta}) = \sum_{m=0}^{\infty} \frac{(-i\varepsilon f(x_{1}))^{m}}{m!} \Upsilon_{n}^{+(m)}(x_{1}), \qquad \sigma_{n}^{s}(\zeta) = \sum_{m=0}^{\infty} \frac{(i\varepsilon f(x_{1}))^{m}}{m!} \sigma_{n}^{s(m)}(x_{1}).$$
(23)

Принимая во внимание разложения (21) — (23) в граничном условии (18), приходим к последовательности краевых задач Римана — Гильберта

$$\Theta_n^+(x_1) - \Theta_n^-(x_1) = i\sigma_n^{s'}(x_1) + F_n(x_1), \qquad (24)$$

где  $F_n$  — известная функция, зависящая при n > 0 от всех предыдущих приближений, а

$$\Theta_n(z) = \begin{cases} \Upsilon_n(z), & \text{Im } z > 0, \\ \Phi_n(z), & \text{Im } z < 0. \end{cases}$$
(25)

Для любого *п* получены явные выражения  $F_n$  через известные функции, найденные в предыдущих приближениях.

Решение задачи (24) имеет вид [4]:

$$\Theta_n(z) = \Theta_{nu}(z) + \Theta_{nk}(z) + C,$$
  
$$\Theta_{nu}(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{i\sigma_n^{s'}(t)}{t-z} dt, \quad \Theta_{nk}(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{F_n(t)}{t-z} dt.$$
 (26)

Определяющие соотношения поверхностной и объёмной теории упругости, записанные в локальной системе координат *n*, *t* [1, 10], принимают вид

$$\sigma_{tt}^s = \gamma_0 + (\lambda_s + 2\mu_s)\varepsilon_{tt}^s, \qquad \sigma_{33}^s = \gamma_0 + (\lambda_s + \gamma_0)\varepsilon_{tt}^s, \tag{27}$$

$$\sigma_{nn} = (\lambda + 2\mu)\varepsilon_{nn} + \lambda\varepsilon_{tt}, \qquad \sigma_{tt} = (\lambda + 2\mu)\varepsilon_{tt} + \lambda\varepsilon_{nn}, \qquad (28)$$

$$\sigma_{nt} = 2\mu\varepsilon_{nt}, \qquad \sigma_{33} = \nu(\sigma_{tt} + \sigma_{nn}), \tag{29}$$

где *v* — коэффициент Пуассона объёмного материала.

Из условия идеального контакта поверхности с объёмом и соотношений (27) — (28), как и в главе 1 получаем равенство:

$$\sigma_{tt}^s = \gamma_0 + (\lambda_s + 2\mu_s)\varepsilon_{tt}.$$
(30)

С учётом разложений (21) — (23), приходим к последовательности уравнений

$$\sigma_n^s(x_1) = V_n(x_1) + M \operatorname{Re}\left\{ \varkappa \Phi_n^-(x_1) + \Upsilon_n^+(x_1) \right\}, \qquad M = \frac{\lambda_s + 2\mu_s}{2\mu}, \qquad (31)$$

где функции  $V_n$  зависят только от предыдущих приближений. Приводятся явные выражения для функций  $V_n$  при любом n.

Используя формулы Сохоцкого — Племеля в уравнении (31), получаем гиперсингулярное интегральное уравнение

$$\sigma_n^{s'}(x_1) - \frac{M(\varkappa + 1)}{2\pi} \int_{-\infty}^{\infty} \frac{\sigma_n^{s'}(t)}{(t - x_1)^2} dt = V_n'(x_1) + \\ + \operatorname{Re}\left\{\frac{M(1 - \varkappa)}{2} F_n'(x_1) - \frac{M(1 + \varkappa)}{2\pi i} \int_{-\infty}^{+\infty} \frac{F_n(t)}{(t - x_1)^2} dt\right\}.$$
 (32)

Заметим, что уравнение (32) по типу совпадает с уравнением (11), полученным в первой главе. Эти уравнения отличаются только правыми частями.

Решение уравнения (32) и задачи в целом строится в первом приближении при отсутствии внешней нагрузки. Некоторые численные результаты приведены на рис. 5 и рис. 6. Нулевому приближению отвечает задача о полуплоскости с прямолинейной границей в однородном поле напряжений  $\sigma_{11} = \sigma_1, \sigma_{22} = 0$ :

$$\sigma_0^s = \gamma_0 + M(\varkappa + 1)\frac{\sigma_1}{4}.$$
(33)

Учитывая периодичность задачи, как и в главе 1, решение уравнения (32) при n = 1 ищем в виде тригонометрического ряда

$$\sigma_1^{s'}(x) = \sum_{k=1}^{\infty} \left( A_k \sin b_k x + B_k \cos b_k x \right), \qquad b_k = 2\pi k/a.$$
(34)

Считая, что периодическая функция, описывающая форму поверхности, является чётной, представляем её в виде ряда Фурье по косинусам:

$$f(x) = \sum_{k=1}^{\infty} C_k \cos b_k x, \quad C_k = \frac{2}{a} \int_{-a/2}^{a/2} f(t) \cos b_k t \, dt.$$
(35)

10

- 12 -



**Рис. 5.** Распределение окружных (а) и нормальных (б) напряжений в пределах одного периода при a = 5 нм



**Рис. 6.** Зависимость максимумов окружных напряжений от периода искривления поверхности при различных значениях параметра y (a) и параметра M (б)

Используя свойства интегралов типа Коши, находим явные выражения для коэффициентов  $A_k, B_k$ :

$$A_{k} = \frac{MC_{k}b_{k}^{2}\left(\sigma_{1}(\varkappa+1) + b_{k}\sigma_{0}^{s}(\varkappa-1)\right)}{2 + Mb_{k}(\varkappa+1)}, \quad B_{k} = 0, \quad k \ge 0$$

Таким образом, в первом приближении получено точное аналитическое решение интегрального уравнения (32) для периодической формы поверхности в виде ряда Фурье

$$\sigma_{11}^s(x) = \gamma_0 + M(\varkappa + 1)\frac{\sigma_1}{4} - \varepsilon \sum_{k=1}^\infty \frac{A_k}{b_k} \cos b_k x.$$
(36)

В целях получения численных результатов рассматривается частный случай, когда на тело не действует внешняя нагрузка, а форма границы задана функцией

$$f(x,y) = \frac{a}{d} \left[ \operatorname{Im} \left\{ \operatorname{ctg} \left( \frac{\pi x}{a} - iy \right) \right\} - 1 \right], \quad d = \operatorname{Im} \left\{ \operatorname{ctg} \left( iy \right) \right\}.$$
(37)

Выбор такой функции обусловлен возможностью описать с её помощью различные формы поверхности: варьируя значения параметра *y*, можно получить различные формы кривых — от локализованных выступов и выемок до поверхностей, описываемых косинусоидальной функцией.

Численные результаты получены для тех же упругих параметров поверхности и объёма, что и в главе 1. Коэффициент Пуассона  $\nu = 0, 3$ ; малый параметр  $\varepsilon = 0, 1$ ; остаточное напряжение  $\gamma_0$  принято равным нулю.

Из рис. 5а видно, что при учёте поверхностных напряжений изменение окружных напряжений сглаживается, а нормальные напряжения демонстрируют противоположный эффект (рис. 5б). Кроме того, чем меньше радиус кривизны искривления поверхности, тем сильнее проявляется влияние поверхностных напряжений.

С целью выяснения влияния параметра M на размерный эффект были проведены вычисления для гипотетического сочетания упругих свойств поверхности и полуплоскости при M = 0, 5 нм и M = 1 нм. Результаты вычислений приведены на рис. 6б вместе с кривыми, соответствующими значениям M = 0, 1нм и M = 0. Решение, полученное при M = 0 эквивалентно классическому решению, не учитывающему поверхностное напряжение. Из рис. 66 следует, что увеличение параметра M приводит к немонотонной зависимости окружного напряжения от периода искривления поверхности. Более того, в отличие от реального значения M = 0, 113 нм, с уменьшением периода искривления a приблизительно от значения 20 нм окружное напряжение возрастает при M = 0, 5нм и от значения 40 нм — при M = 1 нм.

В третьей главе решается задача определения напряжённодеформированного состояния двухкомпонентного упругого пространства со слабо искривлённой поверхностью раздела в условиях плоской деформации при наличии межфазных напряжений и действии напряжений на бесконечности. В рамках рассматриваемого подхода перемещения непрерывны при переходе через межфазную поверхность, а скачок напряжений связан с существованием межфазных напряжений. Проводится анализ влияния формы искривления поверхности и физических параметров на напряжённое состояние границы раздела сред.

Рассматривается упругое тело, состоящее из двух полупространств со слабо искривлённой межфазной поверхностью. В силу выполнения условий плоской деформации, как и в предыдущих главах, приходим к формулировке двумерной задачи для двухкомпонентной плоскости со слабо искривлённой границей раздела (рис. 7). Считаем, что упругие свойства полуплоскостей  $\Omega_1$  и  $\Omega_2$  различны, а на границе раздела  $\Gamma$  действует межфазное напряжение  $\sigma^s$  [10, 11, 12]. Граница  $\Gamma$  определяется равенством  $\Gamma = \{z : z = \zeta \equiv x_1 + i \varepsilon f(x_1)\}$ , где  $\varepsilon \ll 1, f(x_1)$  — непрерывная, периодическая и ограниченная функция, то есть  $f(x_1) = f(x_1 + a), |f(x_1)| \leq a, |f'(x_1)| \leq M = const$ , где a — период. На межфазной границе  $\Gamma$  отсутствуют разрывы перемещений, а скачок

На межфазной границе  $\Gamma$  отсутствуют разрывы перемещений, а скачок напряжений  $\sigma^k$  (k = 1, 2) определяется законом Лапласа — Юнга:

$$u^{+}(\zeta) = u^{-}(\zeta), \qquad \sigma^{+}(\zeta) - \sigma^{-}(\zeta) = \Delta\sigma(\zeta) = \frac{\sigma^{s}}{r} - i\frac{1}{h}\frac{d\sigma^{s}}{dx_{1}} \equiv t^{s}(\zeta), \qquad (38)$$

где радиус кривизны границы r и метрический коэффициент h определяются равенствами (19).

На бесконечности выполнены условия:

$$\lim_{\mathrm{Im}\, z|\to\infty} \sigma_{ij}^k(z) = \sigma_{ij}^{k\infty}, \quad \lim_{|\mathrm{Im}\, z|\to\infty} \omega_k(z) = \omega_k^\infty, \quad z \in \Omega_k.$$
(39)



Рис. 7. Двумерная модель двухкомпонентного тела со слабо искривлённой границей

Для каждой среды  $\Omega_k$  (k = 1, 2) вектор напряжений и вектор перемещений связаны с комплексными потенциалами Гурса — Колосова соотношениями, аналогичными равенствам (5) - (6) [3].

По аналогии с главой 2, используя метод возмущения границы, функции  $\Phi_k, \Upsilon_k$  и  $\sigma^s$  представляем в виде степенных рядов по  $\varepsilon$ , а их значения на границе — раскладываем в ряды Тейлора. Подставляя напряжения и перемещения, выраженные через комплексные потенциалы, в граничные условия (38), и учитывая разложения функций по малому параметру, приходим к двум бесконечным последовательностям краевых условий [13]:

$$\left(\Upsilon_{1n}(x_1) + \Phi_{2n}(x_1)\right)^+ - \left(\Phi_{1n}(x_1) + \Upsilon_{2n}(x_1)\right)^- = F_{1n} + i\sigma_n^{s'}(x_1) - T_n^s, \quad (40)$$

$$\left(\mu_{2}\Upsilon_{1n}(x_{1}) - \mu_{1}\varkappa_{2}\Phi_{2n}(x_{1})\right)^{+} - \left(\mu_{1}\Upsilon_{2n}(x_{1}) - \mu_{2}\varkappa_{1}\Phi_{1n}(x_{1})\right)^{-} = F_{2n}, \quad (41)$$

где  $T_n^s$ ,  $F_{kn}$  (k = 1, 2) — функции, зависящие от предыдущих приближений. Решение задач (40) — (41), согласно [3], имеет вид:

$$\begin{cases} \Upsilon_{1n}(z) = \frac{\mu_1 \varkappa_2 I_n(z) + J_n(z)}{\mu_2 + \mu_1 \varkappa_2} + a_{1n}^2, & \text{Im } z > 0, \\ \Phi_{1n}(z) = \frac{\mu_1 I_n(z) - J_n(z)}{\mu_1 + \mu_2 \varkappa_1} + a_{1n}^1, & \text{Im } z < 0, \\ \Phi_{2n}(z) = -\Phi_{1n}(z) + I_n(z) + C_n, & \text{Im } z > 0, \\ \Upsilon_{2n}(z) = -\Upsilon_{1n}(z) + I_n(z) + C_n, & \text{Im } z < 0, \end{cases}$$
(42)

где

$$I_{n}(z) = I_{nk} + I_{nu}, \qquad I_{nk} = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} \frac{F_{1n}(t) - T_{n}^{s}(t)}{t - z} dt, \qquad (43)$$
$$I_{nu} = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} \frac{i\sigma_{n}^{s'}(t)}{t - z} dt, \qquad J_{n}(z) = J_{nk}(z) = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} \frac{F_{2n}(t)}{t - z} dt, \qquad (43)$$
$$a_{10}^{j} = a_{1}^{j}, \quad C_{0} = a_{1}^{j} + a_{2}^{j}, \quad a_{1n}^{j} = C_{n} = 0, \quad n = 1, 2, ..., \quad (-1)^{j} \operatorname{Im} z > 0.$$

Аналогично методу, описанному во второй главе, из условия идеального контакта и определяющих соотношений поверхностной и объёмной теорий упругости получено уравнение, связывающее *n*-ое приближение искомого межфазного напряжения  $\sigma_n^s$  с компонентой объёмной деформации. С учётом разложений функций по малому параметру приходим к последовательности уравнений, аналогичных уравнениям (31)

$$\sigma_n^s(x_1) - M \operatorname{Re}\left\{\varkappa_1 \Phi_{1n}^-(x_1) + \Upsilon_{1n}^+(x_1)\right\} = V_n(x_1), \qquad M = \frac{\lambda_s + 2\mu_s}{2\mu_1}, \qquad (44)$$

где функции  $V_n$  зависят только от предыдущих приближений. Приводятся явные выражения для функций  $F_{kn}(k=1,2)$  и  $V_n$  при любом n.

После дифференцирования данного уравнения с учётом формул Сохоцкого — Племеля получаем бесконечную последовательность гиперсингулярных интегральных уравнений относительно производной неизвестного межфазного напряжения  $\sigma_n^{s'}$ 

$$\sigma_n^{s'}(x_1) - MK_1 \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{\sigma_n^{s'}(t)}{(t-x_1)^2} dt = M \operatorname{Re} \left\{ \frac{K_2}{2} \left[ F_{1n}'(x_1) - T_n^{s'}(x_1) \right] + \frac{K_1}{2\pi i} \int_{-\infty}^{+\infty} \frac{F_{1n}(t) - T_n^s}{(t-x_1)^2} dt + \frac{K_3}{2} F_{2n}'(x_1) + \frac{K_4}{2\pi i} \int_{-\infty}^{+\infty} \frac{F_{2n}(t)}{(t-x_1)^2} dt \right\} + V_n', \quad (45)$$

где постоянные  $K_i$   $(i = \overline{1, 4})$  зависят от модулей упругости нижней и верхней областей.

Нужно отметить, что уравнение (45) по типу совпадает с уравнениями (11) и (32), полученными в первой и второй главе. Эти уравнения отличаются только правыми частями. Кроме того, как и уравнения (11) и (32), уравнение (45) получено без использования свойства периодичности функции  $f(x_1)$ , т. е. оно справедливо для любой формы поверхности.

Решение уравнения (45) и задачи в целом находим в частном случае, когда на бесконечности действуют только продольные напряжения и угол поворота равен нулю,  $\sigma_{11}^{1\infty} \equiv \sigma_1$  и  $\sigma_{11}^{2\infty} \equiv \sigma_2$ . Некоторые численные результаты приведены на рис. 8 и рис. 9.

Как и в главе 2 в *n*-м приближении межфазное напряжение ищем в виде

$$\sigma_n^s(x) = \sum_{k=0}^{\infty} \left( A_{nk} \cos b_k x + B_{nk} \sin b_k x \right), \tag{46}$$

где  $b_k = 2\pi k/a$ , здесь и далее обозначено  $x \equiv x_1$ . Функция  $f(x_1)$ , как и в первых двух главах, принята чётной и также раскладывается в ряд Фурье:

$$f(x) = \sum_{k=0}^{\infty} C_k \cos b_k x.$$
(47)

С использованием свойств интегралов типа Коши, получены выражения для всех коэффициентов в нулевом и первом приближении:

$$A_{00} = \gamma_0 + M(\varkappa_1 + 1)\frac{\sigma_1}{4}, \quad A_{0k} = 0, \quad k \ge 1; \qquad B_{0k} = 0, \quad k \ge 0, \tag{48}$$

$$A_{1k} = \frac{Mb_k C_k (K_5 \sigma_1 + K_2 \sigma_0^s b_k)}{2 + Mb_k K_1}, \qquad B_{1k} = 0, \quad k \ge 0, \tag{49}$$

где  $K_i$  (i = 1, 2, 5) — постоянные, зависящие от модулей упругости.

-16-



**Рис. 8.** Распределение окружных (а) и нормальных (б) напряжений вдоль межфазной границы в пределах одного периода при a = 5 нм



**Рис. 9.** Зависимость максимумов окружных напряжений от периода искривления межфазной поверхности при различных значениях y (a) и  $\mu_2/\mu_1$  (б)

В результате в первом приближении найдено точное решение интегрального уравнения (45) для периодической формы межфазной поверхности в виде ряда:

$$\sigma^{s}(\zeta) = \gamma_0 + M(\varkappa_1 + 1)\frac{\sigma_1}{4} + \varepsilon \sum_{k=0}^{\infty} A_{1k} \cos b_k x.$$
(50)

В качестве примера для описания формы искривления межфазной поверхности взята функция (37). Рассмотрено влияние различных параметров на напряжённое состояние двухкомпонентной плоскости со слабо искривлённой межфазной границей. Как и в главе 2, коэффициент M = 0, 113 нм, остаточное напряжение  $\gamma_0$  принято равным нулю, коэффициенты Пуассона обоих материалов равны  $\nu_1 = \nu_2 = 0, 3$ . Построены графики распределений окружных, касательных и нормальных напряжений для различных форм искривления поверхности при  $\mu_2/\mu_1 = 1/10$  (рис. 8).

На рис. 8 графики демонстрируют такой же эффект, как и на рис. 5. При этом, чем меньше радиус кривизны во впадинах более жёсткого материала, тем сильнее проявляется эффект межфазных напряжений. Это полностью согласуется с аналогичным эффектом, описанным в главе 2 для случая полуплоскости.

Получены графические зависимости максимумов окружных, нормальных

и касательных напряжений от периода искривления поверхности для различных форм искривлений, различных отношений модулей сдвига, а также для различных значений биупругой постоянной M. Наибольший эффект демонстрируют зависимости, полученные при отсутствии верхней полуплоскости ( $\mu_2 = 0$ ).

На графиках, приведённых на рис. 9, проиллюстрирован размерный эффект — зависимость окружного напряжения от периода искривления межфазной границы a. Причём чем более острые впадины имеет межфазная поверхность, а также чем больше отличаются модули упругости материалов, тем сильнее влияние межфазных напряжений. Этот эффект практически исчезает при a > 100 нм.

В заключении сформулированы основные результаты работы:

- Решены задачи определения напряжённо-деформированного состояния полуплоскости с прямолинейной и со слабо искривлённой границей при действии поверхностных напряжений, а также двухкомпонентной плоскости со слабо искривлённой межфазной границей, на которой действуют межфазные напряжения.
- В общем случае построены однотипные гиперсингулярные интегральные уравнения, к которым сведено решение всех трёх задач.
- Для случая периодических усилий, действующих на прямолинейной границе полуплоскости, построено точное решение интегрального уравнения в виде рядов Фурье.
- В случае слабо искривлённой границы полуплоскости и слабо искривлённой межфазной границы при помощи метода возмущений выведены соотношения, которые позволяют найти решение в любом приближении. Для периодической формы границ в первом приближении найдено точное решение соответствующего интегрального уравнения в виде рядов Фурье.
- Обнаружен размерный эффект зависимость напряжённого состояния от периода изменения нагрузки в первой задаче и периода искривления формы соответствующей поверхности во второй и третьей задачах.
- Проанализирована степень влияния поверхностных напряжений на напряжённое состояние границы в зависимости от характера изменения внешних усилий в первой задаче, а также от формы искривления поверхности во второй и третьей задачах. В результате выявлен следующий эффект: чем более резкое изменение нагрузки или чем меньше радиус кривизны искривления границы, тем сильнее проявляется влияние поверхностных напряжений.
- Рассмотрено влияние относительной жёсткости материалов на напряжённое состояние тела при учёте поверхностных и межфазных напряжений и обнаружено, что чем больше отличаются модули упругости материалов, тем сильнее проявляется эффект поверхностных напряжений.
- Установлено, что во всех рассмотренных случаях влиянием поверхностных и межфазных напряжений можно пренебречь, если период a > 100 нм.

## Публикации.

## Статьи в журналах, рекомендованных ВАК РФ:

- 1. Викулина Ю. И., Греков М. А., Костырко С. А. Модель пленочного покрытия со слабо искривленной поверхностью // Известия РАН. МТТ. 2010. No 6. C. 16–28.
- 2. Викулина Ю. И., Греков М. А. Напряженное состояние плоской поверхности упругого тела нанометрового размера при периодическом силовом воздействии // Вестник С-Петерб. ун-та. Серия 1. 2012. №4. С. 72–80.

### Статьи в других изданиях:

- 3. Викулина Ю. И. Влияние формы поверхности на напряжённое состояние тела нанометрового размера // Процессы управления и устойчивость: Труды 44-й междунар. научн. конф. аспир. и студ. / Под ред. Н. В. Смирнова, Т. Е. Смирновой. СПб.: Издат. Дом С.-Петерб. гос. ун-та, 2013. С. 165–170.
- 4. Grekov M.A., Vikulina Yu.I. Effect of a type of loading on stresses at a planar boundary of a nanomaterial. // Surface Effects in Solid Mechanics. Advanced Structured Materials. Eds. H. Altenbach and N.F. Morozov. Berlin: Springer, 2013. V. 30, P. 69–79.
- 5. Викулина Ю.И., Греков М.А., Костырко С.А. Напряжённо-деформированное состояние упругого тела со слабо искривлённой поверхностью при учёте поверхностного напряжения // Процессы управления и устойчивость: Труды 43-й междунар. научн. конф. аспир. и студ., СПб, 2012. С. 112–118.
- 6. Викулина Ю.И., Греков М.А. Напряжённое состояние полуплоскости при учёте поверхностного напряжения // Процессы управления и устойчивость: Труды 42-й междунар. научн. конф. аспир. и студ., СПб, 2011. С. 109–114.
- 7. Костырко С.А., Викулина Ю.И. Напряжённое состояние поверхностного слоя переменной толщины // Труды XLI междунар. научн. конф. аспир. и студ. «Процессы управления и устойчивость», СПб, 2010. С. 176–182.

#### Тезисы докладов на конференциях:

- 8. Викулина Ю.И., Греков М.А., Костырко С.А. Влияние дефектов поверхности нанометрового размера на напряженное состояние упругого тела // Тезисы докл. Междунар. научн. конф. «Совр. проблемы мех. деф. тв. тела, дифф. и интегр. ур-ий», Одесса: «Астропринт», 2013. С. 38.
- 9. Викулина Ю.И., Греков М.А. Напряженное состояние плоской поверхности наноматериала при периодическом силовом воздействии // Шестые Поляховские чтения. Тезисы докл. Междунар. научн. конф. по механике, Москва, 2012. С. 304.
- 10. Grekov M.A., Vikulina Yu.I. Effect of a type of loading on the surface stress at a plane boundary of a solid // 8th Europ. Solid Mech. Conf.: Book of Abstracts / G.A. Holzapfel and R.W. Ogden (Eds) / [CD] / GS-MP. Graz, Austria, 2012.
- 11. Grekov M.A., Kostyrko S.A., Vikulina Yu.I. Effect of surface stress in the case of a curvilinear interface between elastic materials // XXI Петербургские чтения по проблемам прочности. К 100-летию со дня рождения Л.М. Качанова и Ю.Н. Работнова.: сборник материалов, СПб.: Соло, 2014. С. 272–274.

#### Список цитируемой литературы

- 1. Gurtin M. E., Murdoch A. I. A continuum theory of elastic material surfaces // Arch. Ration. Mech. Anal., 1975. Vol. 57. № 4. P. 291–323.
- 2. Греков М.А., Костырко С.А. Потеря устойчивости плоской формы пленочного покрытия при поверхностной диффузии // Вестн. С.-Петерб. ун-та. Сер. 10, 2007. Вып. 1. С. 46–54.
- 3. Греков М.А. Сингулярная плоская задача теории упругости. СПб.: Изд-во С.-Петерб. ун-та, 2001. 192 с.
- 4. Мусхелишвили Н.И. Некоторые основные задачи математической теории упругости. М.: Наука, 1966. 708 с.
- 5. Miller R.E., Shenoy V.B. Size-dependent elastic properties of nanosized structural elements // Nanotechnology, 2000. Vol. 11. P. 139–147.
- Andrews A.M., Speck J.S., Romanov A.E., Bobeth M., Pompe W. Modeling cross-hatch surface morphology in growing mismatched layers // J. Appl. Phys., 2002. V. 91. No. 4. P. 1933–1943.
- 7. Викулина Ю. И. Влияние формы поверхности на напряжённое состояние тела нанометрового размера // Процессы управления и устойчивость: Труды 44-й междун. научн. конф. асп. и студ. / Под ред. Н. В. Смирнова, Т. Е. Смирновой. СПб.: Издат. Дом С.-Петерб. гос. ун-та, 2013. С. 165–170.
- 8. Новожилов В.В. Теория упругости. Л.: Судпромгиз, 1958. 370 с.
- 9. Греков М. А., Макаров С. Н. Концентрация напряжений у слабо искривленного участка поверхности упругого тела // Изв. РАН. МТТ, 2004. № 6. С. 53–61.
- 10. Duan H. L., Wang J., Karihaloo B.L. Theory of elasticity at the nanoscale // Advances in Applied Mechanics, 2009. № 42. P. 1–68.
- 11. Гольдштейн Р.В., Городцов В.А., Устинов К.Б. Влияние поверхностных остаточных напряжений и поверхностной упругости на деформирование шарообразных включений нанометровых размеров в упругой матрице // Физическая мезомеханика, 2010. Т. 13. № 5. С. 127–138.
- Tian L., Rajapakse R.K.N.D. Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity // Int. J. Solids and Structures, 2007. V. 44. № 24. P. 7988–8005.
- 13. Греков М. А. Метод возмущений в задаче о деформации двухкомпонентного композита со слабо искривленной границей раздела // Вестн. С.-Петерб. унта. Сер. 1, 2004. Вып. 1. С. 81–88.